



Newton Book Maker
UserÕs Guide

Version 1.1



Apple Computer, Inc.
© 1995 Apple Computer, Inc.
All rights reserved.
No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying,
recording, or otherwise, without
prior written permission of Apple
Computer, Inc., except in the
normal use of the software or to
make a backup copy of the soft-
ware. The same proprietary and
copyright notices must be afÞxed to
any permitted copies as were
afÞxed to the original. This excep-
tion does not allow copies to be
made for others, whether or not
sold, but all of the material pur-
chased (with all backup copies) may
be sold, given, or loaned to another
person. Under the law, copying
includes translating into another
language or format. You may use
the software on any computer
owned by you, but extra copies
cannot be made for this purpose.
Printed in the United States of
America.
The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the ÒkeyboardÓ Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for licensed
Newton platforms.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, AppleTalk,
LaserWriter, Macintosh, and
Newton are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Balloon Help, Espy, Geneva, the
light bulb logo, MessagePad,
NewtonScript, Newton Toolkit,
New York, QuickDraw, and System
7 are trademarks of Apple
Computer, Inc.
Claris, HyperCard and MacWrite
are registered trademarks of Claris
Corporation.
Microsoft and Microsoft Word are
registered trademarks of Microsoft
Corporation. Windows is a trade-
mark of Microsoft Corporation.
PostScript is a trademark of
Adobe Systems Incorporated,
which may be registered in
certain jurisdictions.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, APDA
will replace the media or manual at no
charge to you provided you return the
item to be replaced with proof of
purchase to APDA.

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY, MER-
CHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD ÒAS
IS,Ó AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of
such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS,
ORAL OR WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or
employee is authorized to make any
modiÞcation, extension, or addition to
this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you speciÞc legal rights,
and you may also have other rights
which vary from state to state.

11/95



Contents

Preface About This Book xii

Audience xii
Related Books xii
How to Use This Book xiii

Example Books xiv
Conventions Used in This Book xvi

Special Fonts xvi
Developer Products and Support xvii
For NewtonScript Programmers xviii

Tap Versus Click xviii
Frame Code xviii
Undocumented System Software Objects xx

Chapter 1 Newton Digital Books 1-1

Newton Digital Books 1-1
Newton Book Maker 1-2
Newton Book Reader 1-3
Newton Application Help 1-3

The Help Browser 1-4
Books vs. Applications 1-5



Chapter 2 Getting Started With
Newton Book Maker 2-1

Installing Book Maker 2-1
Hardware Requirements 2-3
System Software Requirements 2-4
RAM Requirements 2-4
Claris XTND Translators 2-4
Fonts 2-5

Creating Digital Books 2-6
Creating a Book Source File 2-6

Before You Start 2-7
About Book Maker Commands 2-8
Adding Required Commands 2-8

Processing the Book Source File 2-11
Book Maker is AppleScript-able 2-14
A Book Reader Book or Application Help? 2-15

Building a Book Package With NTK 2-15
Adding a Short Title 2-17
Adding Graphics 2-18

Large Pictures Scroll Automatically 2-19
Adding Comments to the Book Source File 2-20
Where to Go From Here 2-21

Chapter 3 Using the Book Maker Language 3-1

Using Layouts 3-1
DeÞning Layout Commands 3-2
Applying Layouts 3-3

Applying Layouts by Name 3-5



Flags 3-6
Using Flags 3-6

Using Edge Flags 3-7
Using the Sidebar Flag 3-8
Using the toEdge Flag 3-12
Using Sidebar Alignment Flags 3-14

Formatting Recommendations 3-18
Creating a Browser Pane 3-19

The BrowserOnly Flag 3-21
Creating a Kiosk 3-23
Finishing Touches 3-25

Adding Book Information for the ÒAboutÓ Slip 3-25
Adding Space Between Content Items 3-26
Indenting Text 3-26
Adding Picture Headers 3-27
Oversize Picture Headers Spill Into Book Page 3-27
Including External PICT Files 3-29

Chapter 4 NewtonScript in Books 4-1

Using NewtonScript in Book Source Files 4-1
Attaching Scripts to Content Items 4-2
Attaching Scripts to the Page 4-4
Attaching Scripts to the Entire Book 4-4

Sharing NewtonScript Code 4-5
Shared Script Example 4-5

Using Protos and View Templates in Books 4-6
Searching in .form Content Items 4-7

Storing and Accessing Data in Digital Books 4-8
Adding Slots to Content Items 4-9



Getting Data From Slots in a Content Item 4-9
Adding Slots to Views 4-10
Global Data in Books 4-11

Book Data 4-11
Setting and Getting Book Data 4-12
Using Author Data 4-13

Adding Slots to the Book 4-15
Reserved Slot Names 4-16

Information Available From Reserved Slots 4-16
The copyProtection Slot 4-17

Marking Content Items 4-18
Dereferencing Slots in a Marked Content Item 4-20

Using an Index to Obtain References to Content Items 4-21
Creating Multiple Indices 4-22

Storing Page Numbers in a Content Item 4-23
Creating Story Cards 4-24
Creating Dynamic Browsers 4-25
Adding Intelligent Assistant Templates to Books 4-26

Chapter 5 Application Help 5-1

Adding Help to Your Application 5-1
Writing Help Books 5-2
Building Stand-Alone Help Books 5-3
How to Add Help to Your Application 5-3

Adding a Help Book to Your ApplicationÕs Package 5-4
Pictures in Help Books in an Application Project 5-4



Appendix A The Book Maker Language A-1

Overview of the Book Maker Language A-1
Types of Book Maker Commands A-1
If You Do Not Know NewtonScript A-2
Syntax of Book Maker Commands A-3
Structure of a Book Maker Source File A-3

Document Commands A-4
Content Commands A-11
Browser Commands A-25
Page Layout Commands A-26
Miscellaneous Commands A-29
Flags A-32

Document Flags A-33
Layout Flags A-33
Content ßags A-34

NewtonScript Methods A-36
Book Reader Messages A-51
NewtonScript Global Functions A-57
Summary of Commands, Functions, and Methods A-59

Book Maker Commands A-59
Flags A-61
NewtonScript Methods A-62
Book Reader Messages A-64
NewtonScript Global Functions A-64

Appendix B Troubleshooting B-1

Font-Related Problems B-1
Truncated Paragraphs or Improper Layout B-1
Text Layout Problems B-2



Improper Espy Sans Bold Style B-2
Espy Font Substituted B-2
Printing on a LaserWriter B-2

Book Maker Problems B-3
Lost Styles B-3
Incorrect Error Messages B-3
XTND and Large Files B-4
No Scripts in Page .headers, Use .running story

Instead B-4
Controlling How Find Results Are Displayed B-4

NTK Problems B-5
CanÕt Delete Old Package B-5
Title Not Updated on Loading Updated Book B-5
Removed Last Page Displayed or Bookmarked Page B-6
Curly Quotes DonÕt Compile B-6
Global Functions Warnings B-6

Appendix C Books on Online Help C-1

Appendix D Compatibility D1

Book Maker Enhancements D1
Controlling Generation of Subindices D1

Bugs Fixed in Book Reader D2
Bookmarking and Printing Context D2
Length of ISBN Strings D2
Information in ÒAboutÓ Slip Not Displayed D3
Page Scripts Override Book Scripts D3



Edge Flags With Multi-Page Contents D3
Memory Management for Story Cards D3
Story Cards Always Left-JustiÞed D3
.form Content Items Do Not Respect viewJustify D4
InsertForm Function Does Not Return the View D4

Searching in .Form Content Items D4
Help Books D5

Enhancements to Newton Book Reader D6
Unavailable Methods D6
Unsent Book Reader Messages D7
Unavailable Flag D7

Chapter 6 Glossary GL-1



Chapter 1 Newton Digital Books 1-1

Figure 1-1 The system-supplied help overview 1-4

Chapter 2 Getting Started With
Newton Book Maker 2-1

Figure 2-1 Choosing a book source file in Book Maker 2-12
Figure 2-2 The book processing window 2-12
Figure 2-3 Specifying the Book Reader destination

format 2-13
Figure 2-4 Saving the processed book file 2-14
Figure 2-5 The sample book 2-17
Figure 2-6 Scroller controls 2-20

Chapter 3 Using the Book Maker Language 3-1

Figure 3-1 Pages formatted with the

threeCol

 and

simple

layouts 3-4

Figure 3-2 Using edge flags 3-8
Figure 3-3 Using the

sidebar

 flag in layouts and content
items 3-10

Figure 3-4 Text formatted with the

twoCol

 layout 3-11
Figure 3-5 Right-justified text in a sidebar to the left of the main

column 3-12
Figure 3-6 Applying the toEdge flag to sidebar text 3-12
Figure 3-7 Wrapping text around a graphic 3-14
Figure 3-8 Using the alignTop flag 3-16
Figure 3-9 Using the alignBottom flag 3-17
Figure 3-10 Browser pane from

BrowserStory 3-21

Figure 3-11 Kiosk page from the Kiosks example book 3-24
Figure 3-12 Using oversize picture headers 3-29



Chapter 4 NewtonScript in Books 4-1

Chapter 5 Application Help 5-1

Figure 5-1 The Help Size option in Newton Book Maker 5-2

Appendix A The Book Maker Language A-1

Appendix B Troubleshooting B-1

Appendix C Books on Online Help C-1

Appendix D Compatibility D1

Chapter 6 Glossary GL-1

P R E F A C E

xii

About This Book

This book, the

Newton Book Maker UserÕs Guide

, describes how to
create digital books and application help for the Newton family of
personal digital assistants using Book Maker 1.1.

Audience

This guide is for anyone who wants to create digital books for the
Newton family of products. You need not have any programming
experience to create a book; however, you should be familiar with
basic Macintosh operations and should know how to build a
project in Newton Toolkit (NTK). For more information about
building packages, see the

Newton Toolkit UserÕs Guide

, which is
included with NTK.

Non-programmers can also create content for help screens in
Newton applications. However, the incorporation of help in
a Newton application requires familiarity with NewtonScript and
the Newton object system.

Related Books

This book is one in a set of books included with Newton Toolkit,
the Newton development environment. Although this book,

Newton Book Maker UserÕs Guide

, provides all of the information
youÕll need to create digital books for the Newton family of
products, you may wish to refer to these other books in the set:

■

Newton Toolkit UserÕs Guide

. This book introduces the Newton
development environment and shows how to develop Newton

P R E F A C E

xiii

applications using Newton Toolkit. You should read the section
of this book that describes how to build a book package if you
are not familiar with this process.

■

Newton ProgrammerÕs Guide: System Software

. This set of books is
the deÞnitive guide and reference for Newton programming
topics other than communications.

■

The NewtonScript Programming Language

. This book describes
the NewtonScript programming language. None of this
material is required to use Book Maker; however, programmers
incorporating help screens in a Newton application need to be
familiar with this material. Furthermore, NewtonScript code
can be added to a digital book to make the book Òcome alive.Ó

■

Newton ProgrammerÕs Guide: Communications

. This book is the
deÞnitive guide and reference for Newton communications
programming. This material is not necessary reading for
creating digital books.

How to Use This Book

This book contains Þve chapters; at the very least you need to
read Chapters 1 and 2 before attempting to create your own books.

■

Chapter 1, ÒNewton Digital Books,Ó describes the features of
Newton digital books. This chapter introduces Newton Book
Maker, Newton Book Reader and the system-supplied help
browser. It also describes some of the differences between Book
Reader packages and application help.

■

Chapter 2, ÒGetting Started With Newton Book Maker,Ó
provides a quick introduction to the process of building a
Newton digital book.

■

Chapter 3, ÒUsing the Book Maker Language,Ó describes the
Book Maker commands used to lay out text and graphics on
the page.

P R E F A C E

xiv

■

Chapter 4, ÒNewtonScript in Books,Ó describes the optional use
of NewtonScript methods, slots, templates, and frames in
digital books. The material in this chapter presumes some
NewtonScript programming ability and some familiarity with
the Newton object system.

■

Chapter 5, ÒApplication Help,Ó describes how to add a set of
help screens created using Book Maker to a Newton
application. The material in this chapter presumes some
NewtonScript programming ability and some familiarity with
Newton application development.

■

Appendix A, ÒThe Book Maker Language,Ó is a description of
the different kinds of commands used in Book Maker. This
appendix includes a command reference section that describes
the individual elements of the Book Maker language.

■

Appendix B, ÒTroubleshooting,Ó describes several common
problems and suggests solutions.

■

Appendix C, ÒBooks on Online Help,Ó lists various books and
journal articles which deal with creation of online help.

■

Appendix D, ÒCompatibility,Ó describes changes to the 1.1.
version of Book Maker, and the changes necessary to make a
book be displayable by versions Book Reader installed on 1.x
Newton devices.

Example Books

The Newton Book Maker product includes a set of Book Maker
examples that illustrate most of the topics covered in the

Newton
Book Maker UserÕs Guide

.

Each book example folder contains the following Þles:

■

NTK Project File

This Þle serves as a repository for all of the Þles needed to build
a project in NTK. This example Þle has the same name as the

P R E F A C E

xv

folder storing all the related Þles for a particular book example;
for example, the

Simple

 folder contains an NTK project
named

Simple

.

■

Book Source File

This is a word processor Þle used as input to Book Maker; the
example book source listings shown in this book are found in
the book source Þles. This example Þle is named by appending
the word

story

 to the name of the related NTK project Þle; for
example, the book source Þle for the

Simple

 project is named

SimpleStory

.

■

Book Maker Output File

Book Maker processes a book source Þle and produces this Þle,
which is added to the NTK project used to build a book or
an application. The name of this example Þle is created by
appending

.f

 to the name of the book source Þle that was used
to create this output Þle; for example, Book Maker produces an
output Þle named

SimpleStory.f

 when it processes the

SimpleStory

 book source file.

■

Book Reader Package

This is the digital book package that appears in the Extras
Drawer on the Newton screen. This package is produced by
building the NTK project containing the Book Maker output
Þle. The name of the example package is created by appending

.pkg

 to the name of the NTK project file used to build it; for
example, the

Simple

 project builds the

Simple.pkg

 book
package.

The Newton Developer Technical Support team continually
revises the existing samples and creates new sample code. You can
Þnd the latest collection of sample code in the Newton developer
area on eWorld. You can gain access to the sample code by
participating in the Newton developer support program. For
information about how to contact Apple regarding the Newton
developer support program, see the section ÒDeveloper Products
and Support,Ó on page xvii.

P R E F A C E

xvi

Conventions Used in This Book

This book uses the following conventions to present various kinds
of information.

Special Fonts

This book uses the following special fonts:

■

Boldface

. Key terms and concepts appear in boldface on Þrst
use. These terms are also deÞned in the Glossary.

■

Courier typeface

. Code listings, code snippets, and special
identiÞers in the text such as predeÞned system frame names,
slot names, function names, method names, symbols, and
constants are shown in the

Courier

 typeface to distinguish
them from regular body text. Items that appear in

Courier

should be typed exactly as shown.

■

Geneva typeface

.

 Book Maker source file listings and
examples are shown in the

Geneva

 typeface to distinguish them
from regular body text. Items that appear in

 Geneva

font

should be typed exactly as shown. The

Geneva

 font was chosen
because it is supported directly by the Newton digital book
reader; use of this font in book source examples facilitates a
more exact correspondence between what you see in this book
and what appears on the Newton screen.

■ Italic type is used in book source code and NewtonScript code
to indicate replaceable items, such as the names of function
parameters, which you must replace with your own names.
The names of other books are also shown in italic type.

■ Square brackets ([and]) identify optional parameters in
command syntax listings. The brackets are not part of the
optional parameter and should not be included in Book Maker
commands.

P R E F A C E

xvii

Developer Products and Support

APDA is AppleÕs worldwide source for a large number of develop-
ment tools, technical resources, training products, and informa-
tion for anyone interested in developing applications on Apple
platforms. Every four months, customers receive the APDA Tools
Catalog, featuring all current versions of Apple tools and the most
popular third-party development tools. Ordering is easy; there are
no membership fees, and application forms are not required for
most of our products. APDA offers convenient payment and
shipping options, including site licensing.

To order a product or to request a complimentary copy of the
APDA Tools Catalog:

APDA
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

If you provide commercial products and services, call
408-974-4897 for information on the developer support
programs available from Apple.

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDA

CompuServe 76666,2405

Internet APDA@applelink.apple.com

P R E F A C E

xviii

For NewtonScript Programmers

Although you need not have any programming knowledge to
create Newton digital books, NewtonScript programmers can use
the Newton object system and NewtonScript to provide addi-
tional features in books. This section addresses issues that affect
NewtonScript programmers only; if you do not plan on using
NewtonScript in your digital book, you can skip this section and
go on to Chapter 1, ÒNewton Digital Books.Ó

Tap Versus Click
Throughout the Newton software system and in this book, the
word ÒclickÓ sometimes appears as part of the name of a method
or variable, as in viewClickScript or buttonClickScript .
This may lead you to believe that the text refers to mouse clicks. It
does not. Wherever you see the word ÒclickÓ used this way, it
refers to a tap of the pen on the Newton screen (which is
somewhat similar to the click of a mouse on a desktop computer).

Frame Code
If you are using the Newton Toolkit (NTK) development
environment in conjunction with this book, you may notice that
this book displays the code for a frame (such as a view) differently
than NTK does.

P R E F A C E

xix

In NTK, you can see the code for only a single frame slot at a time.
In this book, the code for a frame is presented all at once, so you
can see all of the slots in the frame, like this:

{ viewClass: clView,

viewBounds: RelBounds(20, 50, 94, 142),

viewFlags: vNoFlags,

viewFormat: vfFillWhite+vfFrameBlack+vfPen(1),

viewJustify: vjCenterH,

viewSetupDoneScript: func()

:UpdateDisplay(),

UpdateDisplay: func()

SetValue(display, 'text, value);

};

If, while working in NTK, you want to create a frame that you see
in the book, follow these steps:

1. On the NTK template palette, Þnd the view class or proto
shown in the book. Draw out a view using that template. If the
frame shown in the book contains a _proto slot, use the
corresponding proto from the NTK template palette. If the
frame shown in the book contains a viewClass slot instead of
a _proto slot, use the corresponding view class from the NTK
template palette.

2. Edit the viewBounds slot to match the values shown in
the book.

3. Add each of the other slots you see listed in the frame, setting
their values to the values shown in the book. Slots that have
values are attribute slots, and those that contain functions are
method slots.

P R E F A C E

xx

Undocumented System Software Objects
When browsing in the NTK Inspector window, you may see
functions, methods, and data objects that are not documented in
this book. Undocumented functions, methods, and data objects
are not supported, nor are they guaranteed to work in future
Newton devices. Using them may produce undesirable effects on
current and future Newton devices.

P R E F A C E

xxi

C H A P T E R 1

Newton Digital Books 1

Newton Book Reader is a system service that displays interactive digital
books on the Newton screen. Newton Book Maker allows non-programmers
to create source Þles for Newton digital books using an ordinary word
processor application.

The Book Maker application also allows non-programmers to create help
content for Newton applications. The installation of help in a Newton
application package requires some rudimentary NewtonScript programming
ability.

This chapter describes the features of Newton digital books, and introduces
Newton Book Maker, Newton Book Reader, and the system-supplied help
browser. It also describes some of the differences between Book Reader
packages and application help.

Newton Digital Books 1

Newton digital books can display graphics, multiple-font text, and on-screen
controls for content navigation. The user can scroll pages, mark pages with
bookmarks, access data directly by page number or subject, mark up pages

Figure 1-0
Table 1-0

C H A P T E R 1

Newton Digital Books

1-2 Newton Book Maker

using electronic ink and perform text searches. The user can also copy and
paste text from digital books, as well as print text and graphics from them.

Because Book Reader books are closely coupled with NewtonScript and the
Newton object system, NewtonScript programmers can attach slots, scripts,
and Newton object system prototypes to book content to further customize
the bookÕs behavior.

Newton Book Maker 1

Newton Book Maker allows non-programmers to create source Þles for full-
featured Newton digital books using an ordinary word processor application
and the Book Maker command language.

The needs of those wishing to convert existing paper-based publications into
digital books were a prime consideration in the development of Book Maker
and its command language. As a result, you can convert an existing work
into a full-featured interactive book with very little effort. Only three Book
Maker commands are required to create a simple book that provides all of
the features mentioned previously, such as bookmarks, electronic ink, and
support of the Find service.

The Book Maker language also provides a rich set of features that allow the
content provider to exercise greater control over page layout or provide
additional services to the user.

Newton Toolkit uses the output Þle produced by the Book Maker application
to create a book package that appears in the Extras Drawer or to create help
that can be incorporated into a Newton application, or as a help book
package that appears in the Help Folder of the Extras Drawer.

C H A P T E R 1

Newton Digital Books

Newton Book Reader 1-3

Newton Book Reader 1

Newton Book Reader is available on all Newton platforms. It is invisible to
the user until a digital book package is presented to the system. Book
packages can be loaded in RAM or can reside on PCMCIA cards.

Newton Book Reader provides a user interface for navigation through
content that keeps the look and feel of digital books consistent while leaving
the design of the content itself up to the bookÕs author. For information about
Newton Book ReaderÕs user interface, consult the documentation provided
with your Newton device.

Newton Application Help 1

In addition to creating the source Þle for a digital book package, Book Maker
can be used to create help screens for Newton applications.

When the user taps the ÒHow Do I?Ó button in the Assist Drawer, the system
displays an outline-like overview of help topics. Tapping a topic causes it to
display its subtopics or, if there are no further subtopics, to display a help
screen. Although you cannot add information to the system-supplied help,
you can provide the same kind of help within your Newton application. The
system-supplied help overview is shown in Figure 1-1.

C H A P T E R 1

Newton Digital Books

1-4 Newton Application Help

Figure 1-1 The system-supplied help overview

The source Þle from which Book Maker creates help is written in much
the same manner as the Þle from which a Book Reader package is created:
a word-processor Þle is tagged with Book Maker commands and processed
by Newton Book Maker. The most important difference between the two
is the means by which the information is made available to the user. Book
packages appear in the Extras Drawer and are displayed by Newton Book
Reader when the user taps the packageÕs icon. Application help, on the other
hand, is visible to the user only as an outline, and as associated information
displayed when the user taps a Help button that the application must
provide. The application uses the system-supplied help browser to
display help.

The Help Browser 1
The help browser is intended to present single screens of step-by-step instruc-
tion for performing actions in a Newton application. Because of the limited
scope of this kind of information, the help browser provides only a subset
of the features of Newton Book Reader. This section brießy contrasts
application help with book packages.

C H A P T E R 1

Newton Digital Books

Books vs. Applications 1-5

The screens provided by the help browser are smaller than those used for
Book Reader. A Book Reader book package is better suited for the
presentation of a full-featured user manual.

When deciding whether to provide information as a Book Reader package or
as application help, youÕll want to keep in mind these important differences
in their respective formats and feature sets.

Further discussion of speciÞc issues involved with designing application
help is provided later in this book, in Chapter 5, ÒApplication Help.Ó

Books vs. Applications 1

Digital books can incorporate protos and templates just as an application
can. If you are considering writing an application which uses a large amount
of text that spans multiple pages, or if the layout of the text is important,
you may wish to consider writing your application as a digital book. This
will allow you to use all the tools provided by Book Maker.

C H A P T E R 1

Newton Digital Books

1-6 Books vs. Applications

Installing Book Maker 2-1

C H A P T E R 2

Getting Started With
Newton Book Maker 2

This chapter provides a quick introduction to the process of building a
Newton digital book. The Þrst section brießy reviews the hardware and
software required to use Book Maker. Next, you are shown the composition
of the simplest Book Maker input Þle. After that, youÕll use Book Maker
and NTK to create a simple Newton digital book.

Installing Book Maker 2

Newton Book Maker is shipped with an installer script, which you run from
the distribution disk. Before installing Book Maker, verify that each
distribution disk is locked (that is, that the write-protect slider is open) to
protect the contents from accidental overwriting.

You will also need to install Newton Toolkit (NTK) in order to process the
Þles created by Book Maker into Newton packages, which can be
downloaded onto a Newton device. If you have not already done so, you
need to install NTK as described in the Newton Toolkit UserÕs Guide.

Figure 2-0
Table 2-0

C H A P T E R 2

Getting Started With Newton Book Maker

2-2 Installing Book Maker

Follow the steps in this section to install Book Maker on the Macintosh.

1. Insert the disk Newton Book Maker Installer. The disk opens to show the
release notes, and an installer script.

2. Double-click on the release notes and read them to see of there are any
updates to the installation procedure. If not, close them and continue on with
these directions.

3. Double-click on the Install Newton Book Maker icon to begin installation.

If you are installing Newton Book Maker for the Þrst time, or if youÕre
simply updating an earlier release, leave the Easy Install item selected in the
pop-up menu in the top-left corner of the window. You can also choose
Custom Install to selectively install parts of the software, or Custom Remove
to selectively remove parts of the software.

C H A P T E R 2

Getting Started With Newton Book Maker

Installing Book Maker 2-3

By default, Install Newton Book Maker puts Book Maker in a folder named
Newton Book Maker on your startup disk. If you want to change the
destination, click Select Folder and specify a new or different folder.

4. Click Install. The installer begins copying and conÞguring the software,
and displays a progress report.

5. When installation is complete you will be prompted to restart your
Macintosh; click Restart.

The Newton Book Maker folder contains the following Þles:

■ The Newton Book Maker application.

■ The Newton Book Maker Release Notes; read these for any late-breaking
information not included in this manual.

■ The SimpleText application; provided for reading the release notes. You
may delete this Þle if you wish.

In addition, a Claris folder is installed in your System folder. This folder
contains the following:

■ Claris Fonts Þle

■ Claris XTND System Þle

■ The Claris Translators folder

Make sure not to move or rename any Þles in this folder.

Hardware Requirements 2
Any Macintosh suitable for running Newton Toolkit can be used to
run Newton Book Maker; for more information, see the Newton Toolkit
UserÕs Guide.

C H A P T E R 2

Getting Started With Newton Book Maker

2-4 Installing Book Maker

System Software Requirements 2
Newton Book Maker requires Macintosh System software version 7.0.1
or later.

RAM Requirements 2
Newton Book Maker version 1.0 has a suggested minimum RAM require-
ment of 3700 KB; the actual requirements vary according to the size of the
book source Þle being processed. Extremely large books may require more
RAM to process; smaller ones may require less. Book Maker requires enough
RAM to keep the entire book source Þle in memory while it is being
processed.

 If you need to conserve memory, you can reduce the amount of RAM
allocated to Book Maker by changing the settings in the Get Info box for this
application in the Finder. You can also use the .chain command to break
large book source Þles into sets of smaller Þles. For more information about
changing the amount of RAM allocated to an application, see your Macintosh
UserÕs Guide. For more information about the .chain command, see its
description in the ÒMiscellaneous CommandsÓ section of Appendix A, ÒThe
Book Maker Language.Ó

Claris XTND Translators 2
Newton Book Maker relies on Claris XTND translator technology to accept
Þles from various word processors as input. When Newton Book Maker is
installed correctly, your System folder should contain a Claris folder that
includes the Claris XTND translators shown in Table 2-1 as well as the Claris

C H A P T E R 2

Getting Started With Newton Book Maker

Installing Book Maker 2-5

XTND tool itself. You can add XTND translators for any other word
processor format you prefer; Book Maker accepts as input any word
processor Þle for which an XTND translator is installed.

Fonts 2
Bitmapped versions of the fonts used in Newton digital books must be
installed on the computer that runs Newton Book Maker and NTK.

Currently, the Newton MessagePad supports only the bitmapped versions of
font families New York, Geneva, Espy Sans and Espy Sans Bold in sizes 9, 10,
12, 14, and 18 points.

The NTK installer application installs all supported sizes of Espy Sans and
Espy Sans Bold for you. You need only install any other fonts actually used
in digital books created on this computer.

WARNING

Use of any other fonts or use of TrueType versions of the
supported fonts may cause Book Maker to calculate page
layouts incorrectly. ▲

Table 2-1 XTND translators installed by Newton Book Maker installer

Claris Other

MacWrite¨ II TEXT

MacWrite¨ 5.0

C H A P T E R 2

Getting Started With Newton Book Maker

2-6 Creating Digital Books

Creating Digital Books 2

This section introduces you to the Book Maker command language and the
book-building process.

The process of creating a book is iterative. Because itÕs hard to guess exactly
where pages will fall, youÕll typically add Book Maker commands to your
document, process it through Newton Book Maker and NTK, then proofread
it on a Newton device. After proofreading the book on the Newton screen,
youÕll probably make changes to your book source Þle and repeat the process
again until you achieve the intended result.

There are three steps in the process of creating a digital book for a Newton
device.

1. Add Book Maker commands to the content Þle.

You can use any Macintosh word processor for which an XTND translator
is installed on the computer used to run Newton Book Maker. A content
Þle that includes Book Maker commands is called a book source Þle.

2. Use Newton Book Maker to process the book source Þle.

Book Maker produces a Þle that is used as input to Newton Toolkit.

3. Use Newton Toolkit to create a Book Reader package or integrate help
in a Newton application.

Building a book package is discussed later in this chapter, in the section
ÒBuilding a Book Package With NTK.Ó Integrating help with a Newton
application is discussed in Chapter 5, ÒApplication Help.Ó

Creating a Book Source File 2
A word processor document that includes Book Maker commands is called a
book source Þle. The book source Þle is processed by the Newton Book
Maker application, which produces a Þle used as input to Newton Toolkit.
NTK then builds a book package or adds help screens to a Newton
application.

C H A P T E R 2

Getting Started With Newton Book Maker

Creating Digital Books 2-7

All of the information in this chapter applies equally to Book Reader
packages or application help.

Before You Start 2

ItÕs helpful to simulate the dimensions of the screen on the Newton
MessagePad by setting your word processor margins to create a page width
of 3.33 inches. This gives you an idea of what the book page will look like in
the Þnal product. Be aware, though, that Book Maker does not use the
margins in the book source Þle to lay out text, so you should not attempt to
create insets or margins in your book text by setting margins of less than 3.33
inches on your word processor. You can also use the full 3.33-inch width
without worrying about text running into the edge of the Newton screenÑ
the screen on the Newton device includes a small non-display area between
the edge of the display area and the Newton deviceÕs plastic case.

The Newton MessagePad supports only the bitmapped versions of New
York and Geneva fonts in point sizes 9, 10, 12, 14, and 18. Your book must
be written in these fonts to be displayed correctly on the screen of the
MessagePad. You can also use point sizes that are multiples of these built-in
font sizes.

The MessagePad also has a system font, Espy Sans, which was specially
designed to display well on the Newton screen. This font is used in most
of the text displayed by the system. This font does not print or fax especially
well though; if your book is likely to be printed or faxed often, you want to
avoid this font.

Book Maker tries to reproduce the text of your book exactly as it appears in
the book source Þle, observing font, size, and style changes with no
additional effort required on your part. As a result, simple books can be
created with minimal effort. If you prefer, you can use additional Book
Maker commands to specify more complex formatting options. The example
shown in the next section demonstrates the minimum command set required
to create a book source Þle.

C H A P T E R 2

Getting Started With Newton Book Maker

2-8 Creating Digital Books

About Book Maker Commands 2

Book Maker commands always start with a period (.), or dot, which is why
they are sometimes referred to as Òdot commands.Ó

Book Maker commands always appear at the beginning of a line in the book
source Þle. Each command applies to everything that appears in the book
source Þle until the next command appears. Book Maker commands
themselves do not appear on the Newton screen.

The entire Book Maker command language is case insensitive. This book
uses mixed capitalization in book source Þles, as appropriate, to make them
easier to read.

Most word proccessors allow for user-deÞned styles. You may want to deÞne
a style called ÒBM commandsÓ and set it to display in a different color. In
this way the Book Maker commands in your book source Þle will stand out
from the rest of the document. See the documentation provided with your
word processor for information about how to do this.

Adding Required Commands 2

All book source Þles for Book Reader books must include the .title and
.isbn commands, as well as at least one content item. A content item is an
item displayed on the screen, such as text or a picture. This section describes
how to add these commands and a content item to the book source Þle.

The Title Command 2

All book source Þles must include a .title command, which deÞnes the
text placed at the top of every page when the book is displayed on the
Newton screen. It is possible to suppress the placing of the title at the top of
every page with the NoTitle ßag. Flags are discussed in the section ÒFlagsÓ
beginning on page 3-6; the NoTitle ßag is documented under ÒDocument
FlagsÓ on page A-33.

The .title command also deÞnes the bookÕs name in the Extras Drawer,
unless the book also has a .shortTitle command, which is discussed in
ÒAdding a Short TitleÓ on page 2-17. The title of the book is also used by the

C H A P T E R 2

Getting Started With Newton Book Maker

Creating Digital Books 2-9

system to display the context of a search, in a phrase such as ÒSearching in
The Simple Story...Ó

The book source Þle can have only one .title command.

To add a .title command to your book source Þle, place it at the beginning
of the Þrst line in the book source Þle and place your bookÕs title on the rest
of the line. The following example shows the .title command from a book
titled The Simplest Story:

.title The Simplest Story

The ISBN Command 2

All book source Þles must include an.isbn command. Like the .title
command, there can be only one .isbn command in any book source Þle.
This command assigns a unique identiÞer to the book package. The identiÞer
is used by the Newton Book Reader.

 ISBN is an acronym for International Standard Book Number. ISBN
numbers are unique numbers used by publishers and others in the book
trade to identify books. You need not use an actual ISBN number to identify
your book to Newton Book Reader; any unique identiÞer consisting of 14 or
fewer alphanumeric characters will sufÞce. You can create a unique identiÞer
by using your developer signature as a sufÞx to a descriptive title; for
example, Simple1:PIEDTS is a perfectly acceptable value for this identiÞer.

To add an .isbn command to your book source Þle, place it on the line that
follows the title command, as shown in the following example:

.title The Simplest Story

.isbn Simple1:PIEDTS

For information about acquiring a real ISBN number, see the discussion of
the .isbn command in Appendix A, ÒThe Book Maker Language.Ó

The Required Content Item 2

Aside from the required .title and .isbn commands, the book source Þle
must include at least one content item, such as text or a picture, to be

C H A P T E R 2

Getting Started With Newton Book Maker

2-10 Creating Digital Books

displayed on the screen. You can use the .story command to display text,
as in the following example:

.story
This is the simplest story ever told:

Once upon a time there was a little girl who lived
happily ever after.

Note

The .story and .title commands process text only.
Graphics tagged with these commands are ignored. The
.picture command, explained later in this section, can be
used to add graphics to a digital book. ◆

The Simplest Book Source File 2

The simplest Book Maker source Þle contains a .title command, an .isbn
command and at least one content item. It looks like the following example,
which is included with Book Maker as the SimpleStory Þle. This Þle and
all of the other example Þles mentioned in this guide are in the Book
Maker Examples folder included with Newton Toolkit.

.title The Simplest Story

.isbn simple1:PIEDTS

.story
This is the simplest story ever told:

Once upon a time there was a little girl who lived
happily ever after.

When this example is displayed on the Newton screen, the fonts and
formatting appear just as in the source Þle: the unusual capitalization of the
Þrst letter of the story and the paragraph breaks are preserved, as shown in
Figure 2-5 on page 2-17. However, the Book Maker commands (dot
commands) do not appear on the Newton screen.

C H A P T E R 2

Getting Started With Newton Book Maker

Creating Digital Books 2-11

In order to display the book on the Newton screen, you need to use Book
Maker and NTK to build a book package from the book source Þle. The next
two sections introduce you to this process.

Processing the Book Source File 2
The book source Þle for a Book Reader book or application help is processed
using the Newton Book Maker application, which produces a Þle that is used
as input to NTK. This section describes how to use Newton Book Maker to
process book source Þles.

You can use the example book source Þle SimpleStory to complete the
steps described in this section. If you use one of the example Þles provided
with Book Maker, itÕs recommended that you create a new folder in which to
experiment; that way you wonÕt accidentally replace one of the original
example Þles.

Take the following steps to process the book source Þle using Newton
Book Maker:

1. Open Newton Book Maker.

As with any other Macintosh application, you can select its icon in the
Finder and choose the Open item from the File menu, or simply
double-click the application icon to open it.

2. Choose OpenÉ from the File menu and select the book source Þle.

When you choose the OpenÉ item from the File menu, Book Maker
presents a dialog box in which you can specify the book source Þle to be
processed. This dialog box is shown in Figure 2-1.

3. Open the book source Þle.

Select the book source ÞleÕs name in the dialog box and click the Open
button. Alternatively, you can double-click the ÞleÕs name to open it.
Figure 2-1 depicts the selection of the SimpleStory book source Þle
included with Newton Book Maker.

C H A P T E R 2

Getting Started With Newton Book Maker

2-12 Creating Digital Books

Note

In the Finder, you can simply drag a book source Þle onto
the Book Maker application to open the application and
select the book source Þle. ◆

Figure 2-1 Choosing a book source file in Book Maker

Book Maker presents a window named for the source Þle to be processed.
Figure 2-2 shows the window Book Maker displays when the SimpleStory
book source Þle is opened.

Figure 2-2 The book processing window

4. Choose the screen format for which the book is to be processed.

C H A P T E R 2

Getting Started With Newton Book Maker

Creating Digital Books 2-13

From the Options menu, choose Normal Size for Book Reader books, or
Help Size for application help. A check mark appears in the Options menu
next to the size that is selected. Figure 2-3 shows the Options menu as it
appears when Normal Size is selected.

Figure 2-3 Specifying the Book Reader destination format

5. Click the Do It button to process the book.

As Book Maker processes the source Þle, it presents status information
regarding the number of lines processed in the source Þle, the number of
content items created, and the number of pages as calculated for the
speciÞed destination format.

If Book Maker cannot process the book source Þle for any reason, it stops
and displays an error message. You must correct the error and reprocess
the source Þle.

For most errors, Book Maker displays a line number specifying where the
error was encountered, and the previous line, in the book processing
window. You can copy this information to the clipboard by selecting Copy
from the Edit menu (or hitting Command-C on the keyboard).

The error line number is actually the number of paragraph endings that
Book Maker has processed; your word processor may count paragraphs
differently than Book Maker.

You can cancel Book MakerÕs processing of a source Þle, by typing a
period while pressing the Command (or Apple) key.

6. Save the Book Maker output Þle.

When Book Maker finishes processing the source Þle, it presents a dialog
box in which you can specify the name under which to save the Book
Maker output Þle. Book Maker supplies a default name that is constructed
by appending the sufÞx .f to the source ÞleÕs name; however, you can
name the Þle whatever you prefer by typing in the editable text Þeld and

C H A P T E R 2

Getting Started With Newton Book Maker

2-14 Creating Digital Books

clicking the Save button. Figure 2-4 shows the Save dialog box as it
appears after processing the source Þle SimpleStory .

This Book Maker output Þle is now ready to use as input to NTK.

Figure 2-4 Saving the processed book file

IMPORTANT

Do not edit the output Þle produced by Book Maker. To use
one of the example books as a starting point for your own
work, modify the book source Þle and then process it in
Book Maker to create a new Book Maker output Þle. ▲

Book Maker is AppleScript-able 2

The preceding steps can be automated with AppleScript. If you have
AppleScript you can write a short script that has Newton Book Maker open a
source Þle, process it, and save the output. The following script, for example,
processes a source Þle ÒA Superb StoryÓ in the folder Òto doÓ in the disk
ÒMyDisk,Ó and save the output as ÒA Superb Story.fÓ in the disk ÒMy Disk.Ó

tell application "Newton Book Maker"

activate

open file "MyDisk:to do:A Superb Story"

C H A P T E R 2

Getting Started With Newton Book Maker

Creating Digital Books 2-15

(* The following two commands - parse and buildFile -

are the equivalent of clicking the Do It button.

They should always be used together. *)

parse

buildFile soupFile file "My Disk:A Superb Story.f"

close document

quit

end tell

A Book Reader Book or Application Help? 2

The steps you take next depend on whether you are creating a Book Reader
book package or application help.

If you processed the book source Þle with the Normal Size option enabled,
youÕll use NTK to build a Book Reader package that appears in the Extras
drawer. The next section, ÒBuilding a Book Package With NTK,Ó describes
how to build Book Reader packages.

If you processed the book with the Help Size option enabled, the contents of
this Þle must be integrated with your application, so that it can use the help
frames directly. The integration of help in a Newton application is described
later in this book, in Chapter 5, ÒApplication Help.Ó

Building a Book Package With NTK 2
A Book Reader package can be downloaded to the Newton platform using
Newton Connection or Newton Toolkit. The book package appears as an
icon in the Extras Drawer just like any other application package.

You can use the SimpleStory.f Þle and the NTK project named Simple to
follow along with the steps in this section if you want to practice building a
book package.

Note

These instructions assume that you are familiar with
Newton Toolkit. If you need more information, see the
Newton Toolkit UserÕs Guide. ◆

C H A P T E R 2

Getting Started With Newton Book Maker

2-16 Creating Digital Books

Take the following steps to build a Newton Book Reader package in NTK:

1. Open a new project in NTK.

If you just want to practice building a book package, you can use the
Simple project to build from the SimpleStory.f file.

2. Add the Book Maker Þle to the project using the Add FileÉ command
in the Project menu.

To remove a Þle from the project, use the Remove FileÉ command in the
Project menu.

3. Using the Output SettingsÉ command in the Project menu, set Output
to Book, and change the book packageÕs name and application symbol
from the default values supplied by NTK.

If you are working with one of the example book project Þles supplied
with Book Maker, this is preset for you.

4. Build the project just like any other NTK project and download the
package that is produced.

The book package appears in the Extras Drawer.

When the book package is opened on the Newton MessagePad, it looks like
the source Þle it came from, as illustrated in Figure 2-5.

C H A P T E R 2

Getting Started With Newton Book Maker

Adding a Short Title 2-17

Figure 2-5 The sample book

Adding a Short Title 2

Long titles such as The Simplest Story do not always Þt well in the
Extras drawer. You can use the .shortTitle command to give your book
another title that appears only in the Extras DrawerÑthe title speciÞed by
the .title command still appears at the top of the page.

To use the .shortTitle command, place it at the beginning of any line in
the book source Þle; the remainder of this line contains the text that is to be
the bookÕs Extras Drawer title. In the following example, the short title Pix
appears in the Extras Drawer and the title that appears at the top of every
page in the book is The Picture Story :

C H A P T E R 2

Getting Started With Newton Book Maker

2-18 Adding Graphics

.title The Picture Story

.shortTitle Pix

Adding Graphics 2

Adding graphics to Book Reader books or application help is as easy as
adding the .picture command to your book source Þle and pasting a
picture on the line that follows it. For example, to add a picture to the
previous example, place the .picture command at the end of the Þle and
then paste a picture on the line following it. The source Þle should then look
like the following example, taken from the PictureStory example Þle:

.title The Picture Story

.isbn simplePicts

.shortTitle Pix

.story
This is the simplest story ever told:

Once upon a time there was a little girl who added
pictures to books with the greatest of ease.

.picture

C H A P T E R 2

Getting Started With Newton Book Maker

Adding Graphics 2-19

WARNING

Pictures used in book source Þles must be in the 'PICT'
format. The Newton MessagePad does not support the use
of all 'PICT2' resources. Book source Þles using 'PICT2'
resources compile correctly, but the 'PICT2' graphics do
not display on the screen of the Newton device. ▲

An easy way to convert a graphic into 'PICT' format is to paste it into any
version of HyperCard, which automatically converts all graphics to this
format. You can then copy the graphic from HyperCard and paste it into
your book source Þle.

Large Pictures Scroll Automatically 2

The Newton Book Reader automatically displays scroller controls for
pictures that are too large for the screen of the Newton device on which the
book is displayed. The scroller controls are shown in Figure 2-6. The scroller
can be suppressed by using the NoScroller ßag. Flags are discussed in the
section ÒFlagsÓ beginning on page 3-6, and the NoScroller ßag is
documented under ÒContent ßagsÓ beginning on page A-34.

C H A P T E R 2

Getting Started With Newton Book Maker

2-20 Adding Comments to the Book Source File

Figure 2-6 Scroller controls

The BigPictureStory Þle and the BigPicture.pkg book package
illustrate this feature of Newton Book Reader.

Note

Application help screens do not scroll. ◆

Adding Comments to the Book Source File 2

As your book source Þles become increasingly complex, you may want to
use comments to document them. A comment is a line of text that appears in
the source Þle but does not appear in the compiled book.

scroller
controls

C H A P T E R 2

Getting Started With Newton Book Maker

Where to Go From Here 2-21

PreÞx your comments with a dot, and a pound (#) sign so that the Book
Maker application ignores them when processing your source Þle, as in the
following example:

.# This is a comment. Book Maker ignores it.

YouÕll Þnd many examples of comments in the example book source Þles
supplied with Book Maker.

Where to Go From Here 2

Now that you have a basic understanding of the book-building process, you
can focus on the material in this userÕs guide that best suits your goals and
working style.

■ You can go on to Chapter 3, ÒUsing the Book Maker Language,Ó for an
overview of the Book Maker command language. This chapter contains
information about using layouts and ßags to create interesting page
designs, and creating browsers and kiosks to allow the user to better
navigate through the digital book. All aspects of the Book Maker
command language that do not require knowledge of NewtonScript are
described in this chapter, and in Appendix A, ÒThe Book Maker
Language.Ó

■ You can turn to Chapter 4, ÒNewtonScript in Books,Ó for information on
using NewtonScript and Newton object system prototypes in Newton
digital books.

■ You can consult Chapter 5, ÒApplication Help,Ó for information on using
Book Maker and NTK to add help screens to Newton applications.

■ You can experiment on your own with Book Maker. All of the commands
and ßags in the Book Maker language are described in Appendix A, ÒThe
Book Maker Language.Ó However, it is strongly recommended that you
read Chapter 3, ÒUsing the Book Maker Language,Ó before creating your
own books or application help.

C H A P T E R 2

Getting Started With Newton Book Maker

2-22 Where to Go From Here

Using Layouts 3-1

C H A P T E R 3

Using the Book Maker
Language 3

YouÕve now seen how to create the simplest book source Þle and build a
Newton book package from it. This chapter describes the Book Maker
commands used to lay out text and graphics on the page, and to provide
navigational tools, browsers, and kiosks, in digital books. This chapter, in
conjunction with the previous one, outlines all aspects of the Book Maker
command language that do not require knowledge of NewtonScript.

Using Layouts 3

A Book Maker command beginning with the keyword.layout is called a
layout command, or layout. Layouts specify the placement of text and
graphics on the page.

The use of layout commands is optional. If no layout commands are deÞned
for a book, Book Maker uses the entire width of the screen to lay out content
items. For example, the book The Simplest Story, shown in the previous
chapter, used this default formatting.

Figure 3-0
Table 3-0

C H A P T E R 3

Using the Book Maker Language

3-2 Using Layouts

Defining Layout Commands 3
You can deÞne layout commands as needed while creating the book source
Þle, or you can deÞne all of the layouts used in a book at the beginning of the
book source Þle. Although the approach you take is strictly a matter of
personal preference, keeping all of the layouts together at the beginning of
the book makes it easier to change every occurrence of a particular layout in
the book if you should need to do so. If you eventually build up a library of
layouts that you use in multiple books, this approach makes it easier to copy
and paste your layouts into a new book source Þle.

The .layout command requires that you specify a name for the format it
deÞnes; the format can then be referred to by name. To name a layout
command, place its name immediately following the .layout keyword. It is
important to give each .layout a different name, because repeating the
names of .layout commands causes errors.

The .layout command also requires that you specify the widths of the
columns it deÞnes. Newton Book Reader divides the page into twelve equal
vertical strips; the widths of columns are speciÞed as a number of these
strips.

The following example creates a layout named simple . This layout deÞnes a
single column that is twelve strips wideÑthe entire width of the page. A
named layout such as this one is useful for returning to the default page
format after using another layout that formats the page differently.

.layout simple 12

The next example creates a layout named threeCol that divides the page
into three equal columns, each four strips wide:

.layout threeCol 4 4 4

In practice, the size of a usable column is determined by the font size used to
display the text and the physical size of the screen on which it is displayed.
For most books, you get the best results by dividing a screen the size of the
MessagePad into no more than two or three columns.

C H A P T E R 3

Using the Book Maker Language

Using Layouts 3-3

Applying Layouts 3
When Book Maker encounters a .layout command, it applies the format-
ting speciÞed by that command to all subsequent content items (such as
stories, pictures, and so on) in the book source Þle until it encounters another
layout command.

The simplest way to use layout commands is to place them in your book
source Þle ahead of the content items that they affect. Note that only one
layout is allowed per page on the Newton screen; every time you switch
layouts the Þrst content item that has the new layout is placed on a new page.

The following example, taken from the LayoutStory example book source
Þle, shows the simplest way to apply layouts:

Note

The example book source Þles included with Book Maker all
use the recommended 3.33 inch page width. However, the
book source listings shown in this guide use the full width of
the page in order to save space. ◆

The Þrst layout, threeCol , creates a page that looks like the one shown in
Figure 3-1. The second layout, simple , returns to the default page formatÑ
it deÞnes a page that looks like all of the previous examples in this guide.

.# this layout divides the page into three columns

.layout threeCol 4 4 4

.story

.layout threeCol 4 4 4
This paragraph uses the layout defined above. The threeCol layout divides
the page into three equal columns of four grid units each. Text flows from
the top of the leftmost column to the bottom of the rightmost.

Because you can have only one layout command per page, you need to turn
to the next page to see the next layout example in this book.

C H A P T E R 3

Using the Book Maker Language

3-4 Using Layouts

This paragraph is repeated to fill all three columns.

.layout simple 12

.story
This paragraph uses the layout defined above. The simple layout is the
same as the default layout: it defines a single main column that extends the
entire width of the page (12 grid units.) By default, layout commands
always define the main column unless they use the sidebar keyword to
define a sidebar column.

It’s useful to define a layout like simple so that you can easily return to the
default format after applying your own custom layout on a preceding page.

Because you can have only one layout command per page, you need to turn
to the next page to see the next layout example in this book.

Figure 3-1 Pages formatted with the threeCol and simple layouts

C H A P T E R 3

Using the Book Maker Language

Using Layouts 3-5

Incidentally, the Òlayout commandsÓ shown in Figure 3-1 are not real layout
commands, but story text used to illustrate the layout in effect for those
pages. The lines displaying these commands begin with spaces, not dots, so
Book Maker does not consider them commands. The layout commands that
actually implement these formats are in the book source Þles, but they are
not displayed on the Newton screen.

The extra space was added to these lines intentionally so that their text
would appear in the example book. This technique brings to light a common
mistake: if a command in your book source Þle just wonÕt work, make sure
the line that itÕs on begins with a dot, not a space.

Applying Layouts by Name 3

All of the book source examples shown so far have deÞned layouts just
ahead of the content items that use them. Once a layout has been deÞned,
however, you can use its name to apply it to subsequent content items by
using the layout= keyword. The following example deÞnes a layout and
then applies it by name to a content item:

.layout threeCol 4 4 4

.layout simple 12

.story layout=threeCol
This story text uses the threeCol layout.

.story
This story text uses the simple layout because no other layout is specified.

Note that content items without layout= layoutName speciÞed use the default
layout, which is the one speciÞed by the most recent.layout command. If
you deÞne your default layout last in the set of layout deÞnitions placed at
the beginning of the Þle, youÕll need to apply layout= commands only to
those content items that deviate from the default layout.

Remember that only one layout can apply to any page. Every time you
switch layouts the Þrst content item with the new layout is placed on a new
page.

C H A P T E R 3

Using the Book Maker Language

3-6 Flags

Although applying layouts by name is a useful technique, the short
examples shown in this book donÕt require its use. To get a better idea of how
named layouts are used, see the MoreBrowsingStory and KioskStory
Þles provided with Book Maker.

Flags 3

A ßag is a keyword that may be appended to a Book Maker command to
specify various options. You can use ßags singly or can combine them to
achieve elaborate effects.

There are a handful of ßags used only to modify layouts or entire documents;
these ßags are called layout ßags and document ßags, respectively. The ßags
that modify the display of content items are called content ßags. Most of the
ßags in the Book Maker language are content ßags.

This section provides a brief overview of the use of ßags; for a complete
listing of all of the ßags available in the Book Maker command language, see
the ÒFlagsÓ section of Appendix A, ÒThe Book Maker Language.Ó

Using Flags 3
To use a ßag, append it to the command it will affect. For example,
you can use the edges ßag to draw a box around the edges of a content
item, as shown here in an example taken from the FlagStory example
book source Þle:

.# create narrow columns to heighten the edge flag’s effect

.layout doubleCol 6 6

.story edges
On the Newton screen, this story text appears with a line drawn around its
edges, courtesy of the edges flag.

C H A P T E R 3

Using the Book Maker Language

Flags 3-7

The ßags deÞned for a particular content item remain in effect until Book
Maker encounters a new content command, such as a .story or .picture
command.

Using Edge Flags 3

The edges ßag is one of a set of ßags that you can use to ornament content
items with lines, boxes, and rounded-corner boxes. You can further modify
the content item by adding other edge ßags, such as the rounded and
edgeWidth flags, as shown in the following example:

.# draw a box with rounded corners around the story text

.story edges edgeWidth=4 round
Adding the rounded flag causes Book Maker to draw a rounded-corner box
around this text. The edgeWidth flag is used to specify the width of the
line, which for this text is quite heavy at a four-pixel width.

The rounded ßag speciÞes a box with rounded corners. You can use the
optional edgeWidth ßag to specify in pixels the width of the line to be
drawn by the edge ßags. Place the edgeWidth ßag on the same line as the
edge ßag it modifies.

edgeCommand edgewidth= number

When processed through Book Maker and NTK, these examples look like the
screen shown in Figure 3-2.

For a complete list of available edge ßags, see the ÒEdge FlagsÓ section of
Appendix A, ÒThe Book Maker Language.Ó

C H A P T E R 3

Using the Book Maker Language

3-8 Flags

Figure 3-2 Using edge flags

Using the Sidebar Flag 3

The sidebar ßag can be used to modify layout commands as well as
content commands.

When used in a layout command, the sidebar ßag deÞnes a column on the
right or left edge of the screen. This sidebar column can provide marginal
text, hanging indents, and other special effects. In a layout command, the
numeric value preceding the sidebar ßag deÞnes the width of the sidebar
column. Similarly, the main ßag uses the numeric value preceding it to
deÞne the width of the main column.

For example, the following command deÞnes a layout named leftSide
that consists of two columns. The sidebar column is four strips wide (1/3 of
the entire width of the page) and begins at the left edge of the screen. The
main column is eight columns wide and Þlls the remaining width of the page:

.layout leftSide 4 sidebar 8 main

C H A P T E R 3

Using the Book Maker Language

Flags 3-9

The order in which these identiÞers appear determines where the sidebar is
placed in relation to the main column. Thus, you can deÞne a layout with a
sidebar to the right of the main column as in the following example:

.layout rightSide 8 4 sidebar

Because the main column is always deÞned by every layout, the use of the
main flag in layout commands is optional. It can be included, however, to
make clear which column in a layout is the main column.

When the sidebar ßag appears in a content command, it speciÞes that the
content item is to be placed in the currently deÞned sidebar column; thus, to
place text or graphics in the sidebar, append the sidebar keyword to the
.story or .picture command associated with the content item to place in
the sidebar column.

Content items without the sidebar keyword are placed in the main column
by default.

The following example, taken from the FlagStory example book source
Þle, uses the sidebar ßag in layouts and in content commands:

.# this layout has a 4-unit sidebar and an 8-unit main

.layout leftSide 4 sidebar 8

.# place this text in the sidebar

.story sidebar
Sidebar tex t
.# no sidebar keyword, so this text goes in main col
.story
This page uses the layout command defined above. This layout, named
l e f tS ide , defines a sidebar column four grid units wide that appears to the
left of the main column. The remaining eight grid units make up the main
column.

.# place this picture in the sidebar

.picture sidebar

C H A P T E R 3

Using the Book Maker Language

3-10 Flags

.# no sidebar keyword, so this text goes in main col

.story

To put text or graphics in the sidebar, add the sidebar flag to the . s t o r y
or .p i c tu re command associated with that content item. Content items
without the sidebar flag are placed in the main column by default.

The book page produced by this code fragment looks like the one shown in
Figure 3-3.

A similar example that deÞnes the sidebar column on the right-hand side of
the screen follows this one in the FlagStory book source Þle and the
Flags.pkg example book package.

Figure 3-3 Using the sidebar flag in layouts and content items

C H A P T E R 3

Using the Book Maker Language

Flags 3-11

The following example, also taken from the FlagStory book source Þle,
deÞnes a layout named twoCol that creates a four-unit sidebar and an
eight-unit main column:

.# this layout has a 4-unit sidebar and an 8 unit main

.layout twoCol 4 sidebar 8

.# place this text in the sidebar

.story sidebar

This is sidebar text. Notice that it wraps around to stay in the sidebar

column.

.# no sidebar keyword, so this text goes in main col

.story
This text does not have a sidebar keyword associated with its . s t o r y
command, so it is placed in the main column. Notice that it too wraps
around to stay within the boundaries of the main column.

Appending the sideBar ßag to a content command places its associated
content item in the sidebar column. Text in either column is automatically
wrapped to stay within the conÞnes of the column. The text in the previous
example appears on the Newton screen as in Figure 3-4.

Figure 3-4 Text formatted with the twoCol layout

C H A P T E R 3

Using the Book Maker Language

3-12 Flags

Book Maker uses the font, style, and justiÞcation information in the book
source Þle; for example, the screen shown in Figure 3-5 uses right-justiÞed
text in a sidebar at the left of the main column.

Figure 3-5 Right-justified text in a sidebar to the left of the main column

Using the toEdge Flag 3

Appending the toEdge content ßag to sidebar text can produce a Òhanging
indentÓ or outline-like effect, as shown in Figure 3-6:

Figure 3-6 Applying the toEdge flag to sidebar text

C H A P T E R 3

Using the Book Maker Language

Flags 3-13

Although Book Maker does not wrap text around graphics, careful use of the
toEdge flag can produce a similar effect. The following book source
example is taken from the FlagStory book source Þle included with NTK.
The named layout sideby creates a six-unit sidebar to the right of a six-unit
main column, effectively splitting the screen down the middle and allowing
you to control placement of items by using the sidebar ßag on individual
content items:

.layout sideby 6 6 sidebar

.story toEdge

More Layout Tr icks
.story

As you can see, Dickens supports text next to graphics.
.picture sidebar alignCenter

.story toEdge

It’s all done with layout flags (this is the secret to
doing almost anything with Newton Book Maker). The
idea is to use a 2-column layout, but by frequent use
of the toEdge flag, give most content items the entire
width of the page. Leave this flag off on the left
column text, and use s idebar and whatever
alignment is appropriate on the picture.

When processed with Book Maker and NTK, this book source example
produces the screen shown in Figure 3-7.

C H A P T E R 3

Using the Book Maker Language

3-14 Flags

Figure 3-7 Wrapping text around a graphic

Using Sidebar Alignment Flags 3

You may have noticed the use of the alignCenter ßag on the picture in the
previous example. The alignCenter ßag is one of several content ßags you
can use to alter the vertical alignment of items in the sidebar column. These
ßagsÑalignTop , alignCenter , and alignBottom Ñ locate the content
item in the sidebar relative to the previous content item in the book source
Þle.

For example, attaching the alignCenter ßag to the picture in the previous
example vertically aligns the item in the sidebar column with the center of
the story text in the main column.

The following example uses the alignTop ßag to align a picture in the
sidebar with the top of the text in the main column.

C H A P T E R 3

Using the Book Maker Language

Flags 3-15

.layout bedtimeStory 3 sidebar 9

.# put this title in the sidebar and spill its

.# contents out of the sidebar column

.story Sidebar toEdge
The Boy Who Flew To The Moon

.# Put this story in the main column

.story
Once upon a time, there was a little boy who dreamed of flying to the moon.
He would fly there in a sleek silver rocket ship with his trusty companion,
Biff The Wonder Dog.

When they arrived, he would eat green cheese all day long, set reduced
gravity sports records and never have to do any homework.

.# Put this pict in the sidebar and align it with the

.# top of the text in the main column

.picture sidebar alignTop

.story pageBottom

This page uses the alignTop flag to align the top of the sidebar picture
with the body text in the main column.

When processed through Book Maker and NTK, the previous example
produces the screen shown in Figure 3-8.

The alignBottom ßag aligns the sidebar with the bottom of the previously
deÞned content item. The following code example, demonstrating the use of

C H A P T E R 3

Using the Book Maker Language

3-16 Flags

the alignBottom ßag, is based on the previous example; only the relevant
parts of the book source Þle are shown.

Figure 3-8 Using the alignTop flag

.story pageBottom
This version of the story uses the pageBottom flag to pin this
explanatory paragraph to the bottom of the page. The sidebar picture is
aligned to the bottom of this paragraph by attaching the alignBottom flag
to the .p i c tu re command associated with it.

.# Put this pict in the sidebar and align it with the

.# bottom of the text in the main column

C H A P T E R 3

Using the Book Maker Language

Flags 3-17

.picture sidebar alignBottom

This code example produces the sidebar graphic and Þnal paragraph on the
screen shown in Figure 3-9.

Figure 3-9 Using the alignBottom flag

The Book Maker language provides a number of other content ßags; they are
listed in Appendix A, ÒThe Book Maker Language.Ó

C H A P T E R 3

Using the Book Maker Language

3-18 Formatting Recommendations

Formatting Recommendations 3

To obtain the best results from Book Maker, keep the following recommen-
dations in mind when creating a book source Þle:

■ Use tabs, rather than spaces, to align text. (Note, however, that the
MessagePad supports left-aligned tabs only.) YouÕll save space in your
book if you set as few tab stops as possible (or set them only in those
stories that need them). Each content item can have only one set of tabs,
and the tabs must be set in the Þrst paragraph of the content item; that
Þrst paragraph need not actually use the tabs, but they must be present for
subsequent paragraphs in the story to use them.

■ Do not hyphenate text manually (by typing Ò-Ó at the end of the line).
Although the text may appear correctly on a MessagePad, it will not
appear correctly on machines with larger screens and it will prevent the
user from using the Find service to search for the hyphenated word.

■ DonÕt interrupt story text with commands; doing so may cause Book
Maker to lose style information. Instead, place commands associated with
a story at the beginning or the end of the story text.

■ If your word processor supports superscripted or subscripted text, you
generally need not do anything special to your book source Þle to obtain
appropriate display on the Newton MessagePad; the MessagePad auto-
matically uses a smaller point size to display superscripted and subscripted
text. However, use of special text styles can produce unexpected results.
The XTND Þlters used by Book Maker do not support the special styles,
such as small caps or all caps, that some word processor programs
implement.

■ On future Newton platforms, Book Reader may automatically reformat
pages to take advantage of a larger screen size. Thus, if a title ends up
on the bottom of a page and its associated story on the next page, itÕs
recommended that you use the KeepWith ßag on the story, rather than
StartsPage flag on the title (these flags are explained in Appendix A,
ÒThe Book Maker Language.Ó) Although both approaches provide the

C H A P T E R 3

Using the Book Maker Language

Creating a Browser Pane 3-19

same appearance on smaller screens, the latter solution may produce
inappropriate pagination on future Newton devices.

Creating a Browser Pane 3

The main Book Reader browser is displayed when the user taps the overview
button in the middle of the button bar at the bottom of the MessagePad
screen. A browser pane is a ßoating view which initially displays the
top-level heading lines, and either expands to show sub-headings, or to the
beginning of that section in the book. You can think of a browser as a table of
contents for the book.

Book Maker allows you to deÞne multiple browsers for a book. If you do so,
they are listed by name in the main browser, and tapping a browser name
takes the reader to that browser. This might be considered analogous to a
listing of individual tables of contents for each chapter in a conventional
paper-based book.

The items that appear in a browser are text items in the body of the book that
have been tagged with the commands .subject and .chapter . The
browser always displays a single line in a single type style for each subject or
chapter tagged with either of these commands. The font size and style of
items in the browser is predeÞned by Book Reader; thus, you can use
different layouts for text in the body of the book without affecting the
appearance of items in the browser.

The .subject command tells Book Reader several things about the text on
the line following it. First, it identiÞes this text as the beginning of a new
content item and indicates to Book Reader to use this text as the title text for
the story or picture immediately following. Second, it indicates the level at
which the subject text appears in the browser; this level is speciÞed by the
numeric value immediately following the .subject command. Book
Reader automatically ranks the browser items by subject level to create a
hierarchical table of contents.

Following the level argument are the optional ßags used to specify the layout
of the subject text as it appears in the body of the book. Layouts are applied

C H A P T E R 3

Using the Book Maker Language

3-20 Creating a Browser Pane

to browser items just as they would be to any other content item,
but they do not affect the appearance of the text in the browser. The browser
automatically displays level 1 subjects in boldface type; other items are
displayed in plain text.

Following these required arguments are optional arguments. The name=
argument allows you to specify a name for the subject other entities such as
kiosks use to Þnd this subject. The bro= command speciÞes a browser in
which to place the subject line when you want it to appear in a browser other
than the main overview.

The .chapter command is a synonym for the .subject 1 command. A
complete discussion of the parameters to the .chapter and .subject
commands is included in the ÒContent CommandsÓ section of Appendix A,
ÒThe Book Maker Language.Ó

The example below, from the BrowserStory example book source Þle,
creates two browser items. The Þrst .subject command places the text The
Kids Who Flew To The Moon in the center of the page (this command in fact
creates the title page for this particular book) and adds it to the top level of
the browser pane. The next .subject command places the text The Boy at
the second level in the browser pane at level 2. The Book Reader browser
automatically makes this subject line into a subheading of the level 1 browser
item.

.subject 1 Centered

The Kids Who Flew To The Moon
.layout bedtimeStory 3 sidebar 9
.# put this title in the sidebar and spill its
.# contents out of the sidebar column
.subject 2 Sidebar toEdge
The Boy

When the example above is compiled, the browser looks like the one shown
in Figure 3-10.

C H A P T E R 3

Using the Book Maker Language

Creating a Browser Pane 3-21

Figure 3-10 Browser pane from BrowserStory

The BrowserOnly Flag 3
Adding the browserOnly ßag to the .subject or .chapter command
causes the text associated with that command to appear only in the browser
pane, not in the body of the book. This ßag is useful for arranging browser
entries under labels that will not appear in the body of the book.

For example, if you wanted to make your title page a little fancier, you might
add carriage returns to the text so that it to Þlls up the page more, as in the
following variation on the previous example. Unfortunately, Book Maker
uses only the Þrst line of text following the .subject command to create

C H A P T E R 3

Using the Book Maker Language

3-22 Creating a Browser Pane

the browser entry; thus, the example shown here would place the heading
The Kids Who in the browser pane at level one.

.subject 1 Centered

The Kids Who

Flew

To The Moon
The following example solves this problem by using the browserOnly ßag
to create a .subject 1 listing for the title page that is displayed only in the
browser. The title page itself is displayed by the .story command. Because
the .story command does not create a browser entry, only one entry for the
title page appears in the browser.

.subject 1 browser only
The Kids Who Flew To The Moon

.story Centered

The Kids Who

Flew

To The Moon
See the MoreBrowsingStory example book source Þle for more examples
of the creation of browser entries.

C H A P T E R 3

Using the Book Maker Language

Creating a Kiosk 3-23

Creating a Kiosk 3

In the real world, a kiosk is a cylindrical structure on which advertisements
are posted; in a Book Reader book, a kiosk is a navigational page containing
ÒadvertisementsÓ for subject matter in the book. Tapping an item in a Book
Reader kiosk takes the reader to the subject matter it represents.

Kiosks also provide a place that the user can always return to easily: a button
that takes the user to the nearest kiosk always appears in the bookmark
dialog box.

In addition to making content easier for the user to navigate, kiosk pages
can lend visual interest to the book. As you can see from the example in
Figure 3-11, kiosks can make use of graphical items in unusual layouts.
The remainder of this section discusses the commands used to create this
kiosk page.

The kiosk page shown here uses a custom layout for placement of the
pictures on the page. The layout deÞnition for a kiosk page must include the
kiosk flag.The layout defined in the following example, named MyKiosk ,
creates a six-unit main column with a six-unit sidebar. The use of the main
keyword is optional, but is included here for illustrative purposes.

.# This is a layout for the kiosk. Make sure to add the flag “kiosk”

.layout MyKiosk 6 Sidebar 6 Main kiosk

The deÞnition of the kiosk itself begins with the .kiosk command. The
previously deÞned myKiosk layout is applied by name.

.kiosk layout=MyKiosk name=Menu

C H A P T E R 3

Using the Book Maker Language

3-24 Creating a Kiosk

Figure 3-11 Kiosk page from the Kiosks example book

The kiosk page itself must be named also. The name=itemName command
attaches the speciÞed name to a content item. The name can then be used by
other entities in the book to navigate to the named content item.

The remainder of the kiosk deÞnition places content items, such as pictures
or text, on the kiosk page. The following example uses the .picture
command to place the Boy picture in the main column on the kiosk page. The
centered flag centers the picture horizontally in the column.

.picture layout=MyKiosk Main Centered goto=Boy

The goTo= destination command speciÞes the content item to be displayed
when the user taps the picture of the boy on the kiosk page. The destination
parameter must specify a content item that has been named with the

C H A P T E R 3

Using the Book Maker Language

Finishing Touches 3-25

name=itemName command. For example, the goTo=Boy command in the
example above speciÞes that when the user taps this picture in the kiosk,
Book Reader displays the story named Boy.

The deÞnition of the kiosk is terminated with the .endkiosk command.
Everything between the .kiosk command and the .endkiosk command
deÞnes the kiosk.

The entire deÞnition of the kiosk page shown in Figure 3-11 includes
commands to place the other Þve pictures on the kiosk page and specify
goto= destinations for each; for a complete listing of this kiosk definition,
see the KioskStory book source Þle.

Finishing Touches 3

This section discusses commands and techniques you can use to give your
book a more polished appearance.

Adding Book Information for the “About” Slip 3

You can add commands to your book source Þle that provide information
about the bookÕs contents, its author, its publisher, and its dates of
publication and copyright. This information is presented to the end-user in
the ÒAboutÓ slip accessed through the Information button on the status bar.

Five Book Maker commands are provided for this purpose: .author ,
.publisher , .date, .expires , and .copyright . To use these dot
commands type the relevant information in the same line as the command,
as in the following example:

.title Newton Book Maker User’s Manual

.isbn dickens:PIEDTS

.date 11/3/93

.author Bob Ebert, PIE DTS

.publisher Apple Computer, Inc.

C H A P T E R 3

Using the Book Maker Language

3-26 Finishing Touches

.copyright © 1993 Apple Computer, Inc.

.expires 12/31/95

.shorttitle Dickens

.# Rest of book would follow from here.

Two additional commands, .blurb and .key , provides information about
the book, but is not currently available to the end user. All the commands
mentioned in this section are documented in the section ÒContent
CommandsÓ beginning on page A-11.

Adding Space Between Content Items 3

The .space command can be used to add precise amounts of space between
content items; itÕs handy for aligning text and graphics for which the various
alignment ßags donÕt provide enough control. Using the .space command
instead of inserting blank lines of text in the book source Þle also ensures
that blank lines are not placed at the tops of pages, and results in the creation
of slightly smaller book packages.

Placed after a content item in the book source Þle, the .space command
inserts a speciÞed amount of blank space below that content item on the
Newton screen. The unit of space is speciÞed in typographerÕs points; one
point is 1/72 inch. You can specify up to 63 points of space using the .space
command, as in the following example:

.story
The following command inserts 63 points of space after this text.
.space 63

You can see examples of the use of the .space command in the KioskStory
book source Þle.

Indenting Text 3

You can place the .indent command between a content command and its
associated story text or picture to create margins on either side of the content
item. The .indent command deÞnes left or right margins; specify a value of
0 for no margin. The following example indents the story text by 30 points

C H A P T E R 3

Using the Book Maker Language

Finishing Touches 3-27

on the left and 20 points on the right. (A point is a typographerÕs unit of
measure; there are 72 points in an inch.)

.story

.indent 30 20
This is my story text.

Adding Picture Headers 3

You can use the .pictHeader command to add a picture that appears at the
top of every page, as in the following example, taken from the
TouchesStory book source example Þle.

.pictheader

To see what this picture header looks like, open the Touches.pkg example
book package included with Book Maker.

Oversize Picture Headers Spill Into Book Page 3

The space reserved for headers at the top of the page in a digital book is 16
pixels high. If you use this entire height or exceed it, the header spills into
the area of the page normally reserved for content. Because the page content
is drawn after the picture header, the page contents are always Òon top ofÓ
the picture header. As a result, you can use oversize picture headers to
provide interesting backgrounds for your book pages.

The following example, taken from the FlagStory book source Þle,
illustrates this technique.

C H A P T E R 3

Using the Book Maker Language

3-28 Finishing Touches

.pictHeader

.story centered

I f you exceed the s ix teen-p ixe l space
al located for headers, you can spi l l a
p ic tHeader in to the text to create an
in terest ing background.
The .pictHeader command causes the picture on the line following it to be
used as the running headline that appears at the top of every page in the
book. Because the picture in the example is larger than the 16-pixel space
allocated for such headlines, it spills into the body text, creating the effect
shown in Figure 3-12. Note also that blank space in story text is transparent;
the carriage returns used to center this text vertically on the page do not
obliterate the background.

C H A P T E R 3

Using the Book Maker Language

Finishing Touches 3-29

Figure 3-12 Using oversize picture headers

Including External PICT Files 3

If you prefer, you can keep pictures in 'PICT' Þles rather than paste them
directly into the book source Þle. Only one picture should reside in each
external 'PICT' Þle.

To include the external 'PICT' Þle in your book source, you need to follow
the .picture command with the full pathname to the Þle. The full
pathname to the Þle speciÞes the name of the disk on which the Þle resides,
followed by the names of all folders you need to open to get to the Þle, in
order, and concludes with the name of the Þle itself. Use a colon to separate
each name in the path from the others, and surround the entire pathname
with single quotation marks, as in the following example:

.picture 'MyDisk:OuterFolder:InnerFolder:MyPICTFile'

This command includes the picture stored in the 'PICT' Þle ÒMyPICTFileÓ
in the book source Þle. The ÒMyPICTFileÓ Þle resides in the ÒInnerFolderÓ
folder. The ÒInnerFolderÓ folder in turn resides in the ÒOuterFolderÓ folder.
The ÒOuterFolderÓ folder is on the disk ÒMyDisk.Ó

Using NewtonScript in Book Source Files 4-1

C H A P T E R 4

NewtonScript in Books 4

You can further customize the behavior of a Newton digital book by adding
NewtonScript commands to the Book Maker source Þle. This section describes
how to include scripts, slots, view templates, and frames in a Newton digital
book. The material in this chapter presumes some NewtonScript program-
ming ability and some familiarity with the Newton object system.

Using NewtonScript in Book Source Files 4

The .script command is used to add NewtonScript commands to a book
source Þle; it speciÞes that everything following it in the book source Þle is
interpreted as NewtonScript, rather than as Book Maker command language.
Book Maker returns to interpreting the content of the book source Þle as
Book Maker command language upon encountering an .endscript
command or another Book Maker command.

Everything between the .script and .endscript commands must be
valid NewtonScript code as deÞned in The NewtonScript Programming
Language.

Figure 4-0
Table 4-0

C H A P T E R 4

NewtonScript in Books

4-2 Using NewtonScript in Book Source Files

You can supply a name for the script by placing the name immediately
following the .script command. If the scriptÕs name is omitted, it becomes
a buttonClickScript by default. Book Reader sends a
buttonClickScript message to a content item whenever the user taps the
content item.

The following example deÞnes a simple viewClickScript method.

.# NewtonScript begins on the line following the .script

.# command

.script viewClickScript

// here to .endscript command is NewtonScript,

// not Book Maker commands

// note the NewtonScript comment style

playSound (ROM_FunBeep);

.endscript

.# now we are using Book Maker commands again.

Attaching Scripts to Content Items 4
Book Maker processes the Þle from top to bottom and attaches the script to
the content item deÞned just before the .script command.

.story name=beeps

Tap on this paragraph to play the sound.

.# NewtonScript begins on the line following the .script

.# command

.script viewClickScript

// here to .endscript command is NewtonScript,

// not Book Maker commands

// note the NewtonScript comment style

playSound (ROM_FunBeep);

.endscript

C H A P T E R 4

NewtonScript in Books

Using NewtonScript in Book Source Files 4-3

.# now we are using Book Maker commands again

.# This command defines a new content item with no

.# script attached

.story name=silent

Tapping on this paragraph makes no sound.

In this example the viewClickScript method is attached to the story
named beeps . When the user taps the beeps story, the system plays
the ROM_FunBeep sound. Because the story named silent has no
viewClickScript method attached to it, no sound plays when the
user taps that story. Note that between the .script and .endscript
commands, you must use NewtonScript, rather than Book Maker commands.

The content items in a Book Reader book are actually views that receive all of
the same system messages that views in an application receive. Thus, you
can deÞne any script for a content item that you might deÞne for a view in
an application, such as viewClickScript , viewSetupDoneScript , and
so on.

WARNING

DonÕt use viewSetupFormScript methods at the book or
page levelÑyour script will not be called. Instead, use the
viewSetupDoneScript method. This method is called
each time a page is imaged (except for printing). There are
no restrictions on viewSetupFormScript methods for
content items. ▲

In general, you should avoid hard-coded page numbers in scripts, as the
book may paginate differently on a future Newton device having a
different-sized screen. Instead, you can use the content-related NewtonScript
methods to Þnd content items by name or attribute. These methods are
described in the ÒNewtonScript MethodsÓ section of Appendix A, ÒThe Book
Maker Language.Ó

This limitation can be overcome, however, and your scriptÕs speed increased
by not having to perform the search, if you only use hard-coded page
numbers after checking which type of screen the book is being imaged on.
This information is stored in the bookÕs curRendering slot, which is

C H A P T E R 4

NewtonScript in Books

4-4 Using NewtonScript in Book Source Files

described in ÒInformation Available From Reserved SlotsÓ on page 4-16,
along with a code snippet demonstrating how to use it.

For more information regarding the .script and .endscript commands,
see the ÒContent CommandsÓ section of Appendix A, ÒThe Book Maker
Language.Ó

Attaching Scripts to the Page 4
You can attach a script to a layout by placing the .script command after
the deÞnition of the layout. The script is then available on any page that uses
that layout. These scripts are referred to as page scripts.

Page scripts can be used, for example, to draw a special background or to
handle a pen event not provided for in the viewClickScript method
of a content item formatted with that layout.

If the page displays a content item that has its own script, any scripts
attached to the content item override those attached to the page, which
makes sense if you think of the content item as the child of the page view.
Thus, if the page uses a layout that deÞnes a viewClickScript method
and a content item on the page also deÞnes a viewClickScript method,
the content itemÕs viewClickScript method is invoked when the user
taps the content item on the screen. If you want the viewClickScript
method of the page to be invoked as well, return nil from the content itemÕs
viewClickScript method.

Attaching Scripts to the Entire Book 4
Scripts deÞned at the beginning of the book source Þle (before any content or
layout commands) are made available throughout the book by parent
inheritance. These scripts are referred to as book scripts.

Just as content scripts override page scripts, page scripts override book
scripts.

C H A P T E R 4

NewtonScript in Books

Sharing NewtonScript Code 4-5

Sharing NewtonScript Code 4

You can save some space in the book package by sharing scripts among
content items that have common behavior. You can share a script (or any
other NewtonScript code, for that matter) by deÞning it in a text Þle included
in your NTK project or in the bookÕs preamble. Either approach works
equally well in terms of its ability to make the code available throughout the
book; the approach you take is determined by your development goals.

If you want to make your book source Þle as self-contained as possible,
youÕll want to deÞne shared NewtonScript code in the bookÕs preamble. (See
the discussion of the .preamble command, on page page A-9 of
Appendix A, ÒThe Book Maker Language,Ó for more information.) On the
other hand, if you want to use this code in more than one book, you can
deÞne the shared code in a text Þle and include it in your NTK projects.

Shared Script Example 4
Although the goTo= destination command provides navigational capability to
content items, it does not provide any highlighting behavior. The following
example shows how to reuse a script that provides button-like highlighting
behavior for any content item. This script is especially useful for adding
highlighting behavior to kiosk entries, as in the following example:

// defines button-like behavior for a content item

// place in a text file included in your NTK project

// or in the book’s preamble

kioskEntryScript := func(aClick) begin

if (:TrackHilite(aClick)) then

begin

:buttonClickScript();

:Hilite(NIL);

end;

C H A P T E R 4

NewtonScript in Books

4-6 Using Protos and View Templates in Books

TRUE;

end;

A content item in the kiosk can acquire this button-like behavior by calling
the kioskEntryScript from its viewClickScript method, as shown in
the following example:

.story centered goto=atlanta

.script slot viewClickScript

kioskEntryScript

.endscript

Atlanta

The slot parameter to the .script command creates a slot in the view that
images the content item; this parameter is explained fully in the section
ÒAdding Slots to Views,Ó later in this chapter.

This approach saves space in the book package because even though all of
the content items in your kiosks may use this little kioskEntryScript
method over and over again, the bytecodes for this script are compiled only
once, when the NTK project is compiled.

Using Protos and View Templates in Books 4

The .form command allows you to add protos, user protos, and view
templates to your book. Each view that you add using this command is
considered a separate content item, and appears on the page as a fully
functioning code object.

The height and width parameters to the .form command are required to
reserve space for the view to occupy on the page. Views created with the
.form command appear immediately following the previous content item,
just as any other content item would.

The following example shows the use of the .form command to include a
custom view prototype called myFunkyProto . Layouts and user protos

C H A P T E R 4

NewtonScript in Books

Using Protos and View Templates in Books 4-7

added with the .form command must be included in the bookÕs NTK
project Þle; system prototypes are included automatically by NTK:

.form height=32 width=168

.# user protos require the layout_ prefix

layout_myFunkyProto

.endform

The .form command begins the line, followed by the required values for
the viewÕs height and width. The proto, user proto, or layout from which the
view is to be created is speciÞed on the next line. System protos, such as
protoStaticText , are specified by placing their name on this line;
the names of user protos and layouts must be preÞxed with the layout_
keyword.

Note that the .form command must be followed by a corresponding
.endform command. For more information regarding these commands
and their parameters, see the ÒContent CommandsÓ section of Appendix A,
ÒThe Book Maker Language.Ó

Searching in .form Content Items 4
There are three methods provided to allow for searching in a .form content
item. A text slot can be added to the proto or template, or a
FormSearchScript or BookSearchScript can be provided.

If a .form content item contains a slot called text , the Find service searches
it automatically. You can add this slot when you create the view, or use the
.attribute command (explained in ÒAdding Slots to Content ItemsÓ
beginning on page 4-9) to add a text slot, as in the following example:

.form w=100, h=50

layout_myCoolView

.endform

.attribute text: "sports scores"

C H A P T E R 4

NewtonScript in Books

4-8 Storing and Accessing Data in Digital Books

Book Reader also sends a .form content item a FormSearchScript
message when it encounters a .form content item while performing a
search. To handle this message, add a FormSearchScript to the .form
content item.

Furthermore, the system-supplied book search engine can be overriden by
providing a BookSearchScript to the book. This message passes in the
content item to be searched as a parameter, allowing the method to
selectively handle the search for any particular content item, or let the
system-supplied search engine search that content item.

When a .form content item is to be highlighted to indicate that the search
was successful, the system sends it the FormHiliteScript message.

FormSearchScript , BookSearchScript , and FormHiliteScript are
discussed in the section ÒBook Reader MessagesÓof Appendix A, ÒThe Book
Maker Language.Ó

Storing and Accessing Data in Digital Books 4

This section describes the various ways to store data in your digital books.
Global data can be stored as part of the book package, in a soup maintained
by Book Reader, or as a slot in the bookÕs run-time view frame. Local data
can be stored in a content item, and in the run-time view which images the
content item.

There are a number of issues to consider in deciding where to store data,

■ Availability; does this data need to be available through out the book, or
to a single content item?

■ Memory management; is it acceptable to use up this type of memory, and
for this length of time?

■ Writeability; will this data ever need to change?

■ Persistence; is it acceptable to have this data initialized to the same value
every time the book is opened?

C H A P T E R 4

NewtonScript in Books

Storing and Accessing Data in Digital Books 4-9

Adding Slots to Content Items 4
Content items are represented internally as frames. These frames are
generated by Book Maker, and contain a number of slots need by Book
Reader to image them. You can use the .attribute command to create
multiple slots which are stored in a content itemÕs frame. At run time, slots
created with the .attribute command are read-only and are available to
the current content item only.

The following example shows how to use the .attribute command:

.title Pizza Parlors

.isbn anyUniqueID

.#first content item

.story

Joe’s Pizza

.# This slot is available only to the Joe’s Pizza

.# content item

.attribute cash: true

.#second content item

.story

Luigi’s Pizza

.# These slots available only to the Luigi’s Pizza

.# content item

.attribute cash: nil, credit: nil, beer: true

Note that both content items store their own values for the cash slot.

Getting Data From Slots in a Content Item 4

When Book Reader opens the book package, it creates a slot called item that
references the content item that contains the .attribute command. To
access slots created using the .attribute command your scripts must

C H A P T E R 4

NewtonScript in Books

4-10 Storing and Accessing Data in Digital Books

dereference the item slot using the NewtonScript frame accessor (dot)
operator, as in the following example:

.title Pizza Parlors

.isbn anyUniqueID

.story

Joe’s Pizza

.# These slots are available only to the Joe’s Pizza

.# content item

.attribute cash: true, smoking: true

.script viewSetupDoneScript

if (item.smoking) then

PlaySound(ROM_Poof);

.endscript

The example above plays the ÒpoofÓ sound when the Joe’s Pizza story
appears, because the smoking slot associated with JoeÕs Pizza (referenced
through the item slot) has the value true .

Adding Slots to Views 4
Another way to create a slot that is associated with a content item is to use
the slot parameter to the .script command. When you create a slot in
this way, the slot and its contents are stored in RAM, in the view frame used
to image the content item, rather than in the book package. Because the slot
is stored in RAM, its value may be changed dynamically. Another thing to
remember is that each slot you create this way uses up valuable heap space,
so you should create these slots only when absolutely necessary.

Note also that each content item is imaged by a separate view. Data stored in
a slot in one view will not be available to scipts in any other views, even if
both views are imaged on the same page.

C H A P T E R 4

NewtonScript in Books

Storing and Accessing Data in Digital Books 4-11

Fortunately, you rarely need to create view slots. It is recommended that
you create view slots only when the view itself needs to change them.
If you must create slots in views, be extremely careful when doing so lest
you inadvertently degrade performance. Remember that in addition to the
reserved slot names listed in the section ÒReserved Slot NamesÓ on
page 4-16, there are a number of slots in the views which image content
items that which can be altered.

Because view slots are stored in the view itself, view scripts need not do
anything special to access them. The following example changes the value of
the view slot viewFormat , causing the box created by the edges command
to be drawn in gray instead of black:

.story edges

.script slot viewFormat

vfFrameGray+vfFillWhite+vfPen(1)

.endscript

This story uses a script slot to change

the pen pattern. It draws a gray box

around the story.

Global Data in Books 4
Newton digital books provide several structures that you can use to store
global data. This section describes how to use these structures to store static
and dynamic global data.

Book Data 4

When Book Maker processes a book source Þle, it creates a Þle that deÞnes
the structure and content of the digital book in NewtonScript. If you were to
view the book deÞnition Þle, Book MakerÕs output, with a text editor
application, you would see at the very beginning of the Þle a frame deÞning
the overall structure of the book. This frame, appropriately called book , is
similar to the following frame:

C H A P T E R 4

NewtonScript in Books

4-12 Storing and Accessing Data in Digital Books

book := {

version: 1,

isbn: "0-000-1111-0",

title: "The Planets",

author: "Copperfield Team",

publisher: "Apple Computer, Inc",

keywords: "Space Planets Mars Venus Jupiter Pluto

Neptune Saturn Uranus Mercury Earth",

publicationDate: 4525593,

data: {}, // Author’s own data

contents: Array(45, NIL),

styles: [], hints: Array(45, NIL),

browsers: [], templates: [], rendering: []};

As you can see, the book frame consists of a number of slots containing
various kinds of data: numeric data, text strings, arrays, and frames. Of
particular interest is the data slotÑshown in boldface typeÑwhich is
provided expressly for your use. In it, you can store your own raw data or
NewtonScript slots, frames, and functions. This data remains with the book
and is removed when the book is removed.

The data slot is intended as a repository for static data that must be globally
available while the book is running. In this slot you can store any read-only
data that is used by more than one view or content item and is speciÞcally
related to the book. For example, Book Maker uses this slot to store index
entries created with the .index command.

Setting and Getting Book Data 4

The BookData method returns a reference to the frame that resides in the
bookÕs data slot. Your scripts can use this reference to store or retrieve
information in this frame, as in the following example:

.title Barney’s Bad Day

.isbn aRealDinosaur

C H A P T E R 4

NewtonScript in Books

Storing and Accessing Data in Digital Books 4-13

.# setting some book data

.preamble

book.data.stuff := {text: “Godzilla gave Barney a stare

that could only mean one thing.”};

book.data.moreStuff := [...];

.endpreamble

.story

“I love yoooou,” Barney said mellifluously. But as far

as Godzilla was concerned, the honeymoon was over.

.# getting some book data

.script viewSetupDoneScript func()

begin

local stuff := :BookData().stuff;

local myText := stuff.text;

// do something with the text here

end

.endscript

Note that the Book Data frame is referred to in two different ways in the code
aboveÐby explicitly referring to the frame as book.data and by using the
return value of the Book Reader method BookData . This is required since
the data is stored at compile time, and is accessed at run time.

Using Author Data 4

Book Reader allows a developer to store data which must be available across
runs, i.e. after the book is closed. This data is stored in a frame in a soup. This
frame, unlike the Book Data frame, is writeable. It is thus a natural place to
store user preferences which can change, but should be persistent across runs.

Author data is kept for the last eight books opened, opening a ninth book
erases the Þrst soup entry. You should store data here only if it needs to be
kept across runs, since the bookÕs soup entry is kept around after the bookÕs
package has been removed. On the other hand, if you want writeable data

C H A P T E R 4

NewtonScript in Books

4-14 Storing and Accessing Data in Digital Books

that will be stored after the ninth book is opened, you will need to write your
own soup. For information about soups, see the Newton ProgrammerÕs Guide.

The AuthorData Method 4

The AuthorData method returns a reference to the soup-based frame
in which Newton Book Reader stores author data. Your scripts can use
this reference to store or retrieve information in this frame, as in the
following example:

.# Store the user’s present location in Author Data when

.# the user taps on a city name. Note that each city is

.# its own story, so that they will be instantiated by

.# seperate views

.story

My Current Location is... (tap on a city)

.story

Cupertino

.script viewClickScript

:AuthorData().curCity := "Cupertino"

.endscript

.story

Boston

.script viewClickScript

:AuthorData().curCity := "Boston"

.endscript

.# And so on...

.# Then retrive this data elsewhere to present a

.# map of the user’s current city

.story

tap here for local map

.script viewClickScript

local whichMap := :AuthorData().curCity;

ShowStoryCard('mapName, whichMap,

C H A P T E R 4

NewtonScript in Books

Storing and Accessing Data in Digital Books 4-15

{left:40 ,right:200 ,top:40, bottom: 260})

.endscript

Adding Slots to the Book 4
A slot added with the slot parameter to the .script command before any
content or layout commands is available to all scripts in the book. As
mentioned in the section ÒAdding Slots to ViewsÓ on page 4-10, adding slots
in this way uses valuable heap space. This use of heap space is especially
important, since this slot is in existence for as long as the book is opened,
whereas a slot added to a view is garbage collected when the view is no
longer needed.

However it is sometimes necessary to create a book-level slot when you need
to communicate between views. Consider, for example, a book that holds
information about restaurants. In this book the user may specify they like
Romanian food in one view. To display a list of Romanian restaurants in
another view, you will need to communicate this information to the other
view. This data could be stored in the Author Data frame, but then it would
be kept around after the book has been removed. Adding a book-level slot is
thus a viable alternative.

If a book-level slot is added in this fashion, no special code is needed to
access this slot. If the slot is referred to in any scripts, it will be found
through the inheritance structure. For example:

.# This must appear before any content item or layout

.# commands

.script slot favoriteTypeOfFood

"Italian" //initialize to something everyone likes

.endscript

Then to access this data in a script simply refer to it as
favoriteTypeOfFood .

One limitation of this approach is that the slot is created whether it is used or
not. This is because the code that creates this slot necessarily resides at the

C H A P T E R 4

NewtonScript in Books

4-16 Storing and Accessing Data in Digital Books

top of the book deÞnition Þle, and is thus always executed. This limitation
can be overcome by referring directly to the contentArea view.

The contentArea view is higher up the parent hierarchy from the views
which image content items. It is created when the book is opened, and exists
until the book is closed. It is thus a convenient place to store global slots. The
following line of NewtonScript code creates a slot in the contentArea view:

contentArea.favoriteTypeOfFood:= "Romanian";

Again, you can refer to the slot by name to access this data, it will be found
through the inheritance scheme. The following code turns to the page whose
text begins with the string stored in the favoriteTypeOfFood slot:

 :TurnToPage(:FindPageByContent(favoriteTypeOfFood,0,nil));

Reserved Slot Names 4
Newton Book Reader reserves the following slot names for use by the
operating system; do not create slots with these names.

Information Available From Reserved Slots 4

A value of TRUE in the printing slot indicates that the page is being
printed. Similarly, A value of TRUE in the bookmarking slot indicates that
the page is being rendered as a bookmark image.

Table 4-1 Reserved slot names

bookmarking curRendering kioskDest scripts

bookRef data layout type

browser destPage look

contentArea edgeWidth printing

cuPage flags related

C H A P T E R 4

NewtonScript in Books

Storing and Accessing Data in Digital Books 4-17

A value of 0 in the curRendering slot indicates that the current page is
MessagePad size. You can use this information to implement a faster
page-turning algorithm using the following code:

if (curRendering = 0) then

:TurnToPage(destPage);

else

:TurnToPage(:FindPageByContent(dest, 0, NIL));

This code uses a preestablished value as a page number if the book is being
rendered on a MessagePad-sized screen; otherwise it searches for the content
item to establish the page number.

The copyProtection Slot 4
To copy protect a content item or page in a book, add a script slot named
copyProtection to that item or page. To copy protect the entire book,
deÞne this slot at the beginning of the book source Þle, before any content
items are deÞned. The copyProtection slot accepts the values described
in Table 4-2.

Table 4-2 copyProtection constants

Constant Value Description

cpNoCopies 1 The view cannot be copied.

C H A P T E R 4

NewtonScript in Books

4-18 Marking Content Items

The following example creates a copyProtection slot that allows no
copies to be made:

.script slot copyProtection

cpNoCopies

.endscript

Marking Content Items 4

You can use the .mark command to make a content itemÕs attributes (slots)
available for use by a subsequent content item speciÞed by the .usemark
command. These commands allow the currently displayed content item to
refer to another content itemÕs slots without having to conduct a search for
them. A new content item begins with any of the commands .story ,
.picture , .subject , .form , or .chapter .

For example, if you wanted to follow each content item in a guidebook or
catalog with a summary view that graphically depicts certain data, you

cpReadOnlyCopies 2 The view can be copied, but the
copy cannot be modiÞed.

cpOriginalOnlyCopies 4 The original view can be copied,
but copies of it cannot be copied.
When a copy is made, the copyÕs
copyProtection slot is changed
to 1 (cpNoCopies) to prevent
further copying.

cpNewtonOnlyCopies 8 The view can be copied, but on
one Newton device only. Copies
cannot be exported to a different
Newton device.

Table 4-2 copyProtection constants

Constant Value Description

C H A P T E R 4

NewtonScript in Books

Marking Content Items 4-19

could store the data in slots associated with the content item and update the
display in the summary view according to the values of the slots. The
following example uses the .mark and .usemark commands to make slots
in the content item Joe’s Pizza Parlor available to the user prototype
myRestaurantView :

.# The name of the restaurant is centered on the page

.story layout=centered

Joe’s Pizza Parlor

.# associate these slots with the content item

.attribute cash: true, credit: true, beer: nil

.# make this content item’s slots available

.# to the usemarked item

.mark

.# Apply a different layout to the description

.# of the restaurant

.story layout=flushleft

This place has great pizza. Please eat here and leave a

big tip for the waitstaff.

.# create the view defined in myRestaurantProto

.form height=32 width=168

layout_myRestaurantView

.endform

.# The usemark command specifies that this view is to

.# use the slots in the content item having the .mark

.# command. The slots in the first story are referenced

.# even though another story appears between the marked

.# story and the usemarked view.

.# Notice also that the .usemark command applies to the

.# current view definition, regardless of its placement

.# before, within or after the view definition.

.usemark

C H A P T E R 4

NewtonScript in Books

4-20 Marking Content Items

Dereferencing Slots in a Marked Content Item 4
When you annotate a content item with the .usemark command, Book
Maker adds a slot named related to its description in the book deÞnition
frame. The related slot references the content item designated by the
.mark command. The content item designated by the .usemark command
can then use its related slot to reference slots in the marked item.

The following example uses the related slot to access the slots in the
marked content item:

.story

Annie-politan Pizza Parlor

102743 Fourth Street

Annapolis, MD.

.# This command defines a frame in the slot myFrame

.attribute myFrame: {cash: true, credit: true, pizza:

true, beer: true, text: "Best crab pizza in Annapolis!"}

.# make these slots available to the usemarked item

.mark

.# set the text slot in the viewSetupDoneScript

.form height=60 width=170

protoStaticText

.endform

.# The current content item is the view created

.# from myRestaurantView so this is

.# its viewSetupDoneScript method

.script viewSetupDoneScript

text := related.myFrame.text;

.endscript

.usemark

C H A P T E R 4

NewtonScript in Books

Using an Index to Obtain References to Content Items 4-21

When the static text view in this example is created, its text slot has the
value nil . The static text viewÕs viewSetupDoneScript method stores
a text string in this slot. The string is obtained by using the related slot to
reference the text slot in the marked content item.

Using an Index to Obtain References to Content Items 4

The .mark command is especially useful when the .mark ed and
.usemark ed items appear on the same or on nearby pages, and there is a
one-to-one correspondence between them. However, you cannot mark a
number of content items, and have a separate content item contain a
reference to all of these, since only the last one will be remembered.

In this situation, it makes more sense to use the .index command. When a
content item contains the .index entry command, a reference to it is stored
in an array called alphaIndex as a slot in the book.data frame. The
reference to this content item will be stored alphabetically, by the entry
argument, in the alphaIndex array.

In the following example, alphaIndex[0] is a reference to the secondÐthe
aardvarkÐstory, and alphaIndex[1] is a reference to the Þrst story:

.story

.index zebra

Write a story about zebras here.

.story

.index aardvark

And one about aardvarks here.

To dereference the elements of alphaIndex at run time you need a reference
to the book.data frame in which this array is stored. See ÒSetting and
Getting Book DataÓ on page 4-12, for information on how to do this.

In addition, another 26-element array is created in the book.data frame,
called subIndex . Each element in subIndex corresponds to a letter of the

alphabet; i.e. subIndex[0] is Òa,Ó and subIndex[25] is Òz.Ó If no entry
begins with a particular letter, say Òm,Ó then mÕs value will be the same as
the nÕs. If no entry begin with n-z, then m will have lÕs value.

The creation of the subIndex array can be suppressed by including the
.option noSubIndex command anywhere in the book; see ÒOptionÓ
beginning on page A-31 for more information. Furthermore, if the optional
noSubIndex argument is used in the .index command, the subIndex
array is generated, but this particular content item is not represented in the
array. See ÒIndexÓ on page A-30 for a description of the syntax.

You can post-process a book, in the postamble, to pull out the information
desired from the index, and then set the alphaIndex slot to nil so that it
doesnÕt take up space in the built package. The following code adds a slot to
the book.data frame containing a reference to the Þrst element of
alphaIndex , and then frees up that space:

.postamble

book.data.myFavoriteContent := book.data.alphaIndex[0];

book.data.alphaIndex := nil;

.endpostamble

Note

Currently, indices are provided purely for the developerÕs
use, but future versions of Book Reader may make indices
visible to the end-user as a navigational aid. When indices
do become visible to the end-user, they will only be
displayed if a special slot has been set. Therefore, while you
do not have to worry about users seeing your indices, you
may want to keep this in mind, to make the transition to
user-visible indices easier. ▲

Creating Multiple Indices 4
The .index command takes an optional ! indexName argument, which is
used to create a separate index in the book.data frame, called
indexNameIndex . For example, .index !mammals rabbit creates an

C H A P T E R 4

NewtonScript in Books

Storing Page Numbers in a Content Item 4-23

index called mammalsIndex containing an array of references to all the
content items with the .index !mammals entry command. References to
these content items appear only in mammalsIndex ; they are not repeated in
alphaIndex .

In addition, a separate array called indexNameSubIndex will be created. The
indexNameSubIndex array is also a 26-element array, and has the same
properties as alphaIndex Õs subIndex .

There are a number of ways to control whether an indexNameSubIndex
array is created. If the book contains the .option noSubIndex command,
then no subindices will be created in the entire book. If the .index
@indexName entry syntax is used instead of the .index ! indexName entry
syntax, then that particular index will not have a matching subindex. In
addition, particular entries can be excluded from its indexÕs subindex by
using the optional noSubIndex argument to the .index command. See
ÒIndexÓ on page A-30 for a description of the syntax.

Storing Page Numbers in a Content Item 4

The .option firstPage command adds a slot called firstPage to each
visible content item; i.e., each content item that does not contain a NoPage or
BrowserOnly flag. This slot contains the page number that the content item
appears on. In the future, when different-sized screens are available, the
firstPage slot will contain an array of page numbers. At that time the
curRendering slot will provide the information needed to select the proper
page number from this array.

For more selective control over which content items have a firstPage slot
added to them, the .option indexedPage command is provided. This
adds a firstPage slot to those visible content items that have an .index
command attached. The .option indexedPage command has the same
effect as the .option firstPage command, except that some, and not all,
of the content items have a firstPage slot added to them.

C H A P T E R 4

NewtonScript in Books

4-24 Creating Story Cards

Creating Story Cards 4

Story cards are views that can appear anywhere on the Newton screen, and
are dismissed via a close button they provide. A story card is a convenient
way to pop up a small amount of information. In this way you can create a
hypertext environment where tapping part of a page provides additional
information about what was tapped. This could be a short description, a
picture, or any view created from a system prototype or a view template.

A story card is created by calling the :ShowStoryCard method, described
on page A-49. This method is passed a viewBounds frame, and the name
and value of a slot in a content item. Any content item can be imaged as a
story card. However, as a practical limitation, use only content items that Þt
within the viewBounds frame speciÞed, since story cards are not scrollable.
Also, only one story card can be displayed at any time.

For example, the following content item displays the formula for the area of
a circle. When the user taps this formula a story card is displayed with a
diagram of a circle.

.story

Circle: A = π r 2

.script //it's a ButtonClickScript by default

:showStoryCard ('card,"circle",

{left:40 ,right:200 ,top:60, bottom: 240});

.endscript

.picture NoPage

.#NoPage flag so that it will not be imaged normally

.attribute card : "circle"

C H A P T E R 4

NewtonScript in Books

Creating Dynamic Browsers 4-25

Creating Dynamic Browsers 4

You can use the AddBrowser function to add your own browsers to the
Book Reader overview dynamically. A typical use might be to display the
results of a custom searchÑthe user could keep the browser open and tap
items in the browser to navigate between hits.

To add a browser frame use AddBrowser as in the following example:

index := :AddBrowser(browser);

The value returned is an index that can be used to show your browser, as in
the next example.

:OpenBrowser(index);

Note

On the MessagePad, thereÕs no way to remove a browser. ◆

The structure of a list browser frame looks like the following example:

C H A P T E R 4

NewtonScript in Books

4-26 Adding Intelligent Assistant Templates to Books

browser := {

name: "Cheap Restaurants", // Name of browser

list: […]// Topics

};

Entries in the list array are in the form:

{item: content, level: 2}

or

{item: content, level: 2, name: "Important Stuff"}

The content in the item slot is a content item within the book (in other
words, a structure returned by the FindContentByValue method). The
level slot can be omitted; it defaults to 1. A name slot is the topicÕs text in
the outline. If this is omitted, the text of content is displayed as the list item
in the browser (entries for nontext content items must have a name slot).

Adding Intelligent Assistant Templates to Books 4

Digital books can use the Intelligent Assistant (IA) just as an application can.
To provide IA support for your book you need to write a task template, and
surround it with the .assist and .endassist commands.

The Newton ProgrammerÕs Guide provides all the information necessary to
write the task template, and information about the IA in general. Note
though that the process involved in providing IA support for an application
is more extensive than that for a book. You do not need to take any steps
other than the writing of the task template within the scope of the .assist
and .endassist commands.

Adding Help to Your Application 5-1

C H A P T E R 5

Application Help 5

Book Maker allows you to create application help by processing the book
source Þle with the Help Size option checked. The resulting help book Þle
is compiled either with your application or as an independent package,
which uses the system-supplied help browser to display help. This chapter
describes how create help books with Book Maker, and how to display your
help book from your application.

The material in this chapter is of a signiÞcantly more technical nature than
the rest of this book; it assumes intimate knowledge of the NewtonScript
language, the Newton object system and the creation of Newton application
programs. For further information on these topics, see the NewtonScript
Reference, Newton ProgrammerÕs Guide, and Newton Toolkit UserÕs Guide.

Adding Help to Your Application 5

A help book is the Þle that Book Maker produces when it processes a book
source Þle with the Help Size option checked, as shown in Figure 5-1. A help
book is accessed through the Help option of the Information button on the
status bar of an application. It can be built and downloaded as an

Figure 5-0
Table 5-0

C H A P T E R 5

Application Help

5-2 Adding Help to Your Application

independent package, or compiled with an application as part of a single
package.

Figure 5-1 The Help Size option in Newton Book Maker

Writing Help Books 5
The process of writing a help book is essentially the same as that for writing
a browser. In fact, a help book is nothing more than a browser plus the
required .title and .isbn commands. For a detailed discussion of
browsers see the section ÒCreating a Browser PaneÓ beginning on page 3-19.

There are, however, a few things to keep in mind when writing help books
that do not apply to all browsers

■ Keep help items short, since the help browser doesnÕt scroll and probably
never will. If your help item exceeds the length of the browser pane, it will
be truncated.Good human interface dictates that it should be impossible
for the user to get lost in the help book. Keep things simple; provide
simple, speciÞc, task-oriented instruction.

■ Answer a speciÞc question in your overview item, the line displayed by
the .subject command. An overview, Topic, should answer ÒHow Do I
Topic?Ó For example, Topic could be something along the lines of ÒUse the
Shopping List Application,Ó and the question would then be ÒHow Do I
Use The Shopping List Application?Ó Under this topic could be subtopics
such as ÒAdding Items To The Shopping ListÓ and ÒChecking Off
Purchased Items.Ó

A list of books that discuss the creation of online help manuals is provided in
Appendix C, ÒBooks on Online Help.Ó

C H A P T E R 5

Application Help

Adding Help to Your Application 5-3

Building Stand-Alone Help Books 5

No special steps need to be taken to build a help book as an independent
package. The process is identical to building a normal Book Reader book,
with the addittional step of setting the Help Size option in Book Maker.
When the book package is downloaded onto the Newton device, it is
automatically placed in the Help folder of the Extras Drawer. Stand-alone
help books give users the option of not installing application help, or
removing it after they have read it. This also helps to minimize the size of the
application package.

For instructions on using Newton Book Maker to process book source Þles
and get book deÞnition Þles, see the section ÒProcessing the Book Source
FileÓ beginning on page 2-11. For information on processing a book
deÞnition Þle to get a package see ÒBuilding a Book Package With NTKÓ
beginning on page 2-15.

How to Add Help to Your Application 5
The steps required to add help to your application differ depending on
whether the help book is being built as its own package, or as part of the
applicationÕs package.

In either case, your application needs to have a protoInfoButton (or
newtInfoButton for NewtApps) that opens the help book in its
doInfoHelp script. The doInfoHelp script should call either
openHelpBook(isbnStr) , or openHelpBookTo(isbnStr, topic) to display
your help book. The protoInfoButton and newtInfoButton templates
are described in the Newton ProgrammerÕs Guide. The OpenHelpBook and
OpenHelpBookTo functions are described in Appendix A, ÒThe Book Maker
Language.Ó

You may want to call :WhereIsBook before calling OpenHelpBook to test
for the existence of the help book. Since this is not a global function, but a
method of copperfield , the parent of all books on the Newton device, you
need to send the :WhereIsBook message to this frame. The following code
does this properly:

C H A P T E R 5

Application Help

5-4 Adding Help to Your Application

if getRoot().copperfield:WhereIsBook(myISBNstring)

then OpenHelpBook(myISBNString);

WhereIsBook is documented in the section ÒNewtonScript MethodsÓ of
Appendix A, ÒThe Book Maker Language.Ó

This is all that needs to be done for an application to open a help book that
was compiled as an independent package.

Adding a Help Book to Your Application’s Package 5

A help book may be compiled as part of an application project. To do this
choose Add File from NTKÕs Project menu, and select the book deÞnition Þle.
When a help book is built in this manner, it becomes a permanent part of the
application, and does not appear in the Help folder in the Extras Drawer.

You also need to register the help book with the system, so that it can be
found for the call to OpenHelpBook . A help book can be registered with the
system by calling RegisterBookRef(isbnStr, {book: book}) . This can
be done in the application base viewÕs viewSetUpDoneScript .

It is also good manners to unregister your book when it is no longer needed.
This is done with a call to UnRegisterBookRef (isbnStr) . A good place
for this function call is in the projectÕs removeScript .

RegisterBookRef and UnRegisterBookRef are documented in the
section ÒBook Reader MessagesÓ of Appendix A, ÒThe Book Maker
Language.Ó For information about the viewSetUpDoneScript and the
removeScript see the Newton Programmers Guide.

Pictures in Help Books in an Application Project 5

The Book Maker output Þle contains the help book frame that Book Maker
generates from your book source Þle. If the source Þle contains pictures, Book
Maker stores them as 'PICT' resources in the resource fork of the output
Þle. When a book is processed in a project with the Output option of ÒBook,Ó
NTK knows to look in the book deÞnition Þle for resources. But when a book
is processed as part of an application project, you must ensure that the
resources are opened.

C H A P T E R 5

Application Help

Adding Help to Your Application 5-5

You can do this with a call to the NTK global function OpenResFileX . The
OpenResFileX function accepts as its argument the full pathname to the
resource Þle to be opened, and returns a number to be used for subsequent
references to the open Þle.

The code example below opens the Þle myResource , which resides in the
folder myFolder on the disk myDisk , and stores the value returned by
OpenResFileX in the refNum variable. This code can be inserted in the
help bookÕs preamble:

refNum := OpenResFileX("My Disk:My Folder:myResource");

When youÕre Þnished using the resource Þle, close it by calling
the global function CloseResFileX , passing as its argument the
variable refNum . This can be done in the help bookÕs postamble.

C H A P T E R 5

Application Help

5-6 Adding Help to Your Application

Overview of the Book Maker Language A-1

A P P E N D I X A

The Book Maker Language A

This appendix describes all of the commands available in the Book Maker
command language. Optional commands are marked with the designation
Ò(optional).Ó

The commands are organized alphabetically under the categories Docu-
ment Commands, Content Commands, Browser Commands, Page Layout
Commands, Miscellaneous Commands, Flags, NewtonScript Methods, Book
Reader Messages, and NewtonScript Global Functions.

Overview of the Book Maker Language A

This section provides an overview of the different categories of Book Maker
commands, so that youÕll understand how you can combine the different
kinds of commands to produce various effects. Individual elements of the
Book Maker language are described in subsequent sections of this Appendix.

Types of Book Maker Commands A

All commands in the Newton Book Maker language fall into one of the
following Þve categories:

■ Document commands deÞne the overall characteristics of the document,
such as author, copyright information, assist functions, and so on. The
.title and .isbn commands described in Chapter 2, ÒGetting Started
With Newton Book Maker,Ó are typical document commands.

■ Content commands deÞne the various kinds of elements that the
document contains, such as text, graphics, NewtonScript view templates,
kiosks, and so on. The .story and .picture commands described in
Chapter 2, ÒGetting Started With Newton Book Maker,Ó are typical

Figure A-0
Table A-0

A P P E N D I X A

The Book Maker Language

A-2 Overview of the Book Maker Language

content commands. Text and graphics tagged with these commands are
called content items.

■ Browser commands deÞne outline-like panes useful for navigating
content in the Newton Book Reader. Browser commands are explained in
detail in the ÒCreating a Browser PaneÓ section of Chapter 3, ÒUsing the
Book Maker Language.Ó

■ Page Layout commands deÞne general layout characteristics for the
document, such as the number and size of columns or the placement of
graphics. Page layout commands can be used to create named formats
called layouts, and are also used to attach scripts to pages. Several
sections in Chapter 3, ÒUsing the Book Maker Language,Ó are devoted to
explaining the various page layout commands.

■ Miscellaneous commands make the Newton Book Maker language easier
to use by allowing you to create indexes, break large book source Þles into
sets of smaller ones, and embed in your source Þle comments that are not
displayed on the Newton screen.

■ Flags allow you to enable various options to Book Maker commands.

■ NewtonScript Methods allow you to manipulate the contents of Book
Reader books from NewtonScript.

■ Book Reader Messages are messages Book Reader sends to a book when
certain conditions arise. You can provide methods to handle these
messages, so as to take action appropriate to these conditions.

■ NewtonScript Global Functions are functions that an application can call
that affect digital books.

If You Do Not Know NewtonScript A

The last three sections in this appendixÑNewtonScript Methods, Book
Reader Messages, and NewtonScript Global FunctionsÑprovide information
that can only be used by a NewtonScript programmer.

The other sections describe the Book Maker command language and should
be read by non-programmers, although some of the commands listed are
provided for NewtonScript programmers. The section ÒSummary of

A P P E N D I X A

The Book Maker Language

Overview of the Book Maker Language A-3

Commands, Functions, and MethodsÓ beginning on page A-59 ßags
commands that require knowledge of NewtonScript to use.

Syntax of Book Maker Commands A

Book Maker commands always appear at the beginning of a line in the book
source Þle. Each command applies to everything that appears in the book
source Þle until the next command appears. The commands themselves do
not appear on the Newton screen.

The following points summarize the syntax of the Book Maker language:

■ Any line beginning with a period (.) is treated as a Newton Book Maker
command.

■ The entire Book Maker command language is case insensitive.

■ Comments can be added to a command line by preceding the comment
with a pound (#) sign.

■ Names that have spaces in them must be enclosed in quotation marks; for
example, "Futura Heavy" or 'Futura Heavy' .

Note

In this book, parameters shown in square
brackets ([]) are optional. ◆

Structure of a Book Maker Source File A

Document commands are generally placed at the beginning of the book
source Þle, followed by any deÞnitions of page layouts or styles. The bulk of
the document is comprised of the text and graphics to be displayed on the
screen. This content has interspersed in it the Book Maker commands that
indicate the documentÕs structure.

Very few commands are actually required by Book Maker; the majority of
commands in a typical book source Þle are optional commands used to exert
additional control over page layout or provide additional functionality to
the user.

A P P E N D I X A

The Book Maker Language

A-4 Document Commands

For an example of the structure of a typical Book Maker source Þle, see the
example book source Þles included with Book Maker.

Document Commands A

Document commands deÞne the overall characteristics of the document,
such as its author, copyright information, assist functions, and so on. This
section describes each of the document commands in the Book Maker
command language.

Assist A

.assist

SpeciÞes that NewtonScript code following this command deÞnes templates
used by the Intelligent Assistant. (optional)

For example:

.assist

{isa: {},

isbn: book.isbn,

primary_act: {isa: {value: "Reserve action"},

lexicon: [["reserve", "hold",

"reservation"]]},

signature: [{isa: {value: "action"},

lexicon: [["reserve", "hold",

"reservation"]]},

{isa: {"reserve where"},

lexicon: [["hotel", "room", "motel",

"bed"]]],

preconditions: ['action, 'place],

postparse: begin

app := GetRoot().Copperfield;

A P P E N D I X A

The Book Maker Language

Document Commands A-5

app:OpenBook(isbn); // Open the book

app:TurnToContent('name, "hotels");

end,

score: NIL};

.endassist

See also the description of the .endassist command on page A-7.

Author A

.author author

DeÞnes the bookÕs authors. (optional)

This information is displayed in the ÒAboutÓ slip accessed through the
Information button in Book Reader version 2.0.

author A string that contains the names of the bookÕs authors.

For example:

.author Charles Dickens

Blurb A

.blurb
blurbText

The blurb contains text about the book that might be used for sales oriented
information. The text of the blurb begins on the line following the .blurb
command and continues until the next dot command. (optional)

This information is currently available only from NewtonScript; however,
future versions of Book Reader may use it or provide end users with access
to it.

blurbText A string that contains a short description of the book.

For example:

A P P E N D I X A

The Book Maker Language

A-6 Document Commands

.blurb

This is a great book that tells all about the life and

times of that great author Charles Dickens. Please buy

me!

Copyright A

.copyright copyright

DeÞnes the bookÕs copyright notice. Only one such command may exist in
the book source Þle. (optional)

This information is displayed in the ÒAboutÓ slip, accessed through the
Information button in Book Reader version 2.0.

copyright A string that contains the bookÕs copyright information.

For example:

.copyright © 1993 Apple Computer, Inc.

Note

To obtain the © character, type a lowercase ÒgÓ
while pressing the Option key. ◆

Date A

.date date

DeÞnes the publication date of the book. Only one such command may exist
in the book source Þle. (optional)

This information is displayed in the ÒAboutÓ slip, accessed through the
Information button in Book Reader version 2.0.

date A string that contains the bookÕs date of publication

For example:

A P P E N D I X A

The Book Maker Language

Document Commands A-7

.date July 7, 1992

Endassist A

.endassist

Terminates the deÞnition of a NewtonScript block deÞned by the .assist
command. Required for .assist commands; see the discussion of the
.assist command on page A-4 for more information.

Endpostamble A

.endpostamble

Terminates the deÞnition of a NewtonScript block deÞned by the
.postamble command. Required for .postamble commands; see the
discussion of the .postamble command on page A-9 for more information.

Endpreamble A

.endpreamble

Terminates the deÞnition of a NewtonScript block deÞned by the
.preamble command. Required for .preamble commands; see the
discussion of the .postamble command on page A-9 for more information.

Expires A

.expires date

DeÞnes the date on which the information contained in the book is no longer
valid. Only one such command may exist in the book source Þle. (optional)

This information is displayed in the ÒAboutÓ slip accessed through the
Information button in Book Reader version 2.0.

date A string that contains the bookÕs expiration date.

For example:

A P P E N D I X A

The Book Maker Language

A-8 Document Commands

.expires July 7, 1993

Key A

.key keyword0 [, keyword1, É keywordN-1, keywordN]

DeÞnes a list of keywords that describe the book to readers. These keywords
can be searched on and are remembered by Book Reader even when the book
(card) has been removed from the Newton device. Only one such command
may exist in the book source Þle. (optional)

keyword A string that is a keyword associated with this book.

For example:

.key biography author dickens England writer novelist

This information is currently available only from NewtonScript; however,
future versions of Book Reader may use it or provide end users with access
to it.

ISBN A

.isbn isbn

DeÞnes a unique identiÞer for the book which may be an actual ISBN
number. This identiÞer must be 14 or fewer characters. Only one such
command may exist in the book source Þle. (required)

This information is currently used by Newton Book Reader to identify book
packages in the Extras Drawer. This information is available only from
NewtonScript; however future versions of Book Reader may provide end
users with access to it.

isbn A string that contains an identiÞer unique to this book

For example:

.isbn 0-316-08275-9

A P P E N D I X A

The Book Maker Language

Document Commands A-9

ISBN is an acronym for International Standard Book Number. ISBN numbers
are unique numbers used by publishers and others in the book trade to
identify books.

If you eventually publish your book and distribute it to a large audience, you
may wish to obtain a real ISBN number to identify your book. ISBN numbers
may be obtained from the R.R. Bowker company for a nominal fee. You can
contact them at the following address and phone number:

ISBN Agency
R.R. Bowker
121 Chanlon Road
New Providence, New Jersey 07974

Phone: (908) 665-6770
FAX: (908) 665-2895

Postamble A

.postamble

Any NewtonScript code between the .postamble command and the
matching .endpostamble command is output directly into the book
deÞnition Þle, following all the code created by Book Maker. This is a handy
place to do any clean-up that might be needed. For example, if a large object
is needed at build time, but not at run time, this object can be set to nil in
the postamble. (optional)

See also the descriptions of the .endpostamble and .preamble
commands.

Preamble A

.preamble

Any NewtonScript code between the .preamble command and the
matching .endpreamble command is output directly into the book
deÞnition Þle preceding all deÞnitions of content items. (optional)

A P P E N D I X A

The Book Maker Language

A-10 Document Commands

One use for this command is to store global data in Book Data, as in the
following code:

.preamble

book.data.stuff := { ... };

.endpreamble

The preamble is a convenient place to deÞne methods that will be used in
various parts of the book, which has the advantage of minimizing memory
consumption. However, if you plan to use these methods in various books,
you might Þnd it more convenient to deÞne the methods in a text Þle that
can be included in your NTK project.

See also the descriptions of the .endpreamble and .postamble
commands in this section.

Publisher A

.publisher publisherInfo

DeÞnes the bookÕs publisher. Only one such command may exist in the book
source Þle. (optional)

This information is displayed in the ÒAboutÓ slip, accessed through the
Information button in Book Reader version 2.0.

publisherInfo The string describing the bookÕs publisher.

For example:

.publisher Apple Computer, Inc.

A P P E N D I X A

The Book Maker Language

Content Commands A-11

ShortTitle A

.shortTitle shortTitle

DeÞnes the bookÕs short title, which is used as its name in the Extras drawer.
Only one such command may exist in the book source Þle. If no short title is
deÞned, the bookÕs full title is used in the Extras Drawer. (optional)

shortTitle The string that appears under the bookÕs icon in the
Extras Drawer.

For example:

.shorttitle Dickens

Title A

.title titleText

DeÞnes the bookÕs title. Only one such command may exist in the book
source Þle. (required)

titleText The string that is the bookÕs title. This string is used as
the bookÕs title in the Extras Drawer if no short title is
supplied. This string also appears at the top of every
page in the book unless it is replaced by a header or
picture header. The title string at the top of book
pages can be suppressed in layouts that include the
noTitle flag.

.title All About Dickens

Content Commands A

Content commands deÞne the various content items that the book contains.
Content items are text, graphics, views, kiosks, and so on.

A P P E N D I X A

The Book Maker Language

A-12 Content Commands

Attribute A

.attribute name1:= value1 [, name2:= value2, ..., nameN:= valueN]

Allows additional information to be deÞned for a content item by creating a
slot associated with the content item. The slot can be used by the view
system (and thus, NewtonScript) or by the intelligent assistant, via a special
item slot. This is explained in more detail in the section ÒAdding Slots to
Content ItemsÓ beginning on page 4-9.

name The name of the slot this command creates.

value The value to store in the slot created by this command.

For example, a content item describing a place might have associated with it
slots containing its telephone number and address.

.attribute phone: "602-555-1212"

.attribute type: 4, color: "blue"

Chapter A

.chapter flags [name= nameString] [goto= item] [browser= browserName] [layout= layoutName]
subjectText

Creates a subject on level 1; a synonym for a .subject 1 command.
The parameters to this command are the same as those used for the
.subject command; for more information, see the discussion of
the .subject command on page A-23.

.chapter StartsPage name=c1 layout=Simple

Chapter One:The Beginning

Note

Except for the subject text, which must appear on its own
line, the entire .chapter command must appear on a
single line in your book source Þle. ◆

A P P E N D I X A

The Book Maker Language

Content Commands A-13

Endform A

.endForm

Terminates a NewtonScript block deÞned by the .form command.
Required for .form commands; see the discussion of the .form
command on page A-13 for more information.

Endscript A

.endscript

Terminates a NewtonScript block deÞned by the .script command.
Required for scripts. For more information, see the discussion of the
.script command on page A-19.

Endkiosk A

.endkiosk

Terminates the deÞnition of a kiosk deÞned by the .kiosk command.
Required for kiosks. For more information, see the discussion of the .kiosk
command on page A-16.

Form A

.form height= h width= w [name= nameString] [browser= browserName] flags
[protoName|layout_ nameOfLayout]

Reserves the speciÞed amount of space for a view on the page and,
optionally, creates the view from a speciÞed system prototype, view
template, layout, or user template. The .form command must be followed
by a corresponding .endform command; everything between .form and
.endform defines the view created by this command. (optional)

A P P E N D I X A

The Book Maker Language

A-14 Content Commands

Note

Except for the layout or prototype, which must appear on its
own line, the entire .form command must appear on a
single line in your book source Þle. ◆

height Required. SpeciÞes in pixels the height of the blank
space reserved for imaging the view.

width Required. SpeciÞes in pixels the width of the blank
space reserved for imaging the view.

name= Optional. SpeciÞes a nameString that other entities in the
book can use to reference this form. For example, if the
.form command defines a name=FredForm
parameter, other content items can display the form by
specifying goTo=FredForm as one of their parameters.

ßags Optional content ßags associated with this view.

browser= Optional. SpeciÞes a named browser in which the view
this command creates is placed. For example, if the
.form command defines a browser=Cities
parameter, this view is placed in the browser named
Cities .

protoName Optional. The name of the system prototype from which
to create the view.

layout_ nameOfLayout
Optional. The user prototype, view template, layout, or
user template from which to create the view. It is
speciÞed by preÞxing its name with the layout_
keyword. For example, to specify the template
mySpecialUserProto , the syntax would be
layout_mySpecialUserProto .

You can include a protoTextButton view in your book by using the
.form command as in the following example:

A P P E N D I X A

The Book Maker Language

Content Commands A-15

.form height=35 width=60

protoTextButton

.endform

NewtonScript commands that deÞne the view may follow the .form
command. You can use this technique to initialize slots in the view when it is
created, as in the following example:

.form height=30 width =100

{_proto: layout_ nameOfLayout ,
slotName: value}
.endform

Instead of using a system proto or some kind of view template, you can
create the whole view procedurally, as in the following example:

.form name=rect height=100 width=50

 {

viewClass: clView,

viewFlags:vVisible,

viewDrawScript:func()

begin

DrawRect(3, 3, 13, 13);

end}

.endform

A P P E N D I X A

The Book Maker Language

A-16 Content Commands

Indent A

.indent left right

Indents the left margin of the current content item by left points and the right
margin of the current content item by right points. (A point is a
typographerÕs unit of measure; there are 72 points in an inch.)

left The amount of space, in points, by which to indent the
left margin of the content item.

right The amount of space, in points, by which to indent the
right margin of the content item.

Place this command after the content command it affects, but before the
content (text or picture) associated with that command. The following
example indents the story text by 30 points on the left and 20 points on
the right:

.story

.indent 30 20
This is my story text.

Kiosk A

.kiosk name=nameString [layout= layoutName]

DeÞnes a named kiosk page, which is an optional page used for navigating
book content. For a more detailed description of a kiosk page, see the section
ÒCreating a Kiosk,Ó in Chapter 3, ÒUsing the Book Maker Language.Ó

Between the .kiosk command and its corresponding .endkiosk
command, any content commands that use the goto ßag become buttons in
the kiosk page. Any content commands without the goto ßag are simply
labels or pictures. Note that all content items can be referred to by the name
of the kiosk.

name= Required. SpeciÞes a nameString that other entities in
the book can use to reference this kiosk. For example, if
the .kiosk command deÞnes a name=Cats

A P P E N D I X A

The Book Maker Language

Content Commands A-17

parameter, other content items can display the kiosk by
specifying goTo=Cats as one of their parameters.

layout= Optional. SpeciÞes that the layoutName layout applies to
this kiosk page. When applying layouts by name, the
layout= parameter must be the last parameter on the
command line. For more information on layout and
styles options, see the section ÒPage Layout
Commands,Ó later in this Appendix.

.kiosk name=aKiosk layout=myKiosk

.story

Tap on a subject…

.story goto=subj1

Car Rental Companies

.story goto=subj2

Airlines

.endkiosk

Note

It is recommended that you create a layout to use with kiosk
pages. In this layout be sure to include the Kiosk ßag. This
allows Book Reader to automatically provide a button that
returns the user to the nearest kiosk. ◆

Mark A

.mark

Saves a reference to the current content item. This allows a subsequent
content item that has a .usemark command to refer to the marked itemÕs
slots.

If another .mark command is encountered before a .usemark command,
then the reference to the Þrst marked content item is lost. That is, a
.usemark command is matched with the nearest preceding .mark
command. See also the description of the .usemark command later in this
section.

A P P E N D I X A

The Book Maker Language

A-18 Content Commands

Picture A

.picture ["path"] [flags] [name= nameString] [goto= item] [browser= brsNm]

[height= h] [width= w] [layout= layoutName]

SpeciÞes that the 'PICT' following this command be used as a content item.
A full pathname to an external 'PICT' Þle may also be speciÞed instead of
pasting the 'PICT' into the book source Þle.

Note

The entire .picture command must appear on a single line
in your book source Þle. In order to print the command in a
font large enough to read comfortably, this book continues
the command on a second line. ◆

When Newton Book Maker lays out pages, it tries to give the maximum
amount of space possible to pictures so users are not forced to scroll the
picture. Often this means that pictures are placed on the next page instead of
staying with a related subject or story. You can avoid this problem by using
the KeepWith ßag to keep the picture with the previous content or by using
the width and height ßags to specify a smaller size for the picture. Note
that the height and width ßags do not scale the picture; they specify the
boundaries of the displayable portion of the picture. Newton Book Reader
automatically displays controls with which the user can scroll the picture if
its size exceeds the speciÞed boundaries.

ßags Optional content ßags associated with this content item

name= Optional. SpeciÞes a nameString that other entities in the
book can use to reference this picture; for example, if the
.picture command defines a name=Fred parameter,
other content items can display the picture by
specifying goTo=Fred as one of their parameters.

goTo= SpeciÞes the content item to be displayed when the user
taps this subject in the browser. For example, if the
.subject command defined a goTo=Cats parameter,

A P P E N D I X A

The Book Maker Language

Content Commands A-19

the named content item Cats is displayed when the
user taps the subjectText string in the browser.

browser= Optional. SpeciÞes a named browser brsNm in which
the content item this command creates is placed; for
example, if the .story command deÞned a
browser=Cities parameter, the story text would be
placed in the browser named Cities .

height Optional. SpeciÞes in pixels the height of the space
reserved for imaging the picture. If the picture is larger
than the speciÞed size, scroller controls are displayed
automatically.

width Optional. SpeciÞes in pixels the width of the space
reserved for imaging the picture. If the picture is larger
than the speciÞed size, scroller controls are displayed
automatically.

layout= Optional. SpeciÞes that the layoutName layout is to be
applied to this content item. When applying layouts by
name, the layout= parameter must be the last
parameter on the command line. For more information
on layout and styles options, see the section ÒPage
Layout Commands,Ó later in this Appendix.

For example:

.picture "myDisk:proj:portrait" Centered

Script A

.script [slot] event

Attaches a NewtonScript method to the current content item. An optional
path to a Þle containing the script may be speciÞed. All lines between the
.script command and its corresponding .endscript command must be
NewtonScript code deÞning the body of the script.

Scripts deÞned at the beginning of the document (before any content or
layout commands) are available throughout the book and are referred to as

A P P E N D I X A

The Book Maker Language

A-20 Content Commands

book scripts. Scripts deÞned after a layout command are attached to the
layout and are referred to as page scripts; page scripts are available on any
page that uses that layout.

event In the absence of the slot keyword, this parameter
speciÞes the event that invokes the script. (This is the
most common syntax for using this command.)

The default value of this parameter is
buttonClickScript , but other examples might
include viewDrawScript , viewClickScript , or
viewSetupDoneScript .

slot Optional. In the presence of this keyword, the event
parameter deÞnes the name of a slot to be associated
with the currently deÞned content item.

The following example attaches a script to the current content item that plays
the sound ROM_Click when the user taps the content item:

.# by default, it’s a buttonClickScript

.script

playSound(ROM_click);

inherited:buttonClickScript

.endscript

The following example attaches a slot named color that stores the "blue "
value to the view that images the current content item:

.script slot color

"blue"

.endscript

Note

Use script slots sparingly and with caution. Script slots are
created in the view that images the content item with which
they are associated; hence, each script slot uses a certain
amount of space on the NewtonScript heap. ◆

A P P E N D I X A

The Book Maker Language

Content Commands A-21

The slot argument is required, however, if the function needs to take
parameters. For example, Book Reader sends a FormSearchScript to a
content item, passing in searchStr and stringLen parameters. The
FormSearchScript must be written using the slot argument as in this
example to use these parameters:

.script slot FormSearchScript

func (searchStr, stringLen)

begin

// code which highlights would go here

end

.endscript

Space A

.space n

Leaves n points of space after the current content item. (A point is a
typographerÕs measure; there are 72 points per inch.) If the content item is at
the bottom of a page, no space is left at the top of the next page.

n The amount of space to leave after the current content
item. The value of n may range from 0-63 points.

Using the .space command instead of placing blank lines in the book
source Þle results in the creation of slightly smaller book packages, ensures
that blank lines are not placed at the tops of pages, and provides Þner control
over the amount of white space that is placed between content items.

Story A

.story [flags] [name= nameString] [goto= item] [browser= brsNm]
[layout= layoutName]

DeÞnes a new content item within the currently deÞned subject (if any). The
content item is by default one level deeper than the current subject.

A P P E N D I X A

The Book Maker Language

A-22 Content Commands

Note

Except for the story text, which must appear after the
.story command, the entire .story command must
appear on a single line in your book source Þle. In
order to print the command in a font large enough to
read comfortably, this book continues the command
on a second line. ◆

ßags Optional content ßags associated with this content item

name= Optional. SpeciÞes a nameString that other entities in the
book can use to reference this story text. For example, if
the .story command deÞnes a name=myStory
parameter, other content items can display the story text
by specifying goTo=myStory as one of their
parameters.

goTo= SpeciÞes the content item to display when the user taps
this subject in the browser. For example, if the
.subject command defined a goTo=Cats parameter,
the named content item Cats is displayed when the
user taps the subjectText string in the browser.

browser= Optional. SpeciÞes a named browser brsNm in which
the content item this command creates is placed;
for example, if the .story command deÞned a
browser=Cities parameter, the story text would be
placed in the browser named Cities .

layout= Optional. SpeciÞes that the layoutName layout is to be
applied to this content item. When applying layouts
by name, the layout= parameter must be the last
parameter on the command line. For more information
on layout and styles options, see the section ÒPage
Layout Commands,Ó later in this Appendix.

For example:

.story MainColumn layout=TwoColumn

A P P E N D I X A

The Book Maker Language

Content Commands A-23

Subject A

.subject [level] [flags] [name=aStr] [goto= item][browser =brsNm] [layout= layoutName]
subjectText

DeÞnes a new content item that appears in the bookÕs table of contents
browser at the speciÞed level and appears in the body of the book as well.
If no level is speciÞed, the subject is created at level 1. The text or graphic
between this command and the next command deÞning a content item in the
book source Þle is the subject content item. To suppress the appearance of
subject text in the body of the book, add the browserOnly ßag.

Note

Except for the subjectText text, which must appear after the
.subject command, the entire .subject command must
appear on a single line in the book source Þle. ◆

level The level at which this subject appears in the browser. A
value of 1 speciÞes that the subject text is a chapter, a
value of 2 speciÞes a headline, 3 speciÞes a subhead,
and so on.

ßags Optional content ßags associated with this content item.

name= Optional. SpeciÞes a name string aStr that other entities
in the book can use to reference this content item. For
example, if the .subject command deÞnes a
name=Cats parameter, other content items can display
this content item by specifying goTo=Cats as one of
their parameters.

goTo= SpeciÞes the content item to display when the user taps
this subject in the browser. For example, if the
.subject command defined a goTo=Cats parameter,
the named content item Cats is displayed when the
user taps the subjectText string in the browser.

A P P E N D I X A

The Book Maker Language

A-24 Content Commands

browser= Optional. SpeciÞes a named browser brsNm in which to
place the content item this command creates. For
example, if the .subject command deÞned a
browser=Cities parameter, the subject would be
placed in the browser named Cities .

layout= Optional. SpeciÞes that the layoutName layout is to be
applied to this content item. When applying a layout by
name, the layout= parameter must be the last
parameter on the command line. For more information
on layout and styles options, see the section ÒPage
Layout Commands,Ó later in this Appendix.

For example:

.subject 2 Reverse StartsPage layout=TwoColumn

This is the subject text

Usemark A

.usemark

Adds a slot named related to the current content item. The value of this
slot is a reference to the nearest preceding content item that has a .mark
command. This allows the content item with the .usemark access to slots in
the content item with the .mark , without having to conduct a search for it.

For example:

.story

.attribute boring : true

.mark

Something long and boring here.

.form height=60 width=170

protoStaticText

.endform

.usemark

A P P E N D I X A

The Book Maker Language

Browser Commands A-25

.script viewSetupDoneScript

text := “Isn’t this” && if related.boring then

“boring.” else “exciting.”

.endscript

Browser Commands A

Browser commands deÞne a new browser to be displayed in the Newton
Book Reader table of contents.

Browser A

.browser name type

Creates a new browser pane having the speciÞed name in the table of
contents browser.

name SpeciÞes the text that appears in the browser menu; the
name of this browser pane. This text is also used by
content items that use the browser= name ßag.

type SpeciÞes how the browser is deÞned; may have either of
the values list or form . If the type is list , Book
Maker builds the list of browser items from the content
items that use the browser= ßag. If the type is form ,
the deÞnition of the browser pane view must follow the
.browser command. This definition may not specify
viewBounds to be larger than the size of the
system-supplied browser pane.

For example:

.browser Hotels list

A P P E N D I X A

The Book Maker Language

A-26 Page Layout Commands

Page Layout Commands A

Page layout commands deÞne general formatting characteristics for the
page, such as the number of columns and placement of graphics. Page layout
commands are also used to attach scripts to text and graphics in a Newton
digital book.

Layout A

.layout name width [flags] [layoutFlags]

Creates a named page layout with the speciÞed number and widths of
columns. You may Þnd it helpful to think of .layout commands as
resembling the user-deÞned styles or formats commonly used by many word
processors. Only one layout is allowed per page on the Newton screen.

name Required. Other entities in the book can use this string
to apply this layout by name. For example, if the
.layout command defines the name myLayout param-
eter, other content items can apply myLayout by
including the parameter layout=myLayout . It is
important to give each .layout a different name;
repeating the names of .layout commands causes
errors.

width Required. One or more numbers specifying the width of
each column deÞned in this layout. The numbers
speciÞed as the value of this parameter must add up to
12, which is the number of vertical strips into which
Book Maker divides the Newton screen. All of the strips
are equal in width; the actual width of an individual
strip depends on the screen size of the device that
displays the book. The column widths in a layout are

A P P E N D I X A

The Book Maker Language

Page Layout Commands A-27

speciÞed as a number of these strips; thus, the
proportions of the layout are preserved regardless of the
actual size of the screen on the display device.

ßags Optional content ßags that are applied to each content
item using this layout. For example, the layout can
include the edges ßag to specify that each content item
using this layout has a box drawn around its edges.

layoutFlags Optional layout ßags to be applied, such as the
sidebar and main flags used to designate particular
column widths in the layout as being those of the
sidebar and main columns respectively.

A typical layout command looks like the following example:

.layout twoColumn 6 6 edges

This command deÞnes a page layout named twoColumn . The twoColumn
layout deÞnes two equal main columns that are each six strips wide. The
edges flag draws a box around them. HereÕs another example:

.layout annotated 4 Sidebar 8

This command deÞnes a page layout named ÒannotatedÓ that has two
columns. The left column is four strips wide, or one-third of the page, and is
a sidebar. The right column is eight strips wide, or two-thirds the width of
the page, and is the main column.

If a .script command follows a .layout command, the script is attached
to the layout. In this manner a script can handle the drawing of a special
background or click event not handled by the content item.

If a content command does not specify the layout to be used, the most
recently deÞned one is applied.

When applying layouts by name, the layout= parameter must appear last
on the command line.

A P P E N D I X A

The Book Maker Language

A-28 Page Layout Commands

Header A

.header

Assigns to the current layout command a centered text header that is
displayed at the top of every page that uses the layout. The font and style
of the header are maintained separately from the rest of the layout.

Pictheader A

.pictHeader

Adds to the current layout command a picture header that is displayed at
the top of every page that uses the layout. Headers taller than 16 pixels spill
into the content view. Because page content is drawn after the picture header,
oversize picture headers can provide interesting page backgrounds.

Running A

.running type [pageBottom] [flags]

Assigns to the previous layout command a content of type picture , story
or form and automatically places that content on every page. The content
appears at the top of the page (below the header if applicable) by default.

type The kind of content item used as the running head; this
parameter must have one of the values picture ,
story , or form . The content item is used the same way
as an item deÞned by the corresponding content
command (.story , .picture , .form).

pageBottom This optional ßag causes the content to appear at the
bottom of the page.

ßags Optional content ßags applied to the running header
content item.

For example:

.layout full 12

.running form height=100 width=200

layout_CoolHead

A P P E N D I X A

The Book Maker Language

Miscellaneous Commands A-29

Use of this command to create running headers results in a smaller book
package than pasting the same data in the book source Þle and allows
great ßexibility for creating running titles in your book. However, it is
recommended that you exercise discretion with regard to taking up large
amounts of space on every page for static information.

Miscellaneous Commands A

You can use these commands to create indicies, break large book source Þles
into sets of smaller ones, and embed comments that are not displayed on the
Newton screen in your source Þle.

Chain A

.chain " fullPathToFile"

Placed at the end of a book source Þle to indicate that the remainder of the
book source Þle is contained in another Þle. Use this command to split a
large book source Þle into several smaller ones.

The bookÕs .title and .isbn commands must appear only in the Þrst Þle
in the chain. All Þles in the chain must be of the same format; for example,
you cannot chain a MacWrite Þle to a TeachText Þle. As Book Maker opens
each Þle speciÞed by the .chain command, it closes the previous Þle in
the chain.

fullPathToFile The full pathname to the next Þle in the chain. You must
enclose the pathname in quotation marks.

For example:

.chain "disk:folder:BookSourcePart2"

This command is useful for breaking a large book source Þle into more
manageable pieces, perhaps to allow several people to work on it
simultaneously. It can also be used to break apart an extremely large book
Þle that Book Maker may be unable to process in its entirety. (Book Maker

A P P E N D I X A

The Book Maker Language

A-30 Miscellaneous Commands

reads the entire book source Þle into RAM to process it. You can also use
this command to reduce the RAM requirements necessary to process a
large book.)

Comment Symbol A

.# commentText

The pound sign (#) indicates that the text following it is a comment line that
does not appear on the screen.

commentText The text that is the comment.

For example:

.# This is a comment. Book Maker ignores it.

Index A

.index [{!|@} indexName] [noSubIndex] entry

Creates an alphabetical index and adds the speciÞed entry to it. Currently,
index data is available only from NewtonScript; however, future versions
of Book Maker may use this data or make it available to the end user.

entry The word to add to the index.indexNameThe name used
to identify a particular index when the book has
multiple indicies.

Each index entry stores a reference to the content in which the .index
command was used. When Book Maker processes the Þle, it outputs an array
of content items in alphabetical order and stores it with the slot name
alphaIndex in book data. It also outputs a second array in a slot named
subIndex, which creates an array index into alphaIndex for each letter of
the alphabet. You can use the .option noSubIndex command to suppress
generation of subindices.

The ! indexName argument creates multiple indicies for a single book. The
value of the indexName parameter creates a NewtonScript variable that
identiÞes a particular index. The index is stored with the slot name
indexNameIndex in the book data frame. An indexNameSubIndex is also

A P P E N D I X A

The Book Maker Language

Miscellaneous Commands A-31

created. You can use the @indexName syntax to suppress generation of
subindices. A particular indexName can appear in a book in both the .index
! indexName and .index @ indexName formats. In this case the first time the
indexName appears determines whether an indexNameSubIndex is
generated. If the @indexName syntax is the Þrst use of indexName
encountered, then the indexNameSubIndex array is not generated.

Note

The indexNameIndex and indexNameSubIndex form
NewtonScript symbols; therefore, indexName may not
contain any characters other than alphanumeric characters
and underscores. Other characters cannot be used even if
enclosed in vertical bars (|), since even though
'|weird%symbol!| is a valid NewtonScript symbol,
'|weird%symbol!|Index is not.

Option A

.option optionName

Enables the speciÞed option for the current book. The .option command
should only be used once for each applicable option.

optionName SpeciÞes the option to enable. This parameter can have
the following values only:

firstPage Adds a slot named firstPage to each
visible content item. The firstPage slot
contains the number of the page on which
the content item appears.

indexedPage
Adds a slot named firstPage to each
visible content item that is also in an
index created by the .index command.
The firstPage slot contains the number

A P P E N D I X A

The Book Maker Language

A-32 Flags

of the page on which the content item
appears.

noSubIndex
DonÕt create a subindex array for indicies
created by the .index command.

For example:

.option noSubIndex

Note that .option indexedPage is a subset of .option firstPage .
The former adds slots to a subset of the content items that the latter adds
slots to. It is thus redundant to use both the .option firstPage and the
.option indexedPage commands in the same book.

In the future, when different-sized screens are available, the firstPage slot
will contain an array of page numbers. At that time the curRendering slot
will provide the information needed to select the proper page number from
this array.

Flags A

The Book Maker language provides keywords that can be used to modify
document, content, and layout commands. These keywords, called ßags, can
be used singly or can be combined to produce various effects. This section
describes the ßags available in the Book Maker command language.

A P P E N D I X A

The Book Maker Language

Flags A-33

Document Flags A

A document ßag affects the entire book, rather than individual content items
or layouts. Table A-1 describes the document ßags available in version 1.0 of
the Newton Book Maker command language.

Layout Flags A

A layout ßag modiÞes the .layout command to which it is attached; hence,
any content item using that layout is affected by the ßag as well. Table A-2
describes the layout ßags available in version 1.1 of the Newton Book Maker
command language.

Note

Certain layout ßags may be also be used to modify content
items; see Table A-3 for details. ◆

* Can also be used to modify content commands.

Table A-1 Document flags

Flag Description

NoReLayout DonÕt reformat if screen size changes

Table A-2 Layout flags

Flag Description

Kiosk This .layout command ßag deÞnes a kiosk page layout

Main * Display in a main column (default).

NoTitle Do not reserve space for a running title.

Sidebar * Display in the sidebar column.

A P P E N D I X A

The Book Maker Language

A-34 Flags

Content flags A

Most of the ßags in the Book Maker language are used to modify the
commands that deÞne content items, such as .story , .picture , .subject ,
and so on; thus, they are referred to as content ßags.

Some content ßags may also be used to modify layout commands; these ßags
are marked with an asterik (the asterik is not part of the ßag). Because a
layout applies to the entire page on which it is used, these ßags affect the
entire page when they are used to modify a layout.

Table A-3 Content flags

Flag Description

Main * Display in a main column (default).

Sidebar * Display in the sidebar column.

ToEdge Override current layout to spill content out of
its column to the edge of the page.

Centered Center within column.

NeverBreak Avoid splitting text between pages.

StartsPage Always place at the top of a new page.

PageMiddle Always place in the middle of a new page.

PageBottom Always place at the bottom of the page.

AlignTop Align sidebar with top of previous content item.

AlignBottom Align sidebar with bottom of previous content
item.

AlignCenter If content item is in a sidebar, align with center of
previous content item, or else align with center of
page.

BrowserOnly Content appears only in browser pane; not drawn
on the book page.

BrowserAutoClose Close browser automatically whenever a selection
is made, causing it to behave like the
system-supplied overview.

A P P E N D I X A

The Book Maker Language

Flags A-35

Edge Flags A

Edge ßags are specialized content ßags that are used to draw lines around
the edges of content items. Edge ßags are described in Table A-4. Note that
most edge ßags can be used to modify layouts as well as content items.

* Can also be used to modify layout commands

Overlay Overlay previous content item without wrapping.

KeepWith Keep with the previous content item.

NoExtend Suppress automatic extension of content block to
the bottom of the page. Useful to avoid
undesirable highlighting behavior in
viewClickScript methods for kiosks that
occupy an entire page but do not Þll it with
content items.

NoPage Do not automatically display this content item on
the page but keep its information available for
display later. Useful for items like story cards,
which are displayed only on command.

NoScroller Suppress automatic display of scroller controls for
graphics that are larger than the column.

NoSearch Do not search this content text. Used to improve
speed of text searches.

Table A-4 Edge flags

Flag Description

TopEdge Draw line above content item.

LeftEdge Draw line at left edge of content item.

BottomEdge Draw line at bottom edge of content item.

RightEdge Draw line at right edge of content item.

Table A-3 Content flags (continued)

Flag Description

A P P E N D I X A

The Book Maker Language

A-36 NewtonScript Methods

You can use the edgeWidth ßag to specify in pixels the width of the line to
be used with the edge ßags. Place the edgeWidth ßag on the same line as
the edge ßag, as in the following example:

edgeCommand edgewidth= number

NewtonScript Methods A

The following NewtonScript methods, provided by Newton Book Reader,
are available at run time.

AddBookmark A

:AddBookmark (pageNumber)

Adds a bookmark at the speciÞed page number in the current book. Only six
bookmarks can be stored per book.

pageNumber The number of the page to bookmark.

Edges Draw box around content item.

Round Draw box with rounded corners around content item.

Reverse Draw content item in white on black.

EdgeWidth Specify width of line drawn by edge ßags.

Table A-4 Edge flags

Flag Description

A P P E N D I X A

The Book Maker Language

NewtonScript Methods A-37

AddBookRouting A

:AddBookRouting(routingArray)

Adds or removes routing menu items as speciÞed. To remove all items added
by this book, pass nil as the value of the routingArray parameter.

routingArray An array of routing frames to be added. The routing
frame must contain the following slots.

title Required. The string that appears in the
routing menu.

icon Optional. An icon that appears next to the
string that this function adds to the
routing menu.

routeScript
A symbol specifying the page script or
book script that is this menu itemÕs
routing script.

For more information on routing see the Newton ProgrammerÕs Guide.

AddBrowser A

:AddBrowser(browser)

Adds the speciÞed browser to the book. This method returns a reference to
the browser, which can be used as parameters to the :OpenBrowser and
:CloseBrowser methods, which display and remove the browser.

browser A frame containing the deÞnition of the browser. This
frame must contain the following two slots:

name A string denoting the name to display at
the top of the browser pane.

list An array of frames, one per browser line,
containing information about how to
display the line and where to go when it
is tapped.

A P P E N D I X A

The Book Maker Language

A-38 NewtonScript Methods

The frames in the list array should contain the following slots:

level Optional. SpeciÞes the level at which to
display this entry in the browser. This has
the same effect as the optional level
argument to the .subject command,
which is described on page A-23. If this
slot is not included, it is displayed at level
1.

item Required. A reference to the content item
to display when this browser line is
tapped.

name Optional if item is a reference to a text
content item. A string specifying the text
to display in the browser line. If the
content item that is referenced by item is
a text content item, this slot can be
omitted, and that text is displayed in the
browser.

See also the section ÒCreating Dynamic BrowsersÓ beginning on page 4-25 of
Chapter 4, ÒNewtonScript in Books,Ó and the descriptions of ÒCloseBrowserÓ
on page A-40, and ÒOpenBrowserÓ on page A-47 of this Appendix.

AuthorData A

:AuthorData()

Returns the reference of a soup-based frame in which book script authors
may store data that is to remain in the a soup on the Newton device. This
soup entry is maintained even after the book has been removed.

IMPORTANT

Do not put any data in this framethat is resident in the book
itself. Since books might be removed at any time, any copied
data might render the entire data frame invalid. ▲

A P P E N D I X A

The Book Maker Language

NewtonScript Methods A-39

BookData A

:BookData()

Returns the reference of the data frame in which book script authors can
place book-speciÞc data. For example, the .index command also puts the
alphaIndex and subIndex arrays here. This data is compiled with the
book and becomes part of the bookÕs package itself. Any data kept here is
considered read-only at run time.

Bookmarks A

:Bookmarks ()

Returns an array of bookmarks for the current book.

[number, …]

BookTitle A

:BookTitle ()

Returns the slot containing the title of the current book.

ChangeScrolledOrigin A

scroller:ChangeScrolledOrigin(dX, dY)

Sets the scroll position of a picture displayed by the built-in scroller in Book
Reader. All views created by a .picture that is larger than the screen have
a scroller slot, send the ChangeScrolledOrigin message to this slot.

dX The number of pixels to scroll horizontally. Positive
values offset the visible area to the right; negative ones,
to the left.

dY The number of pixels to scroll vertically. Positive values
offset the visible area downward; negative ones,
upward.

A P P E N D I X A

The Book Maker Language

A-40 NewtonScript Methods

CloseBrowser A

:CloseBrowser(browserRefNum);

Closes the speciÞed browser, if open.

browserRefNum A reference to the browser to close, as returned by the
AddBrowser function.

CountPages A

:CountPages ()

Returns the number of pages in the current book.

CurrentKiosk A

:CurrentKiosk ()

Returns a reference to the Þrst kiosk page found when searching backwards
in the current book from the currently displayed page. If a kiosk is found,
this method returns a frame; otherwise, it returns nil . The frame returned
by this method has the following slots:

page The number of the page on which the kiosk is displayed.

name The name assigned to the kiosk by its name= parameter
in the kiosk deÞnition.

CurrentPage A

:CurrentPage ()

Returns the currently displayed page in the current book.

A P P E N D I X A

The Book Maker Language

NewtonScript Methods A-41

Find A

:Find (string , results , scope , statusContext)
Searches for the speciÞed string in one or more books.

string The user-speciÞed string for which Find is to search the
book content.

results An array of slots passed to the Find method by the
system; the Find method appends a slot, found , to
this array. The hits array contains the page on which
each foulnd item appears, the block in which it
appears, the length (len) of the item, and its char
offset in the block. If a global Þnd is in progress, the
results array may contain slots created by other
applicationsÕ search methods.

scope The value of this argument is always one of the symbols
'local or 'global . The symbol 'local specifies that
Book Reader search in the current book; the symbol
'global specifies that Book Reader search in all books.

statusContext A frame to which Book Reader sends the SetStatus
message. The SetStatus function reports progress to
the user while the search is in progress.

This method returns an array in results that has an element for each book
in which the speciÞed string was found. Each element of this array consists
of a frame with the slots shown in the following example:

{title: "book_title",

items: [{title: "string_found",

isbn: book_isbn,

found: {len: stringLength, item: theContent,

char:starting_char},

{.}}]

}

A P P E N D I X A

The Book Maker Language

A-42 NewtonScript Methods

For more discussion of the Find method, see the ÒAdditional System
ServicesÓ chapter of the Newton Programmer's Guide.

FindContentBySlot A

:FindContentBySlot (aSymbol, aDepth)

Returns an array of content items from the currently open book with a slot
with the name speciÞed by the aSymbol parameter.

aSymbol The name of the slot to Þnd.

aDepth SpeciÞes the depth of the search. If the value of the
aDepth parameter is nil , this method returns all content
items that meet the search criteria; if the value of the
aDepth parameter is true , this method returns only the
Þrst content item that meet the search criteria.

Assist scripts can use the aDepth parameter to supply a book frame for use by
the Intelligent Assistant when the book is not open. For more information
about book frames, see the ÒBook DataÓ section of Chapter 4, ÒNewtonScript
in Books.Ó

FindContentByValue A

:FindContentByValue (aSymbol, aValue, aDepth)

Returns an array of content items from the currently open book with a slot
with the name speciÞed by the aSymbol parameter and with the value
speciÞed by the aValue parameter.

aSymbol The name of the slot to Þnd.

aValue The value to match in slots with the speciÞed name.

aDepth SpeciÞes the depth of the search. If the value of the
aDepth parameter is nil , this method returns all content
items that meet the search criteria; if the value of the
aDepth parameter is true , this method returns only the
Þrst content item that meet the search criteria.

A P P E N D I X A

The Book Maker Language

NewtonScript Methods A-43

Assist scripts can use the aDepth parameter to supply a book frame for use by
the Intelligent Assistant when the book is not open. For more information
about book frames, see the ÒBook DataÓ section of Chapter 4, ÒNewtonScript
in Books.Ó

FindContentsByPage A

:FindContentsByPage(aPage)
This method returns an array of all of the content items on a page.

aPage The page from which this method returns content.

FindPageByContent A

:FindPageByContent (aContent, anOffset, nil)

Returns the page on which the characters of aContent at anOffset can be found.

aContent The content item for which this method searches.

anOffset The number of characters into aContent where the part
of aContent that you are interested in is.

The second parameter, anOffset, is important, since content items are
frequently split over multiple pages. A value of 0 for this parameter returns
the Þrst page on which aContent is laid out. If aContent was ten paragraphs
long, and you wanted to know which page the sixth paragraph was laid out
on, you would need to pass in a value for anOffset equal to the number of
characters in the Þrst Þve paragraphs.

FindPageBySubject A

:FindPageBySubject(subjectNum)

Returns the page number on which the speciÞed subject appears.

subjectNum The number of the subject to locate. Subjects are
numbered consecutively from the beginning of the book
deÞnition Þle. The Þrst subject in the book deÞnition Þle
is numbered 1.

A P P E N D I X A

The Book Maker Language

A-44 NewtonScript Methods

FindPageByValue A

:FindPageByValue (aSymbol, aValue, aDepth)

Returns an array of pages from the currently open book that contain content
items that have a slot with the speciÞed symbol and value.

aSymbol The name of the slot to Þnd.

aValue The value to match in slots having the speciÞed name.

aDepth SpeciÞes the depth of the search. If the value of the
aDepth parameter is nil , this method returns all content
items that meet the search criteria; if the value of the
aDepth parameter is true , this method returns only the
Þrst content item that meet the search criteria

Assist scripts can use the aDepth parameter to supply a book frame for use
by the Intelligent Assistant when the book is not open. For more information
about book frames, see the ÒBook DataÓ section of Chapter 4, ÒNewtonScript
in Books.Ó

A P P E N D I X A

The Book Maker Language

NewtonScript Methods A-45

GetLibraryEntry A

:GetLibraryEntry(isbn)

Returns the speciÞed bookÕs library entry frame. The frame returned by this
method contains the slots described below:

bookPresent
This value is non-0 if the book is currently
on-line.

title Title of the book.

isbn The bookÕs isbn string.

curPage The page the book was (is) on.

prevPage The page it was on before curPage .

inkMarks An array of ink marks arrays, one per
rendering.

marks An array of book marks array, one per
rendering.

data The author data frame.

curRendering

Integer indicating the bookÕs current
rendering. A value of 0 means that the
book was (is) being rendered on a
MessagePad-sized screen.

flags Book level ßags.

packageID The book packageÕs ID.

GetOfflineBooks A

:GetOfflineBooks()
Returns an array of all books remembered by the Newton but not currently
available.

GetOnlineBooks A

:GetOnlineBooks()
Returns an array of all books currently on the Newton.

A P P E N D I X A

The Book Maker Language

A-46 NewtonScript Methods

HiliteBlock A

:HiliteBlock (aContent, anOffset, aLen)

Highlights the item (usually text) contained in the content item aContent at
the offset anOffset with a length of aLen.

aContent The content item containing the items to highlight.

anOffset The number of characters preceding the Þrst character
of the text to highlight. The value of anOffset is
measured from the beginning of the content item, even
if the currently displayed page shows only part of it.

aLen The number of characters to highlight, beginning from
the Þrst character after the anOffset value.

HideStoryCard A

:HideStoryCard ()

Hides the currently displayed story card.

InsertForm A

:InsertForm (aForm)

Adds the speciÞed view to the current page, and returns the view inserted.

aForm The system prototype, view template, layout or user
template to be added to the page.

The speciÞed view is not implicitly made visible by the InsertForm
method; you may need to make it visible yourself. For example:

:InsertForm(aForm)

local theView;

theView := GetView(aForm);

theView:Show();

A P P E N D I X A

The Book Maker Language

NewtonScript Methods A-47

OpenBook A

:OpenBook (isbnStr)

Opens the speciÞed book.

isbnStr The ISBN string of the book to open.

OpenBookTo A

:OpenBookTo (isbnStr, subjectNum)

Opens the speciÞed book to the speciÞed subject.

isbnStr The ISBN string of the book to open.

subjectNum The number of the subject to locate. Subjects are
numbered consecutively from the beginning of the book
deÞnition Þle. The Þrst subject in the book deÞnition Þle
is numbered 1.

OpenBrowser A

:OpenBrowser (browserRefNum)

Displays the speciÞed browser.

browserRefNum A reference to a browser created by the AddBrowser
method.

PageSize A

:PageSize (nil)

Returns the height and width of the currently displayed page. This method
returns the frame:

{height: heightPixels,width: widthPixels}

PageThumbnail A

:PageThumbnail (aPage)

Creates a bitmap view of the speciÞed page at one-eighth size. Returns
the frame:

A P P E N D I X A

The Book Maker Language

A-48 NewtonScript Methods

{bits: <page ÷8>, bounds: {}}

aPage The number of the page to image as a thumbnail view.

PreviousPage A

:PreviousPage ()

Returns the previous page displayed by the current book.

RegisterBookRef A

:RegisterBookRef(isbnStr, {book: bookRef})

This method registers a help book with the system. You need to call this
method if your help book was not downloaded as an independent package.

isbnStr The ISBN string of the help book.

bookRef A reference to the help bookÕs book frame.

See also ÒUnRegisterBookRefÓ on page A-51.

RemoveBrowser A

:RemoveBrowser(browserRefNum)

Removes the speciÞed browser.

browserRefNum A reference to the browser to remove, as returned by the
AddBrowser function.

ScrollPage A

:ScrollPage (aDelta)

Scrolls the speciÞed number of pages from the current page.

aDelta The number of pages to scroll. Setting the value of the
aDelta parameter to zero causes the current page to
be redrawn.

A P P E N D I X A

The Book Maker Language

NewtonScript Methods A-49

ScrollReceiver A

:ScrollReceiver(aView);

Enables books to intercept scroll events generated when the user taps the
built-in arrows for use in their own on-page views. The view needs to have a
viewScrollUpScript and a viewScrollDownScript to handle the
messages that will be sent to it.

aView The view to which scrolling messages are sent. Pass nil
to disable scrolling messages in the book, and give back
control of the built-in arrows to Book Reader.

SetStatusButtons A

:SetStatusButtons({left: [btn1, btn2], right:[btn]})

Adds the speciÞed buttons to the status bar.

left An array of templates to appear to the left of the page
number button. Passing an empty array speciÞes that no
buttons are to be added to that side, and removes any
existing buttons that were created by a previous call to
SetStatusButtons .

right An array of templates to appear to the right of the page
number button. Passing an empty array speciÞes that no
buttons are to be added to that side, and removes any
existing buttons that were created by a previous call to
SetStatusButtons .

ShowStoryCard A

:ShowStoryCard (aSymbol, aValue, aBounds)

Displays the content item that has the slot aSymbol , storing the value
aValue , in a window at the size and location specified by aBounds . The

A P P E N D I X A

The Book Maker Language

A-50 NewtonScript Methods

content item can be any type of content, including stories and pictures. Only
one story card can be displayed at a time.

aSymbol The name of the slot to Þnd.

aValue The value to match in slots with the speciÞed name.

aBounds A viewBounds frame specifying the size of the story
card and the location in which to display it.

TurnToContent A

:TurnToContent (aSymbol, aValue)

Displays the Þrst page containing a content item that has a slot with the
symbol aSymbol, and the value aValue.

aSymbol The name of the slot to Þnd.

aValue The value to match in slots with the speciÞed name.

TurnToPage A

:TurnToPage (aPage)

Displays the speciÞed page.

aPage The number of the page to display.

TurnToSubject A

:TurnToSubject(subjectNum)

Turns to the page on which the speciÞed subject is located.

subjectNum The number of the subject to locate. Subjects are
numbered consecutively from the beginning of the book
deÞnition Þle. The Þrst subject in the book deÞnition Þle
is numbered 1.

A P P E N D I X A

The Book Maker Language

Book Reader Messages A-51

UnRegisterBookRef A

:UnRegisterBookRef(isbnStr)

This method unregisters a help book from the system. If you have called
RegisterBookRef , call UnRegisterBookRef from your applicationÕs
removeScript .

isbnStr The ISBN string of the help book.

See also ÒRegisterBookRefÓ on page A-48.

WhereIsBook A

:WhereIsBook(isbn)

Returns a frame containing the speciÞed bookÕs library entry and book frame.

isbn The bookÕs ISBN string.

The frame returned by this method contains the slots described below:

library The library entry frame for the speciÞed
book. For a complete description of the
library entry frame, see the description of
the GetLibraryEntry method on
page A-45.

bookSoup The book frame for the speciÞed book.
The book frame contains all of the data
and developer-supplied code that
comprises the book.

Book Reader Messages A

This section provides a list of messages the system sends to a digital book.
These can be handled by providing a method named after the message in the
appropriate view in the book. These messages allow the book to take action
in response to certain conditions that arise at run time.

A P P E N D I X A

The Book Maker Language

A-52 Book Reader Messages

The messages that begin with ÒBookÓ are sent to the book. The scripts that
handle these messages must be written at the book level; i.e., before the
deÞnition of any layouts or content items. Messages that do not begin with
ÒBookÓ are sent to content items.

Note that if the message includes parameters the methods must be
implemented using the slot parameter to the .script command, as
described in the description of ÒScriptÓ beginning on page A-19 of this
appendix.

BookInstallScript A

BookInstallScript(bookFrame)

Sent to the book when the book package is installed.

bookFrame A frame containing the book slot. The book slot is the
topmost frame of an entire book.

BookOKClose A

BookOKClose();

Sent to the book when the user taps the bookÕs close box. Your
BookOkClose method must return true to allow the book to close;
otherwise, it must return nil to prevent the book from closing.

BookRemoveScript A

BookRemoveScript(removeFrame)

Sent to the book when the book package is removed.

removeFrame A frame containing only the ISBN slot. The ISBN slot
contains the .isbn value for the book being removed.

BookHideScript A

BookHideScript();

An optional method to execute when the book closes.

A P P E N D I X A

The Book Maker Language

Book Reader Messages A-53

BookPrint A

BookPrint();

An optional method supplied by the book; it returns any data that is useful
at print time. The system stores the data returned by this method in the
bookÕs printData slot.

Because the actual printing of pages in a book may occur after many page
changes or when book is closed, the BookPrint method, allows the you to
store away data at the time the print slip is opened. This data can then be
accessed by your scripts when the page is actually printed. This method is
typically used to restore scroll position or state so that the right thing is
printed.

For example:

.script bookprint

{scrollPos: firstCity, selection: curCity};

.endscript

.# This data is could then be used by, for example, a

.# viewDrawScript, to image the proper information .#

when this page is printed, as shown below:

.script viewDrawScript

local myScrollPos := printData.scrollPos;

local mySelection := printData.selection;

//code to do actual scrolling to be supplied.

.endscript

A P P E N D I X A

The Book Maker Language

A-54 Book Reader Messages

BookSearchScript A

BookSearchScript(searchStr, stringLen, theContent, bookData, bookFrame)

searchStr The string to Þnd

stringLen The length of the searchStr string.

theContent Reference to the content to search.

bookData From book.data .

bookFrame The overall book frame.

This method performs a customized search on the book that receives the
bookSearchScript message. This method should be attached to the book;
that is, the following code should go before all deÞnitions of layouts or
content items:

.script bookSearchScript

func (searchStr, stringLen, theContent, bookData,

bookFrame)

begin

// Perform a search of theContent

end

.endscript

The Book Reader sends a bookSearchScript message for each content
item that is not ßagged NoSearch .

If your BookSearchScript wants the system-supplied Book Reader search
engine to search this content, it should return nil . If the script handled the
search but there was no hit, it should return true . If the script handled the
search and there was a match, this method must return a results frame
containing the slots described below:

len The number of characters found. If the
book provides its own hit-highlighting
function, the len slot can contain any

A P P E N D I X A

The Book Maker Language

Book Reader Messages A-55

value that is useful to the custom
hit-highlighting function.

char The character offset to the beginning of
the string that was found. If the book
provides its own hit-highlighting
function, the len slot can contain any
value that is useful to the custom
hit-highlighting function.

title The text to display in the Find overview.

BookShowScript A

BookShowScript();

Sent to the book when it opens.

FormHiliteScript A

FormHiliteScript(anOffset, aLen)

Performs any application-speciÞc actions necessary to highlight the found
item. This method should be attached to a content item.

anOffset The Þrst character of the found string.

aLen The number of characters to be highlighted, as returned
by the FormSearchScript method or as found in the
.form content itemÕs text slot.

FormSearchScript A

FormSearchScript(searchStr, stringLen)

searchStr The string to be found

stringLen The length of the searchStr string.

Performs a customized search on the .form content item that receives the
formSearchScript message. It should be attached to a content item. This
method must return nil when no match is found. When at least one

A P P E N D I X A

The Book Maker Language

A-56 Book Reader Messages

occurrence of the target string is found, this method must return a results
frame containing the slots described below:

len The number of characters found. If the
book provides its own hit-highlighting
function, the len slot can contain any
value that is useful to the custom
hit-highlighting function.

char The character offset to the beginning of
the string that was found. If the book
provides its own hit-highlighting
function, the len slot can contain any
value that is useful to the custom
hit-highlighting function.

title The text to display in the Find overview.

MungeContentScript A

MungeContentScript (contentRef)

Sent to a content item whenever Book Reader needs to access the data in that
content item; that is, when the content item is imaged, printed, searched, or
bookmarked. The method that handles this message must return a content
item. This method can be used, for example, to decompress data on the ßy, as
in the following code:

.script slot MungeContentScript

func (aContent)

begin

 local newContent := Clone(aContent);

 newContent.data := :DecompressData(newContent.data);

 newContent;

end

ThumbNailScript A

Sent to a content item at bookmarking time. It should return a view template
that provides a customized bookmark. For example:

A P P E N D I X A

The Book Maker Language

NewtonScript Global Functions A-57

.script thumbnailScript

local ocean:= {_proto: protostatictext,

 text: "A big aqua one",

 viewFont: ROM_fontsystem14bold};

return ocean;

.endscript

NewtonScript Global Functions A

A number of NewtonScript global functions exist to provide an application
with an interface to Book Reader. These functions are intended to be called
by an application, and not a digital book.

BookAvailable A

BookAvailable ({book: bookFrame}, 0)

Makes a digital book available. It returns nil if there was a problem
installing the book, and true if installation was successful.

bookFrame The outermost frame of a book. This frame contains all
the information that deÞnes a digital book. It is created
by Book Maker in the book deÞnition Þle.

BookRemoved A

BookRemoved ({isbn: isbnStr})

Removes the speciÞed book. This function returns 0 if there were no
problems removing the book.

isbnStr The bookÕs ISBN string.

A P P E N D I X A

The Book Maker Language

A-58 NewtonScript Global Functions

OpenHelpBook A

OpenHelpBook (isbnStr)

Opens the speciÞed help book.

isbnStr The ISBN string of the book to open.

OpenHelpBookTo A

OpenHelpBookTo (isbnStr, topic)

Opens the speciÞed help book to a certain topic. This has the same effect as
opening the help book, and having that topic tapped in the browser.

isbnStr The ISBN string of the book to open.

topic A string specifying which topic to display in the help
browser. It must match one of the .subject lines in the
help book.

OpenHelpTo A

OpenHelpTo (topic)

Opens the system-supplied help browser to the speciÞed topic.

topic In the 2.0 version of the Newton system software, this
can be any of the following strings: "write" , "draw" ,
"notepad" , "names" , "dates" , "todo" , "extras" ,
"iobox" , "prefs" , "exchange" , "route" , "find" ,
or "assist" .

ShowManual A

ShowManual ()

Opens the system-supplied help browser.

A P P E N D I X A

The Book Maker Language

Summary of Commands, Functions, and Methods A-59

Summary of Commands, Functions, and Methods 5

This section contains a list of all the Book Maker commands, NewtonScript
functions, and methods described in this chapter.

Book Maker Commands A
Some of the commands listed below are used only in conjunction with
NewtonScript programming; these are ßagged as NSrequired.

A P P E N D I X A

The Book Maker Language

A-60 Summary of Commands, Functions, and Methods

Document Commands A

.assist NSrequired

.author

.blurb

.copyright

.date

.endassist NSrequired

.endpostamble NSrequired

.endpreamble NSrequired

.expires

.key

.isbn

.postamble NSrequired

.preamble NSrequired

.publisher

.shortTitle

.title

Content Commands A

.attribute NSrequired

.chapter

.endform NSrequired

.endscript NSrequired

.endkiosk

.form NSrequired

.indent

.kiosk

.mark NSrequired

.picture

.script NSrequired

.space

.story

.subject

.usemark NSrequired

A P P E N D I X A

The Book Maker Language

Summary of Commands, Functions, and Methods A-61

Browser Commands A

.browser

Page Layout Commands A

.layout

.header

.pictheader

.running

Miscellaneous Commands A

.chain

.# (comment symbol)

.index NSrequired

.option NSrequired

Flags A

Document Flags A

NoReLayout

Layout Flags A

Kiosk
Main
NoTitle
Sidebar

Content Flags A

Main
Sidebar
ToEdge
Centered
NeverBreak

A P P E N D I X A

The Book Maker Language

A-62 Summary of Commands, Functions, and Methods

StartsPage
PageMiddle
PageBottom
AlignTop
AlignBottom
AlignCentered
BrowserOnly
BroswserAutoClose
Overlay
KeepWith
NoExtend
NoPage
NoScroller
NoSearch

Edge Flags A

TopEdge
LeftEdge
BottomEdge
RightEdge
Edges
Round
Reverse
EdgeWidth

NewtonScript Methods A
:AddBookmark (pageNumber)
:AddBookRouting (routingArray)
:AddBrowser(browser)
:AuthorData ()
:BookData ()
:Bookmarks ()
:BookTitle ()
scroller:ChangeScrolledOrigin(dX, dY)

A P P E N D I X A

The Book Maker Language

Summary of Commands, Functions, and Methods A-63

:CloseBrowser(browserRefNum)
:CountPages ()
:CurrentKiosk ()
:CurrentPage ()
:Find (string, results, scope, statusContext)
:FindContentBySlot (aSymbol, aDepth)
:FindContentByValue (aSymbol, aValue, aDepth)
:FindContentsByPage(aPage)
:FindPageByContent (aContent, anOffset, nil)
:FindPageBySubject(subjectNum)
:FindPageByValue (aSymbol, aValue, aDepth)
:GetLibraryEntry(isbn)
:GetOfflineBooks()
:GetOnlineBooks()
:HiliteBlock (aContent, anOffset, aLen)
:HideStoryCard ()
:InsertForm (aForm)
:OpenBook (isbnStr)
:OpenBookTo (isbnStr, subjectNum)
:OpenBrowser (browserRefNum)
:PageSize (nil)
:PageThumbnail (aPage)
:PreviousPage ()
:RegisterBookRef(isbnStr, {book: bookRef})
:RemoveBrowser(browserRefNum)
:ScrollPage (aDelta)
:ScrollReceiver(aView);
:SetStatusButtons ({left: [btn1, btn2], right:[btn]})
:ShowStoryCard (aSymbol, aValue, aBounds)
:TurnToContent (aSymbol, aValue)
:TurnToPage (aPage)
:TurnToSubject(subjectNum)
:UnRegisterBookRef(isbnStr)
:WhereIsBook(isbn)

A P P E N D I X A

The Book Maker Language

A-64 Summary of Commands, Functions, and Methods

Book Reader Messages A

Book Messages A

BookInstallScript
BookOKClose
BookRemoveScript
BookHideScript
BookPrint
BookSearchScript
BookShowScript

Content Item Messages A

FormHiliteScript
FormSearchScript
MungeContentScript
ThumbNailScript

NewtonScript Global Functions A
BookAvailable ({book: bookFrame}, 0)
BookRemoved ({isbn: isbnStr})
OpenHelpBook (isbnStr)
OpenHelpBookTo (isbnStr, topic)
OpenHelpTo (topic)
ShowManual ()

Font-Related Problems B-1

A P P E N D I X B

Troubleshooting B

This Appendix presents solutions to common problems encountered when
using Book Maker and Book Reader.

Font-Related Problems B

This section lists a number of font-related problems and workarounds for
them.

Truncated Paragraphs or Improper Layout B

You may experience text-layout problems if you have compiled your book
source Þle on a Macintosh computer that does not have the appropriate
bitmapped fonts installed. Book source Þles compiled with TrueType
versions of the Newton system fonts (New York, Geneva, or Espy), rather
than the bitmapped versions of these fonts in the appropriate sizes, compile
successfully but may not display correctly on the Newton device.

Because Newton currently does not use TrueType fonts, the bitmapped
system font is scaled when Newton displays the book. As a result, you may
experience problems with incorrect text layout because the scaled bitmap
font image measures slightly differently than the TrueType image of the same
font.

To work around this problem, you must reprocess the book source Þle
on a system with the appropriate bitmapped versions of the Newton system
fonts.

Figure B-0
Table B-0

A P P E N D I X B

Troubleshooting

B-2 Font-Related Problems

Text Layout Problems B

Text that does not display correctly, or paragraphs that truncate when they
are scrolled, result from using unsupported fonts or font sizes for content
items in your book source Þle. Typically, the remainder of a paragraph that is
truncated with an ellipsis (É) at the bottom of the Newton screen does not
appear at the top of the next page.

To solve this problem, use only the supported fonts ÑNew York, Geneva, or
Espy in sizes 9, 10, 12, 14, and 18Ñfor content items in the book source Þle.
After reprocessing the book source Þle in Book Maker and NTK, the text
should display correctly.

Improper Espy Sans Bold Style B

You must use the Espy Sans Bold font in the book source Þle to obtain a
boldface Espy Sans typeface in the digital book created from it. Applying the
bold style to the ordinary Espy Sans font is not equivalent to using the Espy
Sans Bold font and may cause page layout problems in the book package.

Espy Font Substituted B

Newton substitutes the system font (Espy) when displaying book text
written in an unsupported font. This may result in the improper truncation
of paragraphs that straddle page boundaries.

To work around this problem, you must change all content items in the book
source Þle to supported fonts, and reprocess the book source Þle on a system
that has the appropriate bitmapped versions of the Newton system fonts.

Printing on a LaserWriter B

There are two font-substitution problems related to LaserWriters:

LaserWriters do not have the Geneva and New York fonts, so they use the
Times and Helvetica fonts instead. The LaserWriter and the Newton device
use different-sized versions of these fonts. Since the LaserWriterÕs version of
these fonts is slightly bigger, some text may be truncated at the bottom of the
page.

A P P E N D I X B

Troubleshooting

Book Maker Problems B-3

Substituting the Helvetica font for the Geneva, and Times for New York in
the book deÞnition Þle, and processing again through Book Maker and NTK
should solve this problem.

Also, LaserWriters do not have the Espy Sans font. They substitute this font
with Helvetica, which can sometimes cause unexpected results when you
print a page from a book that uses this font. If you use the Espy Sans font in
your book, you should be aware of this limitation.

Book Maker Problems B

This section lists problems that are commonly encountered in writing book
deÞnition Þles and processing them with Book Maker.

Lost Styles B

Placing dot commands within story text may cause Book Maker to lose style
information; for example, story text that is interrupted by a command may
no longer be bolded, italicized, and so on. Placing the commands associated
with a story either at the beginning or end of its text ensures consistent
results.

Incorrect Error Messages B

If Book Maker notiÞes you of errors that donÕt appear to exist in your source
Þle, you may be experiencing a known problem with the format used by the
Fast Save option available on some word processors (Microsoft Word is
known to cause this problem).

To work around the problem, turn off the Fast Save option and use the Save
AsÉ command to save your book source Þle. After you have re-saved the
source using the Save AsÉ command, you can use the Save command to
save future changes to the Þle as long as the Fast Save option remains
disabled.

A P P E N D I X B

Troubleshooting

B-4 Book Maker Problems

XTND and Large Files B

The Claris XTND translators used by Book Maker to convert various word
processor Þles may return an error when trying to translate Þles larger than 1
MB.

To work around this problem, break the large Þle into two or more smaller
Þles and use the .chain command to compile the Þles as a single Book
Maker book. For more information, see the description of the .chain
command later in this chapter, in the ÒMiscellaneous CommandsÓ section of
Appendix A, ÒThe Book Maker Language.Ó

No Scripts in Page .headers, Use .running story Instead B

You cannot use scripts in .header content. Use a .running content item
instead. To turn off the default header, use the NoTitle ßag in the .layout
line. For example:

.layout Default 12 NoHeader

.running story Centered

Tap here to do something cool.

.script viewClickScript

... // do something cool

.endScript

Controlling How Find Results Are Displayed B

When the user preforms a search with the Find button and more than one
item is found, the Þnd overview displays some text to show the item Òin
context.Ó Book Reader generates the Òin contextÓ text from your source
document. It chooses a few words before and after the word that was found
as the context, (spaces, tabs, and carriage returns are each treated as a word).
If there is a borderline between two content areas (e.g., separate .story
items), text from the adjoining area is not displayed in the Þnd overview.

To avoid displaying nearby text as part of the overview, you can add
additional separation in the form of extra spaces, tabs, or carriage returns, or
you could make each piece of text a single .story content item.

A P P E N D I X B

Troubleshooting

NTK Problems B-5

NTK Problems B

This section lists common problems encountered in the process of building
and downloading book packages.

Can’t Delete Old Package B

If you have the Delete Old Package On Download option checked in the
SettingsÉ dialog box for your NTK project, NTK replaces the version of the
package on the Newton with the version being downloaded. This allows you
to replace the book or application already on the Newton device with new
versions as you develop them.

NTK uses the package signature to Þnd the package to replace; if you have
changed the package signature for your book package but not changed its
other identiÞers, such as the ISBN string or application symbol, you may be
notiÞed by NTK that it couldnÕt download the package because of a program
error. This commonly happens when new users are experimenting with the
example Þles and wind up changing the package signature after
downloading one version of the package to the Newton device.

You can take either of the following steps to remedy the situation:

■ Remove the old package by selecting its icon, and choosing Delete from
the Routing menu.

■ Change the offending identiÞer to cause a package that is actually present
on the Newton device to be removed.

Title Not Updated on Loading Updated Book B

The Book Reader application on Newton caches certain parts of the book,
such as the title and the current page. To get the engine to notice the title has
changed, you have to change the .isbn of the book before you load the
updated one.

A P P E N D I X B

Troubleshooting

B-6 NTK Problems

 If you are likely to update your book, you should use a dash in the .isbn
command to indicate version or date. For example:

.title My Info Book of 7/94

.isbn IB-7-94:PIEDTS

Removed Last Page Displayed or Bookmarked Page B

If in the course of development of a book, the last page displayed or a
bookmarked page is removed, you will get an error number -48205. This is
because Book Reader keeps a reference to the last page displayed and to all
the bookmarked pages.

To work around this problem change the ISBN number of the book, and
reprocess through Book Maker and NTK. This problem only occurs during
the development process, an end user should never have this problem.

Curly Quotes Don’t Compile B

NewtonScript is restricted to 7-bit ASCII. If you add characters that are
outside this range you will get an Òillegal characterÓ error message in NTK.
For example, the problem can be caused by the Òsmart quotesÓ feature in the
word processor youÕre using to write your book source Þle. CurlyÑor
smartÑquotes are not part of the ASCII character set. If you use only
straight quotation marks in NewtonScript statements, those irritating
messages go away. For example:

.script

Print(“Whoops”) // won't compile

Print("Whoops") // will compile

.endscript

Global Functions Warnings B

A warning (not error!) about global functions is produced in the Inspector if
NTK cannot Þnd a function in the platform Þle. Book Maker creates function

A P P E N D I X B

Troubleshooting

NTK Problems B-7

calls that might not be in the platform Þle you are using. This does not affect
the book being built in any way.

You may want to uncheck the Check global function calls option in the
Project Settings... dialog box, accessed through the Project menu in NTK.

A P P E N D I X B

Troubleshooting

B-8 NTK Problems

C-1

A P P E N D I X C

Books on Online Help C

This appendix lists books and journal articles that discuss the creation of
online help.

Aaronson, A., and J. M. Carroll. ÒIntelligent Help in a One-Shot Dialog: A
Protocol Study.Ó In CHI + GIÕ87 Conference Proceedings: Human Factors in
Computing Systems and Graphics Interface, edited by J. M. Carroll and P. P.
Tanner, 163-168. New York: ACM, 1987.

Brockmann, R. John. ÒThe Documentation Problem.Ó Part I of Writing Better
Computer User Documentation: From Paper to Hypertext, Version 2.0. New York:
Wiley, 1990.

Cohill, A., and R. Williges. ÒRetrieval of HELP Information for Novice Users
of Interactive Computer Systems.Ó Human Factors 27, no. 3 (1985): 335-343.

Conklin, J. ÒHypertext: An Introduction and Survey.Ó IEEE Computer
(September 1987): 17-41.

Duffy, T., B. Mehlenbacher, and J. Palmer. ÒThe Evaluation of Online Help
Systems: A Conceptual Model.Ó In The Society of Text: Hypertext, Hypermedia,
and the Social Construction of Reality, edited by E. Barrett, 362-387. Cambridge,
MA: MIT Press, 1989.

Horton, William K. Designing and Writing Online Documentation: Help Files to
Hypertext. New York: Wiley, 1990.

Kearsley, G. Online Help Systems: Design and Implementation. Norwood, NJ:
Ablex, 1988.

Queipo, L. ÒUser Expectations of Online Information.Ó IEEE Transactions on
Professional Communications 29, no. 4 (1986): 11-15.

A P P E N D I X C

Books on Online Help

C-2

Rubens, P., and R. Krull. ÒApplication of Research on Document Design to
Online Displays.Ó Technical Communications 32, no. 4 (1985): 29-34.

Schriver, K. A., J. R. Hayes, and M. D. Langston. ÒThe Design of Information
for Computer Users: A Review of the Literature on Hardcopy and Online
Documentation.Ó In Designing Computer Documentation: A Review of the
Relevant Literature, edited by K. A. Schriver. Communications Design Center
Technical Report No. 31, Pittsburgh, PA: Carnegie Mellon University, 1986.

Walker, J. ÒIssues and Strategies for Online Documentation.Ó IEEE
Transactions on Professional Communication 30 (1987): 235-248.

A P P E N D I X C

Books on Online Help

C-3

A P P E N D I X C

Books on Online Help

C-4

Book Maker Enhancements D-1
Confidential. Preliminary Draft. © 1994 Apple Computer, Inc. 8/8/97

A P P E N D I X D

Compatibility D

This appendix describes compatibility issues involved in writing digital
books for 1.x Newton machines. Some of the features described in this book
are only available in the version of Newton Book Reader (NBR) installed in
2.0 machines. Appropriate changes are noted in this appendix for digital
books intended for display on 1.x machines.

Enhancements to the 1.1 version of Book Maker are also discussed.

This appendix is divided into three parts:

■ Book Maker Enhancements describes enhancements to the 1.1. version of
Newton Book Maker.

■ Bugs Fixed in Book Reader describes problems in NBR 1.x which have
been Þxed in NBR 2.0. Most of these problems have an appropriate work
around listed.

■ Book Reader Enhancements describes additions to NBR in the 2.0 version.

Book Maker Enhancements D

Book Maker 1.1 has introduced a parameter to the .index command to give
you better control of the generation of subindices.

Controlling Generation of Subindices D
The .index command can now accept an @indexName parameter. Book
Maker 1.0 accepted only ! indexName parameters. See the description of the
.index command on page A-30 for more information.

Figure C-0
Table C-0
Figure D-0
Table D-0

A P P E N D I X D

Compatibility

D-2 Bugs Fixed in Book Reader

Confidential. Preliminary Draft. © 1994 Apple Computer, Inc. 8/8/97

Bugs Fixed in Book Reader D

The NBR 1.x bugs described in this section have been Þxed in the 2.0 version.
Appropriate workarounds are described with the bugs.

Bookmarking and Printing Context D
In NBR 1.x, when a bookmark is being created or a page is being printed, any
scripts on the page fail when they try to run any book functions (BookData ,
AuthorData , etc.). The following functions are not available at print/
bookmark time in NBR 1.x:

AddToContentArea

AuthorData

BookData

CountPages

CurrentBook

CurrentKiosk

CurrentPage

FindContentBySlot

FindContentByValue

HiliteBlock

InsertForm

WhereIsBook

In NBR 1.x if one of these functions is called in a .script that might be
called at print/bookmark time, use a conditional message-send (:?), or
provide the appropriate exception handler.

Length of ISBN Strings D
On the MessagePad 100 ISBN strings can only be up to 15 characters long.

A P P E N D I X D

Compatibility

Bugs Fixed in Book Reader D-3
Confidential. Preliminary Draft. © 1994 Apple Computer, Inc. 8/8/97

Information in “About” Slip Not Displayed D
NBR 1.x does not display the information provided by the .author , .date ,
.publisher , and .copyright commands.

Page Scripts Override Book Scripts D
Book-level scripts override page-level (layout) scripts in NBR 1.x. No
page-level script is called if the book has one by the same name, or both the
page and the book provide the default buttonClickScript .

Edge Flags With Multi-Page Contents D
In NBR 1.x, the topEdge and bottomEdge ßags cause a line to be drawn on
every page of a content item that spans multiple pages. Do not use these
ßags with content items that span multiple pages.

Memory Management for Story Cards D
When the HideStoryCard function is called or the user switches between
multiple story cards, NBR 1.x hides the story cards rather than closing them.
To work around this memory leak add the following code before any calls to
ShowStoryCard :

if (storyCard <> NIL) then

begin

storyCard:Close();

storyCard := NIL;

end

Story Cards Always Left-Justified D
Story Cards in NBR 1.x always left-justify text.

A P P E N D I X D

Compatibility

D-4 Bugs Fixed in Book Reader

Confidential. Preliminary Draft. © 1994 Apple Computer, Inc. 8/8/97

.form Content Items Do Not Respect viewJustify D
A content item added by the .form command in NBR 1.x does not respect
the value of its viewJustify slot.

InsertForm Function Does Not Return the View D
The NBR 1.x version of the InsertForm function does not return the view
inserted. Call the GetView function to obtain a reference to the view that
was inserted.

Searching in .Form Content Items D

In version 1.x, the system-supplied Find service did not search in .form
content items. NBR 2.0 provides two ways to search in .form items: adding
a text slot, and the FormSearchScript method. Neither of these
mechanism is available in NBR 1.x.

A workaround is to have a .story item with the text to be searched, but
covered with your .form item. Add the .story item to the page with the
name of the location, so that a search can Þnd it, but have the story live
beneath the current frame, so the story is hidden from a userÕs view.

HereÕs how the NewtonScript would look:

.story

Joe's Place

.attribute myForm: layout_myForm

.script viewSetupDoneScript

local theform, theview;

theForm := {_proto: item.myForm, viewBounds:

viewBounds};

theView := GetView(:InsertForm(theform));

theView:show();

SetValue(self, 'text, "");

.endscript

A P P E N D I X D

Compatibility

Bugs Fixed in Book Reader D-5
Confidential. Preliminary Draft. © 1994 Apple Computer, Inc. 8/8/97

Note that you might have to tweak the right bounds of the frame since the
story paragraph view extends all the way across its column. Also, the text
that is to be found will not be highlighted (but you will get to the right page).

Help Books D

In versions 1.x of the Newton system software, it is impossible to build
stand-alone help books. Help books must be compiled as part of an
applications package. Furthermore, this system does not supply the
protoInfoButton (or newtInfoButton) to summon help from, so it is up
to you to create a way to display help in your application.

You should supply a non-intrusive interface such as a ÒShow My HelpÓ
button. This section describes the minimum code necessary to have your
help book displayed when the user taps the ÒShow My HelpÓ button.

1. Comment out (or cut out) the following two lines from your book
deÞnition Þle, which are created by Book Maker to support stand-alone
help books:

output.book := book;

output.help := TRUE;

These two lines are close to the top of your book deÞnition Þle, after the
deÞnition of the book frame.

2. Create a compile-time constant by placing the following line in the bookÕs
postamble:

DefConst('kMyHelpBook, book)

3. Create an evaluate slot in you applicationÕs base view to hold the help
book frame, call it theBookFrame .

4. In your applicationÕs base view SetupDoneScript , make the following
assignment (this is in place of a call to RegisterBookRef , which is
unavailable in the 1.x versions of the Newton system):

A P P E N D I X D

Compatibility

D-6 Enhancements to Newton Book Reader

Confidential. Preliminary Draft. © 1994 Apple Computer, Inc. 8/8/97

theBookFrame := BuildContext({_proto:

GetRoot().TinyTim._proto, bookRef: kMyHelpBook})

5. In your ÒShow My HelpÓ buttonÕs buttonClickScript , execute the
following code:

GetRoot().TinyTim:Close(); // in case system help is open

theBookFrame:OpenManual(kMyHelpBook);

6. To close the help book, execute:

if theBookFrame then

begin

theBookFrame:Close(); //so card can be removed

theBookFrame := nil //so help book can be GC'd

end

This last step is extremely important; if this is not executed, the user will not
be able to use the system help after your application has opened once.

Enhancements to Newton Book Reader D

NRB 2.0 provides a number of features not present in NBR 1.x. This section
lists these additions. Do not include the features mentioned in this section if
your book might run on a 1.x Newton device.

Unavailable Methods D
The following methods are new to NBR 2.0. If your book calls any of these
functions, and the book is being run NBR 1.x, an exception will be thrown by
the operating system. If the book might be run on NBR 1.x, either do not call
these functions, or else provide appropriate exception handlers.

A P P E N D I X D

Compatibility

Enhancements to Newton Book Reader D-7
Confidential. Preliminary Draft. © 1994 Apple Computer, Inc. 8/8/97

AddBookRouting
BookSearchScript
ChangeScrolledOrigin
CloseBrowser
FindContentsByPage
FindPageBySubject
GetLibraryEntry
GetOnlineBooks
GetOfflineBooks
OpenBook
OpenBookTo
PageSize
RegisterBookRef
RemoveBrowser
ScrollReceiver
SetStatusButtons
TurnToSubject
UnRegisterBookRef

Unsent Book Reader Messages D

All of the messages sent by Book Reader listed in the section ÒBook Reader
MessagesÓ beginning on page A-51 are sent only by NBR 2.0. Any methods
you have written to respond to these messages will not be called.

Unavailable Flag D

The browserAutoClose ßag is unavailable in NBR 1.x; you can mimic this
behavior by adding an outlineClickScript method to the browser.

A P P E N D I X D

Compatibility

D-8 Enhancements to Newton Book Reader

Confidential. Preliminary Draft. © 1994 Apple Computer, Inc. 8/8/97

GL-1

Glossary 6

book deÞnition Þle
An output Þle produced by Book Maker. It is used as
input to Newton Toolkit (NTK) to build a book package
or create Newton application help.

Book Maker An application that processes a book source Þle to
produce a book deÞnition Þle.

Book Reader A system service that displays interactive digital books
on the Newton screen.

book script A script created with the .script command before the
deÞnition of any content items in the book source Þle.
Because such a script is available throughout the entire
book package, it is called a book script.

book source Þle A word processor Þle containing content items tagged
with Book Maker commands.

comment A line of text in the book source Þle that is preceded by
the comment symbol (.#), which is a dot and a pound
sign. A comment appears in the source Þle but does not
appear in the compiled book.

content command A Book Maker command that deÞnes a content item,
such as text or graphics, to be displayed on the
Newton screen.

G L O S S A R Y

GL-2

content ßag A ßag that modiÞes an individual content item; most
ßags in the Book Maker language are content ßags.

ßag A keyword that is added to a Book Maker command to
enable a feature.

document command
A Book Maker command that affects the entire book
source Þle.

document ßag A ßag that affects an entire book source Þle, such as the
noReLayout flag.

global A variable or function that is accesible throughout
the book.

help book The Þle that Book Maker produces when it processes a
book source Þle with the Help Size option checked.

kiosk A navigational page created by the .kiosk command.
Tapping an item on the kiosk page, such as a picture,
takes the user directly to the subject matter it represents.

layout A Book Maker command that speciÞes the placement of
text and graphics on the page.

layout command A Book Maker command that deÞnes a layout.

layout ßag A ßag used to modify a layout command; the ßag
affects any page using that layout.

page script A script attached to a layout. Because the script is
available to any page using that layout, it is referred to
as a page script.

point A typographerÕs unit of measure; there are 72 points in
an inch.

project Þle An NTK Þle that contains a list of Þles to be included in
a build and the build speciÞcations.



Symbols
.# (comment symbol) command A-30

A
About slip, adding information for 3-25
AddBookmark method A-36
AddBookRouting methods A-37
AddBrowser method A-37
adding

comments to books 2-20
graphics to books 2-18
Intelligent Assistant support to books 4-26
picture headers to layouts 3-27
short titles to books 2-17
slots to books 4-8, 4-15
slots to content items 4-9
slots to views 4-10

AlignBottom flag A-34
AlignCenter flag A-34
AlignTop flag A-34
alphaIndex array 4-21
AppleScript support to Book Maker 2-14
application help 1-3, 5-1
applying layouts 3-3, 3-5
.assist command 4-26, A-4
attaching scripts to content items 4-2
.attribute command 4-9, A-12
.author command 3-25, A-5
author data

using 4-13
AuthorData method 4-14, A-38



B
.blurb command A-5
BookAvailable function A-57
book data 4-11
bookdata

getting 4-12
setting 4-12

BookData method 4-12, A-39
BookHideScript message A-52
book-level slots 4-15
Book Maker

AppleScript support of 2-14
command language A-1
command summary A-59

browser commands A-61
content commands A-60
document commands A-60
miscellaneous commands A-61
page layout commands A-61

ßag summary
content ßags A-61
document ßags A-61
edge ßags A-62
layout ßags A-61

help size option 5-1
installing 2-1
NewtonScript methods summary A-62
troubleshooting B-3
using 3-1

Book Maker commands 2-8
dot commands 2-8

bookmarking slot 4-16
Bookmarks method A-39
BookOKClose message A-52
BookPrint message A-53
Book Reader 1-1, 1-3



building package for 2-15
messages sent by A-51

Book Reader messages
BookHideScript A-52
BookOKClose A-52
BookPrint A-53
BookRemoveScript A-52
BookSearchScript A-54
BookShowScript A-55
FormHiliteScript A-55
FormSearchScript A-55
MungeContentScript A-56
summary of A-64

book messages A-64
content item messages A-64

ThumbNailScript A-56
bookRef slot 4-16
BookRemoved function A-57
BookRemoveScript message A-52
book scripts 4-4
BookSearchScript message 4-8, A-54
BookShowScript message A-55
book source Þle

creating 2-6
processing in Book Maker 2-11

BookTitle method A-39
BottomEdge flag A-35
BrowserAutoClose flag A-34
.browser command A-25
browser commands A-25
BrowserOnly flag 3-21, A-34
browser pane

creating 3-19
browsers

creating dynamic 4-25
browser slot 4-16



building a Book Reader package 2-15
buttonClickScript message 4-2

C
Centered flag A-34
.chain command A-29
ChangeScrolledOrigin method A-39
.chapter command 3-19, A-12
command

.# (comment) A-30

.assist 4-26, A-4

.attribute 4-9, A-12

.author 3-25, A-5

.blurb A-5

.browser A-25

.chain A-29

.chapter 3-19, A-12

.copyright 3-25, A-6

.date 3-25, A-6

.endassist 4-26, A-7

.endform 4-7, A-13

.endkiosk 3-25, A-13

.endpostamble A-7

.endpreamble A-7

.endscript 4-1, A-13

.expires 3-25, A-7

.form 4-6, A-13

.header A-28

.indent 3-26, A-16

.index A-30

.isbn 2-9, A-8

.key A-8

.kiosk 3-23, A-16

.layout 3-1, A-26



.mark 4-18, A-17

.option A-31

.pictHeader 3-27, A-28

.picture 2-18, A-18

.postamble A-9

.preamble 4-5, A-9

.publisher 3-25, A-10

.running type A-28

.script 4-1, 4-4, A-19

.shortTitle 2-17, A-11

.space 3-26, A-21

.story A-21

.subject 3-19, A-23

.title 2-8, A-11

.usemark 4-18, A-24
commands

Book Maker 2-8
browser A-25
content A-11
document A-4
miscellaneous A-29
page layout A-26
required 2-8
syntax of Book Maker A-3
types of A-1

comment command A-30
comments

adding to books 2-20
comment symbol 2-21
contentArea slot 4-16
contentArea view 4-16
content commands A-11
content ßags 3-6, A-34

AlignBottom A-34
AlignCenter A-34
AlignTop A-34



BrowserAutoClose A-34
BrowserOnly A-34
Centered A-34
KeepWith A-35
Main A-34
NeverBreak A-34
NoExtend A-35
NoPage A-35
NoScroller A-35
NoSearch A-35
Overlay A-35
PageBottom A-34
PageMiddle A-34
Sidebar A-34
StartsPage A-34
ToEdge A-34

content items
marking 4-18
types of 4-18

content slot
getting data from 4-9

copy protection 4-17
.copyright command 3-25, A-6
CountPages method A-40
creating a book source Þle 2-6
creating a browser pane 3-19
creating a kiosk 3-23
creating digital books 2-6
creating dynamic browsers 4-25
cuPage slot 4-16
curly quotes B-6
curRendering slot 4-16
CurrentKiosk method A-40
CurrentPage method A-40



D
data

getting from a content slot 4-9
data slot 4-12, 4-16
.date command 3-25, A-6
deÞning layouts 3-2
deleting old packages B-5
dereferencing slots in a marked content item 4-20
destPage slot 4-16
digital books

creating 2-6
NewtonScript in 4-1

display
of Find results B-4

document commands A-4
document ßags 3-6, A-33

NoReLayout A-33
dot commands 2-8
dynamic browsers

creating 4-25

E
Edge Flags 3-7
edge ßags A-35

BottomEdge A-35
Edges A-36
EdgeWidth A-36
LeftEdge A-35
Reverse A-36
RightEdge A-35
Round A-36
TopEdge A-35

Edges flag 3-6, A-36
EdgeWidth flag A-36



edgeWidth slot 4-16
.endassist command 4-26, A-7
.endform command 4-7, A-13
.endkiosk command 3-25, A-13
.endpostamble command A-7
.endpreamble command A-7
.endscript command 4-1, A-13
error messages

incorrect B-3
Espy fonts B-2
espy font substituted B-2
.expires command 3-25, A-7

F
FindContentBySlot method A-42
FindContentByValue method A-42
FindContentsByPage method A-43
Find method A-41
FindPageByContent method A-43
FindPageBySubject method A-43
FindPageByValue method A-44
Find results displayed B-4
firstPage option 4-23, A-31
ßag GL-2
ßags 3-6, A-32

AlignBottom A-34
AlignCenter A-34
AlignTop A-34
BottomEdge A-35
BrowserAutoClose A-34
BrowserOnly A-34
BrowserOnly flag 3-21
Centered A-34
Edges 3-6, A-36



EdgeWidth A-36
KeepWith A-35
Kiosk A-33
layout 3-6
LeftEdge A-35
Main 3-8, A-33, A-34
NeverBreak A-34
NoExtend A-35
NoPage A-35
NoReLayout A-33
NoScroller A-35
NoSearch A-35
NoTitle A-33
Overlay A-35
PageBottom A-34
PageMiddle A-34
Reverse A-36
RightEdge A-35
Round A-36
Sidebar 3-8, A-33, A-34
StartsPage A-34
summary A-61
ToEdge A-34
TopEdge A-35
type of

content 3-6, A-34
document 3-6, A-33
edge A-35
layout A-33

using 3-6, 3-8
flags slot 4-16
ßags ToEdge 3-12
font related problems B-1
fonts

choosing 2-7
True Type 2-5



formatting recommendations 3-18
.form command 4-6, A-13

height parameter to 4-6
width parameter to 4-6

FormHiliteScript message A-55
.form items

searching 4-7
FormSearchScript message 4-8, A-55
functions

global A-57

G
Geneva font B-2
GetLibraryEntry method A-45
GetOfflineBooks method A-45
GetOnlineBooks method A-45
getting data from a content slot 4-9
getting started with Book Maker 2-7
global GL-2
global data in books 4-11
global functions A-57

BookAvailable A-57
BookRemoved A-57
NTK warning B-6
OpenHelpBook 5-3, A-58
OpenHelpBookTo 5-3, A-58
OpenHelpTo A-58
RegisterBookRef 5-4
ShowManual A-58
UnRegisterBookRef 5-4

glossary GL-1
graphics

adding to books 2-18



H
.header command A-28
headers

scripts in B-4
help

adding to your application 5-3
in Newton applications 1-3
in same package as an application 5-4

help books 5-1
pictures 5-4
stand-alone 5-3
writing 5-2

books on C-1
help size option in Book Maker 5-1
Helvetica font B-2
HideStoryCard method A-46
HiliteBlock method A-46

I
improper Espy B-2
improper layout B-1
incorrect error messages B-3
.indent command 3-26, A-16
.index command A-30
indexedPage option A-31
indexing options A-31
InsertForm method A-46
installing Book Maker 2-1
Intelligent Assistant 4-26
.isbn command 2-9, A-8
item slot 4-10, A-12



K
KeepWith flag A-35
.key command A-8
kiosk GL-2

creating 3-23
.kiosk command 3-23, A-16
kioskDest slot 4-16
Kiosk flag A-33

L
LaserWriter problems B-2
.layout command 3-1, A-26
layout ßags 3-6, A-33

Kiosk A-33
Main flag A-33
NoTitle A-33
Sidebar A-33

layouts
applying 3-3
applying by name 3-5
deÞning 3-2
using 3-1

layout slot 4-16
LeftEdge flag A-35
look slot 4-16
lost styles B-3

M
Main flag 3-8, A-33, A-34
.mark command 4-18, A-17
marking content items 4-18
methods



AddBookmark A-36
AddBookRouting A-37
AddBrowser A-37
AuthorData 4-14, A-38
BookData A-39
Bookmarks A-39
BookTitle A-39
ChangeScrolledOrigin A-39
CountPages A-40
CurrentKiosk A-40
CurrentPage A-40
Find A-41
FindContentBySlot A-42
FindContentByValue A-42
FindContentsByPage A-43
FindPageByContent A-43
FindPageBySubject A-43
FindPageByValue A-44
GetLibraryEntry A-45
GetOfflineBooks A-45
GetOnlineBooks A-45
HideStoryCard A-46
HiliteBlock A-46
InsertForm A-46
NewtonScript A-36
OpenBook A-47
OpenBookTo A-47
PageSize A-47
PageThumbnail A-47
PreviousPage A-48
RegisterBookRef A-48
RemoveBrowser A-48
ScrollPage A-48
ScrollReceiver A-49
SetStatusButtons A-49
ShowStoryCard A-49



TurnToContent A-50
TurnToPage A-50
TurnToSubject A-50
WhereIsBook 5-3, A-51

miscellaneous commands A-29
MungeContentScript message A-56

N
NeverBreak flag A-34
NewtonScript 4-1

global functions A-57
NewtonScript code

sharing 4-5
NewtonScript global functions

summary of A-64
NewtonScript methods A-36
New York font B-2
NoExtend flag A-35
NoPage flag A-35
NoReLayout flag A-33
NoScroller flag A-35
NoSearch flag A-35
noSubIndex option A-32
NoTitle flag A-33
NTK troubleshooting B-5
NTK warnings B-6

O
OpenBook method A-47
OpenBookTo method A-47
OpenHelpBook function 5-3, A-58
OpenHelpBookTo function 5-3, A-58



OpenHelpTo function A-58
OpenResFileX function 5-5
.option command A-31
options

index A-31
Overlay flag A-35

P
packages

deleting B-5
PageBottom flag A-34
page headers

scripts in B-4
page layout commands A-26
PageMiddle flag A-34
page numbers

storing 4-23
page scripts 4-4
PageSize method A-47
PageThumbnail method A-47
PICT Þles,external 3-29
.pictHeader command 3-27, A-28
.picture command 2-18, A-18
picture headers

adding to layouts 3-27
pictures

in help books 5-4
.postamble command A-9
pound (#) sign 2-21
.preamble command 4-5, A-9
PreviousPage method A-48
printing slot 4-16
processing the book source Þle 2-11
project Þle GL-2



prototemplates
using in books 4-6

.publisher command 3-25, A-10

Q
quotation marks B-6

R
RegisterBookRef function 5-4
RegisterBookRef method A-48
related slot 4-16, 4-20
RemoveBrowser method A-48
removed last/bookmarked page B-6
required commands 2-8
reserved slot names 4-16
reserved slots

information in 4-16
Reverse flag A-36
RightEdge flag A-35
Round flag A-36
.running type command A-28

S
.script command 4-1, 4-4, A-19

slot parameter 4-6, 4-10, 4-15
scripts

attaching to content items 4-2
book 4-4
page 4-4

scripts in page headers B-4



scripts slot 4-16
ScrollPage method A-48
ScrollReceiver method A-49
searching in .form items 4-7
SetStatusButtons method A-49
setting and getting book data 4-12
sharing NewtonScript code 4-5
short title

adding to books 2-17
.shortTitle command 2-17, A-11
ShowManual function A-58
ShowStoryCard method A-49
Sidebar flag 3-8, A-33, A-34
slot

item 4-10, A-12
slot names

bookmarking 4-16
bookRef 4-16
browser 4-16
contentArea 4-16
cuPage 4-16
curRendering 4-16
data 4-16
destPage 4-16
edgeWidth 4-16
flags 4-16
kioskDest 4-16
layout 4-16
look 4-16
printing 4-16
related 4-16
reserved 4-16
scripts 4-16
type 4-16

slot parameter 4-6, 4-10, 4-15
slots



adding to books 4-15
adding to content items 4-9
adding to views 4-10
data 4-12
dereferencing 4-20
related 4-20
reserved 4-16

smart quotes B-6
source Þle

structure of A-3
.space command 3-26, A-21
StartsPage flag A-34
story cards 4-24
.story command A-21
structure of a Book Maker source Þle A-3
subIndex array 4-21
.subject command 3-19, A-23
summary

Book Maker commands A-59
Book Reader messages A-64

book messages A-64
content item messages A-64

browser commands A-61
content commands A-60
document commands A-60
ßags A-61

content ßags A-61
document ßags A-61
edge ßags A-62
layout ßags A-61

miscellaneous commands A-61
NewtonScript global functions A-64
NewtonScript methods A-62
page layout commands A-61

summary of commands, functions, and methods A-59
syntax of Book Maker commands A-3



T
task templates 4-26
text layout problems B-2
ThumbNailScript message A-56
Times font B-2
title

updating B-5
.title command 2-8, A-11
ToEdge flag 3-12, A-34
TopEdge flag A-35
troubleshooting B-1

Book Maker problems B-3
fonts B-1
NTK problems B-5
text layout B-2
truncated paragraphs B-1

True Type fonts 2-5, B-1
truncated paragraphs B-1
TurnToContent method A-50
TurnToPage method A-50
TurnToSubject method A-50
type slot 4-16
types of Book Maker commands A-1

U
UnRegisterBookRef function 5-4
updating title B-5
.usemark command 4-18, A-24
using

ßags 3-6
protos in books 4-6
view templates in books 4-6

using author data 4-13
using Book Maker 3-1



using ßags 3-8

V
view templates

using in books 4-6

W
warnings in NTK B-6
WhereIsBook method 5-3, A-51

X
XTND

and large Þles B-4
translators 2-4

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers. Proof pages were created on
an Apple LaserWriter Pro 630 printer.
Final page negatives were output
directly from the text and graphics Þles.
PostScriptª, the page-description
language for the LaserWriter, was
developed by Adobe Systems
Incorporated.

WRITER
John Perry, Adrian Yacub

PROJECT LEADER
Christopher Bey

ILLUSTRATOR
Peggy Kunz

EDITOR
Linda Ackerman

PRODUCTION EDITOR
Rex Wolf

PROJECT MANAGER
Gerry Kane

Special thanks to Gabriel Acosta, David
Dunham, Bob Ebert, and Scott Shwarts.

	Contents
	About This Book
	Audience
	Related Books
	How to Use This Book
	Example Books

	Conventions Used in This Book
	Special Fonts

	Developer Products and Support
	For NewtonScript Programmers
	Tap Versus Click
	Frame Code
	Undocumented System Software Objects

	Newton Digital Books
	Newton Digital Books
	Newton Book Maker
	Newton Book Reader
	Newton Application Help
	Figure�1-1 The system-supplied help overview
	The Help Browser

	Books vs. Applications

	Getting Started With Newton Book Maker
	Installing Book Maker
	Hardware Requirements
	System Software Requirements
	RAM Requirements
	Claris XTND Translators
	Table�2-1 XTND translators installed by Newton Boo...

	Fonts

	Creating Digital Books
	Creating a Book Source File
	Before You Start
	About Book Maker Commands
	Adding Required Commands

	Processing the Book Source File
	Figure�2-1 Choosing a book source file in Book Mak...
	Figure�2-2 The book processing window
	Figure�2-3 Specifying the Book Reader destination ...
	Figure�2-4 Saving the processed book file
	Book Maker is AppleScript-able
	A Book Reader Book or Application Help?

	Building a Book Package With NTK
	Figure�2-5 The sample book

	Adding a Short Title
	Adding Graphics
	Large Pictures Scroll Automatically
	Figure�2-6 Scroller controls

	Adding Comments to the Book Source File
	Where to Go From Here

	Using the Book Maker Language
	Using Layouts
	Defining Layout Commands
	Applying Layouts
	Figure�3-1 Pages formatted with the threeCol and s...
	Applying Layouts by Name

	Flags
	Using Flags
	Using Edge Flags
	Figure�3-2 Using edge flags

	Using the Sidebar Flag
	Figure�3-3 Using the sidebar flag in layouts and c...
	Figure�3-4 Text formatted with the twoCol layout
	Figure�3-5 Right-justified text in a sidebar to th...

	Using the toEdge Flag
	Figure�3-6 Applying the toEdge flag to sidebar tex...
	Figure�3-7 Wrapping text around a graphic

	Using Sidebar Alignment Flags
	Figure�3-8 Using the alignTop flag
	Figure�3-9 Using the alignBottom flag

	Formatting Recommendations
	Creating a Browser Pane
	Figure�3-10 Browser pane from BrowserStory
	The BrowserOnly Flag

	Creating a Kiosk
	Figure�3-11 Kiosk page from the Kiosks example boo...

	Finishing Touches
	Adding Book Information for the “About” Slip
	Adding Space Between Content Items
	Indenting Text
	Adding Picture Headers
	Oversize Picture Headers Spill Into Book Page
	Figure�3-12 Using oversize picture headers

	Including External PICT Files

	NewtonScript in Books
	Using NewtonScript in Book Source Files
	Attaching Scripts to Content Items
	Attaching Scripts to the Page
	Attaching Scripts to the Entire Book

	Sharing NewtonScript Code
	Shared Script Example

	Using Protos and View Templates in Books
	Searching in .form Content Items

	Storing and Accessing Data in Digital Books
	Adding Slots to Content Items
	Getting Data From Slots in a Content Item

	Adding Slots to Views
	Global Data in Books
	Book Data
	Setting and Getting Book Data
	Using Author Data

	Adding Slots to the Book
	Reserved Slot Names
	Table�4-1 Reserved slot names
	Information Available From Reserved Slots

	The copyProtection Slot
	Table�4-2 copyProtection constants

	Marking Content Items
	Dereferencing Slots in a Marked Content Item

	Using an Index to Obtain References to Content Ite...
	Creating Multiple Indices

	Storing Page Numbers in a Content Item
	Creating Story Cards
	Creating Dynamic Browsers
	Adding Intelligent Assistant Templates to Books

	Application Help
	Adding Help to Your Application
	Figure�5-1 The Help Size option in Newton Book Mak...
	Writing Help Books
	Building Stand-Alone Help Books
	How to Add Help to Your Application
	Adding a Help Book to Your Application’s Package
	Pictures in Help Books in an Application Project

	The Book Maker Language
	Overview of the Book Maker Language
	Types of Book Maker Commands
	If You Do Not Know NewtonScript
	Syntax of Book Maker Commands
	Structure of a Book Maker Source File

	Document Commands
	Content Commands
	Browser Commands
	Page Layout Commands
	Miscellaneous Commands
	Flags
	Document Flags
	Table A-1 Document flags

	Layout Flags
	Table A-2 Layout flags

	Content flags
	Table A-3 Content flags (continued)
	Table A-4 Edge flags

	NewtonScript Methods
	Book Reader Messages
	NewtonScript Global Functions
	Summary of Commands, Functions, and Methods
	Book Maker Commands
	Flags
	NewtonScript Methods
	Book Reader Messages
	NewtonScript Global Functions

	Troubleshooting
	Font-Related Problems
	Truncated Paragraphs or Improper Layout
	Text Layout Problems
	Improper Espy Sans Bold Style
	Espy Font Substituted
	Printing on a LaserWriter

	Book Maker Problems
	Lost Styles
	Incorrect Error Messages
	XTND and Large Files
	No Scripts in Page .headers, Use .running story In...
	Controlling How Find Results Are Displayed

	NTK Problems
	Can’t Delete Old Package
	Title Not Updated on Loading Updated Book
	Removed Last Page Displayed or Bookmarked Page
	Curly Quotes Don’t Compile
	Global Functions Warnings

	Books on Online Help
	Compatibility
	Book Maker Enhancements
	Controlling Generation of Subindices

	Bugs Fixed in Book Reader
	Bookmarking and Printing Context
	Length of ISBN Strings
	Information in “About” Slip Not Displayed
	Page Scripts Override Book Scripts
	Edge Flags With Multi-Page Contents
	Memory Management for Story Cards
	Story Cards Always Left-Justified
	.form Content Items Do Not Respect viewJustify
	InsertForm Function Does Not Return the View
	Searching in .Form Content Items
	Help Books

	Enhancements to Newton Book Reader
	Unavailable Methods
	Unsent Book Reader Messages
	Unavailable Flag

	Glossary

