

ð

ð

N e w t o n D e v e l o p e r
T o o l s

Newton Formats

Version 1.1

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.



Apple Computer, Inc.
© 1995, 1997Apple
Computer, Inc.
All rights reserved.
This document contains
confidential and proprietary
information of Apple
Computer, Inc. and its use is
licensed only pursuant to the
express terms of the Newton
Formats License Agreement.
No part of this document or
software described in it may
be reproduced, stored in a
retrieval system, or
transmitted, in any form or
by any means, mechanical,
electronic, photocopying,
recording, or otherwise,
without the prior written
permission of Apple
Computer, Inc. The same
proprietary and copyright
notices must be affixed to
any permitted copies as were
affixed to the original.
Under the law, copying
includes translating into
another language or
format. Except as specifically
set forth in the Newton
Formats License
Agreement,No licenses,
express or implied, are
granted with respect to any
of the technology described
in this document. Apple
retains all intellectual
property rights associated
with the technology
desribed in this document.

This document is intended to
assist application
developers to develop
applications only for
licensed Newton platforms.
Printed in the United States
of America.
The Apple logo is a
registered trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple
logo (Option-Shift-K) for
commercial purposes
without the prior written
consent of Apple may
constitute trademark
infringement and unfair
competition in violation of
federal and state laws.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo,
Macintosh, and Newton are
trademarks of Apple
Computer, Inc., registered in
the United States and other
countries.
The light bulb logo,
MessagePad, NewtonScript,
and Newton Toolkit are
trademarks of Apple
Computer, Inc.

Simultaneously published in
the United States and Canada.

Apple licenses the use of
this document pursuant to
the Newton Formats License
Agreement on an "AS IS"
basis. APPLE MAKES NO
WARRANTIES, EITHER
EXPRESS OR IMPLIED,
INCLUDING WITHOUT
LIMITATION THE IMPLIED
WARRANTIES OF
MERCHANTABILITY AND
FITNESS FOR A
PARTICULAR PURPOSE,
REGARDING THE
INFORMATION
CONTAINED IN THIS
DOCUMENT OR ITS USE,
QUALITY OR ACCURACY.
APPLE MAKES NO
WARRANTY OR
REPRESENTATION THAT
IT WILL NOT MODIFY THE
INFORMATION
CONTAINED IN THIS
DOCUMENT OVER TIME.
In no event shall Apple be
liable for special, indirect,
incidental or consequential
damages arising from the
use of information
contained in this document,
or the use, sale, licensing or
distribution of Licensee
Programs by Licensee or
any third party, whether
under theory of contract,
tort (including negligence),
product liability or otherwise.

Contents

Preface About This Document v

Chapter 1 Newton Package Specification 1-1

Introduction 1-1
Scope of this document 1-1
Data structure definitions 1-2

The Package-Loading Process 1-2
Loading 1-3
Activating 1-3
Deactivating 1-3
Deleting 1-4

Package Container Format 1-4
Package Directory 1-5

Fixed header 1-5
Part entries 1-6
Variable-length data area 1-8

Relocation information 1-8
Fixed header 1-9
Relocation sets 1-9

Part Data 1-10
NewtonScript Object Parts 1-10

Basic object format 1-10
Refs 1-11
Objects 1-11
Object header 1-12
Object formats 1-12
Frame maps 1-13
Other object formats 1-15

Part layout 1-16
Magic pointers 1-16

Chapter 2 NewtonScript Bytecode Interpreter Specification 2-1

Introduction 2-1
Virtual machine 2-2

Function objects 2-2
iii

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

Locals frame 2-2
Function frame 2-4

Virtual machine specification 2-5
Exceptions thrown by the interpreter 2-5

Global variables and functions 2-6
Function call and message send 2-6

Function call 2-6
Message send 2-7

Inheritance 2-8
Proto Lookup 2-8
Lexical lookup 2-8
Full lookup 2-8
Assignment 2-9
Lexical assignment 2-9

Exception handling 2-10
Structure of instructions 2-11
Instruction definitions 2-11

Simple instructions 2-12
Parameterized instructions 2-14

Primitive functions 2-20
Arithmetic operations 2-20
Array/string functions 2-21
Comparison functions 2-23
Logical operations 2-24
Miscellaneous 2-24

Support objects 2-25
Iterators 2-25

Operation 2-25
Access 2-26

Reference 2-26

Chapter 3 Newton Load Package Protocol 3-1

Protocol Overview 3-1
Loading a Package 3-2

Newton -> Desktop 3-2
Desktop-> Newton 3-3
Desktop-> Newton or Newton<-Desktop 3-4

Chapter 4 Newton Streamed Object Format 4-1

Introduction 4-1
Streamed Object Format 4-2

Encoding 4-2
iv

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

Immediate Objects 4-4
Binary Object Data 4-5
Special Case Types 4-5

Example of Newton Streamed Object Format 4-5
v

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

vi

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

P R E F A C E

About This Document

This document describes various Newton formats and protocols. Using the
information published in this document, it is possible to develop an
environment in which Newton-compatible software can be written and then
downloaded for execution on a Newton Device.

▲ W A R N I N G

The formats and protocols described in this document are
compatible with all existing Newton ROMs. However, these
specifications may change without notice, and Apple may
render them incompatible in future Newton systems.

The document contains four chapters

■ Chapter 1, “Newton Package Specification,” specifies the format of a
package file as a container (that is, a collection of parts). It also specifies
the format of a frames part, including the low-level format of objects, and
some of the object-level format of a form part (which is a kind of frames
part).

■ Chapter 2, “NewtonScript Bytecode Interpreter Specification,” specifies the
format of NewtonScript bytecode function objects. It also specifies the
behavior of the NewtonScript virtual machine (which is necessary to
specify the function objects).

■ Chapter 3, “Newton Load Package Protocol,” specifies the protocol used
over a byte stream to download packages to a Newton using the
Connection icon.

■ Chapter 4, “Newton Streamed Object Format,” specifies the format in
which Newton objects are sent and received over a byte stream by the
communications subsystem in Newton (for example,
endpoint:OutputFrame).
v

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

P R E F A C E
vi

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

CHAPTER 1

Figure 1-0
Table 1-0
 Newton Package Specification 1

This document specifies the format of Newton packages, the units of application
installation and removal.

▲ W A R N I N G

The format described here is compatible with all existing versions of the
Newton OS. However, this specification may change without notice, and
Apple may render it incompatible in future Newton systems.

Introduction 1

Newton software applications are delivered in the form of packages. A package consists
of one or more parts—units of functionality such as a form, font, or device driver—all of
which need to be installed and removed together.

Packages are intended to eliminate the scattering of software components that takes
place in many operating systems, where an installer program may place parts of an
application in many different locations in the system, but there is no easy way to find
and remove the parts once the application is no longer desired. Although it consists of
many components that affect different parts of the Newton system, a package is installed
and removed as a single unit.

Scope of this document 1

The format described in this document is used when packages are stored or transmitted.
Packages are commonly installed by downloading them to devices running the Newton
OS. This document specifies the data that the Newton OS expects to receive when it is
downloading a package.

Packages are often downloaded by “package installer” applications running on desktop
computers. For this purpose, packages are distributed in the form of package files. A
Introduction 1-1

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 1

Newton Package Specification

package file is simply meant to be downloaded as-is, so this document also specifies the
format of a package file.

Starting in version 2.0, the Newton OS can install a package from a binary object. Again,
the binary object contains package data as specified in this document.

This document first describes the package container format, which is the outer structure of
a package—a container for various parts. This format is the same in every package.

Within the package container format are regions for part data, one region for each part in
the package. Each part is of a certain part type, and each part type has its own format for
part data. This document describes the basic formats of the part types. The details of
particular part formats are contained in their own documents.

Data structure definitions 1
Data structures defined in this document are presented as C struct definitions using the
following types:

ULong Unsigned 32-bit integer.
This document sometimes writes a ULong as a four-character ASCII
string in single quotes. The first character is the most-significant
byte of the integer, and so forth; for example, 'auto' corresponds
to the integer 0x6175746F.

UShort Unsigned 16-bit integer.
Byte Unsigned byte (or ASCII character).
UniChar Two-byte Unicode character.
Date Unsigned 32-bit integer representing a date and time as the number

of seconds since midnight, January 4, 1904.
InfoRef An unsigned 16-bit offset followed by an unsigned 16-bit length.

InfoRefs are used to refer to variable-length data items in the
variable-length data area of the package directory. The offset is from
the beginning of the data area; the length is the number of bytes in
the data item.

The format is big-endian: all integers are stored most-significant-byte first. Data structure
elements are stored in the order in which they appear, with no implicit padding for
alignment.

The Package-Loading Process 1

In order to understand the purpose of many of the fields of the package format, it is
necessary to understand the various processes packages go through in the Newton
operating system.

The life cycle of a package has four stages:

1. The package is loaded into a Newton device's object store.
1-2 The Package-Loading Process

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 1

Newton Package Specification

2. The package is activated, and each part is installed.

3. The package is deactivated, and each part is uninstalled.

4. The package is deleted from the object store.

Loading 1
When a package is loaded into the object store, it may be compressed automatically.
So-called “compressed” packages are not packages that have been compressed, but
packages that will be compressed when a Newton device loads them. A flag in the
package header signals the package loader to compress the package as it is being stored.

Activating 1
When a package is activated, it is mapped into virtual memory contiguously, just as it
appears in this format. However, the package is not continuously resident in physical
memory. The package is divided into pages (currently 1K in size) that are loaded into
memory on demand.

The region of virtual memory occupied by the package is allocated each time the
package is activated, so the package may be at a different location at each activation.
While the package is activated, it does not move.

As part of the activation process, each part in the package is installed. The actual
installation behavior is determined by the part kind and part type. For example, a protocol
part is registered as a P-class, a form part is installed as an icon in the Extras drawer, and
a font part is installed as a newly-available font.

Each part type may define its own mechanism for parameterizing installation behavior.
For example, form parts may specify NewtonScript methods that are run to complete the
installation. Some part, such as font parts, have no such mechanism.

Parts are normally left in virtual memory, but they may optionally be copied into
permanently-resident memory by setting kAutoCopyFlag. This is only necessary if the
part must remain accessible even if the package’s store becomes unavailable (for
example, if the package is stored on a card, and the card is removed), or if the part is
used to service page faults. Because this uses extra RAM, it should only be used when
absolutely necessary.

Deactivating 1
Deactivation is similar to activation, but in reverse. Each part is uninstalled according to
its part type, which may involve part-specific behavior. The memory occupied by
autocopied parts is freed. Finally, the virtual memory occupied by the package is
released.
The Package-Loading Process 1-3

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 1

Newton Package Specification

Deleting 1
After a package is deactivated, it may be deleted from the object store. The behavior of
the system when deleting a package does not depend on the contents of the package.

Package Container Format 1

A package consists of a package directory, optionally followed by a relocation table,
followed by the data areas for the individual parts. The package format at this level (that
is, ignoring the contents of the part data areas) is called the package container format.
Figure 1-1 gives a conceptual view of the layout of a package.

Figure 1-1 Package layout

The package begins with a package directory, which contains information about the whole
package as well as part entries describing each part in the package. There is one part
entry per part. The part entries are followed by an area used to store variable-length data
(such as strings) for the package directory.

If the package needs to be relocated, an optional area containing relocation information
follows the directory. This area is present if the package signature is "package1" and
the flag kRelocationFlag is set.

Finally, the part data regions complete the package. Each part data region must begin on
a four-byte boundary. If a region’s length is not divisible by four, pad bytes must be
inserted as necessary to move the next region to a four-byte boundary.

The ability to process packages with relocation information is new in OS 2.0.

Package directory

Relocation info
(optional)

Part data

Part data

…

Fixed header

Part entry

Part entry

…

Variable-length
data area
1-4 Package Container Format

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 1

Newton Package Specification

Package Directory 1
The format of the package directory is defined as a PackageDirectory structure,
followed by zero or more PartEntry structures (one per part), followed by the
variable-length data area.

Fixed header 1

The package directory begins with a fixed set of fields represented by the
PackageDirectory structure.

Listing 0-1 PackageDirectory structure

struct PackageDirectory {

 Byte signature[8];

 ULong reserved1;

 ULong flags;

 ULong version;

 InfoRef copyright;

 InfoRef name;

 ULong size;

 Date creationDate;

 ULong reserved2;

 ULong reserved3;

 ULong directorySize;

 ULong numParts;

 /* PartEntry parts[numParts]; */

 /* Byte variableLengthData[]; */

};

Fields reserved1, reserved2, and reserved3 are reserved and must be set to zero.

signature An eight-byte ASCII string specifying the format of the package.
The signature "package0" signifies a package without a relocation
information area; "package1" signifies a package that may contain
one, depending on kRelocationFlag.
The "package1" signature is not understood by Newton OS
versions before 2.0, so it can be used in packages without any
relocation information to prevent older systems from loading the
package. This is useful when the package uses other 2.0-only
features.

flags The following flags are defined. All other bits are reserved and must
be set to zero.
kAutoRemoveFlag = 0x80000000

 Specifies that parts in the package are to be removed immediately
after installation. When an auto-remove package is activated, the
Package Container Format 1-5

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 1

Newton Package Specification
system activates the parts and then deactivates them without
performing part-specific deactivation behavior (such as a removal
script). The only recommended constituent of an auto-remove
package is a single part of type 'auto'.
kCopyProtectFlag = 0x40000000

Marks the package as copy-protected. This field is a convention
recognized by software that copies packages; it is not an absolute
lock against copying.
The Newton OS refuses to beam or email a copy-protected package.
A copy-protected package can be backed up and synchronized to
the desktop, so users can copy the package using selective restore.
kNoCompressionFlag = 0x10000000

Specifies that the Newton OS should not compress the package as it
is stored. (The default is to compress the package.)
kRelocationFlag = 0x04000000

Specifies that the package contains a relocation information area.
This flag is valid only in "package1" packages.
kUseFasterCompressionFlag = 0x02000000

Specifies that the package should be compressed using a faster, but
less space-efficient method. This flag is valid only in "package1"
packages, and effective only when kNoCompressionFlag is not
set.

version An arbitrary number used to identify the version of the package.
The Newton OS interprets higher numbers as newer versions.

copyright A Unicode string containing a copyright notice. (May be empty.)
name A Unicode string naming the package. This string is assumed to

uniquely identify a package. A registered developer signature is
normally used as a suffix to ensure uniqueness.

size The total size in bytes of the package, including the directory.
creationDate The time and date the package was created.
directorySize The size in bytes of the package directory, including the

PackageDirectory structure, the part entries, and the data area.
numParts The number of parts in the package.

Part entries 1

Following the PackageDirectory, each part is represented by a PartEntry structure.
Parts are often referred to by number (part 0, part 1, and so forth); the number is
determined by the order of the PartEntry structures. The first PartEntry corresponds
to part 0.

Listing 0-2 PartEntry structure

struct PartEntry {

 ULong offset;
1-6 Package Container Format

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 1

Newton Package Specification
 ULong size;

 ULong size2;

 ULong type;

 ULong reserved1;

 ULong flags;

 InfoRef info;

 ULong reserved2;

};

Fields reserved1 and reserved2 are reserved and must be set to zero.

offset The offset in bytes of the part data from the beginning of the part
data section. Must be a multiple of four.

size The size in bytes of the part data.
size2 Must be the same value as size.
type A code indicating the type of the part. (See individual part kind

documentation for codes.)
flags The following flags are defined. All other bits are reserved and must

be set to zero.
kProtocolPart = 0x00000000

kNOSPart = 0x00000001

kRawPart = 0x00000002

The low-order two bits of this field signify whether the part data
consists of a protocol (kProtocolPart), a region of NewtonScript
objects (kNOSPart) or raw data (kRawPart). The correct flags are
given in the specification of each part type.
kAutoLoadFlag = 0x00000010

Should only be set for protocol parts. Specifies that the protcol
should be registered automatically when the package is activated.
kAutoRemoveFlag = 0x00000020

Should only be set for protocol parts. Specifies that the protcol
should be unregistered automatically when the package is
deactivated. Normally set whenever kAutoLoadFlag is set.
kNotifyFlag = 0x00000080

Specifies that the system handler corresponding to the part’s type
should be notified. Should be set unless the part type specification
says otherwise.
kAutoCopyFlag = 0x00000100

Specifies that the part should be moved into permanently-resident
memory before being activated. Should be used only for parts
(normally protocol parts) that cannot tolerate the usual page
faulting mechanism.

info A block of data that is passed to the part type handler when the part
is activated. The contents of this data are specified by the part type
specification.
Package Container Format 1-7

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 1

Newton Package Specification
Variable-length data area 1

The part entries are followed by the variable-length data area referred to by the
InfoRef values. Most data in this area consists of ASCII or Unicode strings. Note that
although the length of the string is provided in the InfoRef, null terminators are
necessary and should be included at the end of the strings.

Relocation information 1
If the package signature is "package1", and the package directory kRelocationFlag
is set, the package contains a relocation information area after the package directory. This
information is used to relocate package-relative addresses to compensate for the virtual
address that gets assigned to the package when it is activated. This allows native code in
the package to use absolute addresses.

Because the address of the package may change each time it is activated, the package
data is left in its original form in the object store. Relocations are applied to each page of
the package as it is demand-paged into physical memory. To make this process efficient,
the relocation information is split into “chunks” corresponding to package pages.

The format of the relocation information is shown in Figure 1-2.

Figure 1-2 Relocation information area

The relocation information consists of a fixed header followed by a series of relocation
sets. Each relocation set contains the data needed to relocate one page of the package: a
list of the offsets of the words to be relocated in that page.

The system relocates each 4-byte word by adding to it the difference between the original
base address of the package and the virtual address assigned to the package at
activation. For example, if the package was built assuming a base address of 0x100000,
and at activation it was assigned the starting address 0x60015000, then a word would

Header

Relocation set

Relocation set

…

1-8 Package Container Format

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 1

Newton Package Specification
be relocated by adding 0x60015000 – 0x100000, or 0x5FF15000. Only words
beginning on four-byte boundaries can be relocated.

Fixed header 1

The relocation information begins with a fixed set of fields represented by the
RelocationHeader structure.

Listing 0-3 RelocationHeader structure

struct RelocationHeader {

 ULong reserved;

 ULong relocationSize;

 ULong pageSize;

 ULong numEntries;

 ULong baseAddress;

};

reserved Must be zero.
relocationSize The total size in bytes of the relocation information area, including

the header.
pageSize The size in bytes of a relocation page. Must be 1024.
numEntries The number of relocation entries following the header.
baseAddress The original base address of the package.

Relocation sets 1

The RelocationHeader is followed by a series of RelocationSet structures. Each
RelocationSet must be padded to a multiple of four bytes.

Listing 0-4 RelocationSet structure

struct RelocationSet {

 UShort pageNumber;

 UShort offsetCount;

 /* Byte offsets[]; */

};

pageNumber The zero-based index of the page in the package to which this set
applies.

offsetCount The number of offset bytes in offsets.
offsets The offsets of the words to be relocated. Each byte is the zero-based

index of a word in the page to be relocated. For example, the offset
0x10 means to relocate a word 0x40 bytes into the page.
Package Container Format 1-9

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 1

Newton Package Specification
Part Data 1
After the package directory, or the relocation information if present, the remainder of the
package contains the data for the individual parts. Each part data region must begin at a
four-byte boundary, but is otherwise not constrained in its position. It is customary for
the part data chunks to be adjacent in this area, and to appear in the same order as in the
part directory, but this is not strictly required by the format.

The format of a part data region depends on the part’s type and kind. Specific part
formats are described elsewhere, but all parts containing NewtonScript object parts have
a common underlying format, which is described in the following section.

NewtonScript Object Parts 1

A part of the kNOSPart kind (see “Part entries” on page 1-6) contains a group of
NewtonScript objects. The Newton OS has special support for relocating objects in
kNOSPart parts, so this kind is always used for part types that contain NewtonScript
objects.

The objects in the part are rooted in a single frame, called the part frame. All other objects
in the part must be reachable through some path from the part frame. (Technically, parts
can contain unreachable objects, but such objects are useless.) A part type definition
specifies the contents of the part frame.

Basic object format 1
This is a very brief introduction to the NewtonScript object system. For more
information, see The NewtonScript Programming Language.

The most basic element of the object format is a Ref, which is a 32-bit value that can
either contain a small piece of data like an integer, or be a pointer to an object.

There are three types of NewtonScript objects. Binary objects are used to store chunks of
uninterpreted (non-pointer) data, such as strings, bitmaps, and sounds. Arrays are
zero-based arrays of Refs. Frames are collections of name-value pairs, where the names
are pointer Refs to symbol objects (see page 1-15) and values are Refs. Binary objects and
arrays also contain a Ref used to refer to the “class” of the object*, which is usually a
symbol object.

All objects are based on the three basic types. The formats of certain kinds of objects,
such as symbols and strings, are derived from these three. For the details of some
derived object formats, see “Other object formats” on page 1-15.

* This usage of the word “class” has nothing to do with object-oriented programming. The
“class” of a NewtonScript object is a symbol giving a semantic type to the object, so that
objects that are otherwise just aggregations of data can contain a description of their
contents. For example, a picture is stored as a binary object of class “PICT”. By itself, the
data could only be interpreted in context, but with the class added, the object is
self-describing.
1-10 NewtonScript Object Parts

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 1

Newton Package Specification
Refs 1

A Ref is a 32-bit value that either contains a piece of data itself (an immediate Ref) or
points to an object (a pointer Ref). The low-order bits of the Ref are used as tags to signify
the proper interpretation of the Ref.

Three of the tags are encoded in just the two low-order bits, to allow 30 bits to be used
for data. The rest of the types, which have smaller data requirements, use more bits for
the tag.

The tag values and their associated data types are shown in Figure 1-3.

Figure 1-3 Format of Refs

An integer Ref is a 30-bit two’s complement integer shifted left two bits, with a tag of 00.
For example, the integer 5 would be represented by a Ref of 0x14, and the integer –1
would be represented by a Ref of 0xFFFFFFFC.

A pointer Ref contains the byte offset in the package (not the part) of the object to which
the Ref points. Since all NewtonScript objects in the package are aligned to a 4-byte
boundary, the two low-order bits of the offset are always zero. Those bits are used for the
tag of 01. Thus, subtracting 1 from a pointer Ref yields the actual offset.

Non-integer immediate Refs have the tag 10. Characters have the four-bit tag 1010,
preceded by the 16-bit Unicode character code. “Special” immediate Refs are unique
values: the Ref for TRUE is 0x1A, and the Ref for NIL is 0x2. Function objects use special
immediates to identify function types; see “Function objects” on page 2-2.

A “magic” pointer is a Ref that points to an object, but does not contain the actual offset
of the object. Instead, it contains a symbolic reference to the object, in the form of a table
number and an index into the table. Magic pointers provide a means for parts to have
references to objects which are not contained within the part, or even the package. See
“Magic pointers” on page 1-16 for more information.

Objects 1

There are three fundamental types of objects:

30-bit two’s-complement integer 0 0

High-order 30 bits of offset in package

character code

special immediate code

table number index

0 0 0 0 0 0 0 0 0 0 0 0

0 1

1 0

1 0

1 1

1 0

Integer

Pointer

Character

Special

Magic pointer
NewtonScript Object Parts 1-11

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 1

Newton Package Specification
Binary object Contains a class Ref and a region of uninterpreted (non-pointer)
data.

Array Contains a class Ref and a sequence of zero-indexed slots, which are
Refs.

Frame Contains a Ref pointing to a frame map object, and a sequence of
named slots, which are Refs.

All objects are padded to a multiple of four or eight bytes. All the objects in a part must
use the same padding alignment, but each part can use either four- or eight-byte
alignment. The alignment is signalled by a flag bit in the part (see “Part layout” on
page 1-16). The bytes used for padding may have any value.

Binary objects cannot contain any pointers other than the class Ref. The system ignores
the data part of a binary object when it performs pointer relocation.

Object header 1

Every object in the package has an 8-byte header, as shown in Figure 1-4.

Figure 1-4 An object header

The first word contains the size of the object in the upper three bytes, and flag bits in the
lower byte. The second word is always zero.

The size in the header is the logical size of the object, not including any padding that
may be necessary to reach the four- or eight-byte-aligned size.

The following object flags are defined. The other flag bits must be set to 0x40, as shown
above.

kObjSlotted = 0x01

If set, object is an array or frame; otherwise, object is a binary object.
kObjFrame = 0x02

If set, object is a frame. Cannot be set unless kObjSlotted is also set.

Object formats 1

The detailed formats of the three types of object are shown in Figure 1-5. The padding is
shown in the binary object case because it is more common for binary objects; arrays and
frames are always a multiple of four bytes, so they are only padded in parts with
eight-byte alignment.

object size in bytes

type

0 0

0 1 0 0 0 0
1-12 NewtonScript Object Parts

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 1

Newton Package Specification
Note that binary objects and arrays have a slot for the class Ref, but frames do not.
Frames have a slot in the same place that is used for frame maps (see next section).

Figure 1-5 Object formats

Frame maps 1

A frame is essentially the same as an array, but with an associated object, called a frame
map, that associates names (symbols) with slots.

object size in bytes

0 0

0 1 0 0 0 0 0 0

class (Ref)

data

padding

Binary object

object size in bytes

0 0

0 1 0 0 0 0 0 1

class (Ref)

Array

slot 0 (Ref)

slot n–1 (Ref)

…

object size in bytes

0 0

0 1 0 0 0 0 1 1

map (Ref)

Frame

slot 0 (Ref)

slot n–1 (Ref)

…

NewtonScript Object Parts 1-13

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 1

Newton Package Specification
It is possible for each frame to have its own map. To save space, however, two or more
frames may share the same map if they have the same slots in the same order. As a
further optimization, a frame can use a map to name a subset of its slots. Each map may
refer to another map, called its supermap, whose slots are included by reference. For
example, a frame with six slots could have a map [D,E,F] with supermap [A,B,C],
with the same effect as if it had one map [A,B,C,D,E,F]. Of course, a supermap may
itself have a supermap.

Supermaps allow frames to share one map for their common slots without losing the
ability to have their own unique slots added. When a slot is added to a frame with a
shared map, a new map containing the new slot name can be created for the frame, with
the original shared map as its supermap.

A map may be sorted, which improves search speed for sufficiently-large maps. The
usual threshold for sorting a map is a length of 20. Symbols in a sorted map are arranged
in increasing hash value order; symbols with equal hash values are arranged in
increasing case-insensitive ASCII lexicographical order. A sorted map has the
kMapSorted bit set in its class. Note that each individual map object may be sorted or
unsorted, so a frame with multiple maps may have maps of both types.

A map is an array object. Slot 0 points to the supermap, or is NIL if there is no supermap.
The remaining slots point to symbols naming the slots in the frame that correspond to
the map. The class of the array is an integer Ref containing bit flags as follows:

kMapSorted = 1 The map is sorted.
kMapProto = 4 The map, or one of its supermaps, contains the symbol _proto.

This bit must be set if this condition is true.

The example in Figure 1-6 shows three frames sharing two maps. For simplicity, object
headers and pointers to symbols are not shown in the figure.

Figure 1-6 Maps and frames

NIL

A

B

C

D

E

F

{A: 1,
 B: 2,
 C: 3}

1

2

3

1

2

3

4

5

6

{A: 1,
 B: 2,
 C: 3,
 D: 4,
 E: 5,
 F: 6}

{A: 4,
 B: 5,
 C: 6}

4

5

6

map

map

map

supermap
1-14 NewtonScript Object Parts

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 1

Newton Package Specification
Other object formats 1

The formats of all objects in the package are based on the three major object formats
above. The formats for certain derived object types used by the system are specified here.

Symbol 1

Symbol objects are used as classes and as names for frame slots. They are represented as
binary objects.

The class of a symbol is the special immediate 0x55552 (kSymbolClass). The data for
a symbol consists of a 4-byte hash value followed by a null-terminated ASCII string
giving the symbol’s name. Only character codes 32–127 are allowed in the symbol name.

The hash value for a symbol is calculated as follows:

Listing 0-5 Symbol hash function

/* Assumes ASCII character set and 32-bit longs */

unsigned long SymbolHashFunction(char* name)

{

unsigned long result = 0;

char c;

while (*name) {

c = *name;

if (c >= 'a' && c <= 'z')

result = result + c - ('a' - 'A');

else

result = result + c;

}

return result * 2654435769;

}

String 1

String objects represent Unicode strings. They are represented as binary objects whose
class is the symbol 'string (or, in OS 2.0, a subclass thereof), and whose data consists
of a null-terminated Unicode string.

Real 1

Reals are represented as binary objects whose class is the symbol 'real, and whose data
consists of an IEEE standard double-precision floating point number.
NewtonScript Object Parts 1-15

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 1

Newton Package Specification
Part layout 1
The part consists of objects concatenated together. There must be no space before, after,
or between the objects in the part, other than the pad bytes following the last object in
the part.

The first object in the part is used to locate the part frame. (SeeFigure 1-7.) It is required
to be an array of class NIL with one slot, which points to the part frame.

In OS 2.0, the low-order bit of the second long of this array—normally set to zero in all
objects—is used as an alignment flag. If the bit is set, the objects in the part are padded to
four-byte boundaries. Otherwise, the objects are padded to eight-byte boundaries. Only
eight-byte-aligned parts can be used on Newton OS versions prior to 2.0.

Figure 1-7 First object’s format

Magic pointers 1
Magic pointers contain a table number and an index. The table number is used to select a
particular set of objects, and the index is used to select one object from the set.

Table 0 is used to refer to objects within a Newton ROM. The index numbers for the
objects in a particular version of the Newton OS may be found in the Newton
Programmers Guide covering that version.

Table 1 is undefined, and should not be used in packages.

In OS 2.0, higher-numbered tables are used for the unit import mechanism. Tables 2 and
above refer, in order, to units which are imported by the package in which the magic
pointer appears. That is, objects from the first imported unit are accessed by magic
pointers for table number 2, objects from the next imported unit by magic pointers for
table number 3, and so on.

0 0

0 1 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 1 0

(array, size=16)

(class = NIL)

(points to part frame)

alignment flag
1-16 NewtonScript Object Parts

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 2
NewtonScript Bytecode
Interpreter Specification 2

This chapter specifies the format of NewtonScript bytecode function objects, and the
virtual machine that interprets them. Only those parts of the format that are necessary to
generate Newton applications are described. Other kinds of function objects that may be
interpretable by a Newton device are not documented here.

Some of the information in this document actually belongs in the NewtonScript Language
Specification, which does not yet exist. It will move there in the future.

This specification assumes familiarity with NewtonScript and the Newton object system.
Some knowledge of language interpreter implementation is also useful.

▲ W A R N I N G

The format described here is compatible with all existing Newton
ROMs. However, this specification may change without notice, and
Apple may render it incompatible in future Newton systems.

Introduction 2

Functions are the executable objects in NewtonScript: the targets of function calls and
message sends. The purpose of a function is to calculate a single value, given zero or
more arguments and a runtime environment. In the process, it may cause side-effects to
the system state (often this is more useful than the value returned).

There are several kinds of function objects. This document specifies the format of only
one of them, the CodeBlock, which contains a bytecode representation of a function. This
is by far the most common kind of NewtonScript function; until NTK 1.5, it was the only
kind NTK could generate.
Introduction 2-1

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 2

NewtonScript Bytecode Interpreter Specification
This document is descriptive, not prescriptive. It describes what the instructions do, not
when they should be generated. It does give the conditions under which the behavior of
an instruction is defined, and which values in a data structure have defined meanings.

▲ W A R N I N G

When the effect of an operation under certain circumstances is described
as “undefined”, it is allowed to have any effect at all, including crashing
the interpreter. All other circumstances should produce a legal result or
throw an exception.

Virtual machine 2

In the same way that native code consists of instructions for a hardware machine,
bytecodes are instructions for a virtual machine. Rather than being executed directly by the
processor, bytecodes are executed by a software implementation of the virtual machine,
called the interpreter. Thus, a function implemented as bytecodes is independent of the
specific hardware or operating system it is executing on.

The operations represented by NewtonScript bytecodes are at a much higher level than
processor instructions; they are defined in terms of NewtonScript semantics. This makes
them much denser than the equivalent native code, which serves a more general purpose.

This document defines the virtual machine’s characteristics, and the virtual machine
operations that are represented by the bytecodes. It also defines the format of the
function objects themselves.

Function objects 2

Each function object has three objects associated with it that are referred to implicitly by
the bytecodes:

■ The instructions object is a binary object of class instructions that contains the
bytecode instructions for the function.

■ The locals frame is a frame containing the arguments and locals of the function, plus
some extra slots. It is explained in more detail below.

■ The literals array contains objects that are referred to in the function. For example, the
literals array of the function func() "hello" would contain the "hello" string.
The literals array is optional, since not all functions require it.

Locals frame 2

Each function has a lexical environment that defines a set of named variables. The function
itself defines a “local” environment containing names for zero or more arguments and
zero or more local variables. If the function is nested within another function, its lexical
environment includes the lexical environments of the outer functions. The combination
of these environments is called the “outer” lexical environment of the function.
2-2 Function objects

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 2

NewtonScript Bytecode Interpreter Specification
Consider the following two functions:

f := func (a, b) begin

 local p;

 local g := func (d) begin

 local r, s;

 ...

 end;

 ...

 end;

The lexical environment of function f consists only of its local environment: the
arguments a and b, and the local variables p and g. The lexical environment of function
g consists of a local environment (d, r, and s) plus an outer environment (the local
environment of f).

The lexical environment of a function is represented as a frame called the locals frame.
The locals frame contains one slot for each variable in the local environment of the
function, tagged with the name of the variable. It also contains a _nextArgFrame slot
that refers to the locals frame of the enclosing function, if any, and two slots (_parent
and _implementor) that are placeholders for the interpreter’s use.

The locals frame is unusual in that the order of slots is important (normally, it is incorrect
to rely on the order of the slots in a frame). The slot order has to be as follows:

■ _nextArgFrame

■ _parent

■ _implementor

■ arguments, from left to right

■ local variables

The order of the local variables is not defined, but it determines the variable indices used
by certain bytecodes.

All slots of the locals frame must contain nil, except for the _nextArgFrame slot,
which must be a reference to the locals frame of the enclosing function, or nil if the
function is at the top level.

The locals frames for the two example functions would look like this:

function g function f

{_nextArgFrame:

 _parent: nil,

 _implementor: nil,

 d: nil,

 r: nil,

 s: nil}

{_nextArgFrame: nil,

 _parent: nil,

 _implementor: nil,

 a: nil,

 b: nil,

 p: nil,

 g: nil}
Function objects 2-3

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 2

NewtonScript Bytecode Interpreter Specification
Note that g’s locals frame’s _nextArgFrame slot points to f’s locals frame.

Function frame 2

The function object itself is a frame. Again, the ordering of the slots is critical and must
be as follows:

class Must be the symbol CodeBlock.
instructions A binary object of class instructions containing the bytecodes.
literals An array of class literals containing the literals, or nil if no

literals are used.
argFrame The locals frame for the function.
numArgs The number of arguments the function takes.

The complete function frames for the example functions would be as follows:

function f

{class: 'CodeBlock,

 instructions: <instructions, length ?>,

 literals: [literals: ...],

 argFrame: {_nextArgFrame: nil,

 _parent: nil,

 _implementor: nil,

 a: nil,

 b: nil,

 p: nil,

 g: nil},

 numArgs: 2}

function g

{class: 'CodeBlock,

 instructions: <instructions, length ?>,

 literals: [literals: ...],

 argFrame: {_nextArgFrame: f.argFrame,

 _parent: nil,

 _implementor: nil,

 d: nil,

 r: nil,

 s: nil},

 numArgs: 1}
2-4 Function objects

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 2

NewtonScript Bytecode Interpreter Specification
Virtual machine specification 2

The virtual machine (VM) consists of six registers and a stack of values. The virtual
machine registers are:

The values on the stack are referred to as STACK[N] where N is an integer index. Values
pushed more recently have larger indexes, and indexes are assigned consecutively. The
“top” of the stack is the most-recently-pushed value; that is, STACK[SP].

The VM has two other stacks that are not explicitly represented in this specification. One
is used implicitly by various instructions to save and restore the FUNC, PC, LOCALS,
RCVR, and IMPL registers on function call and return. The other is used for exception
handling (see “Exception handling” on page 2-10).

RCVR, the current receiver, is the value of the pseudo-variable self. IMPL, the current
implementor, is a reference to the frame in which the current method was fond (used by
the lookup for inherited message send.) When a function is executed via a message send,
these registers are set by the message send operation; when executed via a function call,
these registers are set from the function being called.

Execution proceeds by repeatedly performing the operation at offset PC of the
instructions object of FUNC. All instructions alter PC, explicitly or implicitly. The effect of
a PC value outside the bounds of the instructions object (that is, less than zero or greater
than the length of the instructions object minus one) is undefined.

Exceptions thrown by the interpreter 2

When the specification requires the interpreter to throw a particular exception, it is
described as follows:

“Error is thrown” means an exception with name |evt.ex.fr| is thrown with error
code kFramesErrerror.

“Interpreter error error is thrown” means an exception with name |evt.ex.fr.intrp|
is thrown with error code kFramesErrerror.

Name Contents

FUNC Current function object

PC Zero-based byte index in the instructions object of the
current instruction

SP Index of the most-recently-pushed value on the stack

LOCALS Current locals frame

RCVR Current receiver (for message sends)

IMPL Current implementor (for message sends)
Virtual machine specification 2-5

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 2

NewtonScript Bytecode Interpreter Specification
Any of the above “with data” means “;type.ref.frame” is appended to the exception
name, and the exception data is a frame with slots errorcode, containing error, and
data, containing the value data.

“Bad type exception error is thrown” means an exception with name
|evt.ex.fr.type;type.ref.frame| is thrown with error code kFramesErrerror,
and the exception data is a frame with slots errorcode, containing error, and data,
containing the offending value.

Global variables and functions 2
The interpreter looks up global variables and global functions by name. The mechanism
by which this lookup occurs is not defined. However, there are two global variables that
affect it.

The global variable vars is required to contain a frame, each of whose slots contains the
value of a global variable whose name is the slot tag. Changing one of these slots is
required to change the value of the corresponding global variable. Creating a new slot is
required to create a corresponding global variable. However, there may be valid global
variables that do not correspond to slots in this frame; that is, the frame may contain
only a subset of the global variables. The result of an assignment to the variable vars
itself is undefined.

The global variable functions is required to contain a frame, each of whose slots
contains the value of a global function whose name is the slot tag. Creating a new slot is
required to create a corresponding global function. There may be valid global functions
that do not correspond to slots in this frame. The result of an assignment to a slot of
functions, or an assignment to the variable functions itself, is undefined.

Function call and message send 2
Because several bytecodes share the same call and send operations with only minor
differences, the common features are documented here.

When a function call or message send occurs, there are arguments and other values
parameterizing the operation (receiver, function name, etc.) on the stack. The function
itself should leave a result on the stack; that is, the net result of the function should be a
“push”. However, the stack contents when the function is entered are not defined. The
values used by the call or send operation itself may be removed from the stack before or
after the function executes. Thus, a function cannot rely on the stack contents when it is
entered.

Function call 2

Calling a function works as follows:

1. If the target is not a function object, an exception is thrown. (The exception may vary
and is undefined.)
2-6 Virtual machine specification

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 2

NewtonScript Bytecode Interpreter Specification
2. If the number of arguments required by the function is not equal to the number of
arguments on the stack, interpreter error WrongNumberOfArgs is thrown.

3. The VM registers are saved (including the updated PC).

4. FUNC is set to the new function object.

5. PC is set to zero.

6. The function’s locals frame (FUNC.argFrame) is cloned, and LOCALS is set to the
cloned frame.

7. The argument slots of LOCALS are filled with the arguments from the stack. That is, the
arguments are put into the slots of LOCALS in left to right order, beginning with the
fourth slot of LOCALS.

8. RCVR is set to the value of the _parent slot of LOCALS.

9. IMPL is set to the value of the _implementor slot of LOCALS.

10. Execution resumes.

Message send 2

A message is sent to a frame (the receiver). The receiver and its inheritance paths are
searched for a slot matching the message name, and a slot is found in some frame (the
implementor, which is not necessarily the same object as the receiver). The object in that
slot is the method. The message send itself proceeds as follows:

1. If the method is not a function object, an exception is thrown. (The exception may
vary and is undefined.)

2. If the number of arguments required by the method is not equal to the number of
arguments on the stack, interpreter error WrongNumberOfArgs is thrown.

3. The VM registers are saved (including the updated PC).

4. FUNC is set to the method.

5. PC is set to zero.

6. RCVR is set to the receiver.

7. IMPL is set to the implementor.

8. The method’s locals frame (FUNC.argFrame) is cloned, and LOCALS is set to the
cloned frame.

9. LOCALS._parent is set to RCVR.

10. LOCALS._implementor is set to IMPL.

11. The argument slots of LOCALS are filled with the arguments from the stack. That is, the
arguments are put into the slots of LOCALS in left to right order, beginning with the
fourth slot of LOCALS.

12. Execution resumes.
Virtual machine specification 2-7

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 2

NewtonScript Bytecode Interpreter Specification
Inheritance 2
The interpreter implements inheritance by looking up variables, slots, and messages
along the NewtonScript inheritance paths. There are three lookup algorithms and two
assignment algorithms, which are presented here in NewtonScript form. Three frame
access functions are used:

■ HasSlot(frame, name) returns true if frame contains a slot with the tag name,
or nil if it does not.

■ GetSlot(frame, name) returns the value of the slot with tag name in frame. If
there is no such slot, it returns nil.

■ SetSlot(frame, name, value) sets the value of the slot with tag name in frame
to value. If there is no such slot, it creates one with that value.

The use of these functions is for pedagogical purposes only. There is no requirement that
these algorithms actually be implemented by calls to such functions.

Each of these algorithms may succeed (by reaching the point marked “success”) or fail
(by reaching the point marked “failure”). Operations that use the algorithms will refer to
their “success” or “failure”. If the algorithm fails, its return value is not important.

Proto Lookup 2

A “proto lookup” follows only the _proto inheritance path to find a value.

func ProtoLookup(start, name) begin

 local current := start;

 while current <> nil do begin

 if HasSlot(current, name) then

 return GetSlot(current, name); // success
 current := GetSlot(current, '_proto);

 end;

 // failure
end;

Lexical lookup 2

A “lexical lookup” is exactly the same as a “proto lookup”, except substituting the
symbol _nextArgFrame for the symbol _proto. It is referred to as the pseudo-function
LexicalLookup(start, name).

Full lookup 2

A “full lookup” follows both the _proto and _parent inheritance paths to find a value.

func FullLookup(start, name) begin

 local left := start;

 while left <> nil do begin

 local current := left;
2-8 Virtual machine specification

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 2

NewtonScript Bytecode Interpreter Specification
 while current <> nil do begin

 if HasSlot(current, name) then

 return GetSlot(current, name); // success
 current := GetSlot(current, '_proto);

 end;

 left := GetSlot(left, '_parent);

 end;

 // failure
end;

Assignment 2

An “assignment” finds the location of a variable by searching the _proto and _parent
inheritance paths. If a slot with the given name is found in a frame in the _parent
chain, the value of that slot is changed. If the slot is found in the _proto chain of a
frame in the _parent chain, a slot with the given name and value is created in the
_parent frame.

func Assignment(start, name, value) begin

 local left := start;

 while left <> nil do begin

 local current := left;

 while current <> nil do begin

 if HasSlot(current, name) then begin

 SetSlot(left, name, value); // success
 return;

 end;

 current := GetSlot(current, '_proto);

 end;

 left := GetSlot(left, '_parent);

 end;

 // failure
end;

Lexical assignment 2

A “lexical assignment” find the location of a lexical variable by searching the
_nextArgFrame chain and setting the value of the slot found.

func LexicalAssignment(start, name, value) begin

 local current := start;

 while current <> nil do begin

 if HasSlot(current, name) then begin

 SetSlot(current, name, value); // success
 return;
Virtual machine specification 2-9

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 2

NewtonScript Bytecode Interpreter Specification
 end;

 current := GetSlot(current, '_nextArgFrame);

 end;

 // failure
end;

Exception handling 2
The interpreter maintains a stack of exception handler contexts, each of which represents
the dynamic scope of a try/onexception statement. A context contains the saved
state of the virtual machine registers (except for PC) and the function call stack. It also
contains a mapping from exception names to PC values.

A context may be “used” or “unused”. Contexts are created in the “unused” state. When
a context is selected to catch an exception, it is set to the “used” state, and the exception
name and data are stored in the context.

The new-handlers instruction (see page 2-20) creates an exception handler context
containing the current VM state and pushes it on the handler stack. It takes exception
names and PC values from the value stack to produce the mapping saved in the
exception handler context.

The pop-handlers instruction (see page 2-13) removes the most recent context from
the handler stack.

When an exception is thrown, the handler stack is searched for unused contexts with
matching exception names.

If such a context is found, the following actions occur:

■ All more recent contexts are popped from the handler stack (that is, the matching
context becomes the top of the stack).

■ The context is marked “used”, and the exception name and data are stored in it.

■ The VM state is restored from the context

■ PC is set to the PC value in the context corresponding to the exception name.

■ Execution continues.

If no matching context is found, the effect is undefined.

The name and data of the “current” exception may be obtained by calling the global
function CurrentException. If there are no used contexts on the handler stack, its
result is nil. Otherwise, it returns the name and data of the most recent used context on
the stack.
2-10 Virtual machine specification

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 2

NewtonScript Bytecode Interpreter Specification

Structure of instructions 2
Each instruction in the bytecode stream is either one or three bytes long. An instruction
contains two fields, A and B.

■ The A field is the most significant five bits of the first byte of the instruction.

■ The B field has two formats, depending on the size of the value:
n If the value can be represented in three bits, it is stored in the least significant three

bits of the first byte. The instruction is one byte long.
n Otherwise, the least significant three bits of the first byte are set to all ones, and the

value is stored in the following two bytes, with the most-significant byte of the
value first. The instruction is three bytes long.

Depending on the instruction, the B field may be signed or unsigned. That is, a B field of
0xFFFF may be interpreted as -1 or as 65535.

▲ W A R N I N G

The interpreter in Newton in ROM versions prior to 2.0 incorrectly
interprets the B field values of all three-byte instructions as signed.

There are two kinds of instructions:

■ In simple instructions, the A field is fixed, and the B field gives the operation to be
performed.

■ In parameterized instructions the A-field gives the operation to be performed, and the
B-field is a parameter to the operation.

NOTE

A parameterized instruction may use the three-byte format even with
B-field values that would fit into three bits. This makes generating
backpatched branch instructions easier. Simple instructions must use the
one-byte format when possible.

Each instruction has a mnemonic name. The name is used only for documentation
purposes; it has no significance to the format.

Instruction definitions 2
Each instruction definition includes a line describing the values expected on the stack
when it is encountered and the values it leaves on the stack after it executes. For example:

arg1 arg2 -- arg1 ret1

one-byte

three-byte

A

1 1 1

B

A B
Virtual machine specification 2-11

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 2

NewtonScript Bytecode Interpreter Specification
This indicates that the instruction expects arg1 as STACK[SP–1] and arg2 as STACK[SP].
It will leave arg1 on the stack and push ret1. That is, on exit, STACK[SP–1] will be arg1
and STACK[SP] will be ret1. If the stack contents on entry are not relevant, the left side
will be empty. If all the items on the left side are popped from the stack, the right side
will be empty.

In an instruction description, “pushing X onto the stack” means, in pseudocode:

SP := SP + 1; STACK[SP] := X

“Popping X from the stack” means, in pseudocode:

X := STACK[SP]; SP := SP - 1

All instructions except branch, branch-if-true, and branch-if-false implicitly
increment PC by the size of the instruction.

▲ W A R N I N G

Any instruction not defined here is reserved for use by Apple and must
not occur. The behavior of all such instructions is undefined.

Simple instructions 2

All of the simple instructions have an A-field of zero. They are distinguished by the
B-field. All but one (pop-handlers) is a one-byte instruction.

pop (B = 0) 2

x --

Removes the top element from the stack.

The effect when the stack is empty is undefined.

dup (B = 1) 2

x -- x x

Duplicates the top element of the stack.

The effect when the stack is empty is undefined.

return (B = 2) 2

--

Returns from the current function. The VM registers are restored from the most recently
saved state, and execution continues. By convention, the value left in STACK[SP] is the
return value of the function.

The effect when no state has been saved is undefined.
2-12 Virtual machine specification

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 2

NewtonScript Bytecode Interpreter Specification
push-self (B = 3) 2

-- RCVR

Pushes RCVR onto the stack.

set-lex-scope (B = 4) 2

func -- closure

Pops a function object from the stack, constructs a closure from the function object, and
pushes the closure onto the stack.

A closure is a function object with saved values for the outer lexical environment, the
current receiver, and the current implementor. These values are saved in the locals frame
of the function object in the _nextArgFrame, _parent, and _implementor slots. The
original function object and its locals frame are cloned, and the values are filled in. In
pseudocode, the operation looks like:

fn := Clone(Pop());

af := Clone(fn.argFrame);

af._nextArgFrame := LOCALS;

af._parent := RCVR;

af._implementor := IMPL;

fn.argFrame := af;

Push(fn);

If func is not a CodeBlock, the behavior is undefined.

iter-next (B = 5) 2

iterator --

Pops a reference to an iterator from the stack and advances it to the next slot. See
“Iterators” on page 2-25.

If iterator is not an iterator object, the behavior is undefined.

iter-done (B = 6) 2

iterator -- done?

Pops a reference to an iterator from the stack. If iterator is exhausted, pushes true
onto the stack; otherwise, pushes nil onto the stack.

If iterator is not an iterator object, the behavior is undefined.

pop-handlers (B = 7) 2

--

Removes the most recent exception handler context.

See “Exception handling” on page 2-10 for more information on exception handlers.

If no exception handler context is in effect, the behavior is undefined.
Virtual machine specification 2-13

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 2

NewtonScript Bytecode Interpreter Specification
Parameterized instructions 2

Unless otherwise specified, the B field is interpreted as an unsigned integer.

push (A = 3) 2

-- literal

Pushes an element of the literals array (FUNC.literals). The B field is the zero-based
index in the literals array of the element to push.

If FUNC.literals is nil, the behavior is undefined. The effect of a B field value outside
the bounds of the literals array is undefined.

push-constant (A = 4, B is signed) 2

-- value

Pushes the B field onto the stack as a literal value.

The B field must be an immediate value (that is, the low-order bits must be 00 or 10), or
a magic pointer whose index is between 0 and 4095, inclusive. Otherwise, the effect is
undefined.

NOTE

The B field is interpreted as a signed value in this instruction.

call (A = 5) 2

arg1 arg2 ... argN name -- result

Calls a global function. The function arguments (if any) are on the stack in left-to-right
order, followed by a symbol giving the name of the function to call. The B field contains
the number of arguments on the stack.

The point at which the arguments and function name are removed from the stack is
undefined, but when control returns to the instruction following the call, they are gone.

1. The global function named by name is looked up. If there is no such function,
interpreter error UndefinedGlobalFunction is thrown with the unresolved name.

2. Function call proceeds as in “Function call” on page 2-6.

invoke (A = 6) 2

arg1 arg2 ... argN func -- result

Performs a function call. The function arguments (if any) are on the stack in left-to-right
order, followed by the function object to call. The B field contains the number of
arguments on the stack.

The point at which the arguments and function object are removed from the stack is
undefined, but when control returns to the instruction following the call, they are gone.

The function call itself is described in “Function call” on page 2-6.
2-14 Virtual machine specification

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 2

NewtonScript Bytecode Interpreter Specification
send (A = 7) 2

arg1 arg2 ... argN name receiver -- result

Performs a message send. The function arguments (if any) are on the stack in left-to-right
order, followed by the message name (a symbol), followed by the receiver. The B field
contains the number of arguments on the stack.

The point at which the arguments, message name, and receiver are removed from the
stack is undefined, but when control returns to the instruction following the send, they
are gone.

1. The method is looked up using FullLookup(receiver, name). If the lookup fails,
interpreter error UndefinedMethod is thrown with the unresolved name.

2. Message send proceeds as in “Message send” on page 2-7.

send-if-defined (A = 8) 2

arg1 arg2 ... argN name receiver -- result

Performs a conditional message send. The function arguments (if any) are on the stack in
left-to-right order, followed by the message name (a symbol), followed by the receiver.
The B field contains the number of arguments on the stack.

The point at which the arguments, message name, and receiver are removed from the
stack is undefined, but when control returns to the instruction following the send, they
are gone.

1. The method is looked up using FullLookup(receiver, name). If the lookup fails,
nil is pushed onto the stack (as result), and execution continues with the next
instruction.

2. If the lookup succeeds, message send proceeds as in “Message send” on page 2-7.

resend (A = 9) 2

arg1 arg2 ... argN name -- result

Performs an inherited message send. The function arguments (if any) are on the stack in
left-to-right order, followed by the message name (a symbol). The B field contains the
number of arguments on the stack.

The point at which the arguments and receiver are removed from the stack is undefined,
but when control returns to the instruction following the send, they are gone.

1. If IMPL has no _proto slot, interpreter error UndefinedMethod is thrown with the
unresolved name.

2. The method is looked up using ProtoLookup(IMPL._proto, name). If the lookup
fails, interpreter error UndefinedMethod is thrown with the unresolved name.

3. Message send proceeds as in “Message send” on page 2-7 using RCVR as the receiver.
Virtual machine specification 2-15

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 2

NewtonScript Bytecode Interpreter Specification
resend-if-defined (A = 10) 2

Performs a conditional inherited message send. The function arguments (if any) are on
the stack in left-to-right order, followed by the message name (a symbol). The B field
contains the number of arguments on the stack.

The point at which the arguments and receiver are removed from the stack is undefined,
but when control returns to the instruction following the send, they are gone.

1. If IMPL has no _proto slot, nil is pushed onto the stack (as result), and execution
continues with the next instruction.

2. The method is looked up using ProtoLookup(IMPL._proto, name). If the lookup
fails, nil is pushed onto the stack (as result), and execution continues with the next
instruction.

3. Message send proceeds as in “Message send” on page 2-7 using RCVR as the receiver.

branch (A = 11) 2

--

PC is set to the B field value.

branch-if-true (A = 12) 2

value --

A value is popped from the stack. If it is nil, execution continues with the next
instruction. Otherwise, PC is set to the B field value.

The effect when the stack is empty is undefined.

branch-if-false (A = 13) 2

value --

A value is popped from the stack. If it is nil, PC is set to the B field value. Otherwise,
execution continues with the next instruction.

The effect when the stack is empty is undefined.

find-var (A = 14) 2

-- value

Performs a variable lookup. The B field is the zero-based index in the literals array of a
symbol (here called name) naming the variable.

1. The symbol is looked up in the lexical environment using
LexicalLookup(LOCALS, name). If the lookup succeeds, the result is pushed onto
the stack and execution continues with the next instruction.

2. Otherwise, the symbol is looked up using FullLookup(RCVR, name). If the lookup
succeeds, the result is pushed onto the stack and execution continues with the next
instruction.

3. Otherwise, if there is a global variable called name, its value is returned.
2-16 Virtual machine specification

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 2

NewtonScript Bytecode Interpreter Specification
4. Otherwise, interpreter error UndefinedVariable is thrown with the name of the
unresolved variable.

If LITERALS is nil, or the B field is not a valid index into the literals array, or the element
of the literals array it references is not a symbol, the effect is undefined.

get-var (A = 15) 2

-- value

Gets a value from LOCALS. The B field is the zero-based index of a slot in LOCALS, whose
value is pushed on the stack.

The effect of a B field value outside the bounds of LOCALS is undefined.

make-frame (A = 16) 2

val1 val2 ... valN map -- frame

Makes a frame and fills in its slots using values from the stack. The B field contains the
number of slot values on the stack. The slot values are on the stack in index order,
followed by the map to use for the frame. The slot values and map are removed from the
stack, and a reference to the newly-allocated frame is pushed onto the stack.

The B field may contain a number less than the number of slots in the frame, in which
case the remaining slots at the end of the frame are set to nil.

For more information about frame maps, see

.

The effect is undefined if any of the following occur:

■ The B field value is greater than the number of slots in the frame.

■ There are fewer slot values on the stack than the B field specifies.

■ Map is not a valid frame map.

make-array (A = 17) 2

B = 0xFFFF: size class -- array
B < 0xFFFF: val1 val2 ... valN class -- array

Makes an array, and optionally fills in its slots using values from the stack.

The class for the array is popped from the stack. The rest of the operation depends on the
B field:

■ If the B field contains the value 0xFFFF, an integer size is popped from the stack. An
array of length size and class class is allocated, all of whose slots are nil, and a
reference to it is pushed onto the stack.

■ Otherwise, the B field contains the size of the array. An array of that size and class
class is allocated. The values for the array slots, on the stack in index order, are
copied into the slots of the array. The values are removed from the stack, and a
reference to the array is pushed onto the stack.

If there are not enough values on the stack, the effect is undefined.
Virtual machine specification 2-17

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 2

NewtonScript Bytecode Interpreter Specification

get-path (A = 18) 2

object pathExpr -- value

Retrieves the value corresponding to pathExpr in the frame or array object. The B
field may be zero or one.

1. The object and path are popped from the stack.

2. If object is nil, the operation depends on the B field.
n If the B field is zero, nil is pushed onto the stack, and execution continues with the

next instruction.
n If the B field is one, error PathFailed is thrown.

3. Otherwise, the the value corresponding to pathExpr in the frame or array object is
pushed onto the stack.

The value corresponding to a path expression is the value that would be found by doing
array and frame accesses corresponding to each element of the path expression. Integers
represent array accesses to the given array index; symbols represent frame accesses to
the given frame slot.

If the B field is neither zero nor one, the effect is undefined.

set-path (A = 19) 2

B = 0: object pathExpr value --
B = 1: object pathExpr value -- value

Sets the value corresponding to pathExpr in the frame or array object to value.The
B field may be zero or one.

The object, path, and value are popped from the stack. If the B field is one, the value is
pushed back onto the stack.

If the B field is neither zero nor one, the effect is undefined.

set-var (A = 20) 2

value --

Sets a slot in LOCALS. The B field is the zero-based index of a slot in LOCALS, whose value
is set to a value popped from the stack.

If the stack is empty, or the B field value is outside the bounds of LOCALS, the effect is
undefined.

find-and-set-var (A = 21) 2

value --

Performs a variable assignment. The B field is the zero-based index in the literals array of
a symbol (here called name) naming the variable.

1. The assignment is attempted in the lexical environment using
LexicalAssignment(LOCALS, name, value). If the lookup succeeds, execution
continues with the next instruction.
2-18 Virtual machine specification

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 2

NewtonScript Bytecode Interpreter Specification
2. Otherwise, the assignment is attempted using Assignment(RCVR, name, value).
If the lookup succeeds, execution continues with the next instruction.

3. Otherwise, if there is a global variable called name, its value is set to value.

4. Otherwise, a slot is added to LOCALS with the tag name and the value value.

If the B field is not a valid index into the literals array, or the element of the literals array
it references is not a symbol, or LITERALS is nil,the effect is undefined.

incr-var (A = 22) 2

addend -- addend value

Increments a slot of Locals. The B field is the zero-based index of a slot in LOCALS. The
value in this slot is added to the value in STACK[SP] and the result is stored into this slot.
The result is also pushed onto the stack.

If either the LOCALS slot value or addend is not an integer, bad type error
NotAnInteger is thrown with the bad value. If neither value is an integer, the value
which will be used is not defined.

If the stack is empty, or the B field value is outside the bounds of LOCALS, the effect is
undefined.

branch-if-loop-not-done (A = 23) 2

incr index limit --

Branch if a for loop is not done. The B field contains the PC of the loop start.

1. The three values are popped from the stack.

2. If any of incr, index, or limit is not an integer value, bad type error
NotAnInteger is thrown with the bad value. If multiple values are not integers, the
value which will be used is not defined.

3. If incr is zero, interpreter error ZeroForLoopIncr is thrown.

4. If incr > 0 and index <= limit, set PC to the B field value.

5. If incr < 0 and index >= limit, set PC to the B field value.

6. Otherwise, execution continues with the next instruction.

freq-func (A = 24) 2

arg1 arg2 ... argN -- result

Calls a primitive function. The B field contains the index of the primitive function to be
called. The primitive functions are described in the section “Primitive functions” on
page 2-20.

If the B field does not contain a valid primitive function index, or if the number of
arguments on the stack is not that expected by the primitive function, the effect is
undefined.
Virtual machine specification 2-19

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 2

NewtonScript Bytecode Interpreter Specification
new-handlers (A = 25) 2

sym1 pc1 sym2 pc2 ... symN pcN --

Sets up an exception handler context. The B field contains the number of exception
names matched by the handler context. Each name (a symbol) and the offset of the first
instruction of its handler (an integer) is on the stack. All these values are popped from
the stack, and the handler context is set up.

See “Exception handling” on page 2-10 for more information on exception handlers.

If there are fewer slot values on the stack than the B field specifies, or the values are
invalid, the effect is undefined.

Primitive functions 2
Some NewtonScript operations are not implemented directly as bytecode instructions.
Instead, they are defined as primitive functions.

A primitive function is an operation that is performed like a function call: its arguments
are pushed on the stack, and it pops them and pushes a result onto the stack. However, it
is not required to be implemented as a function call.

Some primitive functions have corresponding global functions that perform the same
operations. Redefining the global function that corresponds to a primitive function is not
required to alter the behavior of the primitive function.

Primitive functions are invoked by the freq-func instruction (see page 2-19). They are
selected by an index number in the B field of the instruction. They are presented here
grouped by functionality, not by index number.

Table 1-2 on page 2-27 lists the primitive functions by index number and gives their
corresponding global function names.

Arithmetic operations 2

The primitive arithmetic operations operate only on “numbers”; that is, integers or reals.
An argument of any other type causes the function to throw bad type error
kFramesErrNotANumber.

Unless otherwise specified, operations with integer arguments produce integer results.
Operations with real or mixed arguments produce real results.

add (index = 0) 2

num1 num2 -- result

Adds num1 and num2. If both arguments are integers, the result is an integer. Otherwise,
any integer argument is converted to a real, and the result is a real.

If both arguments are integers and their sum cannot be represented as an integer, the
result is an undefined but valid number.
2-20 Virtual machine specification

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 2

NewtonScript Bytecode Interpreter Specification
subtract (index = 1) 2

num1 num2 -- result

Subtracts num2 from num1. If both arguments are integers, the result is an integer.
Otherwise, any integer argument is converted to a real, and the result is a real.

If both arguments are integers and their difference cannot be represented as an integer,
the result is an undefined but valid number.

multiply (index = 7) 2

num1 num2 -- result

Multiplies num1 by num2. If both arguments are integers, the result is an integer.
Otherwise, any integer argument is converted to a real, and the result is a real.

If both arguments are integers and their product cannot be represented as an integer, the
result is an undefined but valid number.

divide (index = 8) 2

num1 num2 -- result

Divides num1 by num2.

■ If num2 is the integer zero, the exception |evt.ex.div0| is thrown.

■ If both arguments are integers, and num2 divides evenly into num1, the result is an
integer.

■ Otherwise, any integer argument is converted to a real, and the result is a real.

NOTE

If num2 is the real number 0.0, a normal floating-point division occurs.

div (index = 9) 2

int1 int2 -- result

Divides int1 by int2. If either argument is not an integer, bad type error
NotAnInteger is thrown with one of the bad arguments. The result is the integer
quotient, rounded towards zero.

Array/string functions 2

Some of the following functions may throw “out of bounds” errors. This means an
exception with name |evt.ex.fr;type.ref.frame| is thrown with error code
kFramesErrOutOfBounds, and the exception data is a frame with slots errorcode,
containing error, data, containing the array/string object, and index, containing the
offending index value.
Virtual machine specification 2-21

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 2

NewtonScript Bytecode Interpreter Specification
aref (index = 2) 2

object index -- element

Gets an element from an array or string.

■ If object is an array, the result is the value of the slot at zero-based offset index in
the array. If index is less than zero, or greater than or equal to the number of slots in
the array, an out of bounds error is thrown.

■ If object is a string, the result is the character at zero-based offset index in the
string. If index is less than zero, or greater than or equal to the number of characters in
the string, an out of bounds error is thrown.

■ If array is neither an array nor a string, bad type error ArrayOrString is thrown.

set-aref (index = 3) 2

object index element -- element

Sets an element of an array or string.

■ If object is an array, the slot at zero-based offset index is set to element. If index is
less than zero, or greater than or equal to the number of slots in the array, an out of
bounds error is thrown.

■ If object is a string, the character at zero-based offset index is set to element. If
index is less than zero, or greater than or equal to the number of characters in the
string, an out of bounds error is thrown. If element is not a character,
kFramesErrNotACharacter is thrown. Note that element must not be $\u0000 or
a character whose code is in the range 0xF700 to 0xF7FF, inclusive.

■ If array is neither an array nor a string, bad type error NotAnArrayOrString is
thrown.

new-iterator (index = 17) 2

object deeply -- iterator

Creates an iterator (see “Iterators” on page 2-25) for object. If object is a frame and
deeply is non-nil, the iterator will follow _proto links in object.

If object is not a frame or array, bad type error NotAFrameOrArray is thrown.

length (index = 18) 2

object -- length

Gets the length of the array, frame, or binary object object. This is the same as the
built-in function Length (see The NewtonScript Programming Language).

add-array-slot (index = 21) 2

array object -- object

Adds one slot, containing object, to the end of array. This is the same as the built-in
function AddArraySlot (see The NewtonScript Programming Language).
2-22 Virtual machine specification

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 2

NewtonScript Bytecode Interpreter Specification
Comparison functions 2

The comparison functions operate on integers, reals, characters, and strings. The
arguments to equals and not-equals may be of any type. The types of the arguments
to the ordered comparisons must be the same, except that integers and reals may be
mixed in any combination; in other cases an exception is thrown.

The result of all comparisons is either nil or true.

equals (index = 4) 2

obj1 obj2 -- result

Compare objects for identity or numeric equality.

■ If the arguments are numbers, compare their numeric values. (An integer-valued real
is equal to the corresponding integer.)

■ If the arguments are immediates, compare their values directly.

■ If the arguments are pointers, compare object identities.

not-equals (index = 6) 2

obj1 obj2 -- result

The opposite of equals. The result is nil when equals would be true, and vice versa.

less-than (index = 10) 2

obj1 obj2 -- result

greater-than (index = 11) 2

obj1 obj2 -- result

less-or-equal (index = 13) 2

obj1 obj2 -- result

greater-or-equal (index = 12) 2

obj1 obj2 -- result

Compare two values.

■ If both values are numbers, compare their numeric values.

■ If both values are characters, compare their character codes numerically,

■ If both values are strings, use a case- and diacritical-insensitive lexicographic ordering
to compare. Character codes between 32 and 126, inclusive, are compared numerically
by character code, after mapping lowercase letters (97–122) to their uppercase
equivalents.
Virtual machine specification 2-23

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 2

NewtonScript Bytecode Interpreter Specification
NOTE

Comparison of strings containing characters outside the range 32–126 is
implementation-dependent.

Logical operations 2

not (index = 5) 2

value -- result

Logical negation. If value is nil, result is true. Otherwise, result is nil.

bit-and (index = 14) 2

int1 int2 -- result

Bitwise logical AND of two integers. The result is an integer whose two’s-complement
representation is the bitwise logical AND of the two’s-complement representations of
int1 and int2.

If either argument is not an integer, the bad type exception NotAnInteger is thrown.

bit-or (index = 15) 2

int1 int2 -- result

Bitwise logical OR of two integers. The result is an integer whose two’s-complement
representation is the bitwise logical OR of the two’s-complement representations of
int1 and int2.

If either argument is not an integer, the bad type exception NotAnInteger is thrown.

bit-not (index = 16) 2

int -- result

Bitwise complement of an integer. The result is an integer whose two’s-complement
representation is the bitwise logical complement of the two’s-complement representation
of int.

If the argument is not an integer, the bad type exception NotAnInteger is thrown.

Miscellaneous 2

set-class (index = 20) 2

object class -- object

Sets the class of object to class. This is the same as the built-in function SetClass
(see The NewtonScript Programming Language).
2-24 Virtual machine specification

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 2

NewtonScript Bytecode Interpreter Specification
class-of (index = 24) 2

object -- class

Gets the class of object. This is the same as the built-in function ClassOf (see The
NewtonScript Programming Language).

clone (index = 19) 2

object -- clone

Clones object. This is the same as the built-in function Clone (see The NewtonScript
Programming Language).

stringer (index = 22) 2

array -- string

Converts each element of array to a string and returns the concatenation of those strings.
This is the same as the NewtonScript infix & operator (see The NewtonScript Programming
Language).

If the argument is not an array, an exception is thrown.

has-path (index = 23) 2

object pathExpr -- result

Returns true if there is a slot corresponding to the path expression pathExpr beginning
at object. See the get-path instruction on page 2-18.

Support objects 2

The virtual machine definition assumes the existence of certain support objects that must
be provided by the interpreter.

Iterators 2
NewtonScript’s foreach construct iterates through the slots of an array or frame. In the
interpreter, the state of a foreach loop is maintained by an iterator object.

Operation 2

An iterator is created on an array or frame (the “target”) by the new-iterator
primitive function (see page 2-22). It is advanced by the iter-next instruction (see
page 2-13), and tested for completion by the iter-done instruction (see page 2-13).

At any given time, an iterator is either “done” (finished iterating), or has a “current” slot.
The iter-next instruction changes the current slot to the next slot in the object. An
Support objects 2-25

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 2

NewtonScript Bytecode Interpreter Specification
iterator on an array visits the slots in order, starting at slot zero. An iterator on a frame
visits the slots in an arbitrary order. In either case, each slot is visited exactly once.

If the second argument to new-iterator is not nil, the iterator will follow _proto
links. All of the slots in each frame, including the _proto slot, appear together in the
iteration sequence, followed by all the slots of the frame referred to by the _proto slot,
and so forth. If object is not a frame, or the value of a _proto slot is not a frame, an
exception is thrown by new-iterator.

When all slots have been visited, iter-done returns true, and the result of
iter-next on that iterator is undefined.

Within a foreach loop (that is, while iter-next and iter-done may still be called on
the iterator), the current slot may be removed. Adding or removing any other slot will
cause an exception to be thrown. Modifying the value of any slot is permitted, however.

Access 2

The state of an iterator object is accessed using the aref bytecode. The following aref
indexes may be used:

NOTE

Although aref is used to access the state of the iterator, it is not
required be an actual array. No operations may be performed on an
iterator other than iter-next, iter-done, and aref with one of the
above indexes.

Reference 2

Table 1-1 Bytecodes by encoding

Bytecode encodings are given in octal for convenience. An “x” as the last digit indicates
that either a one- or three-byte encoding may be used, depending on the B field. Note
that the B field of some bytecodes is restricted; see the detailed descriptions.

0 The tag of the current slot

1 The value of the current slot

3 If the second argument to new-iterator is true, the total number of
slots that will be visited by the iterator

5 The number of slots in object

Encoding Name

000 pop

001 dup

002 return

003 push-self
2-26 Reference

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 2

NewtonScript Bytecode Interpreter Specification
Table 1-2 Bytecodes by name

004 set-lex-scope

005 iter-next

006 iter-done

007 000 001 pop-handlers

03x push

04x (B signed) push-constant

05x call

06x invoke

07x send

10x send-if-defined

11x resend

12x resend-if-defined

13x branch

14x branch-if-true

15x branch-if-false

16x find-var

17x get-var

20x make-frame

21x make-array

220/221 get-path

230/231 set-path

24x set-var

25x find-and-set-var

26x incr-var

27x branch-if-loop-not-done

30x freq-func

31x new-handlers

Name Encoding

branch 13x

branch-if-false 15x

branch-if-loop-not-done 27x

branch-if-true 14x

call 05x

Encoding Name
Reference 2-27

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 2

NewtonScript Bytecode Interpreter Specification
Table 1-3 Primitive functions by index

dup 001

find-and-set-var 25x

find-var 16x

freq-func 30x

get-path 220/221

get-var 17x

incr-var 26x

invoke 06x

iter-done 006

iter-next 005

make-array 21x

make-frame 20x

new-handlers 31x

pop 000

pop-handlers 007 000 001

push 03x

push-constant 04x (B signed)

push-self 003

resend 11x

resend-if-defined 12x

return 002

send 07x

send-if-defined 10x

set-lex-scope 004

set-path 230/231

set-var 24x

Index Name Global function name

0 add |+|

1 subtract |-|

2 aref aref

3 set-aref setAref

4 equals |=|

5 not |not|

Name Encoding
2-28 Reference

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 2

NewtonScript Bytecode Interpreter Specification
Table 1-4 Primitive functions by name

6 not-equals |<>|

7 multiply |*|

8 divide |/|

9 div |div|

10 less-than |<|

11 greater-than |>|

12 greater-or-equal |>=|

13 less-or-equal |<=|

14 bit-and BAnd

15 bit-or BOr

16 bit-not BNot

17 new-iterator newIterator

18 length Length

19 clone Clone

20 set-class SetClass

21 add-array-slot AddArraySlot

22 stringer Stringer

23 has-path none

24 class-of ClassOf

Name Index

add 0

add-array-slot 21

aref 2

bit-and 14

bit-not 16

bit-or 15

class-of 24

clone 19

div 9

divide 8

equals 4

greater-or-equal 12

greater-than 11

Index Name Global function name
Reference 2-29

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 2

NewtonScript Bytecode Interpreter Specification
has-path 23

length 18

less-or-equal 13

less-than 10

multiply 7

new-iterator 17

not 5

not-equals 6

set-aref 3

set-class 20

stringer 22

subtract 1

Name Index
2-30 Reference

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 3

Figure 2-0
Table 2-0
 Newton Load Package Protocol 3

This chapter describes the protocol used to transfer packages from a desktop computer
to a Newton device.

▲ W A R N I N G

The protocol described here is compatible with all existing Newton
ROMs. However, this specification may change without notice, and
Apple may render it incompatible in future Newton systems.

Protocol Overview 3

Newton communicates with the desktop machine by exchanging Newton event
commands. The general structure of these event commands is:

'newt'

'dock'

'aaaa' // The specific command

length // the length of the following command

data // data, if any

In the commands described in this chapter, all data is padded with nulls to 4 byte
boundaries. The length associated with each command is the length (in bytes) of the data
following the length field. The length does not include any padding that might be
added to the end of the command.
Protocol Overview 3-1

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 3

Newton Load Package Protocol
Loading a Package 3

The protocol necessary to load a package is very simple and is illustrated below.

Desktop Newton

<- kDRequestToDock

kDInitiateDocking ->

<- kDNewtonName

kDSetTimeout ->

<- kDResult

kDLoadPackage ->

<- kDResult

kDDisconnect ->

The following is a summary of all the commands that can be used and their four-letter
definition:

kDRequestToDock 'rtdk'

kDNewtonName 'name'

kDInitiateDocking 'dock'

kDSetTimeout 'stim'

kDResult 'dres'

kDLoadPackage 'lpkg'

kDDisconnect 'disc'

All commands begin with the sequence -- 'newt', 'dock' -- as shown in the general form
on the preceding page. For simplicity, that's not shown in the descriptions that follows.

Newton -> Desktop 3

kDRequestToDock

'rtdk'

length = 4

protocol version = 9

This command is sent to the desktop after the connection is established using AppleTalk,
serial, etc. (when the user taps the connect button). The protocol version is the version of
the messaging protocol that's being used and should always be set to the number 9 for
the version of the protocol defined here.
3-2 Loading a Package

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 3

Newton Load Package Protocol
kDNewtonName

'name'

length

version info

name

This command is sent in response to a correct kDInitiateDocking command from the
desktop. The version info includes things like machine type (for example, J1), ROM
version, and so on. There is no requirement to process this information: it can simply be
skipped when loading a package. To skip over this information, just read length bytes
from the connection and proceed to the next command. Here's a full description of
what's in the version info (each is a long):

length of version info in bytes

newtonUniqueID - a number uniquely identifying the newton

manufacturer id

machine type

rom version

rom stage

ram size

screen height

screen width

system update version

Newton object system version

signature of internal store

vertical screen resolution

horizontal screen resolution

screen depth

The version info is followed by the Newton owner’s name sent as a Unicode string
including the terminating zeros at the end. The string is padded to an even 4 bytes by
adding zeros as necessary (the padding bytes are not included in the length sent as part
of the command header).

Desktop-> Newton 3

kDInitiateDocking

'dock'

length = 4

session type = 4
Loading a Package 3-3

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 3

Newton Load Package Protocol
This command should be sent to the Newton in response to a kDRequestToDock
command. Session type should be 4 to load a package.

kDSetTimeout

'stim'

length = 4

timeout in seconds = 30

This command sets the timeout for the connection (the time the Newton will wait to
receive data befor it disconnects). This time is usually set to 30 seconds.

kDLoadPackage

'lpkg'

length

package data

This command will load a package into the Newton's default store. The package data
should be padded to an even multiple of 4 by adding zero bytes to the end of the
package data. The length should be the file length of the package file. The package data
itself should be the contents of the data fork of the package file.

kDDisconnect

'disc'

length = 0

This command is sent to the Newton when the load package operation is complete. Be
sure to give the Newton time to read the command before disconnecting to avoid an
error appearing on the Newton.

Desktop-> Newton or Newton<-Desktop 3

kDResult

'dres'

length = 4

error code

This command can be sent for two reasons: to indicate that the Newton or desktop can
proceed or to indicate an error. In the first case a 0 error code is sent to indicate that the
protocol can proceed. In the second case, the connection is dropped after the error is
processed.
3-4 Loading a Package

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 4

Figure 3-0
Table 3-0
 Newton Streamed Object Format 4

This chapter describes the format of streamed Newton objects—the format used when
streaming a DAG (Directed Acyclic Graph)* of objects over a communications link. A
streamed object is simply a stream of byte values.

You probably do not need to know anything about Newton Streamed Object Format
unless you need to write your own encoder or decoder.

This chapter assume you understand the basics of the Newton object system. See the
NewtonScript documentation for more information.

▲ W A R N I N G

The format described here is compatible with all existing Newton
ROMs. However, this specification may change without notice, and
Apple may render it incompatible in future Newton systems.

Introduction 4

Newton Streamed Object Format (NSOF) can describe a set of objects that are all
reachable from a “root” object. In practice, this generally means that NSOF describes a
NewtonScript frame along with everything that it contains.

Encoding is done by an encoder. An encoder processes an object and emits a streamed
object.

Decoding is done by a decoder. A decoder processes a streamed object and emits a copy
of the original object. In general, the format insures that the decoded set of objects is
identical to the original, including circular pointer relationships.

* “Directed Acyclic Graph” is a computer science term for a generalized data structure. It is used here to
make clear that the objects encoded in Newton Streamed Object Format do not have to be simple tree struc-
tures—they can be more generalized structures that may contain internal circular references.
Introduction 4-1

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 4

Newton Streamed Object Format
Streamed Object Format 4

An encoder processes an object and emits a streamed object.

The first byte of a coded object is a version byte that refers to the NSOF version. The
version number of the format described here is 2. (Future versions may not be backward
compatible.)

The rest of the coded object is a recursive description of the DAG of objects, beginning
with the root object.

The beginning of each object’s description is a tag byte that specifies the encoding type
used for the object.

The tag byte is followed an ID, called a precedent ID. The IDs are assigned
consecutively, starting with 0 for the root object, and are used by the kPrecedent tag to
generate backward pointer references to objects that have already been introduced. Note
that no object may be traversed more than once; any pointers to previously traversed
objects must be represented with kPrecedent. Immediate objects cannot be precedents;
all precedents are heap objects (binary objects, arrays, and frames).

Encoding 4

Table 3-2 shows how objects of different types are encoded in NOSF. Data types used in
Table 3-2 are as follows:

Table 3-2 shows a type in the left-hand column. The right hand column shows the
sequence of values used to represent an object of that type. The first value is a tag that
identifies the type. Following that tag is whatever is needed to specify the value or
values held in the object.

Table 3-1 Data Types Used in Table 3-2

Data Type Meaning

byte Unsigned byte

halfword Two bytes

long Signed long

xlong 0 ≤ value ≤ 254: unsigned byte
else: byte 0xFF followed by signed long

object This definition (recursive). Must be a kPrecedent clause if the
object has been assigned a precedent ID.
4-2 Streamed Object Format

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 4

Newton Streamed Object Format
Data types that are assigned precedent IDs are marked with asterisks (*).

Table 3-2 Encoding Table

Type Encoded Version

immediate kImmediate=0 (byte)

Immediate Ref (xlong)

See “Immediate Objects” on page 4-4

character kCharacter=1 (byte)

Character code (byte)

See “Special Case Types” on page 4-5

uniChar kUnicodeCharacter=2 (byte)

High byte of character code (byte)

Low byte of character code (byte)

See “Special Case Types” on page 4-5

binary* kBinaryObject=3 (byte)

Number of bytes of data (xlong)

Class (object)

Data

See “Binary Object Data” on page 4-5

array* kArray=4 (byte)

Number of slots (xlong)

Class (object)

Slot values in ascending order (objects)

plainArray* kPlainArray=5 (byte)

Number of slots (xlong)

Slot values in ascending order (objects)

See “Special Case Types” on page 4-5

frame* kFrame=6 (byte)

Number of slots (xlong)

Slot tags in ascending order (symbol objects)

Slot values in ascending order (objects)

symbol* kSymbol=7 (byte)

Number of characters in name (xlong)

Name (bytes)
Streamed Object Format 4-3

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 4

Newton Streamed Object Format
Immediate Objects 4

Immediate objects are represented by kImmediate followed by a Ref that gives the
value of the immediate. Table 3-3 shows

■ how an encoder can generate an encoded Ref from an immediate value

■ how a decoder can test a coded Ref to determine the type

string* kString=8 (byte)

Number of bytes in string (xlong)

String (halfwords)

See “Binary Object Data” and “Special Case Types” on
page 4-5

precedent kPrecedent=9 (byte)

Precedent ID (xlong)

nil kNIL=10 (byte)

See “Special Case Types” on page 4-5

smallRect* kSmallRect=11 (byte)

Top value (byte)

Left value (byte)

Bottom value (byte)

Right value (byte)

See “Special Case Types” on page 4-5

largeBinary* kLargeBinary=12 (byte)

Class (object)

Compressed? (non-zero means compressed) (byte)

Number of bytes of data (long)

Number of characters in compander name (long)

Number of byte of compander parameters (long)

Reserved (encode zero, ignore when decoding) (long)

Compander name (bytes)

Compander parameters (bytes)

Data (bytes)

See “Binary Object Data” on page 4-5

Table 3-2 Encoding Table

Type Encoded Version
4-4 Streamed Object Format

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 4

Newton Streamed Object Format
■ how a decoder can convert the Ref into the original immediate value.

The tests and conversions shown are C expressions.

Binary Object Data 4

All binary object data is encoded in Newton format. In particular, real numbers and
strings are encoded in big-endian byte order, and strings include a Unicode null
terminator.

Special Case Types 4

The formats character, uniChar, plainArray, string, nil, and smallRect are
special cases of more general types. Although each of these could be sent using the more
general type, encoders can use specifiers for these types in order to reduce the size of the
streamed data.

For example, suppose you have a rectangle specification like this:

aRect: {left: 10, top: 14, right: 40, bottom: 100}

This is a frame, and could be represented as a frame. The encoder would then need to
send the name of each slot along with the slot values. On the other hand, if the encoder
recognizes this is a rectangle specification, it can use the smallRect specifier. When
using smallRect, the encoder does not need to send the slot names, since every
smallRect has the same four slots.

Decoders of this format must properly decode these cases, but encoders do not have to
generate them.

Example of Newton Streamed Object Format 4

Here is an example of a NewtonScript frame.

Table 3-3 How to Construct the Ref of an Immediate

Type
How Encoders
Generate

How Decoders Can
Test How Decoders Extract

integer (v << 2)
[arithmetic shift]

(r & 3) == 0 (r >> 2)

character (v << 4) | 6 (r & 0xF) == 6 (r >> 4) & 0xFFFF

TRUE 0x1A r == 0x1A --

NIL 2 r == 2 --

magicptr (v << 2) | 3 (r & 3) == 3 --
Example of Newton Streamed Object Format 4-5

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 4

Newton Streamed Object Format
x := {name: "Walter Smith",

cats: 2,

bounds: {left: 10, top: 14, right: 40, bottom: 100},

right: $\u2022,

phones: ["408-996-1010", nil]};

x.phones[1] := SetClass("408-974-9094", 'faxPhone);

x.nameAgain := x.name;

The last two lines modify the frame in order to make the example more complex.

If you print this frame it prints as:

{ name: "Walter Smith",

cats: 2,

bounds: {left: 10, top: 14, right: 40, bottom: 100},

uchar: $\u2022,

phones: ["408-996-1010", <faxPhone, length 26>],

nameAgain: "Walter Smith"}

The streamed representation of this frame is:

02060607046E616D650704636174730706626F756E6473070575636861720706

70686F6E657307096E616D65416761696E081A00570061006C00740065007200

200053006D006900740068000000080B0E0A64280220220502081A0034003000

38002D003900390036002D00310030003100300000031A070866617850686F6E

65003400300038002D003900370034002D003900300039003400000907

This streamed representation translates as:

02—version number

06—kFrame [ID 0]

06—length, 6 slots

Slot tags:

07 (kSymbol) 04 (length of name) 6E616D65 ("name") [ID 1]

07 04 63617473 ("cats") [ID 2]

07 06 626F756E6473 ("bounds") [ID 3]

07 05 7563686172 ("uchar") [ID 4]

07 06 70686F6E6573 ("phones") [ID 5]

07 09 6E616D65416761696E ("nameAgain") [ID 6]

Slot values:

08—kString [ID 7]

1A—length, 26 bytes

00570061006C00740065007200200053006D0069007400680000 ("Walter Smith")

00—kImmediate

08—Ref of the integer 2

0B—kSmallRect [ID 8]
4-6 Example of Newton Streamed Object Format

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 4

Newton Streamed Object Format
0E (top=14) 0A (left=10) 64 (bottom=100) 28 (right=40)

02—kUnicodeCharacter

2022—The character code

05—kPlainArray [ID 9]

02—length, 2 slots

Slot values:

08—kString [ID 10]

1A—length, 26 bytes

003400300038002D003900390036002D00310030003100300000 ("408-996-1010")

03—kBinaryObject [ID 11]

1A—length, 26 bytes

Class:

07(kSymbol) 08 (length of name) 66617850686F6E65 ("faxPhone")[ID 12]

003400300038002D003900370034002D00390030003900340000 ("408-974-9094")

09—kPrecedent

07—ID 7 ("Walter Smith" object above)
Example of Newton Streamed Object Format 4-7

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

C H A P T E R 4

Newton Streamed Object Format
4-8 Example of Newton Streamed Object Format

Apple Computer, Inc. Confidential; Use subject to Newton Formats License Agreement.

	About This Document
	Newton Package Specification
	Introduction
	Scope of this document
	Data structure definitions

	The Package-Loading Process
	Loading
	Activating
	Deactivating
	Deleting

	Package Container Format
	Figure�1-1 Package layout
	Package Directory
	Fixed header
	Part entries
	Variable-length data area

	Relocation information
	Figure�1-2 Relocation information area
	Fixed header
	Relocation sets

	Part Data

	NewtonScript Object Parts
	Basic object format
	Refs
	Figure�1-3 Format of Refs

	Objects
	Object header
	Figure�1-4 An object header

	Object formats
	Figure�1-5 Object formats

	Frame maps
	Figure�1-6 Maps and frames

	Other object formats

	Part layout
	Figure�1-7 First object’s format

	Magic pointers

	NewtonScript Bytecode Interpreter Specification
	Introduction
	Virtual machine

	Function objects
	Locals frame
	Function frame

	Virtual machine specification
	Exceptions thrown by the interpreter
	Global variables and functions
	Function call and message send
	Function call
	Message send

	Inheritance
	Proto Lookup
	Lexical lookup
	Full lookup
	Assignment
	Lexical assignment

	Exception handling
	Structure of instructions
	Instruction definitions
	Simple instructions
	Parameterized instructions

	Primitive functions
	Arithmetic operations
	Array/string functions
	Comparison functions
	Logical operations
	Miscellaneous

	Support objects
	Iterators
	Operation
	Access

	Reference
	Table�1-1 Bytecodes by encoding
	Table�1-2 Bytecodes by name
	Table�1-3 Primitive functions by index
	Table�1-4 Primitive functions by name

	Newton Load Package Protocol
	Protocol Overview
	Loading a Package
	Newton -> Desktop
	Desktop-> Newton
	Desktop-> Newton or Newton<-Desktop

	Newton Streamed Object Format
	Introduction
	Streamed Object Format
	Encoding
	Table 3-1 Data Types Used in Table 3-2
	Table 3-2 Encoding Table
	Immediate Objects
	Table 3-3 How to Construct the Ref of an Immediate...

	Binary Object Data
	Special Case Types

	Example of Newton Streamed Object Format

