Newton 2.x OS Q&A's

© Copyright 1993-97 Apple Computer, Inc, All Rights Reserved

This document addresses Newton 2.x OS development issues that are not available in the currently
printed documentation. Please note that this information is subject to change as the Newton
technology and development environment evolve. If you have suggestions on how to improve the
Newton DTS Q&As (or want the Q&As in additional formats), please email J. Christopher Bell at
llama@apple.com. For the most recent version of the Q&As on the World Wide Web, check the
URL:

http:/ / devworld.apple.com/dev/newton/techinfo/NewtonQA.html

TABLE OF CONTENTS:

Application Design
How to Prevent an Application from Becoming a Backdrop (8/8/93)
The Newton Device Reboots When Turned On (8/9/93)
Optimizing Base View Functions (9/15/93)
Code Optimization (9/15/93)
Global Name Scope (6/7/94)
How to Prevent an Application From Opening (6/9/94)
How to Create a Polite Backdrop Application (1/19/96)
How to Respond to Changes From a Keyboard (2/6/96)
How to Test Your Application (2/7/96)
How To Make An Application the Backdrop (8/23/96)
Children of Exported Protos Are Missing (9/20/96)
How to Override the Standard Button Bar (11/22/96)
Creating Large Strings (1/3/97)
NEW: Strategy for Saving Modified Data (4/8/97)

Built-In Apps and System Data
There Is No ProtoFormulasPanel (2/5/96)
ProtoPrefsRollltem Undocumented Slots (2/6/96)
SetEntryAlarm Does Not Handle Events (2/6/96)
How to Avoid CardFile Extensions "Still needs the card" (5/9/96)
How to Find Distance Between Two Points on the Earth (6/7/96)
Avoiding Query Bug in GetExtralcons Call (8/2/96)
How to Get Labels for Custom Names Fields (8/13/96)
How to Add Confidential Owner Data (10/1/96)
Adding Notes to Closed Notes Application (1/14/97)
TapAction Slot Requires Text Slot to be Present (1/15/97)
NEW: Getting the Current Set of Multi-User Names (3/17/97)

Controls and Other Protos

How to Set the Letter in AZTab Protos (3/26/96)
Return Value of ProtoSoupOverview's Hitltem Message (1/6/97)
NEW: Don't Use ROM_UpArrowBitmap (3/28/97)

Data Storage (Soups)

FrameDirty is Deep, But Can Be Fooled (8/19/94)

Limits on Soup Entry Size (2/12/96)

Choosing EntryFlushXMit and EntryChangeXMit (4/17/96)

Why Xmit Functions Seem to Leak Memory (10/31/96)

Limit on Soup Name Length (12/10/96)

How to Use Begin and End Symbols with WhichEnd (1/8/97)
EntryChange on Modified Tags Array Throws -48022 (1/15/97)
NEW: How to Avoid Resets When Using VBOs (2/27/97)

Desktop Connectivity (DILs)
Differences between MNP, Modem, Modem-MNP, and Real Modems (2/5/96)
CDPipelnit Returning -28102 on MacOS Computers (2/13/96)
Getting Serial Port Names on MacOS Computers (2/13/96)
Corruption of Some Binary Objects (5/13/96)
Error -28801 or -28706 from FDget (5/13/96)
Using CDPipeListen Asynchronously in Windows Applications (7/15/96)
Unicode Strings and Memory Buffers (8/26/96)

Digital Books
BookMaker Page Limitations? (11/19/93)

Drawing and Graphics
Drawing Text on a Slanted Baseline (9/15/93)
LCD Contrast and Grey Texture Drawing (11/10/93)
Destination Rectangles and ScaleShape (3/11/94)
How to Rotate Bitmaps Left (3/5/96)
Newton Bitmap Formats (5/14/96)
Difference Between LockScreen and RefreshViews (1/15/97)
Drawing White Text on a Filled Background (1/15/97)
Interaction Between Transfer Modes and Gray Patterns (1/15/97)
NEW: Limitations of GrayShrink (3/4/97)
NEW: Limitations of MungeBitmap (4/3/97)

Endpoints & Comm Tools
What is Error Code -18003 (3/8/94)
Newton Remote Control IR (Infra-red) APl (6/9/94)
Communications With No Terminating Conditions (6/9/94)
What Really Happens During Instantiate & Connect (6/14/94)
Unicode-ASCIl Translation Issues (6/16/94)
How To Specify No Connect/Listen Options (2/1/96)
Why Synchronous Comms Are Evil (2/1/96)
Maximum Speeds with the Serial Port (9/19/96)
XON/XOFF Software Flow Control Options Correction (9/19/96)
Why Are User Modem Settings Ingored (1/15/97)
Handling a -36006 Error When Disconnecting (1/17/97)
InputSpec Input Form ‘Frame or 'Binary Buffer Bug (1/22/97)
NEW: How to Debug Communication Endpoint Code (3/21/97)
NEW: XOn/XOff Software Flow Control Problem (4/3/97)
CHANGED: Sharp IR Protocol (4/9/97)

Hardware & OS

IR Port Hardware Specs (6/15/94)

Serial Cable Specs (8/9/94)

IR Hardware Info (9/6/94)

How Much Power Can a PCMCIA Card Draw (3/31/95)
Do-it-Yourself Package Installation (8/26/96)

CHANGED: Serial Port Hardware Specs (4/9/97)

Localization

StringToDateFrame & StringToTime Don't Use Seconds (5/9/96)
NEW: How GetDateStringSpec Uses Its Element Array (3/31/97)

Miscellaneous

Unicode Character Information (9/15/93)
Current Versions of MessagePad Devices (5/15/96)
NEW: Using the Icon Editor in NTK 1.6.4 (4/18/97)

NewtApp

Creating Preferences in a NewtApp-based Application (1/31/96)
Creating an About Slip in a NewtApp-based Application (1/31/96)
NewtSoup FillNewSoup Uses Only Internal Store (2/5/96)
Setting the User Visible Name With NewtSoup (2/6/96)

How to Control Sort Order in NewtApp (5/10/96)

How to Avoid NewtApp "Please insert the card" errors (5/10/96)
Customizing Filters with Labelled Input Lines (9/4/96)
Dynamically Changing the Height of Stationery (11/19/96)

Using Custom Help Books in a NewtApp-based Application (12/2/96)
Creating a Large newtEditView/newtROEditView (12/2/96)

How to Use ForceNewEntry with NewtApp (12/2/96)

How to Programatically Open the Header Slip (1/3/97)
Programatically Changing the Default ViewDef (1/3/97)

How to Properly Declare NewtApp Views (1/6/97)

How to Create Custom Overviews with NewtApp (1/8/97)

How to Store Prefs in a NewtApp-based Application (1/17/97)
NEW: A CheckAll Button for NewtApp Overviews (3/4/97)
CHANGED: Creating a Simple NewtApp (4/7/97)

Newton C++ Tools
NEW: Packed Structures in C++ Tools (2/28/97)

Newton ToolKit

NTK, Picture Slots and ROM PICTs (12/19/93)

Recognition Problems with the Inspector Window Open (3/8/94)
Accessing Views Between Layout Windows (6/7/94)

Dangers of StrCompare, StrEqual at Compile Time (6/9/94)
Profiler and Frames of Functions (7/10/95)

NTK 1.6 Heap/Partition Memory lIssues (11/24/95)

NTK Search and Memory Hoarding (11/24/95)

NTK Stack Overflow During Compilation (11/24/95)

Unit Import/Export and Interpackage References (11/25/95)
Store parts and PowerPC-native NTK (5/15/96)

Using Strings as Hex Data and Windows NTK (12/10/96)

NewtonScript

Nested Frames and Inheritance (10/9/93)

Symbol Hacking (11/11/93)

Check for Application Base View Slots (3/6/94)

Performance of Exceptions vs Return Codes (6/9/94)
NewtonScript Object Sizes (6/30/94)

Symbols vs Path Expressions and Equality (7/11/94)
Function Size and "Closed Over" Environment (7/18/94)
TrueSize Incorrect for Soup Entries (2/6/96)

NEW: Floating Point Numbers Are Approximations (3/28/97)
NEW: Real Numbers in NewtonScript (3/28/97)

Pickers, Popups and Overviews

Determining Which ProtoSoupOverview Item Is Hit (2/5/96)
Displaying the ProtoSoupOverview Vertical Divider (2/5/96)
Validation and Editing in ProtoListPicker (4/1/96)

Picker List is Too Short (4/29/96)

Tabs Do Not Work With ProtoTextList (5/8/96)

How to Avoid Problems with ProtoNumberPicker (8/23/96)
Single Selection in ProtoListPicker-based Views (9/20/96)
How to Change Font or LineHeight in ProtoListPicker (9/20/96)
How to Preselect Items in ProtoListPicker (9/20/96)
ProtoDigit Requires a DigitBase View (9/24/96)

How to Get ProtoSoupOverview Selections (10/3/96)
Dynamically Adding to ProtoTextList Confuses Scrolling (1/15/97)

Recognition
Custom Recognizers (2/8/96)
How to Save and Restore Recognition Settings (4/9/96)
CHANGED: Opening the Corrector Window (3/17/97)

Routing
Printing Resolution 72DPI/300DPI (2/8/94)
Not all Drawing Modes Work with a PostScript Printer (3/8/94)
PICT Printing Limitations (6/9/94)
Printing Fonts with a PostScript Printer (7/26/94)
Printing Does Not Have Access to My Application Slots (11/27/95)
How to Open the Call Slip or Other Route Slips (12/19/95)
Routing Multiple Items (5/15/96)
When to Call Inherited ProtoPrintFormat ViewSetupFormScript (1/6/97)
Limitations with NewtOverview Data Class (1/8/97)

Sound
Finding and Adding Alert Sounds (1/23/97)

Stationery
Limits on Stationery Popups (4/30/96)
Properly Registering a ViewDef (1/3/97)

System Services, Find, and Filing

Preventing Selections in the Find Overview (2/5/96)

Creating Custom Finders (2/5/96)

How to Interpret Return Value of BatteryStatus (5/6/96)

How to Create Application-specific Folders (5/14/96)

Changing the ProtoStatusButton's Text in ProtoStatusTemplate (1/15/97)

Text and Ink Input and Display

ProtoPhoneExpando Bug in Setupl Method (2/6/96)

Pictures in clEditViews (2/6/96)

Horizontal Scrolling, Clipping, and Text Views (2/7/96)

How to Intercept Keyboard Events (5/6/96)

How to Keep Multiple Keyboards Open (8/30/96)

Adding a Local Keyboard to a ProtoKeyboardButton-based Button (1/14/97)
Getting Digital Ink to the Desktop (1/17/97)

CHANGED: Constraints on Keyboards Sizing to the View (4/7/97)

Transports

Adding Child Views to a ProtoTransportHeader-based View (1/19/96)

How to Omit Default Transport Preference Views (5/6/96)

How to Stop ProtoAddressPicker Memory (9/20/96)

ReceiveRequest Requests Incorrect After Using RemoveTempltems (10/1/96)
Filing Sent Entries in the Out Box (1/14/97)

Documentation on the InboxFiling Preference (1/15/97)

Utility Functions
What Happened to FormattedNumberStr (2/12/96)
Backlight APl (4/19/96)
Unusual Sort Order/Case Sensitivity in Swedish Locale (1/16/97)
NEW: Time Zones, GMT, Daylight Savings, and Newton Time (3/4/97)
NEW: Square Root of Negative Number Bug (3/4/97)
NEW: Making Use of the Serial Number Chip (4/3/97)
NEW: Programmatically Cancelling a Confirm Slip (4/3/97)

Views

How to Save the Contents of clEditView (10/4/93)

Adding Editable Text to clEditViews (6/9/94)

TieViews and Untying Them (6/9/94)

Immediate Children of the Root View Are Special (11/17/94)
ViewldleScripts and clParagraphViews (8/1/95)

FilterDialog and ModalDialog Limitations (2/5/96)

Using Proportional View Alignment Correctly (6/20/96)

Drag and Drop Caches the Background Bitmap (7/15/96)

NEW: Default and Close Keys in Confirm Slips (2/28/97)

NEW: Screen Rotation and Linked Views or BuildContext Slips (3/10/97)
NEW: How to Get Data From a ProtoTXView's Externalized Data (4/3/97)
NEW: Extracting All Text from a ProtoTXView Object (4/3/97)

Application Design

How to Prevent an Application from Becoming a Backdrop (8/8/93)

Q: Is there a way an application can request not to be a backdrop application?

A: Yes, adding a non-ni | ' noBackdr op slot to the base view will stop an application from
becoming a backdrop application.

The Newton Device Reboots When Turned On (8/9/93)

Q: My application has a really tight loop which can take more than a dozen seconds to finish.
If the user turns off the Newton while my application is running, nothing happens at first,
but finally the Newton turns off. The Newton device reboots when turned on. Why?

A: The reboot is happening because of a design goal. When the Newton OS learns the user
wants to do a power off, the OS checks with the running application and says "Please get
ready to shut down." If there is no response within about ten seconds the OS assumes that
the process could be in an infinite loop. Since the user wants to turn off the Newton device,
the OS terminates the application. When powering back up, there is no real clean state to
return to, so the OS causes a reboot.

To work around this problem break up long processes so they can run in an
vi ew dl eScri pt. In general, applications should release the CPU now and then so the
OS can do clean up operations.

Optimizing Base View Functions (9/15/93)

Q: I've got this really tight loop that executes a "global" function. The function isn't reall
& yug p & Y
global, it's defined in my base view and the lookup time to find it slows down my code. Is
there anything I can do to optimize it?

A: If the function does not use inheritance or "sel f ", you can speed things up by doing the
lookup explicitly once before executing the loop, and using the call statement to execute the

function within the body of the loop.

Here's some code you can try inside the Inspector window:

f1 := {myFn: func() 42};
f2 := { _parent: fl};
f3 :={ _parent: f2};
f4a := {_parent: f3};
f5 := {_parent: f4};

f5.testl := func ()

for i:=1 to 2000 do call myFn with ();
f5.test2 := func() begin
local fn := nyFn;
for i:=1 to 2000 do call fn with ();
end

/* executes with a noticeable delay */
f5:test1();

/* executes noticeably faster */
f5:test2();

Use this technique only for functions that don't use inheritance or the self keyword.

Note for MacOS programmers: this trick is analogous to the MacOS programming technique
of using Get Tr apAddr ess to get a trap's real address and calling it directly to avoid the
overhead of trap dispatch.

Code Optimization (9/15/93)
Q: Does the compiler in the Newton Toolkit reorder expressions or fold floating point
constants? Can the order of evaluation be forced (as with ANSI C)?

A: The current version of the compiler doesn't do any serious optimization, such as eliminating
subexpressions, or reordering functions; however, this may change in future products. (Note:
NTK 1.6 added constant folding, so for example 2+3 will be replaced with 5 by the
compiler.) In the meantime, you need to write your code as clearly as possible without
relying too heavily on the ordering of functions inside expressions.

The current version of the NTK compiler dead-strips conditional statements from your
application code if the boolean expression is a simple constant. This feature allows you to
compile your code conditionally.

For example, if you define a kDebugMbde constant in your project and have in your
application a statement conditioned by the value of kDebugMode, the NTK compiler
removes the entire if/ then statement from your application code when the value of
kDebugMbde is NIL.

const ant kDebughMbde : = true; /1 define in Project Data
i f kDebugMbde then Print(...); /1 in application code

When you change the value of the kDebugMbde constant to NIL, then the compiler strips
out the entire if/then statement.

Global Name Scope (6/7/94)

Q: What is the scope of global variables and functions?

A: In NewtonScript, global functions and variables are true globals. This means that if you
create global functions and global variables, you might get name clashes with other
possible globals. As this system is dynamic, you can't do any pre-testing of existing global
names.

Here are two recommended solutions in order to avoid name space problems:

Use your signature in any slot you create that is outside of the domain of your own
application.

Unless you really want a true global function or variable, place the variable or function
inside your base view template. You are actually able to call this function or access this
variable from other applications, because the base view is declared to the root level.

If you really need to access the function or variable from a view that is not a descendent of

your base view (like a floater that is a child of the root view), you might do something
like:

if getroot().|MBaseView. ySIG then
begi n
getroot ().| MyBaseVi ew. MySI F : Test Thi sVi ew() ;
local s := getroot().|MBaseView M/SI G . Bl ahSi ze;
end;

How to Prevent an Application From Opening (6/9/94)

Q:

A:

I do not want my application to open sometimes, for example because the screen size is too
small, or because the Newton OS version is wrong. What's the best way to prevent it?

Check for whatever constraints or requirements you need early, if not in the

i nstal | Scri pt, then in the vi ewSet upFor nScr i pt for the application's base view. In
your case, you can do some math on the frame returned from Get AppPar ans to see if the
screen is large enough to support your application.

If you do not want the application to open, do the following:
e Call Not i fy to tell the user why your application cannot run.
* Set the base view's vi ewBounds so it does not appear, use
Rel Bounds(-10, -10, 0, 0) so the view will be off-screen.
* Possibly set (and check) a flag so expensive startup things do not happen.
* Possibly set the base view's vi ewChi | dren and st epChi | dren slots to NIL.
e call AddDef erredSend(sel f, 'd ose, nil) toclose the view.

How to Create a Polite Backdrop Application (1/19/96)

Q:

A:

How do I get backdrop behavior in my application?

Backdrop behavior is given to you for free. If your applications close box is based on

pr ot oCl oseBox or protoLargeCl oseBox then your close box will automatically hide
itself if your application is the backdrop application. If you also use newt St at usBar as
your status bar proto, the appropriate buttons will shift to fill the gap left by the missing
close box. Note that you do not have to use the NewtApp framework to use the

newt St at usBar proto.

The system will automatically override the Ol ose and H de methods so your
application cannot be closed.

If you need to know which application is the backdrop application, you can find the
appSymbol of the current backdrop app with Get User Confi g(' bl essedApp) .

Here are some tips on being a polite backdrop application:

* Your application should be full-screen. (Set "Styles" as the backdrop to see why.)

* A polite backdrop application will also add the registered auxiliary buttons to its status
bar. See the "Using Auxiliary Buttons" in the Newton Programmers Guide (Chapter 18.)

How to Respond to Changes From a Keyboard (2/6/96)

Q: Iopen a custom keyboard to edit my view. How can I tell that the keyboard has been closed

A:

so that I can process the potentially modified contents of the view?

The vi ewChangedScri pt for the view will be called each time the user does something
to modify the view. For keyboards, this means the script is called each time the user taps a
key. This is the only notification that is provided to indicate the view contents have
changed.

There are no hooks you can use to tell you when standard keyboards have closed. If you
implement your own keyboard, you could provide avi ewQui t Scri pt or other custom code
to explicitly notify the target that the keyboard is going away, but we do not recommend
this. (There may be a hardware keyboard attached, a system keyboard may be open, or the
user may be writing into your view. It is a mistake to assume that the only way to modify
your view is through your own keyboard.)

If the processing you need to do is lengthy and would interfere with normal typing on the
keyboard, you can arrange it so the processing won't start for a few seconds. This usually
gives the user time to type another key, which can then further delay the processing.

To make this "watchdog timer" happen, use the idle mechanism as your timer. Put the code
to process the changes in the vi ewl dl eScri pt (or call it from the vi ewl dl eScri pt.) In

the vi enChangedScri pt, if the' t ext slot has changed, use : Set upl dl e(<del ay>) to

arrange for the vi ewl dl eScri pt to be called in a little while.

If : Set upl dl e(<del ay>) happens again before the first delay goes by (perhaps because
the user typed another key,) the idle script will be called after the new delay. The older

one is ignored. Set upl dl e resets the timer each time it's called.

Don't forget to have the vi ewl dl eScri pt return NI L so it won't be called repeatedly.

How to Test Your Application (2/7/96)

Q:

A:

Before I ship my application, what should I test?

Although there is no complete answer, the following is a quick outline of things that should
be tested to ensure compatibility with the Newton OS. Items that are OS or Locale specific
are noted. Also note that this list only covers current Apple MessagePad devices.

This is something to help you think of other areas to test. Covering the areas in this list
should improve the stability of your application, but is not guaranteed to make it stable
and fool-proof.

This list does not cover the functionality of the application itself. That is, it is not a test
plan for your application.

1. Versions (Latest supported system updates)
See Current versions of MessagePad devices in the Misc. Q&A

2. Basic Functional Testing
2.1. Launch and use app from internal RAM, memory card, locked memory card, in rotated
mode

3. Data Manipulation

3.1. Create and store data in internal RAM

3.2. Create and store data to memory card

3.3. Delete data from internal RAM

3.4. Delete data from memory card

3.5. Move data from internal RAM to memory card and vice versa

3.6. Duplicate data

3.7. Find data with app frontmost

3.8. Find data in app using Find All from paperroll

3.9. Find data in all editable fields

3.10. Check the app name in the Find slip when "Selected" is checked, and check that the
app name is correct for the radio button in the Find slip

3.11. If the app implements custom find, make sure other types of find (selected and
everywhere) still work.

3.12. Select and Copy data to and from clipboard

3.13. Backup to memory card and restore to different Newton device. Verify that data is
intact.

3.14. Backup via NBU and restore to different Newton device. Verify that data is intact.
3.15. File data into folders (if supported.)

4. Communications

4.1. Print data to serial printer and network printer
4.2. Fax data

4.3. Beam data to another 2.x Newton device

4.4. Beam data to a 1.x Newton

4.5. Backup and restore data and app to memory card
4.6. Backup and restore data and app with NBU

5. Exception Testing (all of the following should cause exceptions)

5.1. Create new data to locked memory card

5.2. Delete data from locked memory card

5.3. Move data from internal memory to locked card

5.4. Beam data to a Newton device that does not have the expected application

5.5. With application running from memory card, unlock card with application open.
5.6. With application installed on memory card, unlock card with application closed.
5.7. Install application on memory card, run application, create data, close application,
remove memory card.

5.8. Turn power off while application is running (PowerOff handler?)

5.9. Attempt to create new data with store memory full.

5.10. Run application with low frames heap (us HeapShow to reserve memory)

5.11. If appropriate, run application with low system heap.

6. Misc.

6.1. Does application work if soup is entirely deleted from Storage folder in Extras?

6.2. Delete application. Does any part stay behind? (icons? menus? etc.)

6.3. Check store memory and frames heap, install application, check store memory and
frames heap. Do this several times and check for consistency

6.4. Do 6.3. and also check store and frames memory after removing application. Is all/most
of the memory restored?

6.5. Check frames heap. Launch & use application. Check heap. Close application. Check
heap.

6.6. Does the application add anything to the Preferences App?

6.7. Does the application add Prefs and Help to the "i" icon?

6.8. Does the application add anything to Assist, How Do I?

6.9. Launch with pager card installed

6.10. Check layout issues on MP100 vs. MP110 screen sizes (if application runs in 1.x.)

6.11. If multiple applications are bundled together, open all at the same time, check to see
that the applications together aren't using too much frames heap.

6.12. Open, use, and close the application many times. Check frames heap afterward to
check for leaks.

6.13. If application has multiple components and components can be removed separately,
verify that application does the right thing when components are missing.

6.14. Test application immediately after cold resets and warm resets.

7. Compatibility

7.1. After application is installed and run, do the built-in applications work:

Names, Dates, To Do List, Connection, InBox, OutBox, Calls, Calculator, Formulas, Time
Zones, Clock, Styles, Help, Prefs, Owner Info, Setup, Writing Practice.

7.2. If the application can be the backdrop (this is the default case)

7.2.1 Do the built-in applications continue to work? The list is as in 7.1. and Extras.
7.2.2 Do printing and faxing work?

7.2.3 Run through the other tests in this document with your application as backdrop.
7.3. If the application can operate in the rotated mode

7.3.1. Perform all tests with the application in rotated mode as well.

7.3.2. Check that screen layouts look correct.

How To Make An Application the Backdrop (8/23/96)

Q: Is there a way to programmatically change the backdrop application?

A: Yes, but only if the "new" backdrop application is one of your applications. Do not set
another application to be the backdrop application. Get Root () : Bl essApp(appSynbol)
will close the current backdrop application and open the new backdrop application if
necessary. Note that appSynbol must be a valid application symbol of a current installed
and active application. Bl essApp does NOT verify that an application can become the
backdrop (for instance, it doesn't check the * noBackdr op flag for an application). For this
reason, Bl essApp must only be used on your own applications. See the Newton DTS Q&A,
"How to Prevent an Application from Becoming a Backdrop" for more information about the
' noBackdr op flag.

Do not call Bl essApp from within a part's i nstal | Scri pt orrenpveScri pt.If you
want to do something like this, use a delayed call to use Bl essApp.

Children of Exported Protos Are Missing (9/20/96)

Q: T'have a template that is based on a user proto imported by my package. When the view
based on my template opens, none of the exported proto's children show up. What is going
on?

A: When you create children of templates in Newton Toolkit, they are collected in the
st epChi | dr en slot of the base view of the template file. If both the exported and
importing template have children, they will both have a st epChi | dr en slot. The result
is that the st epChi | dr en slot of the importing prototemplate is masking the one in the
exported proto. The instantiated view does not collect all the children from the entire proto
chain (though NTK does do this at compile time for user proto templates).

The solution for exported user protos with st epChi | dr en is to add a
vi ewSet upChi | drenScri pt to either your exported proto template or the importer that
collects all of the st epChi | dr en into a runtime st epChi | dr en array.

/1 AFTER setting up stepChildren, views which "inport" this proto
/1 nmust call inherited: ?viewSetupChildrenScript();
exporter.viewSet upChil drenScript := func()

begi n
/1 get the current value of the "extra" kids ...unless
/1 the inporter added NO kids, in which case, these are OURS
| ocal extraKids := stepChildren
local items : = clone(extrakKids);
 ocal kids;
| ocal whichFranme : = self;

whi | e (whi chFranme) do
begi n
/1 get kids, but NOT using inheritance
kids := Get Sl ot (whichFrame, 'stepChildren);

/1 copy any extra stepChildren (but if NO extra kids
/] are defined, don't copy twicel)
if kids and kids <> extrakKids then

ArrayMunger (items, 0, 0, kids, O, nil);

/1 go deeper into the proto chain (or set whichFrame to nil)
whi chFrane : = whi chFrane. proto
end;

stepChildren := itens;
end;

Note that you will have similar problems with declared children. If you have declared
children you will also need to collect the st epAl | ocat eCont ext slot.

How to Override the Standard Button Bar (11/22/96)

Q:

A:

What's the proper way to override the button bar, especially to cover up the buttons on the
Newton OS 2.1 devices?

We don't recommend that typical applications obscure, cover up, or otherwise modify the
standard button bar. From a user interface standpoint, it's a bad idea, because it can make
the unit look unfamiliar or (in extreme cases) unusable. Some applications, typically those
created for vertical markets, are designed to "take over" the interface, in which case it
may be permissible to cover or disable the button bar.

Get Root (). buttons. soft will be non-ni | if there is a "soft" button bar, that is, the
button bar is located on the drawable screen. GetRoot():LocalBox() returns the rectangle
that encloses the screen and the tablet. Get AppPar ans () returns information about the
useful area of the screen, excluding the soft or hard button bar. Used together, this
information will allow you to implement any combination of button bar disabling and / or
button bar obscuring.

(Some earlier documentation mentioned a button bar API called Ki | | St dBut t onBar . That
API is designed for use when you want to actually remove the button bar so you can replace
it - probably with a floating slip. It is a fairly expensive call and does a lot of things you
don't need if all you want to do is take over the screen. We recommend avoiding that call if
possible.)

If the goal is simply to maximize the visible area of the base view, then the button bar
should be obscured only for devices with a soft button bar (for instance, a MessagePad 2000).
On devices with a "hard" button bar (for instance, a MessagePad 130), the root view
encompasses a larger area than the LCD display because the input tablet is larger to
account for the "hard" button bar. Drawing is limited to the screen so applications wouldn't
increase their visible area by covering the "hard" button bar.

The "soft" button bar can simply be covered by your application's base view. The only trick
is properly detecting if there is a soft button bar, and finding out where on the screen it
happens to be. This code will give you the largest drawable application box, covering any
soft button bar but not covering any hard buttons.
| ocal parans := Get AppParans();
if GetRoot().Buttons.soft then
sel f.viewBounds : = O fset Rect (Uni onRect (par anms. appAr ea,
par ams. but t onBar Bounds) ,
- par ans. appAr ead obal Left, -parans. appAread obal Top)
el se
sel f.vi ewBounds : = parans. appAr ea;

If the goal is to to prevent users from accessing the buttons, then the button bar should be
obscured regardless of whether or not it is on the LCD screen. On units with a hard button
bar, you must take into account the fact that part of the base view will be off-screen. (For
instance, don't place your close box under the silk-screened buttons.) A simple way to
accomplish this is by having a child view whose bounds are the appAr ea and locating the
rest of the application within that child.

Note that on some Newton devices (for instance, the eMate 300), the buttons are not located
in a view at all. On these devices, covering the entire tablet does not prevent the user from
accessing the buttons (for instance, opening up the Extras Drawer).

Below is some sample code you can add to your base view'svi ewSet upFor nScri pt to
cover the entire tablet:

| ocal parans := Get AppParans();
sel f.viewBounds : = GetRoot (): Local Box();
i f parans. appAread obal Left then
sel f.viewBounds := O fsetRect(sel f.vi enBounds,
- par ans. appAr ead obal Left, -parans. appAread obal Top);

Creating Large Strings (1/3/97)

Q: What is the best way to create a really large string?

A: The best way is to create the string as a virtual binary object (VBO). VBOs are described in
the chapter "Data Storage and Retrieval" in the Newton Programmer's Guide.

To create a string as a VBO, you first need to create a VBO of class ' st ri ng. Next, you
need to use the global function Bi nar yMunger to munge an empty string into the VBO. This
will properly prepare the binary object to be used as a NewtonScript string.

Finally, use the global function St r Munger as often as needed to copy new string data into
the VBO. Here is a code example:

/! Prepare a VBOto be the string
local nmyString := GetDefaultStore(): NewBQ('string, Length(""));
Bi naryMunger (nyString, O, nil, "", 0, nil);

StrMunger (myString, StrLen(nyString), nil, "MyNewString", 0, nil);
/! Repeat with nore data if necessary...

Note that unlike the C language's st di o library function, the NewtonScript St r Len
function does not need to traverse the string to determine the string length, so you probably
don't need to worry about performance hits from its usage.

Not all NewtonScript routines will necessarily "preserve" the VBO nature of large strings.
For instance, if you concatenate strings using the St ri nger global function or the & or &&
operators, the result is currently a non-VBO string. Be aware that if you accidentally create
a very large non-VBO string, the code may throw a "out of NewtonScript heap memory"
evt . ex. out of memexception.

NEW: Strategy for Saving Modified Data (4/8/97)

Q: What's the best way to save modified data to a soup? For example, if I try to save the
contents of a ¢l Edi t Vi ewevery time some change is made, typing is very slow. So, when
should it be saved?

A: The best way we've found is to start a timer every time a change is made, and save the data
when the timer expires. If a change is made before the timer expires, you can reset the
timer. This way, the longer operation of saving to a soup won't happen until after the user
pauses for a few seconds, but data will still be protected from resets. The data should also
be saved when the views that edit it are closed, or when switching data items.

The timer can be implemented several ways. If no view is available, AddDel ayedCal | or
AddDel ayedSend can be used. The OS also provides AddPr ocr ast i nat edSend and
AddProcr ast i nat edCal | , which more or less implement the timer-resetting feature for
you.

The best way to implement the timer when views are available is using the

vi ewl dl eScri pt. Thevi ewl dl eScri pt is preferred over

AddPr ocr ast i nat edCal | / Send because of better management of the event queue by the
OS. When you call Set upl dl e to start an idle timer, any existing idle timer is reset.
Procrastinated calls/sends aren't currently implemented by resetting an existing timer, but
rather by creating a delayed event which fires for each call and then checking a flag when
the timer expires to see if it's the last one.

Where these methods are implemented depends on what layer of your code manages the
soup entry. With the NewtApp model, the Entry layer manages the data, and each view
in the Data layer is responsible for stuffing the modified data in the t ar get frame, which
is usually a soup entry. The entry layer implements St ar t Fl ush to start the timer, and
EndFl ush is called when the timer expires and which should ensure that the data is saved
to the soup.

Your St ar t Fl ush equivalent could be implemented something like this:
Start Fl ush: func()
begi n
self.entryDirty := TRUE
: Setupl dl e(5000); // 5 second del ay
end;

Your vi e dl eScri pt would look something like this:
view dl eScript: func()
begi n
: EndFl ush();
nil; /1 return NIL to stop the idler until next
Start Fl ush
end;

And your EndFl ush equivalent would look something like this:
EndFl ush: func()
if self.entryDirty then
begi n
/1 getting data fromeditView may not be
/1 necessary at this point
nyEntry.editViewData : = <editView sel f> viewChildren;
Ent ryChangeXm t (nmyEntry, kAppSynbol);
self.entryDirty := nil;
end;

Implementing EndFl ush as a separate method rather than just putting the contents in the
vi ew dl eScri pt makes it easy to call the method from the vi ewQui t Scri pt or

vi ewPost Qui t Scri pt, to guarantee that changes are saved when the view is closed.
(The vi ewl dl eScri pt may not have been called if the user makes a change then
immediately taps the close box or overview or whatever.)

Built-In Apps and System Data

There Is No ProtoFormulasPanel (2/5/96)

Q: The current documentation says to use pr ot oFor mul asPanel for RegFor mul as, but there
does not appear to be such a template.

A: You are correct, there is no such template. You use apr ot oFl oat NGo as your base and add
your formula elements to it. The only requirements are:

1. There must be an over vi ew slot that contains the text to show in the formula's
overview.

2.vi ewbounds. bot t om must be the height of your panel.

3. There mustbe aprotoTitl e whosetitle slotis the name of the formula panel.

ProtoPrefsRollltem Undocumented Slots (2/6/96)

Q: WhenItry to open my own system preference, I get a -48204 error. The preference registers
OK with the RegPr ef s function.

A: The documentation on pr ot oPr ef sRol | I t em is incomplete. You must define anover vi ew
slot which is the text to show in the overview mode. You can optionally define an i con
slot which is an icon for the title in the non-overview mode (a title icon). Note that title
icons are much smaller than normal icons.

SetEntryAlarm Does Not Handle Events (2/6/96)

Q: Itried to set the alarm of an event using the Set Ent r yAl ar m calendar message, but the
alarm is not set.

A: Tt turns out that Set Ent r yAl ar m will not find events. You need to use a new Calendar API
called Set Event Al ar m This function is provided in the Newton 2.0 Platform File. See the
Platform File Notes for more information.

How to Avoid CardFile Extensions "Still needs the card" (5/9/96)

Q: I have a package that registers a data definition and view definition for a new card type
for the Names application. If the package is installed on a card and the card is removed,
the user gets the following error message:

"The package <The package name> still needs the card you removed. Please insert it now,
or information on the card may be damaged."

How can I avoid this problem?

A: Currently, the cardfile AddLayout method requires that the symbol in the layout is

internal. This bug will be fixed in a future ROM. To work around this, do the following;:

| ocal newLayout := { proto: GetlLayout("A Test Layout")};
newLayout . synbol := Ensurelnternal (newLayout.synbol);
Get Root () . cardfil e: AddLayout (newLayout);

For more information about issues for applications running from a PCMCIA card, see the
article "The Newton Still Needs the Card You Removed"

How to Find Distance Between Two Points on the Earth (6/7/96)

Q: Is there an API which calculates the distance between two points on the Earth?

A: Yes. In the Newton 2.0 ROM there is a global function called Ci r cl eDi st ance which

takes two longitude/latitude pairs and the units to use in reporting the distance, and

G rcl eDi st ance returns the distance between the two points. NTK may give a warning
about "Unknown gl obal function ' G rcleDistance'". Thiswarning can be safely
ignored so long as you're writing a package for a Newton 2.0 OS device.

Ci rcl eDi st ance (firstLong, firstLat, secondLong, secondLat, units)

Returns the distance between the two points. The distance is an integer. Currently
G rcl eDi st ance rounds the distance to the nearest ten miles or ten kilometers.

firstLong: The longitude for the first point on the Earth.

firstLat: The latitude for the first point on the Earth.

secondLong: The longitude for the second point on the Earth.

secondLat : The latitude for the second point on the Earth.

uni ts: A symbol specifying the units in which the distance will be calculated. Currently
the options are ' i | es or' ki | onet ers.

Note: the longitude and latitude arguments need to be integer values of the type used by
NewCi t y. Check the section titled "Using the Time Zone Application" in the Built-In
Applications and System Data chapter of the Newton Programmer's Guide for information
on how to convert a longitude or latitude in degrees, minutes & seconds to an integer for
Gircleb stance.

Avoiding Query Bug in GetExtralcons Call (8/2/96)

Q:

A:

Some calls to Get Ext r al cons result in an undefined Quer y method exception. How can I
fix this?

There is a bug in the implementation of Get Ext r al cons. The code is not checking if the
store has any extras information on it, so the Quer y message is getting sent to a NI L soup.
The result is the exception.

At this time it is not clear if or when this bug will be fixed. I suggest you use the following
workaround code when you call Get Ext r al cons:

try
Get Extral cons(...)
/1 do whatever you need to do here

onexception |evt.ex.fr.intrp;type.ref.frane| do
begi n
/1 check for a problemcalling the Query function
i f currentException().data.errorCode -48809 AND
current Exception() . data. synbol "Query then
begi n
/1 no extras drawer info on the store
end ;
el se
/1 a real error has occured, so let systemhandle it
ReThrow() ;

end ;

How to Get Labels for Custom Names Fields (8/13/96)

Q: The Names application allows the user to add custom fields. If I have a specific entry, the
cardfile method bcCust onFi el ds returns the labels and values of the custom fields used
in the entry. Is there a way to get a list of all the custom fields the user has defined?

A: Yes, you can pass ' cust onFi el ds to the names soup method Get | nf 0. This will return a
frame of all the custom fields the user has defined. Each slot in this frame will have a
frame with a 'label slot. Each 'label slot will be a string specified by the user. Here is an
example:

Get Stores()[0] : Get Soup(ROM _Car dFi | eSoupNane) : Get I nf o(' cust onFi el ds
)

...which returns:
{custoni: {label: "Custoner Label"},
custon®: {label: "Another |abel"}}

How to Add Confidential Owner Data (10/1/96)

Q: IfI add confidential information to the Newton owner's card, all the information is beamed
when the user beams the owner card. How can I keep confidential information from being
sent?

A: Every owner entry has an owner slot, the value of which is a frame. This slot is removed
from the entry before it is sent to another Newton device. You can add slots to this frame to
store them, but keep them from being sent. Be sure to append your developer signature to
any slot names you add to the owner frame.

Note that this only applies to the built-in Beam transport; any other transport or
application can access all the slots in the Owner entry.

Adding Notes to Closed Notes Application (1/14/97)

Q: How do I add a note to the soup without having to have the Notepad application open?
MakeText Not e doesn't work if Notes is closed.

A: You should use MakeText Not e to create the data, then add it to the soup entry using
soup: AddXmi t or uSoup: AddToSt or eXmi t (or one of the other soup functions.)

MakeText Not e always creates a frame with all the correct data that the Notes
application requires. If the 2nd paramater (addit) is TRUE, it will add that frame to the
Notes soup and show the note on the screen. If addItis NI L, then the frame is returned.

It's the adding and showing that require the Notes app to be open, not the frame creation.
For instance, to add a note to the default store, do something like:

newNot e : = Get Root (). paperroll: MakeText Note("Here is a sanple
note", nil);

Get Uni onSoup(" Not es") : AddToDef aul t St or eXmi t (newNot e
"|appSym SI G)

TapAction Slot Requires Text Slot to be Present (1/15/97)

Q: Ihave an autopart that I want to display an About slip when tapped. I added a
t apAct i on slot but it does not work. What is missing?

A: The system will ignore the t apAct i on slot if it does not find a ' t ext slot in the
part Fr ame as well. The ' t ext slot contains the name that will be displayed in the Extras
drawer.

The following lines will correctly add a t apAct i on to a your part frame (in other words,
your autopart):

Def i ned obal Const ant (' kTapActi onFn
func()
begi n
/1 your code goes here!
end) ;

/1 part MUST have a text slot for tapAction to be used
/1 text slot is the nanme seen by the user in Extras
Set Part FrameSl ot (' text, kAppNane) ;

Set Part FraneS| ot (' tapActi on, kTapActi onFn) ;

NEW: Getting the Current Set of Multi-User Names (3/17/97)

Q: How can I get a list of all the students when a unit that supports it (for instance, the Apple
eMate 300) is in multi-user mode?

A: The multi-user mode is implemented by the Home Page built-in application, and the list of
users is stored in that application's preferences frame. Use Get AppPr ef s to get the prefs

for that application for read-only purposes. Only the documented slots in that frame
should be accessed. Other slots are neither documented nor supported, and their behavior
may change. You should also check to ensure that the Home Page application exists on a
particular unit before using any features. For example, here is a code snippet that
evaluates to an array of user names, or NIL if the unit does not support multiple users or is
not in multi-user mode.

i f Get Root (). HonePage t hen
begi n
| ocal prefs := Get AppPrefs(' HomrePage, '{});
if prefs.users and prefs.kMiltipleUsers then
foreach itemin prefs.users collect item nane;
end;

The Home Page preferences frame contains the following slots that may be accessed read
only:

kMul ti pl eUsers: non-nil if multi-user mode is enabled

kRequi r ePassword non-nil if passwords required in multi-user mode

kDi sal | owNewUser s non-nil if new users can't be created at login

users array of user frames or NIL.

A user frame contains the following slot that you may use as read-only data:
name a string, the user-visible user's name

Keep in mind that new users could be created or existing users names may be changed at any
time, and there is no notification when this happens. If necessary, you should check the set
of users when your application launches. It is unlikely that new users will be created,
deleted, or renamed while an application is open, unless this happens as a result of a new
user being created at login. In this case, registering for change in the user configuration
frame with RegUser Conf i gChange and watching for the ' kCur r ent User slot to change
will let you catch changes to the current set of multi-user names.

Controls and Other Protos

How to Set the Letter in AZTab Protos (3/26/96)

Q: How do I programatically select the letter in pr ot 0AZTabs or pr ot 0AZVert Tabs?
A: You can use the Set Let t er method of the AZTab protos:

pr ot oAZTabs. Set Letter (newLetter, N L)

Set the tab to the character specified by newLetter and update the hiliting. Note that this
method does not send a pi ckLett er Scri pt message.

Example:
/1 set myProtoAZTabs to the letter "C
nyPr ot oAZTabs: Set Letter($c, nil) ;

pr ot oAZVert Tabs. Set Letter. ..
see prot oAZTabs. Set Letter

Return Value of ProtoSoupOverview's Hitltem Message (1/6/97)
Q: What is the meaning of the return value of pr ot 0SoupOverview Hi tlten(...)?Iwant
to call the inherited method and use the return value to determine what action the system
performed.

A: ProtoSoupOverview Hitlten(...) returns nil if it handled the tap and non-ni | if it
didn't handle the tap (the opposite meaning of the return value of pr ot oOver vi ews
Hi t | t emmethod).

Note that the final NPG documentation implies that pr ot oSoupOver vi ews Hi t | t emis
just like pr ot oOver vi ews Hi t | t emmethod; this is a mistake in the documentation.

NEW: Don't Use ROM_UpArrowBitmap (3/28/97)

Q: T used the constant ROM_UpAr r owBi t map in my application, and now my app appears
partially invisible in the Newton 2.1 OS. What's wrong?

A: The constant ROM_UpAr r owBi t map and the other directional arrow constants were not
intended to be supported, and the value of the magic pointer has changed in Newton 2.1 OS.
The change was made to better implement the (documented and supported) scrolling protos
such as pr ot oUpDownScr ol | er.

ROM_UpAr r owBi t map is named in the NTK Platform File defs file, and had mistakenly
been mentioned in some public documentation from Apple, so you may have thought this
was supported. If you have a reference to one of these magic pointers in the i con slot of a
cl Pi ctureVi ew, you'd have gotten an arrow graphic on the 2.0 and earlier releases of the
OS, but on the Newton 2.1 OS, the changed value is not acceptable to the view system as a
graphic. The result is that drawing is aborted when the OS tries to render the view with
the arrow graphic, and views that would normally be drawn after the bad view will also
fail to render, producing what appear to be invisible views that are otherwise functional.

You should use the documented protos to implement scrolling. If a custom scroller is needed,
you can create your own graphic and include it in your NTK project.

Data Storage (Soups)

FrameDirty is Deep, But Can Be Fooled (8/19/94)

Q: Does the global function Fr aneDi rt y see changes to nested frames?

A: Yes. However, FraneDi rty is fooled by changes to bytes within binary objects. Since
strings are implemented as binary objects, this means that Fr ameDi r t y will not see
changes to individual characters in a string. Since cl Par agr aphVi ews try (as much as
possible) to work by manipulating the characters in the string rather than by creating a
new string, this means that Fr ameDi r t y can be easily fooled by normal editing of string
data.

Here is an NTK Inspector-based example of the problem:

s := CGetStores()[0]: CreateSoup("Test: DTS, []);
e .= s:Add({slot: 'value, string: "A test entry", nested: {slot:
' not her Val ue}})
#4410B69 {slot: val ue,
String: "A test entry"”,
nested: {slot: notherVal ue},
_uni quel D: 0}
FrameDirty(e)
#2 NI L

e.string[0] := $a; // nodify the string wout changing its reference
FrameDirty(e)
#2 NI L

Ent ryChange(e);

e.string := "A new string"; /1 change the string reference
FrameDirty(e)

#1A TRUE

Ent ryChange(e);

e.nested. sl ot : = 'newval ue; /1 nested change, FraneDirty is deep.
FrameDirty(e)

#1A TRUE

s: RenoveFronttore() // cleanup.

Limits on Soup Entry Size (2/12/96)

Q: How big can I make my soup entries?

A: In practice, entries larger than about 16K will significantly impact performance, and 8K
should be considered a working limit for average entry size. No more than 32K of text
(total of all strings, keeping in mind that one character is 2 bytes) can go in any soup entry.

There is no size limit built into the NewtonScript language; however, another practical
limit is that there must be space in the NewtonScript heap to hold the entire soup entry.

There is a hard upper limit of 64K on Store object sizes for any store type. With SRAM-
based stores there is a further block size limit of 32K. Trying to create an entry larger than
this will result in evt . ex. fr. st or e exceptions. These limits are for the encoded form
that the data takes when written to a soup, which varies from the object's size in the NS

heap.

Newton Backup Utility and Newton Connection Utility cannot handle entries larger than
32K.

Note that Virtual Binary Objects (VBOs) in Newton 2.0 are no subject to the same
restrictions. If you can store large objects as VBOs, you can store more information in your
soup entries by referencing those VBOs.

Choosing EntryFlushXMit and EntryChangeXMit (4/17/96)
Q: What is the difference between the functions Ent r yFl ushXM t and Ent r yChangeXM t ?

A: The most important criterion when choosing between Ent r yFl ushXM t and
EntryChangeXM t is what will be done with the entry after the flush or change.

When an entry is added or changed, the system ensures that a cached entry frame exists in
the NewtonScript heap. The system then writes the data in the frame to the store,
skipping _prot o slots. The result is that the data will be written to the store, and a
cached frame will exist. Often, this is exactly what is desired because the entry is still
needed since it will soon be accessed or modified.

In some cases, the data will be written to the soup with no immediate access afterwards. In
other words, the data will not be used after being written to the soup. In these cases
creating or keeping a cached entry frame in the NewtonScript heap is unnecessary and just
wastes space and time. In these situations, Ent r yFl ushXM t is a better option; it writes
the data to the soup without creating the cached entry.

If any code accesses an entry that was just flushed, a new cached frame will be read in from
the soup, just like when an existing entry is read for the first time.

The rule of thumb is: if an entry will be used soon after saving to the soup, then use AddXM t
or Ent ryChangeXM t . If the entry will not soon be used again (so it doesn't need to take up
heap space with the cached frame), then use AddFl ushedXnmit or EntryFl ushXM t.

Some examples of good usage:
while entry do
begi n
entry. fooCount := entry.fooCount + 1;
/1 nil appSynbol passed so don't broadcast
EntryFlushXMt (entry, nil);
entry := cursor: Next();
end; /1 Coul d broadcast now

foreach x in kinitial Data do /1 if new, may not need broadcast
soup: AddFl ushedXm t (C one(x), nil);

Why Xmit Functions Seem to Leak Memory (10/31/96)

Q: I've noticed that the system seems to leak a little bit of memory every time I call an Xmit
soup function, but not if I call the non-xmitting versions of the functions. For example,
executing this code shows a little less free memory each time stats is called:

gc(); stats();

soup: AddToDefaul t StoreXmt({ foo : "a test string"}, 'bar:SIQ;

gc(); stats();

soup: AddToDef aul t StoreXmt({ foo : "another test string"}, 'bar:SIG;

gc(); stats();

A:

There is no leak. What's actually going on is that the Xmit versions of the soup methods do
their broadcasting in deferred actions. That's good, because it means that broadcast
handlers that might throw or have other side effects won't break your code. A little bit of
heap memory is used to keep track of the deferred action and its arguments. This memory is
released after the deferred action executes, which is typically immediately after control
returns to the top level.

If you select all the test code in the inspector and press ENTER, NTK compiles the entire
selection and executes it as a single operations, so control doesn't return to the top level
(thus allowing the deferred actions to execute) until after the last operation. The deferred
action created by each call to the Xmitting function will still be pending, so the space won't
have been released yet, and stats reflects this. If the example is executed one line at a
time, you'll see that no memory is actually leaked.

Limit on Soup Name Length (12/10/96)

Q:

A:

What is the maximum number of characters I can use for a soup name?

With the Newton OS 2.0 release, soup names, like index data, are limited to 39 Unicode
characters. If you attempt to create a soup with a longer name, the OS will create a soup
with only the first 39 characters of the longer name. We recommend you avoid this
truncation, because typically the truncation removes some or all of your registered
signature, and the resulting name will not be guaranteed unique.

You can still provide longer/ prettier names for users, by using thesoupDef mechanism and
putting the long name (typically without appended signature) in the ' user Nane slot of
that data structure.

How to Use Begin and End Symbols with WhichEnd (1 /8/97)

Q:

A:

The Whi chENnd cursor method returns the symbols' begi nor' end, depending on where the
cursor is in a soup. Why does NTK complain when I try to check for these symbols?

Unfortunately, these are reserved words so NTK won't let you type them into normal code.
The work-around is to enclose the symbol in vertical bars.

For instance, you can use code like:
i f myCursor:VWhichEnd() = '|begin| then
: \eAr eAt Begi nni ng() ;

EntryChange on Modified Tags Array Throws -48022 (1/15/97)

Q:

A:

I added a tag to the array of tags in an entry. When I call Ent r yChange on the modified
entry I get a -48022 error. What is wrong?

There is a known bug in Newton OS 2.0 (which is fixed in Newton OS 2.1) that can cause
this problem. It can occur when you initially create an entry with an empty array as the

value of the tag index slot. The workaround is not to use the empty array. Use NIL instead.
If you need to add an array of tags later, you can do so.

NEW: How to Avoid Resets When Using VBOs (2/27/97)

Q:

A:

When writing large amounts of information to virtual binary objects (VBOs), my Newton
device sometimes resets. What is going wrong?

The problem happens because of how the Newton OS manages the memory for VBOs.
Writing to VBOs in low memory conditions can sometimes cause the device to reset because
no free pages are available for other OS operations.

To work around this problem, you can periodically call the global function Cl ear VBOCache
while modifying VBOs. You can also work around the problem by putting the VBO in a soup
entry and using Ent r yChangeXmi t or EntryFl ushXm t.

In all versions of the Newton 2.x OS released to date, VBOs (including packages) are
managed in 1K pages. When you write to a VBO, the "dirty" pages can remain in the
system heap, taking up space. Cl ear VBOCache takes a reference to a VBO as an argument,
and moves the dirty pages for a given VBO to the store, freeing up the system memory.
Note that this function does not commit the changes to the VBO, while Ent r yChangeXmi t
and Ent r yFl ushXmi t do commit the changes.

The likelihood of the problem depends on the amount of system memory currently

available and how many pages of VBOs are modified. We recommend that you modify no
more than 32 pages of VBOs before committing the changes or calling Cl ear VBOCache. For
example, modifying 32K of contiguous data, or a single byte in 32 different pages of one
VBO, or even a single byte in 32 different VBOs all modify 32 total pages of VBO data.
Don't do this too often, though. Calling Cl ear VBOCache repeatedly for modifications to
the same page of a VBO or when there are only a few modified pages will needlessly slow
the machine.

If you are experiencing this problem, you should consider redesigning your application to
minimize the amount of uncommited VBO data. When finished with a VBO, commit it to a
soup entry as soon as possible or let it become unreferenced.

Desktop Connectivity (DILs)

Differences between MNP, Modem, Modem-MNP, and Real Modems
(2/5/96)

Q:

> QR

I want to just connect to a Newton device over a cable from a MacOS or Windows machine -
what do I need to use to get reliable communications?

I want to have the DILs answer an incoming call over a modem. How can I do that?
What's the difference between the "Serial" and "Modem" Mac connection types?

In release 1.0 of the DILs, the best way to connect to a Newton device is by using a MNP
connection over a serial cable. This is what you're using when you set connection type
"Modem" on MacOS computers and "MNP" on Windows computers. This actually has
nearly nothing to do with modems as such; it means you're connecting over a serial cable

using MNP error correction and compression. (And on Windows, it's the only supported
option at this time.)

Currently you cannot use a true modem with the DILs to connect to a Newton device.
In general, you will never use the "Serial" connection type on a MacOS computer; that

connects over a serial cable (like "Modem" does) but offers no error detection. Therefore, you
would have to write your own code to check that data arrived safely.

CDPipelnit Returning -28102 on MacOS Computers (2/13/96)

Q: When I call the DILs function CDPi pel ni t, it returns a -28102 error (Communication tool
not found). I've checked that the tool is installed properly, and the DIL sample
application works fine. What's wrong?

A: A common cause of this error code is that the CSTR resources haven't been linked into your
final executable. Those resources are used to find the filenames of the communications tools.
Add the CSTR.rsrc file to your project and see if that fixes things.

Getting Serial Port Names on MacOS Computers (2/13/96)

Q: Different MacOS computers have different numbers of ports, different names for the ports,
and the port names are translated into other languages in non-English MacOS System
Software. How can I tell what serial ports are available?

A: You can use the Communications Toolbox to get the list of available serial ports. This code
has been added to version 2 of the SoupDrink sample code - see the Set upPor t Menu
function in SoupDrink.c for an example.

Corruption of Some Binary Objects (5/13/96)

Q: Sometimes when I send a binary object (including a real) from the Newton device, it is
corrupted when I read it with the FDILs on the desktop. What's going on?

A: When FDILs 1.0 receive a binary object, they must "guess" whether it is a string or not. This
guessing algorithm has a flaw which can result in non-string binary objects being treated as
strings, and thus the Unicode conversion process is performed on them, which results in
corruption of the desktop binary object.

The easiest ways to avoid this problem are to either receive the data with the CDIL (in
other words, don't include them in the frame), or else to ensure that either the first two or
the last two bytes of the binary object are non-zero. This workaround will not be necessary
in future versions of the DIL libraries.

Note: this has been fixed in the 1.0.2 Windows DILs.

Error -28801 or -28706 from FDget (5/13/96)
Q: Why does the FDget function return error -28801 (Out of heap memory) or -28706 (Invalid
parameter)? I don't think I'm out of memory, and I don't always get this error code so my
parameters must be right. What is wrong?

A: Sometimes these error codes are accurate and indicate that not enough memory could be
allocated or that a parameter was invalid. Sometimes they are the result of a bug caused
by having multiple copies of a rectangle slot inside a frame.

The protocol which is used to send frames can perform an optimization for certain rectangle
frames, which transmits them in a compact form (5 bytes instead of up to 60). However, if a
given frame holds the exact same rectangle frame in more than one slot, the data will not be
handled correctly and will either result in one of these error codes, or alternatively it
might substitute some other object in place of the frame, or might possibly crash.

This is a relatively uncommon problem, since all of the values in the frame must be between
0 and 255, and the frame must have the same rectangle in it twice - two frames with
equivalent data would not trigger the problem. For example, frame "A" would cause the
problem, but frames "B", "C" and "D" would not.

c={first: {left:3, right: 30, top:10, bottom 90}};
.second := Afirst; /1 triggers the problem

c={first: {left:3, right: 30, top:10, bottom 90}};
.second := clone(B.first); /1 cloning avoi ds the problem
.second := C.first; /1 no problem since C. foo exists

A
A
B
B
C={first: {left:3, right: 30, top:10, bottom 90, foo: nil}};
C
D:={first: {left:3, right: 30, top:10, bottom 1000}};

D.second := D.first; /1 no problemsince D bottomis >255

To work around this problem, you can clone the frame (as in frame "B") or add another slot
to the frame (as in frame "C") or ensure that the values are not between 0 and 255 (frame
HDH).

Note: this has been fixed in the 1.0.2 Windows DILs.

Using CDPipeListen Asynchronously in Windows Applications (7/15/96)
Q: Iam passing in a callback function to CDPipeListen, but it never seems to be called. What is
going wrong?

A: Due to a bug in CDPipeListen, the callback function never gets called in Windows
applications. You will have to use a synchronous listen, then wait for the state of the DIL
pipe to change before accepting the connection. The following code shows how to properly
accept a connection.

anErr = CDPi pelLi sten(gQurPi pe, kDefaultTimeout, NULL, 0);
if (lanErr)

/1 This code doesn't need to be executed on MacOS, but

/1 is currently required for Wndows. W need to |oop,

/1 waiting for the connection state to change to

/1 KkCDI L_Connect Pendi ng.

endTime = (CGetTickCount()/1000) + 30; // to timeout in 30 seconds
whil e ((GetTickCount()/1000) < endTinme)

i f (CDCetPipeState(gQurPipe) == kCDI L_Connect Pendi ng) {
anErr = CDPi peAccept(gQurPipe);
br eak;

} else
CDI dl e(gQurPipe);

}

Note: this has been fixed in the 1.0.2 Windows DILs.

Unicode Strings and Memory Buffers (8/26/96)

Q: Sometimes when I use the DILs to get a string, some memory gets corrupted even though I'm
sure I've allocated more memory than I have characters in the string. What's going on?

A: One common cause is that strings arriving from a Newton device are in Unicode - which
takes two bytes per character. If you've only allocated one byte per character, you risk
memory corruption because the data is converted to the one-byte form only after the whole
buffer has arrived. This might be too late to prevent overrunning the buffer bounds. So, you
need to allocate enough space for the Unicode version.

For example, if you're expecting strings to be up to 50 characters long, you must allocate at
least 100 bytes of memory in your buffer.

Digital Books

BookMaker Page Limitations? (11/19/93)

Q: Does the Newton BookMaker have limitations concerning the size of books or page count?

A: The current page limitation of BookMaker is 16 million pages, a very unlikely size to be
exceeded. However, since the entire book is held in memory during the build process, you
need to have enough application heap space allocated to the BookMaker desktop
application. If there is not enough RAM available on your desktop computer to process a
book, you can divide it into smaller parts and link them with the . chai n command.

Drawing and Graphics

Drawing Text on a Slanted Baseline (9/15/93)

Q: Is it possible in the Newton OS to draw text on a slanted baseline? I don't mean italics, but
actually drawing a word at a 45 or 60 degree angle and so on. For example, can text be
drawn along a line that goes from 10,10 to 90,90 (45 degrees)?

A:

The drawing package in the Newton OS supports no calls for rotating text. Note: this is like
QuickDraw in the MacOS operating system. In MacOS, the workaround is to draw the text
into a bitmap and then rotate the bits; you can do the same on a Newton device. In the
Newton OS, we even provide calls to rotate a bitmap in 90 degree increments.

You might consider creating a font having characters that are pre-rotated to common angles
(such as 30 or 45 degrees) so that applications could just draw characters rather than
actually having to rotate a bitmap.

LCD Contrast and Grey Texture Drawing (11/10/93)

Q:

A:

An artist working with me did a wonderful job rendering a 3D look using several different
dithered grey textures. The problem is that when her image is displayed on a Newton
display everything on the screen dims. Is it possible that the image causes too much
display current to maintain contrast?

What you're seeing is a well-known problem with LCD displays, and there's not a lot you
can do about it. It's especially aggravated by large areas of 50% dithered gray
(checkerboard) patterns, but the light gray and dark gray patterns also cause some of it.

The user interface of the Newton OS deliberately avoids 3-D styling and 50% dithered
grays as much as possible for this reason. If you know your application is going to display
large gray areas, you can adjust the contrast yourself on some hardware devices. There's a
global function, Set LCDCont r ast, to do just that. However, changing the contrast with no
end user control is not considered a good user-interface practice.

Destination Rectangles and ScaleShape (3/11/94)

Q:

A:

What is a valid destination rectangle for the 2nd argument to Scal eShape?

The destination rectangle must be at least 1 pixel wide and 1 pixel high. Each element of
the bounds frame must have values that fit in 16 bits, -32768...32767. 0-width/height and
negative width/height bounding boxes may appear to work in some cases, but are not
supported.

How to Rotate Bitmaps Left (3/5/96)

Q:

A:

When I rotate a bitmap left using MungeBi t map, it sometimes shifts the data. How can I
rotate left correctly?

There is a bug in the Newton 2.0 OS that manifests when the row size of the unrotated
bitmap is not an even byte boundary. The result can be a shift of data up to 7 pixels.

You can work around this bug most efficiently by replacing the left rotation with three calls
to MungeBi t map using these operations: ' f| i pHori zontal ,' flipVertical, and
"rotateRight. (' rotateRi ght three times will work as well, but it is less efficient
bacause flips are faster than rotates.)

Remember: "Three Rights (or Two Flips and a Right) Make a Left".

Newton Bitmap Formats (5/14/96)

Q: What is the format for bitmap binary objects in the Newton OS?

A: There are several bitmap formats used in the Newton OS. The Newton OS provides routines
for creating and manipulating bitmaps at runtime, and uses other formats for displaying
bitmaps from developer packages.

If you want to create a bitmap object at compile time, below is a description of the format of
a simple bitmap object. If you want to create a bitmap at run time, we strongly encourage you
to use MakeBi t map and copy data into the bitmap.

Simple Bitmaps

Normally, bitmaps are created at compile time using Newton Toolkit picture editors or
functions (for example, GetPICTAsBits). If you want to create bitmaps dynamically at
compile time, you can create a simple bitmap object with the following format.

Warning: Different formats may be used by images or functions in future ROMs. This format
will still be supported for displaying images. This format does not describe images created
by other applications nor any images provided or found in the Newton ROM. You can use
the following format information to create and manipulate your own bitmaps -- preferably
at compile time:

bounds: <bounds franme>,
bits: <raw bit map dat a>,
mask: <raw bitmap data for mask - optional >

Bi nary object <raw bitmap data> - class 'bits

byt es dat a-type descr

0-3 | ong i gnor ed
4-5 wor d #bytes per row of the bitmap data
(rmust be a multiple of 4)
6-7 wor d i gnor ed
8- 15 bi t map rectangle - portion of bits to use--see IMI
8-9 wor d top
10-11 wor d left
12-13 wor d bott om
14- 15 wor d right
16-* bits pi xel data, 1 for "on" pixel, 0 for off

The bitmap rectangle and bounds slot must be in agreement regarding the size of the bitmap.
MakeBitmap Shapes
If you want to create bitmap data at run time or extract bitmap data from a bitmap created

with the MakeBi t map global function, use the Get Shapel nf o function to get the bitmap
and other slots required to interpret the meaning of the bitmap created by MakeBi t map.

Warning: the following information applies only to bitmaps of depth 1 (black and white
bitmaps) created by your application with MakeBitmap. Do not rely on Get Shapel nf o or
the following slots for images created by other applications, images stored in the Newton
ROM, images created with functions other than MakeBitmap, nor images with a depth
other than 1.

If you created a bitmap using MakeBi t map of dept h 1, the return value of Get Shapel nf o
contains frame with information you can use to interpret the bitmap data.

This frame includes a bi t s slot referencing the bitmap data for the bitmap. This bitmap
data can be manipulated at run time (or copied for non-Newton use), using other slots in the
return value of Get Shapel nf o to interpret the bitmap binary object: scanOf f set,

bi t sBounds, and r owByt es. For instance, the first bit of the image created with

MakeBi t map can be obtained with code like:

bi t mapl nfo : = Get Shapel nf o(t heBi t map);
firstByte := ExtractByte(bitmaplnfo.bits, bitmaplnfo.scanOfset);
firstBit :=firstByte >> 7; // 1 or 0, representing on or off

Note that r owByt es will always be 32-bit aligned. For instance, for a bitmap with a
bi t sBounds having width 33 pixels, r owByt es will be 8 to indicate 8 bytes offsets per
horizontal line and 31 bits of unused data at the end of every horizontal line.

Difference Between LockScreen and RefreshViews (1/15/97)

Q: In the NPG, it states that sending a view the vi ew: LockScreen(ni|) message forces an
"immediate update". How is this different from calling Ref r eshVi ews?

A: When you post drawing commands (for example, Dr awShape) the system normally renders
the shape on the screen immediately. : LockScreen(true) provides a way to "batch up”
the screen updates for multiple drawing calls. Sending: LockScreen(ni |) "unplugs" the
temporary block that has been placed on the screen updater, causing all the batched
drawing changes to be rendered on the LCD.

RefreshVi ews tells the system to execute the commands needed to draw every view that
has a dirty region. You can think of it as working at a level "above" the screen lock
routines. When you send the message Di rty, it does not immediately cause the system to
redraw the dirtied view, instead it adds the view to the dirty area for later redrawing.

You could lock the screen, dirty a view with a Set Val ue, call Ref r eshVi ews (and not see
an update) draw a few shapes, and then, when you unlock the screen, the refreshes to the
dirty regions and your shapes will all appear at once.

A bit more detail on the interaction between LockScr een and Ref r eshVi ews:
1. Does LockScreen(ni|) resultin a Ref reshVi ews?

No. LockScr een(true) just stops the hardware screen from updating from the offscreen
buffer. LockScr een(nil) releases that lock which usually causes the hardware screen to

update soon thereafter.

2. While the screen is locked, will Set Val ues draw into the offscreen buffer?

Set Val ue doesn't draw. Otherwise, see 1.
3. While the screen is locked, what is the result of calling Ref r eshVi ews?

It will draw any dirty views into the offscreen buffer.

Drawing White Text on a Filled Background (1/15/97)

Q: Itried using vf Fi | | Whi t e and KRGB_0 but neither seems to work. How do I draw white

A:

text?

kRGB_White has some unusual behavior. If you want a white-on-black effect then you
will need to use one of two workarounds:

For white text on a filled background using a style frame, set your background to the desired
shade using either the fill color of the view or a filled object (in other words, do not do this
just by setting the color fill of the text). Then use the t ext Pat t er n slot in the style frame
to make the text black (kRGB_BI ack) and set the t r ansf er Mbde to nodeBi c.

For white text on black using the color slot of the viewFont frame, use kRGB_Gr ay 1 for
something that is as close to white as you can get.

Interaction Between Transfer Modes and Gray Patterns (1 /15/97)

Q:

A:

How do the transfer modes interract with the new gray shades in Newton OS 2.1?

Here is how the transfer modes interact with images. Colors are determined by looking up
the value in the color table. For instance, white means that the indexed pixel value is
white in the color table. All the NOT modes operate on the values from the color table. In
other words, the pixel value is looked up before the NOT is applied.

When the source and destination are different bit depths, the source is effectively
expanded or shrunk to match the depth of the destination bitmap prior to drawing. When
expanding, the index into the color table's bit pattern is repeated to fill the destination
pixel. For instance, a 2-bit index of 0x1 (binary 01) is expanded to 0x3 (binary 0011) for 4
bits, while a 2-bit index of 0x2 (binary 10) is expanded to 0xC (binary 1100).

modeOr - Replaces pixels under the non-white part of the source image with source pixels.
If the source pixel is white, the destination pixel is unchanged.

modeXor - Inverts pixels under the non-white part of the source image. Destination pixels
under the white part of the source image are unchanged. This actually XORs the values in
the source and destination pixels. For example, for destination of O0xA (75% grey), source 0x0
(white) produces result 0xA (unchanged). Source OxF (black), produces result 0x5 (25% grey,
or inverted). Source pixels of other values have less utility. For example, source 0x5 (25%
grey) produces result OxF (black), while source 0xA (75% grey) produces result 0x0 (white),
and source 0x3 (50% grey) produces result 0x9 (slightly less than 75% grey).

nmodeBi ¢ - Erases screen pixels under the non-white part of the source image, making them
all white. Destination pixels under the white part of the source image are unchanged. This
actually, does a bitwise NOT, so it is really only useful when source pixels are either 0
(white) or OxF (black). With other values, weird things happen, For example, destination
0xF with source 0xA produces result 0x5. Destination 0x0 with source OxA produces result
0x0. Destination 0x3 with source O0xA produces result 0x1.

modeNot Copy - Replaces screen pixels under the black part of the source image with white
pixels. Screen pixels under the white part of the source image are made black.

modeNot Or - Screen pixels under the black part of the source image are unchanged. Screen
pixels under the white part of the source image are made black.

modeNot Xor - Screen pixels under the black part of the source image are unchanged. Screen
pixels under the white part of the source image are inverted.

NEW: Limitations of GrayShrink (3/4/97)

Q:

A:

Why isn't Gr ay Shri nk doing what I want it to when I use it with relatively small
bitmaps?

G ay Shri nk was designed for rendering relatively large images such as received faxes into
a moderately large part of a Newton display. It works by setting a flag in the bitmap that
tells the imager to gather multiple bits from the source bitmap and turn them into a single
gray pixel when drawing through a reducing transform.

If passed a bitmap that is more than one bit deep, the shrinking algorithm is not
appropriate and so Gr ay Shr i nk will not modify the bitmap. The end result will be a
transformed (shrunk) image with the same bit depth as the original. That is, the
shrinking will still happen, but the graying won't.

G ayShri nk will not work with read-only bitmaps (it is unable to set the flag.) The result
will still be a transformed (shrunk) image, but pixels will not be combined to gray. There is
no way to clear the flag once it has been set. After Gr ay Shri nk has modified a bitmap,
drawing it to the screen through any scaling transform that reduces the image will produce
a pixel combined gray result.

The Gr ay Shri nk pixel gathering algorithm produces an anomaly along the righthand side
of the reduced image. When rendering large bitmaps into a reasonably large destination,
this is generally uunnoticeable. However, when used with small source bitmaps or when
rendering into a small area, several columns along the right side of the result may not be
drawn, and the anomaly is easily seen. We recommend using Gr ay Shr i nk and the

" drawGr ayScal ed setting for pr ot ol mageVi ewonly for large source images such as
incoming faxes or scanned data.

NEW: Limitations of MungeBitmap (4/3/97)

Q:

When I use MungeBi t map to flip or rotate a grayscale image, it gets corrupted. What's
wrong?

A: MiungeBi t map does not properly handle bitmaps with a depth greater than 1. You can
work around this problem by using kMungeBi t mapFunc, which has the same calling
conventions and return value as MungeBi t map. kMungeBi t nepFunc is provided in the
Newton 2.1 Platform file, version 1.2b1 or later.

Calling MungeBi t map with the' rotateLeft, 'rotateRi ght,or' flipHorizontal
options will trigger the bug. The' rot atel180 and' fli pVerti cal arguments to
MungeBi t map work correctly with deeper bitmaps.

Note that with the 2.1 release of the Newton OS in the English Apple MessagePad 2000

and Apple eMate 300 products, the built-in Drawing stationery in NewtonWorks exhibits
this bug when rotating gray bitmaps.

Endpoints & Comm Tools

What is Error Code -18003 (3/8/94)
Q: What is error code -18003?

A: This signal is also called SCC buffer overrun; it indicates that the internal serial chip
buffer filled, and the NewtonScript part didn't have time to read the incoming
information. You need to either introduce software (XON/XOFF) or hardware flow control,
or make sure that you empty the buffer periodically.

You will also get -18003 errors if the underlying comms tool encounters parity or frame
errors. Note that there's no difference between parity errors, frame errors, or buffer
overruns; all these errors are mapped to -18003.

See the diagram for an explanation of what is going on concerning the serial chip, the
buffers and the scripting world.

The SCC chip gets incoming data, and stores it in a 3-byte buffer. An underlying interrupt
handler purges the SCC buffer and moves it into a special tools buffer. The comms system
uses this buffer to scan input for valid end conditions (the conditions which cause your
inputSpec to trigger). Note that you don't lose data while you switch inputSpecs; it's
always stored in the buffer during the switch.

Now, if there's no flow control (XON/XOFF, HW handshaking, MNP5), the network side
will slowly fill the tool buffer, and depending on the speed the buffer is handled from the
scripting world sooner or later the comms side will signal a buffer overrun. Even if flow
control is enabled, you may still receive errors if the sending side does not react fast enough
to the NewtonOs plea to stop sending data. In the case of XON/XOFF, if you suspect that
one side or the other is not reacting or sending flow control characters correctly, you may
want to connect a line analyzer between the Newton and the remote entity to see what is
really happening.

If you have inputScripts that take a long time to execute, you might end up with overrun
problems. If possible, store the received data away somewhere, quickly terminate the
inputSpec, then come back and process the data later. For instance, you could have an
idleScript which updates a text view based on data stored in a soup or in a slot by your
inputSpec.

mylnputScript

begin

/I work work work

Scripting Comm Tool HW Network

World World World World
Incoming sce
<« p| Buffer (256) <> | chp [
ep:SetlnputSpec(ep.mylnputSpec); OutgoingBuffer (256)

end;

N
v

Flow Control

Newton Remote Control IR (Infra-red) API (6/9/94)

NTK 1.0.1 and future NTK development kits contain the needed resources to build
applications that control infrared receive systems, consumer electronics systems and similar
constructs.

This development kit is fairly robust, and will produce send-only applications.

Note: The NTK 1.1 platforms file is required to produce code that will execute correctly on
the MessagePad 100 upgrade units.

cooki e := OpenRenot eControl ();
Call this function once to initialize the remote control functions. It returns a magic cookie
that must be passed to subsequent remote control calls, or nil if the initialization failed.

Cl oseRenot eCont r ol (cooki e);

Call this function once when all remote control operations are completed, passing cookie
returned from OpenRenot eCont r ol . Always returns ni | . cookie is invalid after this call
returns.

SendRenot eCont r ol Code(cooki e, comand, count);

Given the cookie returned from QpenRenpt eCont r ol , this function sends the remote
control command (see below for format of data). The command is sent count times. count
must be at least 1. Returns after the command has been sent (or after the last loop for count
> 1). (see diagram)

Each command code has the following structure:

struct | RCodeWrd {
unsi gned | ong nane;
unsi gned | ong ti neBase,;
unsi gned | ong | eadln;
unsi gned | ong repeat;

unsi gned | ong | eadQut;
unsi gned | ong count;
unsi gned long transitions[];

b

name identifies the command code; set to anything you like

ti neBase in microseconds; sets the bit time base

I eadl n duration in timeBase units of the lead bit cell

r epeat duration in timeBase units of the last bit cell for loop commands

| eadCut duration timeBase units of the last bit cell for non-loop commands
count one-based count of transitions following

transitions[] array of transition durations in timeBase units
Note that the repeat time is used only when the code is sent multiple times.
See Remote.T], Sony.r, RC5.r, and RemoteTypes.r files for examples. The .rsrc files have

templates for ResEdit editing of the Philips and Sony resources. See Remote IR Sample code
for more details.

Things To Know Before You Burn The Midnight Oil:

If the Newton goes to sleep, the IR circuits are powered down, and any subsequent sends will
fail. If you want to override this, you need to have a powerOffhandler close the remote
connection, and when Newton wakes up the application could re-open the connection.

If two applications are concurrently trying to use the IR port (beaming and remote control
use for instance), this will cause a conflict.

Sample Code

The Remote IR Sample is part of the DTS Sample code distribution, you should find it on
AppleLink and on the Internet ftp server (ftp.apple.com).

By way of a quick summary: the sample has an array of picker elements with the resource
definitions bound to the index (ircode inside the application base view).

You specify the constant that is an index to the array, get the resource using the NTK
function Get NamedResour ce and when you send data, use the constant as the resource
used.

OpenRenot eCont rol is called in vi ewSet upFor nscri pt, and cl oseRenot eContro
is called in vi ewQui t Scri pt . Note that these are methods, not global functions; same is
true of SendRenot eCont r ol Code.

More Information

Consult the IR samples available on ftp.apple.com (Internet) and on the Newton Developer
CD-ROMs.

t[0] 1] 2] 3] t[4] t[5]

repeat or
idle leadIn transitions leadOut

Communications With No Terminating Conditions (6/9/94)

Q: How do I handle input that has no terminating characters and/or variable sized packets?

A: Remember that input specs are specifically tied to the receive completion mechanism. To
deal with the situations of no terminating characters or no set packet sizes, you need only
realize that one receive completion is itself a complete packet. Set the byt eCount slot of
your input spec to the minimum packet size. In your input script, call Par ti al to read in the
entire packet, and then call Fl ushl nput to empty everything out for your next receive
completion.

If this is time-delay-based input, you may be able to take advantage of parti al Scri pts
with parti al Frequenci es. Call the Ti cks global function if necessary to determine the
exact execution time of aparti al Scri pt.

What Really Happens During Instantiate & Connect (6/14/94)

Q: Does | nstanti at e, Bi nd or Connect touch the hardware?
A: Exactly what happens depends on the type of endpoint being used. In general:

The endpoint requests one or more communications services using endpoint options like this:

{
type: 'servi ce,
| abel : kCVBAsyncSeri al ,
opCode: opSet Requi r ed

}

<see di agram section A>

The CommManager task creates the appropriate CommTool task(s) and replies to the
communications service request. Each CommTool task initializes itself . In response to the
Bi nd request the CommTool acquires access to any physical hardware it controls, such as
powering up the device. The endpoint is ready-to-go.

<see di agram section B>

An endpoint may use multiple CommTool tasks, but there will be a single NewtonScript
endpoint reference for them.

Section A

Application r

Dormai n

When the endpoint requests a connection, the CommTool interacts wih the physical
hardware (or a lower level CommTool) as necessary to complete the connection, depending
on the type of communications service. For example, ADSP will use the endpoint address
frame to perform an NBP lookup and connection request. MNP will negotiate protocol
specifications such as compression and error correction.

<see di agram section C

The CommTool completes the connection and replies to the connection request. Note that if
this is done asynchronously, the Newt task continues execution, giving the user an option to
abort the connection request.

<see di agram section D>

Di sconnect functions similarly to Connect, moving the endpoint into a disconnected

state. Unbi nd releases any hardware controlled by the CommTool. Di spose deallocates
the CommTool task.

Section B

E
Newt Task Application |o Newt Task
oofr

Endpoint Interface Endpoi nt Interface

Conmuni cati ons

Section C

Appl i cation
Domai n

Conmuni cati ons
Donai n

7/"0 Request

~©° oy

CommManager Task

Newt Task

Endpoi nt Interface

WSI

CommManager Task

=@

Conmifool Task

A

Physi cal Hardware

Communi cat i ons
Domai n

Section D

Appl i cation
Domai n

Communi cat i ons

Unicode-ASCII Translation Issues (6/16/94)

\PC ooy

CommManager Task

= T

Newt Task

Endpoint Interface

P
0
t ComniTool Task

Physi cal Har dwar e

RPC Repl y

CommManager Task

ConmiTool Task

Physi cal Har dwar e

Q:

A:

How are out-of-range translations handled by the endpoints? For example, what happens
if I try to output "\u033800AE\u Apple Computer, Inc."?

The first Unicode character (0338) is mapped to ASCII character 255 because is it out of the
range of valid translations, and the second Unicode character (00AE) is mapped to ASCII
character A8 because the Mac character set has a corresponding character equivalent in the
upper-bit range.

All out-of-range translations, such as the 0338 diacritical mark above, are converted to
ASCII character 255. However, the reverse is not true! ASCII character 255 is converted to

Unicode character 02C7. This means you will need to escape or strip all 02C7 characters in
your strings before sending them if you want to use ASCII character 255 to detect out-of-
range translations. Character 255 was picked over character 0 because 0 is often used as the
C-string terminator character.

The built-in Newton Unicode-ASCII translation table is set up to handle the full 8-bit
character set used by the MacOS operating system. Although kMacRomanEncodi ng is the
default encoding system for strings on most Newtons, you can specify it explicitly by adding
one of the following encoding slots to your endpoint:

encodi ng: kMacRonmanEncodi ng; // Uni code<->Mac transl ation
encodi ng: kWizardEncoding ; /1 Uni code<->Sharp Wzard transl ation
encodi ng: kShiftJISEncoding ; /1 Uni code<->Japanese ShiftJIS
translation

For kMacRonmanEncodi ng, the upper 128 characters of the MacOS character encoding are
sparse-mapped to/from their corresponding unicode equivalents. The map table can be
found in Appendix B of the NewtonScript Programming Language reference. The upper-bit
translation matrix is as follows:

short gASCl | ToUni code[128] = {
0x00C4, 0x00C5, 0x00C7, 0x00C9, 0x00D1, 0x00D6, 0x00DC, O0x0O0El
OxO00EO, OxOOE2, OxOOE4, OxOOE3, OxOOE5, OxO0OE7, O0xOOE9, O0xOOES,
OxOOEA, OxOOEB, OxOOED, OxOOEC, OxOOEE, OxOOEF, 0xO0O0F1, O0xOOF3,
0x00F2, 0xO0O0F4, 0xO00F6, 0xO00F5, OxO0OFA, 0x00F9, 0x00FB, 0x00FC,
0x2020, 0x00BO, 0x00A2, 0x00A3, O0x00A7, 0x2022, 0x00B6, 0x00DF
Ox00AE, 0x00A9, 0x2122, 0x00B4, 0x00A8, 0x2260, 0x00C6, 0x00D8,
0x221E, 0x00B1, 0x2264, 0x2265, 0x00A5, 0x00B5, 0x2202, 0x2211
0x220F, 0x03C0, 0x222B, 0x00AA, O0xO00BA, 0x2126, 0xO0OE6, 0xO0OF8,
Ox00BF, 0x00Al, OxO00AC, 0x221A, 0x0192, 0x2248, 0x2206, 0x00AB,
0x00BB, 0x2026, 0x00A0, 0x00C0, 0x00C3, 0x00D5, 0x0152, 0x0153,
0x2013, 0x2014, 0x201C, 0x201D, 0x2018, 0x2019, 0x00F7, 0x25CA
Ox00FF, 0x0178, 0x2044, 0x00A4, 0x2039, 0x203A, O0xFB01, O0xFB02,
0x2021, 0x00B7, 0x201A, 0x201E, 0x2030, 0x00C2, 0x00CA, 0x00C1,
0x00CB, 0x00C8, 0x00CD, 0xO00CE, 0xO00CF, 0x00CC, 0x00D3, 0x00D4,
OxF7FF, 0x00D2, 0OxO00DA, 0x00DB, 0x00D9, 0x0131, 0x02C6, 0x02DC
Ox00AF, 0x02D8, 0x02D9, 0x02DA, 0x00B8, 0x02DD, 0x02DB, 0x02C7

How To Specify No Connect/Listen Options (2/1/96)

Q: How do I specify that there are no options for the Connect and Li st en methods of
pr ot oBasi cEndpoi nt ?

A: Different endpoint services use the options parameter differently. Some check for ni |
before attempting to access the array, while others assume they will always be passed an
array of options. Some also assume that the array will always contain at least one
element.

The correct work-around for this unspecified behaviour is to pass an array containing a
single nil element. This works for all endpoint service types. For example:
ep: Connect ([nil], nil);

Why Synchronous Comms Are Evil (2/1/96)

Q: Why does the following loop run slower and slower with each successive output? If the
data variable contains a sufficiently large number of items, the endpoint times out or the
Newton reboots before all the data is transmitted. For instance:

data :=[....];
for item:= 0 to Length(data) - 1 do
ep: Qutput(data] item], nil, nil);

A: When pr ot oBasi cEndpoi nt performs a function synchronously, it creates a special kind
of "sub-task" to perform the interprocess call to the comm tool task. The sub-task causes the
main NewtonScript task to suspend execution until the sub-task receives the "operation
completed" response from the comm tool task, at which time the sub-task returns control to
the main NewtonScript task, and execution continues.

The sub-task, however, is not disposed of until control returns to the main NewtonScript
event loop. In effect, each and every synchronous call is allocating memory and task
execution time until control is returned to the main NewtonScript event loop! For a small
number of sucessive synchronous operations, this is fine.

A fully asynchronous implementation, on the other hand, is faster, uses less machine
resources, allows the user to interact at any point in the loop, and is generally very easy to
implement. The above loop can be rewritten as follows:

ep.fData :=[....];
ep.flndex := 0;
ep. fQut Spec : = {
async: true,
conpl etionScri pt:
func(ep, options, error)
if ep.flndex >= Length(ep.fData) - 1 then
/1 indicate we're done
el se
ep: Qutput (ep.fData] ep.flndex := ep.flndex + 1],
nil, ep.fQutSpec)
1
ep: Qut put (ep.fData] ep.flndex], nil, ep.fQutSpec);

Of course, you should always catch and handle any errors that may occur within the loop
(conpl etionScri pt) and exit gracefully. Such code is left as an excercise for the reader.

Maximum Speeds with the Serial Port (9/19/96)

Here are some rough estimates of the speeds attainable with the Newton serial port in
combination with various kinds of flow control. These numbers are rough estimates, and
depending on the protocol and amount of data (burst mode or not) you might get higher or
lower transmission speeds. Experiment until you have found the optimal transmission
speed.

¢ 0to38.4 Kbps

No handshaking necessary for short bursts, but long transmissions require flow control
(either hardware or XON/XOFF).

e 38.4 Kbps to 115 Kbps
Require flow control, preferably hardware, but XON /XOFF should also work reasonably
reliably.

e 115Kbps +
You will encounter problems with latency and buffer sizes. Speeds in this range require an
error correcting protocol.

Both hardware and XON/ XOFF flow control can be set with the
kCMO nput Fl owCont r ol Par ms and kCMOQut put Fl owCont r ol Par ns options. In the
case of hardware handshaking (RTS/ CTS) you should use the following options:

{ label: kCMO nput FI owCont r ol Par ns,
type: "option,
opCode: opSet Requi red,
dat a: { arglist: [

kDef aul t XonChar ,
kDef aul t Xof f Char,
NI L,
TRUE,
0,
o, 1,
typelist: ['struct,
' byt e,
' byt e,
' bool ean,
' bool ean,
' bool ean,
' bool ean,],

}

{ Iabel: kCMOQut put Fl owCont r ol Par ns,
type: ' option,
opCode: opSet Requi red,
dat a: { arglist: |
kDef aul t XonChar ,
kDef aul t Xof f Char,
NI L,
TRUE,
0,
0, 1,
typelist: ['struct,
' byt e,
" byt e,
' bool ean,
' bool ean,
' bool ean,
' bool ean,],

XON /XOFF Software Flow Control Options Correction (9/19/96)

Q: XON/XOFF software flow control doesn't seem to work in pr ot oBasi cEndpoi nt ' s

asynchronous serial service. Why?

A: The endpoint option to specify flow control in the Newton Programmer's Guide is incorrect.

The correct options are as follows:

{ | abel : kCMO nput Fl owCont r ol Par ns,
type: 'option,
opCode: opSet Requi r ed,
result: nil,
form "tenpl ate,
dat a: {
arglist: [
uni codeDCl1, /1 xonChar
uni codeDC3, /] xof f Char
true, /1 useSoft Fl owContr ol
nil, /1 useHar dFl owCont r ol
0, // not needed; returned
o, 1, /!l not needed; returned
typellst ["struct,
" byt e, /1 XON character
" byt e, /'l XOFF character
' bool ean, // software flow control
' bool ean, /! hardware flow control
' bool ean, // hardware fl ow bl ocked
' bool ean, 1, }, }, [/ software flow bl ocked
{ | abel : kCMOQut put Fl owCont r ol Par s,
type: ' option,
opCode: opSet Requi r ed,
result: nil,
form "tenpl ate,
dat a: {
arglist: [
uni codeDC1, /1 xonChar
uni codeDC3, /1 xof f Char
true, /1 useSoft Fl owContr ol
nil, /1 useHar dFl owCont r ol
0, // not needed; returned
o, 1], /1 not needed; returned
typelist: ["struct,
' byt e, /1 XON character
' byt e, /1 XOFF character
' bool ean, // software flow control
' bool ean, /1 hardware fl ow control
' bool ean, /1 hardware fl ow bl ocked
' bool ean, 1, }, }, [/ software flow bl ocked

Why Are User Modem Settings Ingored (1/15/97)

Q: Our customers are complaining that modem preferences such as Ignore Dial Tone are getting

ignored in our product. We are not doing anything special to set up the modem so why are
the system settings ignored?

The user modem settings do not come for free. You must configure your endpoint based on the
user settings. You can get these using the MakeModenOpt i on call.

In general, we recommend that you always use MakeMbdenOpt i on when setting up options
to intiailize an endpoint. So you would call MakeModenOpt i on to get your initial option
array, then add your own custom options after that. MakeMbdenmOpt i on will return correct
options based on the user settings for ignore DialTone, use PC Card Modem, etc.

Handling a -36006 Error When Disconnecting (1/17/97)

Q:

A:

Sometimes -36006 is thrown when I call my endpoint's disconnect method. What is
happening?

This error will occur when Disconnect is called on a dropped connection. In fact, any time
the endpoint state does not match the expected state of the calling method, a -36006
exception will be thrown.

To work around this problem, include an EventHandler method in your endpoint. When the
connection drops, the EventHandler will be called and passed an event with an eventCode
of 2. Simply add a delayed call to unbind and dispose of your endpoint. Do not use a
deferred call to unbind and dispose of your endpoint: a bug in the deferred call mechanism
can cause unpredictable results with communications code.

InputSpec Input Form 'Frame or 'Binary Buffer Bug (1/22/97)

Q:

I have an i nput Spec of form ' stri ng. Whenitsi nput Scri pt triggers, I switch to an
input form of ' bi nary. When the binary i nput Scri pt triggers, the first few bytes of the
data are garbage, and sometimes the i nput Scri pt doesn't trigger at all. The same
behavior occurs when switching to the ' f r ame input form. Why?

Binary and frame (B/F) input forms do not buffer incoming data the same way other input
forms do. For maximum performance, the data is written directly into the destination
object, rather than into an intermediate NewtonScript buffer for endSequence and fil ter
processing.

Unfortunately, all data that has been buffered using a non-B/F input form is lost when
switching to a B/F input form, resulting in corrupted data at the start of input, incorrect
byt eCount, or end-of-packet (EOP) detection failure.

The only workaround for this problem is to have the sender wait until the receiver has
switched input forms and has flushed the input buffers before sending the binary data. In
other words:

1. receive data using a non-B/F input form

2. flush the input buffer

3. switch to a B/F input form

4. tell the sender you're ready to receive more data

5. receive data

NEW: How to Debug Communication Endpoint Code (3/21/97)

Q:

A:

Is there any way I can use the NTK Inspector while running communications code? How do I
debug my endpoint code?

If you are using a serial or MNP serial endpoint, you can use a serial PC Card to do your
comms, freeing the standard serial port for the NTK Inspector. If you are using a serial or
MNP serial endpoint, you must also modify your endpoint's instantiate options to use a
PCMCIA slot instead of the built-in serial port. Here is the option you should add directly
after the endpoint service option:

{
type: ' option,
| abel : kCMOSer i al HWChi pLoc,
opCode: opSet Requi r ed,
form "tenpl ate,
result: nil,
dat a: {
argList: [kHWocPCMCIASIotl, 0], /1 or kHW.ocPCMI ASl| ot 2
typeList: ['struct, ['array, 'char, 4], 'ulLong]
}

If you are using Newton Internet Enabler (NIE) endpoints, you can use a PC Card Modem
instead of a serial PC Card, but you do not have to add any special endpoint options. NIE
will handle this automatically, provided you correctly set up your modem in the Modem
preferences in the Prefs application.

This should allow your endpoint code to use the PC Card (serial card or modem card)
instead of the built-in serial port. Connect the NTK Inspector to the built-in serial port as
you normally would. If you are using an AppleTalk endpoint, you can simultaneously use
the NTK inspector connected via AppleTalk.

NEW: XOn/XOff Software Flow Control Problem (4/3/97)

Q: XOn/XOff software flow control isn't working. I've included the documented

kCMO nput Fl owCont r ol Par ms and kCMOQut put FI owCont r ol Par s options in my
endpoint. What could I be doing wrong?

A quirk in the way Unicode characters are packed into ' char fields in the endpoint option
is preventing the correct flow control characters from being set in the serial driver. The
solution is to use the ' byt e symbol rather than the ' char symbol for these fields, thus
avoiding the Unicode-to-ASCII conversion that would normally take place. The correct
option frames are as follows:

{ I abel: kCMO nput Fl owCont r ol Par ns,
type: ' option,
opCode: opSet Requi r ed,
result: nil,

form "tenpl ate,

data: {

arglist: [
uni codeDCl1, /1 xonChar
uni codeDC3, /] xof f Char
true, /1 useSoft Fl owContr ol
nil, /1 useHar dFl owCont r ol
0, // not needed; returned
o, 1, /1 not needed; returned
typelist: ['struct,
' byt e, /1 XON character
" byt e, /1 XOFF character
' bool ean, /1l software flow control
' bool ean, /! hardware flow control
' bool ean, // hardware flow bl ocked

"boolean, 1, }, }, [/ software flow bl ocked

{ Il abel: kCMOQut put Fl owCont r ol Par s,
type: ' option,
opCode: opSet Requi r ed,
result: nil,
form "tenpl ate,
data: {
arglist: |
uni codeDC1, /1 xonChar
uni codeDC3, /1 xoff Char
true, /1 useSoft Fl owContr ol
nil, /1 useHar dFl owCont r ol
0, // not needed; returned
o, 1], /1 not needed; returned
typelist: ['struct,
' byt e, /1 XON character
' byt e, /1 XOFF character
' bool ean, // software flow control
' bool ean, /1 hardware fl ow control
' bool ean, /1 hardware fl ow bl ocked

"boolean,], }, }, [/ software flow bl ocked

CHANGED: Sharp IR Protocol (4/9/97)

1 Serial Chip Settings
Baud rate 9600
Data bits 8
Stop bits 1
Parity Odd

2 Hardware Restrictions

The IR hardware used in the Sharp Wizard series (as well as Newtons and other devices)
requires a brief stablizing period when switching from transmitting mode to receiving mode.
Specifically, it is not possible to receive data for two milliseconds after transmitting.
Therefore, all devices should wait three milliseconds after completion of a receive before
transmitting.

3 Packet Structure

There are two kinds of Packets: "Packet I" and "Packet II". Because the IR unit is unstable
at the start of a data transmission, DUMW (5 bytes of null code (0x00)) and
START | D (0x96) begin both packet types. At least two null bytes must be processed by
the receiver as DUMVY before the START | D of a packet is considered. After this (DUMMY,
START | D) sequence the PACKET | Dis transmitted. Code 0x82 is the packet ID for a
PACKET I transmission, and code 0x81 is the packet ID for a PACKET II transmission.

3.1 Packet I
This packet type is used to transmit the following control messages:

3.1.1 Request to send ENQ (0x05)
3.1.2 Clear to send SYN (0x16)
3.1.3 Completion of receiving data ACK (0x06)
3.1.4 Failed to receive data NAK (0x15)
3.1.5 Interruption of receiving data CAN (0x18)

The format of this packet type is as follows:

Byte I ength Set value in transm ssion Det ecti on
nmethod in reception
DUMWY 5 0x00 * 5 Only 2 bytes
are detected when received.
START ID 1 0x96
PACKET I D 1 0x82
DATA 1 above nentioned data

Packet I example:

DUMWY START ID PACKET | D DATA
0x00, 0x00, 0x00, 0x00 0x96 0x82 0x05

3.2 Packet II

This packet type is used to transmit data. The maximum amount of data that may be
transmitted in one packet is 512 bytes. If more than 512 bytes are to be transmitted, they are
sent as several consecutive 512-byte packets. The last packet need not be padded if it is less
than 512 bytes and is distinguished by a BLOCK NOvalue of OxFFFF.

The format of this packet type is as follows:

Byte length Set value in transn ssion Det ecti on
met hod in reception
DUMWY 5 0x00 * 5 Only 2 bytes
are detected.
START ID 1 0x96
PACKET | D 1 0x81
VERS| ON 1 0x10 Judge only
bits 7-4
BLOCK NO 2 (L/'H 0x0001 ~ OxFFFF
CTRL CODE 1 0x01 Don't judge
DEV CODE 1 0x40 Don't judge
| D CODE 1 OxFE Don't judge
DLENGTH 2 (L/'H 0x0001 ~ 0x0200
DATA 1 ~ 512
CHKSUM 2 (L/'H

BLOCK NOin last block must be set to OX FFFF.

CHKSUM is the two-byte sum of all of the data bytes of DATA where any overflow or carry is
discarded immediately.

Send all two-byte integers lower byte first and upper byte second.

Packet II example:

DUMWY START | D PACKET | D VERSI ON BLOCK
NO CTRL CODE

0x00, 0Ox00, 0x00, 0x00 0x96 0x81 0x10 Low
Hi gh 0x01

DEV CODE | D CODE DLENGTH dat a CHECKSUM

0x40 OxFE Low Hi gh 27?7?77 Low Hi gh

4 Protocol

Data will be divided into several blocks of up to 512 bytes each. These blocks are
transmitted using type I and II packets as follows:

4.1 Transmission Protocol

4.1.1 The initiating device (A) begins a session by sending an ENQ (type I) packet. The
receiving device (B) will acknowledge the ENQDby transmitting a SYN packet.

4.1.2 When (A) receives a SYN packet, it goes to step 4.1.4 below.
4.1.3 When (A) receives a CAN packet, or when 6 minutes have elapsed without a SYN
packet reply to an ENQ packet, (A) terminates the session. If (A) receives any other packet,

no packet, or an incomplete packet, it begins sending ENQpackets every 0.5 seconds.

4.1.4 When (A) receives a SYN packet, it transmits a single type II data packet, then
awaits an ACK packet from (B).

4.1.5 When (A) receives an ACK packet, the transmission is considered successful.

4.1.6 If no ACK packet is received within 1 second from completion of step 4.1.4, or if any
other packet is received, (A) goes to step 4.1.1 and transmits the data again. Retransmission
is attempted once. The session is terminated if the second transmission is unsuccessful.

4.2 Reception Protocol

42.1 The receiving device (B) begins a session by waiting for an ENQ (type I) packet. If no
ENQ packet is received after 6 minutes (B) terminates the session.

422 When (B) receives an ENQ packet, (B) transmits either a SYN packet to continue the
session or a CAN packet to terminate the session.

423 When (B) receives a valid type II packet (for example, the checksum and all
header fields appear to be correct), (B) transmits an ACK packet.

424 If one or more header fields of the data packet are not correct, or if the time
between data bytes is more than 1 second, (B) goes to step 4.2.1 and does not transmit the
ACK packet (this will cause (A) to retransmit the packet after a one second delay).

425 If the header fields of the data packet appear to be correct but the checksum is
incorrect, (B) transmits a NAK packet (this will cause (A) to retransmit the packet
immediately).

Because of the restriction in hardware mentioned in item 2 above, it is not possible to
receive data for two milliseconds after a data transmission. Please wait three

milliseconds before transmitting a response to the other device.

(see diagram)

SEND RECEIVE
ENQ (Packet I)

Typ. 0.5 s}:.
ENQ (Packet |

NV

ENQ (Packet I)

v

\ /A

Min. 3 msec.
SYN (Packet | T *
data (Packet Il 1st data block
T Max. 1 sec

Max. 1 se
l ACK (Packet

|

nth data block

Hardware & OS

IR Port Hardware Specs (6/15/94)

Q: What are the hardware specifications for the Newton IR port?

A: In the Apple MessagePad 100, 110, and 120, the Sharp ExpertPad, and the Motorola Marco,
the IR transmitter/receiver is a Sharp Infrared Data Communication Unit model RY5BD11
connected to channel B of a Zilog 85C30 SCC. Data is communicated along a 500 KHz carrier
frequency at 9600 or 19200 baud, 8 data bits, 1 stop bit, odd parity. The IR hardware

requires a minimum of 5 milliseconds settling time when transitioning between sending and
receiving. Sharp's CE-IR2 wireless interface unit may be used to connect the Newton to
MacOS or DOS machines, with the appropriate software.

The Newton supports four IR software data modes:

Sharp encoding, NewtIR protocol (specifications are NOT releaseable)
Sharp encoding, SharpIR protocol

Plain Serial

38 KHz encoding ("TV Remote Control")

Serial Cable Specs (8/9/94)

Q: I'want to make my own serial cable. Which wires and which connector pins do I use?

A: To create a hardware flow control capable cable for Mac-to-Newton or Newton-to-Newton
communications (also called a "null-modem" cable) all you need are two mini-din-8
connectors and seven wires connected as follows:

Ground (4) -> Gound (4) (also connect to connectors' shrouds)
Transmit+ (6) -> Receive+ (8)

Transmit- (3) -> Receive- (5)

Recei ve+ (8) -> Transnit+ (6)

Receive- (5) -> Transnmit- (3)

Data Term Ready (1) -> Cear To Send (2)

Clear To Send (2) -> Data Term Ready (1)

You should use twisted pairs for 6/3, 8/5, and 1/2, to improve signal quality and reduce
attenuation, especially in long cables. You can use side-by-side pairs, as in telephone
hookup cable, for short cable runs.

Remember that because RS-422 uses a differential signal for transmit and receive, you
always need two transmit and two receive pairs, and a break of either wire will cause
communications in that direction to fail. The advantage, however, is significantly longer
and more reliable cable runs than RS-232.

If you don't use hardware flow control, you can eliminate the 1/2 pair, but that's not
recommended unless you know this cable will be used only in software flow control
situations.

Q: What's the pin mapping on the Newton-to-PC (DIN-to-DB9) cable?

A: Here it is:

Note that the pin numbers shown are as defined above.

PC (DB9) Newt on (DI N)

7 N C
8 N C
9 N C

N C=not connect ed.

IR Hardware Info (9/6/94)

Q: How does the Newton send "Remote Control" codes?

A: This information is hardware dependent, and is only valid for the Original Message Pad,
Message Pad 100, and Message Pad 110 products.

The IR transmitter/reciever is a Sharp IR Data Communication Unit connected to the
second channel of a built-in SCC. When in "Remote Control" mode, the SCC is not used.
Instead, a carrier frequency of 38KHz is transmitted, and the CPU toggles a register to
generate the data pattern.

How Much Power Can a PCMCIA Card Draw (3/31/95)
Q: How much power can I draw through the PCMCIA slot?

A: The current rating depends on which Newton you are using and the type of batteries in use.
Alkaline batteries provide less current than NiCad due to higher internal resistance. There
is also a 'semi' artifical limit in the ROM. Currently any card who's CIS indicates more
than 200 mA current draw will be rejected by the CardHandler. Other than that, here's the
run down by hardware:

Appl e MessagePad 100: 50 mA
Appl e MessagePad 110: ~160 mA
Appl e MessagePad 120: ~300 mA
Appl e MessagePad 130: ~300 mA (with backlight off)

Appl e MessagePad 130: (with backlight on, the nmaxi num has not
been characterized)

Do-it-Yourself Package Installation (8/26/96)

Q: I'want to have a newer version of my package downloaded over an endpoint, and replace
the older version. How do I do this?

A: There are a few steps, but they're fairly straightforward.
First, you need to remove the old package if the new version has the same unique name.

(See code below which you can use if you don't know whether the new package has the
same name or not.) Then call Saf eRenovePackage().

Second, you need to get the new package to the Newton device. Use the endpoint method
SuckPackageFr onEndpoi nt (), or the store method SuckPackageFr onBi nary()
depending on where the package is coming from.

In some cases, you don't want to remove the old package until you're sure the new one works.
If you're in this situation, the new package will have to have a different unique name. Just
defer the call to Saf eRenpvePackage until after you verify (most likely with a deferred

call) that the SuckPackageFr onmEndpoi nt or SuckPackageFr onBi nar y has succeeded.

Also note that you can't call Saf eRenpvePackage from a function that's in the target
package. You'll need to create a small function which does nothing but remove the old
package, and then TotalClone that small function before executing it via a deferred call.
Otherwise you'd be chopping your package's legs out from under itself, causing no end of
havoc!

In some cases, it is appropriate to have a "loader" package which has a small amount of
code to check whether or not to install the real package. This is accomplished by writing a
small auto part which has the "Auto Remove Package" flag turned on, and the real
package in a binary object within itself. This auto parti nstal | scri pt performs
whatever checks are necessary, and then conditionally calls SuckPackageFr onBi nary,
providing the binary object which holds the real package.

To create a binary object from a package, you need to move the data from the . pkg file that
NTK produces into an object in the NewtonScript environment in NTK. On Windows NTK,
LoadDat aFi | e does this. On Macintosh NTK, the easiest thing to do is use a utility such
as Clipboard Magician to copy the data from the .pkg file into a resource, then use

Cet NanedResour ce to get the data in your installer package. Get NanedResour ce and
LoadDat aFi | e are documented in the Newton Toolkit User's Guide. The MonacoTest
sample code is a working example of a package installer that uses this technique.

To get the unique name for a package inside a binary object, you can use the following
NewtonScript code. It takes the package object as its argument, and will return the string

holding the unique name.

func(pkgRef)

begi n
| ocal thelen:=extractword(pkgRef,26) div 2 -1
| ocal s:=" "

whil e strlen(s)<thelen do
S: =sé&s;
s:=substr (s, 0,thelen);

Bi naryMunger (s, 0, thelen*2, pkgRef,
52+(extract| ong(pkgRef, 48) *32) +ext ract wor d(pkgRef , 24),
t hel en*2);
S,
end

CHANGED: Serial Port Hardware Specs (4/9/97)

Q: What are the hardware specifications for the serial port?

A: In the Apple MessagePad 100, 110, 120, 130, 2000, the eMate 300, the Sharp ExpertPad, and
the Motorola Marco, the serial port is an EIA standard RS-422 port with the following
pinout (as viewed looking at the female Mini-DIN-8 socket on the side of the Newton
device, or looking at the female Mini-DIN-9 on the Newton Serial Adapter):

<see diagram>

Pin 1 HSKo /DTR

Pin 2 HSKi /CTS

Pin 3 TxD- /TD

Pin 4 GND Signal ground connected to both | ogic and chassis ground.
Pin 5 RxD /RD

Pin 6 TxD+ (see bel ow)

Pin 7 GPi CGeneral purpose input received at SCC s DCD pin.

Pin 8 RxD+ (see bel ow)

Pin 9 Power out - 5V/100ma. This pin only exists on the eMate 300
and the Newton Serial Adapter.

All inputs are:
Ri 12K ohms
minimum Vih 0.2v, Vil -0.2V
maximum tolerance Vih 15V, Vil -15V

All outputs are:
RI1 450 ohms
minimum Voh 3.6V, Vol -3.6V
maximum Voh 5.5V, Vol -5.5V

No more than 40mA total can be drawn from all pins on the serial port. Pins 3 & 6 tri-state
when SCC's /RTS is not asserted.

The EIA RS-422 standard modulates its data signal against an inverted (negative) copy of
the same signal on another wire (twisted pairs 3/6 & 5/8 above). This differential signal is
compatable with older RS-232 standards by converting to EIA standard RS-423, which
involves grounding the positive side of the RS-422 receiver, and leaving the positive side
of the RS-422 transmitter unconnected. Doing so, however, limits the usable cable distance
to approximately 50 feet, and is somewhat less reliable.

The MessagePad 120 and the MessagePad 130 use a Linear Technology LTC902 serial line
driver. This part drives +5/-5 nominally for the RS422 signals, and you can use just one half
to interconnect with R5232 compatible signal levels.

The MessagePad 2000 and the eMate 300 use a Linear Technology LTC1323 serial line
driver. This part drives +5/-5 nominally for the RS422 signals, and you can use just one half
to interconnect with R5232 compatible signal levels.

Me:zsagePad 100, 110, 120, 130, Sharp ExpertPad. Motorola Marco

Power Out

Localization

StringToDateFrame & StringToTime Don't Use Seconds (5/9/96)

Q: When passed a string with seconds, for example "12:23:34", St r i ngToDat eFr ame and
StringToTi ne don't seem to work. Stri ngToDat eFr ane returns a frame with NIL for
all the time & day slots, and St ri ngToTi ne returns NIL.

A: To correctly handle strings with seconds, seconds must be stripped from the string. If the
application might be used outside the US, check for the Locale time delimiter. Here is a
function which prepares a string for St ri ngToDat eFr ane and Stri ngToTi ne:

PrepareStringForDateTime := func (str)

begi n /1 str is just a tinme string, nothing el se bel ongs
| ocal newStr := clone (str);
| ocal tf:= GetlLocal e().tinmeFormat;
| ocal startMn := StrPos (str, tf.tinmeSepStrl, 0);
| ocal startSec := StrPos (str, tf.tineSepStr2, startM n+l);
/1 If a time seperator for seconds, then strip out seconds
if startSec then

begi n
| ocal skipSecSep := startSec + StrLen (tf.tinmeSepStr2);
| ocal remainderStr := SubStr (
str, skipSecSep, StrLen (str) - skipSecSep);
| ocal appendStr := StringFilter (

remai nder Str, "1234567890", 'rejectBegi nning);
newStr := SubStr (str, 0, startSec) & appendStr;

end;
return newstr;
end;

NEW: How GetDateStringSpec Uses Its Element Array (3/31/97)

Q: It appears that the compile-time function Get Dat eSt ri ngSpec formats the supplied date
elements in reverse order. Is this is a bug?

A: This is the defined behavior. The Newton Programmer's Guide implies that the order does
not matter, but that is not correct. Get Dat eSt r i ngSpec uses the elements in reverse order,
although some functions that use dateStringSpecs may not observe the order defined by the
dateStringSpec. For instance, some functions may use the elements of the dateStringSpec,
but use the element ordering defined by the locale bundle.

For instance, you can use this call to define a dateStringSpec for use in a locale bundle with
the order Day/Month/Year:

CGet Dat eStri ngSpec([[KEl erent Year, kFormat Nuneric], [KEl ement Mont h,
kFor mat Nurreri c], [KEl enent Day, kFormat Nuneric]]);

Miscellaneous

Unicode Character Information (9/15/93)

Q: Where can I find more about Unicode tables?

A: The following book provides a full listing of the world wide (non-Kanji) Unicode
characters:

The Unicode Standard
WorldWide Character Encoding
Version 1.0 Volume 1
ISBN-0-201-56788-1

Current Versions of MessagePad Devices (5/15/96)

Q: What are the versions of the Apple Newton MessagePad device?

A: This answer will change as product versions are released. To find the version number, open
the Extras Drawer. In the Newton 1.x OS, open the Prefs application and look at the
number in the bottom middle of the screen. In the Newton 2.0 OS, choose Memory Info from
the Info button.

As of Sep 25, 1996 the latest versions are:
English Newton 2.0 OS

MessagePad 120 2.0 (516205)
MessagePad 130 2.0 (526205)

German Newton 2.0 OS

MessagePad 120 D-2.0 (536030)
English Newton 1.x OS

MessagePad 1.05

MessagePad 1.11

MessagePad 100 1.3 (415333)

MessagePad 110 1.3 (345333)

MessagePad 120 1.3 (465333)
German Newton 1.x

MessagePad D 1.11

MessagePad 100 D 1.3 (435334)

MessagePad 120 D 1.3 (435334)
French Newton 1.x

MessagePad 100 F 1.3 (424112)

MessagePad 110 F 1.3 (424112)

MessagePad 120 F 1.3 (455334)

NEW: Using the Icon Editor in NTK 1.6.4 (4/18/97)
Q: In the icon editor in the Project Settings slip in NTK 1.6.4 for MacOS, I don't always see all

the images. Once I choose an image in any depth, the list is much shorter for the other
depths, and I can't find the image I need! What's wrong?

A: All of the images in a multiple-depth icon must be exactly the same size. To help ensure
that this is the case, once any image is selected in any depth, NTK limits the available
choices in the other depths to images that are exactly the same size. Images from any
resource files that match in size will be shown, and images of different sizes will not
appear. You must edit your images "by hand" to ensure that all the images you want for
your icon family are exactly the same size, padding smaller images with white pixels as
necessary.

NewtApp

Creating Preferences in a NewtApp-based Application (1/31/96)

Q: How do I create and use my own preferences slip in a NewtApp-based application?

A: In your application's base view create a slot called pr ef sVi ewand place a reference to the
template for your preferences slip there (probably using the NTK Get Layout function.)
When the user selects "Prefs" from the Info button in your application, the NewtApp
framework will create and open a view based on the template in the pr ef sVi ewslot.

When your preferences view opens, a reference to your application's base view is stored in a
slot called t heApp in the preferences view. Use this reference to call the application's
Cet AppPr ef er ences method. This method will return a frame containing your
application's preferences. Get AppPr ef er ences is a method provided by NewtApp and
should not be overidden.

When adding slots to the preferences frame, you must either append your developer
signature to the name of the preference (for example, ' | Pref 1: SI §) or create a slot in the
preferences frame using your developer signature and save all preferences in that frame.
This will guarantee that you don't overwrite slots used by the NewtApp framework.

Here is an example of how to get the preferences frame and add your data:
preferencesSlip. vi ewSet upForntscri pt : = func()
begi n
prefs : = theApp: Get AppPref erences();
i f NOT HasSl ot (prefs, kAppSynbol) then
prefs. (kAppSynbol) := {nyPrefl: nil, myPref2: nil};
end;

To save the preferences, call the application's SaveAppSt at e method:
preferencesSlip.viewQuitScript := func()
t heApp: SaveAppState(); // save prefs

NewtApp currently provides one built-in preference for where to save new items. In the
preferences frame there will be a slot called i nt er nal St or e. Setting this slot to t r ue
will force the NewtApp framework to save all new items on the internal store.

Creating an About Slip in a NewtApp-based Application (1/31/96)

Q: How do I create my own About slip in a NewtApp-based application?

A: Depending on how much control you want, there are two ways to do this. For the least
amount of control, create a slot in your application's base view called about | nf 0. Place a
frame in that slot with the following slots:

{tagLine: "", /1 A tagline for your application
version: "", /1 The version nunber for the application
copyright: "*", /1 Copyright information
trademarks: "", // Trademark information

}

The information found in this frame will be displayed by the NewtApp framework when
the user selects "About" from the Info button's popup. See the picture below for an example
of what the user will see.

Alternatively, you can create your own About view. If you do this, create a slot in your
application's base view called about Vi ew containing a reference to a template for your
about view (probably using the NTK Get Layout function.) A view will be created from
that template and opened when the user selects "About" from the Info button's popup.

Eheckhnuk

tagLine The world's greatest™
application.
YEFE 0N Yersion 2.0
copyright 1996 Your Company, Inc
All Eights Eeserved.
trad ermnarks Greatest is a registered

trademark of ¥our Company,
Inc.

1k storage used for 1 Check

®

NewtSoup FillNewSoup Uses Only Internal Store (2/5/96)

Q: My Newt Soup continues to get the Fi | | NewSoup message, even when the soup already
exists. Am I doing something wrong?

A: The NewtApp framework only checks for entries on the internal store to determine if the
Fi | | NewSoup message needs to be sent. Check the "Setting the UserVisible Name With
NewtSoup" Q&A for more details and a description of how to work around the problem.

Setting the User Visible Name With NewtSoup (2/6/96)

Q: How can I make the user visible name for my NewtApp's soup be something besides the
internal soup name, as I can do with RegUni onSoup?

A: There is a method of newt Soup called MakeSoup which you can override. The MakeSoup
method is responsible for calling RegUni onSoup (or otherwise making a soup) and then
calling the Fi | | NewSoup method if the soup is new /empty.

MakeSoup is called normally as part of initializing the newt Soup object. Here is a sample
MakeSoup method that will use a newly defined slot (from the newt Soup based template)
for the user name.

The current documentation doesn't tell you everything you need to do to properly override
the MakeSoup method. In particular, MakeSoup is used by the newt Soup implementation
to initialize the object, so it needs to set up other internal slots. It's vital that the
"appSynbol slot in the message context be set to the passed argument, and that the

" t heSoup slot be set to the soup or unionSoup that MakeSoup creates or gets. (Recall that
RegUni onSoup returns the union soup, whether it previously existed or not.)

The Get SoupLi st method of union soups used in this code snippet returns an array with
the member soups. It should be considered documented and supported. A newly created
union will have no members, so Fi | | NewSoup should be called. This is an improvement

over the default MakeSoup method, which always calls Fi | | NewSoup if the soup on the
internal store is empty.

The user visible name is supplied via the newtSoup ' user Nane slot, which is looked up in
the current context. As with soupNare, soupDescr, etc, you should set a new user Nane
slot in the frame in the al | Soups frame in the newt Appl i cati on template.

MakeSoup: func(appSynbol)
begi n
sel f. appSynbol := appSynbol ; /1 just doit...
sel f.theSoup : = RegUni onSoup(appSynbol , {
name: soupNane,
user Name: user Nane,
owner App: appSynbol ,
user Descr: soupDescr
i ndexes: soupl ndi ces,
1)
i f Length(theSoup: Get SoupList()) = 0 then
: Fi Il NewSoup();
end;

How to Control Sort Order in NewtApp (5/10/96)

Q:

A:

While a NewtApp application is running, can I change the order in which soup items
appear?

Yes, the key to changing the sort order is to modify the query spec in the al | Soups frame,
and then cause the application to refresh. The cursor that controls the sort order for the
layout is built from the mast er SoupSl ot slot. Both the default and the overview
layouts have a mast er SoupS| ot which points back to the relevant al | Soups slot in
the app base view.

Here are the basic steps:

1) Ensure newt AppBase. al | Soups & newt AppBase. al | Soups. mySoup are writeable.
(Since the frames reside in the package, they are in protected memory.)
2) Modify the query spec to the new sort order.
3) Now send newt AppBase. al | Soups. mySoup: Set upCur sor () to create a new cursor
using the new query spec.
4) Then do a newt AppBase: RedoChi | dren() to display the items in the new sort order.
The code would look something like:
if IsReadOnly (newt AppBase. al | Soups) then
newt AppBase. al | Soups : = {_proto: newt AppBase. al | Soups};
if IsReadOnly (newt AppBase. al | Soups. nySoup) t hen
newt AppBase. al | Soups. nySoup : ={
_proto: newt AppBase. al | Soups. nySoup} ;
newt AppBase. al | Soups. nySoup. soupQuery : =
{i ndexpat h: newKey}; /1 new sort order
newt AppBase. al | Soups. nySoup: Set upCur sor () ;
newt AppBase: RedoChi | dren();

How to Avoid NewtApp "Please insert the card" errors (5/10/96)

Q:

If a NewtApp-based application is on a PC card and the card is removed, the user gets the
following error message:

"The package <package name> still needs the card you removed. Please insert it now, or
information on the card may be damaged."

How can I avoid this problem?

While a card is unmounting, if an object on the card is still referenced, then the user will get
the above error message asking them to reinsert the card. For more information about issues
for applications running from a PC card see the article "The Newton Still Needs the Card
You Removed"

The newt Appl i cati on method Newt | nstal | Scri pt is normally called in the part's
Instal | Scri pt function. One thing the Newt | nstal | Scri pt does is register the
viewDefs in the NewtApp base view allViewDefs slot using the global function

Regi st er Vi ewDef .

Currently, Regi st er Vi ewDef requires that the data definition symbol be internal. If the
symbol is on the card, then when the Newt RenpveScri pt tries to unregister the viewDef
a reference to data on the card is encountered and the above error message will be shown.
This bug will be fixed in a future ROM.

To work around this bug for any 2.0 based ROM, add the following code to your part's
Instal |l Script before calling Newt I nstal | Scri pt:

| ocal mmi nLayout := partFrane.theForm
i f mai nLayout. al | ViewDefs then

foreach dat aDef Sym vi ewDef sFrane i n mai nLayout. al | Vi ewDefs do

foreach viewDef in viewDefsFrane do
Regi st er Vi ewDef (
vi ewDef, Ensurel nternal (dataDefSyn));

part Franme. renoveFrane : =

mai nLayout : Newt I nst al | Scri pt (mai nLayout) ;

Note that it is OK to call Regi st er Vi ewDef more than once with the same view
definition. Regi st er Vi ewDef will do nothing (and return NIL) if the template is
already registered.

Customizing Filters with Labelled Input Lines (9/4/96)

Q:

A:

I need to open a slot view on a slot that isn't a standard data type (int, string, etc). How do I
translate the data from the soup format to and from a string?

Here is some interim documentation on the filter objects that newtLabellnputLines (and
their variants) use to accomplish their work.

A filter is an object, specified in the 'flavor slot of the newtLabellnputLine set of protos,
which acts as a translator between the target data frame (or more typically a slot in that
frame) and the text field which is visible to the user. For example, it's the filter for

newtDatelnputLines which translates the time-in-minutes value to a string for display,
and translates the string into a time-in-minutes for the target data.

You can create your own custom filters by protoing to newtFilter or one of the other
specialized filters described in Chapter 4 of the Newton Programmer's Guide.

When a newtLabellnputLine is opened, a new filter object is instantiated from the template
found in the 'flavor slot for that input line. The instantiated filter can then be found in the
filter slot of the view itself. The par ent slot of the instantiated filter will be set to
the input line itself, which allows methods in the filter to get data from the current
environment.

Here are the slots which are of interest. The first four are simply values that you specify
which give you control over the recognition settings of the inputLine part of the field, and
the rest are methods which you can override or call as appropriate.

Settings:

recFl ags

Works like entryFlags in protoLableInputLine. This provides the 'viewFlags settings for
the inputLine part of the proto -- the field the user interacts with.

recText Fl ags
Provides the 'textFlags settings for the inputLine part of the proto.

recConfig
Provides the 'recConfig settings for the inputLine part of the proto.

dictionaries
Like the 'dictionaries slot used in recognition, Provides custom dictionaries if
vCust onDi cti onari es is on in the r ecFl ags slot.

Methods:

Pat hToText ()

Called when the inputLine needs to be updated. The function should read data out of the
appropriate slot in the 'target data frame (usually specified in the 'pat h slot) and return a
user-visible string form of that data. For example, for numbers the function might look like
func() NunberStr(target. (path))

Text ToPat h(str)

Called when the inputLine value changes. The result will be written into the appropriate
slot in the 'target data frame. The string argument is the one the user has modified from
the inputLine part of the proto. For example, for numbers the function might look like
func(str) if StrFilled(str) then StringToNunber(str)

Pi cker

An optic()r)lal function. If present, this method is called when the user taps on the label part
of the item. It should create and display an appropriate picker for the data type. For the
pre-defined filters, you may also wish to call this method to open the picker. You should
store a reference to the filter in the picker view. Then if the user picks an item, send the
filter instance a Pi ckAct i onScri pt message. If the picker is cancelled, send a

Pi ckCancel | edScri pt message.

NOTE: If this method is defined, a pick separator line and the text "Other..." will be
added to the labelCommands array.

Pi ckActionScri pt (newval ue)
An optional function. This method should be called when the user selects something from

the picker opened through the filter's Pi cker method. If you override this method be sure
to call the inherited Pi ckAct i onScri pt method.

Pi ckCancel | edScri pt ()
An optional function. This method should be called when the user cancels the picker

opened through the filter's Pi cker method. If you override this method be sure to call the
inherited Pi ckCancel | edScri pt method.

InitFilter()

Optional. This method is called when an inputLine that uses this filter is first opened.
This method can be used to get data from the current environment (for example, the 'path
slot of the inputLine) and adjust other settings as appropriate.

Dynamically Changing the Height of Stationery (11/19/96)

Q:

A:

How can I dynamically change the height of my roll-style stationery?

To dynamically change the height of roll-style stationery you will need to change the
target's hei ght slot, flush the data, and then do a re-target. For instance, you might have
the following method in your stationery:

DoResi ze: func(newHei ght)
begi n
target. hei ght : = newHeight;
: Fl ushDat a() ;
: DoRet arget () ;
end;

Using Custom Help Books in a NewtApp-based Application (12/2/96)

Q:

A:

I have created a help book for my NewtApp-based application. Can I make my
application open the help book when the user chooses "Help" from the info button?

Yes, there is a newt Appl i cat i on slot called hel pManual . You should store a reference to
your help book in this slot.

There is also a slot called vi ewHel pTopi ¢ which you can use to dynamically change the
location the help book is opened to. This slot should store the name of the topic to open to.

See the DTS Sample Code project "Beyond Help" for an example of a help book.

Creating a Large newtEditView /newtROEditView (12/2/96)

Q: When I use newt Edi t Vi ewor newt ROEdi t Vi ew, I cannot scroll through all the text of a

large note. After a few pages it stops scrolling. What is going wrong?

A: Both newt Edi t Vi ewand newt ROEdi t Vi ew have a default scroll height of 2,000 pixels.
To work around this limitation, you will need to add a slot called not eSi ze to your
newt (RO) edi t Vi ew. This slot should hold an array of two elements. The first element is
the scroll width. If you do not want horizontal scrolling, the scroll width should equal the
view width. The second element is the scr ol | Hei ght .

Here is an example not eSi ze slot that you would use to create a newt (RO) Edi t Vi ew
with a scroll height of 20,000 pixels.

{
_proto: new Edi t Vi ew,

not eSi ze: [vi ewW dt h, 20000],

How to Use ForceNewEntry with NewtApp (12/2/96)

Q: T'have a newt App-based application which does not use stationery. If I set the
f or ceNewEnt ry slot to ni | in my layout and open the application with a ni | target, I can
still see the entry view. How can I avoid this?

A: You will need to check for the existence of a target frame. If one does not exist then close the
entry view.

You will not have this problem if you use stationery because the newt App framework will
not open the stationery if a target does not exist.

How to Programatically Open the Header Slip (1/3/97)

Q: I like the way the Newton Works application (for Newton 2.1 OS) automatically opens the
header slip each time a new entry is created. Can I make my newtApp-based application
do this?

A: Yes! The newt Entry(Rol | / Page) Header proto has a Popl t method which opens the
header. You will need to override the St at Scri pt of your newt NewSt at i oner yBut t on
and send the header a Popl t message. Because Popl t is not defined prior to Newton 2.1
OS, you will need to check for its existence before calling it. Here is a code example:

newt NewSt at i oner yBut t on. Stat Script: func(theStat)

begi n
/1l Keep a copy of the inherited return value for use bel ow
local result := inherited:?StatScript(theStat);

/1 Pass self as a paraneter for the closure.
/1 This gives us a reference
/1l to the application so we can get the entry view
AddDef erredCal | (func(context)
begi n
| ocal entryView : = context: GetTargetView);

/1 This code assunes that your header is declared to
/1 the entry view with the nane theHeader Vi ew
if entryView t heHeader Vi ew. poplt then
ent ryVi ew. t heHeader Vi ew. Popit (true);
end,
[self]);

result;
end;

Programatically Changing the Default ViewDef (1/3/97)

Q: I want to be able to programatically change which viewDef is shown when I tap the
"New" button in my newtApp-based application. How can I do this?

A: By default, the viewDef which is shown when you create a new entry is the one with the
value ' def aul t inits synbol slot. To change this behavior at run-time, you will need to
override the St at Scri pt method of your newt NewSt at i oner yBut t on.

In the St at Scri pt method, you will set two slots in your application. The first slot is the
pr ef erredVi ewDef slot in your application's base view. The second is the vi ewDef slot
of the current layout. Both of these slots should be set to the symbol of the viewDef that
you want displayed. For instance, you might have the following St at Scri pt:

StatScript := func(theStat)

begi n
preferredVi ewDef := "'nyNewDefaultStationery;
| ayout . vi ewDef: = ' nyNewDef aul t St ati onery;

/1 Make sure we call the inherited nethod
i nherited: ?Stat Script(theStat);
end;

Note: you must not modify either the application's pr ef er r edVi ewDef slot or the
layout's vi ewDef slot at any other time. Doing so could cause your application to not work
on future versions of the Newton OS.

How to Properly Declare NewtApp Views (1/6/97)
Q: T'have a newt Ent r yPageHeader which is declared to my newt Layout view. Each time I
change entries in my application, the header does not get properly updated. What's going
wrong?

A: If you declare your newt Appl i cat i on views, they need to be declared to their parent.
Declaring newt Appl i cat i on views to a grandparent can cause undefined behavior.

Because of how the declare mechanism works, you must be careful when you declare a view
to a grandparent view. In some circumstances, you could try to access a view which has been
closed.

As an example, pretend you have three views called viewA, viewB, and viewC. They
have the following heirarchy.:

ViewA (grandparent)
ViewB (parent)
ViewC (child)

ViewC is a child of viewB and viewB is a child of viewA; ViewC is declared to viewA. If
you close viewB, viewC will also be closed because it is a child of viewB. Since ViewC was
declared to ViewA, ViewA will still have a reference to viewC which has been closed.
Sending view messages to viewC will throw.

For more information on the Newton OS declare mechanism, see the "Declaring Multiple
Levels" Q&A, and the "The Inside Story on Declare" appendix in the Newton
Programmer's Guide.

How to Create Custom Overviews with NewtApp (1/8/97)

Q:

My NewtApp-based application can print successfully, but I want a custom format that can
print multiple items on one page or handle different transports than the default overview
supports. How do I do this?

Add an over vi ewTar get Cl ass slot to your application (or any other layout that is a
descendent of your newt Over Layout). Set this slot's value to be the symbol that represents
your data class (for example, ' | nyDat a: SI §), which must match the data class you use
when registering your print format. The NewtApp overview will use

over vi ewTar get Cl ass instead of the default overview class (' newt Over vi ew) supplied
by newt Over Layout .

You must still register your print format, but you must set itsusesCur sor s slottot r ue
indicating that it will use the value target as a multiple item target and it will iterate
over it using Get Tar get Cur sor (t ar get) . For an example of a print format that can
handle multiple items, see the MultiRoute DTS sample.

For more information about the default overview class (' newt Over vi ew), see the Q&A
"Limitations with NewtOverview Data Class".

How to Store Prefs in a NewtApp-based Application (1/17/97)

Q:

A:

I want to save application-specific preferences and state information before my application
is closed. What is the best way to do this?

You can save application-specific information in the frame in the pr ef sCache slot of your
NewtApp-based application. This slot is defined in your application's base view by the
NewtApp framework. This frame will be saved to the system soup when the application
closes.

When you add to the pr ef sCache frame, you must use your registered signature to avoid
conflicting with slots that the framework may use. You can name each of your preferences

with your signature, or we recommend adding a subframe in a slot named with your
signature. For instance, you might have the following code:

prefsCache. (' | MyPrefs: WSIG) := {prefl: 1, pref2: 2};

NEW: A CheckAll Button for NewtApp Overviews (3/4/97)
Q: What do I have to do to get the Check All button to appear in my overview? What's the
compatible way to do this so that the application works on Newton 2.0 OS as well?

A: InNewton 2.1 OS, there is a proto called newt CheckAl | But t on (@72) which you can
use. This proto sends the CheckAl | method to the layout. In Newton 2.1 OS,
newt Over Layout s have two new methods, CheckAl | and UncheckAl | , which
implement this behavior. However, none of this is present in Newton 2.0 OS .

To create a check all button that works on the Newton 2.0 OS, you will need to create the
button yourself and implement the CheckAl | and UncheckAl | methods for your overview
layout (or any other layout you wish to implement check all for.)

Older versions of the DTS sample code (either "Checkbook-7" or "WhoOwesWhom-3") do
have a pr ot oCheckAl | But t on. These samples implement an earlier (and less useful)
flavor of Check All. The old samples check all the items which are currently visible in the
overview, while the Newton 2.1 OS checks all the items that are present in the currently
selected folder/card filter. "Checkbook-8" or "WhoOwesWhom" (version 3 or later) will
reflect the Newton 2.1 behavior.

Until the updated samples are available, start with the pr ot oCheckAl | But t on from the
older sample code, since that gives the correct look and button bounds, and modify it as

follows:

The check all button's but t onCl i ckScri pt should look something like this:

func()
i f newt AppBase. current Layout = 'overView t hen
begi n
if layout.checkAll Primed then
I ayout : UnCheckAl | ()
el se
| ayout : CheckAl |l ();
| ayout . checkAl'l Prined := NOT | ayout.checkAl |l Pri ned;
end;

The overview layout's CheckAll and UncheckAll methods should look something like

this:
CheckAl | :
func()
begi n
| ocal curse := dataCursor:C one();
curse: Reset();
hilitedl ndex := nil;

sel ected : = MapCursor(curse, func(e) MakeEntryAlias(e));
AddUndoSend(| ayout, 'UnCheckAll, []);

| ayout : DoRet ar get () ;

end;
UncheckAl | :
func()
begi n
hilitedl ndex := nil;
selected := nil;
| ayout : DoRet ar get () ;
end

Note that these methods make use of two undocumented slots: hi | i t edl ndex and

sel ect ed. hilitedl ndex is used internally by newt Over Layout to track the tapped
item. You may set it to NI L (as above) to clear the value, but do not set it to some other
value or rely on its current value. sel ect ed contains an array of aliases to soup entries
representing the currently selected items, and will be used by the routing and filing buttons
for processing entries. It is important to clear hi | i t edl ndex when modifying the

sel ect ed array in any way.

The resulting CheckAll button should be included in the menuRi ght But t ons array for the
status bar. The older sample code puts it on the left, however user interface discussions as
part of the Newton 2.1 OS effort resulted in the decision to place the button on the right.

CHANGED: Creating a Simple NewtApp (4/7/97)

Q: What are the basic steps to create a simple NewtApp-based application?
A: The following steps will create a basic NewtApp-based application:

Basic Setup
1) Create a project.
2) In NTK's Project Settings dialog, set Platform to "Newton 2.0" or "Newton 2.1".

Create the NewtApp base view
1) Create a layout file.
2) Dragoutanewt Application.
3) Set the following slots to the following values:
al | Layouts: {
defaul t: GetLayout("default.t"), //seestep9 in the nextsection

overvi ew. Get Layout ("Overview. t"), / | set step 4, overview
section
}
al | Soups: {
nySoup: {

_proto: new Soup,
soupNane: "SoupNane: SI G',
soupl ndi ces: [],

soupQuery: {} } }
title: kAppNane
4) Draw a newt Cl ockFol der Tab or newt Fol der Tab as a child of the newt App.
5) Draw a newt St at usBar as a child of the newt App.
6) For the newt St at usBar set the following slots:
menuLeft Buttons: [newt | nfoButton]

menuRi ght Buttons: [newt ActionButton, newtFilingButton]
7) Save the layout file as "mai n. t" and add it to the project.

Create the default view:
1) Create another layout file.
2) Draw a newt Layout in the new layout file.
3) Addaviewdustify slottothe newt Layout and setitto parent Rel ati veFul |
horizontal and vertical.
4) Set the vi ewBounds of the newt Layout to:
{top: 20, // leave roomfor the folder tab
bottom -25, // leave roomfor the status bar
left: O,
right: 0}
5) Draw a newt Ent ryVi ew as a child of the newt Layout .
6) Addaviewdustify slotand setitto parent Rel ati veFul | horizontal and
vertical (necessary only until platform file is updated).
7) Set the vi enBounds of the newtEntryView to:
{top: 0, bottom 0, right: 0, left: 0};
8) Draw slot views as children of the entry view to display slots from the soup entry.

For example:
a) Draw anewt Label | nput Li ne as a child of the newt Ent r yVi ew.
b) Set the following slots:
| abel : "My Label"
pat h: "nyText Sl ot
c¢) Draw anewt Label Num nput Li ne as a child of the newt Ent r yVi ew.
d) Set the following slots:
| abel : " Nunber"
pat h: " nyNumnber Sl ot

9) Save the layout file as "def aul t. t" and add it to the project. Move it so that it is
compiled before the main layout (use the Process Earlier menu item).

Add Overview support

1) Create another layout file.

2) Draw a newt Over Layout in the new layout file.

3) Add the Abstract slot to the newt Over Layout, for example:

Abstract := func(item bbox)
begi n
local t :=itemnyTextSlot & ",";

if item nyNunberSlot then
t :=t &% NunmberStr(item myNunber Sl ot);
MakeText (t, bbox.left+18, bbox.top,
bbox. ri ght, bbox.bottom- 18);
end,
4) Save the layout file as "overview.t" and add it to the project. Move it so that it is
compiled before the main layout (use the Process Earlier menu item).

Add InstallScript and RemoveScript
1) Create a text file and add the following to it:
Install Script := func(partFrane) begin
part Frane. renoveFranme : =
(partFrame.theForm: Newt | nstal | Scri pt (part Framne.t heForn;
end;

RemoveScript := func(partFrane) begin

(part Frane. renoveFrane) :
Newt RenoveScri pt (part Frane. renoveFr ane) ;
end;
2) Save the text file and add it to the project.

Newton C++ Tools

NEW: Packed Structures in C++ Tools (2/28/97)

Q: Do the Newton C++ Tools support a concept of packed structures? Some compilers provide a
keyword (packed) to prevent aligning of the fields by the compiler. I tried to use the
keyword and got an error. How can I ensure that a structure is packed?

A: While there is no supported way to do this in the current tools, the ARM compiler does
have an experimental directive, __packed, which is probably worth a try. Using this
directive may cause the compiler to stop with an internal error in some circumstances, so be
prepared. You should ensure that the structure produced has the correct alignment by using
the C si zeof and of f set of functions, since this directive does introduce a compiler
dependency. Accessing elements in__packed structures can be considerably less efficient
than using non-packed structures: use them only when necessary. For example:

__packed struct T { char c; int i; };
produces a structure that is 5 bytes wide. Without the __packed directive, it would be 8
bytes wide and the integer field would begin 4 bytes from the structure start, so that it was
word aligned.

We believe the internal error in the compiler can be avoided by taking the sizeof the
structure before using it. An easy way to do this is to add a dummy function right after the
structure is declared. For example:

inline void dumyT() { (void)sizeof(T); }

Primitive types can also be declared __packed, which means that the compiler will not
make assumptions about the alignment of pointers to them. That is, if you know an int
starts two bytes into a word-aligned data structure, the wrong thing will happen if you
simply cast the pointer to i nt. Instead, you can used an unal i gned i nt type. This
generates considerably less efficient code than is needed for working with aligned values,
but it's still more efficient that trying to extract the proper bytes and shift/add them into
an integer youself. For example:

typedef _ packed int UNALI GNED | NT;

int IntAt(UNALI GNED INT* p) { return *p; }

This directive does not work properly with bitfield specifiers. For example:
__packed struct Foo {
unsi gned flagl : 1;
unsi gned flag2 : 1;
unsi gned datal : 6;
unsi gned short data2;

will not produce what you expect. Instead, avoid the bitfield specifiers and take
advantage of C++ inline functions to access the partial bytes:
__packed struct Foo {
char stuff;
unsi gned short data2;

int Flagl() { return (stuff & 0x80) != 0; }
int Flag2() { return (stuff & 0x40) != 0; }
int Datal() { return stuff & Ox3F; }

int Data2() { return data2; }

1
inline void dummyFoo() { (void)sizeof (Foo); }

The result is a 3-byte wide data structure with the bitfields easily accessible.

Note that the ProtocolGen tool (part of the DDKs) does not understand the __packed
directive. ProtocolGen does not make use of structure sizes, so it's OK to NOP out the
__packed keyword for that tool. Here's an easy way to do that:

#i f def PROTOCOLGEN

#defi ne __ packed

#endi f

Newton ToolKit

NTK, Picture Slots and ROM PICTs (12/19/93)
Q: How can I use a PICT in ROM from a picture slot editor in NTK?

A: You must use an NTK Af t er Scri pt to set the appropriate slot in the view to point to the
ROM based PICT (assuming that the constant for the PICT is defined in the NTK
definitions file AND documented in the Newton Programmers Guide). Use something like
this in the Af t er Scri pt :

thi sView. i con : = ROM Rout eDel et el con

Recognition Problems with the Inspector Window Open (3/8/94)
Q: When I have the Inspector window open in NTK and I debug my application, recognition
does not work properly and the Newton complains about lack of memory. However, when I
disconnect the Inspector, recognition works fine. What is going on?

A: The NTK inspector window uses system memory on the Newton side; the Toolkit App itself
makes use of MNP (a compression and error correction protocol) in the Newton, which uses a
buffer shared with the recognition working memory.

Different releases of the Newton OS have different amounts of memory allocated for this
shared area, so the problem may not be apparent on some units. However, if this happens
you have several options:

¢ Disconnect the Inspector when testing the recognition side.

e Use the keyboard for text input while testing the code.

e Write shorter text items.

Accessing Views Between Layout Windows (6/7/94)

Q: T'have problems setting a pr ot oSt at i cText text slot that is in one linked layout window
from a button that is in another linked layout window. I tried to allow access to the base
view from both linked layouts, but this didn't help. I even tried to allow access from the
base view to both layouts, but this didn't help, either. What should I do?

A: There is no way to declare views across the artifical boundary imposed by the linked
layouts. Until this feature of NTK is implemented, you must either create the link yourself
at run time, or declare the button to the top level of the linked layout, and then declare the
link.

For example, consider a view called t ext That Changes which a child of a view called
changi ngCont ai ner and is declared to changi ngCont ai ner with the name
t ext That Changes. Changi ngCont ai ner is the base view for a layout which is linked
into the main layout, and the link (in the main layout) is declared as
changi ngCont ai ner Li nk. Code in the main layout can change the text of the
t ext That Change view like so:

Set Val ue(cont ai ner Li nk. what ToDo, 'text, "Turn and face the...")

To do the equivalent of the declare yourself:

1) Inthevi ewSet upFor nScri pt script of the ' but t onThat Changes button, set the
value of the base view's slot ' t heText Vi ew to sel f, as in the following code fragment:
func()
begi n
base.theTextView : = self;
end

2) InthebuttonC ickScript scriptofthe' buttonThat Set sText button, use the
global function Set Val ue to store new text in the text slot of the ' but t onThat Changes
button, as in the following code fragment:

func()
begi n

Set Val ue(base. t heText Vi ew, 'text, "Now sonething happened!");
end

Note that this example assumes the self-declared view called base. In your application,
you may access your base view in a different way.

Dangers of StrCompare, StrEqual at Compile Time (6/9/94)
Q: I've noticed that St r Conpar e can return different results at compile time than it does at
run time. What gives?

A: While most functions documented in the NewtonScript Reference are available at run time
and at compile time (within the NTK environment), some functions have different
behaviors.

In this case, the sort order for strings within the NTK NewtonScript environment is
different from the ordering used on the Newton (and different from other commonly used
desktop machine sort orders.) The differences are only apparent if you use characters
outside the ASCII range, for instance, accented characters.

If it is necessary to pre-sort accented strings at compile time, you can write your own function
that will return the same results as St r Conpar e on an given Newton unit. Here is one such
function for English releases of the Newton OS (which assumes strings using only page 0 of
the unicode table):

constant kNSort Table : =

'[0,1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,
69, 70, 71,72,73,74,75,76, 77,78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
91, 92, 93, 94, 95, 96, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106,
107, 108, 109, 110, 111, 112,113, 114, 115, 116, 117, 118, 119, 120, 121, 122,
123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 161, 157, 135, 136, 165,
149, 138, 137, 143, 141, 152, 159, 158, 144, 140, 170, 134, 146, 147, 148, 142,
150, 138, 168, 171, 151, 153, 160, 153, 154, 155, 156, 174, 174, 174, 174, 65,

65, 145, 67, 175, 69, 175, 175, 176, 176, 176, 176, 162, 78, 177, 177, 177, 79,

79, 164, 79,178, 178, 178, 85, 166, 167, 139, 65, 65, 65, 65, 65, 65, 145, 67, 69,
69, 69, 69, 73, 73, 73, 73, 169, 78, 79, 79, 79, 79, 79, 163, 79, 85, 85, 85, 85, 172,
173, 89];

/1 function to conmpare strings (only page O characters)
/1 with the same order as the Newton ROM does.
Def Const (' kNewt onSt r Conpare, func(sl, s2)

begi n
local 11 := StrLen(sl);
local 12 := StrLen(s2);
local | := Mn(l1, 12);
local i := 0;
while i <1 and
(r := kNSortTabl e[ord(s1[i])] - kNSortTable[ord(s2[i])]) =0
do
=0+ 1
if i =1 then
[1-12
el se
r,
end) ;

Note that just because you might find a particular function to be defined at compile time, do
not assume that it behaves in exactly the same way as the like-named run-time function,
unless the documentation explicitly says it does. (And, of course, it might not always be
defined in the compile-time environment of future NTK products if it isn't documented that
way.)

Profiler and Frames of Functions (7/10/95)

Q: Using the profiler with a large frame of functions gives confusing results. The profiler
labels each function by the name of the frame and a number, but the numbers don't seem to
correspond to the order in which I defined the functions. Moving the functions around
doesn't change the profiler labels. How can I figure out which function is which?

A: If frames have less than than a certain number of slots (20 in the current release), the slots
are kept in the order they were defined or added. If there are more than 20 slots in the

frame, the slots are reordered. (This improves slot lookup operations.) The profiler in
NTK 1.5 and NTK 1.6labels the functions by their position in the final, possibly reordered,
frame.

To determine which function is in which position, you need to look at the frame after the
reordering has occurred. You can do this by printing the frame after it's been defined. At
compile time you can use a print statement in the slot editor or afterScript. After the
package has been downloaded you can use the inspector. Then count (starting from one)
through the slots to find your function.

Here's a little inspector snippet that will print the slots in a frame in order with their
numbers:
call func(theFrane) begin
local i := 0
foreach slot, value in theFrane do begin
print(i & ': && slot);
=0+ 1
end
end with (<the reordered frame>)

NTK 1.6 Heap /Partition Memory Issues (11/24/95)

Q:

A:

How do I set the build heap, main heap, and multifinder partition sizes in NTK 1.6 so I can
build my package without running out of memory?

Here is an explanation of how NTK makes uses of the various heaps. Understanding this
will allow you to set your sizes for optimal performance.

Main Heap

The Main heap holds your frame data while you're working in NTK. Its size is set through
the Toolkit Preference dialog. You must quit and restart NTK for changes to take effect.

The Main heap is allocated when NTK starts up. It is not disposed off until you quit NTK.
If NTK can't allocate the Main heap it reports the problem and quits. As a result, if you can
start NTK, Main heap allocation has completed.

We have no rule of thumb for setting the Main heap size. You need to experiment keeping
the following in mind:

1) If the Main heap is insufficient, NTK will tell you so.

2) Reducing the Main heap size reduces overall RAM requirements.

3) The Main heap is garbage collected (GC). Increasing its size may improve performance
by reducing GC activity. This will affect build time, and to a lesser degree the time it
takes to open a project. Please note that the gains in build time are nonlinear and quickly
reach a plateau, as shown in the following example:

Mai n Build tine
heap size (+/- 0.5 sec)

1250K Mai n heap ran out of nenory...

1275K 32.7 sec

1300K 26. 4 sec
1400K 22.3 sec
1500K 19. 2 sec
1600K 17.5 sec
2000K 16. 0 sec
3000K 15. 2 sec

Experiment with Main heap size by measuring build time until you find a reasonable
compromise between build time and memory requirements for your particular project.

If you are curious about GC activity, do the following:

1) Add the following line to your G obal Dat a file (in the NTK folder) and restart NTK:
prot oEdi t or: Defi neKey({key: 65}, 'EvaluateSelection);

This allows you to use the period key on the numeric keypad to evaluate selected text in the
Inspector window or any text file in the NTK build-time environment. (Normally the text
is compiled by NTK and then evaluated by the Newton device when you hit the Enter key.)
See the NTK User's Guide for details on the G obal Dat a file.

2) Type Ver boseGC(TRUE) in the Inspector window, select, and hit the keypad-period
key. Each time the GC kicks in, a line will be displayed in the Inspector window. By
watching the frequency of GCs, you can get some idea of how your main heap is being used.

3) Use Ver boseGC(FALSE) to turn this feature off. Please note that Ver boseGC is
available only in the NTK build-time environment. The function does not exist on the
Newton device itself. It should be used only for debugging and optimization.

Build Heap

The Build heap holds your package frame data during the last part of the build. Its size is
set through the Toolkit Preference dialog. Changes take effect immediately.

The Build heap is allocated only when the Build Package command is issued. It is released
as soon as the resulting file is written to disk. As a result Build heap allocation is a
recurring issue.

The rule of thumb is to set the Build heap to the size of your package (on the MacOS
computer hard disk, not on the Newton device). If the Build heap is insufficient, NTK will
tell you so.

There is nothing to be gained by setting the Build heap larger than necessary.

NTK first attempts to allocate the Build heap from MultiFinder memory. If that fails,
NTK tries to allocate the Build heap from NTK's partition.

To verify that you have enough memory for the Build heap you need to look at the "About
This Macintosh" dialog in the Finder application just prior to issuing the build command.

1) If the "Largest Unused Block" exceeds the Build heap requested size, the Build heap
will be allocated from MultiFinder memory.

2) If 1 failed and NTK's partition bar shows enough free memory to accommodate the
request, the Build heap will be allocated in NTK's partition.

3) If both 1 and 2 failed, the build will fail. Try to increase MultiFinder free memory by
quitting any other open application, or increase the free memory in NTK's partition by
closing some or all of NTK's open windows. Then try building again.

To prevent fragmentation of MultiFinder memory launch NTK first, and DocViewer,
ResEdit, etc. afterwards. Whenever possible, quit those other applications in the reverse
order .

Note: You can use Balloon help to see how much memory an application is actually using.
Simply select the Show Balloons menu item and position the cursor on the application
partition bar in the About Macintosh dialog. This feature is missing from PowerPC-based
MacOS computers.

NTK Partition Size

For NTK 1.6 the rule of thumb for the "smallest useful" partition size for small projects is:
(3500K + Main heap size) for a 680x0 MacOS computer
(5500K + Main heap size) for a PowerPC MacOS computer with Virtual Memory off.

These rules do not include space for the Build heap.

The "smallest useful" partition size is defined by the following example: Using NTK
default Main and Build heaps, open the Checkbook sample. Open one browser and one
layout window for each file in the project, connect the Inspector, build and download.
Perform a global search on "Check" (case insensitive) producing slightly more than 200
matches. Double click on several of these matches displayed in the search results window.
Build and download again.

For serious work, increase the partition size by at least 256K for small projects, more for
large ones. If you routinely perform global searches that produces many matches, see the
next section.

On a PowerPC-based MacOS computer with Virtual Memory on, NTK's 2.7 Meg of code (the
exact number is shown in the Finder Info dialog) stays on the hard disk, reducing memory
requirements at the expense of performance.

NTK Search and Memory Hoarding (11/24/95)

Q: Isometimes run out space after working with a project for a while. How can I avoid this?

A: NTK 1.6 is built with the MacApp application framework, which brings with it certain
memory requirements. Understanding the way NTK uses memory can help avoid running out
of memory.

Most of user interface elements you see when using NTK are pointer-based MacApp objects.
Allocating a large number of pointers in the application heap causes fragmentation. To
prevent that, MacApp has its own private heap where it manages all these pointers.

This heap expands when necessary, but in the current implementation it never shrinks. This
memory is not lost, but it may be wasted, effectively reducing free memory in the
application partition.

During a single NTK session, build requirements are relatively constant. Partition size
requirements will thus be mostly affected by the maximum number of NTK windows open at
the same time. If you keep this number reasonable, relative to the partition size you can
afford, there should be no problem.

The fact that MacApp's objects heap never shrinks can, however, become an issue when
performing searches. The problem is not the search itself, but the number of matches. Each
line you see in the Search Results window is a MacApp object occupying 500 to 800 bytes. If
your search results in a large number of matches, you may run out of memory.

To reduce such occurrences:

1) Perform more focused searches to keep the number of matches per search reasonable.
2) Close the Search Results window as soon as you are done with it, preferably before
doing another search.

NTK Stack Overflow During Compilation (11/24/95)

Q: When I build my project that has very deeply nested statements, NTK runs out of memory
and quits. What's going wrong?

A: The deep nesting in your project is causing the compiler to overflow the stack space
available in NTK. NTK 1.6 is more likely than than NTK 1.5 to suffer this problem due to
new compiler code which nests deeper while parsing if-then-else statements, causing the
stack to overflow into the application heap.

If you see an inadvertent crash in NTK during a save operation or a package build:

1) If you are familiar with MacsBug, examine the stack. This particular case will show up
in the stack as several calls to the same function before the actual crash.

2) Otherwise, temporarily reduce the number of "else" branches and rebuild the package. If
the problem disappears, stack overflow is the prime suspect.

There are at least three ways to avoid this problem and possibly improve performance at
the same time:
1) Re-arrange the 'else’ statements to resemble a balanced tree
2) Instead of If-then-else statements use:

An array of functions (with integers as selectors)

A frame of functions (with symbols as selectors)
3) Finally, as a temporary work around, you can increase the stack size using the ResEdit
application.

Re-arrange the 'else' statements to resemble a balanced tree

This solution is the simplest to implement if you need to change existing code. It
accommodates non-contiguous integer selectors, and in most cases is faster.

For example, the following code:

if x =1 then
dosonet hi ng
el se
if x =2 then
doSonet hi ngEl se
el se
if x =3 then
doYet Anot her Thi ng
el se
if X = 4 then
doOneMor eThi ng
el se
if x =5 then
doSonet hi ngSi npl e
el se
if x = 6 then
doThat Thi ng
el se
if x =7 then
doThi sThi ng
else // x =8
doTheQ her Thi ng

...can be rewritten like this:

if x <= 4 then
if x <= 2 then
if x =1 then
doSonet hi ng
else /] x =2
doSonet hi ngEl se
el se
if x = 3 then
doYet Anot her Thi ng
else // x =4
doOneMor eThi ng
el se
if x <= 6 then
if x =5 then
doSonet hi ngSi mpl e
else // x =6
doThat Thi ng
el se
if x =7 then
doThi sThi ng
else // x =8
doTheQ her Thi ng;

Note that the if/then/else statement nesting is "unusual” to illustrate the nesting that the
compiler must make each statement is nested as the compiler would process it.

Use an array of functions with integer selectors
Replace a long if-then-else statement with an array of functions. The code is more compact

and readable. For a large set of alternatives, the faster direct lookup should compensate for
the extra function call. This approach is most useful for a contiguous range of selector values

(e.g., 11 to 65). It can accommodate a few "holes" (for example, 11 to 32, 34 to 56, 58 to 65). It
is not practical for non-contiguous selectors (e.g., 31, 77, 256, 1038...)

For example, the following code:

if x =1 then
dosuchandsuch;
el se
if x =2 then
dosonet hi ngel se;
el se
if x =3 then
andsoon;

...can be rewritten like this:
cndArray : = [func() dosuchandsuch
func() dosonet hi ngel se,
func() andsoon];

call crmdArray[x] with ();

Use a frame of functions with symbols for selectors
This alternative provides the flexibility of using symbols for selecting the outcome.

For example, the following code:

if x = 'foo then
dosuchandsuch;
el se
if x = '"bar then
dosonet hi ngel se;
el se
if x = "baz then
andsoon;

...can be rewritten like this:
cmdFrame : = {foo: func() dosuchandsuch
bar: func() dosonet hi ngel se,
baz: func() andsoon};

call cmdFrane. (x) with ();

Increase NTK's stack size using the ResEdit application
Open the Newton Toolkit application with ResEdit.
Double-click on the "mem " resource icon

Double-click on resource ID 1000 named "Additional NTK Memory Requirements”

Change the fifth (and last) value. This is an hexadecimal number. In NTK 1.6, you should
see "0001 8000" which is 98304 bytes (or 96k) to add to the total stack size. For example,
to increase this value to 128k = 131072 bytes change the hexadecimal value to "0002
0000".

Unit Import/Export and Interpackage References (11/25/95)

Q:

A:

How can I reference information in one part or package from another (different) part or
package?

Newton 2.0 OS provides the ability for packages to share informations by exporting or
importing units. Units are similar to shared libraries in other systems.

A unit provides a collection of NS objects (unit members.) Units are identified by a name,
major version number, and minor version number. Any frame part can export or import zero or
more units.

A unit must be declared, using Decl ar eUni t, before it's used (imported or exported.) See
the docs on Decl ar eUni t below for details.

To export a unit, call Def i neUni t and specify the NS objects that are exported.

To import from a unit, simply reference its members using Uni t Ref er ence (or UR for
short.)

Unit Usage Notes

e Units can also be used to share objects among parts within a single package. This avoids
the need to resort to global variables or similar undesirable techniques.

® A part can export multiple units. To achieve some degree of privacy, you can partition
your objects into private and public units. Privacy is achieved by not providing the
declaration for a unit.

e References to units are resolved dynamically whenever a package is activated or
deactivated. For example, a package can be loaded before the package providing the units
it imports is loaded. There will be no problem as long as the provider is loaded prior to
actually using the imported members.

Conversely, it's possible for the provider to be deactived while its units are in use. The
part frame methods, RemovalApproval and ImportDisabled, provide a way to deal with
this situation.

Robust code should ensure that the units it imports are available before attempting to use
their members. It should also gracefully handle the situation of units being removed while
in use. See the DTS sample "MooUnit" for an example.

Unit Build-Time Functions

These functions are available in NTK at build-time only:

Decl areUni t (uni t Nane, maj or Versi on, ninorVersion, nenberl ndexes)
uni t Name - symbol - name of the unit
maj or Ver si on - integer - major version number of the unit
m nor Ver si on - integer - minor version number of the unit
menber | ndexes - frame - unit member name/index pairs (slot/ value)
return value - unspecified

A unit must be declared by Decl ar eUni t before it's used (imported or exported.) The
declaration maps the member names to their indexes. A typical declaration looks like:

Decl areUni t (' | Fast Fouri er Transf ornms: Mat hMagi ks|, 1, 0, {
Pr ot oG aph: 0,
Pr ot oDat aSet : 1,

1),

Typically, the declarations for a unit are provided in a file, such as
"FastFourierTransforms.unit", that is added to an NTK project (similar to . h files in C.)

When resolving imports, the name and major version specified by the importer and exporter
must match exactly. The minor version does not have to match exactly. If there are units
differing only in minor version, the one with the largest minor version is used.

Typically, the first version of a unit will have major version 1 and minor version 0. As bug
fixes releases are made, the minor version is incremented. If a major (incompatible) change
is made, then the major version number is incremented.

Note: When a unit is modified, the indexes of the existing members must remain the same.
In other words, adding new members is safe as long as the indexes of the existing members
don't change. If you change a member's index it will be incompatible with any existing
clients (until they're recompiled with the new declaration.)

Def i neUni t (uni t Name, mnenbers)
uni t Name - symbol - name of the unit
menbers - frame - unit member name/ value pairs (slot/ value)
return value - unspecified

Def i neUnit exports a unit and specifies the value of each member. Immediates and
symbols are not allowed as member values. A typical definition looks like:

Def i neUni t (' | Fast Fouri er Transf or ms: Mat hMagi ks|, {
Pr ot oG aph: CGet Layout ("foo. |l ayout"),
Pr ot oDat aSet : { ...},

1),

A unit must be declared before it's defined. The declaration used when exporting a unit with
n members must contain n slots with indexes 0. . n- 1. The definition must specify a value
for every declared member (this is important.)

Uni t Ref er ence(uni t Name, nenber Nane)
or
UR(uni t Name, menmber Nane)
uni t Narme - symbol - name of a unit
menber Name - symbol - name of a member of unit

return value - a reference to the specified member
To use a unit member call Uni t Ref er ence (UR for short) with the unit and member name.

The unit name ' ROMcan be used to refer to obects in the base ROM. For example:
UR(' ROM ' Prot oLabel | nput Li ne).

Note: references to objects in the base ROM are sometimes called "magic pointers" and have
traditionally been provided in NTK by constants like Pr ot oLabel | nput Li ne or
ROM_Syst enSoupNane.

In Newton 2.0 OS, there may also be packages in the ROM. These ROM packages may
provide units. Their members are referenced just like any other unit, using UR, the
unitName, and the memberName. This is the mechanism by which licensees can provide
product-specific functionality.

AliasUnit(alias, unitNane)
al i as - symbol - alternate name for unit
uni t Narme - symbol - name of a unit
return value - unspecified

Ali asUni t provides a way to specify an alternate name for a unit. Since unit names must
be unique, they tend to be long and cumbersome. For example:
AliasUnit (' FFT, '| FastFourierTransforns: Mat hMagi ks|) ;

...s0 that you could write:
| ocal data := UR('FFT, 'ProtoDataSet): New points);

...instead of:
| ocal data := UR('| FastFourierTransforns: Vat hMagi ks| ,
' Pr ot oDat aSet) : New(poi nts) ;

Al i asUnit Subset (alias, unitNane, menber Nanmes)
al i as - symbol - alternate name for unit
uni t Name - symbol - name of a unit
menber Nanmes - array of symbols - list of unit member names
return value - unspecified

Al i asUni t Subset is similar to Al i asUni t, except that it additionally specifies a
subset of the units members which can be used. This helps restrict code to using only certain
members of a unit.

Unit Part Frame Methods

These methods can optionally be defined in a part frame to handle units becoming
unavailable.

Renoval Approval (uni t Name, nmj or Ver si on, m nor Ver si on)
uni t Name - symbol - name of the unit
maj or Ver si on - integer - major version number of the unit
m nor Ver si on - integer - minor version number of the unit
return value - ni | or string

This message is sent to a part frame when an imported unit is about to be deactivated. It
may a return a string to be shown to the user as a warning about the consequences of
deactivating the package in use. For example:

"This operation will cause your connection to foowrld to be
dr opped. "

Note: do not assume that the user is removing the package. Other operations such as moving
a package between stores also cause package deactivation.

This message is only a warning. The user may decide to proceed and suffer the consequences.
If the user proceeds, the | npor t Di sabl ed message (see below) will be sent.

If the removing the unit is not a problem (for example, your application is closed), then
Removal Approval canreturnnil and the user will not be bothered.

| mpor t Di sabl ed(uni t Nane, rmmaj or Ver si on, m nor Versi on)
uni t Name - symbol - name of the unit
maj or Ver si on - integer - major version number of the unit
m nor Ver si on - integer - minor version number of the unit
return value - unspecified

This message is sent to a part frame after an imported unit has been deactivated. The part
should deal with the situation as gracefully as possible. For example, use alternative data
or put up a Notify and/or close your application.

Unit-Related Glue Functions
These functions are available in the Newton 2.0 Platform file.
M ssi ngl npor t s(pkgRef)
return value - ni | or an array of frames (see below)
glue name - kKM ssi ngl npor t sFunc
M ssi ngl nmports lists the units used by the specified package that are not currently

available. M ssi ngl nports returns either nil, indicating there are no missing units, or
an an array of frames of the form:

nane: synbol - nane of unit desired
maj or: integer - major version nunber
m nor: integer - minor version nunber
<ot her slots undocunent ed>

Store parts and PowerPC-native NTK (5/15/96)
Q: When I build a store part with NTK 1.6 or 1.6.2 on my PowerPC MacOS computer, text
searches (for example mySoup: Query({words: "pizza"})don't sucessfully find the
entries. Why?

A: On PowerPC MacOS computers only, there is a bug in 1.6 and 1.6.2 wherein building store
parts will cause this behavior. The workaround is building the store part on a 680x0-based
MacOS computer.

If you don't have a 680x0 machine available, you might try any of various third-party
applications which remove the PowerPC-native code from an application which contains
680x0 code and PowerPC code, thus forcing it to run the 680x0 code instead. Before doing
this, be sure to backup your copy of NTK!

Using Strings as Hex Data and Windows NTK (12/10/96)
Q: WhenIuse Set O ass(Set Lengt h("\u<hex data>"), theLength), thed ass) in
Windows NTK, the binary object is not what I expect. It seems to be byte-swapped. How
can I create binary objects with data in them in Windows NTK?

A: In Windows NTK (and other Windows NS environments), strings are stored in byte
swapped order, that is, low byte first. This is because strings are basically arrays of 16-bit
Unicode characters, and on the Intel platform 16-bit values are most usefully stored low
byte first. Technically, changing the class and length of a string relies on the internal
representation of strings, which isn't documented or supported, though it works fine on
Newton OS and Mac OS platforms.

By the time Win NTK is final, a new build-time function will be added that will correctly

create a binary object of a given class with data passed as hex bytes in a string. Until then,
you can continue to use the hack - just byte swap your source data.

NewtonScript

Nested Frames and Inheritance (10/9/93)

Unlike C++ and other object oriented languages, NewtonScript does not have the notion of
nested frames obtaining the same inheritance scope as the enclosing frame.

This is an important design issue, because sometimes you want to enclose a frame inside a
frame for name scoping or other reasons. If you do so you have to explicitly state the
messages sent as well as explicitly state the path to the variable:

Here's an example that shows the problems:

nyEncl oser := {
i mportant Slot: 42,
Getl nportant Sl ot : = func()
return inportant$Sl ot,

nestedSl ot := {
nyl nt er nal Val ue: 99,

get TheVal ue : = func()
begi n
| ocal foo;

foo := :GetlnportantSlot(); /1 WON'T WORK; can't
find function

foo := nyEncloser: GetlnportantSlot(); // MY WRK

i mportant Slot := 12; /1 WON' T WORK; will create new
sl ot in nestedSl ot

nyEncl oser.inmportantSlot := 12; /1 NAY WORK

end

}
b

nyEncl oser. nest edSl ot : Get TheVal ue() ;
The proper way to accomplish this is to give the nested frame a _par ent or _pr ot o slot

that references the enclosing frame. Nesting the frame is not strictly necessary in this case,
only the _pr ot o or _par ent references are used.

Symbol Hacking (11/11/93)

Q: I would like to be able to build frames dynamically and have my application create the
name of the slot in the frame dynamically as well. For instance, something like this:
M/Frane: = {}; theSlotNane := "Slot_1";

At this point is there a way to then create the following?... MyFrane. Sl ot _1

A: The function | nt er n takes a string and returns a symbol. There is also a mechanism called
path expressions (see the NewtonScript Reference), that allows you to specify an
expression or variable to evaluate, in order to get the slot name. You can use these things to
access the slots you want:

MyFrane = {x: 4};
theXSlotString := "x" ;

MyFrane. (I ntern(theXSlotString)) := 6

theSl ot Nane := "Slot_1";
MyFrane. (I ntern(theSl ot Nane)) := 7;

/1l nyFrane is now {x: 6, Slot_1: 7}

Check for Application Base View Slots (3/6/94)

Here's a simple function that will print out all the slots and the slot values in an
application base view. This function is handy if you want to check for unnecessary slots
stored in the application base view; these eat up the NewtonScript heap and eventually
cause problems with external PCMCIA RAM cards.

call func()
begi n
| ocal s,v;
| ocal root := GetRoot();

| ocal base := root.]| YourApp: YourSIG; // name of app
| ocal prot := base. proto

foreach s,v in base do

begi n
if v and v <> root AND v <> base AND v <> prot then
begi n
Wite ("Slot:" & s & ", Value: ");
Print(v);
end;
end;
end with ()

The debugging function Tr ueSi ze can also be a valuable tool to determine the heap used by
your applications. See the NTK User Guide for more information about Tr ueSi ze.

Performance of Exceptions vs Return Codes (6/9/94)
Q: What are the performance tradeoffs in writing code that uses try/onexception vs returning
and checking error results?

A: We did a few trials to weight the relative performance. Consider the following two
functions:

thrower: func(x) begin
if x then
throw(' | evt. ex.nsg; ny.exception|, "Sone error occurred");
end;

returner: func(x) begin

if x then

return -1; // some random error code,
0; // nil, true, whatever
end;

Code to throw and and handle an exception:
| ocal s;
for i := 1 to klterations do
try
call thrower with (nil);
onexception |evt.ex.nsg; my.exception| do
s := Current Exception(). data. nessage;

Code to check the return value and handle an error:
| ocal result;

| ocal s;
for i := 1 to klterations do
if (result :=call returner with (nil)) < 0 then
s := ErrorMessageTabl e[-resul t];

Running the above loops 1000 times took about 45 ticks for the exception loop, and about 15
ticks for the check the return value loop. From this you might conclude that exception
handling is a waste of time. However, you can often write better code if you use exceptions.

A large part of the time spent in the loop is setting up the exception handler. Since we
commonly want to stop processing when exceptions occur, we can rewrite the function to set
up the exception handler once, like this:

| ocal s;

try
for i := 1 to klterations do
call thrower with (nil)
onexception |evt.ex.nsg; my.exception| do
s := Current Exception(). data. nessage;

This code takes only 11 ticks for 1000 iterations, an improvement over the return value case,
where we'd have to check the result after each call to the function and stop the loop if an
error occurred.

Running the same loops, but passing TRUE instead of NI L so the "error" occurs every time
was interesting. The return value loop takes about 60 ticks, mostly due to the time needed to
look up the error message. The exception loop takes a whopping 850 ticks, mostly because of
the overhead in the Cur r ent Except i on() call.

With exceptions, you can handle the error at any level up the call chain, without having to
worry about each function checking for and returning error results for every sub-function it
uses. This will produce code that performs much better, and will be easier to maintain as
well.

With exceptions, you do not have to worry about the return value for successful function
completion. It is occasionally very difficult to write functions that both have a return
value and generate an error code. The C/C++ solution is to pass a pointer to a variable that
is modified with what should otherwise be the return value of the function, which is a
technique best avoided.

As in the above example, you can attach data to exceptions, so there's no need to maintain
an error code to string (or whatever) mapping table, which is another boon to
maintainability. (You can still use string constants and so on to aid localization efforts. Just
put the constant in the throw call.)

Finally, every time an exception occurs you have an opportunity to intercept it with the
NTK inspector. This is also a boon to debugging, because you know something about what's
going wrong, and you can set the br eakOnThr ows global to stop your code and look at why
there's a problem. With result codes you have a tougher time setting break points. With a
good debugger it could be argued that you can set conditional break points on the "check the
return value" code, but even when you do this you'll have lost the stack frame of the
function that actually had the problem. With exceptions and br eakOnThr ows, all the
local context at the time the exception occurred is still available for you to look at, which
is an immense aid.

Conclusion: Use exceptions. The only good reason not to would be if your error handler is
very local and if you expect it to be used a lot, and if that's true you should consider
rewriting the function.

NewtonScript Object Sizes (6/30/94)

These desciptions document current OS formats only, we reserve the right to extend or
change the implementation in future releases.

Generic

NewtonScript objects are objects that reside either in the read-write NewtonScript
memory, in pseudo-ROM memory, inside the package, or in ROM. In earlier MessagePad
platforms, these objects are aligned to 8-byte boundaries. In Newton 2.0 OS, objects in the
NewtonScript memory are aligned to 4-byte boundaries. Inside Newton 2.0 packages, you
can optionally align objects to 4-byte boundaries (with NTK's "tighter object packing”
checkbox). Alignment causes a very small amount of memory to be wasted, usually less than

2%.

The Newton Object System has four built-in primitive classes that describe an object's basic
type: immediates, binary objects, arrays, and frames. The NewtonScript function
Pri nmCl assOf will return an object's primitive type.

Immediates and Magic Pointers
Immediates (integers, characters, TRUE and NIL) and magic pointers are stored in a 4-byte
structure containing up to 30 bits of data and 2 bits of primitive class identification.

Referenced Objects

Binaries, arrays and frames are stored as larger separate objects and managed through
references. A reference is a four- byte object. The binary objects, frames, or arrays
themselves are stored separately as objects containing a so-called Object Header.

Object Header
Every referenced object has a 12-byte header that contains information concerning size,
flags, class, lock count and so on. This information is implementation-specific.

Symbols

A symbol is a binary object that contains a four-byte hash value and a name, which is a
null-terminated ASCII string. Each symbol uses 12 (header) + 4 (hash value) + length of
name + 1 (null terminator) bytes.

Binary Objects
A binary object contains a 12- byte header plus space for the actual data (allocated in 8
-byte chunks.)

Strings
Strings are binary objects of class (or a subclass of) St r i ng. A string object contains a 12-byte
header plus the Unicode strings plus a null termination character. Note that Unicode
characters are two-byte values. Here's an example:

"Hello World!"

This string contains 12 characters, in other words it has 24 bytes. In addition we have a null
termination character (24 + 2 bytes) and an object header (24 + 2 + 12 bytes), all in all the
object is 38 bytes big. Note that we have not taken into account any possible savings if the
string was compressed (using the NTK compression flags).

Rich Strings
Rich strings extend the string object class by embedding ink information within the object.
Within the unicode, a special character kI nkChar is used to mark the position of an ink

word. The ink data is stored after the null termination character. Ink size varies
depending on stroke complexity.

Array Obijects

Array objects have an object header (12 bytes) and additional four bytes per element which
hold either the immediate value or a reference to a referenced object. To calculate the total
space used by an array, you need to take into account the memory used by any referenced
objects in the array.

Here's an example:
[12, $a, "Hello World!'", "foo"]

We have a header (12 bytes) plus four bytes per element (12 + (4 * 4) bytes). The integer
and character are immediates, so no additional space is used, but we have 2 string objects
that we refer to, so the total is (12 + (4*4) + 38 + 20 bytes) 86 bytes. We have not taken into
account savings concerning compression. Note that the string objects could be referred by
other arrays and frames as well, so the 38 and 20 byte structures are stored only once per
package.

Frame Objects
We have two kinds of frames: frames that don't have a shared map object; and frames that
do have a shared map object. We take the simple case first (no shared map object).

The frame is maintained as two array-like objects. One, called the frame map, contains the
slot names, and the other contains the actual slot values. A frame map has one entry per
symbol, plus one additional 4 -byte value.

The frame map uses a minimum of 16 bytes. If we add the frame's object header to this, the
minimal size of a frame is 28 bytes. Each slot adds 8 bytes to the storage used by the frame
(two array entries.) Here's an example:

{Slotl: 42, Slot2: "hello"}

We have a header of 28 bytes, and in addition we have two slots, for a total of (28 + (2 * 8))
48 bytes. This does not take into account the space used for each of the slot name symbols or
for the string object. (The integer is an immediate, and so is stored in the array.)

Multiple similar frames (having the same slots) could share a frame map. This will save
space, reducing the space used per frame (for many frames all sharing the same map) to the
same as used for an array with the same number of slots. (If just a few frames share the
frame map, we need to take into account the amortized map size that the frames share. So
the total space for N frames sharing a map is N*28 bytes of header per frame, plus the size
of the frame map, plus the size of the values for the N frames.

Here's an example of a frame that could share a map with the previous example:
{Slot1: 56, Slot2: "world"}

We have a header of 12 bytes. In addition, we have two slots (2 * 4), and additional 16
bytes for the size of a map with no slots N all in all, 36 bytes. We should also take into
account the shared map, which is 16 bytes, plus the space for the two symbols.

When do frames share maps?

1. When a frame is cloned, both the copy and the original frame will share the map of the
original frame. A trick to make use of this is to create a common template frame, and clone
this template when duplicate frames are needed.

2. Two frames created from the same frame constructor (that is, the same line of
NewtonScript code) will share a frame map. This is a reason to use Rel Bounds to create
the vi ewBounds frame, and it means there will be a single vi enBounds frame map in the
part produced.

Note: These figures are for objects in their run-time state, ready for fast access. Objects in
transit or in storage (packages) are compressed into smaller stream formats. Different
formats are used (and different sizes apply) to objects stored in soups and to objects being
streamed over a communications protocol.

Symbols vs Path Expressions and Equality (7/11/94)

Q: While trying to write code that tests for the existance of an index, I tried the following,
which did not work. How can I compare path expressions?
if value.path = "|nane.first| then ... // WRONG

A: There are several concerns. ' | nane. first| is nota path expression, it is a symbol with an
escaped period. A proper path expression is either ' nane. fi rst or[pat hExpr: ' nane,
"first]. The vertical bars escape everything between them to be a single NewtonScript
symbol.

The test val ue. path = ' nane. first will always fail, because path expressions are
deep objects (essentially arrays) the equal comparison will compare references rather than
contents. You will have to write your own code to deeply compare path expressions.

This code is further complicated by the fact that symbols are allowed in place of path
expressions that contain only one element, but the two syntaxes produce different
NewtonScript objects with different meanings. Thatis, ' name = [pat hExpr: ' nane]
will always fail, as the objects are different.

A general test is probably unnecessary in most circumstances, since you will be able to make
assumptions about what you are looking for. For example, here is some code that will check
if a given path value from a soup index is equivalent to ' narme. fi rst:

if CassO(val ue.path) = 'pathExpr and Length(val ue.path) = 2
and val ue. path[0] = 'name and value.path[1] = 'first then ...

Function Size and "Closed Over" Environment (7/18/94)
Q: I want to create several frames (for soup entries) that all share a single function, but when I
try to store one of these frames to a soup, I run out of memory. Can several frames share a
function and still be written to a soup? My code looks like this:

I.é);:al nmyFunc := func(...) ...;
| ocal futureSoupEntries := Array(10, nil);

for i :=0to 9 do
futureSoupEntries[i] :={
soneSlots: ...,
aFunction: myFunc,

b

A: When a function is defined within another function, the lexically enclosing scope (locals

and paramaters) and message context (self) are "closed over" into the function body. When
NewtonScript searches for a variable to match a symbol in a function, it first searches the
local scope, then any lexically enclosing scopes, then the message context (self), then the
_proto and _parent chains from the message context, then finally the global variables.

Functions constructed within another function, as in your example, will have this enclosing
lexical scope, which is the locals and parameters of the function currently being executed,
plus the message context (self) when the function is created. Depending on the size of this
function and how it's constructed, this could be very large. (Self might be the application's
base view, for example.)

A Tot al O one is made during the process of adding an entry to a soup, and this includes
the function body, lexical scopes, and message context bound up within any functions in the
frame. All this can take up a lot of space.

If you create the function at compile time (perhaps with Def Const (' kMyFunc,
func(...) ...)) it will not have the lexically enclosing scope, and the message context
at compile time is defined to be an empty frame, and so cloning such a function will take less
space. You can use the constant kMy Func within the initializer for the frame, and each
frame will still reference the same function body. (Additionally, the symbol kMyFunc will
not be included in the package, since it is only needed at compile time.)

If the soup entries are only useful when your package is installed, you might consider
instead replacing the function body with a symbol when you write the entry to the soup.
When the entry is read from the soup, replace the symbol with the function itself, or use a
_pr ot o based scheme instead. Each soup entry will necessarily contain a complete copy of
the function, but if you can guarantee that the function body will always be available
within your application's package, it might be unnecessarily redundant to store a copy with
each soup entry.

TrueSize Incorrect for Soup Entries (2/6/96)

Q:

A:

When I use TrueSi ze to get the size of a soup entry I get results like 24K or even 40K for
the size. That can't be right. What's going on?

TrueSi ze "knows" about the underlying implementation of soup entries. A soup entry is
really a special object (a fault block) that contains information about how to get an entry
and can contain a cached entry frame. In the information about how to get an entry, there is
a reference to the soup, and various caches in a soup contain references to the cursors, the
store, and other (large) NewtonScript objects. TrueSi ze is reporting the space taken up
by all of these objects. (Note: calling Tr ueSi ze on a soup entry will force the entry to be
faulted in, even if it was not previously taking up space in the NewtonScript heap.)

The result is that Tr ueSi ze is not very useful when trying to find out how much space the
cached frame for an entry is using. A good way to find the space used for a cached entry
frame is to call gc(); stats(); record the result, then call

Ent ryUndoChanges(entry); gc(); stats(). The difference between the two free
space reports will be the space used by the cached frame for a given entry.

Ent r yUndoChanges(ent ry) will cause any cached frame to be removed and the entry to
return to the unfaulted state. Gc() then collects the space previouly used by the cached
entry frame.

If you want the Tr ueSi ze breakdown of the types of objects used, you canCl one the
entry and call TrueSi ze on the copy. This works because the copy is not a fault block, and
so it does not reference the soups/ cursors/stores.

NEW: Floating Point Numbers Are Approximations (3/28/97)

Q: The functions Fl oor and Cei | i ng seem broken. For instance, Fl oor (12. 2900 * 10000)
returns 122899, not 122900. What's going on?

A: This is not a bug in Fl oor or Cei | i ng. This happens because of the way floating point
numbers are stored, and the limitation is common to many real number representations. In
the same way that 1/3 cannot accurately be represented in a finite number of digits in base
10 (it is .3333333333...), likewise 1/10 cannot be exactly represented as a fractional part in
base 2. Because number printers typically round to a small number of significant digits, you
don't normally notice this. The NTK inspector, for example, displays only 5 significant
figures in floating point numbers. However, if you display the number with enough
precision, you'll see the representation error, where the real is actually slightly larger or
smaller than the intended value.

For matt edNunber Str(0.1, "% 18f") -> "0.100000000000000010"
Formatt edNunmber Str (0.3, "% 18f") -> "0.299999999999999990"

The functions Fl oor and Cei | i ng are strict, and do not attempt to take this error into
account. In the example, 12. 29 is actually 12. 2899999999999990, which multiplied by
10000 is 122, 899. 999999999990. The largest integer less than this number (Fl oor) is
correctly 122899.

There are usually ways to work around this problem, depending on what you are trying to

accomplish. To convert a floating point number to an integer, useRl nt ToL, which rounds to

the nearest integer avoiding the problems caused with round-off error and Fl oor or

Cei | i ng. RI nt ToL(x) produces the same result that FI oor (Round(x)) would produce.
Rl nt ToL(12.29*10000) -> 122900

If you need to format a number for display, use a formatting function such as
For mat t edNurber St r. These functions typically round to the nearest displayable value.
To display 2 decimal digits, use "%.2f":

For mat t edNunmber Str(12.29, "% 2f") -> "12. 29"

If you're working with fixed point numbers such as dollar amounts, consider using integers
instead of reals. By representing the value in pennies (or mils, or whatever) you can avoid
the imprecision of reals. For example, represent $29. 95 as the integer 2995 or 29950, then
divide by 100 or 1000 to display the number. If you do this, keep in mind that there is a

maximum representable integer value, Ox 1FFFFFFF or 536870911, which is sufficient to
track over 5 million dollars as pennies, but can't go much over that.

If you really need to find the greatest integer less than a certain number and can't tolerate
how Fl oor deals with round off errors, you'll need to do some extra work keeping track of
the precision of the number and the magnitude of the round off error. It's worthwhile to
read a good numeric methods reference. Floating point numbers in NewtonScript are
represented by IEEE 64-bit reals, which are accurate to around 15 decimal digits. The
function Next Af t er D provides a handy way to see how 'close together' floating point
numbers are.
For mat t edNunber St r(Next AfterD(0.3, kinfinity), "% 18f");
-> "0.300000000000000040"

NEW: Real Numbers in NewtonScript (3/28/97)

Q: How are real numbers represented as floating point in NewtonScript? How accurate are
they? What about infinities, NANs, and other exceptions?

A: Real numbers in NewtonScript are represented as IEEE 64-bit floating point numbers, which
are accurate to about 15 decimal digits. You can read more about the IEEE floating point
numbers in "Inside Macintosh: PowerPC Numerics" available online at the URL:

http://gema. appl e. conf dev/t echsupport/insi demac/ PPCNuneri cs/ PPCNu
merics-2. htm
The Newton floating point environment is not as rich in features as the PowerPC
environment, and the PowerPC numerics document is only mentioned as a useful resource for
understanding floating point issues. It in no way documents API or features of the Newton
floating point environment.

Briefly, numbers are represented by 1 bit of sign ("on" is negative), 11 bits of exponent, and
52 bits of fractional part. The exponent bits are stored in excess 0x3FF, that is, 0x3FF is the
representation for 0, values greater than Ox3FF are positive exponents, and values less than
0x3FF are negative exponents. The 52 bits of fractional part actually provide 53 bits of
accuracy, because the initial 1 bit is dropped.

For example, suppose that we want to convert 9 97/128 into IEEE 64 bit format:
1) convert to base 2
1001. 1100001
2) shift number to the form of 1.yyyyyy *2/Z
1. 0011100001 * 273
3) add Ox3FF (excess 0x3FF) to exponent field, convert to binary.
3+0x3FF = 0x402 = 100 0000 0010
4) now put the numbers together, using only the fractional part of the number
represented above, in the form of yyyyyy
0 10000000010
001110000100
in hex representation, this is 0x4023840000000000
5) Just to verify, try it: St r HexDunp(9+97/ 128, 16) -> "4023840000000000"

The IEEE standard also allows for non-normal numbers. Here are the exceptions:
infinity ~ e=7FF, f=0 (+ or - depending on sign bit)
NaN e =7FF, f <> 0 (also overflow, error, etc.)

Zero e=0,f=0 (+ or -, depending on sign bit)
subnormal e =0, f <>0 (these are less precise numbers, smaller than the smallest
normal number)

Note that there is more than one not a number value. In fact, there are quite a large number.
The IEEE spec assigns meaning to various NaN values, as well as defining signalling and
quiet NaNs. NewtonScript does not distinguish between NaN values. One NaN is as good
as another.

In NewtonScript, real numbers are 8-byte binary objects of class 'r eal . In addition to the
NewtonScript floating point literal syntax, you can use the compile time function
MakeBi nar yFr omHex to construct real numbers, and you must use this style for custom NaN
values. The most recent platform files for Newton 2.0 and Newton 2.1 provide constants for
negative zero (KNegat i veZer 0), positive and negative infinity (kI nfinity,
kNegati vel nfinity), and a canonical NaN (kNaN).

MakeBi nar yFr onHex (" 4023840000000000", 'real) -> 9.7578125 // =
9+97/ 128

Pickers, Popups and Overviews

Determining Which ProtoSoupOverview Item Is Hit (2/5/96)

Q: How do I determine which item is hit in a pr ot 0SoupOver vi ew?

A: There is a method called Hi t | t em that gets called whenever an item is tapped. The
method is defined by the overview and you should call the inherited one. Also note that
Hi t 1t em gets called regardless of where in the line a tap occurs. If the tap occurs in the
checkbox, you should do nothing, otherwise you should do something.

The method is passed the index of the hit item. The index is relative to the item displayed
at the top of the displayed list. This item is always the current entry of the cursor used by
pr ot oSoupOver vi ew. So, you can find the actual soup entry by cloning the cursor and
moving it.

Here is an example of a Hi t | t em method. If the item is selected (the checkbox is not
tapped) then the code will set an inherited cursor (called myCur sor) to the entry that was
tapped on:

func(item ndex, X, y)

begi n
/1 MJST call the inherited method for bookeeping
inherited:H tlten(item ndex, X, y);

if x > selectlndent then
begi n
/1 get a tenporary cursor based on the cursor used
/1 by soup overview
local tCursor := cursor:done();

// move it to the selected item
t Cursor: Move(item ndex) ;

/1 nove the inherited cursor to the selected entry
myCur sor: Got o(t Cursor: Entry());

/1 usually you will close the overview and switch to
/1 sone other view
sel f:d ose();
end;
/1 otherw se, just |et them check/uncheck
/1 which is the default behavior
end

Displaying the ProtoSoupOverview Vertical Divider (2/5/96)

Q: How can I display the vertical divider in a pr ot oSoupOver vi ew?

A: The mechanism for bringing up the vertical divider line was not correctly implemented in
pr ot oSoupOver vi ew. You can draw one in aVvi ewDr awScr i pt as follows:

/1 setup a cached shape for efficiency
nmySoupOver vi ew. cachedLine := nil;

nmySoupQver vi ew. vi ewSet upDoneScri pt : = func()
begi n
i nherited: ?vi ewSet upDoneScri pt () ;

| ocal bounds := :Local Box();
cachedLi ne : = MakeRect (sel ectl ndent - 2, 0,
sel ectlndent - 1, bounds. botton);
end;

nmy SoupOver vi ew. vi ewDr awScri pt : = func()
begi n

/1 MUST call inherited script

i nherited: ?vi ewDr awScri pt () ;

: Dr awShape(cachedLi ne,
{penPattern: vfNone, fillPattern: vfGay});
end;

Validation and Editing in ProtoListPicker (4/1/96)

Q: Iam trying to use the Val i dat i onFr ane to validate and edit entries in a
prot oLi st Pi cker. When I edit certains slots I get an error that a path failed. All the
failures occur on items that are nested frames in my soup entry. What is going on?

A: The built-in validation mechanism is not designed to deal with nested soup information. In
general, you gain better flexibility by not using a val i dati onFr ane in your pickerDef,
even if you have no nested entries. Instead, you can provide your own validation mechanism
and editors:

Define a Val i dat e method in your picker definition
Define an OpenEdi t or method in your picker definition
Draw a layout for each editor you require

pi cker Def . Val i dat e(nameRef, pat hArray)
nameRef - nameRef to validate

pat hArray - array of paths to validate in the nameRef
returns an array of paths that failed, or an empty array

Validate each path in pat hArray in the given nameRef. Accumulate a list of paths that
are not valid and return them.

The following example assumes that pi cker Def . Val i dat eNane and
pi cker Def . Val i dat ePager have been implemented:

pi cker Def. Val i date : = func(nameRef, pathArray)

begi n
/1 keep track of any paths that fai
| ocal failedPaths := [];

foreach index, path in pathArray do

begi n
if path = 'name then
begi n

/1 check if name validation fails
i f NOT :ValidateNane(naneRef) then
/1 if so, add it to array of failures
AddArraySl ot (fail edPat hs, path);
end;
el se begin
i f NOT :ValidatePager (nameRef) then
AddArraySl ot (fail edPat hs, path);
end;
end;
/1 return failed paths or enpty array
fail edPat hs;
end;

pi cker Def. OpenEdi t or (t apl nfo, context, why)
The arguments and return value are as per OpenDef aul t Edi t or . However, you need to use
this instead of Def aul t OpenEdi t or.

pi cker Def. OpenEditor := func(taplnfo, context, why)
begi n
| ocal valid = :Validate(taplnfo.nameRef, taplnfo.editPaths)
if (Length(valid) > 0) then
/1 if not valid, open the editor
/1 NOTE: returns the edit slip that is opened
CGet Layout ("editor.t"): new(tapl nfo. nameRef,
tapl nfo. edi t Pat hs, why, self, 'EditDone, context);
el se
begi n
/1 the itemis valid, so just toggle the selection
cont ext : Tapped(' t oggl e);
nil; // Return <nil>.
end; ..
end;

The example above assumes that the layout "editor.t" has a New method that will open
the editor and return the associated View.

The editor can be designed to fit your data. However, we suggest that you use a

pr ot oFl oat NGo that is a child of the root view created with the Bui | dCont ext
function. You are also likely to need a callback to the pickderDef so it can appropriately
update the edited or new item. Finally, your editor will need to update your data soup uing
an "Xmit" soup method so that the listPicker will update.

In the OpenEdi t or example above, the last three arguments are used by the editor to send
a callback to the pickerDef from the vi ewQui t Scri pt. The design of the callback function
is up to you, here is an example:

pi cker Def . Edi t Done : = func(nanmeRef, context)

begi n
| ocal valid = :Validate(taplnfo.nameRef, taplnfo.editPaths) ;
if (Length(valid) > 0) then
begi n

/1 Sonmething failed. Try and revert back to origina
i f NOT :ValidatePager (naneRef) AND
sel f. (' [pathExpr: savedPagerVal ue, nanmeRef]) = nameRef

t hen
naneRef . pager := savedPager Val ue. pager
cont ext : Tapped(nil); /1 Renove the checkmark
end;
el se

// The nameRef is valid, so select it.
cont ext : Tapped(' sel ect);

// Clear the saved value for next tine.
savedPager Val ue : = nil
end;

Picker List is Too Short (4/29/96)

Q: I have items in my picker list with different heights that I set using the f i xedHei ght
slot. When I bring up the picker, it is not tall enough to display all the items. Worse, I
cannot scroll to the extra items. What is going on?

A: Thefi xedHei ght slotis used for two separate things. Any given pick item can use the
fi xedHei ght slot to specify a different height. This works fine.

However, the code in Newton 2.0 OS that determines how big the list should be also uses
the f i xedHei ght slot of the first pick item (in other words, pi ckl t ens[0]) if it exists.
It is as if the following code executes:

[ocal itenHeight := kDefaultltenHeight;
if pickltens[O].fixedHeight then
itemHei ght := pickltens[0].fixedHei ght;
| ocal total Height := itenHei ght * Length(pickltens);

This total height is used to figure out if scrolling is required. As you can see, this can cause
problems if your first item is not the tallest one. The solution is to make sure the first item

in your pi ckltemns array has afi xedHei ght slot that is sufficiently large to make
scrolling work correctly. This may be fixed in future revisions of the NewtonOS.

Note that there will be similar problems if your pick items contain icons. The system will
use the default height unless you specify a f i xedHei ght slot in your first item. The
default height is not tall enough for most icons. In other words, if you have icons in your
pick items, you must have a f i xedHei ght slot in the first item that is set to the height of
your icon.

Tabs Do Not Work With ProtoTextList (5/8/96)

Q:

A:

I tried to use tabs to get columns in apr ot oText Li st but they do not appear. How do I get
columns?

The text view in pr ot oText Li st is based on a simple text view which does not support
tabs. If you want scrolling selectable columns you can use shapes to represent the rows. If you
need finer control, use the Layout Tabl e view method.

How to Avoid Problems with ProtoNumberPicker (8/23/96)

Q:

A:

I am thinking of using pr ot oNunber Pi cker for input. (or) I have used
pr ot oNunber Pi cker and have encountered a bug/misfeature/problem. What should I
use?

pr ot oNunber Pi cker has several instabilities and bugs. We recommend that you use the
DTS sample code "protoNumberPicker_TDS". It provides all of the features of

pr ot oNunber Pi cker with none of the bugs. It also provides additional functionality that
is not in pr ot oNunber Pi cker . See the sample code for more detail.

Single Selection in ProtoListPicker-based Views (9/20/96)

Q:

A:

How do I allow only one item to be selected in a pr ot oLi st Pi cker,
pr ot oPeopl ePi cker, pr ot oPeopl ePopup, or pr ot oAddr essPi cker?

The key to getting single selection is that single selection is part of the picker definition
and not an option of pr ot oLi st Pi cker . That means that the particular class of nameRef
you use must include single selection. In general, this requires creating your own subclass of
the particular name reference class.

The basic solution is to create a data definition that is a subclass of the particular class
that your pr ot oLi st Pi cker variant will view. That data definition will include the
si ngl eSel ect slot. As an example, suppose you want to use a pr ot oPeopl ePopup that
just picks individual people. You could use the following code to bring up a

pr ot oPeopl ePopup that only allowed selecting one individual at one time:

/1 register the nodified data definition
RegDat aDef (' | naner ef . peopl e. single: SIQF,
{_proto: GetDataDefs('|nameRef.people|), singleSelect: true});

/1 then pop the thing
pr ot oPeopl ePopup: New(' | narmer ef . people.single:SIG,[],self,[]);

/1 sonetime |ater
UnRegDat aDef (' | namer ef . peopl e. single:SI§);

For other types of pr ot oLi st Pi cker s and classes, create the appropriate subclass. For
example, a transport that uses pr ot oAddr essPi cker for emails might create a subclass
of ' | nameRef . enmi | | and put that subclass symbol in the cl ass slot of the

pr ot oAddr essPi cker.

Since many people are likely to do this, you may cut down on code in youri nst al | Scri pt
and r emoveScri pt by registering your dataDef only for the duration of the picker. That
would mean registering the class just before you pop the picker and unregistering after the
picker has closed. You can use the pi ckActi onScri pt and pi ckCancel edScri pt
methods to be notified when to unregister the dataDef.

How to Change Font or LineHeight in ProtoListPicker (9/20/96)

Q: How do I set a different font for the items in the pr ot oLi st Pi cker?

A: There is a way to change the font in the Newton 2.0 OS, however, we intend to change the
mechanism in the future. Eventually, you will be able to set a vi emont slot in the
protoLi st Pi cker itself and have that work (just like you can set vi ewLi neSpaci ng
slot now). In the meantime, you need a piece of workaround code. Warning: you must set the
viewFont of the listPicker AND include this workaround code in the
vi ewSet upDoneScri pt:

func()
begi n
if listBase exists and |istBase then
Set Val ue(li st Base, 'viewront, viewrFont) ;
i nherited: ?vi ewSet upDoneScri pt () ;
end;

This will set the vi ewfFont = slot of the | i st Base view to the vi ewfFont of the
protoLi st Pi cker. You cannot rely on the listbase view always being there, hence the test
for its existence.

Note that you can use the same code to modify the | i neHei ght slot of the listPicker. Just
substitute | i neHei ght for vi ewFont in the code snippet. The one caveat is that the
I i neHei ght must be at least 13 pixels.

How to Preselect Items in ProtoListPicker (9/20/96)

Q: IfI put name references in the sel ect ed array of a pr ot oLi st Pi cker, it throws a
- 48402 error. How do I preselect items?

A: In the MessagePad 120/130 units it is not possible to preselect items in the listPicker and
have it work correctly. We recommend that you use the "protoSlimPicker" DTS Sample
Code instead.

ProtoDigit Requires a DigitBase View (9/24/96)

Q: Igetan exception concerning an undocumented di gi t base slot in pr ot oDi gi t . The slot is
not documented in the current release of the documentation. How can I makepr ot oDi gi t
work?

A: protoDigit isnotreally designed to be used independently. You should use the
pr ot oNunber Pi cker _TDS sample code for input like this.

If you really need to use pr ot oDi gi t, remenber that itexpectstobe contained in a
view that has a decl ar eSel f slot whose value is the symbol di gi t Base. To solve the
problem, draw out a cl Vi ew, give it a decl ar eSel f slot with a value of ' di gi t Base
and draw your pr ot oDi gi t s inside that view. You are responsible for propagating carries
and other information to all pr ot oDi gi t s. You are also responsible for animation and the
flip digit look. Unfortunately, the dotted line picture is not available.

As of 2/6/96, the Newton 2.0 Platform file also gives a prot oDi gi t a default di gi t Base
slot of the number type. This slot must be removed.

How to Get ProtoSoupOverview Selections (10/3/96)

Q: How do I get the selected items in pr ot 0SoupOver vi ew?

A: The final documentation inadvertantly left out the following documentation on the
sel ect ed slot:

sel ect ed - Required. Initially set to ni | ; it is modified by pr ot o0SoupOver vi ew as the
user selects and deselects overview items.
This proto is an array of aliases to the selected items when the overview is
closed. For example:
[[alias: NL, 66282812, 84, "Nanes"],
[alias: NL, 66282812, 85, "Names"]]

Dynamically Adding to ProtoTextList Confuses Scrolling (1/15/97)

Q: I am adding items to a pr ot oText Li st after it is displayed. I add an item and scroll to
highlight that item. However, the state of the scroll arrows does not correctly get updated.
Sometimes it will indicate that there are more items to scroll when it is really at the end of
the list.

A: There is a problem with Newton 2.0 OS devices (although not Newton 2.1 OS devices) that
causes the pr ot oText Li st to reset the scroll distance when you update the listltems
array. The workaround is to always scroll the list to the top before calling Set upLi st
when you add items. Then you can scroll the list to where you want it. Note that this
workaround is safe to use in Newton 2.1 OS as well. In other words, if you are adding items

to a prot oText Li st, use this workaround unless your application is Newton 2.1 OS-
specific. This method will add a single item to the pr ot oText Li st, set the highlighted
item to the new item and scroll if required. It will also make sure the item is unique.

AddLi stltem: = func(new ten)

begi n
/1 Insert the itemif not already in Array
local index := Blnsert(listltems, item '|[str<|, nil, true);

/1 itemnust be in the array and index will point to the item

if NOT index then

begi n
:Notify(kNotifyAl ert, kAppName, "Duplicate entry.");
return nil;

end;

/1 workaround a bug in 2.0 that causes the scroll arrows to get
out of sync

/1 do this by scrolling to the top

: DoScrol | Script(-viewOriginy) ;

sel f: Set UpLi st ();

/1 Setting the selection slot will highlight the item
sel ection : = index;

/] scroll to show the new item
if index >= viewLines then

:DoScrol | Script((index - viewLines + 1) * |ineHeight) ;
sel f: RedoChi I dren();

return true;
end ;

Recognition

Custom Recognizers (2/8/96)

Q:

A:

Can I build recognizers for gestures and objects other than those built into the Newton
system?

In Newton 2.0 OS, theres no support to add custom recognizers using the Newton Toolkit.
Stay tuned for more information concerning this.

Some recognition engines can work in a window separate from the edited text. For instance,
writing a "w" in a special view might causes "w" to appear in the currently edited text
view (the key view.) This type of recognition system can be implemented as a keyboard. If
you want to use this approach, you might want to use a function in the Newton 2.0 Platform
file that allows your keyboard to replace the built-in alphanumeric "typewriter"
keyboard. See the Platform File Notes documentation for more information on the

Regd obal Keyboard function.

How to Save and Restore Recognition Settings (4/9/96)

Q: Can I capture a user's recognition settings, which then may later be restored?

A: Yes, the global functions Get User Set t i ngs, Set Def aul t User Setti ngs and
Set User Set ti ngs allow you to manipulate recognition-related user preference data.
These functions can allow an application to keep and manage recognition settings for
multiple users. These functions only manage information about the recognition settings, and
no other user preference settings.

Get User Set tings()

This function returns a frame of the current user recognition settings; this frame is the
argument for Set User Set t i ngs. Do not modify the frame this function returns. Do not
rely on any values, as the frame may change in future releases.

Set Def aul t User Setti ngs()
This function sets recognition-related user preference settings to default values.

Set User Setti ngs(savedSettings)
savedSettings - Recognition preferences frame returned by Get User Set t i ngs.
Sets user preferences for recognition as specified.

CHANGED: Opening the Corrector Window (3/17/97)

Q: I want the corrector window available for the user at specific times, can I open it from
within my application?

A: Yes, below is the code you should use to open the corrector window. For compatibility, you
should always make sure the corrector exists. The corrector itself requires that a
correctable key view exists.

| ocal correctView := GetRoot().correct;
if correctView and (GetCaretBox() or GetHiliteOfsets()) then
correct Vi ew. Open();

Note: An older version of this Q&A (from 12/8/95) showed using Get KeyVi ewas a test to
make sure a correctable view was the key view. With the changes to the OS with the
Newton 2.1 release that allow any view to be a key view, this is no longer a reliable test.
The corrector will fail to open (generating a -48204 "bad path" error) if the key view does
not support the caret or a selection. Calling Get Car et Box and Get Hi | i teOf f sets isa
more reliable test to see if a correctable view is available.

Routing

Printing Resolution 72DPI/300DPI (2/8/94)

Q: I've tried to print PICT resources; the picture was designed in Illustrator and copied to the
clipboard as a PICT. The picture printed correctly but at a very low resolution. Is there any
way of printing PICTs with a higher resolution?

A: Currently the only supported screen resolution for PICT printing is 72dpi. This may change
in future platforms, so stay tuned for more information.

Not all Drawing Modes Work with a PostScript Printer (3/8/94)

Q: It seems that not all drawing modes work with printing. Is that true?

A: Yes. PostScript behaves like layers of paint: you can not go back and change something.
Anything that uses an invert mode (like XOR, and possibly ModeNot* (to be tested)), will
not work.

Note: If you want to get the effect of white text on a black/filled background, use bit clear
mode for drawing the text.

PICT Printing Limitations (6/9/94)

Q: My large pictures cannot print on my LaserWriter. Is there a maximum size Newton picture?

A: The current PostScript printing system in the Newton ROMs is unable to print extremely
large individual bitmap frames, the kind of pictures created using the NTK Picture editor
or the GetPictAsBits routine. This is because in order to print these, the Newton must copy
the bitmaps into an internal buffer. Thus the GetPictAsBits case fails (current limitation is
a 168K buffer, but do not rely on a specific number for other Newton devices).

Using the Get NanmedResour ce(..., 'picture) routine, you can use PICT resources to be
drawn in clPictureViews. MacOS PICT resources often contain multiple opcodes
(instructions). For single-opcode PICTs, compression is done for the whole picture. You can
check Inside Macintosh documentation for specifications of the PICT format. If you are
using very large bitmaps which you will print, you should use PICT resources composed of
many smaller 'bitmap copy' opcodes because they will print much faster and more reliably
on PostScript printers. This is because very large PICT opcodes printed to LaserWriters must
be decompressed on the printer. The printer's decompression buffer is sometimes too small if
the opcodes represent large bitmaps. Check your MacOS graphics application
documentation for more information on segmenting your large PICTs into smaller pieces. For
some applications, you might have two versions of the PICTs, one for displaying (using

Cet Pi ct AsBi ts for faster screen drawing), and a large tiled PICT for printing.

Starting with N2 OS, color PICTs (PICT 2) are supported. Colors will be interpolated into
gray values.

Printing Fonts with a PostScript Printer (7/26/94)

Q: When printing from my application on the Newton to a PostScript Laser printer, I
noticethat the fonts are being substituted. Printing always looks fine on a QuickDraw
printer like the StyleWriter.

A: Yes, this is true.The additional System font (Espy Sans) or any custom Newton font created
with the Newton Font Tool is not printed directly to a LaserWriter because the fonts are
missing in the PostScript font versions. Just printing Espy Sans (Newton system fonts) is
currently not possible on the LaserWriter, but is possible on faxes and bitmap printer
drivers, since the rendering for those is done inside the Newton.

For the built-in Espy font, the troublesome characters are the Apple-specific ones, starting
with Hex FC. The filled diamond is one of these characters, the specific tick box arrow is
another.

For printing, you might need to include bitmaps for special characters or words in your
application in order to print them (that is, if the normal LaserWriter fonts are
unacceptable)

Note that if you want a monospaced font, check out the Monaco DTS sample. That includes
a font which will print as the monospaced Courier font.

Printing Does Not Have Access to My Application Slots (11/27/95)

Q: Why can't I find my application slots from my print format?

A: Print format does not have direct access to your application context because it is not a child
of your application, so it cannot rely on the parent inheritance chain. All viewDefs should
be designed so that they do not rely on your application being open or rely on state-specific
information in your application. The application may be closed, or the user may continue to
work in your application while the print/fax transport is imaging.

Print format does have access to the t ar get variable (it will contain the "body" of the
data sent; don't use fi el ds.body). Note that if mulitiple items are sent, the value of

t ar get will change as the print format iterates over the list. Try to put the real "data" for
the routing in the target using the view method Get Tar get | nf o.

If, for some reason, you need to access slots from your application, you can access them using
Get Root () . (your AppSynbol). t heSl ot .

How to Open the Call Slip or Other Route Slips (12/19/95)

Q: How do I open the call slip (or other Route Slips) programatically?

A: Use the global function OpenRout i ngSl i p. Create a new item with the transport's
Newl t em method and add routing information such as the recipient information in the
t oRef slot. For the call slip, the transport symbol will be '| phoneHore: Newt on| , but
this approach will work for other transports. (For transports other than the call transports,
you will also provide the data to route in the i t em body slot.)

Determining the value of the toRef slot

The t oRef slot in the item frame should contain an array of recipients in the form of
nameRefs, which are the objects returned from pr ot oPeopl ePi cker and other

pr ot oLi st Pi cker -based choosers. Each nameRef can be created from one of two forms: a
cardfile soup entry, or just a frame of data with minimal slots. (The required slots vary
depending on the transport. For instance, the current call transport requires only phone,
name, and country.)

1. Cardfile entry:
entry := nyCursor:Entry();

2. Create your own pseudo-entry:
entry : = {
phone: "408 555 1234",
nane: {first: "dagly", last: "Wgout"},
country: "UK",
b

Make the entry into a "nameRef" using the nameRef's registered datadef -- an object which
describes how to manipulate nameRefs of a specific class. Note that every transport stores
its preferred nameRef class symbol in its t r ansport . addr essi ngCl ass slot. (Examples
are' | naneRef . phone| and' | nameRef . emi | |).

| ocal class :="'|naneRef. phone|;
| ocal nameRef := GetDatabDefs(cl ass): MakeNaneRef (nmyData, cl ass);

Setting up the targetInfo Frame

Your Get Tar get | nf o view method should return at ar get | nf o frame, consisting of
target andtargetView slots. Alternatively, you can create a frame consisting of these
slots and pass it to QpenRout i ngSl i p. As a workaround to a ROM bug, you must also
supply an appSynbol slotin the t ar get | nf o frame containing your appSymbol. Note
thatt ar get I nfo. t arget could be a multiple item target (see the

Cr eat eTar get Cur sor documentation for more info.)

Opening The Slip

You can use OpenRout i ngSl i p to open the slip after setting up slots such ast oRef and
cc within the item. You can use code such as the following;:

/* exanple using Call Transport */
local item entry, class, naneRef;

/1 just for testing, get an Nane...
entry := GetUni onSoup("Nanes"): Query(nil):Entry();

item:= TransportNotify('|phoneHone: Newton|, 'Newtem [nil]);
if item= 'noTransport or not itemthen
return 'noTransport;

class := '| nanmeRef. phone|;
naneRef .= Get Dat aDef s(cl ass): MakeNaneRef (entry, cl ass);
itemtoRef := [nanmeRef];
targetinfo := {
targetView getroot(),
target: {}/* for non-CALL transports, add your data here! */,
appsynbol : kAppSynbol

/1 returns view (succeeded), or fails: nil or 'skipErrorMssage
OpenRout i ngSlip(item targetlnfo);

Routing Multiple Items (5/15/96)

Q: How can my application route multiple items at one time?
A: The target must be a "multiple item target" created with the Cr eat eTar get Cur sor
function.

For instance, your application could use a Get Tar get | nf o method like:

func(reason)

begi n
local t := CreateTarget Cursor(kDataC assSynbol, nyltemArray);
local tv := base; // the targetView

return {target: t, targetView tv};
end;

The first argument to Cr eat eTar get Cur sor is used as the class of the target, which is
used to determine what formats and transports are available. You must register formats on
that data class symbol in your part's | nstal | Scri pt function.

The item array passed to Cr eat eTar get Cur sor can contain any items, including soup
entries or soup entry aliases. If you include soup entry aliases, they will automatically be
resolved when accessing items using the Get Tar get Cur sor function.

Print formats that have their usesCur sors slot set to ni | will automatically print
items on separate pages -- print formats must use the target variable to image the current
item. To print multiple items, set the format usesCur sors slottotrue and use

Cet Tar get Cursor (target, nil) tonavigate through the items.

If either the format (the usesCur sor s slot) or the transport (the al | owsBodyCur sor s
slot) does not support cursors, the system will automatically split the items into separate
Out Box items.

When to Call Inherited ProtoPrintFormat ViewSetupFormScript (1/6/97)

Q: Does it matter when I call the inherited method in my
pr ot oPri nt For mat : vi ewSet upFor nScri pt () ?

A: Yes, you must call the inherited method before doing anything else in the

vi ewSet upFor nfScri pt.

Among other things, the inherited method sets up the page size. After calling the
inherited method, you can call sel f: Local Box() and get the correct page size. Note
that you cannot rely on the pr ot oPri nt For mat . vi ewBounds slot value. To position
subviews within the print format centered or "full" width or height, use view
justifications like centered, right, and full, or use t heEncl osi ngVi ew: Local Box() to
determine the exact size of the enclosing view.

Limitations with NewtOverview Data Class (1/8/97)
Q: I'want to use code like Cr eat eTar get Cur sor (' newt Overvi ew, nyltemArray) inmy

application to simplify my code which handles overviews. Why would my print format
throw an exception when I use this method?

: There are limitations to using the ' newt Over vi ew symbol as your data class with

Cr eat eTar get Cur sor . The biggest limitation is that it requires you to support exactly
the set of of datatypes: [' frame, 'text, 'view . Inother words, you must register a
pr ot oFr ameFor mat (by default, it handles' f r ame and ' t ext dataTypes) and a

pr ot oPri nt For mat . However, there are two other limitations not mentioned in the final
documentation: the system does not guarantee that it will call your print format's

format | nit Scri pt method or a format's Set upl t emmethod.

This means that if your print format's vi ewSet upFor nScr i pt (or other code in the print
format) assumed that the f or mat | ni t Scri pt has been called, it could cause errors and/or
exceptions. The workaround to this would be to set a flag in the f or mat I ni t Scri pt; if it
was not set at the beginning of vi ewSet upFor nScr i pt, send your format the

format | nit Scri pt message. Other problems could occur with Set upl t em but you'd
probably not see any errors or exceptions until you tried to beam/mail a frame to another
device and then tried to Put Away the item.

About the default overview class: when you use Cr eat eTar get Cur sor to prepare a
"multiple item target", you may be able to use this special ' newt Over vi ewsymbol as your
data class. If your application prints every item on separate pages (in other words, not
multiple items on one page) and you want to split beam and mail items into separate items
in the Out Box, this might be useful to you. For more information, see the Newton
Programmers Guide (not reference) in the Routing chapter "Using the Built-in Overview
Data Class" section and the "Move It!" article in the Newton Technology Journal 2.02. Also,
check out the MultiRoute DTS sample.

Sound

Fmdmg and Adding Alert Sounds (1/23/97)

A:

Is there a way to add a new sound to the list of available alert sounds?

Yes. There is a registry API for alert sounds that is not mentioned in the Newton 2.0 OS
final documention. Alert sounds are sound frames with an additional user Nane slot. This
slot contains a string that will show up in the alert sound picker.

RegSound(soundSynbol , al ert SoundFr ane)
soundSynbol - a unique symbol identifying the sound that incorporates your signature
al ert SoundFr ane - see above

Registers the sound in al ert SoundFr arme with the alert sound picker.

UnRegSound(soundSynbol)

soundSynbol - symbol of the sound to unregister
Unregisters the sound frame that was registered with the symbol specified by
soundSymbol .

SoundLi st ()

Returns an array of currently registered alert sounds that can be used to construct a popup
menu. It returns an array of frames, such that each frame is of the format: {i t em
soundName, soundSynbol : t heSoundSymbol }

Get Regi st er edSound(soundSynbol)

soundSynbol - symbol of the sound to return
Returns a sound frame that can be passed to the sound playing functions (for example, the
global function Pl ay Sound). soundSynbol is the symbol used to register the sound.

Stationery

Limits on Stationery Popups (4/30/96)

Q:

A:

If I add stationery to Notes, Names, or my application and it is off the bottom of the popup
in the new button, I am unable to scroll to it in the stationery popup. Why?

There is a problem in the MessagePad 120 and 130 with Newton 2.0 OS constructing popups
that contain icons. See the "Picker List is Too Short " Q&A in the Pickers, Popups and
Overviews section.

Properly Registering a ViewDef (1/3/97)

Q:

When I add a viewDef using Regi st er Vi ewDef on Newton 2.0 OS, I get the "grip of
death" alert ("The package 'MyApp' still needs the card you removed...") when the card
the viewDef is on is removed. I don't get the grip of death alert when using Newton 2.1 OS.
How can I keep the grip of death alert from appearing?

: In Newton 2.0 OS, you must Ensur el nt er nal the second argument to the

Regi st er Vi ewDef global function. The Regi st er Vi ewDef global function was changed
in Newton 2.1 OS to automatically Ensur el nt er nal the second argument.

Note: Ensur el nt er nal -ing something that has been Ensur el nt er nal -ed is a very fast
operation so you don't need to worry about checking which platform you are running on.

System Services, Find, and Filing

Preventing Selections in the Find Overview (2/5/96)
Q: WhenIuse ROM conpati bl eFi nder in Newton 2.0, the overview of found items contains
checkboxes for each item, allowing the user to attempt to route the found items. Since my

found items are not soup items, various exceptions are thrown. How can I prevent the
checkboxes?

A: What you do depends on how you want to handle your data. There are basically two cases.
The first case is when you want no Routing to take place (Routing refers to Delete,
Duplicate, and the ability to move the data using transports like Beam or Print). The
second case is when you want some or all of the Routing to occur.

The first case is easy. Just add a Sel ect | t em slot to the result frame, set to ni | .
For example:
AddArraySl ot (results,
{ _proto: ROM conpati bl eFi nder,
owner: self,
title: mytitle,
Selectlitem nil, /1 prevents checkboxes
items: nyresults});

The second case is more complex. The problem is that there are many variants. The best
strategy is to override the appropriate methods in your finder to gain control at
appropriate points. This may be as simple of overriding Del et e to behave correctly, or as
complex as replacing Get Tar get and adding appropriate layouts. See the Newton DTS
Q&A "Creating Custom Finders" for more information.

Creating Custom Finders (2/5/96)

Q: My application uses more than one soup, so ROM_soupFi nder is not appropriate, but
ROM _conpat i bl eFi nder seems to throw many exceptions. Which should I use?

A: The answer depends on how much modification you will make. What you need is
documentation on how they work and what you can override:

Each of the finder base protos (soupFinder and compatibleFinder) are magic pointers, so can
create your own customizations at compile time.

So to do a soupFi nder based item you could do something like:

Def Const (' kMySoupFi nder, {
_proto: ROM soupFi nder,

Del ete: func()

begi n
print("About to delete " & Length(selected) && "itens")
i nherited: Del ete() ;

end,

1) o

Most of these routines are only callable by your code. They should not be overwritten. Those
routines that can be safely overriden are specified.

Some of methods and slots are common to both types of finders:

finder.sel ected
An array of selected items stored in an internal format. All you can do with this array is
figure out the number of selected items by taking the Length of this array.

finder: Count ()
Returns an integer with the total number of found items.

finder: ReSync()
Resets the finder to the first item.

finder: ShowFoundl ten(iten)
Displays the item passed. item is an overview item that resides in the
overview's items array.

finder: ShowOr di nal I t em{ ordi nal)

Display an item based on the symbol or integer passed in ordinal:
"first - the first found item

" prev - the previous item

' next - the next item

<an-i nt eger > - display the nth item based on the integer.

Under no circumstances should you call or override:
finder: MakeFoundl t em
finder: AddFoundl t ens

ROM_SoupFinder
SoupFinder has the following methods and slots:

All the documented items from the simple use of soupFinder as documented in the Newton
Programmer's Guide 2.0.

soupFi nder : Reset ()
Resets the soupFinder cursor to the first found entry. In general, you
should use the ReSync method to reset a finder.

soupFi nder: Zer oOneOr Mor e()
Returns 0 if no found entries, 1 if one found entry or another number
for more than one entry.

soupFi nder: ShoweEntry(entry)

causes the finding application to display entry. This may involve
opening the application and moving it to that item.

This does not close the findOverview.

soupFi nder: Sel ectltem(item
mark the item as selected.

If this method is set to ni | in the soupFinder proto, items will not have a checkbox in front
of them (not selectable).

soupFi nder: | sSel ected(item
Returns true if the item is selected.

soupFi nder : For EachSel ect ed(cal | back)
Calls callback function with each selected item. The callback function has one argument,
the entry from the soup cursor.

soupFi nder: Fi | eAndMove(| abel sChanged, newlabel ,

st or eChanged, newsSt or e)

File and/or move the selected items.

newLabel is the new label if and only if | abel sChanged istr ue.
newst or e is the new store if and only if st or eChanged istr ue.

Developers can override this, though they may want to call the inherited routine to do
that actual work. Note that Fi | eAndMbve can be called even if no items are selected. If
you override this method you MUST check if there are selected items by doing:

if selected then
// do the work

soupFi nder: Fi | eAs(| abel s)
Deprecated. Do not use.

soupFi nder : MoveTo(newsSt or e)
Deprecated. Do not use.

soupFi nder: Del et e()
Deletes all selected items from read/write stores.

Developer can override. Note: if you override this, the crumple effect will
still happen. There is no way to prevent the ability to delete the items or
prevent the crumple effect at this time.

soupFi nder : Get Tar get ()
Returns a cursor used by routing,.

The following methods should not be called or modified:
soupFi nder . MakeFoundl t em
soupFi nder . AddFoundl t ens

ROM_CompatibleFinder
conpati bl eFi nder: ShowrakeEnt ry(i ndex)
Show the i ndex'th item from the found items. Note that items will likely be an array of

the found items.

ShowFakeEnt ry should behave just like ShowFoundl t em In other words, it should open
the application then send a ShowFoundl t em to the application.

conpati bl eFi nder: Convert ToSoupEntry(item
Return a soup entry that corresponds to the item. item is an item from the found items array.

The following methods are defined to be the same as the soupFinder:
FileAs, MoveTo, Delete, IsSelected, Selectltem
For EachSel ect ed, GCet Target, Fil eAndMove

Note that this causes problems in some cases: most notably, the For EachSel ect ed call is
expected to return an array of soup entries. The chances are you will need to override most of
those methods. See soupFi nder for a description of what the methods are supposed to do.

How to Interpret Return Value of BatteryStatus (5/6/96)

Q:

I am trying to determine whether the Newton device is plugged in and to obtain other
battery status information. Many slots have a ni | value in the frame returned by the
BatterySt at us global function. How do I interpret these values?

A value of ni | is returned if the underlying hardware cannot determine the correct
information. Some hardware is limited in the amount of information that it can return.
Future hardware may fill in more slots with authoritative non-nil values.

How to Create Application-specific Folders (5/14/96)

Q:

A:

I would like to programatically create folders so that they are available as soon as the
application is open. What is the best approach to add application-specific folders?

You can use the global functions AddFol der and RenoveFol der to modify the folder set for
a given application.

AddFol der (newFol der Str, appSynbol)

newrol der Str - string, the name of the new folder
appSymbol - symbol, application for local folder

result -symbol, the folder symbol of the newly added folder.

AddFol der takes a folder name and creates a new folder for the application.

AddFol der returns the symbol representing the tag value for the new folder. Please note
that the symbol may be different from the value returned by using | nt er n() on the string.
In particular, folder names with non-ASCII folders are supported. If a folder with the
name already exists, the symbol for the pre-existing folder is returned and a new folder is
not created.

There is a limit on the number of unique folders an application can support. If the limit is
exceeded, AddFol der returns NI L and a new folder is not added. With the Newton 2.0 OS,
the current limit is twelve global folders and twelve local folders.

RenoveFol der (f ol der Sym appSynbol)

f ol der Sym - symbol, the folder symbol of the folder to remove
appSynbol - symbol, the application for which to remove the folder
resul t -undefined; do not rely on the return value of this function.

RenpveFol der can be used to remove a folder from the available list for an application. If
items exist in a folder that is removed, the only way users can see the items is by selecting
"All Items" from the folder list.

Changing the ProtoStatusButton's Text in ProtoStatusTemplate (1/15/97)
Q: TIam using a pr ot oSt at usTenpl at e-based view and am trying to rename the primary
button through the pr ot oSt at usTenpl at e's setup frame. After doing this, I get an
exception when I tap on the renamed button. What am I doing wrong?

A: You are not doing anything wrong. There is a bug in pr ot 0St at usTenpl at e which will
cause the primary button to function incorrectly if you do not include a
buttonC i ckScri pt in the setup frame.

When you specify a frame in the pri mary slot of the values frame of the setup, the
primary button uses the t ext slot and the but t onCl i ckScri pt slot of that frame to
initalize itself. Unfortunately, it does not check to see if either of those slots exist before
trying to use them. The result is that an exception is thrown when you tap the button.

To work around this bug you must add abut t ond i ckScri pt to the primary frame. From
that method you will typically call your base view's Cancel Request method.

Here is a code example:

/1 Add a buttondickScript nmethod which just calls the application's
Cancel Request net hod.

| ocal viewSetValues := {
primary:
text: "Stop",

buttond i ckScript: func()
Get Root () . (kAppSynbol) : Cancel Request (' user Cancel)
}

b

| ocal viewSet := {
appSynbol : kAppSynbol ,
name: "The Nane",
val ues: vi ewSet Val ues

b

/1 Setup the status tenplate
statusVi ew Vi ewSet (vi ewSet);

Text and Ink Input and Display

ProtoPhoneExpando Bug in Setup1 Method (2/6/96)

Q: Iam having a problem using pr ot oPhoneExpando under Newton 2.0 OS. Something is
going wrong in the set upl method. Is this a known bug?

A: Yes, this is a known bug. pr ot oPhoneExpando (and the entire expando user interface)
have been deprecated in the Newton 2.0 OS, and are only supported for backward
compatibility. If possible, you should redesign your application to avoid the expandos.

The problem seems to be that the expando shell is sending the set upl and set up2
messages to the template in the | i nes array. These methods in pr ot oPhoneExpando
rely on information that isn't created until the view is actually opened.

We're investigating solutions to this problem. You can usually hack around the problem by
placing a | abel Commands slot in the template which has an array of one element, that
element being the label you want to appear in the phone line. For example:

| abel Commands: ["phone"].

This hack works only if your pr ot oPhoneExpando doesn't use the phonel ndex feature.
If it does, you'll have problems that are harder to work around.

Pictures in clEditViews (2/6/96)

Q: Is there a API or procedure that allows an application to write objects such as shapes,
PICTs, or bitmaps to a note in the Notes application?

A: There is no API for Notes specifically. The Notes "Note" view is basically a plain old
cl Edi t Vi ew, and cl Edi t Vi ews can contain pictures (in addition to ink, polygons, and
text) in the Newton 2.0 OS.

The Newton Programmer's Guide 2.0 (in the "Built-In Applications and System Data"
chapter) contains a description of the types of children you can create in the Notes
application.

This is really a description of the frames you need to put in the ' vi ewChi | dr en slot of a
cl Edi t Vi ewto create editable items. ' par a templates are text and ink text, ' pol y
templates are drawings and sketch ink, and ' pi ct templates are images.

To add a picture to a cl Edi t Vi ew, you need to create an appropriate template and then
add it to the vi ewChi | dr en array (and open the view or call RedoChi | dr en) or use the
AddVi ew method to add it to an existing view (then Di rt y the view.) See the item
"Adding Editable Text to a clEditView" elsewhere in the Q&As for details.

The template for ' pi ct items needs to contain these slots:

Vi ewsSt ati onery: Must have the symbol ' pi ct

vi ewBounds: A bounds frame, like Rel Bounds(0, 0, 40, 40)
i con: A bitmap frame, see cl Pi ct ur eVi ewdocs

For other slots, see the documentation for the cl Pi ct ur eVi ew view class.

Horizontal Scrolling, Clipping, and Text Views (2/7/96)
Q: Iwant to draw 80 columns in a ¢l Par agr aphVi ewthat's inside a smaller view and be able
to scroll back and forth. When I try this, it always wraps at the bounds of the parent. How
can I create a horizontal scrolling text view?

A: Normal paragraph views are written so that their right edge will never go beyond their
parent. This is done to avoid the circumstance where a user could select and delete some
text from the left part of a paragraph in a cl Edi t Vi ew, leaving the rest of it off screen and
unselectable.

What happens is the vi enBounds of the cl Par agr aphVi ew are modified during
creation of the view so that the view's right edge is aligned with the parent's right edge.
After that, wrapping is automatic.

The so-called "lightweight" text views do not work this way. You can force a paragraph to
be lightweight by: 1) Making sure the vi ewFl ag vReadOnl y is set, 2) making sure

vCal cul at eBounds and vGest ur esAl | owed, are off, and 3) not using t abs or st yl es.
Lightweight text views are not editable, but you can use Set Val ue to change their t ext
slots dynamically.

If you must use an editable cl Par agr aphVi ewor if tabs or styles are required, there is
another workaround. The code to check for clipping only looks one or two levels up the
parent chain, so you could nest the paragraph in a couple of otherwise useless views which
were large enough to prevent clipping, and let the clipping happen several layers up the
parent chain.

How to Intercept Keyboard Events (5/6/96)

Q: How do I intercept hardware keyboard events or "soft" keyboard events?

A: You can implement view methods that are called whenever the user presses a key on
software or external (hardware) keyboards.. There are two keyboard-related methods
associated with views based on the cl Par agr aphVi ew view class:

the vi ewKeyDownScri pt message is sent when a key is pressed.
the vi ewKeyUpScri pt message is sent when a key is released.

Both methods receive two arguments: the character that was pressed on the keyboard and a
keyboard flags integer. The keyboard flags integer encodes which modifier keys were in
effect for the key event, the unmodified key value, and the keycode. The layout of the
keyboard flags integer is shown in the section below, "Keyboard Flags Integer". The
modifier key constants are shown in the section "Keyboard Modifier Keys".

Vi ewKeyUpScri pt and Vi ewKeyDownScr i pt are currently called using parent
inheritance. Do not rely on this behavior: it may change in future ROMs.

If you want the default action to occur, these method must return ni | . The default action for
Vi ewKeyDownScri pt is usually to insert the character into the paragraph. (There may
be other default actions in the future.) If you return a non-nil value, the default action will
not occur.

You must include the vSi ngl eKeySt r okes flagin the t ext Fl ags slot of your view for
the system to send the Vi ewKeyDownScri pt or Vi ewKeyUpScri pt message for every
key stroke. If you do not specify vSi ngl eKey St r okes, keyboard input may be dropped if a
lot of key strokes are coming in.

The hard keyboard auto repeats with the following event sequence:

keydown -- keydown -- keydown -- keydown...

The soft keyboard auto repeats with this sequence:

keydown -- keyup -- keydown -- keyup -- keydown -- keyup...

Do not rely on this order, it may change in future ROMs.

ViewKeyDownScript

Vi ewKeyDownScri pt (char, flags)

This message is sent to the key view when the user presses down on a keyboard key. This

applies to a hardware keyboard or an on-screen keyboard.

char The character that was entered on the keyboard. Note that if a modifier key is the
only key pressed (for example, the Shift key), this value will be 0.

fl ags An integer that specifies which modifier keys were pressed, the unmodified key
value, and the keycode. The modifier key constants are shown in the section "Keyboard
Modifier Keys".

ViewKeyUpScript

Vi ewKeyUpScri pt (char, flags)
This message is sent to the key view whenever the user releases a keyboard key that was
depressed. This applies to a hardware keyboard or an on-screen keyboard.

char The character that was entered on the keyboard. Note that if a modifier key is the
only key pressed (for example, the Shift key), this value will be 0.

fl ags An integer that specifies which modifier keys were pressed, the unmodified key
value, and the keycode. The modifier key constants are shown in the section "Keyboard
Modifier Keys".

Keyboard Flags Integer

Bits Description

Oto7 The keycode.

8 to 23 Original keycode. The 16-bit character that would result if none of the
modifier keys were pressed.

24 Indicates that the key was from an on-screen keyboard. (kIsSoftKeyboard)

25 Indicates that the Command key was in effect. (kCommandModifier)

26 Indicates that the Shift key was in effect. (kShiftModifier)

27 Indicates that the Caps Lock key was in effect. (kCapsLockModifier)

28 Indicates that the Option key was in effect. (kOptionsModifier)

29 Indicates that the Control key was in effect. (kControlModifier)

Keyboard Modifier Keys

You use the keyboard modifier key constants to determine which modifier keys were in
effect when a keyboard event occurs.

Constant Value

kl sSof t Keyboar d (1 << 24)

kCommandModi fier (1 << 25)

kshi ft Modi fi er (1 << 26)

kCapsLockModi fier (1 <<27)

kOptionshbdi fier (1 <<28)

kControl Modi fier (1<<?29)

How to Keep Multiple Keyboards Open (8/30/96)

Q:

I want my pr ot oKeyboar d-based keyboard to be open at the same time as other
keyboards. When my keyboard opens, it seems like any other keyboard closes. How do I
keep multiple keyboards open?

: When a pr ot oKeyboar d-based view opens, it closes the last-opened pr ot oKeyboar d-

based view. However, you need not use pr ot oKeyboar d.

Instead, you can base your keyboard on a different view type (for instance, pr ot oDr agger)
and use the Regi st er OpenKeyboar d view message to register the keyboard with the
system. Using Regi st er QpenKeyboar d will ensure that the caret is set up properly and
allows you to track the caret changes with the vi ewCar et ChangedScr i pt view message
if desired.

Adding a Local Keyboard to a ProtoKeyboardButton-based Button
(1/14/97)

Q:

A:

I have an application-specific keyboard that I would like to have appear only in my
application's pr ot oKeyboar dBut t on-based keyboard list. Is this possible?

Yes, pr ot oKeyboar dBut t on has a method called Set Keyboar dLi st that lets you do
this. Set Keyboar dLi st takes two arguments. The first argument is an array of keyboard
symbols to add to the list. The second argument is an array of keyboard symbols to remove
from the list. Note that the keyboard symbols of the built-in keyboards are listed on pages
pages 8-26 and 8-27 of the Newton Programmer's Guide.

To create a local keyboard, your keyboard view must be declared either to the keyboard
button view or to a view within in its parent view chain. It is common to declare the
keyboard view in your application's base view. When you declare the keyboard view, it
must be declared using the keyboard's keyboar dSynbol .

There are three additional slots that your keyboard template must have:

1) a preal | ocat edCont ext slot with the symbol of the keyboard

2) a user Nane slot with the name that will appear in the pr ot oKeyboar dBut t on popup
3) akeyboar dSynbol slot with your keyboard's symbol

The pr eal | ocat edCont ext slot and the keyboar dSynbol slot must be the same symbol.
Note that the keyboar dSynbol slot is required, but the pr eal | ocat edCont ext slot is
additionally necessary to avoid exceptions on devices prior to Newton 2.1 OS.

Next, in the vi ewSet upDoneScr i pt of the pr ot oKeyboar dBut t on-based view, send the
button a Set Keyboar dLi st message with your keyboard's symbol. For instance, you might
have the following vi ewSet upDoneScr i pt:

vi ewSet upDoneScri pt: func()
begi n
: Set KeyboardLi st ([kMyKeyboardSynbol], nil);

/1 Be sure to call the inherited viewSetupDoneScript nethod!
i nherited: ?vi ewSet upDoneScri pt () ;
end;

If you want to dynamically change the keyboard list, you can also override the
buttonC i ckScript. You must first call Set Keyboar dLi st , then call the inherited
buttond ickScript.

All additions and subtractions are removed from the list when your
pr ot oKeyboar dBut t on-based view is closed.

Getting Digital Ink to the Desktop (1/17/97)
Q: I'want to get ink (for instance, a signature) from my Newton device to a desktop machine.
How do I do that?

A: The easiest way to get digital ink to the desktop is to convert it into a bitmap on the
Newton device, and send the bitmap up to the desktop via the Desktop Integration
Libraries (DILs). Another common technique is to convert the ink into an array of (x,y)
points and send that array to the desktop for it to convert into whatever format is suitable.

Take a look at the DTS Sample Code projects, "InkForm" and "InkTranslate". They offer
some pointers on how to do this. Depending on how and when you want to do the
translation, you'll either want to use the view method Vi ewl nt 0Bi t map, or the global
function Get Poi nt SArr ay, or a set of functions from the Recognition chapter, particularly
CGet St r oke and Get St r okePoi nt sArr ay.

If you need DIL sample code, the DTS Sample Code project "SoupDrink" may be helpful to
you.

CHANGED: Constraints on Keyboards Sizing to the View (4/7/97)

Q: I'am having a problem with dynamically adjusting the size of keyboards. According to the
documentation, adjusting the size of my keyboard view should cause the keys to size
correctly to the bounds of the view. This does not happen. If I set the viewbounds of the
keyboard (a full alphanumeric keyboard) to anything less than 224x80, the keys scrunch up
only taking up about half the view (horizontally). They seem to size fine vertically. This
happens even if I set the viewbounds to 222 (only 2 pixels shorter.) What is going on?

A:

It turns out the the documentation does not give the full story. The final size of the keys in a
keyboard is constrained by the smallest fractional key unit width you specify in the
keyboard. To understand key units and key dimensions, read the "Key Dimensions" section
of the Newton Programmer's Guide (pages 8-35,6). You can also find this information in the
"Key Descriptor Constants" section of the Newton Programmer's Reference.

In addition to calculating the size (in key units) of the longest key row, the

cl Keyboar dVi ewalso finds the smallest key unit specified in the keyboard and uses this
to constrain the final horizontal size. It calculates a minimal pixel size for the keyboard
and makes sure that the final keyboard size is an integral multiple of this value. For
example, if the smallest size is 10 pixels, then the final keyboard can be 10 pixels or 20
pixels, but not 15 pixels. If the view is 15 pixels, the keyboard will be 10 pixels.

The calculation for this minimal size is:
m=w?* (1/s)

m - mninmal size
w - width of the |Iongest keyboard row in key units
S - nuneric equivelent for smallest keyboard unit specified in the
keyboar d:

(keyHUnit = 1, keyHHalf = 0.5, keyHQuarter = 0.25, keyHEi ghth =
0. 125)

For the built-in ASCII keyboard in current ROMs, the longest row is 14 key units, the
smallest key unit used is keyHQuar t er, so the minimal width for the ASCII keyboard is:

m=14 * (1 / 0.25) = 14 * 4 = 56 pixels.
The keyboard will always be an integral multiple of 56 pixels in width. Note that 224

pixels is exactly 4 * 56. By changing the width to 223, the keyboard now becomes 168 pixels
wide.

Transports

Adding Child Views to a ProtoTransportHeader-based View (1/19/96)

Q:

A:

How can I add child views to a pr ot oTr ansport Header -based view?

First, you need to specify an addedHei ght slot. The height of the transport header will
be increased by this amount.

Next, add the following code to the vi ewSet upFor nScri pt method of your
prot oTr anspor t Header view. This works around a bug with
prot oTr ansport Header :

sel f.stepChildren := SetUnion(self._proto.stepChildren,
self. _proto._proto.stepChildren, true);

Finally, use NTK as you normally would to create the child views.

How to Omit Default Transport Preference Views (5/6/96)

Q:

I want to omit some transport preferences that appear automatically. If I specify ni | for
the sendPr ef s, out boxPr ef s, ori nboxPr ef s slots in my transport preferences
template, opening the slip throws -48204. What is going wrong?

The documentation states if you donOt want to include sendPr ef s, out boxPr ef s, or

i nboxPr ef s in your preferences dialog to set those slot to ni | . Due to a bug in the
cooresponding views for those preference items, -48204 is thrown when an attempt is made
to open the views. This will be fixed in a future ROM.

How to Stop ProtoAddressPicker Memory (9/20/96)

Q:

A:

How do I stop pr ot oAddr essPi cker from remembering the last people picked?

pr ot oAddr essPi cker has a slot called useMenor y that was left out of the
documentation. If this slot is set to ni | , the memory mechanism will be disabled.

ReceiveRequest Requests Incorrect After Using RemoveTempltems
(10/1/96)

Q:

A:

If my transport calls the owner method RenpveTenpl t ens when items are selected, the
Recei veRequest message sometimes has bogus request arguments (for instance, thecause
issetto' renot e). Is this a known bug?

Yes, this is a known bug in RenoveTenpl t ens. The call to RenbveTenpl t ems does not
clear out the cache of selected items correctly. This will be fixed in a future version of the
Newton OS.

To workaround the problem, assume the following: If your transport's communications
channel is not currently connected and you receive a request with its cause slot set to

' r enpt e, assume that the cause slot is actually ' user and act accordingly. If you receive a
request with its ' cause slot setto' r endt e and your transport's communications channel
is connected then perform the appropriate action for receiving remote items.

Filing Sent Entries in the Out Box (1/14/97)

Q:

A:

If a user has selected to file sent entries into a folder that has been deleted, my transport
throws an exception when it calls ItemCompleted. Why is this problem occuring?

This is caused by a bug in| t enConpl et ed. To work around this, you should check to make
sure the folder exists before calling | t enConpl et ed. If it does not exist, then set the
transport's ' out boxFi | i ng preference to ni | . Here is a code example:

/1 This code assunes that the current receiver (self) is your
transport
if NOT GetFolderStr(:GetConfig('outboxFiling)) then

: Set Config('outboxFiling, nil);

Documentation on the InboxFiling Preference (1/15/97)
Q: The documentation on In Box filing appears to be incorrect. It says that incoming items will
be filed when they are received, however it appears that they are actually filed when
they are read. Is the documentation incorrect?

A: Yes, the documentation is incorrect. Items are filed when they have been read, not when
they have been received. The default for i nboxFi l i ngisnil.

Note that if the In/Out Box is not the backdrop application, filing does not occur until you

close the In/Out Box. If the In/Out Box is the backdrop application, filing occurs when the
user switches between the overview and the main view.

Utility Functions

What Happened to FormattedNumberStr (2/12/96)

Q: The Newton 1.x documentation and OS included a spri nt f -like function for formatting
numbers called For mat t edNunber St r. The Newton Programmer's Guide 2.0 First Edition
(beta) says this function is no longer supported. How do I format my numbers?

A: You may continue to use For mat t edNunber St r. Here is the For mat t edNunber St r API
that is supported. For mat t edNunber St r should be considered to have undefined results if
passed arguments other than those specified here.

For mat t edNunber St r (nunber, format String)
Returns a formatted string representation of a real number.

nurber A real number.
formatString A string specifying how the number should be formatted.

This function works similar to the C function spri nt f. The f or mat St ri ng specifies how
the real number should be formatted; that is, whether to use decimal or exponential
notation and how many places to include after the decimal point. It accepts the following
format specifiers:

% Use decimal notation (such as "123,456.789000").

% Use exponential notation (such as "1.234568e+05").

% Use exponential notation (such as "1.234568E+05").

You can also specify a period followed by a number after the % symbol to indicate how
many places to show following the decimal point. ("% 3f" yields " 123, 456. 789" for
example.)

Note: For mat t edNunber St r uses the current values of Get Local e() . nunber For mat to
get the separator and decimal characters and settings. The example strings above are for

the US English locale.

Known Problems

Other specifiers

Do not use other f or mat St ri ngs. Previous releases of the documentation listed %g and %G
as supported specifiers. The behavior of these specifiers has changed with the Newton 2.0
OS. Given the similarities to the spri ntf function, it may occur to you to try other sprintf
formatting characters. Specifiers other than above have an undefined result and should be

considered undocumented and unsupported.

Large numbers

For mat t edNunber St r does not work properly for numbers larger than 1. 0e24. If the

number is very large the function can cause the Newton device to hang.

Small numbers or long numbers

If more than 15 characters of output would be generated, for example because you are using

9% with large number or a large number of digits following the decimal,

For nat t edNunber St r has undefined results, and can cause the Newton device to hang.

Rounding

For mat t edNunber St r does not guarantee which direction it will round. In the Newton 2.0
OS, it rounds half cases down rather than up or to an even digit. If you need a precisely
rounded number you should use the math functions Cei | i ng, Fl oor, Near by| nt, or Round

with suitable math.

Trailing decimals

In early releases of the Newton 1.0 OS, there was a bug in For mat t edNunber St r that
caused a trailing decimal character to be added when zero decimal positions was specified.
That is, For mat t edNunber Str (3.0, "% Of ") resulted in " 3. " not" 3". To properly
test for and remove this unwanted extra character you must be sure to use the character
specified in the Locale settings and not assume the decimal character will be a period.

Backlight API (4/19/96)
Q: What is the API to check for and use the backlight?

A: There are three relevant pieces of information:
Checking for the backlight
To check if the backlight is there, use the Gest al t function as follows:

/1 define this sonewhere in your project
/1 until the platformfile defines it (not in 1.2d2)

constant kGestalt BackLi ght :='[0x02000007, [struct, bool ean],

| ocal isBacklight := Gestalt(kGestalt_ BackLight);
i f isBacklight AND isBacklight[0O] then

/1 has a backli ght
el se

/1 has not got one

Status of the backlight

To find the current state of the backlight, use the following function:

1];

BackLi ght St at us()
return value = nil (backlight is off) or non-nil (backlight is on)

Changing backlight status
To turn the backlight on or off, use:
BackLi ght (st at e)

return value - unspecified
state - nil (turn backlight off) or non-nil (turn backlight on)

Unusual Sort Order/Case Sensitivity in Swedish Locale (1/16/97)

Q: When I set the unit to the Swedish locale and use the St r Pos global function to search for a
"' character, it finds other characters such as .' or ';'. Isn't that a bug? How can I reliably
search for these characters in any locale?

A: The global function St r Pos and many of the other string functions are case insensitive -
they treat upper and lowercase letters as being identical. In other languages, characters
such as accented letters may be considered as different cases of the base letter, so they are
treated as identical as well. In the Newton OS model, the concepts 'same case' and 'same
position in the sorting order' are not distinguished, so all cases of a letter will sort to the
same position. Going backwards, all characters that sort identically are considered to be
different cases of the same letter. Well, in the Swedish sort order, many punctuation
characters are defined to sort to the same place, and so the case insensitive functions in the
Newton device treat the characters as identical. Many special and punctuation characters
are grouped this way, but perhaps the most surprising setis ?:,.; ; and !, which all sort
to the same position and so are treated as identical in Swedish by St r Pos and other case
insensitive functions.

To search a string for a particular character using a case sensitive search, use the Char Pos
function instead of St r Pos.

NEW: Time Zones, GMT, Daylight Savings, and Newton Time (3/4/97)

Q: There don't seem to be any functions in the Newton OS for converting between standard time
values, such as finding the time in a different time zone, or GMT time. I know it's possible
because the built in Time Zones application does it. How can I do this in my own
application?

A: The Newton OS doesn't actually have the concept of time zones. Instead, for each city if
keeps track of the offset (in seconds) from GMT for that city. You can find this in the ' gnt
slot of a city entry, which can be gotten with the Get Ci t yEnt ry global function. See the
"Built In Apps and System Data" chapter of the Newton Programmers Guide for details.
Note that the docs incorrectly say the gnt slot contains the offset in minutes, when it is
actually specified in seconds. The current location is available in the ' | ocat i on slot of
the user configuration frame. Use Get User Confi g(' | ocati on) to access it. The global
function Local Ti me can be used to convert a time to the local time in a distant city.

A simple way to get the local time from a GMT time would be to create a city entry
representing GMT (gmt offset 0, no daylight savings) and then useLocal Ti ne to compute
the delta between the current city and the GMT city, then add the delta to the given GMT
time. Local Ti me can be used directly to go the other way--getting the GMT time from the
local time.

Local Ti me(ti ne, wher e)

ti ne - a time in minutes in the local (Newton device) zone, for example as returned from
the Ti me function

wher e - a city entry, as returned from Get Gi t yEnt ry

resul t - a time in minutes in the where city, adjusted as necessary for time zone and
daylight savings.

Local Ti ne tells you the local time for the distant city, given a time in the current city. For
example, to find out the time in Tokyo:

Dat e(Local Time(tinme(), GetC tyEntry("Tokyo")[0]))
#C427171 {year: 1997, nonth: 2, Date: 22, dayOfWek: 6,
hour: 8, minute: 1, second: 0, dayslnMonth: 28}

Because the Newton OS doesn't have time zones, it can't keep track of daylight savings
time by changing zones (for example, from Pacific Standard Time to Pacific Daylight
Time). Instead, it uses a bunch of rules that tell it when to set the time ahead or back, and
by how much. The global function DSTXf f set can be used to find out how much these
daylight savings time rules have adjusted a given time for a given city.

DSTO fset (tinme, where)

ti me - a time in minutes in the where city

wher e - a city entry, as returned from Get Ci t yEnt ry

resul t - an integer, number of minutes that daylight savings adjusted that time in that
city.

DSTOf f set tells you what the daylight savings component is of a given time in a given
location. This component would need to be subtracted from the result of the global function
Ti e to get a non-daylight-adjusted time for the current location.

/1 it's currently 2:52 PMon 3/4/97, no DST adjust nent
DSTO fset (Time(), GetCityEntry("Cupertino”)[0]);
#0 0

/1 but during the sumer, DST causes the clocks to "spring
forward" an hour.

DSTO fset (StringToDat e("6/6/97 12:34"),
GetCityEntry("Cupertino")[0]);

#FO 60

NEW: Square Root of Negative Number Bug (3/4/97)

Q: WhenIcall Sqrt with a negative number on the Newton, or use Conpi | e in the NTK
Inspector, I get a strange result. However, if I just type sqrt (- 2) into the listener I get a
different strange result. What's going on?

call conpile("sqrt(-2)") with ()
#4412F2D -1.79769e+308

sqgrt(-2)
#440DEO5 1. 00000e+999

A: There is a floating point library bug in Sqrt on the Newton OS. When passed a negative
number, the large positive value is returned instead of a not-a-number value. You can work
around it using Pow(X, 0.5) instead of Sqrt (x) if there is no way to guarantee that the
value passed to Sqrt is non-negative, or simply check and see if the argument is less than 0
and return a not-a-number constant.

The reason sqrt (- 2) works differently when you type it into the NTK Inspector is because
of a compiler process known as constant folding. Sqrt can be evaluated at compile time if
you pass it a constant argument. So what's really happening is that NTK is evaluating the
Sqrt function during the compile phase and passing the resulting floating point number (or
rather, not-a-number) to the Newton device where it's promptly returned. An NTK real
number formatting limitation displays non-a-number values and infinities as

1. 00000e+999 rather than as some other string. You can use | SNAN to determine if a real
number is a not-a-number value.

You can avoid constant folding and force evaluation on the Newton device by using a
variable. For instance:

X 1= -2;

y 1= sqrt(x);

#C4335B1 -1.79769e+308

Also, note that For mat t edNunber St r does not properly handle not-a-number values. (it
returns "Number too small.")

NEW: Making Use of the Serial Number Chip (4/3/97)

Q: I'would like to get the serial number from the units that support it, as either an integer or
real number. How can I do this?

A: You probably don't really want to do this. The serial number is an 8-byte binary object, so
you could use Ext r act Byt e or Ext r act Wor d or possibly Ext r act Long to get the bytes out
in integer form, then do something with them. However, keep in mind that NewtonScript
integers are only 30 bits wide, whereas the serial number is 64 bits wide, so you'll never be
able to put all the information contained in the serial number into a single integer. (3
integers would be required.)

That is, let us suppose you added up the value of all the bytes in a serial number. You would
get a single NewtonScript integer, but it would also be possible for a different serial number
to produce the same integer. (Just swap the positions of two of the bytes.) Same goes for
XOR or any checksumming scheme. There's just no way to reduce 64 bits of information to 30
bits without allowing loss of uniqueness. (If you come up with a way, let us know, it'd make
a great compression algorithm!)

Real numbers aren't suitable either, for much the same reason. It's true that in
NewtonScript reals are 8 bytes wide, but they use the IEEE 64-bit real number specification,
and so not all combinations of 8 bytes are considered unique. That is, you might think about
taking the serial number result and using Set Cl ass to change it's class to ' r eal , which
would effectively "cast" the 8-byte object to a real number. This is a bad idea, because real
numbers are interpreted using bitfields with special meanings, and it's possible for two real
numbers to have different binary representations and still evaluate as equal using the '='
operator. (Any two not-a-number values will do this.)

Serial numbers are best treated as strings or as 8-byte binary objects, so that no data is lost.
St r HexDunp is the best way to format the serial number object for humans to read. If you
want to break it up to make it more easily readable, you could do something like this:
local s := StrHexDunp(call ROM GetSerial Nunber with (), 2);
StrRepl ace(s, " ", "-", 3);
Which produces this string (on my unit):
"0000- 0000- 0154- 8423 "

Please note that the serial number provided by the chip does NOT match the serial number
that Apple Computer and other Newton device manufacturers may put on the outside of the
case. When supporting a device, Apple and its licensees will most likely request the user-
visible serial number, typically found on a sticker on the case. Please be sure that you
present data from the internal chip-based serial number in such a way as to ensure the user
will not be confused. (This is the reason the chip-based serial number is not displayed by
any software built into the device.)

NEW: Programmatically Cancelling a Confirm Slip (4/3/97)

Q:

During an operation, I bring up a slip to ask the user if they really want to abort the
operation. Before they answer, the operation may complete or be aborted anyway. I would
like to remove the slip if this happens, much like the "Remount" slip is removed when a
gripped card is ejected, reinserted, and then re-ejected.

There's no way to dismiss a Modal Conf i r mslip, because your code is paused waiting for
the result. You can, however, remove an AsyncConf i r mslip. The return value from
AsyncConf i r m(which is documented in the Newton Programmer's Guide as "unspecified")
is actually a reference to the confirm view. Sending that view a Cl 0se message dismisses
the slip. The callback function will not be called if this slip is removed in this way, so
make sure your program handles that case.

Views

How to Save the Contents of clEditView (10/4/93)

Q:

A:

How can I save the contents of a cl Edi t Vi ew (the children paragraph, polygon, and
picture views containing text, shapes, and ink) to a soup and restore it later?

Simply save the vi ewChi | dr en array for the cl Edi t Vi ew, probably in the
vi ewQui t Scri pt. To restore, assign the array from the soup to the vi ewChi | dr en slot,

either at vi ewSet upFor nScri pt or vi ewSet upChi | drenScri pt time; or later followed
by RedoChi | dr en.

You shouldn't try to know "all" the slots in a template in the vi ewChi | dr en array. (For
example, text has optional slots for fonts and tabs, shapes have optional slots for pen
width, and new optional slots may be added in future versions.) Saving the whole array
also allows you to gracefully handle templates in the vi ewChi | dr en array that don't
have an ink, points, or text slot. In the future, there may be children that represent other
data types.

Adding Editable Text to clEditViews (6/9/94)

Q:

A:

How can I add editable text to a cl Edi t Vi ew? If I drag outacl Par agr aphVi ew child in
NTK, the text is not selectable even if I turn on vGest ur esAl | owed.

cl Edi t Vi ews have special requirements. To create a text child of a cl Edi t Vi ew that can
be selected and modified by the user (as if it had been created by the user) you need to do
the following:

text Tenplate := {
Vi ewSt ati onery: 'para,
vi ewBounds: Rel Bounds(20, 20, 100, 20),
text: "Denmp Text",

1

AddVi ew(sel f, textTenpl ate);

The view must be added dynamically (with AddVi ew), because the cl Edi t Vi ew expects to
be able to modify the contents as the user edits this item. The template (t ext Tenpl at e
above) should also be created at run time, because the cl Edi t Vi ewadds some slots to this
template when creating the view. (Specifically it fills in the _pr ot o slot based on the

vi ewSt at i onery value. The _pr ot o slot will be set to pr ot oPar agr aph) If you try to
create too much at compile time, you will get -48214 (object is read only) errors when
opening the edit view.

The minimum requirements for the template are a vi ewSt ati onery of ' para, at ext slot,
and a vi ewBounds slot. You can also set vi ewFont, st yl es, t abs, and other slots to make
the text look as you would like.

TieViews and Untying Them (6/9/94)

Q:

What triggers the pass of a message to a tied view? If I want to "untie" two views that
have been tied with Ti eVi ews, do I simply remove the appropriate slots from the
Vi ewTi e array?

The tied view's method will be executed as a result of the same actions that cause the main
view's vi enChangedScri pt to be called. This can happen without calling Set Val ue, for
example, when the user writes into a view that has recognition enabled, the

vi ewChangedScri pt will get called.

As of Newton 2.0 OS, there is no API for untying tied views. It may be wise to first check for
the existance of an Unt i eVi ews function, and call it if it exists, but if it does not, removing
the pair of elements from the tied view's vi ewTi e array is fine.

Immediate Children of the Root View Are Special (11/17/94)

Q:

In trying to make a better "modal” dialog, I am attempting to create a child of the root
view that is full-screen and transparent. When I do this, the other views always
disappear, and reappear when the window is closed. Why?

: Immediate children of the root view are handled differently by the view system. They

cannot be transparent, and will be filled white unless otherwise specified. Also, unlike
other views in Newton 2.0 OS, their borders are considered part of the view and so taps in
the borders will be sent to them.

This was done deliberately to discourage tap-stealing and other unusual view interaction.
Each top level view (usually one application) is intended to stand on its own and operate
independently of other applications.

So-called "application modal" dialogs can and should be implemented using the technique
you describe with the transparent window as a child of the application's base view.

You can make system modal dialogs with the view methods Fi | t er Di al og and
Modal Di al og. (See the Q&A "FilterDialog and ModalDialog Limitations" for important
information on those methods.)

ViewldleScripts and clParagraphViews (8/1/95)

Q:

Sometimes a cl Par agr aphVi ews vi ewl dl eScri pt is fired off automatically. (For
example, an operation which results in the creation or changing of a keyboard's input focus
within the view will trigger the viewlIdleScript.) Why does this happen and what can I
do about it?

The cl Par agr aphVi ew class internally uses the idle event mechanism to implement some
of its features. Unfortunately, any vi ew dl eScr i pt s provided by developers also execute
when the system idle events are processed. Only the "heavyweight" views do this,
"lightweight" paragraph views (in other words, simple static text views) do not.

There is no workaround in the Newton 1.x OS or Newton 2.0 OS while using
clParagraphView vi ewl dl eScri pt. You can either accept the extra idle script calls, or
use another non-cl Par agr aphVi ewbased view to implement your idle functions.

FilterDialog and ModalDialog Limitations (2/5/96)

Q:

After closing a view that was opened with t heVi ew: Fi | t er Di al og(), the part of the
screen that was not covered by the t heVi ew no longer accepts any pen input. t heVi ew is a
pr ot oFl oat NGo. Is there some trick?

A: There is a problem with Fi | t er Di al og and Modal Di al og when used to open views that
are not immediate children of the root view. At this point we're not sure if we'll be able to
fix the problem.

You must not use Fi | t er Di al og or Mbdal Di al og to open more than one non-child-of-root
view at a time. Opening more than one at a time with either of these messages causes the
state information from the first to be overwritten with the state information from the
second. The result will be a failure to exit the modality when the views are closed.

Here are some things you can do to avoid or fix the problem with Fi | t er Di al og.

Redesign your application so that your modal slips are all children of the root view,
created with Bui | dCont ext . This is the best solution because it avoids awkward
situations when the child of an application is system-modal. (Application subviews
should normally be only application-modal.)

Use the Mbdal Di al og message instead of Fi | t er Di al og. Modal Di al og does not have
the child-of-root bug. (Fi |l terDi al og is preferred, since it uses fewer system resources
and is faster.)

Here is some code you can use to work around the problem much like a potential patch
would. (This code should be safe if a patch is madethe body of the if statement should not
execute on a corrected system.)

view. FilterDial og();
if view nopdal State then
begi n
| ocal childOf Root := view
whi | e chil dOF Root: Parent () <> GetRoot () do
chil dOfRoot := chil dOF Root: Parent ();
chi | dOF Root . nodal State : = vi ew. nodal St at e;
end;

This only needs to be done if the view that you send the Fi | t er Di al og message to is not
an immediate child of the root. You can probably improve the efficiency in your
applications, since the root child is ususally your application's base view, which is a "well
known" view. Thatis, you may be able to re-write the code as follows:

view FilterDi al og();
if view npdal State then
base. nodal State : = vi ew. npdal St at e;

Using Proportional View Alignment Correctly (6/20/96)
Q: Iam trying to use proportional view alignment but things don't seem to be working correctly.
For instance, if I have a view which is full justified or center justified, proportional view
alignment doesn't seem to work at all. Whats wrong?

A: Proportional justification only works if you are using left, right, top, or bottom justification.
This is true for both sibling and parent justification.

Proportional justification is very similar to full justification. The view system needs some
reference point at which to position the view. If you specify full or center justification, and
you are also using proportional justification, the reference point is undefined.

Additionally, if you are using right or bottom justification, you will need to specify
negative values for your proportional bounds. For instance, if you want a view to take up
the right 30 percent of its parent, you would specify the following view bounds:

{left: -30, top: <top>, right: 0, bottom <bottonpr}

and the following view justification:
vj Parent RightH + vjLeftRatio

Drag and Drop Caches the Background Bitmap (7/15/96)

Q: Tam trying to implement drag scrolling. Although I can scroll the contents of the window,
when I drag the item back into the window, it strips away the updated (scrolled) contents
and leaves the original (unscrolled) contents behind. How can I get this to work?

A: Unfortunately, you have hit a design limitation of the Drag and Drop implementation.
When you send the Dr agAndDr op message to a view, the bitmap for the pre-drag state is
cached. Once the drag loop starts, you can not update that cached bitmap. When you
"scroll" the view (probably using Ref r eshVi ews), you update the screen, but the cached
bitmap is still there and is used by the Dr agAndDr op routine to update the screen as the
dragged item is moved.

NEW: Default and Close Keys in Confirm Slips (2/28/97)

Q: Is there any way to put a keyboard default on a confirm dialog?

A: Yes. For both Mbdal Conf i r mand AsyncConf i r m the 2.0 Newton Programmer's Reference
says you may pass three types of things as the buttonList argument: a symbol (' okCancel
or' yesNo), and array of strings, or an array of frames with ' val ue and ' t ext slots.

In the Newton 2.1 OS, this API has been extended to allow for default key and close key
behavior. There are four new symbols that are allowed: ' okCancel Def aul t Ok,
'okCancel Def aul t Cancel ,' yesNoDef aul t Yes, and ' yesNoDef aul t No. They do the
obvious thing, setting the default key as specified and the close key to Cancel or No if those
aren't the default. However, using these symbols on a Newton 2.0 OS device will result in
the "OK" and "Cancel" buttons always being displayed, even if you specify

' yesNoDef aul t Yes or' yesNoDef aul t No.

The array-of-frames flavor for the but t onLi st argument allows an additional slot,
called ' keyVal ue. Supported values for this slot are the symbols ' def aul t and ' cl ose,
or NIL /not present. ' def aul t makes the button the default key, and ' cl ose makes the
button activate with the close key. Any other value will cause a problem in the current
Newton 2.1 implementation. The keyVal ue slot is ignored on the Newton 2.0 OS.

For compatibility, we recommend avoiding the ' yesNoDef aul t Yes and
" yesNoDef aul t No symbols if you intend to run on both Newton 2.0 and 2.1 devices.
Instead, use one of these specifiers:

"[{text: "Yes", value: TRUE, keyValue: default}, {text: "No",
val ue: N L, keyValue: close}]

"[{text: "Yes", value: TRUE}, {text: "No", value: N L, keyValue:
defaul t}]

NEW: Screen Rotation and Linked Views or BuildContext Slips (3/10/97)

Q: I've got a linked view open, and I'm trying have it rotate with ROM_Def Rot at eFunc.
When I rotate the screen the base view rotates properly, but the linked view closes. Do I
need to add a Reor i ent ToScr een slot to the linked view?

A: When the user requests a screen rotation, the OS first checks each immediate child of the
root view to see if it will still operate on the rotated screen. Having a Reor i ent ToScr een
slot in the view tells the OS that this view is OK, so the slot is used first as a token
("magic cookie") to tell the OS that this view knows about rotation. Later during the
rotation operation, the Reor i ent ToScr een message is sent to your application's base view
and to other views that are immediate children of the root view. That method then
performs its second function, which is to completely handle resizing the view and its
children for the new screen size. (Even views which are small enough so that no resizing is
necessary need a Reor i ent ToScr een method. That method may need to move the base
view to ensure that it remains on-screen after rotation.)

It's convenient to use the ROM Def Rot at eFunc for this script, since it fills the magic
cookie requirement and handles resizing for most views. ROM_Def Rot at eFunc is very
simple: it send a close and then an open message to the view. Since well-written
applications take screen size into account when they open, this works fine in most cases.
However, applications that keep track of internal state that isn't preserved when the app
is closed can't use ROM_Def Rot at eFunc, because when the app reopens on the rotated
screen, it will look different. Opening a linked subview is one example of this; it doesn't
usually make sense to remember that a slip is open, since it's usually closed when your
application is closed.

Adding a Reor i ent ToScr een method to your linked views wouldn't help; since they are
descendents of your base view and not children of the root view, the OS wouldn't handle
these views. (It's up to your application to keep its kids under control.) You could change
your application so that it kept track of whether the linked views were open or closed, and
restored them to the same state when it was reopened. However, this might be confusing to
users who closed your app and then opened it again much later.

A better workaround is to implement your own Reor i ent ToScr een method, which either
resizes the views so they fit on the new screen, or which closes and reopens the views such
that the floaters also re-open. By using the Reor i ent ToScr een message to handle the
special case, you get to do something different during rotation versus during opening at the
user request (for example, after tapping on the Extras icon.)

Slips created with Bui | dCont ext also must be handled carefully during rotation. Because
they are themselves children of the root view, they'll each need their own
Reor i ent ToScr een method or the screen may not be rotatable when they are open or they

won't reopen after rotation. If you use ROM_Def Rot at eFunc, the slip itself will be closed
and reopened, and care may need to be taken to ensure the slip properly handles being
reopened, and that its connection to its controlling application is not lost.

NEW: How to Get Data From a ProtoTXView's Externalized Data
(4/3/97)
Q: I'm using the pr ot 0TXVi ew text engine in Newton 2.1 OS. How can I get text, styles,

pictures, etc. out of the object returned by pr ot 0TXVi ews Ext er nal i ze method without
either a) instantiating a pr ot 0TXVi ew or b) digging in the data structure?

A: You must instantiate a view to get data from the externalized object that pr ot 0TXVi ew
produces. The data structures in that object are not documented or supported. You may be
tempted to do this anyway, since it looks as though the data structure is obvious. Don't, it
isn't. Prot oTXVi ew actually uses several different data formats depending on the
complexity and storage destination for the data.

It's actually very easy to instantiate a view based on pr ot 0 TXVi ew to get at the data.
Here's one way:
| ocal textView := BuildContext(

{
_proto: protoTXVi ew,

vi ewBounds: Set Bounds(O0, 0, 0, 0),
vi ewFl ags: O,
Reori ent ToScreen: ROM Def Rot at eFunc,
1)
t ext Vi ew. Open();
textView Internalize(nmyExternalizedData);

You can now use all the pr ot 0TXVi ew APIs to get the data from the t ext Vi ewobject.
Don't forget to clean up with t ext Vi ew: Cl ose() when you're done.

NEW: Extracting All Text from a ProtoTXView Object (4/3/97)

Q: How can I get all the text out of the pr ot 0TXVi ew data stored in a soup entry, for example
to get the text for sending in email?

A: First, instantiate a dummy view with the data from the soup, as described in the Q&A
"How to Get Data From a ProtoTXView's Externalized Data". The pr ot oTXVi ew method
Cet RangeDat a always allocates its storage from the NewtonScript heap, so you will need
to copy the data into a destination VBO in chunks. Here's some code to do that. (This code
uses a 4K block size, you may wish to adjust that as necessary, add error checking, etc.)
StringFilter isused to remove the pr ot 0TXVi ew graphic indicator.

const ant kChunkSi ze : = 0x1000; // 4K chunks

| ocal start := 0;
| ocal theText := CGetDefaultStore(): NewBQ('string, length(""));
Bi naryMunger (t heText, 0, nil, "", 0, nil); /1 make VBO into a

proper string

whi | e nuntChars-start > kChunkSi ze do
/1 strip out graphics characters
StrMunger (t heText, start, nil,
StringFilter(
text Vi ew. Get RangeDat a({first: start, last: start :=
start + kChunkSi ze}, 'text),
"\u2206\u", 'rejectAll),
0, nil);
/1 copy remai nder
if start < nunChars then
St rMunger (t heText, start, nil,
StringFilter(
t ext Vi ew. Get RangeDat a({first: start, |ast:
nuntChars}, 'text),
"\'u2206\u", 'rejectAll),
0, nil);
/1 theText now holds plain text fromthe protoTXVi ew

For clarity, the code above does not use Cl ear VBOCache as mentioned in the Q&A, "How
to Avoid Resets When Using VBOs". If you are having problems with large VBOs during
code like that mentioned above, see that Q&A for more information.

