



DISCOVERING OPENSTEP:
A Developer Tutorial

Rhapsody Developer Release

Apple Computer, Inc.

User Interface Tips copyright © 1997 Apple Computer, Inc.
All rights reserved.
[6467.00]

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, mechanical, electronic, photocopying, recording, or otherwise, without prior written permission of Apple
Computer, Inc., except to make a backup copy of any documentation provided on CD-ROM. Printed in the United
States of America.

The Apple logo is a trademark of Apple Computer, Inc. Use of the “keyboard” Apple logo (Option-Shift-K) for
commercial purposes without the prior written consent of Apple may constitute trademark infringement and
unfair competition in violation of federal and state laws.

No licenses, express or implied, are granted with respect to any of the technology described in this book. Apple
retains all intellectual property rights associated with the technology described in this book. This book is
intended to assist application developers to develop applications only for Apple-labeled or Apple-licensed
computers.

Every effort has been made to ensure that the information in this manual is accurate. Apple is not responsible
for printing or clerical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, and the Apple logo are trademarks of Apple Computer, Inc., registered in the United States and other
countries. NeXT, the NeXT logo, NEXTSTEP, the NEXTSTEP logo, Digital Librarian, NeXTmail, and Workspace
Manager are trademarks of NeXT Computer, Inc. All other trademarks mentioned belong to their respective
owners.

Written by: Terry Donoghue
Tutorial applications by: Terry Donoghue
Art and Production management: Terri FitzMaurice
Book design: Karin Stroud
Publications management: Ron Hayden
With help from: Trey Matteson, Ron Hayden, Jean Ostrem, Lynn Cox, Derek Clegg, Mike Ferris, and Frederic
Bonnard
Cover design: CKS Partners, San Francisco, California

iii

Table of Contents

Welcome to Rhapsody 7

A Simple Application 18

Creating the Currency Converter Project 22

Creating the Currency Converter Interface 24

Customizing the Application’s Window 24
Fields and Buttons 28
Some Finishing Touches 32

Defining the Classes of Currency Converter 38

Connecting ConverterController to the Interface 44

Building the Currency Converter Project 54

Run Currency Converter 57

A Forms-Based Application 60

Creating the Travel Advisor Interface 64

Getting Started 64

Getting the Table View to Work 97

A Multi-Document Application 118

Setting Up the To Do Project 122

Creating the Model Class (ToDoItem) 123

Setting Up the Programmatic Interface 123

Extending an Application Kit Class: An Example 131

The Basics of a Multi-Document Application 142

Managing Documents Through Delegation 153

Managing ToDo’s Data and Coordinating its Display 162

Extending the To Do Application 170

Overriding Behavior of an Application Kit Class: An Example 174

Creating and Managing an Inspector (ToDoInspector) 176

Overriding and Adding Behavior to a Class: An Example 194

Setting Up Timers 200

Build, Run, and Extend the Application 203

Optional Exercises 203

Appendices

A Object-Oriented Programming 206

Encapsulation 209

Messages 210

An Object-Oriented Program 211
Polymorphism and Dynamic Binding 212

Classes 214

Object Creation 214

Inheritance 215

Defining a Class 218

OPENSTEP Frameworks 219

B Programming Tools and Resources 222

Other Development Applications 224

Other Installed Frameworks 224

Useful Command-Line Tools 225

Other Programming Resources 226

6

What You’ll Learn

What OpenStep is

How OpenStep fits in with Rhapsody

Rhapsody technologies

Programming in Apple’s
development environment

Programming with objects

1

7

Chapter 1

Welcome to Rhapsody

Welcome to OpenStep.

OpenStep is a new way to make programs that run on Power PC Macintoshes. But

OpenStep itself is not new. It is proven technology, and although it poses a learning curve

for newcomers, once you learn it, application development will suddenly seem easier and

quickened with potential.

This book eases your way into the experience of OpenStep programming. It guides you

through the creation of several applications. It encourages you to explore, to “kick the tires.”

Along the way, it explains important concepts and paradigms, and it uncovers rich lodes in

the tools and APIs.

When you’ve worked through this book, Apple’s development environment will not only be

less mysterious, but will be an environment that you’ll want to program in.

This chapter presents a brief overview of OpenStep—the user experience and the developer

experience—and places it in the larger context, which is the next-generation Macintosh

operating system.

Chapter 1

Welcome to Rhapsody

8

Imagine a Macintosh...

Imagine a Macintosh:

• That doesn’t crash when an application crashes.

• That can draw a graph, send a fax, and play a movie, all at once.

• That seems much faster than any Windows system you’ve seen.

• That looks a lot like the Mac OS, only better.

• That features some of the most advanced software technology around.

• And that still runs all the Macintosh programs you know and love.

That Macintosh will soon be here. And you’re invited to be a part of its
genesis.

What is OpenStep?

The new Macintosh operating system, code-named “Rhapsody,” has
actually been around a long time—almost as long as the Mac itself. That’s
because it is based on OpenStep, which, as NEXTSTEP, was introduced in
1987. Since then, OpenStep has evolved through many releases, has been
adopted by many companies as their development and deployment
environment of choice, and has received glowing reviews in the press. It is
solid technology, based on a design that was years ahead of anything else
and perfected year after year.

So OpenStep is well-regarded and battle-tested. But what is it? OpenStep is
an integrated set of shared object libraries, or

frameworks

, plus a run time
and a development environment that do three principal things:

• They insulate programs from the internal workings of the core operating
system, mediating access to system resources and preventing programs
from trashing one another’s address space.

• They provide all (or almost all) the functionality that programs typically
need.

• They bring the benefits of object-orientation to program development
(see page 14).

OpenStep has three core object frameworks: Foundation, Application Kit,
and Display PostScript.

Foundation

 Defines basic object characteristics, and implements
mechanisms for object allocation, deallocation, introspection, and
distribution. Foundation includes classes for common data types, such as
strings, numbers, and collections. And it provides APIs for platform-
independent system services, such as dates and times, multithreading
support, task and process management, timers, file management,
notification, and internationalization (based on the Unicode standard),

Application Kit

 Consists of classes that generate user-interface objects, that
manage and process events, and that offer or assist in application services such
as color and font management, printing, text manipulation, and cut-and-paste.

Display PostScript

 Provides APIs for direct PostScript drawing and image
composition, as well as for low-level window, cursor, and event management. The
Application Kit uses these APIs to draw the objects of the user interface. (New
Graphics APIs will offer a higher level of abstraction for drawing operations.)

Both the Foundation and Display PostScript frameworks interact directly with the
core operating system (Display PostScript with the windowing and imaging
subsystem); applications can access operating-system services through the APIs
of these frameworks.

The part of Rhapsody called the Yellow Box augments and enhances the core
OpenStep frameworks with many other frameworks. See page 10 for details.

OpenStep and Mach

You can think of OpenStep as a layer of objects that acts as mediator and
facilitator between programs and the core operating system. The stability,
performance, and reliability of these programs therefore depend on whether the
underlying core operating system has these characteristics.

The core operating system for Rhapsody is an enhanced version of Mach and BSD.
Mach—the original foundation of NEXTSTEP—is a mature, robust kernel that
provides low-level services such as memory management, tasking,
synchronization, timing, and event messaging. These services form the basis of
advanced operating-system capabilities: preemptive multitasking, memory
protection, full symmetric multiprocessing, and high-performance I/O.

Rhapsody’s core operating system will eventually support a variety of file and
volume formats, including HFS, UFS, DOS FAT, ISO9660, AFP, and HFS+ (an
enhanced version of HFS).

Applications and Components

Application Kit

(With Graphics API's)

Foundation

(With Distributed Objects)

Core Operating System

Frameworks

Display

PostScript

9

Rhapsody: Where OpenStep Fits In

Rhapsody is a ensemble of technologies in which OpenStep plays a central
role. The diagram below depicts Rhapsody on PowerPC-based systems; it
shows an enhanced and expanded version of OpenStep as the

Yellow Box.

The Yellow Box has interfaces to the core operating system, to the advanced
Macintosh user experience, to a Java virtual machine, and to a Mac OS–
compatibility subsystem known as the

Blue Box

.

Blue Box.

This is a native Mac OS environment that runs on the Rhapsody
kernel as another application (on PowerPC–based systems only). It enables
the execution of programs written for current and prior versions of the
Mac OS. Because a Blue Box environment is “just” another Rhapsody
application, it shares in the benefits of the kernel. For example, one or more
Blue Boxes can be running at a time on one machine; if one crashes, it will
not affect other Blue Boxes or any other Rhapsody application. A Blue Box
can take over the entire screen or it can occupy only a portion of it. In full-
screen mode you can use a hot key to switch between the Blue and Yellow
Boxes.

Mac OS software running in the Blue Box cannot directly access services
provided by the core operating system or the Yellow Box; by the same token,
programs written for the Yellow Box cannot directly access services in the
Blue Box. Rhapsody supports limited sharing of data between Blue and
Yellow Boxes, including copy-and-paste, and will eventually permit
communication between them through Apple events.

Some Yellow Box frameworks and development tools are being ported to the
Blue Box, allowing Yellow Box development in that environment.

Many current Mac OS technologies, such as QuickDraw 3D, QuickDraw GX,
OpenDoc, and QuickTime, are being carried forward into the Blue Box.

 Advanced look and feel.

The new Rhapsody operating system sports a new
exterior that perfects the Mac OS, itself legendary for ease of use. The
Rhapsody user experience combines the best visual elements and usage
models of the Mac OS and of OPENSTEP for Mach, and it incorporates new
paradigms in human-interface design. Yet it is still recognizably a
Macintosh operating system.

Programs written for the Yellow Box and Java programs written to the Yellow
Box APIs will present the same advanced Macintosh look and feel to users.

Java virtual machine.

Recognizing the increasing importance of Java in
software technology, Apple is including a Java virtual machine (VM) as part
of the Rhapsody picture. The Yellow Box will offer APIs in Java for accessing
the functionality of the core frameworks, and it will include ported versions
of the AWT, IFC, AFC, and other Java packages. With these possibilities, you
can create Java programs that will run on any platform with a Yellow Box or
“100% pure” Java applications that will run on any platform that has a
Java virtual machine.

Rhapsodic Variations

With little more than a recompile, you can deploy applications written to the
Yellow Box APIs (aka OpenStep) in four different user environments:

•

Rhapsody

 (for PowerPC)

.

See diagram below.

•

Rhapsody for Intel Processors

. Same as above, minus the Blue Box.

•

Yellow Box for Windows

. For Windows NT and Windows 95.

•

Yellow Box for Mac OS

. (Forthcoming.)

Applications will exhibit the “look and feel” appropriate to the underlying
operating system.

Advanced Macintosh Look & Feel

Mac OS

Compatibility

(Blue Box)

Core OS (Microkernel, I/O Arch, File System, etc.)

Hardware Platform (Power PC, Intel)

Java VM

(Virtual Machine)

OPENSTEP

(Yellow Box)

Chapter 1

Welcome to Rhapsody

10

The Yellow Box: A Blend of Technologies

What makes Rhapsody a uniquely rich environment for both users and
developers is the assortment of technologies clustered around the core
OpenStep frameworks; taken together, they are known as the Yellow Box.
Some of these extended frameworks are NeXT products, carried forward;
some frameworks are being developed for Rhapsody; and others are being
ported from the current Mac OS—QuickTime, QuickDraw 3D, QuickDraw GX,
and ColorSync, to name a few.

The sections that follow describe the range of technologies that these
extended frameworks will make available. They also summarize some the
fundamental technologies incorporated by Rhapsody.

Imaging and Printing Model

The imaging

and

 printing model for Rhapsody is Display PostScript. Unlike
in the Mac OS, the same mechanism is used to view and print what appears
on the screen. You no longer have to duplicate code to send output both to
the screen and to PostScript-based devices. The best of Apple’s graphic
technologies, including ColorSync and QuickDraw GX typography, is being
migrated to the Display PostScript model.

Display PostScript has several other advantages over existing Mac OS
imaging models. It improves the performance and responsiveness of the
graphical user interface. It is a widely accepted standard in the industry. It
is also easy to write code for; you use the Graphics APIs or the APIs of the
Display PostScript framework. However, applications that must severely
limit the overhead for imaging can access the frame buffer directly by using
APIs for this purpose, called Interceptor.

Multimedia

The QuickTime Media Layer (QTML) is a collection of objects and APIs that
make it easy for you to give applications rich multimedia content. QTML
consists of three separate products:

• QuickTime is the industry-standard multimedia architecture that
software vendors and content creators use to store, edit, and play
synchronized graphics, sound, video, text, and music.

• QuickTime VR delivers virtual reality in both panoramas and objects.

• QuickDraw 3D enables developers to render real-time three-dimensional
graphics.

Distributed Computing

The Yellow Box offers APIs for creating distributed applications, thereby
eliminating the need to write code for many low-level network operations.
The Foundation framework includes Distributed Objects, a technology that
permits objects in different task or threads—on a single host or across a
network—to communicate with each other.

The Yellow Box will also support CORBA/IIOP (including an object request
broker), making it easy to create industrial-strength applications that work
across different types of networks.

Frameworks

Display

PostScript

Application Kit

Foundation

(With Distributed Objects)

Database

Internet

CORBA

Objects

Java

QTML

Applications and Components

G
ra

ph
ic

s

Core Operating System

11

Internet

Apple intends Rhapsody to be a major technological force in the world of the
Internet. The development platform features APIs for Internet-based mail,
messaging, directories, and security services. Moreover, the Yellow Box
includes the WebObjects framework which, along with WebObjects Builder
(an interactive application for the creation of dynamic Web pages), enables
the speedy prototyping and development of dynamic Web-server
applications. These applications can access data in standard relational
databases and can communicate with applet components on the client
browser. The Yellow Box also offers built-in HTML rendering capabilities.

Database Integration

The Enterprise Objects Framework provides applications with access to
data on local relational database systems. Adaptors for Oracle, Sybase, and
Informix, and ODBC-compliant databases are available separately.
Enterprise Objects achieves persistent storage of data through a process of
mapping objects to tables.

The Yellow Box will also make a local database engine available, allowing
you to build and test database applications locally. When these
applications are deployed in a client/server environment, the customer then
needs to acquire a Web-application server (WebObjects) or to get an
adaptor for the supported databases.

Localization and Internationalization

You can easily localize Yellow Box applications largely because of a well-
designed localization architecture and Unicode support, both built into the
Application Kit. In this architecture, user-interface elements—as archived
objects and as resources—are kept separate from the executable. It’s
therefore possible to have a single code base that is qualified for various
locales. You can even have multiple localizations bundled with one
application, greatly reducing the overall footprint of an application in its
various localizations. Since localization bundles can be easily added to or
removed from an existing application, new localizations can be distributed
through updaters.

Because the Yellow Box uses Unicode 2.0 as its native character set,
applications can easily handle all of the world’s languages. The prevalence
of Unicode also eliminates many character-encoding hassles. Still there are
Yellow Box APIs to help translate between Unicode and other major
character sets in use today.

Apple’s development environment supports localization in several
important ways. It gives you an easy way to identify which files are to be
localized (and for which language). Andit enables you to create a series of
archivable user interfaces, each designed for a particular locale.

Text and Fonts

The Yellow Box offers a powerful set of text services that can be readily
adapted by text-intensive applications requiring high performance. These
services, which can support text buffers larger than 32K, include kerning,
ligatures, tab formatting, and rulers.

By the Unified Release, the Yellow Box will support a variety of font formats,
including Type 1 PostScript, Type 3 PostScript, Type 42 PostScript, and
TrueType (including the typographic capabilities of TrueType GX). The goal
for Rhapsody is for an open font architecture that makes it easy for users to
work with any font format they want.

Microsoft Windows

You can develop a Yellow Box application on one platform, say Rhapsody for
Power PC, and deploy it on another supported platform, including Windows,
with little more than a recompilation. Yellow Box applications that run on
Microsoft Windows have a range of capabilities at their disposal. With
OLE/COM, Yellow Box applications can transparently communicate with
OLE-enabled applications such as Microsoft Word. They can also use
ActiveX controls within the Windows environment. OLE/COM and ActiveX
support—as well as the ability to make Win32 calls from your code—
permits the development of industrial-strength Windows applications that
are seamlessly integrated with other Windows applications.

Component Technologies

One of the key advantages of the Yellow Box as a development environment
is the capability for developing programs quickly by assembling reusable
components. With the proper programming tools and a little work, you can
build Yellow Box components that can be packaged and distributed for
others to use. Applications are an obvious example of this component
technology, but there are others. With the Yellow Box and Apple’s
development tools, you can create:

• Frameworks, which other developers can use to create programs by
writing code based on the framework APIs

• Bundles containing executable code and associated resources, which
programs can dynamically load

• Palettes containing custom user-interface objects that other developers
can drag and drop into their own user interfaces using the Rhapsody
development tools

With the Yellow Box’s component architecture, you can easily create and
distribute extensions and plug-ins for applications. You can also develop
components based on JavaBeans technology in both the Yellow Box and the
Blue Box. JavaBeans components will be integrated into the Rhapsody
development tools. On Windows you can use ActiveX components.

Chapter 1

Welcome to Rhapsody

12

Programming in the Apple Development Environment

Apple has a powerful, integrated, cross-platform development environment
for the Yellow Box on Rhapsody. With it you can easily build applications, and
easily deploy them on multiple platforms: Windows NT, Windows 95, and (of
course) Rhapsody on both PowerPC–based and Pentium-based machines.
You develop the application for one platform and, with little more than a
simple recompile, the same application is ready to run on another platform.
You can also develop Rhapsody applications written in Java which will run

Project Builder

 is an application that
manages software-development projects and
that orchestrates and streamlines the
development process. It integrates a project

browser, a full-featured code editor, language-savvy symbol
recognition, a class browser, sophisticated project search
capabilities, header file and documentation access, build
customization, a graphical debugger, Java support, and a
host of other features.

Project Builder allows you to plug in compilers from other tool
vendors (such as Metrowerks). It facilitates the creation of
different types of projects (such as palettes, frameworks, and
bundles, in addition to applications). It also provides
programmatic hooks for integrating source-control
management systems.

on any platform supporting Apple’s Java virtual machine (see “Java
Looming” on the following page).

The Apple development environment consists of a suite of applications and
tools that deliver maximum productivity from the frameworks, subsystems,
libraries, components, and other resources of Rhapsody. The principal
applications are Interface Builder and Project Builder.

Interface Builder

 makes it easy to create
application interfaces. You just drag an object
from a palette and drop it on the graphical user
interface you’re creating. You can then set

attributes of these objects through an inspector panel and
you can connect them to other objects in your application so
they can send messages to each other. Interface Builder also
assists in the definition of custom classes and allows you to
test an interface without having to compile a line of code.

Standard palettes hold an assortment of Application Kit
objects. Other palettes can include Yellow Box objects from
other frameworks, third-party objects, and custom compiled
objects. You can also store non-compiled configurations of
objects on

dynamic palettes

. Interface Builder archives and
restores elements of a user interface (including connections)
as objects—it doesn’t “hardwire” them into the interface.
Interface Builder also enables youto connect your application
to JavaBeans and ActiveX components.

13

Other Development Tools

Apple’s development environment for the Yellow Box has much more than
Project Builder and Interface Builder to offer. There are other applications:
FileMerge, which allows you to compare and selectively merge files and
directories; Yap, which allows you to preview and test PostScript code; and
MallocDebug and other applications that analyze and optimize code that
you’ve written.

In addition, the development environment includes a UNIX shell application
(

Terminal.app

) with which you can run many development utilities. However,
use of command-line utilities is optional; they are not required for Yellow Box
development. (Eventually, many of these utilities will be incorporated into
new development applications.)

Pick Your Language

In developing applications for Rhapsody’s Yellow Box, you have a choice of
programming language. You can write programs, in whole or in part, in C,
C++, Java, and Objective-C. Soon scripting languages will also be
supported.

Some developers have the notion that Objective-C is difficult. They are
mistaken. You shouldn’t dread the thought of learning Objective-C. It is a
simple and elegant language. A typical developer, especially one experienced
in C++, should need no more than a day or two to learn Objective-C.

Note

: Yellow Box programs cannot be completely written in C++ because you
cannot subclass Yellow Box classes in C++. For your program to take
advantage of the Yellow Box frameworks, C++ objects must be integrated
with Objective-C or Java objects.

Java Looming

Apple is aware of the growing importance of Java and expects that Java will
become the language of choice for many developers. Since Java is central to
Apple’s system and development strategies, both the Blue and Yellow Boxes
will feature high-performance Java virtual machines and will include the

latest versions of the Java Development Kit (JDK).

Besides hosting native Java packages—including AWT, JFC, AFC, and IFC—
the Yellow Box will provide access to its own APIs in Java. You will be able to
subclass Yellow Box classes in Java and mix “pure” Java and Yellow Box
objects in your code. You will be able to write “100% pure” Java applications
that can run on any platform that has the appropriate virtual machine. Or you
can write Java applications that use Yellow Box APIs; these applications can
run—without recompiling—anywhere the Yellow Box is available. Rhapsody
will also integrate JavaBeans into the Yellow Box run time and into Interface
Builder palettes.

Project Builder will include several features that specifically support the
development of Java applications.

How Apple’s Development Environment Compares

The Yellow Box development environment is, in several ways, like traditional
Macintosh development environments such as MPW and CodeWarrior. For
example, like these products, it permits a great deal of customization, and it
possesses sophisticated searching capabilities. But the Yellow Box
development environment is different in many ways, both large and small.
Some of the differences take some getting used to, such as the bindings of
shortcut keys and the way you browse the project.

Apple is listening to its developers and is rapidly evolving its development
tools to meet the needs and expectations of this community. In addition,
traditional vendors of Macintosh development tools, such as MetroWerks, are
busy porting existing tools to Rhapsody or are creating new tools. For
example, MetroWerks is developing a tool (Latitude) that will assist
Macintosh developers in porting their PowerPlant and other projects to the
Yellow Box. Eventually, Rhapsody developers will be able to “mix and match”
the exact tool set that suits them best.

Chapter 1

Welcome to Rhapsody

14

Programming With Objects

For some Mac OS developers, the most striking disparity they’ll experience
when they start developing Yellow Box programs is not the tool set. It is the
shift in mind set that is required for object-oriented programming (OOP).

Instead of thinking in terms of procedures and data, you have to think in
terms of objects—discrete programmatic units containing their own data
as well as procedures that act on that data. An object-oriented program is
composed of objects of different types, each type fulfilling a specialized role
within the program. In such a program, objects are constantly sending
messages to each other—that is, they are requesting other objects to
execute a procedure. The object receiving the message performs what is
requested and, in some cases, returns an object or another value. (For more
on how object-oriented programs works, see the appendix “Object-Oriented
Programming.”)

Learning how to program with objects takes some initial effort, but with
some familiarity, object-oriented programming begins to seem natural,
elegant, and powerful. And, with the rich functionality of the Yellow Box
frameworks to tap, application development becomes easier—you get
many application features “for free.” Programming with objects, especially
Yellow Box objects, increases your productivity by freeing you from many
repetitive coding tasks. You have more time to accomplish what is truly
creative.

To mesh your custom code with framework objects, you must create a
subclass of at least one of the framework classes. The subclass
implements behavior or logic specific to your application and obtains the
services it needs from framework objects. Moreover, a custom subclass
inherits attributes and behavior from its superclass, again without you
having to write a single line of code (see illustration). Often one or two
subclasses is all that is required to achieve quite substantial results.

Of course, to program effectively with the Yellow Box you must learn what
services you can obtain from framework classes and what attributes and
behavior you inherit from them. Even for developers experienced in object-
oriented programming, the Yellow Box frameworks pose their own learning
hurdle. You need to become familiar with the class hierarchy, to discover
what classes can do, and learn how they interact with one another.

This learning requirement is unavoidable, regardless of the development
environment. But Apple tries to ease the effort required with tool features
such as a class browser and documentation such as the framework
references and this book, which introduces some of the more fundamental
classes.

Lawn

-mow

-water

-weed

-trim

-hireGardener

-mow

-water

-weed

-trim

-mow

-water

Landscaped

Lawn

Estate

Inherits from

Inherits from

15

The Advantage of Objects

Object-orientation is the software equivalent of the Industrial Revolution. In
the same way that modern factories assemble products out of prefabricated
components rather than manufacture every product from scratch, object-
orientation allows programmers to build complex software by reusing
software components called objects. Specifically, objects lead to several
measurable advantages:

Greater reliability.

 By breaking complex software projects into small, self-
contained, and modular objects, object-orientation ensures that changes to
one part of a software project will not adversely affect other portions of the
software. Being small, each of these objects is a well-tested module of code,
and so the overall reliability of the software increases.

Easier maintainability

. Since objects are modular and usually small (in
terms of the overall code size of a project), bugs in code are easier to locate.
Developers can also change the implementation of an object without
causing havoc in other parts of an application.

Greater productivity through reuse.

 One of the principal benefits of object-
orientation is reuse. One object can be integrated into many applications.
And through subclassing, you can create specialized objects merely by
adding the code unique to the new object. Objects of the new subclass
inherit functionality from the superclass, reducing coding and promoting
greater reliability.

An Example

Object-oriented programming delivers its greatest benefits to large and

Messages

complex programs. But its advantages can also be demonstrated with a
simple data structure such as might be used in any application.

With procedural programming techniques, the application is directly
responsible for data manipulation. One problem with this is illustrated in
the picture above. It shows a data structure consisting of a

count

 variable
and a data pointer. Since the application directly manipulates the data, it
has the opportunity to introduce inconsistencies. Here, it has added an item
to the data, but has forgotten to increment the count; the

coun

t variable
says there are still only two data elements when in fact there are three. The
structure has become inconsistent and unreliable.

Another problem is that all parts of the application must have intimate
knowledge about the structure of the data. If the allocation of data
elements is changed from a statically allocated array to a dynamically
allocated linked list, it would affect every part of the application that
accesses, adds, or deletes elements from the list.

With an object-oriented programming paradigm, the application as a whole
doesn’t directly manipulate the data structure; rather, that task is
entrusted to a particular object. Since the application doesn’t directly
access the data, it can’t introduce inconsistencies. Note also that it’s
possible to change the implementation of the object without breaking other
parts of the application. For example, the data storage method could be
changed to optimize performance. So long as the object responds to the
same messages, other parts of the application are unaffected by internal
implementation details.

2

count data

 Pointer

message to add data

message to retreive data

data

18

What You’ll Learn

Creating a simple graphical
user interface

Creating a custom subclass

Connecting objects in the
application

Sending a message to an object

Responding to a message

Building a project

Getting help

2

You can find the Currency Converter project in the

AppKit

 subdirectory of

/NextDeveloper/Examples

.

19

Chapter 2

A Simple Application

The application that you are going to create in this tutorial is called Currency Converter.

It is a simple application, yet it exemplifies much of what software development

with OpenStep is about. As you’ll discover, Currency Converter is amazingly easy to

create, but it’s equally amazing how many features you get “for free”— as with all

OpenStep applications.

Currency Converter converts a dollar amount to an amount in another currency,

given the rate of that currency relative to the dollar. You type a rate and an amount into

text fields and then click a button to see the result. Instead of clicking the button,

you can also press the Return key. You can double-click the converted amount, copy it

(with the Edit menu’s Copy command) and paste it in another application that takes

text. You can tab between the first two fields. You can do many other things common to

OpenStep applications.

By following the steps of this chapter, you will become familiar with the two most

important OpenStep applications for program development: Interface Builder and

Project Builder.

Chapter 2

A Simple Application

20

Currency Converter’s Design, the Development Process, and a Design Paradigm

An object-oriented application should be based on a design that identifies
the objects of the application and clearly defines their roles and
responsibilities. You normally work on a design before you write a line of
code. You don’t need any fancy tools for designing many applications; a
pencil and a pad of paper will do.

Currency Converter is an extremely simple application, but there’s still a
design behind it. This design is based upon the Model-View-Controller
paradigm, a model behind many designs for object-oriented programs (see
next page). This design paradigm aids in the development of maintainable,
extensible, and understandable systems. But first, you might want to read
‘‘Why an Object Looks Like a Jelly Donut’’ on page 29 to understand the
symbol used in the design diagram.

This design for Currency Converter is intended to illustrate a few points, and
so may be overly designed for something so simple. It is quite possible to
have the application’s controller class, ConverterController, do the
computation and do without the Converter class.

You can divide responsibility within Currency Converter among two custom
objects and the user interface, taken as a collection of ready-made
Application Kit objects. The Converter object is responsible for computing a
currency amount and returning that value. Between the user interface and
the Converter object is a

controller object

, ConverterController.
ConverterController coordinates the activity between the Converter object
and the UI objects.

The ConverterController class assumes a central role. Like all controller
objects, it communicates with the interface and with model objects, and
it handles tasks specific to the application. ConverterController gets the
values that users enter into fields, passes these values to the Converter
object, gets the result back from Converter, and puts this result in a field in
the interface.

Convert ConverterController

(Controller object)

Converter

(Model Object)

The Converter class merely computes a value from two arguments passed
into it and returns the result. As with any model object, it could also hold
data as well as provide computational services. Thus, objects that
represent customer records (for example) are akin to Converter. By
insulating the Converter class from application-specific details, the design
for Currency Converter makes it more reusable, as you’ll see in the Travel
Advisor tutorial.

Typical Development Workflow

This chapter introduces the typical flow of work involved in developing an
OpenStep application

.

1

2

3

4

5

6

7

Designing the

Application

Creating the Project

(Project Builder)

Creating the Interface

(Interface Builder)

Defining the Class

(Interface Builder)

Implementing the Classes

(Project Builder)

Building the Project

(Project Builder)

Running and Testing

the Application

fix errors or

change design

Note: Although this diagram shows the design phase at the beginning of the
workflow process, application design can take place any time in the early stages
of the project. It is often recommended as the first stage, however, and it is a
good idea to review the design occasionally and modify it if necessary.

21

The Model-View-Controller Paradigm

A common and useful paradigm for object-oriented applications,
particularly business applications, is Model-View-Controller (MVC). Derived
from Smalltalk-80, MVC proposes three types of objects in an application,
separated by abstract boundaries and communicating with each other
across those boundaries.

Model Objects

This type of object represents special knowledge and expertise. Model
objects hold a company’s data and define the logic that manipulates that
data. For example, a Customer object, common in business applications, is
a Model object. It holds data describing the salient facts of a customer and
has access to algorithms that access and calculate new data from those
facts. A more specialized Model class might be one in a meteorological
system called Front; objects of this class would contain the data and
intelligence to represent weather fronts. Model objects are not directly
displayed. They often are reusable, distributed, persistent, and portable to
a variety of platforms.

View Objects

 A View object in the paradigm represents something visible on the user
interface (a window, for example, or a button). A View object is “ignorant”
of the data it displays. The Application Kit usually provides all the View
objects you need: windows, text fields, scroll views, buttons, browsers, and
so on. But you might want to create your own View objects to show or
represent your data in a novel way (for example, a graph view). You can also
group View objects within a window in novel ways specific to an application.
View objects, especially those in kits, tend to be very reusable and so
provide consistency between applications.

View

Controller

Model

Controller Object

Acting as a mediator between Model objects and View objects in an
application is a Controller object. There is usually one per application or
window. A Controller object communicates data back and forth between the
Model objects and the View objects. It also performs all the application-
specific chores, such as loading nib files and acting as window and
application delegate. Since what a Controller does is very specific to an
application, it is generally not reusable even though it often comprises
much of an application’s code. (This last statement does not mean,
however, that Controller objects

cannot

 be reused; with a good design, they
can.)

Because of the Controller’s central, mediating role, Model objects need not
know about the state and events of the user interface, and View objects
need not know about the programmatic interfaces of the Model objects. You
can make your View and Model objects available to others from a palette in
Interface Builder.

Hybrid Models

MVC, strictly observed, is not advisable in all circumstances. Sometimes
it’s best to combine roles. For instance, in a graphics-intensive application,
such as an arcade game, you might have several View objects that merge
the roles of View and Model. In some applications, especially simple ones,
you can combine the roles of Controller and Model; these objects join the
special data structures and logic of Model objects with the Controller’s
hooks to the interface.

A Note on Terminology

The Application Kit and Enterprise Objects Framework reserve special
meanings for “view object” and “model.” A view object in the Application
Kit denotes a user-interface object that inherits from NSView. In the
Enterprise Objects Framework, a model establishes and maintains a
correspondence between an enterprise object class and data stored in a
relational database. This book uses “model object” only within the context
of the Model-View-Controller paradigm.

Chapter 2

A Simple Application

22

Creating the Currency Converter Project

Every OpenStep application starts out as a

project

. A project is a repository for all
the elements that go into the application, such as source code files, makefiles,
frameworks, libraries, the application’s user interface, sounds, and images. You use
the Project Builder application to create and manage projects.

When Project Builder starts up, it displays the New Project panel. The New
Project panel lets you specify a new project’s name, location, and type.

Project Builder creates a project directory named after the project—in this case
CurrencyConverter—and populates this directory with an assortment of ready-
made files and directories. It then displays its main window.

Project Builder is located at
/NextDeveloper/Apps/ProjectBuilder.app.

1 Launch Project Builder.

Locate the Project Builder application
(icon at right).

Double-click the icon to start the
application.

Often projects are kept in a common directory.

Make sure Application is the project type.

The name specified here becomes the name of the
project directory and the default name of the
application itself.

2 Make a new project.

Choose New from the Project menu
(Project mNew).

In the New Project panel, choose the
Application project type from the pop-
up list.

Using the file browser, go to the
directory you want the project to be in.

Type “CurrencyConverter” in the Name
field.

Click OK to create the project.

Creating the Currency Converter Project

23

Go ahead and click an item in the left column of the project browser (a
grouping of project resources sometimes called a “suitcase”); see what some
of these suitcases contain already:

•

Other Sources:

 This suitcase contains

CurrencyConverter_main.m

, the

main()

 routine
that loads the initial set of resources and runs the application. (You
shouldn’t have to modify this file.)

•

Interfaces:

 This suitcase contains the nib files (extension“.nib”) which
specify the application’s user interface. More on nib files in the next step.

•

Supporting Files:

 This suitcase contains the project’s default makefiles and
template source-code files. You can modify the preamble and postamble
makefiles, but you must leave

Makefile

 unchanged.

•

Frameworks

: This suitcase contains the frameworks (which are similar to
libraries) which the application imports.

Command panel: Build, Project
Find, Class Browser, Project
Inspector, Launcher/ Debugger,
Context Help.

Project browser: Each
“suitcase” is a project
resource category.

Code editor.

Loaded files browser.

Project Indexing

When you create or open a project, after some
seconds you may notice triangular “branch”
buttons appearing after source code files in the
browser. Project Builder has indexed these files.

During indexing Project Builder stores all symbols of
the project (classes, methods, globals, etc.) in
virtual memory. This allows Project Builder to
access project-wide information quickly. Indexing is
indispensable to such features as name completion
and Project Find. (More on these features later.)

Usually indexing happens automatically when you
create or open a project. You can turn off this option
if you wish. Choose Preferences from the Tools menu
and then choose the Indexing display. Turn off the
“Index when project is opened” switch.

You can also index a project at any time by choosing
Tools m Indexer m Index Subproject. If you want to
do without indexing (maybe you have memory
constraints), choose Tools m Indexer m Purge
Indices.

Chapter 2

A Simple Application

24

Creating the Currency Converter Interface

When you create an application project, Project Builder puts the

main nib file

 in
the Interfaces suitcase. A nib file is primarily a description of a user interface (or
part of a user interface). The main nib file contains the main menu and any
windows and panels you want to appear when your application starts up; at start-
up time, each application loads the main nib file.

Customizing the Application’s Window

At the beginning of a project, the main nib file is like a blank canvas, ready for you
to craft the interface. Look in the Interfaces suitcase for nib files.

By default, a blank window entitled “My Window” will appear when the
application is launched.

1 Open the main nib file.

Locate
NEXTSTEP_CurrencyConverter.nib in
the project browser.

Double-click to open.

To open, double-click the nib file name Palette window.

When you first open the application's main nib file,
Interface Builder displays a blank window.

Nib file window

...or double-click the icon

Main menu window.

Creating the Currency Converter Interface

25

Archived Objects Custom Class Info Connection Info Images

MyClass = {
 ACTIONS = {
 dothis;
 };
 OUTLETS = {
 textField;
 };
 SUPERCLASS =
 NSObject;

dothis:

textField

Every application has at least one nib file. The main nib file contains the
application menu and often a window and other objects. An application can
have other nib files as well. Each nib file contains:

Archived Objects

Encoded information on OPENSTEP objects, including
their size, location, and position in the object hierarchy (for view objects,
determined by superview/subview relationship). At the top of the hierarchy
of archived objects is the File’s Owner object, a proxy object that points to
the actual object that owns the nib file.

Images

Image files that you drag and drop over the nib file window or
over an object that can accept them (such as a button or image view).

Class References

Interface Builder can store the details of OPENSTEP
objects and objects that you palettize (static palettes), but it does not know
how to archive instances of your custom classes since it doesn’t have
access to the code. For these classes, Interface Builder stores a proxy object
to which it attaches class information.

Connection Information

Information about how objects within the
object hierarchy are interconnected. Connector objects special to Interface
Builder store this information. When you save the document, connector
objects are archived in the nib file along with the objects they connect.

When You Load a Nib File

In your code, you can load a nib file by sending the NSBundle class

loadNibNamed:owner:

 or

loadNibFile:externalNameTable:withZone:

.
messages. When you do this, the run-time system does the following:

• It unarchives the objects from the object hierarchy, sending each object
an

initWithCoder:

 message after allocating memory for it.

• It unarchives each proxy object and queries it to determine the identity
of the class that the proxy represents. Then it creates an instance of this
custom class (

alloc

 and

init

) and frees the proxy.

• It unarchives the connector objects and allows them to establish
connections, including connections to File’s Owner.

• It sends

awakeFromNib

 to all objects that were derived from
information in the nib file, signalling that the loading process is
complete.

Connections and Accessor Methods

When OpenStep establishes connections during the course of loading a nib
file, it sets the values of the source object’s outlets. It first tries to set an
outlet through the “set” accessor method if the source object implements
it. For example, if the source object has an outlet named “contraption,” the
system first sees if that object responds to “setContraption:” and, if it does,
it invokes the accessor method. If the source object doesn’t implement the
accessor method, the system sets the outlet directly.

Problems naturally ensue if a “set” accessor method does something other
than directly set the outlet. One common example is an accessor method
that sets the

string value

 of an outlet referring to a text field
(

setStringValue:

). After loading, the value of the outlet is

nil

 because the
“set” accessor method did not directly assign the value.

What’s in a Nib File

Chapter 2

A Simple Application

26

Most objects on an interface have attributes that you can set in the Inspector
panel’s Attributes display.

Note:

You can also bring up the Attributes display of the inspector by typing
Control-1.

Make the window smaller by dragging
a corner of the window inward.

2 Resize the window.

3 Set the window’s title and attributes.

Click the window to select it.

Choose Tools m Inspector.

Select the Attributes display from the
pop-up list.

Enter the window title.

Turn off the resize bar.

The title of the major window in an application is often
the application name.

When this option is turned off, the windows's resize bar
disappears.

Creating the Currency Converter Interface

27

A Window in OpenStep

A window in OpenStep looks very similar to windows in other user
environments such as Windows or Mac OS. It is a rectangular area on the
screen in which an application displays controls, fields, text, and graphics.
Windows can be moved around the screen and stacked on top of each other
like pieces of paper. A typical OpenStep window has a title bar, a content
area, and several control objects.

Many user-interface objects other than the

standard window

 depicted
above are windows. Menus, pop-up lists, and pull-down lists are primarily
windows, as are all varieties of panels: attention panels, inspectors, and
tool palettes, to name a few. In fact,

anything

 drawn on the screen must
appear in a window.

NSWindow and the Window Server

Two interacting systems create and manage OpenStep windows. On the one
hand, a window is created by the Window Server. The Window Server is a
process integrating the Window System and Display Postscript. The Window
Server draws, resizes, hides, and moves windows using Postscript
primitives. The Window Server also detects user events (such as mouse
clicks) and forwards them to applications.

The window that the Window Server creates is paired with an object
supplied by the Application Kit: an instance of the NSWindow class. Each
physical window in an object-oriented program is managed by an instance
of NSWindow (or subclass).

When you create an NSWindow object, the Window Server creates the
physical window that the NSWindow object will manage. The Window Server
references the window by its window number, the NSWindow by its own
identifier.

Application, Window, View

In a running OpenStep application, NSWindow objects occupy a middle
position between an instance of NSApplication and the views of the
application. (A view is an object that can draw itself and detect user
events.) The NSApplication object keeps a list of its windows and tracks the
current status of each. Each window, on the other hand, manages a
hierarchy of views in addition to its PostScript window.

At the “top” of this hierarchy is the

content view

, which fits just within the
window’s content rectangle. The content view encloses all other view (its

subviews

), which come below it in the hierarchy. The NSWindow distributes
events to views in the hierarchy and regulates coordinate transformations
among them.

Another rectangle, the

frame rectangle

, defines the outer boundary of the
window and includes the title bar and the window’s controls. The lower-left
corner of the frame rectangle defines the window’s location relative to the
screen’s coordinate system and establishes the base coordinate system for
the views of the window. Views draw themselves in coordinate systems
transformed from (and relative to) this base coordinate system.

See page 157 for more on the view hierarchy.

Key and Main Windows

Windows have numerous characteristics. They can be on-screen or off-
screen. On-screen windows are “layered” on the screen in tiers managed by
the Window Server. On-screen windows also can carry a status:

key

 or

main

.

Key windows respond to key presses for an application and are the primary
recipient of action messages from menus and panels. Usually a window is
made key when the user clicks it. Key windows have black title bars. Each
application can have only one key window.

An application has one main window, which can often have key status as
well. The main window is the principal focus of user actions for an
application. Often user actions in a modal key window (typically a panel
such as the Font panel or an inspector) have a direct effect on the main
window. In this case, the title bar of the main window (when it is not key) is
a dark gray.

Title bar

Close button

Resize bar

Windowshade
Maximize

NSApp Window

Content

View

View A View B

View C View D

NSApp =

application object

Chapter 2

A Simple Application

28

Fields and Buttons

Fields and buttons are the most common types of objects found on interfaces. Put
these and other palette objects on the window using the “drag and drop”
technique.

You must get rid of the word “Text” in this field; otherwise, that’s what the field
will show when the nib file is loaded.

The text field should be longer so it can hold more digits (you’re dealing with
millions here):

Currency Converter needs two more text fields, both the same size as the first. You
have two options: you can drag another object from the palette and make it the
same size, or you can duplicate the first object.

4 Put a text field on the interface and
resize and initialize it.

Select the Views palette.

Drag a text field from the palette onto
the window.

Click this icon to select the Views palette.
This palette contains an assortment of
commonly used Application Kit objects.

Drag a text field and drop it (that is,
release the mouse button) over the
“surface” of the window.

Move an object by dragging it around
the surface of the window.

To initialize the text field, double-click
“Text” and press Delete.

Lengthen the text field.

Drag a resize handle in the direction
you want the object to grow.

Creating the Currency Converter Interface

29

.

Get the third field from the palette and make it the same size as the first field.

You’re not done yet with these text fields. The bottom text field displays the
result of the computation. It should not be editable and therefore should, by
convention, have a non-white background.

The new text field appears slightly
offset from the original field. Reposition
it below the first text field.

5 Duplicate an object.

Select the text field.

Choose Edit m Copy.

Choose Edit m Paste.

6 Make objects the same size.

Drag a text field onto the window.

Delete “Text” from the text field.

Select the first text field.

Shift-click to select the new text field.

Choose Format m Size m Same Size

The first object you select should have
the dimensions you want the other
objects in the selection to take.

Shift-click multiple objects to include
them in the selection.

Why an Object Looks Like a Jelly Donut

Or a lifesaver. Or a slashed tire. Or segmented unity. This book depicts
objects as this symbol:

Why this unlikely shape?

This symbol illustrates data encapsulation, the essential characteristic of
objects. An object consists of both data and procedures for manipulating
that data. Other objects or external code cannot access that data directly,
but must send messages to the object requesting its data.

An object’s procedures (called methods) respond to the message and may
return data to the requesting object. As the symbol suggests, an object’s
methods do the encapsulating, in effect mediating access to the object’s
data. An object’s methods are also its interface, articulating the ways in
which the object communicates with the world outside it.

The donut symbol also helps to convey the modularity of objects. Because
an object encapsulates a defined set of data and logic, you can easily
assign it to particular duties within a program. Conceptually, it is like a
functional unit—for instance, “Customer Record”—that you can move
around on a design board; you can then plot communication paths to and
from other objects based on their interfaces.

See the appendix “Object Oriented Programming,” for a fuller description of
data encapsulation, messages, methods, and other things pertaining to
objects.

proc edu re

procedurepro
ce

d
ur

e data

Chapter 2

A Simple Application

30

The Views palette provides a “Title” object that you can easily adapt to be a text-
field label. (The title object is actually a text field, set to have a gray background
and no border, and to be non-editable and non-selectable.) Text in the title object
is centered by default, but labels are often aligned from the right.

The size of the text is rather large for a label, so change it. You set font family,
typeface, and size with the standard OpenStep Font panel.

Drag the gray color into the well to apply the
color to the selected object.

This color blends the text field into the
window background.

With the Editable attribute turned off, users
cannot alter the contents of the text field.

Keep Selectable as an option so users can
copy and paste the contents to other
applications.Keep Selectable as an option so
users can copy and paste the contents to
other applications.

7 Change the attributes of a text field.

Select the third text field.

Choose Tools m Colors.

Select the grayscale palette of the
Color panel.

Select the color that is the same as the
window background.

Choose Tools m Inspector.

Select the Inspector panel’s Attributes
display.

Drag the gray color from the Color
panel into the Background Color well.

Turn off the Editable and Scrollable
options.

The text is highlighted when it is selected.

8 Assign labels to the fields.

Drag a “Title” object onto the window.

Double-click to select the text.

Choose Inspector from the Tools menu.

Select the Attributes display.

Click the middle button under
Alignment to align the text with the
right edge of the text field.

Creating the Currency Converter Interface

31

When you cut and paste objects that contain text, like these labels, the object
should be selected and not the text the object contains; if the text is selected,
de-select it by clicking outside the text, then click the object again to select it.

The font of the “Title” object is 18 points Helvetica.
Click here and then click the Set button to set the
font size to 16 points.

You should select the font that users request for
applications in case the font you select is not available on
the user’s system.

Make sure the object’s text is selected.

Choose Format m Font m Font Panel.

Set the label text to 16 points.

Make two copies of the label.

Position all labels to the left of their
text fields.

Type the text of each label.

Double-click to select “Title,” then type the
text of the label in place of the selection.

9 Add a button to the interface and
initialize it.

Drag the button object from the Views
palette and put it on the lower-right
corner of the window.

Make the button the same size as a
text field.

Change the title of the button to
“Convert”.

You can resize buttons the same way you
resize text fields or any other object on a
window.

Double-click the title of the button to
select the text.

Chapter 2 A Simple Application

32

Some Finishing Touches
Currency Converter’s interface is almost complete. You’ve probably noticed that
the final interface for Currency Converter (shown on the first page of this chapter)
has a decorative line between the text fields and the button. This line is easy to
make.

Another finishing touch you might make is to align the text fields and labels in
neat rows and columns. Interface Builder gives you several ways to align selected
objects precisely on a window:

• Pressing arrow keys (with the grid off, the selected objects move one pixel)
• Using a reference object to put selected objects in rows and columns
• Specifying origin points in the Size display of the Inspector panel
• Using a grid (see side bar below)

Drag upward until
the lines merge
into one line.

For a black line
(instead of white)
click here.

10 Create a horizontal decorative line.

Drag a box object from the Views
palette onto the interface.

Bring up the Attributes display for the
box (Control-1), select No Title, and set
the Vertical Offset to zero.

Drag the bottom-middle resize handle
of the box upward until the horizontal
lines meet.

Position the line above the button.

Drag the end points of the line until the
line extends across the window.

Creating the Currency Converter Interface

33

For Currency Converter, use the columns-and-rows technique.

The final step in composing the Currency Converter interface has more to do
with behavior than appearance. You want the user to be able to tab from the
first editable field to the second, and back again to the first.

How does this happen? Objects such as windows and views can acquire a
temporary status called first responder. The first responder is the object on the
window that is the current focus of keyboard events. All objects inheriting

11 Align the text fields and labels in rows
and columns.

Select the three text fields and choose
Format m Align m Make Column.

Select the first text field and its label
and choose Format m Align m Make
Row.

Repeat the last step for the second and
third text fields and their labels.

COLUMNS

First select the object whose vertical position
the other objects should adopt (the reference
object).

Shift-click the other objects to include them
in the selection. Making a column evens the
spacing between objects in the selection.

ROWS

When you make a row, the selected objects
rest on a common horizontal baseline.

Aligning on a Grid

You can align objects on a window by imposing a
grid on the window. When you move objects in this
grid, they “snap” to the nearest grid intersection
like nails to a magnet. You set the edges of
alignment and the spacing of the grid (in pixels) in
the Alignment panel. Choose Format mAlign m
Alignment to display this panel.

Be sure the grid is turned on before you move
objects (Format mAlign m Turn Grid On).

You can move selected user-interface objects in
Interface Builder by pressing an arrow key. When the
grid is turned on, the unit of movement is whatever

the grid is set to (in pixels). When the grid is turned
off, the unit of movement is one pixel.

Chapter 2 A Simple Application

34

from NSWindow have an outlet named initialFirstResponder for designating the first
responder when the window is first opened.

Modifier keys (such as Control) may vary by platform. You can customize some key bindings
to suit your habits. See the on-line Programming Topics for more on custom key bindings.

When you make a visual connection such as this, Interface Builder brings up the
Connections display of the Inspector panel:

When you press Control and drag the
mouse from an object, a connection line is
drawn.

When a line encloses the destination
object, release the mouse button.

12 Enable tabbing between text fields.

Select the window icon in the nib file
window.

Control-drag a connection line from
the icon to the first text field
(“Exchange Rate per $1”).

Select this outlet (the dimple indicates an outlet that has
been connected).

When you make a connection the title of this button toggles to
“Disconnect.”

In the Connections display of the
Window inspector (which appears
automatically), select
initialFirstResponder.

Click Connect.

Creating the Currency Converter Interface

35

View objects on Interface Builder’s palettes have an outlet named nextKeyView
for designating the next object to become first responder. This object will
receive keyboard events when the user presses the Tab key (or the previous
object if Shift-Tab is pressed). By default, the tabbing order in determined by
position in the view hierarchy. If you want inter-field tabbing in a certain order
you must connect fields through the nextKeyView variable.

Don’t connect the nextKeyView outlet of the “Amount in Other Currency” field;
this field is not supposed to be editable.

The initialFirstResponder and nextKeyView variables are outlets. An outlet is the identifier of
an object that another object stores as an instance variable. Outlets enable
communication between objects. See page 40 for more information on outlets.

The CurrencyConverter interface is now complete. Interface Builder lets you
test an interface without having to write one line of code.

Select the first text field.

Control-drag a connection line from it
to the second text field.

In the Inspector panel (Connections
display) select nextKeyView and click
Connect.

Repeat the same procedure, going
from the second text field to button.

Repeat again, this time going from the
button to the first text field.

13 Test the interface.

Choose Document m Save to save the
interface to the nib file.

Choose Document m Test Interface.

Try various operations in the interface
(see suggestions on the following
page).

When finished, choose Exit from the
File menu.

Chapter 2 A Simple Application

36

An OpenStep Application — What You Get “For Free”

The simplest OpenStep application, even one without a line of code added
to it, includes a wealth of features that you get “for free.” You do not have
to program these features yourself. You can see this when you test an
interface in Interface Builder.

To enter test mode, choose Test Interface from the Document menu.
Interface Builder simulates how your application (in this case, Currency
Converter) would run, minus the behavior added by custom classes. Go
ahead and try things out: move your windows, type in fields, click buttons.

Application and Window Behavior

In test mode Currency Converter behaves almost like any other application
on the screen. Click elsewhere on the screen, and Currency Converter is
deactivated, becoming totally or partially obscured by the windows of other
applications.

.

Reactivate Currency Converter by clicking on its window or by double-
clicking its icon (the default terminal icon) in the workspace. Then move the
window around by its title bar. Here are some other tests you can make:

• Click the Edit menu. Its items appear and disappear when you release
the mouse button, as with any application menu.

• Click the miniaturize button or choose the Hide command. Double-click
the icon to get the application back.

• Click the close button, and the Currency Converter window disappears.
(Choose Quit from the main menu and re-enter test mode to get the
window back.)

If we had configured Currency Converter’s window in Interface Builder to
retain the resize bar, we could also resize it now. We could also have set the
auto-resizing attributes of the window and its views so that the window’s
objects would resize proportionally to the resized window or would retain
their initial size (see Interface Builder Help for details on auto-resizing).

Controls and Text

The buttons and text fields of Currency Converter come with many built-in
behaviors. Click the Convert button. Notice how the button is highlighted
momentarily.

.

If you had buttons of a different style, such as option buttons, they would
also respond in characteristic ways to mouse clicks.

Now click in one of the text fields. See how the cursor blinks in place. Type
some text and select it. Use the commands in the Edit menu to copy it and
paste it in the other text field.

Do you recall the nextKeyView connections you made between Currency
Converter’s text fields? Insert the cursor in a text field, press the Tab key and
watch the cursor jump from field to field.

When You Add Menu Commands

Interface Builder gives every new application a default main menu that
includes the Info, Edit, Window, and Services menus. Some of these menus,
such as Info, contain ready-made sets of commands. For example, with the
Services menu (whose items are added by other applications at run time)
you can communicate with other OpenStep applications, and with the
Windows menu you can manage your application’s windows.

Currency Converter needs only a few commands: the Quit and Hide
commands and the Edit menu’s Copy, Cut, and Paste commands. You can
delete the unwanted commands if you wish. However, you could also add
new ones and get “free” behavior. An application designed in Interface
Builder can acquire extra functionality with the simple addition of a menu
or menu command, without the need for compilation. For example:

• The Font submenu adds behavior for applying fonts to text in NSText
objects, like the one in the scroll view object in the DataViews palette.
Your application gets the Font panel and a font manager “for free.”

• The Text submenu allows you to align text anywhere there is editable text,
and to display a ruler in the NSText object for tabbing, indentation, and
alignment.

Many objects that display text or images can print their contents as
PostScript data. Later you’ll learn how to add the Print menu command and
have it invoke this capability.

See page 72 for an example of customizing OpenStep menus.

Creating the Currency Converter Interface

37

An OpenStep Application — The Possibilities

An OpenStep application can do an impressive range of things without a
formidable programming effort on your part.

Document Management

Many applications create and manage repeatable, semi-autonomous
objects called documents. Documents contain discrete sets of information
and support the entry and maintenance of that information. A word-
processing document is a typical example. The application coordinates with
the user and communicates with its documents to create, open, save, close,
and otherwise manage them.

The final tutorial in this book describes how to create an application based
on a multi-document architecture.

File Management

An application can use the Open panel, which is created and managed by
the Application Kit, to help the user locate files in the file system and open
them. It can also use the Save panel to save information in files. OpenStep
also provides classes for managing files in the file system (creating,
comparing, copying, moving, and so forth) and for managing user defaults.

Communicating With Other Applications

OpenStep gives an application several ways to exchange information with
other applications:

• Pasteboard: The pasteboard is a global facility for sharing information
among applications. Applications can use the pasteboard to hold data
that the user has cut or copied and may paste into another application.

• Services: Any application can access the services provided by another
application, based on the type of selected data (such as text). An
application can also provide services to other applications such as
encryption, language translation, or record-fetching.

• Drag-and-drop: If your application implements the proper protocol,
users can drag objects to and from the interfaces of other applications.

Custom Drawing and Animation

OpenStep lets you create your own custom views that draw their own
content and respond to user actions. To assist you in this, OpenStep
provides image-compositing and event-handling API as well as PostScript
operators, operator functions, and client library functions.

Localization

OpenStep provides API and tool support for localizing the strings, images,
sounds, and nib files that are part of an application

Editing Support

You can get several panels (and associated functionality) when you add
certain menus to your application’s menu bar in Interface Builder. These
“add-ons” include the Font panel (and font management), the Color panel
(and color management), and, although it’s not a panel, the text ruler and
the tabbing and indentation capabilities the Text menu brings with it.

Formatter classes enable your application to format numbers, dates, and other
types of field values. Support for validating the contents of fields is also available.

Printing

With just a simple Interface Builder procedure, OpenStep automates simple
printing of views that contain text or graphics. When a user clicks the
control, an appropriate panel helps to configure the print process. The
output is WYSIWYG.

Several Application Kit classes give you greater control over the printing of
documents and forms, including features such as pagination and page orientation.

Help

You can create context-sensitive help for your application using Interface
Builder, Project Builder, and an RTF text editor (such as TextEdit). If the user
clicks an object on the application’s interface while pressing a Help key, a
small window containing concise information on the object is displayed.
Your application can also incorporate Tool Tips—short descriptions that
appear when the mouse pointer hovers over an object on the interface—
and comprehensive Help in any format (for example, HTML).

Plug and Play

You can design some applications so that users can incorporate new
modules later on. For example, a drawing program could have a tools
palette: pencil, brush, eraser, and so on. You could create a new tool and
have users install it. When the application is next started, this tool appears
in the palette.

Chapter 2 A Simple Application

38

Defining the Classes of Currency Converter

Interface Builder is a versatile tool for application developers. It enables you not
only to compose the application’s graphical user interface, but it gives you a way
to define much of the programmatic interface of the application’s classes and to
connect the objects eventually created from those classes.

You must go to the Classes display of the nib file window to define a class. Once
there, the first thing you must do is select the superclass, the class your new subclass
will inherit from. Let’s start with the ConverterController class.

After you choose the Subclass command, “MyNSObject” appears under
“NSObject” highlighted.

Now your class is established in the hierarchy of classes within the nib file. Next,
specify the paths for messages travelling between the ConverterController object
and other objects. In Interface Builder you specify these paths as outlets and
actions.

Click to select the Classes display.

NSObject, the root class, is the class that
ConverterController will inherit from.

1 Specify a subclass.

Go to the Classes display of the nib file
window.

Select NSObject, the superclass of your
custom classes.

Choose Classes m Subclass.

Enter the name of the subclass:
“ConverterController.”

Press Return.

Defining the Classes of Currency Converter

39

Before You Go On

Here’s some basic terminology:

Outlet An object held as an instance variable and typed as id. Objects in
applications often hold outlets as part of their data so they can send messages to
the objects referenced by the outlets. An outlet helps your program to track or
manipulate something in the interface.

id The generic (or dynamic) type of objects (technically the address of an
object).

Action Refers both to a message sent to an object when the user clicks a button or
manipulates some other control object and to the method that is invoked.

Control object A user-interface object (a device) with which users can interact to
affect events in the application. Control objects include buttons, text fields,
forms, sliders, and browsers. All control objects inherit from NSControl.

See Paths for Object Communication: Outlets, Targets, and Actions on page 40. for a more detailed
description of outlets and actions. See page 107 for more on control objects and their relation
to cells and formatters.

Class Versus Object

To newcomers to the subject, explanations of object-oriented programming
might seem to use the terms “object” and “class” interchangeably. Are an
object and a class the same thing? And if not, how are they different? How
are they related?

An object and a class are both programmatic units. They are closely related,
but serve quite different purposes in a program.

First, classes provide a taxonomy of objects, a useful way of categorizing
them. Just as you can say a particular tree is a pine tree, you can identify a
particular object by its class. You can thereby know its purpose and what
messages you can send it. In other words, a class describes the type of an
object.

Second, you use classes to generate instances —or objects. Classes define
the data structures and behavior of their instances, and at run time create
and initialize these instances. In a sense, a class is like a factory, stamping
out instances of itself when requested.

What especially differentiates a class from its instance is data. An instance
has its own unique set of data but its class, strictly speaking, does not. The
class defines the structure of the data its instances will have, but only
instances can hold data.

A class, on the other hand, implements the behavior of all of its instances
in a running program. The donut symbol used to represent objects is a bit
misleading here, because it suggests that each object contains its own
copy of code. This is fortunately not the case; instead of being duplicated,
this code is shared among all current instances in the program.

Implicit in the notion of a taxonomy is inheritance, a key property of classes.
Classes exist in a hierarchical relationship to one another, with a subclass
inheriting behavior and data structures from its superclass, which in turn
inherits from its superclass.

See the appendix, “Object-Oriented Programming,” for more on these and
other aspects of classes.

Chapter 2 A Simple Application

40

Paths for Object Communication: Outlets, Targets, and Actions

Outlets

An outlet is an instance variable that identifies an object.

You can communicate with other objects in an application by sending
messages to outlets.

An outlet can reference any object in an application: user-interface objects
such as text fields and buttons, windows and panels, instances of custom
classes, and even the application object itself.

Outlets are declared as:

id variableName;

You can use id as the type for any object; objects with id as their type are
dynamically typed, meaning that the class of the object is determined at
run time. You can statically type an object as a pointer to a class name, and
you can declare these objects as instance variables. But statically typed
objects are typically not outlets. What distinguishes outlets is their
relationship to Interface Builder.

Interface Builder can “recognize” outlets in code by their declarations, and
it can initialize outlets. You usually set an outlet’s value in Interface Builder
by drawing connection lines between objects. There are ways other than
outlets to reference objects in an application, but outlets and Interface
Builder’s facility for initializing them are a great convenience.

outlet

A B

controller
aField

When You Make a Connection in Interface Builder

As with any instance variable, outlets must be initialized at run time to
some reasonable value—in this case, an object’s identifier (id value).
Because of Interface Builder, an application can initialize outlets when it
loads a nib file.

When you make a connection in Interface Builder, a special connector
object holds information on the source and destination objects of the
connection. (The source object is the object with the outlet.) This connector
object is then stored in the nib file. When a nib file is loaded, the
application uses the connector object to set the source object’s outlet to the
id value of the destination object.

It might help to understand connections by imagining an electrical outlet
(as used in the Classes display of the nib file window) embedded in the
destination object. Also picture an electrical cord extending from the outlet
in the source object. Before the connection is made the cord is unplugged
and the value of the outlet is undefined; after the connection is made (the
cord is plugged in), the id value of the destination object is assigned to the
source object’s outlet

.

source destination

my objectmy object

Defining the Classes of Currency Converter

41

As you’ll soon find out, you can view (and complete) target/action
connections in Interface Builder’s Connections inspector. This inspector is
easy to use, but the relation of target and action in it might not be apparent.
First, target is an outlet of a cell object that identifies the recipient of an
action message. Well (you say) what’s a cell object and what does it have
to do with a button?

One or more cell objects are always associated with a control object (that
is, an object inheriting from NSControl, such as a button). Control objects
“drive” the invocation of action methods, but they get the target and action
from a cell. NSActionCell defines the target and action outlets, and most
kinds of cells in the Application Kit inherit these outlets

.

For example, when a user clicks the Convert button of Currency Converter,
the button gets the required information from its cell and sends the
message convert: to the target outlet, which is an instance of your custom
class ConverterController.

In the Actions column of the Connections inspector are all action methods
defined by the class of the target object and known by Interface Builder.
Interface Builder identifies action methods because their declarations
follow the syntax:

- (void)doThis:(id)sender;

It looks in particular for the argument sender.

Instance variables:

 NSActionCell

inherits

SEL _action;

id _target

Which Direction to Connect?

Usually the outlets and actions that you connect belong to a custom
subclass of NSObject. For these occasions, you need only follow a couple
simple rules to know which way to draw a connection line in Interface
Builder:

• To make an action connection, draw a line to the custom instance from
a control object in the user interface, such as a button or a text field.

• To make an outlet connection, draw a line from the custom instance to
another object in the application.

Another way to clarify connections is to consider who needs to find whom.
With outlets, the custom object needs to find some other object, so the
connection is from the custom object to the other object. With actions, the
control object needs to find the custom object, so the connection is from the
control object.

These are only rules of thumb for the common case, and do not apply in all
circumstances. For instance, many OpenStep objects have a delegate
outlet; to connect these, you draw a connection line from the OpenStep
object to your custom object.

.

myController

myController

action

outlet

Target/Action in Interface Builder—What’s Going On

Chapter 2 A Simple Application

42

2 Define your class’s outlets.

In the nib file window, click the
electrical-outlet icon to the right of the
class.

Choose Classes m Add Outlet.

Type the name of the outlet in place of
the selected “myOutlet.” Name the
first outlet rateField.

Press Return.

Repeat the last three steps to define
two other outlets:

 dollarField
 totalField

Defining the Classes of Currency Converter

43

ConverterController has one action method, convert:. When the user clicks the
Convert button, a convert: message is sent to the target, ConverterController.

Before You Go On

Exercise: ConverterController needs to access the text fields of the interface,
so you’ve just provided outlets for that purpose. But ConverterController
must also communicate with the Converter class (yet to be defined). To
enable this communication, add an outlet named converter to
ConverterController.

1 Define your class’s actions.

In the Classes display of the nib file
window, click the crosshairs icon.

Choose Classes m Add Action.

Type the name of the action method,
convert:.

Press Return.

Chapter 2 A Simple Application

44

Connecting ConverterController to the Interface
As the final step of defining a class in Interface Builder, you create an instance of
your class and connect its outlets and actions.

Note: The Instantiate command does not generate a true instance of
ConverterController but creates a stand-in object used for establishing
connections. When the nib file’s contents are unarchived, Interface Builder will
create true instances of these classes and use the proxy objects to establish the
outlet and action connections.

When you instantiate a class (that is, create an instance of it), Interface Builder
switches to the Instances display and highlights the new instance, which is named
after the class.

Now you can connect this ConverterController object to the user interface. By
connecting it to specific objects in the interface, you initialize your outlets.
ConverterController will use these outlets to get and set values in the interface.

Click any other class name to collapse the outlets
and actions of the subclass you’re working on. If they
are already collapsed, make sure your subclass is
selected.

2 Generate an instance of the class.

In the Classes display, select the
ConverterController class.

Choose the Classes m Instantiate.

Defining the Classes of Currency Converter

45

Interface Builder brings up the Connections display of the Inspector panel. This
display shows the outlets you have defined for ConverterController.

To receive action messages from the user interface—to be notified, for example,
when users click a button—you must connect the control objects that emit those
messages to CurrencyConverter. The procedure for connecting actions is similar
to that for outlets, but with one major difference. When you connect an action,
always start the connection line from a control object (such as a button, text field, or

Control-drag from an object with defined outlets
(often an instance of a custom class).

When a black line encloses an object, it will
be selected as the destination object of the
connection if you release the mouse button.

3 Connect the custom class to the
interface via its outlets.

In the Instances display of the nib file
window, Control-drag a connection line
from the ConverterController instance
to the first text field.

When the field is outlined in black,
release the mouse button.

Outlets of the destination object appear in
this column of the Connections display.

When you click Connect the connection appears
here, including the class of the destination object.

In the Connections display, select the
outlet that corresponds to the first field
(rateField).

Click the Connect button.

Following the same steps, connect
ConverterController’s dollarField and
totalField outlets to the appropriate
text fields.

Chapter 2 A Simple Application

46

form) that sends an action message; you usually end the connection at an instance
of your custom class. That instance is the target outlet of the control object.

The Connections display of the Inspector panel shows the action methods you
have specified for ConverterController.

You’ve finished defining the classes of Currency Converter—almost.

The source object of an action connection must
be a control object.

When a black line encloses an object, it will be
selected as the destination object of the
connection if you release the mouse button.

4 Connect the interface’s controls to
the custom object through the
defined actions.

Control-drag a connection line from
the Convert button to the
ConverterController instance in the nib
file window.

When the instance is outlined in black,
release the mouse button.

If you had defined other actions for Converter Controller,
they would have appeared in this column.

Interface Builder allows you to set these outlets directly
for buttons.

Make sure that you click here to establish the connection.

In the Connections display, make sure
target in the Outlets column is
selected.

Select convert: in the Actions column.

Click the Connect button.

Save the CurrencyConverter nib file
(Document m Save).

Defining the Classes of Currency Converter

47

Before You Go On

Exercise: While connecting ConverterController’s outlets, you probably noticed
that one outlet remains unconnected: converter. This outlet identifies an
instance of the Converter class in the Currency Converter application, but
this instance doesn’t exist yet.

Define the Converter class. This should be pretty easy because Converter, as
you might recall, is a model class within the Model-View-Controller
paradigm. Since instances of this type of class don’t communicate directly
with the interface, there is no need for outlets or actions. Here are the steps
to be completed:

1. In the Classes display, make Converter a subclass of NSObject.

2. Instantiate the Converter class.

3. Make an outlet connection between ConverterController and Converter.

When you are finished, save CurrencyConverter.nib.

Optional Exercise

Text fields and action messages: Users can also activate the Convert button by
pressing the Return key. In Currency Converter this key event occurs when
the cursor is in a text field. Text fields are control objects just as buttons are;
when the user presses the Return key and the cursor is in a text field, an
action message is sent to a target object if the action is defined and the proper
connection is made.

Connect the second text field (that is, the one with the “Dollars to Convert”
label) to the convert: action method of ConverterController. You won’t be
disconnecting the prior action connection because multiple control objects in
an interface can invoke the same action method.

Optionally, you can connect the second text field to the Convert button via
the latter’s performClick: action method. This method simulates a mouse click
on the button and consequently invokes the action method of the button’s
target.

Chapter 2 A Simple Application

48

Implementing the Classes of Currency Converter

Interface Builder generates source code files from the (partial) class definitions
you’ve made. These files are “skeletal,” in the sense that they contain little more
than essential Objective-C directives and the class-definition information. You’ll
usually need to supplement these files with your own code.

Interface Builder then displays two attention panels, one after the other:

Now we leave Interface Builder for this application. You’ll complete the
application using Project Builder.

Make sure your class is selected before you
choose Create Files.

1 In Interface Builder, generate header
and implementation files.

Go to the Classes display of the nib file
window.

Select the ConverterController class.

Choose Classes m Create Files.

Click Yes to confirm that you want
Interface Builder to generate the
header and implementation files
for your class.

Click Yes to confirm that you want
the source code files added to the
project. If, for example, you
wanted to add the files to another
project, you would click No.

Click Yes in response to a “create files”
attention panel.

Click Yes in response to an “insert files
in project” attention panel.

Repeat for the Converter class.

Save the nib file.

Defining the Classes of Currency Converter

49

Objective-C Quick Reference

The Objective-C language is a superset of ANSI C with special syntax and
run-time extensions that make object-oriented programming possible.
Objective-C syntax is uncomplicated, but powerful in its simplicity. You can
mix standard C and even C++ code with Objective-C code.

The following summarizes some of the more basic aspects of the language.
See Object-Oriented Programming and the Objective-C Language for
complete details. Also, see “Object-Oriented Programming” in the appendix
for explanations of terms that are italicized.

Declarations

• Dynamically type objects by declaring them as id:

id myObject;

Since the class of dynamically typed objects is resolved at run time, you
can refer to them in your code without knowing beforehand what class
they belong to. Type outlets in this way as well as objects that are likely
to be involved in polymorphism and dynamic binding.

• Statically type objects as a pointer to a class:

NSString *mystring;

You statically type objects to obtain better compile-time type checking
and to make code easier to understand.

• Declarations of instance methods begin with a minus sign (-); class
methods begin with a plus sign (+):

- (NSString *)countryName;

+ (NSDate *)calendarDate;

• Put the type of value returned by a method in parentheses between the
minus sign (or plus sign) and the beginning of the method name. (See
above example.) Methods returning no explicit type are assumed to
return id. Methods that return nothing should have a return type of void.

• Method argument types are in parentheses and go between the
argument’s keyword and the argument itself:

- (id)initWithName:(NSString *)name
 andType:(int)type;

Be sure to terminate all declarations with a semicolon.

• By default, the scope of an instance variable is protected, making that
variable directly accessible only to objects of the class that declares it
or of a subclass of that class. To make an instance variable private
(accessible only within the declaring class), insert the @private
directive before the declaration.

Messages and Method Implementations

• Methods are procedures implemented by a class for its objects (or, in the
case of class methods, to provide functionality not tied to a particular
instance). Methods can be public or private; public methods are
declared in the class’s header file (see above). Messages are invocations
of an object’s method that identify the method by name.

• Message expressions consist of a variable identifying the receiving
object followed by the name of the method you want to invoke; enclose
the expression in brackets.

[anObject doSomethingWithArg:this];

 receiver method to invoke (with possible arguments)

As in standard C, terminate statements with a semicolon.

• Messages often get values returned from the invoked method; you must
have a variable of the proper type to receive this value on the left side of
an assignment.

int result = [anObj calcTotal];

• You can nest message expressions inside other message expressions.
This example gets the window of a form object and makes the returned
NSWindow object the receiver of another message.

[[form window]

makeKeyAndOrderFront:self];

• A method is structured like a function. After the full declaration of the
method comes the body of the implementing code enclosed by braces.

• Use nil to specify a null object; this is analogous to a null pointer. Note
that some OpenStep methods do not accept nil as an argument.

• A method can usefully refer to two implicit identifiers: self and super.
Both identify the object receiving a message, but they affect differently
how the method implementation is located: self starts the search in the
receiver’s class whereas super starts the search in the receiver’s
superclass. Thus,

[super init];

causes the init method of the superclass to be invoked.

• In methods you can directly access the instance variables of your class’s
instances. However, accessor methods are recommended instead of
direct access, except in cases where performance is of paramount
importance. Chapter 4, “Travel Advisor Tutorial,” describes accessor
methods in greater detail.

Chapter 2 A Simple Application

50

You can add instance variables or method declarations to a header file generated
by Interface Builder. This is commonly done, but it isn’t necessary in
ConverterController’s case. But we do need to add a method to the Converter
class that the ConverterController object can invoke to get the result of the
computation. Let’s start by declaring the method in Converter.h.

This declaration states that convertAmount:byRate: takes two arguments of type float,
and returns a float value. When parts of a method name have colons, such as
convertAmount: and byRate:, they are keywords which introduce arguments. (These are
keywords in a sense different from keywords in the C language.) All declarations
of instance methods begin with a dash (-), followed by a space.

Now you need to update both implementation files. First examine Converter.m.

For the classes of an application,
Project Builder imports the
Application Kit header files, which
import the Foundation header files.

Interface definitions begin with
@interface and the class name.
The superclass appears after the
colon.

Instance variables go between
the braces.

Method declarations follow the
second brace and the definition ends
with @end.

2 Examine an interface (header) file in
Project Builder.

Click Project Builder’s main window to
activate it.

Select Headers in the project browser.

Select ConverterController.h.

#import <AppKit/AppKit.h>

@interface Converter:NSObject

{

}

- (float)convertAmount:(float)amt byRate:(float)rate;

@end

3 Add a method declaration.

Select Converter.h in the project
browser.

Insert a declaration for
convertAmount:byRate:.

Defining the Classes of Currency Converter

51

For this class, implement the method declared in Converter.h. Between
@implementation Converter and @end add the following code:

The method simply multiplies the two arguments and returns the result.
Simple enough. Next update the “empty” implementation of the convert:
method that Interface Builder generated.

The convert: method does the following:

Gets the floating-point values typed into the rate and dollar-amount fields.

The associated header file
is imported automatically.

Begin the implementation section
with @implementation and
the class name. Method
implementations go between
here and @end.

4 Examine an implementation file.

Click Classes in the project browser.

Select Converter.m.

- (float)convertAmount:(float)amt byRate:(float)rate

{

return (amt * rate);

}

5 Implement the classes.

Type the code at right between
@implementation and @end in
Converter.m.

- (void)convert:(id)sender

{

float rate, amt, total=0.0;

amt = [dollarField floatValue];

rate = [rateField floatValue];

total = [converter convertAmount:amt byRate:rate];

[totalField setFloatValue:total];

[rateField selectText:self];

}

A

B
C
D

Select ConverterController.m in the
project browser.

Update the convert: method as shown
by the example.

Import Converter.h.

A

Chapter 2 A Simple Application

52

Invokes the convertAmount:byRate: method and gets the returned value.

Uses setFloatValue: to write the returned value in the Amount in Other Currency
text field (totalField).

Sends selectText: to the rate field; this selects any text in the field or, if there is no
text, inserts the cursor so the user can begin another calculation.

Be sure to import Converter.h (that is, include the directive #import “Converter.h”).
ConverterController invokes a method defined in the Converter class, so it needs
to be aware of the method’s declaration.

Before You Go On

Each line of the convert: method shown above, excluding the declaration of floats,
is a message. The “word” on the left side of a message expression identifies the
object receiving the message (called the “receiver”). These objects are
identified by the outlets you defined and connected. After the receiver comes
the name of the method that the sending object (called the “sender”) wants to
invoke. Messages often result in values being returned; in the above example,
the local variables rate, amt, and total hold these values.

Before you build the project, add a small bit of code to ConverterController.m that will
make life a little easier for your users. When the application starts up, you want
Currency Converter’s window to be selected and the cursor to be in the Exchange
Rate per $1 field. We can do this only after the nib file is unarchived, which
establishes the connection to the text field rateField. To enable set-up operations
like this, awakeFromNib is sent to all objects when unarchiving concludes. Implement
this method to take appropriate action.

You’ve seen the selectText: message before, in the convert: implementation; it
selects the text in the text field that receives the message, inserting the cursor
if there is no text.

The makeKeyAndOrderFront: message does as it says: It makes the receiving window
the key window and puts it before all other windows on the screen. This
message also nests another message, [rateField window]. This message returns the
window to which the text field belongs, and the makeKeyAndOrderFront: method is
then sent to this returned object.

B

C

D

- (void)awakeFromNib

{

[rateField selectText:self];

[[rateField window] makeKeyAndOrderFront:self];

}

A
B

6 Implement the awakeFromNib
method.

Type the code shown at right.

Save all code files.

A

B

Defining the Classes of Currency Converter

53

What Happens When You Build an Application

By clicking the Build button in Project Builder, you run
the build tool. By default, the build tool is make, but it
can be any build utility that you specify as a project
default in Project Builder. The build tool coordinates the
compilation and linking process that results in an
executable file. It also performs other tasks needed to
build an application.

The build tool manages and updates files based on the
dependencies and other information specified in the
project’s makefiles. Every application project has three
makefiles: Makefile, Makefile.preamble, and
Makefile.postamble. Makefile is maintained by
Project Builder—don’t edit it directly—but you can
modify the other two to customize your build.

The build tool invokes the compiler, passing it the
source code files of the project. Compilation of these
files (Objective-C, C++, and standard C) produces
machine-readable object files for the architecture or
architectures specified for the build. The build utility
puts these files in an architecture-specific subdirectory
of dynamic_obj.

In the linking phase of the build, the build tool executes
the linker, passing it the libraries and frameworks to
link against the object files. Frameworks and libraries
contain precompiled code that can be used by any
application. Linking integrates the code in libraries,
frameworks, and object files to produce the application
executable file.

The build tool also copies nib files, sound, images, and
other resources from the project to the appropriate
localized or non-localized locations in the application
wrapper.

An application wrapper on Windows is a directory with
an extension of “.app”. It contains the application
executable and the resources needed by that
executable.

.c

.o

.h.h .h

.o.o

 Building
Before Building

Result

(application

wrapper)

c.c a.h

b.m

a.m

b.h

complier

interim

files

libraries

frameworks

linker

application wrapper

(".app" extension)

application

executable

Resources

English.Iproj

<arch>_obj

c.o a.o b.o

copy copy

.m

Chapter 2 A Simple Application

54

Building the Currency Converter Project

The Build process in Project Builder compiles and links the application guided
by the information stored in the project’s makefiles. You must begin builds from
the Project Build panel.

When you click the Build button on the main window, the Project Build panel is
displayed.

When you click the Build button on the Project Build panel, the build process
begins; Project Builder logs the build’s progress in the lower split view. When
Project Builder finishes—and encounters no errors along the way—it displays
“Build succeeded.”

You don’t have to maintain makefiles in Project Builder. It updates Makefile according to the
variables specified through its user interface. You can customize the build process by modifying
the Makefile.preamble and Makefile.postamble files. For more information on customizing these
files, see the on-line Help for Project Builder and Interface Builder.

1 Build the project.

Save source code files and any
changes to the project.

Click the Build button on the main
window (icon shown at right).

Click the Build button on the Project
Build panel (same icon).

Displays Project Build panel.

Build, Clean, and Build Options
buttons.

Build error browser.

Detailed build results.

You can begin building at
any time by pressing
Command-B.

Building the Currency Converter Project

55

Of course, rare is the project that is flawless from the start. Project Builder is
likely to catch some errors when you first build your project. To see the error-
checking features of Project Builder, introduce a mistake into the code.

You can use Project Builder’s graphical debugger or gdb to track bugs down. See ‘‘Using
the Graphical Debugger’’ on page 110 for an overview of the graphical debugger.

To navigate to an error in
a code file, click the line
describing the error.

Project Builder then
highlights the line that
contains the error.

2 Build the project after correcting
errors.

Delete a semicolon in the code,
creating an error.

Click the Build button on the Project
Build panel.

Click the error-notification line that
appears in the build error browser
(upper split view).

Fix the error in the code.

Re-build.

Chapter 2 A Simple Application

56

Where To Go For Help

Help on Development Tools

Project Builder and Interface Builder provide context-
sensitive help on the details of their use. To activate
context-sensitive help, Help-click a control, field, menu
command, or other areas of the application. A small
window appears that briefly describes the selected object.
(The next click dismisses the window.)

These applications also provide Tool Tips, short descriptions
of parts of the interface that briefly appear when the mouse
pointer hovers over those areas. You can turn Tool Tips off.

Project Builder and Interface Builder also provide
comprehensive task-based Help, accessible from the Apple
menu.

Context help
button

Help on APIs

Project Builder gives you several ways to get information on OpenStep APIs
when you’re developing an application.

Project Find. The Project Find panel allows you to search for definitions of,
and references to, classes, methods, functions, constants, and other
symbols in your project. Since it is based on project indexing, searching is
quick and thorough and leads directly to the relevant code. Help for
Interface Builder or Project Builder contains full task-based instructions for
using Project Find.

Reference Documentation Lookup. If the results of a search using
Project Find include OpenStep symbols, you can easily get related reference
documentation that describes that symbol. See ‘‘Finding Information Within
Your Project’’ on page 96 for instructions on the use of this feature.

Frameworks. Under Frameworks in the project browser, you can browse the
header files and documentation related to OpenStep frameworks within
Project Builder. The Application Kit and Foundation frameworks always are
included by default for application projects.

OpenStep Technical Documentation

Most OpenStep programming documentation is located in
/NextLibrary/Documentation/NextDev.

Reference

• API reference documentation. Includes specifications of classes,
protocols, functions, types, and constants. This documentation is
located in the appropriate OpenStep frameworks, except for information
that is common to all frameworks (Reference).

• Development tools reference. Covers the compiler, the debugger, and
other tools (Reference/DevToolsRef).

Tasks and Concepts

• Discovering OpenStep: A Developer Tutorial (this manual).

• “Programming Languages”: an on-line resource for programming
languages, especially Objective-C in both “classic” and “modern”
syntaxes.

• “Topics in OpenStep Programming” contains concepts and
programming procedures.

Run Currency Converter

57

Run Currency Converter

Congratulations. You’ve just created your first OpenStep application. Find
CurrencyConverter.app in the Workspace, launch it, and try it out. Enter some rates
and dollar amounts and click Convert. Also, select the text in a field and
choose the Services menu; this menu now lists the other applications that can
do something with the selected text.

Of course, the more complex an application is, the more thoroughly you will
need to test it. You might discover errors or shortcomings that necessitate a
change in overall design, in the interface, in a custom class definition, or in the
implementation of methods and functions.

Although it’s a simple application, Currency Converter still introduced you to
many of the concepts, tools, and skills you’ll need to develop OpenStep
applications. Let’s review what you’ve learned:

• Composing a graphical user interface (GUI) with Interface Builder
• Testing the interface
• Designing an application using the Model-View-Controller paradigm
• Specifying a class’s outlets and actions
• Connecting the class instance to the interface via its outlets and actions
• Class implementation basics
• Building an application and error resolution

Optional Exercise

Nesting Messages: You can nest message expressions; in other words, you can use
the value returned by a message as the receiver of another message or as a
message argument. It is thus possible to rewrite the first three messages of the
ConverterController’s convert: method as one statement:

It is possible to go even further. Try to incorporate the fourth message
([totalField setFloatValue:total]) of the convert: method into the above statement.

total = [converter convertAmount:[dollarsField floatValue]

byRate:[rateField floatValue]];

60

What You’ll Learn

Using forms and table views

Grouping objects

Adding images to applications

Formatting and validating fields

Simple printing

Object allocation and initialization

Using collection objects and string
objects

Delegation and notification

Archiving and unarchiving objects

Object ownership, retention, and
disposal

Using the graphical debugger

Finding project information

3

You can find the Travel Advisor project in the

AppKit

 subdirectory of

/NextDeveloper/Examples.

61

Chapter 3

A Forms-Based Application

In this chapter you create Travel Advisor, a considerably more complex application than

Currency Converter. Travel Advisor is a forms-based application used for entering,

viewing, and deleting records on countries that the user travels to. Users enter a country

name and information associated with that country. When they click Add, the country

appears in the table below the country name. They can select countries in the table, and

the information on that country appears in the forms. The application also performs

temperature and currency conversions.

Chapter 3

A Forms-Based Application

62

Travel Advisor — An Overview

This chapter presents a lot of information on OpenStep programming.
Among other things, you’ll learn how to:

• Use several new objects on Interface Builder’s palettes.

• Assign an icon to an application.

• Print the contents of a view.

• Use collection objects (NSArray and NSDictionary) and NSString objects.

• Archive and unarchive object data.

• Format and validate field contents.

• Manage events through delegation.

• Quickly find information related to your project.

• Use Project Builder’s graphical debugger.

Perhaps most interestingly, you will

reuse

 the Converter class you
implemented in the previous tutorial.

Note

: You can find the TravelAdvisor project in the

AppKit

 subdirectory of

/NextDeveloper/Examples

.

The Design of Travel Advisor

Travel Advisor is much like Currency Converter in its basic design. Like Currency
Converter, it’s based on the Model-View-Controller paradigm. A controller object
(TAController) manages a user interface comprised of Application Kit objects. Also
as before, the controller sends a message to the Converter object to get the result
of a computation. In other words, the Converter object is reused.

Travel Advisor’s view objects, in terms of Model-View-Controller, are all off-the-
palette Application Kit objects, so the following discussion concentrates on those
parts of the design distinctive to Travel Advisor.

Model Objects

Travel Advisor’s design is more interesting and dynamic than Currency Converter’s
because it must display a unique set of data depending on the country the user
selects. To make this possible, the data for each country is stored in a Country
object. These objects encapsulate data on a country (in a sense, they’re like
records in a relational database). The application can manage potentially
hundreds of these objects, tracking each without recourse to a “hardwired”
connection.

Another model object in the application is the instance of the Converter class. This
instance does not hold any data, but does provide some specialized behavior.

France

Country

Key

Value

NSDictionary

Converter

TAController

Germany Spain

Country Country

63

Controller

The controller object for the application is TAController. Like all controller
objects, TAController is responsible for mediating the flow of data between
the user interface (the View part of the paradigm) and the model objects
that encapsulate that data: the Country objects. Based on user choices in
the interface, TAController can find and display the requested Country
object; it can also save changes made by users to the appropriate Country
object.

What makes this possible is an NSDictionary object (called a

dictionary

from here on). A dictionary is a container that stores objects and permits
their retrieval through key-value associations. The key is some identifier
paired with an object in the dictionary (the object often holds the identifier
as one of its instance variables). To get the object, you send a message to
the dictionary using the key as an argument (

objectForKey:

). For example:

NSColor *aColor = [aDictionary objectForKey:
@”BackgroundColor”];

A Country object holds the name of a country as an instance variable; this
country name also functions as the dictionary key. When you store a Country
object in the dictionary, you also store the country name (in the form of an
NSString) as the object’s key. Later you retrieve the object by sending the
dictionary the message

objectForKey:

 with the country name as
argument.

Storing Data Source Information

. TAController also manages the data
source for the table view on the interface. It stores the keys of the dictionary
in an array object (NSArray), sorted alphabetically. When the table view
requests data, the TAController “feeds” it the objects in the array.

Creation of Country Objects

.

Another important point of design is the
manner in which the Country objects are created. Instead of Interface
Builder creating them, the TAController object creates Country objects in
response to users clicking the Add button.

Delegation and Notification

. An essential aspect of design not evident
from the diagram are the roles

delegation

 and

notification

 play. The
TAController object is the delegate of the application object and thereby
receives messages that enable it to manage the application, which
includes tracking the edited status of Country objects, initiating object
archival upon application termination, and setting up the application at
launch time.

How TAController Manages Data

The TAController class plays a central role in the Travel Advisor application.
As the application’s controller object, it transfers data from the model
objects (Country instances) to the fields of the interface and, when users
enter or modify data, back to the correct Country object. The TAController
must also coordinate the data displayed in the table view with the current
object, and it must do the right thing when users select an item in the table
view or click the Add or Delete button. All custom code specific to the user
interface resides in TAController.

The mechanics of this activity require an array (NSMutableArray) and a
dictionary (NSMutableDictionary) for storing and accessing Country data.
The diagram below illustrates the relationship among interface
components, TAController, and the sources of data.

The dictionary contains Country objects (values) that are identified by the
names of countries (keys). The dictionary is the source of data for the fields
of Travel Advisor. The array derives from the dictionary and is sorted. It is
the source of data for the table view.

France
England
Germany

France
England
Germany

Country
Country
Country

TAController

Key Value

Chapter 3

A Forms-Based Application

64

Creating the Travel Advisor Interface

In creating the interface of Travel Advisor, you’ll be exercising the capabilities of
Interface Builder much more than you did with Currency Converter.

Getting Started

You should be familiar with many of the objects on the Travel Advisor interface
because you’ve encountered them in the Currency Converter tutorial. The
following illustration points out the objects that are new to you in this tutorial.

The following pages describe the purpose of each new object found on Interface
Builder’s palettes and explain how to set these objects up for Travel Advisor.
Before getting to these new objects, start with the familiar ones: buttons and text
fields.

1 Create the application project.

Start Project Builder.

Choose New from the Project menu.

In the New Project panel, select the
Application project type.

Name the application “TravelAdvisor”
and click OK.

image view

form

groups (NSBox objects)switch (button)table viewScroll view (containing
an NSText object)

2 Open the application’s nib file.

Click Interfaces in the project browser.

Select NEXTSTEP_TravelAdvisor.nib,
and double-click its icon.

3 Customize the application’s window.

In Interface Builder:

Resize the window, using the example
at right as a guide.

In the Attributes display of the
Inspector panel, entitle the window
“Travel Advisor.”

Turn off the resize bar.

Creating the Travel Advisor Interface

65

You might think the “English widely spoken” object is a new kind of object.
It’s actually a button, a special style of button called a switch.

Be sure this label
contains enough
“padding” for the
longest country name.

Drag the switch
object from the
views palette
and drop it here.

4 Put the text fields, labels, and buttons
on the window.

Position, resize, and initialize the
objects as shown.

Double-click to select text, then type new label.Set up the switch.

Varieties of Buttons

If in Interface Builder you select the “English widely
spoken” switch and bring up the Attributes inspector,
you can see that the switch is a button set up in a
special way.

Buttons are two-state control objects. They are either
off or on, and this state can be set by the user or
programmatically (setState:). For certain types of
buttons (especially standard buttons like Currency
Converter’s Convert button), when the state is
switched, the button sends an action message to a
target object. Toggle-type buttons—such as switches
and radio buttons— visually reflect their state.
Applications can learn of this state with the state
message. You can make your own buttons,
associating icons and titles with a button’s off and on
states, and positioning title and icon relative to each
other.

Chapter 3

A Forms-Based Application

66

New Objects: Forms, Groups, and Scroll Views

Construct the “Logistics” section of the interface using a form object.

Drag to lengthen the fields.

As you alternate-drag, new form fields
appear underneath the cursor.

Double-click to select label text.

Type the new label text and click outside
the form to set the text.

Create two more form fields by
Alternate-dragging the bottom-middle
resize handle downward.

Rename the field labels.

Increase the size of the form’s fields by
dragging the middle resize handle
sideways.

5 Place a form on the interface and
prepare it.

Drag the form object from the Views
palette.

Creating the Travel Advisor Interface

67

To make titled sections of the fields, forms, and buttons on the Travel Advisor
interface, group selected objects. By grouping them, you put them in a box.

Boxes are a useful way to organize and name sections of an interface. In Interface
Builder you can move, copy, paste, and do other operations with the box as a unit.
For Travel Advisor, you don’t need to change the default box attributes.

Before You Go On

The box, an instance of NSBox, is the

superview

 of all of its grouped objects. (A

view

, simply put, is any object visible on a window.) A superview encloses its

subviews

 and is the next in line to respond to user actions if its subviews cannot

handle them.

The scroll view on the DataViews palette encloses a text object (an instance of
NSText). This object allows users to enter, edit, and format text with minimal
programmatic involvement on your part.

To select the objects as a group, drag a selection rectangle
around them or Shift-click each object. (To make a selection
rectangle, start dragging from an empty spot on the window.)

After you choose the Group in Box command, the objects are
enclosed by a titled box.

6 Group the objects on the interface.

Select the two Convert buttons and the
Dollars, Local, Celsius, Fahrenheit
labels and text fields.

Choose Format m Group m Group in
Box.

Double-click “Title” to select it.

Choose Format m Font m Bold to
make the title bold face.

Rename “Title” to “Conversions.”

Repeat for the next two groups:
“Logistics” and “Other.”

More About Forms

Forms are labelled fields bound vertically in a
matrix. The fields are the same size and each label
is to the left of its field. Forms are ideal objects for
applications that display and capture multiple rows
of data, as do many corporate client-server
applications.

The editable fields in a form are actually cells that
you programmatically identify through zero-based
indexing; the first cell is at index 0 of the matrix, the
second cell at index 1, and so on. NSForm defines
the behavior of forms; individual cells are instances
of NSFormCell. Access these cells with NSForm’s

cellAtIndex:

 method.

Form Attributes

In addition to the obvious controls in the Forms
inspector, there’s the “Cell tags = positions”
attribute. Switching this on assigns tags to each
NSFormCell that correspond to the cells’ indices. (A
tag is a number assigned to an object that is used
to identify and access that object. You’ll use tags
extensively in the next tutorial.)

The Scrollable option, turned on by default, enables
the user to type long entries in fields, scrolling
contents to the left as characters are entered.

Chapter 3

A Forms-Based Application

68

You don’t need to change any of the default attributes of the scroll view (but you
might want to look at the attributes that you can set, if you’re curious).

7 Put the scroll view on the window and
resize it.

Drag the scroll view from the
DataViews palette and drop it on the
lower-left corner of the window.

Resize the scroll view.

A table view is an object for displaying and editing tabular data. Often that
data consists of a set of related records, with rows for individual records
and columns for the common fields (attributes) of those records, Table
views are ideal for applications that have a database component, such as
Enterprise Objects Framework applications.

The table view on Interface Builder’s TabulationViews palette is actually
several objects, bound together in a scroll view. Inside the scroll view is an
instance of NSTableView in which data is displayed and edited. At the top
of the table view is an NSTableHeaderView object, which contains one or
more column headers (instance of NSTableColumn).

Later in this tutorial you will learn some basic techniques for accessing and
managing the data in a table view. Here’s a quick preview of the essential
pieces:

•

Data source

. The data source is any object in your application that
supplies the NSTableView with data. The elements of data (usually
records) must be identifiable through zero-based indexing. The data
source must implement some or all of the methods of the
NSTableDataSource informal protocol.

•

Column identifier

. Each column (NSTableColumn) of a table view has
an identifier associated with it, which can be either an NSString or a
number. You use the identifier as a key to obtain the value of a record
field.

•

Delegate methods

. NSTableView sends several messages to its
delegate, giving it the opportunity to control the appearance and
accessibility of individual cells, and to validate or deny editing in fields.

NSTableColumn

NSTableViewScroll view
(NSScrollView)

More About Table Views

Creating the Travel Advisor Interface

69

More New Objects: Table Views, Image Views, and Menus

Next, add a table view for displaying the list of countries.

The other object on the TabulationViews palette is a

browser

. It is just as
suitable for the Travel Advisor application as a table view. Browsers are ideal
for displaying hierarchically structured information (such as is found in typical
file systems) as well as single-level views of data such as the list of countries
in Travel Advisor. A table view can also handle single-column rows of data
easily.

Click to select the
Tabulation Views palette.

8 Place and configure the table view.

Drag the table view object from the
TabulationViews palette.

Resize the table view.

Double-click column twice (first to select the column,
second to insert the cursor). Type “Countries”, then click
anywhere outside the column.

Set the title of the first column to
“Countries.”

When this cursor appears over the line separating columns,
drag the line so that it’s flush with the right edge.

You can also delete the unneeded column by selecting it and
pressing the Delete key.

Make the table header only one
column.

Chapter 3

A Forms-Based Application

70

To configure the table view, you must set attributes of two component objects: the
NSTableView object and the NSTableColumn object.

The Attributes display for NSTableView is the same as that for NSScrollView.

The Travel Advisor window is nearly complete. For a decorative touch, you’re
next going to add an image to the interface.

Since this is a single-column view and country names
are of limited length, you need only the vertical scroller in
case there’s more countries than can be shown at once.

Whether to show the grid is a matter of personal
preference, but turn off resizing and reordering.
The user shouldn’t be able to affect the contents
of the column directly.

Select the NSTableView by double-
clicking the interior of the table view.

Set the attributes as shown at right.

Type the name with which you want to identify the column
programmatically. For Travel Advisor, make this the same
as the column title.

Click the left column to select it.

Set the NSTableColumn attributes as
shown at right.

Creating the Travel Advisor Interface

71

Before You Go On

Sometimes buttons are the preferred objects for holding images—for instance
when you want a different image for either state of a button. But when
buttons are disabled, any image they display is dimmed. So for decorative
images, use image views (NSImageView) instead of buttons.

When you drop an image over a button or image view, Interface Builder
adds it to the both the nib file and the project (upon your approval). You can
add the image only to the nib file by dropping the image over the nib file
window. Resources in a nib file are accessible only when the nib file has

been loaded; an application’s project-wide resources are always accessible.

9 Add an image to the interface.

Select the DataViews palette (see
example).

Drag the image view onto the window.

In Project Builder:

Double-click Images in the project
browser.

In the Open panel, select the file
Airline.eps in /NextDeveloper/
Examples/AppKit/TravelAdvisor.

Enter the name of the image file, minus the extension. The
image can be in any acceptable format, and must be a part
of the project.

You can also insert an image in an image view and add it to
the project by dragging it from the File Viewer and dropping
it over the image view.

The border of the image should not be visible.

Since the image is larger than the image view, have
it scale proportionally.

Uncheck if you don’t want users to affect the image
in any way.

In Interface Builder:

In the Attributes inspector for the
image view, type the name of the
image and set the NSImageView
attributes.

Make the image view (and the
enclosed image) small enough to fit
between the menu bar and the
Logistics group.

Add a “velocity” line behind the
airplane. (Tip: Make an untitled black
box with a vertical offset of zero and
run the top and bottom lines together.)

Chapter 3

A Forms-Based Application

72

Travel Advisor’s menu contains default submenus and commands. You need a
submenu and menu commands that are not included in the default set and that
are not found on the Menus palette. Use the Submenu and the Item cells to create
customized menus and menu items, respectively.

To delete a menu item, select it and choose Delete from the Edit menu or press
Command-x.

You don’t need to add any menu items to the Services submenu. Applications can offer their
services to other applications, based on the operations they can perform on types of selected
data. As part of advertising their services, these applications specify the menu items to be
used to access those services. At run time, these submenus and commands appear in the
Services menu. For more on services, see “Services” in the on-line Programming Topics.

To insert a menu item, drag it from the Menus palette
and drop it between or after the menu items currently
on the menu.

To add a Command-key equivalent, double-click
the area on the right side of a menu item and then
press the key you want assigned.

Put the print command here for now.This is translated into the Apple menu.

10 Add a menu and menu items to the
menu bar.

Select the Menus palette.

Drag the generic Submenu item and
drop it between the Edit and Window
submenus.

Double-click Submenu to select the
menu title; change the name to
“Records”.

Click the new Records menu to expose
the Item command.

Add three Items to the Records
submenu (making four altogether) by
dragging them from the Menus
palette.

Change the command names to those
shown at right.

Add Command-key equivalents to the
right of the Next Record and Prior
Record commands.

Drag an Item cell and drop it between
the Windows and Services submenus.

Change “Item” to “Print Notes...”.

Remove unnecessary menu items from
the File menu.

Creating the Travel Advisor Interface

73

Finishing Touches: Formatters, Printing, and the Application Icon

One way to make your application’s user interface more attractive is to format
the contents of fields that display currencies and other numeric data. Fields
can have fixed decimal digits, can limit numbers to specific ranges, can have
currency symbols, and can show negative values in a special color. Interface
Builder provides two formatter objects on its standard palettes, one for
formatting dates and the other for formatting numbers. You’ll use the second
of these.

Formatters are objects that “translate” the values of certain objects to specific
on-screen representations; formatters also convert a formatted string on a user
interface into the represented object.

You can create, set, and modify formatter objects programmatically as well as by using
Interface Builder. And you can create your own special formatter objects (such as ones,
for example, that format phone numbers) and “palettize” them. For more on formatters,
see ‘‘Behind ‘Click Here’: Controls, Cells, and Formatters’’ on page 107.

When a text field (or other control) has a formatter
applied to it, Interface Builder's inspector includes a
Formatter display when that field is selected.

Click a predefined format in the table view to apply it to
the field, or specify a custom format in the Positive and
Negative fields.

For the Dollar and Local fields, specify the first predefined
format ($9,999.99).

Click to select DataViews palette.

11 Apply formatters to the rate and
currency fields.

Select the DataViews palette in the
Palette window.

Drag a number-formatter object and
drop it over the Rate field.

In the Formatter display of the
inspector, specify a rate format by
selecting the table-view row with the
“99.99” format.

Type a zero in the field to initialize it.

Repeat for the Dollar and Local fields,
but apply a suitable format.

Chapter 3

A Forms-Based Application

74

You can now connect many of the objects on the Travel Advisor interface through
outlets and actions defined by the Application Kit. As you might recall, windows
have an

initialFirstResponder

 outlet for the object in the window that should be the
initial focus of events. Text fields have a

nextKeyView

outlet that you connect so that
users can tab from field to field. Forms also have a

nextKeyView

 outlet for tabbing.
(The fields within a form are already interconnected, so you don’t need to connect
them.)

The Application Kit also has “preset” actions that you can connect your
application to. The NSText object in the scroll view can print its contents as can
all objects that inherit from NSView. To take advantage of this capability, “hook
up” the menu command with the NSText action method for printing.

When a line borders the form inside the box, the form is selected.
Release the mouse button and set the nextKeyView outlet
connection in the Connections inspector.

12 Connect Application Kit outlets for
inter-field tabbing and printing.

Make a connection from the window
icon in the nib file window to the
Country field.

Select initialFirstResponder in the
Connections display of the inspector
and click Connect.

In top-to-bottom sequence, connect
the fields and the form through their
nextKeyView outlets.

When you reach the Languages field,
connect it with the Country field,
making a loop.

Make sure the text object
(the white rectangle) is
selected and not the scroll
view that encloses it.

Connect the Print Notes menu
command to the text object in the
scroll view.

Select the print: action method in the
Connections display of the Inspector
panel.

Click the Connect button in the
Inspector’s Connection display.

Creating the Travel Advisor Interface

75

The final step in crafting the Travel Advisor interface has nothing to do with the
main window, but with what users see of your application when they encounter it
in the File Viewer: the application’s icon.

You’re finished with the Travel Advisor interface. Test it by choosing Test
Interface from Interface Builder’s File menu.Try the following:

• Press the Tab key repeatedly. Notice how the cursor jumps between the
fields of the form, and how it loops from the Languages field to the Country
field. Press Shift-Tab to make the cursor go in the reverse direction.

• Enter some text in the scroll view, then click the Print Notes menu item. The
Print dialog box is displayed. Print the text object’s contents.

• Also in the scroll view, press the Return key repeatedly until a scroll box
appears in the scroll bar.

13 Add the application icon.

In Project Builder:

Open the Project Inspector.

Go to the Project Attributes display of
the inspector.

Click in the Application Icon field.

In File Viewer:

Locate TravelAdvisor.eps in
/NextDeveloper/Examples/
AppKit/TravelAdvisor.

Drag the image file into the icon well in
the Project Attributes display.

14 Test the interface.

Chapter 3

A Forms-Based Application

76

Defining the Classes of Travel Advisor

Travel Advisor has three classes: Country, Converter, and TAController. Only
TAController has outlets and actions. And, rather than defining the Converter
class, you are simply going to add it to the project from the CurrencyConverter
project and reuse it.

1 Specify the Country and TAController
classes.

In Interface Builder, bring up the
Classes display of the nib file window.

Select NSObject as the superclass.

Choose Subclass from the Classes
menu.

Type “Country” in place of
“MyNSObject.”

Repeat for class TAController.

Through this outlet the TAController object
establishes a connection with the instance
of the Converter class. You will reuse this
class later in this section.

2 Specify TAController’s outlets and
actions.

Add the outlets shown in the nib file
window at right.

Creating the Travel Advisor Interface

77

In OpenStep there are many ways to reuse objects. For example, subclassing
an existing class to obtain slightly different behavior is one way to reuse the
functionality of the superclass. Another way is to integrate an existing class—
like the Converter class—into your project.

When you’re finished with this procedure, the Converter class is copied both to the
TravelAdvisor project and to the TravelAdvisor main nib file.

Define the action methods shown in
the nib file window at right.

3 Reuse the Converter class.

In Project Builder:

Double-click Classes in the project
browser.

In the Add Classes panel, navigate to
the CurrencyConverter project directory
in /NextDeveloper/Examples/AppKit.

Select Converter.m and click OK.

When asked if you want to include the
header file, click OK.

In Interface Builder:

Select the superclass of Converter
(NSObject) in the Classes display of
the TravelAdvisor nib file window.

Choose Classes m Read File.

In the Open panel, select Converter.h
in the TravelAdvisor project directory.

Click OK.

Chapter 3 A Forms-Based Application

78

You don’t need to instantiate the Country class in the nib file because it is not
involved in any outlet or action connections. However, you must create an
instance of TAController for making connections. TAController interacts behind
the scenes with users as they manipulate the application’s interface and mediates
the data coming from and going to Country objects. It therefore needs access to
interface objects and should be made the target of action messages.

4 Generate instances of the
TAController and Converter classes.

To see connections from the object, click a
right-pointing triangle; click a left-pointing
triangle for connections to the object.

Move the vertical line left or right to see
details (this is a vertical split view).

Click here for icon mode.

Checking and Making Connections in Outline Mode

The nib file window of Interface Builder gives you two modes in which to
view the objects in a nib file and to make connections between those
objects. So far you’ve been working in the icon mode of the Instances
display, which pictorially represents objects such as windows and custom
objects.

Outline mode, as the phrase suggests, represents objects in a hierarchical
list: an outline. The advantages of outline mode are that it represents all
objects and graphically indicates the connections between them. You can
connect objects through their outlets and actions in outline mode, as well
as disconnect them by Control-clicking a connection line.

Click here for outline mode.

Connect objects in outline
mode just as you do in icon
mode: Control-drag a
connection line between
objects.

A connection is identified by name and icon
for type (electrical outlet for outlet, cross-
hairs for action).

Creating the Travel Advisor Interface

79

Outlet Make Connection To

celsius Text field labeled “Celsius”

commentsLabel Label that reads “Notes and Itinerary for”

commentsField Text object within scroll view

converter Instance of Converter class (cube in Instances display)

countryField Text field labeled “Country”

currencyDollarsField Text field labeled “Dollars”

currencyLocalField Text field labeled “Local”

currencyNameField Text field labeled “Currency”

currencyRateField Text field labeled “Rate”

englishSpokenSwitch Switch (button) labeled “English widely spoken”

fahrenheit Text field labeled “Fahrenheit”

languagesField Text field labeled “Languages”

logisticsForm Form in group (box) labeled “Logistics”; the form is selected when a gray
line borders it.

tableView The area underneath the “Countries” column

5 Connect the TAController instance to
its outlets and actions.

Connect TAController to the outlets
listed in this table.

File’s Owner

Every nib file has one owner, represented by the
File’s Owner icon in a nib file window. The owner is
an object, external to the nib file, that relays
messages between the objects unarchived from the
nib file and the other objects in your application.

You specify a file’s owner programmatically, in the
second argument of NSBundle’s
loadNibNamed:owner:. The File’s Owner icon in
Interface Builder is a “proxy” object for that owner.
Although you can assign owners to this object in
Interface Builder, this doesn’t necessarily
guarantee anything about the file’s real owner.

In the main nib file File’s Owner always represents
NSApp, the global NSApplication constant. The

main nib file is automatically created when you
create an application project; it is loaded in main()
when an application is launched.

Nib files other than the main nib file— auxiliary nib
files—contain objects and resources that an
application may load only when it needs them (for
example, an Info panel). You must specify the owner
of auxiliary nib files.

You can determine or set the class of the current nib
file’s owner in Interface Builder by selecting the
File’s Owner icon in the nib file window and then
displaying the Custom Class inspector view. You’ll
get to practice this technique when you learn how to
create multi-document applications in the next
tutorial.

Chapter 3 A Forms-Based Application

80

Action Make Connection From

addRecord: “Add” button

blankFields: “Clear” button

convertCelsius: “Convert” button to the right of the “Fahrenheit” field

convertCurrency: “Convert” button to the right of the “Local” field

deleteRecord: “Delete” button

handleTVClick: The table view (the area beneath the “Countries” column header)

nextRecord: The “Next Record” menu command on the Records submenu

prevRecord: The “Prior Record” menu command on the Records submenu

switchChecked: The “English widely spoken” switch

Before You Go On

You’re next going to connect objects through an outlet defined by several
OpenStep classes. This outlet, named delegate, is assigned the id value of a custom
object. As the delegate of NSApp (the NSApplication object), TAController will
receive messages from it as certain events happen.

Every application has a global NSApplication object (called NSApp) that
coordinates events specific to the application. Among many other messages,
NSApp sends a message to its delegate notifying it that the application is about to
terminate. Later, you will implement TAController so that, when it receives this
message, it archives (saves) the dictionary containing the Country objects.

Connect the TAController instance to
control objects in the interface via its
actions.

Creating the Travel Advisor Interface

81

Compiled and Dynamic Palettes

A palette is an area on Interface Builder’s Palettes window that holds one
or more reusable objects. You can add these objects to your application’s
interface using the drag-and-drop technique. There are two types of
palettes: dynamic and compiled (also called “static palettes”). To the user
they seem identical, but the differences are many.

Static palettes are built as a project and have code defining their objects;
dynamic palettes include no special code—they’re unique configurations
of objects found on static palettes. Consequently, static palettes must be
compiled, but you can create dynamic palettes on the fly, without writing
and compiling code. Objects on static palettes can have their own
inspectors and editors, which dynamic-palette objects cannot have.

You usually create a static palette as a way to distribute your objects—and
the logic informing these objects’ behavior—to potential users. Many
developers of commercial OpenStep objects make use of static palettes as
a distribution medium. Creating static palettes (and their inspectors and
editors) is a more complex process than creating dynamic palettes, but the
resulting product has more value added to it.

Using Dynamic Palettes

Dynamic palettes are a great convenience. You can save groups of objects,
with or without their interconnections, to a dynamic palette at any time. You
can save dynamic palettes and store them in the file system, just as you do
with the traditional compiled palette. You can remove the palette from the
Palette viewer and, when you need it again, load it back into Interface
Builder.

To store objects on a dynamic palette:

• Choose Tools m Palettes m New to create a blank palette.

• Select objects singly or in groups on the interface or in the nib file
window (either icon or outline mode).

• Alternate-drag these objects and drop them on the blank palette.

You can use dynamic palettes to:

• Store collections of often-used View objects configured with specific
sizes and other attributes. For instance, you could have a “standard”
text field of a certain length, font, and background color stored on a
dynamic palette.

• Hold windows and panels that are replicated in your projects (such as
Info panels).

• Store versions of interfaces.

• Keep interconnected objects as a template that you can later use as-is
or modify for particular circumstances. For instance, you could store a
group of text fields and their delegate, or a set of controls and their
connections to a controller object.

• Assist in prototyping and group work. For example, you could mail a
palette file containing an interface to interested parties.

Alternate-drag objects
to move them onto
palettes, to move them
around palettes, and to
take them off of
palettes.

Chapter 3 A Forms-Based Application

82

When you generate the header and implementation files for all classes of
Currency Converter, you are finished with the Interface Builder portion of
development. Be sure you save the nib file before you switch over to Project
Builder.

You can assign delegates programmatically or by using Interface Builder. For more
information, see ‘‘Getting in on the Action: Delegation and Notification’’ on page 100.

Notice that the direction of the connection is
from the File’s Owner (which is the application
object) to the TAController object.

6 Connect the delegate outlet.

Drag a connection line from File’s
Owner to the TAController object.

In the Connections display of the
Inspector panel select delegate and
click OK.

7 Generate source code files for the
TAController and Country classes.

Save TravelAdvisor.nib.

Select the class in the Classes display
of the nib file window.

Choose Classes m Create Files.

Respond Yes to the confirmation
messages.

Creating the Travel Advisor Interface

83

Implementing the Country Class

Although it has no outlets, the Country class defines a number of instance
variables that correspond to the fields of Travel Advisor.

Declares that the Country class adopts the NSCoding protocol.

Explicitly types the instance variable as “a pointer to class NSString”—or
an NSString object. See below for more about the NSString class.

Declare non-object instance variables the same way you declare them in C
programs. In this case, currencyRate is of type float.

1 Declare instance variables.

In Project Builder, click Headers in the
project browser, then select Country.h.

Add the declarations shown between
the braces at right.

@interface Country : NSObject <NSCoding>

{

 NSString *name;

 NSString *airports;

 NSString *airlines;

 NSString *transportation;

 NSString *hotels;

 NSString *languages;

 BOOL englishSpoken;

 NSString *currencyName;

 float currencyRate;

 NSString *comments;

}

A

B

C

A

B

C

NSString: A String for All Countries

NSString objects represent character strings. They’re behind almost all text
in an application, from labels to spreadsheet entries to word-processing
documents. NSStrings (or string objects) supplant that familiar C
programming data type, char *.

“But why?” you might be saying. “Why not stick with the tried and true?” By
representing strings as objects, you confer on them all the advantages that
belong to objects, such as persistency and the capability for distribution.
Moreover, thanks to data encapsulation, string objects can use whatever
encoding is needed and can choose the most efficient storage for
themselves.

The most important rationale for string objects is the role they play in

internationalization. String objects contain Unicode characters rather than
the narrow range of characters afforded by the ASCII character set. Hence
they can represent words in Chinese, Arabic, and many other languages.

The NSString and NSMutableString classes provide API to create static and
dynamic strings, respectively, and to perform string operations such as
substring searching, string comparison, and concatenation.

None of this prevents you from using char * strings, and there are
occasions where for performance or other reasons you should. However, the
public interfaces of OpenStep classes now use string objects almost
exclusively. A number of NSString methods enable you to convert string
objects to char * strings and back again.

Chapter 3 A Forms-Based Application

84

The Foundation Framework: Capabilities, Concepts, and Paradigms

The Foundation framework consists of a base layer of classes that specify
fundamental object behavior plus a number of utility classes. It also
introduces several paradigms that define functionality not covered by the
Objective-C language. Notably, the Foundation framework:

• Makes software development easier by introducing consistent
conventions for things such as object deallocation

• Supports Unicode strings, object persistence, and object distribution

• Provides a level of operating-system independence, enhancing
application portability

Root Class

NSObject, the principal root class, provides the fundamental behavior and
interface for objects. It includes methods for creating, initializing,
deallocating, copying, comparing, and querying objects (introspection).
Almost all OpenStep objects inherit ultimately from NSObject.

Deallocation of Objects

The Foundation framework introduces a mechanism for ensuring that
objects are properly deallocated when they’re no longer needed. This
mechanism, which depends on general conformance to a policy of object
ownership, automatically tracks objects that are marked for release within
a loop and deallocates them at the close of the loop. See ‘‘Object Ownership,
Retention, and Disposal’’ on page 88 for more information.

Data Storage and Access

The Foundation framework provides object-oriented storage for

• Arrays of raw bytes (NSData) and characters (NSString)

• Simple C data values (NSValue and NSNumber)

• Objective-C objects of any class (NSArray, NSDictionary, NSSet, and
NSPPL)

NSArray, NSDictionary, and NSSet (and related mutable classes) are
collection classes that also allow you to organize and access objects in
certain ways (see ‘‘The Collection Classes’’ on page 86).

Text and Internationalization

NSString internally represents text in various encodings, most importantly
Unicode, making applications inherently capable of expressing a variety of
written languages. NSString also provides methods for searching,
combining, and comparing strings. NSCharacterSet represents various
groupings of characters which are used by NSString. An NSScanner object
scans numbers and words from an NSString object. For more information,
see ‘‘NSString: A String for All Countries’’ on page 83.

You use NSBundle objects to load code and localized resources dynamically
(see ‘‘Only When Needed: Dynamically Loading Resources and Code’’ on
page 130). The NSUserDefaults class enables you to store and access
default values based on locale as well as user preferences.

Object Persistence and Distribution

NSSerializer makes it possible to represent the data that an object contains
in an architecture-dependent way. NSCoder and its subclasses take this
process a step further by storing class information along with the data,
thereby enabling archiving and distribution. Archiving (NSArchiver) stores
encoded objects and other data in files. Distribution denotes the
transmission of encoded object data between different processes and
threads (NSPortCoder, NSConnection, NSDistantObject, and others).

Other Functionality

Date and time. The NSDate, NSCalendarDate, and NSTimeZone classes
generate objects that represent dates and times. They offer methods for
calculating temporal differences, for displaying dates and times in any
desired format, and for adjusting times and dates based on location in the
world.

Application coordination. NSNotification, NSNotificationCenter, and
NSNotificationQueue implement a system for broadcasting notifications of
changes within an application. Any object can specify and post a
notification, and any other object can register itself as an observer of that
notification. You can use an NSTimer object to send a message to another
object at specific intervals.

Operating system services. Many Foundation classes help to insulate
your code from the peculiarities of disparate operating systems.

• NSFileManager provides a consistent interface for file-system
operations such as creating files and directories, enumerating directory
contents, and moving, copying, and deleting files.

• NSThread lets you create multi-threaded applications.

• NSProcessInfo enables you to learn about the environment in which an
application runs.

• NSUserDefaults allows applications to query, update, and manipulate a
user’s default settings across several domains: globally, per application,
and per language.

Creating the Travel Advisor Interface

85

Country.h also declares a dozen or more methods. Most of these are accessor
methods. Accessor methods fetch and set the values of instance variables. They are
a critical part of an object’s interface.

Object initialization and deallocation. In OpenStep you usually create an object by
allocating it (alloc) and then initializing it (init or init... variant):

When Country’s init method is invoked, it initializes its instance variables
to known values and completes other start-up tasks. Similarly, when an
object is deallocated, its dealloc method is invoked, giving it the
opportunity to release objects it’s created, free malloc’d memory, and so on.

Object archiving and unarchiving. The encodeWithCoder: declaration indicates that
objects of this class are to be archived. Archiving encodes an object’s class
and state (typically instance variables) and stores it in a file. Unarchiving,
through initWithCoder:, reads the encoded class and state data from the file

2 Declare methods.

After the instance variables, add the
declarations listed here.

/* initializtion and de-allocation */

- (id)init;

- (void)dealloc;

/* archiving and unarchiving */

- (void)encodeWithCoder:(NSCoder *)coder;

- (id)initWithCoder:(NSCoder *)coder;

/* accessor methods */

- (NSString *)name;

- (void)setName:(NSString *)str;

- (NSString *)airports;

- (void)setAirports:(NSString *)str;

- (NSString *)airlines;

- (void)setAirlines:(NSString *)str;

- (NSString *)transportation;

- (void)setTransportation:(NSString *)str;

- (NSString *)hotels;

- (void)setHotels:(NSString *)str;

- (NSString *)languages;

- (void)setLanguages:(NSString *)str;

- (BOOL)englishSpoken;

- (void)setEnglishSpoken:(BOOL)flag;

- (NSString *)currencyName;

- (void)setCurrencyName:(NSString *)str;

- (float)currencyRate;

- (void)setCurrencyRate:(float)val;

- (NSString *)comments;

- (void)setComments:(NSString *)str;

A

B

A

Country *aCountry = [[Country alloc] init];

B

Chapter 3 A Forms-Based Application

86

and restores the object to its previous state. There’s more on this topic in the
following pages.

Accessor methods. The declaration for accessor methods that return values is, by
convention, the name of the instance variable preceded by the type of the
returned value in parentheses. Accessor methods that set the value of instance
variables begin with “set” prepended to the name of the instance variable
(initial letter capitalized). The “set” method’s argument takes the type of the
instance variable and the method itself returns void.

When a class adopts a protocol, it asserts that it implements the methods the protocol
declares. Classes that archive or serialize their data must adopt the NSCoding protocol. See
“Objective-C Extensions” in the on-line Programming Languages for more on protocols.

Before You Go On

If you don’t want to allow an instance variable’s value to be changed by any object
other than one of your class, don’t provide a set method for the instance variable.
If you do provide a set method, make sure objects of your own class use it when
specifying a value for the instance variables. This has important implications for
subclasses of your class.

Exercise: The previous example shows the declarations for only a few accessor
methods. Every instance variable of the Country class should have an accessor
method that returns a value and one that sets a value. Complete the remaining
declarations.

C

The Collection Classes

Several classes in OpenStep’s Foundation framework create objects whose
purpose is to hold other objects. These collection classes are very useful.
Instances of them can store and locate their contents through a number of
mechanisms.

• Arrays (NSArray) store and retrieve objects in an ordered fashion through
zero-based indexing.

• Dictionaries (NSDictionary) store and quickly retrieve objects using
key/value pairs. For example, the key “red” might be associated with an
NSColor object representing red.

• Sets (NSSet) are unordered collections of distinct elements. Counted
sets (NSCountedSet) are sets that can contain duplicate (non-distinct)
elements; these duplicates are tracked through a counter. Use sets when
the speed of membership-testing is important.

The mutable versions of these classes allow you to add and remove objects
programmatically after the collection object is created.

Collection objects also provide a valuable way to store data. When you store
(or archive) a collection object in the file system, its constituent objects are
also stored.

NSObject

NSDictionaryNSArray NSSet

NSMutableDictionaryNSMutableArray NSMutableSet

NSCountedSet

Creating the Travel Advisor Interface

87

Now that you’ve declared the Country class’s accessor methods, implement
them.

For “get” accessor methods (at least when the instance variables, like
Travel Advisor’s, hold immutable objects) simply return the instance
variable.

For accessor methods that set object values, first send autorelease to the
current instance variable, then copy (or retain) the passed-in value to the
variable. The autorelease message causes the previously assigned object to
be released at the end of the current event loop, keeping current
references to the object valid until then.

If the instance variable has a non-object value (such as an integer or float
value), you don’t need to autorelease and copy; just assign the new value.

In many situations you can send retain instead of copy to keep an object around. But for
“value” type objects, such as NSStrings and our Country objects, copy is better. For the
reason why, and for more on autorelease, retain, copy, and related messages for object
disposal and object retention, see ‘‘Object Ownership, Retention, and Disposal’’ on page
88.

Before You Go On

Exercise: The example above shows the implementation of the accessor
methods for the name instance variable. Implement the remaining accessor
methods.

3 Implement the accessor methods.

Select Country.m in the project
browser.

Write the code that obtains and sets
the values of instance variables.

- (NSString *)name

{

 return name;

}

- (void)setName:(NSString *)str

{

 [name autorelease];

 name = [str copy];

}

A

B

A

B

Chapter 3 A Forms-Based Application

88

myObj yourObj

BA

1 1anObj

reference

count

C

2

1

2

1 1

E

0 0

yourObj

yourObj

yourObj

Autorelease pool

Autorelease pool

Autorelease pool

Autorelease pool

Object Ownership, Retention, and Disposal

The problem of object ownership and disposal is a natural concern in
object-oriented programming. When an object is created and passed
around various “consumer” objects in an application, which object is
responsible for disposing of it? And when? If the object is not deallocated
when it is no longer needed, memory “leaks.” If the object is deallocated too
soon, problems may occur in other objects that assume its existence, and
the application may crash.

The Foundation framework introduces a mechanism and a policy that helps
to ensure that objects are deallocated when—and only when—they are no
longer needed.

Who Owns Which Object?

The policy is quite simple: You are responsible for disposing of all objects

that you own. You own objects that you create, either by allocating or
copying them. You also own (or share ownership in) objects that you retain,
since retaining an object increments its reference count (see facing page).
The flip side of this rule is: If you don’t own an object, you need not worry
about releasing it.

But now another question arises. If the owner of an object must release the
object within its programmatic scope, how can it give that object to other
objects? The short answer is: the autorelease method, which marks the
receiver for later release, enabling it to live beyond the scope of the owning
object so that other objects can use it.

The autorelease method must be understood in a larger context of the
autorelease mechanism for object deallocation. Through this programmatic
mechanism, you implement the policy of object ownership and disposal.

A. myObj creates an object:

anObj = [[MyClass alloc] init];

B. myObj returns the object to yourObj, autoreleased:

return [anObj autorelease];

The object is “put” in the autorelease pool; that is, the autorelease pool starts
tracking the object.

C. yourObj retains the object:

[anObj retain];

The retain message increments the reference count.(If the object wasn’t
retained it would be deallocated at the end of the current event cycle.)

D. At the end of the event cycle, the autorelease pool sends release to all of its
objects, thereby decrementing their reference counts. Objects with reference
counts of zero are deallocated. Since anObj now has a reference count of one,
it is not deallocated.

E. yourObj sends autorelease to anObj, putting it into an autorelease pool
again. At the end of the event cycle, the autorelease pool sends release to its
objects; since anObj’s reference count is now zero, it’s deallocated.

For a fuller description of object ownership and disposal, see the introduction to
the Foundation framework reference documentation.

How Autorelease Pools Work: An Example

Creating the Travel Advisor Interface

89

Reference Counts, Autorelease Pools, and Deallocation

Each object in the Foundation framework has an associated reference
count. When you allocate or copy an object, its reference count is set at 1.
You send release to an object to decrement its reference count. When the
reference count reaches zero, NSObject invokes the object’s dealloc
method, after which the object is destroyed. However, successive
consumers of the object can delay its destruction by sending it retain,
which increments the reference count. You retain objects to ensure that they
won’t be deallocated until you’re done with them.

Each application puts in place at least one autorelease pool (for the event
cycle) and can have many more. An autorelease pool tracks objects marked
for eventual release and releases them at the appropriate time. You put an
object in the pool by sending the object an autorelease message. In the
case of an application’s event cycle, when code finishes executing and
control returns to the application object (typically at the end of the cycle),
the application object sends release to the autorelease pool, and the pool
releases each object it contains. If afterwards the reference count of an
object in the pool is zero, the object is deallocated.

Putting the Policy Into Practice

When an object is used solely within the scope of the method that creates
it, you can deallocate it immediately by sending it release. Otherwise, send
autorelease to all created objects that you no longer need but will return
or pass to other objects.

You shouldn’t release objects that you receive from other objects (unless you
precede the release or autorelease with a retain). You don’t own these
objects, and can assume that their owner has seen to their eventual
deallocation. You can also assume that (with some exceptions, described
below) a received object remains valid within the method it was received in.
That method can also safely return the object to its invoker.

You should send release or autorelease to an object only as many times
as are allowed by its creation (one) plus the number of retain messages you
have sent it. You should never send free or dealloc to an OpenStep object.

Implications of Retained Objects

When you retain an object, you’re sharing it with its owner and other objects
that have retained it. While this might be what you want, it can lead to some
undesirable consequences. If the owner is released, any object you received
from it and retained can be invalid. If you had retained an instance variable
of the owning object, and that instance variable is reassigned, your code
could be referencing something it does not expect.

copy Versus retain

When deciding whether to retain or copy objects, it helps to categorize them
as value objects or entity objects. Value objects are objects such as
NSNumbers or NSStrings that encapsulate a discrete, limited set of data.
Entity objects, such as NSViews and NSWindows, tend to be larger objects
that manage and coordinate subordinate objects. For value objects, use
copy when you want your own “snapshot” of the object (the object must
conform to the NSCopying protocol); use retain when you intend to share
the object. Always retain entity objects.

In accessor methods that set value-object instance variables, you usually
(but not always) want to make your own copy of the object and not share it.
(Otherwise it might change without your knowing.) Send autorelease to
the old object and then send copy—not retain—to the new one:

- (void)setTitle:(NSString *)newTitle
{

[title autorelease];
title = [newTitle copy];

}

OpenStep framework classes can, for reasons of efficiency, return objects
cast as immutable when to the owner (the framework class) they are
mutable. Thus there is no guarantee that a vended framework object won’t
change, even if it is of an immutable type. The precaution you should take
is evident: copy objects obtained from framework classes if it’s important
the object shouldn’t change from under you.

A possible side effect of retain: An object that owns an instance variable assigns
a new object to it after releasing the previously assigned object. Another object
that had retained the prior instance variable is now referencing an invalid object.

setlvar:
owning object

instance variable

i bj t

retain

Chapter 3 A Forms-Based Application

90

Invokes super’s (the superclass’s) init method to have inherited instance
variables initialized. Always do this first in an init method.

Initializes an NSString instance variable to an empty string. @“” is a compiler-
supported construction that creates an immutable NSString object from the
text enclosed by the quotes.

You don’t need to initialize instance variables to null values (nil, zero, NULL,
and so on) because the run-time system does it for you. But you should
initialize instance variables that take other starting values. Also, don’t
substitute nil when empty objects are expected, and vice versa.The Objective-
C keyword nil represents a null “object” with an id (value) of zero. An empty
object (such as @‘‘’’) is a true object; it just has no “real” content.

By returning self you’re returning a true instance of your object; up until this
point, the instance is considered undefined.

Before You Go On

Implement the dealloc method. In this method you release (that is, send release or
autorelease to) objects that you’ve created, copied, or retained (which don’t have
an impending autorelease). For the Country class, release all objects held as
instance variables. If you had other retained objects, you would release them,
and if you had dynamically allocated data, you would free it. When this method
completes, the Country object is deallocated. The dealloc method should send
dealloc to super as the last thing it does, so that the Country object isn’t released by
its superclass before it’s had the chance to release all objects it owns.

Note that release itself doesn’t deallocate objects, but it leads to their deallocation. For more
on release and autorelease, see ‘‘Object Ownership, Retention, and Disposal’’ on page 88.

4 Write the object-initialization and
object-deallocation code.

Implement the init method, as shown
here.

Implement the dealloc method,
following the suggestions in the Before
You Go On section below.

- (id)init

{

 [super init];

 name = @"";

 airports = @"";

 airlines = @"";

 transportation = @"";

 hotels = @"";

 languages = @"";

 currencyName = @"";

 comments = @"";

 return self;

}

A

B

C

A

B

C

Creating the Travel Advisor Interface

91

You want the Country objects created by the Travel Advisor application to be
persistent. That is, you want them to “remember” their state between sessions.
Archiving lets you do this by encoding the state of application objects in a file
along with their class memberships. The NSCoding protocol defines two
methods that enable archiving for a class: encodeWithCoder: and initWithCoder:.

The encodeObject: method encodes a single object in the archive file. For both
object and non-object types, you can use encodeValueOfObjCType:at: (shown in this
example encoding a string and a float). NSCoder provides other encoding
methods.

The order of decoding should be the same as the order of encoding; since
name is encoded first it should be decoded first. Use copy when you assign
value-type objects to instance variables (see ‘‘Object Ownership,
Retention, and Disposal’’ on page 88). NSCoder defines decode... methods
that correspond to the encode... methods, which you should use.

As in any init... method, end by returning self—an initialized instance.

5 Implement the methods that archive
and unarchive the object.

Implement the encodeWithCoder:
method as shown at right.

- (void)encodeWithCoder:(NSCoder *)coder

{

 [coder encodeObject:name];

 [coder encodeObject:airports];

 [coder encodeObject:airlines];

 [coder encodeObject:transportation];

 [coder encodeObject:hotels];

 [coder encodeObject:languages];

 [coder encodeValueOfObjCType:"s" at:&englishSpoken];

 [coder encodeObject:currencyName];

 [coder encodeValueOfObjCType:"f" at:¤cyRate];

 [coder encodeObject:comments];

}

Implement the initWithCoder: method
as shown at right.

- (id)initWithCoder:(NSCoder *)coder

{

 name = [[coder decodeObject] copy];

 airports = [[coder decodeObject] copy];

 airlines = [[coder decodeObject] copy];

 transportation = [[coder decodeObject] copy];

 hotels = [[coder decodeObject] copy];

 languages = [[coder decodeObject] copy];

 [coder decodeValueOfObjCType:"s" at:&englishSpoken];

 currencyName = [[coder decodeObject] copy];

 [coder decodeValueOfObjCType:"f" at:¤cyRate];

 comments = [[coder decodeObject] copy];

 return self;

 }

A

B

A

B

Chapter 3 A Forms-Based Application

92

Implementing the TAController Class

After describing what other instance variables you must add to TAController, this
section covers the following implementation tasks:

• Getting the data from Country objects to the interface and back
• Getting the table view to work, including updating Country records
• Adding and deleting “records” (Country objects)
• Formatting and validating field values
• “Housekeeping” tasks (application management)

The variables countryDict and countryKeys identify the array and the dictionary
discussed on ‘‘Travel Advisor — An Overview’’ on page 62. The boolean
recordNeedsSaving flags that record if the user modifies the information in any field.

This declaration is not essential, but the enum constants provide a clear and
convenient way to identify the cells in the Logistics form. Methods such as
cellAtIndex: identify the editable cells in a form through zero-based indexing. This
declaration gives each cell in the Logistics form a meaningful designation.

 NSMutableDictionary *countryDict;

 NSMutableArray *countryKeys;

 BOOL recordNeedsSaving;

1 Update TAController.h.

Import Country.h.

Add the instance-variable
declarations shown at right.

enum LogisticsFormTags {

 LGairports=0,

 LGairlines,

 LGtransportation,

 LGhotels

};

Add the enum declaration shown at
right between the last #import
directive and the @interface
directive.

Creating the Travel Advisor Interface

93

Turbo Coding With Project Builder

When you write code with Project Builder you have a set of “workbench”
tools at your disposal, among them:

Indentation

In Preferences you can set the characters at which indentation
automatically occurs, the number of spaces per indentation, and other
global indentation characteristics. The Edit menu includes the Indentation
submenu, which allows you to indent lines or blocks of code on a case-by-
case basis.

Delimiter Checking

Double-click a brace (left or right, it doesn’t matter) to locate the matching
brace; the code between the braces is highlighted. In a similar fashion,
double-click a square bracket in a message expression to locate the
matching bracket and double-click a parenthesis character to highlight the
code enclosed by the parentheses. If there is no matching delimiter, Project
Builder emits a warning beep.

Name Completion

Name completion is a facility that, given a partial name, completes it from
all symbols known by the project. You activate it by pressing Escape. You
can use name completion in the code editor and in all panels where you are
finding information or searching for files to open.

As an example: you know there's a certain constant to use with fonts, but
you cannot remember it. In your code, type NSFont. Then press the Escape
key several times. These symbols appear in succession (the found portion
is underlined):

NSFontIdentityMatrix
NSFontManager
NSFontPanel

Emacs Bindings

You can use the most common Emacs commands in Project Builder’s code
editor. (Emacs is a popular editor for writing code.) For example, there are
the commands page-forward (Control-v), word-forward (Meta-f), delete-
word (Meta-d), kill-forward (Control-k), and yank from kill ring (Control-y).

Some Emacs commands may conflict with some of the standard Windows
key bindings. You can modify the key bindings the code editor uses to
substitute other “command” keys—such as the Alternate key or Shift-
Control— for Emacs’ Control or Meta keys. For instructions on custom key
bindings, see “Text Defaults and Key Bindings” in the Programming
Topics section of
/NextLibrary/Documentation/NextDev/TasksAndConcepts.

Chapter 3 A Forms-Based Application

94

Data Mediation
TAController acts as the mediator of data exchanged between a source of data and
the display of that data. Data mediation involves taking data from fields, storing it
somewhere, and putting it back into the fields later. TAController has two
methods related to data mediation: populateFields: puts Country instance data into
the fields of Travel Advisor and extractFields: updates a Country object with the
information in the fields.

Causes the Country field to display the value of the name instance variable of
the Country record (aRec) passed into the method. Since [aRec name] is nested,
the object it returns is used as the argument of setStringValue:, which sets the
textual content of the receiver (in this case, an NSFormCell).

The cellAtIndex: message is sent to the form and returns the cell identified by the
enum constant LGairports.

Sets the state of the switch according to the boolean value held by the Country
instance variable; if the state is YES, the X appears in the switch box.

Selects the text in the Country field or, if there is no text, inserts the cursor.

2 Implement the methods that transfer
data to and from the application’s
fields.

Implement the populateFields:
method as shown at right.

- (void)populateFields:(Country *)aRec

{

 [countryField setStringValue:[aRec name]];

 [[logisticsForm cellAtIndex:LGairports] setStringValue:
 [aRec airports]];

 [[logisticsForm cellAtIndex:LGairlines] setStringValue:
 [aRec airlines]];

 [[logisticsForm cellAtIndex:LGtransportation] setStringValue:
 [aRec transportation]];

 [[logisticsForm cellAtIndex:LGhotels] setStringValue:
 [aRec hotels]];

 [currencyNameField setStringValue:[aRec currencyName]];

 [currencyRateField setFloatValue:[aRec currencyRate]];

 [languagesField setStringValue:[aRec languages]];

 [englishSpokenSwitch setState:[aRec englishSpoken]];

 [commentsField setString:[aRec comments]];

 [countryField selectText:self];

}

A

B

C

A

B

C

D

Creating the Travel Advisor Interface

95

Although it doesn’t do anything with data, the blankFields: method is similar in
structure to populateFields:. The blankFields: method clears whatever appears in Travel
Advisor’s fields by inserting empty string objects and zeros.

The setState: message affects the appearance of two-state toggled controls,
such as a switch button. With an argument of YES, the checkmark
appears; with an argument of NO, the checkmark is removed.

The setString: message sets the textual contents of NSText objects (such as
the one enclosed by the scroll view).

Before You Go On

Exercise: Implement the extractFields: method. In this method set the values of the
passed-in Country record’s instance variables with the contents of the
associated fields.

Here’s a little tip for you: This implementation is extractFields: in reverse. Use
the stringValue method to get field contents and use Country’s accessor
methods to set the values of instance variables.

- (void)blankFields:(id)sender

{

 [countryField setStringValue:@""];

 [[logisticsForm cellAtIndex:LGairports] setStringValue:@""];

 [[logisticsForm cellAtIndex:LGairlines] setStringValue:@""];

 [[logisticsForm cellAtIndex:LGtransportation] setStringValue:@""];

 [[logisticsForm cellAtIndex:LGhotels] setStringValue:@""];

 [currencyNameField setStringValue:@""];

 [currencyRateField setFloatValue:0.000];

 [languagesField setStringValue:@""];

 [englishSpokenSwitch setState:NO];

 [currencyDollarsField setFloatValue:0.00];

 [currencyLocalField setFloatValue:0.00];

 [celsius setIntValue:0];

 [commentsField setString:@""];

 [countryField selectText:self];

}

A

B

Implement the blankFields: method as
shown at right.

A

B

Chapter 3 A Forms-Based Application

96

Finding Information Within Your Project

Symbol Definition Search Syntax

You can narrow your search for definitions of symbols by indicating type in
the Find field of the Project Find panel along with the symbol name. Once
the symbol items are listed in the browser, you can click an item to navigate
to the definition in the header file, or click a book icon to display the relevant
reference documentation.

The following table lists examples of searching for symbol definitions by
type:

Example Finds Definition For

@NSArray NSArray class

<NSCoding> NSCoding protocol

-objectAtIndex: Instance method

+stringWithFormat: Class method

[NSBox controlView] Method specific to class

NSRunAlertPanel() Function

NSApp Type or constant

Other Ways of Finding Information

Project Builder includes other facilities for finding information:

• Incremental search. Control-s brings up the incremental-search
panel for the currently edited file. As you type, the cursor advances to the
next sequence of characters in the file that match what you type. Click
Next (or press Control-s) to go to the next occurrence; click Prev (or press
Control-r) to go to the previous occurrence.

Note thatControl-s might not invoke incremental search on all systems
because of different native key bindings on those systems. However, you
can customize your key bindings, both generally and specific to Project
Builder, and thus get the incremental-search (and other) functionality.
See ‘‘Turbo Coding With Project Builder’’ on page 93 for more
information.

• Help. Project Builder and Interface Builder also feature tool tips,
context-sensitive help, and task-related help. See page 56 for details.

Search for: symbol definition,
symbol reference, textual strings
(with or without regular
expressions).

Find and replace buttons.

Lists the targets of recent
find operations; selecting
one re-displays the results
in the browser.

Search results.

Click an item to display
the relevant code.

Click a book icon to see the
related reference
documentation.

The Project Find Panel

The Project Find panel lets you find any symbol defined or referenced in your
project. It also allows you to look up related reference documentation,
search for text project-wide using regular expressions, and replace symbols

or strings of text. To use the full power of Project Find, your project must be
indexed; once it is, you have access to all symbols that the project
references, including symbols defined in the frameworks and libraries
linked into the project.

Creating the Travel Advisor Interface

97

Getting the Table View to Work
Table views are objects that display data as records (rows) with attributes
(columns). The table view in Travel Advisor displays the simplest kind of
record, with each record having only one attribute: a country name.

Table views get the data they display from a data source. A data source is an
object that implements the informal NSTableDataSource protocol to respond
to NSTableView requests for data. Since the NSTableView organizes records
by zero-based indexing, it is essential that the data source organizes the data
it provides to the NSTableView similarly: in an array.

The [countryDict allKeys] message returns an array of keys (country names)
from countryDict, the unarchived dictionary that contains Country objects as
values. The sortedArrayUsingSelector: message sorts the items in this “raw”
array using the compare: method defined by the class of the objects in the
array, in this case NSString (this is an example of polymorphism and
dynamic binding). The sorted names go into a temporary NSArray—since
that is the type of the returned value—and this temporary array is used to
create a mutable array, which is then assigned to countryKeys. A mutable
array is necessary because users may add or delete countries.

The [tableView setDataSource:self] message identifies the TAController object as
the table view’s data source. The table view will commence sending
NSTableDataSource messages to TAController. (You can effect the same
thing by setting the NSTableView’s dataSource outlet in Interface Builder.)

If users are supposed to edit the cells of the table view, you could make TAController
the delegate of the table view at this point (with setDelegate:).The delegate receives
messages relating to the editing and validation of cell contents. For details, see the
specification on NSTableView in the Application Kit reference documentation.

3 Implement the behavior of the table
view’s data source.

In TAController’s awakeFromNib
method, create and sort the array of
country names.

In the same method, designate self as
the data source.

- (void)awakeFromNib

{

 NSArray *tmpArray = [[countryDict allKeys]
 sortedArrayUsingSelector:@selector(compare:)];

 countryKeys = [[NSMutableArray alloc] initWithArray:tmpArray];

 [tableView setDataSource:self];

 [tableView sizeLastColumnToFit];

}

A

B

A

B

Chapter 3 A Forms-Based Application

98

To fulfill its role as data source, TAController must implement two methods of the
NSTableDataSource informal protocol.

Returns the number of country names in the countryKeys array. The table view
uses this information to determine how many rows to create.

If you had an application with multiple table views, each table view would
invoke this NSTableView delegation method (as well as the others). By
evaluating the theTableView argument, you could distinguish which table view
was involved.

This method first evaluates the column identifier to determine if it’s the right
column (it should always be “Countries”). If it is, the method returns the
country name from the countryKeys array that is associated with rowIndex. This
name is then displayed at rowIndex of the column. (Remember, the array and the
cells of the column are synchronized in terms of their indices.)

The NSTableDataSource informal protocol has another method,
tableView:setObjectValue:forTableColumn:row:, that you won’t implement in this tutorial. This
method allows the data source to extract data entered by users into table-view
cells; since Travel Advisor’s table view is read-only, there is no need to implement
it.

Implement two methods of the
NSTableDataSource informal protocol:

 – numberOfRowsInTableView:
 – tableView:
 objectValueForTableColumn:
 row:

- (int)numberOfRowsInTableView:(NSTableView *)theTableView

{

 return [countryKeys count];

}

- (id)tableView:(NSTableView *)theTableView

 objectValueForTableColumn:(NSTableColumn *)theColumn

 row:(int)rowIndex

{

 if ([[theColumn identifier] isEqualToString:@"Countries"])

 return [countryKeys objectAtIndex:rowIndex];

 else

 return nil;

}

A

B

A

B

Creating the Travel Advisor Interface

99

Finally, you have to have the table view respond to mouse clicks in it, which
indicate a request that a new record be displayed. As you recall, you defined
in Interface Builder the handleTVClick: action for this purpose. This method must
do a number of things:

• Save the current Country object or create a new one.
• If there’s a new record, re-sort the array providing data to the table view.
• Display the selected record.

This method has two major sections, each introduced by an if statement.

4 Update records.

Implement the method that responds
to user selections in the table view.

- (void)handleTVClick:(id)sender

{

 Country *aRec, *newRec, *newerRec;

 int index;

 /* does current obj need to be saved? */

 if (recordNeedsSaving) {

 /* is current object already in dictionary? */

 if (aRec=[countryDict objectForKey:[countryField stringValue]]) {

 /* remove if it's been changed */

 if (aRec) {

 NSString *country = [aRec name];

 [countryDict removeObjectForKey:country];

 [countryKeys removeObject:country];

 }

 }

 /* Create Country obj, add to dict, add name to keys array */

 newRec = [[Country alloc] init];

 [self extractFields:newRec];

[countryDict setObject:newRec forKey:[countryField stringValue]];

 [newRec release];

 [countryKeys addObject:[countryField stringValue]];

 /* sort array here */

 [countryKeys sortUsingSelector:@selector(compare:)];

 [tableView reloadData];

 }

 index = [sender selectedRow];

 if (index >= 0 && index < [countryKeys count]) {

 newerRec = [countryDict objectForKey:

 [countryKeys objectAtIndex:index]];

 [self populateFields:newerRec];

 [commentsLabel setStringValue:[NSString stringWithFormat:

 @"Notes and Itinerary for %@", [countryField stringValue]]];

 recordNeedsSaving=NO;

 }

}

A

B

Chapter 3 A Forms-Based Application

100

Getting in on the Action: Delegation and Notification

A lot goes on in a running application: events are being interpreted, files are
being read, views are being drawn. Because your custom objects might be
interested in any of these activities, OpenStep offers two mechanisms
through which your objects can participate in or be kept informed of events
going on in the application: delegation and notification.

Delegation

Many OpenStep framework objects hold a delegate as an instance variable.
A delegate is an object that receives messages from the framework object
when specific events occur. Delegation messages are of several types,
depending on the expected role of the delegate:

• Some messages are purely informational, occurring after an event has
happened. They allow a delegate to coordinate its actions with the other
object.

• Some messages are sent before an action will occur, allowing the
delegate to veto or permit the action.

• Other delegation messages assign a specific task to a delegate, like
filling a browser with cells.

You can set your custom object to be the delegate of a framework object
programmatically or in Interface Builder. Your custom classes can also
define their own delegate variables and delegation protocols for client
objects.

.
delegate

= C

oddB
all:w

illActSillyA

B

C

Notification

A notification is a message that is broadcast to all objects in an application
that are interested in the event the notification represents. As does the
informational delegation message, the notification informs these observers
that this event took place. It can also pass along relevant data about the event.

Here’s the way the notification process works:

.
delegate

= C

oddball

A

B

C

posts

OddBallDidActSillyNotification

• Objects interested in an event that happens elsewhere in the application
— say the addition of a record to a database — register themselves
with a notification center (an instance of NSNotificationCenter) as
observers of that event. Delegates of an object that posts notifications
are automatically registered as observers of those notifications.

• The object that adds the object to the database (or some such event)
posts a notification (an instance of NSNotification) to a notification
center. The notification contains a tag identifying the notification, the
id of the associated object, and, optionally, a dictionary of supplemental
data.

• The notification center then sends a message to each observer, invoking
the method specified by each, and passing in the notification.

Notifications hold some advantages over delegation messages as a means
of inter-application communication. They allow an object to synchronize its
behavior and state with multiple objects in an application, and without
having to know the identity of those objects. With notification queues, it
is also possible to post notifications asynchronously and coalesce similar
notifications.

Creating the Travel Advisor Interface

101

When any Country-object data is added or altered, Travel Advisor sets the
recordNeedsSaving flag to YES (you’ll learn how to do this later on). If
recordNeedsSaving is YES, the code first deletes any existing Country record
for that country from the dictionary and also removes the country name
from the table view’s array. (Upon removal, the objects are automatically
released by the array.) Then it creates a new Country instance, initializes it
with the values currently on the screen, adds the instance to the
dictionary, and releases the instance (the dictionary has retained it). For
the table view’s array, it adds the country name to it, sorts it, and invokes
the reload method, which causes the table view to request data from its data
source.

The selectedRow message queries the table view for the row index of the cell
that was clicked. If this index is within the array’s bounds, the code uses it
to get the country name from the array, and then uses the country name as
the key to get the associated Country instance. It writes the instance-
variable values of this instance to the fields of the application, updates the
“Notes and Itinerary for” label, and resets the recordNeedsSaving flag.

Optional Exercise

Users often like to have key alternatives to mouse actions such as clicking a
table view. One way of acquiring a key alternative is to add a menu command
in Interface Builder, specify a key as an attribute of the command, define an
action method that the command will invoke, and then implement that
method.

The methods nextRecord: and prevRecord: should be invoked when users choose
Next Record and Prev Record or type the key equivalents Command-n and
Command-r. In TAController.m, implement these methods, keeping the following
hints in mind:

1. Get the index of the selected row (selectedRow).

2. Increment or decrement this index, according to which key is pressed (or
which command is clicked).

3. If the start or end of the table view is encountered, “wrap” the selection.
(Hint: Use the index of the last object in the countryKeys array.)

4. Using the index, select the new row, but don’t extend the selection.

5. Simulate a mouse click on the new row by sending handleTVClick: to self.

A

B

Chapter 3 A Forms-Based Application

102

Breaktime: Build the Project
Now is a good time to take a break and build Travel Advisor. See if there are any
errors in your code or in the nib file you’ve created with Interface Builder.
Remember, if you unsure about any of the code discussed so far, especially code
that you’re encouraged to write on your own as part of an “exercise,” refer to the
example project in /NextDeveloper/Examples/AppKit. You may also want to take this time
to test drive Project Builder’s graphical debugger, discussed on the following two
pages.

Creating the Travel Advisor Interface

103

Adding and Deleting Records
When users click Add Record to enter a Country “record,” the addRecord:
method is invoked. You want this method to do a few things besides adding a
Country object to the application’s dictionary:

• Ensure that a country name has been entered.
• Make the table view reflect the new record.
• If the record already exists, update it (but only if it’s been modified).

This section of code verifies that a country name has been entered and
sees if there is a Country object in the dictionary. If there’s no object for
the key, objectForKey: returns nil. If the object exists and it’s flagged as
modified, the code removes it from the dictionary and removes the

5 Implement the method that adds a
Country object to the NSDictionary
“database.”

- (void)addRecord:(id)sender

{

 Country *aCountry;

 NSString *countryName = [countryField stringValue];

 if (countryName && (![countryName isEqualToString:@""])) {

 aCountry = [countryDict objectForKey:countryName];

 if (aCountry && recordNeedsSaving) {

 /* remove old Country object from dictionary */

 [countryDict removeObjectForKey:countryName];

 [countryKeys removeObject:countryName];

 aCountry = nil;

 }

 if (!aCountry) /* record is new or has been removed */

 aCountry = [[Country alloc] init];

 else /* record already exists and hasn't changed */

 return;

 [self extractFields:aCountry];

 [countryDict setObject:aCountry forKey:[aCountry name]];

 [countryKeys addObject:[aCountry name]];

 [countryKeys sortUsingSelector:@selector(compare:)];

 recordNeedsSaving=NO;

 [commentsLabel setStringValue:[NSString stringWithFormat:

 @"Notes and Itinerary for %@",[countryField stringValue]]];

 [countryField selectText:self];

 [tableView reloadData];

 [tableView selectRow:[countryKeys indexOfObject:

 [aCountry name]] byExtendingSelection:NO];

 }

}

A

B

C

D

A

Chapter 3 A Forms-Based Application

104

country name from the countryKeys array. Note that removing an object from a
dictionary or array also releases it, so the code sets aCountry to nil. It then tests
aCountry and, if it’s nil, creates a new object; otherwise it just returns, because an
object already exists for this country and it hasn’t been modified.

After updating the new Country object with the information on the
application’s fields (extractFields:), this code adds the Country object to the
dictionary and the country name to the countryKeys array.

This section of code performs some things that have to be done, such as
resetting the recordNeedsSaving flag and updating the label over the scroll view to
reflect the just-added country.

The reloadData message forces the table view to update its contents. The
selectRow:byExtendingSelection: message highlights the new record in the table view.

Note: In the code example on the previous page, note the expression “if
(!aCountry)”. For objects, this is shorthand for “if (aCountry == nil)”; in the same
vein, “if (aCountry)” is equivalent to “if (aCountry != nil)”.

Before You Go On

Exercise: Implement the deleteRecord: method. Although similar in structure to
addRecord: this method is much simpler, because you don’t need to worry about
whether a Country record has been modified. Once you’ve deleted the record,
remember to update the table view and clear the fields of the application.

B

C

D

Flattening the Object Network: Coding and Archiving

Coding, as implemented by NSCoder, takes
a network of objects such as exist in an application
and serializes that data, capturing the state,
structure, relationships, and class memberships of
the objects. As a subclass of NSCoder, NSArchiver
extends this behavior by storing the serialized data
in a file.

When you archive a root object, you archive not only
that object but all other objects the root object
references, all objects those second-level objects
reference, and so on. To be archived, however,
objects must conform to the NSCoding protocol.
This conformance requires that they implement the
encodeWithCoder: and initWithCoder: methods.

Thus sending archiveRootObject:toFile: to
NSArchiver leads to the invocation of
encodeWithCoder: in the root object and in all
referenced objects that implement it. Similarly,
sending unarchiveObjectWithFile: to
NSUnarchiver results in initWithCoder: being
invoked in those objects referenced in the archive
file. These objects reconstitute themselves from the
instance data in the file. In this way, the network of
objects, three-dimensional in abstraction, is
converted to
a two-dimensional stream of data and
back again.

Creating the Travel Advisor Interface

105

Field Validation
The NSControl class gives you an API for validating the contents of cells.
Validation verifies that the values of cells fall within certain limits or meet
certain criteria. In Travel Advisor, we want to make sure that the user does not
enter a negative value in the Rate field.

The request for validation is a message—control:isValidObject:—that a control
sends to its delegate. The control, in this case, is the Rate field.

Because you might have more than one field’s value to validate, this
example first determines which field is sending the message. It then
checks the field’s value (passed in as the second object); if it is negative, it
displays a message box and returns NO, blocking the entry of the value.
Otherwise, it returns YES and the field accepts the value.

The NSRunAlertPanel() function allows you to display an attention panel from
any point in your code. The above example calls this function simply to
inform the user why the value cannot be accepted.

Although Travel Advisor doesn’t evaluate it, the NSRunAlertPanel() function
returns a constant indicating which button the user clicks on the message
box. The logic of your code could therefore branch according to user
input. In addition, the function allows you to insert variable information
(using printf()-style conversion specifiers) into the body of the message.

6 Validate the values entered in a field.

In awakeFromNib, make TAController
a delegate of the field to be validated:
the Rate field.

Implement the control:isValidObject:
method to validate the value of the
field.

 [currencyRateField setDelegate:self];

- (BOOL)control:(NSControl *)control isValidObject:(id)obj

{

 if (control == currencyRateField) {

 if ([obj floatValue] < 0.0) {

NSRunAlertPanel(@"Travel Advisor",
@"Rate cannot be negative.", nil, nil, nil);

 return NO;

 }

 }

 return YES;

}

A

B

A

B

Chapter 3 A Forms-Based Application

106

Application Management
By now you’ve finished the major coding tasks for Travel Advisor. All that remains
to implement are a half dozen or so methods. Some of these methods perform
tasks that every application should do. Others provide bits of functionality that
Travel Advisor requires. In this section you’ll:

• Archive and unarchive the TAController object.
• Implement TAController’s init and dealloc methods.
• Save data when the application terminates.
• Mark the current record when users make a change.
• Obtain and display converted currency values.

The data that users enter into Travel Advisor should be saved in the file system,
or archived. The best time to initiate archiving in Travel Advisor is when the
application is about to terminate. Earlier you made TAController the delegate of
the application object (NSApp). Now respond to the delegate message
applicationShouldTerminate:, which is sent just before the application terminates.

Constructs a pathname for the archive file, “TravelData.” This file is stored in
the resource directory of the application’s main bundle. The application
wrapper—the directory holding the application executable and the resource
directory—is a bundle (the main bundle), so NSBundle methods are used to get
the path to this directory.

This technique of storing application data in the main bundle is for the purposes of
demonstrating NSBundle APIs and is not recommended for most applications. See the
following chapter, “To Do Tutorial—The Basics,” for examples and explanations of storing
user-specific document data in the file system.

If the countryDict dictionary holds Country objects, TAController archives it with
the NSArchiver class method archiveRootObject:toFile:. Since the dictionary is
designated as the root object for archiving, all objects that the dictionary
references (that is, the Country objects it contains) will be archived too.

7 Archive the application’s objects
when it terminates.

Implement the delegate method
applicationShouldTerminate:, as
shown at right.

- (BOOL)applicationShouldTerminate:(id)sender

{

 NSString *storePath = [[[NSBundle mainBundle] resourcePath]

 stringByAppendingPathComponent:@"TravelData"];

 /* save current record if it is new or changed */

 [self addRecord:self];

 if (countryDict && [countryDict count])

 [NSArchiver archiveRootObject:countryDict toFile:storePath];

 return YES;

}

A

B

A

B

Creating the Travel Advisor Interface

107

Behind ‘Click Here’: Controls, Cells, and Formatters

Controls and cells lie behind the appearance and behavior of most user-
interface objects in OpenStep, including buttons, text fields, sliders, and
browsers. Although they are quite different types of objects—controls
inherit from NSControl while cells inherit from NSCell—they interact
closely.

Controls enable users to signal their intentions to an application, and thus
to control what is happening. By interpreting mouse and keyboard events
and asking another object to respond to them, controls implement the
target/action paradigm described in ‘‘Paths for Object Communication:
Outlets, Targets, and Actions’’ on page 40. Controls themselves can hold
targets and actions as instance variables, but usually they get this data
from the affected cell (which must inherit from NSActionCell).

Cells are rectangular areas “embedded” within a control. A control can hold
multiple cells as a way to partition its surface into active areas. Cells can
draw their own contents either as text or image (and sometimes as both),
and they can respond individually to user actions. Since cells are typically
more frugal consumers of memory than controls, they help applications be
more efficient.

Controls act as managers of their cells, telling them when and where to
draw, and notifying them when a user event (mouse clicks, keystrokes)
occurs in their areas. This division of labor, given the relative “weight” of
cells and controls, provides a great boost to application performance.

Control
tracking messages

Cell

drawing messages

cell (NSButtonCell)

control (NSMatrix)

control (NSTextField)
cell(NSTextFieldcell)

A control does not have to have a cell associated with it, but most user-
interface objects available on Interface Builder’s standard palettes are cell-
control combinations. Even a simple button—from Interface Builder or
programmatically created—is a control (an NSButton instance) associated
with an NSButtonCell. The cells in a control such as a matrix must be the
same size, but they can be of different classes. More complex controls, such
as table views and browsers, can incorporate various types of cells.

Cells and Formatters

When one thinks of the contents of cells, it’s natural to consider only text
(NSString) and images (NSImage). The content seems to be whatever is
displayed. However, cells can hold other kinds of objects, such as dates
(NSDate), numbers (NSNumber), and custom objects (say, phone-number
objects).

Formatter objects handle the textual representation of the objects
associated with cells and translate what is typed into a cell into the
underlying object. Using NSCell’s setFormatter:, you must
programmatically associate a formatter with a cell to get this behavior.

The Foundation framework provides the NSDateFormatter and
NSNumberFormatter classes to generate date formatters and currency and
number formatters. You can make a custom subclass of NSFormatter to
derive your own formatters.

NSDateFormatter

NSDate

translates
textual
contents...

...into the
underlying
object...

...and vice
versa

Chapter 3 A Forms-Based Application

108

Using NSBundle methods, locates the archive file “TravelData” in the
application wrapper and returns the path to it.

The unarchiveObjectWithFile: message unarchives (that is, restores) the object whose
attributes are encoded in the specified file. The object that is unarchived and
returned is the NSDictionary of Country objects (countryDict).

If no NSDictionary is unarchived, the countryDict instance variable remains nil. If
this is the case, TAController creates an empty countryDict dictionary and an
empty countryKeys array. Otherwise, it retains the instance variable.

When users modify data in fields of Travel Advisor, you want to mark the current
record as modified so later you’ll know to save it. The Application Kit broadcasts
a notification whenever text in the application is altered. To receive this
notification, add TAController to the list of the notification’s observers.

- (id)init

{

 NSString *storePath = [[NSBundle mainBundle]

 pathForResource:@"TravelData" ofType:nil];

 [super init];

 countryDict =

 [NSUnarchiver unarchiveObjectWithFile:storePath];

 if (!countryDict) {

 countryDict = [[NSMutableDictionary alloc] init];

 countryKeys = [[NSMutableArray alloc] initWithCapacity:10];

 } else

 countryDict = [countryDict retain];

 recordNeedsSaving=NO;

 return self;

}

A

B

C

8 Implement TAController’s methods
for initializing and deallocating itself.

Implement the init method, as shown
at right.

Implement the dealloc method to
release object instance variables.

A

B

C

Creating the Travel Advisor Interface

109

Next, implement the method that you indicated would respond to the
notification; this method sets a flag, thereby marking the record as changed.

You post notifications and add objects as observers of notifications with methods defined
in the NSNotificationCenter class. NSNotification defines methods for creating
notification objects and for accessing their attributes. See the specifications of these
classes in the Foundation framework reference documentation.

Two of the editable fields of Travel Advisor hold temporary values used in
conversions and so are not saved. This statement checks if these fields are the
ones originating the notification and, if they are, returns without setting the
flag. (The object message obtains the object associated with the notification.)

The final method to implement is almost identical to the one you wrote for
Currency Converter to display the results of a currency conversion when the
user clicks the Convert button for currency conversion.

Optional Exercise

Convert Celsius to Fahrenheit: Implement the convertCelsius: method. You’ve already
specified and connected the necessary outlets (celsius, fahrenheit) and action
(convertCelsius:), so all that remains is the method implementation. The formula
you’ll need is:

F° = 9/5C° + 32

 [[NSNotificationCenter defaultCenter] addObserver:self

 selector:@selector(textDidChange:)

 name:NSControlTextDidChangeNotification object:nil];

9 Write the code that marks records as
modified.

In the awakeFromNib method, make
TAController an observer of
NSControlTextDidChangeNotification.

Implement textDidChange: to set the
recordNeedsSaving flag.

- (void)textDidChange:(NSNotification *)notification

{

 if ([notification object] == currencyDollarsField ||

 [notification object] == celsius) return;

 recordNeedsSaving=YES;

}

10 Implement the method that responds
to a request for a currency
conversion.

- (void)convertCurrency:(id)sender

{

 [currencyLocalField setFloatValue:

 [converter convertAmount:[currencyDollarsField floatValue]

 byRate:[currencyRateField floatValue]]];

}

Chapter 3 A Forms-Based Application

110

Using the Graphical Debugger

To smooth the task of debugging, Project Builder puts a graphical user
interface over the GNU debugger, gdb. To access the Launch panel that
serves as this graphical debugger, click the button outlined at right.

1. Run the debugger.

The Launch panel allows you to run programs or debug them. If you want to
debug a program, start up gdb by clicking this button:

Before you run gdb you should first build your project with a target of
“debug” to get an executable with full debugging information. You should
also verify that the proper executable is being debugged. To select the
“debug” executable for debugging, click the checkmark button and, in the
Executables display of the Launch Options panel, choose the file with an
extension of debug.

Set options: executable to run or debug,
directories to search, command-line
arguments, and so on.

Start gdb.

Launch program (instead of debugging it).

2. Set a breakpoint.

When you start the debugger, a narrow gray band appears along the left
margin of the code editor. You set a breakpoint by double-clicking in the
gray band next to a line of code.

You can see which breakpoints are set in the Breakpoints display of the Task
Inspector, which you access by clicking this button:

In this inspector, you can disable and re-enable breakpoints by double-
clicking under the “Use?” column.

Reset the breakpoint by
dragging it.

Disable the breakpoint by
double-clicking it.

Delete the breakpoint by
dragging it into the code
editor until it disappears.

3. Start debugging the application.

To begin debugging an application click the right-triangle button:

The application starts up. If necessary, use the application until the first
breakpoint is encountered. When that happens, the “(gdb)” prompt appears
in the command-line section of the panel.

You can type gdb commands at this prompt. There are many gdb
commands not represented in the user interface. For on-line information on
these commands, enter “help” at the prompt. You can also find more about
commands in the on-line gdb reference.

Creating the Travel Advisor Interface

111

4. Inspect the stack trace.

When a program running under the debugger hits a breakpoint, the
graphical debugger displays a trace of the call stack. You can see the
sequence of calls leading up to the breakpoint as well as the values of
arguments of methods or functions implemented by your project.

The Stack display is part of the Task Inspector, which you open by clicking
the following button on the Launch panel:

5. Step through code.

When the program you’re debugging hits a breakpoint, you usually want to
step through a section of the code and see what happens (in terms of the
stack and the values of variables). The Launch panel gives you two buttons
for stepping through code.

You can step into code (going from a call site to an invoked method or called
function) only with code that your project implements.

Step intoStep past

The arrow shows the program
counter as you step through
code.

6. Examine data values.

With the graphical debugger, you can inspect the values of variables,
pointers, and objects as you step through code. First select a symbol in the
code after the statement in which it appears has been executed. Then click
one of the “print” buttons to learn about its present value:

The gdb command-line section of the Launch panel then displays the
requested value. When you click the rightmost button and an object is
selected, that object’s description method is invoked. If you are debugging
your own objects, it might be worthwhile to implement the description
method to yield information as precise and detailed as is required (see page
128 for an example of this).

For more information on debugging, see the on-line Help for Project Builder.

Print referencePrint value

Print object
description

Chapter 3 A Forms-Based Application

112

Building and Running Travel Advisor

When Travel Advisor is built, start it up by double-clicking the icon in the File
Manager. Then put the application through the following tests:

• Enter a few records. Make up geographical information if you have to—
you’re not trusting your future travels to this application. Not yet, anyway.

• Click the items in the table view and notice how the selected records are
displayed. Press Command-n and Command-r and observe what happens.

• Enter values in the conversion fields to see how they’re automatically
formatted. Try to enter a negative value in the Rate field.

• Quit the application and then start it up again. Notice how the application
displays the same records that you entered.

Tips for Eliminating Deallocation Bugs

Problems in object deallocation are not unusual in OpenStep applications
under development. You might release an object too many times or you
might not release an object as many times as is needed to deallocate it.
Both situations lead to nasty problems —in the first case, to run-time
errors when your code references non-existent objects; the second case
leads to memory leaks.

If you’re releasing an object too many times, you’ll get run-time error
messages telling you that a message was sent to a freed object. To find
which methods were releasing the object, in gdb or the graphical debugger:

1 Set a breakpoint on main() and run the program.

2 When you hit the breakpoint, send enableFreedObjectCheck: to
NSAutoreleasePool with an argument of YES.

3 Set a breakpoint on _NSAutoreleaseFreedObject.

4 Continue running the program.

5 When the program hits the breakpoint, do a backtrace and check the
stack to find the method releasing the object.

Avoiding Deallocation Errors

Here’s a few things to remember that might help you avoid deallocation
bugs in OpenStep code:

• Make sure there’s an alloc, copy, mutableCopy, or retain message
sent to an object for each release or autorelease sent to it.

• When you release a collection object (such as an NSArray), you release
all objects stored in it as well. When you add an object to a collection,
it’s retained; when you remove an object from a collection, it’s released.

• Superviews retain subviews as you add them to the view hierarchy and
release subviews as you release them. If you want to keep swapped-out
views, you should retain them. Similarly, when you replace a window’s or
box’s content view, the old view is released and the new view is retained.

• To avoid retain cycles, objects should not retain their delegates. Objects
also should not retain their outlets, since they do not own them.

118

What You’ll Learn

Designing a multi-document
application

Managing documents

Extending an Application Kit class

Loading code and resources
dynamically

Opening and saving files

Manipulating times and dates

Reading and setting user defaults

The core program framework

4

You can find the To Do project in the

AppKit

 subdirectory of

/NextDeveloper/Examples.

119

Chapter 4

A Multi-Document Application

Many kinds of applications—word processors and spreadsheets, to name a couple—

are designed with the notion of a

document

 in mind. A document is a body of

information, usually contained by a window, that is self-contained and repeatable.

Users can create, modify, store, and access a document as a discrete unit. Multi-

document applications (as these programs are called) can generate an almost unlimited

number of documents.

The To Do application presented in this chapter is a multi-document application. It is

a fairly simple personal information manager. Each To Do document captures the

daily “must-do” items for a particular purpose. For instance, one could have a To Do

list for work and another one for home.

This chapter guides you through the steps needed to make To Do a multi-document

application. When you finish this tutorial, the completed application will allow users to

go to specific dates on a calendar and enter a list appointments or tasks for a particular

days.

Chapter 4

A Multi-Document Application

120

The Design of To Do

The To Do application vaults past Travel Advisor in terms of complexity.
Instead of Travel Advisor’s one nib file, To Do has three nib files. Instead of
three custom classes, To Do has seven. The diagram at the bottom of this
page shows the interrelationships among instances of some of those
classes and the nib files that they load.

Some of the objects in this diagram are familiar, fitting as they do into the
Model-View-Controller paradigm. The ToDoItem class provides the model
objects for the application; instances of this class encapsulate the data
associated with the items appearing in documents. They also offer
functions for computing subsets of that data. And then there’s the
controller object—actually, there is more than one controller object.

To Do’s Multi-Document Design

Two types of controller objects are at the heart of multi-document
application design. They claim different areas of responsibility within an
application. ToDoController is the

application controller

; it manages events
that affect the application as a whole. Each ToDoDoc object is a

document
controller

, and manages a single document, including all the ToDoItems
that belong to the document. Naturally, it’s essential that the application
controller be able to communicate with its (potentially) numerous
document controllers, and they with it.

The File menu, which Interface Builder includes by default on the menu bar,
contains the commands that multi-document applications typically need.
When users choose New from the File menu, the application controller
allocates and initializes an instance of the ToDoDoc class. When the
ToDoDoc instance initializes itself, it loads the

ToDoDoc.nib

 file. When the
user has finished entering items into the document and chooses Save from
the File menu, a Save dialog box appears and the user saves the document
in the file system under an assigned name. Later, the user can open the
document using the Open menu command, which causes the Open dialog
box to be displayed.

The controller objects of To Do respond to a variety of delegation messages
sent when certain events occur—primarily from windows and the
application object (NSApp)—in order to save and store object state. One
example of such an event is when the user closes a document window;
another is when data is entered into a document. Often when these events
happen, one controller sends a message or notification to the other
controller to keep it informed.

The ToDoInspector instance in this diagram
takes on some of the work that the application
controller, ToDoController, could do. By
breaking down a problem domain into distinct
areas of responsibility, and assigning certain
types of objects to each area, you increase the
modularity and reusability of the object, and
make maintenance and troubleshooting
easier. See “Object-Oriented Programming”
in the appendix for more on this.

Loads

Creates/Manages

ToDoInspector.nib

ToDoInspector
(Controller)

ToDoController
(Controller)

ToDoDoc
(Controller)

ToDoItem
(Model)

ToDoDoc.nib

ToDo.nib
(menu template)

121

How To Do Stores and Accesses its Data

The data elements of a To Do document (ToDoDoc) are ToDoItems. When a
user enters an item in a document’s list, the ToDoDoc creates a ToDoItem
and inserts that object into a mutable array (NSMutableArray); the
ToDoItem occupies the same position in the array as the item in the matrix’s
text field. This positional correspondence of objects in the array and items
in the matrix is an essential part of the design. For instance, when users
delete the first entry in the document’s list, the document removes the
corresponding ToDoItem (at index 0) from the array.

The array of ToDoItems is associated with a particular day. Thus the data
for a document consists of a (mutable) dictionary with arrays of ToDoItems
for values and dates for keys.

When users select a day in the calendar, the application computes the date,
which it then uses as the key to locate an array of ToDoItems in the
dictionary.

To Do’s Custom Views

The discussion so far has touched on model objects and controller objects,
but has said nothing about the second member of the Model-View-
Controller triad: view objects. Unlike Travel Advisor, which uses only “off-
the-shelf” views, To Do’s final interface features objects from three custom
Application Kit subclasses. (You’ll create only CalendarMatrix in this
chapter.)

For further discussion of the architecture of multi-document applications,
see page 143.

Key

Value

NSMutableDictionary

15 Nov 1995 16 Nov 1995 17 Nov 1995

ToDoItem

ToDoItem

ToDoItem

ToDoItem

ToDoItem

ToDoItem

ToDoItem

ToDoItem

ToDoItem

ToDoItem

CalendarMatrix (subclass of
NSMatrix): A dynamic calendar
that notifies its delegate about
selected dates.

ToDoCell (subclass of
NSButtonCell): A tri-state
control with different images for
each state. It also displays the
times when items are due.

SelectionNotifMatrix (subclass of
NSMatrix): Notifies observing objects
when a selection in a text field occurs.

Chapter 4

A Multi-Document Application

122

Setting Up the To Do Project

Create the To Do project almost in the same way you created the Travel Advisor
application. There are a few differences; each, of course, has a different name and
icon. But the most important difference is that To Do has its own document type.

1 Create the application project.

Start Project Builder.

Choose New from the Project menu.

Set the project type to Application.

Name the application “ToDo.”

Click OK.

2 Add the application icon.

In the Project Attributes display of the
project inspector, drag the application
icon (ToDo.tiff) into the icon well.

Confirm that you want the image
added to the project.

(The icon is located in the ToDo project
in /NextDeveloper/Examples/AppKit.)

3 Specify the To Do document type.

Click Add.

Double-click the new cell under the
Extension column.

Type the extension of To Do documents:
“td”.

Drag into the icon well the file
calendar.tiff from the ToDo project in
/NextDeveloper/Examples/AppKit.

You can have different icons and other project
attributes for OpenStep for Mach (Rhapsody) and
OpenStep for Windows.

Instead of dragging the image file into the well, you can
add the image file to the project and then just type the
name of the file here.

As with the application icon, when you drag the
document icon into the image well (with the document
row selected in Document Icons), the image file is
added to the project.

Document types specify the kinds of files the
application can open and “understand.” Documents
appear in the desktop with the assigned icon. Double-
clicking the icon opens the document.

Before Project Builder accepts the document icon, you
must assign the extension (if the type is new) and
select the row.

If the document type is well-known (for example, “.c”)
just drag a document of that type into the well.

Creating the Model Class (ToDoItem)

123

Creating the Model Class (ToDoItem)

The ToDoItem class provides the model objects for the To Do application.
Its instance variables hold the data that defines tasks that should be done or
appointments that have to be kept. Its methods allow access to this data. In
addition, it provides functions that perform helpful calculations with that
data. ToDoItem thus encapsulates both data

and

 behavior that goes beyond
accessing data.

Since ToDoItem is a model class, it has no user-interface duties and so the
expedient course is to create the class without using Interface Builder. We
first add the class to the project; Project Builder helps out by generating
template source-code files.

Setting Up the Programmatic Interface

As you’ve done before with Travel Advisor, start by declaring instance
variables and methods in the header file,

ToDoItem.h

.

You are adopting the NSCopying protocol in addition to the NSCoding
protocol because you are going to implement a method that makes
“snapshot” copies of ToDoItem instances.

1 Add the ToDoItem class to the
project.

Select Classes in the project browser.

Choose New In Project from the File
menu.

In the New File In ToDo panel, type
“ToDoItem” in the Name field.

Make sure the “Create header” switch
is checked.

Click the OK button.

2 Declare ToDoItem’s instance
variables and methods.

Type the instance variables as shown
at right.

Indicate the protocols adopted by this
class.

@interface ToDoItem:NSObject<NSCoding, NSCopying>

{

 NSCalendarDate *day;

 NSString *itemName;

 NSString *notes;

 NSTimer *itemTimer;

 long secsUntilDue;

 long secsUntilNotif;

 ToDoItemStatus itemStatus;

}

Chapter 4

A Multi-Document Application

124

Instance Variable What it Holds

day The day (a date resolved to 12:00 AM) of the to-do item

itemName The name of the to-do item (the content’s of a document text field)

notes The contents of the inspector’s Notes display; this could be any information

related to the to-do item, such as an agenda to discuss at a meeting

itemTimer A timer for notification messages

secsUntilDue The seconds after day at which the item comes due

secsUntilNotif The seconds after day at which a notification is sent (before secsUntilDue)

itemStatus Either “incomplete,” “complete,” or “deferToNextDay”

Type the method declarations shown at
right.

- (id)initWithName:(NSString *)name andDate:(NSCalendarDate *)date;

- (void)dealloc;

- (BOOL)isEqual:(id)anObject;

- (id)copyWithZone:(NSZone *)zone;

- (id)initWithCoder:(NSCoder *)coder;

- (void)encodeWithCoder:(NSCoder *)coder;

- (void)setDay:(NSCalendarDate *)newDay;

- (NSCalendarDate *)day;

- (void)setItemName:(NSString *)newName;

- (NSString *)itemName;

- (void)setNotes:(NSString *)notes;

- (NSString *)notes;

- (void)setItemTimer:(NSTimer *)aTimer;

- (NSTimer *)itemTimer;

- (void)setSecsUntilDue:(long)secs;

- (long)secsUntilDue;

- (void)setSecsUntilNotif:(long)secs;

- (long)secsUntilNotif;

- (void)setItemStatus:(ToDoItemStatus)newStatus;

- (ToDoItemStatus)itemStatus;

Creating the Model Class (ToDoItem)

125

The first set of constants are values for the

itemStatus

 instance variable. The
second set of constants are for convenience and clarity in the methods that
deal with temporal values.

These functions provide computational services to clients of this class,
converting time in seconds to hours and minutes (as required by the user
interface), and back again to seconds (as stored by ToDoItem).

Before You Go On

Remember, build the project frequently to catch any errors quickly, to get a
sense of how the application is developing, and (just as important) to give

yourself a break from coding.

3 Define enum constants for use in
ToDoItem’s methods.

Define these constants before the
@interface directive.

typedef enum ToDoItemStatus {

 incomplete=0,

 complete,

 deferToNextDay

} ToDoItemStatus;

enum {

 minInSecs = 60,

 hrInSecs = (minInSecs * 60),

 dayInSecs = (hrInSecs * 24),

 weekInSecs = (dayInSecs * 7)

};

4 Declare two time-conversion
functions.

BOOL ConvertSecondsToTime(long secs, int *hour, int *minute);

long ConvertTimeToSeconds(int hr, int min, BOOL flag);

Chapter 4

A Multi-Document Application

126

Specifying Basic Object Behavior

Most of the method declarations of this class are for accessor methods. You know
from past experience what you must do to implement them.

The

setItemTimer

: method is slightly different from the other “set” accessor
methods. It sends

invalidate

 to

itemTimer

 to disable the timer before it autoreleases
it.

Timers (instances of NSTimer) are always associated with a run loop (an instance of
NSRunLoop). See ‘‘Tick Tock Brrrring: Run Loops and Timers’’ on page 202 for more on
timers and run loops.

In this application, you want client objects to be able to copy your ToDoItem
objects and test them for equality. You must define this behavior yourself.

Starting Up — What Happens in NSApplicationMain()

Every OpenStep application project created through Project Builder has the
same main() function (in the file ApplicationName_main.m). When users
double-click an application or document icon in the File Manager or
Explorer, main() (the entry point) is called first; main(), in turn, calls
NSApplicationMain()—and that’s all it does.

The NSApplicationMain() function does what’s necessary to get an
OpenStep application up and running—responding to events, coordinating
the activity of its objects, and so on. The function starts the network of
objects in the application sending messages to each other. Specifically,
NSApplicationMain():

1 Gets the application’s attributes, which are stored in the application
wrapper as a property list. From this property list,
 it gets the names of the main nib file and the principal class (for
applications, this is NSApplication or a custom subclass of
NSApplication).

2 Gets the Class object for NSApplication and invokes its
sharedApplication class method, creating an instance of

NSApplication, which is stored in the global variable, NSApp. Creating
the NSApplication object connects the application to the window system
and the Display PostScript server, and initializes its PostScript
environment.

3 Loads the main nib file, specifying NSApp as the owner. Loading
unarchives and re-creates application objects and restores the
connections between objects.

4 Runs the application by starting the main event loop. Each time through
the loop, the application object gets the next available event and
dispatches it to the most appropriate object in the application. The loop
continues until the application object receives a stop: or terminate:
message, after which the application is released and the program exits.

You can add your own code to main() to customize application start-up or
termination behavior.

- (void)setItemTimer:(NSTimer *)aTimer

{

 if (itemTimer) {

 [itemTimer invalidate];

 [itemTimer autorelease];

 }

 itemTimer = [aTimer retain];

}

1 Implement accessor methods.

Open ToDoItem.m in the code editor.

Implement methods that get and set
the values of ToDoItem’s instance
variables.

Implement the setItemTimer: method
as shown at right.

Creating the Model Class (ToDoItem)

127

The default implementation of

isEqual:

(in NSObject) is based on pointer
equality. However, ToDoItem has a different basis for equality; any two
ToDoItem objects for the same calendar day and having the same item name
are considered equal. The implementation of

isEqual:

 overrides NSObject to
make these tests. (Note that it invokes NSString’s and NSDate’s own

isEqual...

methods for the specific tests.)

Before You Go On

There is a specific as well as a general need for the

isEqual:

 override. In the
To Do application, an NSArray contains a day’s ToDoItems. To access
them, other objects in the application invoke several NSArray methods that,

in turn, invoke the

isEqual:

 method of each object in the array.

This implementation of the

copyWithZone:

 protocol method makes a copy of a
ToDoItem instance that is an independent replicate of the original (

self

). It
does this by allocating a new ToDoItem and initializing it with instance
variables held by

self

. Copying is often implemented for

value

 objects—
objects that represent attributes such as numbers, dates, and to-do items.

Copies of objects can be either deep or shallow. In deep copies (like ToDoItem’s) every
copied instance variable is an independent replicate, including the values referenced by
pointers. In shallow copies, pointers are copied but the referenced objects are the same.
For more on this topic, see the description of the NSCopying protocol in the Foundation
reference documentation.

- (BOOL)isEqual:(id)anObj

{

 if ([anObj isKindOfClass:[ToDoItem class]] &&

 [itemName isEqualToString:[anObj itemName]] &&

 [day isEqualToDate:[anObj day]])

 return YES;

 else

 return NO;

}

2 Implement copying and comparing
object behavior.

Implement the isEqual: method.

- (id)copyWithZone:(NSZone *)zone

{

 ToDoItem *newobj = [[ToDoItem allocWithZone:zone]
initWithName:itemName andDate:day];

 [newobj setNotes:notes];

 [newobj setItemStatus:itemStatus];

 [newobj setSecsUntilDue:secsUntilDue];

 [newobj setSecsUntilNotif:secsUntilNotif];

 return newobj;

}

Implement the copyWithZone:
method.

Chapter 4

A Multi-Document Application

128

The next method you’ll implement—

description

—assists you and other
developers in debugging the To Do application with

gdb

. When you enter the

po

(print object) command in

gdb

 with a ToDoItem as the argument, this

description

method is invoked and essential debugging information is printed.

Here are some things to remember as you implement

initWithName:andDate:

 and

dealloc

:

• If the first argument of

initWithName:andDate:

 (the item name) is not a valid
string, return

nil

. If the second argument (the date) is

nil

, set the related
instance variable to some reasonable value (such as today’s date). Also, be sure
to invoke

super

’s

init

 method.

• The instance variables to initialize are

day

,

itemName

,

notes

, and

itemStatus

 (to
“incomplete”).

• In

dealloc

, release those object instance variables initialized in

initWithName:andDate:

 plus any object instance variables that were initialized
later. Also invalidate any timer before you release it.

When you implement

encodeWithCoder:

 and

initWithCoder:

, keep the following in
mind:

• Encode and decode instance variables in the same order.

• Copy the object instance variables after you decode them.

• You don’t need to archive the

itemTimer

 instance variable since timers are re-
set when a document is opened.

- (NSString *)description

{

 NSString *desc = [NSString stringWithFormat:@"%@\n\tName:
 %@\n\tDate: %@\n\tNotes: %@\n\tCompleted: %@\n\tSecs Until Due:
 %d\n\tSecs Until Notif: %d",

 [super description],

 [self itemName],

 [self day],

 [self notes],

 (([self itemStatus]==complete)?@"Yes":@"No"),

 [self secsUntilDue],

 [self secsUntilNotif]];

 return (desc);

}

3 Have the object describe itself during
debugging.

Implement the description method.

4 Implement ToDoItem’s initialization
and deallocation methods.

5 Implement ToDoItem’s archiving and
unarchiving methods.

Creating the Model Class (ToDoItem)

129

The final step in creating the ToDoItem class is to implement the functions that
furnish “value-added” behavior.

This expression, as well as others in these two methods, uses the

enum
constants for time-values-as seconds that you defined earlier.

The ConvertSecondsToTime() function uses indirection as a means for returning
multiple values and directly returns a Boolean to indicate AM or PM.

Breaktime!
Take a break from coding and build the project as it now stands. Go get a coffee,
soda, or other beverage while the project is building. When you return, fix any
errors that have insinuated themselves into the code. You can stop and build at
anytime— a good thing to do because it will help you locate mistakes more easily.

6 Implement ToDoItem’s time-
conversion functions.

long ConvertTimeToSeconds(int hr, int min, BOOL flag)

{

 if (flag) { /* PM */

 if (hr >= 1 && hr < 12)

 hr += 12;

 } else {

 if (hr == 12)

 hr = 0;

 }

 return ((hr * hrInSecs) + (min * minInSecs));

}

BOOL ConvertSecondsToTime(long secs, int *hour, int *minute)

{

 int hr=0;

 BOOL pm=NO;

 if (secs) {

 hr = secs / hrInSecs;

 if (hr > 12) {

 *hour = (hr -= 12);

 pm = YES;

 } else {

 pm = NO;

 if (hr == 0)

 hr = 12;

 *hour = hr;

 }

 *minute = ((secs%hrInSecs) / minInSecs);

 }

 return pm;

}

A

B

A

B

Chapter 4 A Multi-Document Application

130

As any developer knows well, performance is a key consideration in program
design. One factor is the timing of resource allocation. If an application
loads all code and resources that it might use when it starts up, it will
probably be a sluggish, bloated application—and one that takes awhile to
launch.

You can strategically store the resources of an application (including user-
interface objects) in several nib files. You can also put code that might be
used among one or more loadable bundles. When the application needs a
resource or piece of code, it loads the nib file or loadable bundle that
contains it. This technique of deferred allocation benefits an application
greatly. By conserving memory, it improves program efficiency. It also
speeds up the time it takes to launch the application.

Auxiliary Nib Files

When more sophisticated applications start up, they load only a minimum
of resources in the main nib file—the application’s menus and perhaps a
window. They display other windows (and load other nib files) only when
users request it or when conditions warrant it.

Nib files other than an application’s main nib file are sometimes called
auxiliary nib files. There are two general types of auxiliary nib files: special-
use and document.

Special-use nib files contain objects (and other resources)
that might be used in the normal operation of the application. Examples of
special-use nib files are those containing inspector panels and Info (or
About) panels.

Document nib files contain objects that represent some repeatable entity,
such as a word-processor document. A document nib file is a template for
documents: it contains the UI objects and other resources needed to make
a document.

The Owner of an Auxiliary Nib File

The object that loads a nib file is usually the object that owns
it. A nib file’s owner must be external to the file. Objects unarchived from
the nib file communicate with other objects in the application only through
the owner.

In Interface Builder, the File’s Owner icon represents this external object.
The File’s Owner is typically the application controller for special-use nib
files, and the document controller for document nib files. The File’s Owner
object is not really appearing twice; it’s created in your application and
referenced in your nib file.

The File’s Owner object dynamically loads a nib file and makes itself the
owner of that file by sending loadNibNamed:owner: to NSBundle,
specifying self as the second argument.

NSBundle and Bundles

A bundle is a location in the file system (a folder) that stores code and the
resources that go with that code, including images and archived objects. A
bundle is also identified as an instance of NSBundle; this object makes the
contents of the bundle available to other objects that request it.

The generic notion of bundles is pervasive throughout OpenStep.
Applications are bundles, as are frameworks and palettes. Every
application has at least one bundle—its main bundle—which is the
“.app” directory (or application wrapper) where its executable file is
located. This file is loaded into memory when the application is launched.

Loadable Bundles

You can organize an application into any number of other bundles in
addition to the main bundle and the bundles of linked-in frameworks.
Although these loadable bundles usually reside inside the application
wrapper, they can be anywhere in the file system. Project Builder allows you
to build Loadable Bundle projects.

Loadable bundles differ from nib files in that they don’t require you to use
Interface Builder to build them. Instead of containing mostly archived
objects, they usually contain mostly code. Loadable bundles are especially
useful for incorporating extra behavior into an application upon demand.
An economic-forecast application, for example, might load a bundle
containing the code defining an economic model, but only when users
request that model. You could also use loadable bundles to integrate “plug
and play” components into an existing framework.

Loadable bundles usually have an extension of “.bundle” (although that’s
a convention, not a requirement). Each loadable bundle must have a
principal class that mediates between bundle objects and external objects.

Making Plants.bundle

Only When Needed: Dynamically Loading Resources and Code

Extending an Application Kit Class: An Example

131

Extending an Application Kit Class: An Example

The calendar on To Do’s interface is an instance of a custom subclass of
NSMatrix. CalendarMatrix dynamically updates itself as users select new
months, notifies a delegate when users select a day, and reflects the current
day (today) and the current selection by setting button-cell attributes.

Creating a subclass of a class that is farther down the inheritance tree poses
more of a challenge for a developer than a simple subclass of NSObject. A
class such as NSMatrix is more specialized than NSObject and carries with it
more baggage: It inherits from NSResponder, NSView, and NSControl, all
fairly complex Application Kit classes. And since CalendarMatrix inherits
from NSView, it appears on the user interface; it is an example of a view object
in the Model-View-Controller paradigm, and as such it is highly reusable.

Why NSMatrix as Superclass?

When you select a specialized superclass as the basis for your subclass, it
is important to consider what your requirements are and to understand
what the superclass has to offer. To Do’s dynamic calendar should:

• Arrange numbers (days) sequentially in rows and columns.

• Respond to and communicate selections of days.

• Understand dates.

• Enable navigation between months.

If you then started to peruse the reference documentation on Application Kit
classes, and looked at the section on NSMatrix, you’d read this:

NSMatrix is a class used for creating groups of NSCells that work together
in various ways. It includes methods for arranging NSCells in rows and
columns.... An NSMatrix adds to NSControl's target/action paradigm by
allowing a separate target and action for each of its NSCells in addition to
its own target and action.

So NSMatrix has an inherent capability for the first of the requirements
listed above, and part of the second (responding to selections). Our
CalendarMatrix subclass thus does not need to alter anything in its
superclass. It just needs to supplement NSMatrix with additional data and
behavior so it can understand dates (and update itself appropriately),
navigate between months, and notify a delegate that a selection was made.

Chapter 4 A Multi-Document Application

132

Composing the Interface

When you created subclasses of NSObject in the previous two tutorials, the next step was to
instantiate the subclass. Because CalendarMatrix is a view (that is, it inherits from NSView), the
procedure for generating an instance for making connections is different.

Locate NSMatrix several levels down in the class
hierarchy.

Outlets and actions already defined by the superclass
(or by its superclasses) appear in gray text. Add the
outlets and actions shown in black text.

1 Define the CalendarMatrix class in
Interface Builder.

From Project Builder, open ToDo.nib.

In Interface Builder, choose File m New
Module m New Empty to create a new
nib file.

Save the nib file as ToDoDoc.nib.

Respond Yes when asked if you want
the nib file added to the project.

In the Classes display of the nib file
window, select NSMatrix.

Choose Subclass from the Classes
menu.

Name the new class “CalendarMatrix”.

Select the new class.

Add the outlets and actions shown in
the example at right.

Extending an Application Kit Class: An Example

133

The selection of the class for the CustomView creates an instance of it that
you can connect to other objects in the nib file. Now put the controls and
fields associated with CalendarMatrix on the window.

The CustomView object is a “proxy” object that
represents any custom NSView on the interface.

Assign a class to the CustomView by selecting a class
listed here. Custom classes must be defined in the nib.
file.

2 Put a custom NSView object
(CalendarMatrix) on the user
interface.

Drag a window from the Windows
palette.

Resize the window, using the example
at right as a guide.

Turn off the window’s resize bar.

Drag a CustomView from the Views
palette onto the window.

Resize and position the CustomView,
using the example at right as a guide.

In the Attributes display of the
inspector, select CalendarMatrix from
the list of available classes.

Chapter 4 A Multi-Document Application

134

.

Next connect CalendarMatrix to its satellite objects.

Name Connection Type

monthName From CalendarMatrix to the label field above it outlet

leftButton From CalendarMatrix to the left-pointing arrow outlet

rightButton From CalendarMatrix to the right-pointing arrow outlet

monthChanged: From both arrows to CalendarMatrix action

You might have noticed that there’s an action message left unconnected:
choseDay:. Because it is impossible in Interface Builder to connect an object with
itself, you will make this connection programmatically.

This empty label will display the month and year.
Initialize it by typing “September 9999” (the longest
possible string). Set the text to Helvetica 18 points,
center it, and then delete the text.

Type the days of the week as individual labels, arrange
them as a row, and then center the labels over the
columns of days. (This latter task could take some trial
and error.)

To have the button surround the image as tightly as
possible, select the button and choose
Format m Size m Size To Fit.

3 Put the objects related to
CalendarMatrix on the window.

Drag a label object for the month-year
from the Views palette and put it over
the CalendarMatrix.

Make a small label for each day of the
week.

Drag a button onto the interface and
set its attributes to unbordered and
image only.

Drag left_arrow.tiff from
/NextDeveloper
/Examples/AppKit/ToDo and drop it
over the button.

To the attention panel that asks “Insert
image left_arrow in project?” click Yes.

Repeat the same button procedure for
right_arrow.tiff.

4 Connect CalendarMatrix to its outlet
and to the controls sending action
messages.

5 Finish up in Interface Builder.

Save ToDoDoc.nib.

Select CalendarMatrix and in the
Classes display and choose Create
Files from the Operations pull-down
menu.

Confirm that you want the source-code
files added to the project.

Extending an Application Kit Class: An Example

135

There are a couple of interesting things to note about these declarations:

The cells in CalendarMatrix are sequentially ordered by tag number, left
to right, going downward. startOffset marks the cell (by its tag) on which
the first day of the month falls.

CalendarMatrixDelegate is a category on NSObject that declares the
methods to be implemented by the delegate. This technique creates what
is called an informal protocol, which is commonly used for delegation
methods.

@interface CalendarMatrix : NSMatrix

{

 /* ... */

 NSCalendarDate *selectedDay;

 short startOffset;

}

/* ... */

- (void)refreshCalendar;

- (id)initWithFrame:(NSRect)frameRect;

- (void)dealloc;

- (void)setSelectedDay:(NSCalendarDate *)newDay;

- (NSCalendarDate *)selectedDay;

@end

@interface NSObject(CalendarMatrixDelegate)

 - (void)calendarMatrix:(CalendarMatrix *)object

didChangeToDate:(NSDate *)date;

 - (void)calendarMatrix:(CalendarMatrix *)object

didChangeToMonth:(int)month year:(int)year;

@end

A

B

6 Add declarations to the header file
CalendarMatrix.h.

(Existing declarations are indicated by
ellipsis.)

A

B

Chapter 4 A Multi-Document Application

136

Defining the New Behavior

The initWithFrame: method is an initializer of NSMatrix, NSControl and NSView.

This invocation of date, a class method declared by NSDate, returns the
current date (“today”) as an NSCalendarDate. (NSCalendarDate is a subclass
of NSDate.)

This message to super (NSMatrix) sets the physical and cell dimensions of the
matrix, identifies the type of cell using a prototype (an NSButtonCell), and
specifies the general behavior of the matrix: radio mode, which means that
only one button can be selected at any time.

Set the tag number of each cell sequentially left to right and down. Tags are
the mechanism by which CalendarMatrix sets and retrieves the day numbers
of cells.

This NSCalendarDate class method initializes the selectedDay instance
variable to midnight of the current day, using the year, month, and day
elements of the current date. The localTimeZone message obtains an
NSTimeZone object with a suitable offset from Greenwich Mean Time.

- (id)initWithFrame:(NSRect)frameRect

{

 int i, j, cnt=0;

 id cell = [[NSButtonCell alloc] initTextCell:@""];

 NSCalendarDate *now = [NSCalendarDate date];

 [super initWithFrame:frameRect

 mode:NSRadioModeMatrix

 prototype:cell

 numberOfRows:6

 numberOfColumns:7];

 // set cell tags

 for (i=0; i<6; i++) {

 for (j=0; j<7; j++) {

 [[self cellAtRow:i column:j] setTag:cnt++];

 }

 }

 [cell release];

 selectedDay = [[NSCalendarDate dateWithYear:[now yearOfCommonEra]

 month:[now monthOfYear]

 day:[now dayOfMonth]

 hour:0 minute:0 second:0

 timeZone:[NSTimeZone localTimeZone]] copy];

 return self;

}

A

B

C

D

1 Implement CalendarMatrix’s
initialization methods.

Select CalendarMatrix.m in the project
browser.

Write the implementation of
initWithFrame: (at right).

Implement dealloc.

A

B

C

D

Extending an Application Kit Class: An Example

137

The awakeFromNib method performs additional initializations (some of which
could just have easily been done in initWithFrame:). Most importantly, it sets self
as its own target object and specifies an action method for this target,
choseDay:, something that couldn’t be done in Interface Builder. Other
methods to note:

• setAutosizesCells: causes the matrix to resize its cells on every redraw.
• refreshCalendar (which you’ll write next) updates the calendar.

The refreshCalendar method is fairly long and complex—it is the workhorse of
the class—so you’ll approach it in sections.

- (void)awakeFromNib

{

 [monthName setAlignment:NSCenterTextAlignment];

 [self setTarget:self];

 [self setAction:@selector(choseDay:)];

 [self setAutosizesCells:YES];

 [self refreshCalendar];

}

Implement awakeFromNib as shown
at right.

Dates and Times in OpenStep

In OpenStep you represent dates and times as objects that inherit from
NSDate. The major advantage of dates and times as objects is common to
all objects that represent basic values: they yield functionality that,
although commonly found in most operating systems, is not tied to the
internals of any particular operating-system.

NSDates hold dates and times as values of type NSTimeInterval and express
these values as seconds. The NSTimeInterval type makes possible a wide
and fine-grained range of date and time values, giving accuracy within
milliseconds for dates 10,000 years apart.

NSDate and its subclasses compute time as seconds relative to an absolute
reference date (the first instant of January 1, 2001). NSDate converts all
date and time representations to and from NSTimeInterval values that are
relative to this reference date.

NSDate provides methods for obtaining NSDate objects (including date,
which returns the current date and time as an NSDate), for comparing
dates, for computing relative time values, and for representing dates as
strings.

The NSCalendarDate class, which inherits from NSDate, generates objects
that represent dates conforming to western calendrical systems.
NSCalendarDate objects also adjust the representations of dates to reflect
their associated time zones. Because of this, you can track an
NSCalendarDate object across different time zones. You can also present
date information from time-zone viewpoints other than the one for the
current locale.

Each NSCalendarDate object also has a calendar format string bound to it.
This format string contains date-conversion specifiers that are very similar
to those used in the standard C library function strftime(). NSCalendarDate
can interpret user-entered dates that conform to this format string.

NSCalendarDate has methods for creating NSCalendarDate objects from
formatted strings and from component time values (such as minutes,
hours, day of week, and year). It also supplements NSDate with methods for
accessing component time values and for representing dates in various
formats, locales, and time zones.

Chapter 4 A Multi-Document Application

138

.

Before it can start writing day numbers to the calendar for a given month,
CalendarMatrix must know what cell to start with and how many cells to fill with
numbers. The refreshCalendar method begins by calculating these values.

Creates an NSCalendarDate for the first day of the currently selected month
and year (computed from the selectedDay instance variable).

Writes the month and year (for example, “February 1997”) to the label above
the calendar.

Gets from the MonthDays static array the number of days for that month; if the
month is February and it is a leap year, this number is adjusted.

Gets the day of the week for the first day of the month and stores this in the
startOffset instance variable.

static short MonthDays[] =
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

#define isLeap(year) (((((year) % 4) == 0 && (((year) % 100) != 0))

|| ((year) % 400) == 0))

2 Implement the code that updates the
calendar.

Initialize the MonthDays[] array and
write the isLeap() macro.

Determine the day of the week at the
start of the month and the number of
days in the month.

- (void)refreshCalendar

{

 NSCalendarDate *firstOfMonth, *selDate = [self selectedDay],

 *now = [NSCalendarDate date];

 int i, j, currentMonth = [selDate monthOfYear];

 unsigned int currentYear = [selDate yearOfCommonEra];

 short daysInMonth;

 id cell;

 firstOfMonth = [NSCalendarDate dateWithYear:currentYear

 month:currentMonth

 day:1 hour:0 minute:0 second:0

 timeZone:[NSTimeZone localTimeZone]];

 [monthName setStringValue:[firstOfMonth

 descriptionWithCalendarFormat:@"%B %Y"]];

 daysInMonth = MonthDays[currentMonth-1]+1;

 /* correct Feb for leap year */

 if ((currentMonth == 2) && (isLeap(currentYear))) daysInMonth++;

 startOffset = [firstOfMonth dayOfWeek];

A

B

C

D

A

B

C

D

Extending an Application Kit Class: An Example

139

The first and third for-loops in this section of code clear the leading and
trailing cells that aren’t part of the month’s days. Because the current day is
indicated by highlighting, they also turn off the highlighted attribute. The
second for-loop writes the day numbers of the month, starting at startOffset and
continuing until daysInMonth, and resets the font (since the selected day is in
bold face) and other cell attributes.

This final section of refreshCalendar determines if the newly selected month
and year are the same as today’s, and if so highlights the cell corresponding to
today.

 for (i=0; i<startOffset; i++) {

 cell = [self cellWithTag:i];

 [cell setBordered:NO];

 [cell setEnabled:NO];

 [cell setTitle:@""];

 [cell setCellAttribute:NSCellHighlighted to:NO];

 }

 for (j=1; j < daysInMonth; i++, j++) {

 cell = [self cellWithTag:i];

 [cell setBordered:YES];

 [cell setEnabled:YES];

 [cell setFont:[NSFont systemFontOfSize:12]];

 [cell setTitle:[NSString stringWithFormat:@"%d", j]];

 [cell setCellAttribute:NSCellHighlighted to:NO];

 }

 for (;i<42;i++) {

 cell = [self cellWithTag:i];

 [cell setBordered:NO];

 [cell setEnabled:NO];

 [cell setTitle:@""];

 [cell setCellAttribute:NSCellHighlighted to:NO];

 }

Write the refreshCalendar code that
writes day numbers to the cells and
sets cell attributes.

 if ((currentYear == [now yearOfCommonEra])

 && (currentMonth == [now monthOfYear])) {

 [[self cellWithTag:([now dayOfMonth]+startOffset)-1]

 setCellAttribute:NSCellHighlighted to:YES];

 [[self cellWithTag:([now dayOfMonth]+startOffset)-1]

 setHighlightsBy:NSMomentaryChangeButton];

 }

}

Complete the refreshCalendar
method implementation by resetting
the “today” cell attribute.

Chapter 4 A Multi-Document Application

140

The arrow buttons above CalendarMatrix send it the monthChanged: message when
they are clicked. This method causes the calendar to go forward or backward a
month.

Determines which button is sending the message, then increments or
decrements the month accordingly. If it goes past the end or beginning of the
year, it increments or decrements the year and adjusts the month.

Resets the selectedDay instance variable with the new month (and perhaps
year) numbers and invokes refreshCalendar to display the new month.

Sends the calendarMatrix:didChangeToMonth:year: message to its delegate (which
in this application, as you’ll soon see, is a ToDoDoc controller object).

- (void)monthChanged:sender

{

 NSCalendarDate *thisDate = [self selectedDay];

 int currentYear = [thisDate yearOfCommonEra];

 unsigned int currentMonth = [thisDate monthOfYear];

 if (sender == rightButton) {

 if (currentMonth == 12) {

 currentMonth = 1;

 currentYear++;

 } else {

 currentMonth++;

 }

 } else {

 if (currentMonth == 1) {

 currentMonth = 12;

 currentYear--;

 } else {

 currentMonth--;

 }

 }

 [self setSelectedDay:[NSCalendarDate dateWithYear:currentYear

 month:currentMonth

 day:1 hour:0 minute:0 second:0

 timeZone:[NSTimeZone localTimeZone]]];

 [self refreshCalendar];

 [[self delegate] calendarMatrix:self

 didChangeToMonth:currentMonth year:currentYear];

}

A

B

C

3 Specify the behavior that occurs
when users select a new month.

Implement the monthChanged: action
method.

A

B

C

Extending an Application Kit Class: An Example

141

This method is invoked when users click a day of the calendar.

Gets the tag number of the selected cell and subtracts the offset from it (plus
one to adjust for zero-based indexing) to find the number of the selected day.

Derives an NSCalendarDate that represents the selected date.

Sets the font of the previously selected cell to the normal system font
(removing the bold attribute) and puts the number of the currently selected
cell in bold face.

Sets the selectedDay instance variable to the new date and sends the
calendarMatrix:didChangeToDate: message to the delegate.

You are finished with CalendarMatrix. If you loaded ToDoDoc.nib right now, the
calendar would work, up to a point. If you clicked the arrow buttons,
CalendarMatrix would display the next or previous months. The days of the
month would be properly set out on the window, and the current day would be
highlighted.

But not much else would happen. That’s because CalendarMatrix has not yet
been hooked up to its delegate.

- (void)choseDay:sender

{

 NSCalendarDate *selDate, *thisDate = [self selectedDay];

 unsigned int selDay = [[self selectedCell] tag]-startOffset+1;

 selDate = [NSCalendarDate dateWithYear:[thisDate yearOfCommonEra]

 month:[thisDate monthOfYear]

 day:selDay

 hour:0

 minute:0

 second:0

 timeZone:[NSTimeZone localTimeZone]];

 [[self cellWithTag:[thisDate dayOfMonth]+startOffset-1]

 setFont:[NSFont systemFontOfSize:12]];

 [[self cellWithTag:selDay+startOffset-1] setFont:

 [NSFont boldSystemFontOfSize:12]];

 [self setSelectedDay:selDate];

 [[self delegate] calendarMatrix:self didChangeToDate:selDate];

}

A

B

C

D

4 Specify the behavior that occurs
when users select a day on the
calendar.

Implement the choseDay: action
method.

5 Implement accessor methods for the
selectedDay instance variable.

A

B

C

D

Chapter 4 A Multi-Document Application

142

The Basics of a Multi-Document Application

A multi-document application, as described on page 143, has at least one
application controller and a document controller for each document opened. The
application controller also responds to user commands relating to documents and
either creates, opens, closes, or saves a document.

Interface Builder gives each new OpenStep application the following default
menus: Info, Edit, Window, and Services. The Windows menu lists windows of
the application that are open and allows you to bring them to the top window tier.
The Services menu lists other OpenStep applications on a system and allows you
to pass data to, or get data from, those applications.

Note: The Preferences command and the About command (in the Info menu) are
disabled because this tutorial does not specifically cover Preferences panels and
About message boxes. But the tutorial does give you enough information so that
you can implement these things on your own.

1 Customize the application’s menu.

In Interface Builder:

Open ToDo.nib.

Drag a Submenu item from the Menus
palette and drop it between the Info
and Edit menus.

Name the new menu “Document”.

Put four generic menu items (“Item”)
in the Document menu and rename
them Open, New, Save, and Close

Put a separator line at the end of the
Document menu.

Create a new menu command after
this separator with a name of
“Inspector”.

Give it this command the key
equivalent of Command-i.

Remove all document-related commands from the File
menu except for the ones shown here.

The default menu commands between the separators
are Page Setup and Print. Delete the former and change
the latter to Preferences (unless you plan to implement
the printing of documents.

The three dots after Inspector and Preferences indicate
that the commands display modal panels.

The Basics of a Multi-Document Application

143

The Structure of Multi-Document Applications

From a user’s perspective, a document is a unique body of information
usually contained by its own window. Users can create an unlimited number
of documents and save each to a file. Common documents are word-
processing documents and spreadsheets.

From a programming perspective, a document comprises the objects and
resources unarchived from an auxiliary nib file and the controller object that
loads and manages these things. This document controller is the owner of
the auxiliary nib file containing the document interface and related
resources.To manage a document, the document controller makes itself the
delegate of its window and its “content” objects. It tracks edited status,
handles window-close events, and responds to other conditions.

When users choose the New (or equivalent) command, a method is invoked
in the application’s controller object. In this method, the application
controller creates a document-controller object, which loads the document
nib file in the course of initializing itself. A document thus remains
independent of the application’s “core” objects, storing state data in the
document controller. If the application needs information about a
document’s state, it can query the document controller.

When users choose the Save command, the application displays a Save
panel and enables users to save the document in the file system. When
users choose the Open command, the application displays an Open panel,
allowing users to select a document file and open it.

Document Management Techniques

When you make the application controller the delegate of the application
(NSApp) and the document controller the delegate of each document
window, they can receive messages sent at critical moments of a running
application.

These moments include the closure of windows (windowShouldClose:),
window selection (windowDidResignMain:), application start-up
(applicationWillFinishLaunching:) and application termination
(applicationShouldTerminate:). In the methods handling these messages,
the controllers can then do the appropriate thing, such as saving a
document’s data or displaying an empty document.

Several NSViews also have delegation messages that facilitate document
management, particularly text fields, forms, and other controls with
editable text (controlText...) and NSText objects (text...). One important
such message is textDidChange: (or controlTextDidChange:), which
signals that the document’s textual content was modified. In responding to
this message, controllers can mark a document window as having unsaved
data with the setDocumentEdited: message (the close button of edited
documents is a “broken” X). Later, they can determine whether the
document needs to be saved by sending isDocumentEdited to the window.

Document controllers often need to communicate with the application
controller or other objects in the application. One way to do this is by posting
notifications. Another way is to use the key relationships within the core
program framework (see page 156) to find the other object (assuming it’s a
delegate of an Application Kit object). For example, the application
controller can send the following message to locate the current document
controller:

[[NSApp mainWindow] delegate]

The document controller can find the application controller with:

[NSApp delegate]

Document Creation sequence

AppController DocController
Doc.nib

creates loads

+ new

(

 // ...

 [[DocController alloc] init];

)

- init

(

 // ...

 [NSBundle loadNibNamed:@"Doc.nib"

 	 owner:self];

 // ..

)

Chapter 4 A Multi-Document Application

144

Defining the Controller and User Interfaces
Begin by defining in Interface Builder the object controlling the To Do
application.

Now that you’ve defined the application-controller class, define the document-
controller class, ToDoDoc. Remember, since the ToDoDoc controller must own
the nib file containing the document, it must be external to it; although it is
referenced in the main nib file (ToDo.nib) and in ToDoDoc.nib, it’s instantiated before
its nib file is loaded.

Now add the remaining objects to the document interface.

2 Define the application-controller
class.

Create ToDoController as a subclass of
NSObject.

Add the outlet and actions shown in
the example.

Make the action connections from the
appropriate File menu commands.

3 Define the document-controller
class.

Create ToDoDoc as a subclass of
NSObject.

Add to the class the outlets and action
listed at right.

Instantiate ToDoController and
ToDoDoc.

Save ToDo.nib.

The Basics of a Multi-Document Application

145

Name Connection Type

calendar From File’s Owner to the CalendarMatrix object outlet

dayLabel From File’s Owner to label “To Do on” outlet

itemMatrix From File’s Owner (ToDoDoc) to matrix of long text fields outlet

markMatrix From File’s Owner to matrix of short text fields outlet

itemChecked: From matrix of short text fields to File’s Owner action

Text fields in a matrix, just like a form’s cells, are connected for inter-field
tabbing when you create the matrix. But you must also connect ToDoDoc
and ToDoController to the delegate outlets of other objects in the
application—this step is critical to the multi-document design.

Make the text of this label
dark gray.

To assist alignment, make
these cells the same height as
the cells of the other matrix. At
run time, however, you’ll
substitute cells of your
custom class, ToDoCell.

Pad the right side of the label
with spaces so it extends
across the column.

Before creating a matrix, make
the initial field scrollable.

Remember, create a matrix by
Alternate-dragging a handle of
a suitable object.

4 Complete the document interface.

Open ToDoDoc.nib.

Add the matrices of text fields.

Add the labels above the matrices.

Make the labels 14 points in the user’s
application font.

Make the item text 12 points in the
user’s application font.

Save ToDoDoc.nib.

5 Connect the outlets and actions of
ToDoDoc.

Select File’s Owner in the Instances
display of ToDoDoc.nib.

Choose ToDoDoc from the list of
classes in the Attributes display of the
inspector.

Make the connections described in the
table at right.

Chapter 4 A Multi-Document Application

146

Name Connection

textDelegate From the CalendarMatrix object to File’s Owner (ToDoDoc)

delegate From the document window’s title bar (or the window icon in the nib file window)
to File’s Owner (ToDoDoc)

delegate In ToDo.nib, from File’s Owner (NSApp) to the ToDoController instance

The ToDoDoc class needs supplemental data and behavior to get the multi-
document mechanism working right.

The activeDays and currentItems instance variables hold the collection objects that
store and organize the data of the application. (You’ll deal with these instance
variables much more in the next section of this tutorial.) Many of the methods
declared are accessor methods that set or return these instance variables or one of
the matrices of the document.

Connect ToDoDoc and ToDoController to
other objects as their delegates.

6 Create source-code files for
ToDoDoc and ToDoController.

In Project Builder:

7 Add declarations of methods and
instance variables to the ToDoDoc
class.

Select ToDoDoc.h in the project
browser.

Add the declarations at right.

(Ellipses indicate existing
declarations.)

@interface ToDoDoc:NSObject

{

 /* ... */

 NSMutableDictionary *activeDays;

 NSMutableArray *currentItems;

}

/* ... */

- (NSMutableArray *)currentItems;

- (void)setCurrentItems:(NSMutableArray *)newItems;

- (NSMatrix *)itemMatrix;

- (NSMatrix *)markMatrix;

- (NSMutableDictionary *)activeDays;

- (void)saveDoc;

- (id)initWithFile:(NSString *)aFile;

- (void)dealloc;

- (void)activateDoc;

- (void)selectItem:(int)item;

@end

The Basics of a Multi-Document Application

147

Creating, Opening, Saving, and Closing Documents
You’ll be switching between ToDoDoc.m and ToDoController.m in the next few
tasks. The intent is not to confuse, but to show the close interaction between
these two classes.

The newDoc: method is invoked when the user chooses New from the
Document menu. The method allocates and initializes an instance of the
document controller, ToDoDoc, thereby creating a document. (See the
implementation of initWithFile: on the following page to see what happens in
this process.) It then updates the document interface by invoking activateDoc.

- (void)newDoc:(id)sender

{

 id currentDoc = [[ToDoDoc alloc] initWithFile:nil];

 [currentDoc activateDoc];

}

1 Write the code that creates
documents.

Select ToDoController.m in the project
browser.

Implement ToDoController’s newDoc:
method.

Chapter 4 A Multi-Document Application

148

This method, which initializes and loads the document, has the following steps:

Restores the document’s archived objects if the aFile argument is the
pathname of a file containing the archived objects (that is, the document is
opened). If objects are unarchived, it retains the activeDays dictionary;
otherwise it displays an attention panel.

Initializes the activeDays and currentItems instance variables. An aFile argument
with a nil value indicates that the user is requesting a new document.

Loads the nib file containing the document interface, specifying self as owner.

Sets the title of the window; this is either the file name on the left of the title
bar and the pathname on the right, or “UNTITLED” if the document is new.

Note the [itemMatrix window] message nested in the last message. Every object that
inherits from NSView “knows” its window and will return that NSWindow object
if you send it a window message.

- initWithFile:(NSString *)aFile

{

 NSEnumerator *dayenum;

 NSDate *itemDate;

 [super init];

 if (aFile) {

 activeDays = [NSUnarchiver unarchiveObjectWithFile:aFile];

 if (activeDays)

 activeDays = [activeDays retain];

 else

 NSRunAlertPanel(@"To Do", @"Couldn't unarchive file %@",

 nil, nil, nil, aFile);

 } else {

 activeDays = [[NSMutableDictionary alloc] init];

 [self setCurrentItems:nil];

 }

 if (![NSBundle loadNibNamed:@"ToDoDoc.nib" owner:self])

 return nil;

 if (aFile)

 [[itemMatrix window] setTitleWithRepresentedFilename:aFile];

 else

 [[itemMatrix window] setTitle:@"UNTITLED"];

 [[itemMatrix window] makeKeyAndOrderFront:self];

 return self;

}

A

B

C

D

Select ToDoDoc.m in the project
browser.

Implement ToDoDoc’s initWithFile:
method.

A

B

C

D

The Basics of a Multi-Document Application

149

The openDoc: method displays the modal Open panel, gets the user’s response
(which can be multiple selections) and opens the file (or files) selected.

Creates or gets the NSOpenPanel instance (an instance shared among
objects of an application). The previous message specifies the file types
(that is, the extensions) of the files that will appear in the Open panel
browser. The next message enables selection of multiple files in the
panel’s browser.

Sets the directory at which the NSOpenPanel starts displaying files either
to the directory of any document window that is currently key or, if there
is none, to the user’s home directory.

Runs the NSOpenPanel and obtains the key clicked.

If the key is NSOKButton, cycles through the selected files and, for each,
creates a document by allocating and initializing a ToDoDoc instance,
passing in a file name.

The methods invoked by the Document menu’s Close and Save commands
both simply send a message to another object. How they locate these objects
exemplify important techniques using the core program framework.

- (void)openDoc:(id)sender

{

 int result;

 NSString *selected, *startDir;

 NSArray *fileTypes = [NSArray arrayWithObject:@"td"];

 NSOpenPanel *oPanel = [NSOpenPanel openPanel];

 [oPanel setAllowsMultipleSelection:YES];

 if ([[[NSApp keyWindow] delegate] isKindOfClass:[ToDoDoc class]])

 startDir = [[[NSApp keyWindow] representedFilename]

 stringByDeletingLastPathComponent];

 else

 startDir = NSHomeDirectory();

 result = [oPanel runModalForDirectory:startDir file:nil

 types:fileTypes];

 if (result == NSOKButton) {

 NSArray *filesToOpen = [oPanel filenames];

 int i, count = [filesToOpen count];

 for (i=0; i<count; i++) {

 NSString *aFile = [filesToOpen objectAtIndex:i];

 id currentDoc = [[ToDoDoc alloc] initWithFile:aFile];

 [currentDoc activateDoc];

 }

 }

}

A

B

C

D

2 Implement the document-opening
method.

Select ToDoController.m in the project
browser.

Write the code for openDoc:.

A

B

C

D

Chapter 4 A Multi-Document Application

150

NSApp, the global NSApplication instance, keeps track of the application’s
windows, including their status. Because only one window can have main status,
the mainWindow message returns that NSWindow object— which is, of course, the
one the user chose the Close command for. The closeDoc: method sends
performClose: to that window to simulate a mouse click in the window’s close
button. (See the following section, “Managing Documents Through Delegation,”
to learn how the document handles this user event.)

As did closeDoc:, this method sends mainWindow to NSApp to get the main window,
but then it sends delegate to the returned window to get its delegate, the
ToDoDoc instance that is managing the document. It then sends the ToDoDoc-
defined message saveDoc to this instance.

Note: You could implement closeDoc: and saveDoc: in the ToDoDoc class, but the
ToDoController approach was chosen to make the division of responsibility
clearer.

- (void)closeDoc:(id)sender

{

 [[NSApp mainWindow] performClose:self];

}

3 Write the code that closes
documents.

In ToDoController.m, implement the
closeDoc: method.

- (void)saveDoc:(id)sender

{

 id currentDoc = [[NSApp mainWindow] delegate];

 if (currentDoc)

 [currentDoc saveDoc];

}

4 Write the code that saves
documents.

In ToDoController.m, implement the
saveDoc: method.

The Basics of a Multi-Document Application

151

ToDoDoc’s saveDoc method complements ToDoController’s openDoc: method
in that it runs the modal Save panel for users.

The title method returns the text that appears in the window’s title bar. If
the title doesn’t begin with “UNTITLED” (what new document
windows are initialized with), then a file name and directory location has
already been chosen, and is stored as the representedFilename.

If the window title begins with “UNTITLED” then the document needs
to be saved under a user-specified file name and directory location. This
part of the code creates or gets the shared NSSavePanel instance and sets
the file type, which is the extension that’s automatically appended. Then
it runs the Save panel, specifying the user’s home directory as the starting
location.

Archives the document under the chosen directory path and file name
and, with the setDocumentEdited: message, puts an asterisk next to the
window’s title (more on this in the next section).

- (void)saveDoc

{

 NSString *fn;

 if (![[[itemMatrix window] title] hasPrefix:@"UNTITLED"]) {

 fn = [[itemMatrix window] representedFilename];

 } else {

 int result;

 NSSavePanel *sPanel = [NSSavePanel savePanel];

 [sPanel setRequiredFileType:@"td"];

 result = [sPanel runModalForDirectory:NSHomeDirectory()
file:nil];

 if (result == NSOKButton) {

 fn = [sPanel filename];

 [[itemMatrix window] setTitleWithRepresentedFilename:fn];

 } else

 return;

 }

 if (![NSArchiver archiveRootObject:activeDays toFile:fn])

 NSRunAlertPanel(@"To Do", @"Couldn't archive file %@",

 nil, nil, nil, fn);

 else

 [[itemMatrix window] setDocumentEdited:NO];

}

A

B

C

Select ToDoDoc.m in the project
browser.

Implement the saveDoc: method.

A

B

C

Chapter 4 A Multi-Document Application

152

Don’t implement setCurrentItems: yet. This method does something special for the
application that will be covered in ‘‘Managing ToDo’s Data and Coordinating its
Display’’ on page 162.

5 Implement the accessor methods for
ToDoController and ToDoDoc.

Coordinate Systems in OpenStep

The screen’s coordinate system is the basis for all other coordinate systems
used for positioning, sizing, drawing, and event handling. You can think of
the entire screen as occupying the upper-right quadrant of a two-
dimensional coordinate grid. The other three quadrants, which are invisible
to users, take negative values along their x-axis, their y-axis, or both axes.
The screen’s quadrant has its origin in the lower left corner; the positive x-
axis extends horizontally to the right and the positive y-axis extends
vertically upward. A unit along either axis is expressed as a pixel.

The screen coordinate system has just one function: to position windows on
the screen. When your application creates a new window, it must specify the
window's initial size and location in screen coordinates.You can “hide”
windows by specifying their origin points well within one of the invisible
quadrants. This technique is often used in off-screen rendering in buffered
windows.

The reference coordinate system for a window is known as the base
coordinate system. It differs from the screen coordinate system in only two
ways:

• It applies only to a particular window; each window has its own base
coordinate system.

• Its origin is at the lower left corner of the window, rather than the lower
left corner of the screen. If the window moves, the origin and the entire
coordinate system move with it.

For drawing, each NSView uses a coordinate system transformed from the
base coordinate system or from the coordinate system of its superview. This
coordinate system also has it origin point at the lower-left corner of the
NSView, making it more convenient for drawing operations. NSView has
several methods for converting between base and local coordinate systems.
When you draw, coordinates are expressed in the application's current
coordinate system, the system reflecting the last coordinate
transformations to have taken place within the current window.

These coordinate systems are the inverse of several other operating
systems, which put the origin point at the upper left of the window or screen
and extend dimensions downward and to the right. NSView provides means
for “flipping” coordinate systems to conform to those other systems.

x-axis

y-
ax

is

(0.0, 0.0)

(500.0, 200.0)

(-200.0,
-200.0)

.

. y axis

x axis

0,0

0,0375,310
0,0

160,155

A view’s location is specified relative to
the coordinate system of its window or
superview. The coordinate origin for
drawing begins at this point.

The location of the window is
expressed relative to the screen’s
origin, and its coordinate system
begins here too.

The origins and dimensions of
windows and panels are based on the
screen origin.

Managing Documents Through Delegation

153

Managing Documents Through Delegation

At certain points while an application is running you want to ensure that a
document’s data is preserved, that a document’s edited status is tracked, or
that the application otherwise does “the right thing” for a given circumstance.
These events occur when users:

• Edit a document.
• Close a window.
• Launch the application.
• Quit the application by choosing the Exit command.
• Quit the application by closing the last window.
• Switch to another application or window.

Several classes of the Application Kit send messages to their delegates when
these events occur, giving the delegate the opportunity to do the appropriate
thing, whether that be saving a document to the file system or marking a
document as edited.

When a control that contains editable text—such as a text field or a matrix of
text fields—detects editing in a field, it posts the controlTextDidChange:
notification which, like all notifications, is sent to the control’s delegate as well
as to all observers. The setDocumentEdited: message (with an argument of YES)
inserts an asterisk to the right of the window’s title, thereby marking it as
“dirty” (containing modified, unsaved data).

Note: The object that, by notification, invokes the controlTextDidChange:
method is itemMatrix, the matrix of to-do items (text fields). You will
programmatically set ToDoDoc to be the delegate of this object later in this
tutorial.

- (void)controlTextDidChange:(NSNotification *)notif

{

 [[itemMatrix window] setDocumentEdited:YES];

}

1 Mark a document as edited.

Open ToDoDoc.m.

Implement the controlTextDidChange:
method to mark the document.

[window setDocumentEdited:NO];

[window setDocumentEdited:YES];

Chapter 4 A Multi-Document Application

154

Assuming that you’ve completed certain steps (see “Opening Documents by
Double-Clicking,” below), when users select or double-click a To Do document
icon in the Start menu, in Explorer, or elsewhere on the desktop, To Do will
launch itself and open the document. But what happens when users simply
launch the application, without specifying a document? OpenStep applications
have several alternatives (see side bar on page 159). To Do lends itself well to the
user-defaults technique:

• At first, open an “UNTITLED” document.
• When the user saves a document, save the document path in user defaults.
• Thereafter open the last-saved document when the user launches To Do.

The initialize message is sent to each class before it receives any other message,
giving it an opportunity to do something having global effect on all future
instances. In ToDoController’s case, the initialize method specifies a “catch-all”
default in the registration domain of user defaults. To Do applications that are
launched the first time on a system will take this default.

+ (void)initialize

{

 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];

 NSDictionary *regdom = [NSDictionary dictionaryWithObject:@"UNTITLED"
forKey:@"ToDoDocumentLastSaved"];

 [defaults registerDefaults:regdom];

 }

2 Customize the launch behavior for
your multi-document application.

Initialize the ToDoController class.

Opening Documents by Double-Clicking

To let users of your application open documents by
double-clicking the document icon in the file
system, you must complete the following steps:

1 Specify an icon and a type (file extension) for
your document in the Project Attributes display
of Project Builder’s Project Inspector (see page
122 for an example).

2 Implement the NSApplication delegation method
application:openFile:. This method is invoked
when users double-click or select a document in
the file system (for instance, using File Manager
or Explorer). In your implementation, you should
attempt to create your document using the path

given in the second argument. If you succeed,
return YES; otherwise, return NO.

3 After building the application, install it in the
conventional file-system locations for
applications, such as /LocalApps and ~/Apps.

Managing Documents Through Delegation

155

An NSApp’s delegate can implement the applicationOpenUntitledFile: method to
display an appropriate starting document when an OpenStep for Windows
application is launched. This specific implementation does the following:

The class method standardUserDefaults returns the NSUserDefaults
representing the current user’s defaults. From this object, it gets the path of
the To Do document that was last saved (more soon on how this was done).

If the default is not the registration-domain one and the path references a real
To Do document, it re-creates and activates the document.

Otherwise, it creates a new document, which has a title of “UNTITLED.”

- (BOOL)applicationOpenUntitledFile:(NSApplication *)sender

{

NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];

 NSString *docToOpen = [defaults stringForKey:
 @"ToDoDocumentLastSaved"];

 if (![docToOpen isEqualToString:@"UNTITLED"] &&

 [[NSFileManager defaultManager] fileExistsAtPath:docToOpen] &&

 [[docToOpen pathExtension] isEqualToString:@"td"]) {

 ToDoDoc *thisDoc = [[ToDoDoc alloc] initWithFile:docToOpen];

 [thisDoc activateDoc];

return YES;

 }

 [self newDoc:self];

 return YES;

}

A

B

C

In ToDoController.m, implement the
delegation method
applicationOpenUntitledFile:.

A

B

C

User Defaults and the Defaults System

User defaults denotes information about a user's
preferences that an OpenStep program keeps
between sessions. Also recorded in user defaults are
initial values for applications (such as the position of
windows), default values that apply globally, and
defaults specific to a language (for example, the way
in which time is expressed). An application typically
allows its users to enter their choices into users
defaults through a Preferences panel.

User defaults belong to domains. The most common
domain consists of individual applications, but there
are other domains. For example, NSGlobalDomain
holds values common to all applications; there is also
a language-specific domain and
NSRegistrationDomain (temporary default values).

Each domain has a dictionary of keys and values
representing its defaults. Keys are always strings,
but values can be property lists: complex data
structures comprising arrays, dictionaries, strings,
and binary data. Searches for a default proceed
through a search list, in which the application's
domain typically comes before the global, language-
specific, and registration domains.

The defaults system, which implements user
defaults, includes a framework component and a
command-line component. You can specify, read,
and manage user defaults with the methods of
NSUserDefaults and with the defaults utility.

Chapter 4 A Multi-Document Application

156

The Application Quartet: NSResponder, NSApplication, NSWindow, and NSView

Many classes of the Application Kit stand out in terms of relative
importance. NSControl, for example, is the superclass of all user-interface
devices, NSText underlies all text operations, and NSMenu has obvious
significance. But four classes are at the core of a running application:
NSResponder, NSApplication, NSWindow, and NSView. Each of these
classes plays a critical role in the two primary activities of an application:
drawing the user interface and responding to events. The structure of their
interaction is sometimes called the core program framework.

NSWindow

An NSWindow object manages each physical window on the screen. It draws
the window’s content area and responds to user actions that close, move,
resize, and otherwise manipulate the window.

The main purpose of an NSWindow is to display an application’s user
interface (or part of it) in its content area: that space below the title bar and
menu bar and within the window frame. A window’s content is the NSViews
it encloses, and at the root of this view hierarchy is the content view, which
fills the content area. Based on the location of a user event, NSWindows
assigns an NSView in its content area to act as first responder.

An NSWindow allows you to assign a custom object as its delegate and so
participate in its activities.

NSResponder

NSResponder is an abstract class, but it enables event handling in all
classes that inherit from it. It defines the set of messages invoked when
different mouse and keyboard events occur. It also defines the mechanics

of event processing among objects in an application, especially the passing
of events up the responder chain to each next responder until the event is
handled. See the ‘‘First Responder and the Responder Chain’’ on page 173
for more on the responder chain and a description of first responder.

NSApplication

Every application must have one NSApplication object to supervise and
coordinate the overall behavior of the application. This object dispatches
events to the appropriate NSWindows (which, in turn, distribute them to
their NSViews). The NSApplication object manages its windows and detects
and handles changes in their status as well as in its own active and
inactive status. The NSApplication object is represented in each application
by the global variable NSApp. To coordinate your own code with NSApp, you
can assign your own custom object as its delegate.

NSView

Any object you see in a window’s content area is an NSView. (Actually, since
NSView is an abstract class, these objects are instances of NSView
subclasses.) NSView objects are responsible for drawing and for
responding to mouse and keyboard events. Each NSView owns a
rectangular region associated with a particular window; it produces images
within this region and responds to events occurring within the rectangle.

NSViews in a window are logically arranged in a view hierarchy, with the
content view at the top of the hierarchy (see next page for more information).
An NSView references its window, its superview, and its subviews. It can be
the first responder for events or the next responder in the responder chain.
An NSView’s frame and bounds are rectangles that define its location on the
screen, its dimension, and its coordinate system for drawing.

NSViewNSApplicationNSWindow

NSResponder

NSObject

‘The NSEvent class is also involved in event processing. For more about NSEvent and
the event cycle, see ‘‘Events and the Event Cycle’’ on page 172.

Managing Documents Through Delegation

157

The View Hierarchy

Just inside each window’s content area—the area enclosed by the title
bar and the other three sides of the frame—lies the content view. The
content view is the root (or top) NSView in the window’s view hierarchy.
Conceptually like a tree, one or more NSViews may branch from the content
view, one or more other NSViews may branch from these subordinate
NSViews, and so on. Except for the content view, each NSView has one (and
only one) NSView above it in the hierarchy. An NSView’s subordinate views
are called its subviews; its superior view is known as the superview.

On the screen enclosure determines the relationship between superview
and subview: a superview encloses its subviews. This relationship has
several implications for drawing:

• It permits construction of a superview simply by arrangement of
subviews. (An NSBrowser is an instance of a compound NSView.)

• Subviews are positioned in the coordinates of their superview, so when
you move an NSView or transform its coordinate system, all subviews are
moved and transformed in concert.

• Because an NSView has its own coordinate system for drawing, its
drawing instructions remain constant regardless of any change in
position in itself or of its superview.

Fitting Your Application In

The core program framework provides ways for your application to access
the participating objects and so to enter into the action.

• The global variable NSApp identifies the NSApplication object. By
sending the appropriate message to NSApp, you can obtain the
application’s NSWindow objects (windows), the key and main windows
(keyWindow and mainWindow), the current event (currentEvent), the
main menu (mainMenu), and the application’s delegate (delegate).

• Once you’ve identified an NSWindow object, you can get its content view
(by sending it contentView) and from that you can get all subviews of
the window. By sending messages to the NSWindow object you can also
get the current event (currentEvent), the current first responder
(firstResponder), and the delegate (delegate).

• You can obtain from an NSView most objects it references. You can
discover its window, its superview, and its subviews. Some NSView
subclasses can also have delegates, which you can access with
delegate.

By making your custom objects delegates of the NSApplication object, your
application’s NSWindows, and NSViews that have delegates, you can
integrate your application into the core program framework and participate
in what’s going on.

NSView (C)

windows

superview

subviews

NSWindow

ContentView

delegate

NSApplication

windows

delegate

NSWindows

ContentView

delegate

NSView (A)

windows

superview (nil)

subviews

NSView (B)

windows

superview

subviews

NSApp

A
B

C

Chapter 4 A Multi-Document Application

158

For To Do, we want the last-saved document to be opened when the user
launches the application. Accordingly, in the method that saves documents,
we store the document’s path in user defaults.

The new section of code gets the NSUserDefaults object for the current user and
stores the document path (fn) in user defaults for that user under the key
ToDoDocumentLastSaved. The synchronize method saves this default to disk.

/* ... */

if (result == NSOKButton) {

 fn = [sPanel filename];

 [[itemMatrix window] setTitleWithRepresentedFilename:fn];

/* add the code below ==========> */

 if (fn && ![fn isEqualToString:@""]) {

 NSUserDefaults *defaults =
 [NSUserDefaults standardUserDefaults];

 [defaults setObject:fn forKey:@"ToDoDocumentLastSaved"];

 [defaults synchronize];

 }

/* <========== add the code above */

 }

/* ... */

In ToDoDoc.m’s saveDoc method, add
code to write the path of the saved
document to user defaults.

(See comments in example for code to
add.)

- (BOOL)windowShouldClose:(id)sender

{

 int result;

 if (![[itemMatrix window] isDocumentEdited]) return YES;

 [[itemMatrix window] makeFirstResponder:[itemMatrix window]];

 result = NSRunAlertPanel(@"Close", @"Document has been edited.

 Save changes before closing?", @"Save", @"Don't Save",

 @"Cancel");

 switch(result) {

 case NSAlertDefaultReturn: {

[self saveDocItems];

 [self saveDoc];

return YES;

 }

 case NSAlertAlternateReturn: {

 return YES;

 }

 case NSAlertOtherReturn: {

 return NO;

 }

 }

 return NO;

}

A

B

C

3 Save edited documents when
windows are closed.

Implement the delegation method
windowShouldClose:.

Managing Documents Through Delegation

159

When an OpenStep Application Is Launched

When the user launches an application, the default behavior is to display
the contents of the main nib file. This initial presentation could be one or
more windows, but often it is just the application’s menu. Often with
document-centric applications, this behavior is what you want. But you
aren’t restricted to this behavior.

With OpenStep applications you have a number of alternatives. The
alternative that is best for an application depends on that application's
nature and purpose.

Put up an untitled document. The application displays a content-less
document with a window title of “UNTITLED” (or something similar). The
user can start adding content immediately or can open an existing
document. This is the course adopted by the TextEdit application. A
variation of this approach always displays an initial window with some
standard content, such as a product logo (see the Preview application).

How: The application's delegate must implement the
applicationOpenUntitledFile: method and, in that method, create a new
document or open a standard document.

Display the document that the user last saved. The first time a user
launches an application, the application creates and displays an untitled
document. When the user saves that document, the application stores the
full path of the saved file in user defaults. The next time the user launches
the application the application restores the document from the file. This is
the approach taken by the To Do application.

How: Implement applicationOpenUntitledFile:, as before, but this time first
check user defaults to see if it contains a path for a document file. If it does,
verify that the file exists (it could have been moved or deleted since the last
session) before opening and displaying it. Otherwise, display an untitled
document. When the user closes a document or terminates the application,

store the full path of the last-saved document file in user defaults.

Display an opened-document window. The opened-document window
(typically small) contains a list of documents that the user currently has
created or opened. Users can get a document to appear by clicking an item
in the list. When users choose the Exit command, the application can
terminate after closing (and, if necessary, saving) all listed documents. As
a variation, the application can, when it's next launched, restore to the
project window (via user defaults) the documents opened when the last
session was terminated.

How: In the application's main nib file create a small window that contains
a table view or browser. The project window's menu bar can contain the
complete set of menus or an appropriate subset. When the application is
launched, the project window is automatically displayed. When users open
or create a document, create and insert an appropriate entry in the table
view or browser. When users click (or double-click) on an entry, display the
document.

Chapter 4 A Multi-Document Application

160

When users click a window’s close button, the window sends windowShouldClose: to
the window’s delegate. The window expects a response directing it either to close
the window or leave it open. This implementation does the following:

Returns YES (close the window) if the document hasn’t been edited.

Makes the window its own first responder. This has the effect of forcing the
validation of cells, flushing currently entered text to the method that handles
it (more on this in the next section).

Identifies the clicked button by evaluating the constant returned from
NSRunAlertPanel() and returns the appropriate boolean value. If the user clicks
the Save button, this method also updates internal storage with the currently
displayed items (saveDocItems, described in the following section) and then
sends saveDoc to itself to archive application data to a file.

Note: Do you recall the performClose: method that ToDoController sends the
document window when the user chooses the Close command? This method
simulates a mouse click on the window’s close button, causing windowShouldClose:
to be invoked.

The NSApplication object sends applicationShouldTerminate: to its delegate to give
it notice that the application is about to terminate. In this method you should first
let the user save any edited document.

A

B

C

Managing Documents Through Delegation

161

Much of the code in this method is similar to that for windowShouldClose:; if a
window is managed by ToDoDoc, the applicationShouldTerminate: method puts
up an attention panel and responds according to the user’s choice. However,
there are some significant differences:

Returns all open windows of the application in an NSArray. Remember,
one of the jobs of an NSApplication is to track and manage all windows.

Enumerates and processes the NSWindow objects in this NSArray, as
noted.

If the user clicks “Don’t Save,” the close message forces the window to
close (without sending the windowShouldClose: delegate message).

- (BOOL)applicationShouldTerminate:(id)sender

{

 NSString *repfile = nil;

 NSArray *appWindows = [NSApp windows];

 NSEnumerator *enumerator = [appWindows objectEnumerator];

 id object;

 while (object = [enumerator nextObject]) {

 int result;

 id doc;

 if ((doc = [object delegate]) &&

 [doc isKindOfClass:[ToDoDoc class]] &&

 [object isDocumentEdited]) {

 repfile = [[NSApp keyWindow] representedFilename];

 result = NSRunAlertPanel(@"To Do", @"Save %@?", @"Save",
@"Don't Save", @"Cancel",
([repfile isEqualToString:@""]?@"UNTITLED":repfile));

 switch(result) {

 case NSAlertDefaultReturn:

 [doc saveDocItems];

 [doc saveDoc];

 break;

 case NSAlertAlternateReturn:

 [[NSApp keyWindow] close];

 break;

 case NSAlertOtherReturn:

 return NO;

 }

 }

 }

 return YES;

}

A

B

C

4 Save edited documents when the
user quits the application.

In ToDoController.m, implement the
delegation method
applicationShouldTerminate:.

A

B

C

Chapter 4 A Multi-Document Application

162

Managing ToDo’s Data and Coordinating its Display

If you recall the discussion on To Do’s design earlier in this chapter (‘‘How To Do
Stores and Accesses its Data’’ on page 121), you’ll remember that the application’s
real data consists of instances of the model class, ToDoItem. To Do stores these
objects in arrays and stores the arrays in a dictionary; it uses dates as the keys for
accessing specific arrays. (Both the dictionary and its arrays are mutable, of
course.) You might also recall that this design depends on a positional
correspondence between the text fields of the document interface and the “slots”
of the arrays.

To lend clarity to this design’s implementation, this section follows the process
from start to finish through which the ToDoDoc class handles entered data, and
organizes, displays, and stores it. It also shows how the display and manipulation
of data is driven by the selections made in the CalendarMatrix object.

Start by revisiting a portion of code you wrote earlier for ToDoDoc’s initWithFile:
method.

Assume the user has chosen the New command from the Document menu. Since
there is no archive file (aFile is nil), the activeDays dictionary is created but is left
empty. Then initWithFile: invokes its own setCurrentItems: method, passing in nil.

- initWithFile:(NSString *)aFile

{

 /* ... */

 if (aFile) {

 activeDays = [NSUnarchiver unarchiveObjectWithFile:aFile];

 if (activeDays)

 activeDays = [activeDays retain];

 else

 NSRunAlertPanel(@"To Do", @"Couldn't unarchive file %@",

 nil, nil, nil, aFile);

 } else {

 activeDays = [[NSMutableDictionary alloc] init];

 [self setCurrentItems:nil];

 }

/* ... */

}

Managing ToDo’s Data and Coordinating its Display

163

This “set” accessor method is like other such methods, except in how it
handles a nil argument. In this case, nil signifies that the array does not exist,
and so it must be created. Not only does setCurrentItems: create the array, but
it “initializes” it with empty string objects. It does this because
NSMutableArray’s methods cannot tolerate nil within the bounds of the array.

So there’s now a currentItems array ready to accept ToDoItems. Imagine
yourself using the application. What are the user events that cause a
ToDoItem to be added to the currentItems array? To Do allows entry of items
“on the fly,” and thus does not require the user to click a button to add a
ToDoItem to the array. Specifically, items are added when users type
something and then:

• Press the Tab key.
• Press the Enter key.
• Click outside the text field.

The controlTextDidEndEditing: delegation method makes these scenarios
possible. The matrix of editable text fields (itemMatrix) invokes this method
when the cursor leaves a text field that has been edited.

- (void)setCurrentItems:(NSMutableArray *)newItems

{

 if (currentItems) [currentItems autorelease];

 if (newItems)

 currentItems = [newItems mutableCopy];

 else {

 int numRows, numCols;

 [itemMatrix getNumberOfRows:&numRows columns:&numCols];

 currentItems = [[NSMutableArray alloc]

 initWithCapacity:numRows];

 while (--numRows >= 0)

 [currentItems addObject:@""];

 }

}

1 Set the current items or, if necessary,
create and prepare the array that
holds them.

Implement setCurrentItems:.

Chapter 4 A Multi-Document Application

164

A control sends controlTextDidEndEditing: to its delegate when the insertion point
leaves a text field. In addition to creating new ToDoItems, this implementation of
controlTextDidEndEditing: removes ToDoItems from arrays and modifies item text.
What it does is appropriate to what the user does.

If the document hasn’t been edited (see controlTextDidChange:) or if the selected
row exceeds the array bounds, the code returns because there’s no reason to
proceed. Otherwise, it initializes a currentItems array if one doesn’t exist.

If the user deletes the text of an existing item, the code removes the
ToDoItem that positionally corresponds to the row of that deleted text.

It changes the name of an item if the text entered in a field doesn’t match the
name of the corresponding item in the currentItems array.

- (void)controlTextDidEndEditing:(NSNotification *)notif

{

 id curItem, newItem;

 int row = [itemMatrix selectedRow];

 NSString *selName = [[itemMatrix selectedCell] stringValue];

 if (![[itemMatrix window] isDocumentEdited] ||

 (row >= [currentItems count])) return;

 if (!currentItems)

 [self setCurrentItems:nil];

 if ([selName isEqualToString:@""] &&

 ([[currentItems objectAtIndex:row] isKindOfClass:
 [ToDoItem class]]) &&

 (![[[currentItems objectAtIndex:row] itemName]
 isEqualToString:@""]))

 [currentItems replaceObjectAtIndex:row withObject:@""];

 else if ([[currentItems objectAtIndex:row] isKindOfClass:
 [ToDoItem class]] &&

 (![[[currentItems objectAtIndex:row] itemName]
 isEqualToString:selName]))

 [[currentItems objectAtIndex:row] setItemName:selName];

 else if (![selName isEqualToString:@""]) {

 newItem = [[ToDoItem alloc] initWithName:selName

 andDate:[calendar selectedDay]];

 [currentItems replaceObjectAtIndex:row withObject:newItem];

 [newItem release];

 }

 [self updateMatrix];

}

A

B

C

D

E

2 As items are entered in the interface,
add ToDoItems to internal storage,
delete them, or modify them, as
appropriate.

Implement controlTextDidEndEditing:.
as shown.

A

B

C

Managing ToDo’s Data and Coordinating its Display

165

If either of the two previous conditions don’t apply, and text has been
entered, it creates a new ToDoItem and inserts it in the currentItems array.

Updates the list of items in the document interface.

The updateMatrix method writes the names of the items (ToDoItems) in the
currentItems array to the text fields of itemMatrix. It also updates the visual
appearance of the cells in the matrix (markMatrix) next to itemMatrix. These cells
are instances of a custom subclass of NSButtonCell that you will create later
in this tutorial. For now, just type all the code above; later, when you create
the cell class (ToDoCell) you can refer back to this example.

Basically, this method cycles through the array of items, doing the following:

If an object in the array is a ToDoItem, it writes the item name to the text
field pegged to the array slot and updates the button cell next to the field.

If an object isn’t a ToDoItem, it blanks the corresponding text field and
cell.

D

E

- (void)updateMatrix

{

 int i, cnt = [currentItems count],

 rows = [[itemMatrix cells] count];

 ToDoItem *thisItem;

 for (i=0; i<cnt, i<rows; i++) {

 NSDate *due;

 thisItem = [currentItems objectAtIndex:i];

 if ([thisItem isKindOfClass:[ToDoItem class]]) {

 if ([thisItem secsUntilDue])

 due = [[thisItem day] addTimeInterval:

 [thisItem secsUntilDue]];

 else

 due = nil;

 [[itemMatrix cellAtRow:i column:0] setStringValue:

 [thisItem itemName]];

 [[markMatrix cellAtRow:i column:0] setTimeDue:due];

 [[markMatrix cellAtRow:i column:0] setTriState:

 [thisItem itemStatus]];

 }

 else {

 [[itemMatrix cellAtRow:i column:0] setStringValue:@""];

 [[markMatrix cellAtRow:i column:0] setTitle:@""];

 [[markMatrix cellAtRow:i column:0] setImage:nil];

 }

 }

}

A

B

3 Update the document interface with
the current items.

Implement updateMatrix:.

A

B

Chapter 4 A Multi-Document Application

166

As you might recall, CalendarMatrix declared two methods to allow delegates to
“hook into” its behavior. Its delegate for this application is ToDoDoc.

The calendar sends calendarMatrix:didChangeToDate: when users click a new day
of the month. This implementation saves the current items to the activeDays
dictionary. It then sets the current items to be those corresponding to the
selected date (if there are no items for that date, the objectForKey: message
returns nil and the currentItems array is initialized with empty strings). Finally it
updates the matrix with the new data.

The calendar sends calendarMatrix:didChangeToMonth:year: when users go to a new
month and (possibly) a new year. This implementation responds by saving the
current items to internal storage and presenting a blank list of items.

- (void)calendarMatrix:(CalendarMatrix *)matrix

 didChangeToDate:(NSDate *)date

{

 [[itemMatrix window] makeFirstResponder:[itemMatrix window]];

 [self saveDocItems];

 [self setCurrentItems:[activeDays objectForKey:date]];

 [dayLabel setStringValue:[date descriptionWithCalendarFormat:

 @"To Do on %a %B %d %Y" timeZone:[NSTimeZone defaultTimeZone]

 locale:nil]];

 [self updateMatrix];

}

- (void)calendarMatrix:(CalendarMatrix *)matrix

 didChangeToMonth:(int)mo year:(int)yr

{

 [self saveDocItems];

 [self setCurrentItems:nil];

 [self updateMatrix];

}

A

B

4 Respond to user actions in the
calendar.

Implement CalendarMatrix’s
delegation methods.

A

B

Managing ToDo’s Data and Coordinating its Display

167

This method inspects the currentItems array and, if it contains at least one
ToDoItem, puts the array in the activeDays dictionary with a key
corresponding to the date.

Now that you’ve completed the methods for saving and archiving the
collection objects holding ToDoItems, assume that the user has saved his or
her document and then opens it.

- (void)saveDocItems

{

 ToDoItem *anItem;

 int i, cnt = [currentItems count];

 // save day's current items (array) to document dictionary

 for (i=0; i<cnt; i++) {

 if ((anItem = [currentItems objectAtIndex:i]) &&

 ([anItem isKindOfClass:[ToDoItem class]])) {

 [activeDays setObject:currentItems forKey:

 [anItem day]];

 break;

 }

 }

}

5 Save the data to internal storage.

Implement saveDocItems:.

6 Archive and unarchive the
document’s data.

Implement encodeWithCoder: and
initWithCoder: to archive and
unarchive the dictionary holding the
arrays of ToDoItems.

Chapter 4 A Multi-Document Application

168

When the ToDoDoc.nib file is completely unarchived, awakeFromNib is invoked. It
sets the current items for today, sets a couple of delegates, and puts the document
window in front of all other windows.

Note: This method sets some delegates programmatically, which is redundant
since you set these delegates in Interface Builder. However, this code
demonstrates the programmatic route—and no harm done.

The activateDoc method is invoked right after a To Do document is created or
opened. It starts the ball rolling by updating the list matrices of the document and
writing the current date to the “To Do on <date>” label.

- (void)awakeFromNib

{

 int i;

 NSDate *date;

 date = [calendar selectedDay];

 [self setCurrentItems:[activeDays objectForKey:date]];

 /* set up self as delegates */

 [[itemMatrix window] setDelegate:self];

 [itemMatrix setDelegate:self];

 [[itemMatrix window] makeKeyAndOrderFront:self];

}

7 Perform set-up tasks when the
document’s nib file is unarchived.

Implement awakeFromNib as shown
at right.

8 Set up the document once it’s
created or opened.

Implement activateDoc as shown at
right.

- (void)activateDoc

{

 if ([currentItems count]) [self updateMatrix];

 [dayLabel setStringValue:[[calendar selectedDay]

 descriptionWithCalendarFormat:@"To Do on %a %B %d %Y"

 timeZone:[NSTimeZone defaultTimeZone] locale:nil]];

}

170

What You’ll Learn

Creating and managing an
inspector

Responding to user actions

Coordinating events within an
application

Overriding behavior of an
Application Kit class

Creating a custom NSView
subclass

Using timers

Drawing and compositing
essentials

5

You can find the Travel Advisor project in the

AppKit

 subdirectory of

NEXT_ROOT/NextDeveloper/Examples.

171

Chapter 5

Extending the To Do Application

In this tutorial you will add features and functionality to the To Do application you

created in the previous tutorial. The finished application will allow users to do much

more than entering to-do items into a daily list. In an inspector they will be able to:

•

 Specify the times those items are due.

•

 Request that they be notified at a specified interval before the due time.

•

 Associate notes with items.

•

 Mark items as complete or deferred.

•

 Reschedule uncompleted items.

Moreover, the document interface will have a custom button for each item. The button

will display the item’s due time. Users can also click the button to change an item’s

status. Changes users make in the document will be immediately reflected in the inspector,

and vice versa.

Chapter 5

Extending the To Do Application

172

Events and the Event Cycle

Conceptually, this chapter focuses primarily on

events

—especially events
originating from user actions—and how, as a programmer, you intercept,
handle, and coordinate them in OpenStep. Therefore, it’s best to begin with
a short overview of this topic.

You can depict the interaction between a user and an OpenStep application
as a cyclical process, with the Window Server playing an intermediary role
(see illustration below). This cycle—the

event cycle

—usually starts at
launch time when the application (which includes all the frameworks it’s
linked to) sends a stream of PostScript code to the Window Server to have
it draw the application interface.

Then the application begins its main event loop and begins accepting input
from the user (see next page). When users click or drag the mouse or type
on the keyboard, the Window Server detects these actions and processes
them, passing them to the application as events. Often the application, in
response to these events, returns another stream of PostScript code to the
Window Server to have it redraw the interface.

In addition to events, applications can respond to other kinds of input,
particularly timers, data received at a port, and data waiting at a file
descriptor. But events are the most important kind of input.

Events

The Window Server treats each user action as an event. It associates the
event with a window and reported to the application that created the
window. Events are objects: instances of NSEvent composed from
information derived from the user action.

All event methods defined in NSResponder (such as

mouseDown:

 and

keyDown:

) take an NSEvent as their argument. You can query an NSEvent
to discover its window, the location of the event within the window, and the
time the event occurred (relative to system start-up). You can also find out
which (if any) modifier keys were pressed, such as Command, Option
(Alternate), and Control), the codes that identify characters and keys, and
various other kinds of information.

An NSEvent also divulges the type of event it represents. There are many
event types (NSEventType); they fall into four categories:

•

Keyboard events

. Generated when a key is pressed down, a pressed key
is released, or a modifier key changes. Of these, key-down events are the
most useful. When you handle a key-down event, you often determine the
character or characters associated with the event by sending the
NSEvent a

characters

 message.

•

Mouse event

. Mouse events are generated by changes in the state of the
mouse buttons (that is, down and up) for both left and right mouse
buttons and during mouse dragging. Events are also generated when
the mouse simply moves, without any button pressed.

•

Tracking-rectangle events

. If the application has asked the window
system to set a tracking rectangle in a window, the window system
creates mouse-entered and mouse-exit events when the cursor enters
the rectangle or leaves it.

•

Periodic events

. A periodic event notifies an application that a certain
time interval has elapsed. An application can request that periodic
events be placed in its event queue at a certain frequency. They are
usually used during a tracking loop. (These events aren’t passed to an
NSWindow.)

173

Window

Server NSEvent

NSEvent

NSEvent

NSEvent NSApplication

NSWindow

NSView

The Event Queue and Event Dispatching

When an application starts up, the NSApplication object (NSApp) starts the
main event loop and begins receiving events from the Window Server. As
NSEvents arrive, they’re put in the

event queue

in the order they’re received.
On each cycle of the loop, NSApp gets the topmost event, analyzes it, and
sends an

event message

 to the appropriate object. (Event messages are
defined by NSResponder and correspond to particular events.) When NSApp
finishes processing the event, it gets the next event and repeats the process
again and again until the application terminates.

The object that is “appropriate” for an event depends on the type of event.
NSApp sends most event messages to the NSWindow in which the user
action occurred. If the event is a keyboard or mouse event, the NSWindow
forwards the message to one of the objects in its view hierarchy: the NSView
within which the mouse was clicked or the key was pressed. If the NSView
can respond to the event—that is, it accepts first responder status and
defines an NSResponder method corresponding to the event message—it
handles the event.

If the NSView cannot handle an event, it forwards the message to the next
responder in the responder chain (see next section for details). It travels up
the responder chain until an object handles it.

First Responder and the Responder Chain

Each NSWindow in an application keeps track of the object in its view
hierarchy that has

first responder

 status. This is the NSView that currently
receives keyboard events for the window. By default, an NSWindow is its
own first responder, but any NSView within the window can become first
responder when the user clicks it with the mouse.

You can also set the first responder programmatically with the NSWindow’s

makeFirstResponder:

 method. Moreover, the first-responder object can be
a target of an action message sent by an NSControl, such as a button or a
matrix. Programmatically, you do this by sending

setTarget:

 to the
NSControl (or its cell) with an argument of

nil

. You can do the same thing
in Interface Builder by making a target/action connection between the
NSControl and the First Responder icon in the Instances display of the nib
file window.

Recall that all NSViews of the application, as well as all NSWindows and the
application object itself, inherit from NSResponder, which defines the
default message-handling behavior: events are passed up the responder
chain. Many Application Kit objects, of course, override this behavior, so
events are passed up the chain until they reach an object that does
respond.

The series of next responders in the responder chain is determined by the
interrelationships between the application’s NSView, NSWindow, and
NSApplication objects (see page 156). For an NSView, the next responder is
usually its superview; the content view's next responder is the NSWindow.
From there, the event is passed to the NSApplication object.

For action messages sent to the first responder, the trail back through
possible respondents is even more detailed. The messages are first passed
up the responder chain to the NSWindow and then to the NSWindow’s
delegate. Then, if the previous sequence occurred in the key window, the
same path is followed for the main window. Then the NSApplication object
tries to respond, and failing that, it goes to NSApp’s delegate.

NSWindow handles some events itself, and doesn’t forward them to an
NSView, such as window-moved, window-resized, and window-exposed
events. (Since these are handled by NSWindow itself, they are not defined
in NSResponder.) NSApp also processes a few kinds of events itself, such
as application-activate and application-deactivate events.

Chapter 5

Extending the To Do Application

174

Overriding Behavior of an Application Kit Class: An Example

You can often achieve significant gains in object behavior by making a subclass
that adds only a small amount of code to its superclass. Such is the case with the
subclass you’ll create in this section: SelectionNotifMatrix.

The need for this class is this: An instance of NSMatrix is a control and thus can
send action messages to its cell’s targets; but when it contains NSTextFieldCells,
action messages are sent only when users press the Return key in a cell. You want
the inspector (which you’ll create in the next section) to synchronize its displays
when the user selects a new item by clicking a text field. To do this, you will

override

 the method in NSMatrix that is invoked when users click the matrix; in
your implementation, you’ll invoke the superclass method, detect the selected
row, and then post a notification to interested observers.

Declares a string constant identifying the notification that will be posted.

Declares

mouseDown:

, the method implemented by the superclass but
overridden by SelectionNotifMatrix.

Before You Go On

Remember, build the project frequently to catch any errors quickly, to get a
sense of how the application is developing, and (just as important) to give

yourself a break from coding.

1 Create template source-code files
and add to the project.

Choose File m New In Project.

In the New File In ToDo panel, select the
Class suitcase, turn on the Create
header switch, and type
“SelectionNotifMatrix” after Name.

2 Add declarations to the header file.

#import <AppKit/AppKit.h>

extern NSString *SelectionInMatrixNotification =
 @"SelectionInMatrixNotification";

@interface SelectionNotifMatrix : NSMatrix

{

}

- (void)mouseDown:(NSEvent *)theEvent;

@end

A

B

A

B

Overriding Behavior of an Application Kit Class: An Example

175

This override of

mouseDown:

 does the following:

Invokes NSMatrix’s implementation of

mouseDown:

 to allow the normal
processing of this event.

Gets the row of the cell clicked and, if it’s a valid row, creates a

userInfo

dictionary containing the index of the clicked row, and posts the
SelectionInMatrixNotification.

Now that you’ve created the SelectionNotifMatrix class, you must re-assign
the class membership of the object in the interface. You can do this easily in
Interface Builder.

- (void)mouseDown:(NSEvent *)theEvent

{

 int row;

 [super mouseDown:theEvent];

 row = [self selectedRow];

 if (row != -1) {

 [[NSNotificationCenter defaultCenter]

 postNotificationName:@"SelectionInMatrixNotification"

 object:self userInfo:[NSDictionary
 dictionaryWithObjectsAndKeys:

 [NSNumber numberWithInt:row], @"ItemIndex", nil]];

 }

}

A

B

3 Override mouseDown:

In SelectionNotifMatrix.m, implement
mouseDown: as shown here.

A

B

The Custom Classes browser lists the original class of
the selected object and all compatible custom
subclasses.

4 Assign the new class to the matrix of
text fields.

In Interface Builder:

In the Classes display of ToDoDoc.nib,
select NSMatrix as the superclass.

Choose Read File from the Classes
menu.

In the Read File browser, select
SelectionNotifMatrix and click OK.

Select the matrix of text cells.

Choose SelectionNotifMatrix in the
Custom display of the inspector.

Chapter 5

Extending the To Do Application

176

Creating and Managing an Inspector (ToDoInspector)

An inspector is a panel of fields and controls that enable users to examine and set
an object’s attributes. Because objects often have many attributes and because
you want to make it easy for users to set those attributes, inspectors usually have
more than one display; users typically access these multiple displays using a pop-
up list.

The ToDo application has an inspector panel that allows users to inspect and set
the attributes of the currently selected ToDoItem. The inspector panel has its
own controller: ToDoInspector. While showing you how to create the inspector
panel and ToDoInspector, this section focuses on four things:

• Managing displays according to user selections
• Getting the current ToDoItem
• Updating the currently selected display
• Updating the current ToDoItem as users make changes to it

Before You Go On

You might be wondering about the empty box object in the lower part of the
panel. This box by itself may not seem a promising thing for displaying object
attributes, but it is critical to the workings of the inspector panel. A box that you
drag from the Views palette contains one subview, called the

content view

.
NSBox’s content view fits entirely within the bounds of the box. NSBox
provides methods for obtaining and changing the content view of boxes. You’ll

use these methods to change what the inspector panel displays.

The text fields should have a gray background and
should not be editable nor scrollable. Enlarge the
lower field to accommodate long item entries.

Double-click to display in a floating window the three
default items (Item1, Item2, Item3)

In the floating window, double-click the title tof each
item to select it; type the new title.

Assign tags 0 to 2 to the cells in downward order.

Turn off the box's Title attribute and resize the object
so it fits just inside the lower part of the panel. To
provide a guide for resizing, this example shows the
box having a border; turn the border off after resizing.

In Interface Builder

1 Create a new nib file named
ToDoInspector.nib and add it to the
ToDo project.

2 Create the inspector panel.

Drag a panel object from the Windows
palette.

Make the title of the panel “Inspector.”

Turn on the panel’s sizing border and
resize it, using the example as a guide.

Turn off the panel’s sizing border.

Put labels and fields on the panel and
set their attributes (as shown).

Put a pop-up button on the panel and
set cell titles (as shown).

Assign tags to the pop-up button cells.

Create a separator line just below the
pop-up button.

Put an empty box object in the lower
part of the panel.

Creating and Managing an Inspector (ToDoInspector)

177

Before You Go On

You probably now see where the inspector panel gets its displays and how it puts
them in place. When the inspector panel is first opened (and

ToDoInspector.nib

 is
loaded) the inspector controller, ToDoInspector, replaces the content view of the
inspector’s empty box (

dummyView

) with the content view of the Notification box in
the off-screen panel. Thereafter, every time the user chooses a new pop-up button
in the inspector panel, ToDoInspector replaces the currently displayed content
view with the content view of the associated off-screen box.

The scroll view is in its own group (Notes).

Turn off the border attribute of each outer box.

3 Create an off-screen panel holding
the inspector’s displays.

Drag a panel object from the Windows
palette.

Resize the panel, using the example at
right as a guide.

Put the labels, text fields, scroll view,
and switch and radio-button matrices
on the panel shown in the example at
right.

Set the mode attributes of the switch
matrices to Radio.

Make the “When to reschedule” and
“When to notify” groupings (boxes).

Make three other groupings for the
three displays: Notes, Reschedule, and
Notification.

Make the resulting outer boxes the
same size as the “dummy” view in the
inspector panel.

When users choose a new inspector display,
ToDoInspector replaces the current content
view of dummy View with the appropriate
view on the offscreen window.

Screen

Chapter 5

Extending the To Do Application

178

Interface Builder provides a palette object that formats dates in addition to the
one that formats numbers. You can identify this object on the DataViews palette
through its calendar icon.

Select a simple integer format for the hour and minute
“Time” fields.

Users cannot enter values that are less than this into the
field; the cursor will not leave the field until they enter an
appropriate value.

4 Apply formatters to fields of the
inspector.

Drag a number-formatter object from
the DataViews palette and drop it on
the hours field of the Notification
display (the first field after “Time:”).

In the inspector’s Formatter display,
set the field to have a minimum value
of 1 and a maximum value of 12 (see
example).

Apply a number formatter to the
minutes field (the second field after
“Time:”) and set it to have a minimum
value of 0 and a maximum value of 59.

Select this format for the field.

The formatter rejects dates entered in any other format.
It also verifies that the individual fields contain proper
values (for instance, “13” is disallowed as a month).

Check if you want the formatter to interpret common
temporal expressions such as “tomorrow” or “next
month.”

Drag a date-formatter object from the
DataViews palette onto the date field in
the Rescheduling display (the
“mm/dd/yy” field).

In the inspector’s Formatter display,
select the “%m/%d/%y” format from
the table.

Creating and Managing an Inspector (ToDoInspector)

179

Outlet Connection From ToDoInspector To...

dummyView The empty box object in the inspector panel

inspectorViews The title bar of the off-screen panel

notesView The box in the off-screen panel containing the scroll view

notifView The box in the off-screen panel containing the fields and controls related

to notification of impending items

reschedView The box in the off-screen panel containing the fields and controls related

to rescheduling items

inspPopUp The pop-up button on the inspector panel

inspDate The uneditable text field next to the “Date” label

inspItem The uneditable text field next to the “Item” label

inspNotifHour The first field after the “Time” label

inspNotifMinute The second field after the “Time” label

inspNotifAMPM The matrix holding the “AM” and “PM” radio buttons

inspNotifOtherHours The text field in the “When to Notify” box

inspNotifSwitchMatrix The matrix of switches in the “When to Notify” box

inspSchedComplete The “Task Completed” switch

inspSchedDate The text field in the “When to Reschedule” box

inspSchedMatrix The matrix of switches in the “When to Reschedule” box

inspNotes The text object inside the scroll view

Action Connection To ToDoInspector From...

newInspectorView: The pop-up button on the inspector panel

switchChecked: The matrix of switches in the “When to Notify” box, the AM-PM matrix, the
“Task Completed” switch, and the matrix of switches in the “When to

Reschedule” switches

5 Define the ToDoInspector class.

Create a subclass of NSObject and
name it “ToDoInspector.”

Add the outlets and actions in the
tables at right to the new class.

Instantiate ToDoInspector.

Connect the ToDoInspector object to its
outlets and as the target of action
messages (see tables at right).

Connect ToDoInspector and the
inspector panel via the panel’s
delegate outlet.

Close both panels.

Save ToDoInspector.nib.

Create source-code files for
ToDoInspector and add them to the
project.

Chapter 5

Extending the To Do Application

180

The ToDoInspector class has a utility function for clearing switches set in a matrix
and defines constants for the tags assigned to the pop-up buttons.

Using tags to identify cells rather than cell titles is a better localization strategy.

ToDoInspector has two accessor methods, one that gives out the current item and
one that sets the current item.

The implementation of

setCurrentItem:

’s “set” accessor method probably seems
familiar to you—except for a couple of things:

Instead of copying the new value, this implementation retains it. By retaining,
it

shares

 the current ToDoItem with the document controller (ToDoDoc) that
has sent the

setCurrentItem:

 message, enabling both objects to update the same
ToDoItem simultaneously.

Later in this section, you’ll invoke ToDoInspector’s

setCurrentItem:

 method in
various places in

ToDoDoc.m

.

Updates the current display of the inspector with the appropriate values of the
new ToDoItem.

In Project Builder

6 Add declarations to ToDoInspector.h.

Open ToDoInspector.h.

Type the declarations shown at right
(ellipses indicate existing
declarations).

Import ToDoItem.h and ToDoDoc.h.

@interface ToDoInspector : NSObject

{

 ToDoItem *currentItem;

 /* ... */

}

/* ... */

- (void)setCurrentItem:(ToDoItem *)newItem;

- (ToDoItem *)currentItem;

- (void)updateInspector:(ToDoItem *)item;

@end

Open ToDoInspector.m.

Forward-declare clearButtonMatrix()
at the beginning of the file.

Define enum constants for the pop-up
button tags.

static void clearButtonMatrix(id matrix);

enum { notifTag = 0, reschedTag, notesTag };

7 Implement the accessor methods for
the class.

Implement currentItem to return the
instance variables it names.

Implement setCurrentItem: as shown
at right.

- (void)setCurrentItem:(ToDoItem *)newItem

{

 if (currentItem) [currentItem autorelease];

 if (newItem)

 currentItem = [newItem retain];

 else

 currentItem = nil;

 [self updateInspector:currentItem];

}

A

B

A

B

Creating and Managing an Inspector (ToDoInspector)

181

This method switches the current inspector display according to the pop-up
button users select; it does this switching by replacing the

dummyView

’s content
view. Toward this end, the method:

Gets the panel’s content view and the tag of the selected pop-up button.

Assigns to the

newView

 local variable the off-screen box object
corresponding to the tag of the selected pop-up button.

Returns if the selected display is already on the inspector panel. The

subviews

 message returns an array of all subviews of the inspector panel’s
control view, and the

containsObject:

 message determines if the chosen
display is among these subviews.

Replaces the content view of the inspector panel’s

dummyView

. In

awakeFromNib

(which you’ll soon implement) you’ll retain each original content view.
The

setContentView:

 method replaces the new view and releases the old one;
because it’s retained, the replaced view remains visible.

Updates the inspector with the current item; this item hasn’t changed, but
the display is new and so the set of instance variables to be displayed is
different. The

setNeedsDisplay:

message forces a re-draw of the inspector
panel’s views.

8 Switch inspector displays based on
user selections.

Implement newInspectorView:.

- (void)newInspectorView:(id)sender

{

 NSBox *newView=nil;

 NSView *cView = [[inspPopUp window] contentView];

 int selected = [[inspPopUp selectedItem] tag];

 switch(selected){

 case notifTag:

 newView = notifView;

 break;

 case reschedTag:

 newView = reschedView;

 break;

 case notesTag:

 newView = notesView;

 break;

 }

 if ([[cView subviews] containsObject:newView]) return;

 [dummyView setContentView:newView];

 if (newView == notifView) [inspNotifHour selectText:self];

 if (newView == notesView) [inspNotes

 setSelectedRange:NSMakeRange(0,0)];

 [self updateInspector:currentItem];

 [cView setNeedsDisplay:YES];

}

A
B

C
D

E

A

B

C

D

E

Chapter 5 Extending the To Do Application

182

- (void)updateInspector:(ToDoItem *)newItem

{

 int minute=0, hour=0, selected=0;

 selected = [[inspPopUp selectedItem] tag];

 [[inspPopUp window] orderFront:self];

 if (newItem && [newItem isKindOfClass:[ToDoItem class]]) {

 [inspItem setStringValue:[newItem itemName]];

 [inspDate setStringValue:[[newItem day]

 descriptionWithCalendarFormat:@"%a, %b %d %Y"

 timeZone:[NSTimeZone localTimeZone] locale:nil]];

 switch(selected) {

 case notifTag: {

 long notifSecs, dueSecs = [newItem secsUntilDue];

 BOOL ampm = ConvertSecondsToTime(dueSecs, &hour, &minute);

 [[inspNotifAMPM cellAtRow:0 column:0] setState:!ampm];

 [[inspNotifAMPM cellAtRow:0 column:1] setState:ampm];

 [inspNotifHour setIntValue:hour];

 [inspNotifMinute setIntValue:minute];

 notifSecs = dueSecs - [newItem secsUntilNotif];

 if (notifSecs == dueSecs) notifSecs = 0;

 clearButtonMatrix(inspNotifSwitchMatrix);

 switch(notifSecs) {

 case 0:

 [[inspNotifSwitchMatrix cellAtRow:0 column:0]

 setState:YES];

 break;

 case (hrInSecs/4):

 [[inspNotifSwitchMatrix cellAtRow:1 column:0]

 setState:YES];

 break;

 case (hrInSecs):

 [[inspNotifSwitchMatrix cellAtRow:2 column:0]

 setState:YES];

 break;

 case (dayInSecs):

 [[inspNotifSwitchMatrix cellAtRow:3 column:0]

 setState:YES];

 break;

 default: /* Other */

 [[inspNotifSwitchMatrix cellAtRow:4 column:0]

 setState:YES];

 [inspNotifOtherHours setIntValue:

 ((dueSecs-notifSecs)/hrInSecs)];

 break;

 }

 break;

 }

 case reschedTag:

 break;

A

B

C

D

9 Update the current inspector display
with the new ToDoItem.

Write the first part of the
updateInspector: method shown at
right.

Creating and Managing an Inspector (ToDoInspector)

183

The updateInspector: method is a long one, so we’ll approach it in stages. This
first part updates the common data elements (item name and date) and, if the
selected display is for notifications, updates that display.

Gets the tag assigned to the selected pop-up button.

Tests the argument newItem to see if it is a ToDoItem. This test is important
because if the argument is nil, the method clears the display of existing
data (next example).

If newItem is a ToDoItem, updateInspector: first updates the Item and Date
fields.

If the tag of the selected pop-up button is notifTag, updates the associated
inspector display. This task starts by converting the due time from
seconds to hour, minute, and PM boolean values and then setting the
appropriate fields and button matrix with these values.

Sets the appropriate switch in the “When to Notify” matrix. It starts with
the difference (in seconds) between the time the item is due and the time
the item notification is sent. It calls clearButtonMatrix() to turn all switches off
and then, in a switch statement, sets the switch corresponding to the
difference in value between seconds from midnight before due and before
notification.

Before You Go On

Update the Notes display. Add code to update the inspector’s Notes display from the
information in the ToDoItem passed into updateInspector:. (Check the
documentation on NSText to see what method is suitable for this.) The
selected pop-up button must have notesTag assigned to it. Also put the cursor at
the start of the text object by selecting a “null” range.

Note that this tutorial omits the rescheduling logic of the ToDo application,
including the code in this method that would update the “Reschedule”
display. Rescheduling of ToDoItems is reserved as an optional exercise for
you at the end of this tutorial.

A

B

C

D

Chapter 5 Extending the To Do Application

184

As you’ve most likely noticed, the updateInspector: method calls the function
clearButtonMatrix(), which resets the states of all button cells in a switch matrix to NO.

The getNumberOfRows:columns: message returns, by indirection in the first argument,
the number of cells in itemMatrix.

Finish the implementation of
updateInspector: by resetting all
displays if the argument is nil.

 }

 else if (!newItem) { /* newItem is nil */

 [inspItem setStringValue:@""];

 [inspDate setStringValue:@""];

 [inspNotifHour setStringValue:@""];

 [inspNotifMinute setStringValue:@""];

 [[inspNotifAMPM cellAtRow:0 column:0] setState:YES];

 [[inspNotifAMPM cellAtRow:0 column:1] setState:NO];

 clearButtonMatrix(inspNotifSwitchMatrix);

 [[inspNotifSwitchMatrix cellAtRow:0 column:0]

setState:YES];

 [inspNotifOtherHours setStringValue:@""];

 [inspNotes setString:@""];

 }

}

Implement the clearButtonMatrix()
utility function.

void clearButtonMatrix(id matrix)

{

 int i, rows, cols;

 [matrix getNumberOfRows:&rows columns:&cols];

 for(i=0; i<rows; i++)

 [[matrix cellAtRow:i column:0] setState:NO];

}

Creating and Managing an Inspector (ToDoInspector)

185

Making a Custom View

If you want an object that draws itself differently than any other Application
Kit object, or responds to events in a special way, you should make a custom
subclass of NSView. Your custom subclass should complete at least the
steps outlined below.

Note: If you make a custom subclass of any class that inherits from NSView,
and you want to do custom drawing or event handling, the basic procedure
presented here still applies.

Interface Builder

1 Define a subclass of NSView in Interface Builder. Then generate header
and implementation files.

2 Drag a CustomView object from the Views palette onto a window and
resize it. Then, with the CustomView object still selected, choose the
Custom Class display of the Inspector panel and select the custom
class. Connect any outlets and actions.

Initializing Instances

3 Override the designated initializer, initWithFrame: to return an
initialized instance of self. The argument of this method is the frame
rectangle of the NSView, usually as set in Interface Builder (see step 2).

Handling Events

In the next section, you’ll make a subclass of NSButtonCell that uniquely
responds to mouse clicks. The way custom NSViews handle events is
different. If you intend your custom NSView to respond to user actions you

must do a couple of things:

4 Override acceptsFirstResponder to return YES if the NSView is to handle
selections. (The default NSView behavior is to return NO.)

5 Override the desired NSResponder event methods (mouseDown:,
mouseDragged:, keyDown:, etc.).

- (void)mouseDown:(NSEvent *)event {

if (([event modifierFlags] &

NSControlKeyMask){

doSomething();

}

You can query the NSEvent argument for the location of the user action in
the window, modifier keys pressed, character and key codes, and other
information.

Drawing

When you send display to an NSView, its drawRect: method and each of its
subview’s drawRect: are invoked. This method is where an NSView renders
its appearance.

6 Override drawRect:. The argument is usually the frame rectangle in
which drawing is to occur. This tells the Window Server where the
NSView’s coordinate system is located. To draw the NSView, you can do
one or more of the following:

• Composite an NSImage.

• Call Application Kit functions such as NSRectFill() and NSFrameRect ()
(NSGraphics.h).

• Call C functions that correspond to single PostScript operations, such as
PSsetgray() and PSfill().

• Call custom drawing functions created with pswrap.

7 When state changes and you need to have the object redraw itself, invoke
setNeedsDisplay: with an argument of YES.

See ‘‘A Short Guide to Drawing and Compositing’’ on page 192 for more
information on drawing techniques and requirements.

Chapter 5 Extending the To Do Application

186

10 Update the current item with new
values entered in the inspector.

Implement switchChecked: to apply
changes made through switches and
other controls.

- (void)switchChecked:(id)sender

{

 long tmpSecs=0;

 int idx = 0;

 id doc = [[NSApp mainWindow] delegate];

 if (sender == inspNotifAMPM) {

 if ([inspNotifHour intValue]) {

 tmpSecs = ConvertTimeToSeconds([inspNotifHour intValue],

 [inspNotifMinute intValue],

 [[sender cellAtRow:0 column:1] state]);

 [currentItem setSecsUntilDue:tmpSecs];

 [[NSApp mainWindow] setDocumentEdited:YES];

 [doc updateMatrix];

 }

 } else if (sender == inspNotifSwitchMatrix) {

 idx = [inspNotifSwitchMatrix selectedRow];

 tmpSecs = [currentItem secsUntilDue];

 switch(idx) {

 case 0:

 [currentItem setSecsUntilNotif:0];

 break;

 case 1:

 [currentItem setSecsUntilNotif:tmpSecs-(hrInSecs/4)];

 break;

 case 2:

 [currentItem setSecsUntilNotif:tmpSecs-hrInSecs];

 break;

 case 3:

 [currentItem setSecsUntilNotif:tmpSecs-dayInSecs];

 break;

 case 4: // Other

 [currentItem setSecsUntilNotif:([inspNotifOtherHours intValue]

 * hrInSecs)];

 break;

 default:

 NSLog(@"Error in selectedRow");

 break;

 }

 [[NSApp mainWindow] setDocumentEdited:YES];

 } else if (sender == inspSchedComplete) {

 [currentItem setItemStatus:complete];

 [[NSApp mainWindow] setDocumentEdited:YES];

 [doc updateMatrix];

 } else if (sender == inspSchedMatrix) {

 } /* left as an exercise */

}

A

B

C

D

Creating and Managing an Inspector (ToDoInspector)

187

When users click a switch button on any inspector display, or when they click
one of the AM-PM radio buttons, the switchChecked: method is invoked. This
method works by evaluating the sender argument: the sending object.

If sender is the radio-button matrix (AM-PM), gets the new time due by
calling the utility function ConvertTimeToSeconds(), sets the current item to have
this new value, marks the document as edited, and then sends updateMatrix
to the document controller to have it display this new time.

If sender is the “When to Notify” matrix, gets the index of the selected cell
and the seconds until the item is due. It evaluates the first value in a
switch statement and uses the second value to set the current item’s new
secsUntilNotif value. It also sets the window to indicate an edited document.

If sender is the “Task Completed” switch, sets the status of the current
item to “complete,” sets the window to indicate an edited document, and
has the document controller update its matrices.

As before, implementation of this rescheduling block is left as a final
exercise.

Since text fields are controls that send target/action messages, you could also
have switchChecked: respond when data is entered in the fields. However, users
might not press Return in a text field so you can’t assume the action message
will be sent. Therefore, it’s better to rely upon delegation messages.

A

B

C

D

Chapter 5 Extending the To Do Application

188

The textDidEndEditing: and controlTextDidEndEditing: notification messages are sent to the
delegate (and all other observers) when the cursor leaves a text object or text field
(respectively) after editing has occurred.

After editing takes place in the “Notes” text object, this method is invoked,
and it responds by resetting the notes instance variable of the ToDoItem with
the contents of the text object.

If the object behind the notification is the hour or minute field of the
“Notifications” display, controlTextDidEndEditing: computes the new due time, sets
the current item to have this new value, and then sends updateMatrix to the
document controller to have it display this new time. (This code is almost the
same as that for the AM-PM matrix in the switchChecked: method.)

If the object behind the notification is the “Other...hours” text field in the
“When to Notify” box, the method verifies that the “Other” switch is checked
and, if it is, sets the ToDoItem with the new value.

Here is another empty rescheduling block of code that you can fill out in a
later exercise.

- (void)textDidEndEditing:(NSNotification *)notif

{

 if ([notif object] == inspNotes)

 [currentItem setNotes:[inspNotes string]];

 [[NSApp mainWindow] setDocumentEdited:YES];

}

- (void)controlTextDidEndEditing:(NSNotification *)notif

{

 long tmpSecs=0;

 if ([notif object] == inspNotifHour ||

 [notif object] == inspNotifMinute) {

 tmpSecs = ConvertTimeToSeconds([inspNotifHour intValue],

 [inspNotifMinute intValue],

 [[inspNotifAMPM cellAtRow:0 column:1] state]);

 [currentItem setSecsUntilDue:tmpSecs];

 [[[NSApp mainWindow] delegate] updateMatrix];

 [[NSApp mainWindow] setDocumentEdited:YES];

 } else if ([notif object] == inspNotifOtherHours) {

 if ([inspNotifSwitchMatrix selectedRow] == 4) {

 [currentItem setSecsUntilNotif:([inspNotifOtherHours

 intValue] * hrInSecs)];

 [[NSApp mainWindow] setDocumentEdited:YES];

}

 } else if ([notif object] == inspSchedDate) {

 } /* left as an exercise */

}

A

B

C

D

Update the current item if changes are
made to the contents of text fields or
the text object of the inspector panel.

A

B

C

D

Creating and Managing an Inspector (ToDoInspector)

189

Now it’s time to address two related problems in synchronizing displays of
data. The first is the requirement for the inspector to display the ToDoItem
currently selected in the document. In ToDoDoc.m write code that communicates
this object to ToDoInspector through notification.

The controlTextDidEndEditing: method is where ToDoItems are added, removed, or
modified, so it’s especially important here to let ToDoInspector know when
there’s a change in the current ToDoItem. The fragment of code above gets
the current item (row holds the index of the selected row); if the returned
object isn’t a ToDoItem, curItem is set to nil. Then the code posts a
ToDoItemChangedNotification, passing in curItem as the object related to the
notification.

Post an identical notification in other ToDoDoc methods that select a
ToDoItem or that require the removal of the currently displayed ToDoItem
from the inspector’s display. In methods of this second type, there is no need
to get the current item because the object argument of the notification should
always be nil. This argument is eventually passed to ToDoInspector’s
updateInspector:, to which nil means “clear the display.”

Other Methods Posting Notifications to ToDoInspector object: Argument

calendarMatrix:didChangeToDate: nil

calendarMatrix:didChangeToMonth:year: nil

windowShouldClose: (for both “Save” and “Close”) nil

selectionInMatrix: current item or nil

 id curItem;

/* ... */

 if (curItem = [currentItems objectAtIndex:row]) {

 if (![curItem isKindOfClass:[ToDoItem class]])

 curItem = nil;

 [[NSNotificationCenter defaultCenter] postNotificationName:

 ToDoItemChangedNotification object:curItem

 userInfo:nil];

 }

11 Synchronize the items displayed in
the document with the inspector.

Open ToDoDoc.m.

Import ToDoInspector.h.

Add the code at right to the end of the
controlTextDidEndEditing: method.

Post identical notifications in the other
ToDoDoc methods listed in the table
below.

In ToDoDoc.h declare as extern the
string constant
ToDoItemChangedNotification.

In ToDoDoc.m, declare and initialize
the same constant.

Chapter 5 Extending the To Do Application

190

The second data-synchronization problem involves the selection and display of initial
values in the document and the inspector when the user:

• Opens the inspector
• Opens a document
• Selects a new day from the calendar

You must return to ToDoDoc.m to write code that implements this behavior.

The selectItem: method selects the text field identified in the argument and posts a
notification to the inspector with the associated ToDoItem as argument (or nil if
the text field is empty). Next, invoke selectItem: in these methods:

Method Comment

calendarMatrix:didChangeToDate: Make it the final message, with an argument of 0 (ToDoDoc.m).

openDoc: Invoke after opening a document, with an argument of 0 (ToDoController.m)

showInspector: Invoke after opening the inspector panel, passing in the index of the selected row
in the document. (ToDoController.m). Hint: Get the current document by
querying for the delegate of the main window, then obtain the selected row from
this object.

Before You Go On

Exercise: Make ToDoInspector respond to the notification. Declare a notification
method named currentItemChanged: and implement it to set the current item with
the object value of the notification. Then, in init or awakeFromNib, add ToDoInspector
as an observer of the ToDoItemChangedNotification, identifying
currentItemChanged: as the method to be invoked.

- (void)selectItem:(int)item

{

 id thisItem = [currentItems objectAtIndex:item];

 [itemMatrix selectCellAtRow:item column:0];

 if (thisItem) {

 if (![thisItem isKindOfClass:[ToDoItem class]]) thisItem = nil;

 [[NSNotificationCenter defaultCenter]

 postNotificationName:ToDoItemChangedNotification

 object:thisItem

 userInfo:nil];

 }

}

12 Open the inspector panel when users
choose the Inspector command.

Implement ToDoController’s
showInspector: method to load
ToDoInspector.nib and make the
inspector panel the key window.

13 Update the document and inspector
to display initial values.

In ToDoDoc.m, implement selectItem:.

Invoke this method at the appropriate
places (see table below).

Creating and Managing an Inspector (ToDoInspector)

191

ToDoInspector’s awakeFromNib method performs some necessary “housekeeping”
tasks for the ToDoInspector instance of the application.

Makes the Notification pop-up display the start-up default, using the index of
the “Notification” cell rather than its title to improve localization. Then it sets
self to be the delegate of the text object.

Each of the three inspector displays in the off-screen panel (inspectorViews) is the
content view of an NSBox. This section of code extracts and retains each of
those content views, reassigning each to its original NSBox instance variable in
the process. This explicit retaining is necessary because, in newInspectorView:,
each current content view is released when it’s swapped out. Once all content
views are retained, the code releases the off-screen window and invokes
newInspectorView: to put up the default display.

The use of notifications to communicate changes in one object to another object in an
application is a good design strategy because it removes the need for the objects to have
specific knowledge of each other. It also makes the application more extensible, because any
number of objects can also become observers of the changes. However, there is a way for
ToDoDoc to locate ToDoInspector reliably using the various relationships established within
the program framework. See page 201 to see how this is done.

- (void)awakeFromNib

{

 [inspPopUp selectItemAtIndex:0];

 [inspNotes setDelegate:self];

 [[notifView contentView] removeFromSuperview];

 notifView = [[notifView contentView] retain];

 [[reschedView contentView] removeFromSuperview];

 reschedView = [[reschedView contentView] retain];

 [[notesView contentView] removeFromSuperview];

 notesView = [[notesView contentView] retain];

 [inspectorViews release];

 [self newInspectorView:self];

}

A

B

14 Set up the inspector when it is
unarchived.

In ToDoInspector.m, implement
awakeFromNib as shown at right.

A

B

Chapter 5 Extending the To Do Application

192

A Short Guide to Drawing and Compositing

Besides responding to events, all objects that inherit from NSView can
render themselves on the screen. They do this rendering through image
composition and PostScript drawing.

NSViews draw themselves as an indirect result of receiving the display
message (or a variant of display); this message is sent explicitly or through
conditions that cause automatic display. The display message leads to the
invocation of an NSView’s drawRect: method and the drawRect: methods
of all subviews of that NSView. The drawRect: method should contain all
code needed to redraw the NSView completely.

An NSView can be automatically displayed when:

• Users scroll it (assuming it supports scrolling).

• Users resize or expose the NSView’s window.

• The window receives a display message or is automatically updated.

• For some Application Kit objects, when an attribute changes.

An NSView represents a context within which PostScript drawing can take
place. This context has three components:

• A rectangular frame within a window to which drawing is clipped

• A coordinate system

• The current PostScript graphics state

Frame and Bounds

An NSView’s frame specifies the location and dimensions of the NSView in
terms of the coordinate system of the NSView’s superview. It is a rectangle
that encloses the NSView. You can programmatically move, resize, and
rotate the NSView by reference to its frame (setFrameOrigin:,
setFrameSize:, and so on).

To draw efficiently, the NSView must have its frame rectangle translated
into its own coordinate system. This translated rectangle, suitable for
drawing, is called the bounds. The bounds rectangle usually specifies
exactly the same area as the frame rectangle, but it specifies that area in
a different coordinate system. In the default coordinate system, an
NSView’s bounds is the same as its frame, except that the point locating the
frame becomes the origin of the bounds (x = 0.0, y = 0.0). The x- and y-axes
of the default coordinate system run parallel to the sides of the frame so,
for example, if you rotate the frame the default coordinate system rotates
with it.

This relationship between frame and bounds has several implications
important in drawing and compositing.

• Each NSView’s coordinate system is a transformation of its superview’s.

• Drawing instructions don’t have to account for an NSView’s location on
the screen or its orientation.

• Changes in a superview’s coordinate system are propagated to its
subviews.

NSView allows you to flip coordinate systems (so the positive y-axis runs
downward) and to otherwise alter coordinate systems.

Focusing

Before an NSView can draw it must lock focus to ensure that it draws in the
correct window, place, and coordinate system. It locks focus by invoking
NSView’s lockFocus method. Focusing modifies the PostScript graphics
state by:

• Making the NSView’s window the current device

• Creating a clipping path around the NSView’s frame

• Making the PostScript coordinate system match the NSView’s coordinate
system

After drawing, the NSView should unlock focus (unlockFocus).Frame rotated within its
superview.

Flipped coordinate
system

Location of frame
within its superview
(200,300)

Bounds origin
(0.0, 0,0)

0.0, 0,0

Creating and Managing an Inspector (ToDoInspector)

193

PostScript Drawing

In OpenStep, NSViews draw themselves by sending binary-encoded
PostScript code to the Window Server. The Application Kit and the Display
PostScript frameworks provide a number of C-language functions that send
PostScript code to perform common drawing tasks. You can use these
functions in combinations to accomplish fairly elaborate drawing.

The Application Kit has functions and constants, declared in NSGraphics.h,
for (among other things):

• Drawing, filling, highlighting, clipping and erasing rectangles

• Drawing buttons, bezels, and bitmaps

• Computing window depth and related display information

You also call OpenStep-compliant drawing routines defined in
dpsOpenStep.h. These routines (such as DPSDoUserPath()) draw a
specified path. In addition, you can call the functions declared in psops.h.
These functions correspond to single PostScript operators, such as
PSsetgray() and PSfill().

You can also write and send your own custom PostScript code. The pswrap
program converts PostScript code into C-language functions that you can
call within your applications. It is an efficient way to send PostScript code
to the Window Server. The following pswrap functions draw ovals.:

defines PDFramedOval(float x, y, w, h)

matrix currentmatrix

w h x y oval

setmatrix stroke

endps

defines PSFilledOval float x, y, w, h)

w h x y oval fill

endps

Compose the function in a file with a .psw extension and add it to the Other
Source project “suitcase” in Project Builder. When you next build your
project, Project Builder runs the pswrap program, generating an object file
and a header file (matching the file name of the .psw) file, and links these
into the application. To use the code, import the header file and call the
function when you want to do the drawing:

PSFilledOval(5.0, 5.0, 1.0, 1.0);

Compositing Images

The other technique NSViews use to render their appearance is image
compositing. By compositing (with the SOVER operator) NSViews can
simply display an image within their frame. You usually composite an
image using NSImage’s compositeToPoint:operation: (or a related
method).

NSImage allows you to copy images into your user interface. It uses various
subclasses of NSImageRep to store the multiple representations of the
same image—color, grayscale, TIFF, EPS, and so on—and choosing the
representation appropriate for a given type or display. NSImage can read
image data from a bundle (including the application’s main bundle), from
the pasteboard, or from an NSData object.

Compositing allows you to do more than simply copy images. Compositing
builds a new image by overlaying images that were previously drawn. It's
like a photographer printing a picture from two negatives, one placed on top
of the other. Various compositing operators (NSCompositingOperation,
defined in dpsOpenStep.h) determine how the source and destination
images merge.

You can achieve interesting effects with compositing when the initial
images are drawn with partially transparent paint. (Transparency is
specified by coverage, a indicator of paint opacity.) In a typical compositing
operation, paint that's partially transparent won't completely cover the
image it's placed on top of; some of the other image will show through. The
more transparent the paint is, the more of the other image you'll see.

Source Image Destination Image

Copy

Source
Over

Destination
Out

Source image overlays.

Source image wherever it is
opaque, and destination image
elsewhere.

Destination image wherever it
is opaque but source image is
transparent, and transparent
elsewhere.

Operation Destination After

Chapter 5 Extending the To Do Application

194

Overriding and Adding Behavior to a Class: An Example

Buttons in the Application Kit are two-state controls. They have two—and only
two—states: 1 and 0 (often expressed as Boolean YES and NO, or ON and OFF).
For the To Do application, a three-state button is preferable. You want the button
to indicate, with an image, three possible states: not done (no image), done (an
“X”), and deferred (a check mark). These states correspond to the possible states
of a ToDoItem.

The ToDoCell class, which you will implement in this section, generates cells
that behave as three-state buttons. These buttons also display the time an item is
due.

The superclass of ToDoCell is NSButtonCell. In creating ToDoCell you will add
data and behavior to NSButtonCell, and you will override some existing behavior.

Time item is due.Item status.
1 Add the cell images to the project to

the project.

Select the Images “suitcase.”

Choose Add Files from the Project
menu.

In the Add Images panel, navigate to
the ToDo project directory of
/NextDeveloper/Examples/AppKit and
select file X.tiff.

Click OK.

Repeat the same steps for file
checkMark.tiff, which is in the same
location.

Why Choose NSButtonCell as Superclass?

ToDoCell’s superclass is NSButtonCell. This choice
prompts two questions:

• Why a button cell and not the button itself?

• Why this particular superclass?

NSCell defines state as an instance variable, and
thus all cells inherit it. Cells instead of controls hold
state information for reasons of efficiency—one
control (a matrix) can manage a collection of cells,
each cell with its own state setting. NSButton does
provide methods for getting and setting state
values, but it accesses the state value of the cell
(usually NSButtonCell) that it contains.

NSButtonCell is ToDoCell’s superclass because
button cells already have much of the behavior you
want. By virtue of inheritance from NSActionCell,
button cells can hold target and action information.
Button cells also have the unique capability to
display an image and text simultaneously. These
are all aspects of behavior needed for ToDoCell.

When you think that you need a specialized
subclass of an OpenStep class, you should first
spend some time examining the header files and
reference documentation on not only that class, but
its superclasses and any “sibling” classes.

Overriding and Adding Behavior to a Class: An Example

195

The triState instance variable will be assigned ToDoButtonState constants as
values. The NSImage variables hold the “X” and check mark images that
represent statuses of completed and deferred (that is, rescheduled for the
next day). The timeDue instance variable carries the time the item is due as an
NSDate; for display, this object will be converted to a string.

Sets some superclass (NSButtonCell) attributes, such as button type,
image and text position, font of text, and border.

Through NSBundle’s pathForImageResource:, gets the pathname for the cell
images and creates and stores the images using the pathname.

enum ToDoButtonState {notDone=0, done, deferred} ToDoButtonState;

@interface ToDoCell : NSButtonCell

{

 ToDoButtonState triState;

 NSImage *doneImage, *deferredImage;

 NSDate *timeDue;

}

- (void)setTriState:(ToDoButtonState)newState;

- (ToDoButtonState)triState;

- (void)setTimeDue:(NSDate *)newTime;

- (NSDate *)timeDue;

@end

2 Add header and implementation files
to the project.

Choose New in Project from the File
menu.

In the New File In ToDo panel, select the
Class suitcase, click Create header,
type “ToDoCell” after Name, and click
OK.

3 Complete ToDoCell.h.

Make the superclass NSButtonCell.

Add the instance-variable and method
declarations shown at right.

Add the enum constants for state
values (as shown).

- (id)init

{

 NSString *path;

 [super initTextCell:@""];

 triState = notDone;

 [self setType:NSToggleButton];

 [self setImagePosition:NSImageLeft];

 [self setBezeled:YES];

 [self setFont:[NSFont userFontOfSize:12]];

 [self setAlignment:NSRightTextAlignment];

 path = [[NSBundle mainBundle] pathForImageResource:@"X.tiff"];

 doneImage = [[NSImage alloc] initByReferencingFile:path];

 path = [[NSBundle mainBundle]

 pathForImageResource:@"checkMark.tiff"];

 deferredImage = [[NSImage alloc] initByReferencingFile:path];

 return self;

}

A

B

4 Initialize the allocated ToDoCell
instance (and deallocate it).

Select ToDoCell.m in the project
browser.

Implement init as shown at right.

Implement dealloc.

A

B

Chapter 5 Extending the To Do Application

196

Accessing state information is a dual-path task in ToDoCell. It involves not only
setting and getting the new state instance variable, triState, but properly handling
the inherited instance variable by overriding the superclass accessor methods for
state.

If the new value for triState is one greater than the limit (deferred), reset it to zero
(notDone); otherwise, assign the value. The reason behind this logic is that (as
you’ll soon learn) when users click a ToDoCell, setTriState: is invoked with an
argument one more than the current value. This way users can cycle through
the three states of ToDoCell.

Overrides setState: to be a null method. The reason for this override is that
NSCell intervenes when a button is clicked, resetting state to zero (NO). This
override nullifies that effect.

Overrides state to return a reasonable value to client objects that invoke this
accessor method.

- (void)setTriState:(ToDoButtonState)newState

{

 if (newState == deferred+1)

 triState = notDone;

 else

 triState = newState;

 [self TD_setImage:triState];

 }

- (ToDoButtonState)triState {return triState;}

- (void)setState:(int)val

{

}

- (int)state

{

 if (triState == deferred)

 return (int)done;

 else

 return (int)triState;

}

A

B

C

5 Implement the accessor methods
related to state.

Write the methods that get and set the
triState instance variable.

Override the superclass methods that
get and set state.

A

B

C

Overriding and Adding Behavior to a Class: An Example

197

This portion of code handles the display of the cell’s image by doing the
following:

In a category of ToDoCell in ToDoCell.m, it declares the private method
TD_setImage:. Private methods are methods that you don’t want clients of
your object to invoke, and thus you don’t “publish” them by declaring
them in public header files. In this case, you don’t want the image to be
set independently from the cell’s triState value.

In a switch statement, evaluates the tri-state argument and sets the cell’s
image appropriately (setImage: is an NSButtonCell method).

Sends updateCell: to the control view of the cell’s control (a matrix) to force a
re-draw of the cell.

@interface ToDoCell (PrivateMethods)

- (void)TD_setImage:(ToDoButtonState)aState;

@end

/* ... */

- (void)TD_setImage:(ToDoButtonState)aState

{

 switch(aState) {

 case notDone: {

 [self setImage:nil];

 break;

 }

 case done: {

 [self setImage:doneImage];

 break;

 }

 case deferred: {

 [self setImage:deferredImage];

 break;

 }

 [(NSControl *)[self controlView] updateCell:self];

}

A

B

C

6 Set the cell image.

Declare the private method
TD_setImage:.

Implement the TD_setImage: method.

A

B

C

Chapter 5 Extending the To Do Application

198

When you create your own cell subclass, you might want to override some
methods that are intrinsic to the behavior of the cell. Mouse-tracking methods,
inherited from NSCell, are among these. You can override these methods to
incorporate specialized behavior when the mouse clicks the cell or drags over it.
ToDoCell overrides these methods to increment the value of triState.

Overrides startTrackingAt:inView: to return YES, thus signalling to the control that
the ToDoCell will track the mouse.

Overrides stopTracking:at:inView:mouseIsUp: to evaluate flag and, if it’s YES, to
increment the triState instance variable. The setTriState: method “wraps” the
incremented value to zero (notDone) if it is greater than 2 (deferred).

The setTimeDue: method is similar to other “set” accessor methods, except that it
handles interpretation and display of the NSDate instance variable it stores. If
newTime is a valid object, it uses descriptionWithCalendarFormat:timeZone:locale:,an NSDate
method, to interpret and format the date object before displaying the result with

- (BOOL)startTrackingAt:(NSPoint)startPoint inView:

 (NSView *)controlView

{

 return YES;

}

- (void)stopTracking:(NSPoint)lastPoint at:(NSPoint)stopPoint

 inView:(NSView *)controlView mouseIsUp:(BOOL)flag

{

 if (flag == YES) {

 [self setTriState:([self triState]+1)];

 }

}

A

B

7 Track mouse clicks on a ToDoCell and
reset state.

Override two NSCell mouse-tracking
methods as shown in this example.

A

B

- (void)setTimeDue:(NSDate *)newTime

{

 if (timeDue)

 [timeDue autorelease];

 if (newTime) {

 timeDue = [newTime copy];

 [self setTitle:[timeDue descriptionWithCalendarFormat:

 @"%I:%M %p" timeZone:[NSTimeZone localTimeZone]

 locale:nil]];

 }

 else {

 timeDue = nil;

 [self setTitle:@"-->"];

 }

}

8 Get and set the time due, displaying
the time in the process.

Implement setTimeDue: as shown in
this example.

Implement timeDue to return the
NSDate.

Overriding and Adding Behavior to a Class: An Example

199

setTitle:. If newTime is nil, no due time has been specified, and so the method sets
the title to “-->”.

You’ve now completed all code required for ToDoCell. However, you must
now “install” instances of this class in the To Do interface.

This block of code substitutes a ToDoCell for each cell in the left matrix
(markMatrix) you created for the To Do interface. It creates a ToDoCell, sets its
target and action message, then inserts it into the markMatrix by invoking
NSMatrix’s putCell:atRow:column: method.

Finally, you must implement the action message sent when the matrix of
ToDoCells is clicked. (This response to mouse-down is for objects external to
ToDoCell, while the mouse-tracking response sets state internally.)

This method gets the ToDoCell that was clicked and the object in the
corresponding text field. If that object is a ToDoItem, the method updates its
status to reflect the state of the ToDoCell. It then marks the window as
containing an edited document.

- (void)awakeFromNib

{

 int i;

/* ... */

 i = [[markMatrix cells] count];

 while (i--) {

 ToDoCell *aCell = [[ToDoCell alloc] init];

 [aCell setTarget:self];

 [aCell setAction:@selector(itemChecked:)];

 [markMatrix putCell:aCell atRow:i column:0];

 [aCell release];

 }

}

9 At launch time, create and install
your custom cells in the matrix.

Select ToDoDoc.m in the project
browser.

Insert the code at right in
awakeFromNib.

- (void)itemChecked:sender

{

 int row = [sender selectedRow];

 ToDoCell *cell = [sender cellAtRow:row column:0];

 if (cell && [currentItems count]) {

 id item = [currentItems objectAtIndex:row];

 if (item && [item isKindOfClass:[ToDoItem class]]) {

 [item setItemStatus:[cell triState]];

 [[sender window] setDocumentEdited:YES];

 }

 }

}

10 Respond to mouse clicks on the
matrix of ToDoCell’s.

In ToDoDoc.m, implement
itemChecked:.

Chapter 5 Extending the To Do Application

200

Setting Up Timers

One of To Do’s features is the capability for notifying users of items with
impending due times. Users can specify various intervals before the due time for
these notifications, which take the form of a message in an attention panel. In this
section you will implement the notification feature of To Do. In the process you’ll
learn the basics of creating, setting, and responding to timers.

Here’s how it works: Each ToDoItem with a “When to Notify” switch (other than
“Do not notify”) selected in the inspector panel—and hence has a positive
secsUntilNotif value—has a timer set for it. If a user cancels a notification by selecting
“Do not notify,” the document controller invalidates the timer. When a timer
fires, it invokes a method that displays the attention panel, selects the “Do not
notify” switch, and sets secsUntilNotif to zero.

Implementing the timer feature takes place entirely in Project Builder, but
extends across several classes.

This method sets or invalidates a timer, depending on whether the ToDoItem
passed in has a positive secsUntilNotif value.

Tests the ToDoItem to see if it has a positive secsUntilNotif value and, if it has,
composes the time the notification should be sent.

Creates a timer and schedules it to fire at the right time, directing it to invoke
itemTimerFired: when it fires. It also sets the timer in the ToDoItem.

If the secsUntilNotif variable is zero, invalidates the item’s timer.

- (void)setTimerForItem:(ToDoItem *)anItem

{

 NSDate *notifDate;

 NSTimer *aTimer;

 if ([anItem secsUntilNotif]) {

 notifDate = [[anItem day] addTimeInterval:[anItem

 secsUntilNotif]];

 aTimer = [NSTimer scheduledTimerWithTimeInterval:

 [notifDate timeIntervalSinceNow]

 target:self

 selector:@selector(itemTimerFired:)

 userInfo:anItem

 repeats:NO];

 [anItem setItemTimer:aTimer];

 } else

 [[anItem itemTimer] invalidate];

}

A

B

C

1 Add the timer as an instance variable
to ToDoItem.

Open ToDoItem.h.

Add the instance variable itemTimer of
class NSTimer.

Write accessor methods to get and set
this instance variable.

2 Create and set the timer, or
invalidate it.

Open ToDoDoc.m.

Implement the setTimerForItem:
method, which is shown at right.

A

B

C

Setting Up Timers

201

When a ToDoItem’s timer goes off, it invokes the itemTimerFired: method
(remember, you designated this method when you scheduled the timer).

This method communicates with ToDoInspector in a more direct manner
than notification. It gets the ToDoInspector object through this chain of
association: the delegate of the application object is ToDoController,
which holds the id of the inspector panel as an instance variable, and the
delegate of the inspector panel is ToDoInspector.

Composes the notification time (as an NSDate), beeps, and displays an
attention panel specifying the name of a ToDoItem and the time it is due.
It then sets the ToDoItem’s secsUntilNotif instance variable to zero, and sends
resetNotifSwitch to ToDoInspector to have it reset the “When to Notify”
switches to “Do not Notify.”

Before You Go On

Exercise: You haven’t written ToDoInspector’s resetNotifSwitch method yet, so do
it now as an exercise. It should select the “Do not Notify” switch after
turning off all switches in the matrix, and then force a redisplay of the switch
matrix.

- (void)itemTimerFired:(id)timer

{

 id anItem = [timer userInfo];

 ToDoInspector *inspController = [[[NSApp delegate]

 inspector] delegate];

 NSDate *dueDate = [[anItem day] addTimeInterval:

 [anItem secsUntilDue]];

 NSBeep();

 NSRunAlertPanel(@"To Do", @"%@ on %@", nil, nil, nil,

 [anItem itemName], [dueDate

 descriptionWithCalendarFormat:@"%b %d, %Y at %I:%M %p"

 timeZone:[NSTimeZone defaultTimeZone] locale:nil]);

 [anItem setSecsUntilNotif:0];

 [inspController resetNotifSwitch];

}

A

B

3 Respond to timers firing.

Implement itemTimerFired: as shown
at right.

A

B

Chapter 5 Extending the To Do Application

202

Next you must send setTimerForItem: at the right place and time, which is ToDoInspector,
when the user alters a “When to Notify” value.

Instead of archiving an item’s NSTimer, To Do re-creates and resets it when the
application is launched.

This block of code traverses the activeDays dictionary, evaluating each ToDoItem
within the dictionary. If the ToDoItem has a positive secsUntilNotif value, it invokes
setTimerForItem: to have a timer set for it.

[[[NSApp mainWindow] delegate] setTimerForItem:currentItem];
4 Send the message that sets the timer

at the right times.

Open ToDoInspector.m.

In switchChecked:, insert the
setTimerForItem: message at right
after the switch statement evaluating
which “When to Notify” switch was
checked.

In controlTextDidEndEditing:, insert
the same message at the end of the
block related to the
inspNotifOtherHours variable.

5 When the application is launched,
reset item timers.

Add the code shown at right to
ToDoDoc’s initWithFile: method.

 if ([self activeDays]) {

 dayenum = [[self activeDays] keyEnumerator];

 while (itemDate = [dayenum nextObject]) {

 NSEnumerator *itemenum;

 ToDoItem *anItem=nil;

 NSArray *itemArray = [[self activeDays]

 objectForKey:itemDate];

 itemenum = [itemArray objectEnumerator];

 while ((anItem = [itemenum nextObject]) &&

 [anItem isKindOfClass:[ToDoItem class]] &&

 [anItem secsUntilNotif]) {

 [self setTimerForItem:anItem];

 }

 }

 }

Tick Tock Brrrring: Run Loops and Timers

A run loop—an instance of NSRunLoop—manages
and processes sources of input. These sources
include mouse and keyboard events from the
window system, file descriptor, inter-thread
connections (NSConnection), and timers (NSTimer).

Applications typically won't need to either create or
explicitly manage NSRunLoop objects. When a
thread is created, an NSRunLoop object is
automatically created for it. The NSApplication
object creates a default thread and therefore
creates a default run loop.

NSTimer creates timer objects. A timer object waits
until a certain time interval has elapsed and then

fires, sending a specified message to a specified
object. For example, you could create an NSTimer
that periodically sends messages to an object,
asking it to respond if an attribute changes.

NSTimer objects work in conjunction with
NSRunLoop objects. NSRunLoops control loops that
wait for input, and they use NSTimers to help
determine the maximum amount of time they
should wait. When the NSTimer's time limit has
elapsed, the NSRunLoop fires the NSTimer (causing
its message to be sent), then checks for new input.

Build, Run, and Extend the Application

203

Build, Run, and Extend the Application

Although you probably have been building the ToDo project frequently now,
as it’s been taking shape, build it one more time and check out what you’ve
created. Go through the following sequence and observe To Do’s behavior.

1. When you choose New from the Document menu, the application
creates a new To Do document and selects the current day.

2. Enter a few items. Click a new day on the calendar and enter a few more
items. Click the previous day and notice how the items you entered
reappear.

3. Choose Inspector from the main menu. When the inspector appears,
click an item and notice how the name and date of the item appears in
the top part of the inspector. Enter due times for a couple items, and
some associated notes. Note how the times, as you enter them, appear in
the Status/Due column of the To Do document. Click among a few items
again and note how the Notifications and Notes displays change.

4. Click a Status/Due button; the image toggles among the three states.
Then, with an item that has a due time, select a notification time that has
already passed. The application immediately displays an attention panel
with a notification message. When you dismiss this panel, To Do sets the
notification option to “Do not notify.”

5. Click the document window and respond to the attention panel by
clicking Save. In the Save panel, give the document a location and name.
When the window has closed, chose Open from the Document menu and
open the same document. Observe how the items you entered are
redisplayed.

Optional Exercises
You should be able now to supplement the To Do application with other
features and behaviors. Try some of the following suggestions.

Make Your Own Info Panel
Make your own Info panel. Define a method that responds to a click on the
Info panel button by loading a nib file containing the panel. The owner of the
panel can be the application controller. You can customize this panel however
you wish. For instance, put the application icon in a toggled button (the main
image) and make the alternate image a photo (yourself, your significant other,
your dog). When users click the button, the image changes between the two.

Chapter 5 Extending the To Do Application

204

Implement Application Preferences
Make a Preferences panel for the application, with a new controller object (or the
application controller) as the owner of the nib file containing the panel. Follow
what you’ve done for ToDoInspector, especially if the panel has multiple
displays. Some ideas for Preferences: how long to keep expired ToDoItems
before logging and purging them (see below); the default document to open upon
launch; the default rescheduling interval (see below). Store and retrieve specified
preferences as user defaults; for more information, see the NSUserDefaults
specification.

Implement Rescheduling
ToDo’s Inspector panel has a Rescheduling display that does almost nothing now.
Implement the capability for rescheduling items by the period specified.

Implement Logging and Purging
After certain period (set via Preferences), append expired ToDoItems (as
formatted text) to a log, and expunge the ToDoItems from the application.

206

What You’ll Learn

Characteristics of an object-
oriented program

What an object is

Encapsulation

Messages

What a class is

Inheritance

Categories and protocols

A
AB

C

A

BC

D

E F

A

B

C

D

207

Appendix A

Object-Oriented Programming

You can’t get far in OpenStep development without a grasp of the basic concepts of object-

oriented programming. For those new to this approach to programming, it might seem

strange at first glance, but a common reaction after learning a bit more is “Yes, of course.”

This appendix presents an overview of object-oriented programming from the particular

perspective of Objective-C.

Appendix A

208

“Object-oriented programming” has become one of the premier buzzwords in the
computer industry. To understand why, it’s important to cut through the hype and
focus on the problem that motivated the object-oriented approach.

In classic

 procedural programming

 (used with COBOL, Fortran, C, and other
languages), programs are made of two fundamental components:

data

 and

code

.
The data represents what the user needs to manipulate, while the code does the
manipulation. To improve project management and maintenance, procedural
programs compartmentalize code into

procedures

. However, much of the data is
global, and each procedure may manipulate any part of that global data directly.

With the procedural approach, the network of interaction between procedures
and data becomes increasingly complex as an application grows. Inevitably, the
interrelationships become a hard-to-maintain tangle—spaghetti code. A simple
change in a data structure can affect many procedures, many lines of code—a
nightmare for those who must maintain and enhance applications. Procedural
programming also leads to nasty, hard-to-find bugs in which one function
inadvertently changes data that another function relies on.

Objects change all that.

procedure

data

data

data

data

data

data

procedure

procedure

procedure

209

Objects

An object is a self-contained programmatic unit that combines data and the
procedures that operate on that data. In the Objective-C language, an object’s
data comprises its

instance variables,

and its procedures, the functions that
affect or make use of the data, are known as

methods

.

Like objects in the physical world, objects in a program have identifying
characteristics and behavior. Often programmatic objects are modeled on real
objects. For example, an object such as a button has an analog in the buttons
on control devices, such as stereo equipment and telephones. A button object
includes the data and code to generate an appearance on the screen that
simulates a “real” button and to respond in a familiar way to user actions.

Encapsulation

Just as procedures compartmentalize code, objects compartmentalize both
code

and

 data. This results in

data encapsulation

, effectively surrounding data
with the procedures for manipulating that data.

Typically, an object is regarded as a “black box,” meaning that a program
never directly accesses an object’s variables. Indeed, a program shouldn’t
even need to know what variables an object has in order to perform its
functions. Instead, the program accesses the object only through its methods.
In a sense, the methods surround the data, not only shielding an object’s
instance variables but mediating access to them:

Objects are the basic building blocks of Objective-C applications. By
representing a responsibility in the problem domain, each object
encapsulates a particular area of functionality that the program needs. The
object’s methods provide the interface to this functionality. For example, an
object representing a database record both stores data and provides well-
defined ways to access that data.

A button object highlights its on-screen representation when the user
clicks it.

me th od

m
ethodm

eth
o

d data

Appendix A

210

Using this

modularity

, object-oriented programs can be divided into distinct
objects for specific data and specific tasks. Programming teams can easily parcel
out areas of responsibility among individual members, agreeing on interfaces to
the distinct objects while implementing data structures and code in the most
efficient way for their specific area of functionality.

Messages

To invoke one of the object’s methods you send it a

message

. A message requests
an object to perform some functionality or to return a value. In Objective-C, a
message expression is enclosed in square brackets, like this:

In this example

converter

 is the

receiver

, the object that receives the message.
Everything to the right of this term is the message itself; it consists of a method
name and any arguments the method requires. The message received by

converter

tells it to convert a temperature from Fahrenheit to Celsius and return that value.

In Objective-C, every message argument is identified with a label. Arguments
follow colon-terminated

keywords

, which are considered part of the method name.
One argument per keyword is allowed. If a method has more than one
argument—as NSString’s

rangeOfString:options:

 method does, for example—the
name is broken apart to accept the arguments:

Often, but not always, messages return values to the sender of the message.
Returned values must be received in a variable of an appropriate type. In the
above example, the variable

range

 must be of type NSRange. Messages that
return values can be

nested

, especially if those returned values are objects. By
enclosing one message expression within another, you can use a returned value as
an argument or as a receiver without having to declare a variable for it.

The above message nests two other messages, each of which returns a value used
as an argument. The inmost message expression is resolved first, then the next

celsius = [converter convertTemp:fahrenheit]

returned value receiver method name argument

range = [string rangeOfString:@”OPENSTEP” options:NSLiteralSearch];

newString = [stringOne stringByAppendingString:
[substringFromRange:[stringTwo rangeOfString:
@”OPENSTEP” at:NSAnchoredSearch]]];

211

nested message expression is resolved, then the third message is sent and a
value is returned to

newString

.

An Object-Oriented Program

Object-oriented programming is more than just another way of organizing
data and functions. It permits application programmers to conceive and
construct solutions to complex programs using a model that resembles—
much more so than traditional programs—the way we organize the world
around us. The object-oriented model for program structure simplifies
problem resolution by clarifying roles and relationships.

You can think of an object-oriented program as a network of objects with well-
defined behavior and characteristics, objects that interact through messages.

Different objects in the network play different roles. Some correspond to
graphical elements in the user interface. The elements that you can drag from
an Interface Builder palette are all objects. In an application, each window is
represented by a separate object, as is each button, menu item, or display of
text.

Applications also assign to objects functionality that isn’t directly apparent in
the interface, giving each object a different area of responsibility. Some of
these objects might perform very specific computational tasks while others
might manage the display and transfer of data, mediating the interaction
between user-interface objects and computational objects.

Once you’ve defined your objects, creating a program is largely a matter of
“hooking up” these objects: creating the connections that objects will use to
communicate with each other.

Messages

Appendix A

212

Polymorphism and Dynamic Binding

Although the purpose of a message is to invoke a method, a message isn’t the
same as a function call. An object “knows about” only those methods that were
defined for it or that it inherits. It can’t confuse its methods with another object’s
methods, even if the methods are identically named.

Each object is a self-contained unit, with its own name space (an name space
being an area of the program where it is uniquely recognized by name). Just as
local variables within a C function are isolated from other parts of a program, so
too are the variables and methods of an object. Thus if two different kinds of
objects have the same names for their methods, both objects could receive the
same message, but each would respond to it differently. The ability of one
message to cause different behavior in different receivers is referred to as

polymorphism

.

The advantage polymorphism brings to application developers is significant. It
helps improve program flexibility while maintaining code simplicity. You can
write code that might have an effect on a variety of objects without having to
know at the time you write the code what objects they might be. For example,
most user-interface objects respond to the message

display

; you can send

display

 to
any of these objects in your interface and it will draw itself, in its own way.

Dynamic binding

 is perhaps even more useful than polymorphism. It means both
the object receiving a message and the message that an object receives can be set
within your program as it runs. This is particularly important in a graphical, user-
driven environment, where one user command—say, Copy or Paste—may apply
to any number of user-interface objects.

The example of

display

 highlights the role of inheritance in polymorphism: a subclass often
implements an identically named method (that is,

overrides

 the method) of its superclass to
achieve more specialized behavior. See the following section, “Classes,” for details.

A

A

A

Polymorphism

213

In dynamic binding, a run-time process finds the method implementation
appropriate for the receiver of the message; it then invokes this
implementation and passes it the receiver’s data structure. This mechanism
makes it easier to structure programs that respond to selections and actions
chosen by users at run time. For example, either or both parts of a message
expression—the receiver and the method name—can be variables whose
values are determined by user actions. A simple message expression can
deliver a Cut, Copy, or Paste menu command to whatever object controls the
current selection.

Dynamic binding even enables applications to deal with new kinds of objects,
ones that were not envisioned when the application itself was built. For
example, it lets Interface Builder send messages to objects such as
EOModeler when it is loaded into the application by means of
custom palettes.

Polymorphism and dynamic binding depend on two other features:

dynamic
typing

 and

introspection

. The Objective-C language allows you to identify
objects

generically

 with the data type of

id

. This type defines a pointer to an
object and its data structure (that is, instance variables) which, by inheritance
from the root class NSObject, include a pointer to the object’s class. What this
means is that you don’t have to type objects strictly by class in your code: the
class for the object can be determined at run time through introspection.

Introspection means that an object, even one typed as

id

, can reveal its class
and divulge other characteristics at run time. Several introspection methods
allow you to ascertain the inheritance relationships of an object, the methods
it responds to, and the protocols that it conforms to.

Dynamic Binding

AB

C

A

BC

D

E F

A

B

C

D

Appendix A

214

Classes

Some of the objects networked together in an applications are of different kinds,
and some might be of the same kind. Objects of the same kind belong to the same

class

. A class is a programmatic entity that creates

instances

 of itself—objects. A
class defines the structure and interface of its instances and specifies their
behavior.

When you want a new kind of object, you define a new class. You can think of a
class definition as a type definition for a kind of object. It specifies the data
structure that all objects belonging to the class will have and the methods they will
use to respond to messages. Any number of objects can be created from a single
class definition. In this sense, a class is like a factory for a particular kind of object.

In terms of lines of code, an object-oriented program consists mainly of class
definitions. The objects the program will use to do its work are created at run time
from class definitions (or, if pre-built with Interface Builder, are loaded at run time
from the files where they are stored).

A class is more than just an object “factory,” however. It can be assigned methods
and receive messages just as an object can. As such it acts as a

class object

.

Object Creation

One of the primary functions of a class is to create new objects of the type the class
defines. For example, the NSButton class creates new NSButton objects and the
NSArray class creates new NSArrays. Objects are created at run time in a two-step
process that first allocates memory for the instance variables of the new object and
then initializes those variables. The following code creates a new Country object:

The receiver for the

alloc

 message is a class (the Country class from the Travel
Advisor tutorial). The

alloc

 method dynamically allocates memory for a new
instance of the receiving class and returns the new object. The receiver for the

init

message is the new Country object that was dynamically allocated by

alloc

. Once
allocated and initialized, this new record is assigned to the variable

newCountry

.

Note:

You can create objects in your code with the

alloc

 and

init

 methods described
here. But when you define a class in Interface Builder, that class definition is
stored in a nib file. When an application loads that nib file, Interface Builder
causes an instance of that class to be created.

id newCountry = [[Country alloc] init];

Classes

215

After being allocated and initialized, a new object is a fully functional
member of its class with its own set of variables. The

newCountry

 object has all
the behavior of any Country object, so it can receive messages, store values in
its instance variables, and do all the other things a Country object does. If you
need other Country objects, you create them in the same way from the same
class definition.

Objects can be typed as

id

, as in the above example, or can be more
restrictively typed, based on their class. Here,

newCountry

 is typed as a Country
object:

The more restrictive typing by class enables the compiler to perform type-
checking in assignment statements.

Inheritance

Inheritance

 is one of the most powerful aspects of object-oriented
programming. Just as people inherit traits from their forbearers, instances of a
class inherit attributes and behavior from that class’s “ancestors.” An object’s
total complement of instance variables and methods derives not only from the
class that creates it, but from all the classes that class inherits from.

Because of inheritance, an Objective-C class definition doesn’t have to
specify every method and variable. If there’s a class that does almost
everything you want, but you need some additional features, you can define
a new class that inherits from the existing class. The new class is called a

subclass

 of the original class; the class it inherits from its

superclass

.

Country *newCountry = [[Country alloc] init];

A

BC

D

XY

Z

Inherited

New

Instance of Superclass

Instance of subclass

Inheritance

Appendix A

216

Creating a new class is often a matter of specialization. Since the new class inherits
all its superclass’s behavior, you don’t need to re-implement the things that work
as you want them to. The subclass merely extends the inherited behavior by
adding new methods and any variables needed to support the additional methods.
All the methods and variables defined for—or inherited by—the superclass are
inherited by the subclass. A subclass can also alter superclass behavior by

overriding

 an inherited method, re-implementing the method to achieve a
behavior different from the superclass’s implementation. (The technique for
doing this is discussed later.)

The Class Hierarchy and the Root Class

A class can have any number of subclasses, but only one superclass. This means
that classes are arranged in a branching hierarchy, with one class at the top—the

root class

—that has no superclass:

NSObject is the root class of this hierarchy, as it is of most Objective-C class
hierarchies. From NSObject, other classes inherit the basic functionality that
makes messaging work, enables objects to work together, and otherwise invests
objects with the ability to behave as objects. Among other things, the root class
creates a framework for the creation, initialization, deallocation, introspection, and
storage of objects.

Note:

Other root classes are possible. In fact, OpenStep Distributed Objects
makes use of another root class, NSProxy.

Part of the OpenStep class hierarchy.

NSObject

NSResponderNSArray NSString

NSViewNSWindow NSApplication

NSControl

NSMatrixNSTextField NSButton

NSForm

Classes

217

As noted earlier, you often create a subclass of another class because that
superclass provides most, but not all, the behavior you require. But a subclass
can have its own unique purpose that does not build on the role of an existing
class. To define a new class that doesn’t need to inherit any special behavior
other than the default behavior of objects, you make it a subclass of the
NSObject class. Subclasses of NSObject, because of their general-purpose
nature as objects, are very common in OpenStep applications. They often
perform computational or application-specific functions.

Advantages of Inheritance

Inheritance makes it easy to bundle functionality common to a group of
classes into a single class definition. For example, every object that draws on
the screen—whether it draws an image of a button, a slider, a text display, or
a graph of points—must keep track of which window it draws in and where in
the window it draws. It must also know when it’s appropriate to draw and
when to respond to a user action. The code that handles all these details is
part of a single class definition (the NSView class in the Application Kit). The
specific work of drawing a button, a slider, or a text display can then be
entrusted to a subclass.

This bundling of functionality both simplifies the organization of the code
that needs to be written for an application and makes it easier to define
objects that do complicated things. Each subclass need only implement the
things it does differently from its superclass; there’s no need to reimplement
anything that’s already been done.

What’s more, hierarchical design assures more robust code. By building on a
widely used, well-tested class such as NSView, a subclass inherits a proven
foundation of functionality. Because the new code for a subclass is limited to
implementing unique behavior, it’s easier to test and debug that code.

Any class can be the superclass for a new subclass. Thus inheritance makes
every class easily extensible—those provided by OpenStep, those you create,
and those offered by third-party vendors.

Defining a Class

You define classes in two parts: One part declares the instance variables and
the interface, principally the methods that can be invoked by messages sent
to objects belonging to the class, and the other part actually implements those
methods. The interface is public. The implementation is private, and can
change without affecting the interface or the way the class is used.

Appendix A

218

The basic procedure for defining a class (using Interface Builder) is covered in the
Currency Converter tutorial. However, here is a supplemental list of conventions
and other points to remember when you define a class:

• The public interface for a class is usually declared in a header file (with an

.h

extension), the name of which is the name of the class. This header file can
be imported into any program that makes use of the class.

• The code implementing a class is usually in a file taking the name of the class
and having an extension of

.m

. This code must be present—in the form of a
framework, dynamic shared library, static library, or the implementation file
itself—when the project containing the class is compiled.

• Method declarations and implementations must begin with a minus (

–

) sign
or a plus (+) sign. The dash indicates that these methods are used by instances
of the class; a

+

 sign precedes methods that the class object itself uses.

• Method definitions are much like function definitions. Note that methods not
only respond to messages, they often initiate messages of their own—just as
one function might call another.

• In a method implementation you can refer directly to an object’s instance
variables, as long as that object belongs to the class the method is defined in.
There’s no extra syntax for accessing variables or passing the object’s data
structure. The language keeps all that hidden.

• A method can also refer to the receiving object as

self

. This variable makes it
possible for an object, in its method definitions, to send messages to itself.

Overriding a Method

A subclass can not only add new methods to the ones it inherits, it can also replace
an inherited method with a new implementation. No special syntax is required;
all you do is reimplement the method.

Overriding methods doesn’t alter the set of messages that an object can receive; it
alters the method implementations that will be used to respond to those
messages. As mentioned earlier, this ability of each class to implement its own
version of a method is referred to as polymorphism.

It’s also possible to extend an inherited method, rather than replace it outright. To
do this you override the method but invoke the superclass’s same method in the
new implementation. This invocation occurs with a message to

 super

, which is a
special receiver in the Objective-C language. The term

super

 indicates that an
inherited method should be performed, rather than one defined in the current
class.

Classes

219

OPENSTEP Frameworks

When you write an object-oriented program, you rarely do it from scratch.
There are almost always class definitions available that you can use. All you
need are the class interface files, a library or framework with compiled
versions of the class implementations, and some documentation. The task is
to fit your pieces with the pieces that are already provided. As you’ll realize
after awhile, much of the task of writing object-oriented programs is simply
implementing methods that respond to system-generated messages.

Appendix A

220

Categories and Protocols

In addition to subclassing, you can expand an object and make it fit with other
classes using two Objective-C mechanisms: categories and protocols.

Categories provide a way to extend classes defined by other implementors—for
example, you can add methods to the classes defined in the OPENSTEP
frameworks. The added methods are inherited by subclasses and are
indistinguishable at run time from the original methods of the class. Categories
can also be used as a way to distribute the implementation of a class into groups
of related methods and to simplify the management of large classes where more
than one developer is responsible for components of the code.

Protocols provide a way to declare groups of methods independent of a specific
class—methods which any class, and perhaps many classes, might implement.
Protocols declare interfaces to objects, leaving the programmer free to choose the
implementation most appropriate for a specific class. Protocols free method
declarations from dependency on the class hierarchy, so they can be used in ways
that subclasses and categories cannot. They allow objects of any class to
communicate with each other for a specific purpose.

OpenStep provides a number of protocols. For example, the spell-checking
protocols and the object-dragging protocols enable other developers to seamlessly
integrate their spell-checking and object-dragging implementations into an
existing system.

222

What You’ll Learn

Secondary development
applications

Other OpenStep frameworks

Useful command-line tools

Other programming resources

B

223

Appendix B

Programming Tools and Resources

There is more to the Apple development environment than just Project Builder and

Interface Builder. This appendix describes some of the other applications, frameworks,

command-line utilities, and other resources that are available to programmers.

Appendix B

Programming Tools and Resources

224

Other Development Applications

The Apple development environment includes applications other than Project
Builder and Interface Builder. Except where noted, these applications are
installed in

/NextDeveloper/Apps

.

Name Description

FileMerge Visually compares the contents of two files or two directories. You can use FileMerge, for
example, to determine the differences between versions of the same source code file or

between two project directories. You can also use it to merge changes.

MallocDebug Measures the dynamic-memory usage of applications, finds memory leaks, analyzes all
allocated memory in an application, and measures the memory allocated since a given

time.

Yap A utility for editing and previewing PostScript code.

Sampler Analyzes performance problems with your application by sampling the call stack of your

program over a period. (In /NextDeveloper/Demos)

Other Installed Frameworks

A framework contains a dynamic shared library, related header files, and resources
(including nib files, images, sounds, documentation, and localized strings) used by
the library. All frameworks are installed in

 /NextLibrary/Frameworks

. The Apple
development environment provides these other frameworks besides the
Application Kit, Display PostScript, and the Foundation frameworks:

Name Description

System Operating-system and low-level Objective-C run time APIs

SoundKit Sound recording, playback, and editing capabilities.

InterfaceBuilder Creation of custom static (compiled) palettes for use in Interface Builder

ProjectBuilder Creation of custom project types, source-code management (SCM) adaptors, and other

Project Builder extension bundles.

225

Useful Command-Line Tools

Apple has created or modified several tools for compilation, debugging,
performance analysis, and so on. The following table lists some of the more
useful of these tools. You can get further information using the man pages
system.

Name Description Location

cc Compiles C, Objective-C, C++, and Objective-C++ /bin

source code files.

gdb Source-level symbolic debugger for C, extended by /bin
Apple to support Objective-C, C++, Mach, Windows NT,

and (by late 1996) Windows 95.

gnumake Utility for making programming projects. /bin

as Assembler; translates assembly code into object code. /bin

defaults Reads, writes, searches, and deletes user defaults. /usr/bin
The defaults system records user preferences that
persist when the application isn’t running. When users
specify defaults in an application’s Preferences panel,

NSUserDefaults methods are used to write the defaults.

pswrap Creates C functions that “wrap” PostScript code and /usr/bin

send it to the Window Server for interpretation.

nibTool Reads the contents of an Interface Builder nib file. /usr/bin
Prints classes, the hierarchy, objects, connections, and

localizable strings.

libtool Creates static or dynamic libraries from specified

object bin files for one or multiple architectures.

otool Displays specified parts of object files or libraries. /bin

nm Displays the symbol table, in whole or in part, of the /bin

specified object file or files.

AnalyzeAllocation Analyzes program memory allocation. /usr/bin

fixPrecomps Creates or refreshes a precompiled header file for each /usr/bin

of the major frameworks.

strip Removes or modifies the symbol table attached to /bin

assembled and linked output.

lipo Creates, lists, and manipulates multi-architecture /bin

object files

Appendix B

Programming Tools and Resources

226

Other Programming Resources

You can find programming resources—such as fonts, sounds, and palettes—in
various subdirectories of

/NextLibrary

.

Name Comments

SystemResources Character-set information and location of headers for automatic precompilation

(fixPrecomps)

Colors Bundles containing the default set of color binaries for the Colors panel

Fonts Default set of system fonts, including AFM, bitmap, and outline versions

PS2Resources PostScript files containing calibrated color space and color rendering, printing halftones,

and gray-shading patterns

Rulebooks Glyph generators for various string encodings

Sounds Default sound files (“.snd”) such as Cricket, Ping, and Rooster

Normally these resources are accessed via Application Kit APIs. Be careful about
having dependencies on these resources in your code since the location and
format of these resources might change in future releases.

Index

227

A

acceptsFirstResponder

 185
accessing

data 84
information 56

accessor method 49, 85, 86, 87, 196
implementing 126
retaining object 180

action 38, 41, 80, 99, 134, 186
connecting 46
defining 40, 43
implementing 141
setting programmatically 137

adding
action 43
application icon 75
menu item 72
outlet 43
submenu 72

addObject:

 163

addTimeInterval:

 165
alignment 33

of text 30
Alignment command 33

alloc

 112, 214

AnalyzeAllocation

 command 225
animation 37
Apple events 9
application 161

attributes 75, 126
behavior 36
creating 22
design 191
icon 75
launch behavior 154
multi-document 119, 142, 143
NSApplication 172
possibilities 37
resources 130, 143
standard features 36
start-up routine 126

application controller 120, 130, 142, 143, 203

application controller,

See also controller object

Application Kit 8, 62, 153, 173, 185, 192
application wrapper 53, 106, 126, 130

applicationShouldTerminate:

 106, 154, 161
architecture 53

archiveRootObject:toFile:

 106, 151
archiving 80, 86, 104, 106, 128, 151
argument 210
array 162

arrayWithObject:

 149
ASCII 83
assembler 225
assigning the class 175
attention panel 201
attribute,setting 176
Attributes display 30
autorelease

mechanism 88
pool 88, 89

autorelease

 87, 88, 89, 90, 112
auxiliary nib file 130, 143

awakeFromNib

 52, 137, 168

B

background color 30
base coordinate system 27, 152
Blue Box 9

communication with Yellow Box 9
bounds 192
box object 32, 67, 176
browser 69
Build panel 54
building a project 53, 54

and errors 55
bundle 106, 130

accessing resources 195
loadable 130
main 130

button 31, 95

Index

228

and images 71, 134
custom 194
state 194
switch 65, 183
types 65

C

C language 53
C++ 53
calendar format 137
category 135, 220
cc 53, 225
cell 41, 107

enabling and disabling 139
highlighing 139
installing 199
prototype 136
setting state 197
setting title 139

cellAtIndex:

 92, 94

cellAtRow:column:

 183

cellWithTag:

 141
class 39

adding to project 195
and object creation 214
assigning in Interface Builder 175
creating 216, 217
definition 132, 214, 218
principal 126
relation to object 39
reusing 77
specifying 38, 76
testing membership in 127, 164

class hierarchy 216
class method 49
class object 214
Close command 150
closing a document 150
coding 104
collection classes 86
color 226

Color panel 30
column identifier 68
columns, of objects 33

compare:

 97
compiler 53

compositeToPoint:operation:

 193
compositing images 185, 192, 193
connecting objects 45

direction of 41
Connections display 34, 45

containsObject:

 181
content area 156, 157
content view 27, 156, 157, 181

box 176, 177
replacing 181

contents of nib file 25

contentView

 157, 191
context-sensitive Help 56
control object 38, 41, 107

control:isValidObject:

 191
controller object 20, 63

application 120
document 120

controlTextDidChange:

 153

controlTextDidEndEditing:

 163–165, 188, 189
coordinate system 27, 152, 157, 192

flipping 192

copy

 87, 89, 112
copying objects 29, 127

and reference count 89

copyWithZone:

 127
core operating system 8
core program framework 156–157, 191
coverage 193
creating

class 38
custom view object 185
document 147
form 66
object 214
panel 176

Index

229

currentEvent

 157
custom palette 213
custom view 121

and Interface Builder 133
customizing menus 72
CustomView object 185

D

data
at port 172
mediating 94
serializing 104
storage 84
synchronizing displays of 189, 190

data encapsulation 29, 209
data source 63, 68, 97
DataViews palette 68, 73

date

1

36
date and time 137, 141

creating object 138
formatting 138

date formatter 178

dateWithYear:month:day:hour:minute:second:timeZone:

 141
day of the week 138

dealloc

 89, 90, 108, 128
deallocation 84, 85, 88–89, 90, 108, 112, 128, 217
debugger 112
debugging 128
declaration 49, 146

method 50, 124
deep copy 127
defaults 225
delegate 41, 80, 100, 106, 140, 143, 156, 157, 166, 173

method implemented by 68, 120, 153, 187

delegate

 157
delegation 63, 100, 161
delimiter checking 93

description

 128

descriptionWithCalendarFormat:timeZone:locale:

 166
design,hierarchical 218

determining class membership 213
dictionary 63, 106

display

 181, 185, 192
Display PostScript 27, 126, 193

framework 8
displays, synchronizing 190
document 119, 143

and nib file 143
closing 150
creating 147
default 154
icon 122
initial values 190
management 37
marking as edited 151, 153
opening 149
saving 150, 160, 161
setting type of 122

document controller 120, 130, 142, 143, 144
document controller,

See also controller object

Document menu 142
Interface Builder 120

document type 122
documentation 56

reference 56
drag-and-drop 28, 37
drawing 37, 156, 157, 185, 192–193

functions 193

drawRect:

 185, 192
duplicating object 29
dynamic binding 49, 97, 212–213
dynamic loading 130
dynamic typing 40, 49, 213

E

editable text 30
Emacs key bindings 93

enableDoubleReleaseCheck:

 112
encapsulation 29, 209

encodeObject:

 91

encodeValueOfObjCType:at:

 91

Index

230

encodeWithCoder:

 86, 91, 104, 128
Enterprise Objects Framework 68
entity object 89

enum

 constant 92
EOModeler 213
event 27, 172–173, 202

and custom NSView 185
dispatching 156, 173
handling 156, 185
keyboard 173
message 156

event cycle 172–173
event queue 173
extensibility 218
extension, file 122

F

fat files 53
field,formatting 191
file

extension 122
management 37
opening 149
saving 150–151
type 149

file descriptor 172, 202
file formats 8
file package 53
File’s Owner 79, 130
FileMerge application 224
finding information 56
first responder 156, 173

firstResponder

 157
focusing 192
font 226

setting 141
Font panel 31
Font submenu 36
form 66
formatter 37, 107

applying in Interface Builder 73

date 178
number 73
setting 191

Foundation framework 8, 84
frame 192
framework 53, 130, 224

Foundation 84
frameworks

core 8
function 129

G

gdb

 112, 128, 225
generating

instances 78
source-code files 48, 82

generating code files 123

gnumake

 225
Graphics APIs 8
grid, aligning on 33
grouping methods 220
grouping objects 67

H

header file 48, 50, 218
Help 37, 56, 96, 142
hierarchical data 69
hierarchy

of classes 216

I

icon
application 75
document 122

icon mode (Interface Builder) 78

id

 38, 213
identifier, column 68
image

adding to button 134
adding to interface 71
compositing 193

Index

231

image view 71
implementation file 48, 51, 218
importing header files 52
incremental search 96
indentation 93
Info panel 142, 203
informal protocol 97, 135, 140
inheritance 39, 215, 217

advantage of 218

init

 90, 108, 128, 214
initialization 85, 90, 108, 128, 136, 217

default 90
initializing text 28

initWithCoder:

 86, 91, 104, 128

initWithFrame:

 136, 185
input source 202
inspector panel 26, 176

creating 176
display of 177, 178
managing 176

instance 39, 214
generating 44

instance method 49
instance variable 100, 123, 209, 215, 219

declaring 83, 123, 218
inheriting 215
scope 49
setting 89

Instantiate command 44, 78
interface 24

creating with Interface Builder 24–35
testing 35, 36, 75

Interface Builder 24, 107, 214
and custom NSView 185
inspector 26
palettes 28

interface file 218
Objective-C 50

internationalization 83
introspection 213, 217

invalidate

 126, 200

isDocumentEdited:

 160, 164

isEqual:

 127

isEqualToString:

 164

isKindOfClass:

 127, 164

J

Java
packages 9
virtual machine 9

K

key 63, 162
key alternative 101
key window 27, 173
keyboard event 172, 173
keyWindow 157
keyword 49, 90, 210

L

label 30
library 53
line, creating in Interface Builder 32
link editor 53
linking 53

lipo

 command 225

loadNibNamed:

 148
localization, and nib files 71

localTimeZone

 136

M

Mac OS compatibility 9
Mach 8
Macintosh

look and feel 9
main bundle 130
main menu 142
main nib file 24, 126
main window 27, 150, 173

main()

 23, 126

mainMenu

 157

Index

232

mainWindow

 150, 157
Makefile 53

makeFirstResponder:

 160, 166, 173

makeKeyAndOrderFront:

 52
making a connection 46
MallocDebug application 224
matrix 136

and tabbing 145
menu 27, 72

customizing 142
Document 120

Menus palette 72, 120
message 49, 52, 210, 219

action 41
nesting 49, 52, 210

method 29, 49, 123, 209
accessor 49, 85, 86
class 49
declaring 50, 85, 124, 218
delegation 80, 120, 140, 153, 163, 166, 187
difference from function 212
extending 219
inheriting 215
instance 49
invoking the superclass 175
overriding 174, 196, 216, 219
private 197
syntax 218

model object 20, 62, 162
Model-View-Controller paradigm 20, 62, 131
modifier key 172
modularity 29, 210
mouse click, simulating 150
mouse event 172

mouseDown:

1

74, 185
multi-document application 119, 142

design 143

mutableCopy

 112

N

name completion 93

nesting messages 52
New command 143, 147
NeXT

publications 56
next responder 156, 173

nextKeyView

 35, 36, 74
NEXTSTEP 8
nib file 23, 25, 203, 214

and localization 71
auxiliary 79, 130, 143
creating 176
document 130
loading 126, 148
main 24, 126
sound and images 71

nibTool

 225

nil

 49, 90, 163

nm

 command 225
notification 63, 100, 189, 190, 200

adding an observer 108
advantages 191
identifying 174
posting 175

notification center 100
notification queue 100
NSActionCell 107
NSApp 80, 126, 150, 157, 173
NSApplication 27, 126, 156, 157, 173

NSApplicationMain()

 126
NSArchiver 104, 106
NSArray 84, 86, 97, 127
NSBox 176, 191
NSBrowser 157
NSBundle 106, 108, 130, 195
NSButtonCell 136, 165, 194, 195
NSCalendarDate 136
NSCell 107
NSCoder 104
NSCoding protocol 104, 123
NSCompositingOperation 193
NSConnection 202

Index

233

NSControl 107, 131, 136, 173
NSCopying protocol 123, 127
NSCountedSet 86
NSData 84, 193
NSDate 107, 136, 195, 201
NSDateFormatter 107, 191
NSDictionary 63, 84, 86, 106, 108

inserting objects 167
NSEvent 172
NSEventType 172
NSFormatter 107

NSHomeDirectory()

 151
NSImage 193, 195
NSImageRep 193
NSImageView 71
NSMatrix 131, 136
NSMutableArray 63, 121
NSMutableDictionary 63
NSMutableString 83
NSNotification 100, 109, 189
NSNotificationCenter 100, 109, 189
NSNumber 84, 107
NSObject 38, 84, 89, 135, 217
NSOpenPanel 149
NSProcessInfo 84
NSResponder 131, 156, 172, 173

NSRunAlertPanel()

 105, 160
NSRunLoop 126, 202
NSSavePanel 151
NSSet 86
NSString 83, 84, 97
NSTableColumn 68
NSTableDataSource 97
NSTableView 68, 97
NSText 95
NSTextFieldCell 94
NSThread 84
NSTimeInterval
NSTimer 126, 200, 202
NSTimeZone 136

NSUnarchiver 104
NSUserDefaults 154
NSValue 84
NSView 131, 136, 152, 156, 157, 173, 192, 218

custom 185
focusing 192

NSWindow 27, 150, 156, 157, 172, 173
number formatter 73

numberofRowsInTableView:

 98

O

object 39
aligning 33
allocation 84
analog to 209
and dynamic binding 213
and name space 212
archiving 86, 151, 167
array 121
attribute 176
box 32, 67, 176, 181
button 31
class membership 213
communication 201
comparison 127
connecting 40, 45, 46
controller 20, 63
copying 29, 127
creation 214
deallocation 84, 85, 90, 112, 128
definition 209
dictionary 63
disposal 88, 89
duplicating 29
dynamic typing 38
entity 89
form 66
formatter 191
initialization 85, 90, 108, 128
initializing text 28
inspector 176
interface 29, 210

Index

234

introspection 213
matrix 121, 136, 145
model 20, 62
ownership policy 84, 88, 89
placing 28
pop-up list 183
putting in NSDictionary 167
relation to class 39
resizing 28
retaining 88, 191
retention 89
scroll view 68
sizing 28
text 67, 188
text field 187, 188
unarchiving 148
value 89
view 121, 131

objectAtIndex:

 149, 164

objectForKey:

 63, 168, 103
Objective-C 53, 209, 210, 213, 215, 219, 220

header file 50
summary 49

object-oriented program 211
design 20

object-oriented programming 208
objects

connecting 41, 78
grouping 67, 177, 178
making same size 29
sharing 180

observer 100

oh

 command 112, 225
Open command 143, 149
Open panel 120, 143, 149
opening a document 149

openPanel

 149
OPENSTEP

application 36, 37
OpenStep 8

development applications 224
OpenStep frameworks 8

operating system
core 8

origin point 152
outlet 35, 38, 76, 79, 134

connecting 45
defining 40, 42, 43

outline mode 78
overriding a method 174, 194, 196, 216, 219

invoking superclass 175
ownership, of objects 88

P

palette 28, 130, 226
panel 27

creating 176
inspector 177, 178
off-screen 177, 178

pasteboard 37

pathForImageResource:

 195

performClose:

 150
periodic event 172
persistence 91
placing objects 28
plug-and-play 37

po

 command 128
polymorphism 49, 97, 212, 219
pop-up list 27
posting, a notification 100
PostScript 172, 192

and drawing 193
Preferences panel 142, 204
principal class 126

print:

 74
printing 37, 74
procedural programming 208
procedures 208
program development

command-line tools 225
resources 226

program,object-oriented 211

Index

235

project 22
adding class to 123
building 54
directory 22

project browser 23
Project Builder 130

checking delimiters 93
indentation 93
launching 22

Project Find panel 56
protocol 220

adopting 86, 123
informal 135

pswrap

 185, 193, 225

putCell:atRow:column:

 199

R

radio mode 136
receiver 52, 210
reference documentation 56

release

 89, 90, 112

removeFromSuperView

 191

replaceObjectAtIndex:withObject:

 164

representedFilename

 149
resizing

view object 28
window 26

resource
for programming 226

resources, application 195
responder chain 156, 173

retain

 87, 89, 112, 180
and content view 181

retaining object
implications of 89

reusing object 77
Rhapsody 8

and Power PC 9
architecture 9
supported platforms 9
user experience 9

root class 216
root object 84, 104, 106
rows, of objects 33

runModalForDirectory:file:types:

 149

S

Same Size command 29
Sampler application 224
Save command 143, 150
Save panel 120, 143, 151

savePanel

 151
saving a document 150, 160
screen, coordinate system 152
scroll view 68
scrolling 192
selectable text 30

selectedCell

 141

selectedRow

 101

selectText:

 52, 94

self

 49, 219
sender 52
services 37

setAutosizesCells:

 137

setContentView:

 181

setDataSource:

97

setDocumentEdited:

 151, 153

setFormatter:

 107, 191

setFrameOrigin:

 192

setFrameSize:

 192

setImage:

 165

setObject:forKey:

 167

setState:

 65, 95

setString:

 95

setStringValue:

 94

setTarget:

 173
setting the font 31, 141

setTitle:

 148, 165
setTitleWithRepresentedFilename: 148
shallow copy 127
sharedApplication 126

Index

236

sizing objects 29
sortedArrayUsingSelector: 97
sound 226
Sound Kit 224
source-code files

generating 48, 82, 123
specialization 217
standard window 27
startTrackingAt:inView: 198
state 65
static typing 49
stopTracking:at:inView:mouseIsUp: 198
string object

and character strings 83
empty 90

stringValue 95
strip command 225
subclass 39, 215, 216

creating 38, 174, 194, 217
custom view 185

Subclass command 76
subview 67, 157, 181
subview 181
subviews 157
suitcase 23
super 49, 90, 136, 219
superclass 38, 39, 76, 131, 174, 215, 216

accessor method 196
superview 67, 157, 173
superview 157
switch 65, 95, 183

T

tabbing, between fields 34
table view 63, 68, 97

configuring 69
tableView:objectValueForTable

Column:row: 98
tableView:setObjectValue:forTable

Column:row: 98

TabulationViews palette 68
tag 135, 136, 139, 181, 183
tag 141
target 40, 46

setting programmatically 137
target/action paradigm 41, 173, 187
techncial documentation 56
testing an interface 35, 75
text

aligning 30
color 30
editable 30
selectable 30

text field 187, 188
attributes 30
font of 31
formatting 191
placing and resizing 28
tabbing between 34
validation 191

text object 67, 188
Text submenu 36
textDidChange: 109
textDidEndEditing: 188
thread 202
tile 101
time zone 137
time, See date and time
timer 126, 172, 200, 202

firing 201
scheduling 200

Title object 30
tools, command-line 225
tracking-rectangle event 172
transparency 193
typing, static and dynamic 215

U

unarchiveObjectWithFile: 108, 148
unarchiving 86, 128, 148
Unicode 83

Index

237

user defaults 154
userInfo dictionary 175

V

validation, of fields 191
value object 63, 89
view hierarchy 27, 156, 157
view object 27, 131

custom 121, 185
printing 74
removing from superview 191

Views palette 28, 185
virtual machine (Java) 9
volume formats 8

W

window 27, 172
attributes 26
behavior 36
closing 158
depth 193
events 173
key 27
locating 148
main 27
making first responder 160
positioning 152
resizing 26
setting title 148
status 150

window 148
Window Server 27, 172
windows 157
Windows palette 177, 178
windowShouldClose: 158

Y

Yap application 224
Yellow Box 8, 9

	Discovering OpenStep
	1. Welcome to Rhapsody
	2. A Simple Application
	3. A Forms-based Application
	4. A Multi-Document Application
	5. Extending the To Do Application
	A. Object-Oriented Programming
	B. Programming Tools and Resources

