Systems Manual

PC Development System for the
Sega Saturn

Psy-Q™ from Psygnosis Ltd

PSY-Q TOOLS END USER LICENSE AGREEMENT BETWEEN THE “LICENSEE” AND SN
SYSTEMS LTD AND PSYGNOSIS LTD “LICENSOR”

LICENSE: SN Systems Ltd (SN Systems) and Psygnosis Ltd (Psygnosis) hereby grant the Licensee a
non-transferable, non-exclusive right to use the Licensor’s software product known as Psy-Q Tools on any
single computer, provided that the Software is in use on only one computer at a time in return for the
license fee.

USE OF THE SYSTEM: You may use the Software and associated User Documentation on any single
computer fitted with Psy-Q Cartridge Hardware or Sony Hardware provided by Sony Computer
Entertainment. You may also copy the Software for archival purposes, provided that any copy contains all
the proprietary notices for the original Software.

You may not:

Permit other individuals to use the Software except under the terms listed above;

Modify, translate, reverse engineer, decompile, disassemble (except to the extent applicable laws
specifically prohibit such restriction) or create derivative works based on the Software;

Copy the Software (except for backup purposes);

Rent, lease, transfer or otherwise transfer rights to the Software;

Remove any proprietary notices or labels on the Software

TITLE : Title, ownership rights and intellectual property rights in and to the software shall remain in SN
Systems Ltd and Psygnosis Ltd.

COPYRIGHT : The Software is owned by the Licensor. The Licensee may not copy the manual (s) or
any other written materials accompanying the Software.

LIMITED WARRANTY : The Licensor warrants that the Software will perform substantially in
accordance with the accompanying manual (s) for a period of 30 days from the date of receipt PROVIDED
that the failure of the Software has not resulted from accident, abuse or misapplication.

CUSTOMER REMEDIES: The Licensor’s entire liability and the Licensee’s exclusive remedy shall at

the Licensor’s option, either be:

(1) return of the license fee paid or

(2) repair or replacement of the Software that does not meet the Licensor’s Limited Warranty outlined
above.

DISCLAIMER OF WARRANTY: THE SOFTWARE, ACCOMPANYING MANUAL (S) AND
ANY SUPPORT FROM SN SYSTEMS ARE PROVIDED “AS IS” AND WITHOUT ANY OTHER
EXPRESSED OR IMPLIED WARRANTY, INCLUDING BUT NOT LIMITED TO ANY

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. IN NO EVENT WILL SN SYSTEMS BE LIABLE FOR ANY DAMAGES,
INCLUDING LOST PROFITS, LOST SAVINGS OR OTHER INCIDENTAL OR
CONSEQUENTIAL DAMAGES, EVEN IF SN SYSTEMS IS ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES OR FOR ANY CLAIM BY YOU OR ANY THIRD PARTY. THIS
DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL PART OF THE
AGREEMENT.

SN Systems’ liability under this Agreement whether in contract, tort (including negligence) or otherwise
shall be limited to the Fee paid by the Licensee.

TERMINATION: This license will terminate automatically if you fail to comply with the limitations
described above or if after thirty (30) days written notice to SN Systems, you terminate it. On termination
you must destroy all copies of the Software, in whole or in part, in any form and cease all use of the
Software.

Please note that as the Psy-Q System software is constantly being updated, it is quite likely
that this manual may contain some inaccurate or out-of-date references and some features of
newly updated software may not be fully covered.

For this reason, if you experience any difficulties with this documentation, updates are
available for download via the SN Systems BBS.

We recommend that you make regular use of this service and quickly take advantage of any
new features added to the Psy-Q System software, report or download ‘bug’ reports, gain
answers to questions that may be causing you difficulty and keep up-to-date on news
concerning the development industry.

If you experience any difficulties, please do not hesitate to contact our Technical Support at
SN Systems:

Tel: +44 (0)117 929 9733

Fax: +44 (0)117 929 9251

This device complies with part 15 of FCC Rules. Operation is subject to the following two
conditions:

1) This device may not cause harmful interference

2) This device must accept any interference that may be received, including interference that
may cause undesired operation.

0 1996 SN Systems Software Ltd. All rights reserved.

PC Saturn

Contents

T} (o To (¥ Tox (o o ISP UPPRPT i
Y 0T T | B Y2 PSP i
PSY-Q fOr SEQA SALUIIL. .. .oetiiee e e e e e e e e e e e e e e e e e e eaaaaeeaes i
PSy-Q ISSUE INfOrMALIQN....... it e e e e e et e e e e eeae iV
F o g (oY [=To (o =T 0 0= P Vi

SNV @ I [1S = 11 F= 11 o o PP 1-1
INSEAllAtION CRECK LIST.... ..t e e e e e e e e 1-2
Installing the PC INtEIaCe..........ouii e 1-3
Installing the PC SOftWALE........... i e e 1-7
SN =1 (@ 5 7 0 © Y PP 1-8
Installing the Target INterface............coouiiiiii e 1-10
RUNL.EXE - program dOWNIOAAETcoeuuuiieiiiii e e e e e e e e e e e e e eees 1-14
RUNNING WIth BHET ... e e e e e e e e e e eens 1-15
Installing the WIindows 95 DEDUQQEL..........ooiiiii e 1-18

The ASMB8K and ASMSH ASSEMDBIEIS..... .o 2-1
Assembler ComMMAaN LiNE...........ii it e e e e eeaae 2-2
FSEY =T 0 0] o]V = 0] £ UPPT 2-5
THE ASSH ASSEMDIREL. ...t e et e e e e e eab e e e e eenees 2-6
Assembler ComMMAaN LiNE...... ... e et e e e eeane 2-7
ASMSH SPECIFIC FEAMUIES.......ciiiii e et e e e e e et eeeaaaas 2-8

Syntax of Assembler StatemMENTS 3-1
FOrmat Of STAtEMENIS.cciiiiii et eeeeaaaan s 3-2
Format of Names and LabelS.........ooouuiiiiii e 3-3
FOrmat Of CONSTANTSiiiiiiiiii e e e et e e e e e e e e aaan e e e eeaees 3-4
SPECIAI CONSIANIS ...ceeti i ieiii e et e e e e et e e e e e e e et e e e et e e e e e e eaa e eeae 3-5
ASSEMDIET FUNCHONS. ...ttt e ettt e e e e e et e e e e e eeaban s 3-7
SPECIAlI FUNCHIONS. ...ceee et e et e e e e e et e e e et e e e e e e e e e et e e e aaanaeeeees 3-8
FEY =T 0] 0] (ST GO o1 = 1o £ UPPPN 3-9
RADIX .ttt et e e et e e e eeab s 3-11
ALIAS @nd DISABLEottt e 3-12

General ASSEMDIET DIFTECHVES....... it e et e et eeeaa e aeees 4-1

ASSIGNMENT DIFECHIVES. ..ottt ettt e et e e e e e e e e e e e e e e e e e ea e eanaas 4-2
L U PPP SRR 4-3
0] = PP 4-4
B QU S e e et e et et e e e e e e b e e e eeanas 4-5
L 1 PSPPSR 4-7
] = PSPPSR 4-8
S T UPPPPPTRSPPPIN 4-9
S 1S] = PSSR 4-10
S =S T = L PP 4-11

Psy-Q Development System

13 U UPPPPTT 4-13
131 PSPPI 4-14
51 PSPPSR 4-15
[SO 4-16
DATASIZE @0 DA T A it e e e et e e e et e e e e e eenaannas 4-17
IEEE32 @Nd IEEEBAouiiiiiie ettt e ettt e e e e e a e eeaeeee 4-17
Controlling Program EXECULIONuuieiiiieeeeii e ee e e e e e e e e e e e e et e e e et e e e e aa e eeeanns 4-18
L {C PRSPPI 4-19
BV EN Lottt e e e et e e e e e b b eaaenra 4-20
(O3 N[PSP 4-21
OBJ and OBUJIENDooiiiiiiiiiiiii ettt e ettt e e e ettt s e e e e e et e e e e e e eab e e e e eaenas 4-22
o 0T Lo OSSP 4-23
INCLUDEt e et e e e ettt e e e e e ettt e e e et e et b e e e e e e eetba e eeees 4-24
INCBIN ettt e e e ettt e e e et et e b e e e e e ettt e e e e e e et b e e e e e eetb e e eeeenne 4-26
R e et e e et e e et e et e e e e ettt e aaeanes 4-27
I3 PSP 4-28
(@] a1 1o | [Ta o I AN TS=T o1 o] Y/ 4-29
N 5 PSPPI 4-30
IF, ELSE, ELSEIF, ENDIF, ENDCcciiiiiiiiiiiie ettt e e e eeannne 4-30
CASE QN ENDCASE ...ttt e e et e e e e eeta e e e 4-32
REPT, ENDR oot e e e ettt e e e e e e e e et e e e e e e ee st e aeeeaeees 4-33
WHILE, ENDW ...ttt e e e ettt e e e e et ea b e e e e e e eaba e e e eeeene 4-34
51 T 1N I PRSP 4-35
Target-related DIFECHIVES.t e e e e e e e e e et e e e et e e aaaanaeeeans 4-36
RE G S ot e ettt a e e e e ea it e e aaaanaas 4-37
L] N PP RUPPPRPI 4-37
= Tod (0 1 PP PP PRI 5-1
MACRO, ENDM, MEXIT ... ittt s e e e et e att s e e e e e e eeabba s e e e eeeeeenees 5-2
MACTO PalAMELEIS ... ettt ettt et e e e e e e e e e e et e e et e e e e eenanes 5-3
SPECIAI PAraMELELS. ... ettt e e e e e e e e e e e e e a e 5-5
ST o || I N Y PRSP 5-7
Y O 2 {1 TSP 5-8
PUSHP, POPP ettt e e e e e et et e e e e e e e et bb e e e e eeeesnnns 5-9
PURGEt e e e ettt e e e e e e ettt e e e e e e et et e e e e e e e et e 5-10
I 2 =SSP 5-11
String Manipulation FUNCLIONSuuiiii e e e e e e e e eaaaes 6-1
ST RLEN e ettt a e e e aaa s 6-2
STROCMP. .o ettt e e ettt e e et et e e e e et bt e e e e et e e e eane 6-3
1 IS I S SUPPRRTT 6-4
10 12 I OSSP 6-5

Psy-Q Development System

LOCAI LADBIS ... e e e 7-1

Y01tz T =T Lo [Tt o] o= PP 7-2
MODULE and MODEND...........cottiiiiiiiiiiiise e e et e ettt s s s e e e e e e eeeeaeeeeeeeneennnnnnns 7-4
10 1 2 IR 7-5
SErUCLUNNG the PrOGIAM .. coeei ettt e e e e e e et e e e et e e e e st e e eeatn e eeaanaeeens 8-1
GROUP.....ccce ettt e et e e e e e e e e et et ettt ettt a e e e e e e e e e e e et e et e e aeaaa b s 8-2
S = O [0] SO PPPPPRRRTTR 8-4
PUSHS @Nd POP S e e e e e e e e e e e e e e e e e et et e e eeeeeeessaensannnnnnnns 8-6
SECT @NA OFFSET ..uitiiiiiiiiiiiiiie ittt ettt a s s s s e e e e e e e e e eeaeeaeeaaeeeeeeesssnnnsnnes 8-7
OPptions, LiStiNGS QN EITOIS..... oo e e e e e e e e e et eeeaaa s 9-1
] SR PPURUPTRPRR 9-2
F SISt =T 0] o] [T G @ 10 1S 9-3
(@010l g LT Yox o] 1 0] o = PSPPI 9-4
(U] o (@ 2= g o [=] = SRR 9-6
(IS =T o N[I 1S PP 9-6
I L@ {1V, r= 1o o N AN | USSP 9-8
XDEF, XREF @nd PUBLIC.... ..ottt a e e e e e e e e e e e e 9-9
I] 2 7 USSP 9-10
FaNo P2 VoL (gl T 01V 1= ST 10-1
The ‘C’ LIbrary FUNCHIONS. oot e e e e e e et a e e e e e e eeees 10-2
LI 0] {10 To 1] 1Y = Vo f o TSP 10-3
LI LS O 1 ¥ T 1o T PP 10-4
The PCOPEN FUNCHION.coui e e et e e e e e et e e e e e eaanas 10-5
The PCISEEK FUNCHOM......uiiiiieeei e 10-6
The PCread FUNCHON..........e et e et e e e e et e e e e eennnes 10-7
The PCWIILE FUNCHON........uii e e 10-8
The PCClOSE FUNCHOMuiiiiiieeiii et e e e e e e e 10-9
The PCCreat FUNCHION.ttt e e et e e e e aaa e e e 10-10
Assembly Language FacCilities.............ooeuuieeiiiiccc e 10-11
FIlESEIVEI FUNCHIONS.utiie et e e et e e e e e et e e e 10-12
The DBUGSAT DEDUQGQET ..oeiiie et e e e e e e e aa e 11-1
Debugger Command LIME..........coouuiiiiiii e e et a et e e e 11-2
(@] 01110 8T 1e= 110] I 11 PPRTR 11-4
o 1171 VA4 o [0 Y ST 11-5
Additional DebUQQEr FEAUIES...........uuiiiiiie e e e e et e e e eeees 11-11
Using Debugger WINAOWS..........coiiiiieii et e e e e e e enans 11-12
(0= Y] 00 = 10 I @ 1[0 o = PSP 11-15
1YL T I o)1 £ 11-20
YT L] [) 11-21
THE LINK SOTtWAIE.....eeiii et e et e e e e e e b eeeeeenes 11-22
Debugging Your Program UsSiNg PSY=Q......ccuuui i 11-23

Psy-Q Development System

THE PSYLINK LINKET ..ttt ettt e e e e e e e e e e e e e eenennnnenaaa 12-1

PSYLINK COMMAN LINE.....euiiiiieiiiiiiie ettt e e e e ettt e e e s e eeabn e e e e eennnes 12-2
Linker Command FilES...... .ot 12-4
I] 2 OSSP 12-5
XDEF, XREF @nd PUBLIC.......ccoiiiiiiiiiiieieeer sttt e e e e e e e e e e aees 12-6
The PSYLIB LIDIAIAN ...ttt e et e e e e et et e e e e e eaabaeeeeeennnes 13-1
PSYLIB COMMANT LINE.. ..ottt e e e e e et e e e e e eeabaeeeeeeees 13-2
The CCSH BUIlA Uityccoeie et nnennnees 14-1
CCSH COMMANG LINE.....ciieeiiii et e et e e e e et e e e e e et e e e e e ennannns 14-2
SOUICE FlES. ..t e ettt e e e ettt e e e e et et e e e e e e etaa e eeas 14-4
THE PSYMAKE ULHILY ...t eeeaeeessesnnnnnnnnnnns 15-1
PSYMAKE COmMMANA LINE.....ciiiiiiiiieeieiiiiie ettt e e e e e eean e 15-2
Contents of the MaKefilE............oi i 15-3
The PSY-Q DEBUGGER for WINDOWS 95... .o 16-1
oo 18 ox 1o o PSP 16-1
On-line Help Available For The DebUgger.........cccooviiiiiiii e, 16-3
INStalling The DEDUQGQEL..... oo e e e e e e e aeee 16-4
[T =T o (0] VRS (U [(1] = PSP 16-4
Obtaining Releases ANd PatChies............i o 16-5
Y= T T] £ UPP 16-5
Beta TeSt SCREMIE.. ... e 16-6
INStAlliNg A FUII REIEASE.ceeieeeee et e e e e e eaes 16-7
(0T To = To [T aTo I 0T U T S]] (=T o PSP 16-8
Configuring YOUIr DEX BOAIUS..........uuiiiiiiiceiiie e e e e et e et e e e e e eees 16-9
Configuring YOUFr SCSI Cald........cooviuiiieiiii e e e e e et eeeaans 16-10
Testing The INSTallatioN............ocooini e e e e e e e 16-11
Launching The DEBUQQEN..... ... e e 16-13
The PSY-Q FIl& SEIVEL... ..o e 16-14
Launching The File Server Without The Debugger..........cooovvviiiiiiii e, 16-16
Connecting The Target and UNit.............oooiiiiiiieiiii e e e eaa s 16-17
YL BN 0] <o £ SPPP 16-19
Adding Files To The List Of ProjeCt FIles.............oieiiiiiiiiiii e 16-20
Changing The Order Of Files In The File LiSt.............ccoeiiiii e 16-21
S F- YT To I 20 10 | G = (0] [T o PP 16-25
RE-0PENING A PIOJECL. it e e e e e e e e e et e e e et eeeaanas 16-25
Saving A Project Under A NEW NaME.........cooviiiiiiiiii e e e e e e e e 16-26
(TS (o] T o N = o][X PP 16-26
Opening AN EXIStING PrOJECL. i 16-27
Manually Loading Files INt0 A PrOJECL......co.vuieii e 16-28
The Psy-Q Debugger Productivity FEatULES.............uoieiiiiieiiii e 16-29
Y O YT P 16-31
Creating A PSY-0Q VIuu it ee et e e e e e e e e e e e e e e et e e e et e e 16-32
CYCliNG DEIWEEN VIEBWS...... it e e e e e e e e e e e eaa e eeeee 16-33
SAVING YOUE VIBWS. ... ettt ettt e ettt e et e e e e e e et e e e et e e e e et e e e e et e e e e e e e e et e e e et e eeenanas 16-34

Psy-Q Development System

NP2 T T o T Y AT 16-34

Changing Colour SChemMeS IN VIBWS........covuuiiiiiie e e e e 16-35
WOIKING WIth PANES..... .ot e e e et e e s 16-37
SPIHING PANES..... .ot e e e e e e e e e e e e e e 16-37
Changing Pane SIZES........coouuiiiiiiii et e e e et e e e e 16-38
(=] oY (g o AN = 1 = P 16-38
Changing FONES IN PaNES..........ciiiiicii e e e e e e e e eens 16-39
SCrolling WIthin A PaNe.......... oot e e e e e e e e enaas 16-40
Y= [Ton 1] o AN o= Vo TSI N/ T P 16-41
Y/ L=T0 aT0] VA == o =PRI 16-42
=T | (= ST = 1[PPI 16-44
DISASSEMDIY PANE..... o aaa 16-45
SOUICE PAINE ...ttt ettt e e e et e e e e e e e e e e en e e nenneees 16-47
LOCAI PANE... . ittt e et e e 16-49
WALCKH PANE ... it e et e e ettt e e e e e ettt e e e e e e e ab e e e aeaae 16-51
C Type Expressions IN WatCh Pan@...........ooouuuiiiiiiiii e e s 16-53
ASSIgNING VarADIESo 16-54
Expanding Or Collapsing A Variable............ooooiiiiii e 16-55
TraVErSING AN INOEX et e e e e e e e e e e e e e e e e et e e e e ra e e e eaan s 16-56
AN [0 [T AN AT £ (o] o P 16-57
Additional Features When Entering EXPreSSIONS.oovvuviieiiiieeeeeiie e e e e 16-58
EditiNG A WALCN..... oo e e e e e e e 16-61
DeletiNng A WAALCK.o e e e e e et e e e aae 16-62
Clearing All WALCNESu et e e e e e e et e e e e aaa e 16-62
Debugging YOUr PrOgIaml........cocuuuieeeiieee e e et e e e e e e e e e e e e e e e e e aan e e e esanaeeenns 16-63
Specifying The Continual Update Rate............ccouuiiiiiiiiiiiie e 16-63
Setting BreakPOINtS. e 16-64
Lo e[g T 2T == 1 o L0] PSPPI 16-65
Stepping INt0 A SUDIOULINEccoei e e e e e e e e e 16-67
Stepping OVEr A SUDIOULINE.coouii e e e e e e et eeaanas 16-68
Running To The Current Cursor POSILON.uiiiiiiiice e 16-69
U 1] LYo TN o Yo =T P 16-70
Stopping A Program RUNNING..........iiiiiieeei e e e e e e e e e e e et e e e ea e e eaaa e 16-70
MoVING The Program COUNTEL...........uu ettt e e e e e e e e e et e e e et eeenanas 16-71
Moving The Caret TO The PC ... e e e aaaaas 16-72
Moving To A Known Address Or Label ..o 16-73
EXxpression Evaluation FEAtULES..............iiiiiii e 16-75
ANChoring Panes TO The PC... .o e eaes 16-77
ANChOMNNG MEMOIY PANES.......iiiiii et e e e e e et e e e e eeaans 16-78
Identifying Changed INfOrmation..............coouiiiiiii e e 16-79
Closing The Debugger Without Saving Your Changes.........cccooeevvviieeeiiiiieeiie e, 16-79
Closing The Debugger And Saving Your Changes............cccooevvviiieiiiie e 16-80
APPENDICES
APPENTIX A = EITON MESSAUES. ... e eetteettiee e ettt e e e ettt e e e e e e e et e e e et eetta s e e e eeeata s eeeeeessa e eaeeeees A-1
ASSEMDIEr EITOr MESSAUES cieettiieee ittt e ettt e et e e e e e e e b e e e e eeaaa e e e e A-2
PSYIINK ErTOr MESSAQGES.uvuuiieiiiiiiiiie ettt e ettt e e et e e e e e e e A-14..
PSYIID ErrOr MESSAQES. ... i eieieiiiie ettt e e e e eeee A:19..

Psy-Q Development System

Introduction

Psy-Qfor theSega Saturnis a fast PC based cross development system for
producing and testing mixed C and/or assembler programs for the Sega Saturn
games console.

This version of Psy-Q features:
» High performanc®sy-Q SCSI interface card for host PC.

» Compact Saturn adapter cartridge, including extensive firmware stored in battery
backed SRAM.

» All the software you need:-

* Two RISC SH2 assemblers compatible with standard C compilers including
the popular Freeware Gnu-C.

» Fast 68000 assembler with numerous directives.
» High Speed Linker and Librarian, with extensive link-time options.

» Powerful Source Level Debugger, allowing the programmer to step, trace and
set breakpoints directly in the source code.

Additional hardware required:

» Host 386/486/Pentium PC with hard disk drigkeleast 1 Megabyte of memoryand
1 free 16 bit ISA slot.

» Sega Saturn. This can be either a ‘Small Programming Box’ or an ordinary
production Saturn from your local retailer.

Psy-Q Development System

About Psy-Q

« Psy-Qhas been developed BPgygnosisandSN Systemswith many years of
experience of development software and developers' regg€) represents the
next generation of development systems, backed up by a commitment to
continual enhancement, development and technical support.

« Psy-Qincludes 3 industry-standard Assemblers, a Linker and a Debugger. The
Assembler are extremely fast, and fully compatible with other popular
development systems. The Debugger offers an additional easy-to-use interface,
with full support for mouse and pop-down menus, and works in any DOS text
screen resolution or Windows.

- Psy-Qoffers Source Level Debugging. This allows you to step, trace, set
breakpoints, etc. in your original C or Assembler source code. The system
automatically, and invisibly, handles multiple text files.

« Psy-Qhas 'C' compiler support built in. The Linker can link directly to standard
COFF object files, as produced by the popular Sierra C compiler and many
others.

« Psy-Qprovides a high-speed genuine SCSI parallel link between Host PC and
target system, with a data transfer rate of over 1 Megabytes per second. The
system supports up to 7 connected target devices, and cable lengths of over 6
metres.

« Psy-Qs Assemblers and Linker make full use of extended or expanded memory,
on PC compatibles with more than 640K of RAM.

Psy-Q Development System

Psy-Q for Sega Saturn

The target interface is a very compact cartridge, that plugs into the cartridge slot of
any ordinary, unmodified Sega Saturn, or ‘Small Programming Box'.

Adapter firmware provides diagnostics and self-test facilities, and is stored on
battery-backed SRAM to allow for future firmware updates. Also included are
assorted functions for useful run-time control of the development environment, as
well as extensive fileserver facilities, to allow the target to manipulate files on the
host PC.

Psy-Q Development System

Psy-Q Issue Information

Psy-Qdevelopment systems are available for a variety of other platforms:

» SEGA 32X

* SONY Playstation

* SEGA MegaDrive/Genesis

» SEGA Mega-CD

* Nintendo Super NES

e Commodore Amiga 1200 and 600

Saturn Development Software

The software for the Saturn comes on thigeHD disks. Disk 1 contains all the

Psy-Q System software, including the SH2 and 68000 Assemblers, Debugger etc.
Disk 2 contains an archive of the ‘Freeware’ SH GNU C compiler. Please note that a
number of Saturn specific Libraries are provided by Sega and can be found on the

Sega DTS CD and other Sega sources. Disk 3 contains the accompanying
Documentation for the compiler.

Contents of Disk 1:

PSYBIOS.COM TSR BIOS extensions for PC host for use with Psy-Q
SAT2xx.CPE Downloader vZXx software for Adapter Interface
ASMSH.EXE Hitachi SH series assembler for assembly programmers
ASSH.EXE Hitachi SH series assembler for C compiler output
ASM68K.EXE 68000 assembler for assembly programmers
AS68K.EXE 68000 assembler for C compiler output

RUN.EXE Standalone Executable/Binary downloader
INITSERV.COM Re-initialises PSYBIOS file server functions
DBUGSAT.EXE SH2 and 68000 Debugger for Saturn system
CCSH.EXE Psy-QBuild Utility for SH2 C

CC68K.EXE Psy-QBuild Utility for 68000 C

KANJI.COM Used by CCSH and CC68K when source contains kanji text
PSYLINK.EXE Psy-Q Linker

PSYLIB.EXE Psy-Q Librarian

PSYMAKE.COM
BV.EXE

Psy-QMake Utility
Program to set VGA text screen to display more lines

PSYQ.CB Source for Brief Macro extensions
PSYQ.CM Compiled Brief Macro extensions
PSYQ.INI Path details for compiler installation

Psy-Q Development System

Contents of Disk 2:

GNUSH.ZIP ZIP Archive of GNU’s C Compiler
COPYING “ GNU General Public Licence Terms and Conditions’

Contents of Disk 3:

README.TX1 Text file on getting pre-processor version number
README.TXT Text file on installing GNU Documentation
RUNME.BAT GNU Documentation installation batch file

COPYING “ GNU Public Licence Terms and Conditions’
COPYING.LIB * GNU General Public Licence Terms and Conditions’
GZIP.EXE GNU ZIP Decompressor program for GNUSH.ZIP file
GCC. GNU Documentation files

CPP. GNU Documentation files

INFO.EXE GNU Info program

Psy-Q Development System

Acknowledgements
Psy-Q ThePsy-QDevelopment platform has been designed and produc8ili§ystems
Limited, on behalf oPsygnosis Limited

'Psy-Q is a trademark dPsygnosis Ltd

DOS and Windows

Microsoft, MS, MS-DOS are registered trademarks of Microsoft Corporation;
Windows is a trademark of Microsoft Corporation.

IBM IBM is a trademark of International Business Machines
Brief Brief is a trademark of Borland International.
Sega Sega Saturn, Sega 32X, Sega Genesis/MegaDrive, Sega-CD, Mega-CD, are all

trademarks of Sega Enterprises Ltd.

Psy-Q Development System

CHAPTER1

Psy-Q Installation

ThePsy-Qdevelopment system consists of the following physical components:-

e PC Board

» Target Interface

e Connecting Cable

e PC driver and Bios extensions
* Psy-Q executable files

Installation is, therefore, a relatively straightforward procedure, and is described in
this chapter under the following headings:

» Installation Check List

« Installing the PC Interface

« Installing the PC Software

- PSYBIOS

« Installing the Target Interface
« Firmware Diagnostics

Psy-Q Development System

Installation Check List

Check the configuration of the Psy-Q PC board and install in the host PC - see
later in this chapter for full installation details.

Check configuration of the Psy-Q Target Adapter and install in the target console
or machine - see later in this chapter for full installation details.

Connect the supplied cable from the PC to the target machine.

Load the PC board driver by typing, typically:

PSYBIOS /a308 /d7 /i15

See later in this chapter for full detailsR$YBIOS.COM.
Copy the runtime Psy-Q executable files to a directory on your PC - see the Issue
List, in the Introduction, for the programs supplied with this version of Psy-Q.
Also edit thePATH variable in autoexec.bat.

Switch on the target console.

Run the progralRUN.EXE, without parameters, to verify the link to the target
adapter - see chapter 2 for details of the RUN downloader program.

If RUN correctly identifies the target, the Psy-Q system is now ready to be used,
to assemble, download and debug programs.

Psy-Q Development System

Installing the PC Interface

The Psy-Q PC Interface board should be fitted in to an empty 16 bit slot in the host
PC. The host must be an IBM PC-AT or compatible, running under MSDOS 3.1 or
better.

If no 16 bit slot is available, the board will also fit into an 8 bit slot. However, this
causes some degradation in speed.

Prior to fitting, the 3 banks of dip switches should be checked and configured as

required. It is likely, however, that the factory setting will suffice. They are described
below.

j

D 50 Pin
scsl High
Controll Density
[] scsl
Oon Dip | [on Dip | [on Dip _ Connector
12345678 | |12345678 | |12345678 2 Active

Termination
Resistors

ThePsy-QPC Interface Board

CAUTION: This board is sensitive to static electricity; hold by the metal support
bracket when handling.

Psy-Q Development System

DIP SWITCHES

The PC card is configured by altering the three dip switch banks on the card. These
switches alter:

DMA

IRQ

SCSI Termination Power

IO Address

SCSI ID for the card (normally on 1)

FUNCTION DEFAULT
DMA 7 On, On
DMA 6 Off, Off
DMA 5 Off, Off
IRQ 15 On
IRQ 12 Off
IRQ 11 Off
IRQ 10 Off
IRQ 7 Off
IRQ 5 Off
Not Used Off, Off
SCSI Termination Power On
IO Address - A3 - A8 Off, On, On, On, On, Off
Card SCSI ID On, On, On
DMA DMA channels, 6, and7 are available on the PC card. They are selected by

switching the pairs of dip switches adjacent to DMA request (DRQ) and DMA
acknowledge (DACK).

Both switches must be set to the same channel.
All DMA dip switches set t@ff will turn off DMA.

The default setting ig.

Psy-Q Development System

IRQ

The PC card offers the following IRQ levels:
15,12, 11, 10, 7, 5.

Select the required level by switching the adjacent dip switch.
You must only select one IRQ level

The default setting i$5.

SCSI Termination Power

IO Address

The SCSI Termination Power switdetermines whether SCSI termination is
supplied on the card.

The default setting i®n. This musnot be changed.

The card offers a very large range of 10 addresses from #08f8s in increments
of 8. The address is changed by altering the 6 dip switches labelled A3 to A8.
A8 is themost significant bit, andA3 is theleast

An address line is selected by switching iOtib.

The default setting i808

Psy-Q Development System

SCSI ID

Some examples are shown in the following table:

A8 A7 A6 A5 Ad A3

240 On On Off On On On

2A0 On Off On Off On On

300 Off On On On On On

308 Off On On On On Off

310 Off On On On Off On

318 Off On On On Off Off

380 Off Off On On On On

388 Off Off On On On Off

390 Off Off On On Off On

3EO0 Off Off Off Off On On

Note: The following addresses musit be used: 2F8 COM2,
378 Printer,
3F8 COM1,
3FO0 Various.

The last three switches alter tBESI ID of the card.
The default setting ig. Do not change this setting

The default settings have been chosen so that the possibility of contention with other
internal boards is minimised. Neverthelesse should be taken that settings on
the Psy-Q board do not conflict with any other card in the system

Psy-Q Development System

Installing the PC Software

The Psy-Q issue Disk 1 contains programs to perform the following functions:

« Assembling

« Linking
+ Debugging
« PC Driving

« Other target specific Bios Extensions
+ Windows accessories

Installing Development Software

To install the Psy-Q development programs onto the host PC, carry out the following
procedure:

» create a new directory on the hard diskCRPSYQ;

» copy the contents of the issue disk to the new directory;

* add the Psy-Q directory to tiRATHvariable in theAUTOEXEC.BAT

e add aline in thAUTOEXEC.BATo automatically loaéd’SYBIOS.COM
* add aline in thUTOEXEC.BATO create an environment variable

"PSYQ_PATH specifying the directory for Psy-Q files, e.qg.:

set PSYQ_PATH = C:\PSYQ

Note: After you have made changes to yaWwTOEXEC.BATile you will need to
re-boot your PC to enable these changes to take effect.

Psy-Q Development System

Description

Syntax

Switches

PSYBIOS.COM

PSYBIOS.COM s a TSR program, which acts as a driver for the Psy-Q interface
board, installed in the host PC.

PSYBIOS [switche}
where each switch is preceded by a forward slash (/) and separated by spaces.

la card address Set card address:
200 - 3f8

/b buffer size Specify file transfer buffer size:
2 to 32 (in kilobytes)

lc window n Report all CD access to debugger message
window n

/d channel Specify DMA channel:
5, 6, 7; 0= off

/i intnum Specify IRQ number:
5,7,10,11, 12, 15; 9 off

N filename Specify Fileserver log file; All fileserver
functions will be recorded in the specified
file.

Is id Overide PC Interface SCSI ID jumper
setting: 0to 7

/8 Run in 8 bit slot mode

Psy-Q Development System

Remarks

Examples

+ Normally,PSYBIOS.COM is loaded in thdUTOEXEC.BAT ; it can safely be
loaded high to free conventional memory.

« If PSYBIOSis run again, with no options, the current image will be removed
from memory. This is useful if you wish to change the options without rebooting
the PC.

« If the DMA number is not specified, the BIOS will work without DMA; however,
it will be slower.

« The BIOS can drive the interface in 8 bit mode; however, this is the slowest mode

of operating the interface.

« Thebuffer sizeoption (b) sets the size of the buffer used when the target
machine accesses files on PC. A larger buffer will increase the speed of these
accesses; however, more PC memory will be consumed. The defaultisa 1 K
buffer.

PSYBIOS /a308 /d7 /i15

Start the driver using the typical settings of:

Card addres308
DMA channel7
Interrupt vectorl5

Note: If you are using Windows ‘95, DO NOT install PSYBIOS from your
AUTOEXEC.BAT. Only install it from DOS.

Psy-Q Development System

Installing the Target Interface

WARNING: Never insert or remove the Psy-Q Target Interface when the target is
switched on. Doing so can permanently damage the Interface

Installation

The Target Interface may be used with either in a retail Sega Saturn, or in a ‘Small
Programming Box'. Installation should be as follows:

In the case where you are using a retail Saturn, the Interface should be inserted into
the cartridge slot in exactly the same way as a game cartridge would be. The curved

side of the Interface displaying the Psy-Q logo should be facing the front of the
Saturn.

Psy-Q Development System

If you are using a ‘Programming Box’, then you should install the Interface in a
similar manner, with the curved side facing the front of the unit.

The SCSI cable should be plugged into the Target Interface and also the host PC
SCSI Interface.

You are now ready to turn the target on and test the Target Interface.

Firmware Select

The ROM on the target interface only contains a simple downloader which is not
suitable for developing programs. Its only purpose is to install new versions of the
downloader software into the battery backed RAM of the interface.

When a new version of the downloader is installed, a checksum is calculated and
stored for future reference. As the system starts up it will calculate the checksum
from the installed downloader. If this new checksum matches the old checksum
stored, it will use the installed downloader. If the checksum does not match, if the
downloader has become corrupt for instance, then the simple downloader in the
ROM used. This will enable you to download the latest version of the downloader.

It is possible that the downloader stored in the battery backed RAM may be
corrupted in such a way that the checksum matches the new calculated value. This
could cause the downloader to crash, preventing a new downloader being installed
over it. In the unlikely event of this happening you should:

Power up your Sega Saturn.
Wait till after both the Sega Saturn and Segas logo have gone.

As the Psy-Q logo ‘mosaic effect’ starts, press RESET on the Saturn. This will flush
the corrupted downloader, allowing a new downloader to be installed.

Psy-Q Development System

Downloader Installation

If you have correctly connected the target interface to your Psy-Q PC SCSI card,
once you have installed the Psy-Q software you should be able to confirm
communication with the PC by executing the PsiA@N program (with no
parameters).

You must also have install&@B5YBIOS correctly before you can execute REN
program. RUN will establish a connection to the target system and display the ID
code of the interface firmware. If no downloaders have been installed, a message
should appear something like:-

RUN.EXE Executable/Binary file downloader version 2.30
Copyright (c) 1992,93,94 S N Systems Ltd.

Target 0 is SH2 - SATMSTR1.01

No file to process

Before you start development, you will need to install the full downloader provided
on the Issue Diskette. This file is called S&Xcpe, where th&xxdenotes the

current version number. This downloader is installed into the adapter by using the
RUN command.

For example:

RUN SAT201.CPE

The downloader will be kept battery backed in memory until another version of the
downloader is installed. To check everything worked properly, just exetie
again. It should report the correct version of the new downloader just installed.

Assuming this all works correctly then your installation is complete and you can
proceed to experiment with Sega Saturn software development...

Psy-Q Development System

Firmware Diagnostics

The adapter always performs a few simple diagnostic checks at power up and if any
problems are detected it will print the result to the console’s screen.

If the console is reset (or switched on) with the joyfadRT button held down
then the adapter firmware will print to the screen to report on it's current
configuration and the results of some more extensive self-tests.

Psy-Q Development System

RUN.EXE - program downloader
Description This program downloads runnable object code to the target machine.

SyntaxRUN [switche$ file name[[switche} filename.]

where switches are preceded by a minus sign (-).

Switches
-h halt target - that is, download but do not run.
-t# use target SCSI IDumber# - always0 for the Saturn
-u# use target unit numbér (O - Master SH2] - Slave SH22 - 68000)
-w## retry for ## seconds if target does not respond.
Remarks

If run is executed without any runtime parameters, the program will simply
attempt to communicate with the target adapter hardware. If successful,

displays the target identification; if the attempt fails, an appropriate error message
is displayed.

« The file to be downloaded may contain:

+ an executable image, output by the development systeopaformat. Up to3
cpefiles may be specified;

« araw binary image of a cartridge.

« For an executable file, execution will begin as indicated in the source code; for a
binary ROM image, execution will begin as if the target machine had been reset
with a cartridge in place.

« Multiple executable files may be specified. However, only the last executable
address will apply - specified files are read from left to right.

Psy-Q Development System

Running with Brief

Most programmers prefer to develop programs completely within a single, enabling
environment. Future versions of Psy-Q will provide a self-contained superstructure
with a built-in editor, tailored to the requirements of the assembly and debug sub-
systems. For the time being however, it is recommended that programmers seeking
such facilities should use Borland's Brief text editor, which is already supported by

Psy-Q.

Installation in Brief

In order to use Brief with Psy-Q, you will need to make a few changes to your
AUTOEXEC.BAT file after you have installed Brief:

Set theBCxxx environment variables. These variables take the file extension of a
source file to tell Brief how to Assemble or Compile the file. For example:

set bc68k="asm68k /i /w /d /zd %%s,t0:,%%s,,"

set bcs="asmsh /i /w /d /zd %%s,t0:,%%s,,"
set bcc="ccsh -v -g -X0$80010000 %%s.c -0%%s.cpe,%%s.sym" **

These will Assemble68k source file withPASM68K, .S source files with the
ASM68k assembler (see chapter 2), and Comgllsource files wittCCSH (see
The Build Utility chapter).

Set theBFLAGS environment variable, wittmPSYQ appended, to force the Psy-Q
macro file to be loaded on start-up. For example:

set bflags=-ai60Mk2u300p -mrestore -Dega -D101key -mPSQ
The variable may look different depending on how Brief was set up.

Finally, copy the filePSYQ.CM, containing macros, into tABRIEF\MACROS
directory, or create it from source flRSYQ.CB,

Psy-Q Development System

Note: The standard Brief feature of usiAgi-F10 to compile the currenfile as
instructed by th&Cxxx environment variable still works as normal.
However, if you take the time to write a simple make file for each of your
projects you will find the additional Psy-Q keystrokes much more convenient
and powerful.

The Psy-Q brief macros:

Ctrl-G Goto label (locate definition of label under the cursor in loaded source
files)

Ctrl-F Return from label (undo the above operation)

Ctrl-w Write out all changed files

Ctrl-v Evaluate expression under cursor using values from symbol file(s)

Ctrl-F9 Select make file for current project
Ctrl-F10 Make program and enter debugger
Alt-F9 Make program and start it running
F9 Enter the Debugger

If you wish to change any of these key assignments then change to your
\BRIEF\MACROS directory and edit the filBSYQ.CB. Near the top of this file

you will see where the keys are assigned to the various functions and it should be
easy to change the key names and re-compile the macro by pAds$tag.

Note: If you re-assign any of the Brief standard key assignments then you may lose
access to that original Brief function.

Ctrl-F9 allows you to select which make file you wish to use. By default, Psy-Q will
use the file in your current directory call®lAKEFILE.MAK. If you do not wish
to use this file then ug@trl-F9 to select the preferred make file.

Ctrl-F10, Alt-F9 andF9 work by calling thePSYMAKE program with a suitable
parameter to select which operation to perform. Your Psy-Q disk includes a simple
make file calledMAKEFILE.MAK as an example. If you edit this file you will see
that it defines how to do one of three operations:-

* Assemble and Run.
* Assemble but don't Run.
* Enter Debugger.

Psy-Q Development System

It should be easy for you to adapt this file to your needs. If you are doing one simple
assembly then all you will have to change is the name of the file that is assembled and

add any other command line options you require.

It does not matter which of your source files you are in when you press one of the
make/debug keys - the make file will specify the commands to the assembler and

debugger.

Psy-Q Development System

Installing the Windows 95 Debugger

Installation Instructions

Note: You will need to know your Psy-Q SCSI card hardware resource settings to
complete installation.

Note: The Compiler, Assemblers and Linkers must have been previously installed
within DOS.

Note: Do not install PSYBIOS.COM as this and RUN will not be needed with the
Windows ‘95 Debugger.

Installing Automatically from Floppy Disk

Ensure there is at least 1.5mb free on your C drive and in addition, 2.5Mb free on the
drive where you will be installing your software.

1. Readsetup.txt.

2. Run the programetup.exeby double-clicking on it using an explorer window.

3. Select ‘Yes’ to start the installation.

4. Setupwill unzip and launch the Psy-Q for Windows '95 setup program
(pgsetup.exg. On-line help is available throughout the installation process.

5. If this is the first installation of the Debugger, confirm the specified licence
conditions.

6. Specify or confirm the directory in which you wish to install the Debugger.

7. Depending on the type of installation, specify the settings for the DE Board or

SCSI card.
8. After installation is complete, clopgsetup andsetupwill delete the temporary
files it installed on your hard disk.

Installing Manually
1. Unzip the filepp100zipinto a temporary directory.

2. Run the programgsetup.exe
3. Selectpsxp_1.pgpand continue with the installation.

Psy-Q Development System

Additional Notes for Beta Testers

» If you are a beta tester of the Windows '95 software, you do not need to install
this version of the Debugger. Instead, use the latest version available from SN
Systems. Contact John@snsys.com for more information.

» If you have installed a beta version of the Debugger prior to Release 6 and wish
to install this version, you must run the progrmagayClean.exdo remove unused
DLLs from your System directory.

Psy-Q Development System

CHAPTER 2

The ASM68K and ASMSH Assemblers

The ASM68K andASMSH assemblers can assemble source code at over 1 million
lines per minute. Executable image or binary object code can be downloaded by the
Assembler itself, to run in the target machine immediately, or later, B3N

utility.

This chapter discusses how to run an assembly session, under the following headings:

« Assembler Command Line
« Assembler and Target Errors

Psy-Q Development System

Syntax

Switches

Assembler Command Line

During the normal development cyck&SM68K andASMSH may be:

« run in stand alone mode

« launched from an editing environment such as Brief - see later in this chapter
« invoked as part of thielake utility - see The Psymake Utility chapter.

When the Assemblers are run independently, the command line takes the following
form; each component of the line is then described:

ASM68K or ASMSH /switchlistsourceobjectsymboldistingstempdata
or
ASM68K or ASMSH @commandfile

If the first character on the command line is@rsign, the string following it signifies
a Psy-Q command file containing a list of Assembler commands.

The assembly is controlled by inclusion of a set of switches, each preceded by a
forward slash (/). The /o switch introduces a string of assembler options; these can
also be defined in the source code, usin@RBi directive. Assembler options are
described in detail in chapter 9, the available switches are listed below:

lc Produce list of code in unsuccessful conditions

/d Set Debug mode - if the object code is sent to the target
machine, do not start it.

le n=x Assigns the valug to the symboh.

/g Non-global symbols will be output directly to the linker
object file.

Psy-Q Development System

Source

Object

Symbols
Listings

Tempdata

/] pathname Nominate a search path iNCLUDE files.

Kk Permits the inclusion of pre-defined foreign conditionals,
such agFND - see alstMACROS, chapter 5.

N Output a file for the Psylink Linker.
/m Expand all macros encountered.
/o options Specify Assembler options - see chapter 9 for

a full description of the available options.

Ip Output pure binary object code, instead of an executable
image incpeformat - see also RUN.EXE, chapter 2.

/ps Output ASCII representation of binary file in Motorola
s-recordformat

Iw OutputEQUATE statements to the Psylink file.
Iz Output line numbers to the Psylink file.
/zd Generate source level Debug information.

The file containing the source code; if an extension is not specified, the default is .68k
or .s. If this parameter is omitted, the Assembler outpeifsin the form of a list of
switches.

The destination to which object code is written, either a file or target machine. If the
object code is to be sent directly to the target machine, specify a name whére

n signifies theSCSI device number of the target . If this parameter is omitted, object
code will not be produced.

The file to which symbol information is written, for use by the Debugger.
The file to contain listings generated by assembly.
This parameter nominates a file to be placed oiRéhigl disk for faster access. If

the name is omitted, the defaulaism.tmp; note that the temporary file is always
deleted after assembly is complete.

Psy-Q Development System

Remarks

Examples

If any of the above parameters are omitted, the dividing comma must still be
included on the command line, unless it follows the last parameter.

The Assembler run may be prematurely terminated by any of the following
methods:

PressingControl-C

PressingControl-Break (recognised more quickly because it does not require
aDOS operation to spot it)

Pressingesc

The Assembler checks for an environment variable called ASM63SHISH.

This can contain default options, switches and file specifications, (in the form of a
command line), including terminating commas for unspecified parameters.
Defaults can be overridden in the runtime command line.

asmshzd /o ae+,w- scode,t0:,scode.sym

This command will initiate the assembly of B2 source code contained in a file
calledscode.swith the following active options:

source level debug informatida be generated

automatic everenabled

warning messages to be suppressed

the resultanbbject coddo be transferred directly to the targetchinge SCSI
device O

symbol informatiorto be output to a file callestode.sym

assembly listingo be suppressed

ASMSH @game.pcf

will recognise the preceding @ sign and take its command line from a Psy-Q
command file calle6AME.PCF

Psy-Q Development System

Assembly Errors

During the assembly process, errors may be generated as follows:

By the assembler itself, as it encounters error conditions in the source code.

Remarks

Appendix A gives a full list of Assembler error messages.

plus

Abort, Retry orBus Reset

Psy-Q Development System

The ASSH Assembler

ASSHi s not intended for assembling hand-written assembly cod&$MSH was

written for this purpose angrovides a number of powerful macro facilities for
convenient assembly programming. It is intended for developing assembly language
modules or complete projects in assembly language. For small amounts of assembly
language within your C program you can use the C inline funasar("™) which

will pass its parameters directly into the output fileA&SH to assemble.

ASSH is an SH2 assembler and primarily used for processing the assembly syntax
produced by 'C' compilers; this assembler is constrained by C compiler output syntax
and so supports only those features it requires.

Psy-Q Development System

Syntax

Switches

Assembler Command Line

ASMSH /switchlistsourceobjectsymboldistingstempdata
or
ASMSH @commandfile

If the first character on the command line is@rsign, the string following it signifies
a Psy-Q command file containing a list of Assembler commands.

See the ASM68K assembler (above) for a full list of the available command line
switches.

Note: The ASSH assembler is invoked primarily by t@&€SH build utility, and will
not usually be called from the command line.

Psy-Q Development System

ASMSH Specific Features

For details of SH series assembler opcodes you should refer to the official Sega
documentation. These Psy-Q assemblers have pseudo-ops which are largely similar to
those of the Psy-Q 68000 assembler. All Data definition directives are the same as for
the 68000 (e.gOC.size DS.size DCB.size RS.size wheresizeis either.b, .w, or

).
Additional features oASMSH which are specific to this version include:-
» Default data size of an instructionlasmgword (32 bits). So beware:-

mov @rl+,r2 ; this instruction moves langwordinto r2,
: not aword.

* TheSH does not have an op-code for immediate subtraction. However the
ASMSH assembler will allow you to use such an instruction and will instead
generate and immediate add with a negative quantity:-

sub #1,rl ;geneates opcode famdd #-1,r1

* Instructions that have only one legal size may have that size specified:-

add.l r1,r2

* Immediate operands in the range 128 to 255 are allowed with a warning since
these will be sign extended when loaded. e.g.

mov #200,rl1 :will give a warning.

This could be changed so that if you user .w as the instruction size, then you
will only get an error if the operand doesn't fit in the specified size.

* You can use the following pseudo-ops from the Hitachi assembler:-

.equ
.org
.align
.arepeat
.aendr
.end

 Instructions with PC relative operands check the alignment of their operands.

» The assembler checks that you do not put an illegal instruction in a delay slot.

Psy-Q Development System

» The assembler correctly calculates the relative value when an instruction with a PC
relative operand is used in a delay slot, e.g.

bra fred
mova z1,r0

The offset in theMOVA instruction is not the same when it is in a delay slot.

This value cannot be calculated for indirect jumps through registers since the
assembler does not know the destination of the jump. e.g. the following instruction
sequence will cause an error :

jmp @r0
mova z1,r0

» The assembler allows the index address mode operands to appear in either order,
eg:-

and #15,@(r0,gbr)
and #15,@(gbr,r0)

This also works fopc relative with displacementetc.

» Since theSH cpu cannot reference immediate data bigger than 1 byte, the
assembler supportbtéral pooling so you can access 16 and 32 bit constants.
This is usually indicated by the ‘=* prefix on a constant. If the data is greater than
1 byte it will be put in a literal table further on in the code. Otherwise it will be
incorporated in the instruction as an immediate value. For compatibility, the prefix
‘## can also be used to indicate a literal pool entry.

If you want to specify that the value must only be an immediate, then you can use
the ‘# prefix. If the data is larger than 1 byte, then an error will occur during
assembly.

Also for compatibility, if the #+ assembler option is specified iIO&T statement

on the command line (with the /o command line switch), then the functions of the
‘# and ‘## prefixes are reversed. So that a ‘#' is used to signify a literal, and ‘##’
is used to indicate an immediate value.

Literal constants are collected into a number of literal tables, and the assembler
generates PC relative load instructions to fetch the data from these tables. To
allow this you need to use théTTAB pseudo-op to insert a literal pool at

various points in your code. The best place for this is after an unconditional branch
or jump.

Note that this table must corafter the constant reference because the offset on
PC relative instructions are unsigned. e.g:-

Psy-Q Development System

clearscr module

mov.l =AutoFill,r1 :all these literals
will ;be pooled

mov.l =FBcont,r2 :and this code will
;generate

mov.l =$100,r8 ;pc rel load
instructions

mov.l =$ff,r4 :to reference the
literal table

mov.l =$ff00/$100,r7
mov r8,r3
mov.l =$8000,r5

@0 mov r4,r0
mov.w r0,@(0,rl) ;Size
mov r3,r0
mov.w r0,@(2,rl) ;Address
mov 5,10
mov.w r0,@(4,rl) ;Data
add.l r8,r3

@1 mov.w @r2,r0

tst #2,r0

bf @1

dt r7

bf @O0

rts

nop

littab literal table

will be built

modend here

You can also use the keyword LITS as an alternative to
LITTAB.

* You can write most addressing modes in a 68000 style,
eg:-

mov r0,@rl - mov r0,(rl)
mov @(8,rl1),ro - mov 8(rl),r0
etc.
* Youcanuse MOVEs an alternative to MOVe.qg:-
mov.w r1,@r2 - move.w rl,@r2
* You can omit the * I’ in the compare instructions,
e.g.:-
cmpl/eq rl,r2 - cmpeq rl,r2

Psy-Q Development System

CHAPTER 3

Syntax of Assembler Statements

In order to control the running of an Assembler, source code traditionally contains a
number of additional statements and functions. These allow the programmer to direct
the flow and operation of the Assembler as each section of code is analysed and
translated into a machine-readable format. Normally, the format of Assembler
statements will mirror the format of the host language, and the Assemblers follow this
convention.

This chapter discusses the presentation and syntax of Assembler statements, as
follows:

« Format of Statements

» Format of Names and Labels
» Constants

« Functions

» Operators

« RADIX

« ALIAS and DISABLE

Psy-Q Development System

Format of Statements

Assembler statements are formatted as follows:
Nameor Label Directive Operand

The following syntactical rules apply:

« Individual fields are delimited by spaces or tabs.

« Overlong lines can be split by adding an ampersand (&); the next line is then
taken as a continuation.

« Lines with an equals (=) sign as the first character are considered to be the case
options of aCASE statement - see Flow Control, chapter 4.

+ Comment Lines:
» comments normally follow the operand, and start with a semicolon (;).
 lines which consist of space or tab characters are treated as comments.

» acomplete line containing characters other than space or tabs is treated as
a comment, if it starts with a semicolon or asterisk.

Psy-Q Development System

Format of Names and Labels

Names and Labels consist of standard alpha-numeric symbols, including upper-case
letters, lower-case letters and numeric digits:

AtoZ,atoz,0to9
In addition, the following characters can occur:

Colon (©) Can be used at the end of a name or label when defined, but not
when referenced.

Question Mark (?), Underscore (_), Dot (.)
These three characters are often used to improve the overall
readability

AT sign @ Indicates the start of a local label - see chapter 7. Note
that, by using the Assembler optitn, the local label symbol can
be changed to a character other than @.

The following usage rules apply throughout:

« Numeric digits and Question Marks must not be the first character of a name.

« Labels normally start in column 1. However, if they start elsewhere, there must be
no characters preceding the name, except space or tab, and the last character
must be a colon.

- If a problem in interpretation is caused by the inclusion of a non-alphanumeric

character in a Name or Label, that character can be replaced by a backslash, or
the entire Name or Label surrounded by brackets.

Psy-Q Development System

Format of Constants

The Assemblers support the following constant types:
Character Constants

A character string enclosed in quote marks is a character constant and is evaluated as
its ASCII value. Character constants may contain up to 4 characters, to give a 32 bit

value. Thus:

"A" =65 =65

"AB" = (65*256) + 66 = 16706

"ABC" = (65*65536) + (66*256) + 67 = 4276803
"ABCD" = (65*16777216)+ (66*65536) + (67*256) + 68 = 1094861636

Integer Constants

Integer constants are normally evaluated as decimal, the default base, unless one of
the following pertains:

- theRADIX directive changes the base - see chapter 3.

« $, as the first character of an integer, signifies a Hex nurfoaignifies a Binary
number.

« If a character is preceded by a backslash and up arrow (*), the corresponding
control character is substituted.

+ TheAN Assembler option allows numbers to be defined as Intel and Zilog
integers. That is, the number must start with a numeric character and end with
one of:

D for Decimal;H for HexadecimalB for Binary

Psy-Q Development System

Remarks

Example

Note

Special Constants

The following pre-defined constants are available in the Assemblers.

_year As a two digit number, e.g. 95
_month 1 = January; 12 = December
_day 1 = 1st day of month
_weekday 0 = Sunday; 6 = Saturday
_hours 00 - 23

__minutes 00 - 59
_seconds 00-59

* Contains the current value of the Location Counter.
@ Contains the actual PC value at which the current value will be
stored - see below.

narg Contains the number of parameters in the current macro argument -
see chapter 5 for further details.

rs Contains the current value of RS Counter - see chapter 4 for
further details.

_filename A pre-defined string containing the name of the primary file
undergoing assembly.
Time and Date Constants:
Time and Date constants are set to the start of assembly; they are not updated during

the assembly process.

RunTime dc.b "W#_hours:\# minutes:&
\#_seconds"

this expands to the forlh.mmss as follows

RunTime dc.b "21:08:49"

This example uses the special macro parameter, \#, which is described in chapter 5.

Psy-Q Development System

Location Counter constants:

The current value of the program pointer can be used as a constant. To substitute the
value of the location counter at the current position, an asterisk (*) is used:

section Bss,g_bss
Firstbss equ *

Since * gives the address of the start of the line,

org $100
dc.l *’*’*
defines $100 three times.

An @, when used on its own as a constant, substitutes the value of the location
counter, pointing to an address at which the current value will be stored.

org $100
dc.l @@
defines $100,$104,$108.

Psy-Q Development System

Assembler Functions

The Assemblers offer many functions to ease the programmer's task. These are listed
below, together with the page number for a more detailed explanation of their usage.
In addition, there is a group of specialised functions, which are described on the
following pages.

Name Action Page
def(@) Returnstrueif a has been defined 4-28
ref(a) Returngrueif a has been referenced 4-27
type@) Returns the data type af 511
sqrt@) Returns the square root af

strlentex) Returns the length of string in characters 6-2
strcmpextatext Returndgrue if strings match 6-3
instr([start,]txa,txb) Locate substring in stringb 6-4
sect@) Returns the base address of section 87
offset(@) Returns the offset into sectian 87
sectoff@) Equivalent to offset 8-7
group@) Returns the base address of graup 82
groupoff@) Returns the offset into growp 82

Psy-Q Development System

Special Functions
filesize("filename")
Returns the length of a specified file, or -1 if it does not exist.
groupsizeX) Returns the current (not final) size of grotip

grouporg(X) returns theORG address of groul or the group in whictx is defined ifX is a
symbol or section name.

groupend(X) Returns the end address of group
sectendk) Returns the end address of secton
sectsizeX) Returns the current (not final) size of sect¥on

alignment(X) Gives the alignment of previously defined symkoThis value depends upon the
base alignment of the section in whilis defined, as follows:

Wordaligned - value in range 0 -3
Halford aligned- value in range 0 -1
Bytealigned - value always 0

Psy-Q Development System

Notel

Note2

Assembler Operators

The Assemblers make use of the following expression operators:

Symbol

()

+

+

~ % 1

- >0

<>

<=
>=

Type

Primary
Unary

Unary

Binary
Binary
Binary
Binary
Binary
Binary

Binary
Binary

Unary
Binary
Binary
Binary
Binary

Binary
Binary
Binary
Binary
Binary

Usage

(@)

+a
-a

=b
a+b
a-b
a*b
a/b
a%b

a<<b
a>>b

~a
a&b
a”b
alb
alb

a<>b
a<b
a>b
a<=b
a>=b

Action

Brackets of Parenthesis
ais positive
ais negative (see Nokp

Assign or equatb to a
Incrementa by b

Decrement by b

Multiply a by b

Divide a by b, giving the quotient
Divide a by b, giving the modulus

Shifta to the left,b times
Shiftato the rightb times

Logical compliment oNOT a
a is logicallyANDed byb

a is exclusivelyORed byb
ais inclusivelyORed byb
Acts the same asla

ais unequal tdo

ais less thai

ais greater thab

ais less than or equats
ais greater than or equdis

Since theAssemblers will evaluate 32-bit expressions, the negation bit is
Bit 31. Therefore, $FFFFFF and $FFFFFFF are positive hex numbers; $FFFFFFFF is
a negative number

If a comparison evaluates tage, the result is returned ak if it evaluates as
falseg the result is returned 8s

Psy-Q Development System

Hierarchy of Operators
Expressions in the Assemblers are evaluated using the following precedence rules:

« Parentheses form the primary level of hierarchy and force precedence - their
contents are performed first;

« Without the aid of parentheses, operators are performed in the order dictated by
the hierarchy table;

« Operators with similar precedence are performed in the direction of their
associativity - normally, from left to right, except unary operators.

Operator Direction Description
() - Primary
+,-~ N Unary
<<, >> Shift
_)
& LN R Logical
* 1, % Multiplicative
_)
+, - Additive
_)
> <, <=, >= Relational
_)
=, <> N Equality

Psy-Q Development System

11

Description

Syntax

Remarks

Examples

RADIX

The Assemblers default to a base of 10 for integers. This may be changed by
preceding individual numbers with the charactérsr $, to change the base for that
integer to binary or hex. Alternatively, tRADIX directive can be used to change
the default base.

RADIX newbase

« Acceptable values for the new base are in the range of 2 to 16.

« Whatever the current default, the operand oRIMDIX directive is evaluated to
a decimal base.

« TheAN assembler option (see chapter 9) will not be put into effect if the default
RADIX is greater than 10, since the signifiBrandD are used as digits in
hexadecimal notation.

radix 8

sets the default base to OCTAL.

Psy-Q Development System

Description

Syntax

Remarks

Examples

ALIAS and DISABLE

These directives allow the programmer to avoid a conflict between the reserved
system names of constants and functions and the programmer's own symbols.
Symbols can be renamed by HelAS directive and the original names

DISABLE 'd, rendering them usable by the programmer.

newname ALIAS name
DISABLE name

Symbolic names currently known to the Assemblers maLhaS ed and
DISABLE d. However, these directives must not be used to disable Assembler
directives.

_Offset alias offset
disable offset

_Offset dc-.'v'v _Offset(Lab)
offset dc.w *-pointer

Psy-Q Development System

CHAPTER 4

General Assembler Directives

The Assemblers provide a variety of functions and directives to control assembly of
the source code and its layout in the target machine.

This chapter documents the Assembler directives which allow the programmer to
control the processes of assembly, grouped as follows:

« Assignment Directives

« Data Definition

« Controlling Program Execution
» Include Files

« Controlling Assembly

« Target-related Directives

Psy-Q Development System

Assignment Directives

The directives in this section are used to assign a value to a symbolic name. The value
may be a constant, variable or string.

- EQU

« SET (and=)
- EQUS

- EQUR

- REG

- RS

« RSSET

« RSRESET

Psy-Q Development System

Description

Syntax

See Also

Remarks

Examples

Note

EQU

Assigns the result of the expression, as a constant value, to the preceding symbolic
name.

symbol nameEQU expression

SET, EQUS

« The Assembler allows the assigned expression to contain forward references. If
anEQU cannot be evaluated as it is currently defined, the expression will be
saved and substituted in any future references to the equate (see Note below).

« Itis possible to include an equate at assembly time, on the Assembler command
line. This is useful for specifying major options of conditional assembly, such as
test mode see Assembler switches, chapter 2.

« Assigning a value to a symbol wiEQU is absolute; an attempt at secondary
assignment will produce an error. However, it is permissible to re-assign the
current value to an existing symbol; typically, this occurs when subsidiary code
redefines constants already used by the master segment.

Length equ 4

Width equ 8

Depth equ 12

Volume equ Length*Width*Depth
DmaHigh equ $ffff8609

DmaMid equ DmaHigh+2

List equ Lastentry-Firstentry

if Firstentry, Lastentrynot yet defined, then:

dc.l List+2

will be treated as

dc.l (Lastentry-Firstentry)+2

the equated expression is implicitly bracketed.

Psy-Q Development System

Description

Syntax

See Also

Remarks

Examples

SET

Assigns the result of the expression, asm@able, to the preceding symbolic name.

symbol nameSET expression
symbol name= expression

EQU

« SET and equals (=) are interchangeable
« Values assigned by a SET directive may be re-assigned at any time.

« The Assembler does not allow the assigned expressio8HT airective to
contain forward references. IfSET cannot be evaluated as it is currently
defined, an error is generated.

« If the symbol itself is used before it is defined, a warning is generated, and it is
assigned the value determined by the preliminary pass of the Assembler.

« The symbol in &ET directive does not assume the type of the operand. It is,
therefore, better suited to setting local values, such as in macros, rather than in
code with a relative start position, such as a SECTION construct, which may
cause an error - séxamples

Loopcount set 0
GrandTotal = SubTotalA+SubTotalB
xdim set Bsize<<SC
cbb macro string
Ic = 0

rept strlen(\string)
cc substr Ic+1,lc+1,\string

dc.b "\cc'($AS5+Ic)
Ic = lc+1

endr

endm

Psy-Q Development System

Description

Syntax

See Also

Remarks

Examples

EQUS
Assigns a text or string variable to a symbol.

symbol name EQUS "text"
symbol name EQUS 'text’
symbol name EQUS symbol name

EQU, SET

« Textual operands are delimited by double or single quotes. If it is required to
include a double quote in the text string, delimit with single quotes or two double
guotes; similarly, to include a single quote in the text, delimit with double quotes
or two single quotes - see examples below.

 If delimiters are omitted, the Assembler assumes the operand to be the symbol
name of a previously defined string variable, the value of which is assigned to the
new symbol name.

« Point brackets, { and }, are special delimiters used in MacrosMA&RO
directive specification, chaptér

« Symbols equated with tHeEQUS directive can appear at any point in the code,
including as part of another text string. If there is the possibility of confusion with
the surrounding text, a backslash (\) may be used before the symbol name, and, if
necessary, after it, to ensure the expression is expanded correctly - see examples
below.

Program equs "Psy-Qv 1.2"
Qtex equs "What's the score?"

dc.b "Remember to assemble &
_filename",0

Psy-Q Development System

z equs "123"

aéJ z+4

converts to
dc.| 123+4

whereas the following expression needs backslashes to be expanded correctly:

dc.] number\z\a

converts to
dc.] numberl23a

SA equs 'StartAddress'

dc.| \SAM

converts to
dc.| StartAddress4

Note To include single quotes in a string delimited by single quotes, either change the
delimiters to double quotes, or double-up the internal single quote. Similarly, this
syntax applies to double quotes, as follows:

Sinquote equs 'What'"s the point?'
Sinquot2 equs "What's the point?"

Doubquote equs "Say "'Hello™ and go"
Doubquote equs 'Say "Hello" and go'

Psy-Q Development System

Description

Syntax

See Also

Remarks

Examples

EQUR
Defines a symbol as an alternative for a data register or an address register.
symbol name EQUR register name

REG

« The major use of thEQUR directive is to improve the overall readability of the
source code.

« In order that the Assembler can evaluate the expression correctly, dots are not
allowed as part of the symbol name & QUR (see example below).

cmp.b RGBinds(a2,d1.w),d0

This could be re-written usingQUR's, as follows:

Red equr a2
Green equr di
Blue equr do
&:'fnp.b RGBinds(Red,Green.w),Blue

Since dots are not allowed HQUR names, the Assembler can correctly interpret
Green.w as the low word of (d1).

Psy-Q Development System

REG

Description Defines a symbol as an alternative for a list of data registers or address registers.

Syntax symbol nameREG list

See Also EQUR

Remarks
« As with EQUR, the main purpose of tHREG directive is to improve the overall
readability of the code.
+ Likewise, dots are not permitted in the symbol nameRIEG.

Examples Windset reg d0-d7/al-a2

lea camwind\w,a0
movem.w (a0),Windset
movem.w Windset,minx\w
lea camcliplist,a3
bsr setcliplist

Psy-Q Development System

Description

Syntax

See Also

Remarks

Examples

RS

Assigns the value of the RSvariable to the symbol, and advancesriheounter by
the number of bytes, words or long words, specifiecbimnt

symbol nameRS.size count
where sizeis .b byte

W word

A long word

(if .sizeis not specified,w is assumed)

RSSET, RSRESET

« This directive, together with the following two associated directives, operate on
or with the Assembler variable, RS which contains the current offset.

« When the Automatic Even assembler option (/AE) is in fdR&dlirectives for
word andlong wordensure that the RSvariable is aligned to the next word
boundary.

rsreset
Icon_no rs.b 1
Dropcode rs.w 1
Actcode rs.w 1
Actname rs.b 10
Objpos rs.l 1
Artlen rs.b 0

After each of the first fiv&RS equates, the RSpointer is advanced; the values for
each equate are as follows:

Psy-Q Development System

lcon.no O (set to zero by RSRESET)

Dropcode 1

Actcode 4 (Automatic Even set, advances the pointer to even boundary)
Actname 6

Objpos 16

Artlen 20

The lastrs.b does not advance the RSpointer, since a count of zero is equivalent
to anEQUATE to the__ RSvariable.

RSSET

Description Assigns the specified value to RSvariable.

Syntax RSSET value

See Also RS, RSRESET

Remarks This directive is normally used when the offsets are to start at a value other than zero.

Examples See theRS directive

Psy-Q Development System

RSRESET

Description Sets the RSvariable to zero

Syntax RSRESET |jalud

See Also RS, RSSET

Remarks
« Using this directive is the normal way to initialise thd&RScounter at the start of

a new data structure.

« The optional parameter is provided for compatibility with other assemblers; if
presentRSRESET behaves like thRESET directive.

Examples See theRS directive

Psy-Q Development System

Data Definition

The directives in this section are used to define data and reserve space.

- DC

- DCB

- DS

« HEX

- DATA

- DATASIZE
- IEEE32

- |EEE64

Psy-Q Development System

DC

Description This directive evaluates the expressions in the operand field, and assigns the results to
the preceding symbol, in the format specified by the .size parameter. Argument
expressions may be numeric values, strings or symbols.

Syntax symbol nameDC.size expression,..,expression
where.sizeis .b byte
W word
A long word

(if .sizeis not specified,w is assumed)

See Also DCB

Remarks
« Textual operands are delimited by double or single quotes. If it is required to
include a double quote in the text string, delimit with single quotes or two double
guotes; similarly, to include a single quote in the text, delimit with double quotes
or two single quotes - see examples below. If delimiters are omitted, the
Assembler assumes the operand to be the symbol name of a previously defined
string variable, the value of which is assigned to the new symbol name.
+ When the Automatic Even assembler option (/AE) is in fddézdirectives for
word andlong wordensure that the program counter is aligned to the next word
boundary.
Examples Hexvals dc.w $80d,$a08,0,$80d,0
Coords dc.w -15,46
Pointers dc.l StartMarker,EndMarker
ErrorMes dc.b "File Error",0
Notes If the Assembler encounters a parameter that is out-of-range, an error is flagged; the

following statements will produce errors:

dc.b 257
dc.b -129
dc.w 66000
dc.w -33000

Psy-Q Development System

DCB

Description This directive generates a block of memory, of the specified length, containing the
specified value.

Syntax DCB:.size length,value
where.sizeis .b byte
W word
A long word

(if .sizeis not specified,w is assumed)

See Also DC

Remarks When the Automatic Even assembler option (/AE) is in force, DCB directives for
word and long word ensure that the program counter is aligned to the next word
boundary.

Examples dcb.b 256,$7F

generates 256 bytes containing $7F.

dcb.w 64,3FF

generates 64 words containing $FF.

Psy-Q Development System

Description

Syntax

See Also

Remarks

Examples

DS

Allocates memory to theymbo] of the specifiedength and initialises it to zero.

symbol nameDS.size length
where sizeis .b byte

W word

A long word

(if .sizeis not specified,w is assumed)

DC, DCB

+ When the Automatic Even assembler opti#E) is in force DS directives for
word andlong wordensure that the program counter is aligned to thewencd
boundary.

« If this directive is used to allocate memory iGeup/Sectionwith theBSS

attribute, the reserved area will not be initialised -Gemips and Sections
chapter8.

List ds.w 64

reserves an area 64 words long, and sets it to zero.

Buffer ds.b 1024

reserves a 1k bytes area, and sets it to zero.

Psy-Q Development System

Description

Syntax

See Also

Remarks

Examples

HEX

This directive takes a list of unsigned hex nibble pairs as an argument, which are
concatenated to give bytes. It is intended as a quick way of inputting small hex
expressions.

symbol nameHEX hexlist

INCBIN

Data stored aBlEX is difficult to read, less memaory-efficient and causes more work
for the Assembler. Therefore, it is suggested thakHte® statement is used for
comparatively minor data definitions only. To load larger quantities of data, it is
recommended that the data is stored in a file, toNk. UDE d as a binary file at
runtime - seénclude Files, chapter 5.

HexStr hex 100204FF0128

is another way of writing

HexStr dc.b $10,%$02,$04,$FF,$01,%$28

Psy-Q Development System

DATASIZE and DATA

Description Together, these directives allow the programmer to define values between 1 and 256
bytes long (8 to 2048 bits). The size of D®TA items must first be defined by a
DATASIZE directive.
Syntax DATASIZE size
DATA value, value
wherevalueis a numeric string, in hex or decimal, optionally preceded by a minus
sign.
See Also IEEE32, IEEE64
Remarks If a valuespecified in thddATA directive converts to a value greater than can be
held insizespecified byDATASIZE , the Assembler flags an error.
Examples datasize 8
data $123456789ABCDEFO
data -1, $FFFFFFFFFFFF
IEEE32 and IEEE64
Description These directives allow 32 and 64 bit floating point numbers to be defilE&ih
format.
Syntax IEEE32 fp.value
IEEE64 fp.value
See Also DATA, DATASIZE
Examples ieee32 1.23,34€e10

ieee64 123456.7654321e-2

Psy-Q Development System

Controlling Program Execution

The directives in this section are used to alter the state of the program counter and
control the execution of the Assembler.

« ORG

- EVEN

- CNOP

- OBJ

- OBJEND

Psy-Q Development System

Description

Syntax

See Also

Remarks

Examples

ORG

The ORG directive informs the Assembler of the location of the code in the target
machine.

ORG addres§,parametef

whereaddresds a previously-defined symbol, or a hex or decimal value, optionally
preceded by a question mark (?) and followed by a (target-specific) numeric
parameter.

OBJ, OBJEND, GROUP, SECTION

« If alink file is output, theORG directive must not be used - $8eoups and
Sections chapte8.

+ If the program containSECTIONS, a singléORG is allowed, and it must
precede alBECTION directives. If the program does not utilise 8CTION
construct, it may contain multip@RG's.

+ TheORG operand can be preceded by a question mark, to indicates the amount
of RAM required by the program. However, &G ? function only works on
machines with operating systems to allocate the memory; for instance, it will
work on the Amiga but not the Sega Mega Drive.

org $100
Begin move.w sr,-(A7)
Program equ $4000

arg Program

Psy-Q Development System

Description

Syntax

See Also

Remarks

Examples

EVEN

This directive aligns the program counter to the mextd boundary.

EVEN

CNOP

« There is a related assembler optiaR, - Automatic Even. If set, th@ordand
long wordforms of several directives, such2€, DCB, DS, and_RS will force
the program counter onto the newdrd boundary before they are executed.

+ In code containin@ECTIONS, the Assembler does not allow the program
counter to be reset to a size boundary greater than the alignment already set for
that section. Therefore,EVEN statement, is not allowed in a section that is
byte-aligned.

Indl dc.b 0
Ind2 dc.b 0
Ind3 dc.b 0
even
InArea ds.b Inlength

forcesInAreaonto a word boundary.

Psy-Q Development System

Description

Syntax

See Also

Remarks

Examples

CNOP

Resets the program counter to a specifiggetfrom the specifiedizeboundary.
CNOP offset,size boundary
EVEN

As with theEVEN directive, in code containinrgECTIONS, theAssembler does not
allow the program counter to be reset to a size boundary greater than the alignment
already set for that section. Therefor&€MOP statement, with a size boundary of 2,

is not allowed in a section that is byte-aligned.

section.| prime
Firstoff = 512
Firstsize = 2

cﬁop Firstoff,Firstsize
sets the program counter to 512 bytes above the next word boundary.

Note that:
cnop 0,2

performs as agBVEN statement.

Psy-Q Development System

OBJ and OBJEND

Description OBJforces the code following it to be assembled as if it were at the specified
address, although it will still appear following on from the previous code.

OBJEND terminates this process and returns toQR&'d address value.

Syntax oBJ address

OBJEND

See Also ORG

Remarks
+ TheOBJ - OBJEND construct is useful for code that must be assembled at one
address (for instance, in a ROM cartridge), but will be run at a different address,
after being copied there.
« Code blocks delimited bBJ - OBJEND cannot be nested.
Examples org $100
dc.| *
dc.|
obj $200
dc.| *
dc.|
objend
dc.|
dc.| *

The above code will generate the following sequence of longwords, starting at
addres$100:

$100
$104
$200
$204
$110
$114

Psy-Q Development System

Include Files

The source code for most non-trivial programs is too large to be handled as a single
file. It is normal for a program to be constructed of subsidiary files, which are called
together during the assembly process.

The directives in this section are used to collect together the separate source files and
control their usage; also discussed are operators to aid the control of code to be
assembled frorNCLUDE d files.

- INCLUDE
« INCBIN

- DEF

- REF

Psy-Q Development System

Description

Syntax

See Also

Remarks

Examples

INCLUDE

Informs the Assembler to draw in and process another source file, before resuming
the processing of the current file.

INCLUDE filename
wherefilenameis the name of the source file to be processed, including drive and

path identifiers - seNote. Thefilenamemay be surrounded by quotes, but they will
be ignored.

INCBIN

Traditionally, there will be one main file of source code, which contdi@$ UDE 's
for all the other files.

INCLUDE d files can be nested.
The/j switch can be used to specify a search patiNGLUDE d files - see

Assembler Options chapter 10.

A typical start to a program may be:

section shortl

codestart jmp entrypoint
dc.b _hours, _minutes
dc.b _day, _month
dc.w _year

include vars1.68k
section short2
include vars2.68k
section code

include graphl.68k
include graph2.68k

Psy-Q Development System

include maths.68k
include trees.68k
include tactics.68k

entrypoint move.w #3$2700,sr
lea stacktop,sp

or include d:/source/levels.asm

Note: Since a path name contains backslashes, the text in the operand of an
INCLUDE statement may be confused with the usage of text previously
defined by afEQUS directive. To avoid this, a second backslash may be used
or the backslash may be replaced by a forward slash (solidus).

Thus

include d:\source\levels.asm
may be re-written as:

include d:\\source\levels.asm

or

include d:/source/levels.asm

Psy-Q Development System

Description

Syntax

See Also

Remarks

Examples

Notel

INCBIN

Informs the Assembler to draw in and process binary data held in another source file,
before resuming the processing of the current file.

symbol INCBIN filename[,start,length]

- filenameis the name of the source file to be processed, including drive and path

identifiers - sedlotel. Optionally, the filename may be surrounded by quotes,
which will be ignored;
« start, lengthare optional values, allowing selected portions of the specified file to

be included - seNote2.

INCLUDE, HEX

« This directive allows quantities of binary data to be maintained in a separate file
and pulled into the main program at assembly time; typically, such data might be

character movement strings, or location co-ordinates. The Assembler is passed no

information concerning the type and layout of the incoming data. Therefore,
labelling and modifying theNCBIN ed data are the responsibility by the
programmer.

« Thelj switch can be used to specify a search patiNlGLUDE d files - see
Assembler Options, chapter 3.

Charmove inchin "d:\source\charmov.bin"

Since a path name contains backslashes, the text in the operaritl GBAN

statement may be confused with the usage of text previously definedEGLiH
directive. To avoid this, a second backslash may be used, or the backslash may be
replaced by a forward slash (solidus).

Thus,
include d:\source\charmov.bin

may be re-written as

include d:\\source\\charmov.bin

or
include d:/source/charmov.bin

Psy-Q Development System

Note2

The nominated file may be accessed selectively, by specifying a position in the file,
from which to start reading, and a length. Note that:

- if startis omitted, théNCBIN commences at the beginning of the file;
- if thelengthis omitted, theNCBIN continues to the end of the file;
- if both startandlengthare omitted, the entire file INCBIN ed.

Description

Syntax

Remarks

Examples

REF

REF is a special operator, to allow the programmer to determine which segments of
code are to beNCLUDE d.

[~]REF(symbo)

The optional preceding tilde (~) is synonymous WIDT.

REF istrueif a reference has previously been encountered for the symbol in the
brackets.

if ref(Links)
Links move.w do,-2(a0)

rts

endif

TheLinksroutine will be assembled if a reference to it has already been encountered.

Psy-Q Development System

DEF

Description Like theREF operator DEF is a special function. It allows the programmer to
determine which segments of code have already INEDUDE d.

Syntax [~]DEF(symbo)

The optional preceding tilde (~) is synonymous WIAT.

Remarks DEF istrueif the symbol in the brackets has previously been defined.
Examples if ~def(loadadr)
loadadr equ $1000
execadr equ $1000
relocadr equ $80000-$300
endc

The address equates will be assembled if load_addr has not already been defined.

Psy-Q Development System

Controlling Assembly

The following directives give instructions to the Assemblers, during the assembly
process. They allow the programmer to select and repeat sections of code:

- END

- IF

- ELSE

- ELSEIF
- ENDIF
- CASE
- ENDCASE
- REPT

- ENDR
-« WHILE
- ENDW
- DO

« UNTIL

Psy-Q Development System

END

Description TheEND directive informs the Assembler to cease its assembly of the source code.
Syntax END [addres}
See Also REGS
Remarks
« The inclusion of this directive is mostly cosmetic, since the Assembler will cease
processing when the input source code is exhausted.
« The optional parameter specifies an initial address for the program. See also the
REGS statement, in the sectiomarget-Related Directives chapter 5.
Example startrel move.w #$2700,sr
lea $100000-4,sp
jmp progad\w
end
IF, ELSE, ELSEIF, ENDIF, ENDC
Description These conditional directives allow the programmer to select code for assembly.
Syntax IF [~]expression
ELSE
ELSEIF [~]expression
ENDIF
ENDC
See Also CASE

Psy-Q Development System

Remarks
« TheENDC andENDIF directives are interchangeable.

- If the ELSEIF directive is used without a following expression, it acts the same
as arELSE directive.

« The optional tilde, preceding the operand expression, is synonymous@ith
Its use normally necessitates the prudent use of brackets to preserve the sense of
expression.

Examples if Sega-MD
sec_dir equ 2

elseif Sega-CD
sec_dir equ 1

else
sec_dir equ 3
endif

if ~usesquare
round macro

add.| \1,\2

endm

elseif
round macro

endm

endc

movopt macro parm,dest
tempstr substr 1,1,\parm'

if stremp(‘#,\tempstr’)
num substr 2,,"\parm'

if ((\num)>-127)&((\num)<128)

moveq #(\num),\dest

else

move.w #(\num),\dest

endif

else

fail

endif

endm

Psy-Q Development System

Description

Syntax

See Also

Remarks

Examples

CASE and ENDCASE

The CASE directive is used to select code in a multiple-choice situationCASE
argument defines the expression to be evaluated; if the argument(s) aftgualse
signaretrue, the code that follows is assembled. Eheals-questiomark case is
selected if no previous casetrige.

CASE expression
=expression[,expression]
=?

ENDCASE

IF conditionals

In the absence ofequals-question mark=?) case, if the existing cases are
unsuccessful, the case-defined code is not assembled.

The following is an alternative for the example listed undetRhdirective - see
chapter 5.

Target equ Sega-MD

case Target

=Sega-MD
sec_dir equ 2

=Sega-CD
sec_dir equ 1

=7 dc.b "New Version",0
sec_dir equ 3

endcase

Psy-Q Development System

REPT, ENDR

Description These directives allow the programmer to repeat the code betwdeRBRieand
ENDR statements. The number of repetitions is determined by the vatoardf

Syntax REPT count

ENDR
See Also DO, WHILE

Remarks When used in a Macr®EPT is frequently associated with thNARG function.

Examples rept 12
dc.w 0,0,0,0
endr
cbb macro string
Ic = 0
rept strlen(\string)
cc substr Ic+1,lc+1 \string
dc.b "\cc"M($A5+Ic)
Ic = lc+1
endr
endm

Psy-Q Development System

WHILE, ENDW

Description These directives allow the programmer to repeat the code between the WHILE and

Syntax

See Also

Remarks

Examples

Note

ENDW statements, as long as the expression in the operandroelds

WHILE expression

ENDW
REPT, DO

Currently, any string equate substitutions in\MidILE expression take place once
only, when thaVHILE loop is first encountered - see Note below for the
ramifications of this.

MultP equ 16
Indic = MultP
while Indic>1

move.w term(a0),d0

Indic = Indic-1
endw

Because string equates are only evaluated at the start\WWHHeE loop, the
following will not work:

S equs "X
while strlen("\s") < 4
dc.b "\s",0

S equs "\s\x"
endw

Psy-Q Development System

To avoid this, set a variable each time round the loop to indicate that looping should

continue:
S equs X"
looping = -1
while looping
dc.b "\s",0
S equs "\s\x"
looping = strlen("\s") < 4
endw
DO, UNTIL

Description These directives allow the programmer to repeat the code betwde ted
UNTIL statements, until the specified expression becdraes

Syntax DO

UNTIL expression
See Also REPT, WHILE

Remarks Unlike theWHILE directive, string equates in &iNTIL expression will be re-
evaluated each time round the loop.

Examples MultP equ 16
Indic = MultP
do
move.w term(a0),d0
Indic = Indic-1
until Indic<=1

Psy-Q Development System

Target-related Directives

The following directives allow the programmer to specify certain initial parameters in
the target machine:

- REGS
« UNIT

Psy-Q Development System

REGS

Description If a CPEfile is produced, or object code output is directed to the targdR BES
directive specifies the contents of the registers, at the start of code execution.

Syntax REGS regcode=expressigiregcode=expressign
whereregcodeis the mnemonic name of a register, sucBRsPC.

Remarks For relocatable code, which is specific to the target, or pure binary code, this
directive is not available.

Example regs pc=_ SN_ENTRY_POINT

Register assigns can be declared on one line, separated by commas. Remember to use
specific mnemonics for registers, e.g. for the 68000, USP for the user stack and SSP
for the supervisor stack.

UNIT

Description TheUNIT directive allows the destination unit in a multi-processor target to be
specified, such as the Main CPU and Sub-CPU in Sega Mega-CD.

Syntax UNIT unitnumber

Remarks Only oneUNIT directive may be included; if there is biNIT directive, a unit
number of 0 is assumed.

Examples unit 1

Psy-Q Development System

CHAPTER 5

Macros

The Assemblers provide extensive macro facilities; these allow the programmer to
assign names to complete code sequences. They may then be used in the main
program like existing assembler directives.

This chapter discusses the following topics, directives and functions:

« MACRO, ENDM

« MEXIT

» Macro Parameters
« SHIFT, NARG

« MACROS

« PUSHP, POPP
- PURGE

- TYPE

Psy-Q Development System

Description

Syntax

See Also

Remarks

Examples

MACRO, ENDM, MEXIT

A macroconsists of the source lines and parameter place markers between the
MACRO directive and th&NDM. The label field is the symbolic name by which the
macro is invoked; the operand allows the entry of a string of parameter data names.

When the assembler encounters a directive consisting lafltekand optional
parameters, the source lines are pulled into the main program and expanded by
substituting the place markers with the invocation parameters. The expansion of the
macro is stopped immediately if the assembler encounMESXAT directive.

Label MACRO [symbo)..symbo]
MEXIT
ENDM
MACROS

+ Note that the invocation parameter string effectively starts at the character after
the macro name, that is, thet (.) character. Text strings, as well.as.w and.|
are permissible parameters - agametersbelow.

« Control structures within macros must be complete. Structures started in the
macro must finish before tieENDM ; similarly, a structure started externally must
not be terminated within the macro. To imitate a simple control structure
from another assembler, a short macro might be usedMAERQOS below.

remove macro
dc.w -2,0,0
endm

Form macro
if stremp(\1','0")
dc.w 0
else
dc.w \1-FormBase
endif
endm

Psy-Q Development System

Parameters

Example

Example

Macro Parameters

Macro parameters obey the following rules:

« The parameters listed on the macro invocation line may appear at any point in the
code declared between tRACRO andENDM statements. Each parameter is
introduced by &ackslash(\); where this may be confused with text from an
EQUS, a backslash may also follow the parameter.

« Up to thirty two different parameters are allowed, numb&é¢d\31. \0 is a
special parameter which gives the contents o$ike fieldof the macro directive
when it was invoked, that is, the text after the point symbol (.) This includes not
only .b, .h or.w, but also any text:

zed macro
\O
endm

zed.nop
will generate a NOP instruction.

Instead of th&0 to \31 format, parameters can be given symbolic names, by their
inclusion as operands to tMACRO directive. The precedingackslash\) is not
mandatory; however, if there is the possibility of confusion with the surrounding text,
abackslashmay be used before and after the symbol name to ensure the expression is
expanded correctly:

Position macro A,B,C,Pos, Time
dc.w \Time*(\A*\Pos+\B*\Pos+\C*\Pos)
endm

Surrounding the operand of an invoked macro githater thanandless tharsigns

(<...>), allows the use of comma and space characters. This does not apply to
Assemblers which use angle brackets as address mode specifiers; in these instances,
backward single quote is used.

Psy-Q Development System

Example Credits macro

dc.w \1,\2
dc.b \3
dc.b 0

even

endm

Eredits 11,10,<Psy-Q, from Psygnosis>

« Continuation Lines - when invoking a macro, it is possible that the parameter list
will become overlong. As with any directive statement, the line can be terminated
by anampersand&) and continued on the next line to improve readability.

Example chstr macro
rept narg
dc.b k \1
shift
endr
dc.b 0
even
endm

cheatstr chstr i,c,a,n,b,are,ly,&
s,t,a,n,d,it

Psy-Q Development System

Special Parameters

There are a number of special parameter formats available in macros, as follows:

Converting Integers to Text

The parameters \# and \$ replace the decimal (#) or hex ($) value of the symbol
following them, with their character representation. Commonly, this technique is used
to acces®un DateandTime

Example org $1006
RunTime dc.b "\#_hours:\#_minutes:&
\#_seconds"

this expands to the form hh:mm:ss, as follows

RunTime dc.b "21:08:49"

Generating Unique Labels

The parametev@ can be used as the last characters of a label name in a macro.
When the macro is invoked, this will be expanded to an underscore followed by a
decimal number; this number is increased on each subsequent invocation to give a
unigue label.

Example Slots macro
moveq #0,d0
move.1l ri\1
beq.s dun@
next\@ addq.w #1, dO

bgt.s
dun\@ move.w do,2
endm
éilots freeobl1,numslotlw

Each time th&lotsmacro is used, new labels in the form next_001 and dun_001 will
be generated.

Psy-Q Development System

Entire Parameter

Examples

If the special paramet&r (backslash underscore) is encountered in a macro, it is
expanded to the complete argument specified on the macro invocation statement.

All macro
dc.b \
endm
Al 1.2,3.4
will generate
db 1,2,3,4

Control Characters

The parameteY*x, wherex denotes a control character, will generate the specified
control character.

Using the Macro Label

The label heading the invocation line can be used in the macro, by specifying the first
name in the symbol list of tHdACRO directive to be an asterisk (*), and

substituting* for the label itself. However, the resultant label is not defined at the
current program location. Therefore, the label remanuefinedunless the

programmer gives it a value.

Extended Parameters

Example

The Assembler accepts a set of elements, enclosed in curly brackets ({}), to be
passed to a macro parameter. NAeRG function andSHIFT directive can then be
used to handle the list:

cmd macro

cc equs {\1}
rept narg(cc)
\cc
shift cc
endr
endm

Psy-Q Development System

SHIFT, NARG

Description These directives cater for a macro having a variable parameter list as its operand. The
NARG symbol is the number of arguments on the macro invocation lin8HHer
directive shifts all the arguments one place to the left, losing the leftmost argument.

Syntax directive NARG
SHIFT

whereNARG is a reserved, predefined symbol.
See Also Extended Parameters

Examples routes macro
rept narg
if stremp(\1','0")
dc.w 0
else
dc.w \1-routebase
endif
shift
endr
endm

raﬁtes 0,gosouth_1

This example goes through the list of parameters given to the macro and defines a
half word of $0000 if the argument is zero or a 16 bit offset into the ‘routebase’ table
of the given label.

Psy-Q Development System

Description

Syntax

See Also

Remarks

Examples

MACROS

TheMACROS directive allows the entry of a single line of code as a macro, with no
associatedENDM directive. The single line of code can be a control structure
directive.

Label MACROS [symbol,..symbpl

MACRO

TheMACROS directive may be used to stand in for a single, complex code line.
Often, the short macro allows the programmer to synthesise a directive from another
assembler. Including th& bption on the command line will cause several macros
emulating foreign directives to be generated.

if 0
boom macros
bsr boom1l
else
boom macros
move.w #blowup-tactbase,
&slot_tactic(1)
endif

Psy-Q Development System

PUSHP, POPP

Description These directives allow text to be pushed into, and then popped from, a string
variable.

Syntax PUSHP string
POPP string

Remarks There is no requirement for tR&JSH and correspondingOPP directives to appear
in the same macro.

Examples ifhid macro
dc.w ibvis
dc.w 1
pushp @
dc.w @-2-*
endm
ifnot macro
popp lab
goto @
pushp @
lab
endm

This means the user does not have to specify stksize when using freeframe. The user
must ensure that calls to makeframe and freeframe are balanced.

Psy-Q Development System

PURGE

Description The PURGE directive removes an expanded macro from the internal tables and
releases the memory it occupied.

Syntax PURGE macroname

Remarks It you need to redefine a macro, it is not necessary to purge it first as this is done by
the Assembiler.

Examples HugeM macro
dc.w \1
dc.w \2
de.w \31
endm

HugeM paral,103,faultlevel,&
40,50, para31

purge HugeM

Psy-Q Development System

Description

Syntax

TYPE

TYPE is a function used to provide information about a symbol. It is frequently used
with a macro to determine the nature of its parameters. The value is returned as a
word; the meanings of the bit settings are given below.

TYPE(symbo)

The reply word can be interpreted as follows:

Bit 0 Symbol has an absolute value

Bit 1 Symbol is relative to the start of the Section
Bit 2 Symbol was defined usirgeT

Bit 3 Symbol is a Macro

Bit 4 Symbol is a String Equat&QUS)

Bit 5 Symbol was defined usirgQU

Bit 6 Symbol appeared in &REF statement
Bit 7 Symbol appeared in 2DEF statement
Bit 8 Symbol is a Function

Bit 9 Symbol is a Group Name

Bit 10 Symbol is a Macro parameter

Bit 11 Symbol is a short MacriACROS)

Bit 12 Symbol is a Section Name

Bit 13 Symbol is Absolute Word Addressable
Bit 14 Symbol is a Register EquateQUR)

Bit 15 Symbol is a Register List Equate (REG)

Psy-Q Development System

CHAPTER 6

String Manipulation Functions

To enhance the Macro structure, fkesemblers include powerful functions for string
manipulation. These enable the programmer to compare strings, examine text and
prepare subsets.

This chapter covers the following string handling functions and directive:

« STRLEN
« STRCMP
« INSTR

« SUBSTR

Psy-Q Development System

STRLEN

Description A function which returns the length of the text specified in the brackets.

Syntax STRLEN(string)

See Also STRCMP

Remarks TheSTRLEN function is available at any point in the operand.

Examples Nummov macro
rept strlen(\1)
move.1l (al)+, (a0)+
endr
endm

i\'l'ummov 12345

The number of characters in the string is used as the extent of the loop.

Psy-Q Development System

Description

Syntax

See Also

Remarks

Examples

STRCMP

A function which compares two text strings in the brackets, and ratuei§they
match, otherwise it returrialse

STRCMP(stringl,string?)

STRLEN

When comparing two text strings, tB& RCMP function starts numbering the
characters in the target texts from one.

Vers equ "Acs"
if stremp(“\Vers","Sales")
move.w Salind, dO
else
if stremp(“\Vers","Acs")
move.w Acind,d0
else
if stremp("\Vers","Test")
move.w Tstind, dO
endif
endif
endif

Psy-Q Development System

Description

Syntax

See Also

Examples

Note

INSTR

This function searches a text string for a specified sub-string. If the string does not
contain the sub-string, the result of zero is returned; if the sub-string is present, the
result is the location of the sub-string from the start of the target text. It is also
possible to specify an alternate start point within the string via an optional parameter.

INSTR ([start,]string, substring)
SUBSTR
Mess equs "Demo for Sales Dept"
|f instr("\Mess","Sales")
move.w Salind, dO
else
move.w Acind, dO
endif

When returning the offset of a located sub-stringJN&TR function starts
numbering the characters in the target text from one.

Psy-Q Development System

Description

Syntax

See Also

Remarks

Examples

SUBSTR

This directive assigns a value to a symbol; the value is a sub-string of a previously
specified text string, defined by te&art andendparameters. Thetart andend
parameters will default to the start and end of the string, if omitted.

symbol SUBSTR [start],[end,string

INSTR, EQUS

When assigning a sub-string to a symbol, SkHEBSTR directive starts numbering the
characters in the source text from one.

Message equs "A short Sample String"
Partl substr 9,14,"\Message"

Part2 substr 16,,"\Message"

Part3 substr ,7,"\Message"

Part4 substr . \Message"

where Partl equaBample
Part2 equal$tring
Part3 equalé short

The last statement is equivalent toEBQUS assigning the whole of the original
string to Part4.

Psy-Q Development System

Psy-Q Development System

CHAPTER 7

Local Labels

As a program develops, finding label names that are both unique and definitive
becomes increasingly difficult. Local Labels ease this situation by allowing
meaningful label names to be re-used.

This chapter covers the following topics and directives:
« Local Label Syntax and Scope

« MODULE and MODEND
- LOCAL

Psy-Q Development System

Syntax

Scope

Examples

Syntax and Scope

Local Labels are preceded by a local label signifier. By default, this@ sign;
however, any other character may declared by usinigapgon in anOPT
directive or on the Assembler command line -Asgembler Optionschapter 3.
Local label names follow the general label rules, as specified in chapter 4.

Local labels are not de-scoped by the expansion of a macro.

The region of code within which a Local Label is effective is calle8dtgpe Outside
this area, the label name can be re-used. There are three methods of defining the
scope of a Local Label:

The scope of a local label is implicitly defined between two non-local labels.
Setting a variable, defining an equate or RS value does not de-scope current local
labels, unless the d option has been used in an OPT directive or on the Assembler
command line - see Assembler Options, chapter 10.

The scope of a Local Label can also, and more normally, be defined by the
directives MODULE and MODEND - see chapter 8.

To define labels (or any other symbol type) for local use in a macro, the LOCAL
directive can be used - see chapter 8.

plot2 move.b comp\w,d3

cmp.w #-84,d3
bge.s @chkl

add.w #168,d3

bra.s @ret
@chkl cmp.w #83,d3
jsr Icolour
move.w d3,d0
SetX set x+1
@ret rts
plot3 movem.w d6-d7,-(sp)
@ret rts

Psy-Q Development System

The code above shows a typical use for Local Labels, as "place markers" within a
self-contained sub-routine. The scope is defined by the non-local Rl¢&and

Plot3; theSET statement does not de-scope the routine. The |@etkland@ret
are re-usable.

plot2 move.b comp\w,d3
moveq chrbit-1,d2
cmp.w #-84,d3
bge.s @chkl

add.w #168,d3
bra.s setplot

@chkl cmp.w #83,d3
move.w d3,do

setplot set x+1

dora d2. @chk1

In the example, the final branch will cause an error, since it is outside the scope of
@chk1

Psy-Q Development System

Description

Syntax

See Also

Remarks

Examples

MODULE and MODEND

Code occurring after IODULE statement, and up to and including M@DEND
statement, is considered to bmadule Local labels defined inmodulecan be re-
used, but cannot be referenced outsidentbdulés scope. A Local label defined
elsewhere cannot be referenced withindhierent module

MODULE

MODEND

LOCAL

+ Modules can be nested.

« TheMODULE statement itself is effectively a non-local label and will de-scope
any currently active default scoping.

« Macros can contain modules or be contained in a module. A local label occurring
in a module, can be referred to by a macro residing anywhere within the module.
A module contained within a macro can effectively provide labels local to that
macro.

Strat module

moveq #1,d0

bra @Labl
@Labl ”s'ubq.w #1,count(a0)

beq.s @SetTact
rts

@SetTact module
move.w #Tactic2(a0)

@Labl }ﬁove.l al,-(sp)

move.l (al1),do
bgt.s @Labl
rts
modend
modend

Psy-Q Development System

Description

Syntax

See Also

Remarks

Examples

LOCAL

TheLOCAL directive is used to declare a set of macro-specific labels.

LOCAL symbo]..,symbol

MODULE

« The scope of symbols declared usinglt&CAL directive is restricted to the
host macro.

« TheLOCAL directive does not force a type on the symbol set that makes up its

operand. In practice, therefore, such symbols can be used as equates, string
equates or any other type, as well as labels.

doorpos macro

local m_doorl,m_door2,doorw
bsr.s doorw
bsr doorw
m_doorl equ door_start*\1
m_door2 equ door_fin*\2
doorw movem.w (a3)+,d0-d2

move.w (a4),d3
move.w 6(a4),d4
move.w 12(a4),d5

endm

Psy-Q Development System

CHAPTER 8

Structuring the Program

Normally, the organisation of the memory of the target machine does not match the
layout of the source files. The Assemblers however, use Groufeatidns to
create a structured target memand relocatable program sections.

This chapter covers the following topics and directives:

« SECTION

- GROUP

« PUSHS and POPS
« SECT and OFFSET

Psy-Q Development System

Description

Syntax

See Also

Remarks

Example

Example

GROUP

This directive declares a group with up to seven group attributes.

GroupName GROUP [Attribute,. Attribute]
where an attribute is one of the following - see below for descriptions:

WORD

BSS

ORG(addres}

FILE (filenamg
OBJ(addres3}
SIZE(sizg
OVER(GroupNamég

SECTION

Group Attributes are interpreted as follows:

WORD - thegroupmay be accessed using absolute word addressing. Note that this
will only have an effect if thew+ parameter has been used to allow optimisation to
occur.

Groupl group word

BSS- no initialised data to be declared in thisup.
Groupl group bss
ORG - sets th@ORG address of thgroup, without reference to the othgroup

addresses. If this attribute is omitted, ¢meup will be placed in memory, following
on from the end of the previogsoup.

Psy-Q Development System

Example org $100

Gl group
G2 group org($400)
G3 group

will place the groups in the sequence G1,G2,G3

FILE - outputs agroup, such as an overlay, to a its own binary file; other groups will
be output to the declared file.

Example Groupl group org($400),file("charov.bin®)

OBJ - sets the group®BJ address. Code is assembled as if it is running & Bk
address but is placed at the grodpRG address. If no address is specified then the
OBJ value is the same as the groUpRG address.

Examples Groupl group org($400),0bj($1000)
Group2 group org($800),0bj()

SIZE - specifies the maximum allowable size of gneup. If the size exceeds the
specified size, the assembler reports an error.

Example Groupl group size(32768)
OVER - overlays thiggroupon the specifiedroup. Code at the start of the second

group is assembled at the same address as the start of the first group. The largest of
the overlayed groups' sizes is used as the size of each group.

Note: It is necessary to use thRéLE attribute to force different overlays to be
written to different output files.

Example Group2 group over(Groupl)

Psy-Q Development System

Description

Syntax

See Also

Remarks

Example

SECTION

This directive declares a logical code section.

SECTION.size SectionNameGroup|
SectionNameSECTION.size[Attribute,..Attribute]
The second format is a special case, designed to allow definition of a section with

group attributes - see below for a description.

GROUP

« Unless the section has been previously assigned, the section will be placed in an
unnamed default group, if tl@ROUP name is omitted

« Itis possible to define a section with group attributes. The assembler will
automatically create a group with the section name preceded by aYiboel(
place the section in it.

Sectl section bss

definesSect] with theBSSattribute, in a group calledSectl

« Thesizeparameter can bb,..w or I; if the parameter is omitted, the default size
isword. When a size is specified on a section directive, alignment to that size is
forcedat that point The start of the section is aligned on a boundary based on
the largest size on any of the entries to that section - in all modules in the case of
linked code.

Note: If a section is sized as byte, tBFEN directive is not allowed in the
section. Furthermore, tH&NOP directive cannot be used to re-align the
Program Counter to a value greater than the alignment of the host section
- see chapter 5.

Psy-Q Development System

« If sections are used to structure application code, only a €dRf& directive
can be used; this must precede all section definitions. Groups and Sections may
haveORG attributes to position them.

No ORG directives or attributes are permitted when producing linkable output.
Within a group, sections are ordered in the sequence that the Linker encounters
the section definitions.

Examples The following example shows the use of Groups and Sections to impose a structure
on the target memory:

« preliminary version checks and includes;

« group declarations;

« asection of variables, at the start of the program, to take advantage of absolute
addressing modes;

« asection of application code;

« asection of unitialised data.

opt Cc-,0w+,0z+,v+

version equ 0 ; 0 => full version
: 1 => demo version
: 2 => test version

include "miscmac.obj"
include "rooms.obj"
include "output.obj"

org $100

numvecs equ $100>>2
regs pc=progstart

if ~def(amiga)
amiga equ 1

endif

if ~def(ntsc)
ntsc equ 1

endif

Psy-Q Development System

g_short group word
g_code group
g_bss group bss

section shortl,g_short
section short2,g_short
section shortcode,g_short
section code,g_code
section bss,g_bss

firstbss equ *

PUSHS and POPS

Description These directives allow the programmer to open a new, temporary section, then return
to the original sectiorPUSHSsaves the current sectid?QPSrestores it.

Syntax PUSHS

POPS

Examples plotcomp move.w do,-(sp)
move.w d2,-(sp)
bsr.s pcomp
move.w (sp)+,d2
move.w (sp)+,d0
addq.w #1,d2

passdl e(;{.L.,I *
pushs
section dolight
dc.l passdl
lea nrg_len(a2),a2
cmp.w #endnrg,a2
blo.s @1
pops

This example showBUSHSandPOPSbeing used to pass system information
between sections, in the form of the location counter.

Psy-Q Development System

SECT and OFFSET

Description TheSECT function returns the address of the section in which the symbol in the
brackets is defined. THRRFFSET function returns the offset value from the
beginning of the section.

Syntax SECT (expression

OFFSET (expression

Remarks
If a link is being performed, tt8ECT function is evaluated when it is linked; if
there is no link, it will be evaluated when the second pass has finished.
Likewise, if a link is being performed, ti@~FSET function is evaluated when it
is linked; however, if there is no link, ti&~FSET will be evaluated during the
first pass.
Examples dc.w sect(Tablel)
dc.w sect(Table2)
dc.w offset(*)

Psy-Q Development System

CHAPTER 9

Options, Listings and Errors

This chapter completes the discussion of the Assemblers and their facilities. It covers
methods of determining run-time Assembler options, producing listings and error-
handling, as well as passing information to the Linker:

- OPT

« Assembler Options
« PUSHO and POPO
« LIST and NOLIST

 INFORM

- FAIL

- XREF, XDEF and PUBLIC
- GLOBAL

Pav-0O Nevelnnmant Quvetem

OPT

Description This directive allows Assembler options to be enabled or disabled in the application
code. See ‘Assembler Options’ below for a full listing.

Syntax OPT option..option

See Also PUSHO, POPO

Remarks
« An option is turned on and off by the character following the option code:
+ (plus sign) = ON
- (minus sign) = OFF
« Options may also be enabled or disabled by usingtssvitch on the Assembler
command line - see Command Line Syntax, chapter 2.
Examples opt an+,l:.+,e-

opt oag+,0sq+,0w+

Pav-0O Nevelnnmant Quvetem

Assembler Options

The following reference list shows the default settings for the various options and
optimisations available during assembly. More detailed descriptions are given below.

Option

>I:I'I'IU

HEXSS<O0
»

68000 only:

OP
oS
ow
oz
OAQ
0SQ
OMQ

Description

Enable Automatic Even Mode

Enable Alternate Numeric mode

Activate/ Suppress Case sensitivity

Allow EQU or SET to descope local labels
Print lines containing errors

Substitute x for Local Label signifier
Handle equated names as labels

Write Local Labels to symbol file

Print warning messages

Operands may contain white space
AssumeXREFs in defined section

Use # for literals and ## for immediates (SH2 only)

Optimise to PC relative addressing
Optimise short branches

Optimise absolute long addressing
Optimise zero displacements
Optimise adds to quick form
Optimise subtract to quick form
Optimise move to quick form

Default

On
Off
Off
Off
On
Off
Off
Off
On
Off
Off
Off

Off
Off
Off
Off
Off
Off
Off

Note: 68000 Assembler optimisation options are not valid for forward references.

Pav-0O Nevelnnmant Quvetem

Option Descriptions

AE - Automatic Even
When using the word and long word formdd, DCB, DSandRS, enabling this
option forces the program counter to the following word boundary prior to
execution. The default setting for this optiod\E+.

AN - Alternate Numeric
The default setting for this optionAé\- but setting it tcAN+ allows the inclusion of
numeric constants in Zilog or Intel format, i.e. followedhyD or B to signifyHex,
Decimal or Binary. See also the section on tRADIX directive - chapter 3.

C - Case Sensitivity
When this option is set 10+, the case of the letters in a label's name is significant;
for instanceSHOWSTATS, ShowStats and showstats would all be legal. The
default setting i€-.

D - Descope Local Labels
The default setting for this option¥ but if it is set tdD+, local labels will be
descoped if aEQU or SET directive is encountered.

E - Error Text Printing
If this option is enabled, the text of the line which caused an Assembler error will be
printed together with the host file name and line number. The default setting for this
option isE+.

L- Local Label Signifier
Local labels are signified by a preceding AT sigm |. This option allows the use of
the character following the option letter as the signifier. Thusiduld change the
local label character to a color).(L+ andL- are special formats that toggle the
character betweendwot (+) and an@ sign(-). The default setting is-.

W - Print warning messages
When this option is set to the default settin§\6f, the Assembler will identify
various instances where a warning message would be printed but assembly will
continue. Disabling the/ option will suppress the reporting of warning messages.

WS - Allow white spaces
The default setting for this optionV8S- but if it is set toWS+, operands may
contain white spaces. Thus, the statement:

dc.l 1+2

defines dongwordof value 1 withWS setOff, and dongwordof value 3 withWWS
set toOn.

Pav-0O Nevelnnmant Quvetem

X - XREFs in defined section
The default setting for this optionXs but if it is set taX+, XREFs are assumed to
be in the section in which they are defined. This allows optimisation to absolute word
addressing to be performed provided that the section is defined WithQIRD
attribute or is in &roup with theWORD attribute.

- Use # for literals (SH2 only)
The default setting for this option#s but if it is set ta#+, # is used to indicate a
literal pool instead of the default = with the SH2 Assembler. As a result, the ##
characters have to be used in front of immediate values.

OP - Optimise PC Relative
Switches to PC relative addressing from absolute long addressing if this is permissible
in the current code context.

OS - Optimise Short Branch Optimisation
Backwards relative branches will use the short form if this is permissible in the
current code context.

OW - Optimise Absolute Long Addressing
If the absolute long addressing mode is used but the address will only occupy a word,
the Assembler will switch to the short form.

If a size is specified no optimisation will take place, thus:

move.w dO(fred) .1
will be left as absolute long.

OZ - Optimise Zero Displacements
If the address register is used with a zero displacement, the Assembler will switch to
the address register indirect mode.

OAQ, OSQ and OMQ - Optimise to Quick Forms
When these options are enabled, provided that it is permissible in the current code
context, allADD, SUB andMOVE instructions are coded as quick forms.

Pav-0O Nevelnnmant Quvetem

PUSHO and POPO

Description ThePUSHO directive saves the current state of all the assembler oaG#D
restores the options to their previous state. They are used to make a temporary
alteration to the state of one or more options.

Syntax PUSHO

POPO

See Also OPT

Examples pusho
opt ws+, c+
SetAlts = height * time
SETALTS dc.w 256 * SetAlts
popo

LIST and NOLIST

Description TheNOLIST directive turns off listing generation; théST directive turns on the
listing.
Syntax NOLIST
LIST indicator

where indicator is a plus sign (+) or a minus sign (-).

Pav-0O Nevelnnmant Quvetem

Remarks

Examples

Note

- If alist file is nominated, either by its inclusion on the Assembler command line,
or in the Assembler’s environment variable, a listing will be produced during the
first pass.

« The Assembler maintainscarrentlisting statusvariable, which is originally set
to zero. List output is only generated when this variable is zero or positive. The
listing directives affect the listing variable as follows:

+ NOLIST setsitto -1;

« LIST, with no parameter, zeroises it;
« LIST + adds 1;

« LIST - subtracts 1.

Directive Status Listing produced?
nolist -1 no

list - -2 no

list 0 yes

list - -1 no

list - -2 no

list + -1 no

list + 0 yes

In the following circumstances, the Assembler automatically suppresses production of
listings:

« during macro expansion;
» for unassembled code because of a failed conditional.
These actions can be overridden by:

+ including the M option on the Assembler command line to list expanding
macros;

+ including the € option on the Assembler command line to list conditionally
ignored code - see Command Line Syntax, chapter 2.

Pav-0O Nevelnnmant Quvetem

Description

Syntax

Remarks

Examples

INFORM and FAIL

TheINFORM directive displays an error message contained in text which may
optionally contain parameters to be substituted by the contents of expressions after
evaluation. Further Assembler action is based upon the state of severityAlLhe
directive is a pre-defined statement, included for compatibility with other Assemblers.
It generates an “Assembly Failed” message and halts assembly.

INFORM severitytex{,expressions

FAIL

« These directives allow the programmer to display an appropriate message if an
error condition is encountered which the Assembler does not recognise.

« Severity is in the range 0 to 3, with the following effects:

0 : the Assembler simply displays the text;

1: the Assembler displays the text and issues a warning;

2 : the Assembler displays the text and raises an error;

3: the Assembler displays the text, raises a fatal error and halts the assembly.

+ Textmay contain the parametésl, %h and%s. They will be substituted by
thedecimal, hex or string values of the following expressions.

TableSize equ TableEnd-TableStart
MaxTable equ 512
if TableSize>MaxTable
inform 0,"Table starts at %h and&
is %h bytes long",&
TableStart, TableSize
inform 3,"Table Limit Violation"
endif

Pav-0O Nevelnnmant Quvetem

Description

Syntax

Remarks

Examples

XDEF, XREF and PUBLIC

If several sub-programs are being linked, XB&F, XREF andPUBLIC to refer to
symbols in a sub-program which are defined in another sub-program.

XDEF symba|,symbaq]
XREF.size symbo],symbo]
PUBLIC on
PUBLIC off

« In the sub-program where symbols are initially definedXtb&F directive is
used to declare them as externals.

+ In the sub-program which refers the symbols XREF directive is used to
indicate that the symbols are in a another sub-program.

« The Assembler does not completely evaluate an expression containing an
XREFed symbol; however, resolution will be effected by the linker.

« ThePUBLIC directive allows the programmer to declare a number of symbols as
externals. With a parameter of on, it tells the Assembler that all further symbols
should be automaticall¥)DEFed, until aPUBLIC off is encountered.

Specifying a size of .w on the XREF directive indicates that the symbol can be
accessed using absolute word addressing.
Sub-programA contains the following declarations :

xdef Scores,Scorers

The corresponding declarations in sub-progEaare:

xdef PointsTable
xref Scores,Scorers
public on
Origin = MainChar
Force dh speed*origin
Rebound dh 45*angle
public off

Pav-0O Nevelnnmant Quvetem

GLOBAL

Description TheGLOBAL directive allows a symbol to be defined which will be treated as either
anXDEF or anXREF. If a symbol is defined &8SLOBAL and is later defined as a
label, it will be treated as &(DEF. If the symbol is never defined, it will be treated
as anXREF.

Syntax GLOBAL symbao|,symbq]

See Also XREF, XDEF, PUBLIC

Remarks This is useful in header files because it allows all separately assembled sub-programs
to share one header file, defining all global symbols. Any of these symbols later
defined in a sub-program will DEFed, the others will be treated dREFs.

Pav-0O Nevelnnmant Quvetem

Pav-0O Nevelnnmant Quvetem

CHAPTER 10

Adapter Firmware

Debugger stub services include fileserver functions which allow the Saturn to access
files on the host machine’s hard disk as well as some specific Debugger functions.

These fileserver functions are also accessible as ‘C’ callable functions and the pollhost
function as a ‘C’ macro, provided by the default library LIBSN.LIB.

These facilities are discussed in the following two sections:

. ‘C’ Library Functions
. Assembly Language Facilities

Pav-0O Nevelnnmant Quvetem

The ‘C’ Library Functions

The following are provided by LIBSN.LIB and declared in LIBSN.H. The majority
are fileserver functions but there is also one macro to provide feedback for the
Debugger.

pollhost
PCinit
PCopen
PClseek
PCread
PCwrite
PCclose

Pav-0O Nevelnnmant Quvetem

The Pollhost Macro

Description

This causes the target box to poll the host PC, allowing access to the target memory
when it is running, i.e. not single stepping.

These periodic calls enable the Debugger to display and edit memory and allow
intervention to stop/step/trace the target program.

Syntax

pollhost is defined as a macro:

#define pollhost() asm(“trapa #33")/* Ox0400 */
S0 its syntax is obvious:

pollhost()

Remarks
A macro is used so the call is inline; this preserves the variable scope.

This macro should be included in the user source code for the Debugger to operate
correctly. It is responsible for transferring data to the host Debugger, so should be
put in the main loop or the vertical blank interrupt of the program to be debugged.
This call takes time to transfer the data; if however, updates are turned off or the
Debugger is exited, the call will return immediately.

A suitable Poll rate would be 25 to 100 times a second. The poll call may sensibly be
placed in the program's main loop or in the VBL interrupt handler. The Poll call takes
very little time if the host is not requesting or sending any data. If the host requests
access to the target memory then the call will take a little longer.

Note: Poll host is not necessary for NMI modified Saturns, including Saturn CD-
Emulators.

Pav-0O Nevelnnmant Quvetem

The PCinit Function

Description

This function re-initialises the host filing system, closes open files etc...

Prototype
int PCinit (void)

passed: void
return: error codé(f no error)

Pav-0O Nevelnnmant Quvetem

The PCopen Function

Description

This function opens a file on the host machine.

Prototype
int PCopen (char *name, int flags, int perms)
passed: PC file pathname
open mod@&<read accesd~write acces2=read/write access)

permission flags this should be set to 0

return: file-handle o1l if error

Pav-0O Nevelnnmant Quvetem

The PClseek Function

Description

This function seeks the file pointer to the specified position in the file.

Prototype

int PClseek(int fd, int offset, int mode)

passed: file-handle
seek offset
seek mode
(modeO=rel to start, modé=rel to current fp,
mode=rel to end)
return: absolute value of new file pointer position

Remarks

To find the length of a file which is to be read into memory, perform:
Len = PClseek(fd, 0, 2);

This will setLen to the length of the file and can then be passed to PCread().

Pav-0O Nevelnnmant Quvetem

The PCread Function

Description

This function reads a specified number of bytes from a file on the host machine.

Prototype

int PCread (int fd, char *buff, int len)

passed: file-handle
buffer address
count
return: count of number of bytes actually read

Remarks
Unlike the assembler function this returns a full 32 bit count.

PCread should not be passed extreme values of count, as could be achieved on a
UNIX system, as this will cause thdl amount specified to be transferred iret
just to the end of the file.

To find the length of a file and read it into memory, perform:

Len = PClseek(fd, 0,2);
PClseek(fd, 0,0);
Num = PCread(fd, buff, Len);

Note: You must PClseek back to the beginning of the file before you try to read
from it.

Pav-0O Nevelnnmant Quvetem

The PCwrite Function

Description

This function writes the specified number of bytes to a file on the host.

Prototype

int PCwrite (int fd, char *buff, int len)
passed: file-handle
buffer address

count
return: count of number of bytes actually written

Remarks

Unlike the assembler function this provides for a full 32 bit count.

Pav-0O Nevelnnmant Quvetem

The PCclose Function

Description

This function closes an open file on the host.

Prototype

int PCclose(int fd)
passed: file-handle

return: negative if error

Pav-0O Nevelnnmant Quvetem

The PCcreat Function

Description

This function creates a new file on the host.

Prototype

int PCcreat(char *name, int perms)
passed: PC file pathname, permission flags

return: file-handle or -1 if error

Pav-0O Nevelnnmant Quvetem

Assembly Language Facilities

The adapter firmware provides some useful functions which can be accessed from the
SH2 cpus via TrapA calls. These functions allow user software to interact with the
adapter downloader firmware and to change the configuration of the adapter
firmware.

Also, there are a few duplicate functions accessed via the 68000 LineA interface, that
is, 68000 instructions with opcodes & In most cases, the default configuration

is adequate and programmers will mainly be interested in the Poll HosiTcapi#\(

#$21 anddc.w $A000).

TrapA calls The following functions are currently supported on the SH2s:-

TrapA #$21 - Poll the Host PC.

TrapA #$22 - Soft Re-Entry to firmware downloader program.
This has the effect of stopping execution of the user program at the next instruction
after the TrapA. Control is returned to the adapter downloader firmware which will
sit idle, awaiting commands from the host. This allows insertion of temporary pause

points so that results can be examined in the Debugger; simply pressing the run
button allows the program to continue from that point.

Opcodes The following functions are currently supported on the 68000:-
Opcode $A000- Poll the Host PC.

Opcode $A003- Soft Re-Entry to firmware downloader program.

Pav-0O Nevelnnmant Quvetem

Fileserver Functions

The target adapter also contains software to provide fileserver functions. These are
accessed via TrapA #$23 on tasterSH2. Note that most functions return -1 in
rO when a failure occurs. A standard error code can be fetched by calling TrapA #$23
with r0 still containing -1. The file error code will be returned in r0.

TrapA #$23 calls The following functions are supported on asterSH2:-

Initialise remote filing system:

This function resets the disk system of the host ready for a new session. All remote-
opened files are closed.

Passed: rol O

Create file:
Passed: ro.l 1
r4.l Pointer to filename string (null terminated)
r5.1 File mode Q=Normal)

Returns: r0.l File handle {1 if failure)

Open file:
Passed: ro.l 2
r4.l Pointer to filename string (null terminated)
r5.1 File mode (0=ReadOnly, 1=WriteOnly, 2=Read/Write)

Returns: r0. File handle (-1 if failure)

Close File:

Passed: rol 3
r4.| File handle

Returns: r0.l -1 if failure

Pav-0O Nevelnnmant Quvetem

Read bytes from file to memory:

Passed: ro.l 4
r4.l File handle
r5.1 Address of memory buffer

ré6.1 NO of bytes to be read from file

Returns: r0.l NO of bytes actually read (-1=failure, 0=end of file)

Write bytes from memory to file:

Passed: rol 5
r4.l File handle
r5.1 Address of memory buffer

ré6. NO of bytes to written from buffer

Returns: r0.l NO of bytes actually written-{ if failure)

Move File Pointer (seek):
Passed: rol 6
r4.| File Handle
r5.1 Offset
ré.| Seek Mode
Returns: r0.l New Absolute File Position1 if failure)
If r6.1 =0 then seek is relative to start of file;
If r6.1 =1 then seek is relative to current file pointer;
If r6.1 =2 then seek is backwards from the end of the file.
Get File Error Code:
Passed: rol -1

Returns: r0.1 File Error Code

The file error codes returned match the C standard error codes defined in the
<errno.h> header.

Pav-0O Nevelnnmant Quvetem

CHAPTER 11

The DBUGSAT Debugger

DBUGSAT is a full source level Debugger, as well as a traditional symbolic
Debugger. This allows source code to be viewed, run and traced, stepped-over,
breakpoints set and cleared.

The original symbolic debug facilities are all still available. A source level display will
revert to a symbolic disassembly, when no source level information is available.

The following Debugger topics are discussed in this chapter:

« Command Line Syntax

« Configuration

« Activity Windows

« Debugger Options

« Menu and Keyboard Usage

At the end of the chapter a short ‘tour’ of the Debugger provides a guide to its most
important features; use this in conjunction with the included sample C program.

Psy-Q Development System

Syntax

Remarks

Switches

Debugger Command Line

DBUGSAT [switche$ [filename[filename.]]

DBUGSAT ?

displays a help message.

Filenamespecifies the name of a file containing symbols, produced by usirizgthe
option during assembly. If no extension is shown, a default extensisiy b will

be added. Multiple filenames are allowed and must be separated by a space - the
symbol files will then be loaded in the order specified.

Ic-

/d
Iefile[file,file]
TEBXXXXXXXX
/h

it

Im#

/m+

/m-

Turn case sensitivity OFF (+ for ON)

Disable automatic run-to-main at C program start-up.
Load target machine witGPE file(s).

Find line number and file for addreBeKxxxxxx.

Halt target machine when Debugger starts.

Specify update interval (in 1/18ths sec).

Sets the Debugger mouse sensitivity;

#is a number between 1 to 4 - default is 3.

DBUGSAT drives the mouse itself. This overcomes some
shortcomings exhibited by the Microsoft Mouse driver,
particularly in 132 column mode.

Use the current system mouse driver; later versions of the
Microsoft drivers (8 upwards) allow the mouse to be used in

a DOS window.

Revert toDBUGSAT mouse driver.

Psy-Q Development System

[rit# Specify data screen rows in video bios.

/IR Use alternative mnemonics in register window.

[file Override default configuration filename.

It# Set target SCSI device number (override default setting).

Ju- Turn continual update mode OFF (+ for ON).

Ivexprtext Evaluate expression text and put result to standard output
device.

/& expr,.. expr List of parameter expressions, separated by commas.

Remarks
« Source level mode can be used if a suitable Symbol File is specified on the
command line. This file contains symbols and additional source level information
produced by thézd option in the Assembler - see chapter 2.. See chapter 11 - for
more about source level debugging.

+ Expressions passed to the Debugger usingfthavitch can be referred to from
inside the Debugger in the for&0, &1, etc., where 0 means the first expression
on the command line, 1 means the second etc.

Psy-Q Development System

Configuration Files

WhenDBUGSAT is loaded, it accesses a Configuration File, containing information
about the current Debugger environment. The current configuration can be saved at
any time during an active Debugger session. The default filename can be overridden
with an option on the command lins)or at run-time, so that the most frequently

used configurations are always readily available.

Configuration File Names

« The normal Configuration File nameD8BUGSAT.C##, where the first number
is the target SCSI ID number, and the second number is the virtual screen.
Typically, therefore, the configuration loaded at start-UpB&JGSAT.COO.

 If that file is not located the Debugger will look for a suitable defaults file; the
current directory will be searched for a default filename built from the target
name string. This will typically bBBUGSAT.CFG.

Contents of Configuration File
A Configuration File can include the following information:

+ Read Memory Ranges;

+ Write Memory Ranges;

+ Video type and usage;

« Label Level;

+ Colour and Mono attributes;

+ Default Tab Settings for various filetypes;
« Window Type and Display position;

+ Breakpoints;

+ History details.

Psy-Q Development System

Activity Windows

The Debugger display consists of one or more activity windows. The number of
windows, the contents of each window and the window size, can all be specified at
run-time. The default display consists of two windows; the upper one normally
contains a display of the registers, the lower window shows the disassembly of the
target program code.

The Debugger can run up to 10 virtual screens; each screen has its own configuration
file - see chapter 11. Alternate screens can be accessed by phdissingheren is
the screen number O - 9 and 0 means screen 10.

"4 M5-D05 Prompt - DEUGSAT

g 515 Al

CPU B6H1IHAES 14:41 -HY?

X A
p= ==

=

& &S

= 5

r8, B—3115
r? EB—p15
viB. B—115
ril, @—»15
vi2 B—r15
r13, @—r15
rid @B—»15
pr . B—pr15
#—52c. r1S
ri5,.ri4d
#51 .5

rh Brld
52 _»v
r?. BS54, rid>

#54, 1

ri. @5, rid>

#5511

ri. @518, 14>
#5561l

rli . B{514, r14)
i 1

1
rl, B{S18, »r14)
Heg, »i
rl,. B{51c, r14)
rid, »3

#5208, _1r3

B 56A1A1bd,. per .+l =56010680
Bl +, 2

v2 . B3

rl4d, »3

#5521 . »3

Bl +, 2

r2 . Br3

FHOIEGANGEOIDECANTDITGDOSLNEM

=
=
-

= &

The Debugger Display, with Register and Disassembly Windows

Psy-Q Development System

Entering an expression by pressing ENMTER key to display an Expression

Typing directly at the current cursor location or
Input window.
substituted as appropriate. Breakpoints (optionally with conditions and counts) can

TheDisassemblywindow shows the contents of the target memory as disassembled
be added to any line and the code run, traced or stepped.

TheRegisterwindow provides a complete view of the selected processor's registers.
code. If a Symbol File has been loaded into the Debugger, symbol names are

Register contents can be changed by:

Window Types

n
b . 1 0 1% o
1] i [! o
by Ca BCH A G O (F] i ol D ¥ (6 O)
- a ¥, o
i = . o o O
- Timfg [& & 1ra (@ &)
I = = =
e &) rErt{o o5 @
=a o o 1 =
- ok B OF 0 e & [ol
Ju] =
2 o vl 0= O >
= o ! =
- [] CHl & CH o O[] LK)
= PR - OO AR EEEEE] oo
raf¥m] [l e s I e Y 5} 5] 5] B] D 05 05 50 5] 050 05 05 (5 5 5]
rafln) [2 [l W] rall =L N2l il sl 5] X B o 05 05 50 5] 15 05 05 (5 05 5]
o 5w g S o0 e o EeRerNe GRS S
- o] B 0 S om0 o oy o (S o il g
5] 15 5] [Y r | 15 o e Y| D 5 05 (50 050 05 05 05 050 05 05 05 05) 5 5 5]) 5) o O o P
r 2] -l Al b gl allra [e 15 0 w0 D500 O] 5] 5] 5] 05 05 05 05 5]
= o T S B = 1= oSN T AR S S
=
o L ok = B 15w v o B BT E S
= S T = - o s = Aol = Sl S e e el
S e (] 50] 3 O O e 2 O I O il g
Tr= S SR N =L T =l s = = e e s e
o e B B 5] B (5 o - S il g
1 o = - =St EEAEE S
8 [] o S S = 5] O L 15 L= i Rl Rl el
= S = = el el e bl Sl sl sl e ke e s el
.A = ..
= o 5 - O 0N T 0 548 W - EE 5
ol = = 5 L 5 T) e 5 L 50 0 o 2 0) O £ O) I))
= B W Tl =N I R e A= S == e e s e
0 o] e =
401 | P9 = ; o = B e (5 0 e (B 0 - EEDEESDE DS
=k = 1S e (58] e o L 15 50] O el () el O il ool ol ol Lo R e ==
o o0 T 0 50 v o L 0 L o () 0 e 0 e 0 o 0 O O O O O D)
eSS = T I == s e sl sl = e s e e = e
.....A = . B LIy 50 (5 01 Oh G O ARl a e LR L g e
A _E =1 5 =i o0 B 5 EL B [0 2 S o S 5 - S i SEEEDES S
=] %1 o o ao ca o 5 5 & A=I=1- -k el sl sl el sl e o
S [PREN | =
N — e o o S = 5 =T n ==Lk - AR] i L R R R Rl el |
o |l e 5 S L 5 o 1S L] O 5 = O TS
= | 2 r .
E FlEs -5 S = oo 5 2] 5 W LN e ems il
=] e = = a0 o] 5 AN TSR EEE RS EE S S T =
o (R = =S &
o
o 1=1; i a0
i1} 'L} =i=] W] = raf= = =] o o= == = (R e] o
=] =15 | (5 I = 1 (5 0 | e eded el o e
=4 | = | Tl e ot ot T T e el e e e el e e o e e e o el e T ettt R -
e T T
-3 D 0 0 D D o0 00 0 00 0 0 0 D A 0 W0 W 0 S D A0 0 0 W S D 0 10 D A0 A o A o A R D D
B FY S SRSl S o L e L T o L Lo e L L b L T T e e T e L T e T o

The Debugger, with display in Register and Hex Mode
Psy-Q Development System

If the PC of the target machine is pointing at a line in the current disassembly display,
it is indicated by a greater than sign (>). If a line contains a breakpoint, that line is
displayed in a different colour; the breakpoint count and expression details are shown
at the end of the line.

TheHex window displays memory in hexadecimal, either in byte, word or long word
form. Like the Register window, the contents can be changed by any of the following
methods:

« Typing directly at the current cursor location

+ Entering an expression for evaluation by pressingeM€ER key to display an
Expression Input window

« Pressing + or - to increment or decrement the value at the cursor position

i g AGA1Ai4A 14:54:-54
~PEYOSPSE~SAMPLE~SAMPLE.C
78: maind

unzigned long long x;

signed long long y;

int a.b.c.i3

ints Jim;

int arravl[l1={1.2_3.4.5%.6.7.8%;
chap= fredl="12345678";

char fred2[1=""12345%678";

a=@;
b=1;
c=2;
fred.1=—1;
funcl<1.2.3>;
Eur(i=999;i>=ﬂ;i——)

struct s1¢

int 11;

int 12;
N

B0 00 =] 0 A s o [= W0 G0 =] LA

8
8
8
8
8
?
?
?
?
?
?
?
?
?
?
i8

wunion s2{
185: char h;
Jars maind>
int 1868762888
int 188731532
int 188762048
Array int [1 P $AcBB1D74
fred? char [1 2 586AA1DB4

datch

fred union @ SALA1RLAC

myf loat float 3.14159

mydouhle double 3.14152267876543

SATMSTR2 .@7 Stopped Dizazm: Go Stepluer
SATSLAVEZ @7 Off—Line Dizazm: Go Stepluer
SAT6808H2 . A7 Off—Line Dizazm: Go Stepluer

The Debugger, with Source, Variable and Watch display

Psy-Q Development System

TheWatch andVariable windows allow variables, tables and code locations to be
monitored as your program is running.

TheVariable window automatically tracks the scope of your C program. As you
trace though your program and the variable scope changes, this window will always
display the current local variables. The up and dawow keys andpg-up andpg-

down allow you to scroll the window to see all your variables.

TheWatch window performs a similar function for user specified expressions and is
typically used to display global variable data. You can enter all your global variables
in this window by pressinglt-G . Specific C or Assembler expressions (global and
local) can be entered at the cursor position by presNiggrt. Conversely, entries

can be deleted usiigEL ete. All entries in a Watch window are saved when you exit
and restored the next time you run the Debugger.

In both the Vaand Watchwindows pointers and arrays can be de-referenced and
structures, unions and enums can be opened up for closer examination, by placing the
cursor over the relevant entry and pressing '+' from the numeric keypad. They can be
subsequently closed by pressing '-'. This will even work for local register structures
within unions within structures etc.

TheText or File window allows a text file to be viewed directly. Within a File
window you can change to a different text file by pressing ENTER. The Debugger
will then request the name of the new file to load.

The Source Levelwindow is an extension of théle window. Most source level key
commands are the same as for a Disassembly window.

To enter source mode, tell the File window to display program source at a particular
address. The easiest way to do this is to hit the TAB key. As in a Disassembly
window this causes the window to locate to the current program counter address; if
the Debugger has source level information for that part of your program it will
display corresponding source code.

Alternatively you can enter source mode by typhigG (for Goto location) and
then entering the address you wish to locate to (any expression or Assembly language
label name or a C function name - suclmasnwill do fine).

Note that in Source mode, line numbers are added to the left side of the window
display and the PC line is indicated withraafter the line number, similar to a
Disassembly window.

If you wish to view text which is truncated off the right side of the window then the
window can be scrolled to the left and right using the left and right cursor keys.

Psy-Q Development System

You can step, trace, run to cursor and set breakpoints in the source code in much the
same way as a for Disassembly window. The cursor in the currently active text
window will track the PC during a trace. Note, however, that unlike tracing in a
Disassembly window, a trace at Source Level may trace more than one instruction as
it will trace the entire source line, which, if it is a macro or a 'C' source line, may
correspond to the execution of one or more instructions. SimH&r(Btepover) will
step-over the entire source line, which could be equivalent to stepping over several
subroutine calls.

If you are unsure of how a Source Level operation will behave, a Disassembly
window can be viewed at the same time to determine how the operations correspond
to actual processor instructions. If you attempt to step into a C function or Assembly
language subroutine for which the Debugger does not have any source level
information then the Debugger will attempt to perform a step-over operation instead.
If this is not possible (e.g. if the code without source level information is jumped to
rather than called), then the window display will switch to Disassembly mode. The
trace can be continued and when the PC returns to a region for which there is Source
information, the window will switch back to the Text display.

In order to use any of the Source Level features you must have the necessary extra
debugging information in your Symbol File(s). If it is not present then the Debugger
will be unable to switch to Source mode and Source Level operations will produce
appropriate error messages. This information is added to the Symbol Files by the C
compiler if you add theg switch to your CCSAT command line or by the Assembler

if you specify thézd switch on the ASMSAT command line.

The Symbol File normally contains the full original pathnames of all files used to build
your project. When Source Level debugging the Debugger will attempt to load those
files from the same locations. In some cases this may not be convenient e.g. if part of
the project was built by another developer on a different PC or on a network drive;
even if you have a copy of the appropriate Source Files you may not have them at the
same location.

To get around this you can provide the Debugger with a search patch for Source
Files. To do this just select a Source File window and A/#pE . You will be

prompted to enter a normal DOS search path. This search path can contain many
entries and be as long as you wish.

e.g.

| c:\;c:\temp\myfiles;c:\gnumips\src\common

Psy-Q Development System

The Debugger will first look for the file in the directory specified in the Symbol File
(determined when the project was built). If it cannot locate the file at the original
location then it will search for it by name at the following locations:-

c:\ filename.sym
c:\temp\myfiles\ filename.sym
c:\gnumips\src\common\ filename.sym

The first filename match located will be assumed to be the correct Source File.

The search path will be saved in the Debugger Configuration File when you exit the
Debugger. To remove an existing search path just specify a blank search path string.

Psy-Q Development System

Additional Debugger Features

Automatic Overlay Support allows the Debugger to dynamically track overlays as
they are loaded into your program and work with the Source Files and variables
specific to that overlay. This requires no modification to your Source Code at all.
You only need to tell the Linker which files will overlay in memory. Any number of
concurrent overlays are supported over multiple memory areas. A simple overlay is
included with the Psy-Q software.

Big Text Screensallow you to view as much information as possible by working in a
higher text resolution. This is achieved by putting the text screen in the required
resolution before running the Debugger. At I&®t50is recommended but the
Debugger will happily work in higher text resolutions ud82x66 Most modern

VGA cards are capable of 132 column text modes and come with a utility to set such
resolutions. Psy-Q also includes BM.EXE program which will take any screen

mode and adapt it to 30, 32, 60 or 64 lines. Usé&Bedebugger command line

switch if you prefer to edit &80-25but debug aB0x5Q

Multiple Text Screensare available when a single 132x64 screen is not enough to
display all your debug information. Up to 10 virtual screens can be used; switch
between them by pressidadt-n (wheren is a digit 1,2,3,4,..0). The configuration at
each screen is saved when you switch and restored when you switch back; these
configurations are also saved when you exit the Debugger.

Name Completionis provided by all prompts where C or Assembler labels are
entered. Type the first few letters of the name and press Ctrl-N. If the required label
does not appear, repeat Ctrl-N to ‘toggle’ through the alternatives. This facility also
works for a name in the middle of an expression.

Prompt Histories are provided to allow you to select from your history of prior
entries. This information is saved when you exit the Debugger and restored for your
next debugging session.

CPU Hardware Breakscan be used to cause the CPU to stop when a specific
memory location is read from or written to. Hardware breaks can be accessed by
typing Alt-B .

Note that C or Assembler syntax can be used with this facility.

In Assembler mode you will be prompted for a mask value. This mask has 1 bjt to
enable, therefore a mask value b{$FFFFFFFF) will be the usual value to trap
one particular address.

In C mode you only need to enter timame of your C variable; the Debugger will
automatically calculate the correct address and mask value.

Psy-Q Development System

Using Debugger Windows

The following key strokes and mouse actions allow the programmer to exercise
control over the Debugger display - note that a complete list of all key options is
given later in the chapter.

Moving Between Windows

Use one of the following methods to move between Debugger windows:
+ Presg-1, followed by an up or down cursor key to point to the required window

+ PressShift, plusup or down cursor key
« Point and click at the required window

Selecting The Window Type

Use one of the following methods to change the type of the current window:

+ Use the mouse to select tBET TYPE option from theNINDOW menu
+ PressShift andF1

In each case a selection window is presented. To choose the new type - use the
mouse, type the initial letter or press B key thenENTER.

Re-Sizing Windows
To change the size of a Debugger window:

1. Position the cursor in the required window

2. Presd-2
3. Use the up or down cursor key to move the selected window edge to the desired
size

4. Pres€ENTER to confirm

PressCtrl-Z to re-present the original display.

Psy-Q Development System

Splitting An Existing Window
To add another window to the display:
1. Position the cursor in the required window
2. Presd$-3

3. Press a cursor key to specify the location of the new window

Note that the new window is the same type as the source window.

Joining Two Windows
To remove a Debugger window:

Position the cursor in the required window

Press-4

Use the up or down cursor key to select the window edge to be removed
Pres€NTER to confirm

el N =

Moving The Cursor Within A Window

You can position the cursor by clicking at the new location with the left mouse
button. The cursor control keys also allow the re-positioning of the cursor in the
selected window, as follows:

« Register Window- Use the four arrow keys to move between register values;
theHOME key positions the cursor in the top left register field.

« Watch and Register Windows- Use the four arrow keys to move between
adjacent lines and characters; HeME key positions the cursor in the top left
character position.

« Disassembly and Text Window Use the up and down arrows to move the
highlight bar; thtHOME key moves the line under the cursor to the top of the
window.

+ Hex Window - Use the four arrow keys to move between adjacent lines and
bytes/words; th&elOME key moves the byte/word under the cursor to the top
left of the window.

Psy-Q Development System

Locking A Window

A window can be locked to dynamically display a specific memory region, by:

PressinAlt-L and entering an address or an expression which evaluates to an
address in the input box;

Selecting the. OCK option from the WINDOW menu;
PressingCtrl-L to turn the lock on and off.
Locking a display to the expressi&Q; this allows the Debugger to be started

with a window pointing to an address or label specified on the command line - see
chapter 11.

If a lock expression is set, but de-activatedCinf-L , the Debugger will start-up
with the display initially positioned at the lock address, but the window start can
subsequently be changed with the cursor keys etc. as normal.

General Mouse Usage

Clicking theleft mouse button re-positions the cursor at the site of the click. If
the new position is in another window, this will become the active window.

Clicking theright mouse button on a register in fRegisterwindow will open
an Expression Input box.

Clicking theright mouse button on a memory field in tHex window will open
an Expression Input box.

Clicking theright mouse button on a line in tilesassemblywindow toggles a
breakpoint.

A window can be re-sized by clicking thedft mouse button on a window edge
and dragging it to the new position.

Dragging a window border to the edge of the window deletes the window.

Psy-Q Development System

Expressions

Prompts

Keyboard Options

The following table is a complete list of keyboard options, categorised by function.
Many of these functions are duplicated by Menu options.

At many points in the session, the Debugger will prompt for input - this can often
take the form of an expression for evaluation. Expressions in the Debugger follow the
same rules as the Assembler (see chapter 3), with the following exceptions:

Assembly language expressions may contain processor registers.

The Debugger assumes a default radix of hexadecimal, therefore, decimal
numbers must be preceded by a # sign.

Indirect addresses are indicated by square brackets [].

When the Debugger gets an indirect datum, it assumes a (32 bit) long word; this
can be overridden by using tf@ sign together witty or w following the square
bracket.

Each time that the Debugger requests input the reply is stored. These stored prompts
form a history which can be accessed (and then edited) at data entry timewaa the
anddown arrow keys. Note that, when the Debugger closes, the last ten historic
entries in each class are stored in the Configuration File, and restored the next time
that the Debugger is executed.

Leaving The Debugger

Ctrl-X
Alt-X
Alt-Z

Exit Debugger, without saving the current configuration
Exit the Debugger and save the current configuration
Exit to DOS shell; typ&XIT to return to the Debugger

Window Handling

F1
F2
F3
F4

Move to next window
Re-size Window

Divide Window into two
Delete Window

Shift-Arrows Move to selected Window

Ctrl-Z

Shift-F1

Zoom current Window; again to restore original display
Select Window Type

Psy-Q Development System

Debug Control

Ctrl-F2
Esc
Shift-Esc
Alt-R
Alt-1

Alt-U

F6

F7

F8

F9
Shift-F9

File Accessing

<
>
Shift-F10

Miscellaneous

F10

Alt-H
Alt-D
Alt-n
Alt-N

Re-download you€PE file to target and re-set PC

Halt the target, at first opportunity

Halt the target, turning off interrupts

Restore Registers from previous Save

Set the update interval; the interval is input in 18ths of a second, therefore,
18 means once a second, 9 means twice a second, etc

Toggle auto-update mode on or off

Run Target code until the instruction under the cursor is reached

Trace current instruction (or source line if in text display window)
Step-over current instruction; (as F7 but call instructions are stepped over)
Run target code from current program location

Set temporary breakpoint at user specified address and run from current
location

Upload memory from the target to a named file on the PC
Download a file from the PC to the target memory
Load a new configuration file

Select a Menu Option

Hex Calculator; enter an expression to be evaluated

Display the amount of free memory

Switch to Virtual Screen (1 - 9 plus 0= 10).

Label Continuation; enter first few letters from a label and press Alt-N to
find first match. Repeated Alt-N cycles through all matches.

Psy-Q Development System

Disassembly Window

Up/Down
Left/Right
PgUP/Dn
Home
Alt-G
Tab
Shift-Tab
Alt-L
Ctrl-L
Ctrl-D
Ctrl-S
Ctrl-N

Move highlight bar

Move display by one word

Move display by a page

Move display so that the highlighted line is at the top

Go to address specified in input window

Move the highlight bar to the Program Counter address

Make the Program Counter the same as the currently highlighted address
Lock the display to a specified address

Toggle Lock on or off

Disassembly memory to a PC text file

Search for a particular instruction fragment (as text, space as separator)
Continue search

File and Source Windows

Tab
Alt-G
Alt-T

Ctrl-S
Ctrl-N
Alt-P

Breakpoints

Alt-C
Ctrl-C
F5
Shift-F5
Shift-F6

Locate address of current PC and display corresponding source code
Locate source display to specified address

Override default tab settings for this window

(prompts for a list of tab positions)

Search for a text string

Continue search

Specify source-file search path

Enter condition for the highlighted breakpoint
Enter count for the highlighted breakpoint
Turn highlighted breakpoint on or off

Clear all current breakpoints

Reset all current breakpoint counts

Psy-Q Development System

Hex Window

Arrows
PgUp/Dn
Home

Alt-W
ENTER

0-9, A-F
+

Alt-G
Alt-F
Ctrl-S

Ctrl-N

Register Window

Arrows
Home
ENTER

0-9, A-F

Watch Window

Up/Down
Home
Ins

Del

+

Tab
Right/Left

Move to adjacent byte/word/long word

Move display by one page

Move display so that currently highlighted byte/word/long word is at the
top

Switch display between byte, word and long word

Change contents of current location to the result of an expression; entered
in an input window

Directly change contents of highlighted location

Increment contents of highlighted location

Decrement contents of highlighted location

Go to address specified in input window

Move display to address contained in highlighted location

Search for a hex (or text if started with “ character) string

(prompts for a space separated list of bytes/words/longs)

Continue search

Move to next register

Move to top left register

Change contents of current register to the result of an expression; entered
in an input window

Directly change contents of highlighted register

Move to next watch expression

Move to top watch expression

Add a new watch expression

Delete the highlighted watch expression

Opens information on the data under the cursor (structure, array etc.) or
de-references the data if it is a pointer

Closes expanded information

Changes theesult displayformat of a C expression under the cursor
Increments/Decrements array index under the cursor (currently only if not
expanded with +)

Psy-Q Development System

Var Window

Up/Down Move to next watch expression

Home Move to top watch expression

Ins Add a new watch expression

Del Delete the highlighted watch expression

+ Opens information on the data under the cursor (structure, array etc.) or

de-references the data if it is a pointer
- Closes expanded information
Tab Changes theesult displayformat of a C expression under the cursor
Right/Left Increments/Decrements array index under the cursor (currently only if not
expanded with +)
<> (Alsocommaanddot) Crawls up and down the stack, adjusting the scope of
current debugger display to that of calling functions. Top level is a
‘C’ callstack display.

‘C’ Callstack Display

> (Also dot) Return to current scope
Enter Display the variables dhe scope under the cursor.

Psy-Q Development System

Menu Options

TheDBUGSAT menu affords easy mouse access to some of the commonest
Debugger functions. Note that if no mouse is available, the Menu can still be
accessed by pressiid0.

FILE

Reload
Down
Upload

Disassemble
Exit to DOS
Exit Debugger

RUN

Go

Stop

To Address
Backtrace

Reload the last executable file Download

Load a file to the Target

Upload specified data from the Target to a named file on the
PC

Send specified section of Disassembly to a named PC file
Exit to DOS shell; type EXIT to return to the Debugger

Exit the Debugger and save the current configuration

Run Target code from the current Program Counter

Halt the Target machine, turning off all interrupts

Run to address specified in input window

This function provides an UNDO of the updates effected
by the latest trace (the Debugger keeps a record of about
200 instructions, depending on their content).

Notes: Updates to certain write Registers in the target machine and memory areas
designated as write only, cannot be undone.

WINDOW

Set Type
Lock
Print
Set Tabs

SelectWindow Type

Lock the display to the address entered in an input window
Output screen to system printer

Enter up to 8 tab positions - in decimal separated by spaces

Note: The Set Tabs function is only relevant to File and Source Disassembly

windows.
CONFIG
Load Load a new configuration file
Save Save the current configuration to the specified file

Psy-Q Development System

Description

CPU

Save Regs Save the current state of the registers

Reset Regs Reload the previously saved register state

Reset Reset the Target Processor

STEP Trace Mode; traps and Line A calls are stepped over
STEPOVER Stepover Mode; subroutine calls and DBRA instructions are

stepped over.

Multiple Units

The Saturn has a number of different CPUs. These are accessible as different unit
numbers on theameSCSiI target ID.

In the Sega Saturn, tiMasterSH2 is Unit 2, theSlaveSH2 is Unit 1 and the
68000is Unit 2. While running the Debugger, pre8i$-T to cycle between the
different CPUs.

While connected to one unit, all Debugger processing of the other units is suspended.
The other units can run but interaction with the host PC is not possible until that unit
is selected. Switching units in this way saves the current Debugger settings for that
unit, i.e. windows set-up, breakpoints and Symbol Files.

To aid readability of the displays when viewing multiple units, the Debugger supports
up to 10 virtual screens; each screen has its own configuration file.

At start-up, all Symbol Files will be loaded and correctly referenced depending on the
unit number being viewed. To effect this, the Assembler writes the unit number into
the Symbol File.

Psy-Q Development System

The Link Software

The adapter hardware contains software in ROM to enable it to communicate with
the host PC. In addition, this ROM contains code to perform some functions which
maybe useful in the development stages of a product.

The Target interface software hooks the following 68000 exception vectors by
default:

68000 Vector Location Meaning
2 $0008 Bus Error has occurred
3 $000C Error in Address found
4 $0010 lllegal Instruction found
5 $0014 Divide by Zero
6 $0018 CHK exception
7 $001C TRAPV exception
8 $0020 Privilege violation
9 $0024 Trace exception
10 $0028 Line-A Vector

In particular, the lllegal Instruction and Trace Vectors are necessary for the correct
function of the Debugger; the Line-A Vector is used to provide various user
functions.

The Target interface software also hooks the following SH2 exception vectors by
default:

SH2 Vector Location Type

32 VBR+32 Trap Instruction
33 VBR+33 Trap Instruction
34 VBR+34 Trap Instruction
35 VBR+35 Trap Instruction

VBR is the Vector Base Register.

The application software should not attempt to modify any of these vectors.

Psy-Q Development System

Debugging Your Program Using Psy-Q

To get you started with the Psy-Q DOS Debugger, this section provides a quick
guide to some of its most important features. Follow this on-line with the simple C
programSAMPLE.C (included with the software) and experiment with the
Debugger commands.

Due to the confidential nature of the information subject to a Sega developer’'s
license, we cannot provide example Saturn source code. This sample program does
not refer to confidential Saturn hardware details; the intention is merely to
demonstrate some of the Debugger features.

To build the demo, change into tBAMPLE directory and compile the program
SAMPLE.C by entering the following command line:

|ccsh -g -O0 -X0$6010000 sample.c -osample.cpe,sample.sym |

This calls the CCSH program to compile the C source. - bwiitch tells CCSH to
produce full debugging information (necessary for Source Level debugging)o The -
switch specifies the output filenames.

This example will output the executable fBaMPLE.CPE and the Symbol File
SAMPLE.SYM.

At this stage you could execute the .CPE File by entering:

|RUN SAMPLE |

This would not be very useful however, as this example does not produce any Saturn
display; therefore, in order to examine the code you must debug the sample using
DBUGSH.

Start the Debugger by entering the following command line:

| DBUGSH sample /e |

In this case'sample’ specifies the name of the Symbol File. Tdswitch causes the
Debugger to also load the .CPE File (default = same name as the Symbol File but
with a .SYM extension).

Psy-Q Development System

The Debugger will now start up and present the default layout. This is divided into
two windows; the top will show the CPU Registers whilst the second will be a
Disassembly display.

If however, the Debugger finds a standard Psy-Q C start-up, it will automatically run
the program to the start of the C functieain() and switch to C source mode; the
lower window will then display this source code

W
% MS-D0OS Frompt - DBUGSAT
[ewzx CiE @ B @& Al
*# File Bun Window Confi GPU H6E1HACC 14:-58:38
E A METR 5
[4 Elr (A £) [4 £) [4 (4 (4 (4 [4 (4
1 : :I‘ -nnunnni:‘:. - - 1::I‘r e 2lalalalalal
e e Laldld 2ol 2 2oL LA Lol
‘““555.5 AL GIG[GIG 5 55‘55555 HA6HA1 DY al5l5l5)
HHE BH MK 1 1 H6HH1 DY
51515 G16[515 HE6H1H
P HE A1 B 0
5
()
0
!
-
145 0 0
B 0 0
H
0
1
H
0
1
H
0
1
13 H
0 g
1
o
0
0
0
0
0
9 0 f
0
0 R
1
30
A
§
f
§
4 0
§
HEG 0
§ 0
O H
AY
H H
f
+HT M 5 0 g [} 0 0 g epDue
() [4 = = = =
:*] D [} 0 D D
» H B 0§ D) e [} 0 0 E eplue

CPU Register and Source Windows
If the Source window is not already displayed, select it by:

» Clicking the lower window with the mouse or
» Pressingshift and a cursor key to change to an adjoining window

From this window you can single step and set breakpoints in your source code.

Psy-Q Development System

To View Local Variables

Split the current window by pressif@ and down arrow Change to the lower
window (by Shiftarrowor clicking on it with the mouse) and then make this a
VAR iable window (ShiftF1, V).

Now return to the Source window and prégsseveral times until you trace into
another function. As you trace through the program, notice that the variable scope
changes and that the Var window always displays the current local variables.

£ MS-DOS Prompt - DBUGSAT

RnEl R EE Y

File Run Window Config CPU B6P1AB64 15:08:18

Target B:8 iz SH2 - SATHMSTR2.@Y

rd = B6EA1BACC r4 ARARARAL r A6A185A8 12 HeA1A1FA ABBHARER

1 A6A1AA64 »r5 510151510]5]0 P r? AcA181CA r13 510155151510 ¥ A6LABRAAAA
A6A1858C rb6 ARARAARA3 18 5101510151505 I I H6AA1 D48 ARAEAAAA

A6BA1D7A asREAAA2 ri11 BeA181CA ri15 BeAA1 D48 ABREAAEA

AaA1 pr = B6A1A15A

B6818064 mowv.1 rid4.@-»15

G PEYOQS PSR~ SAMPLE~SAMFLE.C 67
58: void func2<{int i,int a, int h?

int =;
func3<?.8,.9>;

ifci & 12>
z=a+h;

W)

68: void funci<int i,int a, int h>
69:3{

7a: int z;

Ti:

Fa2: func2<4,5%,.62;
73:

74: ifdi & 1>

?h: z=a+th;

i

-

78: main{?

unsigned long long x;

signed long long u;

int a.b.c.1i:

ints Jim;

int arrayl1={1,2,3.4.5.6,.7.8>;
char* fredi=""12345%678";

char fred2[1=""12345678";

SATHETR2 .87 i Dizasm: Go Stepluver
SATSLAVEZ A7 i Dizasm:= Go Stepluer
SAT6BBAB2Z A7 i Dizasm: Go Stepluer

Source Window and Var Window showing Local Variables

Psy-Q Development System

To View Global Variables

Create another window and set its typ&uatch; now presAlt-G to enter all your
global variables in this window. You can also enter specific C or Assembler
expressions (global and local) at the cursor position by preldé8egt. Entries can
be deleted usinBEL ete.

In both the Var and Watch windows, you can de-reference pointers and arrays or
open up structures, unions and enums by placing the cursor over the relevant entry
and pressing+’ on the numeric keypad. Close them again by pressing

“& M5-DOS Prompt - DEUGSAT

BRI

File Run Window Config CPU B6H1AB4E 15:682:59

Target B:@ i= SHZ — SATHSTRZ2 A7

A = B6E1BACC »4 BRABARE4 r8 B6A18588 12 B6A1A1FA HRABBABREA
BcA1AA48 »h (61515 15]515]5 LY r? B6A181CA »13 [6]5]515]5]5]5 6 BPBABEA

B6A1858C r6 ARABARBE »1@ 5515 1575155 5 I 1 I B6AA1 D38 (615155 [5G]5]5]

B6cBA1D7A aaaRAAAZ2 rii B6A181CA »r15 B6AA1 D38 AAARAREA

aaai1 mgABAA—=T pr = B6A1BA74

B6E1BHA4E mowv.1 BS6E1PA6A, pecd .+l =Func3

G PEYOQS PSR~ SAMPLE~SAMFLE.C 62
58: void func2<{int i,int a, int h?
Lo: {

int =3
funci(?.8.90;
ifdi & 12
z=a+th;
i.int a. int h?
int =3
func2<4.5.62;

ifdi & 1>
z=a+th;

int
int
int

union @ SARA185AC
char -1
short -1
long -1
struct hitty P $A6A1851@
float F.14159

mydouhle douhle 3.141592269876543

SATHETR2 .87 Dizasm: Go Stop Stepluver
SATSLAVEZ A7 Dizaszsm: Go Stop Stepluer
SAT6BBAB2Z A7 Dizasm: Go Sto Stepluer

Opened Up Structures In Watch Window

Psy-Q Development System

Useful Debugging Commands

F5 - Toggle breakpoint at cursor (Source or Disassembly,
F6 - Run to current cursor location (Source or Disassembly)
F7 - Single step (Source or Disassembly)
F8 - Step-over (i.e. break on next instruction or source line)
F9 - Run
ESC - Stop

If your program is running around an endless loop and you have hardware interrupt
support enabled (this requires an appropriate downloader version on the target), you
can pres&SC at any time to stop the target. If you do not have hardware interrupt
support enabled, you can still stop the target if you have a pollhost () call in a suitable
location, for example your program main loop or a regular interrupt handler.

For further details of the Debugger please refer to the earlier part of this chapter and
keep an eye on the Psy-Q BBS for further updates.

Psy-Q Development System

CHAPTER 12

The PSYLINK Linker

The Psy-Q LinkePSYLINK is a fully-featured linker which works with all
processor types. It facilitates the splitting of complex programs into separate,
manageable sub-programs which can be recombin®&BYINK into a final, single
application.

This chapter discusses the linker together with the Librarian utility, under the
following headings:

« Command Line Syntax

« Linker Command Files

- XDEF, XREF and PUBLIC
- GLOBAL

The Linker-associated Assembler directives are repeated here for ease of reference.

Psy-Q Development System

PSYLINK Command Line

Description ThePSYLINK link process is controlled by a series of parameters on the command
line, and by the contents of a Linker command file. The syntax for the command line
is as follows:

Syntax PSYLINK [switche} objectfile(s)outputsymbolfilemapfilglibraries
If a parameter is omitted, the separating comma must still appear unless it is the last
parameter of the line.

Switches Switches are preceded by a forward slash (/), and are as follows:

/b Specifies that the linker should run in 'big' mode. This allows

the linker to link larger programs but with a link-time penalty.

/c Tells the linker to link case sensitive; if it is omitted, all names
are converted to upper case.

/d Debug Mode - perform link only.

/e symb=value Assigns value to symbol.

/i Invokes a window containing Link detalils.

/m Output all external symbols to the map file.

/n maximum Set the maximum number of object files, or library modules,

that can be linked, 1 to 32768; default = 256
Higher values require larger amounts of memory.

/o address Set an address for @RG statement.
/o ? address Request to Target to assign memory@irG.
Ip Output padded pure binary object co@&Ged sections of

code are separated with random data. (equivalepbof
switch on assembler)

/ps Output ASCII representation of binary file in Motorola
s-recordformat.

Psy-Q Development System

/p20and /p21 Output pure binary file in SNES mode 20 or 21.

/r format Create operating specific output (am = Amiga).

/u number Specify theunit numberin a multi-processor target.

/x address Set address for the program to commence execution.
Iz Clear all requested BSS memory sections.

Objectfile(s) A list of object files, output by the Assembler using Ah@ption. File names are
separated by spaces or plus (+) signs; if the file starts wifh sign, it signifies the
name of a Linker command file - See below for a description of the format.

Output The destination file for the linked code; if omitted no output code is produced. If the
output file name is in the formanT the linked code is directly sent to the target
machine n specifies the SCSI device number.

Symbolfile The destination file for the symbol table information used by the Debugger.

Mapfile The destination file for map information.

Libraryfiles Library files available - see The PSYLIB Librarian chapter for further information.

Psy-Q Development System

Linker Command Files

Command files contain instructions for the Linker, about source files and how to
organise them. The Linker command file syntax is much like the Assembler syntax,
with the following commands available:

Commands INCLUDE filename Specify name of object file to be read.
INCLIB filename Specify library file to use
ORG address SpecifyORG address for output
WORKSPACE address Specify new target workspace address
name EQU value Equate name to value
REGS pc=address Set initialPC value
name GROUP attributes Declare group

name SECTION attributes Declare section with attributes
SECTION namég,group Declare section, and optionally specify its

group

name ALIAS oldname Specify anALIAS for a symbol name
UNIT unitnum Specify destination unit number
Group attributes:

BSS group is unitialised data
ORG(addres} specify group's org address
OBJ(addres3} specify group's obj address
OBJ() group's obj address follows on from previous group
OVER(group) overlay specified group
WORD (68000 only) group is absolute word addressable
FILE ("filenamé) write group's contents to specified file
SIZE(maxsizg specify maximum allowable size

Remarks
« Sections within a group are in the order that section definitions are encountered
in the command file or object/library files.

« Any sections that are not placed in a specified group will be grouped together at
the beginning of the output.

« Groups are output in the order in which they are declared in the Linker command
file or the order in which they are encountered in the object and library files.

« Sections which are declared with attributes, (i.e. not in a group) in either the
object or library files, may be put into a specified group by the appropriate
declaration in the Linker command file.

Psy-Q Development System

Examples include "inp.obj"
include "sort.obj"
include "out.obj"
org 1024
regs pc=progstart
comdata group word
code group
bssdata group bss
section datal,comdata
section data2,comdata
section codel,code
section code2,code
section tables,bssdata
section buffers,bssdata
GLOBAL
Description TheGLOBAL directive allows a symbol to be defined which will be treated as either
anXDEF or anXREF. If a symbol is defined &8SLOBAL and is later defined as a
label, it will be treated as &(DEF. If the symbol is never defined, it will be treated
as anXREF.
Syntax GLOBAL symbo|,symbaq]
See Also XREF, XDEF, PUBLIC

Remarks This is useful in header files because it allows all separately assembled
modules to share one header file, defining all global symbols. Any of these symbols
later defined in a module will b¢DEFed, the others will be treated 4REFs.

Psy-Q Development System

XDEF, XREF and PUBLIC

Description If several sub-programs are being linked, to refer to symbols in a sub-program which
are defined in another sub-program, use XDEF, XREF and PUBLIC.

Syntax XDEF symbo|,symbaq]
XREF symbo|,symbaq]
PUBLIC on
PUBLIC off

Remarks

In the sub-program where symbols are initially definedXtb&F directive is

used to declare them as externals.

* In the sub-program which refers the symbols XR&F directive is used to
indicate that the symbols are in a another sub-program.

» The Assembler does not completely evaluate an expression contait{RiE&ed
symbol; however, resolution will be effected by the linker.

» Specifying asizeof .w on theXREF directive indicates that the symbol can be
accessed using absolute word addressing.

 ThePUBLIC directive allows the programmer to declare a number of symbols as

externals. With a parameter of on, it tells the Assembler that all further symbols

should be automaticall{DEFed, until aPUBLIC off is encountered.

Examples Sub-program A contains the following declarations :

xdef Scores,Scorers
xref.w PointsTable

The corresponding declarations in sub-program B are:

xdef PointsTable
xref Scores,Scorers
public on
Origin = MainChar
Force dc.w speed*origin
Rebound dc.w 45*angle
public off

Psy-Q Development System

CHAPTER 13

The PSYLIB Librarian

If the Linker cannot find a symbol in the files produced by the Assembler, it can be
instructed by a Linker command line option to search one or more object module
Library files.

This chapter discusses Library usage andP®¥LIB library maintenance program:

« PSYLIB Command Line Syntax
« Using the Library feature

Pav-0O Nevelnnmant Quvetem

PSYLIB Command Line

Description The Library programPSYLIB.EXE, adds to, deletes from, lists and updates
libraries of object modules.

Syntax PSYLIB [switche$ library module..module

where switches are preceded by a forward slash (/), and separated by commas.

See Also PSYLINK

Switches la Add the specified modules to the library

/d Delete the specified module from the library

N List the modules contained in the library

lu Update the specified modules in the library

Ix Extract the specified modules from the library
Library The name of the file to contain the object module library.

Module list The object modules involved in the library maintenance.

Using the Library feature

To incorporate a Library at link time, specify a library file on the Linker command
line - see chapter 12.

If the Linker locates the required external symbol in a nominated library file, the
module is extracted and linked with the object code output by the Assembler.

Pav-0O Nevelnnmant Quvetem

CHAPTER 14

The CCSH Build Utility

CCSH is abuild utility to execute the C Compiler, Assembler and Linker.
CCSH makes use of theSSH Assembler to process the assembly syntax produced
by the GNU C Compiler. It is discussed in the following sections:

¢ CCSH Command Line
¢ Source Files

Psy-Q Development System

Description

Syntax

Options

CCSH Command Line

CCSH.EXE is a utility that simplifies the process of running the separate 'C' compiler

passes and then assembling and linking the compiler output. O8i&gl you need
only specify the input files and what output format you require, andd&H itself
will execute the tools required to generate the output.

CCSH|options/ filenamég,filename..]]

The command line consists of a sequence of control options and source file names.

Optionsare preceded by a minus sign (-), fit@hames are separated by commas.

Long command lines can be stored in separate control files. These can then be used

on the command line by using a ‘@’ sign in front of the control file name.

Control
-E

-S
-C

Debug
-g...

Optimisation
-0O0
-Oor-0O1
-02

General
-W...
-Dname=val

-Uname
-V

-f...
-m...

Pre-process only. If no output file is specified output is send
to the screen.
Compile to assembler source

Compile to object file. If an output file is specified, then all output is
sent to this file. Otherwise it saved as the source file name with an

.OBJ extension.

Generate debug information for source level debugging

No optimisation (default)
Standard level of optimisation
Full optmisation

Suppress all warnings

Define pre-processor symhahme and optionally to the value
specified.

Undefine the pre-defined symbwhmebefore pre-processing starts
Print all commands before execution

Compiler option

Machine specific option

Psy-Q Development System

Linker

-llibname Include specified librarlibnamewhen linking

-X... Specify linker option

-odestin Specify the destination. Either a file (e.g. prog.cpe), or target (e.g.
t0:) can be specified

See GNU C documentation for full description

Example CCSH -v -g -X0$6010000 main.c -omain.cpe,main.sym

This example will execute the compiler to compile the sourc®léN.C ,then run
ASSH to produce the object file and finally will rédfSYLINK to produce an
executable and symbol fil&MAIN.CPE andMAIN.SYM respectivelyORGd to
the specified address. Theswitch will causeCCSH to echo all commands it
executes to stdout. Thg switch will request full debug info in the symbol file.

CCSH @main.cf -omain

This will force CCSH tause the contents of tiAIN.CF file on the command line,
before the -o option.

Psy-Q Development System

Remarks

Source Files

The specified source files can be either C or assembler source files, or object files.
CCSH decides how to deal with a source file based on the files extension. The
following table describes how each file extension is processed:

.C Passed through C pre-processor, C compiler, Assembler, Linker
A Passed through C compiler, Assembler, Linker

.CC Passed through C pre-processor+ €ompiler, Assembler, Linker
.CPP Passed through C pre-processor+ €ompiler, Assembler, Linker
Al Passed through+@ compiler, Assembler, Linker

PP Passed through+@ compiler, Assembler, Linker

ASM Passed through C compiler, Assembler, Linker

.S Passed through Assembler, Linker

.other Passed through Linker

» The PC file system is not case sensitive and so the case of the extension has no
effect.

» Various command line switches can stop processing at any stage, eliminating
linking, assembling or compiling.

» The -x option can be used to override the automatic selection of action based on
file extension.

» Files with extensions that are not recognised are treated as object files and passed
to the linker. This includeOBJ files, the standard object file extension.

» Several different source files, which may have different file extensions, may be
placed on the command line.

Psy-Q Development System

CHAPTER 15

The PSYMAKE Utility

PSYMAKE is a make utility for MS-DOS which automates the building and
rebuilding of computer programs. It is general purpose and not limited to use with
the Psy-Qsystem. The utility is discussed under the following headings:

« Command Line Syntax
« Format of the Makefile

Psy-Q Development System

PSYMAKE Command Line

Description PSYMAKE only rebuilds the components of a system that need rebuilding. Whether
a program needs rebuilding is determined by the file date stamps of the target file and
the source files that it depends on. Generally, if any of the source files are newer than
the target file, the target file will be rebuilt.

Syntax PSYMAKE [switche}[target filg
or

PSYMAKE @makefilemak

Switches Valid switch options are :

/b Build all, ignoring dates

/d names=string Define name as string

/f filename Specify theMAKE file

/i Always ignore error status

/q Quiet mode; do not print commands before executing them
Ix Do not execute commands - just print them

If no /f option is specified, the default makefileMA\KEFILE .MAK ; if no
extension is specified on the makefile naMAK will be assumed.

If no target is specified, the first target defined in the makefile will be built.

Psy-Q Development System

Contents of the Makefile

The Makefile consists of a series of commands governed by explicit rules
(dependencies) and implicit rules. When a target file needs to be?&MMVAKE
will first search for a dependency rule for that specific file. If none can be found
PSYMAKE will use an implicit rule to build the target file.

Dependencies:
A dependency is constructed as follows :

targetfile [sourcefiles]
[command

command]
« The first line instruct® SYMAKE that the file targetfile' depends on the files
listed as Sourcefiles.

- If any of the source files are dated later than the target file or the target file does
not existPSYMAKE will issue the commands that follow in order to rebuild the
target file.

« If no source files are specified the target file will always be rebuilt.

+ If any of the source files do not exiBtISYMAKE will attempt to build them first
before issuing the commands to build the current target flRSYMAKE
cannot find any rules defining how to build a required file, it will stop and report
an error.

The target file name must start in the left hand column. The commands to be
executed in order to build the target must all be preceded by white space (either
space or tab characters). The list of commands ends at the next line encountered with
a character in the leftmost column.

Psy-Q Development System

Examples main.cpe: main.68K incl.h inc2.h
ASM68K main,main

This tellsPSYMAKE thatmain.cpedepends on the filesain.68K incl.hand

inc2.h If any of these files are dated later timaain.cpe or main.cpedoes not exist,
the command "ASM68K main,main” will be executed in order to create or update
main.cpe

main.cpe: main.68K incl.h inc2.h
ASMG68K /I main,main,main
psylink main,main

Here, two commands are required in order to rebmadh.cpe

Implicit Rules
If no commands are specifiddSYMAKE will search for an implicit rule to
determine how to build the target file. An implicit rule is a general rule stating how to
derive files of one type from another type; for instance, how to coM@M files
into .EXE files.

Implicit rules take the form:

.< source extension >.< target extension >:
command

command]

Each extensior is a 1, 2 or 3 character sequence specifying the DOS file extension
for a particular class of files.

At least one command must be specified.

Examples .s.bin:
asm68K /p $*,$*

This states that to create a file of typa.from a file of type S, the ASM68K
command should be executed. (See below for an explanation of the $* substitutions.)

Psy-Q Development System

Executing commands:
Once the commands to execute have been deternfliB&MAKE will search for
and invoke the command. Search order is:

« current directory;
+ directories in the path.

If the command cannot be foundA&EXE or A.COM file or the command i&.BAT
file, PSYMAKE will invoke COMMAND .COM to execute the command/batch
file. This enables commands like CD and DEL to be used.

Command prefixes:
The commands in a dependency or implicit rule command list, may optionally be
prefixed with the following qualifiers :

@ - suppress printing of command before execution
- number - abort if exit status exceeds specified level
- - (without number) ignore exit status (never abort)

« Normally, unlesgq is specified on the command lirRSYMAKE will print a
command before executing it. If the command is prefixed by @, it will not be
printed.

« If acommand is prefixed with a hyphen followed by a nunB8lY MAKE will
abort if the command returns an error code greater than the specified number.

« If a command is prefixed with a hyphen without a numB&YMAKE will not
abort if the command returns an error code.

« If neither a hyphen or a hyphen+number is specified/idadot specified on the
command linePSYMAKE will abort if the command returns an error code other
than 0.

Psy-Q Development System

Macros A macro is a symbolic name which is equated to a piece of text. A reference to that
name can then be made and will be expanded to the assigned text. Macros take the
form:

name= text

Thetextof the macro starts at the first non-blank character after the equals sign (
=), and ends at the end of the line.

Case is significant in macro names.
Macro names may be redefined at any point.

If a macro definition refers to another macro, expansion takes place at time of
usage.

A macro used in a rule is expanded immediately.

Examples FLAGS=/p/s

:é8K.bin:

ASMG68K $(FLAGS) /p $*,$*

The $FLAGS in theASM68K command will be replaced witp /s.

Pre-defined macros:
The following pre-defined macros all begin with a dollar sign and are intended to aid

file

$d

$*

$<

$:

$.

$&

usage:
Defined Test Macro, e.g.:
lif $d(MODEL)
if MODEL is defined ...
Base file name with path, e.g. C:\PSYQ\TEST
full file name with path, e.g. C:\PSYQ\TEST.S
path only, e.g. CI\PSYQ
full file name, no path, e.g. TEST.S
base file name, no path, e.g. TEST

The filename pre-defined macros can only be used in command lists of dependency
and implicit rules.

Psy-Q Development System

Directives:

Expressions:

The following directives are available:

lif expression

lelseif expression

lelse

lendif

These directives allow conditional processing of the text betweef) diseif else
andendif Any non-zero expressiontisie; zero isfalse

lerror message Print the message and stop.

lundef macroname Undefines a macro name.

Expressions are evaluated to 32 bits, and consist of the following components :

Decimal Constants e.g. 1 10 1234

Hexadecimal e.g. $FF00 $123abc

Monadics -~

Dyadics +-*/%>< &
| " && ||
><>:<:::(or:)
I= (or <>)

The operators have the same meanings as they do in the C language, except for = and
<> ,which have been added for convenience.

Value assignment:

Note

Macro names can be assigned a calculated value; for instance:

NUMFILES == $(NUMFILES)+1
(Notetwo equals signs in value assignment)

This evaluates the right hand side, converts it to a decimal ascii string and assigns the
result to the name on the left.

In the above example, MUMFILESwas currently "42", it will now be "43".

NUMFILE = $(NUMFILES)+1

would have resulted INUMFILESbecoming "42+1".
Undefined macro names convert to '0' in expressions and null string elsewhere.

Psy-Q Development System

Comments:
Comments are introduced by a hash mark (#):

main.exe: main.s # main.exe only depends
on main.s

whole line comment

Line continuation:
A command too long to fit on one line may be continued on the next by making '\' the
last character on the line, with no following spaces/tabs:

main.exe : main.s il.hi2.h\
i3.hi4.h

Psy-Q Development System

CHAPTER 16

Psy-Q Debugger for Windows 95

Introduction

The Psy-Q Debugger for Windows ‘95 takes advantage of the new range of 32-bit
operating systems available for PCs; it provides full source level as well as traditional
symbolic debugging and supports and enhances all the power of the DOS-based
version plus the advantages of a multi-tasking GUI environment.

It helps you to detect, diagnose and correct errors in your programs via the step and
trace facilities, with which you can examine local and global variables, registers and
memory.

Breakpoints can be set wherever you need them at C and Assembler level and if
required, these breaks can be made conditional on an expression. Additionally,
selected breakpoints can be disabled for particular runs.

The Debugger employs drop-down menus, tool buttons, keyboard shortcuts and pop-
up menus to help you debug quickly and intuitively.

Projects

The Debugger uses Projects to group together details of Files, Targets, Units, Views
and other settings and preferences. All this information is saved and made available
for your next debugging session.

Views

The Debugger offers the functionality of splitting the screen into a number of Panes,
each displaying discreet or linked information. This information is available within a
View, or document window (MDI Child). Each View can be split horizontally or
vertically into the number of Panes you require and each Pane can be set to show a
specific type of information.

You can have as many combinations of either tiled Panes or overlapping Views as
you choose.

Your choice of Views depends on the level at which you are debugging. For
example, it is appropriate to use a Register Pane for assembler debugging and a Local
Pane when debugging in C.

Psy-Q Development System

Individual Views can be saved on disk for subsequent use in other Projects.
However, when you close the Debugger and then re-start a session, your previous
screen set-up will initially be displayed automatically.

Colour Schemes

To aid identification, @eparatecolour scheme can be allocated to the Views used by
each Unit that you reference. Alternatively, the same colour can be allocatied to
Views.

Files

The Symbol Files you require are located and loaded by the Debugger and the
relevant CPE and Binary Files are downloaded to the Target. Where a multi-unit
system is in use you must also specify the Unit where Symbol and Binary Files are to
be loaded.

Dynamic Update

Changes in memory are highlighted on each display update, showing which areas of
memory are being altered as the Target is being run and you are stepping and tracing
your code.

The following topics are discussed in this chapter:

On-line Help

Installing the Debugger
Launching the Debugger

The Psy-Q File Server
Connecting the Target and Unit
Project Management

Psy-Q Debugger Productivity Features
Views

Panes

Debugging Options

Closing the Debugger

Psy-Q Development System

On-line Help Available For The Debugger

Help text describing the features covered in this chapter, can also be accessed on-line
via the Help menu on the main menu.

Selecting these options will result in the following:

» Contents will display the Contents page of the help system in the left-hand side of
the screen. Clicking any of the underlined topics will provide further information
about the relevant subject.

» Pane Types and the required Pane will directly access relevant text for the chosen
Pane.

* Installation will display installation procedures.

» About will provide the Version Number.

Within the on-line help system, clicking text witldatted underline will display a
pop-up description but double-clicking text witkaid underline will display another
(linked) help page.

The buttons at the top of the help text window can be used to facilitate the following:

» Search and/oriRd to locate a particular word or topic.
» Back to re-display the previous page.

» << and > to display the previous and next page in the browse sequence, as
outlined in the Table Of Contents. (See below).

* Glossary to display an alphabetic listing of terms found in the help system. Click
on any topic to obtain a pop-up definition.

As well as accessing information via the Contents page, on-line help can also be
located via the Table Of Contents in the right-hand area of the screen. This
represents the subject areas of the help system as book icons. Double-click any icon
to display titles of the individual pages which compose each ‘book’. Double-click

any of these pages and the text will be displayed in the left-hand side of the screen.

Psy-Q Development System

Installing The Debugger

A Set-up program is used to install the Debugger; this is distributed via either of the
following methods:

* Full Release Files

* Maintenance Patch Files

Both methods are described in more detail below the Directory Structure.

Directory Structure

All the Files relating to the Windows software live in one directory tree. This tree
can reside anywhere but it is probably easier to locate it on the root of a local drive.

The default directory name is:
‘C:\PsyQ_WinV’

and it isrecommendethat you follow this convention. Set-up also installs several
Files in the Windows System directory and adds two keys to the Registry.

These keys are:

[HKEY_LOCAL_MACHINE\SOFTWARE\SN Systems] (hardware settings)
[HKEY_CURRENT_USER\Software\SN Systems] (configuration information)

Set-up also registers the File typpsy (Psy-Q Project).,pgp (Psy-Q patch) anadpe
and adds some programs to the Start menu.

IMPORTANT: Do not install the program on a server and execute it across g
network. For un-installation advice, please contact SN Systems.

Psy-Q Development System

Obtaining Releases And Patches

Releases and patches are available directly from SN Systems’ BBS and ftp sites. In
order to access these sites you will need an account with the necessary permissions.

To apply for an account telephone SN Systems or contact them via
Support@snsys.com. Patches and releases can also be obtained via email in MIME,
provided that you are a member of the Windows-Users mailing list. (See below).

Note: Members of the Windows-Users mailing list will be notified of releases and
patches as they become available.

Determining The Latest Releases And Patches

This is achieved via any of the following methods:

* Contact John@snsys.com
* Look in one of the File sites for the latest Files and information

* Send malil to the auto-responder maildrop - Versions@snsys.com.

Mailing Lists
SN Systems maintain the following mailing lists:

* Announce@snsys.com - For all announcements regarding Psy-Q
* Windows-Users@snsys.com - For up-to-date information

* Windows-Discuss@snsys.com - For all Debugger users (discussion)

The first two are read-only and provide details about revisions and other information.
The third is an open read/write list which hosts any Debugger related discussions,
problems, suggestions or comments.

For more information on these lists, send a HELP message to Norman@snsys.com
(the Robot List Manager) or John@snsys.com.

Psy-Q Development System

Addresses for SN Systems’ ftp, web and BBS sites

 ftp://ftp.snsys.com
* http://www.snsys.com
* BBS - +44 (0)117 9299 796 and +44 (0)117 9299 798

Beta Test Scheme

SN Systems maintain a separate scheme for beta testing new versions of the
Debugger.

The benefits of this are as follows:

* You will receive new versions of the Debugger before any other user

* You will have a prioritorised chance to supply feedback to the Debugger’s authors

If you are a member of this scheme, you don't need to install release versions of the
Debugger.

For more information, contact John@snsys.com.

Psy-Q Development System

Installing A Full Release

A Full Release File contains an archive of several Files and a Set-up program that can
be used to install the Debugger automatically.

To install the release:

1. Obtain the latest full release from SN Systems.
2. ReadReadme.txtwhich contains last-minute installation instructions.

3. If the release is on a floppy, launSktup.exestraight-away. If however, the
release is in a zip File, you must unzip the File into a temporary directory and then
launch Setup from that temporary directory.

4. If this is the first full installation of the Debugger, confirm the displayed license
conditions.

5. Specify or confirm the directory in which you wish to install the Debugger.
6. The Files will be installed and the Registry will be updated.

7. Depending on the type of installation, specify the settings for the DEX Board or
SCSI Card. (Se€onfiguring Your Dex Board/SCSI Card below).

8. Once the dialogue has been completed the installation is complete.

Note: This method can be used for the first installation of the Debugger and also for
subsequent upgrades if you do not wish to use Maintenance Patches. See
Upgrading Your Systembelow.

Psy-Q Development System

Upgrading Your System

From time to time, SN Systems will provide updates to the Debugger that introduce
bug fixes and new features. For your convenience, updates are supplied as full
installationsand as maintenance patches.

A Maintenance Patch contains only the difference between Files so it is much smaller.
This makes it quicker to download and apply. However, patches can only be applied
over certain previous versions.

To apply a Maintenance Patch:

1. Determine your current release by readingAheut box for the Debugger.

2. Obtain the Maintenance Patch from SN Systems. Instructions will be provided so
you can determine which patch must be applied.

3. Apply the patch by using the PQSetup program. This is available on the Start
menu or by double-clicking a patch file (.pgp). Follow the on-line instructions.

Psy-Q Development System

Configuring Your Dex Boards

If you are installing a Full Release for the Sony PlayStation (DEX only), you must
specify the settings for these DEX Boards.

Enter appropriate values to the dialogue box displayed during the Set-up program.

-1 DEX board settings |
Choosze settings to match the ones on your
DEX board.
Port Addrezs [hex): 1]1]1]
IRQ: 10 j
Parallel [hex]: 11111}
1] Cancel Help. .. |

DEX Board Settings Dialogue Box

1. Enter a 3 or 4-digit hexadecimal number toBoet Address andParallel boxes
and specify atRQ value by clicking on the down arrow and selecting as
appropriate.

2. Click .

3. The installation is now complete.

IMPORTANT: Port AddressandIRQ values must be correct for the Debuggef to
work. If they are incorrect or another device is configured to use
similar settings, the programs will not work.

Note: TheParallel setting should be set to the I/O address of the port to which your
dongle is connected. Most PCs @3@for 1ptl:. If your dongle is on a
different parallel port or your PC uses a non-standard port address, change this
value. Se&AQ.DOC for more information.

Psy-Q Development System

Configuring Your SCSI Card

If you are installing a Full Release for a SCSI Target, you must specify the settings
for the SCSI Card.

Enter appropriate values to the dialogue box displayed during the Set-up program.
-1 SCSI card settings |
Choose theze setings to match the ones on
your SCS1 board.
Port Address [hex): 300 =]

IRA: 5 M

Cancel | Help._. |

SCSI Card Settings Dialogue Box

1. Specify aPort Addressand IRQ value by clicking on the down arrows and
selecting as appropriate.

2. Click .

The installation is now complete.

IMPORTANT: Port AddressandIRQ values must be correct for the Debuggef to
work. If they are incorrect or another device is configured to use
similar settings, the programs will not work.

Note: The IRQ value can be set@do run without interrupts. However, this is only
recommended for troubleshooting since running without interrupts will
seriously impair the performance of the system.

Psy-Q Development System

Testing The Installation

Once the Debugger has been installed, you should noRsyfBerve.exen order to
test that the configuration is working correctly.

A similar message to the following should be displayed:

Psy-Q File and Message Server, Copyright 1995, SN Systems Ltd,
Version: 1.00 (December 1995)

Target: Sony Playstation Plug-In
Resources: Port=0x390, Interrupt=12

Loading SCSI Drivers...
Connected to SONY_PSX5.15
Ready to Serve

If no message appears at all, yBart andIRQ settings may be incorrect or there
may be a resource conflict with some other device.

However, you can change tRert/IRQ settings by re-running the Set-up program
as follows:

1. Click == on the Open File dialogue box.

2. Select the appropriate Card from the Cards menu.

You will then be presented with the same dialogue box as was displayed during
installation.

SeeFAQ.DOC if you continue to have problems.

Psy-Q Development System

Documentation

If you experience problems during installation, the following documents provide
useful information:

* README.DOC details how to obtain and apply maintenance releases

* FAQ.DOC contains Frequently Asked Questions ahduld be consulted if you
experience any problems

* BUG.TXT describes how to report bugs

 TODO.TXT lists known bugs, problems and features that are not yet
incorporated into the Debugger

Psy-Q Development System

Launching The Debugger

There are several ways of launching the Psy-Q Debugger under Windows ‘95.

A simple way is as follows:

1. Select theStart menu from Windows 95.

2. Choose the Programs option from the list displayed.
3. Select thePsy-Qfolder from the list of programs.

4. SelectPsy-Q Debuggerfrom the folder.

You can also launch the Psy-Q Debugger from the desktop or folders or through
Explorer in Windows ‘95.

With the drag and drop facility you can drop a Psy-Q Debugger Project File
(extension .PSY) onto the icon of the Debugger and the selected Project is launched.

Alternatively, as file type .PSY has been registered with the Windows ‘95 shell, you
can right-click on a Project File, select Debug from the menu and the Debugger will
be launched with the selected Project.

Note: While the Debugger is still running, you can operew Project by following
the procedure described in the previous paragraph.

When you launch the Psy-Q Debugger it scans for recognised Units and if none are
found a dialogue box prompts you to eitRepoll or Quit. If the latest downloader
has not been installed you are prompted to download this. The Psy-Q File server is
automatically launched with the Debugger.

See Also:

Launching PsyServe without the Debugger

Psy-Q Development System

The Psy-Q File Server

The primary function of the Psy-Q File Server is to provide the PC Open and PC
Read functions for your program.

It is always launched when the Debugger is launched and must always be running in
the background while the Debugger is being used, both file serving and collecting
messages.

When the File Server is running, the icon and name of the application appear on the
Task bar of Windows ‘95.

You can view the messages appended into the message window of the File Server
during debugging by clicking on this icon.

,'E_J Psy-0 File Server Hi=]
Server Wiew Help
BOOTSTRAP LOADER Type C Yer 2.1 03-JUL-1994 ﬂ

Copyright 1993,1994 [C] Sony Computer Entertainment Inc.
KERNEL SETUP!

Configuration : EvCBIOx101IITCBI004

boot file : cdrom:PS5x.EXE;1

EXEC:PCO[00010000) T_ADDR[0O00T0000] T_SIZE[0ODDDSB00]
boot address : 00010000 80100

Ex<ecute !

S_ADDR[801fff00) S_SIZE()
Id SONY_PSX5.19

Heady to Serve
1 »

File Server Message Window

If you wish the message window to be permanently displayed on top of other
windows, select Always on Top from theew menu.

Psy-Q Development System

When the Debugger or File server experiences a communication error, a dialogue box
will display a relevant error code and a Retry and Cancel button.

Communication Error E |

Q Cannot connect to target ; Failed with code 6

Chooze 'Cancel to abaort

Cancel |

Communication Error Dialogue Box

Press Retry and the attempted connection will be repeated; press Cancel and the
system will try to carry on and will attempt to recover from the error.

Note: If the Debugger comes up with this message, the File Server can still be used
to reset the Target.

File Server Menu Commands

In addition, seven menu commands can be used with the File server:

* Run Project loads all Files (except Symbol Files) that are set to ‘download on
project startup’ and runs the Project without loading the Debugger

» Download CPEFile to the Target.

* Run CPEruns the Target after the CPE File has been downloaded.
* Ping determines the current status of the Target

» Halt provides the option to stop the Target if it is running.

* Clear Window removes any File Server messages.

* Reset Target

Psy-Q Development System

Note: Resetting the Target while the Debugger is running may cause unpredictable
results.

Note: The Reset option is also available from the System menu of the File server.

IMPORTANT: The Psy-Q File Server must always be running when the
Debugger is running. You will not be permitted to stop the
server until you close the Debugger; however, the File Server
can be run without the Debugger .

Launching The File Server Without The
Debugger

If you wish to launch the File Server independently of the Debugger, for example, to
run your Project without loading the Debugger:

1. Select theStart menu of Windows ‘95.
2. Choose the Programs option from the list displayed.
3. Select thePsy-Qfolder from the list of programs.

4. Choose thé@sy-Q File Serveroption from the folder.

Note: When you launch the File server the Target is automatically reset, whether
the Debugger is running or not.

See Also:

Launching the Debugger

Psy-Q Development System

Connecting The Target and Unit

The Psy-Q Debugger automatically checks your system when you launch it, identifies
any Targets that are connected and according to whether you are running a single or
multi-Unit system, automatically connects to the relevant Unit(s).

The Unit toolbar appears at the bottom of the Debugger window directly above the
Status line. The first icon in the toolbar has a pictogram of the Target known as the
Unit button.

B

Unit Button

There will be a Unit toolbar and unique button for each Unit identified. Click on the
button to display the Unit menu. This menu allows you to download and load (as
relevant) foreign CPE and foreign Symbol Files and download non-foreign CPE and
Binary Files. The menu also allows you to see and edit breakpoints.

The menu options are:

Download CPE

Download Binary

Load Symbols

Breakpoints
Each toolbar contains a set of debugging icons which represent:

e Starting programs
e Stopping a program running
e Stepping into a subroutine

e Stepping over a subroutine

Psy-Q Development System

Note: Note that these actions operate only in respect of the relevant Unit; therefore,

where a multi-Unit system is in use they will not necessarily operate in respect
of the Active View.

Note: The Psy-Q File server is automatically launched when the Psy-Q Debugger is

started. The Server window displays any output from the Target while it is
running.

Psy-Q Development System

Psy-Q Projects

A Psy-Q Project is a combination of the elements and settings associated with a
specific development project.

It consists of any or all of the following:

* Units to be debugged
» Screen layout

» CPE Files

* Symbol Files

* Binary Files

* Breakpoints

» Other settings and preferences.

This set of information is used by the Debugger to track the debugging process.
When you save a Project this includes all the Views, colour schemes and breakpoints
already specified for it. These settings are reinstated when the Project is next
opened.

Setting Up And Managing Projects

To create a new Project you can either:

1. Open the default Psy-Q Project by selecting New from thg& menu.

2. Save and name the Project.
or

1. As 1) above.

2. Select files for the Project and add them to the file list.
3. Set file properties for executable files.

4. Save and name the Project

5. Re-open the Project with the files in the file list.

Psy-Q Development System

Selecting Files For Your Project

The Psy-Q Debugger uses files that are output from the build process. Three types of
file may be included in the Project; these are:

CPE Executable Files
Symbol Files
Binary Files

Adding Files To The List Of Project Files

This is achieved as follows:

1.

2

3

4

Select the Project menu from the Menu bar.

Choose Files from the menu; the Files dialog appears.

Click ﬂ to insert them into your file list.
Select CPE, Binary or Symbol Files from tRées of Type’ drop-down list.

Locate the file and clic.

When you add a file to the file list a relevant dialog box requests you to set the file
properties. For CPE and Binary Files these will determine the downloading of
files to the Target. Additionally, for Binary and Symbol Files, they determine the
Unit to which they will be loaded. See thinderstanding File Properties’

sections below.

Note: It is not necessary to specify the Unit to which a CPE File should be loaded
as this information is held within the file itself.

Repeat the operation until all the files you require appear in the list. To remove a
Bemove

file from the list, highlight it and clic
Click when you have added all the files you require.

The CPE and Binary Files will be downloaded in the order shown in the file list.

Psy-Q Development System

Note: As file type .CPE has been registered with the Windows ‘95 shell, you can
run a program directly from the shell by double-clicking on the relevant
CPE File. Alternatively, if you wish to download the file to the Target
without running it, right-click the relevant file and select Download from
the menu.

Note: When you add Binary and Symbol Files to a Project they are not loaded
until the Project is saved and re-opened.

Changing The Order Of Files In The File List

If you have multiple CPE and Binary Files within your Project, the order in which
they are loaded during debugging is determined by the position you placed them in
the File list.

To change the file sequence:

1. Select the Project menu from the Menu bar.
2. Choose Files from the menu.
. Highlight a file.

w

4. Usel Promote | [Demote |, aiter the position of the file in the list.

Repeat the process until the files are in the required order.

Note: This option is only useful if you have multiple CPE and Binary Files in your
Project and the load order is important.

Psy-Q Development System

Specifying CPE File Properties

When you select a CPE File to include in your Project, a dialogue box requests that
you set the properties for this file.

These properties allow you to control the downloading of files to the Target. The
options are:

» Download when Project starts- This causes the CPE File to be downloaded
when the Project is opened or reopened.

* Run after CPE has been downloaded This causes the Unit to start running the
code after downloading the file.

You may select either or both of these properties for any CPE File in the Project.

If you do not set the properties of at least one CPE File, the Debugger will not
download any files to the Target when the Project is opened.

To change CPE File properties:

1. Select the Project menu from the Menu bar.
2. Choose Files from the menu.
3. Select the CPE File to change.

. Properties...
4. Click ;l.

5. Use the check boxes to apply the properties.

6. Click __Close |

Psy-Q Development System

Specifying Symbol File Properties

When you select a Symbol File to include in your Project, a dialogue box requests
that you confirm or specify the Unit to which the file should be loaded.

To change Symbol File properties:

1. If the required Unit is not already displayed, click the down arrow until it appears.
. Highlight the required Unit.

3. Click .
4. Click__Clese |

N

Psy-Q Development System

Specifying Binary File Properties

When you select a Binary File to include in your Project, you must complete the
following dialogue box:

[Binary Properties |

Binary Properties:
v Download when project is started

Address: | 0x§000F000 |
Unit: In,

Binary File Properties Dialogue Box

These properties allow you to control the downloading of files to the Target:

Download when Project starts- If this is selected the Binary File will be
downloaded when the Project is opened or reopened.

Downloaded to a specified addressThe files will be downloaded to the address
specified. This should be in OX notation for hexadecimal numbers. The default
address will be zero.

Specify the Unit where the File is to be loadedClick on the down arrow to
display further Units.

If you do not set the first option for at least one Binary File, the File Server will not
download any Binary Files to the Target when the Project is opened. However, all
Binary Files in the Project will be available on the relevant Unit menu.

To change Binary File properties:

1.

2.

Select the Project menu from the Menu bar.

Choose Files from the menu.

Select the Binary File to change and ¢ _—operies |

Select thebownload when Project startsoption if required and/or enter a
relevantaddress

Confirm or specify the Unit where the File is to be loaded.

cliok %]

Psy-Q Development System

Saving Your Project

Once the files have been selected, the new Project must be saved and re-loaded
before debugging can begin.

This is achieved as follows:

1. Select the Project menu from the Menu bar.

2. Choose the Save option from the menu.

3. Give a name and path to your Project.
File names in Windows ‘95 are up to 250 characters long and can contain spaces.
Psy-Q Debugger Project Files must be saved with the default File extension of
PSY.

4. Click | =2ave

Note: For a new Project you can choose the Restore rather thaawb®&ion.
Restore prompts you to save the Project before reloading it.

Note: The Saveor Save A options can be used to save an existing Project.

Re-opening A Project

After saving a new Project you must re-open it before working with the files which
have been added to the file list.

This is achieved as follows:

1. Select the Project menu from the Menu bar.

2. Choose the Re-open option from the menu.

Note: The Re-open icon on the tool can also be used to re-open a Project.

Psy-Q Development System

Saving A Project Under A New Name

The Save As option on the Project menu is used to save changes made to an existing
Project, under a new name.

The default File extension for a Psy-Q Debugger ProjePtS¥. When you save
Project Files you must use this extension.

To save a Project under a new name:

1. Select the Project menu from the Menu bar.
2. Choose the Save As option from the menu.

3. Give a name and path to the renamed Project.

4. Click | =2ave

Restoring A Project

The Restore option on the Project menu is used to re-load a Project in the state in
which it was last saved, abandoning any changes made since the last save.

To restore a Project:

1. Select the Project menu from the Menu bar.

2. Choose the Restore option from the menu.

Psy-Q Development System

Opening An Existing Project

When you launch the Psy-Q Debugger, the last Project you worked on will be loaded
automatically.

To open daifferent Project:

1. Select the Project menu from the Menu bar.
2. Choose the Open option from the menu.
3. Select the Project (.PSY) you require.

4. Click | Geen |

Note: An existing Project can also be opened via the Open Projenfound
on the toolbar.

Note: As File type .PSY has been registered with the Windows ‘95 shell, you can
run a Project by double-clicking on the relevant .PSY File within the shell.
Alternatively, if you only wish to load the Project into the Debugger, right-
click the relevant file and select Debug from the menu.

Psy-Q Development System

Manually Loading Files Into A Project

External Files can be downloaded at any time; they are not saved with the Project.

ExternalCPE Files aredownloadedto the Target as follows:

1. Click on the Unit menu at the base of the Debugger screen.
2. Choose the Download CPE option from the menu.
3. Choose the External File option.

4. Browse and select the required CPE File.

s cliok []

Note: You can also download a CPE File by double/clicking it within the shell.

Symbol Files can bdéoadedinto the Debugger as follows:

1. Click on the relevant Unit menu at the base of the Debugger window.
2. Choose the Load Symbols option from the menu.

3. Browse and select the required Symbol File.

s cliok [%]

Psy-Q Development System

The Psy-Q Debugger Productivity Features

To enable you to work faster and more efficiently when using the Psy-Q Debugger,
the following two features speed up your control of the debugging runs.

e Toolbar Icons

* Hot Keys

Toolbar Icons

The toolbar contains the group of icons shown above. Icons provide a quicker means
of activating commands and setting properties.

From left to right they represent the following actions:

Open a Project File

Save and then reopen the current Project
Open a new View

Switch to the next View

Split the Active Pane horizontally

Split the Active Pane vertically

Delete the Active Pane

Set the default colour scheme

The Show Toolbar option on thedfect menu is used to toggle the menu bar on and
off. When the option is ticked the toolbar is displayed.

To toggle the toolbar:

1. Select the Project menu from the Menu bar.
2. Choose the Show Toolbar / Hide Toatloption from the menu.

Note: Every Pane type has its own, additional toolbar which is appended to the
main toolbar when that Pane is made Active.

Psy-Q Development System

Hot Keys

The following Hot Keys can be used instead of the Debugger menu options:

F2

F3

F4

F5

F6

F7

F8

F9

Esc

Ctrl + Shift + D
Ctrl + Shift + L
Ctrl + Shift + M
Ctrl + Shift + R
Ctrl + Shift + S
Ctrl + Shift + W
Shift + Arrow Keys

Ins

Split Horizontal

Split Vertical

Delete current Pane

Toggle breakpoint on and off

Run to cursor

Step into a subroutine

Step over a subroutine

Run a program

Stop a program running

Change Pane to Disassembly Pane
Change Pane to Local Pane
Change Pane to Memory Pane
Change Pane to Register Pane
Change Pane to Source Pane
Change Pane to Watch Pane
Activates adjacent Pane in the specified
direction. Where more than one, the
current caret position determines the
Pane to be made Active

New View

Note: These keys will all operate in respect of Aative Pane.

Psy-Q Development System

Psy-Q Views

A View appears in the main window of the Psy-Q Debugger; it is used to display
debugging information according to your requirements and to control step and trace
actions during debugging.

When a Psy-Q Project is first created it has a default Pane layout.

Views can be split into as many Panes as you wish. These can be of the same or
different types.

Only one is Active at any time; it will be displayed in a different colour scheme to the
others.

Notes: Having created a View of different Panes you can save this as a View File
either in, or independent of, the Project. Further information about Panes
can be found iWorking With Panes andSelecting A Pane Type

Psy-Q Development System

Creating A Psy-Q View

Within a Psy-Q Project you can create as many Views as required; in turn, each
View can be split into as many Panes as you need.

When you open a new Project, one View is displayed for each Unit connected.

I= Psy-Q Debugger for Windows = (o] =]
Froject View Debug Register “Window Help
L SEISITEIE el 2] E [&sl&]

oooon4z4

addiu
b
addiu

bne

|Se|e|:1 Files using ProjectFiles...

Default View

To create a new View:

1. Select the View menu from the Menu bar.
2. Choose the New option from the menu.

3. From the Choose Unit box specify the Unit for which you wish to create a new
View.

Note: The Choose Unit box will not appear when you are connecteslingle
Unit.

Psy-Q Development System

You can also use the New View icon on the too“:ﬂ to create a new View or
use the Hot Keynsert.

Alternatively, you can open a new View from the relevant Unit button, in which case
you won’t be prompted for the required Unit.

Note: A new View is supplied with the title ‘Default View’. The View Name option
in the View menu should be used to give it a title.

Note: Views can be saved either inside or outside of Psy-Q Projects.

Cycling between Views

If you have more than one View open within a Project you can cycle between them
as follows:

1. Select the View menu from the Menu bar.

2. Choose the Next View option.

The Views are cycled around until you see the one you require. All Views appear on
the View list regardless of the Unit for which they have been specified.

Alternatively, the Next View icon on the tool , the Hot Key<Ctrl + F6 or
Ctrl + TAB can be used to cycle between Views.

Psy-Q Development System

Saving Your Views

Any number of Views can be saved within a Project.

All open Views will automatically be saved when you save the Project and will be
opened when the Project is re-opened.

View Files can also be saved independently of Projects using the Save As command
on the View menu.

This is achieved as follows:

1. Arrange the Panes as you require.
2. Select the View menu from the Menu bar.
3. Choose the Save As option from the menu.

4. Give the View a name and path.

5. Clickl 22

Note: The name you give the View File is not displayed on the View. To give a
View a title use the View Name option on theeW menu.

Naming A View

Because you can use many Views within a Project, it is helpful to give each View an
individual title.

1. Select the View menu from the Menu bar.
2. Choose the View Name option from the menu.

3. Enter the View name in the edit box.

4. Click . The name appears at the top of the View.

Note: This is not the name of the File. See the nofeawing Your Viewsabove
for further details.

Psy-Q Development System

Changing Colour Schemes In Views

To change the colours for a particular Unit:

1. Activate a View/Pane on the Unit that you wish to set colours for.
2. Select the View menu from the Menu bar.

3. Choose Set Default Colours... from the menu.

The following areas may be changed for the Active Unit:

Inactive Pane background colour
Inactive Pane text colour

Active Pane background colour
Active Pane text colour

PC text colour

Changed information colour
Breakpoint background colour

Breakpoint text colour

4. Click on the box representing the area you wish to amend.

A standard Windows dialogue box allows you to choose from a range of standard
or customised colours.

1 Set Default Colours E |
- Colours:

- Background - Active Background

|:| Text |:| Active Text

|:| PC - Breakpoint
- Changed - Breakpoint Text

Cancel | Help

Set Default Colours Dialogue Box

Psy-Q Development System

5. Select the required colour(s).

6. The selected colour scheme will be displayed for all visible
Views.

7. Select to retain the revised coloursﬂl to

revert to the original scheme.

Unit colours can also be amended by clicking on the Set Colouron the
toolbar.

Psy-Q Development System

Working With Panes

When a Psy-Q Project is first set up, the default View contains a default Pane layout
for each Unit connected. However, this View can be split into as many Panes as you
wish. These can be of the same or different types. Only one of the Panes is Active;
it will be displayed in a different colour scheme to the others.

A Pane can be made Active via any of the following methods:

e Clicking on it

» Changing the Activ&/iew and the first Pane created for that View will become
Active

» UsingShift and the appropriat@row key to Activate the Pane in the specified
direction

» Clicking the right mouse button on the required Pane and selecting from the
displayed menu

Splitting Panes

A View can be divided into as many Panes as you wish. Click on the one you wish to
split to make it Active, then:

1. Select the View menu from the Menu bar.

2. Choose either Split Vertical or Splitadzontal from the menu.

The Active Pane is split in half, either vertically or horizontally, depending on your
choice.

You can also split a Pane horizontally or vertically via the icons on the toolbar
E"!T!I or by using the hot key&2 to split horizontally o3 to split vertically.

Note: When you split a Pane the two halves will both be of the same type as the
original. The font for the new Pane will also match that of the original.

Psy-Q Development System

Changing Pane Sizes

To change the size of Panes:
Drag the splitter bar between the Panes with the mouse.

The size and position of the Panes is saved when you save the View or the Project.

Note: Splitter bars only control the areas between the Panes. If you wish to change
the size of the Debugger window you have to use the borders of the window
itself.

Deleting A Pane

The Delete Pane option on the View menu is used to delete a Pane within a View, as
follows:

1. Click on the required Pane to make it Active.
2. Select the View menu from the Menu bar.

3. Choose Delete Pane from the menu.

Alternatively, the Delete Pane icon on the too or the hot key4 can be used
to delete the Active Pane.

Psy-Q Development System

Changing Fonts In Panes

If required, the Set Font command can be used to change the display of text within a
Pane, as follows:

1. Make the required Pane Active.
2. Select the View menu from the menu bar.

3. Choose Set Font from the menu.

A standard Windows dialogue box allows you to select from the available fonts.

Note: When you split a Pane, the new Pane will be displayed in the same font as the
original one.

IMPORTANT: You will only be able to use non proportional fonts, e.g. Courier,
New Courier, Fixed Sys, Terminal..

See Also:

Changing Colour Schemes In Views

Psy-Q Development System

Scrolling Within A Pane

Many Panes are unable to display the full set of information that is available to the
Debugger in the small screen area shown. Therefore, the Debugger puts scroll bars
onto Panes where there is more information than can be displayed on that part of the
screen.

To see this additional information drag the thumb within the scroll bar or click on the
arrows at either end of the scroll bar.

You can also scroll to the region you want by clicking on the required Pane to make
it Active and then clicking and holding the left mouse button before dragging it to the
top or bottom of the Pane.

See Also:

Changing Pane Sizes

Psy-Q Development System

Selecting A Pane Type

There are six types of Pane and you may display any number and combination.

A menu that allows you to change Pane properties is accessed via the Pane menu on
the Menu bar or by right clicking the mouse on a relevant Pane. These menus are
unique to the type of Pane that is Active but all the menus have the Gpamge

Panethat allows you to switch between the different types.

Additionally, icons representing each type of Pane ammacentto the main
toolbar.

Registers Pane Displays the registers of the relevant CPU

Memory Pane- Displays areas of memory within the Target
Source Pane Displays Source Files associated with program that CPU is runnjng
Disassembly Pane Displays the code that the CPU is running

Watch Pane- Displays ‘watches’ or expressions

Local Pane- Displays local variables

Click on the relevant icon to change the Active Pane.

Note: You can also use the Hot Keys to switch between Pane types.

Psy-Q Development System

Icons representing menu options for the selected Pane are dynamically appended to
thefar right of the main tool bar. For example, iDésassemblyPane is Active,
Disassembly Pargptions will be displayed.

Further details about the options for each type of Pane can be found below.

Memory Pane

There are three areas displayed on the Memory Pane: to the left is the memory
address; in the middle is the value at the displayed memory address; and to the right is
an optional ASCII display of the values which can be toggled on or off.

= Psy-Q Debugger for Windows - [Memory]

ﬂ Project Yiew Debug Memu:ur_l,l Window Help _|5’|5|

Memory Pane Display

You cangoto an area of memory by typing the required address over the memory
address or by selecting Goto from the Pane menu and entering a known address or
label name to the dialogue box displayed.

See Also:
Moving To A Known Address Or Label

Use the scroll bars or thgoto functions described above to move around the display.

The default setting for the Pane is in bytes with the ASCII display set.

Psy-Q Development System

Change this default by selecting the Pane menu and choosing from the options:

* Bytes

* Words (bytes x 2)

* Double words (bytes x 4)

* ASCII (Toggle ASCII display on and off)

» Set Width (Changes the number of bytes displayed on a line)

i I] m i |:21 Alternatively, clicking on these icons will activate the

options listed above.

You can overtype the hexadecimal or ASCII displays to alter the content of the
memory. A change to the hexadecimal display will be reflected in the ASCII display
and visa versa.

When you move the mouse pointer over the values, the Status line displays the
Memory Address and one of the following Memory Types:

+ RAM
+ ROM

e |nvalid.

Invalid memory is displayed as question marks instead of hexadecimal values and full
stops instead of ASCII.

The Set Width icon can be used to change the width of the display; click on the icon
and type in the number of bytes to be shown on each line.

The Active Pane can be mad®amory Panevia any one of the following
methods:

Clicking on the Memory Pane icon on the toolil
Using the Pane Type option from the Pane Menu
Using the Hot KeCtrl+Shift+M .

Psy-Q Development System

Registers Pane

The Registers Pane shows the registers of the central processing Unit. These can be
overtyped if required.

If the CPU has a Status Register, you can overwrite the individual bits by 6/ping
‘R’ to reset the bit ot or'S’ to set it.

The display also shows the disassembled instruction at the Program Counter (PC)
and the address of the instruction which will be executed next.

It also shows the current status and (if relevant) exception of the CPU on the bottom
line of the Pane.

= Psy-Q Debugger for Windows - [Register] =[O =]

ﬂ FProject Wiew Debug Heglster Window Help _|E'|£|

Registers Pane Display

When you click the right hand mouse button over a Registers Pane or select the Pane
menu on the menu bar, you will see @lgange Pane Typer Pane Operations
options. Note that these are the only menu options for this type of Pane.

The Active Pane can be madRegisters Panevia any of the following methods:

Clicking on the Registers Pane icon on the to@
Using the Pane Type option from the Pane menu
Using the Hot KeCtrl+Shift+R

Psy-Q Development System

Disassembly Pane

The Disassembly Pane shows the disassembled code from an area of memory.

Four columns are displayed; the first shows the address or label; the second displays
the values at that location in hexadecimal; the disassembled op code is shown in the
third column and the fourth contains the op code parameters.

7 Psy-0 Debugger for Windows - [Disassembly] HEE

ﬂ Froject YWiew Debug DISEISSEI‘nb[',' Window Help

=ubm
addu

Iiﬁm | I:"'I | |D|sassembly

Disassembly Pane Display

When the cursor is positioned on a particular label on the Disassembly Pane, the
relevant label name and value will be displayed on the Status line.

The Program Counter (PC) is shown on the screen preceded by the marker >,

When you click the right hand mouse button over a Disassembly Pane or select from
the Pane menu on the menu bar you see the following options:

* Follow PCto anchor the Pane to the Program Counter

» Gototo put the cursor at a known address or label name

» Toggle breakpointto set and remove breakpoints

» Edit breakpoint to disable a breakpoint or make it conditional

* Run to cursor to run the Unit to the cursor position.

Psy-Q Development System

These options can also be activated by:

» Using the appropriate Hot Keys
« Clicking onthes-@ &| [&[05) 4: icons

The Active Pane can becom®msassembly Pan&ia any one of the following
methods:

Clicking on the Disassembly Pane icon on the to
Using the Pane Type option from the Pane menu
Using the Hot KeCtrl+Shift+D

See Also:

Anchoring Panes To The PC

Moving To A Known Address Or Label
Setting Breakpoints

Editing Breakpoints

Psy-Q Development System

Source Pane

A Source Pane displays one of the Source Files included in your Project.

7 Psy- Debugger for Windows - [Source]

ﬂ Froject YWiew Debug Source Window Help _|5|5|

/% =ztrings to print =

Source Pane Display

When you click the right hand mouse button over a Source Pane or select from the
Pane menu on the Menu bar you see the following options:

* Follow PCto anchor the Pane to the Program Counter

* Goto PC(space)

» Goto to put the cursor at a known address or label name

» Source Filesto swap between the Source Files in the Project
» Toggle breakpointto set and remove breakpoints

* Run to cursor to run the Unit to the cursor position.

Note: If the Program Counter (PC) is at a line displayed on the Pane it will be
preceded by the PC point line marker ‘>* and the line will be displayed in a
different colour.

Note: If a breakpoint exists within the Pane it will display in a contrasting colour.

Psy-Q Development System

The options listed above can also be accessed:

» By using the appropriate Hot Keys

» By clicking on thes-@ &| [&[05) 4: icons

Note: If the display is not set to follow the Program Counter (PC), the file displayed
may not be the one executing at the PC.

The Active Pane can be mad8aurce Panevia any one of the following method

4

Clicking on the Source Pane icon on the tooEl
Using the Pane Type option from the Pane menu
Using the Hot KeYCtrl+Shift+S

See Also:

Anchoring Panes To The PC

Moving To A Known Address Or Label
Setting Breakpoints

Editing Breakpoints

Changing Source Files In The Source Pane

By default, the Source Pane displays the Source File which contains the PC or is
blank if the PC is out of range of your source.

Any of the Project Source Files can be examined in this Pane by using the Source
Files option from the Source Pane menu, as follows:

1. Select the Source Pane menu from the Menu bar.
2. Choose the Source Files option from the menu.

3. Select a Source File from the list displayed.

ciiok o<]

N

Psy-Q Development System

Local Pane

The Local Pane is used to display all variables in the current local scope when you
are debugging in C.

As you step and trace, the contents of this Pane will change to display the variables in
the new scope.

You can expand or collapse variables and traverse array indices.

= Psy-Q Debugger for Windows - [Locals] =[O =]

ﬂ FProject Wiew Debug Watch 'Window Help _|E'|£|

int cnt
int ¥ = —&

IL_ [E |i:= L:= Locals

Local Pane Display

Variables can be viewed in hexadecimal or decimal modes by right-clicking within the
Pane and ‘toggling’ between Hexadecimal/Decimal (on the displayed menu) as
required. A tick will appear alongside Hexadecimal when this mode is selected.

Any Local variable that evaluates to a ‘C’, I-type expression, can be assigned a new
value.

When you select the Local Pane menu or click the right hand mouse button over a
Local Pane you see the following menu:

» Expand/Collapse- when the cursor is over a pointer, a structure or an array
* Increase Index- when the cursor is over an array element

» Decrease Index when the cursor is over an array element.

Psy-Q Development System

These options can also be activated by:

» Using the appropriate Hot Keys

« Clicking on these icorls® "'""rl‘f"'r

Note: Use of the Local Pane is restricted to debugging in C.

The Active Pane can be madkeacal Panevia any of the following methods:

Clicking on the Local Pane icon on the toollil
Using the Pane Type option from the Pane menu
Using the Hot KeyCtrl+Shift+L

See Also:

Watch Pane
Expanding Or Collapsing A Variable
Traversing An Index

Psy-Q Development System

Watch Pane

The Watch Pane is used to evaluate and browse C type expressions.

[7 Pey-Q Debugger for Windows - [Default View] (o] x|
H Project Miew Debug ‘Wwatch Window Help 12| x|

Watch Pane Display

When you select the Watch Pane menu or click the right hand mouse button over a
Watch Pane, the following menu is displayed:

* Add Watch

» Edit Watch

» Delete Watch

* Clear All Watches

» Expand/Collapse- to view/hide the components of a structure or an array
* Increase Index- to view higher indexed values within an array

» Decrease Index to view lower indexed values within an array
These options can also be activated by the following methods:

» Using the appropriate Hot Keys

» Clicking on the appropriate icons

Structures, pointers and arrays can be opened in a Watch Pane.

Psy-Q Development System

 If you open astructure the members of that structure are displayed.
» If you open gointer it is dereferenced.

» If you open ararray the first element of the array is displayed.

The contents of the Watch Pane are saved within the View when the Project is saved.

Variables can be viewed in hexadecimal or decimal modes by right-clicking within the
Pane and ‘toggling’ between Hexadecimal/Decimal (on the displayed menu) as
required. A tick will appear alongside Hexadecimal when this mode is selected.

Any Watch variable that evaluates to a ‘C’, I-type expression, can be assigned a new
value.

Note: The options Expand/Collapse and Increase Index ‘+' and Decrease Index ‘-’
are only available for arrays, pointers and structures.

See Also:

Assigning Variables

Expanding Or Collapsing AVariable

The Active Pane can be mad@vatch Panevia any one of the following methods;

Clicking on the Watch Pane icon on the too
Using the Pane Type option from the Pane menu
Using the Hot KeCtrl+Shift+W

Psy-Q Development System

C Type Expressions In Watch Pane

The following ‘C’ type expressions, shown in order of precedence, may be used to
evaluate expressions within the Watch View of a Project:

[] array subscript
-> record lookup
~-*& unary prefix
*[% multiplicative
+ - additive

<< >> bitwise shifting
<> <=>= comparatives
=== equalities

& bitwise and

A bitwise xor

| bitwise or

Note: As in C, parenthesis can be used to override precedence.

Psy-Q Development System

Assigning Variables

Any variable that evaluates to a ‘C’, I-type expression can be assigned a new value.
For example, in the case of a de-referenced pointer, a new value can be assigned to
the pointer or the de-referenced expression.

Variables are assigned as follows:

1. Place the caret over the required expression to make it Active.
2. Press ‘=

3. Enter the new value to the displayed dialogue box; this can be another expression
if required.

2. cliok[2]

In the example below, this facility was used to assign a new va&3600200Q0
the specified pointer. The de-referenced structure changes to reflect the amended
value.

7 Psy-Q Debugger for Windows - [Default Yiew] =[O =]

ﬂ Project Wiew Debug ‘Watch 'Window Help -|5’|5|

|Step ower the current instruction/line

Displayed Structures For Pointer Address

Psy-Q Development System

7 Psy-Q Debugger for Windows - [Default Yiew]

ﬂ Project Wiew Debug ‘Watch 'Window Help -|5’|5|

Amended Structures After Pointer Assigned New Variable

IMPORTANT: The expression that you are assigning and the new valist,
have compatible types.

Note: Variables can be assigned whilst the Target is running.

Expanding Or Collapsing A Variable

Pointers, structures and arrays are variables which can be expanded or collapsed in
the Local or Watch Panes when you place the caret over them.

If you expand goointer a line will be added below for the dereferenced pointer. For
example if the pointer is to an integer, the dereferenced pointer will display that
integer.

An expandedtructure will display all the elements of that structure below it.

For an expandedrray the second line of the display will display the first element of
the array.

To expand or collapse a variable:

1. Select the Pane menu for the Local or Watch Panes.

2. Choose the Expand or Collapse option from the menu.

Psy-Q Development System

When shown in the Watch Pane, expressions which can be expanded or collapsed will
be prefixed as follows:

+ this indicates an expression that can be expanded

- this indicates that the expression is expanded and can be
closed.

This is followed by the expression’s type and value.

To edit an expression highlight it and press Return.

Note: Itis also possible to expand or collapse an expression by using the expand or
collapse icon on the Pane toolbar or pressing SPACE.

Traversing An Index

You can traverse an index if the caret is on an array element in the Local or Watch
Panes.

If an index is increased, the array will display tiext array element.

Decreasing an index causes pinevious array element to be displayed.

To increase or decrease an index:

1. Select the Pane menu for the Local or Watch Panes.

2. Choose the Increase Index or Decrease index option from the menu.

Note: Itis also possible to expand or collapse a variable by using the increase index

or decrease index ico“" on the Pane toolbar.

Psy-Q Development System

Adding A Watch

The Watch Pane is used to evaluate and browse C type expressions.

To add a watch or expression :

1. Make the Watch Pane the Active Pane.

2. Select the Watch Pane menu from the Menu bar.
3. Choose the Add Watch option from the menu.

4. Type the required expression directly into this box or click the down arrow to
display expressions which have been used previously.

-1 Add Watch

Enter expression:

I g

main .
function

0x06001000

Ry

a[i]+2

*p

falh -
Add Watch Dialogue Box

5. Enter or click the required expression and s

The Debugger also offers various ‘matching’ facilities whereby you can enter a patrtial
value and the program will search the current and global scopes for those matching
the specified criteria. These are described beloMdatitional Features When

Entering Expressions

Note: It is also possible to add a watch by clicking on the add watct
the Watch Pane toolbar.

See Also:

Expression Evaluation Features

Psy-Q Development System

Additional Features When Entering Expressions

Simple Name Completion

With this facility, the program will attempt to complete the symbol to the right of the
specified expression, as follows:

1. Enter a partial expression to the Add Watch dialogue box.

2. Click _Mateh

or presAlt-M .
If you had specified:
attr_

The Debugger will search for all symbols beginning véttr’ |, first in the current
scope and then in the global scope.

If a single match is found, the specified expression will be completed automatically.
If more than one is located a dialogue box will list all matching symbols.

* Add Watch
Enter expression: |
L [~1 Spmbol Selection [] |
rMatching Symbols: oK
‘attr_aki_ashi 1 Cancel
HEE | [attr_aki_hiza |
attr_aki_hiza_r Help
Select:
All
Hone

Symbol Selection Dialogue Box

3. Highlight (select) the required symbol and cI. SeeMultiple
Selectionbelow for further details. The status line will display ‘no matches found’
where relevant.

Psy-Q Development System

Advanced Symbol Matching

In addition to basic name completion which always completes the symbokatcthe
of the specified expression, extended name completion can be used to complete a
symbolanywherein the expression, as follows:

1. Enter a partial expression.

2. Place the caret (insertion point) on or at the end of the symbol you wish to
complete and according to the group you wish to search, press one of the
following key combinations:

Alt-N - All symbols (Normal)

Alt-G - Global (Static & external variables)

Alt-L - Local (Automatic variables in scope)

Alt-F - Functions (Static & external)

Alt - T - Types (Typedef & structure tag).

Matching expressions will be displayed as described above.

3. Highlight (select) the required symbol(s) and c,.

Note: This advanced matching facility is only available from the keyboard.

Note: You cannot symbol match on register or label names.

Wild-Card Matching

It is also possible to locate a particular symbol via the entry of a wild-card
expression. This can inclutfés (to match any number of characters) ahisl (to
match any single character) and is used as follows:

1. Enter a wild-card expression, for examttien .
2. Select it via Shift+Left Arrow or by double-clicking.
3. PressAlt-N.

The Debugger will continue as describedEatended Name Completion In the
example specified above it will search for all symbols enditgpin’ , first in the
current scope and then in the global.

Psy-Q Development System

Multiple Selection

If you are name completing or wild-card matching a single symbol and more than one
match is found, you can select all or some of the matches and add them to the Watch

Pane at the same time. Where several matches are found, they will be presented in an
‘extended selection’ list box.

1. Select symbols as required; use the mouse and Ctrl and/or shift keys to make a
specific selection or clicil to highlight all the matched symbols.

-1 Symbol Selection |
-Matching Symbaols: 0K
AKI_MUNE -
AKI_OYAYUBI L Cancel
AKI_OYAYUBI_R
Help
T A
AKI_YUBI_R
attr_aki_ashi_l
attr_aki_ashi_r .
attr_aki_hiza | select:
attr_aki_hiza_r All
attribute_aki_atama - —
ladtribada alqs Lran HDI'IE

Multiple Symbol Selection Dialogue Box

Use the mouse and Ctrl key to de-selggadicular symbol from your list or
click - 42" | {5 de-selecall the symbols

2. When your selection is complete, cli; the value in the dialogue entry
box will change to <multiple selection>. Note that this valaenot be edited.

3. Click to add your selection to the Watch Pane.

Note: To browse all symbols, clic. ™" | \ith no value in the dialogue bax

wild-card match using’ as the wild-card.

Psy-Q Development System

Editing A Watch

Any of the C type expressions that you can enter into the Watch Pane can be edited
as follows:

1. Make the Watch Pane the Active Pane.

2. Select the Watch Pane menu from the Menu bar.
3. Choose the Edit Watch option from the menu.

4. Select the watch to edit.

5. Amend as necessary and cI. History and matching facilities are
available via this dialogue box.

Note: Itis also possible to edit a watch by clicking on the Edit Watch & on
the Watch Pane toolbar.

Note: To view variables in hexadecimal, right-click within the Pane and ‘toggle’
‘Hexadecimal/Decimal’ as necessary. A tick will appear alongside
Hexadecimal when this option has been selected.

See Also:

Additional Features When Entering Expressions

Previously Entered Expressions History List

Psy-Q Development System

Deleting A Watch

Any of the C type expressions entered into the Watch Pane can be deleted as follows:

1. Make the Watch Pane the Active Pane.
2. Select the Watch Pane menu from the Menu batr.
3. Choose the Delete Watch option from the menu.

4. Select the watch and press Enter.

Note: Itis also possible to delete a watch by clicking on the Delete Watcn
on the Watch Pane toolbar or pressing DEL.

Note: You can only delete a Watch at the root of the expression, not on any
expanded part of it.

Clearing All Watches

All of the C type expressions entered into the Watch Pane can be removed in one
action, as follows:

1. Make the Watch Pane the Active Pane.
2. Select the Watch Pane menu from the menu bar.

3. Choose the Clear All Watches option from the menu.

Note: You can also clear all watches by clicking on the Clear All Watchei&h
on the Watch Pane toolbar.

Psy-Q Development System

Debugging Your Program

The Psy-Q Debugger helps you to detect, diagnose and correct errors in your
programs. This is achieved via facilities which enable you to step and trace through
your code in order to examine local and global variables, registers and memory.

Breakpoints can be set wherever you need them at C and Assembler level and if
required, these breaks can be made conditional on an expression. Additionally,
selected breakpoints can be disabled for particular runs.

Your choice of Views depends on the level at which you are debugging. For example
it is appropriate to use a Register Pane for assembler debugging and a Local Pane
when debugging in C.

Specifying The Continual Update Rate

It is possible to adjust the rate at which the Debugger updates information while the
Target is running. This is particularly important for Targets which connect
independently of a pollhost() since rapid connection rates may cripple the Target. It
is achieved as follows:

1. Select Continual Update Rate from thejBct option on the main menu or press
Ctrl+l . A dialogue box displays the current rate in milliseconds:

i@ Continual Update Rate x
Rate:- OK

150
I: ms Cancel

Update Rate Dialogue Box

2. Enter a new value and seh. The rate is saved between all debugging
sessions and not as part of a Project.

Psy-Q Development System

Forcing An Update

During continual update, the information you see in the Debugger windows won't be
updated until the next connection; therefore, the slower the update rate, the longer it
will be before exceptions can be spotted. However, it is possible to force an update
by pressingCtrl+U or selecting the Update option fronelug on the main menu.

Setting Breakpoints

Breakpoints can be set in the Source and Disassembly Panes. They can be absolute
(i.e. always break) or conditional upon an expression.

They are displayed in the Pane as a different coloured bar.

To set a breakpoint:

1. Make a Source or Disassembly Pane Active.
2. Click on the instruction or line at which you want to set the break.
3. Select the Debug menu from the Menu bar.

4. Choose the Toggle breakpoints option from the menu.

Breakpoints can be made conditional upon an expression that you set, by using the
Edit Breakpoint dialogue box found via the Breakpoints List on the Unit Menu.

A Project can have many breakpoints set and they are saved when the Project is
saved. They are restored relative to Assembler labels wherever possible; this ensures
they are preserved even when you alter the source code and rebuild.

Breakpoints can be removed by clicking on the colour bar and reversing the toggle
options taken to create it.

Note: Breakpoints can also be set and removed vi&$ikey or the set / unset
breakpoint icons on the Pane tool.El

Psy-Q Development System

Editing Breakpoints

The Breakpoints option on the Unit menu can be used to enable or disable
breakpoints for a particular debugging run or to make the breakpoints conditional on
an expression that you set.

The Breakpoints option on the Unit menu shows you a pop-up list of all the
breakpoints currently set in the Project, the address where they are located and the
label (if one exists).

Enabled breakpoints will have a tick beside them.

To edit breakpoints:

1. Select the Unit menu by clicking on the Unit button.
2. Choose the Breakpoints option from the menu.

3. Select the breakpoint you wish to edit.

= EditBreakpoint _________________________H]
Type:
|Break if expreszzion iz TRUE J| [¥ Enabled
Location: Cancel I
|main |
Expression: Delete |
|gluhal== | Help I

Edit Breakpoint Dialogue Box

When you select a breakpoint from the list displayed on the Unit menu, the Edit
Breakpoint dialogue box shown above appears.

The enabled check box allows you to enable and disable breakpoints. When the
check box is set the breakpoint is enabled and only these will be included in a
debugging run.

Psy-Q Development System

There are two types of break:

* Break at Pointis a standard break.

» Break if expression is trueis a conditional break.

4. Select the type of break you require from Tiype box pull-down list.

Both options display the breakpoint address in_theation box. The location can
be overtyped to move a break.

When theBreak if expression is trueoption is enabled to create a conditional
breakpoint, enter a C like expression or a label in the Expression box.

Useﬂl to leave the dialogue box without saving the changes you have
made.

Delete | {5 delete the selected breakpoint.

5. Click when you have made all your changes.

Use

Note: A quick way to make a breakpoint conditional is to place the cursor over a
breakpoint and use the Hot Ke$hift F5.

Any of the following methods can be used to create, remove and edit breakpoints:

TheF5 key

The Breakpoint options from the Source or Disassembly Pane menus

L Ed
The Breakpoint icons from the Pane tooI

Psy-Q Development System

Stepping Into A Subroutine

The Step Into command allows you to trace the execution of the program one step at
a time and so isolate any bugs that might be present.

When you Step Into a subroutine call, the Program Counter moves to the start of the
subroutine and displays the relevant code. At the end of the subroutine you will be
returned to where it was called from.

At Assembler level a debugging step is the execution of a sirgjtaction.

If you wish to use the Step Into command@atrcelevel you must make the Source

Pane Active. In this case, olee at a time will be executed in each step and any
subroutines or calls within that line will be stepped into.

To Step Into a subroutine during debugging:

1. Select the Debug menu from the Menu bar.

2. Choose the Step Into option from the menu.

Note: Alternative ways of Stepping Into a subroutine are to use the Step Into icon
L=

on the Unit toolbar (at the bottom of the Debugger wind or to press
F7. Note that it is possible to use the Step Into icon for a non-Active View.

Psy-Q Development System

Stepping Over A Subroutine

When you use the Step Over command, the subroutine is executed but not displayed
and the Program Counter moves to the next line of calling routine code.

At Assembler level a debugging step is the execution of a sirgjtaction.

If you wish to use the Step Over comman@&aitircelevel, you must first make the

Source Pane Active. In this case, one line at a time will be executed in each step and
any subroutines or calls within that line will be performed.

To Step Over a subroutine:

1. Select the Debug menu from the Menu bar.

2. Choose the Step Over option from the menu.

Note: Alternative ways of Stepping Over a subroutine are to use the Step Over icon

by the Unit men [-= or to pres$-8. Note that you can use the Step Over
icon for a non-Active View.

Psy-Q Development System

Running To The Current Cursor Position

The Run to Cursor command can be used during debugging within the Source and
Disassembly Panes.

To run to the current cursor position:

1. Make a Source or Disassembly Pane active.
2. Click on the displayed code at the point you want to run to.
3. Select the Source or Disassembly menu from the Menu bar.

4. Choose the Run To Cursor option from the menu.

If the Unit does not reach the cursor position it will continue running.

Note: Alternative methods of running to the cursor are to click on the Run To

Cursor icon on the Pane tooltlE or to use the Hot Kely6.

Note: You can use Run To Cursor while the Unit is running to make it stop at the
cursor position.

Psy-Q Development System

Running Programs

The Run command causes the CPU of the specified Unit to start running.

It will continue until it meets a breakpoint, a processor exception or is stopped by the
Stop or Run To Cursor commands.

During a debugging run the various Panes will show the progress of the run.

To start the program running:

1. Select the Debug menu from the menu bar.

2. Choose the Go option from the menu.

Note: Alternative ways to start the run are to click the Start button on the relevant

Unit toolbar 1= or to press$-9.

Stopping A Program Running

The Stop command halts the CPU of the specified Unit as soon as possible.

It is specified as follows:

1. Select the Debug menu from the Menu bar.

2. Choose the Stop option from the menu.

Note: Alternative ways to stop the run are to click the Stop button on the relevant

Unit toolba or to pres€sc

Psy-Q Development System

Moving The Program Counter

The program counter (PC) can be set via the Set PC command.

This command moves the program counter to the current cursor position.

It is found on the Pane menus for Source and Disassembly Panes and is set as
follows:

1. Make a Source or Disassembly Pane Active.
2. Place the caret where you wish the PC to move to.
3. Click the right hand mouse button to call the Pane menu.

4. Select the Set PC option from the menu.

With this command, no instructions are executed between the previous and new PC
position.

The opposite command to Set PC ®@&PC which takes the cursor to the position
of the Program Counter.

Note: An alternative way to activate the Set PC command is by using the Hot Key
Shift+Tab.

Psy-Q Development System

Moving The Caret To The PC

The caret point can be placed at the program counter address via the Goto PC
command.

This is found on the Pane menus for Source and Disassembly Panes.

To Set The PC:

1. Make a Source or Disassembly Pane Active.
2. Click the right hand mouse button to call the Pane menu.

3. Select the Goto PC option from the menu.

Goto PC is the opposite command &t BC which sets the Program Counter to the
value at the current caret position.

Note: Alternatively, pressing the ‘space’ bar wdifectly place the caret point at
the program counter address.

Psy-Q Development System

Moving To A Known Address Or Label

The Goto command is available on the Source, Disassembly and Memory Pane
menus. It is used to put the caret and PC at a known address, label name, register
name or value of a specified C expression as described below:

1. Make the Source, Disassembly or Memory Pane Active.
2. Click the right hand mouse button to call the Pane menu.
3. Select the Goto option from the menu.

4. A dialogue box appears in which you enter the memory address, symbol name,
register name or C expression.

5. Click to place the cursor at the entry point.

[~ Goto |
Goto (address or symbol): |
| =~
0x 06001000
function1
main

Go To Expression Dialogue Box

6. Type the required expression directly in this box or click the down arrow to
display expressions which have been entered previously.

7. Enter or select the required expression and |_ Note that a
hexadecimal address must be prefixed with the string ‘0Ox’

As the Goto action will take you to thalue of the specified expression, note the
consequences when you enter a name containing C debug inforasatietias an
Assembler label.

For example, if *_ramsize’ is specified you will be taken tovilleie of _ramsize, not
to where it is defined. This is because the C expression evaluator sees the C
definition of _ramsize first and then evaluates it._To Goto this address, you must
enter either ‘& ramsize’ or ‘._ramsize'.

Psy-Q Development System

Alternatively, you could Goto ‘main’ (as functions evaluate to their address); to
Goto an offset from main, enter: ‘:main+offset’, ‘&main+offset’ or
‘(intymain+offset’. This is because ‘main’ by itself has the typd) which cannot
be added.

Note: When you have successfully ‘gone to’ an expression in a Memory Pane, the
‘pointed to’ word is enclosed in a box. This will remain until you Goto
something else or anchor the Pane to an expression.

See Also:
Anchoring Memory Panes

Expression Evaluation Features

Previously Entered Expressions History List

Note: Alternatively, you can activate the Goto command via the Goto icon on the

toolbar or the Hot KeyCtrl G .

Psy-Q Development System

Expression Evaluation Features

Register Names

Register names can be specified in any dialogue box where expressions can be
entered. By default, the evaluator looks for C symbols first, so any variables which
are the same as register names will be shown instead. If a name is being interpreted
as a register it will be prefixed by a ‘$’.

It is recommended that you use this ‘$’ prefix wieertering register names to
explicitly tell the evaluator that it is looking at a register.

Note: Registers have a C type of ‘int’.

Typecasts and Typedefs

Typecasts can be entered to an expression via the usual C syntax.
If you entered ‘(int*)$fp’ to a Watch Pane you would see the following:

+int*(int*)$fp = 0x8000ff00

Typecasting also works for structure tags; however, you are not required to enter
the keyword ‘struct’ when csting to a structure tag.

You would expect to see the following when typecasting to a structure (or class):
-Tester* (Tester*)$fp = 0x807ff88
-Tester
+unsigned char* m_pName = 0x00000645
+unsigned char* mpLongName = OXFFFFFFFF

You can also cast to typedefs; for example, entering ‘(daddr_t)p’ will produce:

long (daddr_t)p = 0x00003024

Psy-Q Development System

Labels

Labels can also be included in a C expression. The evaluator looks for C level
information first and then label information. If it finds a label it will prefix it with a

It is recommended that you use this prefix whatering labels to explicitly tell the
evaluator that it is looking at a label.

Note: Labels have a C type oft’.

Functions

If you include a function name in an expression, its value will be the same as its
address. It will appear in a Watch window as follows:

int () main = (...) (Ox80010BFC)

Note: This is contrary to C where the value of a function, is what is returned from
the function when it is executed.

Note: It is recommended that you access the address of a function via the ‘&’
operator or the Assembler label.

Expression Evaluation Name Resolution

In summary, the search order for a name in an expression is as follows:

1. Escaped Register Names (prefix ‘$’)
2. Escaped Label Names (prefix *:’)

3. C Names

4. Register Names

5. Label Names

Psy-Q Development System

Previously Entered Expressions History List

Once an expression has been specified viata Gr_Add/Edit Watch dialogue box, it
will be stored in a history buffer.

When you next access one of these dialogue boxes, click the down arrow to display a
listing of these values.

At this point you can enter a new expression to the dialogue box or select one from
the list and cIicL. The selected expression can also be edited at this point.

Note: The most recent expressions used are held at the top of the list.

Anchoring Panes To The PC
By default the Source and Disassembly Panes are anchored to the Program Counter
(PC).

This means that whenever possible the instruction or line at the PC is always
displayed in the Pane.

The Follow PC property is toggled as follows:

1. Make a Source or Disassembly Pane Active.
2. Click the right hand mouse button to call the Pane menu.

3. Select the Follow PC option from the menu.

Note: This option is also available from the Source and Disassembly Pane toolbar

|EE?> or from the Source or Disassembly menus on the Menu bar.

Psy-Q Development System

Anchoring Memory Panes

Anchoring a Pane has the same function as using Goto on every Debugger update.

To anchor the Pane:

1. Select Anchor... from the Pane menu or pfesis-A when a Memory Pane is
active.

2. Enter an expression.

3. Select.

The specified expression will appear in an indicator bar on the Pane. If this goes red,
the expression cannot be evaluated in the current scope. Otherwise, the Pane will be
‘anchored’ to the value of the expression and a box will be drawn around the anchor
point.

You can edit the expression by clicking the indicator.

To turn off anchoring:
1. Call up the Anchor dialogue box.

2. Clear the box.

3. Select.

Psy-Q Development System

Identifying Changed Information

Any changes to variables since the last debugging step are displayed in a colour of
your choice on all Panes except for Disassembly and Source.

This colour is set via the Set Default Colour option from tilewmnenu.

See Also:

Changing colour schemes in Views

Closing The Debugger Without Saving Your
Changes

The Quit option on the Project menu stops the Psy-Q Debugger running but does
NOT save the current Project.

To close the Debugger without saving your changes:

1. Select the Project menu from the Menu bar.

2. Choose the Quit option from the menu.

Psy-Q Development System

Closing The Debugger And Saving Your
Changes

The EXxit option on the Project menu saves the current Project at the latest state and
stops the Psy-Q Debugger running.

To close the Debugger and save your changes:

1. Select the Project menu from the Menu bar.

2. Choose the Exit option from the menu.

Note: Itis also possible to close the Project by clicking onXheon on the system
menu shown in the top right corner of the Debugger window.

Note: Next time you open the Debugger the last Project you saved will be launched
automatically.

See Also:

Saving Your Project

Psy-Q Development System

Psy-Q Development System

APPENDICES

« Appendix A - Error Messages

Pav-0O Nevelnnmant Quvetem

-1

Appendix A - Error Messages

This Appendix documents Psy-Q error messages, and is divided into the following sections:

Assembler Error Messages
PSYLINK Error Messages
PSYLIB Error Messages

Format: In the list below% x represents the variable part of the error message, as follows:

%s s replaced by a string

%c s replaced by a single character

%d s replaced by a 16 bit decimal number

%l is replaced by a 32 bit decimal number

%h is replaced by a 16 bit hexadecimal number

%n is replaced by a symbol name

%t is replaced by a symbol type, e.g. section, symbol or group.

Psy-Q Development System

Assembler Error Messages

Assembler Messages:

'%n' cannot be used in an expression
%n will be the name of something like a macro or register

'%n' is not a group
Group name required

'%n' is not a section
Section name expected but name %n was found

Alignment cannot be guaranteed
Warning of attempt to align that cannot be guaranteed due to the base alignment of
the current section

Alignment's parameter must be a defined name
In call to alignment() function

Assembly failed
Text of the FAIL statement

Bad size on opcode
E.g. attempt to use .b when only .w is allowed

Branch (%l bytes) is out of range
Branch too far

Branch to odd address
Warning of branch to an odd address

Cannot POPP to a local label
E.g. POPP @x

Cannot purge - name was never defined

Case choice expression cannot be evaluated
On case statement

Code generated before first section directive
Code generating statements appeared before first section directive

Could not evaluate XDEF'd symbol
XDEF'd symbol was equated to something that could not be evaluated

Psy-Q Development System

Could not open file '%s'

Datasize has not been specified
Must have a DATASIZE before DATA statement

Datasize value must be in range 1 to 256
DATASIZE statement

Decimal number illegal in this radix
Specified decimal digit not legal in current radix

DEF's parameter must be a name
Error in DEF() function reference

Division by zero

End of file reached without completion of %s construct
E.g. REPT with no ENDR

ENDM is illegal outside a macro definition

Error closing file
DOS close file call returned an error status

Error creating output file
Could not open the output file

Error creating temporary file
Could not create specified temporary file

Error in assembler options

Error in expression
Similar to syntax error

Error in floating point number
In IEEE32 / IEEE64 statement

Error in register list
Error in specification of register list for MOVEM / REG

Error opening list file
DOS open returned an error status

Error reading file
DOS read call returned an error status

Psy-Q Development System

Error writing list file
DOS write returned an error status or disk full

Error writing object file
DOS write call returned an error or disk is full

Error writing temporary file
Disk write error, probably disk full

Errors during pass 1 - pass 2 aborted
If pass 1 has errors then pass 2 is not performed

Expanded input line too long
After string equate replacement, etc. line must be <= 1024 chars

Expected comma after < >
<...> bracketed parameter in MACRO call parameter list

Expected comma after operand
Expected comma between operands

Expected comma between options
In an OPT statement

Expecting '%s' at this point
Expecting one of ENDIF/ENDCASE etc. but found another directive

Expecting '+' or '-' after list command
In a LIST statement

Expecting '+' or '-' after option
In an OPT statement

Expecting a number after /b option
On Command line

Expecting comma between operands in INSTR
Expecting comma between operands in SUBSTR

Expecting comma or end of line after list
In{...}list

Expecting ON or OFF after directive
In PUBLIC statement

Psy-Q Development System

Expecting options after /O
On Command line

Expecting quoted string as operand

Expression must evaluate
Must be evaluated now, not on pass 2

Fatal error - macro exited with unterminated %s loop
End of macro with unterminated WHILE/REPT/DO loop.
Due to the way the assembler works, this must be treated as a fatal error

Fatal error - stack underflow - PANIC
Assembler internal error - should never occur!

File name must be quoted

Files may only be specified when producing CPE or pure binary
output
In FILE attribute of group

Forward reference to redefinable symbol
Warning that a forward reference was made to a symbol that was given a number of
values in SET or = statements. The value used in the forward reference was the last
value the symbol was set to.

Function only available when using sections

Group '%n’ is too large (%l bytes)
Group exceeds value in SIZE attribute

GROUP's parameter must be a defined name
In GROUP() function call

GROUPEND's parameter must be a group name
Error in call to GROUPEND() function

GROUPORG's parameter must be a group
In call to GROUPORG() function

GROUPSIZE's parameter must be a group name
Error in call to GROUPSIZE() function

IF does not have matching ENDIF/ENDC

lllegal addressing mode
Addressing mode not allowed for current op code

Psy-Q Development System

lllegal character '%c' (%d) in input
Strange (e.g. control) character in input file

lllegal character '%c' in opcode field

lllegal digit in suffixed binary number
In alternate number form 101b

lllegal digit in suffixed decimal number
In alternate number form 123d

lllegal digit in suffixed hexadecimal number
In alternate number form labh

lllegal group name

lllegal index value in SUBSTR

lllegal label
Label in left hand column starts with illegal character

lllegal name for macro parameter
In macro definition

lllegal name in command
Target name in ALIAS statement

lllegal name in locals list
In LOCAL statement

lllegal name in XDEF/XREF list

lllegal parameter number
Maximum of 32 parameters

lllegal section name

lllegal size specifier for absolute address
Can only use .w and .| on absolute addressing

lllegal start position/length in INCBIN

lllegal use of register equate
E.g. using a register equate in an expression

lllegal value (%l)

lllegal value (%l) for boundary in CNOP

Psy-Q Development System

lllegal value (%) for offset in CNOP
lllegal value for base in INSTR

Initialised data in BSS section
BSS sections must be uninitialised

Instruction moved to even address
Warning that a padding byte was inserted

Label '%n' multiply defined

LOCAL can only be used inside a macro
LOCAL statement found outside macro

Local labels may not be strings
@x EQUS ... is illegal

Local symbols cannot be XDEF'd/XREF'd
MEXIT illegal outside of macros

Missing ‘(' in function call

Missing)" after function parameter(s)

Missing ') after file name
In FILE attribute

Missing closing bracket in expression

Missing comma in list of case options
In =... case selector

Missing comma in XDEF/XREF list

MODULE has no corresponding MODEND

Module may not end until macro/loop expansion is complete
If a loop / macro call starts inside a module then there must not be a MODEND until
the loop / macro call finishes

Module must end before end of macro/loop expansion - MODEND

inserted
A module started inside a loop / macro call must end before the loop / macro call
does

Psy-Q Development System

More than one label specified
Only one label per line (can occur when second label does not start in left column but
endsin"')

Move workspace command can only be used when downloading
In WORKSPACE statement

Names declared with local must not start with '%c'
In LOCAL statement

NARG can only be used inside a macro
Use of NARG outside macro

NARG's parameter must be a number or a macro parameter name
lllegal operand for NARG() function

No closing quote on string

No corresponding IF
ENDIF/ELSE without IF

No corresponding DO
UNTIL without DO

No corresponding REPT
ENDR without REPT

No corresponding WHILE
ENDW without WHILE

No matching CASE statement for ENDCASE
ENDCASE without CASE

No source file specified
No source file on command line

Non-binary character following %

Non-hexadecimal character '%c' encountered
In HEX statement

Non-hexadecimal character starting number
Expecting 0-9 or A-F after $

Non-numeric value in DATA statement

OBJ cannot be specified when producing linkable output
OBJ attribute on group

Psy-Q Development System

Odd number of nibbles specified
In HEX statement

OFFSET's parameter must be a defined name
Error in OFFSET() function call

Old version of %n cannot be purged
Only macros can be purged

One string equate can only be equated to another
Attempt to equate to expression, etc.

Only one of /p and /I may be specified
On Command line

Only one ORG may be specified before SECTION directive
Op-code not recognised

Option stack is empty
POPO without PUSHO

Options /I and /p not available when downloading to target
On Command line

ORG ? can only be used when downloading output

ORG address cannot be specified when producing linkable
output

No ORG group attributes when producing linkable output
ORG cannot be used after SECTION directive
ORG cannot be used when producing linkable output

ORG must be specified before first section directive
When using sections only one ORG statement may appear before all section
statements (other than as group attributes)

Out of memory, Assembler aborting

Out of stack space, possibly due to recursive equates
Assemblers stack is full, possible cause is recursive equates, e.g. X equ y+1 , y equ
X*2

Overflow in DATA value
DATA value too big

Psy-Q Development System

Overlay cannot be specified when producing linkable output
No OVER group attributes when producing linkable output

Overlay must specify a previously defined group name
Error in OVER group attribute

Parameter stack is empty
POPP encountered but nothing to pop

POPP must specify a string or undefined name

Possible infinite loop in string substitution
E.g. reference to x where x is defined as x equs x+1

Previous group was not OBJ'd
OBJ() attribute specified but previous group had no obj attribute to follow on from

Psy-Q needs DOS version 3.1 or later
Purge must specify a macro name
Radix must be in range 2 to 16

REF's parameter must be a name
Error in REF() function reference

Register not recognised
Expecting a register name but did not recognise

Remainder by zero
As for division by 0 but for % (remainder)

Repeat count must not be negative
REPT statement error

Replicated text too big

Text being replicated in a loop must be buffered in memory but this loop was too big
to fit

Resident SCSI drivers not present
PSYBIOS does not appear to be loaded

SCSiI card not present - assembly aborted
SECT's parameter must be a defined name
Error in SECT() function call

SECTEND's parameter must be a section name
Error in call to SECTEND() function

Psy-Q Development System

-11

Section stack is empty
POPS without PUSHS

Section was previously in a different group
Section assigned to a different group on second invocation

SECTSIZE's parameter must be a section name
Error in call to SECTSIZE() function

Seek in output file failed
DOS seek call returned error status

Severity value must be in range 0 to 3
In INFORM statement

SHIFT can only be used inside a macro
SHIFT statement outside macro

Short macro calls in loops/macros must be defined before
loop/macro

Short macros may not contain labels

Size cannot be specified when producing linkable output
SIZE attribute on group

Size specified in /b option must be in range 2 to 64
On command line

Square root of negative number

Statement must have a label
No label on, for example, EQU op

STRCMP requires constant strings as parameters

String '%n’ cannot be shifted
String specified in SHIFT statement is not a multi-element string (i.e. {...} bracketed)
and so cannot be shifted.

STRLEN's operand must be a quoted string
Symbol '%n' cannot be XDEF'd/XREF'd
Symbol '%n' is already XDEF'd/XREF'd

Symbol '%n’' not defined in this module
Undefined name encountered

Psy-Q Development System

Syntax error in expression

Timed out sending data to target
Target did not respond

Too many characters in character constant
Character constants can be from 1 to 4 characters

Too many different sections
There is a maximum of 256 sections

Too many file names specified
On command line

Too many INCLUDE files
Limit of 512 INCLUDE files

Too many INCLUDE paths specified
Too many INCLUDE paths in /j options on command line

Too many output files specified
Maximum of 256 output files

Too many parameters in macro call
Maximum number of parameters (32) exceeded

Too much temporary data
Assembler limit of 16m bytes of temporary data reached

TYPE's parameter must be a name
Call of TYPE() function

Unable to open command file
From Command line

Undefined name in command
Target name in ALIAS statement

Unexpected case option outside CASE statement
Found =... statement outside CASE/ENDCASE block

Unexpected characters at end of Command line

Unexpected characters at end of line
End of line expected but there were more characters encountered (other than
comments)

Unexpected end of line

Psy-Q Development System

Unexpected end of line in macro parameter

Unexpected end of line in list parameter
In{...}list

Unexpected MODEND encountered
MODEND without preceding MODULE

UNIT can only be specified once
In UNIT statement

UNIT cannot be used when producing linkable output
In UNIT statement

Unknown option
In OPT statement

Unknown option /%c
Unknown option on Command line

Unrecognised attribute in GROUP directive

Unrecognised optimisation switch '%c'
In OPT statement or Command line

User pressed Break/Ctrl-C
Assembly aborted by user

XDEF'd symbol %n not defined
Symbol was XDEF'd but never defined

XDEF/XREF can only be used when producing linkable output

Zero length INCBIN - Warning of zero length INCBIN statement

Psy-Q Development System

Psylink Error Messages

Linker Messages:

%t %n redefined as section
New definition of previously defined symbol

%t '%n' redefined as group
New definition of previously defined symbol

%t '%n' redefined as XDEF symbol
New definition of previously defined symbol

Attempt to switch section to %t '%n'
Non-section type symbol referenced in section switch

Attempt to use %t '%n' as a section in expression
Section type symbol required

Code in BSS section '%n'
BSS type sections should not contain initialised data

COFF file has incorrect format
COFF format files are those produced by Sierra C cross compiler, etc.

Different processor type specified
Object code is for different processor type than target or attempt was made to link
code for different processor types

Division by zero

Error closing file
DOS close file call returned error status

Error in /e option
On Command line

Error in /o option
On Command line

Error in /x option
On Command line

Error in command file

Error in Linker options
On Command line

Psy-Q Development System

-15

Error in REGS expression

Error reading file %f
DOS read file call returned error status

Error writing object file
DOS write file call returned error status - probably disk full

Errors during pass 1 - pass 2 aborted
Pass 2 does not take place if there were errors on Pass 1

Expecting a decimal or hex number
/o option on Command line

File %f is in out-of-date format
File should be re-built be re-assembling

File %f is not a valid library file

File %f is not in PsyLink file format

Group '%n’ is too large (%l bytes)
Group is larger than its size attribute allows
Group '%n' specified with different attributes
Different definitions of a group specify different attributes

lllegal XREF reference to %t '%n'
Obiject file defines xref to symbol which cannot be xref'd, e.g. a Section name

Multiple run addresses specified
More than one run address specified

No source files specified
No source file on Command line

Object file made with out-of-date assembler
File should be re-built before re-assembling

Only built in groups can be used when making relocatable

output
When /r command line option is used, only the built in groups can be used, i.e. no
new groups may be defined

Option /p not available when downloading to target

Options /p and /r cannot be used together
On Command line

Psy-Q Development System

ORG ? can only be used when downloading output
Out of memory, Linker aborting

Previous group was not OBJ'd
Cannot specify OBJ() attribute if previous group did not have obj attribute

Reference to %t '%n' in expression
Use of, e.g. a section name in an expression

Reference to undefined symbol #%h
There is an internal error in the object file

Relocatable output cannot be ORG'd
Remainder by zero

Run-time patch to odd address
Warning that a run-time longword patch to an odd address will occur which may
cause some Amiga systems to crash

SCSiI card not present - linking aborted
Could not find SCSI card

SCSI drivers not loaded
PSYBIOS does not appear to be present

Section '%n' must be in one of groups code, data or BSS
When producing Amiga format code

Section '%n’' placed in non-group symbol #%h
There is an internal error in the object file

Section '%n’' placed in non-group symbol '%n’
An attempt was made to place a section in a non-group type symbol

Section '%n’' placed in two different groups
Section is placed in different groups

Section '%n’' placed in unknown group symbol #%h
There is an internal error in the object file

Section '%n' must be in one of groups text, data or BSS
When producing ST format code

Symbol '%n' multiply defined
New definition of previously defined symbol

Psy-Q Development System

-17

Symbol '%n’' not defined
Undefined symbol

Symbol '%n’' placed in non-section symbol #%h
There is an internal error in the object file

Symbol '%n’' placed in unknown section symbol #%h
There is an internal error in the object file

Symbol in COFF format file has unrecognised class
COFF format files are those produced by Sierra C cross compiler, etc.

Timed out sending data to target
Target not responding or offline

Too many file names specified
Too many parameters on command line

Too many modules to link
Maximum of 256 modules may be linked

Too many symbols in COFF format file
COFF format files are those produced by Sierra C cross compiler, etc.

Unable to open output file
Could not open specified output file

Undefined symbol in COFF file patch record
COFF format files are those produced by Sierra C cross compiler, etc.

Unit number must be in range 0-127

Unknown option /%c
On Command line

Unknown processor type '%s'
Could not recognise target processor type

Unrecognised relocatable output format
/r option on command line

User pressed Break/Ctrl-C
Linking aborted by user

Psy-Q Development System

Value (%l) out of range in instruction patch
Value to be patched in is out of range

WORKSPACE command can only be used when downloading output

Psy-Q Development System

Psylib Error Messages

Librarian Messages:

Cannot add module : it already exists
Module may only appear in a library once

Could not create object file
Error creating object file when extracting

Could not create temporary file
Error creating temporary file

Could not open/create
DOS error opening file

Error reading library file
DOS error reading file

Error writing library file
DOS error writing file, probably disk full

Incorrect format in object file
Error in object file format - re-build it

No files matching
No object files matching the specifications were found

No library file specified
No object files specified

No option specified
An action option must be specified on the command line

Unknown option /
On Command line, option not recognised

Psy-Q Development System

Psy-Q Development System

Symbols
e e e e e e e e e e e ———————————— 3-9, 14-2
s 3-9
PRSPPI 15-7
B 5-5,11-15, 15-8
B s 3-4,3-11, 5-5
B e 15-6
D ettt 3-4, 3-9
1o I o T 9-8
& 3-2,3-9,54
O 11-14
e e 4-6
() oo 3-9
ettt 3-5, 3-9, 5-6
B e 3-9
... 3-3
/ .1-8,1-14,2-2, 3-9, 11-2, 12-2, 13-2, 15-2
/L L 11-3
... 3-3
U PPPPUPUPPRSR 3-2
S 3-9
> e 5-3
ittt 3-9
T 3-9
> ettt 3-9
T ettt 3-9, 4-4, 4-32
S e 4-32
> e 3-9, 11-7
D U PPPPUPUURTRR 3-9
> e 3-9
R UURURURURTRPR 3-3,4-19
@ .2-2,7, 3-3,5,6, 7-2, 9-4, 11-15, 12-3, 15-2
s 3-4,5-5, 5-6
e 3-9
e 3-3
RS 3-5, 4-9
_filename..........coooeeiiii i, 3-5
e 4-5, 5-6
| o 3-9
el ORI 3-9
A
Activity WIindOWS...........coovviieiiiiieeeeeenn. 11-5
Adding AWatch.............ccooeeevviiiieeennnnn. 16-57
ALIAS ..o 3-12
Alignment...................o.... 3-8, 4-20, 4-21, 8-4
Alternate NUMEeriC.......ccooeevvvviviiieeeeeiiinnn, 9-4

Anchoringa Pane............cccccoecvviennens 16-78

BITAY. ettt e 16-52
ASMBBK.....cooviiiiiiiiiiiii e 2-1
Command LiNecccvveeviiiieeiiiineeeenan, 2-2
Environment Variable.......................... 2-4
ASMSH
Command Line.........cccceeeevinneeens 2-6, 2-7
Specific Features............ccoccovveeeeeennnnnn. 2-8
Assembler
Command File..............ccooeeevnnnnnnn. 2-2,2-7
Comment LINES........cccvvvevviiiieeeiiineeeenn, 3-2
Constants........cooeeviiiiiiineineen, 3-4, 3-5
Continuation Lines...........cccceevevivineenns 3-2
Error Messages........coocevvvvneinnnn, 2-5, 16-2
Functions.........c.ocooviieeiiiiniee, 3-7, 3-8
OPEratorSvvveieiieiieeeee e 3-9
(@] 0]1[0] o 1= T 9-3,9-4
Running with Brief................cccoeeee 1-15
User Termination.............cccccevveeeennnnnn. 2-4
Warning Messages..........coocevvveeeennnnnn. 9-4
Assembler, White Space..............ccceee. 9-4
Assigning Variables............................. 16-54
Assignment Directives.............cccceeeevennnnn.. 4-2
AUTOEXEC.BATccoeiiiviiiiieeeeeeees 1-2,1-7

Automatic Even.. 4-9, 4-13, 4-14, 4-15, 4-20
B

Beta Test Scheme.........cccovvvvvviiiinnennn. 16-6
Break at Pointccoevviiiiiiiiieei 16-66
Break if expression is true................... 16-66
Breakpoints.........ccooeeevevviieenennn. 11-17, 16-64
B e 1-15
MACIOS ... i 1-16
BSS. 4-15, 8-2
BUffer Size......c.oovviiiiiiiieieeeee 1-8
C
CASE ..., 4-32
Case SensitiVity..........ccccveeeiiiiieeiiiiieeeennnn. 9-4
CCSH..on e, 14-1
Command LiNeccocevvviviiiiiiiiieiieenn, 14-2
Character Constantscccoeeevvveeiveennnnns 3-4
CNOP....oi e, 4-21, 8-4
Command Files
AssembIer.......cccovveiiiii, 2-2,2-7
PSYLINK ..o, 12-4
Command Lines
ASMSH ... 2-6, 2-7
ASSEMDIET ... 2-2

Psy-Q Development System

CCSH..iiii 14-2
Debugger......ccooveviiiiieiiiieeeee e 11-2
PSYBIOS ... 1-8
PSYLIB ..ot 13-2
PSYLINK ..ot 12-2
PSYMAKE ..ot 15-2
RUN L 1-14
COMMAND.COM.......oviiiiiiiiiiiiiiiieeeeee, 15-5
(o70] 141 0] (=] (o] o S 16-59
Configuration Files..........ccccceevvvviieeeennnn. 11-4
Configuring Your Dex Boards.............. 16-9
Configuring Your SCSI Card.............. 16-10
Constants
Character.........ccoovveeviieiiiiieeeeii e 3-4
INtEOEN v 3-4
Location Counterccceevveeeeeeeeeennnnnns 3-6
SpecCial.....cccvviiiiiiiieei e, 3-5
Time and Date..........ccooeeevveviiiiieeeiiennnns 3-5
Continual Update Rate....................... 16-63
Continuation Lines
ASSEMDIEL......ovviiiiiiii 3-2
MaKIOS. . .uuiiieeieeiiiee e 5-4
CPE File Properties.........ccccoeevvviiieeens 16-22
CPE Files........... 1-14, 2-3, 4-37, 11-2, 11-16
D
DATA e 4-17
DATASIZE ... 4-17
Date Constants..........ccccoeeeiiiiiiiiieciiineeeennee. 3-5
DBUGSAT ..., SeeDebugger
DC 4-13
DCB ..ottt 4-14
Debugger
Activity WIindOWS............coeeevviineeeennnn. 11-5
Breakpoints.........ccccooveeviiiieeiiiieeeee, 11-17
Command LiNe.......ccooveeeeveiiiiiinieeeee, 11-2
Configuration Files.............ccccceeeeennnn. 11-4
Cursor Movement............c.ccevueeennnn. 11-13
Debugging Control.................cceee. 11-16
Disassembly Window.....11-6, 11-9, 11-17
1] o [11-15
EXPressions........ccceeveevvveeeeviieeeeenn, 11-15
File ACCeSSING........cvvvveviriiieeriiiieeenas 11-16
File WINdOW.........ccvvviiiieiiiiiiiinee 11-17
Hex WIindoW...........cccevvvvvnnnnnnn. 11-7,11-18
Keyboard Options........ 11-15,20,21,22,23
Mouse Usage........ccovevvveniiinniinnnnnnn. 11-14
Moving Between Windows............. 11-12
Prompts ..., 11-15
Register Window.................... 11-6, 11-18
Selecting Window Type................... 11-12

Source Level WindowW..........ccccveueene... 11-8

Source Window............ccoeeevvvueeennnnnn. 11-17
Var Window...........ccoeeevevvneeenns 11-8, 11-19
Watch Window.............c.......... 11-8, 11-18
Window Handling...............ccccvees 11-15
Window Joining.........cc.ceevvveeeevinnnnnn.. 11-13
Window Locking...........cccoeeeveiiiennnnnn. 11-14
Window Re-sizing...........cccoeeevvvnnnnn. 11-12
Window Splitting..........cccoeeeveviieeeennnn. 11-13
Decrease INdeX.........cccoeveeviniieeninnnnnnn. 16-49
DEF ... 4-28
Deleting AWatch...........cccceeevviveiiennnnnn. 16-62
Diagnostics, Target Interface............... 1-13
DISABLE ..ot 3-12
Disassembly Window......... 11-6, 11-9, 11-17
DMA Channel..........cccoooeeiiiiiiiiiie, 1-8
DO e 4-35
Documentation............ccoeeeeeevvieeeennnnnnn. 16-12
DS 4-15
E
Edit breakpoint............c.ccoceeviiieiiinnnnnn. 16-45
Editing AWatch..............cocoeeieiiiinnennns 16-61
ELSE ..o 4-30
ELSEIF ... 4-30
END. oo 4-30
ENDC ..ot 4-30
ENDCASE.......oo it 4-32
ENDIF ... 4-30
ENDM ... 5-2
ENDR ..ot 4-33
ENDW ... 4-34
Environment Variables.... 1-7, 1-15, 2-4, 9-7
EQU. . 4-3
SeealsO.......cccceeveeveiiieeeiee e, 2-3,5-11
EQUR ... 4-7
See alSO.....ccceveviiiiiiiiii e 5-11
EQUS L. 4-5
See alSO.....ccceveviiiiiiiiii e 5-11
Error Messagesoovvvvvviiviiiiiiiineiineeiis 16-1
Assembler...........coooooiiiiiiiin 2-5, 16-2
PSYLIB ..o 16-19
PSYLINK oo 16-14
EVEN ..o, 4-20, 8-4
Expand/Collapse.........ccccovvviiieeiinnnnnnnnns 16-49
Expanding Or Collapsing A Variable..16-55
Expressions
CoNStantsS.......cooeeeviiiiii 3-4
Debugger......ccoovveiiiiieeie e 11-15
FUNCLIONS........o i, 3-7
Makefiles........coovevviiiiiieiiiec e, 15-7

Psy-Q Development System

OPEratorS......ovviieii e 3-9
Extended Name Completian.............. 16-59
F
FAIL. ..o 9-8
FILE o 8-3
File WiNndOW........coooviiiiiiiecicean 11-17
Fileserver Functions...10-3,4,5,6,7,8,9,10,12
Firmware Functions.................... 10-2, 10-11
FOIIOW PC...oeieeeee 16-45
FUNCLIONS ..., 16-76
Alignment..........cccoeeeviiiiiii e, 3-8
Fileserver................ 10-3,4,5,6,7,8,9,10,12
FIleSIZE......oooveieie e 3-8
Firmware........cooccoevveieiineeinnnnn. 10-2, 10-11
GroupENndcoovviiiii 3-8
(€] (o111 o1 @] o I 3-8
GrOUPSIZE.....ccvvieeeie e 3-8
SECIENDovniiii e 3-8
SECtSIZE...eniiiiieeee e 3-8
G
GLOBAL ...t 9-10, 12-5
GO0 .o, 16-45
GROUP....... oo, 8-2
S aAlSA....civiiiii 9-5
Group Attributes
BSS 4-15, 8-2
FILE oo 8-3
OB 8-3
ORG ..., 8-2
OVER ... 8-3
SIZE .o 8-3
With SECHIONS. ..o, 8-4
WORD......oiiiiieeeee e 8-2
H
HEX oo 4-16
Hex WINdOW..........coccevvviiineennens 11-7,11-18
I
] 4-17
[EEEGBA ... 4-17
IF4-30
INCBIN ..ot 4-26
INCLUDE ... 4-24
S aAlSA....civiiii 2-3
Increase INdeX........cccovevvviiiiiiiiiiieinnnns 16-49
INFORMoviiiiii e 9-8
Installation
CheCK LiSt......coviiiiiiiiiieieeceeeeeea 1-2

PC Interface.......coouveeiiiiii i, 1-3

PC Software........coooevveiiiiiiiiiiieecieeenn, 1-7
Target Interface..........ccccceeeeees 1-10, 1-18
Installing The Debugger........................ 16-4
INSTR .o, 6-4
IRQ NUMDEN. ..ot 1-8
L
Labels.....ooieiiic 16-76
Format......cocoocoviiiiic, 3-3
LOCAl.. e 7-1
SYymbolS.........oeviiii 3-3
Launching The Debugger................... 16-13
Librarian.......ccooeveeieiiiieinnnn. SeePSYLIB
LINKES ovieiieeeeeeceee, SeePSYLINK
L ST e 9-6
LOCAL ..ot 7-5
Local Labels
DESCOPE ..o 9-4
(011 = S 9-4
Within Modules.........ccoeeevviiiiiiiiieiannns 7-4
Location COUNLErcvvviiiiiiieciieeieeees 3-6
Locking Window, Debugger................ 11-14
M
MACRO. ... 5-2
SEE AlISO....ieviii i 5-6
MACIOS ...t 5-8
Continuation LiNesS..........ccoooovvvviiiineennnns 5-4
Control Characterscccocevevvievvnennnnn. 5-6
Entire Parameter..........c.coovveviiiinnnnnn. 5-6
Extended Parameters.............ccccuu..e... 5-6
Integers to Text......coovviviiiiiiiiiieceen, 5-5
Parameter Type.......ccoovvvviviiiiiiinnnnn. 5-11
Parameters.......cocoveiiviiiiicieeee, 5-3
S AlSO.....iiviiiii 5-11
Unique Labels...........ccccoeveeiiiiiiiiineees 5-5
MAKEFILE.MAKcooviiiiiiiiiiieei, 15-2
MaKefileS.....c.viiiiiiic e 15-3
Command prefixes...........ccvvveeeerennnnnn. 15-5
CommMENtS.. ..o 15-8
Dependencies.........c.ocovuveveeeiiineennnnnn. 15-3
Dir€CHIVES......eviiveieeei e 15-7
Executing Commands....................... 15-5
EXPressions.........ccceevevvevieeeeviieeeeennnn. 15-7
Implicit Rules............cc.ocovviiiiiiin, 15-4
Line Continuation...........cccccceevvneivnnnen. 15-8
MACIOS ... 15-6
Pre-defined Macros............c.cceeeeneeee. 15-6
Value Assignment..........cccccevuveeeeennn. 15-7
MEXIT oo 5-2

Psy-Q Development System

MODENDcoiiiiiiiiieeieei e 7-4
MODULE........otiiiiiiiiiiiiie e 7-4
N
NARG ..ot 5-7
See alSO......ccceveviiiiiieee 3-5
NOLIST oo 9-6
O
OBJ .o 4-22, 8-3
OBJEND......uiiiiiiiiiiiiie e 4-22
Obtaining Releases And Patches......... 16-5
OFFSET.... ittt 8-7
On-line Help Available For The Debugger16-3
Operator Precedence........cccccceeeeeevevnnnnnnn. 3-10
(O] 12T = 1 (0] £ TP 3-9
OP T s 9-2
See alSO......ccceveiviiiiicie 2-2
ORG ..o 4-19, 8-2
OVER ... 8-3
P
Pane Type....ccovviviiiiii e 16-41
PC Interface
Installation...........ccccoeovviiieiiiieci e, 1-3
PC Software
Installation...........ccccooovviiiiiiiieeiee 1-7
[010]]] (= (A 16-52
Poll Host, Firmware Function............. 10-11
POPO ... 9-6
POPP ..o 5-9
POPS ... 8-6
[(0 =T S 16-19
PSYBIOS ... 1-8
Command Line.......cccoeevviiieiiiiineecenine, 1-8
PSYLIB...ioiiiiiiiieiiee e 13-1
Command Line........cccocevveiieviiieeeean, 13-2
Error MessagesSccovvvvveiiiiinnninnnnns 16-19
PSYLINK ..o 12-1
Command File..............cccooeeviiiiiennnnnn. 12-4
Command Line........cccocevvveiieeinineeean, 12-2
Error MessagesSccovvvvveiiiiiinniinnnnns 16-14
PSYMAKE.......oi it 15-1
Command Line........cccocevvveiieiiinneeeas 15-2
Makefile.........ooovvviiieiiiiiiii 15-3
PSyServe.exe.....coccovviiiiiniiiniiineieeann, 16-11
PUBLIC......co i 9-9, 12-6
PURGE.......ccoi i 5-10
PUSHO. ...t 9-6
PUSHP ... 5-9
PUSHS ... 8-6

R
RADIX oo 3-11
REF oo 4-27
REG ... e 4-8
SEE AlSO....ciiiii i 5-11
Register Names...........ccoevveeeeviiiieeeennnn. 16-75
Register Window................ccc..... 11-6, 11-18
REGS.... i 4-37
REPT e 4-33
RS 4-9
RSRESET ...t 4-11
RSSET ..o 4-10
RUN e 1-14
Command Line.........ccovvveeeiiiieeeciie, 1-14
RUNTO CUISOr ... 16-45
S
510251 I [o [N 1-6, 1-8, 1-14, 2-3, 11-4
SCSIl Interface BuS...........ccccoeevvevieen, 16-19
SECT i 8-7
SECTION ... 8-4
See alSO......cccvvieiiiiiieiii e 4-4
SE T 4-4
See alSO.....c.cceeveiiiiiiiiiieei e 5-11
SHIFT e 5-7
Simple Name Completian................... 16-58
SIZE .o 8-3
Source Level Window................ 11-8, 11-17
Specifying Binary File Properties........ 16-24
Specifying Symbol File Properties...... 16-23
Step Into command..................ceeeuennen. 16-67
Step Over command.............cccccceeeeen. 16-68
STRCMP....ouiiiiiiiiiiii e 6-3
STRLEN ..o 6-2
SHUCTUIE ...viviieeeee e 16-52
SUBSTR ..o 6-5
T
Target Interface
Firmware Diagnostics.............c.......... 1-13
Firmware Functions................ 10-2, 10-11
Installation............ccccoeeevvvieeenen, 1-10, 1-18
Text WiNdOW.........coccovveeiiiiiieeeciie e, 11-8
Time ConstantS........ccooeeevviiieiiiiieeeieeees 3-5
Toggle breakpoint.............cccceeevvennnnnn.. 16-45
Toolbar IcoNS........cccevieiiiiiiceeeeeee e, 16-29
Traversing An INdeX..........cccceeeevvvnnnnn.. 16-56
TYPE .o 5-11
Typecasts and Typedefs..................... 16-75

Psy-Q Development System

U

UNIT oo 4-37
Unit toolbar.........ccouvviiiiiiiiiiiiiies 16-17
UNTIL e, 4-35
\Y

Var Window...........cccueeiiieeennnennns 11-8,11-19
W

Warnings, Assembler Messages............ 9-4
Watch WIindow.............ceeeveeeneee. 11-8,11-18
WHILE ... 4-34
White Space, Assembler......................... 9-4

wild-card expression..............cccuueeeeeen. 16-59

WORD. ... 8-2
SEC AISQ....ieieee e 9-5

X

XDEF ..o, 9-9, 12-6
SEC AISQ...iieiee e 5-11

XREF... e 9-5, 9-9, 12-6
SEC AISA...iieiee e 5-11

Z

Zilog Numbers.........ccccooeevviiiicninnnnnnn. 3-4,9-4

Psy-Q Development System

