
SE
G

A
C

on
fid

en
tia

l

General Notice

When using this document, keep the following in mind:

1. This document is confidential. By accepting this document you acknowledge that you are bound
by the terms set forth in the nondisclosure and confidentiality agreement signed separately and in
the possession of SEGA. If you have not signed such a nondisclosure agreement, please contact
SEGA immediately and return this document to SEGA.

2. This document may include technical inaccuracies or typographical errors. Changes are periodi-
cally made to the information herein; these changes will be incorporated in new versions of the
document. SEGA may make improvements and/or changes in the product(s) and/or the
program(s) described in this document at any time.

3. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document
without SEGA’s written permission. Request for copies of this document and for technical
information about SEGA products must be made to your authorized SEGA Technical Services
representative.

4. No license is granted by implication or otherwise under any patents, copyrights, trademarks, or
other intellectual property rights of SEGA Enterprises, Ltd., SEGA of America, Inc., or any third party.

5. Software, circuitry, and other examples described herein are meant merely to indicate the character-
istics and performance of SEGA’s products. SEGA assumes no responsibility for any intellectual
property claims or other problems that may result from applications based on the examples
described herein.

6. It is possible that this document may contain reference to, or information about, SEGA products
(development hardware/software) or services that are not provided in countries other than Japan.
Such references/information must not be construed to mean that SEGA intends to provide such
SEGA products or services in countries other than Japan. Any reference of a SEGA licensed prod-
uct/program in this document is not intended to state or imply that you can use only SEGA’s
licensed products/programs. Any functionally equivalent hardware/software can be used instead.

7. SEGA will not be held responsible for any damage to the user that may result from accidents or any
other reasons during operation of the user’s equipment, or programs according to this document.

(11/2/94- 002)

NOTE: A reader's comment/correction form is provided with this
document. Please address comments to :

 SEGA of America, Inc., Developer Technical Support (att. Evelyn Merritt)
 150 Shoreline Drive, Redwood City, CA 94065

SEGA may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

SE
G

A
C

on
fid

en
tia

l

TM

Branching
Playback Library

User's Manual
Doc. # ST-136-D-R2-082495

© 1995 SEGA. All Rights Reserved.

SE
G

A
C

on
fid

en
tia

l

READER CORRECTION/COMMENT SHEET

Chpt. pg. # Correction

Corrections:

General Information:

Your Name Phone

Document number ST-136-D-R2-082495 Date

Document name Branching Playback Library User's Manual

Questions/comments:

Keep us updated!
 If you should come across any incorrect or outdated information while reading through the attached
document, or come up with any questions or comments, please let us know so that we can make the
required changes in subsequent revisions. Simply fill out all information below and return this form to
the Developer Technical Support Manager at the address below. Please make more copies of this form if
more space is needed. Thank you.

Where to send your corrections:

Fax: (415) 802-1717
Attn: Evelyn Merritt,
Developer Technical Support

Mail: SEGA OF AMERICA
Attn: Evelyn Merritt,
Developer Technical Support
150 Shoreline Dr.
Redwood City, CA 94065

SE
G

A
C

on
fid

en
tia

l

4

1. Overview

The Branching Playback Library (BPL) enables seamless reading of data streams, based
on a pre-defined scenario. This allows the system to branch between streams smoothly
during reads.

The BPL, however, manages only the data streams that are necessary for branching.
Use a decode-only library such as MPEG and Cinepak in conjunction with BPL to play
back data such as audio and video.

1.1 Organization of the Library
Figure 1.1 shows the organization of CD-related libraries.

Application

Software

Hardware
CD Block SIMM,

SCSI File

CD Communication Interface (CDC)

File System
(GFS)

Stream System (STM)

MPEG
Library
(MPG)

Branching
Playback
Library (BPL)

Cinepak
Library
(CPK)

 Figure 1.1 Organization of CD-related libraries

The Branching Playback Library requires each of the following libraries: Stream Sys-
tem, File System, and CD Communication Interface.

SE
G

A
C

on
fid

en
tia

l

Branching Playback Library User's Manual 5

1.2 Summary of Branching Playback Library Functions

1. Setting the Branch Destination (Scenario) Information
This function sets destination stream candidates as destination (scenario) information.

2. Pre-reading the Streams Necessary for Branching
The BPL manages the opening/closing of streams to smoothly branch between streams.
By pre-reading an open stream (a branching destination stream candidate) into the CD
buffer, the stream can be fetched without interruption when the branch destination is
determined.

3. Destination Selection Function
The BPL selects the actual destination from the destination candidates.

4. Destination Stream Notification Function
Based on the selected destination, the BPL notifies the application of the next stream to
be played.

Stream handle

ApplicationSelect a
destination

BPL

STM_Open, STM_Close

Stream System

Create, EntryNext

Decoder (Cinepak, MPEG, etc.)

Set initialization and destination information

 Figure 1.2 Stream system overview diagram

SE
G

A
C

on
fid

en
tia

l

6

2. Basic Items

2.1 Definitions

 Table 2.1 Terminology

 Table 2.2 List of abbreviations

Other terms that appear in this manual are based on the CD Communication Interface,
the File System, and the Stream System Libraries.

2.2 Restrictions on Names
The BPL uses the following function, variable, type, and macro names:

Function/variable name: BP~ and bp~
Type name: Bp~
Macro name: BP~

The libraries required by the BPL use the following global symbols:

 Table 2.3 Symbol names and libraries

These symbols must not be used by the application program.

Abbreviation Meaning Description
BPL branch play branching playback
bstm branch stream branch stream
bstmid branch stream ID branch stream ID
brno branch No. branch No.
bstmmax branch stream max Total number of branch

streams
brmax branch max Total number of branches

Library Name Symbol
Stream System ST~, st~, St~
File System GF~, gf~, Gf~
CD Communication Interface CD~, cd~, Cd~

Term Meaning
Branch stream Equivalent to a file on a CD. The BPL reads a stream

based on a scenario that is set for a branch stream.

Different types of stream data (e.g., audio, video) can
be fetched by performing channel-interleaving within a
branch stream (normally, interleaving by means of a
subheader).

Branch stream ID This ID identifies the branch stream. Given this ID, the
read file, stream key, or destination information can be
set or fetched.

Branch number This number specifies the branch destination.
Equivalent to the event types such as input from a
control pad.

SE
G

A
C

on
fid

en
tia

l

Branching Playback Library User's Manual 7

3. How the BPL Works

3.1 Flow of Processing
The BPL reads a stream according to a given scenario and notifies the application of the
stream handle that must be decoded.

Figure 3.1 shows the flow of main processing events.

Initialization (BPL_Init)

Sets a scenario
(BPL_SetStmInfo
BPL_SetBranchInfo)

BPL server execution
(BPL_ExecServer)

Specifies a work area

Sets branch stream infor-
mation and destination
information.

Selects a destination
(BPL_SelectBranch)

Fetches a branch stream
(BPL_GetCurStm
BPL_GetNextStm)

A
p
p
l
i
c
a
t
i
o
n

 Figure 3.1 Flow of processing

SE
G

A
C

on
fid

en
tia

l

8

3.2 Scenario
A scenario is information that indicates how branching playback is to be performed as a
function of time (the order in which streams are to be played).

Branched streams are specified in file units. Audio and video data can be fetched by
channel-interleaving within a file.

bstm1

bstm2

bstm3

bstm4

bstm5

bstm6

bstm7

bstm8
bstm9

bstm10

bstm11
bstm12

bstm13

bstm14
bstm15

bstm16

bstm17

bstm18

bstm19

Branch Number

0

2

3

1

Figure 3.2 Stream-branching

(a) This scenario specifies bstm1 as the branch stream to be read first. The BPL then
starts reading bstm1 .

(b) The application fetches the branch stream that is currently being read and sets it in
the decoder.

(c) After reading bstm1 , the BPL begins reading branch candidates (branch streams
that may be fetched next) bstm2 , bstm3 , bstm4 , and bstm5 . Effective use of the CD
buffer and smoother branching is made possible by pre-reading branch candidate
streams.

(d) The application fetches events such as input from a control pad and selects the
destination for branching. If branch numbers 0~3 are assigned to branches bstm2 ,
bstm3 , bstm4 , and bstm5 , and if 1 is specified, reading of bstm2 , bstm4 and bstm5 ,
which is no longer needed, is canceled. If necessary, the application fetches the
destination stream and sets it in the decoder.

(e) After fetching bstm1 , the BPL begins fetching bstm3 .
If the application specifies the execution of branching to the Branch Play Server,
the BPL begins reading bstm9 , bstm10 , and bstm11 , as in (c).

SE
G

A
C

on
fid

en
tia

l

Branching Playback Library User's Manual 9

3.3 Changing Branching Playback States
Table 3.1 shows branching playback states. Figure 3.1 shows a branching playback
state transition diagram.

 Table 3.1 Branching playback states

The server function can get the branching playback status.

Figure 3.3 BP state transition diagram

State Description
End of branching
playback

Branching playback ended.
The stream group and the streams that were opened by the
BPL (the current stream and candidate streams) are all
closed.

Wait for a
destination
selection

Branch candidates were pre-read, but a destination has not
been selected.
All streams among the branch candidates are subject to pre-
reading. Only the current stream can be accessed. Destination
streams cannot be accessed.

Determine
destination

A destination was selected from the branch candidates.
Only the selected destination is pre-read.
Both the current stream and the destination stream can be
accessed.

No destination There are no branch candidates or destinations for the current
stream. The last stream is being played.

OFF

ONON

ON

ON/OFF

OFF

OFF

Branching playback
complete
(BPL_SVR_COMPLETED)

Wait for the selection
(BPL_SVR_WAITSEL)

Destination selected
(BPL_SVR_SELECT)

No destination
(BPL_SVR_NOBRN)

Initialize branching
playback

BPL_Init function

Reset branching
playback

Stop branching
playback

Executable in all states

No candidates

The selected destination was BPL_BR_NONE.
(See the BPL_SetBranchInfo function.)

BPL_SetStart function
specifies BPL_BR_NONE

BPL_Reset function

BPL_SetStart function

BPL_SelBranch function

• ON/OFF: Branch execution switch for the Branching Playback Server function BPL_ExecServer.
 If ON is specified in a destination selection wait or no destination state, then branching
 playback is terminated.
 If ON is specified in the selected selected state, then branch streams are changed.

SE
G

A
C

on
fid

en
tia

l

10

3.4 Executing Branching (Branch Stream-Switching)

(1) Executing branching
When branching is performed in the destination selected state (by turning on the
branch execution switch of the Branching Playback Server), branch streams are
switched as follows:
(a) The current stream, A, is closed.

(The BPL stops reading A and deletes any data that remains in the CD buffer.)
(b) The destination stream, B, becomes the current stream.
(c) The destination stream becomes undefined.

 Table 3.2 Switching branch streams by executing branching

The selection of a destination always precedes the execution of branching (switching).
However, the selection and switching operations are generally performed asynchronously.

(2) Opening and closing a stream
The BPL opens both the current stream and branch candidate streams. The BPL
employs the following opening and closing procedures:
(a) Starting playback stream specified by the BPL_SetStart function is opened first as the

current stream.
(b) When the reading of the current stream begins, branch candidate streams are opened.
(c) When a destination is selected, all other branch candidates are closed, and only the destina-

tion is pre-read.
(d) When branching is executed, the current stream is closed.

The destination stream becomes the current stream, and steps(b)~(d) are repeated.
(e) When branching playback is completed, the stream group is closed.

(3) Timing for branch stream-switching
Table 3.3 shows the timing types for branch stream-switching.

 Table 3.3 Timing for branch stream-switching

Branching must not be executed until the decoder finishes processing the current stream;
even when a destination is determined (to prevent truncation of the stream data that is
being decoded).

Regardless of whether normal or forced switching is performed, switching processes for
the decoder should be executed first. The branch execution switch should be turned on
only after switching is complete.

Branch Stream Before
Branching

After Branching (after switching)

Current stream (obtained by the
BPL_GetCurStm function)

A B
(A is closed)

Destination stream (obtained by
the BPL_GetNextStm function)

B Undefined until the next destination is
selected and determined by the
BPL_SelectBranch function

Timing Description
Natural
switching

Switches to destination stream B upon completion of decoding
stream A.

Forced switching Force switch to destination stream B regardless of whether
stream A is being decoded.

SE
G

A
C

on
fid

en
tia

l

Branching Playback Library User's Manual 11

4. Organization of Files on Disc

The total amount of streams that can be pre-read is limited by the capacity of the CD
buffer (a maximum of 200 sectors). Therefore, streams that exceed the limit and can not
be pre-read may result in branching delays.

1. Non-interleaved branch candidates
Suppose that A’s branch candidates are B and C and that files are positioned on disc as
shown in Figure 4.1. Then, only file B can be pre-read.

There will be no problems if the pre-read data of A is sufficient to seek/branch to B or
C. However, if both B and C need to be pre-read in order to enable delayed branch
selection timing, branching to C in this example cannot be performed without delay.

A B C

A B

C

Stream branching Position of files on disk

200 or more sectors

 Figure 4.1 Non-interleaved candidate branches (C cannot be pre-read)

2. Interleaved branch candidates
As shown in Figure 4.2, one method of enabling branches to B and C without delay after
A is played is to interleave B and C immediately after A.

A
A B (b1+b2+b3...)

C (c1+c2+c3...)
b1 c1 b2 c2 b3 c3

Stream branching Organization of files on disk

B and C are interleaved

Note: Two branch candidate files exist: B and C.

 Figure 4.2 Interleaved branch candidates (all of B and C)

3. Partially interleaved branch candidates
As shown in Figure 4.3, it is also possible to split B into B1 and B2, and C into C1 and C2
and to interleave only B1 and C1.

SE
G

A
C

on
fid

en
tia

l

12

In this case, it is sufficient to interleave only parts of B and C (B1 and C1). This
technique allows a seek to B2 and C2 and enables highly independent operation.
However, the technique requires the division of files.

A B1, C1 C2
A B1 -- B2

C1 -- C2
B2

Stream branching Position of files on disk

B1 and C1 are interleaved

Note: Four branch candidate files exist: B1, B2, C1, and C2.

 Figure 4.3 Partially-interleaved branch candidates (parts of B and C)

SE
G

A
C

on
fid

en
tia

l

Branching Playback Library User's Manual 13

5. Basic Examples

5.1 Scenario Processing
Figure 5.1 shows an example of a branching playback scenario.

BSTM1.MPG
BSTM2.MPG

BSTM3.MPG

0

1

Button A

Button B

Branch number

Button A is pressed while BSTM1.MPG is being played →BSTM2.MPG is played after BSTM1.MPG.
Button B is pressed while BSTM1.MPG is being played →BSTM3.MPG is played after BSTM1.MPG.

 Figure 5.1 Example of a branching playback scenario

The following is a sample program that sets this scenario.

#define BSTM_MAX 3 /* Total number of branch streams(BSTM1.MPG,
BSTM2.MPG, BSTM3.MPG) */

#define BRANCH_MAX 2 /* Total number of branches (number of arrows in
Figure 5.1) */

#define KEY_MAX 2 /* Total number of stream key types */
#define A_BTN 0 /* Branch number assigned to button A */
#define B_BTN 1 /* Branch number assigned to button B */
#define BR_NUM 2 /* Number of branches per stream */
#define BSTM1_ID 0 /* Branch stream ID of BSTM1.MPG */
#define BSTM2_ID 1 /* Branch stream ID of BSTM2.MPG */
#define BSTM3_ID 2 /* Branch stream ID of BSTM3.MPG */

/* Work area for the BPL */
Sint32 work_bpl[BPL_WORK_SIZE(BSTM_MAX, BRANCH_MAX, KEY_MAX)/sizeof(Sint32)];

void setScenario(void)
{

StmKey key[KEY_MAX]; /* Area for setting a stream key */
Sint32 brtbl[BR_NUM]; /* Area for setting a destination */
Sint32 fid; /* File ID */

/* Initialization of branching playback */
BPL_Init(BSTM_MAX, BRANCH_MAX, KEY_MAX, work_bpl);

/* Setting branch stream information */
STM_KEY_CN(key + 0) = STM_KEY_CIMSK(key + 0) = STM_KEY_NONE;
STM_KEY_CN(key + 1) = STM_KEY_CIMSK(key + 1) = STM_KEY_NONE;
STM_KEY_SMMSK(key + 0) = STM_KEY_SMVAL(key + 0) = STM_SM_VIDEO;
STM_KEY_SMMSK(key + 1) = STM_KEY_SMVAL(key + 1) = STM_SM_AUDIO;
fid = GFS_NameToId(“BSTM1.MPG”);
BPL_SetStmInfo(BSTM1_ID, fid, KEY_MAX, key);
fid = GFS_NameToId(“BSTM2.MPG”);

SE
G

A
C

on
fid

en
tia

l

14

 BPL_SetstmInfo(BSTM2_ID, fid, KEY_MAX, key);
 fid = GFS_NameTold("BSTM3.MPG");
 BPL_SetStmInfo(BSTM3_ID, fid, KEY_MAX, key);

 /* Set destination information */
 brtbl[A_BTN] = BSTM2_ID; /* Branch to BSTM2.MPG
 if button A is pressed */
 brtbl[B_BTN] = BSTM3_ID; /* Branch to BSTM3.MPG
 if button B is pressed */
 BPL_SetBranchInfo(BSTM1_ID, BR_NUM, brtbl); /* Set the destination for
 BSTM1.MPG */
}

SE
G

A
C

on
fid

en
tia

l

Branching Playback Library User's Manual 15

5.2 Branching Playback Processing
The following is an example of a branching playback program. (Refer to Section 5.1 for
the scenario.)

Sint32 work_gfs[GFS_WORK_SIZE(BSTM_MAX*KEY_MAX)/sizeof(Sint32)];
Sint32 work_stm[STM_WORK_SIZE(GRP_MAX, BSTM_MAX*KEY_MAX)/sizeof(Sint32)];
Sint32 brno; /* Branch number */
StmHn stmtbl[KEY_MAX]; /* Stream handle table */
Sint32 bpl_stat; /* Branching playback status */
Sint32 decode_stat; /* Decoder operation status */
DecodeHn dc_hn = NULL; /* Decoder handle */
Bool chgsw = OFF; /* Branch execution switch */
Bool endflag = FALSE;
Sint32 ret;

/* Initialization of the libraries */
GFS_Init(···); /* Initialize the File System */
STM_Init(···); /* Initialize the Stream System */
initDecoder(); /* Initialize the decoder */
setScenario(); /* Set a scenario (see 5.1) */

/* Branching playback */
BPL_SetStart(BSTM1_ID); /* Specify a stream to begin playback*/
BPL_GetCurStm(KEY_MAX, stmtbl); /* Fetch the first branch stream */
dc_hn = createDecodeHn(stmtbl); /* Create a decoder handle */
while (endflag == FALSE) {
 bpl_stat = BPL_ExecServer(chgsw); /* Execute the Branching Playback
 Server */
 chgsw = OFF;
 STM_ExecServer(); /* Execute the stream server */
 decode_stat = execDecoder(dc_hn); /* Execute the server function of
the decoder */

 switch (bpl_stat) {
 case BPL_SVR_COMPLETED: /* Branching playback complete status */
 endflag = TRUE;
 break;
 case BPL_SVR_WAITSEL: /* Destination selection wait
 state */
 /* Get pad input (0:button A, 1:button B, negative: no input */
 brno = getPadEvent();
 if (brno >= 0) {
 BPL_SelectBranch(brno); /* Select a destination */
 }
 break;
 case BPL_SVR_SELECT: /* Destination determined state */
 case BPL_SVR_NOBRN: /* No-destination state */
 if (decode_stat != COMPLETED) { /* Decoding completion check */
 break;
 }

SE
G

A
C

on
fid

en
tia

l

16

 chgsw = ON; /* Branch execution switch on */
 ret = BPL_GetNextStm(KEY_MAX, stmtbl); /* Get a destination stream */
 if (ret >= 0) { /* If there is a destination */
 destoroyDecodeHn(dc_hn); /* Clear the decoder handle */
 dc_hn = createDecodeHn(stmtbl); /* Create a decoder handle */
 }
 break;
 }
}
destoroyDecodeHn(dc_hn); /* Clear the decoder handle */

The BPL automatically opens and closes a stream by using the Stream System. For a
description of the decoder, refer to the applicable library manuals.

SE
G

A
C

on
fid

en
tia

l

Branching Playback Library User's Manual 17

6. Data Specifications

6.1 Basic Data

1. Basic Data Types

2. Logical Constants
Logical constants are used as Boolean values:

6.2 Constants

1. Error Codes
The value of BPL_ERR_OK is 0. Other error codes take negative values.

2. Other

Title
Data specifications

Data
Basic data

Data Name No.
1.0

Type Descripton
Uint8 Unsigned 1-byte integer
Sint8 Signed 1-byte integer
Uint16 Unsigned 2-byte integer
Sint16 Signed 2-byte integer
Uint32 Unsigned 4-byte integer
Sint32 Signed 4-byte integer
Bool Boolean 4-byte integer (logical constants are used as Boolean)

Constant Value Description

FALSE

TRUE

0

1

Represents the FALSE logical value.

Represents the TRUE logical value.

OFF

ON

0

1

Represents the switch off (FALSE) state.

Represents the switch on (TRUE) state.

Title
Data specifications

Data
Constant

Data Name No.
2.0

Constant Description
BPL_ERR_OK Normal termination
BPL_ERR_KYOVRFLW Too many stream keys
BPL_ERR_BROVRFLW Too many destination settings
BPL_ERR_BSTMID Illegal branch stream ID
BPL_ERR_BRNO Illegal branch number
BPL_ERR_BRSPC Destination already specified
BPL_ERR_NOKEY No corresponding stream key set
BPL_ERR_OPNSTM Stream open failure

Constant Value Description

BPL_STMKEY_MAX 6 Number of stream keys that can be set to a branch
stream.

SE
G

A
C

on
fid

en
tia

l

18

7. Function Specifications

Table 7.1 shows a list of BPL functions.

 Table 7.1 List of functions (1)

Function Function Name No.
Scenario processing 1.0

Initialize branching playback BPL_Init 1.1
Reset branching playback BPL_Reset 1.2
Set branch stream information BPL_SetStmInfo 1.3
Get branch stream information BPL_GetStmInfo 1.4
Set destination information BPL_SetBranchInfo 1.5
Get destination information BPL_GetBranchInfo 1.6

Branching playback-processing 2.0
Set playback start stream BPL_SetStart 2.1
Execute Branching Playback Server BPL_ExecServer 2.2
Select destination BPL_SelectBranch 2.3
Get current stream BPL_GetCurStm 2.4
Get destination stream BPL_GetNextStm 2.5
Get stream group BPL_GetStmGrp 2.6

SE
G

A
C

on
fid

en
tia

l

Branching Playback Library User's Manual 19

7.1 Scenario Processing

[Format] Sint32 BPL_Init(Sint32 bstmmax, Sint32 brmax, Sint32
keymax, void *work)

[Input] bstmmax : Total number of branch streams
brmax : Total number of branches
keymax : Total number of stream key types
work : Work area

[Output] None
[Function value] Error code
[Function] Initializes the work area for the BPL. Clears previously set scenario information.

Execute this function before the BPL is used.
[Remarks] (a) Determine the size of the work area from the BPL_WORK_SIZE (bstmmax ,

 brmax , keymax) byte.
Allocate work areas at 4-byte boundaries.
Example: Uint32 work[BPL_WORK_SIZE(bstmmax, brmax,
keymax)/sizeof(Uint32)];

(b) When stream keys of different types are assigned to different branch
streams, the sum of the types is the value of keymax .
Example: If key1 (3 types of keys) is assigned to bstm1 , and key2

(4 types of keys) is assigned to bstm2 , then keymax ,
which is the sum of key1 and key2 , will be 7.
If key1 is assigned to both bstm1 and bstm2 , then
keymax , which is key1 , will be 3.

(c) The BPL_Init function does not close the stream group that is currently
used. To force an initialization of the BPL while it is being used, execute the
BPL_Reset function.

[Format] Sint32 BPL_Reset(void)
[Input] None
[Output] None
[Function value] Error code
[Function] Suspends access to a branch stream and resets the branching playback (closes the

stream group currently being used by the BPL and initializes all information).

Title
Data specifications

Data
Initialize branching playback

Data Name
BPL_Init

No.
1.1

Title
Data specifications

Data
Reset branching playback

Data Name
BPL_Reset

No.
1.2

SE
G

A
C

on
fid

en
tia

l

20

[Format] Sint32 BPL_SetStmInfo(Sint32 bstmid, Sint32 fid, Sint32
nkey, StmKey *keytbl)

[Input] bstmid: Branch stream ID (0 ≤bstmid <bstmmax)
fid : File ID
nkey : Number of stream keys (nkey ≤BPL_STMKEY_MAX)
keytbl : Stream key table

[Output] None
[Function value] Error code
[Function] Assigns branch stream information (information on the individual streams that

are actually read) to a branch stream.
[Remarks] (a) By assigning multiple stream keys to a file, the function can read channel

interleaved-data.
(b) The maximum number of stream keys that can be assigned to a branch

stream is BPL_STMKEY_MAX.
The BPL_Init function specifies the total number of stream key types that
can be used in all streams.

[Format] Sint32 BPL_GetStmInfo(Sint32 bstmid, Sint32 *fid, Sint32
*nkey, StmKey *keytbl)

[Input] bstmid : Branch stream ID
[Output] fid: File ID

nkey : Number of stream keys (nkey ≤BPL_STMKEY_MAX)
keytbl : Stream key table

[Function value] Number of destinations that are already set (an error code results if this number
is negative)

[Function] Gets the branch stream information that is assigned to a branch stream.
Refer to the destination information-setting function (BPL_SetBranchInfo) for
the number of destinations.

Title
Function
specifications

Data
Set branch stream information

Data Name
BPL_SetStmInfo

No.
1.3

Title
Function
specifications

Data
Get branch stream information

Data Name
BPL_GetStmInfo

No.
1.4

SE
G

A
C

on
fid

en
tia

l

Branching Playback Library User's Manual 21

[Format] Sint32 BPL_SetBranchInfo(Sint32 bstmid, Sint32 nbranch,
Sint32 *brtbl)

[Input] bstmid : Branch stream ID
nbranch : Number of destinations
brtbl : Branch table

[Output] None
[Function value] Error code
[Function] Assigns destination information (candidate destinations) to a branch stream.
[Remarks] (a) Assigns the branch stream IDs of branch candidates to the branch table.

To indicate that there are no destinations, specify BPL_BR_NONE as a branch table
element.
brtbl[0] = BSTMID_A;
brtbl[1] = BPL_BR_NONE; /* No destinations (the end of BP) */
brtbl[2] = BSTMID_B;
nbranch = 3;
A destination is specified using the BPL_SelectBranch function and a
branch number (a position in the branch table).
In this example, the branch processing produces the following results,
depending on the destination that is selected:

(b) The number of streams must satisfy the following conditions:
X +Y≤Z
X: The number of stream keys that are set in bstmid
Y: Total number of destination stream keys
Z: Maximum number of streams that can be opened simultaneously (specified
using the STM_Init function)

[Format] Sint32 BPL_GetBranchInfo(Sint32 bstmid,
Sint32 *nbranch, Sint32 *brtbl, Sint32 nelem)

[Input] bstmid : Branch stream ID
nelem : Number of branch table elements

[Output] nbranch : Number of destinations (0 if no branch candidates)
brtbl : Branch table (a maximum of nelem branch candidates are stored from the

beginning of the table)
[Function value] Error code
[Function] Gets the destination information that is assigned to a branch stream.

Title
Function
specifications

Data
Set destination information

Data Name
BPL_SetBranchInfo

No.
1.5

Selected
Destination

Branch Processing
(when the branch execution switch of the server function is on)

Branch number 0 Branches to branch stream ID BSTMID_A.
Branch number 1 Terminates the branching playback process goes into the no

destination state immediately after this branch number is
selected.

Branch number 2 Branches to branch stream ID BSTMID_B.
Other (BPL_SelectBranch returns the BPL_ERR_BRNO error and

invalidates the selection.)

Title
Function
specifications

Data
Get destination information

Data Name
BPL_GetBranchInfo

No.
1.6

SE
G

A
C

on
fid

en
tia

l

22

7.2 Branching Playback Processing

[Format] Sint32 BPL_SetStart(Sint32 bstmid)
[Input] bstmid : Branch stream ID (BPL_BR_NONE: stops branching playback)
[Output] None
[Function value] Error code
[Function] Specify a playback start stream (the branch stream at the beginning of a scenario).

To stop branching playback, specify BPL_BR_NONE as the branch stream ID.

[Format] Sint32 BPL_ExecServer(Bool chgsw)
[Input] chgsw : Branch execution switch (ON: branch, OFF: do not branch)
[Output] None
[Function value] Branching playback status
[Function] Executes the Branching Playback Server. When the branch execution switch is

ON, performs branching (switches branch streams).

(1) Branching playback state

For branching playback states, see Section 3.3, Changing Branching Playback States.

[Format] Sint32 BPL_SelectBranch(Sint32 brno)
[Input] brno : Branch number
[Output] None
[Function value] Error code
[Function] Selects a destination according to a specified branch number.
[Remarks] (a) Specifying the switch “ON” during the execution of the BPL_ExecServer

function results in branching (the current stream is switched with the
selected destination).

(b) A destination must be selected even when there is only one branch candi-
date.

Constant Description
BPL_SVR_COMPLETED Branching playback completed.
BPL_SVR_WAITSEL Wait for the selection of a destination.
BPL_SVR_SELECT Destination selected.
BPL_SVR_NOBRN No destinations.

Title
Function
specifications

Data
Select destination

Data Name
BPL_SelectBranch

No.
2.3

Title
Function
specifications

Data
Set playback start stream

Data Name
BPL_SetStart

No.
2.1

Title
Function
specifications

Data
Execute Branching Playback
Server

Data Name
BPL_ExecServer

No.
2.2

SE
G

A
C

on
fid

en
tia

l

Branching Playback Library User's Manual 23

[Format] Sint32 BPL_GetCurStm(Sint32 nelem, StmHn *stmtbl)

[Input] nelem : Number of elements in the stream handle table (nelem

≤BPL_STMKEY_MAX)

[Output] stmtbl : Stream handle table
[Function value] Branch stream ID (Negative ID=no corresponding branch streams)
[Function] Gets the current stream (branch stream ID and the stream handle) that is subject

to read access.
[Remarks] (a) Stream handles that correspond to stream keys are set in the stream handle

table.

[Format] Sint32 BPL_GetNextStm(Sint32 nelem, StmHn *stmtbl)

[Input] nelem : Number of elements in the stream handle table (nelem

≤BPL_STMKEY_MAX)
[Output] stmtbl : Stream handle table
[Function value] Branch stream ID (Negative ID=no corresponding branch streams)
[Function] Gets a destination stream (branch stream ID and the stream handle).
[Remarks] (a) Stream handles that correspond to stream keys are set in the stream handle

table.
(b) The function value remains negative until a destination is selected (until

the BPL_SelectBranch function is executed).

[Format] StmGrpHn BPL_GetStmGrp(void)
[Input] None
[Output] None
[Function value] Stream group handle
[Function] Gets the handle of the stream group that is used by the BPL.
[Remarks] (a) When activated, the BPL opens one stream group.

When the branching playback process is terminated, the stream group
handle becomes NULL.

Title
Function
specifications

Data
Get current stream

Data Name
BPL_GetCurStm

No.
2.4

Title
Function
specifications

Data
Get destination stream

Data Name
BPL_GetNextStm

No.
2.5

Title
Function
specifications

Data
Get stream group

Data Name
BPL_GetStmGrp

No.
2.6

	General Notice
	Branching Playback Library User's Manual
	1. Overview
	1.1 Organization of the Library
	1.2 Summary of Branching Playback Library Functions

	2. Basic Items
	2.1 DefinitionsTable 2.1 Terminology
	2.2 Restrictions on Names
	2.2 Restrictions on Names

	3. How the BPL Works
	3.1 Flow of Processing
	3.2 Scenario
	3.3 Changing Branching Playback States
	3.4 Executing Branching (Branch Stream-Switching)

	4. Organization of Files on Disc
	5. Basic Examples
	5.1 Scenario Processing
	5.2 Branching Playback Processing

	6. Data Specifications
	6.1 Basic Data
	6.2 Constants

	7. Function Specifications
	7.1 Scenario Processing
	7.2 Branching Playback Processing

