
SE
G

A
C

on
fid

en
tia

l

General Notice

When using this document, keep the following in mind:

1. This document is confidential. By accepting this document you acknowledge that you are bound
by the terms set forth in the non-disclosure and confidentiality agreement signed separately and /in
the possession of SEGA. If you have not signed such a non-disclosure agreement, please contact
SEGA immediately and return this document to SEGA.

2. This document may include technical inaccuracies or typographical errors. Changes are periodi-
cally made to the information herein; these changes will be incorporated in new versions of the
document. SEGA may make improvements and/or changes in the product(s) and/or the
program(s) described in this document at any time.

3. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document
without SEGA’S written permission. Request for copies of this document and for technical
information about SEGA products must be made to your authorized SEGA Technical Services
representative.

4. No license is granted by implication or otherwise under any patents, copyrights, trademarks, or
other intellectual property rights of SEGA Enterprises, Ltd., SEGA of America, Inc., or any third
party.

5. Software, circuitry, and other examples described herein are meant merely to indicate the character-
istics and performance of SEGA’s products. SEGA assumes no responsibility for any intellectual
property claims or other problems that may result from applications based on the examples
describe herein.

6. It is possible that this document may contain reference to, or information about, SEGA products
(development hardware/software) or services that are not provided in countries other than Japan.
Such references/information must not be construed to mean that SEGA intends to provide such
SEGA products or services in countries other than Japan. Any reference of a SEGA licensed prod-
uct/program in this document is not intended to state or simply that you can use only SEGA’s
licensed products/programs. Any functionally equivalent hardware/software can be used instead.

7. SEGA will not be held responsible for any damage to the user that may result from accidents or any
other reasons during operation of the user’s equipment, or programs according to this document.

(6/27/95- 002)

NOTE: A reader's comment/correction form is provided with this
document. Please address comments to :

 SEGA of America, Inc., Developer Technical Support (att. Evelyn Merritt)
 150 Shoreline Drive, Redwood City, CA 94065

SEGA may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

SE
G

A
C

on
fid

en
tia

l

TM

© 1994 SEGA. All Rights Reserved.

Program Library
User's Guide 1

CD Library
Doc. # ST-136-R2-093094

SE
G

A
C

on
fid

en
tia

l

READER CORRECTION/COMMENT SHEET

Chpt. pg. # Correction

Corrections:

General Information:

Your Name Phone

Document number Date

Document name

Questions/comments:

Keep us updated!
 If you should come across any incorrect or outdated information while reading through the attached
document, or come up with any questions or comments, please let us know so that we can make the
required changes in subsequent revisions. Simply fill out all information below and return this form to
the Developer Technical Support Manager at the address below. Please make more copies of this form if
more space is needed. Thank you.

Fax: (415) 802-1440
Attn: Sr. Coordinator,
Technical Publications Group

Mail: SEGA OF AMERICA
Attn: Sr. Coordinator,
Technical Publications Group
130 Shoreline Dr.
Redwood City, CA 94065

Where to send your corrections:

ST-136-R2-093094

Program Library User's Guide 1 CD Library

SE
G

A
C

on
fid

en
tia

l

REFERENCES

In translating/creating this document, certain technical words and/or phrases were interpreted
with the assistance of the technical literature listed below.

1. Dictionary of Science and Engineering, 350,000 words, 3rd Edition
Inter Press
Tokyo, Japan
1990

2. Computer Dictionary
Kyoritsu Publishing Co., LTD.
Tokyo, Japan
1978

3. IBM Dictionary of Computing
McGraw-Hill, Inc.
New York, New York
1994

SE
G

A
C

on
fid

en
tia

l

(This page was blank in the original Japanese document.)

ii

SE
G

A
C

on
fid

en
tia

l

CONTENTS

iii

1.0 Outline ... 1

1.1 Features ... 1

1.2 Summary of Functions .. 2

1.3 Module Configuration ... 4

2.0 Basics .. 5

2.1 Glossary ... 5

2.2 Notation .. 6

2.3 Name Restrictions .. 6

2.4 Access Macros ... 6

3.0 Directory Operations .. 7

3.1 Initialization ... 7

3.2 File Identifiers ... 8

3.3 Sub-Directory Operations ... 9

3.4 Conversion Between File Names and File Identifiers ... 11

3.5 CD Block File System ... 12

4.0 File Access .. 13

4.1 Access Models ... 13

4.2 Access Pointers .. 13

4.3 Parameters Controlled for Each File ... 14

5.0 Access Modes ... 15

5.1 Return-Upon-Completion Access ... 15

5.2 Immediate-Return Access... 15

6.0 Other Functions ... 19

6.1 Development Support Functions .. 19

6.2 Error Processing Functions .. 21

6.3 Multiprocessing ... 21

7.0 Data Specifications .. 23

7.1 Basic Data .. 24

7.2 Constants ... 25

7.3 Data Types ... 29

SE
G

A
C

on
fid

en
tia

l

8.0 Function Specifications.. 32

8.1 Directory Control ... 33

8.2 File Operations ... 35

8.3 Return-Upon-Completion Read .. 37

8.4 Immediate-Return Read ... 38

8.5 Read Parameter Settings ... 41

8.6 Other... 42

Appendix A Utilization of Development Support Functions .. 43

A.1 Procedure for Using Memory Files ... 43

A.2 Procedure for Using DOS Files .. 43

A.3 Precautions ... 44

Appendix B Error Processing Methods .. 45

Appendix C ... 48

C.1 Additional Explanation .. 48

C.2 Changes from the Previous Version ... 48

iv

SE
G

A
C

on
fid

en
tia

l

(This page was blank in the original Japanese document.)

v

SE
G

A
C

on
fid

en
tia

l

User's Guide 1 CD Library 1

1.0 Outline

Below is an explanation of the libraries for accessing files on a CD.

1.1 Features
This library has the following features.

Compatible CD ROMs
 · Capable of accessing ISO9660 level files.
 · This library does not cover access that utilizes CD ROM XA sub-header

information.

Data Buffering
 · Access is performed that assumes a CD block buffer control mechanism.
 · In addition to simply reading files, pre-reads using the buffer are possible.

File Identifiers
 · Access is based on file identifiers (order in directory).
 · Eliminate a drop in speed caused by searching directories.
 · Access by file name is possible by using a function that converts from the file

name to a file identifier.

Development Support Functions
 · Memory files and DOS files can be accessed as a development support function.
 · In the case of small amounts of data, files on a CD can be interchanged with

memory files.
 · DOS files on an IBM PC can be accessed in the same way as memory files via the

SCSI interface. Even data too large to load into SIMM can be replaced by CD
files.

 · Two types of libraries are provided: one for building into the product and one
that includes development support functions.

SE
G

A
C

on
fid

en
tia

l

2

1.2 Summary of Functions
The functions of the file system library are summarized below, and are categorized
into the following six types.

Directory Operations
Library initialization, directory information reads, current directory settings and
other functions are provided.

File Operations
Opens, closes, seeks and performs the other common operations on files listed be-
low.

Return-Upon-Completion Read
Reads data from files. Control does not return from the function until the reading of
data is complete.

Function Function performed
GFS_Init Initializes the library and mounts CDs
GFS_LoadDir Reads directory information
GFS_SetDir Sets the current directory
GFS_NameToId Converts a file name to a file identifier
GFS_IdToName Converts a file identifier to a file name

Function Action
GFS_Open Opens a file
GFS_Close Closes a file
GFS_Seek Moves the access pointer
GFS_Tell Gets an access pointer
GFS_IsEof Checks if an access pointer is at the end of a file
GFS_ByteToSct Converts the unit from byte to sector
GFS_GetFileSize Gets the file size
GFS_GetFileInfo Gets file information

Function Action
GFS_Fread Reads data from opened files
GFS_Load Specifies a file identifier and then reads data

SE
G

A
C

on
fid

en
tia

l

User's Guide 1 CD Library 3

Immediate-Return Read
Reads data from files by means of a request function and a server function. The
request issued by the request function is processed by the server function one pro-
cessing unit at a time. The server function must be recalled repeatedly. By inserting
application processing into the server function call loop, execution of the application
can be continued until completion of the data read.

Read Parameter Setting
Sets the various parameters for the return-upon-completion and immediate-return
functions. Determines how the CD buffer is to be used, the transfer mode (DMA,
CPU, etc.) and the transfer unit.

Other
CD pickup control, registration of error processing functions, and getting the error
status are provided. The error processing function is called when an error occurs.

Function Action
GFS_NwFread Issues a data read request
GFS_NwCdRead Issues a read request to the CD buffer
GFS_NwIsComplete Checks if read processing is complete
GFS_NwStop Stops read processing
GFS_NwGetStat Gets the access status
GFS_NwExecOne A server function for one file
GFS_NwExecServer A server function for multiple files

Function Function performed
GFS_SetGmode Sets the mode for fetching from the CD buffer
GFS_SetTmode Sets the transfer mode
GFS_SetReadPara Sets the unit for reading to the CD buffer
GFS_SetTransPara Sets the unit for transferring from the CD buffer

Function Function performed
GFS_CdMovePickup Moves the CD pickup
GFS_SetErrFunc Registers the error processing function
GFS_GetErrStat Gets the error status

SE
G

A
C

on
fid

en
tia

l

4

1.3 Module Configuration
The positioning of this library with respect to the hardware and other software is
shown below in Figure 1.1. The area enclosed in the dotted line is the module in-
cluded in the library for debugging.

Application

File System

SCSI Driver
CD Communiation

I/F Library

CD Block
SCSI I/F
IBM PC

HD

SIMM

Hardware

Debugging Module

 Figure 1.1 Module Configuration

In order to use this library, it is necessary to link the following libraries at the same
time.

· SHCNPIC.LIB Library not compatible with position-independent code for
SH7600

· SEGA_CDC.LIB CD communications interface library
· SEGA_DMA.LIB DMA library
· SEGA_CSH.LIB Cache library

SE
G

A
C

on
fid

en
tia

l

User's Guide 1 CD Library 5

2.0 Basics

2.1 Glossary
The terms used to explain the file system library are defined in Table 2.1.

 Table 2.1 Glossary
Term Meaning

CD buffer A buffer that stores data read from the CD in sector units. It has a 200-
sector capacity.

DOS file Files on an IBM PC that can be accessed via a SCSI interface. These can
be used in a debugger library.

Memory file A file located on SIMM. These files can be used in the debugger library.
Access pointer Position at which a file is accessed (unit: sector).
Current directory The directory referred to when opening files.
Debug file General designation for DOS files and memory files.
Buffer partition One part of a CD buffer divided up into several logical parts. One buffer

partition is dedicated to each file that is opened.
File identifier A sequential number in a directory for identifying files. The values used

range from 0 to (number of directory records - 1). Where, 0 indicates the
current directory and 1 indicates the parent directory.

Frame address (FAD) Number continuously assigned in frame units assuming the absolute
time on the CD is 00:00:00. This number has a 1-to-1 correspondence to
the absolute time. The CD is accessed using the frame address as a key,
not the absolute time.

Main process The series of processes that is begun when the CPU is reset. This term
refers to interrupt processing.

Interrupt process Processing that is started by an interrupt. This term refers to the main
process.

SE
G

A
C

on
fid

en
tia

l

6

2.2 Notation
The notation used in explaining the file system is explained below.

Grouping of names
“ABC_-” indicates several names beginning with ABC_. For example, ABC_X, ABC_Y
and ABC_Z.

Symbol Specification
“!MMM/SSS” indicates the symbol SSS defined by MMM. It is also a notation used
with E7000 commands.

Hexadecimal Notation
Numbers with an “H” affixed to them at the end are hexadecimal numbers.

2.3 Name Restrictions
In file system libraries, the following names are used for functions, variables, types,
and macros.

Functions and variables GF- or gf-
Type s Gf-
Macros GF-

In the applications that use these libraries, be careful not to use designations that
conflict with these naming conventions.

2.4 Access Macros
In CD libraries that include file system libraries, members of the structure are refer-
enced using a structure called an access macro. Access macros are capable of getting
and setting the values of members. Using access macros has the following advantages.
· Member access format is uniform.
· Parts accessing specific structure members can be easily extracted.

SE
G

A
C

on
fid

en
tia

l

User's Guide 1 CD Library 7

3.0 Directory Operations

3.1 Initialization
Before using this library, GFS_Init must be executed. GFS_Init performs the following
processing:

· Initialization of library work area
· Mount processing

Initialization
Sets the work area used by the library and initializes it. The application must provide the
work area and the directory information storage area.

Since the size of the area changes with the number of files opened at the same time, it
should be obtained using the following macro. The statement open_max is the maximum
number of files that can be opened at once.

GFS_WORK_SIZE(open_max)

Mount Processing
The root directory is read from the CD ROM and this is made the current directory. It also
initializes the CD block and erases all the sector data in the CD buffer. Since the file system
only holds the top address of the directory information storage area, the application must
not change the contents of the area.

The directory information control structure is initialized and GFS_Init called as shown
below.

#define OPEN_MAX 20 /*maximum number of files to be opened at
 the same time */

#define MAX_DIR 10 /*maximum number of directories */

Uint32 work[GFS_WORK_SIZE(OPEN_MAX)/4]; /*library work area */
GfsDirTbl dirtb1; /*directory information control structure */
GfsDirId dir[MAX_DIR]; /*directory information storage area */

GFS_DIRTBL_TYPE(&dirtbl) = GFS_DIR_ID; /*directory information storage area type */
GFS_DIRTBL_NDIR(&dirtbl) = MAX_DIR; /*maximum number of elements in directory

 information */
/*storage area */

GFS_DIRTBL_DIRID(&dirtble) = dir; /*address of directory information storage*/
/*area */

GFS_Init(OPEN_MAX, work, &dirtbl);

GFS_Init must be called again when the CD ROM is changed.

SE
G

A
C

on
fid

en
tia

l

8

3.2 File Identifiers
In this library, files that are accessed are specified by file identifiers. If the file name
is used to access a file, then the file name is converted to a file identifier. The file
identifier is valid for the current directory.

Example: Accessing FILE2.DAT below.

Self
Parent

File identifier

0

1

2

3

4

FILE1.DAT

FILE2.DAT

FILE3.DAT

FILE1.DAT

FILE2.DAT

FILE3.DAT

 Program Example

gfs = GFS_Open (3) ;
/*
* file access is performed here
*/
GFS_Close (gfs)

Current directory

Parent

Figure 3.1 Access Using File Identifiers

SE
G

A
C

on
fid

en
tia

l

User's Guide 1 CD Library 9

3.3 Sub-Directory Operations
In order to access files in a sub-directory, it is necessary to set the current directory
information by calling the following functions.
· Read directory information (GFS_LoadDir)
· Set current directory (GFS_SetDir)
A method in which the directory information is read in advance and CD ROM
access is lost when the file is opened is allowed.

Read Directory Information (GFS_LoadDir)
This specifies the sub-directory file and reads and saves the directory information.
The following two types of directory information save areas can be selected.

(a) GFS_DIR_ID
· Does not save the file name. Files can only be accessed by means of a file
 identifier.

(b) GFS_DIR_NAME
· Saves the file name and therefore an area larger than (a) above is required.
· Access by file name is allowed.

Current Directory Setting (GFS_SetDir)
The directory information area read by GFS_LoadDir is used as the current directory.

0

2

3

0
1

2

3

0

1

2

3Directory
information area

Set current
directory

Root Directory
[Logical structure of CD ROM]

Sub-directories

File
Directory

information
Read

Directory
information
Read

GFS_SetDir

GFS_LoadDir

GFS_LoadDir

1

Figure 3.2 Setting Directory Information

SE
G

A
C

on
fid

en
tia

l

10

The following procedure must be followed to access files in a sub-directory.

Read directory information
↓

Set current directory
↓

Open file
↓

Access file
↓

Close file

Two examples of this procedure are shown below.

Example: Accessing a file in a directory other than the root directory
An example of a procedure program for accessing a file in a sub-directory is shown
below. Here, the file to be accessed is in the directory specified by dir_fid in the current
directory.

#define MAX_DIR 10 /*maximum number of directories */

GfsDirTbl dirtbl; /*Directory information storage area */
GfsDirId dirid[MAX_DIR]; /*Directory information storage area */
Sint32 dir_fid; /*enters directory file identifier */
Sint32 fid; /*enters accessed file identifier */
GfsHn gfs; /*file handler of accessed file */

GFS_DIRTBL_TYPE(&dirtbl) = GFS_DIR_ID;
GFS_DIRTBL_NDIR(&dirtbl) = MAX_DIR;
GFS_DIRTBL_DIRID(&dirtbl) = dirid;
GFS_LoadDir(dir_fid, &dirtbl); /*reads directory information */

GFS_SetDir(&dirtbl); /*sets current directory */

/*sets identifier of file accessed in fid */
gfs = GFS_Open(fid);
/*
*file access performed here
*/
GFS_Close(gfs)

SE
G

A
C

on
fid

en
tia

l

User's Guide 1 CD Library 11

Example: Simultaneous access of multiple files in different directories
In order to access files in different directories, the target files must be opened while
switching the current directory. An example is shown in which two files in the two sub-
directories directly below the current directory are accessed simultaneously. This file
identifiers of the two sub-directories with the files to be accessed are respectively
specified by dir_fidl and dir_fid2.

#define MAX_DIR 10 /*maximum number of directories */
GfsDirTbl curdir; /*current directory at this point */
GfsDirTbl dirtbl1, dirtbl2; /*control area for directory information */
GfsDirId dirid1[MAX_DIR]; /*storage area for directory information */
GfsDirId dirid2[MAX_DIR]; /*storage area for directory information */
Sint32 dir_fid2, dir_fid2; /*enters identifiers of directory files */
Sint32 fid1, fid2; /*enters identifiers of access files */
GfsHn gfs1, gfs2 /*file handlers of access files */

/*loads directory information of current directory dir_fidl */
GFS_DIRTBL_TYPE(&dirtbl1) = GFS_DIR_ID;
GFS_DIRTBL_NDIR(&dirtbl1) = MAX_DIR;
GFS_DIRTBL_DIRID(&dirtbl1) = dirid1;
GFS_LoadDir(dir_gfsl, &dirtbll);

/*loads directory information of current directory dir_fid2 */
GFS_DIRTBL_TYPE(&dirtbl2) = GFS_DIR_ID;
GFS_DIRTBL_NDIR(&dirtbl2) = MAX_DIR;
GFS_DIRTBL_DIRID(&dirtbl2) = dirid2;
GFS_LoadDir(dir_gfs2, &dirtbl2);

/*opens the file fid1 of the directory dir_fid1 */
GFS_SetDir(&dirtbl1);
gfs1 = GFS_Open(fid1);

/*opens the file fid2 of the directory dir_fid2 */
GFS_SetDir(&dirtbl2);
gfs2 = GFS_Open(fid2);
/*
*file access is performed here
*/
GFS_Close(gfs1);
GFS_Close(gfs2);

3.4 Conversion Between File Names and File Identifiers
When directory information containing file names is set to the current directory,
functions for converting between file names and file identifiers can be used.
If directory information not containing a file name is set to the current directory, an
error results if these functions are called. An example defining a function that uses
this function to open a file by its file name is shown below.

Example: /*opens file specified by file name */
GfsHn OpenByName(Uint8 *fname)
{
 Sint32 fid = GFS_NameToId(fname);

 if (fid < 0) {
 return NULL;
 }
 return GFS_Open(fid);
}

SE
G

A
C

on
fid

en
tia

l

12

3.5 CD Block File System
Directories can be controlled using the CD block file system (file system built into
the CD block; CDBFS below).

The processes for initialization, reading directory information and setting the current
directory using the CDBFS are shown below.

Initialization
In order to utilize the functions of the CDBFS, NULL must be specified for the
pointer to the directory control structure and GFS_Init must be called. Upon comple-
tion of processing by GFS_Init, the root directory is set by the CDBFS.

Reading Directory Information
In order to read sub-directory information, NULL is specified for the pointer to the
directory control structure and GFS_LoadDir is called to indicate that the storage
destination of the directory information is in the CD block.

Setting Current Directory
In order to set the directory information set in the CD block to the current directory,
NULL is specified for the pointer to the directory control structure and GFS_SetDir
is called.

Even if settings that use the CDBFS are performed, directory control can be partially
performed with this library. In that case, always be aware of which directory control
function being utilized. The advantages and disadvantages of using the CDBFS are
listed in Table 3.1.

Table 3.1 Advantages and Disadvantages of Using CDBFS

The functions GFS_Init and GFS_LoadDir, which read directory information, return
the number of directories read as the function value. When the CDBFS is used, that
number becomes the number of directories the CDBFS is holding.

An error results if a file name is used when the current directory of the CDBFS is set.

Advantages Disadvantages
· Uses small amount of host memory. · The CD ROM is accessed each time a file in a

different directory is accessed.
· The amount of CD buffer that can be used by

applications is reduced by one sector.
· File names cannot be used.

SE
G

A
C

on
fid

en
tia

l

User's Guide 1 CD Library 13

4.0 File Access

4.1 Access Models
A diagram of a file access model is shown in Figure 4.1.

CD ROM Host Area

Read Fetch

CD Block

GFS_NwCdRead GFS_Fread
GFS_NwFread

CD Buffer

Figure 4.1 Access Function Model

Transferring data from the CD ROM to the CD buffer is called “reading”, and trans-
ferring data from the CD buffer to the host area is called “fetching”.

By utilizing GFS_Fread and GFS_NwFread, an application can transfer data from the
CD ROM without being aware of read processing. To control read processing from
the application, use GFS_NwCdRead.

4.2 Access Pointer
Since the access pointer is updated by reading, it moves in sector units. Movement
of the access pointer when the following expression is executed to read 5000 bytes to
the host area buffer is shown in Figure 4.2. After execution, the access pointer moves
from AP1 to AP2.

GFS_FREAD(gfs, 3, buf, 5000);

AP1

Parts read to host area

1 sector

AP2

 Figure 4.2 Movement of access pointer

SE
G

A
C

on
fid

en
tia

l

14

Sizes of sectors for each type of file are shown in Table 4.1

Table 4.1 Sector Lengths for Each Type of File

While reading is performed in sector units, fetching is performed in 4-byte units.

4.3 Parameters Controlled for Each File
Of the parameters controlled by the library for each file opened, an application can
change up to five. These parameters are shown in Table 4.2.

Table 4.2 Parameters for Each File

The opened file occupies one filter, which is a CD block resource, and one buffer
partition at a time.

File type Sector length (bytes)
CD ROM mode 1 2048
CD ROM mode 2 form 1 only 2048
CD ROM mode 2 form 2 only 2324
Includes CD ROM mode 2 Undefined
DOS file 2048
Memory file 2048

Parameter Description Function changed Initial value
Access pointer Offset of file at which

reading is started (unit:
sector)

GFS_Seek 0

Fetch mode Specifies whether sector
data in CD buffer is erased
or left after fetching

GFS_SetGmode GFS_GMODE_ERASE

Transfer mode Specifies device that
performs fetching

GFS_SetTmode GFS_TMODE_CPU

Read parameter Maximum number of
sectors transferred in one
read

GFS_SetReadPara GFS_RPARA_DFL

Fetch parameter Number of sectors
transferred in one fetch

GFS_SetTransPara 1

SE
G

A
C

on
fid

en
tia

l

User's Guide 1 CD Library 15

5.0 Access Modes

The two access modes provided by this library are described below.
 · Return-upon-completion access

Control is not returned to the application until completion of access.
· Immediate-return access

Control is returned as soon as an access request is received.

5.1 Return-Upon-Completion Access
Return-upon-completion access is similar to the file access function in the standard
C library. An example return-upon-completion access program is shown below.

Example:
#define BUF_SIZE 2048

GfsHn gfs; /*file handler */
Sint32 fid; /*file identifier */
Sint32 nsct = 1; /*number of read sectors */
Uint32 buf[BUF_SIZE] /*read area */

gfs = GFS_Open(fid); /*opens file */

GFS_Fread(gfs, nsct, buf, BUF_SIZE); /*nsct sectors read to buf */

GFS_Close(gfs); /*closes file */

5.2 Immediate-Return Access
Immediate-return access is performed by using a request function and a server
function. The request function executes only request acceptance and immediately
returns. Actual access is performed by repeatedly calling the server function while
monitoring the completion status. The application can also be processed in the call
loop of the server function.

A file handle that has issued a request cannot issue another request until processing
of the first one is completed.

SE
G

A
C

on
fid

en
tia

l

16

Immediate-Return Access for Single Files
The server function for single file access is GFS_NwExecOne. An example of a
program that accesses one file using immediate-return access is shown below. In this
example, the request function is GFS_NwFread.

Example:
#define BUF_SIZE 2048*2

GfsHn gfs; /*file handler */
Sint32 nsct = 2; /*number of read sectors */
Sint32 stat; /*server status */
Uint32 buf[BUF_SIZE/4] /*read area */

gfs = GFS_Open(fid); /*opens file */
/*request function */
GFS_NwFread(gfs, nsct, buf, BUF_SIZE); /*reads nsct sectors into buf */

/*returns control immediately */

for (;;) {
 /*server function */
 stat = GFS_NwExecOne(GFS); /*executes read */
 if (stat == GFS_SVR_COMPLETED) {/*read complete? */
 break;
 }
 user(); /*optional user process */
}

GFS_Close(gfs); /*closes file */

SE
G

A
C

on
fid

en
tia

l

User's Guide 1 CD Library 17

Immediate-Return Access for Multiple Files
The server function for continuous access of multiple files is GFS_NwExecServer.
The request function is used in common with access of single files.

The application issues a request for access of multiple files. Following this, access is
executed sequentially by periodically passing control to the server. Access is per-
formed one at a time in the order of the requests.

Here is an example of a program that performs user processing while reading three
files.

Example:
/*number of sectors read from each file */
#define NSCT1 1
#define NSCT2 2
#define NSCT3 3
/*size of data storage area of each file (unit: byte) */
#define BSIZE1 2048*NSCT1
#define BSIZE2 2048*NSCT2
#define BSIZE3 2048*NSCT3

Sint32 fid1, fid2, fid3; /*file identifier of each file */
GfsHn gfsl, gfs2, gfs3; /*file handle of each file */
Uint32 buf1[BSIZE1/4]; /*data storage area of each file */
Uint32 buf2[BSIZE2/4];
Uint32 buf3[BSIZE3/4];
GfsHn now_gfs; /*file handle during access */
Sint32 stat; /*server status */

gfsl = GFS_Open(fid1); /*opens file */
gfs2 = GFS_Open(fid2);
gfs3 = GFS_open(fid3);
GFS_NwFread(gfs1, NSCT1, buf1, BSIZE1); /*starts read operation */
GFS_NwFread(gfs2, NSCT2, buf2, BSIZE2);
GFS_NwFread(gfs3, NSCT3, buf3, BSIZE3);
for (;;) {
 stat = GFS_NwExecServer(&now_gfs); /*executes read */
 if (stat == GFS_SVR_COMPLETED { /*is there work to execute? */
 break;
 }
 user(); /*optional user process */
}
GFS_Close(gfs1);
GFS_Close(gfs2);
GFS_Close(gfs3);

SE
G

A
C

on
fid

en
tia

l

18

Pre-loading to CD Buffer
If pre-reading to the CD buffer is specified by GFS_NwCdRead when a large file is
continuously loaded a little at a time, then full advantage can be taken of the read
speed of the CD.

In the program example shown below, a 1000 sector file is continuously read 10
sectors at a time. GFS_NwCdRead specifies to look ahead 1000 sector pre-reads, and
therefore the 1000 sectors of the target file are continuously played and stored in the
buffer. Since data is fetched from the buffer at the same time this processing is per-
formed, the buffer does not get full and playback is not interrupted.

If this processing is performed without pre-reading, then playback of the CD is
interrupted every 10 sectors and time is wasted.

An example of a program that pre-reads to the CD buffer is shown.

Example:
#define SECT_SIZE 2048
#define FILE_ SIZE 10000*SECT_SIZE
#define RD_UNIT 10

Uint8 *rd_bp, *proc_bp; /*read buffer and processing buffer */
Uint32 buf1[RD_UNIT*SECT_SIZE/4]; /*data storage area 1 */
Uint32 buf2[RD_UNIT*SECT_SIZE/4]; /*data storage area 2 */
GfsHn gfs;
Sint32 i, stat, nbyte;

gfs = GFS_Open(fid);
GFS_NwCdRead(gfs, FILE_SIZE); /*pre-read specification for CD buffer */
GFS_SetTransPara(gfs, RD_UNIT); /*maximum RD_UNIT sector fetched once */
for (i = 0; i < FILE_SIZE / RD_UNIT; ++I) {
 /*read and processing buffer settings */
 if (i & 1) {
 rd_bp = buf1;
 proc_bp = buf2;
 } else {
 rd_bp = buf2;
 proc_bp = buf1;
 }
 /*executes fetch from CD buffer */
 GFS_NwFread(gfs, RD_UNIT, rd-bp, RD_UNIT * SECT_SIZE);
 do {
 if (i > 0) {
 user_process(proc_bp); /*processing of read data */
 } else {
 user_process0(); /*processing before data is read */
 }
 GFS_NwExecOne(gfs);
 GFS_NwGetStat(gfs, &stat, &nbyte);
 } while (nbyte < RD_UNIT * SECT_SIZE);
}

SE
G

A
C

on
fid

en
tia

l

User's Guide 1 CD Library 19

6.0 Other Functions

6.1 Development Support Functions
The file system provides a function to access memory files and DOS files to support
debugging. This function makes it possible to access files that have not been prepared
on the CD ROM yet or files that have been changed since the CD ROM was made in
the same way files on the CD ROM are accessed. However, this function cannot be
used together with the CDBFS.

The mechanism that facilitates access of debugging files in the same way as files on
the CD ROM lies in the directory information read process.

When directory information is read from the CD ROM, directory information is also
read form the debugger file. The information in the debugger file is processed either
in place of or in addition to the information in the CD ROM file.

After reading directory information from a directory, the following processing is
performed.

1) Substitution
The directory information from a debugger file of the same name as the CD ROM
file is set to the directory information area in place of the corresponding CD ROM
file.

2) Addition
A debugger file for which substitution was not performed is added to the directory
information storage area.

In the substitution of the debugger file, the memory file takes precedence over the
DOS file. An example in which these processes are performed is shown below.
Figure 6.1 shows the file configuration.

 CD ROM

.

..
FILE1
FILE2
FILE3
.
..
FILE4
FILE5
FILE6

 DIR1

 DIR2

 DOS SIMM

FILE1
FILE4
DOS_FILE

FILE1
SIMMFILE

Figure 6.1 File Configuration Example

SE
G

A
C

on
fid

en
tia

l

20

The results of obtaining the directory information of DIR1 with this file configura-
tion are shown in Table 6.1 and the results of obtaining the directory information of
DIR2 are shown in Table 6.2

Table 6.1 Directory Information of DIR1

The files with lines through them indicate that they have been replaced.

Table 6.1 Directory Information of DIR2

The files with lines through them indicate that they have been replaced.

As shown in the examples above, substitution and addition by a debugger file can
be performed on all directories of a CD ROM.

Directory information
obtained

CD ROM DOS SIMM

. .

.. ..
FILE1 FILE1 FILE1 FILE1
FILE2 FILE2
FILE3 FILE3
FILE4 FILE4
DOS_FILE DOS_FILE
SIMMFILE SIMMFILE

Directory information
obtained

CD ROM DOS SIMM

. .

.. ..
FILE4 FILE4 FILE4
FILE5 FILE5
FILE6 FILE6
FILE1 FILE1 FILE1
DOS_FILE DOS_FILE
SIMMFILE SIMMFILE

SE
G

A
C

on
fid

en
tia

l

User's Guide 1 CD Library 21

6.2 Error Processing Functions
By registering error processing functions, it is possible to specify that an error pro-
cessing function be called in the event an error should occur during execution of a
library function. Error processing functions are not registered in the initial state.

When an error does occur, the error processing function is executed using the fol-
lowing call format.

void *(func)(void *obj, Sint32 err); /*error processing function */
void *obj; /*pointer to registered object */
Sint32 err_code; /*generated error code */

(*func)(obj, err_code); /*calls error processing function */

When control returns from the error processing function, the library function returns
control to the application using the error code as the function value.

6.3 Multiple Processing
This is the processing required when the functions of this library are used (multiple
processing) for both the main processing and the interrupt processing.

When an example is made to execute the functions of this library simultaneously for
main processing and interrupt processing, the function value called last becomes
error code GFS_ERR_BUSY. In that case, the following measures must be taken
depending on whether this occurs during main processing or interrupt processing.

During Main Processing
Wait until the called function stops returning GFS_ERR_BUSY or postpone calling of
this library function until the next opportunity.

During Interrupt Processing
Postpone calling of this library function until the next opportunity.

SE
G

A
C

on
fid

en
tia

l

22

(This page was blank in the original Japanese document.)

SE
G

A
C

on
fid

en
tia

l

User's Guide 1 CD Library 23

7.0 Data Specifications

A list of file system data is shown in Table 7.1.

Table 7.1 Data Table

Data Data Name No.
Basic data 1.0
Constants 2.0

File attribute GFS_ATR_- 2.1
Access status GFS_NWSTAT_- 2.2
Access Server status GFS_SVR_- 2.3
Seek mode GFS_SEEK_- 2.4
Get (fetch) mode GFS_GMODE_- 2.5
Transfer mode GFS_TRANS_- 2.6
Error code GFS_ERR_- 2.7
Other 2.8

Data types 3.0
File handle GfsHn 3.1
Directory information control GfsDirTbl 3.2
Directory information with no file name GfsDirId 3.3
Directory information with file name GfsDirName 3.4
Error processing function GfsErrFunc 3.5
Error status GfsErrStat 3.6

SE
G

A
C

on
fid

en
tia

l

24

7.1 Basic Data

Title
Data specification

Data
Basic data

Data Name No.
1.0

1) Basic Data Types
A table of the basic data structure is shown below.

Type name Explanation
Uint8 1-byte integer without sign
Sint8 1-byte integer with sign
Uint16 2-byte integer without sign
Sint16 2-byte integer with sign
Uint32 4-byte integer without sign
Sint32 4-byte integer with sign
Boo1 logic type 4-byte integer

2) Logical Constants
These are used as logical (Boo1) values.

Constant name Value Explanation
FALSE 0 False logical value
TRUE 1 True logical value

3) NULL Pointer

Constant name Value Explanation
NULL (void *)0 Null pointer

SE
G

A
C

on
fid

en
tia

l

User's Guide 1 CD Library 25

7.2 Constants

Title
Data specification

Data
File attribute

Data Name
GFS_ATR_-

No.
2.1

The constants shown below indicate the presence or absence of their respective
attributes. These constants are used for attributes in directory information read by
GFS_Init and GFS_LoadDir and for attributes output by GFS_GetFileInfo.
The bits not shown here are undefined.

Title
Data specification

Data
Access status

Data Name
GFS_NWSTAT_-

No.
2.2

The constants shown below indicate the access status of the server. Therefore, output
using GFS_NwGetStat.

Constant name Explanation
GFS_NWSTAT_NOACT No action
GFS_NWSTAT_FREAD GFS_NwFread is being executed
GFS_NWSTAT_CDREAD GFS_NwCdRead is being executed

Bit 6 5 4 3 2 1 07

GFS_ATR_END_TBL 1: End of directory information table

GFS_ATR_FORM1 1: Includes FORM1 sectors

GFS_ATR_FORM2 1: Includes FORM2 sectors

GFS_ATR_INTLV 1: Includes interleave sectors

GFS_ATR_DIR 1: Directory file

SE
G

A
C

on
fid

en
tia

l

26

Title
Data specification

Data
Access Server status

Data Name
GFS_SVR_-

No.
2.3

The constants shown below are functions of GFS_NwExecOne and GFS_NwExecServer.
Their execution status is shown.

Constant name Explanation
GFS_SVR_COMPLETED Processing complete
GFS_SVR_BUSY Processing in progress
GFS_SVR_CDPAUSE Temporary pause because CD buffer full
GFS_SVR_ERROR Error has occurred during access

Title
Data specification

Data
Seek mode

Data Name
GFS_SEEK_-

No.
2.4

The constants below indicate the reference when moving an access pointer. These are
used as arguments for GFS_Seek.

Constant name Explanation
GFS_SEEK_SET Top of file
GFS_SEEK_CUR Current position
GFS_SEEK END End of file

Title
Data specification

Data
Fetch mode

Data Name
GFS_GMODE_-

No.
2.5

The constants below indicate the method by which data are fetched from the CD ROM
buffer. These are used as arguments for GFS_SetGmode.

Constant name Explanation
GFS_GMODE_ERASE Delete from buffer after transferring
GFS_GMODE_RESIDENT Leave in CD buffer after transferring

SE
G

A
C

on
fid

en
tia

l

User's Guide 1 CD Library 27

Title
Data specification

Data
Transfer mode

Data Name
GFS_TRANS_-

No.
2.6

The constants below indicate the device that executes transfer from the CD buffer. These
are used as arguments of GFS_SetTmode.

Constant name Explanation
GFS_TMODE_SCU DMA transfer by SCU
GFS_TMODE_SDMA0 DMA cycle steal transfer channel 0
GFS_TMODE_SDMA1 DMA cycle steal transfer channel channel 1
GFS_TMODE_CPU Software transfer

SE
G

A
C

on
fid

en
tia

l

28

Title
Data specification

Data
Error codes

Data Name
GFS_ERR_-

No.
2.7

The value of GFS_ERR_OK is "0". Other error codes have negative values.

Constant name Explanation
GFS_ERR_OK Normal end
GFS_ERR_CDRD CD read error
GFS_ERR_CDNODISC No CD is set in the player
GFS_ERR_CDROM A non-CD ROM disc is set in the player
GFS_ERR_DIRTBL Contents of directory control table are incorrect
GFS_ERR_OPENMAX The value for the maximum number of opens is

incorrect
GFS_ERR_DIR The specified file is not a directory
GFS_ERR_CDBFS CD block file system error
GFS_ERR_NONAME File names cannot be used in the current directory
GFS_ERR_NEXIST File name does not exist
GFS_ERR_FID Incorrect file identifier
GFS_ERR_HNDL File handle is incorrect
GFS_ERR_SEEK Seek position is incorrect
GFS_ERR_ORG Reference position is incorrect
GFS_ERR_NUM Byte number is negative
GFS_ERR_OFS Incorrect offset
GFS_ERR_FBUSY Processing of specified file handle not complete
GFS_ERR_PARA Incorrect mode
GFS_ERR_BUSY Library function is being executed
GFS_ERR_NOHNDL No open file handle
GFS_ERR_PUINUSE Pickup is being used
GFS_ERR_ALIGN Data read area is not in 4-byte boundary
GFS_ERR_TMOUT Internal processing time out
GFS_ERR_CDOPEN Tray is open
GFS_ERR_BFUL Read stopped because buffer is full

Title
Data specification

Data
Other

Data Name No.
2.8

Other constants used in this library are shown below.

Constant name Explanation
GFS_RPARA_DFL Initial value of read parameter
GFS_BUFSIZ_INF Specifies read regardless of the size of the read area

in GFS_Load

SE
G

A
C

on
fid

en
tia

l

User's Guide 1 CD Library 29

7.3 Data Types

Title
Data specification

Data
File handle

Data Name
GfsHn

No.
3.1

Holds information regarding file access for each file. The information is generated by
GFS_Open. Most functions that access files reference this data.

Title
Data specification

Data
Directory information control

Data Name
GfsDirTbl

No.
3.2

Directory information control structures can control directory information without file
names and directory information with files names. The following constants specify
which is controlled.

Constant name Explanation
GFS_DIR_ID Does not have file name information
GFS_DIR_NAME Has file name information

These are data types for controlling directory information. The directory information
table classification and its size and substance are held.

GfsDirTbl *dirtbl
Access macro Type Explanation

GFS_DIRTBL_TYPE(dirtbl) Sint32 Directory information table classification
GFS_DIRTBL_NDIR(dirtbl) Sint32 Maximum number of elements in directory

information table
GFS_DIRTBL_DIRID(dirtbl) GfsDirId * Pointer to directory information table with

no file names
GFS_DIR_NAME(dirtbl) GfsDirName * Pointer to directory information table with

file names

(a) When directory information with no file names is used
GfsDirTbl dirtbl;
GfsDirId dir_id[MAX_DIR_ID]
GFS_DIRTBL_TYPE(&dirtbl) = GFS_DIR_ID; /*specifies directory information with no */

/*file name */
GFS_DIRTBL_NDIR(&dirtbl) = MAX_DIR_ID; /*maximum number of elements */
GFS_DIRTBL_DIRID(&dirtbl) = dir_id; /*directory information table with no file */

/*name */

(b) When directory information with file names is used
GfsDirTbl dirtbl;
GfsDirName dir_name[MAX_DIR_NAME]
GFS_DIRTBL_TYPE(&dirtbl) = GFS_DIR_NAME; /*specifies directory information with */

/*file name */
GFS_DIRTBL_NDIR(&dirtbl) = MAX_DIR_NAME; /*maximum number of elements */
GFS_DIRTBL_DIRNAME(&dirtbl) = dir_name; /*directory information table with file */

/*name */

SE
G

A
C

on
fid

en
tia

l

30

Title
Data specification

Data
Directory information without file names

Data Name
GfsDirId

No.
3.3

These are directory information structures with no file names. GFS_DIR_ID is used to
specify the type of directory information table (GFS_DIRTBL_TYPE).

GfsDirId *dir
Access macro Type Explanation

GFS_DIR_FAD(dir) Sint32 Top FAD of file
GFS_DIR_SIZE(dir) Sint32 Size of file (unit: byte)
GFS_DIR_FN(dir) Uint8 File number
GFS_DIR_ATR(dir) Uint8 File attribute
GFS_DIR_UNIT(dir) Uint8 Unit size of file (unit: sector)
GFS_DIR_GAP(dir) Uint8 Gap size of file (unit: sector)

Title
Data specification

Data
Directory information with file names

Data Name
GfsDirName

No.
3.4

These are directory information structures which include file names. GFS_DIR_NAME
is used to specify the type of directory information table (GFS_DIRTBL_TYPE).

GfsDirId *dir
Access macro Type Explanation

GFS_DIR_FAD(dir) Sint32 Top FAD of file
GFS_DIR_SIZE(dir) Sint32 Size of file (unit: byte)
GFS_DIR_FN(dir) Uint8 File number
GFS_DIR_ATR(dir) Uint8 File attribute
GFS_DIR_UNIT(dir) Uint8 Unit size of file (unit: sector)
GFS_DIR_GAP(dir) Uint8 Gap size of file (unit: sector)
GFS_DIR_FNAME(dir) Uint8[] File name *1

*1: The area size is 12 bytes. When the file name length is 12 bytes, the character string
does not end with '¥0.'

SE
G

A
C

on
fid

en
tia

l

User's Guide 1 CD Library 31

Title
Data specification

Data
Error processing function

Data Name
GfsErrFunc

No.
3.5

These are functions set with GFS_SetErrFunc.

Syntax: void (*GfsErrFunc) (void *obj, Sint32 ec)
Input: obj : Object required for error processing

ec : Error code
Output: none

Title
Data specification

Data
Erro status

Data Name
GfsErrStat

No.
3.6

Data output by GFS_GetErrStat.

GfsErrStat *stat
Access macro Type Explanation

GFS_ERR_FUNC(err) GFSErrFunc Pointer to error processing function
GFS_ERR_OBJ(err) void * First argument of error processing function
GFS_ERR_CODE(err) Sint32 Error code

SE
G

A
C

on
fid

en
tia

l

32

8.0 Function Specifications

A list of file system library functions is shown in Table 8.1.

Table 8.1 File System Library Function Table

Action Function Name No.
Directory operations

Initialization of file system GFS_Init 1.1
Read directory information GFS_LoadDir 1.2
Set current directory GFS_SetDir 1.3
Convert from file names to file identifiers GFS_ToId 1.4
Convert from identifiers to file names GFS_IdToName 1.5

File operations
Open file GFS_Open 2.1
Close file GFS_Close 2.2
Move access pointer GFS_Seek 2.3
Get access pointer GFS_Tell 2.4
Check file end GFS_IsEof 2.5
Convert from byte length to sector length GFS_ByteToSct 2.6
Get file size GFS_GetFileSize 2.7
Get file information GFS_GetFileInfo 2.8

Return-Upon-Completion Loading
File batch read GFS_Load 3.1
Read data GFS_Fread 3.2

Immediate-Return Reading
Start reading data GFS_Load 4.1
Start pre-read to CD buffer GFS_NwCdRead 4.2
Check completion of access operation GFS_NwIsComplete 4.3
Stop access operation GFS_NwStop 4.4
Get current access status GFS_NwGetStat 4.5
Execute access in file units GFS_NwExecOne 4.6
Execute multiple file access operation GFS_NwExecServer 4.7

Read Parameter Settings
Get (fetch) mode setting (resident/destructive) GFS_SetGmode 5.1
Transfer mode setting (software, DMA, etc.) GFS_SetTmode 5.2
Amount read to CD buffer setting GFS_SetReadPara 5.3
Amount transferred from CD buffer setting GFS_SetTransPara 5.4

Other
Move the CD pickup GFS_CdMovePickup 6.1
Error processing function settings GFS_SetErrFunc 6.2
Get error status GFS_GetErrStat 6.3

SE
G

A
C

on
fid

en
tia

l

User's Guide 1 CD Library 33

8.1 Directory Control

Title
Function specification

Function
Initialize file system: mount

Function Name
GFS_Init

No.
1.1

Syntax Sint32 GFS_Init(Sint32 open_max, void *work, GfsDirTbl *dirtbl)
Input open_max : maximum number of files that can be opened at one

 time (1 to 24)
work : work area for library
dirtbl : directory information control structure

Output dirtbl : directory information control structure (directory
 information storage area)

Function value Number of directories read. A negative error code is returned when an error occurs.
Function Initializes the file system and mounts CD ROM's. The directory control function is

specified by dirtbl.

dirtbl Directory control functions used
Directory control structure Directory control by this library
NULL Directory control of CD block file system

Note: Work must be positioned in 4-byte boundaries. The CD block initialization flag,
standby time, ECC time and number of retries do not change.

Title
Function specification

Function
Read directory information

Function Name
GFS_LoadDir

No.
1.2

Syntax Sint32 GFS_LoadDir(Sint32 fid, GfsDirTbl *dirtbl)
Input fid : directory file identifier

dirtbl : directory information control structure
Output dirtbl : directory information control structure (directory

 information storage area)
Function value Number of directories read. A negative error code is returned when an error occurs.
Function Reads directory information from the specified directory file. The storage destination

of the directory information will change according to the specification by dirtbl.

dirtbl Directory information storage area
Directory control structure Directory information storage area of dirtbl
NULL File control information area in CD block

When NULL is specified for dirtbl, an error will result if use of the CD block file
system is not declared with GFS_Init.
However, it is always possible to pass a pointer to an appropriate directory
information control structure other than NULL to dirtbl.

SE
G

A
C

on
fid

en
tia

l

34

Title
Function specification

Function
Set current directory

Function Name
GFS_SetDir

No.
1.3

Syntax Sint32 GFS_SetDir(GfsDirTbl *dirtbl)
Input dirtbl : directory information control structure
Output none
Function value Error code
Function Sets the specified directory information to the current directory. The directory

information used by the dirtbl specification changes.

dirtbl Directory information used
Directory control structure Contents of dirtbl
NULL File control information in CD block

When NULL is specified for dirtbl, an error will result if use of the CD block file
system is not declared with GFS_Init.
However, it is always possible to pass a pointer to an appropriate directory
information control structure other than NULL to dirtbl.

Title
Function specification

Function
Convert from name to file identifier

Function Name
GFS_NameToId

No.
1.4

Syntax Sint32 GFS_NameToId(Uint8 *fname)
Input fname : file name
Output none
Function value File identifier. A negative error code is returned when an error occurs.
Function Returns a file identifier corresponding to the file name.

Title
Function specification

Function
Convert from identifier to file name

Function Name
GFS_IdToName

No.
1.5

Syntax const Uint8 *GFS_IdToName(Sint32 fid)
Input fname : file identifier
Output none
Function value Pointer to file name. NULL when an error occurs.
Function Returns a pointer to the file name corresponding to the file identifier. This point

specifies the conversion table area used by this library.

SE
G

A
C

on
fid

en
tia

l

User's Guide 1 CD Library 35

8.2 File Operations

Title
Function specification

Function
Open file

Function Name
GFS_Open

No.
2.1

Syntax GfsHn GFS_Open(Sint32 fid)
Input fid file identifier
Output none
Function value File handler. NULL is returned in the case of an error.
Function Opens the specified file and returns the file handler.

Title
Function specification

Function
Close file

Function Name
GFS_Close

No.
2.2

Syntax void GFS_Close(GfsHn gfs)
Input gfs : file handle
Output none
Function value none
Function Closes the specified file handle.

Title
Function specification

Function
Move access pointer

Function Name
GFS_Seek

No.
2.3

Syntax Sint32 GFS_Seek(GfsHn gfs, Sint32 off, Sint32 org)
Input gfs : file handle

off : amount access point is moved (unit: sector)
org : reference for moving (seek mode: GFS_SEEK_-)

Output none
Function value Position of access point after moving. A negative error code is returned if there is an

error.
Function The access pointer is moved to a position off sectors from org. If movement to a

position past the file end is specified, the access pointer is moved on the assumption
that the file exists up to that position.

Title
Function specification

Function
Get access pointer

Function Name
GFS_Tell

No.
2.4

Syntax Sint32 GFS_Tell(GfsHn gfs)
Input gfs : file handle
Output none
Function value Position of access pointer. A negative error code is returned if there is an error.
Function Gets the position of the access pointer.

SE
G

A
C

on
fid

en
tia

l

36

Title
Function specification

Function
Check file end

Function Name
GFS_IsEof

No.
2.5

Syntax Bool GFS_IsEof(GfsHn gfs)
Input gfs : file handle
Output none
Function value file end flag
Function Checks whether or not the access pointer has reached the end of a file. The function

values have the following meanings.
TRUE: reached file end
FALSE: has not reached file end

If an incorrect file handle is entered, then it is considered that the file end has been
reached.

Title
Function specification

Function
Convert from byte size to sector length

Function Name
GFS_ByteToSct

No.
2.6

Syntax Sint32 GFS_ByteToSct(GfsHn gfs, Sint32 nbyte)
Input gfs : file handle

nbyte : number of bytes
Output none
Function value Number of sectors; returns a negative error code when an error occurs.
Function Converts the unit from byte to sector (nsct). The length nsct of the sector unit is

obtained by the following equation.

nsct =
nbyte + sector length of file - 1

file sector length

In cases in which the sector length is not defined (Form1 and Form2 are mixed), then
"0" is returned.

Title
Function specification

Function
Get file size

Function Name
GFS_GetFileSize

No.
2.7

Syntax void GFS_GetFileSize(GfsHn gfs, Sint32 *sctsize, Sint32 *nsct,
Sint32 *lastsize)

Input gfs : file handle
Output sctsize : number of sectors

nsct : number of sectors (does not include last sector)
Function value none
Function Gets information for seeking the file size. If NULL is specified for sctsize, nsct and

lastsize, the output of the information can be suppressed. The file size is obtained by
the following equation.

fsize = sctsize * (nsct - 1) + lastsize:

Note: When lastsize for the file of form2 is 2048 bytes, then it must be processed as the last
sector having 2324 bytes of data.

SE
G

A
C

on
fid

en
tia

l

User's Guide 1 CD Library 37

Title
Function specification

Function
Get file information

Function Name
GFS_GetFileInfo

No.
2.8

Syntax void GFS_GetFileInfo(GfsHn gfs, Sint32 *fid, Sint32 *fn,
Sint32 *fsize, Sint32 *atr)

Input gfs : file handle
Output fid : file identifier

fn : file number
fsize : file size (unit: byte)
atr : attribute

Function value none
Function Gets file information. If NULL is specified for fid, fn, fsize and atr, the output of the

information can be suppressed. The file size is recorded in the directory information,
and therefore the size of one sector is calculated as 2048 bytes.

8.3 Return-Upon-Completion Read

Title
Function specification

Function
Batch load a file

Function Name
GFS_Load

No.
3.1

Syntax Sint32 GFS_Load(Sint32 fid, Sint32 off, void *buf, Sint32 bsize)
Input fid : file identifier

off : offset (unit: sector)
bsize : top limit of number of data to be loaded (unit: byte)

Output buf : data load area
Function value Number of loaded data (unit: byte); negative error code is returned in case of error.
Function Specifies file identifier and loads data from file. Open and close are performed within

the function.
If the file size is less than bsize, then data is loaded up to the end of the file. When
GFS_BUFSIZ_INF is specified for bsize, then data from the specified position up to
the end of the file is loaded

Note: Buf must be located at 4-byte boundaries.
The default values for the fetch mode, transfer mode, load parameters and fetch
parameters are used.

SE
G

A
C

on
fid

en
tia

l

38

Title
Function specification

Function
Load data

Function Name
GFS_Fread

No.
3.2

Syntax Sint32 GFS_Fread(GfsHn gfs, Sint32 nsct, void *buf, Sint32 bsize)
Input gfs : file handle

nsct : number of sector loaded
bsize : top limit of number of data to be loaded (unit: byte)

Output buf : data load area
Function value Number of bytes actually loaded.
Function Specifies an opened file handle and loads data from the file.

Loads nsct sectors of data from the access pointer. Of the data loaded, the data up to
the maximum bsize byte are written to buf.
The access pointer advances nsct sectors.

Note: There are restrictions on the address boundaries of buf depending on the transfer
mode.
· GFS_TMODE_SCU : no restriction
· Other than above : locate at 4-byte boundaries
Even if the access pointer is outside the file range specified by the file handle, it
undergoes read processing as part of the file. Even if the number of sectors specified
straddles the file end, the specified number of sectors undergo read processing.
Regardless of the value specified by GFS_SetReadPara, the default value is used for
the read parameter.

8.4 Immediate-Return Read

Title
Function specification

Function
Start data loading

Function Name
GFS_NwFread

No.
4.1

Syntax Sint32 GFS_NwFread(GfsHn gfs, Sint32 nsct, void *buf, Sint32 bsize)
Input fid : file handle

nsct : number of sectors loaded
bsize : size of load area (unit: number of bytes)

Output buf : data load area
Function value error code
Function Issues a request for data load in response to a server function. Upon completion of

the requested access operation, the access pointer advances nsct sectors.
Note: The same precaution as noted for GFS_Fread applies to the address boundary of buf.

Even if the access pointer is outside the file range specified by the file handle, it
undergoes read processing as part of the file. Even if the number of sectors specified
straddles the file end, the specified number of sectors undergo read processing.

SE
G

A
C

on
fid

en
tia

l

39User's Guide 1 CD Library

Title
Function specification

Function
Start pre-read to CD buffer

Function Name
GFS_NwCdRead

No.
4.2

Syntax Sint32 GFS_NwCDread(GfsHn gfs, Sint32 nsct)
Input gfs : file handle

nsct : number of sectors loaded
Output none
Function value error code
Function Issues requests to server function for pre-reads to the CD buffer. Completion of the

requested read operation does not cause the access pointer to change.
If the following conditions are not met, the access operation for the specified file
handle is not terminated.
· The nsct sector data are transferred to the host area by the GFS_Fread function or
the GFS_NwFread function.
· The access operation is stopped by the GFS_NwStop function.

Note: Perform the following operation to find out whether transfer to the host area by the
GFS_NwFread function after the start of a pre-read has been completed.
· Use GFS_NwGetStat to get the number of bytes transferred.
· Check if the number of bytes transferred is equal to the target number of bytes.
 (If equal to the target number of bytes, then transfer is complete.)
If a pre-read is performed by the GFS_NwRead function, please take note that
completion of the GFS_NwFread function cannot be checked by the
GFS_NwIsCompleted function.

Title
Function specification

Function
Check completion of access operation

Function Name
GFS_NwIsComplete

No.
4.3

Syntax Bool GFS_NwIsComplete(GfsHn gfs)
Input gfs : file handle
Output none
Function value status of access operation
Function Check whether the access operation of the server function is complete. The function

values have the following meanings.
TRUE : access complete
FALSE : operation in progress

Title
Function specification

Function
Stop access operation

Function Name
GFS_NwStop

No.
4.4

Syntax Sint32 GFS_NwStop(GfsHn gfs)
Input gfs : file handle
Output none
Function value Stop Point access pointer. Negative error code if an error occurs.
Function Stops the access operation of a server function. GFS_NwExecServer continues the

access operation on the next file.

SE
G

A
C

on
fid

en
tia

l

40

Title
Function specification

Function
Get current access status

Function Name
GFS_NwGetStat

No.
4.5

Syntax void GFS_NwGetStat(GfsHn gfs, Sint32 *stat, Sint32 *ndata)
Input gfs : file handle
Output stat : current access status

ndata : number of data
Function value none
Function Used to get the access status of a server function. The meaning of data for each access

status is shown in the table below.
Access status Processing Meaning of data number

GFS_NWSTAT_NOACT None No meaning
GFS_NWSTAT-FREAD Read from CD to

host area
Number of bytes read into host
area

GFS_NWSTAT_CDREAD Pre-read to CD
buffer

Number of sectors read to CD
buffer

Title
Function specification

Function
Execute access operation in file units

Function Name
GFS_NwExecOne

No.
4.6

Syntax Sint32 GFS_NwExecOne(GfsHn gfs)
Input gfs : file handle
Output none
Function value execution status (GFS_EXEC_-)
Function This is an access server function for single files. It performs the following access to

the file handle in accordance with the access operation called immediately prior to it.
· GFS_NwFread: reads to CD buffer and transfers to host.
· GFS_NwCdRead: reads to CD buffer.

Title
Function specification

Function
Execute access operation for multiple files

Function Name
GFS_NwExecServer

No.
4.7

Syntax Sint32 GFS_NwExecServer(GfsHn *now_gfs)
Input none
Output now_gfs : file handle to be executed
Function value access server status (GFS_SVR_-)
Function This is an access server function for multiple files. It performs the actual access

(GFS_NwExecOne function) in the order in which requests were issued.
Upon completion of the access operation for one file, processing moves to the next
file.

SE
G

A
C

on
fid

en
tia

l

41User's Guide 1 CD Library

8.5 Read Parameter Settings

Title
Function specification

Function
Set get (fetch) mode (resident/destructive)

Function Name
GFS_SetGmode

No.
5.1

Syntax Sint32 GFS_SetGmode(GfsHn gfs, Sint32 gmode)
Input gfs : file handle

gmode : get (fetch) mode (GFS_GMODE_-)
Output none
Function value Get (fetch) mode before setting. Negative error code in the case of an error.
Function Sets the get (fetch) mode.

Title
Function specification

Function
Set transfer mode (software/DMA, etc.)

Function Name
GFS_SetTmode

No.
5.2

Syntax Sint32 GFS_SetTmode(GfsHn gfs, Sint32 gmode)
Input gfs : file handle

tmode : transfer mode (GFS_TMODE_-)
Output none
Function value Transfer mode before setting; a negative error code in the case of an error.
Function Sets the method of transfer from the CD buffer.

Title
Function specification

Function
Set amount read to CD buffer

Function Name
GFS_SetReadPara

No.
5.3

Syntax Sint32 GFS_SetReadPara(GfsHn gfs, Sint32 cdrsize)
Input gfs : file handle

cdrsize : maximum amount read at one time to CD buffer
 (unit: sector)

Output none
Function value Read amount before setting; a negative error code in the case of an error.
Function Sets the maximum value for the amount read at one time to the CD buffer.

Title
Function specification

Function
Set amount transferred from CD buffer

Function Name
GFS_SetTransPara

No.
5.4

Syntax Sint32 GFS_SetTransPara(GfsHn gfs, Sint32 tsize)
Input gfs : file handle

tsize : amount transferred at one time to a specified area
 (unit: sector)

Output none
Function value Transfer amount before setting. Negative error code in the case of an error.
Function Sets the amount of data transferred to the destination area in one get (fetch)

operation.

SE
G

A
C

on
fid

en
tia

l

42

8.6 Other

Title
Function specification

Function
Move CD pickup

Function Name
GFS_CdMovePickup

No.
6.1

Syntax Sint32 GFS_CdMovePickup(GfsHn gfs)
Input gfs : file handle
Output none
Function value Error code
Function Moves the CD pickup to the position of the access pointer. This is used to shorten

pickup seek time when reading from the CD with the GFS_Fread, GFS_NwFread or
GFS_NwCdRead functions.

Title
Function specification

Function
Set error processing function

Function Name
GFS_SetErrFunc

No.
6.2

Syntax void GFS_SetErrFunc(void (*func)(GfsErrFunc func), void *obj)
Input func : function called when error occurs

obj : first argument of func function
Output none
Function value none
Function Records the function called when an error occurs. When NULL is set to func, then no

error processing function is registered.

Title
Function specification

Function
Get error status

Function Name
GFS_GetErrStat

No.
6.3

Syntax void GFS_GetErrStat(GfsErrStat *stat)
Input none
Output stat : error
Function value none
Function Gets the error status of the library function executed last.

SE
G

A
C

on
fid

en
tia

l

43User's Guide 1 CD Library

Appendix A Utilization of Development Support Functions

A.1 Procedure for Using Memory Files
The following operations must be followed in the order shown here to use memory
files.

• Write file data
Make a file that will become the memory file and convert it to a memory file. Use
the MFCAT.EXE application to convert it to a memory file.

• Load memory file
Set the memory file in the memory area. This is done using the ICE command.
This must be done each time the contents of the memory area are destroyed.

• Load the target program
Load the program file being developed to the target.

• Declare use of the memory file
Before executing GFS_Init, the top address in memory is set to !gfsd_mmc/
GFMC_base. By doing this, the SIMM directory information is obtained with
GFS_Init. Since the initial value of !gfsd_mmc/GFMC_base is “0”, the SIMM
directory information is not referenced in this state.

GFMC_base is defined as follows:
Sint8 *GFMC_base = 0;

Refer to the CD Tool Manual regarding MFCAT.EXE.

A.2 Procedure for Using DOS Files
The following operations must be followed in the order shown here to use a DOS
file.

• Write corresponding table file
Make a file that becomes the DOS file and make a corresponding table file for the
filenames on the CD ROM and the file names in DOS.

• Boot
Confirm that the DIP switches are set to allow use of SCSI and boot the target.

• Load the target program
After confirming that the IBM PC has recognized the target as a SCSI device,
break the target and load the target program.

• Execute CDSIM.EXE
Execute CDSIM.EXE on the IBM PC.
See the CD Tool Manual regarding corresponding table files and CDSIM.EXE.

SE
G

A
C

on
fid

en
tia

l

44

A.3 Precautions
The precautions that should be taken when using the development support tools are
listed below.

• When the CD ROM is not used
In order to prevent differences in programs between when they are all CD ROM
files and when they are all debugger files, information for the parent directory
and the current directory is added even when the CD ROM is not used. This
directory information which is automatically added is set as files on the CD ROM.

• Temporarily restricting access
Normally, when both memory files and DOS files are accessed, the DIP switches
of the target are set so that the SCSI is not used in order to temporarily stop DOS
file access, and the computer is rebooted. In order to access only DOS files,
however, “0" is set in !gfsd_mmc/GFMC_base.

• File name access recommended
During use of debugger files, the file identifier may change due to a change in the
file structure. Therefore, the use of access by file name is recommended.

• Debugger file directory information
Debugger file directory information is set as follows:

FAD : file identifier in debugger file
File number : 0
Gap size : 0
Unit size : 0

SE
G

A
C

on
fid

en
tia

l

45User's Guide 1 CD Library

Appendix B Error Processing Methods

The causes and remedies of the following error codes is shown below.

GFS_ERR_CDRD
Cause: Read error in CD block.

Remedy: Check CD ROM hardware and CD ROM media.

GFS_ERR_CDNODISC
Cause: The CD ROM is not set in place.

Remedy: Reset the CD ROM in place.

GFS_ERR_CDROM
Cause: A disc that is not a CD ROM has been inserted.

Remedy: Insert a disc that is a CD ROM.

GFS_ERR_DIRTBL
Cause: The contents of the directory control structure are not correct.

Remedy: Check whether a value or a correct value has been set in each mem-
ber of the directory control structure and whether that value is
correct before calling GFS_Init and GFS_LoadDir.

GFS_ERR_OPENMAX
Cause: The value for the maximum number of open files is incorrect.

Remedy: Check if the specification for the maximum number of files opened
by calling GFS_Init exceeds the range of 1 to 24.

GFS_ERR_DIR
Cause: The specified file is not a directory.

Remedy: Check correspondence between file identifiers and files.

GFS_ERR_CDBFS
Cause: An attempt to use the CD block file system was made even though

there was no use declaration.
Remedy: If the CD block file system is to be used, then specify NULL for the

directory control area address and call GFS_Init.
If the CD block file system is not going to be used, do not specify
NULL for GFS_LoadDir and GFS_SetDir.

GFS_ERR_NONAME
Cause: File names cannot be handled by the current directory.

Remedy: Specify a directory control area in which GFS_DIR_NAME has been
set to GFS_DIRTBL_TYPE and call GFS_Init or GFS_LoadDir.

GFS_ERR_NEXIST
Cause: The specified file name does not exist.

Remedy: Check if the current directory setting or the file name specification
is incorrect.

SE
G

A
C

on
fid

en
tia

l

46

GFS_ERR_FID
Cause: The file identifier specification is incorrect.

Remedy: Check if the specified file identifier has exceeded the range of
GFS_DIR_NDIR of the directory control structure set in the current
directory.

GFS_ERR_HNDL
Cause: File handle is incorrect.

Remedy: Check if the function value is set of GFS_Open in the variable in
which the file handle is stored, or that the contents of the variable
have not been destroyed.

GFS_ERR_SEEK
Cause: The seek location is incorrect.

Remedy: Check the seek position calculated from the reference position and
the offset.

GFS_ERR_ORG
Cause: The reference position of GFS_Seek is incorrect.

Remedy: Check to be sure the reference position is at one of GFS_SEEK_SET,
GFS_SEEK_CUR or GFS_SEEK_END.

GFS_ERR_NUM
Cause: A negative number of bytes was specified.

Remedy: Check the number of bytes specified by GFS_ByteToSct.

GFS_ERR_OFS
Cause: The offset is incorrect.

Remedy: Check the read start sector position specified by GFS_Load.

GFS_ERR_FBUSY
Cause: Processing of specified file handle remains to be performed.

Remedy: Correct the program so that it accesses again after completing
access of the target file, or reconsider the file structure.

GFS_ERR_PARA
Cause: Incorrect mode.

Remedy: Make sure that correct arguments are given to GFS_SetGMode,
GFS_SetTmode, GFS_SetReadPara and GFS_SetTransPara.

GFS_ERR_BUSY
Cause: Multiplex processing was attempted.

Remedy: Refer to “6.3 Multiple Processing”.

SE
G

A
C

on
fid

en
tia

l

47User's Guide 1 CD Library

GFS_ERR_NOHNDL
Cause: No open file handles.

Remedy: Either increase the specification for the maximum number of files
that can be opened at the same time by GFS_Init or reduce the
number of files opened at the same time.

GFS_ERR_PUINUSE
Cause: GFS_CdMovePickup was called while the pickup was in use.

Remedy: Call GFS_CdMovePickup in a state in which file access is not being
performed.

GFS_ERR_ALIGN
Cause: The read destination of a file is not located at a word boundary.

Remedy: Position the read area at a word boundary.

GFS_ERR_TMOUT
Cause: A response was not received from the CD block in the prescribed

time period.
Remedy: Something may be wrong with the hardware.

GFS_ERR_CDOPEN
Cause: The tray on the CD drive is open.

Remedy: Close the tray and then continue.

GFS_ERR_BFUL
Cause: The CD buffer becomes full and reading is stopped when the fetch

mode is GFS_GMODE_RESIDENT.
Remedy: Adjust the order of access and the amount read to prevent the CD

buffer from becoming full , when the fetch mode is
GFS_GMODE_RESIDENT.

SE
G

A
C

on
fid

en
tia

l

48

Appendix C

This is an addition to the main part of the manual.

C.1 Additional Explanation

DOS File Parameters
The initial value of the fetch parameters for DOS files is “1”. Since only one sector can
be transferred at a time, settings other than “1” for the fetch parameters are invalid.

C.2 Changes from the Previous Version

1) Changes in CD Pre-read Processing
• Change in how GFS_NwCdRead is used

Even if GFS_NwExecOne is not called after calling GFS_NwCdRead, pre-read
from the CD is enabled.

When look ahead from the CD is used, either all of the specified number of
sectors is transferred to the host, or it is not terminated until access is stopped
(GFS_NwIsComplete does not return TRUE).

• Access Complete Check (Important)
Since GFS_NwCdRead is not terminated until either data transfer ends or
access is stopped (except access of CDDA files), do not wait for termination.
As is shown in the example in the old manual, an endless loop will result if
waiting for termination of GFS_NwExecOne, so use caution.

If GFS_NwFread does not perform pre-read with NwCdRead, then termina-
tion can be checked using the same procedure as in the previous version. If
pre-read from the CD is being used, then use GFS_NwGetStat to check for
termination while also monitoring the number of bytes transferred. An
example is shown below.

GfsHn gfs;
Sint32 fid, stat, nbyte;
Uint32 buf[10*2048/4];

gfs = GFS_Open(fid);
GFS_NwRead(gfs, 100)
for (i = 0, i < 10; ++i) {
 GFSNwFread(gfs, 10, buf, 10*2048);
 while (GFS_NwExecOne (gfs) != GFS_SVR_COMPLETE) {
 GFS_NwGetStat(gfs, &stat, &nbyte);
 /*checks whether number of bytes specified by GFS_NwFread has been read */
 if (nbyte >= 10*2048) {
 break;
 }

 user(); /*application processing */
 }
}

SE
G

A
C

on
fid

en
tia

l

49User's Guide 1 CD Library

2) Addition of CDDA File Processing Function
A CDDA file processing function has been added. When a CDDA file is read, the
music track specified by that file is played. However, in order to output sound,
SCSP must be set by the application. CDDA files and regular files have the
following differences.

• Control of files
The only controls the file system performs on CDDA files are playback and
playback range. The playback mode is an omitted value (no repeat, moves
pickup).

• Pre-read
Since the data from CDDA files does not enter the CD buffer, when they are
accessed, pre-read processing and normal access are equivalent.

• Parameters relating to file operation
The fetch mode, transfer mode, read parameters and fetch parameters cannot
be changed for CDDA files. An error is returned when the following functions
are called for CDDA files.

GFS_SetGmode
GFS_SetTmode
GFS_SetReadPara
GFS_SetTransPara

3) File attributes
The following changes were made to make the values of file attributes output by
GFS_GetFileInfo conform with the CD-ROM XA standard.

GFS_ATR_DIR 0x80
GFS_ATR_CDDA 0x40
GFS_ATR_INTLV 0x20
GFS_ATR_FORM2 0x10
GFS_ATR_FORM1 0x80
GFS_ATR_END_TBL 0x01

GFS_ATR_CDD was added because of the addition of CDDA file processing
functions. Its bit are “1” in the CDDA files. Other constant names and meanings
are unchanged.

4) Function values of GFS_Init and GFS_LoadDir
When NULL is specified for the pointer to the directory information control
structure of an argument, the number of directories being held by the CD block
file system is returned as a function value.

SE
G

A
C

on
fid

en
tia

l

50

5) Addition of error codes
The following error codes were added.

• GFS_ERR_BFUL
This error code is generated if the CD buffer becomes full while a resident
mode (GFS_GMODE_RESIDENT) file is being read. Adjust the order of
access, etc., to prevent a buffer full condition during resident mode file access.

• GFS_ERR_FATAL
This error code serves notice that the CD drive is in a fatal condition. When the
file system detects this condition, CD playback is stopped (seek home position)
and recovery from the error condition is attempted. If this error condition is
detected, try processing again.

6) Recognition of tray open condition
A “1” value for the DCHG bit (bit 5) of the interrupt factor register (HIRQREQ)
of the CD block is also treated as a tray open condition.

7) Precautions when using SCU-DMA
When the transfer mode is GFS_TMODE_SCU, the file system library uses a SCU
level 0DMA end interrupt (vector number 4B). Upon completion of transfer, the
interrupt vector and interrupt mask used are restored to their original state.

8) Debug file-related items
• GFMC_base

The variable GFMC_base which sets the top address of the SIMM file is de
fined in both sega_gfs.lib and segadgfs.lib.

GFMC_base in sega-gfs.lib exists only to establish compatibility with
segadgfs.lib. It does not affect the operation of the file system.

• File identifiers
We eliminated the function that automatically added “.” and “..” (current
directory and parent directory) when a CD file is not used. Because of this, file
identifiers agree at the time of boot up.

	General Notice
	Program Library User's Guide 1 CD Library
	Table of Contents
	Chapter 1: Outline
	Chapter 2: Basics
	Chapter 3: Directory Operations
	Chapter 4: File Access
	Chapter 5: Access Modes
	Chapter 6: Other Functions
	Chapter 7: Data Specifications
	Chapter 8: Function Specifications
	Appendix A: Utilization of Development Support Functions
	Appendix B: Error Processing Methods
	Appendix C

