
 SuperH RISC Engine
SH-1/SH-2

Programming Manual

September 3, 1996
Hitachi America Ltd.

Notice

When using this document, keep the following in mind:

1. This document may, wholly or partially, be subject to change without notice.

2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the
whole or part of this document without Hitachi’s permission.

3. Hitachi will not be held responsible for any damage to the user that may result from
accidents or any other reasons during operation of the user’s unit according to this
document.

4. Circuitry and other examples described herein are meant merely to indicate the
characteristics and performance of Hitachi’s semiconductor products. Hitachi assumes no
responsibility for any intellectual property claims or other problems that may result from
applications based on the examples described herein.

5. No license is granted by implication or otherwise under any patents or other rights of any
third party or Hitachi, Ltd.

6. MEDICAL APPLICATIONS: Hitachi’s products are not authorized for use in MEDICAL
APPLICATIONS without the written consent of the appropriate officer of Hitachi’s sales
company. Such use includes, but is not limited to, use in life support systems. Buyers of
Hitachi’s products are requested to notify the relevant Hitachi sales offices when planning
to use the products in MEDICAL APPLICATIONS.

HITACHI 1

Introduction

The SuperH RISC engine family incorporates a RISC (Reduced Instruction Set Computer)
type CPU. A basic instruction can be executed in one clock cycle, realizing high
performance operation. A built-in multiplier can execute multiplication and addition as
quickly as DSP.

The SuperH RISC engine has SH-I CPU, SH-2 CPU, and SH-3 CPU cores.

The SH-1 CPU, SH-2 CPU and SH-3 CPU have an instruction system with upward
compatibility at the binary level.

SH-3 CPU

SH-2 CPU Operation instruction

enhancement:

62 instructions

MMU support:

68 instructions

SH-1 CPU

56 basic instructions

Refer to the programming manual for the method of executing the instructions or for the
architecture. You can also refer to this programming manual to know the operation of the
pipe line, which is one of the features of the RISC CPU.

This programming manual describes in detail the instructions for the SH-1 CPU and SH-2
CPU instructions. For the SH-3 CPU, refer to the separate volume of SH-3 CPU programming
manual.

For the hardware, refer to individual hardware manuals for each unit.

2 HITACHI

Organization of This Manual

Table 1 describes how this manual is organized. Table 2 lists the relationships between the
items and the sections listed within this manual that cover those items.

Table 1 Manual Organization

Category Section Title Contents

Introduction 1. Features CPU features

Architecture (1) 2. Register
Configuration

Types and configuration of general registers,
control registers and system registers

3. Data Formats Data formats for registers and memory

Introduction to
instructions

4. Instruction
Features

Instruction features, addressing modes, and
instruction formats

5. Instruction Sets Summary of instructions by category and list in
alphabetic order

Detailed information
on instructions

6. Instruction
Descriptions

Operation of each instruction in alphabetical
order

Architecture (2) 7. Pipeline Operation Pipeline flow, and pipeline flows with operation
for each instruction

Instruction code Appendixes:
Instruction Code

Operation code map

HITACHI 3

Table 2 Subjects and Corresponding Sections

Category Topic Section Title

Introduction and
features

CPU features 1. Features

Instruction features 4.1 RISC-Type Instruction Set

Pipelines 7.1 Basic Configuration of
Pipelines

7.2 Slot and Pipeline Flow

Architecture Register configuration 2. Register Configuration

Data formats 3. Data Formats

Pipeline operation 7. Pipeline Operation

Introduction to
instructions

Instruction features 4. Instruction Features

Addressing modes 4.2 Addressing Modes

Instruction formats 4.3 Instruction Formats

List of
instructions

Instruction sets 5.1 Instruction Set by
Classification

5.2 Instruction Set in
Alphabetical Order

Appendix A.1 Instruction Set by
Addressing Mode

Appendix A.2 Instruction Set by
Instruction Format

Instruction code Appendix A.3 Instruction Set in
Order by
Instruction Code

Appendix A.4 Operation Code
Map

Detailed
information on
instructions

Detailed information on instruction
operation

6. Instruction Description

7.7 Instruction Pipeline
Operations

Number of instruction execution states 7.3 Number of Instruction
Execution States

4 HITACHI

Functions Listed by CPU Type

This manual is common for both the SH-1 and SH-2 CPU. However, not all CPUs can use all
the instructions and functions. Table 3 lists the usable functions by CPU type.

Table 3 Functions by CPU Type

Item SH-1 CPU SH-2 CPU

Instructions BF/S No Yes

BRAF No Yes

BSRF No Yes

BT/S No Yes

DMULS.L No Yes

DMULU.L No Yes

DT No Yes

MAC.L No Yes

MAC.W*1 (MAC)*2 16 x 16 + 42 →
42

16 x 16 + 64 → 64

MUL.L No Yes

All others Yes Yes

States for
multiplication operation

16 x 16 → 32
(MULS.W,
MULU.W)*2

Executed in 1–
3*3 states

Executed in 1–3*3states

32 x 32 → 32 (MUL.L) No Executed in 2–4 *3states

32 x 32 → 64
(DMULS.L, DMULU.L)

No Executed in 2–4 *3states

States for multiply and
accumulate operation

16 x 16 + 42 → 42
(SH-1, MAC.W)

Executed in
3/(2)*3 states

No

16 x 16 + 64 → 64
(SH-2, MAC.W)

No Executed in states 3/(2)*3

32 x 32 + 64 → 64
(MAC.L)

No Executed in 2–4 states
3/(2~4)*3

Notes: 1. MAC.W works differently on different LSIs.
2. MAC and MAC.W are the same. MULS is also the same as MULS.W and MULU the

same as MULU.W.
3. The normal minimum number of execution cycles (The number in parentheses in the

number in contention with preceding/following instructions).

HITACHI 5

Contents

Section 1 Features.. 14

Section 2 Register Configuration.. 16
2.1 General Registers.. 16
2.2 Control Registers... 16
2.3 System Registers... 19
2.4 Initial Values of Registers... 19

Section 3 Data Formats.. 21
3.1 Data Format in Registers.. 21
3.2 Data Format in Memory.. 21
3.3 Immediate Data Format... 22

Section 4 Instruction Features... 23
4.1 RISC-Type Instruction Set.. 23

4.1.1 16-Bit Fixed Length.. 23
4.1.2 One Instruction/Cycle .. 23
4.1.3 Data Length.. 23
4.1.4 Load-Store Architecture.. 23
4.1.5 Delayed Branch Instructions... 23
4.1.6 Multiplication/Accumulation Operation ... 24
4.1.7 T Bit ... 24
4.1.8 Immediate Data.. 25
4.1.9 Absolute Address.. 25
4.1.10 16-Bit/32-Bit Displacement.. 25

4.2 Addressing Modes... 26
4.3 Instruction Format... 29

Section 5 Instruction Set.. 34
5.1 Instruction Set by Classification.. 34

5.1.1 Data Transfer Instructions .. 39
5. 1.2 Arithmetic Instructions... 42
5.1.3 Logic Operation Instructions... 44
5.1.4 Shift Instructions... 45
5.1.5 Branch Instructions.. 46
5.1.6 System Control Instructions.. 47

5.2 Instruction Set in Alphabetical Order.. 48

Section 6 Instruction Descriptions... 57
6.1 Sample Description (Name): Classification.. 57

6 HITACHI

6.2 ADD (ADD Binary): Arithmetic Instruction.. 60
6.3 ADDC (ADD with Carry): Arithmetic Instruction.. 61
6.4 ADDV (ADD with V Flag Overflow Check): Arithmetic Instruction.. 62
6.5 AND (AND Logical): Logic Operation Instruction.. 63
6.6 BF (Branch if False): Branch Instruction... 65
6.7 BF/S (Branch if False with Delay Slot): Branch Instruction (SH-2 CPU)............................ 66
6.8 BRA (Branch): Branch Instruction.. 68
6.9 BRAF (Branch Far): Branch Instruction (SH-2 CPU)... 70
6.10 BSR (Branch to Subroutine): Branch Instruction... 72
6.11 BSRF (Branch to Subroutine Far): Branch Instruction (SH-2 CPU)...................................... 74
6.12 BT (Branch if True): Branch Instruction.. 75
6.13 BT/S (Branch if True with Delay Slot): Branch Instruction (SH-2 CPU)............................ 76
6.14 CLRMAC (Clear MAC Register): System Control Instruction... 78
6.15 CLRT (Clear T Bit): System Control Instruction... 79
6.16 CMP/cond (Compare Conditionally): Arithmetic Instruction.. 80
6.17 DIV0S (Divide Step 0 as Signed): Arithmetic Instruction... 84
6.18 DIV0U (Divide Step 0 as Unsigned): Arithmetic Instruction... 85
6.19 DIV1 (Divide Step 1): Arithmetic Instruction.. 86
6.20 DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction (SH-2 CPU).. 91
6.21 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic Instruction

(SH-2 CPU)... 93
6.22 DT (Decrement and Test): Arithmetic Instruction (SH-2 CPU)... 95
6.23 EXTS (Extend as Signed): Arithmetic Instruction... 96
6.24 EXTU (Extend as Unsigned): Arithmetic Instruction... 97
6.25 JMP (Jump): Branch Instruction... 98
6.26 JSR (Jump to Subroutine): Branch Instruction.. 99
6.27 LDC (Load to Control Register): System Control Instruction.. 101
6.28 LDS (Load to System Register): System Control Instruction .. 103
6.29 MAC.L (Multiply and Accumulate Long): Arithmetic Instruction (SH-2 CPU)............... 105
6.30 MAC (Multiply and Accumulate): Arithmetic Instruction (SH-1 CPU)............................... 108
6.31 MAC.W (Multiply and Accumulate Word): Arithmetic Instruction....................................... 109
6.32 MOV (Move Data): Data Transfer Instruction... 112
6.33 MOV (Move Immediate Data): Data Transfer Instruction... 117
6.34 MOV (Move Peripheral Data): Data Transfer Instruction.. 119
6.35 MOV (Move Structure Data): Data Transfer Instruction .. 122
6.36 MOVA (Move Effective Address): Data Transfer Instruction .. 125
6.37 MOVT (Move T Bit): Data Transfer Instruction... 126
6.38 MUL.L (Multiply Long): Arithmetic Instruction (SH-2 CPU)... 127
6.39 MULS.W (Multiply as Signed Word): Arithmetic Instruction... 128
6.40 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction... 129
6.41 NEG (Negate): Arithmetic Instruction... 130
6.42 NEGC (Negate with Carry): Arithmetic Instruction.. 131
6.43 NOP (No Operation): System Control Instruction.. 132

HITACHI 7

6.44 NOT (NOT—Logical Complement): Logic Operation Instruction... 133
6.45 OR (OR Logical) Logic Operation Instruction... 134
6.46 ROTCL (Rotate with Carry Left): Shift Instruction... 136
6.47 ROTCR (Rotate with Carry Right): Shift Instruction... 137
6.48 ROTL (Rotate Left): Shift Instruction.. 138
6.49 ROTR (Rotate Right): Shift Instruction.. 139
6.50 RTE (Return from Exception): System Control Instruction... 140
6.51 RTS (Return from Subroutine): Branch Instruction... 141
6.52 SETT (Set T Bit): System Control Instruction... 143
6.53 SHAL (Shift Arithmetic Left): Shift Instruction.. 144
6.54 SHAR (Shift Arithmetic Right): Shift Instruction.. 145
6.55 SHLL (Shift Logical Left): Shift Instruction... 146
6.56 SHLLn (Shift Logical Left n Bits): Shift Instruction.. 147
6.57 SHLR (Shift Logical Right): Shift Instruction... 149
6.58 SHLRn (Shift Logical Right n Bits): Shift Instruction... 150
6.59 SLEEP (Sleep): System Control Instruction... 152
6.60 STC (Store Control Register): System Control Instruction.. 153
6.61 STS (Store System Register): System Control Instruction .. 155
6.62 SUB (Subtract Binary): Arithmetic Instruction... 157
6.63 SUBC (Subtract with Carry): Arithmetic Instruction.. 158
6.64 SUBV (Subtract with V Flag Underflow Check): Arithmetic Instruction............................. 159
6.65 SWAP (Swap Register Halves): Data Transfer Instruction... 160
6.66 TAS (Test and Set): Logic Operation Instruction... 161
6.67 TRAPA (Trap Always): System Control Instruction... 162
6.68 TST (Test Logical): Logic Operation Instruction... 163
6.69 XOR (Exclusive OR Logical): Logic Operation Instruction.. 165
6.70 XTRCT (Extract): Data Transfer Instruction... 167

Section 7 Pipeline Operation.. 168
7.1 Basic Configuration of Pipelines... 168
7.2 Slot and Pipeline Flow... 169

7.2.1 Instruction Execution.. 169
7.2.2 Slot Sharing.. 169
7.2.3 Slot Length.. 170

7.3 Number of Instruction Execution States... 171
7.4 Contention Between Instruction Fetch (IF) and Memory Access (MA)................................. 172

7.4.1 Basic Operation When IF and MA are in Contention.. 172
7.4.2 The Relationship Between IF and the Location of Instructions in On-Chip

 ROM/RAM or On-Chip Memory... 173
7.4.3 Relationship Between Position of Instructions Located in On-Chip

ROM/RAM or On-Chip Memory and Contention Between IF and MA............. 174
7.5 Effects of Memory Load Instructions on Pipelines ... 175
7.6 Programming Guide... 176

8 HITACHI

7.7 Operation of Instruction Pipelines.. 177
7.7.1 Data Transfer Instructions.. 184
7.7.2 Arithmetic Instructions.. 186
7.7.3 Logic Operation Instructions.. 237
7.7.4 Shift Instructions.. 238
7.7.5 Branch Instructions ... 239
7.7.6 System Control Instructions.. 242
7.7.7 Exception Processing... 248

Appendix A Instruction Code... 251
A.1 Instruction Set by Addressing Mode... 251

A.1.1 No Operand.. 253
A.1.2 Direct Register Addressing.. 254
A.1.3 Indirect Register Addressing... 257
A.1.4 Post Increment Indirect Register Addressing.. 257
A.1.5 Pre Decrement Indirect Register Addressing .. 258
A.1.6 Indirect Register Addressing with Displacement .. 259
A.1.7 Indirect Indexed Register Addressing... 259
A.1.8 Indirect GBR Addressing with Displacement... 260
A.1.9 Indirect Indexed GBR Addressing.. 260
A.1.10 PC Relative Addressing with Displacement... 260
A.1.11 PC Relative Addressing with Rm.. 261
A.1.12 PC Relative Addressing.. 261
A.1.13 Immediate.. 262

A.2 Instruction Sets by Instruction Format... 262
A.2.1 0 Format.. 264
A.2.2 n Format.. 265
A.2.3 m Format .. 267
A.2.4 nm Format.. 269
A.2.5 md Format.. 272
A.2.6 nd4 Format... 272
A.2.7 nmd Format ... 272
A.2.8 d Format.. 273
A.2.9 d12 Format... 274
A.2.10 nd8 Format .. 274
A.2.11 i Format .. 274
A.2.12 ni Format.. 275

A.3 Instruction Set in Order by Instruction Code.. 276
A.4 Operation Code Map.. 284
Appendix B Pipeline Operation and Contention... 288

Figures
Figure 2.1 General Registers... 16

HITACHI 9

Figure 2.2 Control Registers... 18
Figure 2.3 System Registers... 19
Figure 3.1 Longword Operand.. 21
Figure 3.2 Byte, Word, and Longword Alignment... 21
Figure 3.3 Byte, Word, and Longword Alignment in little endian format (SH7604 only)... 22
Figure 6.1 Using R0 after MOV.. 119
Figure 6.2 Using R0 after MOV.. 122
Figure 6.3 Rotate with Carry Left.. 136
Figure 6.4 Rotate with Carry Right... 137
Figure 6.5 Rotate Left ... 138
Figure 6.6 Rotate Right .. 139
Figure 6.7 Shift Arithmetic Left ... 144
Figure 6.8 Shift Arithmetic Right.. 145
Figure 6.9 Shift Logical Left.. 146
Figure 6.10 Shift Logical Left n Bits ... 147
Figure 6.11 Shift Logical Right.. 149
Figure 6.12 Shift Logical Right n Bits .. 150
Figure 6.13 Extract.. 167
Figure 7.1 Basic Structure of Pipeline Flow.. 168
Figure 7.2 Impossible Pipeline Flow 1.. 169
Figure 7.3 Impossible Pipeline Flow 2.. 169
Figure 7.4 Slots Requiring Multiple Cycles... 170
Figure 7.5 How Instruction Execution States Are Counted... 171
Figure 7.6 Operation When IF and MA Are in Contention ... 172
Figure 7.7 Relationship Between IF and Location of Instructions in On-Chip Memory....... 174
Figure 7.8 Relationship Between the Location of Instructions in On-Chip Memory and

Contention Between IF and MA.. 175
Figure 7.9 Effects of Memory Load Instructions on the Pipeline ... 176
Figure 7.10 Register-Register Transfer Instruction Pipeline... 184
Figure 7.11 Memory Load Instruction Pipeline... 185
Figure 7.12 Memory Store Instruction Pipeline .. 186
Figure 7.13 Pipeline for Arithmetic Instructions between Registers Except

Multiplication Instructions.. 187
Figure 7.14 Multiply/Accumulate Instruction Pipeline... 188
Figure 7.15 Unrelated Instructions between MAC.W Instructions... 189
Figure 7.16 Consecutive MAC.Ws without Misalignment.. 189
Figure 7.17 MA and IF Contention... 190
Figure 7.18 MULS.W Instruction Immediately After a MAC.W Instruction............................... 191
Figure 7.19 STS (Register) Instruction Immediately After a MAC.W Instruction................... 192
Figure 7.20 STS.L (Memory) Instruction Immediately After a MAC.W Instruction............... 193
Figure 7.21 LDS (Register) Instruction Immediately After a MAC.W Instruction 194
Figure 7.22 LDS.L (Memory) Instruction Immediately After a MAC.W Instruction 195
Figure 7.23 Multiply/Accumulate Instruction Pipeline... 196

10 HITACHI

Figure 7.24 MAC.W Instruction That Immediately Follows Another MAC.W instruction.. 197
Figure 7.25 Consecutive MAC.Ws with Misalignment .. 197
Figure 7.26 MA and IF Contention... 198
Figure 7.27 MAC.L Instructions Immediately After a MAC.W Instruction................................. 198
Figure 7.28 MULS.W Instruction Immediately After a MAC.W Instruction.............................. 199
Figure 7.29 DMULS.L Instructions Immediately After a MAC.W Instruction........................... 199
Figure 7.30 STS (Register) Instruction Immediately After a MAC.W Instruction.................. 200
Figure 7.31 STS.L (Memory) Instruction Immediately After a MAC.W Instruction.............. 201
Figure 7.32 LDS (Register) Instruction Immediately After a MAC.W Instruction.................. 202
Figure 7.33 LDS.L (Memory) Instruction Immediately After a MAC.W Instruction.............. 203
Figure 7.34 Multiply/Accumulate Instruction Pipeline... 204
Figure 7.35 MAC.L Instruction Immediately After Another MAC.L Instruction....................... 205
Figure 7.36 Consecutive MAC.Ls with Misalignment .. 205
Figure 7.37 MA and IF Contention... 206
Figure 7.38 MAC.W Instruction Immediately After a MAC.L Instruction................................... 207
Figure 7.39 DMULS.L Instruction Immediately After a MAC.L Instruction................................ 208
Figure 7.40 MULS.W Instruction Immediately After a MAC.L Instruction................................ 209
Figure 7.41 STS (Register) Instruction Immediately After a MAC.L Instruction 210
Figure 7.42 STS.L (Memory) Instruction Immediately After a MAC.L Instruction 211
Figure 7.43 LDS (Register) Instruction Immediately After a MAC.L Instruction.................... 212
Figure 7.44 LDS.L (Memory) Instruction Immediately After a MAC.L Instruction................ 213
Figure 7.45 Multiplication Instruction Pipeline.. 214
Figure 7.46 MAC.W Instruction Immediately After a MULS.W Instruction.............................. 215
Figure 7.47 MULS.W Instruction Immediately After Another MULS.W Instruction.............. 216
Figure 7.48 MULS.W Instruction Immediately After Another MULS.W Instruction (IF

and MA Contention).. 217
Figure 7.49 STS (Register) Instruction Immediately After a MULS.W Instruction................ 218
Figure 7.50 STS.L (Memory) Instruction Immediately After a MULS.W Instruction............ 219
Figure 7.51 LDS (Register) Instruction Immediately After a MULS.W Instruction............... 220
Figure 7.52 LDS.L (Memory) Instruction Immediately After a MULS.W Instruction 221
Figure 7.53 Multiplication Instruction Pipeline.. 222
Figure 7.54 MAC.W Instruction Immediately After a MULS.W Instruction.............................. 223
Figure 7.55 MAC.L Instruction Immediately After a MULS.W Instruction................................ 223
Figure 7.56 MULS.W Instruction Immediately After Another MULS.W Instruction.............. 224
Figure 7.57 MULS.W Instruction Immediately After Another MULS.W Instruction (IF

and MA contention)... 224
Figure 7.58 DMULS.L Instruction Immediately After a MULS.W Instruction.......................... 225
Figure 7.59 STS (Register) Instruction Immediately After a MULS.W Instruction................ 226
Figure 7.60 STS.L (Memory) Instruction Immediately After a MULS.W Instruction............ 227
Figure 7.61 LDS (Register) Instruction Immediately After a MULS.W Instruction............... 228
Figure 7.62 LDS.L (Memory) Instruction Immediately After a MULS.W Instruction 229
Figure 7.63 Multiplication Instruction Pipeline.. 229
Figure 7.64 MAC.L Instruction Immediately After a DMULS.L Instruction............................... 231

HITACHI 11

Figure 7.65 MAC.W Instruction Immediately After a DMULS.L Instruction............................. 231
Figure 7.66 DMULS.L Instruction Immediately After Another DMULS.L Instruction........... 232
Figure 7.67 DMULS.L Instruction Immediately After Another DMULS.L Instruction (IF

and MA Contention) .. 233
Figure 7.68 MULS.W Instruction Immediately After a DMULS.L Instruction........................... 233
Figure 7.69 MULS.W Instruction Immediately After a DMULS.L Instruction (IF and

MA Contention) ... 234
Figure 7.70 STS (Register) Instruction Immediately After a DMULS.L Instruction............... 234
Figure 7.71 STS.L (Memory) Instruction Immediately After a DMULS.L Instruction........... 235
Figure 7.72 LDS (Register) Instruction Immediately After a DMULS.L Instruction.............. 236
Figure 7.73 LDS.L (Memory) Instruction Immediately After a DMULS.L Instruction.......... 237
Figure 7.74 Register-Register Logic Operation Instruction Pipeline .. 237
Figure 7.75 Memory Logic Operation Instruction Pipeline... 238
Figure 7.76 TAS Instruction Pipeline... 238
Figure 7.77 Shift Instruction Pipeline.. 239
Figure 7.78 Branch Instruction When Condition is Satisfied ... 240
Figure 7.79 Branch Instruction When Condition is Not Satisfied.. 240
Figure 7.80 Branch Instruction When Condition is Satisfied ... 241
Figure 7.81 Branch Instruction When Condition is Not Satisfied.. 241
Figure 7.82 Unconditional Branch Instruction Pipeline.. 242
Figure 7.83 System Control ALU Instruction Pipeline.. 243
Figure 7.84 LDC.L Instruction Pipeline.. 243
Figure 7.85 STC.L Instruction Pipeline... 243
Figure 7.86 LDS.L Instruction (PR) Pipeline... 244
Figure 7.87 STS.L Instruction (PR) Pipeline... 244
Figure 7.88 Register → MAC Transfer Instruction Pipeline... 245
Figure 7.89 Memory → MAC Transfer Instruction Pipeline... 245
Figure 7.90 MAC → Register Transfer Instruction Pipeline... 246
Figure 7.91 MAC → Memory Transfer Instruction Pipeline... 246
Figure 7.92 RTE Instruction Pipeline... 247
Figure 7.93 TRAP Instruction Pipeline... 247
Figure 7.94 SLEEP Instruction Pipeline... 248
Figure 7.95 Interrupt Exception Processing Pipeline.. 248
Figure 7.96 Address Error Exception Processing Pipeline... 249
Figure 7.97 Illegal Instruction Exception Processing Pipeline .. 249

Tables
Table 1 Manual Organization... 2
Table 2 Subjects and Corresponding Sections... 3
Table 3 Functions by CPU Type... 4
Table 1.1 SH-1 and SH-2 CPU Features.. 15
Table 2.1 Initial Values of Registers... 20
Table 4.1 Sign Extension of Word Data.. 23

12 HITACHI

Table 4.2 Delayed Branch Instructions.. 24
Table 4.3 T Bit .. 24
Table 4.4 Immediate Data Accessing.. 25
Table 4.5 Absolute Address... 25
Table 4.6 Displacement Accessing... 26
Table 4.7 Addressing Modes and Effective Addresses... 26
Table 4.8 Instruction Formats... 30
Table 5.1 Classification of Instructions... 34
Table 5.2 Instruction Code Format .. 38
Table 5.3 Data Transfer Instructions ... 40
Table 5.4 Arithmetic Instructions... 42
Table 5.5 Logic Operation Instructions.. 44
Table 5.5 Logic Operation Instructions (cont) ... 45
Table 5.6 Shift Instructions.. 45
Table 5.7 Branch Instructions... 46
Table 5.8 System Control Instructions... 47
Table 5.9 Instruction Set... 49
Table 6.1 CMP Mnemonics .. 81
Table 7.1 Format for the Number of Stages and Execution States for Instructions.................... 177
Table 7.2 Number of Instruction Stages and Execution States .. 177
Table A.1 Instruction Set by Addressing Mode... 252
Table A.2 No Operand... 253
Table A.3 Destination Operand Only.. 254
Table A.4 Source and Destination Operand.. 254
Table A.5 Load and Store with Control Register or System Register.. 256
Table A.6 Destination Operand Only.. 257
Table A.7 Data Transfer with Direct Register Addressing... 257
Table A.8 Multiply/Accumulate Operation... 257
Table A.9 Data Transfer from Direct Register Addressing... 258
Table A.10 Load to Control Register or System Register.. 258
Table A.11 Data Transfer from Direct Register Addressing .. 258
Table A.12 Store from Control Register or System Register .. 259
Table A.13 Indirect Register Addressing with Displacement ... 259
Table A.14 Indirect Indexed Register Addressing.. 259
Table A.15 Indirect GBR Addressing with Displacement.. 260
Table A.16 Indirect Indexed GBR Addressing... 260
Table A.17 PC Relative Addressing with Displacement.. 260
Table A.18 PC Relative Addressing with Rm.. 261
Table A.19 PC Relative Addressing... 261
Table A.20 Arithmetic Logical Operation with Direct Register Addressing................................. 262
Table A.21 Specify Exception Processing Vector.. 262
Table A.22 Instruction Sets by Format.. 263
Table A.23 0 Format... 264

HITACHI 13

Table A.24 Direct Register Addressing.. 265
Table A.25 Direct Register Addressing (Store with Control and System Registers)................. 265
Table A.26 Indirect Register Addressing... 266
Table A.27 Pre Decrement Indirect Register .. 266
Table A.28 Direct Register Addressing (Load with Control and System Registers) 267
Table A.29 Indirect Register ... 267
Table A.30 Post Increment Indirect Register .. 267
Table A.31 PC Relative Addressing with Rm.. 268
Table A.32 Direct Register Addressing.. 269
Table A.33 Indirect Register Addressing... 271
Table A.34 Post Increment Indirect Register (Multiply/Accumulate Operation)........................ 271
Table A.35 Post Increment Indirect Register .. 271
Table A.36 Pre Decrement Indirect Register .. 271
Table A.37 Indirect Indexed Register ... 272
Table A.38 md Format... 272
Table A.39 nd4 Format .. 272
Table A.40 nmd Format... 272
Table A.41 Indirect GBR with Displacement... 273
Table A.42 PC Relative with Displacement ... 273
Table A.43 PC Relative Addressing.. 273
Table A.44 d12 Format .. 274
Table A.45 nd8 Format .. 274
Table A.46 Indirect Indexed GBR Addressing.. 274
Table A.47 Immediate Addressing (Arithmetic Logical Operation with Direct Register)...... 275
Table A.48 Immediate Addressing (Specify Exception Processing Vector).................................. 275
Table A.49 ni Format.. 275
Table A.50 Instruction Set by Instruction Code... 276
Table A.51 Operation Code Map.. 284
Table B.1 Instructions and Their Contention Patterns .. 289

14 HITACHI

Section 1 Features

The SH-1 and SH-2 CPU have RISC-type instruction sets. Basic instructions are executed in
one clock cycle, which dramatically improves instruction execution speed. The CPU also has
an internal 32-bit architecture for enhanced data processing ability. Table 1.1 lists the SH-1
and SH-2 CPU features.

HITACHI 15

Table 1.1 SH-1 and SH-2 CPU Features

Item Feature

Architecture • Original Hitachi architecture

• 32-bit internal data paths

General-register machine • Sixteen 32-bit general registers

• Three 32-bit control registers

• Four 32-bit system registers

Instruction set • Instruction length: 16-bit fixed length for improved code
efficiency

• Load-store architecture (basic arithmetic and logic operations are
executed between registers)

• Delayed branch system used for reduced pipeline disruption

• Instruction set optimized for C language

Instruction execution
time

• One instruction/cycle for basic instructions

Address space • Architecture makes 4 Gbytes available

On-chip multiplier
(SH-1 CPU)

• Multiplication operations (16 bits × 16 bits → 32 bits) executed
in 1 to 3 cycles, and multiplication/accumulation operations (16
bits × 16 bits + 42 bits → 42 bits) executed in 3/(2)* cycles

On-chip multiplier
(SH-2 CPU)

• Multiplication operations executed in 1 to 2 cycles (16 bits × 16
bits → 32 bits) or 2 to 4 cycles (32 bits × 32 bits → 64 bits), and
multiplication/accumulation operations executed in 3/(2)* cycles
(16 bits × 16 bits + 64 bits → 64 bits) or 3/(2 to 4)* cycles (32
bits × 32 bits + 64 bits → 64 bits)

Pipeline • Five-stage pipeline

Processing states • Reset state

• Exception processing state

• Program execution state

• Power-down state

• Bus release state

Power-down states • Sleep mode

• Standby mode

Note: The normal minimum number of execution cycles (The number in parentheses in the
number in contention with preceding/following instructions).

16 HITACHI

Section 2 Register Configuration

The register set consists of sixteen 32-bit general registers, three 32-bit control registers and
four 32-bit system registers.

2.1 General Registers

There are 16 general registers (Rn) numbered R0–R15, which are 32 bits in length (figure
2.1). General registers are used for data processing and address calculation. R0 is also used as
an index register. Several instructions use R0 as a fixed source or destination register. R15 is
used as the hardware stack pointer (SP). Saving and recovering the status register (SR) and
program counter (PC) in exception processing is accomplished by referencing the stack using
R15.

R0

R1

R2

R3

R4

R5
R6

R7
R8

R9

R10

R11

R12

R13

R14
R15, SP

31 0
R0 functions as an index register in the

indirect indexed register addressing

mode and indirect indexed GBR

addressing mode. In some instructions,

R0 functions as a fixed source register

or destination register.

R15 functions as a hardware stack

pointer (SP) during exception

processing.

1.*1

(hardware stack pointer) 2.*2

Figure 2.1 General Registers

2.2 Control Registers

The 32-bit control registers consist of the 32-bit status register (SR), global base register
(GBR), and vector base register (VBR) (figure 2.2). The status register indicates processing
states. The global base register functions as a base address for the indirect GBR addressing

HITACHI 17

mode to transfer data to the registers of on-chip peripheral modules. The vector base register
functions as the base address of the exception processing vector area (including interrupts).

18 HITACHI

9 8 7 6 5 4 3 2 1 0

M�Q I3 I2 I1 I0 S T

0

031

31

GBR

VBR

SR

31

S bit: Used by the multiply/accumulate

 instruction.

Reserved bits: Always reads as 0, and should

always be written with 0.
Bits I3–I0: Interrupt mask bits.

M and Q bits: Used by the DIV0U/S and
DIV1 instructions.

Global base register (GBR):
Indicates the base address of the indirect

GBR addressing mode. The indirect GBR

addressing mode is used in data transfer

for on-chip peripheral module register

areas and in logic operations.

Vector base register (VBR):
Indicates the base address of the exception

processing vector area.

SR: Status register

T bit: The MOVT, CMP/cond, TAS, TST,

BT (BT/S), BF (BF/S), SETT, and CLRT

instructions use the T bit to indicate

true (1) or false (0). The ADDV/C,

SUBV/C, DIV0U/S, DIV1, NEGC,

SHAR/L, SHLR/L, ROTR/L, and

ROTCR/L instructions also use bit T

to indicate carry/borrow or overflow/

underflow

SW J04

Figure 2.2 Control Registers

HITACHI 19

2.3 System Registers

The system registers consist of four 32-bit registers: high and low multiply and accumulate
registers (MACH and MACL), the procedure register (PR), and the program counter (PC)
(figure 2.3). The multiply and accumulate registers store the results of multiply and
accumulate operations. The procedure register stores the return address from the subroutine
procedure. The program counter stores program addresses to control the flow of the processing.

MACL

PR

PC

MACH(SH-2 CPU)

0

0

31

31

Multiply and accumulate (MAC)

registers high and low (MACH/L):

Store the results of multiply and

accumulate operations. In the

SH-1 CPU, MACH is sign-extended

to 32 bits when read because only

the lowest 10 bits are valid. In the

SH-2 CPU, all 32 bits of MACH are

valid.

Procedure register (PR): Stores a

return address from a subroutine

procedure.

Program counter (PC): Indicates the

fourth byte (second instruction) after

the current instruction.

MACL

(sign extended) MACH(SH-1 CPU)

31 9 0

31 0

Figure 2.3 System Registers

2.4 Initial Values of Registers

Table 2.1 lists the values of the registers after reset.

20 HITACHI

Table 2.1 Initial Values of Registers

Classification Register Initial Value

General register R0–R14 Undefined

R15 (SP) Value of the stack pointer in the vector address table

Control register SR Bits I3–I0 are 1111 (H'F), reserved bits are 0, and
other bits are undefined

GBR Undefined

VBR H'00000000

System register MACH, MACL, PR Undefined

PC Value of the program counter in the vector address
table

HITACHI 21

Section 3 Data Formats

3.1 Data Format in Registers

Register operands are always longwords (32 bits) (figure 3.1). When the memory operand is
only a byte (8 bits) or a word (16 bits), it is sign-extended into a longword when loaded into a
register.

31 0
Longword

Figure 3.1 Longword Operand

3.2 Data Format in Memory

Memory data formats are classified into bytes, words, and longwords. Byte data can be
accessed from any address, but an address error will occur if you try to access word data
starting from an address other than 2n or longword data starting from an address other than 4n.
In such cases, the data accessed cannot be guaranteed (figure 3.2). The hardware stack area,
which is referred to by the hardware stack pointer (SP, R15), uses only longword data starting
from address 4n because this area holds the program counter and status register. See the SH
Hardware Manual for more information on address errors.

31 01523 7

Byte Byte Byte Byte

Word

Big endian

Word

Longword

Address 2n

Address 4n

Address m Address m + 2

Address m + 1 Address m + 3

Figure 3.2 Byte, Word, and Longword Alignment

SH7604 has a function that allows access of CS2 space (area 2) in little endian format,
which enables memory to be shared with processors that access memory in little endian
format (figure 3.3). Byte data is arranged differently for little endian and the usual big
endian.

22 HITACHI

Address 2n

Address 4n

01523 7

Byte Byte Byte Byte

Word

Little endian*

Note : Only CS2 space of SH7604 can be set.

Word

Longword

Address m + 3 Address m + 1

Address m + 2 Address m

31

Figure 3.3 Byte, Word, and Longword Alignment in little endian format (SH7604 only)

3.3 Immediate Data Format

Byte immediate data is located in an instruction code. Immediate data accessed by the
MOV, ADD, and CMP/EQ instructions is sign-extended and calculated with registers and
longword data. Immediate data accessed by the TST, AND, OR, and XOR instructions is
zero-extended and calculated with longword data. Consequently, AND instructions with
immediate data always clear the upper 24 bits of the destination register.

Word or longword immediate data is not located in the instruction code. Rather, it is stored in
a memory table. The memory table is accessed by an immediate data transfer instruction
(MOV) using the PC relative addressing mode with displacement. Specific examples are
given in section 4.1.8, Immediate Data.

HITACHI 23

Section 4 Instruction Features

4.1 RISC-Type Instruction Set

All instructions are RISC type. Their features are detailed in this section.

4.1.1 16-Bit Fixed Length

All instructions are 16 bits long, increasing program coding efficiency.

4.1.2 One Instruction/Cycle

Basic instructions can be executed in one cycle using the pipeline system. Instructions are
executed in 50 ns at 20 MHz, in 35 ns at 28.7MHz.

4.1.3 Data Length

Longword is the standard data length for all operations. Memory can be accessed in bytes,
words, or longwords. Byte or word data accessed from memory is sign-extended and
calculated with longword data (table 4.1). Immediate data is sign-extended for arithmetic
operations or zero-extended for logic operations. It also is calculated with longword data.

Table 4.1 Sign Extension of Word Data

SH-1/SH-2 CPU Description Example for Other CPU

MOV.W @(disp,PC),R1

ADD R1,R0

.DATA.W H'1234

Data is sign-extended to 32
bits, and R1 becomes
H'00001234. It is next
operated upon by an ADD
instruction.

ADD.W #H'1234,R0

Note: The address of the immediate data is accessed by @(disp, PC).

4.1.4 Load-Store Architecture

Basic operations are executed between registers. For operations that involve memory access,
data is loaded to the registers and executed (load-store architecture). Instructions such as
AND that manipulate bits, however, are executed directly in memory.

4.1.5 Delayed Branch Instructions

Unconditional branch instructions are delayed. Pipeline disruption during branching is reduced
by first executing the instruction that follows the branch instruction, and then branching (table
4.2). With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed
branch instruction, then delay slot instruction. For example, even if the register in which the

24 HITACHI

branch destination address has been loaded is changed by the delay slot instruction, the
branch will still be made using the value of the register prior to the change as the branch
destination address.

Table 4.2 Delayed Branch Instructions

SH-1/SH-2 CPU Description Example for Other CPU

BRA TRGET

ADD R1,R0

Executes an ADD before
branching to TRGET.

ADD.W R1,R0

BRA TRGET

4.1.6 Multiplication/Accumulation Operation

SH-1 CPU: 16bit × 16bit → 32-bit multiplication operations are executed in one to three
cycles. 16bit × 16bit + 42bit → 42-bit multiplication/accumulation operations are executed in
two to three cycles.

SH-2 CPU: 16bit × 16bit → 32-bit multiplication operations are executed in one to two
cycles. 16bit × 16bit + 64bit → 64-bit multiplication/accumulation operations are executed in
two to three cycles. 32bit × 32bit → 64-bit multiplication and 32bit × 32bit + 64bit → 64-bit
multiplication/accumulation operations are executed in two to four cycles.

4.1.7 T Bit

The T bit in the status register changes according to the result of the comparison, and in turn
is the condition (true/false) that determines if the program will branch (table 4.3). The
number of instructions after T bit in the status register is kept to a minimum to improve the
processing speed.

Table 4.3 T Bit

SH-1/SH-2 CPU Description Example for Other CPU

CMP/GE R1,R0

BT TRGET0

BF TRGET1

T bit is set when R0 ≥ R1. The
program branches to TRGET0
when R0 ≥ R1 and to TRGET1
when R0 < R1.

CMP.W R1,R0

BGE TRGET0

BLT TRGET1

ADD #–1,R0

CMP/EQ #0,R0

BT TRGET

T bit is not changed by ADD. T
bit is set when R0 = 0. The
program branches if R0 = 0.

SUB.W #1,R0

BEQ TRGET

HITACHI 25

4.1.8 Immediate Data

Byte immediate data is located in instruction code. Word or longword immediate data is not
input via instruction codes but is stored in a memory table. The memory table is accessed by
an immediate data transfer instruction (MOV) using the PC relative addressing mode with
displacement (table 4.4).

Table 4.4 Immediate Data Accessing

Classification SH-1/SH-2 CPU Example for Other CPU

8-bit immediate MOV #H'12,R0 MOV.B #H'12,R0

16-bit immediate MOV.W @(disp,PC),R0

.DATA.W H'1234

MOV.W #H'1234,R0

32-bit immediate MOV.L @(disp,PC),R0

.DATA.L H'12345678

MOV.L #H'12345678,R0

Note: The address of the immediate data is accessed by @(disp, PC).

4.1.9 Absolute Address

When data is accessed by absolute address, the value already in the absolute address is
placed in the memory table. Loading the immediate data when the instruction is executed
transfers that value to the register and the data is accessed in the indirect register addressing
mode.

Table 4.5 Absolute Address

Classification SH-1/SH-2 CPU Example for Other CPU

Absolute address MOV.L @(disp,PC),R1

MOV.B @R1,R0

.DATA.L H'12345678

MOV.B @H'12345678,R0

4.1.10 16-Bit/32-Bit Displacement

When data is accessed by 16-bit or 32-bit displacement, the pre-existing displacement value
is placed in the memory table. Loading the immediate data when the instruction is executed
transfers that value to the register and the data is accessed in the indirect indexed register
addressing mode.

26 HITACHI

Table 4.6 Displacement Accessing

Classification SH-1/SH-2 CPU Example for Other CPU

16-bit displacement MOV.W @(disp,PC),R0

MOV.W @(R0,R1),R2

.DATA.W H'1234

MOV.W @(H'1234,R1),R2

4.2 Addressing Modes

Addressing modes and effective address calculation are described in table 4.7.

Table 4.7 Addressing Modes and Effective Addresses

Addressin
g Mode

Instruction
Format Effective Addresses Calculation Formula

Direct
register
addressing

Rn The effective address is register Rn. (The operand
is the contents of register Rn.)

—

Indirect
register
addressing

@Rn The effective address is the content of register Rn.

Rn Rn

Rn

Post-
increment
indirect
register
addressing

@Rn + The effective address is the content of register Rn.
A constant is added to the content of Rn after the
instruction is executed. 1 is added for a byte
operation, 2 for a word operation, or 4 for a
longword operation.

Rn Rn

1/2/4

+Rn + 1/2/4

Rn

(After the
instruction is
executed)

Byte: Rn + 1
→ Rn

Word: Rn + 2
→ Rn

Longword:
Rn + 4 → Rn

Pre-
decrement
indirect
register
addressing

@–Rn The effective address is the value obtained by
subtracting a constant from Rn. 1 is subtracted for a
byte operation, 2 for a word operation, or 4 for a
longword operation.

Rn

1/2/4

Rn – 1/2/4–Rn – 1/2/4

Byte: Rn – 1
→ Rn

Word: Rn – 2
→ Rn

Longword:
Rn – 4 → Rn
(Instruction
executed
with Rn after
calculation)

HITACHI 27

Table 4.7 Addressing Modes and Effective Addresses (cont)

Addressin
g Mode

Instruction
Format Effective Addresses Calculation Formula

Indirect
register
addressing
with
displace-
ment

@(disp:4,
Rn)

The effective address is Rn plus a 4-bit
displacement (disp). The value of disp is zero-
extended, and remains the same for a byte
operation, is doubled for a word operation, or is
quadrupled for a longword operation.

Rn

1/2/4

Rn

+ disp × 1/2/4

+

×

disp

(zero-extended)

Byte: Rn +
disp

Word: Rn +
disp × 2

Longword:
Rn + disp × 4

Indirect
indexed
register
addressing

@(R0, Rn) The effective address is the Rn value plus R0.

Rn

R0

Rn + R0+

Rn + R0

Indirect
GBR
addressing
with
displace-
ment

@(disp:8,
GBR)

The effective address is the GBR value plus an 8-
bit displacement (disp). The value of disp is zero-
extended, and remains the same for a byte
operation, is doubled for a word operation, or is
quadrupled for a longword operation.

GBR

1/2/4

GBR

+ disp × 1/2/4

+

×

disp

(zero-extended)

Byte: GBR +
disp

Word: GBR +
disp × 2

Longword:
GBR + disp ×
4

Indirect
indexed
GBR
addressing

@(R0,
GBR)

The effective address is the GBR value plus R0.

GBR

R0

GBR + R0+

GBR + R0

28 HITACHI

Table 4.7 Addressing Modes and Effective Addresses (cont)

Addressin
g Mode

Instruction
Format Effective Addresses Calculation Formula

PC relative
addressing
with
displace-
ment

@(disp:8,
PC)

The effective address is the PC value plus an 8-bit
displacement (disp). The value of disp is zero-
extended, and disp is doubled for a word
operation, or is quadrupled for a longword
operation. For a longword operation, the lowest
two bits of the PC are masked.

PC

H'FFFFFFFC
PC + disp × 2

or

PC&H'FFFFFFFC

+ disp × 4

+

2/4

x

&
(for longword)

disp

(zero-extended)

Word: PC +
disp × 2

Longword:
PC &
H'FFFFFFFC
+ disp × 4

PC relative
addressing

disp:8 The effective address is the PC value sign-
extended with an 8-bit displacement (disp),
doubled, and added to the PC.

PC

2

+

×

disp

(sign-extended)

PC + disp × 2

PC + disp ×
2

disp:12 The effective address is the PC value sign-
extended with a 12-bit displacement (disp),
doubled, and added to the PC.

PC

2

+

×

disp

(sign-extended)

PC + disp × 2

PC + disp ×
2

HITACHI 29

Table 4.7 Addressing Modes and Effective Addresses (cont)

Addressin
g Mode

Instruction
Format Effective Addresses Calculation Formula

PC relative
addressing
(cont)

Rn The effective address is the register PC plus Rn.

PC

R0

PC + R0+

PC + Rn

Immediate
addressing

#imm:8 The 8-bit immediate data (imm) for the TST, AND,
OR, and XOR instructions are zero-extended.

—

#imm:8 The 8-bit immediate data (imm) for the MOV, ADD,
and CMP/EQ instructions are sign-extended.

—

#imm:8 Immediate data (imm) for the TRAPA instruction is
zero-extended and is quadrupled.

—

4.3 Instruction Format

The instruction format table, table 4.8, refers to the source operand and the destination
operand. The meaning of the operand depends on the instruction code. The symbols are used
as follows:

• xxxx: Instruction code

• mmmm: Source register

• nnnn: Destination register

• iiii: Immediate data

• dddd: Displacement

30 HITACHI

Table 4.8 Instruction Formats

Instruction Formats
Source
Operand

Destination
Operand Example

0 format

xxxx xxxx xxxxxxxx
15 0

— — NOP

n format — nnnn: Direct
register

MOVT Rn

xxxx xxxx xxxxnnnn
15 0 Control register

or system
register

nnnn: Direct
register

STS MACH,Rn

HITACHI 31

Table 4.8 Instruction Formats (cont)

Instruction Formats
Source
Operand

Destination
Operand Example

n format (cont) Control register
or system
register

nnnn: Indirect
pre-decrement
register

STC.L SR,@-Rn

m format mmmm: Direct
register

Control register
or system register

LDC Rm,SR

xxxxmmmmxxxx xxxx
15 0 mmmm: Indirect

post-increment
register

Control register
or system register

LDC.L @Rm+,SR

mmmm: Direct
register

— JMP @Rm

mmmm: PC
relative using Rm

— BRAF Rm

nm format mmmm: Direct
register

nnnn: Direct
register

ADD Rm,Rn

nnnnxxxx xxxx
15 0

mmmm
mmmm: Direct
register

nnnn: Indirect
register

MOV.L Rm,@Rn

mmmm: Indirect
post-increment
register
(multiply/
accumulate)

nnnn*: Indirect
post-increment
register
(multiply/
accumulate)

MACH, MACL MAC.W
@Rm+,@Rn+

mmmm: Indirect
post-increment
register

nnnn: Direct
register

MOV.L @Rm+,Rn

mmmm: Direct
register

nnnn: Indirect
pre-decrement
register

MOV.L Rm,@-Rn

mmmm: Direct
register

nnnn: Indirect
indexed register

MOV.L
Rm,@(R0,Rn)

md format

xxxx dddd
15 0

mmmmxxxx

mmmmdddd:
indirect register
with
displacement

R0 (Direct
register)

MOV.B
@(disp,Rm),R0

32 HITACHI

nd4 format

ddddnnnnxxxx
15 0

xxxx

R0 (Direct
register)

nnnndddd:
Indirect register
with displacement

MOV.B
R0,@(disp,Rn)

Note: In multiply/accumulate instructions, nnnn is the source register.

HITACHI 33

Table 4.8 Instruction Formats (cont)

Instruction Formats
Source
Operand

Destination
Operand Example

nmd format

nnnnxxxx dddd
15 0

mmmm

mmmm: Direct
register

nnnndddd:
Indirect register
with displacement

MOV.L
Rm,@(disp,Rn)

mmmmdddd:
Indirect register
with
displacement

nnnn: Direct
register

MOV.L
@(disp,Rm),Rn

d format

ddddxxxx
15 0

xxxx dddd

dddddddd:
Indirect GBR
with
displacement

R0 (Direct
register)

MOV.L
@(disp,GBR),R0

R0(Direct
register)

dddddddd:
Indirect GBR with
displacement

MOV.L
R0,@(disp,GBR)

dddddddd: PC
relative with
displacement

R0 (Direct
register)

MOVA
@(disp,PC),R0

dddddddd: PC
relative

— BF label

d12 format

ddddxxxx
15 0

dddd dddd

ddddddddddd
d: PC relative

— BRA label

(label = disp
+ PC)

nd8 format

ddddnnnnxxxx
15 0

dddd

dddddddd: PC
relative with
displacement

nnnn: Direct
register

MOV.L
@(disp,PC),Rn

i format iiiiiiii: Immediate Indirect indexed
GBR

AND.B
#imm,@(R0,GBR)

i i i ixxxx
15 0

xxxx i i i i
iiiiiiii: Immediate R0 (Direct

register)
AND #imm,R0

iiiiiiii: Immediate — TRAPA #imm

ni format

nnnn i i i ixxxx
15 0

i i i i

iiiiiiii: Immediate nnnn: Direct
register

ADD #imm,Rn

34 HITACHI

Section 5 Instruction Set

5.1 Instruction Set by Classification

Table 5.1 lists instructions by classification.

Table 5.1 Classification of Instructions

Applicable
Instructions

Classification Types
Operation
Code Function SH-2 SH-1

No. of
Instructions

Data transfer 5 MOV Data transfer
Immediate data transfer
Peripheral module data transfer
Structure data transfer

X X 39

MOVA Effective address transfer X X

MOVT T-bit transfer X X

SWAP Swap of upper and lower
bytes

X X

XTRCT Extraction of the middle of
registers connected

X X

HITACHI 35

Table 5.1 Classification of Instructions (cont)

Applicable
Instructions

Classification Types
Operation
Code Function SH-2 SH-1

No. of
Instructions

Arithmetic 21 ADD Binary addition X X 33
operations ADDC Binary addition with carry X X

ADDV Binary addition with overflow
check

X X

CMP/con
d

Comparison X X

DIV1 Division X X

DIV0S Initialization of signed division X X

DIV0U Initialization of unsigned
division

X X

DMULS Signed double-length
multiplication

X

DMULU Unsigned double-length
multiplication

X

DT Decrement and test X

EXTS Sign extension X X

EXTU Zero extension X X

MAC Multiply/accumulate, double-
length multiply/accumulate
operation*1

X X

MUL Double-length multiplication X

MULS Signed multiplication X X

MULU Unsigned multiplication X X

NEG Negation X X

NEGC Negation with borrow X X

SUB Binary subtraction X X

SUBC Binary subtraction with borrow X X

SUBV Binary subtraction with
underflow check

X X

Notes 1. Double-length multiply/accumulate is an SH-2 function.

36 HITACHI

Table 5.1 Classification of Instructions (cont)

Applicable
Instructions

Classification Types
Operation
Code Function SH-2 SH-1

No. of
Instructions

Logic 6 AND Logical AND X X 14
operations NOT Bit inversion X X

OR Logical OR X X

TAS Memory test and bit set X X

TST Logical AND and T-bit set X X

XOR Exclusive OR X X

Shift 10 ROTL One-bit left rotation X X 14

ROTR One-bit right rotation X X

ROTCL One-bit left rotation with T bit X X

ROTCR One-bit right rotation with T bit X X

SHAL One-bit arithmetic left shift X X

SHAR One-bit arithmetic right shift X X

SHLL One-bit logical left shift X X

SHLLn n-bit logical left shift X X

SHLR One-bit logical right shift X X

SHLRn n-bit logical right shift X X

Branch 9 BF Conditional branch, conditional
branch with delay*2 (T = 0)

X X 11

BT Conditional branch, conditional
branch with delay*2 (T = 1)

X X

BRA Unconditional branch X X

BRAF Unconditional branch X

BSR Branch to subroutine
procedure

X X

BSRF Branch to subroutine
procedure

X

JMP Unconditional branch X X

JSR Branch to subroutine
procedure

X X

RTS Return from subroutine
procedure

X X

Notes 2. Conditional branch with delay is an SH-2 CPU function.

HITACHI 37

Table 5.1 Classification of Instructions (cont)

Applicable
Instructions

Classification Types
Operation
Code Function SH-2 SH-1

No. of
Instructions

System 11 CLRT T-bit clear X X 31
control CLRMAC MAC register clear X X

LDC Load to control register X X

LDS Load to system register X X

NOP No operation X X

RTE Return from exception
processing

X X

SETT T-bit set X X

SLEEP Shift into power-down mode X X

STC Storing control register data X X

STS Storing system register data X X

TRAPA Trap exception processing X X

Total: 62 142

38 HITACHI

Instruction codes, operation, and execution states are listed in table 5.2 in order by
classification.

Table 5.2 Instruction Code Format

Item Format Explanation

Instruction
mnemonic

OP.Sz SRC,DEST OP: Operation code
Sz: Size
SRC: Source
DEST: Destination
Rm: Source register
Rn: Destination register
imm: Immediate data
disp: Displacement*

Instruction
code

MSB ↔ LSB mmmm: Source register
nnnn: Destination register

0000: R0
0001: R1

1111: R15

iiii: Immediate data
dddd: Displacement

Operation
summary

→, ←
(xx)
M/Q/T
&
|
^
~
<<n, >>n

Direction of transfer
Memory operand
Flag bits in the SR
Logical AND of each bit
Logical OR of each bit
Exclusive OR of each bit
Logical NOT of each bit
n-bit left/right shift

Execution
cycle

Value when no wait states are inserted

Instruction
execution
cycles

The execution cycles shown in the table are minimums.
The actual number of cycles may be increased:

1. When contention occurs between instruction fetches
and data access, or

2. When the destination register of the load instruction
(memory → register) and the register used by the next
instruction are the same.

T bit Value of T bit after instruction is executed

— No change

Note: Scaling (x1, x2, x4) is performed according to the instruction operand size. See "6.
Instruction Descriptions" for details.

HITACHI 39

5.1.1 Data Transfer Instructions

Tables 5.3 to 5.8 list the minimum number of clock states required for execution.

40 HITACHI

Table 5.3 Data Transfer Instructions

Instruction Instruction Code Operation

Execu-
tion
State

T
Bit

MOV #imm,Rn 1110nnnniiiiiiii imm → Sign extension →
Rn

1 —

MOV.W @(disp,PC),Rn 1001nnnndddddddd (disp × 2 + PC) → Sign
extension → Rn

1 —

MOV.L @(disp,PC),Rn 1101nnnndddddddd (disp × 4 + PC) → Rn 1 —

MOV Rm,Rn 0110nnnnmmmm0011 Rm → Rn 1 —

MOV.B Rm,@Rn 0010nnnnmmmm0000 Rm → (Rn) 1 —

MOV.W Rm,@Rn 0010nnnnmmmm0001 Rm → (Rn) 1 —

MOV.L Rm,@Rn 0010nnnnmmmm0010 Rm → (Rn) 1 —

MOV.B @Rm,Rn 0110nnnnmmmm0000 (Rm) → Sign extension →
Rn

1 —

MOV.W @Rm,Rn 0110nnnnmmmm0001 (Rm) → Sign extension →
Rn

1 —

MOV.L @Rm,Rn 0110nnnnmmmm0010 (Rm) → Rn 1 —

MOV.B Rm,@–Rn 0010nnnnmmmm0100 Rn–1 → Rn, Rm → (Rn) 1 —

MOV.W Rm,@–Rn 0010nnnnmmmm0101 Rn–2 → Rn, Rm → (Rn) 1 —

MOV.L Rm,@–Rn 0010nnnnmmmm0110 Rn–4 → Rn, Rm → (Rn) 1 —

MOV.B @Rm+,Rn 0110nnnnmmmm0100 (Rm) → Sign extension →
Rn,Rm + 1 → Rm

1 —

MOV.W @Rm+,Rn 0110nnnnmmmm0101 (Rm) → Sign extension →
Rn,Rm + 2 → Rm

1 —

MOV.L @Rm+,Rn 0110nnnnmmmm0110 (Rm) → Rn,Rm + 4 → Rm 1 —

MOV.B R0,@(disp,Rn) 10000000nnnndddd R0 → (disp + Rn) 1 —

MOV.W R0,@(disp,Rn) 10000001nnnndddd R0 → (disp × 2 + Rn) 1 —

MOV.L Rm,@(disp,Rn) 0001nnnnmmmmdddd Rm → (disp × 4 + Rn) 1 —

MOV.B @(disp,Rm),R0 10000100mmmmdddd (disp + Rm) → Sign
extension → R0

1 —

MOV.W @(disp,Rm),R0 10000101mmmmdddd (disp × 2 + Rm) → Sign
extension → R0

1 —

MOV.L @(disp,Rm),Rn 0101nnnnmmmmdddd (disp × 4 + Rm) → Rn 1 —

MOV.B Rm,@(R0,Rn) 0000nnnnmmmm0100 Rm → (R0 + Rn) 1 —

MOV.W Rm,@(R0,Rn) 0000nnnnmmmm0101 Rm → (R0 + Rn) 1 —

HITACHI 41

Table 5.3 Data Transfer Instructions (cont)

Instruction Instruction Code Operation

Execu-
tion
State

T
Bit

MOV.L Rm,@(R0,Rn) 0000nnnnmmmm0110 Rm → (R0 + Rn) 1 —

MOV.B @(R0,Rm),Rn 0000nnnnmmmm1100 (R0 + Rm) → Sign
extension → Rn

1 —

MOV.W @(R0,Rm),Rn 0000nnnnmmmm1101 (R0 + Rm) → Sign
extension → Rn

1 —

MOV.L @(R0,Rm),Rn 0000nnnnmmmm1110 (R0 + Rm) → Rn 1 —

MOV.B R0,@(disp,GBR) 11000000dddddddd R0 → (disp + GBR) 1 —

MOV.W R0,@(disp,GBR) 11000001dddddddd R0 → (disp × 2 + GBR) 1 —

MOV.L R0,@(disp,GBR) 11000010dddddddd R0 → (disp × 4+ GBR) 1 —

MOV.B @(disp,GBR),R0 11000100dddddddd (disp + GBR) → Sign
extension → R0

1 —

MOV.W @(disp,GBR),R0 11000101dddddddd (disp × 2 + GBR) → Sign
extension → R0

1 —

MOV.L @(disp,GBR),R0 11000110dddddddd (disp × 4 + GBR) → R0 1 —

MOVA @(disp,PC),R0 11000111dddddddd disp × 4 + PC → R0 1 —

MOVT Rn 0000nnnn00101001 T → Rn 1 —

SWAP.B Rm,Rn 0110nnnnmmmm1000 Rm → Swap upper and
lower 2 bytes→ Rn

1 —

SWAP.W Rm,Rn 0110nnnnmmmm1001 Rm → Swap upper and
lower word → Rn

1 —

XTRCT Rm,Rn 0010nnnnmmmm1101 Center 32 bits of Rm and
Rn→ Rn

1 —

42 HITACHI

5. 1.2 Arithmetic Instructions

Table 5.4 Arithmetic Instructions

Instruction Instruction Code Operation
Execution
State T Bit

ADD Rm,Rn 0011nnnnmmmm110
0

Rn + Rm → Rn 1 —

ADD #imm,Rn 0111nnnniiiiiii
i

Rn + imm → Rn 1 —

ADDC Rm,Rn 0011nnnnmmmm111
0

Rn + Rm + T → Rn,
Carry → T

1 Carry

ADDV Rm,Rn 0011nnnnmmmm111
1

Rn + Rm → Rn,
Overflow → T

1 Overflow

CMP/EQ #imm,R0 10001000iiiiiii
i

If R0 = imm, 1 → T 1 Compariso
n result

CMP/EQ Rm,Rn 0011nnnnmmmm000
0

If Rn = Rm, 1 → T 1 Compariso
n result

CMP/HS Rm,Rn 0011nnnnmmmm001
0

If Rn≥Rm with
unsigned data, 1 → T

1 Compariso
n result

CMP/GE Rm,Rn 0011nnnnmmmm001
1

If Rn ≥ Rm with
signed data, 1 → T

1 Compariso
n result

CMP/HI Rm,Rn 0011nnnnmmmm011
0

If Rn > Rm with
unsigned data, 1 → T

1 Compariso
n result

CMP/GT Rm,Rn 0011nnnnmmmm011
1

If Rn > Rm with
signed data, 1 → T

1 Compariso
n result

CMP/PL R n 0100nnnn0001010
1

If Rn > 0, 1 → T 1 Compariso
n result

CMP/PZ R n 0100nnnn0001000
1

If Rn ≥ 0, 1 → T 1 Compariso
n result

CMP/STR
Rm,Rn

0010nnnnmmmm110
0

If Rn and Rm have an
equivalent byte, 1 →
T

1 Compariso
n result

DIV1 Rm,Rn 0011nnnnmmmm010
0

Single-step division
(Rn/Rm)

1 Calculation
result

DIV0S Rm,Rn 0010nnnnmmmm011
1

MSB of Rn → Q,
MSB of Rm → M, M
^ Q → T

1 Calculation
result

DIV0U 000000000001100
1

0 → M/Q/T 1 0

HITACHI 43

Table 5.4 Arithmetic Instructions (cont)

Instruction Instruction Code Operation
Execution
State T Bit

DMULS.L
Rm,Rn*2

0011nnnnmmmm1101 Signed operation of
Rn x Rm → MACH,
MACL

32 x 32 → 64 bits

2 to 4*1 —

DMULU.L
Rm,Rn*2

0011nnnnmmmm0101 Unsigned operation
of Rn x Rm →
MACH, MACL

32 x 32 → 64 bits

2 to 4*1 —

DT Rn*2 0100nnnn00010000 Rn - 1 → Rn, when
Rn is 0, 1 → T. When
Rn is nonzero, 0 → T

1 Compariso
n result

EXTS.B Rm,Rn 0110nnnnmmmm1110 A byte in Rm is sign-
extended → Rn

1 —

EXTS.W Rm,Rn 0110nnnnmmmm1111 A word in Rm is sign-
extended → Rn

1 —

EXTU.B Rm,Rn 0110nnnnmmmm1100 A byte in Rm is zero-
extended → Rn

1 —

EXTU.W Rm,Rn 0110nnnnmmmm1101 A word in Rm is zero-
extended → Rn

1 —

MAC.L @Rm+,@Rn+

 *2

0000nnnnmmmm1111 Signed operation of
(Rn) x (Rm) + MAC
→ MAC

32 x 32 + 64→ 64
bits

3/(2 to 4)*1 —

MAC.W @Rm+,@Rn+ 0100nnnnmmmm1111 Signed operation of
(Rn) × (Rm) + MAC
→ MAC

(SH-2 CPU) 16 x 16
+ 64 → 64 bits

(SH-1 CPU) 16 x 16
+ 42 → 42 bits

3/(2)*1 —

MUL.L Rm,Rn*2 0000nnnnmmmm0111 Rn x Rm → MACL,
32 x 32 → 32 bits

2 to 4*1 —

MULS.W Rm,Rn 0010nnnnmmmm1111 Signed operation of
Rn × Rm → MAC

16 x 16 → 32 bits

1 to 3*1 —

Notes: 1. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions)

2. SH-2 CPU instructions

44 HITACHI

Table 5.4 Arithmetic Instructions (cont)

Instruction Instruction Code Operation
Execution
State T Bit

MULU.W Rm,Rn 0010nnnnmmmm1110 Unsigned operation
of Rn × Rm → MAC

16 x 16 → 32 bits

1 to 3*1 —

NEG Rm,Rn 0110nnnnmmmm1011 0–Rm → Rn 1 —

NEGC Rm,Rn 0110nnnnmmmm1010 0–Rm–T → Rn,
Borrow → T

1 Borrow

SUB Rm,Rn 0011nnnnmmmm1000 Rn–Rm → Rn 1 —

SUBC Rm,Rn 0011nnnnmmmm1010 Rn–Rm–T → Rn,
Borrow → T

1 Borrow

SUBV Rm,Rn 0011nnnnmmmm1011 Rn–Rm → Rn,
Underflow → T

1 Underflow

Notes: 1. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions)

5.1.3 Logic Operation Instructions

Table 5.5 Logic Operation Instructions

Instruction Instruction Code Operation
Executio
n State T Bit

AND Rm,Rn 0010nnnnmmmm1001 Rn & Rm → Rn 1 —

AND #imm,R0 11001001iiiiiiii R0 & imm → R0 1 —

AND.B #imm,@(R0,GBR) 11001101iiiiiiii (R0 + GBR) & imm →
(R0 + GBR)

3 —

NOT Rm,Rn 0110nnnnmmmm0111 ~Rm → Rn 1 —

OR Rm,Rn 0010nnnnmmmm1011 Rn | Rm → Rn 1 —

OR #imm,R0 11001011iiiiiiii R0 | imm → R0 1 —

OR.B #imm,@(R0,GBR) 11001111iiiiiiii (R0 + GBR) | imm →
(R0 + GBR)

3 —

TAS.B @Rn 0100nnnn00011011 If (Rn) is 0, 1 → T; 1 →
MSB of (Rn)

4 Test
result

TST Rm,Rn 0010nnnnmmmm1000 Rn & Rm; if the result is
0, 1 → T

1 Test
result

TST #imm,R0 11001000iiiiiiii R0 & imm; if the result
is 0, 1 → T

1 Test
result

HITACHI 45

Table 5.5 Logic Operation Instructions (cont)

Instruction Instruction Code Operation
Executio
n State T Bit

TST.B #imm,@(R0,GBR) 11001100iiiiiiii (R0 + GBR) & imm; if
the result is 0, 1 → T

3 Test
result

XOR Rm,Rn 0010nnnnmmmm1010 Rn ^ Rm → Rn 1 —

XOR #imm,R0 11001010iiiiiiii R0 ^ imm → R0 1 —

XOR.B #imm,@(R0,GBR) 11001110iiiiiiii (R0 + GBR) ^ imm →
(R0 + GBR)

3 —

5.1.4 Shift Instructions

Table 5.6 Shift Instructions

Instruction Instruction Code Operation Execution State T Bit

ROTL Rn 0100nnnn00000100 T ← Rn ← MSB 1 MSB

ROTR Rn 0100nnnn00000101 LSB → Rn → T 1 LSB

ROTCL Rn 0100nnnn00100100 T ← Rn ← T 1 MSB

ROTCR Rn 0100nnnn00100101 T → Rn → T 1 LSB

SHAL Rn 0100nnnn00100000 T ← Rn ← 0 1 MSB

SHAR Rn 0100nnnn00100001 MSB → Rn → T 1 LSB

SHLL Rn 0100nnnn00000000 T ← Rn ← 0 1 MSB

SHLR Rn 0100nnnn00000001 0 → Rn → T 1 LSB

SHLL2 Rn 0100nnnn00001000 Rn<<2 → Rn 1 —

SHLR2 Rn 0100nnnn00001001 Rn>>2 → Rn 1 —

SHLL8 Rn 0100nnnn00011000 Rn<<8 → Rn 1 —

SHLR8 Rn 0100nnnn00011001 Rn>>8 → Rn 1 —

SHLL16 Rn 0100nnnn00101000 Rn<<16 → Rn 1 —

SHLR16 Rn 0100nnnn00101001 Rn>>16 → Rn 1 —

46 HITACHI

5.1.5 Branch Instructions

Table 5.7 Branch Instructions

Instruction Instruction Code Operation
Executio
n State T Bit

B F label 10001011dddddddd If T = 0, disp × 2 + PC → PC; if T
= 1, nop (where label is disp × 2 +
PC)

3/1*3 —

BF/S label*2 10001111dddddddd Delayed branch, if T = 0, disp × 2 +
PC → PC; if T = 1, nop

2/1*3 —

B T label 10001001dddddddd If T = 1, disp × 2 + PC → PC; if T
= 0, nop (where label is disp + PC)

3/1*3 —

BT/S label*2 10001101dddddddd Delayed branch, if T = 1, disp × 2 +
PC → PC; if T = 0, nop

2/1*3 —

BRA label 1010dddddddddddd Delayed branch, disp × 2 + PC →
PC

2 —

BRAF Rm*2 0000mmmm00100011 Delayed branch, Rm + PC → PC 2 —

BSR label 1011dddddddddddd Delayed branch, PC → PR, disp ×
2 + PC → PC

2 —

BSRF Rm*2 0000mmmm00000011 Delayed branch, PC → PR, Rm +
PC → PC

2 —

JMP @Rm 0100mmmm00101011 Delayed branch, Rm → PC 2 —

JSR @Rm 0100mmmm00001011 Delayed branch, PC → PR, Rm →
PC

2 —

RTS 0000000000001011 Delayed branch, PR → PC 2 —

Notes: 2. SH-2 CPU instruction
3. One state when it does not branch

HITACHI 47

5.1.6 System Control Instructions

Table 5.8 System Control Instructions

Instruction Instruction Code Operation
Executio
n State

T
Bit

CLRT 0000000000001000 0 → T 1 0

CLRMAC 0000000000101000 0 → MACH, MACL 1 —

LDC Rm,SR 0100mmmm00001110 Rm → SR 1 LSB

LDC Rm,GBR 0100mmmm00011110 Rm → GBR 1 —

LDC Rm,VBR 0100mmmm00101110 Rm → VBR 1 —

LDC.L @Rm+,SR 0100mmmm00000111 (Rm) → SR, Rm + 4 → Rm 3 LSB

LDC.L @Rm+,GBR 0100mmmm00010111 (Rm) → GBR, Rm + 4 → Rm 3 —

LDC.L @Rm+,VBR 0100mmmm00100111 (Rm) → VBR, Rm + 4 → Rm 3 —

LDS Rm,MACH 0100mmmm00001010 Rm → MACH 1 —

LDS Rm,MACL 0100mmmm00011010 Rm → MACL 1 —

LDS Rm,PR 0100mmmm00101010 Rm → PR 1 —

LDS.L @Rm+,MACH 0100mmmm00000110 (Rm) → MACH, Rm + 4 → Rm 1 —

LDS.L @Rm+,MACL 0100mmmm00010110 (Rm) → MACL, Rm + 4 → Rm 1 —

LDS.L @Rm+,PR 0100mmmm00100110 (Rm) → PR, Rm + 4 → Rm 1 —

NOP 0000000000001001 No operation 1 —

RTE 0000000000101011 Delayed branch, stack area →
PC/SR

4 LSB

SETT 0000000000011000 1 → T 1 1

SLEEP 0000000000011011 Sleep 3*4 —

STC SR,Rn 0000nnnn00000010 SR → Rn 1 —

STC GBR,Rn 0000nnnn00010010 GBR → Rn 1 —

STC VBR,Rn 0000nnnn00100010 VBR → Rn 1 —

STC.L SR,@–Rn 0100nnnn00000011 Rn–4 → Rn, SR → (Rn) 2 —

STC.L GBR,@–Rn 0100nnnn00010011 Rn–4 → Rn, GBR → (Rn) 2 —

STC.L VBR,@–Rn 0100nnnn00100011 Rn–4 → Rn, VBR → (Rn) 2 —

STS MACH,Rn 0000nnnn00001010 MACH → Rn 1 —

STS MACL,Rn 0000nnnn00011010 MACL → Rn 1 —

STS PR,Rn 0000nnnn00101010 PR → Rn 1 —

48 HITACHI

Table 5.8 System Control Instructions (cont)

Instruction Instruction Code Operation
Execution
State

T
Bit

STS.L MACH,@–Rn 0100nnnn00000010 Rn–4 → Rn, MACH → (Rn) 1 —

STS.L MACL,@–Rn 0100nnnn00010010 Rn–4 → Rn, MACL → (Rn) 1 —

STS.L PR,@–Rn 0100nnnn00100010 Rn–4 → Rn, PR → (Rn) 1 —

TRAPA #imm 11000011iiiiiiii PC/SR → stack area, (imm ×
4 + VBR) → PC

8 —

Notes: 4. The number of execution states before the chip enters the sleep state
5. The above table lists the minimum execution cycles. In practice, the number of

execution cycles increases when the instruction fetch is in contention with data
access or when the destination register of a load instruction (memory → register) is
the same as the register used by the next instruction.

5.2 Instruction Set in Alphabetical Order

Table 5.9 alphabetically lists instruction codes and number of execution cycles for each
instruction.

HITACHI 49

Table 5.9 Instruction Set

Instruction Instruction Code Operation

Execu-
tion
State T Bit

ADD #imm,Rn 0111nnnniiiiiii
i

Rn + imm → Rn 1 —

ADD Rm,Rn 0011nnnnmmmm110
0

Rn + Rm → Rn 1 —

ADDC Rm,Rn 0011nnnnmmmm111
0

Rn + Rm + T → Rn,
Carry → T

1 Carry

ADDV Rm,Rn 0011nnnnmmmm111
1

Rn + Rm → Rn,
Overflow → T

1 Overflow

AND #imm,R0 11001001iiiiiii
i

R0 & imm → R0 1 —

AND Rm,Rn 0010nnnnmmmm100
1

Rn & Rm → Rn 1 —

AND.B #imm,@(R0,GBR) 11001101iiiiiii
i

(R0 + GBR) & imm
→ (R0 + GBR)

3 —

B F label 10001011ddddddd
d

If T = 0, disp × 2 +
PC → PC; if T = 1,
nop

3/1*3 —

BF/S label*2 10001111ddddddd
d

If T = 0, disp × 2+
PC → PC; if T = 1,
nop

2/1*3 —

50 HITACHI

Table 5.9 Instruction Set (cont)

Instruction Instruction Code Operation

Execu-
tion
State T Bit

BRA label 1010dddddddddddd Delayed branch, disp
× 2 + PC → PC

2 —

BRAF Rm*2 0000mmmm00100011 Delayed branch, Rm +
PC → PC

2 —

BSR label 1011dddddddddddd Delayed branch, PC →
PR, disp × 2 + PC →
PC

2 —

BSRF Rm*2 0000mmmm00000011 Delayed branch, PC →
PR, Rm + PC → PC

2 —

BT label 10001001dddddddd If T = 1, disp × 2+ PC
→ PC; if T = 0, nop

3/1*3 —

BT/S label*2 10001101dddddddd If T = 1, disp × 2 + PC
→ PC; if T = 0, nop

2/1*3 —

CLRMAC 0000000000101000 0 → MACH, MACL 1 —

CLRT 0000000000001000 0 → T 1 0

CMP/EQ #imm,R0 10001000iiiiiiii If R0 = imm, 1 → T 1 Comparison
result

CMP/EQ Rm,Rn 0011nnnnmmmm0000 If Rn = Rm, 1 → T 1 Comparison
result

CMP/GE Rm,Rn 0011nnnnmmmm0011 If Rn ≥ Rm with signed
data, 1 → T

1 Comparison
result

CMP/GT Rm,Rn 0011nnnnmmmm0111 If Rn > Rm with signed
data, 1 → T

1 Comparison
result

CMP/HI Rm,Rn 0011nnnnmmmm0110 If Rn > Rm with
unsigned data,
1 → T

1 Comparison
result

CMP/HS Rm,Rn 0011nnnnmmmm0010 If Rn ≥ Rm with
unsigned data,
1 → T

1 Comparison
result

CMP/PL Rn 0100nnnn00010101 If Rn>0, 1 → T 1 Comparison
result

CMP/PZ Rn 0100nnnn00010001 If Rn ≥ 0, 1 → T 1 Comparison
result

Notes: 2. SH-2 CPU instructions
3. One state when it does not branch

HITACHI 51

Table 5.9 Instruction Set (cont)

Instruction Instruction Code Operation

Execu-
tion
State T Bit

CMP/STR
Rm,Rn

0010nnnnmmmm1100 If Rn and Rm have
an equivalent byte,
1 → T

1 Comparison
result

DIV0S Rm,Rn 0010nnnnmmmm0111 MSB of Rn → Q,
MSB of Rm → M,
M ^ Q → T

1 Calculation
result

DIV0U 0000000000011001 0 → M/Q/T 1 0

DIV1 Rm,Rn 0011nnnnmmmm0100 Single-step
division (Rn/Rm)

1 Calculation
result

DMULS.L
Rm,Rn*2

0011nnnnmmmm1101 Signed operation
of Rn x Rm →
MACH, MACL

2 to 4*1 —

DMULU.L
Rm,Rn*2

0011nnnnmmmm0101 Unsigned
operation of Rn x
Rm → MACH,
MACL

2 to 4*1 —

DT Rn*2 0100nnnn00010000 Rn - 1 → Rn, when
Rn is 0, 1 → T.
When Rn is
nonzero, 0 → T

1 Comparison
result

EXTS.B Rm,Rn 0110nnnnmmmm1110 A byte in Rm is
sign-extended →
Rn

1 —

EXTS.W Rm,Rn 0110nnnnmmmm1111 A word in Rm is
sign-extended →
Rn

1 —

EXTU.B Rm,Rn 0110nnnnmmmm1100 A byte in Rm is
zero-extended →
Rn

1 —

EXTU.W Rm,Rn 0110nnnnmmmm1101 A word in Rm is
zero-extended →
Rn

1 —

JMP @Rm 0100mmmm00101011 Delayed branch,
Rm → PC

2 —

Notes: 1. The normal minimum number of execution states
2. SH-2 CPU instructions

52 HITACHI

Table 5.9 Instruction Set (cont)

Instruction Instruction Code Operation

Execu-
tion
State T Bit

JSR @Rm 0100mmmm00001011 Delayed branch,
PC → PR, Rm →
PC

2 —

LDC Rm,GBR 0100mmmm00011110 Rm → GBR 1 —

LDC Rm,SR 0100mmmm00001110 Rm → SR 1 LSB

LDC Rm,VBR 0100mmmm00101110 Rm → VBR 1 —

LDC.L @Rm+,GBR 0100mmmm00010111 (Rm) → GBR, Rm
+ 4 → Rm

3 —

LDC.L @Rm+,SR 0100mmmm00000111 (Rm) → SR, Rm +
4 → Rm

3 LSB

LDC.L @Rm+,VBR 0100mmmm00100111 (Rm) → VBR, Rm
+ 4 → Rm

3 —

LDS Rm,MACH 0100mmmm00001010 Rm → MACH 1 —

LDS Rm,MACL 0100mmmm00011010 Rm → MACL 1 —

LDS Rm,PR 0100mmmm00101010 Rm → PR 1 —

LDS.L @Rm+,MACH 0100mmmm00000110 (Rm) → MACH,
Rm + 4 → Rm

1 —

LDS.L @Rm+,MACL 0100mmmm00010110 (Rm) → MACL, Rm
+ 4 → Rm

1 —

LDS.L @Rm+,PR 0100mmmm00100110 (Rm) → PR, Rm + 4
→ Rm

1 —

MAC.L @Rm+,@Rn+*2 0000nnnnmmmm1111 Signed operation
of (Rn) × (Rm) +
MAC → MAC

3/(2 to
4)*1

—

MAC.W @Rm+,@Rn+ 0100nnnnmmmm1111 Signed operation
of (Rn) × (Rm) +
MAC → MAC

3/(2)*1 —

MOV #imm,Rn 1110nnnniiiiiiii imm → Sign
extension → Rn

1 —

MOV Rm,Rn 0110nnnnmmmm0011 Rm → Rn 1 —

Notes: 1. The normal minimum number of execution states (the number in parentheses is the
number of states when there is contention with preceding/following instructions)

2. SH-2 instructions

HITACHI 53

Table 5.9 Instruction Set (cont)

Instruction Instruction Code Operation

Execu-
tion
State T Bit

MOV.B @(disp,GBR),R0 11000100dddddddd (disp + GBR) → Sign
extension → R0

1 —

MOV.B @(disp,Rm),R0 10000100mmmmdddd (disp + Rm) → Sign
extension → R0

1 —

MOV.B @(R0,Rm),Rn 0000nnnnmmmm1100 (R0 + Rm) → Sign
extension → Rn

1 —

MOV.B @Rm+,Rn 0110nnnnmmmm0100 (Rm) → Sign extension
→ Rn, Rm + 1 → Rm

1 —

MOV.B @Rm,Rn 0110nnnnmmmm0000 (Rm) → Sign extension
→ Rn

1 —

MOV.B R0,@(disp,GBR) 11000000dddddddd R0 → (disp + GBR) 1 —

MOV.B R0,@(disp,Rn) 10000000nnnndddd R0 → (disp + Rn) 1 —

MOV.B Rm,@(R0,Rn) 0000nnnnmmmm0100 Rm → (R0 + Rn) 1 —

MOV.B Rm,@–Rn 0010nnnnmmmm0100 Rn–1 → Rn, Rm →
(Rn)

1 —

MOV.B Rm,@Rn 0010nnnnmmmm0000 Rm → (Rn) 1 —

MOV.L @(disp,GBR),R0 11000110dddddddd (disp × 4 + GBR) → R0 1 —

MOV.L @(disp,PC),Rn 1101nnnndddddddd (disp × 4 + PC) → Rn 1 —

MOV.L @(disp,Rm),Rn 0101nnnnmmmmdddd (disp × 4 + Rm) → Rn 1 —

MOV.L @(R0,Rm),Rn 0000nnnnmmmm1110 (R0 + Rm) → Rn 1 —

MOV.L @Rm+,Rn 0110nnnnmmmm0110 (Rm) → Rn, Rm + 4 →
Rm

1 —

MOV.L @Rm,Rn 0110nnnnmmmm0010 (Rm) → Rn 1 —

MOV.L R0,@(disp,GBR) 11000010dddddddd R0 → (disp × 4 + GBR) 1 —

MOV.L Rm,@(disp,Rn) 0001nnnnmmmmdddd Rm → (disp × 4 + Rn) 1 —

MOV.L Rm,@(R0,Rn) 0000nnnnmmmm0110 Rm → (R0 + Rn) 1 —

MOV.L Rm,@–Rn 0010nnnnmmmm0110 Rn–4 → Rn, Rm →
(Rn)

1 —

MOV.L Rm,@Rn 0010nnnnmmmm0010 Rm → (Rn) 1 —

MOV.W @(disp,GBR),R0 11000101dddddddd (disp × 2 + GBR) →
Sign extension →
R0

1 —

54 HITACHI

Table 5.9 Instruction Set (cont)

Instruction Instruction Code Operation

Execu-
tion
State T Bit

MOV.W
@(disp,PC),Rn

1001nnnndddddddd (disp × 2 + PC) →
Sign extension → Rn

1 —

MOV.W
@(disp,Rm),R0

10000101mmmmdddd (disp × 2 + Rm) →
Sign extension → R0

1 —

MOV.W @(R0,Rm),Rn 0000nnnnmmmm1101 (R0 + Rm) → Sign
extension → Rn

1 —

MOV.W @Rm+,Rn 0110nnnnmmmm0101 (Rm) → Sign
extension → Rn, Rm +
2 → Rm

1 —

MOV.W @Rm,Rn 0110nnnnmmmm0001 (Rm) → Sign
extension → Rn

1 —

MOV.W
R0,@(disp,GBR)

11000001dddddddd R0 → (disp × 2+ GBR) 1 —

MOV.W
R0,@(disp,Rn)

10000001nnnndddd R0 → (disp × 2 + Rn) 1 —

MOV.W Rm,@(R0,Rn) 0000nnnnmmmm0101 Rm → (R0 + Rn) 1 —

MOV.W Rm,@–Rn 0010nnnnmmmm0101 Rn–2 → Rn, Rm →
(Rn)

1 —

MOV.W Rm,@Rn 0010nnnnmmmm0001 Rm → (Rn) 1 —

MOVA @(disp,PC),R0 11000111dddddddd disp × 4 + PC → R0 1 —

MOVT Rn 0000nnnn00101001 T → Rn 1 —

MUL.L Rm,Rn*2 0000nnnnmmmm0111 Rn × Rm → MACL 2 to 4*1 —

MULS.W Rm,Rn 0010nnnnmmmm1111 Signed operation of
Rn × Rm → MAC

1 to 3*1 —

MULU.W Rm,Rn 0010nnnnmmmm1110 Unsigned operation of
Rn × Rm → MAC

1 to 3*1 —

NEG Rm,Rn 0110nnnnmmmm1011 0–Rm → Rn 1 —

NEGC Rm,Rn 0110nnnnmmmm1010 0–Rm–T → Rn,
Borrow → T

1 Borrow

NOP 0000000000001001 No operation 1 —

NOT Rm,Rn 0110nnnnmmmm0111 ~Rm → Rn 1 —

OR #imm,R0 11001011iiiiiiii R0 | imm → R0 1 —

OR Rm,Rn 0010nnnnmmmm1011 Rn | Rm → Rn 1 —

Notes: 1. The normal minimum number of execution states
2. SH-2 CPU instructions

HITACHI 55

Table 5.9 Instruction Set (cont)

Instruction Instruction Code Operation

Execu-
tion
State T Bit

OR.B #imm,@(R0,GBR) 11001111iiiiiiii (R0 + GBR) | imm →
(R0 + GBR)

3 —

ROTCL Rn 0100nnnn00100100 T ← Rn ← T 1 MSB

ROTCR Rn 0100nnnn00100101 T → Rn → T 1 LSB

ROTL Rn 0100nnnn00000100 T ← Rn ← MSB 1 MSB

ROTR Rn 0100nnnn00000101 LSB → Rn → T 1 LSB

RTE 0000000000101011 Delayed branch,
stack area → PC/SR

4 LSB

RTS 0000000000001011 Delayed branch, PR
→ PC

2 —

SETT 0000000000011000 1 → T 1 1

SHAL Rn 0100nnnn00100000 T ← Rn ← 0 1 MSB

SHAR Rn 0100nnnn00100001 MSB → Rn → T 1 LSB

SHLL Rn 0100nnnn00000000 T ← Rn ← 0 1 MSB

SHLL2 Rn 0100nnnn00001000 Rn<<2 → Rn 1 —

SHLL8 Rn 0100nnnn00011000 Rn<<8 → Rn 1 —

SHLL16 Rn 0100nnnn00101000 Rn<<16 → Rn 1 —

SHLR Rn 0100nnnn00000001 0 → Rn → T 1 LSB

SHLR2 Rn 0100nnnn00001001 Rn>>2 → Rn 1 —

SHLR8 Rn 0100nnnn00011001 Rn>>8 → Rn 1 —

SHLR16 Rn 0100nnnn00101001 Rn>>16 → Rn 1 —

SLEEP 0000000000011011 Sleep 3 —

STC GBR,Rn 0000nnnn00010010 GBR → Rn 1 —

STC SR,Rn 0000nnnn00000010 SR → Rn 1 —

STC VBR,Rn 0000nnnn00100010 VBR → Rn 1 —

STC.L GBR,@–Rn 0100nnnn00010011 Rn–4 → Rn, GBR
→ (Rn)

2 —

STC.L SR,@–Rn 0100nnnn00000011 Rn–4 → Rn, SR →
(Rn)

2 —

STC.L VBR,@–Rn 0100nnnn00100011 Rn–4 → Rn, VBR
→ (Rn)

2 —

STS MACH,Rn 0000nnnn00001010 MACH → Rn 1 —

56 HITACHI

Table 5.9 Instruction Set (cont)

Instruction Instruction Code Operation

Execu
-tion
State T Bit

STS MACL,Rn 0000nnnn00011010 MACL → Rn 1 —

STS PR,Rn 0000nnnn00101010 PR → Rn 1 —

STS.L MACH,@–Rn 0100nnnn00000010 Rn–4 → Rn,
MACH → (Rn)

1 —

STS.L MACL,@–Rn 0100nnnn00010010 Rn–4 → Rn,
MACL → (Rn)

1 —

STS.L PR,@–Rn 0100nnnn00100010 Rn–4 → Rn, PR →
(Rn)

1 —

SUB Rm,Rn 0011nnnnmmmm1000 Rn–Rm → Rn 1 —

SUBC Rm,Rn 0011nnnnmmmm1010 Rn–Rm–T → Rn,
Borrow → T

1 Borrow

SUBV Rm,Rn 0011nnnnmmmm1011 Rn–Rm → Rn,
Underflow → T

1 Under-
flow

SWAP.B Rm,Rn 0110nnnnmmmm1000 Rm → Swap
upper and lower 2
bytes→ Rn

1 —

SWAP.W Rm,Rn 0110nnnnmmmm1001 Rm → Swap upper
and lower word→
Rn

1 —

TAS.B @Rn 0100nnnn00011011 If (Rn) is 0, 1 → T;
1 → MSB of (Rn)

4 Test
result

TRAPA #imm 11000011iiiiiiii PC/SR → stack
area, (imm × 4 +
VBR) → PC

8 —

TST #imm,R0 11001000iiiiiiii R0 & imm; if the
result is 0, 1 → T

1 Test
result

TST Rm,Rn 0010nnnnmmmm1000 Rn & Rm; if the
result is 0, 1 → T

1 Test
result

TST.B #imm,@(R0,GBR) 11001100iiiiiiii (R0 + GBR) & imm;
if the result is 0, 1
→ T

3 Test
result

XOR #imm,R0 11001010iiiiiiii R0 ^ imm → R0 1 —

XOR Rm,Rn 0010nnnnmmmm1010 Rn ^ Rm → Rn 1 —

XOR.B #imm,@(R0,GBR) 11001110iiiiiiii (R0 + GBR) ^ imm
→ (R0 + GBR)

3 —

XTRCT Rm,Rn 0010nnnnmmmm1101 Center 32 bits of
Rm and Rn → Rn

1 —

HITACHI 57

Section 6 Instruction Descriptions

This section describes instructions in alphabetical order using the format shown below in
section 6.1. The actual descriptions begin at section 6.2.

6.1 Sample Description (Name): Classification

Class: Indicates if the instruction is a delayed branch instruction or interrupt disabled
instruction

Format Abstract Code State T Bit

Assembler input
format; imm and disp
are numbers,
expressions, or
symbols

A brief description of
operation

Displayed in
order MSB to
LSB

Number of
states when
there is no
wait state

The value of
T bit after
the
instruction is
executed

Description: Description of operation

Notes: Notes on using the instruction

Operation: Operation written in C language. This part is just a reference to help
understanding of an operation. The following resources should be used.

• Reads data of each length from address Addr. An address error will occur if word data is
read from an address other than 2n or if longword data is read from an address other than
4n:

unsigned char Read_Byte(unsigned long Addr);

unsigned short Read_Word(unsigned long Addr);

unsigned long Read_Long(unsigned long Addr);

• Writes data of each length to address Addr. An address error will occur if word data is
written to an address other than 2n or if longword data is written to an address other than
4n:

unsigned char Write_Byte(unsigned long Addr, unsigned long Data);

unsigned short Write_Word(unsigned long Addr, unsigned long Data);

unsigned long Write_Long(unsigned long Addr, unsigned long Data);

• Starts execution from the slot instruction located at an address (Addr – 4). For Delay_Slot
(4);, execution starts from an instruction at address 0 rather than address 4. The following
instructions are detected before execution as illegal slot instruction (they become illegal
slot instructions when used as delay slot instructions):

BF, BT, BRA, BSR, JMP, JSR, RTS, RTE, TRAPA, BF/S, BT/S, BRAF, BSRF

58 HITACHI

Delay_Slot(unsigned long Addr);

• List registers:

unsigned long R[16];

unsigned long SR,GBR,VBR;

unsigned long MACH,MACL,PR;

unsigned long PC;

• Definition of SR structures:

struct SR0 {

unsigned long dummy0:22;

unsigned long M0:1;

unsigned long Q0:1;

unsigned long I0:4;

unsigned long dummy1:2;

unsigned long S0:1;

unsigned long T0:1;

};

• Definition of bits in SR:

#define M ((*(struct SR0 *)(&SR)).M0)

#define Q ((*(struct SR0 *)(&SR)).Q0)

#define S ((*(struct SR0 *)(&SR)).S0)

#define T ((*(struct SR0 *)(&SR)).T0)

• Error display function:

Error(char *er);

The PC should point to the location four bytes (the second instruction) after the current
instruction. Therefore, PC = 4; means the instruction starts execution from address 0, not
address 4.

Examples: Examples are written in assembler mnemonics and describe state before and after
executing the instruction. Characters in italics such as .align are assembler control
instructions (listed below). For more information, see the Cross Assembler User's Manual.

HITACHI 59

.org Location counter set

.data.w Securing integer word data

.data.l Securing integer longword data

.sdata Securing string data

.align 2 2-byte boundary alignment

.align 4 2-byte boundary alignment

.arepeat 16 16-repeat expansion

.arepeat 32 32-repeat expansion

.aendr End of repeat expansion of specified number

Note: The SH-series cross assembler version 1.0 does not support the conditional
assembler functions.

Notes: 1. In the assembler descriptions in this manual for addressing modes that involve the
following displacements (disp), the value prior to scaling (x1, x2, x4) according to
the operand size is written. This is done to show clearly the operation of the LSI;
see the assembler notation rules for the actual assembler descriptions.

@(disp:4, Rn): Register indirect with displacement

@(disp:8, GBR): GBR indirect with displacement

@(disp 8, PC): PC relative with displacement

disp:8, disp:12: PC relative

2. Among the 16 bits of the instruction code, a code not assigned as an instruction is
treated as a general illegal instruction, and will result in illegal instruction
exception processing, This includes the case where an instruction code for the SH-
2 CPU only is executed on the SH-1 CPU.
Example 1: H'FFF [General illegal instruction in both SH-1 and SH-2 CPU]

Example 2: H'3105 (=DMUL.L R0, R1)[Illegal instruction in SH-1 CPU]

3. If the instruction following a delayed branch instruction such as BRA, BT/S, etc.,
is a general illegal instruction or a branch instruction (known as a slot illegal
instruction), illegal instruction exception processing will be performed.

Example 1

BRA Label

. data. W H'FFFF ← Slot illegal instruction

.... [H'FFF is fundamentally a general illegal

 instruction]

Example 2 RTE

BT/S Label ← Slot illegal instruction

60 HITACHI

6.2 ADD (ADD Binary): Arithmetic Instruction

Format Abstract Code State T Bit

ADD Rm,Rn

ADD #imm,Rn

Rm + Rn → Rn

Rn + imm → Rn

0011nnnnmmmm1100

0111nnnniiiiiiii

1

1

—

—

Description: Adds general register Rn data to Rm data, and stores the result in Rn. The
contents of Rn can also be added to 8-bit immediate data. Since the 8-bit immediate data is
sign-extended to 32 bits, this instruction can add and subtract immediate data.

Operation:

ADD(long m,long n) /* ADD Rm,Rn */

{

R[n]+=R[m];

PC+=2;

}

ADDI(long i,long n) /* ADD #imm,Rn */

{

if ((i&0x80)==0) R[n]+=(0x000000FF & (long)i);

else R[n]+=(0xFFFFFF00 | (long)i);

PC+=2;

}

Examples:

ADD R0,R1 Before execution R0 = H'7FFFFFFF, R1 = H'00000001

After execution R1 = H'80000000

ADD #H'01,R2 Before execution R2 = H'00000000

After execution R2 = H'00000001

ADD #H'FE,R3 Before execution R3 = H'00000001

After execution R3 = H'FFFFFFFF

HITACHI 61

6.3 ADDC (ADD with Carry): Arithmetic Instruction

Format Abstract Code State T Bit

ADDC Rm,Rn Rn + Rm + T → Rn, carry → T 0011nnnnmmmm1110 1 Carry

Description: Adds general register Rm data and the T bit to Rn data, and stores the result in
Rn. The T bit changes according to the result. This instruction can add data that has more
than 32 bits.

Operation:

ADDC (long m,long n) /* ADDC Rm,Rn */

{

unsigned long tmp0,tmp1;

tmp1=R[n]+R[m];

tmp0=R[n];

R[n]=tmp1+T;

if (tmp0>tmp1) T=1;

else T=0;

if (tmp1>R[n]) T=1;

PC+=2;

}

Examples:

CLRT R0:R1 (64 bits) + R2:R3 (64 bits) = R0:R1 (64 bits)

ADDC R3,R1 Before execution T = 0, R1 = H'00000001, R3 = H'FFFFFFFF

After execution T = 1, R1 = H'0000000

ADDC R2,R0 Before execution T = 1, R0 = H'00000000, R2 = H'00000000

After execution T = 0, R0 = H'00000001

62 HITACHI

6.4 ADDV (ADD with V Flag Overflow Check): Arithmetic Instruction

Format Abstract Code State T Bit

ADDV Rm,Rn Rn + Rm → Rn, overflow → T 0011nnnnmmmm1111 1 Overflo
w

Description: Adds general register Rn data to Rm data, and stores the result in Rn. If an
overflow occurs, the T bit is set to 1.

Operation:

ADDV(long m,long n) /*ADDV Rm,Rn */

{

long dest,src,ans;

if ((long)R[n]>=0) dest=0;

else dest=1;

if ((long)R[m]>=0) src=0;

else src=1;

src+=dest;

R[n]+=R[m];

if ((long)R[n]>=0) ans=0;

else ans=1;

ans+=dest;

if (src==0 || src==2) {

if (ans==1) T=1;

else T=0;

}

else T=0;

PC+=2;

}

Examples:

ADDV R0,R1 Before execution R0 = H'00000001, R1 = H'7FFFFFFE, T = 0

After execution R1 = H'7FFFFFFF, T = 0

ADDV R0,R1 Before execution R0 = H'00000002, R1 = H'7FFFFFFE, T = 0

After execution R1 = H'80000000, T = 1

HITACHI 63

6.5 AND (AND Logical): Logic Operation Instruction

Format Abstract Code State T
Bit

AND Rm,Rn

AND #imm,R0

AND.B
#imm,@(R0,GBR)

Rn & Rm → Rn

R0 & imm → R0

(R0 + GBR) & imm → (R0 +
GBR)

0010nnnnmmmm1001

11001001iiiiiiii

11001101iiiiiiii

1

1

3

—

—

—

Description: Logically ANDs the contents of general registers Rn and Rm, and stores the
result in Rn. The contents of general register R0 can be ANDed with zero-extended 8-bit
immediate data. 8-bit memory data pointed to by GBR relative addressing can be ANDed
with 8-bit immediate data.

Note: After AND #imm, R0 is executed and the upper 24 bits of R0 are always cleared to 0.

Operation:

AND(long m,long n) /* AND Rm,Rn */

{

R[n]&=R[m]

PC+=2;

}

ANDI(long i) /* AND #imm,R0 */

{

R[0]&=(0x000000FF & (long)i);

PC+=2;

}

ANDM(long i) /* AND.B #imm,@(R0,GBR) */

{

long temp;

temp=(long)Read_Byte(GBR+R[0]);

temp&=(0x000000FF & (long)i);

Write_Byte(GBR+R[0],temp);

PC+=2;

}

64 HITACHI

Examples:

AND R0,R1 Before execution R0 = H'AAAAAAAA, R1 = H'55555555

After execution R1 = H'00000000

AND #H'0F,R0 Before execution R0 = H'FFFFFFFF

After execution R0 = H'0000000F

AND.B #H'80,@(R0,GBR) Before execution @(R0,GBR) = H'A5

After execution @(R0,GBR) = H'80

HITACHI 65

6.6 BF (Branch if False): Branch Instruction

Format Abstract Code State T Bit

B F
la

bel

When T = 0, disp × 2 + PC → PC;
When T = 1, nop

10001011dddddddd 3/1 —

Description: Reads the T bit, and conditionally branches. If T = 1, BF executes the next
instruction. If T = 0, it branches. The branch destination is an address specified by PC +
displacement. The PC points to the starting address of the second instruction after the branch
instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the relative
interval from the branch destination is –256 to +254 bytes. If the displacement is too short to
reach the branch destination, use BF with the BRA instruction or the like.

Note: When branching, three cycles; when not branching, one cycle.

Operation:

BF(long d)/* BF disp */

{

long disp;

if ((d&0x80)==0) disp=(0x000000FF & (long)d);

else disp=(0xFFFFFF00 | (long)d);

if (T==0) PC=PC+(disp<<1)+4;

else PC+=2;

}

Example:

CLRT T is always cleared to 0
B T TRGET_T Does not branch, because T = 0
B F TRGET_F Branches to TRGET_F, because T = 0
NOP

NOP ← The PC location is used to calculate the
branch destination address of the BF
instruction

 TRGET_F: ← Branch destination of the BF instruction

66 HITACHI

6.7 BF/S (Branch if False with Delay Slot): Branch Instruction (SH-2
CPU)

Format Abstract Code State T Bit

BF/S
label

When T = 0, disp × 2 + PC → PC;
When T = 1, nop

10001111dddddddd 2/1 —

Description: Reads the T bit, and conditionally branches with delay slot. If T = 1, BF
executes the next instruction. If T = 0, it branches after executing the next instruction. The
branch destination is an address specified by PC + displacement. The PC points to the
starting address of the second instruction after the branch instruction. The 8-bit displacement
is sign-extended and doubled. Consequently, the relative interval from the branch destination
is –256 to +254 bytes. If the displacement is too short to reach the branch destination, use
BF/S with the BRA instruction or the like.

Note: Since this is a delayed branch instruction, the instruction immediately after is executed
before the branch. Between the time this instruction and the instruction immediately after are
executed, address errors or interrupts are not accepted. When the instruction immediately
after is a branch instruction, it is recognized as an illegal slot instruction.

When branching, this is a two-cycle instruction; when not branching, one cycle.

Operation:

BFS(long d) /* BFS disp */

{

long disp;

unsigned long temp;

temp=PC;

if ((d&0x80)==0) disp=(0x000000FF & (long)d);

else disp=(0xFFFFFF00 | (long)d);

if (T==0) {

PC=PC+(disp<<1)+4;

Delay_Slot(temp+2);

}

else PC+=2;

}

HITACHI 67

Example:

CLRT T is always 0

BT/S TRGET_T Does not branch, because T = 0

NOP

BF/S TRGET_F Branches to TRGET, because T = 0

ADD R0,R1 Executed before branch

NOP ← The PC location is used to calculate the branch destination
address of the BF/S instruction

TRGET_F: ← Branch destination of the BF/S instruction

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of
delayed branch instruction, then delay slot instruction. For example, even if the
register in which the branch destination address has been loaded is changed by the
delay slot instruction, the branch will still be made using the value of the register
prior to the change as the branch destination address.

68 HITACHI

6.8 BRA (Branch): Branch Instruction

Format Abstract Code State T Bit

BRA label disp × 2 + PC → PC 1010dddddddddddd 2 —

Description: Branches unconditionally after executing the instruction following this BRA
instruction. The branch destination is an address specified by PC + displacement. The PC
points to the starting address of the second instruction after this BRA instruction. The 12-bit
displacement is sign-extended and doubled. Consequently, the relative interval from the
branch destination is –4096 to +4094 bytes. If the displacement is too short to reach the
branch destination, this instruction must be changed to the JMP instruction. Here, a MOV
instruction must be used to transfer the destination address to a register.

Note: Since this is a delayed branch instruction, the instruction after BRA is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

BRA(long d) /* BRA disp */

{

unsigned long temp;

long disp;

if ((d&0x800)==0) disp=(0x00000FFF & d);

else disp=(0xFFFFF000 | d);

temp=PC;

PC=PC+(disp<<1)+4;

Delay_Slot(temp+2);

}

Example:

BRA TRGET Branches to TRGET

ADD R0,R1 Executes ADD before branching

NOP ← The PC location is used to calculate the branch destination
address of the BRA instruction

 TRGET: ← Branch destination of the BRA instruction

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of

HITACHI 69

delayed branch instruction, then delay slot instruction. For example, even if the
register in which the branch destination address has been loaded is changed by the
delay slot instruction, the branch will still be made using the value of the register prior
to the change as the branch destination address.

70 HITACHI

6.9 BRAF (Branch Far): Branch Instruction (SH-2 CPU)

Format Abstract Code State T Bit

BRAF Rm Rm + PC → PC 0000mmmm00100011 2 —

Description: Branches unconditionally. The branch destination is PC + the 32-bit contents of
the general register Rm. PC is the start address of the second instruction after this instruction.

Note: Since this is a delayed branch instruction, the instruction after BRAF is executed
before branching. No interrupts or address errors are accepted between this instruction and the
next instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal
slot instruction.

Operation:

BRAF(long m) /* BRAF Rm */

{

unsigned long temp;

temp=PC;

PC+=R[m];

Delay_Slot(temp+2);

}

Example:

MOV.L #(TRGET-BSRF_PC),R0 Sets displacement

BRAF @R0 Branches to TRGET

ADD R0,R1 Executes ADD before branching

 BRAF_PC: ← The PC location is used to calculate
the branch destination address of
the BRAF instruction

NOP

 TRGET: ← Branch destination of the BRAF instruction

HITACHI 71

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of
delayed branch instruction, then delay slot instruction. For example, even if the
register in which the branch destination address has been loaded is changed by the
delay slot instruction, the branch will still be made using the value of the register prior
to the change as the branch destination address.

72 HITACHI

6.10 BSR (Branch to Subroutine): Branch Instruction

Format Abstract Code State T Bit

BSR label PC → PR, disp × 2 + PC → PC 1011dddddddddddd 2 —

Description: Branches to the subroutine procedure at a specified address after executing the
instruction following this BSR instruction. The PC value is stored in the PR, and the program
branches to an address specified by PC + displacement. The PC points to the starting address
of the second instruction after this BSR instruction. The 12-bit displacement is sign-extended
and doubled. Consequently, the relative interval from the branch destination is –4096 to
+4094 bytes. If the displacement is too short to reach the branch destination, the JSR
instruction must be used instead. With JSR, the destination address must be transferred to a
register by using the MOV instruction. This BSR instruction and the RTS instruction are used
for a subroutine procedure call.

Note: Since this is a delayed branch instruction, the instruction after BSR is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

BSR(long d) /* BSR disp */

{

long disp;

if ((d&0x800)==0) disp=(0x00000FFF & d);

else disp=(0xFFFFF000 | d);

PR=PC;

PC=PC+(disp<<1)+4;

Delay_Slot(PR+2);

}

HITACHI 73

Example:

BSR TRGET Branches to TRGET

MOV R3,R4 Executes the MOV instruction before branching

ADD R0,R1 ← The PC location is used to calculate the branch destination
address of the BSR instruction (return address for when the
subroutine procedure is completed (PR data))

.......

.......

TRGET: ← Procedure entrance

MOV R2,R3

RTS Returns to the above ADD instruction

MOV #1,R0 Executes MOV before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of
delayed branch instruction, then delay slot instruction. For example, even if the
register in which the branch destination address has been loaded is changed by the
delay slot instruction, the branch will still be made using the value of the register prior
to the change as the branch destination address.

74 HITACHI

6.11 BSRF (Branch to Subroutine Far): Branch Instruction (SH-2 CPU)

Format Abstract Code State T Bit

BSRF Rm PC → PR, Rm + PC → PC 0000mmmm00000011 2 —

Description: Branches to the subroutine procedure at a specified address after executing the
instruction following this BSRF instruction. The PC value is stored in the PR. The branch
destination is PC + the 32-bit contents of the general register Rm. PC is the start address of
the second instruction after this instruction. Used as a subroutine procedure call in
combination with RTS.

Note: Since this is a delayed branch instruction, the instruction after BSR is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

BSRF(long m) /* BSRF Rm */

{

PR=PC;

PC+=R[m];

Delay_Slot(PR+2);

}

Example:

MOV.L #(TRGET-BSRF_PC),R0 Sets displacement
BRSF @R0 Branches to TRGET
MOV R3,R4 Executes the MOV instruction before

branching
BSRF_PC: ← The PC location is used to

calculate the branch destination
with BSRF

ADD R0,R1

.....

.....
TRGET: ← Procedure entrance

MOV R2,R3

RTS Returns to the above ADD instruction

MOV #1,R0 Executes MOV before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed
branch instruction, then delay slot instruction. For example, even if the register in which
the branch destination address has been loaded is changed by the delay slot instruction,
the branch will still be made using the value of the register prior to the change as the
branch destination address.

HITACHI 75

6.12 BT (Branch if True): Branch Instruction

Format Abstract Code State T Bit

B T label When T = 1, disp × 2 + PC →
PC;
When T = 0, nop

10001001dddddddd 3/1 —

Description: Reads the T bit, and conditionally branches. If T = 1, BT branches. If T = 0, BT
executes the next instruction. The branch destination is an address specified by PC +
displacement. The PC points to the starting address of the second instruction after the branch
instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the relative
interval from the branch destination is –256 to +254 bytes. If the displacement is too short to
reach the branch destination, use BT with the BRA instruction or the like.

Note: When branching, requires three cycles; when not branching, one cycle.

Operation:

BT(long d)/* BT disp */

{

long disp;

if ((d&0x80)==0) disp=(0x000000FF & (long)d);

else disp=(0xFFFFFF00 | (long)d);

if (T==1) PC=PC+(disp<<1)+4;

else PC+=2;

}

Example:

SETT T is always 1

B F TRGET_F Does not branch, because T = 1

B T TRGET_T Branches to TRGET_T, because T = 1

NOP

NOP ← The PC location is used to calculate the branch destination
address of the BT instruction

TRGET_T: ← Branch destination of the BT instruction

76 HITACHI

6.13 BT/S (Branch if True with Delay Slot): Branch Instruction (SH-2
CPU)

Format Abstract Code State T Bit

BT/S label When T = 1, disp × 2 + PC →
PC;
When T = 0, nop

10001101dddddddd 2/1 —

Description: Reads the T bit, and conditionally branches with delay slot. If T = 1, BT/S
branches after the following instruction executes. If T = 0, BT/S executes the next instruction.
The branch destination is an address specified by PC + displacement. The PC points to the
starting address of the second instruction after the branch instruction. The 8-bit displacement
is sign-extended and doubled. Consequently, the relative interval from the branch destination
is –256 to +254 bytes. If the displacement is too short to reach the branch destination, use
BT/S with the BRA instruction or the like.

Note: Since this is a delay branch instruction, the instruction immediately after is executed
before the branch. Between the time this instruction and the immediately after instruction are
executed, address errors or interrupts are not accepted. When the immediately after
instruction is a branch instruction, it is recognized as an illegal slot instruction. When
branching, requires two cycles; when not branching, one cycle.

Operation:

BTS(long d) /* BTS disp */

{

long disp;

unsigned long temp;

temp=PC;

if ((d&0x80)==0) disp=(0x000000FF & (long)d);

else disp=(0xFFFFFF00 | (long)d);

if (T==1) {

PC=PC+(disp<<1)+4;

Delay_Slot(temp+2);

}

else PC+=2;

}

HITACHI 77

Example:

SETT T is always 1

BF/S TRGET_F Does not branch, because T = 1

NOP

BT/S TRGET_T Branches to TRGET, because T = 1

ADD R0,R1 Executes before branching.

NOP ← The PC location is used to calculate the branch destination
address of the BT/S instruction

TRGET_T: ← Branch destination of the BT/S instruction

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of
delayed branch instruction, then delay slot instruction. For example, even if the
register in which the branch destination address has been loaded is changed by the
delay slot instruction, the branch will still be made using the value of the register
prior to the change as the branch destination address.

78 HITACHI

6.14 CLRMAC (Clear MAC Register): System Control Instruction

Format Abstract Code State T Bit

CLRMAC 0 → MACH, MACL 0000000000101000 1 —

Operation:

CLRMAC() /* CLRMAC */

{

MACH=0;

MACL=0;

PC+=2;

}

Example:

CLRMAC Initializes the MAC register

MAC.W @R0+,@R1+ Multiply and accumulate operation

MAC.W @R0+,@R1+

HITACHI 79

6.15 CLRT (Clear T Bit): System Control Instruction

Format Abstract Code State T Bit

CLRT 0 → T 0000000000001000 1 0

Description: Clears the T bit.

Operation:

CLRT() /* CLRT */

{

T=0;

PC+=2;

}

Example:

CLRT Before execution T = 1

After execution T = 0

80 HITACHI

6.16 CMP/cond (Compare Conditionally): Arithmetic Instruction

Format Abstract Code State T Bit

CMP/EQ Rm,Rn

CMP/GE Rm,Rn

CMP/GT Rm,Rn

CMP/HI Rm,Rn

CMP/HS Rm,Rn

CMP/PL R n

CMP/PZ R n

CMP/STR
Rm,Rn

CMP/EQ #imm,R0

When Rn = Rm, 1 → T

When signed and Rn ≥
Rm, 1 → T

When signed and Rn >
Rm, 1 → T

When unsigned and Rn >
Rm, 1 → T

When unsigned and Rn ≥
Rm, 1 → T

When Rn > 0, 1 → T

When Rn ≥ 0, 1 → T

When a byte in Rn equals
a byte in Rm, 1 → T

When R0 = imm, 1 → T

0011nnnnmmmm0000

0011nnnnmmmm0011

0011nnnnmmmm0111

0011nnnnmmmm0110

0011nnnnmmmm0010

0100nnnn00010101

0100nnnn00010001

0010nnnnmmmm1100

10001000iiiiiiii

1

1

1

1

1

1

1

1

1

Comparison
result

Comparison
result

Comparison
result

Comparison
result

Comparison
result

Comparison
result

Comparison
result

Comparison
result

Comparison
result

Description: Compares general register Rn data with Rm data, and sets the T bit to 1 if a
specified condition (cond) is satisfied. The T bit is cleared to 0 if the condition is not
satisfied. The Rn data does not change. The following eight conditions can be specified.
Conditions PZ and PL are the results of comparisons between Rn and 0. Sign-extended 8-bit
immediate data can also be compared with R0 by using condition EQ. Here, R0 data does not
change. Table 6.1 shows the mnemonics for the conditions.

HITACHI 81

Table 6.1 CMP Mnemonics

Mnemonics Condition

CMP/EQ Rm,Rn If Rn = Rm, T = 1

CMP/GE Rm,Rn If Rn ≥ Rm with signed data, T = 1

CMP/GT Rm,Rn If Rn > Rm with signed data, T = 1

CMP/HI Rm,Rn If Rn > Rm with unsigned data, T = 1

CMP/HS Rm,Rn If Rn ≥ Rm with unsigned data, T = 1

CMP/PL Rn If Rn > 0, T = 1

CMP/PZ Rn If Rn ≥ 0, T = 1

CMP/STR Rm,Rn If a byte in Rn equals a byte in Rm, T = 1

CMP/EQ #imm,R0 If R0 = imm, T = 1

Operation:

CMPEQ(long m,long n) /* CMP_EQ Rm,Rn */

{

if (R[n]==R[m]) T=1;

else T=0;

PC+=2;

}

CMPGE(long m,long n) /* CMP_GE Rm,Rn */

{

if ((long)R[n]>=(long)R[m]) T=1;

else T=0;

PC+=2;

}

CMPGT(long m,long n) /* CMP_GT Rm,Rn */

{

if ((long)R[n]>(long)R[m]) T=1;

else T=0;

PC+=2;

}

82 HITACHI

CMPHI(long m,long n) /* CMP_HI Rm,Rn */

{

if ((unsigned long)R[n]>(unsigned long)R[m]) T=1;

else T=0;

PC+=2;

}

CMPHS(long m,long n) /* CMP_HS Rm,Rn */

{

if ((unsigned long)R[n]>=(unsigned long)R[m]) T=1;

else T=0;

PC+=2;

}

CMPPL(long n) /* CMP_PL Rn */

{

if ((long)R[n]>0) T=1;

else T=0;

PC+=2;

}

CMPPZ(long n) /* CMP_PZ Rn */

{

if ((long)R[n]>=0) T=1;

else T=0;

PC+=2;

}

HITACHI 83

CMPSTR(long m,long n) /* CMP_STR Rm,Rn */

{

unsigned long temp;

long HH,HL,LH,LL;

temp=R[n]^R[m];

HH=(temp>>12)&0x000000FF;

HH=(temp>>8)&0x000000FF;

HH=(temp>>4)&0x000000FF;

LL=temp&0x000000FF;

HH=HH&&HL&&LH&&LL;

if (HH==0) T=1;

else T=0;

PC+=2;

}

CMPIM(long i) /* CMP_EQ #imm,R0 */

{

long imm;

if ((i&0x80)==0) imm=(0x000000FF & (long i));

else imm=(0xFFFFFF00 | (long i));

if (R[0]==imm) T=1;

else T=0;

PC+=2;

}

Example:

CMP/GE R0,R1 R0 = H'7FFFFFFF, R1 = H'80000000

B T TRGET_T Does not branch because T = 0

CMP/HS R0,R1 R0 = H'7FFFFFFF, R1 = H'80000000

B T TRGET_T Branches because T = 1

CMP/STR R2,R3 R2 = “ABCD”, R3 = “XYCZ”

B T TRGET_T Branches because T = 1

84 HITACHI

6.17 DIV0S (Divide Step 0 as Signed): Arithmetic Instruction

Format Abstract Code State T Bit

DIV0S Rm,Rn MSB of Rn → Q, MSB of Rm
→ M, M^Q → T

0010nnnnmmmm0111 1 Calculation
result

Description: DIV0S is an initialization instruction for signed division. It finds the quotient by
repeatedly dividing in combination with the DIV1 or another instruction that divides for each
bit after this instruction. See the description given with DIV1 for more information.

Operation:

DIV0S(long m,long n) /* DIV0S Rm,Rn */

{

if ((R[n]&0x80000000)==0) Q=0;

else Q=1;

if ((R[m]&0x80000000)==0) M=0;

else M=1;

T=!(M==Q);

PC+=2;

}

Example: See DIV1.

HITACHI 85

6.18 DIV0U (Divide Step 0 as Unsigned): Arithmetic Instruction

Format Abstract Code State T Bit

DIV0U 0 → M/Q/T 0000000000011001 1 0

Description: DIV0U is an initialization instruction for unsigned division. It finds the quotient
by repeatedly dividing in combination with the DIV1 or another instruction that divides for
each bit after this instruction. See the description given with DIV1 for more information.

Operation:

DIV0U() /* DIV0U */

{

M=Q=T=0;

PC+=2;

}

Example: See DIV1.

86 HITACHI

6.19 DIV1 (Divide Step 1): Arithmetic Instruction

Format Abstract Code State T Bit

DIV1 Rm,Rn 1-step division (Rn ÷ Rm) 0011nnnnmmmm0100 1 Calculation
result

Description: Uses single-step division to divide one bit of the 32-bit data in general register
Rn (dividend) by Rm data (divisor). It finds a quotient through repetition either independently
or used in combination with other instructions. During this repetition, do not rewrite the
specified register or the M, Q, and T bits.

In one-step division, the dividend is shifted one bit left, the divisor is subtracted and the
quotient bit reflected in the Q bit according to the status (positive or negative). To find the
remainder in a division, first find the quotient using a DIV1 instruction, then find the
remainder as follows:

(Dividend) – (divisor) × (quotient) = (remainder)

with the SH-2 CPU in which a divider is installed as a peripheral function, the remainder can
be found as a function of the divider.

Zero division, overflow detection, and remainder operation are not supported. Check for zero
division and overflow division before dividing.

Find the remainder by first finding the sum of the divisor and the quotient obtained and then
subtracting it from the dividend. That is, first initialize with DIV0S or DIV0U. Repeat DIV1
for each bit of the divisor to obtain the quotient. When the quotient requires 17 or more bits,
place ROTCL before DIV1. For the division sequence, see the following examples.

HITACHI 87

Operation:

DIV1(long m,long n) /* DIV1 Rm,Rn */

{

unsigned long tmp0;

unsigned char old_q,tmp1;

old_q=Q;

Q=(unsigned char)((0x80000000 & R[n])!=0);

R[n]<<=1;

R[n]|=(unsigned long)T;

switch(old_q){

case 0:switch(M){

case 0:tmp0=R[n];

R[n]-=R[m];

tmp1=(R[n]>tmp0);

switch(Q){

case 0:Q=tmp1;

break;

case 1:Q=(unsigned char)(tmp1==0);

break;

}

break;

case 1:tmp0=R[n];

R[n]+=R[m];

tmp1=(R[n]<tmp0);

switch(Q){

case 0:Q=(unsigned char)(tmp1==0);

break;

case 1:Q=tmp1;

break;

}

break;

}

break;

88 HITACHI

case 1:switch(M){

case 0:tmp0=R[n];

R[n]+=R[m];

tmp1=(R[n]<tmp0);

switch(Q){

case 0:Q=tmp1;

break;

case 1:Q=(unsigned char)(tmp1==0);

break;

}

break;

case 1:tmp0=R[n];

R[n]-=R[m];

tmp1=(R[n]>tmp0);

switch(Q){

case 0:Q=(unsigned char)(tmp1==0);

break;

case 1:Q=tmp1;

break;

}

break;

}

break;

}

T=(Q==M);

PC+=2;

}

HITACHI 89

Example 1:

R1 (32 bits) / R0 (16 bits) = R1 (16 bits):Unsigned

SHLL16 R0 Upper 16 bits = divisor, lower 16 bits = 0

TST R0,R0 Zero division check

BT ZERO_DIV

CMP/HS R0,R1 Overflow check

BT OVER_DIV

DIV0U Flag initialization

.arepeat 16

DIV1 R0,R1 Repeat 16 times

.aendr

ROTCL R1

EXTU.W R1,R2 R1 = Quotient

Example 2:

R1:R2 (64 bits)/R0 (32 bits) = R2 (32 bits):Unsigned

TST R0,R0 Zero division check

BT ZERO_DIV

CMP/HS R0,R1 Overflow check

BT OVER_DIV

DIV0U Flag initialization

.arepeat 32

ROTCL R2 Repeat 32 times

DIV1 R0,R1

.aendr

ROTCL R2 R2 = Quotient

90 HITACHI

Example 3:

R1 (16 bits)/R0 (16 bits) = R1 (16 bits):Signed

SHLL16 R0 Upper 16 bits = divisor, lower 16 bits = 0

EXTS.W R1,R1 Sign-extends the dividend to 32 bits

XOR R2,R2 R2 = 0

MOV R1,R3

ROTCL R3

SUBC R2,R1 Decrements if the dividend is negative

DIV0S R0,R1 Flag initialization

.arepeat 16

DIV1 R0,R1 Repeat 16 times

.aendr

EXTS.W R1,R1

ROTCL R1 R1 = quotient (one’s complement)

ADDC R2,R1 Increments and takes the two’s complement if the MSB of the
quotient is 1

EXTS.W R1,R1 R1 = quotient (two’s complement)

Example 4:

R2 (32 bits) / R0 (32 bits) = R2 (32 bits):Signed

MOV R2,R3

ROTCL R3

SUBC R1,R1 Sign-extends the dividend to 64 bits (R1:R2)

XOR R3,R3 R3 = 0

SUBC R3,R2 Decrements and takes the one’s complement if the dividend is
negative

DIV0S R0,R1 Flag initialization

.arepeat 32

ROTCL R2 Repeat 32 times

DIV1 R0,R1

.aendr

ROTCL R2 R2 = Quotient (one’s complement)

ADDC R3,R2 Increments and takes the two’s complement if the MSB of the
quotient is 1. R2 = Quotient (two’s complement)

HITACHI 91

6.20 DMULS.L (Double-Length Multiply as Signed): Arithmetic
Instruction (SH-2 CPU)

Format Abstract Code State T Bit

DMULS.L
Rm,Rn

With signed, Rn × Rm →
MACH, MACL

0011nnnnmmmm1101 2 to 4 —

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm,
and stores the 64-bit results in the MACL and MACH registers. The operation is a signed
arithmetic operation.

Operation:

DMULS(long m,long n)/* DMULS.L Rm,Rn */

{

unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;

unsigned long temp0,temp1,temp2,temp3;

long tempm,tempn,fnLmL;

tempn=(long)R[n];

tempm=(long)R[m];

if (tempn<0) tempn=0-tempn;

if (tempm<0) tempm=0-tempm;

if ((long)(R[n]^R[m])<0) fnLmL=-1;

else fnLmL=0;

temp1=(unsigned long)tempn;

temp2=(unsigned long)tempm;

RnL=temp1&0x0000FFFF;

RnH=(temp1>>16)&0x0000FFFF;

RmL=temp2&0x0000FFFF;

RmH=(temp2>>16)&0x0000FFFF;

temp0=RmL*RnL;

temp1=RmH*RnL;

temp2=RmL*RnH;

temp3=RmH*RnH;

92 HITACHI

Res2=0

Res1=temp1+temp2;

if (Res1<temp1) Res2+=0x00010000;

temp1=(Res1<<16)&0xFFFF0000;

Res0=temp0+temp1;

if (Res0<temp0) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

if (fnLmL<0) {

Res2=~Res2;

if (Res0==0)

Res2++;

else

Res0=(~Res0)+1;

}

MACH=Res2;

MACL=Res0;

PC+=2;

}

Example:

DMULS R0,R1 Before execution R0 = H'FFFFFFFE, R1 = H'00005555

After execution MACH = H'FFFFFFFF, MACL = H'FFFF5556

STS MACH,R0 Operation result (top)

STS MACL,R0 Operation result (bottom)

HITACHI 93

6.21 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic
Instruction (SH-2 CPU)

Format Abstract Code State T Bit

DMULU.L
Rm,Rn

Without signed, Rn × Rm →
MACH, MACL

0011nnnnmmmm0101 2 to 4 —

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm,
and stores the 64-bit results in the MACL and MACH registers. The operation is an unsigned
arithmetic operation.

Operation:

DMULU(long m,long n)/* DMULU.L Rm,Rn */

{

unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;

unsigned long temp0,temp1,temp2,temp3;

RnL=R[n]&0x0000FFFF;

RnH=(R[n]>>16)&0x0000FFFF;

RmL=R[m]&0x0000FFFF;

RmH=(R[m]>>16)&0x0000FFFF;

temp0=RmL*RnL;

temp1=RmH*RnL;

temp2=RmL*RnH;

temp3=RmH*RnH;

94 HITACHI

Res2=0

Res1=temp1+temp2;

if (Res1<temp1) Res2+=0x00010000;

temp1=(Res1<<16)&0xFFFF0000;

Res0=temp0+temp1;

if (Res0<temp0) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

MACH=Res2;

MACL=Res0;

PC+=2;

}

Example:

DMULU R0,R1 Before execution R0 = H'FFFFFFFE, R1 = H'00005555

After execution MACH = H'00005554, MACL = H'FFFF5556

STS MACH,R0 Operation result (top)

STS MACL,R0 Operation result (bottom)

HITACHI 95

6.22 DT (Decrement and Test): Arithmetic Instruction (SH-2 CPU)

Format Abstract Code State T Bit

DT Rn Rn - 1 → Rn;
When Rn is 0, 1 → T,
when Rn is nonzero, 0 → T

0100nnnn00010000 1 Comparison
result

Description: The contents of general register Rn is decremented by 1 and the result is
compared to 0 (zero). When the result is 0, the T bit is set to 1. When the result is not zero,
the T bit is set to 0.

Operation:

DT(long n)/* DT Rn */

{

R[n]--;

if (R[n]==0) T=1;

else T=0;

PC+=2;

}

Example:

MOV #4,R5 Sets the number of loops.

LOOP:

ADD R0,R1

DT R S Decrements the R5 value and checks whether it has become 0.

B F LOOP Branches to LOOP if T=0. (In this example, loops 4 times.)

96 HITACHI

6.23 EXTS (Extend as Signed): Arithmetic Instruction

Format Abstract Code State T Bit

EXTS.B Rm,Rn Sign-extended Rm from byte →
Rn

0110nnnnmmmm1110 1 —

EXTS.W Rm,Rn Sign-extended Rm from word →
Rn

0110nnnnmmmm1111 1 —

Description: Sign-extends general register Rm data, and stores the result in Rn. If byte length
is specified, the bit 7 value of Rm is transferred to bits 8 to 31 of Rn. If word length is
specified, the bit 15 value of Rm is transferred to bits 16 to 31 of Rn.

Operation:

EXTSB(long m,long n) /* EXTS.B Rm,Rn */

{

R[n]=R[m];

if ((R[m]&0x00000080)==0) R[n]&=0x000000FF;

else R[n]|=0xFFFFFF00;

PC+=2;

}

EXTSW(long m,long n) /* EXTS.W Rm,Rn */

{

R[n]=R[m];

if ((R[m]&0x00008000)==0) R[n]&=0x0000FFFF;

else R[n]|=0xFFFF0000;

PC+=2;

}

Examples:

EXTS.B R0,R1 Before execution R0 = H'00000080

After execution R1 = H'FFFFFF80

EXTS.W R0,R1 Before execution R0 = H'00008000

After execution R1 = H'FFFF8000

HITACHI 97

6.24 EXTU (Extend as Unsigned): Arithmetic Instruction

Format Abstract Code State T Bit

EXTU.B Rm,Rn

EXTU.W Rm,Rn

Zero-extend Rm from byte → Rn

Zero-extend Rm from word → Rn

0110nnnnmmmm1100

0110nnnnmmmm1101

1

1

—

—

Description: Zero-extends general register Rm data, and stores the result in Rn. If byte length
is specified, 0 is transferred to bits 8 to 31 of Rn. If word length is specified, 0 is transferred to
bits 16 to 31 of Rn.

Operation:

EXTUB(long m,long n) /* EXTU.B Rm,Rn */

{

R[n]=R[m];

R[n]&=0x000000FF;

PC+=2;

}

EXTUW(long m,long n) /* EXTU.W Rm,Rn */

{

R[n]=R[m];

R[n]&=0x0000FFFF;

PC+=2;

}

Examples:

EXTU.B R0,R1 Before execution R0 = H'FFFFFF80

After execution R1 = H'00000080

EXTU.W R0,R1 Before execution R0 = H'FFFF8000

After execution R1 = H'00008000

98 HITACHI

6.25 JMP (Jump): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

JMP @Rm Rm → PC 0100mmmm00101011 2 —

Description: Delayed-branches unconditionally to the address specified with register indirect.
The branch destination is an address specified by the 32-bit data in general register Rm.

Note: Since this is a delayed branch instruction, the instruction after JMP is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

JMP(long m) /* JMP @Rm */

{

unsigned long temp;

temp=PC;

PC=R[m]+4;

Delay_Slot(temp+2);

}

Example:

MOV.L JMP_TABLE,R0 Address of R0 = TRGET

JMP @R0 Branches to TRGET

MOV R0,R1 Executes MOV before branching

.align 4

JMP_TABLE: .data.l TRGET Jump table

.................

TRGET: ADD #1,R1 ← Branch destination

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of
delayed branch instruction, then delay slot instruction. For example, even if the
register in which the branch destination address has been loaded is changed by the
delay slot instruction, the branch will still be made using the value of the register
prior to the change as the branch destination address.

HITACHI 99

6.26 JSR (Jump to Subroutine): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

JSR @Rm PC → PR, Rm → PC 0100mmmm00001011 2 —

Description: Delayed-branches to the subroutine procedure at a specified address after
executing the instruction following this JSR instruction. The PC value is stored in the PR. The
jump destination is an address specified by the 32-bit data in general register Rm. The PC
points to the starting address of the second instruction after JSR. The JSR instruction and RTS
instruction are used for subroutine procedure calls.

Note: Since this is a delayed branch instruction, the instruction after JSR is executed before
branching. No interrupts and address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

JSR(long m) /* JSR @Rm */

{

PR=PC;

PC=R[m]+4;

Delay_Slot(PR+2);

}

Example:

MOV.L JSR_TABLE,R0 R0 = Address of TRGET

JSR @R0 Branches to TRGET

XOR R1,R1 Executes XOR before branching

ADD R0,R1 ← Return address for when the
subroutine procedure is completed
(PR data)

...........

.align 4

JSR_TABLE: .data.l TRGET Jump table

TRGET: NOP ← Procedure entrance

MOV R2,R3

RTS Returns to the above ADD instruction

MOV #70,R1 Executes MOV before RTS

100 HITACHI

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of
delayed branch instruction, then delay slot instruction. For example, even if the
register in which the branch destination address has been loaded is changed by the
delay slot instruction, the branch will still be made using the value of the register
prior to the change as the branch destination address.

HITACHI 101

6.27 LDC (Load to Control Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract Code State T Bit

LDC Rm,SR

LDC Rm,GBR

LDC Rm,VBR

LDC.L @Rm+,SR

LDC.L @Rm+,GBR

LDC.L @Rm+,VBR

Rm → SR

Rm → GBR

Rm → VBR

(Rm) → SR, Rm + 4 → Rm

(Rm) → GBR, Rm + 4 → Rm

(Rm) → VBR, Rm + 4 → Rm

0100mmmm00001110

0100mmmm00011110

0100mmmm00101110

0100mmmm00000111

0100mmmm00010111

0100mmmm00100111

1

1

1

3

3

3

LSB

—

—

LSB

—

—

Description: Stores the source operand into control registers SR, GBR, or VBR.

Note: No interrupts are accepted between this instruction and the next instruction. Address
errors are accepted.

Operation:

LDCSR(long m) /* LDC Rm,SR */

{

SR=R[m]&0x000003F3;

PC+=2;

}

LDCGBR(long m) /* LDC Rm,GBR */

{

GBR=R[m];

PC+=2;

}

LDCVBR(long m) /* LDC Rm,VBR */

{

VBR=R[m];

PC+=2;

}

102 HITACHI

LDCMSR(long m) /* LDC.L @Rm+,SR */

{

SR=Read_Long(R[m])&0x000003F3;

R[m]+=4;

PC+=2;

}

LDCMGBR(long m) /* LDC.L @Rm+,GBR */

{

GBR=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

LDCMVBR(long m) /* LDC.L @Rm+,VBR */

{

VBR=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

Examples:

LDC R0,SR Before execution R0 = H'FFFFFFFF, SR = H'00000000

After execution SR = H'000003F3

LDC.L @R15+,GBR Before execution R15 = H'10000000

After execution R15 = H'10000004, GBR = @H'10000000

HITACHI 103

6.28 LDS (Load to System Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract Code State T Bit

LDS Rm,MACH

LDS Rm,MACL

LDS Rm,PR

LDS.L
@Rm+,MAC

H

LDS.L
@Rm+,MAC

L

LDS.L @Rm+,PR

Rm → MACH

Rm → MACL

Rm → PR

(Rm) → MACH, Rm + 4 → Rm

(Rm) → MACL, Rm + 4 → Rm

(Rm) → PR, Rm + 4 → Rm

0100mmmm00001010

0100mmmm00011010

0100mmmm00101010

0100mmmm00000110

0100mmmm00010110

0100mmmm00100110

1

1

1

1

1

1

—

—

—

—

—

—

Description: Stores the source operand into the system registers MACH, MACL, or PR.

Note: No interrupts are accepted between this instruction and the next instruction. Address
errors are accepted.

For the SH-1 CPU, the lower 10 bits are stored in MACH. For the SH-2 CPU, 32 bits are
stored in MACH.

Operation:

LDSMACH(long m) /* LDS Rm,MACH */

{

MACH=R[m];

if ((MACH&0x00000200)==0) MACH&=0x000003FF; For SH-1 CPU (these 2 lines

else MACH|=0xFFFFFC00; not needed for SH-2 CPU)

PC+=2;

}

LDSMACL(long m) /* LDS Rm,MACL */

{

MACL=R[m];

PC+=2;

}

104 HITACHI

LDSPR(long m) /* LDS Rm,PR */

{

PR=R[m];

PC+=2;

}

LDSMMACH(long m) /* LDS.L @Rm+,MACH */

{

MACH=Read_Long(R[m]);

if ((MACH&0x00000200)==0) MACH&=0x000003FF; For SH-1 CPU (these 2 lines

else MACH|=0xFFFFFC00; not needed for SH-2 CPU)

R[m]+=4;

PC+=2;

}

LDSMMACL(long m) /* LDS.L @Rm+,MACL */

{

MACL=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

LDSMPR(long m) /* LDS.L @Rm+,PR */

{

PR=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

Examples:

LDS R0,PR Before execution R0 = H'12345678, PR = H'00000000

After execution PR = H'12345678

LDS.L @R15+,MACL Before execution R15 = H'10000000

After execution R15 = H'10000004, MACL = @H'10000000

HITACHI 105

6.29 MAC.L (Multiply and Accumulate Long): Arithmetic Instruction
(SH-2 CPU)

Format Abstract Code State T Bit

MAC.L @Rm+,@Rn+ Signed operation, (Rn) × (Rm)
+ MAC → MAC

0000nnnnmmmm1111 3/(2 to
4)

—

Description: Signed-multiplies 32-bit operands obtained using the contents of general
registers Rm and Rn as addresses. The 64-bit result is added to contents of the MAC register,
and the final result is stored in the MAC register. Every time an operand is read, they
increment Rm and Rn by four.

When the S bit is cleared to 0, the 64-bit result is stored in the coupled MACH and MACL
registers. When bit S is set to 1, addition to the MAC register is a saturation operation at the
48th bit starting from the LSB. For the saturation operation, only the lower 48 bits of the
MACL registers are enabled and the result is limited to a range of H'FFFF800000000000
(minimum) to H'00007FFFFFFFFFFF (maximum).

Operation:

MACL(long m,long n) /* MAC.L @Rm+,@Rn+*/

{

unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;

unsigned long temp0,templ,temp2,temp3;

long tempm,tempn,fnLmL;

tempn=(long)Read_Long(R[n]);

R[n]+=4;

tempm=(long)Read_Long(R[m]);

R[m]+=4;

if ((long)(tempn^tempm)<0) fnLmL=-1;

else fnLmL=0;

if (tempn<0) tempn=0-tempn;

if (tempm<0) tempm=0-tempm;

temp1=(unsigned long)tempn;

temp2=(unsigned long)tempm;

106 HITACHI

RnL=temp1&0x0000FFFF;

RnH=(temp1>>16)&0x0000FFFF;

RmL=temp2&0x0000FFFF;

RmH=(temp2>>16)&0x0000FFFF;

temp0=RmL*RnL;

temp1=RmH*RnL;

temp2=RmL*RnH;

temp3=RmH*RnH;

Res2=0;

Res1=temp1+temp2;

if (Res1<temp1) Res2+=0x00010000;

temp1=(Res1<<16)&0xFFFF0000;

Res0=temp0+temp1;

if (Res0<temp0) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

if(fnLm<0){

Res2=~Res2;

if (Res0==0) Res2++;

else Res0=(~Res0)+1;

}

if(S==1){

Res0=MACL+Res0;

if (MACL>Res0) Res2++;

Res2+=(MACH&0x0000FFFF);

if(((long)Res2<0)&&(Res2<0xFFFF8000)){

Res2=0x00008000;

Res0=0x00000000;

}

if(((long)Res2>0)&&(Res2>0x00007FFF)){

Res2=0x00007FFF;

Res0=0xFFFFFFFF;

};

HITACHI 107

MACH=Res2;

MACL=Res0;

}

else {

Res0=MACL+Res0;

if (MACL>Res0) Res2++;

Res2+=MACH

MACH=Res2;

MACL=Res0;

}

PC+=2;

}

Example:

MOVA TBLM,R0 Table address

MOV R0,R1

MOVA TBLN,R0 Table address

CLRMAC MAC register initialization

MAC.L @R0+,@R1+

MAC.L @R0+,@R1+

STS MACL,R0 Store result into R0

...............

.align 2

TBLM .data.l H'1234ABCD

.data.l H'5678EF01

TBLN .data.l H'0123ABCD

.data.l H'4567DEF0

108 HITACHI

6.30 MAC (Multiply and Accumulate): Arithmetic Instruction (SH-1
CPU)

Format Abstract Code State T Bit

MAC.W
@Rm+,@Rn

+

With signed, (Rn) × (Rm) +
MAC → MAC

0100nnnnmmmm1111 3/(2) —

Description: Multiplies 16-bit operands obtained using the contents of general registers Rm
and Rn as addresses. The 32-bit result is added to contents of the MAC register, and the final
result is stored in the MAC register. Every time an operand is read, they increment Rm and
Rn by two.

When the S bit is cleared to 0, the 42-bit result is stored in the coupled MACH and MACL
registers. Bit 9 data is transferred to the upper 22 bits (bits 31 to 10) of the MACH register.

When the S bit is set to 1, addition to the MAC register is a saturation operation. For the
saturation operation, only the MACL register is enabled and the result is limited to a range of
H'80000000 (minimum) to H'7FFFFFFF (maximum).

If an overflow occurs, the LSB of the MACH register is set to 1. The result is stored in the
MACL register, and the result is limited to a value between H'80000000 (minimum) for
overflows in the negative direction and H'7FFFFFFF (maximum) for overflows in the positive
direction.

Note: The normal number of cycles for execution is 3; however, this instruction can be
executed in two cycles according to the succeeding instruction.

HITACHI 109

6.31 MAC.W (Multiply and Accumulate Word): Arithmetic Instruction

Format Abstract Code State T Bit

MAC.W @Rm+,@Rn+
MAC @Rm+,@Rn+

Signed operation,
(Rn) × (Rm) + MAC → MAC

0100nnnnmmmm1111 3/(2) —

Description: Signed-multiplies 16-bit operands obtained using the contents of general
registers Rm and Rn as addresses. The 32-bit result is added to contents of the MAC register,
and the final result is stored in the MAC register. Every time an operand is read, they
increment Rm and Rn by two.

When the S bit is cleared to 0, the operation is 16 × 16 + 64 → 64-bit multiply and
accumulate and the 64-bit result is stored in the coupled MACH and MACL registers.

When the S bit is set to 1, the operation is 16 × 16 + 32 → 32-bit multiply and accumulate
and addition to the MAC register is a saturation operation. For the saturation operation, only
the MACL register is enabled and the result is limited to a range of H'80000000 (minimum)
to H'7FFFFFFF (maximum).

If an overflow occurs, the LSB of the MACH register is set to 1. The result is stored in the
MACL register, and the result is limited to a value between H'80000000 (minimum) for
overflows in the negative direction and H'7FFFFFFF (maximum) for overflows in the positive
direction.

Note: When the S bit is 0, the SH-2 CPU performs a 16 × 16 + 64 → 64 bit multiply and
accumulate operation and the SH-1 CPU performs a 16 × 16 + 42 → 42 bit multiply and
accumulate operation.

Operation:

MACW(long m,long n) /* MAC.W @Rm+,@Rn+*/

{

long tempm,tempn,dest,src,ans;

unsigned long templ;

tempn=(long)Read_Word(R[n]);

R[n]+=2;

tempm=(long)Read_Word(R[m]);

R[m]+=2;

templ=MACL;

tempm=((long)(short)tempn*(long)(short)tempm);

110 HITACHI

if ((long)MACL>=0) dest=0;

else dest=1;

if ((long)tempm>=0 {

src=0;

tempn=0;

}

else {

src=1;

tempn=0xFFFFFFFF;

}

src+=dest;

MACL+=tempm;

if ((long)MACL>=0) ans=0;

else ans=1;

ans+=dest;

if (S==1) {

if (ans==1) {

if (src==0 || src==2) For SH-1 CPU (these 2
lines

 MACH|=0x00000001; not needed for SH-2 CPU)

if (src==0) MACL=0x7FFFFFFF;

if (src==2) MACL=0x80000000;

}

}

else {

MACH+=tempn;

if (templ>MACL) MACH+=1;

if ((MACH&0x00000200)==0) For SH-1 CPU (these 3
lines

 MACH&=0x000003FF; not needed for SH-2 CPU)

else MACH|=0xFFFFFC00;

}

PC+=2;

}

HITACHI 111

Example:

MOVA TBLM,R0 Table address

MOV R0,R1

MOVA TBLN,R0 Table address

CLRMAC MAC register initialization

MAC.W @R0+,@R1+

MAC.W @R0+,@R1+

STS MACL,R0 Store result into R0

...............

.align 2

TBLM .data.w H'1234

.data.w H'5678

TBLN .data.w H'0123

.data.w H'4567

112 HITACHI

6.32 MOV (Move Data): Data Transfer Instruction

Format Abstract Code State T Bit

MOV Rm,Rn

MOV.B Rm,@Rn

MOV.W Rm,@Rn

MOV.L Rm,@Rn

MOV.B @Rm,Rn

MOV.W @Rm,Rn

MOV.L @Rm,Rn

MOV.B Rm,@–Rn

MOV.W Rm,@–Rn

MOV.L Rm,@–Rn

MOV.B @Rm+,Rn

MOV.W @Rm+,Rn

MOV.L @Rm+,Rn

MOV.B Rm,@(R0,Rn)

MOV.W Rm,@(R0,Rn)

MOV.L Rm,@(R0,Rn)

MOV.B @(R0,Rm),Rn

MOV.W @(R0,Rm),Rn

MOV.L @(R0,Rm),Rn

Rm → Rn

Rm → (Rn)

Rm → (Rn)

Rm → (Rn)

(Rm) → sign extension → Rn

(Rm) → sign extension → Rn

(Rm) → Rn

Rn – 1 → Rn, Rm → (Rn)

Rn – 2 → Rn, Rm → (Rn)

Rn – 4 → Rn, Rm → (Rn)

(Rm) → sign extension → Rn,
Rm + 1 → Rm

(Rm) → sign extension → Rn,
Rm + 2 → Rm

(Rm) → Rn, Rm + 4 → Rm

Rm → (R0 + Rn)

Rm → (R0 + Rn)

Rm → (R0 + Rn)

(R0 + Rm) → sign extension
→ Rn

(R0 + Rm) → sign extension
→ Rn

(R0 + Rm) → Rn

0110nnnnmmmm0011

0010nnnnmmmm0000

0010nnnnmmmm0001

0010nnnnmmmm0010

0110nnnnmmmm0000

0110nnnnmmmm0001

0110nnnnmmmm0010

0010nnnnmmmm0100

0010nnnnmmmm0101

0010nnnnmmmm0110

0110nnnnmmmm0100

0110nnnnmmmm0101

0110nnnnmmmm0110

0000nnnnmmmm0100

0000nnnnmmmm0101

0000nnnnmmmm0110

0000nnnnmmmm1100

0000nnnnmmmm1101

0000nnnnmmmm1110

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

Description: Transfers the source operand to the destination. When the operand is stored in
memory, the transferred data can be a byte, word, or longword. When the source operand is in
memory, loaded data from memory is stored in a register after it is sign-extended to a
longword.

Operation:

MOV(long m,long n) /* MOV Rm,Rn */

{

R[n]=R[m];

PC+=2;

}

HITACHI 113

MOVBS(long m,long n) /* MOV.B Rm,@Rn */

{

Write_Byte(R[n],R[m]);

PC+=2;

}

MOVWS(long m,long n) /* MOV.W Rm,@Rn */

{

Write_Word(R[n],R[m]);

PC+=2;

}

MOVLS(long m,long n) /* MOV.L Rm,@Rn */

{

Write_Long(R[n],R[m]);

PC+=2;

}

MOVBL(long m,long n) /* MOV.B @Rm,Rn */

{

R[n]=(long)Read_Byte(R[m]);

if ((R[n]&0x80)==0) R[n]&0x000000FF;

else R[n]|=0xFFFFFF00;

PC+=2;

}

MOVWL(long m,long n) /* MOV.W @Rm,Rn */

{

R[n]=(long)Read_Word(R[m]);

if ((R[n]&0x8000)==0) R[n]&0x0000FFFF;

else R[n]|=0xFFFF0000;

PC+=2;

}

MOVLL(long m,long n) /* MOV.L @Rm,Rn */

{

R[n]=Read_Long(R[m]);

PC+=2;

}

114 HITACHI

MOVBM(long m,long n) /* MOV.B Rm,@–Rn */

{

Write_Byte(R[n]–1,R[m]);

R[n]–=1;

PC+=2;

}

MOVWM(long m,long n) /* MOV.W Rm,@–Rn */

{

Write_Word(R[n]–2,R[m]);

R[n]–=2;

PC+=2;

}

MOVLM(long m,long n) /* MOV.L Rm,@–Rn */

{

Write_Long(R[n]–4,R[m]);

R[n]–=4;

PC+=2;

}

MOVBP(long m,long n)/* MOV.B @Rm+,Rn */

{

R[n]=(long)Read_Byte(R[m]);

if ((R[n]&0x80)==0) R[n]&0x000000FF;

else R[n]|=0xFFFFFF00;

if (n!=m) R[m]+=1;

PC+=2;

}

MOVWP(long m,long n) /* MOV.W @Rm+,Rn */

{

R[n]=(long)Read_Word(R[m]);

if ((R[n]&0x8000)==0) R[n]&0x0000FFFF;

else R[n]|=0xFFFF0000;

if (n!=m) R[m]+=2;

PC+=2;

}

HITACHI 115

MOVLP(long m,long n) /* MOV.L @Rm+,Rn */

{

R[n]=Read_Long(R[m]);

if (n!=m) R[m]+=4;

PC+=2;

}

MOVBS0(long m,long n) /* MOV.B Rm,@(R0,Rn) */

{

Write_Byte(R[n]+R[0],R[m]);

PC+=2;

}

MOVWS0(long m,long n) /* MOV.W Rm,@(R0,Rn) */

{

Write_Word(R[n]+R[0],R[m]);

PC+=2;

}

MOVLS0(long m,long n) /* MOV.L Rm,@(R0,Rn) */

{

Write_Long(R[n]+R[0],R[m]);

PC+=2;

}

MOVBL0(long m,long n) /* MOV.B @(R0,Rm),Rn */

{

R[n]=(long)Read_Byte(R[m]+R[0]);

if ((R[n]&0x80)==0) R[n]&0x000000FF;

else R[n]|=0xFFFFFF00;

PC+=2;

}

MOVWL0(long m,long n) /* MOV.W @(R0,Rm),Rn */

{

R[n]=(long)Read_Word(R[m]+R[0]);

if ((R[n]&0x8000)==0) R[n]&0x0000FFFF;

else R[n]|=0xFFFF0000;

PC+=2;

}

116 HITACHI

MOVLL0(long m,long n) /* MOV.L @(R0,Rm),Rn */

{

R[n]=Read_Long(R[m]+R[0]);

PC+=2;

}

Example:

MOV R0,R1 Before execution R0 = H'FFFFFFFF, R1 = H'00000000

After execution R1 = H'FFFFFFFF

MOV.W R0,@R1 Before execution R0 = H'FFFF7F80

After execution @R1 = H'7F80

MOV.B @R0,R1 Before execution @R0 = H'80, R1 = H'00000000

After execution R1 = H'FFFFFF80

MOV.W R0,@–R1 Before execution R0 = H'AAAAAAAA, R1 = H'FFFF7F80

After execution R1 = H'FFFF7F7E, @R1 = H'AAAA

MOV.L @R0+,R1 Before execution R0 = H'12345670

After execution R0 = H'12345674, R1 = @H'12345670

MOV.B R1,@(R0,R2) Before execution R2 = H'00000004, R0 = H'10000000

After execution R1 = @H'10000004

MOV.W @(R0,R2),R1 Before execution R2 = H'00000004, R0 = H'10000000

After execution R1 = @H'10000004

HITACHI 117

6.33 MOV (Move Immediate Data): Data Transfer Instruction

Format Abstract Code State T Bit

MOV #imm,Rn

MOV.W @(disp,PC),Rn

MOV.L @(disp,PC),Rn

imm → sign extension →
Rn

(disp × 2 + PC) → sign
extension → Rn

(disp × 4 + PC) → Rn

1110nnnniiiiiiii

1001nnnndddddddd

1101nnnndddddddd

1

1

1

—

—

—

Description: Stores immediate data, which has been sign-extended to a longword, into
general register Rn.

If the data is a word or longword, table data stored in the address specified by PC +
displacement is accessed. If the data is a word, the 8-bit displacement is zero-extended and
doubled. Consequently, the relative interval from the table is up to PC + 510 bytes. The PC
points to the starting address of the second instruction after this MOV instruction. If the data
is a longword, the 8-bit displacement is zero-extended and quadrupled. Consequently, the
relative interval from the table is up to PC + 1020 bytes. The PC points to the starting address
of the second instruction after this MOV instruction, but the lowest two bits of the PC are
corrected to B’00.

Note: The end address of the program area (module) or the second address after an
unconditional branch instruction are suitable for the start address of the table. If suitable table
assignment is impossible (for example, if there are no unconditional branch instructions
within the area specified by PC + 510 bytes or PC + 1020 bytes), the BRA instruction must
be used to jump past the table. When this MOV instruction is placed immediately after a
delayed branch instruction, the PC points to an address specified by (the starting address of
the branch destination) + 2.

Operation:

MOVI(long i,long n) /* MOV #imm,Rn */

{

if ((i&0x80)==0) R[n]=(0x000000FF & (long)i);

else R[n]=(0xFFFFFF00 | (long)i);

PC+=2;

}

MOVWI(long d,long n) /* MOV.W @(disp,PC),Rn */

{

long disp;

118 HITACHI

disp=(0x000000FF & (long)d);

R[n]=(long)Read_Word(PC+(disp<<1));

if ((R[n]&0x8000)==0) R[n]&=0x0000FFFF;

else R[n]|=0xFFFF0000;

PC+=2;

}

MOVLI(long d,long n) /* MOV.L @(disp,PC),Rn */

{

long disp;

disp=(0x000000FF & (long)d);

R[n]=Read_Long((PC&0xFFFFFFFC)+(disp<<2));

PC+=2;

}

Example:

Address

1000 MOV #H'80,R1 R1 = H'FFFFFF80

1002 MOV.W IMM,R2 R2 = H'FFFF9ABC, IMM means @(H'08,PC)

1004 ADD #–1,R0

1006 TST R0,R0 ← PC location used for address calculation for
the MOV.W instruction

1008 MOVT R13

100A BRA NEXT Delayed branch instruction

100C MOV.L @(4,PC),R3 R3 = H'12345678

100E IMM .data.w H'9ABC

1010 .data.w H'1234

1012 NEXT JMP @R3 Branch destination of the BRA instruction

1014 CMP/EQ #0,R0 ← PC location used for address calculation for
the MOV.L instruction

.align 4

1018 .data.l H'12345678

HITACHI 119

6.34 MOV (Move Peripheral Data): Data Transfer Instruction

Format Abstract Code State T Bit

MOV.B @(disp,GBR),R0

MOV.W @(disp,GBR),R0

MOV.L @(disp,GBR),R0

MOV.B R0,@(disp,GBR)

MOV.W R0,@(disp,GBR)

MOV.L R0,@(disp,GBR)

(disp + GBR) → sign
extension → R0

(disp × 2 + GBR) →
sign extension → R0

(disp × 4+ GBR) → R0

R0 → (disp + GBR)

R0 → (disp × 2 +
GBR)

R0 → (disp × 4 +
GBR)

11000100dddddddd

11000101dddddddd

11000110dddddddd

11000000dddddddd

11000001dddddddd

11000010dddddddd

1

1

1

1

1

1

—

—

—

—

—

—

Description: Transfers the source operand to the destination. This instruction is suitable for
accessing data in the peripheral module area. The data can be a byte, word, or longword, but
the register is fixed to R0.

A peripheral module base address is set to the GBR. When the peripheral module data is a
byte, the 8-bit displacement is zero-extended. Consequently, an address within +255 bytes
can be specified. When the peripheral module data is a word, the 8-bit displacement is zero-
extended and doubled. Consequently, an address within +510 bytes can be specified. When
the peripheral module data is a longword, the 8-bit displacement is zero-extended and is
quadrupled. Consequently, an address within +1020 bytes can be specified. If the
displacement is too short to reach the memory operand, the above @(R0,Rn) mode must be
used after the GBR data is transferred to a general register. When the source operand is in
memory, the loaded data is stored in the register after it is sign-extended to a longword.

Note: The destination register of a data load is always R0. R0 cannot be accessed by the next
instruction until the load instruction is finished. Changing the instruction order shown in figure
6.1 will give better results.

MOV.B

AND

ADD

@(12, GBR), R0

#80, R0

#20, R1

MOV.B

ADD

AND

@(12, GBR), R0

#20, R1

#80, R0

Figure 6.1 Using R0 after MOV

120 HITACHI

Operation:

MOVBLG(long d) /* MOV.B @(disp,GBR),R0 */

{

long disp;

disp=(0x000000FF & (long)d);

R[0]=(long)Read_Byte(GBR+disp);

if ((R[0]&0x80)==0) R[0]&=0x000000FF;

else R[0]|=0xFFFFFF00;

PC+=2;

}

MOVWLG(long d) /* MOV.W @(disp,GBR),R0 */

{

long disp;

disp=(0x000000FF & (long)d);

R[0]=(long)Read_Word(GBR+(disp<<1));

if ((R[0]&0x8000)==0) R[0]&=0x0000FFFF;

else R[0]|=0xFFFF0000;

PC+=2;

}

MOVLLG(long d) /* MOV.L @(disp,GBR),R0 */

{

long disp;

disp=(0x000000FF & (long)d);

R[0]=Read_Long(GBR+(disp<<2));

PC+=2;

}

MOVBSG(long d) /* MOV.B R0,@(disp,GBR) */

{

long disp;

HITACHI 121

disp=(0x000000FF & (long)d);

Write_Byte(GBR+disp,R[0]);

PC+=2;

}

MOVWSG(long d) /* MOV.W R0,@(disp,GBR) */

{

long disp;

disp=(0x000000FF & (long)d);

Write_Word(GBR+(disp<<1),R[0]);

PC+=2;

}

MOVLSG(long d) /* MOV.L R0,@(disp,GBR) */

{

long disp;

disp=(0x000000FF & (long)d);

Write_Long(GBR+(disp<<2),R[0]);

PC+=2;

}

Examples:

MOV.L @(2,GBR),R0 Before execution @(GBR + 8) = H'12345670

After execution R0 = @H'12345670

MOV.B R0,@(1,GBR) Before execution R0 = H'FFFF7F80

After execution @(GBR + 1) = H'FFFF7F80

122 HITACHI

6.35 MOV (Move Structure Data): Data Transfer Instruction

Format Abstract Code State T Bit

MOV.B R0,@(disp,Rn)

MOV.W R0,@(disp,Rn)

MOV.L Rm,@(disp,Rn)

MOV.B @(disp,Rm),R0

MOV.W @(disp,Rm),R0

MOV.L @(disp,Rm),Rn

R0 → (disp + Rn)

R0 → (disp × 2 + Rn)

Rm → (disp × 4 + Rn)

(disp + Rm) → sign
extension → R0

(disp × 2 + Rm) → sign
extension → R0

(disp × 4 + Rm) → Rn

10000000nnnndddd

10000001nnnndddd

0001nnnnmmmmdddd

10000100mmmmdddd

10000101mmmmdddd

0101nnnnmmmmdddd

1

1

1

1

1

1

—

—

—

—

—

—

Description: Transfers the source operand to the destination. This instruction is suitable for
accessing data in a structure or a stack. The data can be a byte, word, or longword, but when
a byte or word is selected, only the R0 register is fixed. When the data is a byte, the 4-bit
displacement is zero-extend. Consequently, an address within +15 bytes can be specified.
When the data is a word, the 4-bit displacement is zero-extended and doubled. Consequently,
an address within +30 bytes can be specified. When the data is a longword, the 4-bit
displacement is zero-extended and quadrupled. Consequently, an address within +60 bytes
can be specified. If the displacement is too short to reach the memory operand, the
aforementioned @(R0,Rn) mode must be used. When the source operand is in memory, the
loaded data is stored in the register after it is sign-extended to a longword.

Note: When byte or word data is loaded, the destination register is always R0. R0 cannot be
accessed by the next instruction until the load instruction is finished. Changing the instruction
order in figure 6.2 will give better results.

MOV.B

AND

ADD

@(2, R1), R0

#80, R0

#20, R1

MOV.B

ADD

AND

@(2, R1), R0

#20, R1

#80, R0

Figure 6.2 Using R0 after MOV

HITACHI 123

Operation:

MOVBS4(long d,long n) /* MOV.B R0,@(disp,Rn) */

{

long disp;

disp=(0x0000000F & (long)d);

Write_Byte(R[n]+disp,R[0]);

PC+=2;

}

MOVWS4(long d,long n) /* MOV.W R0,@(disp,Rn) */

{

long disp;

disp=(0x0000000F & (long)d);

Write_Word(R[n]+(disp<<1),R[0]);

PC+=2;

}

MOVLS4(long m,long d,long n)

/* MOV.L Rm,@(disp,Rn) */

{

long disp;

disp=(0x0000000F & (long)d);

Write_Long(R[n]+(disp<<2),R[m]);

PC+=2;

}

MOVBL4(long m,long d) /* MOV.B @(disp,Rm),R0 */

{

long disp;

disp=(0x0000000F & (long)d);

R[0]=Read_Byte(R[m]+disp);

if ((R[0]&0x80)==0) R[0]&=0x000000FF;

else R[0]|=0xFFFFFF00;

PC+=2;

}

124 HITACHI

MOVWL4(long m,long d) /* MOV.W @(disp,Rm),R0 */

{

long disp;

disp=(0x0000000F & (long)d);

R[0]=Read_Word(R[m]+(disp<<1));

if ((R[0]&0x8000)==0) R[0]&=0x0000FFFF;

else R[0]|=0xFFFF0000;

PC+=2;

}

MOVLL4(long m,long d,long n)

/* MOV.L @(disp,Rm),Rn */

{

long disp;

disp=(0x0000000F & (long)d);

R[n]=Read_Long(R[m]+(disp<<2));

PC+=2;

}

Examples:

MOV.L @(2,R0),R1 Before execution @(R0 + 8) = H'12345670

After execution R1 = @H'12345670

MOV.L R0,@(H'F,R1) Before execution R0 = H'FFFF7F80

After execution @(R1 + 60) = H'FFFF7F80

HITACHI 125

6.36 MOVA (Move Effective Address): Data Transfer Instruction

Format Abstract Code State T Bit

MOVA @(disp,PC),R0 disp × 4 + PC → R0 11000111dddddddd 1 —

Description: Stores the effective address of the source operand into general register R0. The
8-bit displacement is zero-extended and quadrupled. Consequently, the relative interval from
the operand is PC + 1020 bytes. The PC points to the starting address of the second
instruction after this MOVA instruction, but the lowest two bits of the PC are corrected to
B’00.

Note: If this instruction is placed immediately after a delayed branch instruction, the PC must
point to an address specified by (the starting address of the branch destination) + 2.

Operation:

MOVA(long d) /* MOVA @(disp,PC),R0 */

{

long disp;

disp=(0x000000FF & (long)d);

R[0]=(PC&0xFFFFFFFC)+(disp<<2);

PC+=2;

}

Example:

Address .org H'1006

1006 MOVA STR,R0 Address of STR → R0

1008 MOV.B @R0,R1 R1 = “X” ← PC location after correcting
the lowest two bits

100A ADD R4,R5 ← Original PC location for address calculation for
the MOVA instruction

.align 4

100C STR: .sdata “XYZP12”

...............

2002 BRA TRGET Delayed branch instruction

2004 MOVA @(0,PC),R0 Address of TRGET + 2 → R0

2006 NOP

126 HITACHI

6.37 MOVT (Move T Bit): Data Transfer Instruction

Format Abstract Code State T Bit

MOVT Rn T → Rn 0000nnnn00101001 1 —

Description: Stores the T bit value into general register Rn. When T = 1, 1 is stored in Rn,
and when T = 0, 0 is stored in Rn.

Operation:

MOVT(long n) /* MOVT Rn */

{

R[n]=(0x00000001 & SR);

PC+=2;

}

Example:

XOR R2,R2 R2 = 0

CMP/PZ R2 T = 1

MOVT R0 R0 = 1

CLRT T = 0

MOVT R1 R1 = 0

HITACHI 127

6.38 MUL.L (Multiply Long): Arithmetic Instruction (SH-2 CPU)

Format Abstract Code State T Bit

MUL.L Rm,Rn Rn × Rm → MACL 0000nnnnmmmm0111 2 to 4 —

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm,
and stores the lower 32 bits of the result in the MACL register. The MACH register data does
not change.

Operation:

MULL(long m,long n) /* MUL.L Rm,Rn */

{

MACL=R[n]*R[m];

PC+=2;

}

Example:

MUL.L R0,R1 Before execution R0 = H'FFFFFFFE, R1 = H'00005555

After execution MACL = H'FFFF5556

STS MACL,R0 Operation result

128 HITACHI

6.39 MULS.W (Multiply as Signed Word): Arithmetic Instruction

Format Abstract Code State T Bit

MULS.W Rm,Rn
MULS Rm,Rn

Signed operation, Rn × Rm →
MACL

0010nnnnmmmm1111 1 to 3 —

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm,
and stores the 32-bit result in the MACL register. The operation is signed and the MACH
register data does not change.

Operation:

MULS(long m,long n) /* MULS Rm,Rn */

{

MACL=((long)(short)R[n]*(long)(short)R[m]);

PC+=2;

}

Example:

MULS R0,R1 Before execution R0 = H'FFFFFFFE, R1 = H'00005555

After execution MACL = H'FFFF5556

STS MACL,R0 Operation result

HITACHI 129

6.40 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction

Format Abstract Code State T Bit

MULU.W Rm,Rn
MULU Rm,Rn

Unsigned, Rn × Rm → MAC 0010nnnnmmmm1110 1 to 3 —

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm,
and stores the 32-bit result in the MACL register. The operation is unsigned and the MACH
register data does not change.

Operation:

MULU(long m,long n) /* MULU Rm,Rn */

{

MACL=((unsigned long)(unsigned short)R[n]

*(unsigned long)(unsigned short)R[m]);

PC+=2;

}

Example:

MULU R0,R1 Before execution R0 = H'00000002, R1 = H'FFFFAAAA

After execution MACL = H'00015554

STS MACL,R0 Operation result

130 HITACHI

6.41 NEG (Negate): Arithmetic Instruction

Format Abstract Code State T Bit

NEG Rm,Rn 0 – Rm → Rn 0110nnnnmmmm1011 1 —

Description: Takes the two’s complement of data in general register Rm, and stores the
result in Rn. This effectively subtracts Rm data from 0, and stores the result in Rn.

Operation:

NEG(long m,long n) /* NEG Rm,Rn */

{

R[n]=0-R[m];

PC+=2;

}

Example:

NEG R0,R1 Before execution R0 = H'00000001

After execution R1 = H'FFFFFFFF

HITACHI 131

6.42 NEGC (Negate with Carry): Arithmetic Instruction

Format Abstract Code State T Bit

NEGC Rm,Rn 0 – Rm – T → Rn, Borrow → T 0110nnnnmmmm1010 1 Borrow

Description: Subtracts general register Rm data and the T bit from 0, and stores the result in
Rn. If a borrow is generated, T bit changes accordingly. This instruction is used for inverting
the sign of a value that has more than 32 bits.

Operation:

NEGC(long m,long n) /* NEGC Rm,Rn */

{

unsigned long temp;

temp=0-R[m];

R[n]=temp-T;

if (0<temp) T=1;

else T=0;

if (temp<R[n]) T=1;

PC+=2;

}

Examples:

CLRT Sign inversion of R1 and R0 (64 bits)

NEGC R1,R1 Before execution R1 = H'00000001, T = 0

After execution R1 = H'FFFFFFFF, T = 1

NEGC R0,R0 Before execution R0 = H'00000000, T = 1

After execution R0 = H'FFFFFFFF, T = 1

132 HITACHI

6.43 NOP (No Operation): System Control Instruction

Format Abstract Code State T Bit

NOP No operation 0000000000001001 1 —

Description: Increments the PC to execute the next instruction.

Operation:

NOP() /* NOP */

{

PC+=2;

}

Example:

NOP Executes in one cycle

HITACHI 133

6.44 NOT (NOT—Logical Complement): Logic Operation Instruction

Format Abstract Code State T Bit

NOT Rm,Rn ~Rm → Rn 0110nnnnmmmm0111 1 —

Description: Takes the one’s complement of general register Rm data, and stores the result
in Rn. This effectively inverts each bit of Rm data and stores the result in Rn.

Operation:

NOT(long m,long n) /* NOT Rm,Rn */

{

R[n]=~R[m];

PC+=2;

}

Example:

NOT R0,R1 Before execution R0 = H'AAAAAAAA

After execution R1 = H'55555555

134 HITACHI

6.45 OR (OR Logical) Logic Operation Instruction

Format Abstract Code State T Bit

OR Rm,Rn

OR #imm,R0

OR.B
#imm,@(R0,GB

R)

Rn | Rm → Rn

R0 | imm → R0

(R0 + GBR) | imm → (R0 +
GBR)

0010nnnnmmmm1011

11001011iiiiiiii

11001111iiiiiiii

1

1

3

—

—

—

Description: Logically ORs the contents of general registers Rn and Rm, and stores the
result in Rn. The contents of general register R0 can also be ORed with zero-extended 8-bit
immediate data, or 8-bit memory data accessed by using indirect indexed GBR addressing
can be ORed with 8-bit immediate data.

Operation:

OR(long m,long n) /* OR Rm,Rn */

{

R[n]|=R[m];

PC+=2;

}

ORI(long i) /* OR #imm,R0 */

{

R[0]|=(0x000000FF & (long)i);

PC+=2;

}

ORM(long i) /* OR.B #imm,@(R0,GBR) */

{

long temp;

temp=(long)Read_Byte(GBR+R[0]);

temp|=(0x000000FF & (long)i);

Write_Byte(GBR+R[0],temp);

PC+=2;

}

HITACHI 135

Examples:

OR R0,R1 Before execution R0 = H'AAAA5555, R1 = H'55550000

After execution R1 = H'FFFF5555

OR #H'F0,R0 Before execution R0 = H'00000008

After execution R0 = H'000000F8

OR.B #H'50,@(R0,GBR) Before execution @(R0,GBR) = H'A5

After execution @(R0,GBR) = H'F5

136 HITACHI

6.46 ROTCL (Rotate with Carry Left): Shift Instruction

Format Abstract Code State T Bit

ROTCL Rn T ← Rn ← T 0100nnnn00100100 1 MSB

Description: Rotates the contents of general register Rn and the T bit to the left by one bit,
and stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.3).

LSBMSB

T
ROTCL

Figure 6.3 Rotate with Carry Left

Operation:

ROTCL(long n) /* ROTCL Rn */

{

long temp;

if ((R[n]&0x80000000)==0) temp=0;

else temp=1;

R[n]<<=1;

if (T==1) R[n]|=0x00000001;

else R[n]&=0xFFFFFFFE;

if (temp==1) T=1;

else T=0;

PC+=2;

}

Example:

ROTCL R0 Before execution R0 = H'80000000, T = 0

After execution R0 = H'00000000, T = 1

HITACHI 137

6.47 ROTCR (Rotate with Carry Right): Shift Instruction

Format Abstract Code State T Bit

ROTCR Rn T → Rn → T 0100nnnn00100101 1 LSB

Description: Rotates the contents of general register Rn and the T bit to the right by one bit,
and stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.4).

LSBMSB

T
ROTCR

Figure 6.4 Rotate with Carry Right

Operation:

ROTCR(long n) /* ROTCR Rn */

{

long temp;

if ((R[n]&0x00000001)==0) temp=0;

else temp=1;

R[n]>>=1;

if (T==1) R[n]|=0x80000000;

else R[n]&=0x7FFFFFFF;

if (temp==1) T=1;

else T=0;

PC+=2;

}

Examples:

ROTCR R0 Before execution R0 = H'00000001, T = 1

After execution R0 = H'80000000, T = 1

138 HITACHI

6.48 ROTL (Rotate Left): Shift Instruction

Format Abstract Code State T Bit

ROTL Rn T ← Rn ← MSB 0100nnnn00000100 1 MSB

Description: Rotates the contents of general register Rn to the left by one bit, and stores the
result in Rn (figure 6.5). The bit that is shifted out of the operand is transferred to the T bit.

LSBMSB

TROTL

Figure 6.5 Rotate Left

Operation:

ROTL(long n) /* ROTL Rn */

{

if ((R[n]&0x80000000)==0) T=0;

else T=1;

R[n]<<=1;

if (T==1) R[n]|=0x00000001;

else R[n]&=0xFFFFFFFE;

PC+=2;

}

Examples:

ROTL R0 Before execution R0 = H'80000000, T = 0

After execution R0 = H'00000001, T = 1

HITACHI 139

6.49 ROTR (Rotate Right): Shift Instruction

Format Abstract Code State T Bit

ROTR Rn LSB → Rn → T 0100nnnn00000101 1 LSB

Description: Rotates the contents of general register Rn to the right by one bit, and stores the
result in Rn (figure 6.6). The bit that is shifted out of the operand is transferred to the T bit.

LSBMSB

T
ROTR

Figure 6.6 Rotate Right

Operation:

ROTR(long n) /* ROTR Rn */

{

if ((R[n]&0x00000001)==0) T=0;

else T=1;

R[n]>>=1;

if (T==1) R[n]|=0x80000000;

else R[n]&=0x7FFFFFFF;

PC+=2;

}

Examples:

ROTR R0 Before execution R0 = H'00000001, T = 0

After execution R0 = H'80000000, T = 1

140 HITACHI

6.50 RTE (Return from Exception): System Control Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

RTE Stack area → PC/SR 0000000000101011 4 LSB

Description: Returns from an interrupt routine. The PC and SR values are restored from the
stack, and the program continues from the address specified by the restored PC value.

Note: Since this is a delayed branch instruction, the instruction after this RTE is executed
before branching. No address errors and interrupts are accepted between this instruction and
the next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

RTE() /* RTE */

{

unsigned long temp;

temp=PC;

PC=Read_Long(R[15])+4;

R[15]+=4;

SR=Read_Long(R[15])&0x000003F3;

R[15]+=4;

Delay_Slot(temp+2);

}

Example:

RTE Returns to the original routine

ADD #8,R14 Executes ADD before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of
delayed branch instruction, then delay slot instruction. For example, even if the
register in which the branch destination address has been loaded is changed by the
delay slot instruction, the branch will still be made using the value of the register
prior to the change as the branch destination address.

HITACHI 141

6.51 RTS (Return from Subroutine): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

RTS PR → PC 0000000000001011 2 —

Description: Returns from a subroutine procedure. The PC values are restored from the PR,
and the program continues from the address specified by the restored PC value. This
instruction is used to return to the program from a subroutine program called by a BSR or JSR
instruction.

Note: Since this is a delayed branch instruction, the instruction after this RTS is executed
before branching. No address errors and interrupts are accepted between this instruction and
the next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

RTS() /* RTS */

{

unsigned long temp;

temp=PC;

PC=PR+4;

Delay_Slot(temp+2);

}

Example:

MOV.L TABLE,R3 R3 = Address of TRGET
JSR @R3 Branches to TRGET
NOP Executes NOP before JSR
ADD R0,R1 ← Return address for when the subroutine procedure is

completed (PR data)

TABLE: .data.l TRGET Jump table

TRGET: MOV R1,R0 ← Procedure entrance

RTS PR data → PC

MOV #12,R0 Executes MOV before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of
delayed branch instruction, then delay slot instruction. For example, even if the
register in which the branch destination address has been loaded is changed by the

142 HITACHI

delay slot instruction, the branch will still be made using the value of the register
prior to the change as the branch destination address.

HITACHI 143

6.52 SETT (Set T Bit): System Control Instruction

Format Abstract Code State T Bit

SETT 1 → T 0000000000011000 1 1

Description: Sets the T bit to 1.

Operation:

SETT() /* SETT */

{

T=1;

PC+=2;

}

Example:

SETT Before execution T = 0

After execution T = 1

144 HITACHI

6.53 SHAL (Shift Arithmetic Left): Shift Instruction

Format Abstract Code State T Bit

SHAL Rn T ← Rn ← 0 0100nnnn00100000 1 MSB

Description: Arithmetically shifts the contents of general register Rn to the left by one bit,
and stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.7).

LSBMSB

T 0SHAL

Figure 6.7 Shift Arithmetic Left

Operation:

SHAL(long n) /* SHAL Rn(Same as SHLL) */

{

if ((R[n]&0x80000000)==0) T=0;

else T=1;

R[n]<<=1;

PC+=2;

}

Example:

SHAL R0 Before execution R0 = H'80000001, T = 0

After execution R0 = H'00000002, T = 1

HITACHI 145

6.54 SHAR (Shift Arithmetic Right): Shift Instruction

Format Abstract Code State T Bit

SHAR Rn MSB → Rn → T 0100nnnn00100001 1 LSB

Description: Arithmetically shifts the contents of general register Rn to the right by one bit,
and stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.8).

LSBMSB

T
SHAR

Figure 6.8 Shift Arithmetic Right

Operation:

SHAR(long n) /* SHAR Rn */

{

long temp;

if ((R[n]&0x00000001)==0) T=0;

else T=1;

if ((R[n]&0x80000000)==0) temp=0;

else temp=1;

R[n]>>=1;

if (temp==1) R[n]|=0x80000000;

else R[n]&=0x7FFFFFFF;

PC+=2;

}

Example:

SHAR R0 Before execution R0 = H'80000001, T = 0

After execution R0 = H'C0000000, T = 1

146 HITACHI

6.55 SHLL (Shift Logical Left): Shift Instruction

Format Abstract Code State T Bit

SHLL Rn T ← Rn ← 0 0100nnnn00000000 1 MSB

Description: Logically shifts the contents of general register Rn to the left by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.9).

LSBMSB

T 0SHLL

Figure 6.9 Shift Logical Left

Operation:

SHLL(long n) /* SHLL Rn(Same as SHAL) */

{

if ((R[n]&0x80000000)==0) T=0;

else T=1;

R[n]<<=1;

PC+=2;

}

Examples:

SHLL R0 Before execution R0 = H'80000001, T = 0

After execution R0 = H'00000002, T = 1

HITACHI 147

6.56 SHLLn (Shift Logical Left n Bits): Shift Instruction

Format Abstract Code State T Bit

SHLL2 Rn

SHLL8 Rn

SHLL16 Rn

Rn << 2 → Rn

Rn << 8 → Rn

Rn << 16 → Rn

0100nnnn00001000

0100nnnn00011000

0100nnnn00101000

1

1

1

—

—

—

Description: Logically shifts the contents of general register Rn to the left by 2, 8, or 16 bits,
and stores the result in Rn. Bits that are shifted out of the operand are not stored (figure 6.10).

0

0

0

MSB LSB

MSB LSB

MSB LSB

SHLL2

SHLL8

SHLL16

Figure 6.10 Shift Logical Left n Bits

Operation:

SHLL2(long n) /* SHLL2 Rn */

{

R[n]<<=2;

PC+=2;

}

148 HITACHI

SHLL8(long n) /* SHLL8 Rn */

{

R[n]<<=8;

PC+=2;

}

SHLL16(long n) /* SHLL16 Rn */

{

R[n]<<=16;

PC+=2;

}

Examples:

SHLL2 R 0 Before execution R0 = H'12345678

After execution R0 = H'48D159E0

SHLL8 R 0 Before execution R0 = H'12345678

After execution R0 = H'34567800

SHLL16 R0 Before execution R0 = H'12345678

After execution R0 = H'56780000

HITACHI 149

6.57 SHLR (Shift Logical Right): Shift Instruction

Format Abstract Code State T Bit

SHLR Rn 0 → Rn → T 0100nnnn00000001 1 LSB

Description: Logically shifts the contents of general register Rn to the right by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.11).

LSBMSB

T0SHLR

Figure 6.11 Shift Logical Right

Operation:

SHLR(long n) /* SHLR Rn */

{

if ((R[n]&0x00000001)==0) T=0;

else T=1;

R[n]>>=1;

R[n]&=0x7FFFFFFF;

PC+=2;

}

Examples

SHLR R0 Before execution R0 = H'80000001, T = 0

After execution R0 = H'40000000, T = 1

150 HITACHI

6.58 SHLRn (Shift Logical Right n Bits): Shift Instruction

Format Abstract Code State T Bit

SHLR2 Rn

SHLR8 Rn

SHLR16 Rn

Rn>>2 → Rn

Rn>>8 → Rn

Rn>>16 → Rn

0100nnnn00001001

0100nnnn00011001

0100nnnn00101001

1

1

1

—

—

—

Description: Logically shifts the contents of general register Rn to the right by 2, 8, or 16
bits, and stores the result in Rn. Bits that are shifted out of the operand are not stored
(figure 6.12).

0

0

0

MSB LSB

MSB LSB

MSB LSB

SHLR2

SHLR8

SHLR16

Figure 6.12 Shift Logical Right n Bits

Operation:

SHLR2(long n) /* SHLR2 Rn */

{

R[n]>>=2;

R[n]&=0x3FFFFFFF;

PC+=2;

}

HITACHI 151

SHLR8(long n) /* SHLR8 Rn */

{

R[n]>>=8;

R[n]&=0x00FFFFFF;

PC+=2;

}

SHLR16(long n) /* SHLR16 Rn */

{

R[n]>>=16;

R[n]&=0x0000FFFF;

PC+=2;

}

Examples:

SHLR2 R0 Before execution R0 = H'12345678

After execution R0 = H'048D159E

SHLR8 R0 Before execution R0 = H'12345678

After execution R0 = H'00123456

SHLR16 R0 Before execution R0 = H'12345678

After execution R0 = H'00001234

152 HITACHI

6.59 SLEEP (Sleep): System Control Instruction

Format Abstract Code State T Bit

SLEEP Sleep 0000000000011011 3 —

Description: Sets the CPU into power-down mode. In power-down mode, instruction
execution stops, but the CPU module state is maintained, and the CPU waits for an interrupt
request. If an interrupt is requested, the CPU exits the power-down mode and begins
exception processing.

Note: The number of cycles given is for the transition to sleep mode.

Operation:

SLEEP() /* SLEEP */

{

PC-=2;

Wait_for_exception;

}

Example:

SLEEP Transits power-down mode

HITACHI 153

6.60 STC (Store Control Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract Code State T Bit

STC SR,Rn

STC GBR,Rn

STC VBR,Rn

STC.L SR,@-Rn

STC.L GBR,@-Rn

STC.L VBR,@-Rn

SR → Rn

GBR → Rn

VBR → Rn

Rn – 4 → Rn, SR → (Rn)

Rn – 4 → Rn, GBR → (Rn)

Rn – 4 → Rn, VBR → (Rn)

0000nnnn00000010

0000nnnn00010010

0000nnnn00100010

0100nnnn00000011

0100nnnn00010011

0100nnnn00100011

1

1

1

2

2

2

—

—

—

—

—

—

Description: Stores control registers SR, GBR, or VBR data into a specified destination.

Note: No interrupts are accepted between this instruction and the next instruction. Address
errors are accepted.

Operation:

STCSR(long n) /* STC SR,Rn */

{

R[n]=SR;

PC+=2;

}

STCGBR(long n) /* STC GBR,Rn */

{

R[n]=GBR;

PC+=2;

}

STCVBR(long n) /* STC VBR,Rn */

{

R[n]=VBR;

PC+=2;

}

154 HITACHI

STCMSR(long n) /* STC.L SR,@-Rn */

{

R[n]-=4;

Write_Long(R[n],SR);

PC+=2;

}

STCMGBR(long n) /* STC.L GBR,@-Rn */

{

R[n]-=4;

Write_Long(R[n],GBR);

PC+=2;

}

STCMVBR(long n) /* STC.L VBR,@-Rn */

{

R[n]-=4;

Write_Long(R[n],VBR);

PC+=2;

}

Examples:

STC SR,R0 Before execution R0 = H'FFFFFFFF, SR = H'00000000

After execution R0 = H'00000000

STC.L GBR,@-R15 Before execution R15 = H'10000004

After execution R15 = H'10000000, @R15 = GBR

HITACHI 155

6.61 STS (Store System Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract Code State T Bit

STS MACH,Rn

STS MACL,Rn

STS PR,Rn

STS.L MACH,@–Rn

STS.L MACL,@–Rn

STS.L PR,@–Rn

MACH → Rn

MACL → Rn

PR → Rn

Rn – 4 → Rn, MACH → (Rn)

Rn – 4 → Rn, MACL → (Rn)

Rn – 4 → Rn, PR → (Rn)

0000nnnn00001010

0000nnnn00011010

0000nnnn00101010

0100nnnn00000010

0100nnnn00010010

0100nnnn00100010

1

1

1

1

1

1

—

—

—

—

—

—

Description: Stores system registers MACH, MACL and PR data into a specified destination.

Note: No interrupts are accepted between this instruction and the next instruction. Address
errors are accepted.

If the system register is MACH in the SH-1 series, the value of bit 9 is transferred to and
stored in the higher 22 bits (bits 31 to 10) of the destination. With the SH-2 series, the 32 bits
of MACH are stored directly.

Operation:

STSMACH(long n) /* STS MACH,Rn */

{

R[n]=MACH;

if ((R[n]&0x00000200)==0) For SH-1 CPU (these 2 lines not

R[n]&=0x000003FF; needed for SH-2 CPU)

else R[n]|=0xFFFFFC00;

PC+=2;

}

STSMACL(long n) /* STS MACL,Rn */

{

R[n]=MACL;

PC+=2;

}

156 HITACHI

STSPR(long n) /* STS PR,Rn */

{

R[n]=PR;

PC+=2;

}

STSMMACH(long n) /* STS.L MACH,@–Rn */

{

R[n]–=4;

if ((MACH&0x00000200)==0)

Write_Long(R[n],MACH&0x000003FF); For SH-1 CPU

else Write_Long
(R[n],MACH|0xFFFFFC00)

Write_Long(R[n], MACH); For SH-2 CPU

PC+=2;

}

STSMMACL(long n) /* STS.L MACL,@–Rn */

{

R[n]–=4;

Write_Long(R[n],MACL);

PC+=2;

}

STSMPR(long n) /* STS.L PR,@–Rn */

{

R[n]–=4;

Write_Long(R[n],PR);

PC+=2;

}

Example:

STS MACH,R0 Before execution R0 = H'FFFFFFFF, MACH = H'00000000

After execution R0 = H'00000000

STS.L PR,@–R15 Before execution R15 = H'10000004

After execution R15 = H'10000000, @R15 = PR

HITACHI 157

6.62 SUB (Subtract Binary): Arithmetic Instruction

Format Abstract Code State T Bit

SUB Rm,Rn Rn – Rm → Rn 0011nnnnmmmm1000 1 —

Description: Subtracts general register Rm data from Rn data, and stores the result in Rn. To
subtract immediate data, use ADD #imm,Rn.

Operation:

SUB(long m,long n) /* SUB Rm,Rn */

{

R[n]-=R[m];

PC+=2;

}

Example:

SUB R0,R1 Before execution R0 = H'00000001, R1 = H'80000000

After execution R1 = H'7FFFFFFF

158 HITACHI

 6.63 SUBC (Subtract with Carry): Arithmetic Instruction

Format Abstract Code State T Bit

SUBC Rm,Rn Rn – Rm– T → Rn, Borrow →
T

0011nnnnmmmm1010 1 Borrow

Description: Subtracts Rm data and the T bit value from general register Rn, and stores the
result in Rn. The T bit changes according to the result. This instruction is used for subtraction
of data that has more than 32 bits.

Operation:

SUBC(long m,long n) /* SUBC Rm,Rn */

{

unsigned long tmp0,tmp1;

tmp1=R[n]-R[m];

tmp0=R[n];

R[n]=tmp1-T;

if (tmp0<tmp1) T=1;

else T=0;

if (tmp1<R[n]) T=1;

PC+=2;

}

Examples:

CLRT R0:R1(64 bits) – R2:R3(64 bits) = R0:R1(64 bits)

SUBC R3,R1 Before execution T = 0, R1 = H'00000000, R3 = H'00000001

After execution T = 1, R1 = H'FFFFFFFF

SUBC R2,R0 Before execution T = 1, R0 = H'00000000, R2 = H'00000000

After execution T = 1, R0 = H'FFFFFFFF

HITACHI 159

6.64 SUBV (Subtract with V Flag Underflow Check): Arithmetic
Instruction

Format Abstract Code State T Bit

SUBV Rm,Rn Rn – Rm → Rn, Underflow → T 0011nnnnmmmm1011 1 Underflow

Description: Subtracts Rm data from general register Rn data, and stores the result in Rn. If
an underflow occurs, the T bit is set to 1.

Operation:

SUBV(long m,long n) /* SUBV Rm,Rn */

{

long dest,src,ans;

if ((long)R[n]>=0) dest=0;

else dest=1;

if ((long)R[m]>=0) src=0;

else src=1;

src+=dest;

R[n]-=R[m];

if ((long)R[n]>=0) ans=0;

else ans=1;

ans+=dest;

if (src==1) {

if (ans==1) T=1;

else T=0;

}

else T=0;

PC+=2;

}

Examples:

SUBV R0,R1 Before execution R0 = H'00000002, R1 = H'80000001

After execution R1 = H'7FFFFFFF, T = 1

SUBV R2,R3 Before execution R2 = H'FFFFFFFE, R3 = H'7FFFFFFE

After execution R3 = H'80000000, T = 1

160 HITACHI

6.65 SWAP (Swap Register Halves): Data Transfer Instruction

Format Abstract Code State T Bit

SWAP.B Rm,Rn

SWAP.W Rm,Rn

Rm → Swap upper and lower
halves of lower 2 bytes → Rn

Rm → Swap upper and lower
word → Rn

0110nnnnmmmm1000

0110nnnnmmmm1001

1

1

—

—

Description: Swaps the upper and lower bytes of the general register Rm data, and stores the
result in Rn. If a byte is specified, bits 0 to 7 of Rm are swapped for bits 8 to 15. The upper 16
bits of Rm are transferred to the upper 16 bits of Rn. If a word is specified, bits 0 to 15 of Rm
are swapped for bits 16 to 31.

Operation:

SWAPB(long m,long n) /* SWAP.B Rm,Rn */

{

unsigned long temp0,temp1;

temp0=R[m]&0xffff0000;

temp1=(R[m]&0x000000ff)<<8;

R[n]=(R[m]>>8)&0x000000ff;

R[n]=R[n]|temp1|temp0;

PC+=2;

}

SWAPW(long m,long n) /* SWAP.W Rm,Rn */

{

unsigned long temp;

temp=(R[m]>>16)&0x0000FFFF;

R[n]=R[m]<<16;

R[n]|=temp;

PC+=2;

}

Examples

SWAP.B R0,R1 Before execution R0 = H'12345678

After execution R1 = H'12347856

SWAP.W R0,R1 Before execution R0 = H'12345678

After execution R1 = H'56781234

HITACHI 161

6.66 TAS (Test and Set): Logic Operation Instruction

Format Abstract Code State T Bit

TAS.B @Rn When (Rn) is 0, 1 → T, 1 → MSB of
(Rn)

0100nnnn00011011 4 Test
results

Description: Reads byte data from the address specified by general register Rn, and sets the
T bit to 1 if the data is 0, or clears the T bit to 0 if the data is not 0. Then, data bit 7 is set to
1, and the data is written to the address specified by Rn. During this operation, the bus is not
released.

Operation:

TAS(long n) /* TAS.B @Rn */

{

long temp;

temp=(long)Read_Byte(R[n]); /* Bus Lock enable */

if (temp==0) T=1;

else T=0;

temp|=0x00000080;

Write_Byte(R[n],temp); /* Bus Lock disable */

PC+=2;

}

Example:

_LOOP TAS.B @R7 R7 = 1000

BF _LOOP Loops until data in address 1000 is 0

162 HITACHI

6.67 TRAPA (Trap Always): System Control Instruction

Format Abstract Code State T Bit

TRAPA #imm PC/SR → Stack area, (imm × 4 +
VBR) → PC

11000011iiiiiiii 8 —

Description: Starts the trap exception processing. The PC and SR values are stored on the
stack, and the program branches to an address specified by the vector. The vector is a
memory address obtained by zero-extending the 8-bit immediate data and then quadrupling it.
The PC points the starting address of the next instruction. TRAPA and RTE are both used for
system calls.

Operation:

TRAPA(long i) /* TRAPA #imm */

{

long imm;

imm=(0x000000FF & i);

R[15]-=4;

Write_Long(R[15],SR);

R[15]-=4;

Write_Long(R[15],PC–2);

PC=Read_Long(VBR+(imm<<2))+4;

}

Example:

Address

VBR+H'80 .data.l 10000000

TRAPA #H'20 Branches to an address specified by data in address
VBR + H'80

TST #0,R0 ← Return address from the trap routine (stacked PC
value)

100000000 XOR R0,R0 ← Trap routine entrance

100000002 RTE Returns to the TST instruction

100000004 NOP Executes NOP before RTE

HITACHI 163

6.68 TST (Test Logical): Logic Operation Instruction

Format Abstract Code State T Bit

TST Rm,Rn

TST #imm,R0

TST.B
#imm,@(R0,GBR

)

Rn & Rm, when result is
0, 1 → T

R0 & imm, when result is
0, 1 → T

(R0 + GBR) & imm, when
result is 0, 1 → T

0010nnnnmmmm1000

11001000iiiiiiii

11001100iiiiiiii

1

1

3

Test
results

Test
results

Test
results

Description: Logically ANDs the contents of general registers Rn and Rm, and sets the T bit
to 1 if the result is 0 or clears the T bit to 0 if the result is not 0. The Rn data does not
change. The contents of general register R0 can also be ANDed with zero-extended 8-bit
immediate data, or the contents of 8-bit memory accessed by indirect indexed GBR
addressing can be ANDed with 8-bit immediate data. The R0 and memory data do not
change.

Operation:

TST(long m,long n) /* TST Rm,Rn */

{

if ((R[n]&R[m])==0) T=1;

else T=0;

PC+=2;

}

TSTI(long i) /* TEST #imm,R0 */

{

long temp;

temp=R[0]&(0x000000FF & (long)i);

if (temp==0) T=1;

else T=0;

PC+=2;

}

TSTM(long i) /* TST.B #imm,@(R0,GBR) */

{

long temp;

164 HITACHI

temp=(long)Read_Byte(GBR+R[0]);

temp&=(0x000000FF & (long)i);

if (temp==0) T=1;

else T=0;

PC+=2;

}

Examples:

TST R0,R0 Before execution R0 = H'00000000

After execution T = 1

TST #H'80,R0 Before execution R0 = H'FFFFFF7F

After execution T = 1

TST.B #H'A5,@(R0,GBR) Before execution @(R0,GBR) = H'A5

After execution T = 0

HITACHI 165

6.69 XOR (Exclusive OR Logical): Logic Operation Instruction

Format Abstract Code State T Bit

XOR Rm,Rn

XOR #imm,R0

XOR.B #imm,@(R0,GBR)

Rn ^ Rm → Rn

R0 ^ imm → R0

(R0 + GBR) ^ imm → (R0
+ GBR)

0010nnnnmmmm1010

11001010iiiiiiii

11001110iiiiiiii

1

1

3

—

—

—

Description: Exclusive ORs the contents of general registers Rn and Rm, and stores the
result in Rn. The contents of general register R0 can also be exclusive ORed with zero-
extended 8-bit immediate data, or 8-bit memory accessed by indirect indexed GBR
addressing can be exclusive ORed with 8-bit immediate data.

Operation:

XOR(long m,long n) /* XOR Rm,Rn */

{

R[n]^=R[m];

PC+=2;

}

XORI(long i) /* XOR #imm,R0 */

{

R[0]^=(0x000000FF & (long)i);

PC+=2;

}

XORM(long i) /* XOR.B #imm,@(R0,GBR) */

{

long temp;

temp=(long)Read_Byte(GBR+R[0]);

temp^=(0x000000FF & (long)i);

Write_Byte(GBR+R[0],temp);

PC+=2;

}

166 HITACHI

Examples:

XOR R0,R1 Before execution R0 = H'AAAAAAAA, R1 = H'55555555

After execution R1 = H'FFFFFFFF

XOR #H'F0,R0 Before execution R0 = H'FFFFFFFF

After execution R0 = H'FFFFFF0F

XOR.B #H'A5,@(R0,GBR) Before execution @(R0,GBR) = H'A5

After execution @(R0,GBR) = H'00

HITACHI 167

6.70 XTRCT (Extract): Data Transfer Instruction

Format Abstract Code State T Bit

XTRCT Rm,Rn Center 32 bits of Rm and Rn →
Rn

0010nnnnmmmm1101 1 —

Description: Extracts the middle 32 bits from the 64 bits of general registers Rm and Rn, and
stores the 32 bits in Rn (figure 6.13).

Rm Rn

Rn

MSB MSBLSB LSB

Figure 6.13 Extract

Operation:

XTRCT(long m,long n) /* XTRCT Rm,Rn */

{

unsigned long temp;

temp=(R[m]<<16)&0xFFFF0000;

R[n]=(R[n]>>16)&0x0000FFFF;

R[n]|=temp;

PC+=2;

}

Example:

XTRCT R0,R1 Before execution R0 = H'01234567, R1 = H'89ABCDEF

After execution R1 = H'456789AB

168 HITACHI

Section 7 Pipeline Operation

This section describes the operation of the pipelines for each instruction. This information is
provided to allow calculation of the required number of CPU instruction execution states
(system clock cycles).

7.1 Basic Configuration of Pipelines

Pipelines are composed of the following five stages:

• IF (Instruction fetch) Fetches an instruction from the memory in which the program is
stored.

• ID (Instruction decode) Decodes the instruction fetched.

• EX (Instruction execution) Performs data operations and address calculations
according to the results of decoding.

• MA (Memory access)Accesses data in memory. Generated by instructions that involve
memory access, with some exceptions.

• WB (Write back) Returns the results of the memory access (data) to a register.
Generated by instructions that involve memory loads, with some exceptions.

As shown in figure 7.1, these stages flow with the execution of the instructions and thereby
constitute a pipeline. At a given instant, five instructions are being executed simultaneously.
All instructions have at least 3 stages: IF, ID, and EX. Most, but not all, have stages MA and
WB as well. The way the pipeline flows also varies with the type of instruction. The basic
pipeline flow is as shown in figure 7.1; some pipelines differ, however, because of contention
between IF and MA. In figure 7.1, the period in which a single stage is operating is called a
slot.

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

IF ID

IF

EX

ID

IF

MA

EX

ID

IF

WB

MA

EX

ID

IF

WB

MA

EX

ID

IF

WB

MA

EX

ID

WB

MA

EX

WB

MA WB

Time

: Slot

Instruction

stream

Figure 7.1 Basic Structure of Pipeline Flow

HITACHI 169

7.2 Slot and Pipeline Flow

The time period in which a single stage operates is called a slot. Slots must follow the rules
described below.

7.2.1 Instruction Execution

Each stage (IF, ID, EX, MA, and WB) of an instruction must be executed in one slot. Two or
more stages cannot be executed within one slot (figure 7.2), with exception of WB and MA.
Since WB is executed immediately after MA, however, some instructions may execute MA
and WB within the same slot.

Instruction 1

Instruction 2

IF ID

IF

EX

ID

MA

EX

WB

MA WB

: SlotX

Note: ID and EX of instruction 1 are being executed in the same slot.

Figure 7.2 Impossible Pipeline Flow 1

7.2.2 Slot Sharing

A maximum of one stage from another instruction may be set per slot, and that stage must be
different from the stage of the first instruction. Identical stages from two different instructions
may never be executed within the same slot (figure 7.3).

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

IF ID

IF

EX

ID

IF

MA

EX

ID

IF

WB

MA

EX

ID

IF

WB

MA

EX

ID

WB

MA

EX

WB

MA WB

: SlotX

Note: Same stage of another instruction is being executed in same slot.

Figure 7.3 Impossible Pipeline Flow 2

170 HITACHI

7.2.3 Slot Length

The number of states (system clock cycles) S for the execution of one slot is calculated with
the following conditions:

• S = (the cycles of the stage with the highest number of cycles of all instruction stages
contained in the slot)

This means that the instruction with the longest stage stalls others with shorter stages.

• The number of execution cycles for each stage:

 IF The number of memory access cycles for instruction fetch

 ID Always one cycle

 EX Always one cycle

 MA The number of memory access cycles for data access

 WB Always one cycle

As an example, figure 7.4 shows the flow of a pipeline in which the IF (memory access for
instruction fetch) of instructions 1 and 2 are two cycles, the MA (memory access for data
access) of instruction 1 is three cycles and all others are one cycle. The dashes indicate the
instruction is being stalled.

Instruction 1

Instruction 2

(2)

IF

(2)

ID

IF

—

IF

(1)

EX

ID

MA

EX —

: Slot

(3)

MA

—

(1)

WB

MA

(1)

WB

MAIF

Number of

cycles

Figure 7.4 Slots Requiring Multiple Cycles

HITACHI 171

7.3 Number of Instruction Execution States

The number of instruction execution states is counted as the interval between execution of
EX stages. The number of states between the start of the EX stage for instruction 1 and the
start of the EX stage for the following instruction (instruction 2) is the execution time for
instruction 1.

For example, in a pipeline flow like that shown in figure 7.5, the EX stage interval between
instructions 1 and 2 is five cycles, so the execution time for instruction 1 is five cycles. Since
the interval between EX stages for instructions 2 and 3 is one state, the execution time of
instruction 2 is one state.

If a program ends with instruction 3, the execution time for instruction 3 should be calculated
as the interval between the EX stage of instruction 3 and the EX stage of a hypothetical
instruction 4, using an MOV Rm, Rn that follows instruction 3. (In the case of figure 7.5, the
execution time of instruction 3 would thus be one cycle.) In this example, the MA of
instruction 1 and the IF of instruction 4 are in contention. For operation during the contention
between the MA and IF, see section 7.4, Contention Between Instruction Fetch (IF) and
Memory Access (MA). The execution time between instructions 1 and 3 in figure 7.5 is seven
states (5 + 1 + 1).

Instruction 1

Instruction 2

Instruction 3

(Instruction 4

(2)

IF

(2)

ID

IF

—

IF

(2)

EX

ID

IF

—

—

IF

—

— —

: Slot

IF MA MA MA WB

— — EX

— ID

IF

(1)

EX

ID

(1)

MA

EX

(4)

: MOV Rm, Rn)

Figure 7.5 How Instruction Execution States Are Counted

172 HITACHI

7.4 Contention Between Instruction Fetch (IF) and Memory Access
(MA)

7.4.1 Basic Operation When IF and MA are in Contention

The IF and MA stages both access memory, so they cannot operate simultaneously. When the
IF and MA stages both try to access memory within the same slot, the slot splits as shown in
figure 7.6. When there is a WB, it is executed immediately after the MA ends.

Instruction 2

Instruction 3

Instruction 4

Instruction 5

IF

IF

EX

ID

IF

EX

ID

WB

MA

EX

ID

WB

EX

: Slot

Instruction 1 ID MA

IF

ID EXIF

B C D E FA G

MA of instruction 1 and IF of instruction 4

contend at D

MA of instruction 2 and IF of instruction 5

contend at E

Instruction 2

Instruction 3

Instruction 4

Instruction 5

IF

IF

EX

ID

IF

EX

—

WB

MA

ID

ID

WB

EX

: Slot

Instruction 1 ID MA

IF

ID EXIF

B C D E FA G

Split at D

Split at E

When MA and IF are in contention, the following occurs:

—

— EX

—

Figure 7.6 Operation When IF and MA Are in Contention

The slots in which MA and IF contend are split. MA is given priority to execute in the first
half (when there is a WB, it immediately follows the MA), and the EX, ID, and IF are
executed simultaneously in the latter half. For example, in figure 7.6 the MA of instruction 1
is executed in slot D while the EX of instruction 2, the ID of instruction 3 and IF of
instruction 4 are executed simultaneously thereafter. In slot E, the MA of instruction 2 is
given priority and the EX of instruction 3, the ID of instruction 4 and the IF of instruction 5
executed thereafter.

The number of states for a slot in which MA and IF are in contention is the sum of the
number of memory access cycles for the MA and the number of memory access cycles for the
IF.

HITACHI 173

7.4.2 The Relationship Between IF and the Location of Instructions in On-Chip

ROM/RAM or On-Chip Memory

When the instruction is located in the on-chip memory (ROM or RAM) or on-chip cache of
the SH microcomputer, the SH microcomputer accesses the on-chip memory in 32-bit units.
The SH microcomputer instructions are all fixed at 16 bits, so basically 2 instructions can be
fetched in a single IF stage access.

If an instruction is located on a longword boundary, an IF can get two instructions at each
instruction fetch. The IF of the next instruction does not generate a bus cycle to fetch an
instruction from memory. Since the next instruction IF also fetches two instructions, the
instruction IFs after that do not generate a bus cycle either.

This means that IFs of instructions that are located so they start from the longword boundaries
within instructions located in on-chip memory (the position when the bottom two bits of the
instruction address are 00 is A1 = 0 and A0 = 0) also fetch two instructions. The IF of the
next instruction does not generate a bus cycle. IFs that do not generate bus cycles are written
in lower case as ‘if’. These ‘if’s always take one state.

When branching results in a fetch from an instruction located so it starts from the word
boundaries (the position when the bottom two bits of the instruction address are 10 is A1 = 1,
A0 = 0), the bus cycle of the IF fetches only the specified instruction more than one of said
instructions. The IF of the next instruction thus generates a bus cycle, and fetches two
instructions. Figure 7.7 illustrates these operations.

174 HITACHI

Instruction 2
... Instruction 3

Instruction 4
... Instruction 5

IF

if

EX

ID

IF

EX

ID EX

ID EX

... Instruction 1 ID

if

ID EXIF

: Slot

Instruction 6

Instruc-

tion 1

Instruc-

tion 2

Instruc-

tion 3

Instruc-

tion 4

Instruc-

tion 5

Instruc-

tion 6 ID EXif

32 bits

(On-chip memory

 or on-chip cache)

... Instruction 2

... Instruction 3

Instruction 4
... Instruction 5

IF EX

IF ID EX

ID EX

ID

if

ID EXIF

: Slot

Instruction 6 ID EXif

Instruc-

tion 2

Instruc-

tion 3

Instruc-

tion 4

Instruc-

tion 5

Instruc-

tion 6

Fetching from an instruction (instruction 1) located on a longword boundary

Fetching from an instruction (instruction 2) located on a word boundary

IF

if

: Bus cycle generated
: No bus cycle

IF

if

: Bus cycle generated
: No bus cycle

Figure 7.7 Relationship Between IF and Location of Instructions in On-Chip Memory

7.4.3 Relationship Between Position of Instructions Located in On-Chip ROM/RAM

or On-Chip Memory and Contention Between IF and MA

When an instruction is located in on-chip memory (ROM/RAM) or on-chip cache, there are
instruction fetch stages (‘if’ written in lower case) that do not generate bus cycles as
explained in section 7.4.2 above. When an if is in contention with an MA, the slot will not
split, as it does when an IF and an MA are in contention, because ifs and MAs can be
executed simultaneously. Such slots execute in the number of states the MA requires for
memory access, as illustrated in figure 7.8.

When programming, avoid contention of MA and IF whenever possible and pair MAs with ifs
to increase the instruction execution speed. Instructions that have 4 (5)-stage pipelines of IF,
ID, EX, MA, (WB) prevent stalls when they start from the longword boundaries in on-chip

HITACHI 175

memory (the position when the bottom 2 bits of instruction address are 00 is A1 = 0 and A0 =
0) because the MA of the instruction falls in the same slot as ifs that follow.

Instruction 2
... Instruction 3

Instruction 4
... Instruction 5

IF

if

EX

ID

IF

EX

ID —

— ID

... Instruction 1 ID

if

IF ID

: Slot

Instruction 6

Instruc-

tion 1

Instruc-

tion 2

Instruc-

tion 3

Instruc-

tion 4

Instruc-

tion 5

Instruc-

tion 6 ID EXif

IF

if

: Splits

: Does not split

32 bits

(On-chip memory

 or on-chip cache)

MA WB

MA WB

EX

EX

EX

A B

MA in slot A is in contention with an if, so no split occurs.
MA in slot B is in contention with an IF, so it splits.

Figure 7.8 Relationship Between the Location of Instructions in On-Chip Memory and
Contention Between IF and MA

7.5 Effects of Memory Load Instructions on Pipelines

Instructions that involve loading from memory return data to the destination register during
the WB stage that comes at the end of the pipeline. The WB stage of such a load instruction
(load instruction 1) will thus come after the EX stage of the instruction that immediately
follows it (instruction 2).

When instruction 2 uses the same destination register as load instruction 1, the contents of
that register will not be ready, so any slot containing the MA of instruction 1 and EX of
instruction 2 will split. The destination register of load instruction 1 is the same as the
destination (not the source) of instruction 2, so it splits.

When the destination of load instruction 1 is the status register (SR) and the flag in it is
fetched by instruction 2 (as ADDC does), a split occurs. No split occurs, however, in the
following cases:

• When instruction 2 is a load instruction and its destination is the same as that of load
instruction 1.

• When instruction 2 is Mac @Rm+, @Rn+, and the destination of load instruction 1 are
the same.

The number of states in the slot generated by the split is the number of MA cycles plus the
number of IF (or if) cycles, as illustrated in figure 7.9. This means the execution speed will

176 HITACHI

be lowered if the instruction that will use the results of the load instruction is placed
immediately after the load instruction. The instruction that uses the result of the load
instruction will not slow down the program if placed one or more instructions after the load
instruction.

Instruction 2 (ADD R1, R2)

Instruction 3

Instruction 4

IF

IF

EX

ID

IF

—

—

WB

EX

ID

IF ID

: Slot

Load instruction 1 (MOV.W @R0, R1) ID MA

EX

.....

Figure 7.9 Effects of Memory Load Instructions on the Pipeline

7.6 Programming Guide

To improve instruction execution speed, consider the following when programming:

• To prevent contention between MA and IF, locate instructions that have MA stages so
they start from the longword boundaries of on-chip memory (the position when the bottom
two bits of the instruction address are 00 is A1 = 0 and A0 = 0) wherever possible.

• The instruction that immediately follows an instruction that loads from memory should not
use the same destination register as the load instruction.

• Locate instructions that use the multiplier nonconsecutively. Also locate nonconsecutively
an access to the MACH or MACL register for fetching the results from the multiplier and
an instruction that uses the multiplier.

HITACHI 177

7.7 Operation of Instruction Pipelines

This section describes the operation of the instruction pipelines. By combining these with the
rules described so far, the way pipelines flow in a program and the number of instruction
execution states can be calculated.

In the following figures, “Instruction A” refers to the instruction being described. When “IF”
is written in the instruction fetch stage, it may refer to either “IF” or “if”. When there is
contention between IF and MA, the slot will split, but the manner of the split is not
described in the tables, with a few exceptions. When a slot has split, see section 7.4,
Contention Between Instruction Fetch (IF) and Memory Access (MA). Base your response on
the rules for pipeline operation given there.

Table 7.1 lists the format for number of instruction stages and execution states:

Table 7.1 Format for the Number of Stages and Execution States for Instructions

Type Category Stage State Contention Instruction

Functional
types

Instruction
s are
catego-
rized
based on
operations

Number
of
stages
in an
instruc-
tion

Number
of
execu-
tion
states
when
no
conten-
tion
occurs

Contention that
occurs

Corresponding instructions
represented by mnemonic

Table 7.2 Number of Instruction Stages and Execution States

Type Category Stage State Contention Instruction

Data
transfer
instructions

Register-
register
transfer
instructions

3 1 — MOV #imm,Rn

MOV Rm,Rn

MOVA @(disp,PC),R0

MOVT Rn

SWAP.B Rm,Rn

SWAP.W Rm,Rn

XTRCT Rm,Rn

178 HITACHI

Table 7.2 Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction

Data
transfer
instructions
(cont)

Memory
load
instructions

5 1 • Contention
occurs if the
instruction
placed
immediately
after this one
uses the same
destination
register

• MA contends
with IF

MOV.W @(disp,PC),Rn

MOV.L @(disp,PC),Rn

MOV.B @Rm,Rn

MOV.W @Rm,Rn

MOV.L @Rm,Rn

MOV.B @Rm+,Rn

MOV.W @Rm+,Rn

MOV.L @Rm+,Rn

MOV.B @(disp,Rm),R0

MOV.W @(disp,Rm),R0

MOV.L @(disp,Rm),Rn

MOV.B @(R0,Rm),Rn

MOV.W @(R0,Rm),Rn

MOV.L @(R0,Rm),Rn

MOV.B @(disp,GBR),R0

MOV.W @(disp,GBR),R0

MOV.L @(disp,GBR),R0

Memory
store
instructions

4 1 • MA contends
with IF

MOV.B Rm,@Rn

MOV.W Rm,@Rn

MOV.L Rm,@Rn

MOV.B Rm,@–Rn

MOV.W Rm,@–Rn

MOV.L Rm,@–Rn

MOV.B R0,@(disp,Rn)

MOV.W R0,@(disp,Rn)

MOV.L Rm,@(disp,Rn)

MOV.B Rm,@(R0,Rn)

MOV.W Rm,@(R0,Rn)

MOV.L Rm,@(R0,Rn)

MOV.B R0,@(disp,GBR)

MOV.W R0,@(disp,GBR)

MOV.L R0,@(disp,GBR)

HITACHI 179

Table 7.2 Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction

Arithmetic
instructions

Arithmetic
instructions
between
registers
(except
multiplic-
ation
instruc-
tions)

3 1 — ADD Rm,Rn

ADD #imm,Rn

ADDC Rm,Rn

ADDV Rm,Rn

CMP/EQ #imm,R0

CMP/EQ Rm,Rn

CMP/HS Rm,Rn

CMP/GE Rm,Rn

CMP/HI Rm,Rn

CMP/GT Rm,Rn

CMP/PZ Rn

CMP/PL Rn

CMP/STR Rm,Rn

DIV1 Rm,Rn

DIV0S Rm,Rn

DIV0U

DT Rn*3

EXTS.B Rm,Rn

EXTS.W Rm,Rn

EXTU.B Rm,Rn

EXTU.W Rm,Rn

NEG Rm,Rn

NEGC Rm,Rn

SUB Rm,Rn

SUBC Rm,Rn

SUBV Rm,Rn

Notes 1. In the SH-2 CPU, multiply/accumulate instructions are 7 stages, multiply instructions 6
stages; in the SH-1 CPU, multiply/accumulate instructions are 8 stages, multiply
instructions 7 stages

2. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions)

3. SH-2 CPU instructions

180 HITACHI

Table 7.2 Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction

Arithmetic
instructions
(cont)

Multiply/
accumulate
instructions

7/8*1 3/(2)*2 • Multiplier contention
occurs when an
instruction that uses
the multiplier follows
a MAC instruction

• MA contends with IF

MAC.W @Rm+,@Rn+

Double-
length
multiply/
accumulate
instruction
(SH-2 CPU
only)

9 3/(2 to
4)*2

• Multiplier contention
occurs when an
instruction that uses
the multiplier follows
a MAC instruction

• MA contends with IF

MAC.L @Rm+,@Rn+*3

Multiplic-
ation
instructions

6/7*1 1 to 3*2 • Multiplier contention
occurs when an
instruc-tion that uses
the multiplier follows
a MUL instruction

• MA contends with IF

MULS.W Rm,Rn

MULU.W Rm,Rn

Double-
length
multiply/
accumulate
instruction
(SH-2 CPU
only)

9 2 to 4*2 • Multiplier contention
occurs when an
instruction that uses
the multiplier follows
a MAC instruction

• MA contends with IF

DMULS.L
Rm,Rn*3

DMULU.L
Rm,Rn*3

MUL.L Rm,Rn*3

Logic
operation
instructions

Register-
register
logic
operation
instructions

3 1 — AND Rm,Rn

AND #imm,R0

NOT Rm,Rn

O R Rm,Rn

O R #imm,R0

TST Rm,Rn

TST #imm,R0

XOR Rm,Rn

XOR #imm,R0

Notes 1. In the SH-2 CPU, multiply/accumulate instructions are 7 stages, multiply instructions 6
stages; in the SH-1 CPU, multiply/accumulate instructions are 8 stages, multiply
instructions 7 stages

2. The normal minimum number of execution states (The number in parentheses is the
number of cycles when there is contention with following instructions)

3. SH-2 CPU instructions

HITACHI 181

Table 7.2 Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction

Logic
operation
instructions
(cont)

Memory logic
operations
instructions

6 3 • MA contends
with IF

AND.B #imm,@(R0,GBR)

OR.B #imm,@(R0,GBR)

TST.B #imm,@(R0,GBR)

XOR.B #imm,@(R0,GBR)

TAS instruction 6 4 • MA contends
with IF

TAS.B @Rn

Shift
instructions

Shift
instructions

3 1 — ROTL Rn

ROTR Rn

ROTCL Rn

ROTCR Rn

SHAL Rn

SHAR Rn

SHLL Rn

SHLR Rn

SHLL2 Rn

SHLR2 Rn

SHLL8 Rn

SHLR8 Rn

SHLL16 Rn

SHLR16 Rn

Branch
instructions

Conditional
branch
instructions

3 3/1*4 — B F label

B T label

Delayed
conditional
branch
instructions
(SH-2 CPU
only)

3 2/1*4 — BF/S label*3

BT/S label*3

Uncondi tional
branch
instructions

3 2 — BRA label

BRAF Rm*3

BSR label

BSRF Rm*3

JMP @Rm

JSR @Rm

RTS

Notes 3. SH-2 CPU instruction
4. One state when there is no branch

182 HITACHI

Table 7.2 Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction

System
control
instructions

System
control ALU
instructions

3 1 — CLRT

LDC Rm,SR

LDC Rm,GBR

LDC Rm,VBR

LDS Rm,PR

NOP

SETT

STC SR,Rn

STC GBR,Rn

STC VBR,Rn

STS PR,Rn

LDC.L
instruction

5 3 • Contention
occurs when an
instruction that
uses the same
destination
register is placed
immediately after
this instruction

• MA contends
with IF

LDC.L @Rm+,SR

LDC.L @Rm+,GBR

LDC.L @Rm+,VBR

STC.L
instructions

4 2 • MA contends
with IF

STC.L SR,@–Rn

STC.L GBR,@–Rn

STC.L VBR,@–Rn

LDS.L
instructions
(PR)

5 1 • Contention
occurs when an
instruction that
uses the same
destination
register is placed
immediately after
this instruction

• MA contends
with IF

LDS.L @Rm+,PR

STS.L
instruction
(PR)

4 1 • MA contends
with IF

STS.L PR,@–Rn

HITACHI 183

Table 7.2 Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction

System
control
instructions
(cont)

Register →
MAC
transfer
instruction

4 1 • Contention
occurs with
multiplier

• MA contends
with IF

CLRMAC

LDS Rm,MACH

LDS Rm,MACL

Memory →
MAC
transfer
instructions

4 1 • Contention
occurs with
multiplier

• MA contends
with IF

LDS.L @Rm+,MACH

LDS.L @Rm+,MACL

MAC →
register
transfer
instruction

5 1 • Contention
occurs with
multiplier

• Contention
occurs when an
instruction that
uses the same
destination
register is placed
immediately after
this instruction

• MA contends
with IF

STS MACH,Rn

STS MACL,Rn

MAC →
memory
transfer
instruction

4 1 • Contention
occurs with
multiplier

• MA contends
with IF

STS.L MACH,@–Rn

STS.L MACL,@–Rn

RTE
instruction

5 4 — RTE

TRAP
instruction

9 8 — TRAPA #imm

SLEEP
instruction

3 3 — SLEEP

184 HITACHI

7.7.1 Data Transfer Instructions

Register-Register Transfer Instructions: Include the following instruction types:

• MOV #imm, Rn

• MOV Rm, Rn

• MOVA @(disp, PC), R0

• MOVT Rn

• SWAP.B Rm, Rn

• SWAP.W Rm, Rn

• XTRCT Rm, Rn

Next instruction

Third instruction

IF

IF

EX

ID

IF

EX

ID EX

: Slot

Instruction A ID

......

......

......

Figure 7.10 Register-Register Transfer Instruction Pipeline

Operation: The pipeline ends after three stages: IF, ID, and EX. Data is transferred in the EX
stage via the ALU.

Memory Load Instructions: Include the following instruction types:

• MOV.W @(disp, PC), Rn

• MOV.L @(disp, PC), Rn

• MOV.B @Rm, Rn

• MOV.W @Rm, Rn

• MOV.L @Rm, Rn

• MOV.B @Rm+, Rn

• MOV.W @Rm+, Rn

• MOV.L @Rm+, Rn

• MOV.B @(disp, Rm), R0

• MOV.W @(disp, Rm), R0

• MOV.L @(disp, Rm), Rn

• MOV.B @(R0, Rm), Rn

• MOV.W @(R0, Rm), Rn

• MOV.L @(R0, Rm), Rn

• MOV.B @(disp, GBR), R0

HITACHI 185

• MOV.W @(disp, GBR), R0

• MOV.L @(disp, GBR), R0

Next instruction

Third instruction

IF

IF

EX

ID

IF

EX

ID EX

: Slot

Instruction A ID MB
.....

.....

WB

......

Figure 7.11 Memory Load Instruction Pipeline

Operation: The pipeline has five stages: IF, ID, EX, MA, and WB (figure 7.11). If an
instruction that uses the same destination register as this instruction is placed immediately
after it, contention will occur. (See Section 7.5, Effects of Memory Load Instructions on
Pipelines.)

Memory Store Instructions: Include the following instruction types:

• MOV.B Rm, @Rn

• MOV.W Rm, @Rn

• MOV.L Rm, @Rn

• MOV.B Rm, @–Rn

• MOV.W Rm, @–Rn

• MOV.L Rm, @–Rn

• MOV.B R0, @(disp, Rn)

• MOV.W R0, @(disp, Rn)

• MOV.L Rm, @(disp, Rn)

• MOV.B Rm, @(R0, Rn)

• MOV.W Rm, @(R0, Rn)

• MOV.L Rm, @(R0, Rn)

• MOV.B R0, @(disp, GBR)

• MOV.W R0, @(disp, GBR)

• MOV.L R0, @(disp, GBR)

186 HITACHI

Next instruction

Third instruction

IF

IF

EX

ID

IF

EX

ID EX

: Slot

Instruction A ID MA
.....

.....

......

Figure 7.12 Memory Store Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 7.12). Data is not
returned to the register so there is no WB stage.

7.7.2 Arithmetic Instructions

Arithmetic Instructions between Registers (Except Multiplication Instructions): Include
the following instruction types:

• ADDRm, Rn

• ADD#imm, Rn

• ADDC Rm, Rn

• ADDV Rm, Rn

• CMP/EQ #imm, R0

• CMP/EQ Rm, Rn

• CMP/HS Rm, Rn

• CMP/GE Rm, Rn

• CMP/HI Rm, Rn

• CMP/GT Rm, Rn

• CMP/PZ Rn

• CMP/PL Rn

• CMP/STR Rm, Rn

• DIV1 Rm, Rn

• DIV0S Rm, Rn

• DIV0U

• DT Rn (SH-2 CPU only)

• EXTS.B Rm, Rn

• EXTS.W Rm, Rn

• EXTU.B Rm, Rn

• EXTU.W Rm, Rn

• NEG Rm, Rn

• NEGC Rm, Rn

HITACHI 187

• SUB Rm, Rn

• SUBC Rm, Rn

• SUBV Rm, Rn

Next instruction

Third instruction

IF

IF

EX

ID

IF

EX

ID EX

: Slot

Instruction A ID
.....

.....

......

Figure 7.13 Pipeline for Arithmetic Instructions between Registers Except
Multiplication Instructions

Operation: The pipeline has three stages: IF, ID, and EX (figure 8.13). The data operation is
completed in the EX stage via the ALU.

188 HITACHI

Multiply/Accumulate Instruction (SH-1 CPU): Includes the following instruction type:

• MAC.W @Rm+, @Rn+

Next instruction

Third instruction

IF

IF

EX

— ID

IF ID

MAC.W ID

EX

EX

MA

MA

: Slot

WB

WB

MA mmMA mmmm

......

Figure 7.14 Multiply/Accumulate Instruction Pipeline

Operation: The pipeline has eight stages: IF, ID, EX, MA, MA, mm, mm, and mm (figure
8.14). The second MA reads the memory and accesses the multiplier. The mm indicates that
the multiplier is operating. The mm operates for three cycles after the final MA ends,
regardless of slot. The ID of the instruction after the MAC.W instruction is stalled for one slot.
The two MAs of the MAC.W instruction, when they contend with IF, split the slots as
described in section 7.4, Contention Between Instruction Fetch (IF) and Memory Access
(MA).

When an instruction that does not use the multiplier follows the MAC.W instruction, the
MAC.W instruction may be considered to be five-stage pipeline instructions of IF, ID, EX,
MA, and MA. In such cases, the ID of the next instruction simply stalls one slot and
thereafter the pipeline operates normally. When an instruction that uses the multiplier comes
after the MAC.W instruction, contention occurs with the multiplier, so operation is not as
normal. This occurs in the following cases:

1. When a MAC.W instruction is located immediately after another MAC.W instruction

2. When a MULS.W instruction is located immediately after a MAC.W instruction

3. When an STS (register) instruction is located immediately after a MAC.W instruction

4. When an STS.L (memory) instruction is located immediately after a MAC.W instruction

5. When an LDS (register) instruction is located immediately after a MAC.W instruction

6. When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

HITACHI 189

1. When a MAC.W instruction is located immediately after another MAC.W instruction

When the second MA of a MAC.W instruction contends with an mm generated by a
preceding multiplier-type instruction, the bus cycle of that MA is extended until the mm
ends (the M—A shown in the dotted line box below) and that extended MA occupies one
slot.

If one or more instruction not related to the multiplier is located between the MAC.W
instructions, multiplier contention between MAC instructions does not cause stalls (figure
7.15).

IF

IF

EX

— ID

IF ID

MAC.W ID

EX

EX

MA

MA MA

MA mmMA mmmm

MAC.W

Other instruction

mm mm

IF

IF

EX

— ID

IF —

MAC.W ID

EX

ID

MA

EX

: Slot

M——A

—

MA mmMA mmmm

Third instruction

MAC.W mm mmmm

MA

WB

mm

: Slot

......

......

.....

Figure 7.15 Unrelated Instructions between MAC.W Instructions

Sometimes consecutive MAC.Ws may not have multiplier contention even when MA and
IF contention causes misalignment of instruction execution. Figure 7.16 illustrates a case
of this type. This figure assumes MA and IF contention.

MAC.W

MAC.W

MAC.W
.....

if

IF

EX

— ID

if —

MAC.W ID

ID EX

MA mmMA mmmm

MA

IF ID EX

: Slot

EX

—

M——A

mm mmmm

MA mm mmmm

— MA M——A mm

—

MA —

Figure 7.16 Consecutive MAC.Ws without Misalignment

190 HITACHI

When the second MA of the MAC.W instruction is extended until the mm ends,
contention between MA and IF will split the slot, as usual. Figure 7.17 illustrates a case of
this type. This figure assumes MA and IF contention.

IF

if

EX

— — ID

IF —

MAC.W ID

EX

ID

MA

— —

MA MA mm— mmmm

Other instruction

MAC.W

EX

Other instruction

mm mm mm

: Slot

— — ID EX

M——A

MA

if

Other instruction IF

......

Figure 7.17 MA and IF Contention

HITACHI 191

2. When a MULS.W instructions is located immediately after a MAC.W instruction

A MULS.W instruction has an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with an operating MAC instruction multiplier (mm), the
MA is extended until the mm ends (the M—A shown in the dotted line box in figure 7.18)
to create a single slot. When two or more instructions not related to the multiplier come
between the MAC.W and MULS.W instructions, MAC.W and MULS.W contention does
not cause stalling. When the MULS.W MA and IF contend, the slot is split.

IF

IF

EX

— ID

IF ID

MAC.W ID

EX

EX — —

MA mmMA mmmm

Other instruction

MULS.W

MA
......

mm mm mm

: Slot

M————A
.....

IF

IF

EX

— ID

IF ID

MAC.W ID

EX

EX

MA mmMA mmmm

MULS.W

Other instruction

mm

Other instruction

: Slot

mm mmM——A

IF ID EX — MA

IF

IF

EX

— ID

IF ID

MAC.W ID

EX

EX

MA mmMA mmmm

Other instruction

Other instruction

MULS.W

: Slot

IF ID

MA WB

mm mm

Other instruction IF ID EX MA

MA WB

EX MA mm

......

......

Figure 7.18 MULS.W Instruction Immediately After a MAC.W Instruction

192 HITACHI

3. When an STS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in a general-purpose register using an
STS instruction, an MA stage for accessing the multiplier is added to the STS instruction,
as described later. When the MA of the STS instruction contends with the operating
multiplier (mm), the MA is extended until the mm ends (the M—A shown in the dotted
line box in figure 7.19) to create a single slot. The MA of the STS contends with the IF.
Figure 7.19 illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

— ID

IF ID

MAC.W ID

EX

— — —

MA mm mmmm

Other instruction

STS

EX

WB

: Slot

M————A

MA

Other instruction if — — — ID EX

IF ID EX

IF

EX

— ID

if —

MAC.W ID

—

ID EX

MA mmMA mmmm

Other instruction

STS WB

: Slot

M——A

Other instruction IF ID — EX

ID EX

EX

if —

.....

if

.....

Other instruction

Other instruction

......

......

—

— MA

Figure 7.19 STS (Register) Instruction Immediately After a MAC.W Instruction

HITACHI 193

4. When an STS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in memory using an STS instruction, an
MA stage for accessing the multiplier and writing to memory is added to the STS
instruction, as described later. When the MA of the STS instruction contends with the
operating multiplier (mm), the MA is extended until one state after the mm ends (the
M—A shown in the dotted line box in figure 7.20) to create a single slot. The MA of the
STS contends with the IF. Figure 7.20 illustrates how this occurs, assuming MA and IF
contention.

Figure 7.20 STS.L (Memory) Instruction Immediately After a MAC.W Instruction

IF

if

EX

— ID

IF ID

MAC.W ID

EX

—

— —

MA mmMA mmmm

Other instruction

STS.L

—

Other instruction

M——————A

EX MA

Other instruction

if — — — ID EX

IF ID EX

: Slot

if

IF

EX

— ID

if —

MAC.W ID

—

ID EX

MA mmMA mmmm

Other instruction

STS.L

Other instruction

M————A

Other instruction

IF ID — — EX

— ID EX

: Slot

EX

.....if —

......

......

......

— WB

—

—

194 HITACHI

5. When an LDS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction,
as described later. When the MA of the LDS instruction contends with the operating
multiplier (mm), the MA is extended until the mm ends (the M—A shown in the dotted
line box in figure 7.21) to create a single slot. The MA of this LDS contends with IF.
Figure 7.21 illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

— ID

IF ID

MAC.W ID

EX

— — —

MA mmMA mmmm

Other instruction

LDS

EX

Other instruction

M————A

MA

Other instruction

if — — — ID EX

IF ID EX

: Slot

if

IF

EX

— ID

if —

MAC.W ID

—

ID EX

MA mmMA mmmm

Other instruction

LDS

Other instruction

M——A

Other instruction

IF ID — EX

ID EX

: Slot

EX

if —

.....

......

......

—

—

Figure 7.21 LDS (Register) Instruction Immediately After a MAC.W Instruction

HITACHI 195

6. When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction,
an MA stage for accessing the memory and the multiplier is added to the LDS instruction,
as described later. When the MA of the LDS instruction contends with the operating
multiplier (mm), the MA is extended until the mm ends (the M—A shown in the dotted
line box in figure 7.22) to create a single slot. The MA of the LDS contends with IF.
Figure 7.22 illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

— ID

IF ID

MAC.W ID

EX

— — —

MA mmMA mmmm

Other instruction

LDS.L

EX MA

Other instruction

M————A

if — — — ID EX

IF ID EX

: Slot

if

if

EX

— ID

if —

MAC.W ID

—

ID EX

MA mmMA mmmm

Other instruction

LDS.L

Other instruction

M——A

Other instruction

IF ID — EX MA

ID EX

: Slot

EX

if —

.....Other instruction
......

......

—

—

Figure 7.22 LDS.L (Memory) Instruction Immediately After a MAC.W Instruction

196 HITACHI

Multiply/Accumulate Instruction (SH-2 CPU): Includes the following instruction type:

• MAC.W @Rm+, @Rn+

IF

IF

EX

ID EX

ID EX

MAC.W ID

MA

MA WB

MA MA mmmm

Third instruction

Next instruction

: Slot

WB

IF
......

—

Figure 7.23 Multiply/Accumulate Instruction Pipeline

Operation: The pipeline has seven stages: IF, ID, EX, MA, MA, mm and mm (figure 7.23).
The second MA reads the memory and accesses the multiplier. The mm indicates that the
multiplier is operating. The mm operates for two cycles after the final MA ends, regardless of
slot. The ID of the instruction after the MAC.W instruction is stalled for one slot. The two
MAs of the MAC.W instruction, when they contend with IF, split the slots as described in
Section 7.4, Contention Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.W instruction, the
MAC.W instruction may be considered to be a five-stage pipeline instructions of IF, ID, EX,
MA, and MA. In such cases, the ID of the next instruction simply stalls one slot and
thereafter the pipeline operates normally. When an instruction that uses the multiplier comes
after the MAC.W instruction, contention occurs with the multiplier, so operation is not as
normal. This occurs in the following cases:

1. When a MAC.W instruction is located immediately after another MAC.W instruction

2. When a MAC.L instruction is located immediately after a MAC.W instruction

3. When a MULS.W instruction is located immediately after a MAC.W instruction

4. When a DMULS.L instruction is located immediately after a MAC.W instruction

5. When an STS (register) instruction is located immediately after a MAC.W instruction

6. When an STS.L (memory) instruction is located immediately after a MAC.W instruction

7. When an LDS (register) instruction is located immediately after a MAC.W instruction

8. When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

HITACHI 197

1. When a MAC.W instruction is located immediately after another MAC.W instruction

The second MA of a MAC.W instruction does not contend with an mm generated by a
preceding multiplication instruction.

IF

IF

EX

— ID

IF —

ID

EX

ID

MA

EX

MA mmMA mm

Third instruction

MAC.W

MA

: Slot

......

MAC.W

MA mm mm

Figure 7.24 MAC.W Instruction That Immediately Follows Another MAC.W
instruction

Sometimes consecutive MAC.Ws may have misalignment of instruction execution caused
by MA and IF contention. Figure 7.25 illustrates a case of this type. This figure assumes
MA and IF contention.

if

IF

EX

— ID

if —

MAC.W ID

EX

— ID EX

MA mmMA mm

MAC.W

MAC.W

MA

MAC.W

—MA

mmMA mm

IF — ID EX MA MA mm

: Slot

......

MA mm mm

Figure 7.25 Consecutive MAC.Ws with Misalignment

198 HITACHI

When the second MA of the MAC.W instruction contends with IF, the slot will split as
usual. Figure 7.26 illustrates a case of this type. This figure assumes MA and IF
contention.

IF

if

EX

— —

IF

IF

MAC.W ID

ID

— ID —

MA mm— MA mm

Other instruction

MAC.W

EX MA

Other instruction

MAEX
....

if — ID EX

: Slot

Other instruction
......

MA mm mm

Figure 7.26 MA and IF Contention

2. When a MAC.L instruction is located immediately after a MAC.W instruction

The second MA of a MAC.W instruction does not contend with an mm generated by a
preceding multiplication instruction (figure 7.27).

IF

IF

EX

— ID

IF —

ID

EX

ID

MA

EX

MA mmMA mm

Third instruction

MAC.L

MA

: Slot

......

MAC.W

MA mm mm mm mm

Figure 7.27 MAC.L Instructions Immediately After a MAC.W Instruction

HITACHI 199

3. When a MULS.W instruction is located immediately after a MAC.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with an operating MAC.W instruction multiplier (mm), the
MA is extended until the mm ends (the M—A shown in the dotted line box in figure 7.28)
to create a single slot. When one or more instructions not related to the multiplier come
between the MAC.W and MULS.W instructions, MAC.W and MULS.W contention does
not cause stalling. There is no MULS.W MA contention while the MAC.W instruction
multiplier is operating (mm). When the MULS.W MA and IF contend, the slot is split.

IF

IF

EX

— ID

IF ID

MAC.W ID

EX

EX — MA

MA mmMA mm

Other instruction

MULS.W
....

......

M——A

: Slot

mm mm

IF EX

ID

IF ID

MAC.W ID

EXIF —

EX MA mm

MA mmMA mm

MULS.W

Other instruction

mm

: Slot

IF ID EX MAOther instruction

......

Figure 7.28 MULS.W Instruction Immediately After a MAC.W Instruction

4. When a DMULS.L instruction is located immediately after a MAC.W instruction

DMULS.L instructions have an MA stage for accessing the multiplier, but there is no
DMULS.L MA contention while the MAC.W instruction multiplier is operating (mm).
When the DMULS.L MA and IF contend, the slot is split (figure 7.29).

IF EX

ID

MAC.W ID

EXIF —

MA mmMA mm

Other instruction

DMULS.L

: Slot

—IF ID EX MA

......

MA MA mm mm mm mm

Figure 7.29 DMULS.L Instructions Immediately After a MAC.W Instruction

200 HITACHI

5. When an STS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in a general-purpose register using an
STS instruction, an MA stage for accessing the multiplier is added to the STS instruction,
as described later. When the MA of the STS instruction contends with the operating
multiplier (mm), the MA is extended until the mm ends (the M—A shown in the dotted
line box in figure 7.30) to create a single slot. The MA of the STS contends with the IF.
Figure 7.30 illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

— —

IF

MAC.W ID

EXID

ID — —

MA — mmMA mm

Other instruction

STS

EX MA

Other instruction

Other instruction
......

M——A

: Slot

WB

if — — ID EX

IF ID EX

if

IF

EX

— ID

if —

MAC.W ID

EX—

ID EX

MA mmMA mm

Other instruction

STS

Other instruction

Other instruction
......

MA

: Slot

WB

IF ID EX MA

if ID EX

Figure 7.30 STS (Register) Instruction Immediately After a MAC.W Instruction

HITACHI 201

6. When an STS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in memory using an STS instruction, an
MA stage for accessing the memory and the multiplier and writing to memory is added to
the STS instruction, as described later. Figure 7.31 illustrates how this occurs, assuming
MA and IF contention.

IF

if

EX

— —

IF

MAC.W ID

EXID

ID — —

MA — mmMA mm

Other instruction

STS.L

EX MA

Other instruction

Other instruction
......

: Slot

if — — ID EX

IF ID EX

if

IF

EX

— ID

if —

MAC.W ID

EX—

ID EX

MA mmMA mm

Other instruction

STS.L

Other instruction

Other instruction
......

M——A

: Slot

IF ID EX

if ID EX

MA

Figure 7.31 STS.L (Memory) Instruction Immediately After a MAC.W Instruction

202 HITACHI

7. When an LDS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction,
as described later. When the MA of the LDS instruction contends with the operating
multiplier (mm), the MA is extended until the mm ends (the M—A shown in the dotted
line box in figure 7.32) to create a single slot. The MA of this LDS contends with IF.
Figure 7.32 illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

— —

IF

MAC.W ID

EXID

ID — —

MA — mmMA mm

Other instruction

LDS

EX MA

Other instruction

Other instruction
......

M——A

: Slot

if — — ID EX

IF ID EX

if

IF

EX

— ID

if —

MAC.W ID

EX—

ID EX

MA mmMA mm

Other instruction

LDS

Other instruction

Other instruction
......

MA

: Slot

IF ID EX

if ID EX

Figure 7.32 LDS (Register) Instruction Immediately After a MAC.W Instruction

HITACHI 203

8. When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction,
an MA stage for accessing the multiplier is added to the LDS instruction, as described
later. When the MA of the LDS instruction contends with the operating multiplier (mm),
the MA is extended until the mm ends (the M—A shown in the dotted line box in figure
7.33) to create a single slot. The MA of the LDS contends with IF. Figure 7.33 illustrates
how this occurs, assuming MA and IF contention.

IF

if

EX

—

IDIF

MAC.W ID

EXID

— — EX

MA MA mm mm

Other instruction

LDS.L

Other instruction

Other instruction
......

M——A

: Slot

—if — ID EX

IF ID EX

if

IF

EX

— ID

if —

MAC.W ID

EX—

ID EX

MA mmMA mm

Other instruction

LDS.L

Other instruction

Other instruction
......

MA

: Slot

IF ID EX

if ID EX

—

—

Figure 7.33 LDS.L (Memory) Instruction Immediately After a MAC.W Instruction

204 HITACHI

Double-Length Multiply/Accumulate Instruction (SH-2 CPU): Includes the following
instruction type:

• MAC.L @Rm+, @Rn+ (SH-2 CPU only)

IF

IF

EX

— ID

ID EX

MAC.L ID

MA WB

MA mmmm

Third instruction

Next instruction

......

: Slot

mm

IF

MA mm

EX MA WB

Figure 7.34 Multiply/Accumulate Instruction Pipeline

Operation: The pipeline has nine stages: IF, ID, EX, MA, MA, mm, mm, mm, and mm
(figure 7.34). The second MA reads the memory and accesses the multiplier. The mm
indicates that the multiplier is operating. The mm operates for four cycles after the final MA
ends, regardless of a slot. The ID of the instruction after the MAC.L instruction is stalled for
one slot. The two MAs of the MAC.L instruction, when they contend with IF, split the slots as
described in Section 7.4, Contention Between Instruction Fetch (IF) and Memory Access
(MA).

When an instruction that does not use the multiplier follows the MAC.L instruction, the
MAC.L instruction may be considered to be five-stage pipeline instructions of IF, ID, EX,
MA, and MA. In such cases, the ID of the next instruction simply stalls one slot and
thereafter the pipeline operates normally. When an instruction that uses the multiplier comes
after the MAC.L instruction, contention occurs with the multiplier, so operation is not as
normal. This occurs in the following cases:

1. When a MAC.L instruction is located immediately after another MAC.L instruction

2. When a MAC.W instruction is located immediately after a MAC.L instruction

3. When a DMULS.L instruction is located immediately after a MAC.L instruction

4. When a MULS.W instruction is located immediately after a MAC.L instruction

5. When an STS (register) instruction is located immediately after a MAC.L instruction

6. When an STS.L (memory) instruction is located immediately after a MAC.L instruction

7. When an LDS (register) instruction is located immediately after a MAC.L instruction

8. When an LDS.L (memory) instruction is located immediately after a MAC.L instruction

HITACHI 205

1. When a MAC.L instruction is located immediately after another MAC.L instruction

When the second MA of the MAC.L instruction contends with the mm produced by the
previous multiplication instruction, the MA bus cycle is extended until the mm ends (the
M—A shown in the dotted line box in figure 7.35) to create a single slot. When two or
more instructions that do not use the multiplier occur between two MAC.L instructions,
the stall caused by multiplier contention between MAC.L instructions is eliminated.

IF

IF

EX

— ID

IF —

MAC.L ID

EX

ID EX —

MA mmMA mmmm

Third instruction

MAC.L

—
......

MA

MA

: Slot

IF

IF

EX

— ID

IF ID

MAC.L ID

EX MA WB

MA mmMA mmmm

Other instruction

Other instruction

MAC.L
......

ID EX MA MA mm mm

EX

mm

M————A mm mm

mm

MA WB

IF

mm mm

: Slot

mm mm

Figure 7.35 MAC.L Instruction Immediately After Another MAC.L Instruction

Sometimes consecutive MAC.Ls may have less multiplier contention even when there is
misalignment of instruction execution caused by MA and IF contention. Figure 7.36
illustrates a case of this type, assuming MA and IF contention.

if

IF

EX

— ID

if —

MAC.L ID

EX

— ID EX

MA mmMA mmmm

MAC.L

MAC.L

—

MA

MA

: Slot

mm

M——A mm mm mm

MAC.L
......

— mm

M————A mm mm mm

IF — — ID MAEX — —
mm

Figure 7.36 Consecutive MAC.Ls with Misalignment

206 HITACHI

When the second MA of the MAC.L instruction is extended to the end of the mm,
contention between the MA and IF will split the slot in the usual way. Figure 7.37
illustrates a case of this type, assuming MA and IF contention.

IF

if

EX

— —

IF —

MAC.L ID

ID

ID — —

MA MA— mmmm

Other intruction

MAC.L

—

EX

EX

: Slot

mm

M————A mm mm

Other intruction

Other intruction

MA mm

if — — — ID

......

mm

mm

IF

Figure 7.37 MA and IF Contention

HITACHI 207

2. When a MAC.W instruction is located immediately after a MAC.L instruction

When the second MA of the MAC.W instruction contends with the mm produced by the
previous multiplication instruction, the MA bus cycle is extended until the mm ends (the
M—A shown in the dotted line box in figure 7.38) to create a single slot. When two or
more instructions that do not use the multiplier occur between the MAC.L and MAC.W
instructions, the stall caused by multiplier contention between MAC.L instructions is
eliminated.

IF

IF

EX

— ID

IF —

MAC.L ID

EX

ID EX —

MA mmMA mmmm

Third instruction

MAC.W

—
......

MA

MA

: Slot

IF

IF

EX

— ID

IF ID

MAC.L ID

EX MA WB

MA mmMA mmmm

Other instruction

Other instruction

MAC.W
......

ID EX MA MA mm mm

: Slot

EX

mm

MA————A mm mm

mm

MA WB

IF

Figure 7.38 MAC.W Instruction Immediately After a MAC.L Instruction

208 HITACHI

3. When a DMULS.L instruction is located immediately after a MAC.L instruction

DMULS.L instructions have an MA stage for accessing the multiplier. When the second
MA of the DMULS.L instruction contends with an operating MAC.L instruction multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.39) to create a single slot. When two or more instructions not related to the
multiplier come between the MAC.L and DMULS.L instructions, MAC.L and DMULS.L
contention does not cause stalling. When the DMULS.L MA and IF contend, the slot is
split.

IF

IF

EX

— ID

IF —

MAC.L ID

EX

ID — —

MA mmMA mmmm

Other instruction

DMULS.L

EX
......

MA

MA

: Slot

IF

IF

EX

— ID

IF ID

MAC.L ID

EX MA

MA mmMA mmmm

DMULS.L

Other instruction

Other instruction
......

— ID — EX MA

EX

mm

M————A mm mm

mm

IF

mm mm

: Slot

mm mm mm mmM——A

IF

IF

EX

— ID

IF ID

MAC.L ID

EX MA

MA mmMA mmmm

Other instruction

Other instruction

DMULS.L

Other instruction

ID EX MA MA

EX

mm

IF

: Slot

mm mm mm mm

WB

......

MA WB

— ID EX MAIF

Figure 7.39 DMULS.L Instruction Immediately After a MAC.L Instruction

HITACHI 209

4. When a MULS.W instruction is located immediately after a MAC.L instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with an operating MAC.L instruction multiplier (mm), the
MA is extended until the mm ends (the M—A shown in the dotted line box in figure 7.40)
to create a single slot. When three or more instructions not related to the multiplier come
between the MAC.L and MULS.W instructions, MAC.L and MULS.W contention does not
cause stalling. When the MULS.W MA and IF contend, the slot is split.

IF

IF

EX

— ID

IF ID

MAC.L ID

EX MA

MA mmMA mmmm

Other instruction

Other instruction

MULS.W

Other instruction

ID EX

EX

mm

IF

: Slot

WB

......

ID EX MAIF

IF

IF

EX

— ID

IF ID

MAC.L ID

EX MA

MA mmMA mmmm

Other instruction

Other instruction

Other instruction

MULS.W

ID EX

EX

mm

IF

: Slot

mm mm

WB

MA WB

ID EX MA
......

IF

MA

Other instruction
......

WB

M——A mm mm

MA

MA WB

ID EX —IF

IF

IF

EX

— ID

IF —

MAC.L ID

EX

ID EX —

MA mmMA mmmm

Other instruction

MULS.W

—
......

MA

—

: Slot

IF

IF

EX

— ID

IF ID

MAC.L ID

EX

MA mmMA mmmm

MULS.W

Other instruction

Other instruction
......

ID EX — — MA

EX

mm mm

M——————A

MA

mm mm

mm

IF

: Slot

mm mmM————A

Figure 7.40 MULS.W Instruction Immediately After a MAC.L Instruction

210 HITACHI

5. When an STS (register) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are stored in a general-purpose register using an
STS instruction, an MA stage for accessing the multiplier is added to the STS instruction,
as described later. When the MA of the STS instruction contends with the operating
multiplier (mm), the MA is extended until the mm ends (the M—A shown in the dotted
line box in figure 7.41) to create a single slot. The MA of the STS contends with the IF.
Figure 7.41 illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

ID

IF ID

MAC.L ID

— —

MA mmMA mmmm

Other instruction

STS

Other instruction

Other instruction

— —

EX

mm

if

: Slot

—

......

M———————A WB

—

— —

EX MA

ID EX

IF ID EX

if

IF

EX

— ID

—

MAC.L ID

ID EX

MA mmMA mmmm

Other instruction

STS

Other instruction

Other instruction

IF ID

—

mm

: Slot

......

M————A WB

— — EX

ID EX

EX

if

if — —

—

— —

Figure 7.41 STS (Register) Instruction Immediately After a MAC.L Instruction

HITACHI 211

6. When an STS.L (memory) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are stored in memory using an STS instruction, an
MA stage for accessing the multiplier and writing to memory is added to the STS
instruction, as described later. The MA of the STS contends with the IF. Figure 7.42
illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

— ID

IF ID

MAC.L ID

— —

MA mmMA mmmm

Other instruction

STS.L

Other instruction

Other instruction

— —

EX

mm

if

: Slot

—

......

M———————A

—

— —

EX MA

ID EX

IF ID EX

if

IF

EX

— ID

—

MAC.L ID

ID EX

MA mmMA mmmm

Other instruction

STS.L

Other instruction

Other instruction

IF ID

—

mm
: Slot

......

M————A

— — EX

ID EX

EX

if

if — —

—

—

Figure 7.42 STS.L (Memory) Instruction Immediately After a MAC.L Instruction

212 HITACHI

7. When an LDS (register) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction,
as described later. When the MA of the LDS instruction contends with the operating
multiplier (mm), the MA is extended until the mm ends (the M—A shown in the dotted
line box in figure 7.43) to create a single slot. The MA of this LDS contends with IF.
Figure 7.43 illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

— ID

IF ID

MAC.L ID

— —

MA mmMA mmmm

Other instruction

LDS

Other instruction

Other instruction

— —

EX

mm

if

: Slot

—

......

M—————–—A

—

— —

EX MA

ID EX

IF ID EX

if

IF

EX

— ID

—

MAC.L ID

ID EX

MA mmMA mmmm

Other instruction

LDS

Other instruction

Other instruction

IF ID

—

mm

: Slot

......

M————A

— — EX

ID EX

EX

if

if — —

......

......

—

—

Figure 7.43 LDS (Register) Instruction Immediately After a MAC.L Instruction

HITACHI 213

8. When an LDS.L (memory) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are loaded from memory using an LDS instruction,
an MA stage for accessing the memory and the memory and the multiplier is added to the
LDS instruction, as described later. When the MA of the LDS instruction contends with
the operating multiplier (mm), the MA is extended until the mm ends (the M—A shown
in the dotted line box in figure 7.44) to create a single slot. The MA of the LDS contends
with IF. Figure 7.44 illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

— ID

IF ID

MAC.L ID

— —

MA mmMA mmmm

Other instruction

LDS.L

Other instruction

Other instruction

— —

EX

mm

if

: Slot

—

......

M—————–—A

—

— —

EX MA

ID EX

IF ID EX

if

IF

EX

— ID

—

MAC.L ID

ID EX

MA mmMA mmmm

Other instruction

LDS.L

Other instruction

Other instruction

IF ID

—

mm

: Slot

......

M————A

— — EX

ID EX

EX

if

if — —

......

......

—

—

Figure 7.44 LDS.L (Memory) Instruction Immediately After a MAC.L Instruction

214 HITACHI

Multiplication Instructions (SH-1 CPU): Include the following instruction types:

• MULS.W Rm, Rn

• MULU.W Rm, Rn

IF

IF

EX

ID EX

ID EX

MULS.W ID

MA

MA WB

MA mm mmmm

Third instruction

Next instruction

: Slot

WB

IF
......

Figure 7.45 Multiplication Instruction Pipeline

Operation: The pipeline has seven stages: IF, ID, EX, MA, mm, mm, and mm (figure 8.45).
The MA accesses the multiplier. The mm indicates that the multiplier is operating. The mm
operates for three cycles after the MA ends, regardless of a slot. The MA of the MULS.W
instruction, when it contends with IF, splits the slot as described in Section 7.4, Contention
Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier comes after the MULS.W instruction, the
MULS.W instruction may be considered to be four-stage pipeline instructions of IF, ID, EX,
and MA. In such cases, it operates like a normal pipeline. When an instruction that uses the
multiplier comes after the MULS.W instruction, however, contention occurs with the
multiplier, so operation is not as normal. This occurs in the following cases:

1. When a MAC.W instruction is located immediately after a MULS.W instruction

2. When a MULS.W instruction is located immediately after another MULS.W instruction

3. When an STS (register) instruction is located immediately after a MULS.W instruction

4. When an STS.L (memory) instruction is located immediately after a MULS.W instruction

5. When an LDS (register) instruction is located immediately after a MULS.W instruction

6. When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

HITACHI 215

1. When a MAC.W instruction is located immediately after a MULS.W instruction

When the second MA of a MAC.W instruction contends with the mm generated by a
preceding multiplication instruction, the bus cycle of that MA is extended until the mm
ends (the M—A shown in the dotted line box below) and that extended MA occupies one
slot.

If one or more instructions not related to the multiplier comes between the MULS.W and
MAC.W instructions, multiplier contention between the MULS.W and MAC.W
instructions does not cause stalls (figure 7.46).

IF

IF

EX

ID EX

—

MULS.W ID

MA

ID EX —

MA mm mmmm

Third instruction

MAC.W

MA

M——A

: Slot

IF

IF

EX

ID EX

IF ID

MULS.W ID

MA

EX MA MA

MA mm mmmm

Other instruction

mm mm

: Slot

WB

 mm mm mm

mm

.....

.....

IF
......

......
MAC.W

Figure 7.46 MAC.W Instruction Immediately After a MULS.W Instruction

216 HITACHI

2. When a MULS.W instruction is located immediately after another MULS.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with the operating multiplier (mm) of another MULS.W
instruction, the MA is extended until the mm ends (the M—A shown in the dotted line
box in figure 7.47) to create a single slot. When two or more instructions not related to the
multiplier are located between the two MULS.W instructions, contention between the
MULS.Ws does not cause stalling. When the MULS.W MA and IF contend, the slot is
split.

mm mm mm

IF

IF

EX

ID EX

IF

MULS.W ID

ID EX —

MA mm mmmm

Other instruction

MULS.W

—

M————A mm mm mm

MA

: Slot

IF

IF

EX

ID EX

IF

MULS.W ID

ID EX

MA mm mmmm

MULS.W

Other instruction

M——A

: Slot

Other instruction IF ID EX — MA

IF

IF

EX

ID EX

IF

MULS.W ID

ID EX MA

MA mm mmmm

Other instruction

Other instruction

mm mm mm

: Slot

MULS.W

Other instruction

MA WB

IF ID EX MA WB

IF ID EX MA

......

......

......

Figure 7.47 MULS.W Instruction Immediately After Another MULS.W Instruction

HITACHI 217

When the MA of the MULS.W instruction is extended until the mm ends, contention
between MA and IF will split the slot, as is normal. Figure 7.48 illustrates a case of this
type, assuming MA and IF contention.

IF

if

EX

ID EX

IF

MULS.W ID

ID — —

MA mm mmmm

Other instruction

MULS.W

EX

M————A mm mm mm

MA

: Slot

Other instruction

Other instruction

—

 if — — ID EX—

IF ID

......

Figure 7.48 MULS.W Instruction Immediately After Another MULS.W Instruction
(IF and MA Contention)

218 HITACHI

3. When an STS (register) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are stored in a general-purpose register using an
STS instruction, an MA stage for accessing the multiplier is added to the STS instruction,
as described later. When the MA of the STS instruction contends with the operating
multiplier (mm), the MA is extended until the mm ends (the M—A shown in the dotted
line box in figure 7.49) to create a single slot. The MA of the STS contends with the IF.
Figure 7.49 illustrates how this occurs, assuming MA and IF contention.

.....

IF

if

EX

ID EX

IF

MULS.W ID

ID — —

MA mm mmmm

Other instruction

STS

EX

M————A WB

MA

: Slot

Other instruction

Other instruction

—

 if — — ID EX—

IF ID EX

if

IF

EX

ID —

if

MULS.W ID

— ID

MA mm mmmm

Other instruction

STS M——A WB

: Slot

Other instruction

Other instruction

EX

 IF —ID

if — ID

EX

EX

EX

......

......

Figure 7.49 STS (Register) Instruction Immediately After a MULS.W Instruction

HITACHI 219

4. When an STS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from memory using an STS instruction,
an MA stage for accessing the multiplier and writing to memory is added to the STS
instruction, as described later. When the MA of the STS instruction contends with the
operating multiplier (mm), the MA is extended until one cycle after the mm ends (the
M—A shown in the dotted line box in figure 7.50) to create a single slot. The MA of the
STS contends with the IF. Figure 7.50 illustrates how this occurs, assuming MA and IF
contention.

EX
EX

IF

if

EX

ID EX

IF

MULS.W ID

ID — —

MA mm mmmm

Other instruction

STS.L M————A

EX MA
Other instruction
Other instruction

—
 if — — ID EX—

IF ID EX

if

IF

EX

ID —

if

MULS.W ID

— ID

MA mm mmmm

Other instruction

STS.L M——A

: Slot

Other instruction
Other instruction

EX
 IF —ID

if — ID

EX

.....

......

......

: Slot

Figure 7.50 STS.L (Memory) Instruction Immediately After a MULS.W Instruction

220 HITACHI

5. When an LDS (register) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction,
as described later. When the MA of the LDS instruction contends with the operating
multiplier (mm), the MA is extended until the mm ends (the M—A shown in the dotted
line box below) to create a single slot. The MA of this LDS contends with IF. Figure 7.51
illustrates how this occurs, assuming MA and IF contention.

.....

IF

if

EX

ID EX

IF

MULS.W ID

ID — —

MA mm mmmm

Other instruction

LDS

EX

M————A

MA

: Slot

Other instruction

Other instruction

—

 if — — ID EX—

IF ID EX

if

IF

EX

ID —

if

MULS.W ID

— ID

MA mm mmmm

Other instruction

LDS M——A

: Slot

Other instruction

Other instruction

EX

 IF — EXID

if — ID EX

EX

......

......

Figure 7.51 LDS (Register) Instruction Immediately After a MULS.W Instruction

HITACHI 221

6. When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction,
an MA stage for accessing the memory and the multiplier is added to the LDS instruction,
as described later. When the MA of the LDS instruction contends with the operating
multiplier (mm), the MA is extended until the mm ends (the M—A shown in the dotted
line box in figure 7.52) to create a single slot. The MA of the LDS contends with IF.
Figure 7.52 illustrates how this occurs, assuming MA and IF contention.

.....

IF

if

EX

ID EX

IF

MULS.W ID

ID — —

MA mm mmmm

Other instruction

LDS.L

EX

M————A

MA

: Slot

Other instruction

Other instruction

—

 if — — ID EX—

IF ID EX

if

IF

EX

ID —

if

MULS.W ID

— ID

MA mm mmmm

Other instruction

LDS.L M——A

: Slot

Other instruction

Other instruction

EX

 IF — EXID

if — ID EX

EX

......

......

Figure 7.52 LDS.L (Memory) Instruction Immediately After a MULS.W Instruction

222 HITACHI

Multiplication Instructions (SH-2 CPU): Include the following instruction types:

• MULS.W Rm, Rn

• MULU.W Rm, Rn

Next instruction

Third instruction

IF

IF

EX

ID

IF

EX

ID EX

MULS.W ID

MA

MA

: Slot

.....

MA mm mm

WB

WB

Figure 7.53 Multiplication Instruction Pipeline

Operation: The pipeline has six stages: IF, ID, EX, MA, mm, and mm (figure 8.53). The MA
accesses the multiplier. The mm indicates that the multiplier is operating. The mm operates
for two cycles after the MA ends, regardless of the slot. The MA of the MULS.W instruction,
when it contends with IF, splits the slot as described in Section 7.4, Contention Between
Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier comes after the MULS.W instruction, the
MULS.W instruction may be considered to be four-stage pipeline instructions of IF, ID, EX,
and MA. In such cases, it operates like a normal pipeline. When an instruction that uses the
multiplier is located after the MULS.W instruction, however, contention occurs with the
multiplier, so operation is not as normal. This occurs in the following cases:

1. When a MAC.W instruction is located immediately after a MULS.W instruction

2. When a MAC.L instruction is located immediately after a MULS.W instruction

3. When a MULS.W instruction is located immediately after another MULS.W instruction

4. When a DMULS.L instruction is located immediately after a MULS.W instruction

5. When an STS (register) instruction is located immediately after a MULS.W instruction

6. When an STS.L (memory) instruction is located immediately after a MULS.W instruction

7. When an LDS (register) instruction is located immediately after a MULS.W instruction

8. When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

HITACHI 223

1. When a MAC.W instruction is located immediately after a MULS.W instruction

The second MA of a MAC.W instruction does not contend with the mm generated by a
preceding multiplication instruction.

IF

IF

EX

ID EX

— ID

MULS.W ID

MA

EX MA

MA mmmm

Third instruction

MAC.W

......

MA

: Slot

mm mm

IF

Figure 7.54 MAC.W Instruction Immediately After a MULS.W Instruction

2. When a MAC.L instruction is located immediately after a MULS.W instruction

The second MA of a MAC.W instruction does not contend with the mm generated by a
preceding multiplication instruction.

IF

IF

EX

ID EX

— ID

MULS.W ID

MA

EX MA

MA mmmm

Third instruction

MAC.L

......

MA

: Slot

mm mm

IF

mm mm

Figure 7.55 MAC.L Instruction Immediately After a MULS.W Instruction

224 HITACHI

3. When a MULS.W instruction is located immediately after another MULS.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with the operating multiplier (mm) of another MULS.W
instruction, the MA is extended until the mm ends (the M—A shown in the dotted line
box in figure 7.56) to create a single slot. When one or more instructions not related to the
multiplier is located between the two MULS.W instructions, contention between the
MULS.Ws does not cause stalling. When the MULS.W MA and IF contend, the slot is
split.

IF

IF

EX

ID EX

IF ID

MULS.W ID

EX — MA

MA mmmm

Other instruction

MULS.W
......

......

: Slot

mm mmM——A

IF

IF

EX

ID EX

IF ID

MULS.W ID

EX MA mm

MA mmmm

MULS.W

Other instruction

mm

Other instruction

: Slot

......
IF ID EX MA

Figure 7.56 MULS.W Instruction Immediately After Another MULS.W Instruction

When the MA of the MULS.W instruction is extended until the mm ends, contention
between the MA and IF will split the slot in the usual way. Figure 7.57 illustrates a case
of this type, assuming MA and IF contention.

IF

if

EX

ID EX

IF ID

MULS.W ID

— — EX

MA mmmm

Other instruction

MULS.W

MA

Other instruction

: Slot

mm mmM——A

Other instruction
......

......

if — — ID EX

IF ID

Figure 7.57 MULS.W Instruction Immediately After Another MULS.W Instruction
(IF and MA contention)

HITACHI 225

4. When a DMULS.L instruction is located immediately after a MULS.W instruction

Though the second MA in the DMULS.L instruction makes an access to the multiplier, it
does not contend with the operating multiplier (mm) generated by the MULS.W
instruction.

IF

IF

EX

ID EX

IF —

MULS.W ID

ID EX MA

MA mmmm

Other instruction

DMULS.L
......

......

: Slot

mm mmMA MA mm mm

Figure 7.58 DMULS.L Instruction Immediately After a MULS.W Instruction

226 HITACHI

5. When an STS (register) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are stored in a general-purpose register using an
STS instruction, an MA stage for accessing the multiplier is added to the STS instruction,
as described later. When the MA of the STS instruction contends with the operating
multiplier (mm), the MA is extended until the mm ends (the M—A shown in the dotted
line box in figure 7.59) to create a single slot. The MA of the STS contends with the IF.
Figure 7.59 illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

ID EX

IF ID

MULS.W ID

— — EX

MA mmmm

Other instruction

STS

MA

Other instruction

: Slot

WBM——A

Other instruction
......

if — — ID EX

IF ID EX

if

IF

EX

ID —

if —

MULS.W ID

ID EX

MA mmmm

Other instruction

STS

Other instruction

: Slot

WBMA

Other instruction
......

IF ID EX

if ID EX

EX

Figure 7.59 STS (Register) Instruction Immediately After a MULS.W Instruction

HITACHI 227

6. When an STS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are stored in memory using an STS instruction, an
MA stage for accessing the multiplier and writing to memory is added to the STS
instruction, as described later. The MA of the STS contends with the IF. Figure 7.60
illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

ID EX

IF ID

MULS.W ID

— — EX

MA mmmm

Other instruction

STS.L

MA

Other instruction

: Slot

M———A

Other instruction
......

if — — ID EX

IF ID EX

if

IF

EX

ID —

if —

MULS.W ID

ID EX

MA mmmm

Other instruction

STS.L

Other instruction

MA

Other instruction
......

IF ID EX

if ID EX

EX

......

: Slot

Figure 7.60 STS.L (Memory) Instruction Immediately After a MULS.W Instruction

228 HITACHI

7. When an LDS (register) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction,
as described later. When the MA of the LDS instruction contends with the operating
multiplier (mm), the MA is extended until the mm ends (the M—A shown in the dotted
line box below) to create a single slot. The MA of this LDS contends with IF. The
following figures illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

ID EX

IF ID

MULS.W ID

— — EX

MA mmmm

Other instruction

LDS

MA

Other instruction

: Slot

M——A

Other instruction
......

if — — ID EX

IF ID EX

if

IF

EX

ID —

if —

MULS.W ID

ID EX

MA mmmm

Other instruction

LDS

Other instruction

: Slot

MA

Other instruction
......

IF ID EX

if ID EX

EX

Figure 7.61 LDS (Register) Instruction Immediately After a MULS.W Instruction

HITACHI 229

8. When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction,
an MA stage for accessing the multiplier is added to the LDS instruction, as described
later. When the MA of the LDS instruction contends with the operating multiplier (mm),
the MA is extended until the mm ends (the M—A shown in the dotted line box in figure
7.62) to create a single slot. The MA of the LDS contends with IF. Figure 7.62 illustrates
how this occurs, assuming MA and IF contention.

IF

if

EX

ID EX

IF ID

MULS.W ID

— — EX

MA mmmm

Other instruction

LDS.L

MA

Other instruction

: Slot

M——A

Other instruction
......

if — — ID EX

IF ID EX

if

IF

EX

ID —

if —

MULS.W ID

ID EX

MA mmmm

Other instruction

LDS.L

Other instruction

: Slot

MA

Other instruction
......

IF ID EX

if ID EX

EX

Figure 7.62 LDS.L (Memory) Instruction Immediately After a MULS.W Instruction

Double-Length Multiplication Instructions (SH-2 CPU): Include the following instruction
types:

• DMULS.L Rm, Rn (SH-2 CPU only)

• DMULU.L Rm, Rn (SH-2 CPU only)

• MUL.L Rm, Rn (SH-2 CPU only)

IF

IF

EX

— ID

ID EX

DMULS.L ID

EX

MA WB

MA mmMA

Third instruction

Next instruction

......

MA

: Slot

WB

IF

mm mm mm

Figure 7.63 Multiplication Instruction Pipeline

230 HITACHI

The pipeline has nine stages: IF, ID, EX, MA, MA, mm, mm, mm, and mm (figure 7.63). The
MA accesses the multiplier. The mm indicates that the multiplier is operating. The mm
operates for four cycles after the MA ends, regardless of a slot. The ID of the instruction
following the DMULS.L instruction is stalled for 1 slot (see the description of the
multiply/accumulate instruction). The two MA stages of the DMULS.L instruction, when they
contend with IF, split the slot as described in section 7.4, Contention Between Instruction
Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier comes after the DMULS.L instruction,
the DMULS.L instruction may be considered to be a five-stage pipeline instruction of IF, ID,
EX, MA, and MA. In such cases, it operates like a normal pipeline. When an instruction that
uses the multiplier comes after the DMULS.L instruction, however, contention occurs with
the multiplier, so operation is not as normal. This occurs in the following cases:

1. When a MAC.L instruction is located immediately after a DMULS.L instruction

2. When a MAC.W instruction is located immediately after a DMULS.L instruction

3. When a DMULS.L instruction is located immediately after another DMULS.L instruction

4. When a MULS.W instruction is located immediately after a DMULS.L instruction

5. When an STS (register) instruction is located immediately after a DMULS.L instruction

6. When an STS.L (memory) instruction is located immediately after a DMULS.L instruction

7. When an LDS (register) instruction is located immediately after a DMULS.L instruction

8. When an LDS.L (memory) instruction is located immediately after a DMULS.L
instruction

1. When a MAC.L instruction is located immediately after a DMULS.L instruction

When the second MA of a MAC.L instruction contends with the mm generated by a
preceding multiplication instruction, the bus cycle of that MA is extended until the mm
ends (the M—A shown in the dotted line box below) and that extended MA occupies one
slot.

If two or more instructions not related to the multiplier are located between the DMULS.L
and MAC.L instructions, multiplier contention between the DMULS.L and MAC.L
instructions does not cause stalls (figure 7.64).

HITACHI 231

IF

IF

EX

— ID

— ID

DMULS.L ID

EX —

mm

MA mmmm

Third instruction

MAC.L mm

......

: Slot

M————A

MA—

mm

IF

mm mm

MA mm

EX MA

IF

IF

EX

— ID

ID EX

DMULS.L ID

MA WB

MA mmmm

Other instruction

Other instruction

MAC.L

: Slot

mm

IF

MA mm

EX MA

......

WB

ID EX MA MAIF mm mm mm mm

Figure 7.64 MAC.L Instruction Immediately After a DMULS.L Instruction

2. When a MAC.W instruction is located immediately after a DMULS.L instruction

When the second MA of a MAC.W instruction contends with the mm generated by a
preceding multiplication instruction, the bus cycle of that MA is extended until the mm
ends (the M—A shown in the dotted line box below) and that extended MA occupies one
slot.

If two or more instructions not related to the multiplier are located between the DMULS.L
and MAC.W instructions, multiplier contention between the DMULS.L and MAC.W
instructions does not cause stalls (figure 7.65).

IF

IF

EX

— ID

— ID

DMULS.L ID

EX —

mm

MA mmmm

Third instruction

MAC.W mm

......

: Slot

M————A

MA—

mm

IF

MA mm

EX MA

IF

IF

EX

— ID

ID EX

DMULS.L ID

MA WB

MA mmmm

Other instruction

Other instruction

MAC.W

: Slot

mm

IF

MA mm

EX MA

......

WB

ID EX MA MAIF mm mm

Figure 7.65 MAC.W Instruction Immediately After a DMULS.L Instruction

232 HITACHI

3. When a DMULS.L instruction is located immediately after another DMULS.L instruction

DMULS.L instructions have an MA stage for accessing the multiplier. When the MA of
the DMULS.L instruction contends with the operating multiplier (mm) of another
DMULS.L instruction, the MA is extended until the mm ends (the M—A shown in the
dotted line box in figure 7.66) to create a single slot. When two or more instructions not
related to the multiplier are located between two DMULS.L instructions, contention
between the DMULS.Ls does not cause stalling. When the DMULS.L MA and IF contend,
the slot is split.

IF

IF

EX

— ID

— ID

DMULS.L ID

EX —

mm

MA mmmm

Other instruction

DMULS.L mm

......

: Slot

M————A

MA—

mm

IF

MA mm

EX MA mm mm

IF

IF

EX

— ID

ID EX

DMULS.L ID

MA mm

MA mmmm

DMULS.L

Other instruction

mm

Other instruction

: Slot

M——A

mm

IF

MA mm

EX

......

— ID EX MAIF —

IF

IF

EX

— ID

ID EX

DMULS.L ID

MA

mm

MA mmmm

Other instruction

Other instruction

mmDMULS.L

: Slot

mm

IF

MA mm

EX MA

mm mm

Other instruction

ID EX MAIF MA

WB

mm mm

......

WB

MAIF — ID EX

Figure 7.66 DMULS.L Instruction Immediately After Another DMULS.L Instruction

HITACHI 233

When the MA of the DMULS.L instruction is extended until the mm ends, contention
between the MA and IF will split the slot in the usual way. Figure 7.67 illustrates a case
of this type, assuming MA and IF contention.

IF

if

EX

— EX —

ID

DMULS.L ID

— —

mm

MA mmmm

Other instruction

DMULS.L mm

Other instruction

: Slot

M—————A

EX—

mmMA —

MA mm mm

if — — ID EX—

Other instruction
......

IF ID

mm

ID

IF

Figure 7.67 DMULS.L Instruction Immediately After Another DMULS.L Instruction
(IF and MA Contention)

4. When a MULS.W instruction is located immediately after a DMULS.L instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with the operating multiplier (mm) of a DMULS.L
instruction, the MA is extended until the mm ends (the M—A shown in the dotted line
box in figure 7.68) to create a single slot. When three or more instructions not related to
the multiplier are located between the DMULS.L instruction and the MULS.W instruction,
contention between the DMULS.L and MULS.W does not cause stalling. When the
MULS.W MA and IF contend, the slot is split..

IF

IF

EX

— ID

ID EX

DMULS.L ID

— —

mm

MA mmmm

Other instruction

MULS.W mm

......

: Slot

M———————A

MA—

mm

IF

MA mm

EX

IF

IF

EX

— ID

ID EX

DMULS.L ID

MA WB

MA mmmm

Other instruction

Other instruction

Other instruction

: Slot

mm

IF

MA mm

EX MA

ID EX MA WB

MULS.W

Other instruction
......

WB

IF

IF

IF

ID EX MA MA mm mm

ID EX MA

Figure 7.68 MULS.W Instruction Immediately After a DMULS.L Instruction

When the MA of the DMULS.L instruction is extended until the mm ends, contention
between the MA and IF will split the slot in the usual way. Figure 7.69 illustrates a case
of this type, assuming MA and IF contention.

234 HITACHI

IF

if

EX

— ID

ID —

DMULS.L ID

— —

mm

MA mmmm

Other instruction

MULS.W mm

Other instruction

: Slot

M———————A

EX MA—

mm

IF

MA mm

EX
......

— — — ID EX—

Other instruction
......

IF ID
if

—

—

Figure 7.69 MULS.W Instruction Immediately After a DMULS.L Instruction (IF and
MA Contention)

5. When an STS (register) instruction is located immediately after a DMULS.L instruction

When the contents of a MAC register are stored in a general-purpose register using an
STS instruction, an MA stage for accessing the multiplier is added to the STS instruction,
as described later. When the MA of the STS instruction contends with the operating
multiplier (mm), the MA is extended until the mm ends (the M—A shown in the dotted
line box in figure 7.70) to create a single slot. The MA of the STS contends with the IF.
Figure 7.70 illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

—

IDIF

DMULS.L ID

EX WBID

— — —

MA MA mm mm mm mm

Other instruction

STS

— EX

Other instruction

Other instruction
......

M——————A

: Slot

—if — — — ID EX

 IF ID EX

if

IF

EX

—

—if

DMULS.L ID

— EX WBID

ID EX

MA MA mm mm mm mm

Other instruction

STS

Other instruction

Other instruction
......

M————A

: Slot

IF ID — — EX

if — — ID EX

—

—

Figure 7.70 STS (Register) Instruction Immediately After a DMULS.L Instruction

HITACHI 235

6. When an STS.L (memory) instruction is located immediately after a DMULS.L instruction

When the contents of a MAC register are stored in memory using an STS instruction, an
MA stage for accessing the multiplier and writing to memory is added to the STS
instruction, as described later. The MA of the STS contends with the IF. Figure 7.71
illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

—

IDIF

DMULS.L ID

EX
ID

— — —

MA MA mm mm mm mm

Other instruction

STS.L

— EX MA

Other instruction

Other instruction
......

M——————A

: Slot

—if — — — ID EX

IF ID EX

if

IF

EX

—

—if

DMULS.L ID

— EXID

ID EX

MA MA mm mm mm mm

Other instruction

STS.L

Other instruction

Other instruction
......

M—————A

: Slot

IF ID — — EX

if — — ID EX

—

—

Figure 7.71 STS.L (Memory) Instruction Immediately After a DMULS.L Instruction

7. When an LDS (register) instruction is located immediately after a DMULS.L instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction,
as described later. When the MA of the LDS instruction contends with the operating
multiplier (mm), the MA is extended until the mm ends (the M—A shown in the dotted
line box below) to create a single slot. The MA of this LDS contends with IF. The
following figure illustrates how this occurs, assuming MA and IF contention.

236 HITACHI

IF

if

EX

—

IDIF

DMULS.L ID

EX
ID

— — —

MA MA mm mm mm mm

Other instruction

LDS

EX MA

Other instruction

Other instruction
......

M——————A

: Slot

—if — — ID EX

IDIF EX

if

IF

EX

—

—if

DMULS.L ID

— EXID

ID EX

MA MA mm mm mm mm

Other instruction

LDS

Other instruction

Other instruction
......

M————A

: Slot

IF ID — — EX

if — — ID EX

—

—

—

—

Figure 7.72 LDS (Register) Instruction Immediately After a DMULS.L Instruction

8. When an LDS.L (memory) instruction is located immediately after a DMULS.L
instruction

When the contents of a MAC register are loaded from memory using an LDS instruction,
an MA stage for accessing the memory and the multiplier is added to the LDS instruction,
as described later. When the MA of the LDS instruction contends with the operating
multiplier (mm), the MA is extended until the mm ends (the M—A shown in the dotted
line box in figure 7.73) to create a single slot. The MA of the LDS contends with IF.
Figure 7.73 illustrates how this occurs, assuming MA and IF contention.

HITACHI 237

IF

if

EX

—

IDIF

DMULS.L ID

EX
ID

— — —

MA MA mm mm mm mm

Other instruction

LDS.L

— EX MA

Other instruction

Other instruction
......

M——————A

: Slot

—if — — — ID EX

IF ID EX

if

IF

EX

—

—if

DMULS.L ID

— EXID

ID EX

MA MA mm mm mm mm

Other instruction

LDS.L

Other instruction

Other instruction
......

M————A

: Slot

IF ID — — EX

if — — ID
EX

—

—

Figure 7.73 LDS.L (Memory) Instruction Immediately After a DMULS.L Instruction

7.7.3 Logic Operation Instructions

Register-Register Logic Operation Instructions: Include the following instruction types:

• ANDRm, Rn

• AND#imm, R0

• NOT Rm, Rn

• OR Rm, Rn

• OR #imm, R0

• TST Rm, Rn

• TST #imm, R0

• XORRm, Rn

• XOR#imm, R0

Next instruction

Third instruction

IF

IF

EX

ID

IF

EX

ID EX

: Slot

Instruction A ID
.....

.....

......

Figure 7.74 Register-Register Logic Operation Instruction Pipeline

238 HITACHI

Operation: The pipeline has three stages: IF, ID, and EX (figure 8.74). The data operation is
completed in the EX stage via the ALU.

Memory Logic Operation Instructions: Include the following instruction types:

• AND.B #imm, @(R0, GBR)

• OR.B #imm, @(R0, GBR)

• TST.B #imm, @(R0, GBR)

• XOR.B #imm, @(R0, GBR)

Next instruction

Third instruction

IF

IF

EX

— —

 IF

Instruction A ID

ID

ID

EX

EX

: Slot

.....

.....

MA MAEX

......

Figure 7.75 Memory Logic Operation Instruction Pipeline

Operation: Operation: The pipeline has six stages: IF, ID, EX, MA, EX, and MA (figure
7.75). The ID of the next instruction stalls for 2 slots. The MAs of these instructions contend
with IF.

TAS Instruction: Includes the following instruction type:

• TAS.B @Rn

Next instruction

Third instruction

IF

IF

EX

— —

Instruction A ID

—

IF

ID

ID

: Slot

EX

EX

MA MAEX

......

Figure 7.76 TAS Instruction Pipeline

Operation: The pipeline has six stages: IF, ID, EX, MA, EX, and MA (figure 7.76). The ID
of the next instruction stalls for 3 slots. The MA of the TAS instruction contends with IF.

7.7.4 Shift Instructions

Shift Instructions: Include the following instruction types:

• ROTL Rn

HITACHI 239

• ROTR Rn

• ROTCL Rn

• ROTCR Rn

• SHAL Rn

• SHAR Rn

• SHLL Rn

• SHLR Rn

• SHLL2 Rn

• SHLR2 Rn

• SHLL8 Rn

• SHLR8 Rn

• SHLL16 Rn

• SHLR16 Rn

Next instruction

Third instruction

IF

IF

EX

ID EX

Instruction A ID
.....

IF

ID

: Slot

EX

......

Figure 7.77 Shift Instruction Pipeline

Operation: The pipeline has three stages: IF, ID, and EX (figure 7.77). The data operation is
completed in the EX stage via the ALU.

7.7.5 Branch Instructions

Conditional Branch Instructions: Include the following instruction types:

• BF label

• BT label

Operation: The pipeline has three stages: IF, ID, and EX. Condition verification is performed
in the ID stage. Conditional branch instructions are not delayed branch.

240 HITACHI

1. When condition is satisfied

The branch destination address is calculated in the EX stage. The two instructions after
the conditional branch instruction (instruction A) are fetched but discarded. The branch
destination instruction begins its fetch from the slot following the slot which has the EX
stage of instruction A (figure 7.78).

Next instruction

Third instruction

IF

IF

EX

—

Instruction A ID

IF

(Fetched but discarded)

(Fetched but discarded)

—

: Slot

— IF ID EX

IF ID EX

Branch destination
......

......

Figure 7.78 Branch Instruction When Condition is Satisfied

2. When condition is not satisfied

If it is determined that conditions are not satisfied at the ID stage, the EX stage proceeds
without doing anything. The next instruction also executes a fetch (figure 7.79).

Next instruction

Third instruction

IF

IF EX

EX

ID

Instruction A ID

IF

ID EX

: Slot

IF ID EX

......

......

Figure 7.79 Branch Instruction When Condition is Not Satisfied
Note: SH-2 always fetches instructions with a long word. Therefore, "1. When condition is

satisfied", 2 instructions are overrun when fetched, if that address is at the boundary of
the 4n address.

Delayed Conditional Branch Instructions (SH-2 CPU): Include the following instruction
types:

• BF/S label (SH-2 CPU only)

• BT/S label (SH-2 CPU only)

Operation: The pipeline has three stages: IF, ID, and EX. Condition verification is performed
in the ID stage.

HITACHI 241

1. When condition is satisfied

The branch destination address is calculated in the EX stage. The instruction after the
conditional branch instruction (instruction A) is fetched and executed, but the instruction
after that is fetched and discarded. The branch destination instruction begins its fetch from
the slot following the slot which has the EX stage of instruction A (figure 7.80).

Next instruction

Third instruction

IF

IF

EX

ID— EX MA WB

Instruction A ID

IF (Fetched but discarded)

—

: Slot

IF ID EX

IF ID EX

Branch destination
......

Figure 7.80 Branch Instruction When Condition is Satisfied

2. When condition is not satisfied

If it is determined that conditions are not satisfied at the ID stage, the EX stage proceeds
without doing anything. The next instruction also executes a fetch (figure 7.81).

Next instruction

Third instruction

IF

IF EX

EX

ID

Instruction A ID

IF

ID EX

: Slot

IF ID EX

......

......

Figure 7.81 Branch Instruction When Condition is Not Satisfied

Note: SH-2 always fetches instructions with a long word. Therefore, "1. When condition is
satisfied", 2 instructions are overrun when fetched, if that address is at the boundary of
the 4n address.

Unconditional Branch Instructions: Include the following instruction types:

• BRAlabel

• BRAF Rm (SH-2 CPU only)

• BSR label

• BSRF Rm (SH-2 CPU only)

• JMP @Rm

• JSR @Rm

• RTS

242 HITACHI

Delay slot

Branch destination

IF

IF ID EX MA WB

EX

—

Instruction A ID

IF

ID EX

: Slot

IF ID EX

......

......

Figure 7.82 Unconditional Branch Instruction Pipeline

Operation: The pipeline has three stages: IF, ID, and EX (figure 7.82). Unconditional branch
instructions are delayed branch. The branch destination address is calculated in the EX stage.
The instruction following the unconditional branch instruction (instruction A), that is, the
delay slot instruction is fetched and not discarded as the conditional branch instructions are,
but is then executed. Note that the ID slot of the delay slot instruction does stall for one
cycle. The branch destination instruction starts its fetch from the slot after the slot that has
the EX stage of instruction A.

7.7.6 System Control Instructions

System Control ALU Instructions: Include the following instruction types:

• CLRT

• LDC Rm, SR

• LDC Rm, GBR

• LDC Rm, VBR

• LDS Rm, PR

• NOP

• SETT

• STC SR, Rn

• STC GBR, Rn

• STC VBR, Rn

• STS PR, Rn

HITACHI 243

Next instruction

Third instruction

IF

IF EX

EX

ID

Instruction A ID

IF

ID EX

: Slot

......

Figure 7.83 System Control ALU Instruction Pipeline

Operation: The pipeline has three stages: IF, ID, and EX (figure 7.83). The data operation is
completed in the EX stage via the ALU.

LDC.L Instructions: Include the following instruction types:

• LDC.L @Rm+, SR

• LDC.L @Rm+, GBR

• LDC.L @Rm+, VBR

Next instruction

Third instruction

IF

IF —

EX

— EXID

Instruction A ID EXMA

IF

ID EX

: Slot

......

Figure 7.84 LDC.L Instruction Pipeline

Operation: The pipeline has five stages: IF, ID, EX, MA, and EX (figure 7.84). The ID of the
following instruction is stalled for two slots.

STC.L Instructions: Include the following instruction types:

• STC.L SR, @–Rn

• STC.L GBR, @–Rn

• STC.L VBR, @–Rn

Next instruction

Third instruction

IF

IF

EX MA

— EXID

Instruction A ID

IF

ID EX

: Slot

......

Figure 7.85 STC.L Instruction Pipeline

244 HITACHI

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 7.85). The ID of the
next instruction is stalled for one slot.

LDS.L Instruction (PR): Includes the following instruction type:

• LDS.L @Rm+, PR

Next instruction

Third instruction

IF

IF

EX

IDEX

Instruction A ID WBMA

IF

ID EX

: Slot

......

Figure 7.86 LDS.L Instruction (PR) Pipeline

Operation: The pipeline has five stages: IF, ID, EX, MA, and WB (figure 7.86). It is the
same as an ordinary load instruction.

STS.L Instruction (PR): Includes the following instruction type:

• STS.L PR, @–Rn

Next instruction

Third instruction

IF

IF

EX

IDEX

Instruction A ID MA

IF

ID EX

: Slot

......

Figure 7.87 STS.L Instruction (PR) Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 7.87). It is the same as
an ordinary store instruction.

Register → MAC Transfer Instructions: Include the following instruction types:

• CLRMAC

• LDS Rm, MACH

• LDS Rm, MACL

HITACHI 245

Next instruction

Third instruction

IF

IF

EX

IDEX

Instruction A ID MA

IF

ID EX

: Slot

......

Figure 7.88 Register → MAC Transfer Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 7.88). The MA is a
stage for accessing the multiplier. The MA contends with the IF. This makes it the same as
ordinary store instructions. Since the multiplier contends with the MA, see the section for the
SOP instruction, multiply instruction, and double precision multiply instruction.

Memory → MAC Transfer Instructions: Include the following instruction types:

• LDS.L @Rm+, MACH

• LDS.L @Rm+, MACL

Next instruction

Third instruction

IF

IF

EX

IDEX

Instruction A ID MA

IF

ID EX

: Slot

......

Figure 7.89 Memory → MAC Transfer Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 7.89). The MA contends
with the IF. The MA is a stage for memory access and multiplier access. This makes it the
same as ordinary load instructions. Since the multiplier contends with the MA, see the
section for the SOP instruction, multiply instruction, and double precision multiply
instruction.

MAC → Register Transfer Instructions: Include the following instruction types:

• STS MACH, Rn

• STS MACL, Rn

246 HITACHI

Next instruction

Third instruction

IF

IF

EX

IDEX

Instruction A ID MA WB

IF

ID EX

: Slot

......

Figure 7.90 MAC → Register Transfer Instruction Pipeline

Operation: The pipeline has five stages: IF, ID, EX, MA, and WB (figure 7.90). The MA is a
stage for accessing the multiplier. The MA contends with the IF. This makes it the same as
ordinary load instructions. Since the multiplier contends with the MA, see the section for the
SOP instruction, multiply instruction, and double precision multiply instruction.

MAC → Memory Transfer Instructions: Include the following instruction types:

• STS.L MACH, @–Rn

• STS.L MACL, @–Rn

Next instruction

Third instruction

IF

IF

EX

IDEX

Instruction A ID MA

IF

ID EX

: Slot

......

Figure 7.91 MAC → Memory Transfer Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 7.91). The MA is a
stage for accessing the memory and the multiplier. The MA contends with IF. This makes it
the same as ordinary store instructions. Since the multiplier contends with the MA, see the
section for the SOP instruction, multiply instruction, and double precision multiply
instruction.

RTE Instruction: Includes the following instruction type:

• RTE

HITACHI 247

Delay slot

Branch destination

IF

IF

EX

— ——

RTE ID MA MA

IF

ID EX

: Slot

 IDEX

......

Figure 7.92 RTE Instruction Pipeline

The pipeline has five stages: IF, ID, EX, MA, and MA (figure 7.92). The MAs contend with
the IF. The RTE is a delayed branch instruction. The ID of the delay slot instruction is stalled
for 3 slots. The IF of the branch destination instruction starts from the slot following the MA
of the RTE.

TRAP Instruction: Includes the following instruction type:

• TRAPA #imm

Next instruction

Third instruction

IF

IF

EXTRAPA ID EX EX EXMA MA MA

IF

IF ID EX

IF ID EX

: Slot

Branch destination
......

Figure 7.93 TRAP Instruction Pipeline

The pipeline has nine stages: IF, ID, EX, EX, MA, MA, MA, EX, and EX (figure 7.93). The
MAs contend with the IF. The TRAP is not a delayed branch instruction. The two instructions
after the TRAP instruction are fetched, but they are discarded without being executed. The IF
of the branch destination instruction starts from the slot of the EX in the ninth stage of the
TRAP instruction.

SLEEP Instruction: Includes the following instruction type:

• SLEEP

248 HITACHI

Next instruction
......

IF

IF

EXSLEEP ID

: Slot

Figure 7.94 SLEEP Instruction Pipeline

Operation: The pipeline has three stages: IF, ID and EX (figure 7.94). It is issued until the IF
of the next instruction. After the SLEEP instruction is executed, the CPU enters sleep mode
or standby mode.

7.7.7 Exception Processing

Interrupt Exception Processing: Includes the following instruction type:

• Interrupt exception processing

Next instruction

IF

IF

EXInterrupt ID EX MA EX EXMA MA EX

IF ID EX

IF ID

: Slot

Branch destination
......

Figure 7.95 Interrupt Exception Processing Pipeline

Operation: The interrupt is received during the ID stage of the instruction and everything
after the ID stage is replaced by the interrupt exception processing sequence. The pipeline
has ten stages: IF, ID, EX, EX, MA, MA, EX, MA, EX, and EX (figure 7.95). Interrupt
exception processing is not a delayed branch. In interrupt exception processing, an overrun
fetch (IF) occurs. In branch destination instructions, the IF starts from the slot that has the
final EX in the interrupt exception processing.

Interrupt sources are external interrupt request pins such as NMI, user breaks, and on-chip
peripheral module interrupts.

HITACHI 249

Address Error Exception Processing: Includes the following instruction type:

• Address error exception processing

Next instruction

IF

IF

EXInterrupt ID EX MA EX EXMA MA EX

IF ID EX

IF ID

: Slot

Branch destination
......

Figure 7.96 Address Error Exception Processing Pipeline

Operation: The address error is received during the ID stage of the instruction and everything
after the ID stage is replaced by the address error exception processing sequence. The
pipeline has ten stages: IF, ID, EX, EX, MA, MA, EX, MA, EX, and EX (figure 7.96).
Address error exception processing is not a delayed branch. In address error exception
processing, an overrun fetch (IF) occurs. In branch destination instructions, the IF starts from
the slot that has the final EX in the address error exception processing.

Address errors are caused by instruction fetches and by data reads or writes. For details of the
error cause, refer to the appropriate hardware manual.

Illegal Instruction Exception Processing: Includes the following instruction type:

• Illegal instruction exception processing

Next instruction

IF

IF

EXIllegal instruction ID EX EX EXMA MA MA

IF

IF)

ID EX

IF ID

: Slot

(Third instruction

Branch destination
......

Figure 7.97 Illegal Instruction Exception Processing Pipeline

Operation: The illegal instruction is received during the ID stage of the instruction and
everything after the ID stage is replaced by the illegal instruction exception processing
sequence. The pipeline has nine stages: IF, ID, EX, EX, MA, MA, MA, EX, and EX (figure
7.97). Illegal instruction exception processing is not a delayed branch. In illegal instruction
exception processing, an overrun fetch (IF) occurs. Whether there is an IF only in the next
instruction or in the one after that as well depends on the instruction that was to be executed.

250 HITACHI

In branch destination instructions, the IF starts from the slot that has the final EX in the
illegal instruction exception processing.

Illegal instruction exception processing is caused by ordinary illegal instructions and by
illegal slot instructions. When undefined code placed somewhere other than the slot directly
after the delayed branch instruction (called the delay slot) is decoded, ordinary illegal
instruction exception processing occurs. When undefined code placed in the delay slot is
decoded or when an instruction placed in the delay slot to rewrite the program counter is
decoded, an illegal slot instruction exception handling occurs.

HITACHI 251

Appendix A Instruction Code

See “6. Instruction Descriptions” for details.

A.1 Instruction Set by Addressing Mode

Table A.1 lists instruction codes and execution states by addressing modes.

252 HITACHI

Table A.1 Instruction Set by Addressing Mode

Types

Addressing Mode Category Sample Instruction SH-2 SH-1

No operand — NOP 8 8

Direct register addressing Destination operand only MOVT Rn 18 17

Source and destination
operand

ADD Rm,Rn 34 31

Load and store with control
register or system register

LDC Rm,SR

STS MACH,Rn

12 12

Indirect register Source operand only JMP @Rm 2 2

addressing Destination operand only TAS.B @Rn 1 1

Data transfer with direct
register addressing

MOV.L Rm,@Rn 6 6

Post increment indirect
register addressing

Multiply/accumulate
operation

MAC.W @Rm+,@Rn+ 2 1

Data transfer from direct
register addressing

MOV.L @Rm+,Rn 3 3

Load to control register or
system register

LDC.L @Rm+,SR 6 6

Pre decrement indirect
register addressing

Data transfer from direct
register addressing

MOV.L Rm,@–Rn 3 3

Store from control register or
system register

STC.L SR,@–Rn 6 6

Indirect register addressing
with displacement

Data transfer with direct
register addressing

MOV.L Rm,@(disp,Rn) 6 6

Indirect indexed register
addressing

Data transfer with direct
register addressing

MOV.L Rm,@(R0,Rn) 6 6

Indirect GBR addressing
with displacement

Data transfer with direct
register addressing

MOV.L R,@(disp,GBR) 6 6

Indirect indexed GBR
addressing

Immediate data transfer AND.B #imm,@(R0,GBR) 4 4

PC relative addressing with
displacement

Data transfer to direct
register addressing

MOV.L @(disp,PC),Rn 3 3

PC relative addressing with
Rm

Branch instruction BRAF Rm 2 0

PC relative addressing Branch instruction BRA label 6 4

Immediate addressing Arithmetic logical operations
with direct register
addressing

ADD #imm,Rn 7 7

Specify exception processing
vector

TR APA #imm 1 1

Total: 142 133

HITACHI 253

A.1.1 No Operand

Table A.2 No Operand

Instruction Code Operation State T Bit

CLRT 0000000000001000 0 → T 1 0

CLRMAC 0000000000101000 0 → MACH, MACL 1 —

DIV0U 0000000000011001 0 → M/Q/T 1 0

NOP 0000000000001001 No operation 1 —

RTE 0000000000101011 Delayed branch, Stack area
→ PC/SR

4 LSB

RTS 0000000000001011 Delayed branch, PR → PC 2 —

SETT 0000000000011000 1 → T 1 1

SLEEP 0000000000011011 Sleep 3 —

254 HITACHI

A.1.2 Direct Register Addressing

Table A.3 Destination Operand Only

Instruction Code Operation State T Bit

CMP/PL Rn 0100nnnn00010101 Rn > 0, 1 → T 1 Comparison result

CMP/PZ Rn 0100nnnn00010001 Rn ≥ 0, 1 → T 1 Comparison result

DT Rn* 0100nnnn00010000 Rn – 1 → Rn
When Rn is 0, 1 → T,
when Rn is nonzero,
0 → T

1 Comparison result

MOVT Rn 0000nnnn00101001 T → Rn 1 —

ROTL Rn 0100nnnn00000100 T ← Rn ← MSB 1 MSB

ROTR Rn 0100nnnn00000101 LSB → Rn → T 1 LSB

ROTCL Rn 0100nnnn00100100 T ← Rn ← T 1 MSB

ROTCR Rn 0100nnnn00100101 T → Rn → T 1 LSB

SHAL Rn 0100nnnn00100000 T ← Rn ← 0 1 MSB

SHAR Rn 0100nnnn00100001 MSB → Rn → T 1 LSB

SHLL Rn 0100nnnn00000000 T ← Rn ← 0 1 MSB

SHLR Rn 0100nnnn00000001 0 → Rn → T 1 LSB

SHLL2 Rn 0100nnnn00001000 Rn<<2 → Rn 1 —

SHLR2 Rn 0100nnnn00001001 Rn>>2 → Rn 1 —

SHLL8 Rn 0100nnnn00011000 Rn<<8 → Rn 1 —

SHLR8 Rn 0100nnnn00011001 Rn>>8 → Rn 1 —

SHLL16 Rn 0100nnnn00101000 Rn<<16 → Rn 1 —

SHLR16 Rn 0100nnnn00101001 Rn>>16 → Rn 1 —

Note: SH-2 CPU instruction

Table A.4 Source and Destination Operand

Instruction Code Operation State T Bit

ADD Rm,Rn 0011nnnnmmmm1100 Rn + Rm → Rn 1 —

ADDC Rm,Rn 0011nnnnmmmm1110 Rn + Rm + T → Rn,
carry → T

1 Carry

ADDV Rm,Rn 0011nnnnmmmm1111 Rn + Rm → Rn,
overflow → T

1 Overflow

AND Rm,Rn 0010nnnnmmmm1001 Rn & Rm → Rn 1 —

HITACHI 255

Table A.4 Source and Destination Operand (cont)

Instruction Code Operation State T Bit

CMP/EQ Rm,Rn 0011nnnnmmmm0000 When Rn = Rm, 1 → T 1 Comparison
result

CMP/HS Rm,Rn 0011nnnnmmmm0010 When unsigned and Rn
≥ Rm, 1 → T

1 Comparison
result

CMP/GE Rm,Rn 0011nnnnmmmm0011 When signed and Rn ≥
Rm, 1 → T

1 Comparison
result

CMP/HI Rm,Rn 0011nnnnmmmm0110 When unsigned and Rn
> Rm, 1 → T

1 Comparison
result

CMP/GT Rm,Rn 0011nnnnmmmm0111 When signed and Rn >
Rm, 1 → T

1 Comparison
result

CMP/STR
Rm,Rn

0010nnnnmmmm1100 When a byte in Rn
equals bytes in Rm, 1
→ T

1 Comparison
result

DIV1 Rm,Rn 0011nnnnmmmm0100 1-step division (Rn ÷
Rm)

1 Calculation
result

DIV0S Rm,Rn 0010nnnnmmmm0111 MSB of Rn → Q, MSB
of Rm → M, M ^ Q →
T

1 Calculation
result

DMULS.L
Rm,Rn*2

0011nnnnmmmm1101 Signed, Rn × Rm →
MACH, MACL

2 to 4*1 —

DMULU.L
Rm,Rn*2

0011nnnnmmmm0101 Unsigned, Rn × Rm →
MACH, MACL

2 to 4*1 —

EXTS.B Rm,Rn 0110nnnnmmmm1110 Sign – extends Rm
from byte → Rn

1 —

EXTS.W Rm,Rn 0110nnnnmmmm1111 Sign – extends Rm
from word → Rn

1 —

EXTU.B Rm,Rn 0110nnnnmmmm1100 Zero – extends Rm
from byte → Rn

1 —

EXTU.W Rm,Rn 0110nnnnmmmm1101 Zero – extends Rm
from word → Rn

1 —

MOV Rm,Rn 0110nnnnmmmm0011 Rm → Rn 1 —

MUL.L Rm,Rn*2 0000nnnnmmmm0111 Rn × Rm → MACL 2 to 4*1 —

MULS.W Rm,Rn 0010nnnnmmmm1111 Signed, Rn × Rm →
MAC

1 to 3*1 —

MULU.W Rm,Rn 0010nnnnmmmm1110 Unsigned, Rn × Rm →
MAC

1 to 3*1 —

NEG Rm,Rn 0110nnnnmmmm1011 0 – Rm → Rn 1 —

NEGC Rm,Rn 0110nnnnmmmm1010 0 – Rm – T → Rn,
Borrow → T

1 Borrow

Notes: 1. The normal minimum number of execution states
2. SH-2 CPU instruction

256 HITACHI

Table A.4 Source and Destination Operand (cont)

Instruction Code Operation State T Bit

NOT Rm,Rn 0110nnnnmmmm0111 ~Rm → Rn 1 —

OR Rm,Rn 0010nnnnmmmm1011 Rn | Rm → Rn 1 —

SUB Rm,Rn 0011nnnnmmmm1000 Rn – Rm → Rn 1 —

SUBC Rm,Rn 0011nnnnmmmm1010 Rn – Rm – T → Rn,
Borrow → T

1 Borrow

SUBV Rm,Rn 0011nnnnmmmm1011 Rn – Rm → Rn,
Underflow → T

1 Underflow

SWAP.B Rm,Rn 0110nnnnmmmm1000 Rm → Swap upper and
lower halves of lower 2
bytes → Rn

1 —

SWAP.W Rm,Rn 0110nnnnmmmm1001 Rm → Swap upper and
lower word → Rn

1 —

TST Rm,Rn 0010nnnnmmmm1000 Rn & Rm, when result is
0, 1 → T

1 Test results

XOR Rm,Rn 0010nnnnmmmm1010 Rn ^ Rm → Rn 1 —

XTRCT Rm,Rn 0010nnnnmmmm1101 Center 32 bits of Rm
and Rn → Rn

1 —

Table A.5 Load and Store with Control Register or System Register

Instruction Code Operation State T Bit

LDC Rm,SR 0100mmmm00001110 Rm → SR 1 LSB

LDC Rm,GBR 0100mmmm00011110 Rm → GBR 1 —

LDC Rm,VBR 0100mmmm00101110 Rm → VBR 1 —

LDS Rm,MACH 0100mmmm00001010 Rm → MACH 1 —

LDS Rm,MACL 0100mmmm00011010 Rm → MACL 1 —

LDS Rm,PR 0100mmmm00101010 Rm → PR 1 —

STC SR,Rn 0000nnnn00000010 SR → Rn 1 —

STC GBR,Rn 0000nnnn00010010 GBR → Rn 1 —

STC VBR,Rn 0000nnnn00100010 VBR → Rn 1 —

STS MACH,Rn 0000nnnn00001010 MACH → Rn 1 —

STS MACL,Rn 0000nnnn00011010 MACL → Rn 1 —

STS PR,Rn 0000nnnn00101010 PR → Rn 1 —

HITACHI 257

A.1.3 Indirect Register Addressing

Table A.6 Destination Operand Only

Instruction Code Operation State T Bit

JMP @Rm 0100mmmm00101011 Delayed branch, Rm → PC 2 —

JSR @Rm 0100mmmm00001011 Delayed branch, PC → PR,
Rm → PC

2 —

TAS.B @Rn 0100nnnn00011011 When (Rn) is 0, 1 → T, 1 →
MSB of (Rn)

4 Test results

Table A.7 Data Transfer with Direct Register Addressing

Instruction Code Operation State T Bit

MOV.B Rm,@Rn 0010nnnnmmmm0000 Rm → (Rn) 1 —

MOV.W Rm,@Rn 0010nnnnmmmm0001 Rm → (Rn) 1 —

MOV.L Rm,@Rn 0010nnnnmmmm0010 Rm → (Rn) 1 —

MOV.B @Rm,Rn 0110nnnnmmmm0000 (Rm) → sign extension → Rn 1 —

MOV.W @Rm,Rn 0110nnnnmmmm0001 (Rm) → sign extension → Rn 1 —

MOV.L @Rm,Rn 0110nnnnmmmm0010 (Rm) → Rn 1 —

A.1.4 Post Increment Indirect Register Addressing

Table A.8 Multiply/Accumulate Operation

Instruction Code Operation State T
Bit

MAC.L @Rm+,@Rn+*2 0000nnnnmmmm1111 Signed, (Rn) × (Rm) + MAC
→ MAC

3/(2 to 4)*1 —

MAC.W @Rm+,@Rn+ 0100nnnnmmmm1111 Signed, (Rn) × (Rm) + MAC
→ MAC

3/(2)*1 —

Notes: 1. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions).

2. SH-2 CPU instruction

258 HITACHI

Table A.9 Data Transfer from Direct Register Addressing

Instruction Code Operation State T Bit

MOV.B @Rm+,Rn 0110nnnnmmmm0100 (Rm) → sign extension →
Rn, Rm + 1 → Rm

1 —

MOV.W @Rm+,Rn 0110nnnnmmmm0101 (Rm) → sign extension →
Rn, Rm + 2 → Rm

1 —

MOV.L @Rm+,Rn 0110nnnnmmmm0110 (Rm) → Rn, Rm + 4 → Rm 1 —

Table A.10 Load to Control Register or System Register

Instruction Code Operation State T Bit

LDC.L @Rm+,SR 0100mmmm00000111 (Rm) → SR, Rm + 4 → Rm 3 LSB

LDC.L @Rm+,GBR 0100mmmm00010111 (Rm) → GBR, Rm + 4 → Rm 3 —

LDC.L @Rm+,VBR 0100mmmm00100111 (Rm) → VBR, Rm + 4 → Rm 3 —

LDS.L @Rm+,MACH 0100mmmm00000110 (Rm) → MACH, Rm + 4 → Rm 1 —

LDS.L @Rm+,MACL 0100mmmm00010110 (Rm) → MACL, Rm + 4 → Rm 1 —

LDS.L @Rm+,PR 0100mmmm00100110 (Rm) → PR, Rm + 4 → Rm 1 —

A.1.5 Pre Decrement Indirect Register Addressing

Table A.11 Data Transfer from Direct Register Addressing

Instruction Code Operation State T Bit

MOV.B Rm,@–Rn 0010nnnnmmmm0100 Rn – 1 → Rn, Rm → (Rn) 1 —

MOV.W Rm,@–Rn 0010nnnnmmmm0101 Rn – 2 → Rn, Rm → (Rn) 1 —

MOV.L Rm,@–Rn 0010nnnnmmmm0110 Rn – 4 → Rn, Rm → (Rn) 1 —

HITACHI 259

Table A.12 Store from Control Register or System Register

Instruction Code Operation State T Bit

STC.L SR,@-Rn 0100nnnn00000011 Rn – 4 → Rn, SR → (Rn) 2 —

STC.L GBR,@-Rn 0100nnnn00010011 Rn – 4 → Rn, GBR → (Rn) 2 —

STC.L VBR,@-Rn 0100nnnn00100011 Rn – 4 → Rn, VBR → (Rn) 2 —

STS.L MACH,@–Rn 0100nnnn00000010 Rn – 4 → Rn, MACH → (Rn) 1 —

STS.L MACL,@–Rn 0100nnnn00010010 Rn – 4 → Rn, MACL → (Rn) 1 —

STS.L PR,@–Rn 0100nnnn00100010 Rn – 4 → Rn, PR → (Rn) 1 —

A.1.6 Indirect Register Addressing with Displacement

Table A.13 Indirect Register Addressing with Displacement

Instruction Code Operation State T Bit

MOV.B R0,@(disp,Rn) 10000000nnnndddd R0 → (disp + Rn) 1 —

MOV.W R0,@(disp,Rn) 10000001nnnndddd R0 → (disp × 2 + Rn) 1 —

MOV.L Rm,@(disp,Rn) 0001nnnnmmmmdddd Rm → (disp × 4 + Rn) 1 —

MOV.B @(disp,Rm),R0 10000100mmmmdddd (disp + Rm) → sign
extension → R0

1 —

MOV.W @(disp,Rm),R0 10000101mmmmdddd (disp × 2 + Rm) →
sign extension → R0

1 —

MOV.L @(disp,Rm),Rn 0101nnnnmmmmdddd (disp × 4 + Rm) → Rn 1 —

A.1.7 Indirect Indexed Register Addressing

Table A.14 Indirect Indexed Register Addressing

Instruction Code Operation State T Bit

MOV.B Rm,@(R0,Rn) 0000nnnnmmmm0100 Rm → (R0 + Rn) 1 —

MOV.W Rm,@(R0,Rn) 0000nnnnmmmm0101 Rm → (R0 + Rn) 1 —

MOV.L Rm,@(R0,Rn) 0000nnnnmmmm0110 Rm → (R0 + Rn) 1 —

MOV.B @(R0,Rm),Rn 0000nnnnmmmm1100 (R0 + Rm) → sign
extension → Rn

1 —

MOV.W @(R0,Rm),Rn 0000nnnnmmmm1101 (R0 + Rm) → sign
extension → Rn

1 —

MOV.L @(R0,Rm),Rn 0000nnnnmmmm1110 (R0 + Rm) → Rn 1 —

260 HITACHI

A.1.8 Indirect GBR Addressing with Displacement

Table A.15 Indirect GBR Addressing with Displacement

Instruction Code Operation State T Bit

MOV.B R0,@(disp,GBR) 11000000dddddddd R0 → (disp + GBR) 1 —

MOV.W R0,@(disp,GBR) 11000001dddddddd R0 → (disp × 2 +
GBR)

1 —

MOV.L R0,@(disp,GBR) 11000010dddddddd R0 → (disp × 4 +
GBR)

1 —

MOV.B @(disp,GBR),R0 11000100dddddddd (disp + GBR) → sign
extension → R0

1 —

MOV.W @(disp,GBR),R0 11000101dddddddd (disp × 2 + GBR) →
sign extension → R0

1 —

MOV.L @(disp,GBR),R0 11000110dddddddd (disp × 4 + GBR) →
R0

1 —

A.1.9 Indirect Indexed GBR Addressing

Table A.16 Indirect Indexed GBR Addressing

Instruction Code Operation State T Bit

AND.B #imm,@(R0,GBR) 11001101iiiiiiii (R0 + GBR) & imm → (R0
+ GBR)

3 —

OR.B #imm,@(R0,GBR) 11001111iiiiiiii (R0 + GBR) | imm → (R0
+ GBR)

3 —

TST.B #imm,@(R0,GBR) 11001100iiiiiiii (R0 + GBR) & imm, when
result is 0, 1 → T

3 Test
results

XOR.B #imm,@(R0,GBR) 11001110iiiiiiii (R0 + GBR) ^ imm → (R0
+ GBR)

3 —

A.1.10 PC Relative Addressing with Displacement

Table A.17 PC Relative Addressing with Displacement

Instruction Code Operation State T Bit

MOV.W @(disp,PC),Rn 1001nnnndddddddd (disp × 2 + PC) → sign
extension → Rn

1 —

MOV.L @(disp,PC),Rn 1101nnnndddddddd (disp × 4 + PC) → Rn 1 —

MOVA @(disp,PC),R0 11000111dddddddd disp × 4 + PC → R0 1 —

HITACHI 261

A.1.11 PC Relative Addressing with Rm

Table A.18 PC Relative Addressing with Rm

Instruction Code Operation State T Bit

BRAF Rm*2 0000mmmm00100011 Delayed branch, Rm + PC → PC 2 —

BSRF Rm*2 0000mmmm00000011 Delayed branch, PC → PR, Rm + PC
→ PC

2 —

Notes: 2. SH-2 CPU instruction

A.1.12 PC Relative Addressing

Table A.19 PC Relative Addressing

Instruction Code Operation State T Bit

B F label 10001011dddddddd When T = 0, disp × 2 + PC → PC;
When T = 1, nop

3/1*3 —

BF/S label*2 10001111dddddddd When T = 0, disp × 2 + PC → PC;
When T = 1, nop

2/1*3 —

B T label 10001001dddddddd When T = 1, disp × 2+ PC → PC;
When T = 0, nop

3/1*3 —

BT/S label*2 10001101dddddddd When T = 1, disp × 2 + PC → PC;
When T = 0, nop

2/1*3 —

BRA label 1010dddddddddddd Delayed branch, disp × 2 + PC →
PC

2 —

BSR label 1011dddddddddddd Delayed branch, PC → PR, disp ×
2 + PC → PC

2 —

Notes: 2. SH-2 CPU instruction
3. One state when it does not branch

262 HITACHI

A.1.13 Immediate

Table A.20 Arithmetic Logical Operation with Direct Register Addressing

Instruction Code Operation State T Bit

ADD #imm,Rn 0111nnnniiiiiiii Rn + imm → Rn 1 —

AND #imm,R0 11001001iiiiiiii R0 & imm → R0 1 —

CMP/EQ #imm,R0 10001000iiiiiiii When R0 = imm, 1 → T 1 Compariso
n result

MOV #imm,Rn 1110nnnniiiiiiii imm → sign extension → Rn 1 —

O R #imm,R0 11001011iiiiiiii R0 | imm → R0 1 —

TST #imm,R0 11001000iiiiiiii R0 & imm, when result is 0,
1 → T

1 Test results

XOR #imm,R0 11001010iiiiiiii R0 ^ imm → R0 1 —

Table A.21 Specify Exception Processing Vector

Instruction Code Operation State T Bit

TRAPA #imm 11000011iiiiiiii PC/SR → Stack area, (imm × 4 +
VBR) → PC

8 —

A.2 Instruction Sets by Instruction Format

Tables A.22 to A.48 list instruction codes and execution states by instruction formats.

HITACHI 263

Table A.22 Instruction Sets by Format

Types

Format Category Sample Instruction SH-2 SH-1

0 — NOP 8 8

n Direct register addressing MOVT Rn 18 17

Direct register addressing (store with control
or system registers)

STS MACH,Rn 6 6

Indirect register addressing TAS.B @Rn 1 1

Pre decrement indirect register addressing STC.L SR,@–Rn 6 6

m Direct register addressing (load with control
or system registers)

LDC Rm,SR 6 6

PC relative addressing with Rn BRAF Rm 2 0

Direct register addressing JMP @Rm 2 2

Post increment indirect register addressing LDC.L @Rm+,SR 6 6

nm Direct register addressing ADD Rm,Rn 34 31

Indirect register addressing MOV.L Rm,@Rn 6 6

Post increment indirect register addressing
(multiply/accumulate operation)

MAC.W @Rm+,@Rn+ 2 1

Post increment indirect register addressing MOV.L @Rm+,Rn 3 3

Pre decrement indirect register addressing MOV.L Rm,@–Rn 3 3

Indirect indexed register addressing MOV.L Rm,@(R0,Rn) 6 6

md Indirect register addressing with
displacement

MOV.B @(disp,Rm),R0 2 2

nd4 Indirect register addressing with
displacement

MOV.B R0,@(disp,Rn) 2 2

nmd Indirect register addressing with
displacement

MOV.L Rm,@(disp,Rn) 2 2

d Indirect GBR addressing with displacement MOV.L R0,@(disp,GBR) 6 6

Indirect PC addressing with displacement MOVA @(disp,PC),R0 1 1

PC relative addressing BF label 4 2

d12 PC relative addressing BRA label 2 2

nd8 PC relative addressing with displacement MOV.L @(disp,PC),Rn 2 2

i Indirect indexed GBR addressing AND.B #imm,@(R0,GBR) 4 4

Immediate addressing (arithmetic and logical
operations with direct register)

AND #imm,R0 5 5

Immediate addressing (specify exception
processing vector)

TRAPA #imm 1 1

ni Immediate addressing (direct register
arithmetic operations and data transfers)

ADD #imm,Rn 2 2

Total: 142 133

264 HITACHI

A.2.1 0 Format

Table A.23 0 Format

Instruction Code Operation State T Bit

CLRT 0000000000001000 0 → T 1 0

CLRMAC 0000000000101000 0 → MACH, MACL 1 —

DIV0U 0000000000011001 0 → M/Q/T 1 0

NOP 0000000000001001 No operation 1 —

RTE 0000000000101011 Delayed branching, stack
area → PC/SR

4 LSB

RTS 0000000000001011 Delayed branching, PR →
PC

2 —

SETT 0000000000011000 1 → T 1 1

SLEEP 0000000000011011 Sleep 3*4 —

Notes: 4. This is the number of states until a transition is made to the Sleep state.

HITACHI 265

A.2.2 n Format

Table A.24 Direct Register Addressing

Instruction Code Operation State T Bit

CMP/PL Rn 0100nnnn00010101 Rn > 0, 1 → T 1 Comparison result

CMP/PZ Rn 0100nnnn00010001 Rn ≥ 0, 1 → T 1 Comparison result

DT Rn*2 0100nnnn00010000 Rn - 1 → Rn;
If Rn is 0, 1 → T, if Rn
is nonzero, 0 → T

1 Comparison result

MOVT Rn 0000nnnn00101001 T → Rn 1 —

ROTL Rn 0100nnnn00000100 T ← Rn ← MSB 1 MSB

ROTR Rn 0100nnnn00000101 LSB → Rn → T 1 LSB

ROTCL Rn 0100nnnn00100100 T ← Rn ← T 1 MSB

ROTCR Rn 0100nnnn00100101 T → Rn → T 1 LSB

SHAL Rn 0100nnnn00100000 T ← Rn ← 0 1 MSB

SHAR Rn 0100nnnn00100001 MSB → Rn → T 1 LSB

SHLL Rn 0100nnnn00000000 T ← Rn ← 0 1 MSB

SHLR Rn 0100nnnn00000001 0 → Rn → T 1 LSB

SHLL2 Rn 0100nnnn00001000 Rn<<2 → Rn 1 —

SHLR2 Rn 0100nnnn00001001 Rn>>2 → Rn 1 —

SHLL8 Rn 0100nnnn00011000 Rn<<8 → Rn 1 —

SHLR8 Rn 0100nnnn00011001 Rn>>8 → Rn 1 —

SHLL16 Rn 0100nnnn00101000 Rn<<16 → Rn 1 —

SHLR16 Rn 0100nnnn00101001 Rn>>16 → Rn 1 —

Notes: 2. SH-2 CPU instruction.

Table A.25 Direct Register Addressing (Store with Control and System Registers)

Instruction Code Operation State T Bit

STC SR,Rn 0000nnnn00000010 SR → Rn 1 —

STC GBR,Rn 0000nnnn00010010 GBR → Rn 1 —

STC VBR,Rn 0000nnnn00100010 VBR → Rn 1 —

STS MACH,Rn 0000nnnn00001010 MACH → Rn 1 —

STS MACL,Rn 0000nnnn00011010 MACL → Rn 1 —

STS PR,Rn 0000nnnn00101010 PR → Rn 1 —

266 HITACHI

Table A.26 Indirect Register Addressing

Instruction Code Operation State T Bit

TAS.B @Rn 0100nnnn00011011 When (Rn) is 0, 1 → T, 1 →
MSB of (Rn)

4 Test results

Table A.27 Pre Decrement Indirect Register

Instruction Code Operation State T Bit

STC.L SR,@-Rn 0100nnnn00000011 Rn – 4 → Rn, SR → (Rn) 2 —

STC.L GBR,@-Rn 0100nnnn00010011 Rn – 4 → Rn, GBR → (Rn) 2 —

STC.L VBR,@-Rn 0100nnnn00100011 Rn – 4 → Rn, VBR → (Rn) 2 —

STS.L MACH,@–Rn 0100nnnn00000010 Rn – 4 → Rn, MACH → (Rn) 1 —

STS.L MACL,@–Rn 0100nnnn00010010 Rn – 4 → Rn, MACL → (Rn) 1 —

STS.L PR,@–Rn 0100nnnn00100010 Rn – 4 → Rn, PR → (Rn) 1 —

HITACHI 267

A.2.3 m Format

Table A.28 Direct Register Addressing (Load with Control and System Registers)

Instruction Code Operation State T Bit

LDC Rm,SR 0100mmmm00001110 Rm → SR 1 LSB

LDC Rm,GBR 0100mmmm00011110 Rm → GBR 1 —

LDC Rm,VBR 0100mmmm00101110 Rm → VBR 1 —

LDS Rm,MACH 0100mmmm00001010 Rm → MACH 1 —

LDS Rm,MACL 0100mmmm00011010 Rm → MACL 1 —

LDS Rm,PR 0100mmmm00101010 Rm → PR 1 —

Table A.29 Indirect Register

Instruction Code Operation State T Bit

JMP @Rm 0100mmmm00101011 Delayed branch, Rm → PC 2 —

JSR @Rm 0100mmmm00001011 Delayed branch, PC → PR,
Rm → PC

2 —

Table A.30 Post Increment Indirect Register

Instruction Code Operation State T Bit

LDC.L @Rm+,SR 0100mmmm00000111 (Rm) → SR, Rm + 4 → Rm 3 LSB

LDC.L @Rm+,GBR 0100mmmm00010111 (Rm) → GBR, Rm + 4 → Rm 3 —

LDC.L @Rm+,VBR 0100mmmm00100111 (Rm) → VBR, Rm + 4 → Rm 3 —

LDS.L
@Rm+,MAC

H

0100mmmm00000110 (Rm) → MACH, Rm + 4 → Rm 1 —

LDS.L
@Rm+,MAC

L

0100mmmm00010110 (Rm) → MACL, Rm + 4 → Rm 1 —

LDS.L @Rm+,PR 0100mmmm00100110 (Rm) → PR, Rm + 4 → Rm 1 —

268 HITACHI

Table A.31 PC Relative Addressing with Rm

Instruction Code Operation State T Bit

BRAF Rm*2 0000mmmm00100011 Delayed branch, Rm + PC → PC 2 —

BSRF Rm*2 0000mmmm00000011 Delayed branch, PC → PR, Rm + PC
→ PC

2 —

Notes: 2. SH-2 CPU instruction

HITACHI 269

A.2.4 nm Format

Table A.32 Direct Register Addressing

Instruction Code Operation State T Bit

ADD Rm,Rn 0011nnnnmmmm1100 Rn + Rm → Rn 1 —

ADDC Rm,Rn 0011nnnnmmmm1110 Rn + Rm + T → Rn, carry
→ T

1 Carry

ADDV Rm,Rn 0011nnnnmmmm1111 Rn + Rm → Rn, overflow
→ T

1 Overflow

AND Rm,Rn 0010nnnnmmmm1001 Rn & Rm → Rn 1 —

CMP/EQ Rm,Rn 0011nnnnmmmm0000 When Rn = Rm, 1 → T 1 Comparison
result

CMP/HS Rm,Rn 0011nnnnmmmm0010 When unsigned and Rn ≥
Rm, 1 → T

1 Comparison
result

CMP/GE Rm,Rn 0011nnnnmmmm0011 When signed and Rn ≥
Rm, 1 → T

1 Comparison
result

CMP/HI Rm,Rn 0011nnnnmmmm0110 When unsigned and Rn >
Rm, 1 → T

1 Comparison
result

CMP/GT Rm,Rn 0011nnnnmmmm0111 When signed and Rn >
Rm, 1 → T

1 Comparison
result

CMP/STR
Rm,Rn

0010nnnnmmmm1100 When a byte in Rn equals
a byte in Rm, 1 → T

1 Comparison
result

DIV1 Rm,Rn 0011nnnnmmmm0100 1-step division (Rn ÷ Rm) 1 Calculation
result

DIV0S Rm,Rn 0010nnnnmmmm0111 MSB of Rn → Q, MSB of
Rm → M, M ^ Q → T

1 Calculation
result

DMULS.L
Rm,Rn*2

0011nnnnmmmm1101 Signed, Rn x Rm →
MACH, MACL

2 to
4*1

—

DMULU.L
Rm,Rn*2

0011nnnnmmmm0101 Unsigned, Rn x Rm →
MACH, MACL

2 to
4*1

—

EXTS.B Rm,Rn 0110nnnnmmmm1110 Sign-extends Rm from
byte → Rn

1 —

EXTS.W Rm,Rn 0110nnnnmmmm1111 Sign-extends Rm from
word → Rn

1 —

EXTU.B Rm,Rn 0110nnnnmmmm1100 Zero-extends Rm from
byte → Rn

1 —

EXTU.W Rm,Rn 0110nnnnmmmm1101 Zero-extends Rm from
word → Rn

1 —

MOV Rm,Rn 0110nnnnmmmm0011 Rm → Rn 1 —

Notes: 1. The normal minimum number of execution states
2. SH-2 CPU instruction

270 HITACHI

Table A.32 Direct Register Addressing (cont)

Instruction Code Operation State T Bit

MUL.L Rm,Rn*2 0000nnnnmmmm0111 Rn × Rm → MACL 2 to 4*1 —

MULS.W Rm,Rn 0010nnnnmmmm1111 Signed, Rn × Rm → MAC 1 to 3*1 —

MULU.W Rm,Rn 0010nnnnmmmm1110 Unsigned, Rn × Rm →
MAC

1 to 3*1 —

NEG Rm,Rn 0110nnnnmmmm1011 0 – Rm → Rn 1 —

NEGC Rm,Rn 0110nnnnmmmm1010 0 – Rm – T → Rn, borrow
→ T

1 Borrow

NOT Rm,Rn 0110nnnnmmmm0111 ~Rm → Rn 1 —

O R Rm,Rn 0010nnnnmmmm1011 Rn | Rm → Rn 1 —

SUB Rm,Rn 0011nnnnmmmm1000 Rn – Rm → Rn 1 —

SUBC Rm,Rn 0011nnnnmmmm1010 Rn – Rm – T → Rn,
borrow → T

1 Borrow

SUBV Rm,Rn 0011nnnnmmmm1011 Rn – Rm → Rn, underflow
→ T

1 Underflow

SWAP.B Rm,Rn 0110nnnnmmmm1000 Rm → Swap upper and
lower halves of lower 2
bytes → Rn

1 —

SWAP.W Rm,Rn 0110nnnnmmmm1001 Rm → Swap upper and
lower word → Rn

1 —

TST Rm,Rn 0010nnnnmmmm1000 Rn & Rm, when result is
0, 1 → T

1 Test results

XOR Rm,Rn 0010nnnnmmmm1010 Rn ^ Rm → Rn 1 —

XTRCT Rm,Rn 0010nnnnmmmm1101 Center 32 bits of Rm and
Rn → Rn

1 —

Notes: 1. The normal minimum number of execution cycles.
2. SH-2 CPU instructions

HITACHI 271

Table A.33 Indirect Register Addressing

Instruction Code Operation State T Bit

MOV.B Rm,@Rn 0010nnnnmmmm0000 Rm → (Rn) 1 —

MOV.W Rm,@Rn 0010nnnnmmmm0001 Rm → (Rn) 1 —

MOV.L Rm,@Rn 0010nnnnmmmm0010 Rm → (Rn) 1 —

MOV.B @Rm,Rn 0110nnnnmmmm0000 (Rm) → sign extension → Rn 1 —

MOV.W @Rm,Rn 0110nnnnmmmm0001 (Rm) → sign extension → Rn 1 —

MOV.L @Rm,Rn 0110nnnnmmmm0010 (Rm) → Rn 1 —

Table A.34 Post Increment Indirect Register (Multiply/Accumulate Operation)

Instruction Code Operation State T Bit

MAC.L @Rm+,@Rn+*2 0000nnnnmmmm1111 Signed, (Rn) × (Rm) +
MAC → MAC

3/(2 to
4)*1

—

MAC.W @Rm+,@Rn+ 0100nnnnmmmm1111 Signed, (Rn) × (Rm) +
MAC → MAC

3/(2)*1 —

Notes: 1. The normal minimum number of execution cycles.(The number in parentheses in the
number of cycles when there is contention with preceding/following instructions).

2. SH-2 CPU instruction.

Table A.35 Post Increment Indirect Register

Instruction Code Operation State T Bit

MOV.B @Rm+,Rn 0110nnnnmmmm0100 (Rm) → sign extension →
Rn, Rm + 1 → Rm

1 —

MOV.W @Rm+,Rn 0110nnnnmmmm0101 (Rm) → sign extension →
Rn, Rm + 2 → Rm

1 —

MOV.L @Rm+,Rn 0110nnnnmmmm0110 (Rm) → Rn, Rm + 4 → Rm 1 —

Table A.36 Pre Decrement Indirect Register

Instruction Code Operation State T Bit

MOV.B Rm,@–Rn 0010nnnnmmmm0100 Rn – 1 → Rn, Rm → (Rn) 1 —

MOV.W Rm,@–Rn 0010nnnnmmmm0101 Rn – 2 → Rn, Rm → (Rn) 1 —

MOV.L Rm,@–Rn 0010nnnnmmmm0110 Rn – 4 → Rn, Rm → (Rn) 1 —

272 HITACHI

Table A.37 Indirect Indexed Register

Instruction Code Operation Cycles T Bit

MOV.B Rm,@(R0,Rn) 0000nnnnmmmm0100 Rm → (R0 + Rn) 1 —

MOV.W Rm,@(R0,Rn) 0000nnnnmmmm0101 Rm → (R0 + Rn) 1 —

MOV.L Rm,@(R0,Rn) 0000nnnnmmmm0110 Rm → (R0 + Rn) 1 —

MOV.B @(R0,Rm),Rn 0000nnnnmmmm1100 (R0 + Rm) → sign
extension → Rn

1 —

MOV.W @(R0,Rm),Rn 0000nnnnmmmm1101 (R0 + Rm) → sign
extension → Rn

1 —

MOV.L @(R0,Rm),Rn 0000nnnnmmmm1110 (R0 + Rm) → Rn 1 —

A.2.5 md Format

Table A.38 md Format

Instruction Code Operation State T Bit

MOV.B @(disp,Rm),R0 10000100mmmmdddd (disp + Rm) → sign
extension → R0

1 —

MOV.W @(disp,Rm),R0 10000101mmmmdddd (disp × 2 + Rm) →
sign extension →
R0

1 —

A.2.6 nd4 Format

Table A.39 nd4 Format

Instruction Code Operation State T Bit

MOV.B R0,@(disp,Rn) 10000000nnnndddd R0 → (disp + Rn) 1 —

MOV.W R0,@(disp,Rn) 10000001nnnndddd R0 → (disp × 2+ Rn) 1 —

A.2.7 nmd Format

Table A.40 nmd Format

Instruction Code Operation State T Bit

MOV.L Rm,@(disp,Rn) 0001nnnnmmmmdddd Rm → (disp × 4 + Rn) 1 —

MOV.L @(disp,Rm),Rn 0101nnnnmmmmdddd (disp × 4+ Rm) → Rn 1 —

HITACHI 273

A.2.8 d Format

Table A.41 Indirect GBR with Displacement

Instruction Code Operation State T Bit

MOV.B R0,@(disp,GBR) 11000000ddddddd
d

R0 → (disp + GBR) 1 —

MOV.W R0,@(disp,GBR) 11000001ddddddd
d

R0 → (disp × 2 +
GBR)

1 —

MOV.L R0,@(disp,GBR) 11000010ddddddd
d

R0 → (disp × 4 +
GBR)

1 —

MOV.B @(disp,GBR),R0 11000100ddddddd
d

(disp + GBR) → sign
extension → R0

1 —

MOV.W @(disp,GBR),R0 11000101ddddddd
d

(disp × 2 + GBR) →
sign extension → R0

1 —

MOV.L @(disp,GBR),R0 11000110ddddddd
d

(disp × 4 + GBR) →
R0

1 —

Table A.42 PC Relative with Displacement

Instruction Code Operation State T Bit

MOVA @(disp,PC),R0 11000111dddddddd disp × 4 + PC → R0 1 —

Table A.43 PC Relative Addressing

Instruction Code Operation State T Bit

BF label 10001011dddddddd When T = 0, disp × 2 + PC → PC;
When T = 1, nop

3/1*3 —

BF/S
label

*2

10001111dddddddd When T = 0, disp × 2 + PC → PC;
When T = 1, nop

2/1*3 —

BT label 10001001dddddddd When T = 1, disp × 2 + PC → PC;
When T = 0, nop

3/1*3 —

BT/S
label

*2

10001101dddddddd When T = 1, disp × 2 + PC → PC;
When T = 0, nop

2/1*3 —

Notes: 2. SH-2 CPU instruction
3. One state when it does not branch

274 HITACHI

A.2.9 d12 Format

Table A.44 d12 Format

Instruction Code Operation State T Bit

BRA
labe

l

1010dddddddddddd Delayed branch, disp × 2+ PC → PC 2 —

BSR
labe

l

1011dddddddddddd Delayed branching, PC → PR, disp ×
2 + PC → PC

2 —

A.2.10 nd8 Format

Table A.45 nd8 Format

Instruction Code Operation State T Bit

MOV.W @(disp,PC),Rn 1001nnnndddddddd (disp × 2 + PC) → sign
extension → Rn

1 —

MOV.L @(disp,PC),Rn 1101nnnndddddddd (disp × 4 + PC) → Rn 1 —

A.2.11 i Format

Table A.46 Indirect Indexed GBR Addressing

Instruction Code Operation State T Bit

AND.B #imm,@(R0,GBR) 11001101iiiiiiii (R0 + GBR) & imm →
(R0 + GBR)

3 —

OR.B
#imm,@(R0,GBR)

11001111iiiiiiii (R0 + GBR) | imm → (R0
+ GBR)

3 —

TST.B #imm,@(R0,GBR) 11001100iiiiiiii (R0 + GBR) & imm,
when result is 0, 1 → T

3 Test
results

XOR.B #imm,@(R0,GBR) 11001110iiiiiiii (R0 + GBR) ^ imm →
(R0 + GBR)

3 —

HITACHI 275

Table A.47 Immediate Addressing (Arithmetic Logical Operation with Direct Register)

Instruction Code Operation State T Bit

AND #imm,R0 11001001iiiiiiii R0 & imm → R0 1 —

CMP/EQ #imm,R0 10001000iiiiiiii When R0 = imm, 1 → T 1 Comparison
results

O R #imm,R0 11001011iiiiiiii R0 | imm → R0 1 —

TST #imm,R0 11001000iiiiiiii R0 & imm, when result
is 0, 1 → T

1 Test results

XOR #imm,R0 11001010iiiiiiii R0 ^ imm → R0 1 —

Table A.48 Immediate Addressing (Specify Exception Processing Vector)

Instruction Code Operation State T Bit

TRAPA #imm 11000011iiiiiiii PC/SR → Stack area, (imm × 4 +
VBR) → PC

8 —

A.2.12 ni Format

Table A.49 ni Format

Instruction Code Operation State T Bit

ADD
#imm,R

n

0111nnnniiiiiiii Rn + imm → Rn 1 —

MOV
#imm,R

n

1110nnnniiiiiiii imm → sign extension → Rn 1 —

276 HITACHI

A.3 Instruction Set in Order by Instruction Code

Table A.50 lists instruction codes and execution states in order by instruction code.

Table A.50 Instruction Set by Instruction Code

Instruction Code Operation State T Bit

CLRT 0000000000001000 0 → T 1 0

NOP 0000000000001001 No operation 1 —

RTS 0000000000001011 Delayed branch, PR
→ PC

2 —

SETT 0000000000011000 1 → T 1 1

DIV0U 0000000000011001 0 → M/Q/T 1 0

HITACHI 277

Table A.50 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit

SLEEP 0000000000011011 Sleep 3 —

CLRMAC 0000000000101000 0 → MACH, MACL 1 —

RTE 0000000000101011 Delayed branch, stack
area → PC/SR

4 LSB

STC SR,Rn 0000nnnn00000010 SR → Rn 1 —

BSRF Rm*2 0000mmmm00000011 Delayed branch, PC
→ PR, Rm + PC → PC

2 —

STS MACH,Rn 0000nnnn00001010 MACH → Rn 1 —

STC GBR,Rn 0000nnnn00010010 GBR → Rn 1 —

STS MACL,Rn 0000nnnn00011010 MACL → Rn 1 —

STC VBR,Rn 0000nnnn00100010 VBR → Rn 1 —

BRAF Rm*2 0000mmmm00100011 Delayed branch, Rm +
PC → PC

2 —

MOVT Rn 0000nnnn00101001 T → Rn 1 —

STS PR,Rn 0000nnnn00101010 PR → Rn 1 —

MOV.B Rm,@(R0,Rn) 0000nnnnmmmm0100 Rm → (R0 + Rn) 1 —

MOV.W Rm,@(R0,Rn) 0000nnnnmmmm0101 Rm → (R0 + Rn) 1 —

MOV.L Rm,@(R0,Rn) 0000nnnnmmmm0110 Rm → (R0 + Rn) 1 —

MUL.L Rm,Rn*2 0000nnnnmmmm0111 Rn x Rm → MACL 2
(to 4)*1

—

MOV.B @(R0,Rm),Rn 0000nnnnmmmm1100 (R0 + Rm) → sign
extension → Rn

1 —

MOV.W @(R0,Rm),Rn 0000nnnnmmmm1101 (R0 + Rm) → sign
extension → Rn

1 —

MOV.L @(R0,Rm),Rn 0000nnnnmmmm1110 (R0 + Rm) → Rn 1 —

MAC.L @Rm+,@Rn+*2 0000nnnnmmmm1111 Signed, (Rn) x (Rm) +
MAC → MAC

3/ (2
to 4)*1

—

MOV.L Rm,@(disp,Rn) 0001nnnnmmmmdddd Rm → (disp × 4 + Rn) 1 —

MOV.B Rm,@Rn 0010nnnnmmmm0000 Rm → (Rn) 1 —

MOV.W Rm,@Rn 0010nnnnmmmm0001 Rm → (Rn) 1 —

Notes: 1. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions)

2. SH-2 CPU instruction

278 HITACHI

Table A.50 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit

MOV.L Rm,@Rn 0010nnnnmmmm0010 Rm → (Rn) 1 —

MOV.B Rm,@-Rn 0010nnnnmmmm0100 Rn – 1 → Rn, Rm →
(Rn)

1 —

MOV.W Rm,@–Rn 0010nnnnmmmm0101 Rn – 2 → Rn, Rm →
(Rn)

1 —

MOV.L Rm,@–Rn 0010nnnnmmmm0110 Rn – 4 → Rn, Rm →
(Rn)

1 —

DIV0S Rm,Rn 0010nnnnmmmm0111 MSB of Rn → Q,
MSB of Rm → M, M ^
Q → T

1 Calculation
result

TST Rm,Rn 0010nnnnmmmm1000 Rn & Rm, when result
is 0, 1 → T

1 Test results

AND Rm,Rn 0010nnnnmmmm1001 Rn & Rm → Rn 1 —

XOR Rm,Rn 0010nnnnmmmm1010 Rn ^ Rm → Rn 1 —

O R Rm,Rn 0010nnnnmmmm1011 Rn | Rm → Rn 1 —

CMP/STR
Rm,Rn

0010nnnnmmmm1100 When a byte in Rn
equals a byte in Rm, 1
→ T

1 Comparison
result

XTRCT Rm,Rn 0010nnnnmmmm1101 Center 32 bits of Rm
and Rn → Rn

1 —

MULU.W Rm,Rn 0010nnnnmmmm1110 Unsigned, Rn × Rm →
MAC

1 to 3*1 —

MULS.W Rm,Rn 0010nnnnmmmm1111 Signed, Rn × Rm →
MAC

1 to 3*1 —

CMP/EQ Rm,Rn 0011nnnnmmmm0000 When Rn = Rm, 1 → T 1 Comparison
result

CMP/HS Rm,Rn 0011nnnnmmmm0010 When unsigned and
Rn ≥ Rm, 1 → T

1 Comparison
result

CMP/GE Rm,Rn 0011nnnnmmmm0011 When signed and Rn
≥ Rm, 1 → T

1 Comparison
result

DIV1 Rm,Rn 0011nnnnmmmm0100 1-step division (Rn ÷
Rm)

1 Calculation
result

DMULU.L
Rm,Rn*2

0011nnnnmmmm0101 Unsigned, Rn x Rm →
MACH, MACL

2 to 4*1 —

Notes: 1. The normal minimum number of execution states
2. SH-2 CPU instruction

HITACHI 279

Table A.50 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit

CMP/HI Rm,Rn 0011nnnnmmmm0110 When unsigned
and Rn > Rm, 1
→ T

1 Comparison
result

CMP/GT Rm,Rn 0011nnnnmmmm0111 When signed and
Rn > Rm, 1 → T

1 Comparison
result

SUB Rm,Rn 0011nnnnmmmm1000 Rn – Rm → Rn 1 —

SUBC Rm,Rn 0011nnnnmmmm1010 Rn – Rm – T →
Rn, borrow → T

1 Borrow

SUBV Rm,Rn 0011nnnnmmmm1011 Rn – Rm → Rn,
underflow → T

1 Underflow

ADD Rm,Rn 0011nnnnmmmm1100 Rm + Rn → Rn 1 —

DMULS.L Rm,Rn*2 0011nnnnmmmm1101 Signed, Rn x Rm
→ MACH, MACL

2 to 4*1 —

ADDC Rm,Rn 0011nnnnmmmm1110 Rn + Rm + T →
Rn, carry → T

1 Carry

ADDV Rm,Rn 0011nnnnmmmm1111 Rn + Rm → Rn,
overflow → T

1 Overflow

SHLL Rn 0100nnnn00000000 T ← Rn ← 0 1 MSB

SHLR Rn 0100nnnn00000001 0 → Rn → T 1 LSB

STS.L MACH,@–Rn 0100nnnn00000010 Rn – 4 → Rn,
MACH → (Rn)

1 —

STC.L SR,@-Rn 0100nnnn00000011 Rn – 4 → Rn, SR
→ (Rn)

2 —

ROTL Rn 0100nnnn00000100 T ← Rn ← MSB 1 MSB

ROTR Rn 0100nnnn00000101 LSB → Rn → T 1 LSB

LDS.L @Rm+,MACH 0100mmmm00000110 (Rm) → MACH,
Rm + 4 → Rm

1 —

LDC.L @Rm+,SR 0100mmmm00000111 (Rm) → SR, Rm +
4 → Rm

3 LSB

SHLL2 Rn 0100nnnn00001000 Rn<<2 → Rn 1 —

SHLR2 Rn 0100nnnn00001001 Rn>>2 → Rn 1 —

LDS Rm,MACH 0100mmmm00001010 Rm → MACH 1 —

Notes: 1. The normal minimum number of execution states
2. SH-2 CPU instruction

280 HITACHI

Table A.50 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit

JSR @Rm 0100mmmm00001011 Delayed branch, PC
→ PR, Rm → PC

2 —

LDC Rm,SR 0100mmmm00001110 Rm → SR 1 LSB

D T Rn*2 0100nnnn00010000 Rn - 1 → Rn; if Rn is
0, 1 → T, if Rn is
nonzero, 0 → T

1 Comparison
result

CMP/PZ Rn 0100nnnn00010001 Rn ≥ 0, 1 → T 1 Comparison
result

STS.L MACL,@–Rn 0100nnnn00010010 Rn – 4 → Rn, MACL
→ (Rn)

1 —

STC.L GBR,@-Rn 0100nnnn00010011 Rn – 4 → Rn, GBR →
(Rn)

2 —

CMP/PL Rn 0100nnnn00010101 Rn > 0, 1 → T 1 Comparison
result

LDS.L @Rm+,MACL 0100mmmm00010110 (Rm) → MACL, Rm +
4 → Rm

1 —

LDC.L @Rm+,GBR 0100mmmm00010111 (Rm) → GBR, Rm + 4
→ Rm

3 —

SHLL8 Rn 0100nnnn00011000 Rn<<8 → Rn 1 —

SHLR8 Rn 0100nnnn00011001 Rn>>8 → Rn 1 —

LDS Rm,MACL 0100mmmm00011010 Rm → MACL 1 —

TAS.B @Rn 0100nnnn00011011 When (Rn) is 0, 1 →
T, 1 → MSB of (Rn)

4 Test results

LDC Rm,GBR 0100mmmm00011110 Rm → GBR 1 —

SHAL Rn 0100nnnn00100000 T ← Rn ← 0 1 MSB

SHAR Rn 0100nnnn00100001 MSB → Rn → T 1 LSB

STS.L PR,@–Rn 0100nnnn00100010 Rn – 4 → Rn, PR →
(Rn)

1 —

STC.L VBR,@-Rn 0100nnnn00100011 Rn – 4 → Rn, VBR →
(Rn)

2 —

ROTCL Rn 0100nnnn00100100 T ← Rn ← T 1 MSB

ROTCR Rn 0100nnnn00100101 T → Rn → T 1 LSB

LDS.L @Rm+,PR 0100mmmm00100110 (Rm) → PR, Rm + 4 →
Rm

1 —

LDC.L @Rm+,VBR 0100mmmm00100111 (Rm) → VBR, Rm + 4
→ Rm

3 —

Notes: 2. SH-2 CPU instruction

HITACHI 281

Table A.50 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit

SHLL16 R n 0100nnnn00101000 Rn<<16 → Rn 1 —

SHLR16 R n 0100nnnn00101001 Rn>>16 → Rn 1 —

LDS Rm,PR 0100mmmm00101010 Rm → PR 1 —

JMP @Rm 0100mmmm00101011 Delayed branch, Rm
→ PC

2 —

LDC Rm,VBR 0100mmmm00101110 Rm → VBR 1 —

MAC.W @Rm+,@Rn+ 0100nnnnmmmm1111 Signed, (Rn) × (Rm)
+ MAC → MAC

3/(2)*1 —

MOV.L @(disp,Rm),Rn 0101nnnnmmmmdddd (disp + Rm) → Rn 1 —

MOV.B @Rm,Rn 0110nnnnmmmm0000 (Rm) → sign
extension → Rn

1 —

MOV.W @Rm,Rn 0110nnnnmmmm0001 (Rm) → sign
extension → Rn

1 —

MOV.L @Rm,Rn 0110nnnnmmmm0010 (Rm) → Rn 1 —

MOV Rm,Rn 0110nnnnmmmm0011 Rm → Rn 1 —

MOV.B @Rm+,Rn 0110nnnnmmmm0100 (Rm) → sign
extension → Rn, Rm
+ 1 → Rm

1 —

MOV.W @Rm+,Rn 0110nnnnmmmm0101 (Rm) → sign
extension → Rn, Rm
+ 2 → Rm

1 —

MOV.L @Rm+,Rn 0110nnnnmmmm0110 (Rm) → Rn, Rm + 4
→ Rm

1 —

NOT Rm,Rn 0110nnnnmmmm0111 ~Rm → Rn 1 —

SWAP.B Rm,Rn 0110nnnnmmmm1000 Rm → Swap upper
and lower halves of
lower 2 bytes → Rn

1 —

SWAP.W Rm,Rn 0110nnnnmmmm1001 Rm → Swap upper
and lower word →
Rn

1 —

NEGC Rm,Rn 0110nnnnmmmm1010 0 – Rm – T → Rn,
borrow → T

1 Borrow

NEG Rm,Rn 0110nnnnmmmm1011 0 – Rm → Rn 1 —

Notes: 1 The normal minimum number of execution states (The number in parentheses is the
number in contention with preceding/following instructions)

282 HITACHI

Table A.50 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit

EXTU.B Rm,Rn 0110nnnnmmmm1100 Zero-extends Rm
from byte → Rn

1 —

EXTU.W Rm,Rn 0110nnnnmmmm1101 Zero-extends Rm
from word → Rn

1 —

EXTS.B Rm,Rn 0110nnnnmmmm1110 Sign-extends Rm
from byte → Rn

1 —

EXTS.W Rm,Rn 0110nnnnmmmm1111 Sign-extends Rm
from word → Rn

1 —

ADD #imm,Rn 0111nnnniiiiiiii Rn + imm → Rn 1 —

MOV.B R0,@(disp,Rn) 10000000nnnndddd R0 → (disp + Rn) 1 —

MOV.W R0,@(disp,Rn) 10000001nnnndddd R0 → (disp × 2 +
Rn)

1 —

MOV.B @(disp,Rm),R0 10000100mmmmdddd (disp + Rm) → sign
extension → R0

1 —

MOV.W @(disp,Rm),R0 10000101mmmmdddd (disp × 2 + Rm) →
sign extension →
R0

1 —

CMP/EQ #imm,R0 10001000iiiiiiii When R0 = imm, 1
→ T

1 Compariso
n results

B T label 10001001dddddddd When T = 1, disp ×
2 + PC → PC;
When T = 0, nop.

3/1*3 —

BT/S label* 10001101dddddddd When T = 1, disp ×
2 + PC → PC;
When T = 1, nop.

2/1*3 —

B F label 10001011dddddddd When T = 0, disp ×
2 + PC → PC;
When T = 0, nop

3/1*3 —

BF/S label* 10001111dddddddd When T = 0, disp ×
2 + PC → PC;
When T = 1, nop

2/1*3 —

MOV.W @(disp,PC),Rn 1001nnnndddddddd (disp × 2 + PC) →
sign extension →
Rn

1 —

BRA label 1010dddddddddddd Delayed branch,
disp × 2 + PC →
PC

2 —

Notes: 2. SH-2 CPU instruction
3. One state when it does not branch

HITACHI 283

Table A.50 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit

BSR label 1011dddddddddddd Delayed branch, PC →
PR, disp × 2 + PC → PC

2 —

MOV.B R0,@(disp,GBR) 11000000dddddddd R0 → (disp + GBR) 1 —

MOV.W R0,@(disp,GBR) 11000001dddddddd R0 → (disp × 2 + GBR) 1 —

MOV.L R0,@(disp,GBR) 11000010dddddddd R0 → (disp × 4 + GBR) 1 —

TRAPA #imm 11000011iiiiiiii PC/SR → Stack area,
(imm × 4 + VBR) → PC

8 —

MOV.B @(disp,GBR),R0 11000100dddddddd (disp + GBR) → sign
extension → R0

1 —

MOV.W @(disp,GBR),R0 11000101dddddddd (disp × 2 + GBR) → sign
extension → R0

1 —

MOV.L @(disp,GBR),R0 11000110dddddddd (disp × 4 + GBR) → R0 1 —

MOVA @(disp,PC),R0 11000111dddddddd disp × 4 + PC → R0 1 —

TST #imm,R0 11001000iiiiiiii R0 & imm, when result is
0, 1 → T

1 Test
results

AND #imm,R0 11001001iiiiiiii R0 & imm → R0 1 —

XOR #imm,R0 11001010iiiiiiii R0 ^ imm → R0 1 —

O R #imm,R0 11001011iiiiiiii R0 | imm → R0 1 —

TST.B #imm,@(R0,GBR) 11001100iiiiiiii (R0 + GBR) & imm, when
result is 0, 1 → T

3 Test
results

AND.B #imm,@(R0,GBR) 11001101iiiiiiii (R0 + GBR) & imm → (R0
+ GBR)

3 —

XOR.B #imm,@(R0,GBR) 11001110iiiiiiii (R0 + GBR) ^ imm → (R0
+ GBR)

3 —

OR.B #imm,@(R0,GBR) 11001111iiiiiiii (R0 + GBR) | imm → (R0 +
GBR)

3 —

MOV.L @(disp,PC),Rn 1101nnnndddddddd (disp × 4 + PC) → Rn 1 —

MOV #imm,Rn 1110nnnniiiiiiii imm → sign extension →
Rn

1 —

284 HITACHI

A.4 Operation Code Map

Table A.51 is an operation code map.

Table A.51 Operation Code Map

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011–1111

MSB LSB MD: 00 MD: 01 MD: 10 MD: 11

0000 Rn Fx 0000

0000 Rn Fx 0001

0000 Rn Fx 0010 STC SR,Rn* STC GBR,Rn STC VBR,Rn

0000 Rm Fx 0011 BSRF Rm* BRAF Rm*

0000 Rn Rm 01MD MOV.B
Rm,@(R0,Rn)

MOV.W
Rm,@(R0,Rn)

MOV.L
Rm,@(R0,Rn)

MUL.L
Rm,Rn*

0000 0000 Fx 1000 CLRT SETT CLRMAC

0000 0000 Fx 1001 NOP DIV0U

0000 0000 Fx 1010

0000 0000 Fx 1011 RTS SLEEP RTE

0000 Rn Fx 1000

0000 Rn Fx 1001 MOVT Rn

0000 Rn Fx 1010 STS MACH,Rn STS MACL,Rn STS PR,Rn

0000 Rn Fx 1011

0000 Rn Fx 11MD MOV.B
@(R0,Rm),Rn

MOV.W
@(R0,Rm),Rn

MOV.L
@(R0,Rm),Rn

MAC.L
@Rm+,@Rn+*

0001 Rn Rm disp MOV.L Rm,@(disp:4,Rn)

0010 Rn Rm 00MD MOV.B Rm,@Rn MOV.W Rm,@Rn MOV.L Rm,@Rn

0010 Rn Rm 01MD MOV.B
Rm,@-Rn

MOV.W
Rm,@-Rn

MOV.L
Rm,@-Rn

DIV0S Rm,Rn

0010 Rn Rm 10MD TST Rm,Rn AND Rm,Rn XOR Rm,Rn O R Rm,Rn

0010 Rn Rm 11MD CMP/STR
Rm,Rn

XTRCT Rm,Rn MULU.W Rm,Rn MULS.W Rm,Rn

0011 Rn Rm 00MD CMP/EQ Rm,Rn CMP/HS Rm,Rn CMP/GE Rm,Rn

0011 Rn Rm 01MD DIV1 Rm,Rn DMULU.L
Rm,Rn*

CMP/HI Rm,Rn CMP/GT Rm,Rn

0011 Rn Rm 10MD SUB Rm,Rn SUBC Rm,Rn SUBV Rm,Rn

0011 Rn Rm 11MD ADD Rm,Rn DMULS.L
Rm,Rn*

ADDC Rm,Rn ADDV Rm,Rn

0100 Rn Fx 0000 SHLL Rn DT Rn* SHAL Rn

HITACHI 285

286 HITACHI

Table A.51 Operation Code Map (cont)

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011–1111

MSB LSB MD: 00 MD: 01 MD: 10 MD: 11

0100 Rn Fx 0001 SHLR Rn CMP/PZ Rn SHAR Rn

0100 Rn Fx 0010 STS.L
MACH,@–Rn

STS.L
MACL,@–Rn

STS.L
PR,@–Rn

0100 Rn Fx 0011 STC.L
SR,@–Rn

STC.L
GBR,@–Rn

STC.L
VBR,@–Rn

0100 Rn Fx 0100 ROTL Rn ROTCL Rn

0100 Rn Fx 0101 ROTR Rn CMP/PL Rn ROTCR Rn

0100 Rm Fx 0110 LDS.L
@Rm+,MACH

LDS.L
@Rm+,MACL

LDS.L
@Rm+,PR

0100 Rm Fx 0111 LDC.L
@Rm+,SR

LDC.L
@Rm+,GBR

LDC.L
@Rm+,VBR

0100 Rn Fx 1000 SHLL2 Rn SHLL8 Rn SHLL16 Rn

0100 Rn Fx 1001 SHLR2 Rn SHLR8 Rn SHLR16 Rn

0100 Rm Fx 1010 LDS Rm,MACH LDS Rm,MACL LDS Rm,PR

0100 Rm/
Rn

Fx 1011 JSR @Rm TAS.B @Rn JMP @Rm

0100 Rm Fx 1100

0100 Rm Fx 1101

0100 Rn Fx 1110 LDC Rm,SR LDC Rm,GBR LDC Rm,VBR

0100 Rn Rm 1111 MAC.W @Rm+,@Rn+

0101 Rn Rm disp MOV.L @(disp:4,Rm),Rn

0110 Rn Rm 00MD MOV.B Rm,Rn MOV.W @Rm,Rn MOV.L @Rm,Rn MOV Rm,Rn

0110 Rn Rm 01MD MOV.B Rm+,Rn MOV.W @Rm+,Rn MOV.L @Rm+,Rn NOT Rm,Rn

0110 Rn Rm 10MD SWAP.B
Rm,Rn

SWAP.W
Rm,Rn

NEGC Rm,Rn NEG Rm,Rn

0110 Rn Rm 11MD EXTU.B Rm,Rn EXTU.W Rm,Rn EXTS.B Rm,Rn EXTS.W Rm,Rn

0111 Rn imm ADD #imm:8,Rn

1000 00MD Rn disp MOV.B R0,
@(disp:4,Rn)

MOV.W R0,
@(disp:4,Rn)

1000 01MD Rm disp MOV.B
@(disp:4,
Rm),R0

MOV.W
@(disp:4,
Rm),R0

1000 10MD imm/disp CMP/EQ
#imm:8,R0

BT label:8 BF label:8

HITACHI 287

Table A.51 Operation Code Map (cont)

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011–1111

MSB LSB MD: 00 MD: 01 MD: 10 MD: 11

1000 11MD imm/disp BT/S
label:8*

BF/S
label:8*

1001 Rn disp MOV.W @(disp:8,PC),Rn

1010 disp BRA label:12

1011 disp BSR label:12

1100 00MD imm/disp MOV.B R0,
@(disp:8,
GBR)

MOV.W R0,
@(disp:8,
GBR)

MOV.L R0,
@(disp:8,
GBR)

TRAPA #imm:8

1100 01MD disp MOV.B
@(disp:8,
GBR),R0

MOV.W
@(disp:8,
GBR),R0

MOV.L
@(disp:8,
GBR),R0

MOVA
@(disp:8,
PC),R0

1100 10MD imm TST
#imm:8,R0

AND
#imm:8,R0

XOR
#imm:8,R0

O R
#imm:8,R0

1100 11MD imm TST.B
#imm:8,
@(R0,GBR)

AND.B
#imm:8,
@(R0,GBR)

XOR.B
#imm:8,
@(R0,GBR)

OR.B
#imm:8,
@(R0,GBR)

1101 Rn disp MOV.L @(disp:8,PC),R0

1110 Rn imm MOV #imm:8,Rn

1111 ...

Note: SH-2 CPU instructions

288 HITACHI

Appendix B Pipeline Operation and Contention

The SH-1 and SH-2 CPU is designed so that basic instructions are executed in one state. Two
or more states are required for instructions when, for example, the branch destination address
is changed by a branch instruction or when the number of states is increased by contention
between MA and IF. Table B.1 gives the number of execution states and stages for different
types of contention and their instructions. Instructions without contention and instructions that
require 2 or more cycles even without contention are also shown.

Instructions experience contention in the following ways:

• Operations and transfers between registers are executed in one state with no contention.

• No contention occurs, but the instruction still requires 2 or more cycles.

• Contention occurs, increasing the number of execution states. Contention combinations
are as follows:

 MA contends with IF

 MA contends with IF and sometimes with memory loads as well

 MA contends with IF and sometimes with the multiplier as well

 MA contends with IF and sometimes with memory loads and sometimes with the
multiplier

HITACHI 289

Table B.1 Instructions and Their Contention Patterns

Contention State Stage Instruction

None 1 3 Transfer between registers

Operation between registers (except
multiplication instruction)

Logical operation between registers

Shift instruction

System control ALU instruction

2 3 Unconditional branch

3/1*3 3 Conditional branch

3 3 SLEEP instruction

4 5 RTE instruction

8 9 TRAP instruction

MA contends with IF 1 4 Memory store instruction and STS.L
instruction (PR)

2 4 STC.L instruction

3 6 Memory logic operations

4 6 TAS instruction

MA contends with IF and
sometimes with memory loads as

1 5 Memory load instructions and LDS.L
instruction (PR)

well 3 5 LDC.L instruction

MA contends with IF and
sometimes with the multiplier as
well

1 4 Register to MAC transfer instruction,
memory to MAC transfer instruction and
MAC to memory transfer instruction

1 to 3
*2

6/7*1 Multiplication instruction

3/(2)*2 7/8*1 Multiply/accumulate instruction

3/(2 to
4)*2

9 Double-length multiply/accumulate
instruction (SH-2 only)

2 to 4*2 9 Double-length multiplication instruction
(SH-2 only)

MA contends with IF and
sometimes with memory loads
and sometimes with the multiplier

1 5 MAC to register transfer instruction

Notes: 1. With the SH-2 CPU, multiply/accumulate instructions are 7 stages and multiplication
instructions are 6 stages, while with the SH-1 CPU, multiply/accumulate instructions
are 8 stages and multiplication instructions are 7 stages.

2. The normal minimum number of execution states (The number in parentheses is the
number in contention with preceding/following instructions).

3. One stage when it does not branch.

