SuperH RISC Engine
SH-1/SH-2

Programming Manual

HITACHI

September 3, 1996
Hitachi America Ltd.

Notice

When using this document, keep the following in mind:

1

2.

This document may, wholly or partially, be subject to change without notice.

All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the
whole or part of this document without Hitachi’s permission.

Hitachi will not be held responsible for any damage to the user that may result from
accidents or any other reasons during operation of the user’s unit according to this
document.

Circuitry and other examples described herein are meant merely to indicate the
characteristics and performance of Hitachi’s semiconductor products. Hitachi assumes no
responsibility for any intellectual property claims or other problems that may result from
applications based on the examples described herein.

No license is granted by implication or otherwise under any patents or other rights of any
third party or Hitachi, Ltd.

MEDICAL APPLICATIONS: Hitachi’s products are not authorized for use in MEDICAL
APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales
company. Such use includes, but is not limited to, use in life support systems. Buyers of
Hitachi’s products are requested to notify the relevant Hitachi sales offices when planning
to use the products in MEDICAL APPLICATIONS.

Introduction

The SuperH RISC engine family incorporates a RISC (Reduced Instruction Set Computer)
type CPU. A basic instruction can be executed in one clock cycle, realizing high
performance operation. A built-in multiplier can execute multiplication and addition as
quickly as DSP.

The SuperH RISC engine has SH-1 CPU, SH-2 CPU, and SH-3 CPU cores.

The SH-1 CPU, SH-2 CPU and SH-3 CPU have an instruction system with upward
compatibility at the binary level.

SH-3 CPU MMU support:
68 instructions
SH-2 CPU Operation instruction
enhancement:
SH-1 CPU 62 instructions

56 basic instructions

Refer to the programming manual for the method of executing the instructions or for the
architecture. You can also refer to this programming manual to know the operation of the
pipe line, which is one of the features of the RISC CPU.

This programming manual describes in detail the instructions for the SH-1 CPU and SH-2
CPU instructions. For the SH-3 CPU, refer to the separate volume of SH-3 CPU programming
manual.

For the hardware, refer to individual hardware manuals for each unit.

HITACHI 1

Organization of This Manual

Table 1 describes how this manual is organized. Table 2 lists the relationships between the
items and the sections listed within this manual that cover those items.

Table 1 Manual Organization

Category Section Title Contents

Introduction 1. Features CPU features

Architecture (1) 2. Register Types and configuration of general registers,

Configuration

control registers and system registers

3. Data Formats

Data formats for registers and memory

Introduction to
instructions

4. Instruction
Features

Instruction features, addressing modes, and
instruction formats

5. Instruction Sets

Summary of instructions by category and list in
alphabetic order

Detailed information
on instructions

6. Instruction
Descriptions

Operation of each instruction in alphabetical
order

Architecture (2)

7. Pipeline Operation

Pipeline flow, and pipeline flows with operation
for each instruction

Instruction code

Appendixes:
Instruction Code

Operation code map

2 HITACHI

Table 2

Category

Subjects and Corresponding Sections

Topic

Section Title

Introduction and
features

CPU features

1. Features

Instruction features

4.1 RISC-Type Instruction Set

Pipelines

7.1 Basic Configuration of
Pipelines

.2 Slot and Pipeline Flow

Architecture

Register configuration

Register Configuration

Data formats

Pipeline operation

Pipeline Operation

Introduction to
instructions

Instruction features

7
2
3. Data Formats
7
4

Instruction Features

Addressing modes

4.2 Addressing Modes

Instruction formats

4.3 Instruction Formats

List of
instructions

Instruction sets

5.1 Instruction Set by
Classification

5.2 Instruction Set in
Alphabetical Order

Appendix A.1 Instruction Set by
Addressing Mode

Appendix A.2 Instruction Set by
Instruction Format

Instruction code

Appendix A.3 Instruction Set in
Order by
Instruction Code

Appendix A.4 Operation Code
Map

Detailed
information on
instructions

Detailed information on instruction
operation

Instruction Description

7.7 Instruction Pipeline
Operations

Number of instruction execution states

7.3 Number of Instruction
Execution States

HITACHI 3

Functions Listed by CPU Type

This manual is common for both the SH-1 and SH-2 CPU. However, not all CPUs can use al
the instructions and functions. Table 3 lists the usable functions by CPU type.

Table 3 Functions by CPU Type

Item SH-1 CPU SH-2 CPU
Instructions BF/S No Yes
BRAF No Yes
BSRF No Yes
BT/S No Yes
DMULS.L No Yes
DMULU.L No Yes
DT No Yes
MAC.L No Yes
MAC.W*1 (MAC)*2 16x16 +42 - 16x16 + 64 - 64
42
MUL.L No Yes
All others Yes Yes
States for 16x16 - 32 Executed in 1- Executed in 1-3*3states
multiplication operation (MULS.W, 3*3 states
MULU.W)*2
32x32 - 32 (MUL.L) No Executed in 2—4 *3states
32x32 - 64 No Executed in 2—4 *3states
(DMULS.L, DMULU.L)
States for multiply and 16 x 16 + 42 - 42 Executed in No
accumulate operation (SH-1, MAC.W) 3/(2)*3 states
16x16 + 64 _ 64 No Executed in states 3/(2)*3
(SH-2, MAC.W)
32x32+64 - 64 No Executed in 2—4 states
(MAC.L) 3/(2~4)*3

Notes: 1. MAC.W works differently on different LSls.

2. MAC and MAC.W are the same. MULS is also the same as MULS.W and MULU the
same as MULU.W.

3. The normal minimum number of execution cycles (The number in parentheses in the
number in contention with preceding/following instructions).

4 HITACHI

SECHON 1 FEBIUMES....ooseeeeereeeenesssssesssss s ssss s ssssssssssss s sssssss s ssss 14
Section 2 RegiStEr CONFIQUIELION.........ooeerreerreerrseeessnessssesssessssssssssssssssss s ssssssssssssssssssssees 16
2.1 GENETBl REJISIEIS....coouuereeeseseeeesssseseessssseesessssssessessssseesessssse s esssss e ss s R R RS R RS R RS R R 16
2.2 CONLIOI REJISIEIS.....covuuereeersssreessssseseesssssssesssssessesssssessssssssseseessssssssesssssesssessssessssssssesssssssssssssssssssessssssessssssss 16
2.3 SYSLEIM REQISLEIS.....ouerereeeessesssssessssssssssssssssssssssssssssssssssssessssssessssssesssssessssssessssssssssssssssssssssssessssssssssssssssenes 19
2.4 INitial ValUES Of REQISIES.....cciereeeserersnssssisssssessessssns 19
SECHION 3 DA FOMMELS....cccoooeeeeeerreeesseesssseess s sssssssssssssessssees 21
3.1 Data Format in Registers.... 21
3.2 Data Format in Memory 21
3.3 IMMEAIELE DBEA FOIMEL.........eeveeeersreeeressseesssssessesssssssesssssssssesssssessssssssssesssssessessssssssssssssessesssssessssssssssess 22
SECtioN 4 INSIIUCLION FEALUIES........ccooeeeeeeeeeesseeessseesssessssesssssssssssssssssssssssssssssssss s ssssssessees 23
4.1 RISC-TYPE INSITUCTION SEL....veuureeeererseeessmeeesssessssssssesssessssssessssssessssssessssssssssssessssssessssssassssssssssssessssssassssns 23
4.1.1 16-Bit FIXEA LENGLN..rottierrerrseesrestssessanns 23
4.1.2 ONE INSITUCLION/CYCI@....covrreereseesissssessisssessessssssssssssssesssens 23
4.0.3 DAA LENQGN ...ttt ssssssssssesssesssssssssssseness 23
4.1.4 LOAH-SLOIE ATCHITECIUIE..... . ceeeerrrceeesseesesssssssssssessssssssssssssssssessssssssssssssssssssssssssssssssssessssssssns 23
4.1.5 Delayed Branch INSITUCE ONS..........eeeeeeeessesssesessssesssssssssssssssssssssssssssssssessssssessssssssssssesees 23
4.1.6 Multiplication/Accumulation OPEIatiON..........oeeeeeeemrmesessmsesseessssssesssssssessssesssssssssssen 24
.17 T Bl oiuoseeseeeessessessssssessssssssssssssssssssssssssessssssssssssssssssssssssssssessssssssssssssssssasssssssssssssssssssssssssssasssssssssssssssnns
4.1.8 IMMEAIALE DALA......reeerereesrreesseresssssesssssesssssssssssssssssssssssssssssssssssessssssssssssssssssesssssmssssssessssssssssssnnes
4.1.9 ADSOIULE AQAIESS......reeeeeeetssesseesssssessesssssssssssssssesssssssssssssssssssesssssssssssesssssssssssssssssssssssssssssssssnnes
4.1.10 16-Bit/32-Bit Displacement
4.2 Addressing Modes..........
4.3 INSETUCE ON FOMMNAL.....ccvuusreeuseeessseeeesseeesssesessssesesssseseesssssssss s ssssesess e sess e ssssesess et ebssessesss e ssssessssssasssssessssssenes
SECHION 5 INSITUCLION SEL.......oooeeeeeeeeessesesssssssssssssssssss s ssss s ssssssssssssssssses 34
5.1 Instruction Set DY ClasSifiCatiON........ou.rreereermrsssnssess 34
5.1.1 Data Transfer INSITUCLIONS........cuureeeeeeeessseseesssssssesssssssessssssssesssssssssssssssssssssssssssssssssssssssns 39
5. 1.2 ArtNMELIC INSLIUCH ONS....couureverereresreeessseeesssesesssssssssssesssssesessssessssssssssssessssssessssssessssssesssssessssssesees 42
5.1.3 LOgiC OPEratiON INSIFUCLIONS......cvcueeeeemseeesseeesssssesssesessssessssssessssssssssssasssssssssssssssssssesssssssssssasees 44
5.1.4 Shift INSITUCLIONS.....oorveemereeeeereemeseeesseseessseseessessesssesesssesessssesssssessssssessssssessssssssssssessssssessssssesssssssssens 45
5.1.5 BranCh INSITUCH ONS.......cuveeereeesessessesesssessssssssssssssssssssssssssssssssssssssesssssssssssssssssssessssssesssssssssssssssssns 46
5.1.6 System Control INSLIUCH ONS.......vveereeeeressmseesses 47
5.2 Instruction Set in AIPhabetiCal OrAer......ereresessesessssesss 48
Section 6 Instruction Descriptions..................

6.1 Sample Description (Name): Classification

HITACHI 5

6.2 ADD (ADD Binary): ArithmetiC INSLIUCH ON......c.ureeueeeeereseeeesessssssessssssesssssssesssesessssssssssssssssssesesss 60

6.3 ADDC (ADD with Carry): ArithmetiC INSIFUCH ON.......oeeeereeerreeeesseeeessseeeesssssessssesssssssssesssesesssesess 61
6.4 ADDV (ADD with V Flag Overflow Check): Arithmetic INStruction............oweeeenneeeeseennne 62
6.5 AND (AND Logical): Logic Operation INSEIUCHON........ocueeeeesessssssesssssssssssssssssesssssses 63
6.6 BF (Branch if False): BranCh INStIUCLION........ocvceeeenreessnersssmssseses 65
6.7 BF/S (Branch if False with Delay Slot): Branch Instruction (SH-2 CPU)......ccoeeeiinereeens 66
6.8 BRA (Branch): Branch INSIFUCK ONc.eueeeeeesseeessseesssseessssessssssssssssesssssssssssssessssssssssssessssssessssans 68
6.9 BRAF (Branch Far): Branch INstruction (SH-2 CPU)cuemeemssessmsessssssssssssssssssenes 70
6.10 BSR (Branch to Subrouting): Branch INSIIUCH ON.........cccccuureessmssessesmsssesssssssesssssssssssssssssses 72
6.11 BSRF (Branch to Subroutine Far): Branch Instruction (SH-2 CPU)........ccomceesens 74
6.12 BT (Branch if True): Branch INStIUCLION.......ccc.creeeereessneressssessseses 75
6.13 BT/S (Branch if True with Delay Slot): Branch Instruction (SH-2 CPU)......ccoereesmereeens 76
6.14 CLRMAC (Clear MAC Register): System Control INSEIUCE ON........eeeeereeeeeeesmsmeeesssmseesesseees 78
6.15 CLRT (Clear T Bit): System Control INStIUCE ON.......cccereeemeeeeeeeeesseeeessssseesssssssssssessssssssesssesess 79
6.16 CMP/cond (Compare Conditionally): Arithmetic INStrUCE ON.......ccccuuumreerenmereessessneseesessees 80
6.17 DIVOS (Divide Step 0 as Signed): Arithmetic INSIrUCH ON........rrceenreerisssessesssseseessssees 84
6.18 DIVOU (Divide Step 0 as Unsigned): Arithmetic INSIrUCiON......cveveeeeesmereeesrereesmeseessesesssennes 85
6.19 DIV1 (Divide Step 1): ArithmetiC INSITUCTION......vvvveereeeeererssesssesess 86

6.20 DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction (SH-2 CPU).. 91
6.21 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic Instruction

(SH=2 CPU).c...cooitrrertssessesssssesssssssssssssssssessesssssssssssssssssns 93
6.22 DT (Decrement and Test): Arithmetic Instruction (SH-2 CPU).......ccmeesnnsessesnn 95
6.23 EXTS (Extend as Signed): Arithmetic INSrUCH ON.....veeereeeerrereeeseseessesesssssssssssessssssessssssssssssnnnes 96
6.24 EXTU (Extend as Unsigned): Arithmetic INStTUCLION.......cc..oreeeimnrersmnrssssesesssessssssssssssssssssenes 97
6.25 IMP (JUMP): BranCh INSLIUCL ON........ieeueeeeeneeesseeesessseesssessssssssssssesssssssssssssssssssessssssesssssssssssssssssssessssns 98
6.26 JSR (Jump to Subrouting): BranCh INSIIUCHONeeeeeenereeesseesssseeessssseessssesesssssssssssssssssesess 99
6.27 LDC (Load to Control Register): System Control INStrUCH ON........cccuuereeremmeeessessmeseeseseens 101
6.28 LDS (Load to System Register): System Control INStrUCtIONv.ceeveeermnreeessereessseneesssmseessennes 103
6.29 MAC.L (Multiply and Accumulate Long): Arithmetic Instruction (SH-2 CPU)............... 105
6.30 MAC (Multiply and Accumulate): Arithmetic Instruction (SH-1 CPU).....ccoeeercsnerenens 108

6.31 MAC.W (Multiply and Accumulate Word): Arithmetic INStruction............eeenneeeen. 109
6.32 MOV (Move Data): Data Transfer INSIIUCH ON.... . eeeeeeeeeeeessmseesssseessssssessssesesssssssssssssssssssssess 112
6.33 MOV (Move Immediate Data): Data Transfer INSIrUCH ON.........vceereeemmreeeseneeessseeeesseseessseeees 117
6.34 MOV (Move Peripheral Data): Data Transfer INStrUCH ON........reeeereessmreessesessssssessssssesssnsess 119
6.35 MOV (Move Structure Data): Data Transfer INStrUCH ON.........cereceeeeesmsreesesessssssesssssssssssnsess 122
6.36 MOVA (Move Effective Address): Data Transfer INStrUCtiON.oevevemerernseresssmseesssssssssnnnes 125
6.37 MOVT (Move T Bit): Data Transfer INSLIUCL ON........cccueeereeseneeeesseessssesessssesssssssesessssesessssesess 126
6.38 MUL.L (Multiply Long): Arithmetic Instruction (SH-2 CPU).......ccorenreessmseessmseessnnees 127
6.39 MULS.W (Multiply as Signed Word): Arithmetic INSIrUCLON..........curcerenmeeeesesnneseessees 128
6.40 MULU.W (Multiply as Unsigned Word): Arithmetic INStruCtion...........reeeeenmeeseesenns 129
6.41 NEG (Negate): ArithmEtiC INSITUCH ON...urveeeeeeeereceeressessns 130
6.42 NEGC (Negate with Carry): ArithmetiC INStIUCHION........cvcvvereeereeeersesssssssssssssesssssssssssssssssssnnes 131
6.43 NOP (No Operation): System COontrol INSIIUCK ON.......c..eeeeeeeeeesseseessssseessssesesssssssssssesessssesess 132

6 HITACHI

6.44 NOT (NOT—Logical Complement): Logic Operation INStrUCt ON........cccceeenmeeeenmeeessneeeees 133
6.45 OR (OR Logical) LogiC Operation INSIIUCHON.........eueeeeeeeessesessssssesssssesssssssesssesssssssssssssessssens 134
6.46 ROTCL (Rotate with Carry Left): Shift INSEIUCL ON....co.reeeereeeesrerceesereeesseseeeseseeessseseesssseessseseeens 136
6.47 ROTCR (Rotate with Carry Right): Shift INSITUCHIONvvveereeererreesereesssneeesssesessssesessssssssssesseses 137
6.48 ROTL (Rotate Left): Shift INSLIUCH ON....eveeeeeeeeeeeeeressessnes 138
6.49 ROTR (Rotate Right): Shift INStTUCLION.......ovvueereresrererersessssssssssesssens 139
6.50 RTE (Return from Exception): System Control INSErUCLON........c..eeeereeermeeeessmesesssseessssseeesens 140
6.51 RTS (Return from Subrouting): Branch INSLIUCL ONcc.eeeeesmmeeesesessssssesssssssessssssssssesssses
6.52 SETT (Set T Bit): System Control INSLIUCK ON.........eeeeremeeeesseseeseesssssessesssssssesssssssseessssssssesssesss
6.53 SHAL (Shift Arithmetic Left): Shift INSIIUCHON....u.ceeeeereeceresseseeessesessessssssesseesssssssssesssssssssesss
6.54 SHAR (Shift Arithmetic Right): Shift INSIIUCHONcveeereeeereecsrereessesesssesesssssssssssssssssssssssessssns
6.55 SHLL (Shift Logical Left): Shift INSTUCLION......cccooierreereereesessesssssssssesssssessssssssssssssssssssssssssssssens
6.56 SHLLn (Shift Logical Left n Bits): Shift INSIIUCH ONoceveeeeeeerceeseeeeeeseeeesesesssseseessesesssseeeenes
6.57 SHLR (Shift Logical Right): Shift INSEIUCH ON.....coureeeereeeeermeeerenreseessssseessssseessssssessssesessssssessssessssens
6.58 SHLRn (Shift Logical Right n Bits): Shift INSIFUCLON.......coccuuereeerireseeessesseseeesseseesessssssseseens
6.59 SLEEP (Sleep): System Control INSIFUCLIONceerneessesseeessssessssssessssssssssssessessssssessessss
6.60 STC (Store Control Register): System Control Instruction
6.61 STS (Store System Register): System Control Instruction

6.62 SUB (Subtract Binary): Arithmetic InStruction...........ccoccneeees

6.63 SUBC (Subtract with Carry): Arithmetic INSIFUCH ON.....ccoueeeeerreeeseeeesssseessseeessssesesssssseessseseeses
6.64 SUBV (Subtract with V Flag Underflow Check): Arithmetic Instruction...........ccccoveeeeeenne. 159
6.65 SWAP (Swap Register Halves): Data Transfer INStrUCiON.......eecesvnssesssssessessessens 160
6.66 TAS (Test and Set): Logic Operation INSIUCHION........eereeereeesmsesssesesssssssssssssssssssssssssssssssssns 161
6.67 TRAPA (Trap Always): System Control INSIrUCLION..........revnerreesmsesssssssssssesssssssssssesssssesssses 162
6.68 TST (Test Logical): Logic Operation INSIIUCT ON ... eeereeeeeeesseeesssmesesssesesssssssssssssssssssesessns 163
6.69 XOR (Exclusive OR Logical): Logic Operation INSLrUCT ON..........eeeeeermeeesssmsseessseesessseeesens 165
6.70 XTRCT (Extract): Data Transfer INSITUCTION...........eewreeeesisseseeessssssesessssssssssesssssssessesssssssessessss 167
SeCtioN 7 PIPEliNg OPEIaLiON.......oocoooverssresssessses

7.1 Basic Configuration of Pipelines......
7.2 Slot and Pipeline Flow.................
7.2.1 Instruction Execution.....
7.2.2 SIOt SNAIMTNG covvvvrreeeereseeeeessssseseessssessessssssessesssssssssssssssesssssssssesssssssessssses
7.2.3 SIO LENGN.....ooureeetecerineesssseessissseesssssessessssssessssssssesssssssssssssssssssssssssssssssess
7.3 Number of INStruCtion EXECULION SEALES.........cocvceevererernsesnsssesssessssssssesssssssesssssssssesssssssssssssnsssansssens

7.4 Contention Between Instruction Fetch (IF) and Memory Access (MA)
7.4.1 Basic Operation When IF and MA are in CONteNtiON.........oeeeeeeneeeesmsmeeessmeessssesesens
7.4.2 The Relationship Between IF and the Location of Instructions in On-Chip
ROM/RAM OF ON-ChiP MEIMOIYvevuveeeeeessmeseeessssssessessssssessssssssessessssssessssssssassssssss 173
7.4.3 Relationship Between Position of Instructions Located in On-Chip
ROM/RAM or On-Chip Memory and Contention Between IF and MA............ 174
7.5 Effects of Memory Load INStructions 0N PiPeliNeES.........oeemrssnssesssssssssssssssssssssssssssssssssssns 175
7.6 Programming GUITE.........ceueeeueeeesrreeesssseessssesessssesssssessssssessssssessssssessssssesssssessssssesessssessssssessssssssssssesssssasssens 176

HITACHI 7

7.7 Operation Of INSLIUCLION PIPEIINES.......iceeeeereeeeesreeesssseessssesssssesesssssssssssssssssessssssessssssesssssssssssssssssssessssans
7.7.1 Data Transfer Instructions......
7.7.2 Arithmetic Instructions.................
7.7.3 Logic Operation Instructions
7.7.4 Shift INStructions.........oeeveneeveneeens

7.7.5 Branch Instructions
7.7.6 SyStem CoNtrol INSLIUCHONS........cceuueeeeeeeeseeessssssssssseessssssssssesssssssssssssssssssessssssessssssssssssssssssens
7.7.7 EXCEPLION PrOCESSING.....rveeurreesmsreessessssssesssssesesssesessssasssssssssssasssssssssssassssssessssssasssssssssssassssssasssss
APPENdiX A INSITUCTION COUR.......ooerrerrerrssrrseesssessssssssssssssssssssssssssssssss s ssees 251
A.1 Instruction Set by AddreSSiNg MOOE.........ooreemrermrsesmsessmssess 251
ALLLNO OPEIANG.....rvevereesreesisessssisssssssssssssessssssssssssssssssssssssssssssssssssssessssssssssssssssssssssssssssssssessssssssssssesess 253
A.1.2 DireCt REQISIEr AGAIrESSINGwcuuureeureeesseeesseeessssesssssesssssessssssesssssssssssssssssssessssssessssssssssssessssas 254
A. 1.3 Indirect REQIStEr AQArESSINGcceeeureeesreeesssesessssssessssessssssssssssssssssesessssesessssesssssssssssasssssssssses 257
A.1.4 Post Increment Indirect RegiSter AdAreSSINGewreeemmeereesssmessesssssesesssssssssesssens 257
A.1.5 Pre Decrement Indirect Register AdAreSSiNgeeemmreessmmssesssssessessssssssesssens 258
A.1.6 Indirect Register Addressing with DisSplacementorecnmeerinmereessmmsessesssssessssnens 259
A.1.7 Indirect Indexed Register AAArESSING.....oouv.vmreemeressmerssesess 259
A.1.8 Indirect GBR Addressing With DiSplaCemeNtoeweeemeeesssmesessssmsssssssesssmssssssseses 260
A.1.9 Indirect Indexed GBR AdUrESSINGccccueeereesmmeeessesessmssssssesesssesessssssesssssssssssssssssssssssssees 260
A.1.10 PC Relative Addressing With DiSplaCement.........oeemreesmmssesssssesesssssssesesssens 260
A.1.11 PC Relative Addressing With RMeiessessssessssssssessssssessssssss 261
A.1.12 PC RelatiVe AQArESSING.....oumreemrrersreesmssssssssssssssssssssssssssssmsssnes 261
ALLLS TMIMEAIBLE.....oovevveessereeessssssssseessssssssssssssessssssssssss s sssssss s ssssssss s ssssssssssss 262
A.2 Instruction Sets by INSIFUCHTON FOMMEL. ... eeeeeeereeesesesessssesessssessssssessssssesssessssssesssssssessssesssssssees 262
AL2.L O FOIMIBL.....ceereereeeeeeseeesseessseesssesessesessessssessss s bbb bR bR bbb
AL2.2 11 FOIMIBL.... oottt cessesesseeesse s ess s bbb bR R bbb bbb
AL2.3 M FOMMEL ...t sssesessssessssessssessssssssssssssssssassssessssessssesssssssssesssssssssssssssassssassssessssessssesssss
AL2.4 NN FOMMIBL......eveevereeeersssesesssesessesssssesssssssssessssssesesssssssssessssssesesssssssesssssssssesssssssessssssssesesssssssesssssenns
A.2.5 md Format.....
A.2.6 nd4 Format....
A.2.7 nmd Format.......
A.2.8 d Format..............
A.2.9 d12 Format........
A 2,10 NOB FOMMEBL ...vvvvrreverrereessssssssssesesessssssssssssssssssssssssesssesees
A2 D0 T FOIMNEBE ..cevveveresssseeereeesssssssesssesssssssss s sssssssssss s RRRRSseR R 0
AL2.L2 N FOMMIBL....1teereeseeeessssesesssssesessssssesesssssesessssssesessssss s essssss s s s s s R s
A.3 Instruction Set in Order by INSIrUCHION COOE........ccureeereeeneeeseseessssesesssssssssesessssssssssssesssssssssssses 276
A4 OPEFLION COUE IMBP.....oouumrreeerusreeessseseessssessesssssesessssssesssssssssesesssssssssssssssessessssssesessssssesssssssssesssssssssssssssns 284
Appendix B Pipeline Operation and CONENLION...........eewrreesssmseesssssssessssssssessssssesssssssssssesssssnns 288
Figures
Figure 2.1 GENEral REQISIEIS......oiueeeeereruseeesesseessssesesssssessssesessssessssssessssssssssssessssssesess s sssssssssssessssssessssss 16

8 HITACHI

Figure 2.2 CONIOl REQISLEIS....c.uieeueeersrreeessseeessssesesssseessssessssssesessssesessssesssssessssssesssssssssssssssssssessssssassssssssssssns
Figure 2.3 System Registers.......
Figure 3.1 Longword Operand
Figure 3.2 Byte, Word, and Longword Alignment
Figure 3.3 Byte, Word, and Longword Alignment in little endian format (SH7604 only).. 22

Figure 6.1 USING RO @ftel MOV ...cooreiierersnsssssesssanns 119
Figure 6.2 USING RO @t MOVccueeeeeeseeeissesessssessssssessssessssssessssssssssssessssssesssssssssssssssssassssssssssssssassssanas 122
Figure 6.3 ROtAte With Carry LEfL.....eceseeeesneessssresssesesssessssssesssssssssssesssssssssssssssssssssssssssssssssssssens 136
Figure 6.4 Rotate With Carry RiGNt........ceeesineesssseseessessessessssssessssssssesssssssssessssssssesssssssssessesss 137
FIQUIE 6.5 ROTAIE LEFT.....oooerceeeereeeseeesssssesessssssesesssssssssssssesssssssesssssssssessssssssssssssssssssssssssesssssssssssssssssenss 138
Figure 6.6 ROEIE RIGNLcvuereeerereeeresssesessssnsssesssssssssssmsssssssssssssees 139
Figure 6.7 Shift ArIthmMELIC LEMt ...t ssssss s sssssssssssssssssssssssssssanns 144
Figure 6.8 Shift AFthMELIC RIGNT ...t sessseeessseessssssesssesess s sss s ssssssssssssssssssssssens 145
Figure 6.9 Shift LOQICAl LEML......eeeciereeetseseesseecesssseesssssesssssesssesessssessssssssssssesssssssssssssessssssssssssssssssssssssss 146
Figure 6.10 Shift LOQICAl LEFL N BilS....iceeeceeereieeeessssreseessssssesessssssssessssssesssssssessesssssessssssssesssssssessess 147
Figure 6.11 Shift LOQICal RIGNT.....cceureeerereeesissesessssessessssesessssssssssssssessssssssssessssssesssssssssessssssssssessens 149
Figure 6.12 Shift LogiCal RIGNt N BitS...recmresmreesnessssinsses 150
FIQUIE B.13 EXIIACK.....crurieereesessssessssssesssssssssssssssssssssssssssssessssssssssssssssssssssssesssssssssssessssssessssssassssssssssssassssssssses 167
Figure 7.1 Basic Structure of PIpEliNg FIOWeeereeeseeeisseesssssssssesesssesssssssssssesssssssess 168
Figure 7.2 IMpPOSSIDIE PIPEIING FIOW L.....iceeeeerneeeseeessssessssssesssssssssssssssssssessssessssssssssssssssssssssssssssses 169
Figure 7.3 IMPOSSIDIE PIPEliNG FIOW 2.....oooreeeieeeesiessessssseeseessssessessssssssssssssssssssssssssssessssssssssssss 169
Figure 7.4 Slots Requiring MUItIPIE CYCIES.....reenrceiseessssssessssssssssssssssesssssesssssssssssssssssess 170
Figure 7.5 How Instruction Execution States Are COUNE.......comwmrersmressmressmmsssssssssssssssssaes 171
Figure 7.6 Operation When IF and MA Are in CONtENtiON.........ooevveevmereesnresesssesssssesssssssssssssssssses 172
Figure 7.7 Relationship Between IF and Location of Instructions in On-Chip Memory 174
Figure 7.8 Relationship Between the Location of Instructions in On-Chip Memory and
Contention BEtWEEN IF and MA ... eenesesssnsessssssssssessssssssssssssssssssssssssssssssssess

Figure 7.9 Effects of Memory Load Instructions on the Pipeling........eemmneessenns
Figure 7.10 Register-Register Transfer INStruction PiPEliNe........ereenereesmesesssmssesssesesssessssaes
Figure 7.11 Memory Load Instruction Pipeling........ccuoreeenenes
Figure 7.12 Memory Store Instruction Pipeline
Figure 7.13 Pipeline for Arithmetic Instructions between Registers Except

MUILIPIICALTION TNSITUCTIONS...cvvvvrreeeeesreeesissesssseseesssssssesssssesessssssesssssssessssssssesesssssessssssssns

Figure 7.14 Multiply/Accumulate Instruction Pipeline

Figure 7.15 Unrelated Instructions between MAC.W INStFUCLIONS......vceuereeeereeesmmsessesesssssssssanes 189
Figure 7.16 Consecutive MAC.Ws without MiSalignmentcceereenmsssssnsssssesssssssssnnss 189
Figure 7.17 MA and [F CONLENTIONvvuerreeeeeeeneeesssseeessssesesssssssssssssssssessssssssssssessssssessssssessssssessssssssssssessssss 190
Figure 7.18 MULS.W Instruction Immediately After a MAC.W INSLrUCtiON........eeeeenmeeeeninnees 191
Figure 7.19 STS (Register) Instruction Immediately After a MAC.W Instruction................. 192
Figure 7.20 STS.L (Memory) Instruction Immediately After a MAC.W Instruction............... 193
Figure 7.21 LDS (Register) Instruction Immediately After a MAC.W Instruction........cceu.... 194
Figure 7.22 LDS.L (Memory) Instruction Immediately After a MAC.W Instruction............. 195
Figure 7.23 Multiply/Accumulate INStruction PiPEliNe.........eeeeneeeeneeesssesessssssessssssesssssnses 196

HITACHI 9

Figure 7.24
Figure 7.25
Figure 7.26
Figure 7.27
Figure 7.28
Figure 7.29
Figure 7.30
Figure 7.31
Figure 7.32
Figure 7.33
Figure 7.34
Figure 7.35
Figure 7.36
Figure 7.37
Figure 7.38
Figure 7.39
Figure 7.40
Figure 7.41
Figure 7.42
Figure 7.43
Figure 7.44
Figure 7.45
Figure 7.46
Figure 7.47
Figure 7.48

Figure 7.49
Figure 7.50
Figure 7.51
Figure 7.52
Figure 7.53
Figure 7.54
Figure 7.55
Figure 7.56
Figure 7.57

Figure 7.58
Figure 7.59
Figure 7.60
Figure 7.61
Figure 7.62
Figure 7.63
Figure 7.64

10 HITACHI

MAC.W Instruction That Immediately Follows Another MAC.W instruction.. 197
Consecutive MAC.WS With MiSalignmENtceeeeneeesmeeessesssssssesssssssssssessaes 197
MA BN TF CONLENTION....ooutrrrrrrirrrereeeseseeeeesssssssesssssseeseesssssesssssssssesessssssesssssssssessssssssessssssssessesss 198
MAC.L Instructions Immediately After a MAC.W INStruCtion........c.cconeeeeeeennee 198

MULS.W Instruction Immediately After a MAC.W INStruction.......eeeeeeenne. 199
DMULS.L Instructions Immediately After a MAC.W InStruction............ceee.eeeeees 199
STS (Register) Instruction Immediately After a MAC.W Instruction................ 200
STS.L (Memory) Instruction Immediately After a MAC.W Instruction............. 201
LDS (Register) Instruction Immediately After a MAC.W Instruction.................. 202
LDS.L (Memory) Instruction Immediately After a MAC.W Instruction............ 203

Multiply/Accumulate INStruction PiPeliNE......eeceeeesnmreesmsssssssssssssssssesssssesssssnns
MAC.L Instruction Immediately After Another MAC.L Instruction..........ccceeee....
Consecutive MAC.LS With MiSaligNMEeNLocceeeeeneeesmeeesmeeessesessssssesssssssssasseses
MA @GN TF CONENLTON.....rrieerrrererraeerseeeesseseessssessssesessssesessssssssssesssssssssssssssssssessssssessssssssssasssssas
MAC.W Instruction Immediately After a MAC.L INSIrUCION......ccceeveneeeeeereneseenns
DMULSLL Instruction Immediately After a MAC.L INSrUCEON....vounveeeeeveereneeeeennns

MULS.W Instruction Immediately After a MAC.L Instruction.........cce......

STS (Register) Instruction Immediately After a MAC.L Instruction.........

STS.L (Memory) Instruction Immediately After a MAC.L Instruction

LDS (Register) Instruction Immediately After a MAC.L Instruction.............
LDS.L (Memory) Instruction Immediately After a MAC.L Instruction.............. 213
Multiplication INStrUCiON PIPEIINE......ccuuecerereeesiseseeessessseseesssessssssessssssssesssssssessssses 214
MAC.W Instruction Immediately After a MULS.W INStruction........eeeeeenne. 215
MULS.W Instruction Immediately After Another MULS.W Instruction........... 216
MULS.W Instruction Immediately After Another MULS.W Instruction (IF
=0 To [NV AN @0 01 = 011 o o) OO 217
STS (Register) Instruction Immediately After a MULS.W Instruction............... 218
STS.L (Memory) Instruction Immediately After a MULS.W Instruction........... 219
LDS (Register) Instruction Immediately After a MULS.W Instruction............ 220
LDS.L (Memory) Instruction Immediately After a MULS.W Instruction........... 221
Multiplication INStruction PipeliNg.........oeeeneesnsesssseessssseeesses

MAC.W Instruction Immediately After a MULS.W Instruction

MAC.L Instruction Immediately After a MULS.W Instruction........

MULS.W Instruction Immediately After Another MULS.W Instruction

MULS.W Instruction Immediately After Another MULS.W Instruction (IF
ANA MA CONLENLION)......ouererrersresssssessssssssssssssssssssssssesssesssssssssssns 224
DMULS.L Instruction Immediately After a MULS.W InStruction...........e 225
STS (Register) Instruction Immediately After a MULS.W Instruction................ 226
STS.L (Memory) Instruction Immediately After a MULS.W Instruction.......... 227
LDS (Register) Instruction Immediately After a MULS.W Instruction............. 228
LDS.L (Memory) Instruction Immediately After a MULS.W Instruction.......... 229
Multiplication INSrUCtiON PiPEliNE.......rceeeereseesssess 229
MAC.L Instruction Immediately After a DMULS.L INSLrUCHiON.....cooureernmeeeeenenens 231

Figure 7.65 MAC.W Instruction Immediately After a DMULS.L INStruction.........e 231
Figure 7.66 DMULSL.L Instruction Immediately After Another DMULS.L Instruction.......... 232
Figure 7.67 DMULSLL Instruction Immediately After Another DMULS.L Instruction (IF

AN MA CONLENTION) ..ccvvvrerrrerrrereessesssesssssesessssssssssssssessssssssssssssssssessssssssesssssssssssssssssesssssssens
Figure 7.68 MULS.W Instruction Immediately After a DMULS.L Instruction
Figure 7.69 MULS.W Instruction Immediately After a DMULS.L Instruction (IF and

IMLA CONEEINTION) ootureerreeenseeesssesesssesesssseessssessssssesssss s ssssess s esesss e ssss s ss s sb e sess e ssssesssssesesens 234
Figure 7.70 STS (Register) Instruction Immediately After a DMULS.L Instruction............... 234
Figure 7.71 STSL (Memory) Instruction Immediately After a DMULS.L Instruction.......... 235
Figure 7.72 LDS (Register) Instruction Immediately After a DMULS.L Instruction............. 236
Figure 7.73 LDS.L (Memory) Instruction Immediately After a DMULS.L Instruction........ 237
Figure 7.74 Register-Register Logic Operation Instruction Pipeling........eneeeenneseesssesseenns 237
Figure 7.75 Memory Logic Operation INStruction PipeliNe........eeeensesssmeeessssessssses 238
Figure 7.76 TAS INSITUCLTON PiPEIINE. ... ieerreeereeeeereeeteseseetsssesssesessssssssssssssssssssssssesssssssssssssssssssessssseseses 238
Figure 7.77 Shift INSIIUCEON PiPEIINE......ieeeeeeeereeerisereesiisessesssssesessssssssessssssessssssssssssssssessssssssssssssssess 239
Figure 7.78 Branch Instruction When Condition iS SatiSfied......eemmessseseessennns 240
Figure 7.79 Branch Instruction When Condition is Not Satisfied... 240
Figure 7.80 Branch Instruction When Condition is Satisfied............ 241
Figure 7.81 Branch Instruction When Condition is Not Satisfied... 241
Figure 7.82 Unconditional Branch INSruction PipEliNe........ceeeeneeeneeessnsesesssssesssssssessssseees 242
Figure 7.83 System Control ALU INSrUCLiON PiPEliNe.......ccccuuereerueneseesssssseseesssssessssssssssessessassne 243
Figure 7.84 LDC.L INStrUCtION PIPEIING......ccourrerrreeeesessessesssssessesssssssssesssssssssssssssssssssssessssssssssssssssess 243
Figure 7.85 STC.L INSrUCtiON PiPEliNE.......ccoreeirererseseesssesesssssssssssssssessses 243
Figure 7.86 LDS.L INStruction (PR) PIPEliNE.......ovvoerersnererssnes 244
Figure 7.87 STS.L INStruction (PR) PIPEIINE ... reeerrreeesseeeesssessssssesssssesssesesssessssssssssssesessss 244
Figure 7.88 Register -~ MAC Transfer InStruction Pipeling........oenecenmeeessneeessssssesssnes 245
Figure 7.89 Memory — MAC Transfer INStruction PiPEliNe........reeemneseesmmeseesssssesessssnnns 245
Figure 7.90 MAC - Register Transfer InsStruction PipeliNe.......eeeesmseessssesesssennns 246
Figure 791 MAC - Memory Transfer INStruction PiPEliNg......reereemeressmsssssesssssessssens 246
Figure 7.92 RTE INSrUCION PiPEIINE........ceeereeesercesssseisssssssssssssesses 247
Figure 7.93 TRAP INSITUCLION PiPEIINE.....ccuieereeeereeeerseeesssesessssesessssessssssssssssssessssesssssssssssssssssssssssssssssses 247
Figure 7.94 SLEEP INStrUCLION PiIPEIINE......iceeeecerreeeeseseesssesessssesessssesssssesssssssssssssssssssessssssessssssssssssessssns 248
Figure 7.95 Interrupt Exception Processing PiPEliNe. ... eemmeressssssessssssesessssssessesssssees 248
Figure 7.96 Address Error Exception Processing PiPeliNe.......emsesssessessssssssssssss 249
Figure 7.97 Illegal Instruction Exception Processing PipeliNg......meesmersssmssssmesssssen 249
Tables
Table 1 MaNUal OrQani Zati ON........c.eeeeeeeeseeesseeeesssesssssesessssessssssessssssesessssesssssessssssesessssesssssassssssssssssasssssassssns 2
Table 2 Subjects and CorrespoNdinNg SECHIONS........cccuuwweeerrureseessesesesssssessssssssesssssssessessssssesssssssesseess 3
Table 3 FUNCLIONS DY CPU TYPE...ccureerereeessmseesssssssssssssssesssssssessssssssessssssssssssssssssessssssssesssssssessssssssessess 4
Table 1.1 SH-1 and SH-2 CPU FEEIUMES.........cccrmmmrreerrmsmssssssesssssssssesssesssssssssssssssssssssssssessssssssssssns 15
Table 2.1 Initial ValUeS Of REJISIEIS.....vuorrerirrernesesssns 20
Table 4.1 Sign EXtENSION Of WOIA Data......cocceeeeeueeeeeeereesesssssssssseessssssssssssssssssssssssessssssessssssssssssessssseses 23

HITACHI 11

Table 4.2 Delayed Branch INSITUCHIONS........c.ueeeeeeeeeeessesessssesssssssssssessssssssssssssssssssssssssessssssssssssessess 24

TADIE 4.3 T Bl .uosseeeeeesssessesssssmsssasssssssssssssssssnns 24
Table 4.4 IMMEiate Data ACCESSINGvwuureerreerseeeesreeesssesesssesssssesesssessssssesssssssssssssssssssessssssesssssessssssesesss 25
Tahle 4.5 ADSOIULE AUAIESS......vveereeererersssesssssssssssesssssssssssssssssssssssssssssssesssssssssssssssssssssssssssssssssssssessssssssssens 25
Table 4.6 Displacement Accessing....... cereeeerensss s 26
Table 4.7 Addressing Modes and Effective AAArESSES......oreimrsissssmsssssssssssssssssssssssssssssssss 26
Tahle 4.8 INSITUCHION FOMMELS.......coreeeeeerereeessseseessseeesssssessssesessssesessssessssssessssssssssssesesssessssssessssssssssssessssssasssens 30
Table 5.1 ClassifiCation Of INSLIUCH ONS........ccueeureemeceseeessseesssssssessssssssssssssssssssssssessssssessssssssssssessssssssess 34
Table 5.2 INSrUCtiON COOE FOIMALeveeureeerereesrereesseeeessseeesssesessssessssssesessssssssssessssssessssssessssssssssssesssssessssens 38
Table 5.3 Data Transfer INSLIUCL ONS......v..eereesressessesssssssssssessssss 40
Table 5.4 ArithmMELIC INSLIUCHIONS.......reerereeessseseesssssssesssssessesssssessesssssssessssssesssssssssssssssssessesssssesssssssessess 42
Table 5.5 LogiC OPEration INSLIUCL ONS........c..crerreesessess 44
Table 5.5 Logic Operation INStrUCLONS (CONL)cuuureeureeemereessesessseessssssessssesssssssssssssssssssssssssessssssssssssns 45
TaDIE 5.6 Shift INSIIUCH ONS....couieeereeerereeeessseeesssesessssesesssssessssesessssessssssesssss st ssssessss s sssssssssasessssssssssssassssanas 45
Tahle 5.7 BranCh INSITUCLTONS.........creeeereeeeeeessseesssesessssessssessssssessssssesessssesssssessssssesssssesssssessssssssssssessssssssssns 46
Table 5.8 System Control INSIIUCTONS.......ewweeemsreesssssessssessssssssssesssssessssssssssssssssesssssssssssssssss 47
Table 5.9 Instruction Set........cweonneeernnn 49
Table 6.1 CMP Mnemonics 81
Table 7.1 Format for the Number of Stages and Execution States for Instructions.................... 177
Table 7.2 Number of Instruction Stages and EXECULION SEALES.........cccceeermreesmrmseessesessssmseesssseeesens 177
Table A.1 Instruction Set by AddresSing MOGE..........coeeereesmesessssessessssssesssssesssssssssssssssses 252
TADIE A 2 NO OPEIANG.....rveverreeeseseeessssesesssssesssssssssessssssssessssssssse s ssssssssssssss s sssssse s ss s ss s s ss s sssssnss 253
Table A.3 Destination OPErand ONIYrerressmssssmssses 254
Table A.4 Source and Destination OPEraNd............ooeereenesssmssssnssans 254
Table A.5 Load and Store with Control Register or System RegiStereneeeenneeeessneeenns 256
Table A.6 Destination OPErand ONIY ... eeceueeeseeesesesssesessssessssssssssssssssssssssssssssssssassssssssssssessssas
Table A.7 Data Transfer with Direct Register AdAreSSiNg.........eemreessmesesssesessessssssesesssens
Table A.8 Multiply/AcCUMUIBLE OPEIALiONreevereessmesesssseseesssssesesssssesssssssssssssssssessesssssesssssssens
Table A.9 Data Transfer from Direct Register AdAreSSiNG.......oouwreermreessmssssmsssssmssssssessssssssssssnns
Table A.10 Load to Control Register or System Register

Table A.11 Data Transfer from Direct Register Addressing...............

Table A.12 Store from Control Register or System Register
Table A.13 Indirect Register Addressing with Displacement
Table A.14 Indirect Indexed Register Addressing..........oeeee.
Table A.15 Indirect GBR Addressing with DiSplaCementreereesmssesmsssssssssssessssssssssanns
Table A.16 Indirect Indexed GBR AdArESSINGourwrmrerressimssssesssns
Table A.17 PC Relative Addressing with DiSplacementeeeeesmeeessessssmesssssesssssesessss
Table A.18 PC Relative AdAressing With RIM.........eeeeessssesssssessssssssssssssssssssssssssssssssssssns
Table A.19 PC RelAliVE AUUIESSINGccuemreeeesssmesesssssessessssessssssssssssssssssessessssssesssssssssssssssssssssssses
Table A.20 Arithmetic Logical Operation with Direct Register Addressing ... 262
Table A.21 Specify EXCEPtioN ProCeSSING V ECION........recrrersmreesssssessessssssssssssesssssssssssssssssssssesssssnns 262
Table A.22 INSruCtion SELS DY FOMMEL.......ocvcesereeisessssesssssesssessssssssssssessess 263
TADIE A.23 0 FONMEL.....vorrreereusereessssseesssssesesssssssssssssssesesssssssssssssssesessssssessssssssessssssssssssssssses s ssssssssssssssees 264

12 HITACHI

Table A.24 DirecCt REQiSIEr ACQUrESSING.......coierureeurmeeeseeessssseessssesssssssessssssssssssssssssssssssessssssessssssesssssessssssens 265
Table A.25 Direct Register Addressing (Store with Control and System Registers) ... 265
Table A.26 Indirect Register Addressing............
Table A.27 Pre Decrement Indirect Register
Table A.28 Direct Register Addressing (Load with Control and System Registers)
Table A.29 INAIFECt REQISIENvvveererssererssessssesssssssssssssssssssssssessssssssssssssssssssssssssssssssssssssesssssssssssnns
Table A.30 Post Increment INAIrECt REQISLENc.ueeurerereeesseeeessseeesssseessssesesssesessssessssssssssssesssssssssssssess
Table A.31 PC Relative Addressing With RIM........eesseesssssessssssssssssssssssessssssssssssesssssns
Table A.32 Direct REQIStEr AQUrESSING........rrermmreessesesessssseseessssssssssssssessssssssesesssssssssssssssesssssssssssssssnns
Table A.33 INdireCt REGISIEr AQUIESSING.....weeereeemmeessssesessssssessssessssssssssssssssesssssssessssssssessssssses
Table A.34 Post Increment Indirect Register (Multiply/Accumulate Operation)......
Table A.35 Post INncrement INAITECt REQISLENvvureeiereiresrsrssssssessnss
Table A.36 Pre Decrement INAIrECt REJISLENc.reeeeeeerreerseeeesseesssseessssesesssesesssssssssssssssssesssssssssssssess
Table A.37 INAIreCt INAEXEH REGISLEN ... reeereeueeesmseeeessesessssssssssssessssessssssssssssessssssessssssessssssssssssessssssasesss
TADIE A.38 MU FOIMMALceoereeerereeeeeeeseeeeseresseeessssesesssesessssesssssseesssssssssssessssssessssssesssssessssssessssssessssssesssssessssssens
TaDIE A.39 NUA FOIMALeverrreeeereessereesssssssssessssssssssesssssssssssssssssssesssssssssssssesssssesssssessssssssssssessssssesssssessssssssssssnns
Table A.40 NMA FOrMEL..........coeeremeeesesmseessssensenss

Table A.41 Indirect GBR with Displacement
Table A.42 PC Relative with Displacement........

Table A.43 PC REAiVE AQUrESSING......ocuureeereeresessssessssesesssssesssssssssssssssssessssssssssssessssssessssssesssssssssssassssss
TADIE A .44 12 FOIMALcoeeeeeeeeeesreeeesseseessesessssesessssesesssesessssesessssesesssesssssessssssessssssesssssessssssessssssesssssesssssessssssens
TaDIE A.45 NUB FOIMMALoorreeeereesereessseessssssssssssssesssssssssssssssssssssssssssssssssssssssesssssssssssssssssssessssssesssssasssssessssssens
Table A.46 Indirect Indexed GBR AdArESSING........eerreesrersmmresssssssmsssssmssssssssssssssssssssssssssssssssssssaens
Table A.47 Immediate Addressing (Arithmetic Logical Operation with Direct Register)..... 275
Table A.48 Immediate Addressing (Specify Exception Processing Vector)........oeeeeeeeens 275
TADIE A4 NI FOMMEL......cocuueretueeeesseeeesseeessseeessssesessssessssssesssssesess e ss et bs e sss e bs b st b et bt s e sb s eb e 275
Table A.50 Instruction Set by INSLIUCHION COUE.........crrermmmreesssessessssssessessssssssessssssesssssssssssessssses 276
Table A.51 OpEration COUE Moceureermmseessssssssessssssessesssssesssssssessessssssessssssssessssssssessesssssessssssssessess 284
Table B.1 Instructions and Their CONtENtION PaLLENNS...........coeeewemreeesssseesssssssessssssessessssssesessssens 289

HITACHI 13

Section1l Features

The SH-1 and SH-2 CPU have RISC-type instruction sets. Basic instructions are executed in
one clock cycle, which dramatically improves instruction execution speed. The CPU also has
an internal 32-bit architecture for enhanced data processing ability. Table 1.1 lists the SH-1
and SH-2 CPU features.

14 HITACHI

Table 1.1 SH-1 and SH-2 CPU Features

Item

Feature

Architecture

Original Hitachi architecture
32-bit internal data paths

General-register machine

Sixteen 32-bit general registers
Three 32-bit control registers
Four 32-bit system registers

Instruction set

Instruction length: 16-bit fixed length for improved code
efficiency

Load-store architecture (basic arithmetic and logic operations are
executed between registers)

Delayed branch system used for reduced pipeline disruption

Instruction set optimized for C language

Instruction execution
time

One instruction/cycle for basic instructions

Address space

Architecture makes 4 Ghytes available

On-chip multiplier
(SH-1 CPU)

Multiplication operations (16 bits x 16 bits - 32 bits) executed
in 1 to 3 cycles, and multiplication/accumulation operations (16
bits x 16 bits + 42 bits — 42 bhits) executed in 3/(2)* cycles

On-chip multiplier

Multiplication operations executed in 1 to 2 cycles (16 bits x 16

(SH-2 CPU) bits — 32 bits) or 2 to 4 cycles (32 bits x 32 bits - 64 bits), and
multiplication/accumulation operations executed in 3/(2)* cycles
(16 bits x 16 bits + 64 bits —» 64 bits) or 3/(2 to 4)* cycles (32
bits x 32 hits + 64 bits - 64 bits)

Pipeline + Five-stage pipeline

Processing states

Reset state

Exception processing state
Program execution state
Power-down state

Bus release state

Power-down states

Sleep mode
Standby mode

Note: The normal minimum number of execution cycles (The number in parentheses in the
number in contention with preceding/following instructions).

HITACHI 15

Section 2 Register Configuration

The register set consists of sixteen 32-hit general registers, three 32-bit control registers and
four 32-bit system registers.

21 General Registers

There are 16 genera registers (Rn) numbered RO-R15, which are 32 bits in length (figure
2.1). General registers are used for data processing and address calculation. RO is also used as
an index register. Several instructions use RO as a fixed source or destination register. R15 is
used as the hardware stack pointer (SP). Saving and recovering the status register (SR) and

program counter (PC) in exception processing is accomplished by referencing the stack using
R15.

31 0
RO*! 1. RO functions as an index register in the
R1 indirect indexed register addressing
mode and indirect indexed GBR
R2 addressing mode. In some instructions,
R3 RO functions as a fixed source register
R4 or destination register.
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15, SP (hardware stack pointer) x2| 2. R15 functions as a hardware stack
pointer (SP) during exception
processing.

Figure 2.1 General Registers

2.2 Control Registers
The 32-bit control registers consist of the 32-bit status register (SR), global base register

(GBR), and vector base register (VBR) (figure 2.2). The status register indicates processing
states. The global base register functions as a base address for the indirect GBR addressing

16 HITACHI

mode to transfer data to the registers of on-chip peripheral modules. The vector base register
functions as the base address of the exception processing vector area (including interrupts).

HITACHI 17

31 98 76543210

SR| —————— MQI3 121110 --ST | SR: Status register

__ | LT bit: The MOVT, CMP/cond, TAS, TST,

BT (BT/S), BF (BF/S), SETT, and CLRT
instructions use the T bit to indicate
true (1) or false (0). The ADDV/C,
SUBV/C, DIVOU/S, DIV1, NEGC,
SHAR/L, SHLR/L, ROTR/L, and
ROTCRI/L instructions also use bit T
to indicate carry/borrow or overflow/
underflow

— S bit: Used by the multiply/accumulate
instruction.

» Reserved bits: Always reads as 0, and should
always be written with 0.

—» Bits 13-10: Interrupt mask bits.

31

»M and Q bits: Used by the DIVOU/S and
DIV1 instructions.

Global base register (GBR):
0 |ndicates the base address of the indirect

GBR

GBR addressing mode. The indirect GBR

31

addressing mode is used in data transfer
for on-chip peripheral module register
areas and in logic operations.

0 Vector base register (VBR):

VBR

Indicates the base address of the exception

processing vector area.

SW Jo4

18 HITACHI

Figure 2.2 Control Registers

2.3 System Registers

The system registers consist of four 32-bit registers: high and low multiply and accumulate
registers (MACH and MACL), the procedure register (PR), and the program counter (PC)
(figure 2.3). The multiply and accumulate registers store the results of multiply and
accumulate operations. The procedure register stores the return address from the subroutine
procedure. The program counter stores program addresses to control the flow of the processing.

31
(SH-1 CPU) (sign extended) MACH
MACL
31
(SH-2 CPU) MACH
MACL
31
| PR
31
| PC

Multiply and accumulate (MAC)
registers high and low (MACHY/L):
Store the results of multiply and
accumulate operations. In the
SH-1 CPU, MACH is sign-extended
to 32 bits when read because only
the lowest 10 bits are valid. In the
SH-2 CPU, all 32 bits of MACH are
valid.

Procedure register (PR): Stores a
return address from a subroutine
procedure.

Program counter (PC): Indicates the
fourth byte (second instruction) after
the current instruction.

2.4 Initial Values of Registers

Figure 2.3 System Registers

Table 2.1 lists the values of the registers after reset.

HITACHI 19

Table 2.1 Initial Values of Registers

Classification Register Initial Value
General register R0-R14 Undefined
R15 (SP) Value of the stack pointer in the vector address table
Control register SR Bits I13—10 are 1111 (H'F), reserved bits are 0, and
other bits are undefined
GBR Undefined
VBR H'00000000
System register MACH, MACL, PR Undefined
PC Value of the program counter in the vector address
table

20 HITACHI

Section 3 Data Formats

31 Data Format in Registers

Register operands are always longwords (32 bits) (figure 3.1). When the memory operand is
only a byte (8 bits) or a word (16 bits), it is sign-extended into a longword when loaded into a
register.

| Longword

Figure 3.1 Longword Operand

3.2 Data Format in Memory

Memory data formats are classified into bytes, words, and longwords. Byte data can be
accessed from any address, but an address error will occur if you try to access word data
starting from an address other than 2n or longword data starting from an address other than 4n.
In such cases, the data accessed cannot be guaranteed (figure 3.2). The hardware stack area,
which is referred to by the hardware stack pointer (SP, R15), uses only longword data starting
from address 4n because this area holds the program counter and status register. See the SH
Hardware Manual for more information on address errors.

Address m +1 Addressm + 3
Addressm | Address m + 2
31y 23 15y 7 g0
Byte | Byte | Byte | Byte
Address 2n-» Word Word
Address 4n—» Longword

L Big endian A

Figure 3.2 Byte, Word, and Longword Alignment

SH7604 has a function that alows access of CS2 space (area 2) in little endian format,
which enables memory to be shared with processors that access memory in little endian
format (figure 3.3). Byte data is arranged differently for little endian and the usual big
endian.

HITACHI 21

Addressm +2 Address m
Address m + 3 | Address m + 1
31y 23 154 7 yOT
Byte | Byte | Byte | Byte

Word Word < Address 2n
Longword < Address 4n

A Little endian* A

Note : Only CS2 space of SH7604 can be set.

Figure 3.3 Byte, Word, and Longword Alignment in little endian format (SH7604 only)

33 Immediate Data For mat

Byte immediate data is located in an instruction code. Immediate data accessed by the
MOV, ADD, and CMP/EQ instructions is sign-extended and calculated with registers and
longword data. Immediate data accessed by the TST, AND, OR, and XOR instructions is
zero-extended and calculated with longword data. Consequently, AND instructions with
immediate data always clear the upper 24 bits of the destination register.

Word or longword immediate data is not located in the instruction code. Rather, it is stored in
a memory table. The memory table is accessed by an immediate data transfer instruction
(MQV) using the PC relative addressing mode with displacement. Specific examples are
given in section 4.1.8, Immediate Data.

22 HITACHI

Section 4 Instruction Features

4.1 RISC-Type Instruction Set

All instructions are RISC type. Their features are detailed in this section.

41.1 16-Bit Fixed Length

All instructions are 16 bits long, increasing program coding efficiency.

412 One Instruction/Cycle

Basic instructions can be executed in one cycle using the pipeline system. Instructions are
executed in 50 ns a 20 MHz, in 35 ns at 28.7MHz.

413 Data Length

Longword is the standard data length for all operations. Memory can be accessed in bytes,
words, or longwords. Byte or word data accessed from memory is sign-extended and
calculated with longword data (table 4.1). Immediate data is sign-extended for arithmetic
operations or zero-extended for logic operations. It also is calculated with longword data.

Table 4.1 Sign Extension of Word Data

SH-1/SH-2 CPU Description Example for Other CPU
MV. W @disp, PO, Rl Data is sign-extended to 32 ADD. W #H 1234, RO
ADD Rl RO bits, and R1 becomes

H'00001234. It is next
""""" operated upon by an ADD
. DATA. W H 1234 instruction.

Note: The address of the immediate data is accessed by @(disp, PC).

4.1.4 Load-Store Architecture

Basic operations are executed between registers. For operations that involve memory access,
data is loaded to the registers and executed (load-store architecture). Instructions such as
AND that manipulate bits, however, are executed directly in memory.

4.15 Delayed Branch Instructions

Unconditional branch instructions are delayed. Pipeline disruption during branching is reduced
by first executing the instruction that follows the branch instruction, and then branching (table
4.2). With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed
branch instruction, then delay slot instruction. For example, even if the register in which the

HITACHI 23

branch destination address has been loaded is changed by the delay slot instruction, the
branch will still be made using the value of the register prior to the change as the branch
destination address.

Table 4.2 Delayed Branch Instructions

SH-1/SH-2 CPU Description Example for Other CPU
BRA TRGET Executes an ADD before ADD. W R1, RO
ADD RL, RO branching to TRGET. BRA TRGET

416 Multiplication/Accumulation Operation

SH-1 CPU: 16bit x 16bit - 32-bit multiplication operations are executed in one to three
cycles. 16bit x 16hit + 42bit - 42-bit multiplication/accumulation operations are executed in
two to three cycles.

SH-2 CPU: 16hit x 16hit - 32-bit multiplication operations are executed in one to two
cycles. 16bit x 16hit + 64bit - 64-bit multiplication/accumulation operations are executed in
two to three cycles. 32bit x 32bit - 64-bit multiplication and 32bit x 32bit + 64bit - 64-bit
multiplication/accumulation operations are executed in two to four cycles.

4.1.7 T Bit

The T bit in the status register changes according to the result of the comparison, and in turn
is the condition (true/false) that determines if the program will branch (table 4.3). The
number of instructions after T bit in the status register is kept to a minimum to improve the
processing speed.

Table 43 T Bit

SH-1/SH-2 CPU Description Example for Other CPU
CMWP/ GE R1, RO T bit is set when RO = R1. The CWP. W R1, RO
BT TRGETO program branches to TRGETO BGE TRGETO

when RO = R1 and to TRGET1
BF TRCGET1 when RO < R1. BLT TRCGET1
ADD #-1, RO T bit is not changed by ADD. T SUB. W #1, RO
CVP/EQ #0, RO bit is set when RO = 0. The BEQ TRGET

program branches if RO = 0.
BT TRGET

24 HITACHI

4.1.8 Immediate Data

Byte immediate data is located in instruction code. Word or longword immediate data is not
input via instruction codes but is stored in a memory table. The memory table is accessed by
an immediate data transfer instruction (MOV) using the PC relative addressing mode with
displacement (table 4.4).

Table 4.4 Immediate Data Accessing

Classification SH-1/SH-2 CPU Example for Other CPU
8-bit immediate MOV #H 12, RO MOV. B #H 12, RO
16-bit immediate MOV. W @disp, PO, RO MOV. W #H 1234, RO

. DATA.W H 1234

32-bit immediate MOV. L @disp, PC), RO MOV. L #H 12345678, RO

.DATA. L H 12345678

Note: The address of the immediate data is accessed by @(disp, PC).

419 Absolute Address

When data is accessed by absolute address, the value already in the absolute address is
placed in the memory table. Loading the immediate data when the instruction is executed
transfers that value to the register and the data is accessed in the indirect register addressing
mode.

Table 4.5 Absolute Address

Classification SH-1/SH-2 CPU Example for Other CPU

Absolute address MOV. L @disp, PO, RL MOV.B @4 12345678, RO
MOV. B @r1, RO

. DATA. L H 12345678

4.1.10 16-Bit/32-Bit Displacement

When data is accessed by 16-bit or 32-bit displacement, the pre-existing displacement value
is placed in the memory table. Loading the immediate data when the instruction is executed
transfers that value to the register and the data is accessed in the indirect indexed register
addressing mode.

HITACHI 25

Table 4.6 Displacement Accessing

Classification SH-1/SH-2 CPU Example for Other CPU

16-bit displacement MOV. W @di sp, PO, RO MOV.W @H 1234, Rl), R2
MOV. W @QRO, Rl), R2

.DATA. W H 1234

4.2 Addressing Modes
Addressing modes and effective address calculation are described in table 4.7.

Table 4.7 Addressing Modes and Effective Addresses

Addressin Instruction

g Mode Format Effective Addresses Calculation Formula
Direct Rn The effective address is register Rn. (The operand —
register is the contents of register Rn.)
addressing
Indirect @Rn The effective address is the content of register Rn. Rn
et R | _ Rn |
addressing Rn Rn
Post- @Rn + The effective address is the content of register Rn. Rn
increment A constant is added to the content of Rn after the (After the
indirect instruction is executed. 1 is added for a byte instruction is
register operation, 2 for a word operation, or 4 for a executed)
addressing longword operation.
Byte: Rn + 1
e Word i+ 2
- Rn
1/2/4 Longword:
Rn+4 - Rn
Pre- @-Rn The effective address is the value obtained by Byte: Rn — 1
decrement subtracting a constant from Rn. 1 is subtracted fora _ Rn
|nd|_rect byte operation, 2_ for a word operation, or 4 for a Word: Rn — 2
register longword operation. RN
addressing
Longword:
Rn—4 - Rn
Rn —1/2/4 (Instruction
executed
with Rn after
calculation)

26 HITACHI

Table 4.7

Addressing Modes and Effective Addresses (cont)

Addressin Instruction
g Mode Format Effective Addresses Calculation Formula
Indirect @(disp:4, The effective address is Rn plus a 4-bit Byte: Rn +
register Rn) displacement (disp). The value of disp is zero- disp.
addressing extended, and remains the same for a byte
with operation, is doubled for a word operation, or is Word: Rn +
displace- quadrupled for a longword operation. disp x 2
ment
Longword:
- Rn +disp x 4
disp Rn
(zero-extended) + disp x 1/2/4
Indirect @(RO, Rn) The effective address is the Rn value plus RO. Rn + RO
indexed
register
addressing
®
Indirect @(disp:8, The effective address is the GBR value plus an 8- Byte: GBR +
GBR GBR) bit displacement (disp). The value of disp is zero- disp.
addressing extended, and remains the same for a byte
with operation, is doubled for a word operation, or is Word: GBR +
displace- quadrupled for a longword operation. disp x 2
ment
Longword:
disp _GBR SBR - e
(zero-extended) + disp x 1/2/4
Indirect @(RO, The effective address is the GBR value plus RO. GBR + RO
indexed GBR)
GBR
addressing

GBR + RO

HITACHI 27

Table 4.7 Addressing Modes and Effective Addresses (cont)
Addressin Instruction
g Mode Format Effective Addresses Calculation Formula
PC relative @(disp:8, The effective address is the PC value plus an 8-bit Word: PC +
addressing PC) displacement (disp). The value of disp is zero- disp x 2
w_lth extend_ed, an(_j disp is doubled for a word Longword:
displace- operation, or is quadrupled for a longword PC &
ment operation. For a longword operation, the lowest H'EFFEEEEC

two bits of the PC are masked. + disp x 4

(for longword)
PC + disp x 2
or
_ PC&H'FFFFFFFC
disp + disp x 4

(zero-extended)
PC relative disp:8 The effective address is the PC value sign- PC + disp x
addressing extended with an 8-bit displacement (disp), 2

doubled, and added to the PC.

disp PC + disp x 2
(sign-extended)
disp:12 The effective address is the PC value sign- PC + disp x
extended with a 12-bit displacement (disp), 2

doubled, and added to the PC.

disp
(sign-extended)

PC +disp x 2

28 HITACHI

Table 4.7 Addressing Modes and Effective Addresses (cont)

Addressin Instruction
g Mode Format Effective Addresses Calculation Formula
PC relative Rn The effective address is the register PC plus Rn. PC + Rn
addressing
o)
(+) PC + RO
Immediate #imm:8 The 8-bit immediate data (imm) for the TST, AND, —
addressing OR, and XOR instructions are zero-extended.
#imm:8 The 8-bit immediate data (imm) for the MOV, ADD, —
and CMP/EQ instructions are sign-extended.
#imm:8 Immediate data (imm) for the TRAPA instructionis —
zero-extended and is quadrupled.
4.3 Instruction Format

The instruction format table, table 4.8, refers to the source operand and the destination
operand. The meaning of the operand depends on the instruction code. The symbols are used

as follows:

e XxxX: Instruction code
e mmmm:; Source register

e nnnn: Destination register
e iii: Immediate data
e dddd: Displacement

HITACHI 29

Table 4.8 Instruction Formats

Source Destination
Instruction Formats Operand Operand Example
0 format — — NOP
15 0
XXXX XXXX XXXX XXXX
n format — nnnn: Direct MOVT Rn
register
15 0 Control register nnnn: Direct STS MACH, Rn
| xxxx| nnnn | XXXX XXXX or system register
register

30 HITACHI

Table 4.8

Instruction Formats

Instruction Formats (cont)

Source
Operand

Destination
Operand

Example

n format (cont)

Control register
or system
register

nnnn: Indirect
pre-decrement
register

STC.L SR @Rn

m format

15
| XXXX |mmmm| XXXX XXXX

mmmm: Direct
register

Control register
or system register

LDC Rm SR

mmmm: Indirect
post-increment
register

Control register
or system register

LDC. L @mt, SR

mmmm: Direct
register

JWP @m

mmmm: PC
relative using Rm

BRAF Rm

nm format

15 0
| XXXX | nnnn |mmmm| XXXX

mmmm: Direct
register

nnnn: Direct
register

ADD Rm Rn

mmmm: Direct
register

nnnn: Indirect
register

MOV.L Rm @un

mmmm: Indirect
post-increment
register
(multiply/
accumulate)
nnnn*: Indirect
post-increment
register
(multiply/
accumulate)

MACH, MACL

MAC. W
@mt, @+

mmmm: Indirect
post-increment
register

nnnn: Direct
register

MOV.L @Rm+, Rn

mmmm: Direct

nnnn: Indirect

MV.L Rm @Rn

register pre-decrement
register
mmmm: Direct nnnn: Indirect MOV. L
register indexed register Rm @ RO, Rn)
md format mmmmdddd: RO (Direct MOV. B
15 indirect register register) @di sp, Rm, RO

XXXX XXXX |mmmm| dddd

with
displacement

HITACHI 31

nd4 format RO (Direct nnnndddd: MOV. B
15 0 register) Indirect register RO, @di sp, Rn)
with displacement

XXXX XXXX | nnnn | dddd

Note: In multiply/accumulate instructions, nnnn is the source register.

32 HITACHI

Table 4.8

Instruction Formats (cont)

Source Destination
Instruction Formats Operand Operand Example
nmd format mmmm: Direct nnnndddd: MOV. L
register Indirect register Rm @ di sp, Rn)
| XXXX | nnnn |mmmm| dddd with displacement
mmmmdddd: nnnn: Direct MOV. L
Indirect register register @disp, R, Rn
with
displacement
d format dddddddd: RO (Direct MOV. L
15 0 Indirect GBR register) @di sp, GBBR), RO
XXXX XXxx | dddd dddd W.Ith
displacement
RO(Direct dddddddd: MOV. L
register) Indirect GBR with RO, @di sp, GBR)
displacement
dddddddd: PC RO (Direct MOVA
relative with register) @disp, PO, RO
displacement
dddddddd: PC — BF | abel
relative
d12 format ddddddddddd — BRA | abel
15 0 d: PC relative (1 abel = disp
x| dddd dddd dddd + PO)
nd8 format dddddddd: PC nnnn: Direct MOV. L
15 0 relative with register @di sp, PO, Rn
| XXXX | nnnn | dddd dddd displacement
i format iiiiiiii: Immediate Indirect indexed AND. B
GBR #i mm @ RO, GBR)
15 0 iiiiiiii: Immediate RO (Direct AND #i mm RO
| XXXX XXXX | il diii register)
iiiiiiii: Immediate — TRAPA #i nm
ni format jiiiiiii: Immediate nnnn: Direct ADD #i mm Rn
15 0 register
| xooc | nnnn | i i

HITACHI 33

Section 5 Instruction Set

51 Instruction Set by Classification
Table 5.1 lists instructions by classification.

Table 5.1 Classification of Instructions

Applicable
Instructions
Operation No. of
Classification Types Code Function SH-2 SH-1 Instructions
Data transfer 5 MOV Data transfer X X 39

Immediate data transfer
Peripheral module data transfer
Structure data transfer

MOVA Effective address transfer X X

MOVT T-bit transfer X X

SWAP Swap of upper and lower X X
bytes

XTRCT Extraction of the middle of X X

registers connected

34 HITACHI

Table 5.1 Classification of Instructions (cont)

Applicable
Instructions
Operation No. of
Classification Types Code Function SH-2 SH-1 Instructions
Arithmetic 21 ADD Binary addition X X 33
operations ADDC Binary addition with carry X X
ADDV Binary addition with overflow X X
check
CMP/con Comparison X X
d
DIVl Division X X
DIVOS Initialization of signed division X X
DIVOU Initialization of unsigned X X
division
DMULS Signed double-length X
multiplication
DMULU Unsigned double-length X
multiplication
DT Decrement and test X
EXTS Sign extension X X
EXTU Zero extension X X
MAC Multiply/accumulate, double- X X
length multiply/accumulate
operation*1
MUL Double-length multiplication X
MULS Signed multiplication X X
MULU Unsigned multiplication X X
NEG Negation X X
NEGC Negation with borrow X X
SuUB Binary subtraction X X
SUBC Binary subtraction with borrow X X
SUBV Binary subtraction with X X

underflow check

Notes 1. Double-length multiply/accumulate is an SH-2 function.

HITACHI 35

Table 5.1 Classification of Instructions (cont)

Applicable
Instructions
Operation No. of
Classification Types Code Function SH-2 SH-1 Instructions
Logic 6 AND Logical AND X X 14
operations NOT Bit inversion X X
OR Logical OR X X
TAS Memory test and bit set X X
TST Logical AND and T-hit set X X
XOR Exclusive OR X X
Shift 10 ROTL One-bit left rotation X X 14
ROTR One-bit right rotation X X
ROTCL One-bit left rotation with T bit X X
ROTCR One-bit right rotation with T bit X X
SHAL One-bit arithmetic left shift X X
SHAR One-bit arithmetic right shift X X
SHLL One-bit logical left shift X X
SHLLn n-bit logical left shift X X
SHLR One-bit logical right shift X X
SHLRn n-bit logical right shift X X
Branch 9 BF Conditional branch, conditional X X 11
branch with delay*2 (T = 0)
BT Conditional branch, conditional X X
branch with delay*2 (T = 1)
BRA Unconditional branch X X
BRAF Unconditional branch X
BSR Branch to subroutine X X
procedure
BSRF Branch to subroutine X
procedure
JMP Unconditional branch X X
JSR Branch to subroutine X X
procedure
RTS Return from subroutine X X
procedure

Notes 2. Conditional branch with delay is an SH-2 CPU function.

36 HITACHI

Table 5.1 Classification of Instructions (cont)

Applicable
Instructions
Operation No. of
Classification Types Code Function SH-2 SH-1 Instructions
System 11 CLRT T-bit clear X X 31
control CLRMAC MAC register clear X X
LDC Load to control register X X
LDS Load to system register X X
NOP No operation X X
RTE Return from exception X X
processing
SETT T-bit set X X
SLEEP Shift into power-down mode X X
STC Storing control register data X X
STS Storing system register data X X
TRAPA Trap exception processing X X

Total: 62

142

HITACHI 37

Instruction codes, operation, and execution states are listed in table 5.2 in order by
classification.

Table 5.2 Instruction Code Format

Item Format Explanation
Instruction OP.Sz SRC,DEST OP: Operation code
mnemonic Sz: Size

SRC: Source

DEST: Destination

Rm: Source register
Rn: Destination register
imm: Immediate data
disp: Displacement*

Instruction MSB ~ LSB mmmm: Source register
code nnnn: Destination register
0000: RO
0001: R1
1111: R15

iiii: Immediate data
dddd: Displacement

Operation o, e Direction of transfer
summary (xx) Memory operand
M/QIT Flag bits in the SR
& Logical AND of each bit
[Logical OR of each bit
N Exclusive OR of each bit
~ Logical NOT of each bit
<<n, >>n n-bit left/right shift
Execution Value when no wait states are inserted
cycle
Instruction The execution cycles shown in the table are minimums.
execution The actual number of cycles may be increased:
cycles 1. When contention occurs between instruction fetches

and data access, or

2. When the destination register of the load instruction
(memory - register) and the register used by the next
instruction are the same.

T bit Value of T bit after instruction is executed

— No change

Note: Scaling (x1, x2, x4) is performed according to the instruction operand size. See "6.
Instruction Descriptions" for details.

38 HITACHI

511 Data Transfer Instructions

Tables 5.3 to 5.8 list the minimum number of clock states required for execution.

HITACHI 39

Table 5.3 Data Transfer Instructions

Execu-
tion T
Instruction Instruction Code Operation State Bit
MOV #inmmRn 1110nnnniiiiiiii iFr{nm - Sign extension » 1 —
n
MV. W @disp, PO, Rn 1001nnnndddddddd (disp x2 + PC) - Sign 1 —
extension - Rn
MW.L @disp, PO, Rn 1101nnnndddddddd (disp x4 + PC) - Rn 1 —
MOV Rm Rn 0110nnnnmmm®D011 Rm - Rn 1 —
MOV.B Rm @un 0010nnnnnmmm0000 Rm - (Rn) 1 —
MOV. W Rm @Rn 0010nnnnmMmmm®D001 Rm - (Rn) 1 —
MOV.L Rm @n 0010nnnnmmmmD010 Rm - (Rn) 1 —
M. B @m Rn 0110nnnnnmmmD000 glm) - Sign extension - 1 —
n
MOV. W @m Rn 0110nnnnnmMmMO001 gim) - Sign extension - 1 —
n
MOV.L @m Rn 0110nnnnmmmmD010 (Rm) - Rn 1 —
MOV. B Rm @Rn 0010nnnnnmm®©100 Rn-1 - Rn,Rm - (Rn) 1 —
MOV. W Rm @-Rn 0010nnnnnmm®©101 Rn-2 - Rn,Rm - (Rn) 1 —
MOV.L Rm @Rn 0010nnnnnmm®©110 Rn—-4 - Rn,Rm - (Rn) 1 —
MOV.B @Rm+, Rn 0110nnnnmmmmD100 (Rm) - Sign extension - 1 —
Rn,Rm+1 - Rm
MOV. W @m+, Rn 0110nnnnnmmmo0101 (Rm) - Sign extension - 1 —
Rn,Rm+2 -~ Rm
MOV.L @Rm+, Rn 0110nnnnmmmmo0110 (RmM) - Rn,Rm+4 - Rm 1 —
MW.B RO, @disp, R1) 10000000nnnndddd RO - (disp +Rn) 1 —
M. W RO, @disp, R1) 10000001nnnndddd RO - (disp x 2 + Rn) 1 —
MWV.L Rm @disp, Rn) 000innnnmmmdddd Rm - (disp x4 + Rn) 1 —
MOV.B @disp, R), R0 10000100nmmmdddd (disp + Rm) - Sign 1 —
extension - RO
M. W @disp, R, R0 10000101mmmdddd (disp x 2 + Rm) - Sign 1 —
extension - RO
MWV.L @disp, RM,Rn 010innnnmmmdddd (disp x4 + Rm) - Rn 1 —
MOV. B Rm @ RO, Rn) 0000nnnnNmMMO100 Rm - (RO +Rn) 1 —
MV. W Rm @ RO, Rn) 0000nnnnmmMmMO101 Rm - (RO +Rn) 1 —

40 HITACHI

Table 5.3 Data Transfer Instructions (cont)

Execu-
tion T

Instruction Instruction Code Operation State Bit

MOV.L Rm @ RO, Rn) 0000nnnnmMmMMO110 Rm - (RO+Rn) 1 —

MV.B @RO, Rm, Rn 0000nnnnmMmMmML100 (RO +Rm) - Sign 1 —
extension — Rn

MV. W @RO, Rm, Rn 0000nnnnmMmMML101 (RO +Rm) - Sign 1 —
extension — Rn

MWV.L @RO, Rm, Rn 0000nnnnmmm1110 (RO+Rm) - Rn 1 —

MOV. B RO, @di sp, GBR) 11000000dddddddd RO - (disp + GBR) 1 —

MOV. W RO, @di sp, GBBR) 11000001dddddddd RO - (disp x 2 + GBR) 1 —

MV.L RO, @di sp, GBBR) 11000010dddddddd RO - (disp x 4+ GBR) 1 —

M. B @disp, GBBR), RO 11000100dddddddd (disp + GBR) - Sign 1 —
extension - RO

M. W @disp, GBBR), R0 11000101dddddddd (dispx2 + GBR) - Sign 1 —
extension - RO

MOV.L @disp, GBBR), RO 11000110dddddddd (disp x4 + GBR) - RO 1 —

MWVA @disp, PO, RO 11000111dddddddd disp x4 + PC - RO 1 —

MVT Rn 0000nnnNn00101001 T - Rn 1 —

SWAP. B Rm Rn 0110nnnnmmmml000 Rm - Swap upper and 1 —
lower 2 bytes — Rn

SWAP. WRmM Rn 0110nnnnmmm1001 Rm - Swap upper and 1 —
lower word — Rn

XTRCT RmRn 0010nnnnmmm101 Center 32 bits of Rmand 1 —

Rn- Rn

HITACHI 41

512

Arithmetic Instructions

Table 5.4 Arithmetic Instructions

Execution
Instruction Instruction Code Operation State T Bit
ADD Rm Rn 0011nnnnmmml10 Rn+Rm - Rn 1 —
0
ADD #i mm Rn Olllnnnniiiiiii Rn+imm - Rn 1 —
i
ADDC RmRn 001lnnnnmmrlll Rn+Rm+T - Rn, 1 Carry
0 Carry - T
ADDV Rm Rn 0011nnnnmmmlll Rn+Rm - Rn, 1 Overflow
1 Overflow - T
CVWP/ EQ #i nm RO 10001000iiiiiii IfRO=imm,1 - T 1 Compariso
i n result
CVWP/ EQ Rm Rn 0011nnnnmm®O00 IfRn=Rm,1 - T 1 Compariso
0 n result
CMP/ HS Rm Rn 0011nnnnmmmmD01 If Rn=Rm with 1 Compariso
0 unsigned data, 1 - T n result
CWVP/ GE Rm Rn 0011nnnnmmmm©O01 If Rn = Rm with 1 Compariso
1 signeddata,1 - T n result
CW/ H RmRn 001lnnnnmmmOD11 If Rn > Rm with 1 Compariso
0 unsigned data, 1 - T n result
CWVP/ GT Rm Rn 0011lnnnnmmmO11 If Rn > Rm with 1 Compariso
1 signeddata,1 - T n result
CVP/ PL Rn 0100nnnn0001010 IfRN>0,1- T 1 Compariso
1 n result
CWVP/ PZ Rn 0100nnnn0001000 IfRN=0,1- T 1 Compariso
1 n result
CWP/ STR 0010nnnnmm10 IfRnand Rmhavean 1 Compariso
Rm Rn 0 equivalent byte, 1 - n result
T
DVLI RmRn 0011nnnnmmm010 Single-step division 1 Calculation
0 (Rn/Rm) result
DVOS RmRn 0010nnnnnmmm011 MSB of Rn - Q, 1 Calculation
1 MSB of Rm - M, M result
"Qo T
D VoU 000000000001100 0 - M/Q/T 1 0
1

42 HITACHI

Table 5.4 Arithmetic Instructions (cont)

Instruction

Instruction Code

Operation

Execution
State

T Bit

DMULS. L
Rm R«I*Z

0011lnnnnmmmi101

Signed operation of
RnxRm - MACH,
MACL

32x32 - 64 bits

2 to 4*1

DMULU. L
Rm Rf]*Z

0011lnnnnmmm0101

Unsigned operation
of RnXxRm -
MACH, MACL

32x32 - 64 bits

2 to 4*1

0100nnnn00010000

Rn-1 - Rn, when
Rnis0,1 -~ T.When
Rnis nonzero,0 - T

Compariso
n result

EXTS. B Rm Rn

0110nnnnmmm1110

A byte in Rm is sign-
extended - Rn

EXTS. WRm Rn

0110nnnnmmmmi111

A word in Rm is sign-
extended - Rn

EXTU. B Rm Rn

0110nnnnmmm1100

A byte in Rm is zero-
extended - Rn

EXTU. WRmM Rn

0110nnnnmmm1101

A word in Rm is zero-
extended - Rn

MAC.L @Rmt, @n+

*2

0000nnnnmmMM1111

Signed operation of
(Rn) x (Rm) + MAC
- MAC

32x32+64- 64
bits

3/(2 to 4)*1

MAC. W @Rmt+, @GRn+

0100nnnnnmm1111

Signed operation of
(Rn) x (Rm) + MAC
- MAC

(SH-2 CPU) 16 x 16
+ 64 - 64 bits

(SH-1 CPU) 16 x 16
+42 - 42 bits

3/(2)*

MUL.L Rm Rn*2

0000NnNNnMMMD111

RnxRm - MACL,
32x32 - 32 bits

2 to 4*1

MULS. WRm Rn

0010nnnnmmm1111

Signed operation of
RnxRm - MAC

16 x 16 - 32 bits

1 to 3*!

Notes: 1. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions)

2. SH-2 CPU instructions

HITACHI 43

Table 5.4 Arithmetic Instructions (cont)

Execution

Instruction Instruction Code Operation State T Bit
MULU. WRmM Rn 0010nnnnmmm110 Unsigned operation 1to 3*1 —

of Rn xRm - MAC

16 x 16 — 32 bits
NEG Rm Rn 0110nnnnnmm1011 O-Rm - Rn 1 —
NEGC RmMmRn 0110nnnnmmm1010 O-Rm-T - Rn, 1 Borrow

Borrow —» T
SUB Rm Rn 0011nnnnmmm1 000 Rn-Rm - Rn 1 —
SUBC RmRn 0011nnnnmmm1010 Rn-RmM-T - Rn, 1 Borrow

Borrow - T
SUBV RmRn 0011nnnnmmm1011 Rn-Rm - Rn, 1 Underflow

Underflow - T

Notes: 1. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions)

5.1.3 Logic Operation Instructions

Table 5.5 Logic Operation Instructions

Executio
Instruction Instruction Code Operation n State T Bit
AND Rm Rn 0010nnnnmmmM001 Rn&RmM - Rn 1 —
AND #i mm RO 1100100%iiiiiiii RO&imm - RO 1 —
AND. B #inmm @RO, GBBR) 1100110%1liiiiiiii (RO+GBR)&imm - 3 —
(RO + GBR)
NOT Rm Rn 0110nnnnmmmO0111 ~Rm - Rn 1 —
R Rm Rn 0010nnnnmmml011 Rn|Rm - Rn 1 —
xR #i nm RO 1100101%iiiiiiii RO|imm - RO 1 —
ORB #im @RO, GBBR) 1100111liiiiiiii (RO+GBR)|imm - 3 —
(RO + GBR)
TAS.B @Rn 0100nnnn00011011 If(Rn)is0,1 - T;1 - 4 Test
MSB of (Rn) result
TST Rm Rn 0010nnnnmmmi000 Rn & Rm; if the resultis 1 Test
0,1 T result
TST #i mm RO 11001000iiiiiiii RO &imm;iftheresult 1 Test
is0,1 - T result

44 HITACHI

Table 55 Logic Operation Instructions (cont)

Executio

Instruction Instruction Code Operation n State T Bit
TST.B #imm @RO, GBR) 11001100iiiiiiii (RO+GBR)&imm;if 3 Test

theresultis0,1 - T result
XOR Rm Rn 0010nnnnmMmm010 Rn”"Rm - Rn 1 —
XOR #i mm RO 11001010iiiiiiii RO™imm - RO —
XOR B #imm @RO, GBR) 11001110iiiiiiii (RO+GBR)Aimm - 3 —

(RO + GBR)
5.1.4 Shift Instructions
Table 5.6 Shift Instructions
Instruction Instruction Code Operation Execution State T Bit
ROTL R 0100nnnn00000100 T «~ Rn —~ MSB 1 MSB
ROTR Rn 0100nnnn00000101 LSB - Rn - T 1 LSB
ROTCL Rn 0100nnnn00100100 T « Rn « T 1 MSB
ROTCR Rn 0100nnnn00100101 T - Rn - T 1 LSB
SHAL R 0100nnnn00100000 T « Rn «~ O 1 MSB
SHAR Rn 0100nnnn00100001 MSB - Rn - T 1 LSB
SHLL R 0100nnnn00000000 T « Rn ~ 0 1 MSB
SHLR R 0100nnnn00000001 O - Rn > T 1 LSB
SHLLZ2 Rn 0100nnnn00001000 Rn<<2 - Rn 1 —
SHLR2 R 0100nnnn00001001 Rn>>2 - Rn 1 —
SHLL8 Rn 0100nnnn00011000 Rn<<8 - Rn 1 —
SHLR8 Rn 0100nnnn00011001 Rn>>8 - Rn 1 —
SHLL16 R 0100nnnn00101000 Rn<<16 - Rn 1 —_
SHLR16 R 0100nnnn00101001 Rn>>16 - Rn 1 —

HITACHI 45

5.1.5 Branch Instructions

Table 5.7 Branch Instructions

Executio
Instruction Instruction Code Operation n State T Bit

BF | abel 10001011dddddddd If T=0,dispx2+PC - PC; if T 3/1*3 —
=1, nop (where label is disp x 2 +
PC)

BF/ S | abel *2 10001111dddddddd Delayed branch, if T =0, disp x 2 + 2/1*3 —
PC - PC; ifT=1, nop

BT | abel 10001001dddddddd If T=1,dispx2+PC - PC; if T 3/1*3 —
=0, nop (where label is disp + PC)

BT/ S | abel *2 10001101dddddddd Delayed branch, if T =1, disp x 2 + 2/1*3 —
PC - PC; if T=0, nop

BRA | abel 1010dddddddddddd Delayed branch, disp x2+PC - 2 —
PC

BRAF Rt 2 0000mMMMD0100011 Delayed branch, Rm + PC - PC 2 —

BSR | abel 1011dddddddddddd Delayed branch, PC - PR, disp x 2 —

2+PC - PC

BSRF Rt 2 0000mMmMMD0000011 Delayed branch, PC - PR, Rm + 2 —
PC - PC

JMP @Rm 0100mmMD0101011 Delayed branch, Rm - PC 2 —

JSR @m 0100mmmMD0001011 Delayed branch, PC - PR,Rm - 2 —
PC

RTS 0000000000001011 Delayed branch, PR - PC 2 —

Notes: 2. SH-2 CPU instruction
3. One state when it does not branch

46 HITACHI

5.1.6

System Control Instructions

Table 5.8 System Control Instructions

Executio T

Instruction Instruction Code Operation n State Bit
CLRT 0000000000001000 0 - T 1 0
CLRVAC 0000000000101000 0 - MACH, MACL 1 —
LDC Rm SR 0100mmmD0001110 Rm - SR 1 LSB
LDC Rm GBR 0100mMmmMD0011110 Rm - GBR 1 —
LDC Rm VBR 0100mMmm©D0101110 Rm - VBR 1 —
LDC. L @m+, SR 0100mMmMmMD0000111 (Rm) - SR, Rm+4 - Rm 3 LSB
LDC. L @m+, GBR 0100mmMmMD0010111 (Rm) - GBR, Rm+4 - Rm 3 —
LDC. L @ m+, VBR 0100mmMD0100111 (Rm) - VBR, Rm+4 - Rm 3 —
LDS Rm MACH 0100mmMmD0001010 Rm - MACH 1 —
LDS Rm MACL 0100mmm00011010 Rm - MACL 1 —
LDS Rm PR 0100mmm©00101010 Rm - PR 1 —
LDS.L @m+, MACH 0100mmm©D0000110 (Rm) - MACH, Rm+4 - Rm 1 —
LDS. L @m+, MACL 0100mmMD0010110 (Rm) - MACL, Rm+4 - Rm 1 —
LDS. L @m+, PR 0100mmmD0100110 (Rm) - PR,Rm+4 - Rm 1 —
NOP 0000000000001001 No operation 1 —
RTE 0000000000101011 Delayed branch, stack area - 4 LSB
PC/SR

SETT 0000000000011000 1 - T 1 1
SLEEP 0000000000011011 Sleep 3+4 —
STC SR Rn 0000nnnn00000010 SR - Rn 1 —
STC GBR, Rn 0000nnnn00010010 GBR - Rn 1 —
STC VBR, Rn 0000nnnn00100010 VBR - Rn 1 —
STC L SR @Rn 0100nnnn00000011 Rn—4 - Rn, SR - (Rn) 2 —
STC.L GBR @Rn 0100nnnn00010011 Rn—4 - Rn, GBR - (Rn) 2 —
STC.L VBR @Rn 0100nnnn00100011 Rn+4 - Rn, VBR - (Rn) 2 —
STS MACH, Rn 0000nnnn00001010 MACH - Rn 1 —
STS MACL, Rn 0000nnnn00011010 MACL - Rn 1 —
STS PR, Rn 0000nnnNn00101010 PR - Rn 1 —

HITACHI 47

Table 5.8 System Control Instructions (cont)

Execution T
Instruction Instruction Code Operation State Bit

STS.L MACH @Rn 0100nnnn00000010 Rn—4 - Rn, MACH - (Rn) 1 —

STS. L MACL, @Rn 0100nnnn00010010 Rn—4 - Rn, MACL - (Rn) 1 —
STS.L PR @Rn 0100nnnn00100010 Rn—4 - Rn, PR - (Rn) 1 —_
TRAPA #i mm 11000011%iiiiiiii PCISR - stackarea, immx 8 —

4 +VBR) - PC

Notes: 4. The number of execution states before the chip enters the sleep state

5. The above table lists the minimum execution cycles. In practice, the number of
execution cycles increases when the instruction fetch is in contention with data
access or when the destination register of a load instruction (memory - register) is
the same as the register used by the next instruction.

52 Instruction Set in Alphabetical Order

Table 5.9 alphabetically lists instruction codes and number of execution cycles for each
instruction.

48 HITACHI

Table 5.9 Instruction Set

Execu-
tion

Instruction Instruction Code Operation State T Bit
ADD #i nm Rn Olllnnnniiiiiii Rn+imm - Rn 1 —

i
ADD Rm Rn 0011nnnnmmml1l0 Rn+Rm - Rn 1 —

0
ADDC RmMmRn 0011nnnnmmmlll Rn+Rm+T - Rn, 1 Carry

0 Carry - T
ADDV Rm Rn 001llnnnnmmmmlll Rn+Rm - Rn, 1 Overflow

1 Overflow - T
AND #i mMm RO 1100100%iiiiiii RO & imm - RO 1 —

i
AND Rm Rn 0010nnnnmmMM00 Rn&Rm - Rn 1 —

1
AND.B #imm @R0, BBR) 1100110%iiiiiii (RO + GBR) & imm 3 —

i - (RO + GBR)
BF | abel 10001011ddddddd If T=0,dispx2 + 3/1*3 —

d PC - PC; ifT=1,

nop

BF/S |abel *? 1000111lddddddd If T=0,disp x2+ 2/1%8 —

d PC - PC; ifT=1,

nop

HITACHI 49

Table 5.9

Instruction Set (cont)

Execu-
tion
Instruction Instruction Code Operation State T Bit
BRA | abel 1010dddddddddddd Delayed branch, disp 2 —
x2+PC - PC
BRAF Rmt? 0000mmMMD0100011 Delayed branch, Rm+ 2 —
PC - PC
BSR | abel 1011dddddddddddd Delayed branch, PC - 2 —
PR, dispx2 +PC -
PC
BSRF Rmt2 0000mmMMDO0000011 Delayed branch, PC - 2 —
PR,Rm+PC - PC
BT | abel 10001001dddddddd If T =1, disp x2+ PC 3/1*3 —
- PC; ifT=0, nop
BT/S |abel *2 10001101dddddddd 1f T =1, dispx2 + PC 2/1*3 —
- PC; if T=0, nop
CLRVAC 0000000000101000 O - MACH, MACL 1 —
CLRT 0000000000001000 O - T 1 0
CWP/ EQ #i nm RO 10001000iiiiiiii IfRO=imm,1 - T 1 Comparison
result
CWP/ EQ Rm Rn 0011nnnnmmm®OO000 IfRn=Rm,1 - T 1 Comparison
result
CWP/ GE Rm Rn 0011nnnnmmmDO011 If Rn = Rm with signed 1 Comparison
data,1 - T result
CWP/ GT Rm Rn 001l1lnnnnmmm®OD111 If Rn > Rm with signed 1 Comparison
data,1 - T result
CVWP/H RmRn 0011nnnnmmm0110 If Rn > Rm with 1 Comparison
unsigned data, result
1-T
CWP/ HS Rm Rn 0011lnnnnmmm®O0010 If Rn = Rm with 1 Comparison
unsigned data, result
1-T
CVP/ PL Rn 0100nnnn00010101 IfRN>0,1 - T 1 Comparison
result
CWP/ PZ R 0100nnnn00010001 IfRNn=0,1 - T 1 Comparison
result

Notes: 2. SH-2 CPU instructions

3. One state when it does not branch

50 HITACHI

Table 5.9

Instruction

Instruction Set (cont)

Instruction Code

Operation

Execu-
tion
State

T Bit

CwP/ STR
Rm Rn

0010nnnnmmmil100

If Rn and Rm have
an equivalent byte,
1T

1

Comparison
result

DVOS Rm Rn

0010nnnnmmm0111

MSB of Rn - Q,
MSB of Rm - M,
MAQ - T

Calculation
result

DI VOU

0000000000011001

0 - M/QIT

0

DVl RmRn

0011nnnnmmm0100

Single-step
division (Rn/Rm)

Calculation
result

DMULS. L
Rm Rn*Z

0011nnnnmmmmil101

Signed operation
of Rnx Rm -
MACH, MACL

2 to 4*1

DMULU. L
Rm R«I*Z

0011lnnnnmmm0101

Unsigned
operation of Rn x
Rm - MACH,
MACL

2 to 4*1

0100nnnn00010000

Rn-1 - Rn, when
Rnis0,1 - T.
When Rn is
nonzero,0 - T

Comparison
result

EXTS. B Rm Rn

0110nnnnmmmi110

A byte in Rm is
sign-extended -
Rn

EXTS. WRm Rn

0110nnnnmmmil111

A word in Rm is
sign-extended -
Rn

EXTU. B Rm Rn

0110nnnnmmmi100

A byte in Rm is
zero-extended -
Rn

EXTU. WRM, Rn

0110nnnnmmmil101

A word in Rm is
zero-extended -
Rn

JMWP @Rm

0100nmMMD0101011

Delayed branch,
Rm - PC

Notes: 1. The normal minimum number of execution states
2. SH-2 CPU instructions

HITACHI 51

Table 5.9 Instruction Set (cont)
Execu-
tion
Instruction Instruction Code Operation State T Bit
JSR @m 0100mMmmmD0001011 Delayed branch, 2 —
PC - PR,Rm -
PC
LDC Rm GBR 0100mMmmMmMD0011110 Rm - GBR 1 —
LDC Rm SR 0100mMmmMmD0001110 Rm - SR 1 LSB
LDC Rm VBR 0100nMmMD0101110 Rm - VBR 1 —
LDC. L @m+, GBR 0100mMmmMMD0010111 (Rm) -~ GBR, Rm 3 —
+4 - Rm
LDC. L @rmt, SR 0100mMmmMmD0000111 (Rm) - SR, Rm+ 3 LSB
4 - Rm
LDC. L @m+, VBR 0100mMmmMMD0100111 (Rm) - VBR, Rm 3 —
+4 - Rm
LDS Rm MACH 0100mMmMmD0001010 Rm - MACH 1 —
LDS Rm MACL 0100nMmmMmMD0011010 Rm - MACL 1 —
LDS Rm PR 0100mMmmMmD0101010 Rm - PR 1 —
LDS. L @m+, MACH 0100mMmmmD0000110 (Rm) -~ MACH, 1 —
Rm+4 - Rm
LDS. L @m+, MACL 0100mMmmMmD0010110 (Rm) -~ MACL, Rm 1 —
+4 - Rm
LDS. L @rmt, PR 0100mMmMmD0100110 (Rm) -~ PR, Rm+4 1 —
- Rm
MAC. L @m+, @n+* 2 0000nnnnmMML111 Signed operation 32to —
of (Rn) x (Rm) + 4)y*1
MAC - MAC
MAC. W @Rmt+, @Rn+ 0100nnnnnmmml111 Signed operation 3/(2)*!
of (Rn) x (Rm) +
MAC - MAC
MOV #i mMm Rn 1110nnnniiiiiiii imm - Sign 1 —
extension - Rn
MoV Rm Rn 0110nnnnmmm0011 Rm - Rn 1 —

Notes: 1. The normal minimum number of execution states (the number in parentheses is the
number of states when there is contention with preceding/following instructions)

2. SH-2 instructions

52 HITACHI

Table 5.9

Instruction Set (cont)

Execu-
tion
Instruction Instruction Code Operation State T Bit
MOV.B @disp, GBR), RO 11000100dddddddd (disp + GBR) - Sign 1 —
extension - RO
MV.B @disp, Ry, R0 10000100mmmuddd (disp + Rm) - Sign 1 —
extension - RO
MOV. B @RO, RM, Rn 0000nnnnnmMM1.100 (RO +Rm) - Sign 1 —
extension - Rn
MOV. B @Rm+, Rn 0110nnnnmmmm0100 (Rm) - Sign extension 1 —
-~ Rn,Rm+1 - Rm
MOV.B @Rm Rn 0110nnnnnmmm0000 (Rm) - Sign extension 1 —
- Rn
MWV.B RO, @disp, GBR) 11000000dddddddd RO - (disp + GBR) 1 —
MOV.B RO, @di sp, Rn) 10000000nnnndddd RO - (disp + Rn) 1 —
M)V. B Rm @ RO, Rn) 0000nNNNMMMD100 Rm - (RO + Rn) 1 —
MWV. B Rm @Rn 0010nnnnmMmmMOD100 Rn-1 - Rn, Rm - 1 —
(Rn)
MV. B Rm @ 0010nnnnmmmD000 Rm - (Rn) 1 —
MV.L @disp, GBR), R0 11000110dddddddd (disp x4+ GBR) - RO 1 —
MOV.L @disp, PC), R0 1101nnnndddddddd (dispx4+PC) - Rn 1 —
MWV.L @disp, Rm,Rn 0101nnnnnmmmdddd (disp x4 + Rm) - Rn 1 —
MV.L @RO,RM, Rn 0000nnnnmMmMmML110 (RO+Rm) - Rn 1 —
MOV. L @Rm+, Rn o110nnnnmMmm®O0110 (Rm) - Rn,Rm+4 - 1 —
Rm
MV.L @Rm Rn 0110nnnnmMmmmD010 (Rm) - Rn 1 —
MW.L RO, @disp, GBR) 11000010dddddddd RO - (disp x4+ GBR) 1 —
MV.L Rm @di sp, Rn) 0001nnnnnmmmdddd Rm - (disp x4 + Rn) 1 —
MOV.L Rm @ RO, Rn) 0000nnnnmmmMMD110 Rm - (RO +Rn) 1 —
MOV.L Rm @Rn 0010nnnnmMmm®O110 Rn-4 - Rn, Rm - 1 —
(Rn)
MOV.L Rm @n 0010nnnnmMmmmD010 Rm - (Rn) 1 —
MV. W @di sp, GBR), R0 11000101dddddddd (disp x 2 + GBR) - 1 —

Sign extension —
RO

HITACHI 53

Table 5.9

Instruction Set (cont)

Execu-
tion
Instruction Instruction Code Operation State T Bit
MOV, W 1001nnnndddddddd (disp x 2 + PC) — 1 —
@disp, PO, Rn Sign extension - Rn
MOV. W 10000101mmndddd (disp x 2 + Rm) - 1 —
@disp, Rm, RO Sign extension - RO
MOV. W @RO, Rm, Rn 0000nnnnnmm101 (RO +Rm) - Sign 1 —
extension - Rn
MOV. W @m+, Rn 0110nnnnmmm®0101 (Rm) - Sign 1 —
extension - Rn, Rm +
2 - Rm
MOV. W @m Rn 0110nnnnmMmmm®D001 (Rm) - Sign 1 —
extension - Rn
MOV. W 11000001dddddddd RO - (disp x 2+ GBR) 1 —
RO, @ di sp, GBR)
MOV. W 10000001nnnndddd RO - (disp x2+Rn) 1 —
RO, @di sp, Rn)
MV. W Rm @RO, Rn) 0000nnnnmmm0101 Rm - (RO + Rn) 1 —
MOV. W Rm @Rn 0010nnnnmMmmm®O0101 Rn-2 - Rn, Rm - 1 —
(Rn)
MOV. W Rm @rRn 0010nnnnmMmmmD001 Rm - (Rn) 1 —
MOVA @ di sp, PC), R0 11000111dddddddd disp x4 + PC - RO 1 —
MVT R 0000nnnNN00101001 T - Rn 1 —
MUL.L RmRn*2 000Onnnnmmmo0111 RnxRm - MACL 2to4*1 —
MULS. WRm Rn 0010nnnnnmmm111 Signed operation of 1 to 3*!
RnxRm - MAC
MJULU. WRmM Rn 0010nnnnmmml110 Unsigned operation of 1to 3*1 —
RnxRm - MAC
NEG Rm R 0110nnnnmmml011 O-Rm - Rn 1 —
NEGCC RmRn o110nnnnmmmi010 O-Rm-T - Rn, 1 Borrow
Borrow - T
NOP 0000000000001001 No operation 1 —
NOT Rm Rn 0110nnnnmMmmm®O0111 ~Rm - Rn 1 —
R #i nm RO 1100102%iiiiiiii RO | imm - RO 1 —
xR RmM Rn 0010nnnnmmmi011 Rn|Rm - Rn 1 —

Notes: 1. The normal minimum number of execution states
2. SH-2 CPU instructions

54 HITACHI

Table 5.9

Instruction Set (cont)

Execu-
tion

Instruction Instruction Code Operation State T Bit
OR B #inm @RO, GBR) 1100111%iiiiiiii (RO+GBR)|imm - 3 —

(RO + GBR)
ROTCL Rn 0100nnnn00100100 T « Rn « T 1 MSB
ROTCR Rn 0100nnnn00100101 T - Rn - T 1 LSB
ROTL R 0100nnnn00000100 T « Rn - MSB 1 MSB
ROTR Rn 0100nnnn00000101 LSB - RN - T 1 LSB
RTE 0000000000101011 Delayed branch, 4 LSB

stack area — PC/SR
RTS 0000000000001011 Delayed branch, PR 2 —

- PC
SETT 0000000000011000 1 - T 1 1
SHAL R 0100nnnNn00100000 T « Rn < O 1 MSB
SHAR Rn 0100nnnn00100001 MSB - Rn - T 1 LSB
SHLL R 0100nnnNn00000000 T « Rn ~ O 1 MSB
SHLL2 R 0100nnnn00001000 Rn<<2 - Rn 1 —
SHLL8 Rn 0100nnnNn00011000 Rn<<8 - Rn 1 —
SHLL16 R 0100nnnn00101000 Rn<<16 - Rn 1 —
SHLR R 0100nnnn00000001 O - Rn - T 1 LSB
SHLR2 Rn 0100nnnn00001001 Rn>>2 - Rn 1 —
SHLR8 Rn 0100nnnn00011001 Rn>>8 - Rn 1 —
SHLR16 R 0100nnnn00101001 Rn>>16 - Rn 1 —
SLEEP 0000000000011011 Sleep 3 —
STC GBR, Rn 0000nnnn00010010 GBR - Rn 1 —
STC SR, Rn 0000nnnNN00000010 SR - Rn 1 —
STC VBR, Rn 0000nnnn00100010 VBR - Rn 1 —
STC. L GBR @Rn 0100nnnn00010011 Rn4 - Rn, GBR 2 —

- (Rn)
STC.L SR @Rn 0100nnnn00000011 Rn—4 - Rn, SR - 2 —

(Rn)
STC.L VBR @Rn 0100nnnn00100011 Rn—4 - Rn, VBR 2 —

- (Rn)
STS MACH, Rn 0000nnnNn00001010 MACH - Rn 1 —

HITACHI 55

Table 5.9

Instruction Set (cont)

Execu
-tion
Instruction Instruction Code Operation State T Bit
STS MACL, Rn 0000nnnn00011010 MACL - Rn 1 —
STS PR, Rn 0000nnnn00101010 PR - Rn 1 —
STS.L MACH, @Rn 0100nnnn00000010 Rn—4 - Rn, 1 —
MACH - (Rn)
STS. L MACL, @Rn 0100nnnn00010010 Rn—4 - Rn, 1 —
MACL - (Rn)
STS.L PR @Rn 0100nnnn00100010 Rn-4 - Rn, PR - 1 —
(Rn)
SUB Rm Rn 0011nnnnmmmi000 Rn-Rm - Rn 1 —
SUBC RmMRn 0011nnnnmmmi010 RN—-RmM-T - Rn, 1 Borrow
Borrow - T
SUBV Rm Rn 0011nnnnmmmi011 Rn—-Rm - Rn, 1 Under-
Underflow - T flow
SWAP. B Rm Rn 0110nnnnmmmi000 Rm - Swap 1 —
upper and lower 2
bytes» Rn
SMP.W Rm Rn 0110nnnnmmmi001 Rm - Swap upper 1 —
and lower word -
Rn
TAS.B @ 0100nnnn00011011 If(Rn)is0,1 - T, 4 Test
1 - MSB of (Rn) result
TRAPA #i mm 1100002%iiiiiiii PC/SR - stack 8 —
area, (imm x 4 +
VBR) - PC
TST #i nm RO 11001000iiiiiiii RO & imm; if the 1 Test
resultis0,1 - T result
TST Rm Rn 0010nnnnMmM.000 Rn & Rm; if the 1 Test
resultis0,1 - T result
TST. B # nm @R, @R 11001100iiiiiiii (RO + GBR) & imm; 3 Test
if the result is 0, 1 result
- T
XOR #i Mm RO 11001010iiiiiiii RO~ imm - RO 1 —
XOR Rm Rn 0010nnnnmMmmM1.010 RnNn"Rm - Rn 1 —
XRB # nm @R, BR 11001120iiiiiiii (RO +GBR)"imm 3 —
- (RO + GBR)
XTRCT RmRn 0010nnnnmmmiLl101 Center 32 bits of 1 —

Rmand Rn - Rn

56 HITACHI

Section 6 Instruction Descriptions

This section describes instructions in alphabetical order using the format shown below in
section 6.1. The actual descriptions begin at section 6.2.

6.1 Sample Description (Name): Classification

Class. Indicates if the instruction is a delayed branch instruction or interrupt disabled
instruction

Format Abstract Code State T Bit
Assembler input A brief description of Displayed in Number of The value of
format; imm and disp operation order MSB to states when T bit after
are numbers, LSB thereisno the
expressions, or wait state instruction is
symbols executed

Description: Description of operation
Notes. Notes on using the instruction

Operation: Operation written in C language. This part is just a reference to help
understanding of an operation. The following resources should be used.

» Reads data of each length from address Addr. An address error will occur if word data is
read from an address other than 2n or if longword data is read from an address other than
an:

unsi gned char Read_Byte(unsigned | ong Addr);
unsi gned short Read_Word(unsi gned | ong Addr);
unsi gned | ong Read_Long(unsi gned | ong Addr);

» Writes data of each length to address Addr. An address error will occur if word data is
written to an address other than 2n or if longword data is written to an address other than
an:

unsi gned char Wite_Byte(unsigned | ong Addr, unsigned |ong Data);
unsi gned short Wite_Word(unsigned | ong Addr, unsigned |ong Data);
unsi gned | ongWite_Long(unsigned | ong Addr, unsigned |ong Data);

» Starts execution from the slot instruction located at an address (Addr — 4). For Delay_Slot
(4);, execution starts from an instruction at address 0 rather than address 4. The following
instructions are detected before execution as illegal slot instruction (they become illegal
dlot instructions when used as delay slot instructions):

BF, BT, BRA, BSR, JMP, JSR, RTS, RTE, TRAPA, BF/S, BT/S, BRAF, BSRF

HITACHI 57

Del ay_Sl ot (unsi gned | ong Addr);

o List registers:
unsi gned long R 16];
unsi gned | ong SR, GBR, VBR;
unsi gned | ong MACH, MACL, PR,
unsi gned | ong PC

» Definition of SR structures:
struct SRO {

unsi gned | ong dummyO: 22;
unsi gned | ong M: 1;

unsi gned | ong Q0: 1;

unsi gned | ongl 0: 4;

unsi gned | ong dunmyl: 2;
unsi gned | ong SO: 1;

unsi gned | ong TO: 1;

« Definition of bitsin SR:
#define M ((*(struct SRO *)(&SR)). M)
#define Q ((*(struct SRO *)(&SR)). Q0)
#define S ((*(struct SRO *)(&SR)). S0O)
#define T ((*(struct SRO *)(&SR)). T0)

e Error display function:
Error(char *er);

The PC should point to the location four bytes (the second instruction) after the current
instruction. Therefore, PC = 4; means the instruction starts execution from address O, not
address 4.

Examples: Examples are written in assembler mnemonics and describe state before and after
executing the instruction. Characters in italics such as .align are assembler control
instructions (listed below). For more information, see the Cross Assembler User's Manual.

58 HITACHI

.org Location counter set

.data. w Securing integer word data
.data.l Securing integer longword data
. sdat a Securing string data

.align 2 2-byte boundary alignment
.align 4 2-byte boundary alignment

.arepeat 16 16-repeat expansion
.arepeat 32 32-repeat expansion

. aendr

Note:

Notes. 1.

End of repeat expansion of specified number

The SH-series cross assembler version 1.0 does not support the conditional
assembler functions.

In the assembler descriptions in this manual for addressing modes that involve the
following displacements (disp), the value prior to scaling (x1, x2, x4) according to
the operand size is written. This is done to show clearly the operation of the LSI;
see the assembler notation rules for the actual assembler descriptions.

@(disp:4, Rn): Register indirect with displacement

@(disp:8, GBR): GBR indirect with displacement

@(disp 8, PC): PC relative with displacement

disp:8, disp:12: PC relative
Among the 16 bhits of the instruction code, a code not assigned as an instruction is
treated as a general illegal instruction, and will result in illegal instruction
exception processing, This includes the case where an instruction code for the SH-
2 CPU only is executed on the SH-1 CPU.
Example 1: H'FFF [General illegal instruction in both SH-1 and SH-2 CPU]
Example 2: H'3105 (=DMUL.L RO, R1)[Illegal instruction in SH-1 CPU]
If the instruction following a delayed branch instruction such as BRA, BT/S, etc.,
is a general illegal instruction or a branch instruction (known as a slot illegal
instruction), illegal instruction exception processing will be performed.
Example 1

BRA Label

data. WH FFFF ~ Slotillegal instruction
[H'FFF is fundamentally a general illegal
instruction]
Example2 RTE
BT/ S Label ~ Sotillegal instruction

HITACHI 59

6.2 ADD (ADD Binary): Arithmetic Instruction

Format Abstract Code State T Bit
ADD Rm Rn Rm+Rn - Rn 0011nnnnmmm1100 1 —
ADD #i mMm Rn Rn+imm - Rn Olllnnnniiiiiiii 1 —

Description: Adds general register Rn data to Rm data, and stores the result in Rn. The
contents of Rn can aso be added to 8-bit immediate data. Since the 8-bit immediate data is
sign-extended to 32 bits, this instruction can add and subtract immediate data.

Operation:

ADD(1 ong mlong n) /* ADD RmRn */
{

RIn]+=R(ni;

PC+=2;

}

ADDI (I ong i,long n) /* ADD #i nmRn */

{
if ((i&x80)==0) R[n]+=(0x000000FF & (long)i);
el se R n] +=(OxFFFFFFOO | (long)i);
PC+=2;

}

Examples:

ADD RO, R1 Before execution RO = H'7FFFFFFF, R1 = H'00000001
After execution R1 = H'80000000

ADD #H 01, R2 Before execution R2 = H'00000000
After execution ~ R2 = H'00000001

ADD #H FE,R3 Before execution R3 = H'00000001
After execution R3 = H'FFFFFFFF

60 HITACHI

6.3 ADDC (ADD with Carry): Arithmetic Instruction

Format Abstract Code State T Bit

ADDC Rm Rn Rn+Rm+T - Rn,carry - T 0011lnnnnnmmmil110 1 Carry

Description: Adds general register Rm data and the T bit to Rn data, and stores the result in
Rn. The T bit changes according to the result. This instruction can add data that has more
than 32 bits.

Operation:

ADDC (1 ong mlong n) /* ADDC Rm Rn */

{
unsi gned | ong t npO, t npl;
tnpl=R{n] +R(ni;
tmpO=R{ n] ;
R n] =t np1+T,;
if (tnmpO>tnpl) T=1;
el se T=0;
if (tnpl>R[n]) T=1,
PC+=2;
}
Examples:
CLRT RO:R1 (64 bits) + R2:R3 (64 bits) = RO0:R1 (64 bits)
ADDC R3,RL Before execution T =0, R1 = H'00000001, R3 = H'FFFFFFFF
After execution T =1, R1 = H'0000000
ADDC R, RO Before execution T = 1, RO = H'00000000, R2 = H'00000000
After execution T = 0, RO = H'00000001

HITACHI 61

6.4 ADDV (ADD with V Flag Overflow Check): Arithmetic Instruction

Format Abstract Code State T Bit
ADDV Rm Rn Rn+Rm - Rn, overflow — T 001lnnnnnmmmillll 1 Overflo
w

Description: Adds general register Rn data to Rm data, and stores the result in Rn. If an
overflow occurs, the T bit is set to 1.

Operation:

ADDV(1 ong mlong n) /*ADDV Rm Rn */
{

| ong dest, src, ans;

if ((long)R n]>=0) dest=0;

el se dest =1;

if ((long)Rfm>=0) src=0;

el se src=1;

src+=dest ;

REn] +=R(n ;

if ((long)R n]>=0) ans=0;

el se ans=1;

ans+=dest ;

if (src==0 || src==2) {
if (ans==1) T=1;

el se T=0;
}
el se T=0;
PC+=2;
}
Examples:

ADDV RO, R1 Before execution RO = H'00000001, R1 = H'7FFFFFFE, T =0

After execution R1 = H'7FFFFFFF, T =0
ADDV RO, R1 Before execution RO = H'00000002, R1 = H'7FFFFFFE, T =0
After execution R1 = H'80000000, T =1

62 HITACHI

6.5 AND (AND Logical): Logic Operation Instruction

Format Abstract Code State T

Bit
AND Rm Rn Rn&Rm - Rn 0010nnnnmmm1001 1 —
AND #i mm RO RO & imm - RO 1100100%iiiiiiii 1 —
AND. B (RO+GBR) &imm - (RO+ 1100110%iiiiiiii 3 —
#i mMm @ RO, GBR) GBR)

Description: Logically ANDs the contents of general registers Rn and Rm, and stores the
result in Rn. The contents of general register RO can be ANDed with zero-extended 8-bit
immediate data. 8-bit memory data pointed to by GBR relative addressing can be ANDed
with 8-bit immediate data.

Note: After AND #imm, RO is executed and the upper 24 bits of RO are always cleared to 0.

Operation:

AND(1 ong mlong n) /* AND RmRn */

{
R n] &R n
PC+=2;

}

ANDI (long i) /* AND #imm RO */

{
R[0] &=(0x000000FF & (long)i);
PC+=2;

}

ANDM long i) /* AND.B #i mm @ R0, GBR) */

{
| ong tenp;
tenmp=(1 ong) Read_Byt e(GBR+R[0]) ;
t enp&=(0x000000FF & (long)i);
Wite_Byte(GBR+R[0], tenp);
PC+=2;

}

HITACHI 63

Examples:

ANDRO, R1 Before execution
After execution
AND#H OF, RO Before execution

After execution

AND. B #H 80, @ R0, GBR) Before execution
After execution

64 HITACHI

RO = H'AAAAAAAA, R1 = H'55555555
R1 = H'00000000

RO = H'FFFFFFFF

RO = H'0000000F

@(RO,GBR) = H'A5

@(RO,GBR) = H'80

6.6 BF (Branch if False): Branch Instruction

Format Abstract Code State T Bit

BF When T =0, disp x2 + PC - PC; 10001011dddddddd 3/1 —
la WhenT=1, nop
bel

Description: Reads the T bit, and conditionally branches. If T = 1, BF executes the next
instruction. If T = 0, it branches. The branch destination is an address specified by PC +
displacement. The PC points to the starting address of the second instruction after the branch
instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the relative
interval from the branch destination is —256 to +254 bytes. If the displacement is too short to
reach the branch destination, use BF with the BRA instruction or the like.

Note: When branching, three cycles; when not branching, one cycle.
Operation:

BF(1ong d) /* BF disp */

{
I ong di sp;
if ((d&0x80)==0) di sp=(0x000000FF & (I ong)d);
el se di sp=(0xFFFFFFOO | (long)d);
if (T==0) PC=PC+(disp<<l) +4;
el se PC+=2;

}

Example:
CLRT Tisadwaysclearedto 0

BT TRGET_T Doesnot branch, because T =0
BF TRGET_F Branchesto TRGET F, because T =0

NOP
NOP ~ The PC location is used to calculate the
branch destination address of the BF
instruction
TRGET_F: —~ Branch destination of the BF instruction

HITACHI 65

6.7 BF/S (Branch if False with Delay Slot): Branch Instruction (SH-2

CPU)
Format Abstract Code State T Bit
BF/ S When T =0, disp x 2 + PC - PC; 10001111dddddddd 2/1 —
| abel When T =1, nop

Description: Reads the T bit, and conditionally branches with delay slot. If T = 1, BF
executes the next instruction. If T = 0, it branches after executing the next instruction. The
branch destination is an address specified by PC + displacement. The PC points to the
starting address of the second instruction after the branch instruction. The 8-bit displacement
is sign-extended and doubled. Consequently, the relative interval from the branch destination
is —256 to +254 bytes. If the displacement is too short to reach the branch destination, use
BF/S with the BRA instruction or the like.

Note: Since this is a delayed branch instruction, the instruction immediately after is executed
before the branch. Between the time this instruction and the instruction immediately after are
executed, address errors or interrupts are not accepted. When the instruction immediately
after is a branch instruction, it is recognized as an illegal slot instruction.

When branching, this is a two-cycle instruction; when not branching, one cycle.
Operation:

BFS(long d) /* BFS disp */

{
I ong di sp;
unsi gned | ong tenp;
t enp=PC,
if ((d&0x80)==0) di sp=(0x000000FF & (Il ong)d);
el se di sp=(O0xFFFFFFOO | (long)d);
if (T==0) ({
PC=PC+(di sp<<1) +4;
Del ay_Sl ot (t enp+2) ;
}
el se PC+=2;
}

66 HITACHI

Example:

CLRT T isaways0
BT/S TRGET_T Does not branch, because T = 0
NOP
BF/ S TRGET_F Branchesto TRGET, because T = 0
ADD RO, RL Executed before branch
NCP ~ The PC location is used to calculate the branch destination
address of the BF/S instruction
TRGET_F: — Branch destination of the BF/S instruction

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of
delayed branch instruction, then delay slot instruction. For example, even if the
register in which the branch destination address has been loaded is changed by the
delay slot instruction, the branch will still be made using the value of the register
prior to the change as the branch destination address.

HITACHI 67

6.8 BRA (Branch): Branch Instruction

Format Abstract Code State T Bit

BRA | abel dispx2 +PC - PC 1010dddddddddddd 2 —

Description: Branches unconditionally after executing the instruction following this BRA
instruction. The branch destination is an address specified by PC + displacement. The PC
points to the starting address of the second instruction after this BRA instruction. The 12-bit
displacement is sign-extended and doubled. Consequently, the relative interval from the
branch destination is —4096 to +4094 bytes. If the displacement is too short to reach the
branch destination, this instruction must be changed to the JMP instruction. Here, a MOV
instruction must be used to transfer the destination address to a register.

Note: Since this is a delayed branch instruction, the instruction after BRA is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

BRA(long d) /* BRA disp */

{
unsi gned | ong tenp;
I ong di sp;
i f ((d&0x800)==0) di sp=(0x00000FFF & d);
el se di sp=(O0xFFFFF0O00 | d);
t emp=PC;
PC=PC+(di sp<<1) +4;
Del ay_Sl ot (t enp+2) ;

}

Example:

BRA TRGET Branches to TRGET
ADD RO, Rl Executes ADD before branching

NOP ~ The PC location is used to calculate the branch destination
address of the BRA instruction
TRGET: ~ Branch destination of the BRA instruction

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of

68 HITACHI

delayed branch instruction, then delay slot instruction. For example, even if the
register in which the branch destination address has been loaded is changed by the
delay slot instruction, the branch will still be made using the value of the register prior
to the change as the branch destination address.

HITACHI 69

6.9 BRAF (Branch Far): Branch Instruction (SH-2 CPU)

Format Abstract Code State T Bit

BRAF Rm Rm+PC - PC 0000mMmMMD0100011 2 —

Description: Branches unconditionally. The branch destination is PC + the 32-bit contents of
the general register Rm. PC is the start address of the second instruction after this instruction.

Note: Since this is a delayed branch instruction, the instruction after BRAF is executed
before branching. No interrupts or address errors are accepted between this instruction and the
next instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal
slot instruction.

Operation:

BRAF(l ong m) /* BRAF Rm */

{
unsi gned | ong tenp;
t emp=PC;
PC+=R[] ;
Del ay_Sl ot (t enp+2) ;
}
Example:

MOV. L #(TRGET-BSRF_PC), R0 Sets displacement

BRAF @R0 Branches to TRGET
ADD RO, R1 Executes ADD before branching
BRAF_PC: — The PC location is used to calculate

the branch destination address of
the BRAF instruction

TRGET: ~ Branch destination of the BRAF instruction

70 HITACHI

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of
delayed branch instruction, then delay slot instruction. For example, even if the
register in which the branch destination address has been loaded is changed by the
delay slot instruction, the branch will still be made using the value of the register prior
to the change as the branch destination address.

HITACHI 71

6.10 BSR (Branch to Subroutine): Branch Instruction

Format Abstract Code State T Bit

BSR | abel PC - PR, disp x2+PC - PC 1011dddddddddddd 2 —

Description: Branches to the subroutine procedure at a specified address after executing the
instruction following this BSR instruction. The PC value is stored in the PR, and the program
branches to an address specified by PC + displacement. The PC points to the starting address
of the second instruction after this BSR instruction. The 12-bit displacement is sign-extended
and doubled. Consequently, the relative interval from the branch destination is —4096 to
+4094 bytes. If the displacement is too short to reach the branch destination, the JSR
instruction must be used instead. With JSR, the destination address must be transferred to a
register by using the MOV instruction. This BSR instruction and the RTS instruction are used
for a subroutine procedure call.

Note: Since this is a delayed branch instruction, the instruction after BSR is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

BSR(long d) /* BSR disp */

{
I ong di sp;

if ((d&0x800)==0) di sp=(0x00000FFF & d);
el se di sp=(OxFFFFF0O00 | d);

PR=PC;

PC=PC+(di sp<<1) +4;

Del ay_Sl ot (PR+2);

72 HITACHI

Example:

BSR TRGET

MOV R3, R4

ADD RO, RL
TRGET:

MV R, R3

RTS

MOV #1, RO

Branches to TRGET
Executes the MOV instruction before branching

~ The PC location is used to calculate the branch destination
address of the BSR instruction (return address for when the
subroutine procedure is completed (PR data))

~ Procedure entrance

Returns to the above ADD instruction
Executes MOV before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of
delayed branch instruction, then delay slot instruction. For example, even if the
register in which the branch destination address has been loaded is changed by the
delay slot instruction, the branch will still be made using the value of the register prior
to the change as the branch destination address.

HITACHI 73

6.11 BSRF (Branch to Subroutine Far): Branch Instruction (SH-2 CPU)

Format Abstract Code State T Bit

BSRF Rn PC - PR,Rm+PC - PC 0000MmMMD0000011 2 —

Description: Branches to the subroutine procedure at a specified address after executing the
instruction following this BSRF instruction. The PC value is stored in the PR. The branch
destination is PC + the 32-bit contents of the general register Rm. PC is the start address of
the second instruction after this instruction. Used as a subroutine procedure call in
combination with RTS.

Note: Since this is a delayed branch instruction, the instruction after BSR is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:
BSRF(l1ong m) /* BSRF Rm */
{
PR=PC,
PC+=R[] ;
Del ay_Sl ot (PR+2);
}
Example:
MOV.L #(TRGET-BSRF_PC), RO Sets displacement
BRSF @r0 Branches to TRGET
MV R3, R4 Executes the MOV instruction before
branching
BSRF_PC: ~ The PC location is used to
calculate the branch destination
with BSRF
ADD RO, R1L
TRGET: ~ Procedure entrance
MV R,R3
RTS Returns to the above ADD instruction
MOV #1, RO Executes MOV before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed
branch instruction, then delay slot instruction. For example, even if the register in which
the branch destination address has been loaded is changed by the delay slot instruction,
the branch will still be made using the value of the register prior to the change as the
branch destination address.

74 HITACHI

6.12 BT (Branchif True): Branch Instruction

Format Abstract Code State T Bit
BT | abel When T=1,dispx2+PC -~ 10001001dddddddd 31 —
PC;

When T =0, nop

Description: Reads the T bit, and conditionally branches. If T = 1, BT branches. If T =0, BT
executes the next instruction. The branch destination is an address specified by PC +
displacement. The PC points to the starting address of the second instruction after the branch
instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the relative
interval from the branch destination is —256 to +254 bytes. If the displacement is too short to
reach the branch destination, use BT with the BRA instruction or the like.

Note: When branching, requires three cycles; when not branching, one cycle.
Operation:

BT(long d) /* BT disp */

{
I ong di sp;
i f ((d&0x80)==0) di sp=(0x000000FF & (1ong)d);
el se di sp=(0xFFFFFFOO | (long)d);
if (T==1) PC=PC+(di sp<<l) +4;
el se PC+=2;

}

Example:
SETT Tisaways1

BF TRGET_F Does not branch, because T = 1
BT TRGET_T Branchesto TRGET_T, because T = 1

NOP
NOP ~ The PC location is used to calculate the branch destination
address of the BT instruction
TRGET_T: ~ Branch destination of the BT instruction

HITACHI 75

6.13 BT/S(Branch if Truewith Delay Slot): Branch Instruction (SH-2
CPU)

Format Abstract Code State T Bit

BT/S | abel When T =1, disp x2 + PC - 10001101dddddddd 2/1 —
PC;
When T =0, nop

Description: Reads the T bit, and conditionally branches with delay slot. If T =1, BT/S
branches after the following instruction executes. If T = 0, BT/S executes the next instruction.
The branch destination is an address specified by PC + displacement. The PC points to the
starting address of the second instruction after the branch instruction. The 8-bit displacement
is sign-extended and doubled. Consequently, the relative interval from the branch destination
is —256 to +254 bytes. If the displacement is too short to reach the branch destination, use
BT/S with the BRA instruction or the like.

Note: Since this is a delay branch instruction, the instruction immediately after is executed
before the branch. Between the time this instruction and the immediately after instruction are
executed, address errors or interrupts are not accepted. When the immediately after
instruction is a branch instruction, it is recognized as an illegal slot instruction. When
branching, requires two cycles; when not branching, one cycle.

Operation:

BTS(long d) /* BTS disp */

{
I ong di sp;
unsigned |ong tenp;
t emp=PC;
if ((d&0x80)==0) di sp=(0x000000FF & (Il ong)d);
el se di sp=(0xFFFFFFOO | (long)d);
if (T==1) {
PC=PC+(di sp<<1) +4;
Del ay_Sl ot (tenp+2);
}
el se PC+=2;
}

76 HITACHI

Example:

SETT Tisaways 1
BF/ S TRGET_F Does not branch, because T = 1
NOP

BT/S TRGET_T Branchesto TRGET, because T = 1
ADD RO, RL Executes before branching.

NOP — The PC location is used to calculate the branch destination
address of the BT/S instruction
TRGET_T: ~ Branch destination of the BT/S instruction

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of
delayed branch instruction, then delay slot instruction. For example, even if the
register in which the branch destination address has been loaded is changed by the
delay slot instruction, the branch will still be made using the value of the register
prior to the change as the branch destination address.

HITACHI 77

6.14 CLRMAC (Clear MAC Register): System Control Instruction

Format Abstract Code State T Bit
CLRVAC 0 - MACH, MACL 0000000000101000 1 —
Operation:

CLRVAC() /* CLRVAC */
{

MACH=0;

MACL=0;

PC+=2;
}

Example:

CLRVAC Initializes the MAC register
MAC. W @RO+, @R1+ Multiply and accumulate operation

MAC. W @RO+, @R1+

78 HITACHI

6.15 CLRT (Clear T Bit): System Control Instruction

Format Abstract

Code

State T Bit

CLRT 0-T

0000000000001000

1

0

Description: Clearsthe T bit.
Operation:

CLRT() /* CLRT */

{
T=0;
PC+=2;
}
Example:

CLRT Before execution
After execution

HITACHI 79

6.16 CMP/cond (Compare Conditionally): Arithmetic Instruction

Format Abstract Code State T Bit

CWP/ EQ Rm Rn WhenRn=Rm,1 - T 0011nnnnnmmmmD000 1 Comparison
result

CWP/ GE Rm Rn When signed and Rn = 0011nnnnmmmD011 1 Comparison
Rm,1 - T result

CWP/ GT Rm Rn When signed and Rn > 0011nnnnmmmoO111 1 Comparison
Rm,1 - T result

CW/ H RmRn When unsigned and Rn > 0011nnnnnmmm0110 1 Comparison
Rm,1 - T result

CWP/ HS Rm Rn When unsigned and Rn = 0011nnnnmmm0010 1 Comparison
Rm,1 - T result

CWP/ PL Rn WhenRn>0,1 - T 0100nnnNn00010101 1 Comparison
result

CVWP/ PZ Rn WhenRn=0,1 - T 0100nnnNn00010001 1 Comparison
result

CWP/ STR When a byte in Rn equals 0010nnnnmmm1100 1 Comparison
Rm Rn abyteinRm,1 - T result

When RO =imm,1 - T 10001000iiiiiiii 1 Comparison
CWP/ EQ #i mm RO result

Description: Compares genera register Rn data with Rm data, and setsthe T bit to 1 if a
specified condition (cond) is satisfied. The T bit is cleared to O if the condition is not
satisfied. The Rn data does not change. The following eight conditions can be specified.
Conditions PZ and PL are the results of comparisons between Rn and 0. Sign-extended 8-bit
immediate data can also be compared with RO by using condition EQ. Here, RO data does not
change. Table 6.1 shows the mnemonics for the conditions.

80 HITACHI

Table 6.1 CMP Mnemonics

Mnemonics Condition

CWP/ EQ Rm Rn IfRN=Rm, T=1

CVMP/ GE Rm Rn If Rn = Rm with signed data, T =1
CWP/ GT' Rm Rn If Rn > Rm with signed data, T =1
CVWP/ H Rm Rn If Rn > Rm with unsigned data, T=1
CMP/ HS Rm Rn If Rn = Rm with unsigned data, T =1
CWP/ PL Rn IfRN>0,T=1

CWP/ PZ Rn IfRn=0,T=1

CWP/ STR Rm Rn

If a byte in Rn equals a byte in Rm, T=1

CMP/ EQ #i nm RO

IfRO=imm, T=1

Operation:

CVPEQ | ong m | ong n)

/* CMP_EQ Rm Rn */

if (Rin]==R(nl) T=1;

if ((long)Rin]>=(long) R nl) T=1;

if ((long)RIn]>(long)Rinl) T=1;

{
el se T=0;
PC+=2;
}
CMPCGE(l ong m | ong n)
{
el se T=0;
PC+=2;
}
CVMPGT(| ong m | ong n)
{
el se T=0;
PC+=2;
}

/* CMP_GE RmRn */

/* CVWP_GT Rm Rn */

HITACHI 81

CWPHI (1 ong m | ong n) /* CVP_H RmRn */

{
if ((unsigned long)R n]>(unsigned long)R[nj) T=1;
el se T=0;
PC+=2;

}

CWPHS(I ong m | ong n) /* CMP_HS Rm Rn */

{
if ((unsigned long)R n]>=(unsigned long)R{nj) T=1;

el se T=0;
PC+=2;
}
CVMPPL(| ong n) /[* CMP_PL Rn */
{
if ((long)R n]>0) T=1;
el se T=0;
PC+=2;
}
CWPZ(long n) /* CW_PZ Rn */
{
if ((long)Rn]>=0) T=1;
el se T=0;
PC+=2;
}

82 HITACHI

CVMPSTR(1 ong m | ong n) /* CVMP_STR Rm Rn */

{
unsi gned | ong tenp;
long HH, HL, LH, LL;
temp=R n] "R nj;
HH=(t enp>>12) &0x000000FF;
HH=(t enp>>8) &0x000000FF;
HH=(t enp>>4) &0x000000FF;
LL=t enp&0x000000FF;
HH=HH&&HL &&L H&&L L ;
if (HHE=0) T=1;
el se T=0;
PC+=2;

}

CWPI Ml ong i) /* CMP_EQ #imm RO */

{
long imm
if ((i&x80)==0) i mm=(0x000000FF & (long i));
el se i mme(OXFFFFFFOO | (long i));
if (REO]==im) T=1,
el se T=0;
PC+=2;

}

Example:

CVP/ GE RO, RL RO = H'7FFFFFFF, R1 = H'80000000
BT TRGET_ T Does not branch because T = 0
CVP/ HS RO, RL RO = H'7FFFFFFF, R1 = H'80000000
BT TRGET_ T Branches because T = 1
OW/ STR R, R3 R2 = “ABCD”, R3 = “XYCZ"
BT TRGET_ T Branches because T = 1

HITACHI 83

6.17 DIVOS (Divide Step 0 as Signed): Arithmetic Instruction

Format Abstract Code State T Bit
DVS RmRh MSBofRn - Q,MSB of Rm 0010nnnnmmmmOD111 1 Calculation
- M,MQ - T result

Description: DIVOS is an initialization instruction for signed division. It finds the quotient by
repeatedly dividing in combination with the DIV1 or another instruction that divides for each
bit after this instruction. See the description given with DIV1 for more information.

Operation:

DI VOS(1 ong m 1 ong n) /* DIVOS Rm Rn */

{
i f ((R[n]&0x80000000)==0) Q=0;
el se Q1;
if ((R n&0x80000000)==0) M=O;
el se MF1;
= (M=Q);
PC+=2;

}

Example: See DIV1.

84 HITACHI

6.18 DIVOU (Divide Step 0 as Unsigned): Arithmetic Instruction

Format Abstract Code State T Bit

DI VOU 0 - M/QIT 0000000000011001 1 0

Description: DIVOU is an initialization instruction for unsigned division. It finds the quotient
by repeatedly dividing in combination with the DIV1 or another instruction that divides for
each bit after this instruction. See the description given with DIV 1 for more information.

Operation:

DIVOY) /* DIVOU */

{
MeQ=T=0;
PC+=2;

}

Example: See DIV1.

HITACHI 85

6.19 DIV1(Divide Step 1): Arithmetic Instruction

Format Abstract Code State T Bit
DVI RmRn 1-step division (Rn + Rm) 0011nnnnmmmmD100 1 Calculation
result

Description: Uses single-step division to divide one bit of the 32-bit data in general register
Rn (dividend) by Rm data (divisor). It finds a quotient through repetition either independently
or used in combination with other instructions. During this repetition, do not rewrite the
specified register or the M, Q, and T bhits.

In one-step division, the dividend is shifted one hit left, the divisor is subtracted and the
quotient bit reflected in the Q bit according to the status (positive or negative). To find the
remainder in a division, first find the quotient using a DIV1 instruction, then find the
remainder as follows:

(Dividend) — (divisor) x (quotient) = (remainder)

with the SH-2 CPU in which a divider is installed as a peripheral function, the remainder can
be found as a function of the divider.

Zero division, overflow detection, and remainder operation are not supported. Check for zero
division and overflow division before dividing.

Find the remainder by first finding the sum of the divisor and the quotient obtained and then
subtracting it from the dividend. That is, first initialize with DIVOS or DIVOU. Repeat DIV1
for each bit of the divisor to obtain the quotient. When the quotient requires 17 or more bits,
place ROTCL before DIV 1. For the division sequence, see the following examples.

86 HITACHI

Operation:

DI V1(long mlong n) /* DIV1I RmRn */
{

unsi gned | ong tnpoO;

unsi gned char ol d_g, t mp1;

ol d_g=@Q
@Q=(unsi gned char) ((0x80000000 & R[n])!=0);
Rl n] <<=1;
R[n] | =(unsi gned | ong)T,;
switch(old_q){
case 0:switch(M{
case 0:tnmpO=R[n];
R n]-=Rn;
tmp1=(R{ n] >t np0);
switch(Q{
case 0: Q=t npl;
br eak;
case 1: Q=(unsigned char) (tnpl==0);
br eak;
}
br eak;
case 1:tnmpO=R[n];
Rin] +=R(n;
tmpl=(R{ n] <t np0);
switch(Q{
case 0: Q=(unsi gned char) (t npl1==0);
br eak;
case 1: Q=t npl;

br eak;
}
br eak;
}
br eak;

HITACHI 87

case l:switch(M{
case 0:tnmpO=R[n];
R n] +=R(n ;
tmp1=(R{ n] <t np0);
switch(Q({
case 0: Q=t npl;
br eak;
case 1: Q=(unsigned char) (tnmpl==0);
br eak;
}
br eak;
case 1:tnmpO=R n];
RInl-=R(ni;
tmp1=(R{ n] >t np0) ;
switch(Q{
case 0: @=(unsigned char) (tnmpl==0);
br eak;
case 1: Q=t npl;
br eak;

}

br eak;

}

br eak;

}
T=(&F=M;
PC+=2;

88 HITACHI

Example 1:

SHLL16 RO

TST RO, RO

BT ZERO DI V

CWP/ HS RO, R1

BT OVER_DI V

DI VOU

.arepeat 16

D V1 RO, R1

. aendr

ROTCL RL

EXTU. WR1, R2
Example 2:

TST RO, RO

BT ZERO DI V

CWP/ HS RO, R1

BT OVER_DI V

D VOU

.arepeat 32

ROTCL R2

D V1 RO, R1

. aendr

ROTCL R2

R1 (32 hits) / RO (16 bits) = R1 (16 bits):Unsigned
Upper 16 bits = divisor, lower 16 bits=0

Zero division check

Overflow check

Flag initialization

Repeat 16 times

R1 = Quotient

R1:R2 (64 hits)/R0 (32 bits) = R2 (32 hits):Unsigned

Zero division check

Overflow check

Flag initialization

Repeat 32 times

R2 = Quotient

HITACHI 89

Example 3:

SHLL16 RO
EXTS. W Rl, R1
XOR R2, R2
MoV R1, R3
ROTCL R3
SUBC R2, Rl
D V0S RO, R1
. arepeat 16
D vi RO, R1
.aendr
EXTS. W Rl, Rl
ROTCL RL
ADDC R2, R1
EXTS. WR1, RL
Example 4:
MOV R2, R3
ROTCL R3
SUBC R1, RL
XOR R3, R3
SUBC R3, R2
DI VOS RO, RL
.arepeat 32
ROTCL Rz
D vi RO, R1
. aendr
ROTCL Rz
ADDC R3,R2

90 HITACHI

R1 (16 bits)/R0O (16 bits) = R1 (16 bits):Signed
Upper 16 bits = divisor, lower 16 bits=0
Sign-extends the dividend to 32 bhits

R2=0

Decrements if the dividend is negative
Flag initialization

Repeat 16 times

R1 = quotient (one’ s complement)

Increments and takes the two' s complement if the MSB of the
quotient is 1

R1 = quotient (two’'s complement)

R2 (32 bits) / RO (32 bits) = R2 (32 bits):Signed

Sign-extends the dividend to 64 bits (R1:R2)
R3=0

Decrements and takes the one’ s complement if the dividend is
negative

Flag initialization

Repeat 32 times

R2 = Quotient (one’s complement)

Increments and takes the two’'s complement if the MSB of the
guotient is 1. R2 = Quotient (two’'s complement)

6.20 DMULS.L (Double-Length Multiply as Signed): Arithmetic
Instruction (SH-2 CPU)

Format Abstract Code State T Bit
DMULS. L With signed, Rnh x Rm - 0011nnnnmmmi101 2to4 —
Rm Rn MACH, MACL

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm,
and stores the 64-bit results in the MACL and MACH registers. The operation is a signed
arithmetic operation.

Operation:

DMULS(l ong mlong n)/* DMILLS.L RmRn */

{
unsi gned 1ong RnL, RnH, RrL, RmH, Res0, Res1, Res2;
unsi gned 1ong tenpO, tenpl,tenp2,tenps;
I ong tenpm tenpn, fnLni;

tempn=(1ong) R[n];

tenpn=(l ong) R nj ;

if (tenpn<0) tenpn=0-tenpn;

if (tenpnx0) tenpnm=0-tenpm

if ((long)(RInN]"R mM)<0) fnLnL=-1;
el se fnLmL=0;

tenpl=(unsi gned | ong)tenpn;
tenp2=(unsi gned | ong)tenmpm

RnL=t enp1&0x0000FFFF;
RnH=(t enp1>>16) &0x0000FFFF;
RnlL=t enp2&0x0000FFFF;

RH=(t enp2>>16) &0x0000FFFF;

t enpO=RmL* RnL;
t enpl=RoH* RnL;
t enp2=RL* RnH;
t enp3=RmH* RnH;

HITACHI 91

Res2=0
Res1=t enpl+t enp2;
if (Resl<tenpl) Res2+=0x00010000;

t enpl=(Res1<<16) &0xFFFF0000;
ResO=t enpO+t enp1l,
if (ResO<tenp0) Res2++;

Res2=Res2+((Res1>>16) &x0000FFFF) +t enp3;

if (fnLnli<0) {
Res2=~Res?2;
if (Res0==0)
Res2++;
el se
Res0=(~Res0) +1;
}
MACH=Res2;
MACL=ResO;
PC+=2;
}

Example:

DMLS RO, RL Before execution RO = H'FFFFFFFE, R1 = H'00005555

After execution MACH = H'FFFFFFFF, MACL = H'FFFF5556
STS MACH, RO Operation result (top)
STSMACL, RO Operation result (bottom)

92 HITACHI

6.21 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic
Instruction (SH-2 CPU)

Format Abstract Code State T Bit
DMULU. L Without signed, Rn x Rm - 0011nnnnmmmD101 2to4 —
Rm Rn MACH, MACL

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm,
and stores the 64-bit results in the MACL and MACH registers. The operation is an unsigned
arithmetic operation.

Operation:

DMULU(l ong mlong n)/* DMJLU. L Rm Rn */

{
unsi gned 1ong RnL, RnH, RrL, RmH, Res0, Res1, Res2;
unsi gned 1ong tenpO, tenpl,tenp2,tenps;

RnL=R[n] &0x0000FFFF;
RnH=(R n] >>16) &0x0000FFFF;

RL=R[n] &0x0000FFFF;
RrH=(R[] >>16) &0x0000FFFF;

t enpO=RmL* RnL;
t enpl=RrH* RnL;
t enp2=RL* RnH;
t enp3=RrH* RnH;

HITACHI 93

Res2=0

Res1=t enpl+t enp2;
if (Resl<tenpl) Res2+=0x00010000;

t enpl=(Res1<<16) &0xFFFF0000;
ResO=t enpO+t enp1l,
if (ResO<tenp0) Res2++;

Res2=Res2+((Res1>>16) &x0000FFFF) +t enp3;

MACH=Res2;
MACL=ResO;
PC+=2;

}

Example:

DMULU RO, R1

STS MACH, RO
STS MACL, RO

94 HITACHI

Before execution RO = H'FFFFFFFE, R1 = H'00005555

After execution MACH = H'00005554, MACL = H'FFFF5556
Operation result (top)

Operation result (bottom)

6.22 DT (Decrement and Test): Arithmetic Instruction (SH-2 CPU)

Format Abstract Code State T Bit
Dr R Rn-1 - Rn; 0100nnnn00010000 1 Comparison
WhenRnis0,1 - T, result

when Rn is nonzero,0 - T

Description: The contents of general register Rn is decremented by 1 and the result is
compared to O (zero). When the result is O, the T bit is set to 1. When the result is not zero,
the T bit is set to 0.

Operation:

DT(long n)/* DT Rn */

{
Rn]--;
if (R n]==0) T=1;
el se T=0;
PC+=2;

}

Example:
MOV #4, RS Sets the number of loops.
LOCP:

ADD RO, Rl
or RS Decrements the R5 value and checks whether it has become 0.
BF LOOP Branches to LOOP if T=0. (In this example, loops 4 times.)

HITACHI 95

6.23 EXTS(Extend as Signed): Arithmetic Instruction

Format Abstract Code State T Bit

EXTS.B RnRn Sign-extended Rm from byte — 0110nnnnmmmi110 1 —
Rn

EXTS W RmRn Sign-extended Rm from word - 0110nnnnnmmil111 1 —

Rn

Description: Sign-extends general register Rm data, and stores the result in Rn. If byte length
is specified, the bit 7 value of Rm is transferred to bits 8 to 31 of Rn. If word length is
specified, the bit 15 value of Rm is transferred to bits 16 to 31 of Rn.

Operation:

EXTSB(1 ong m | ong n) /* EXTS.B Rm Rn */

if ((R[n &x00000080)==0) R[n] &0x000000FF;
el se R n] | =0xFFFFFFOO;

EXTSW I ong m 1 ong n) /* EXTS. WRm Rn */

if ((R[nj&x00008000)==0) R[n] & 0x0000FFFF;
el se R[n] | =0xFFFF0000;

{
R n] =R[
PC+=2;

}

{
RIn]=Rnj;
PC+=2;

}

Examples:
EXTS.B RO, R1
EXTSSW RO, R1

96 HITACHI

Before execution RO = H'00000080

After execution R1 = H'FFFFFF80
Before execution RO = H'00008000
After execution R1 = H'FFFF8000

6.24 EXTU (Extend as Unsigned): Arithmetic Instruction

Format Abstract Code State T Bit

EXTU. B Rm Rn Zero-extend Rm from byte — Rn 0110nnnnnmmi100 1 —
EXTU. WRmM Rn Zero-extend Rm from word - Rn 0110nnnnmmmil101 1 —

Description: Zero-extends general register Rm data, and stores the result in Rn. If byte length
is specified, O is transferred to bits 8 to 31 of Rn. If word length is specified, 0 is transferred to
bits 16 to 31 of Rn.

Operation:

EXTUB(l ong mlong n) /* EXTU. B RmRn */

{
RNl =R(nj;
R n] &0x000000FF;
PC+=2;

}

EXTUW 1 ong mlong n) /* EXTU WRmRn */

{
RNl =Rnj;
R n] &0x0000FFFF;
PC+=2;

}

Examples:

EXTU.B RO, RL Before execution RO = H'FFFFFF80
After execution R1 = H'00000080

EXTUW RO, RL Before execution RO = H'FFFF8000
After execution R1 = H'00008000

HITACHI 97

6.25 JMP (Jump): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

JwP @m Rm - PC 0100mMmmM®D0101011 2 —

Description: Delayed-branches unconditionally to the address specified with register indirect.
The branch destination is an address specified by the 32-bit data in general register Rm.

Note: Since this is a delayed branch instruction, the instruction after IMP is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

JMP(long M) /* JMP @m */

{
unsi gned | ong tenp;
t enp=PC,
PC=R[n] +4;
Del ay_Sl ot (t enp+2) ;
}
Example:
MOV. L JMP_TABLE, RO Address of RO = TRGET
JMP @0 Branches to TRGET
MOV RO, R1 Executes MOV before branching
.align 4
JMP_TABLE: .data.! TRCGET Jump table
TRGET: ADD #1, RL ~ Branch destination

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of
delayed branch instruction, then delay slot instruction. For example, even if the
register in which the branch destination address has been loaded is changed by the
delay dlot instruction, the branch will still be made using the value of the register
prior to the change as the branch destination address.

98 HITACHI

6.26 JSR (Jump to Subroutine): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

JSR @Rm PC - PR,Rm - PC 0100mMmmM®D0001011 2 —

Description: Delayed-branches to the subroutine procedure at a specified address after
executing the instruction following this JSR instruction. The PC value is stored in the PR. The
jump destination is an address specified by the 32-bit data in general register Rm. The PC
points to the starting address of the second instruction after JSR. The JSR instruction and RTS
instruction are used for subroutine procedure calls.

Note: Since this is a delayed branch instruction, the instruction after JSR is executed before

branching. No interrupts and address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

JSR(long m) /* JSR @m */

{
PR=PC,
PC=R{ n] +4;
Del ay_Sl ot (PR+2) ;
}
Example:
MOV. L JSR_TABLE, RO RO = Address of TRGET
JSR @0 Branches to TRGET
XOR RL, R Executes XOR before branching
ADD RO, RL ~ Return address for when the
subroutine procedure is completed
(PR data)
align 4
JSR TABLE: .data.l TRCET Jump table
TRGET: NOP ~ Procedure entrance
MoV R2, R3
RTS Returns to the above ADD instruction
MoV #70, R1 Executes MOV before RTS

HITACHI 99

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of
delayed branch instruction, then delay slot instruction. For example, even if the
register in which the branch destination address has been loaded is changed by the
delay slot instruction, the branch will still be made using the value of the register
prior to the change as the branch destination address.

100 HITACHI

6.27

LDC (Load to Control Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract Code State T Bit
LDC Rm SR Rm - SR 0100mmm00001110 1 LSB
LDC Rm GBR Rm - GBR 0100nmMmM®DO0011110 1 —
LDC Rm VBR Rm - VBR 0100mmm00101110 1 —
LDC. L @m+, SR (Rm) - SR,Rm+4 - Rm 0100nmMMmMDO0000111 3 LSB
LDC.L @m+, GBBR (Rm) - GBR,Rm+4 - Rm 0100mmm00010111 3 —
LDC.L @m+, VBR (Rm) - VBR,Rm+4 - Rm 0100nmMmM®D0100111 3 —

Description: Stores the source operand into control registers SR, GBR, or VBR.

Note: No interrupts are accepted between this instruction and the next instruction. Address

errors are accepted.

Operation:

LDCSR(1 ong m

{

}

LDCGBR(1 ong m

{

}

LDCVBR(| ong m)

{

/* LDC Rm SR */

SR=R[nj &0x000003F3;

PC+=2;

GBR=R[n ;
PC+=2:

VBR=R[n] ;
PC+=2;

/* LDC Rm GBR */

/* LDC Rm VBR */

HITACHI 101

LDCVBR(long m) /* LDC.L @mt, SR */

{
SR=Read_Long(R n]) &0x000003F3;

RLN] +=4;
PC+=2;
}

LDCM®BR(long m) /* LDC.L @m+, GBR */

{
GBR=Read_Long(R[n});

ROm +=4;
PC+=2;
)

LDCWBR(long m) /* LDC.L @m+, VBR */

{
VBR=Read_Long(R[M) ;

Rl n +=4;
PC+=2:

}
Examples:

LDC RO, SR Before execution RO = H'FFFFFFFF, SR = H'00000000
After execution SR = H'000003F3

LDC. L @R15+, GBR Before execution R15 = H'10000000
After execution R15 = H'10000004, GBR = @H'10000000

102 HITACHI

6.28 LDS(Load to System Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract Code State T Bit

LDS Rm MACH Rm - MACH 0100mmMmD0001010 1 —

LDS Rm MACL Rm - MACL 0100mmmMO00011010 1 —

LDS Rm PR Rm - PR 0100mmMmD0101010 1 —

LDS. L (Rm) - MACH,Rm+4 - Rm 0100mmmMO0000110 1 —

y @mt, MMC Rm) L MACL,Rm+4 - Rm 0100mmmD0010110 1 —

LD, L (Rm) - PR,Rm+4 - Rm 0100mmmM00100110 1 —
@mt, MAC

L

LDS. L @m+, PR

Description: Stores the source operand into the system registers MACH, MACL, or PR.

Note: No interrupts are accepted between this instruction and the next instruction. Address

errors

are accepted.

For the SH-1 CPU, the lower 10 bits are stored in MACH. For the SH-2 CPU, 32 bits are

stored

in MACH.

Operation:

LDSMACH(| ong m)

{

MACH=R n{ ;

/* LDS Rm MACH */

i f ((MACH&OX00000200)==0) MACH&=0x000003FF;

el se MACH| =0xFFFFFCOO0;

}

LDSMACL(| ong m)

{

PC+=2;

MACL=R] ;
PC+=2;

/* LDS Rm MACL */

For SH-1 CPU (these 2 lines
not needed for SH-2 CPU)

HITACHI 103

LDSPR(1 ong m

{
PR=R{ 1 ;
PC+=2;

}

LDSMMACH(| ong)

{
MACH=Read_Long(R[M) ;

/* LDS Rm PR */

/* LDS.L @m+, MACH */

el se MACH| =0xFFFFFC0O0;

i f ((MACH&0x00000200)==0) MACH&=0x000003FF;

For SH-1 CPU (these 2 lines
not needed for SH-2 CPU)

REm +=4;
PC+=2;

}

LDSMMACL (| ong)

{
MACL=Read_Long(R[M) ;
R M +=4;
PC+=2;

}

LDSMPR(| ong m)

{
PR=Read_Long(R[M);
R +=4;
PC+=2;

}

Examples:

Before execution
After execution
Before execution
After execution

LDS RO, PR

LDS. L @15+, MACL

104 HITACHI

/* LDS.L @mt, PR */

/* LDS.L @m+, MACL */

RO = H'12345678, PR = H'00000000

PR = H'12345678

R15 = H'10000000

R15 = H'10000004, MACL = @H'10000000

6.29 MAC.L (Multiply and Accumulate Long): Arithmetic I nstruction

(SH-2 CPU)
Format Abstract Code State T Bit
MAC. L @m+, @Rn+ Signed operation, (Rn) x (Rm) 0000nnnnmmm111 3/2to —
+ MAC - MAC 4)

Description: Signed-multiplies 32-bit operands obtained using the contents of general
registers Rm and Rn as addresses. The 64-bit result is added to contents of the MAC register,
and the final result is stored in the MAC register. Every time an operand is read, they
increment Rm and Rn by four.

When the S hit is cleared to 0, the 64-bit result is stored in the coupled MACH and MACL
registers. When bit Sis set to 1, addition to the MAC register is a saturation operation at the
48th bit starting from the LSB. For the saturation operation, only the lower 48 bits of the
MACL registers are enabled and the result is limited to a range of H'FFFF800000000000
(minimum) to H'00007FFFFFFFFFFF (maximum).

Operation:

MACL(l ong mlong n) /* MAC. L @m+, @Rn+*/

{
unsi gned | ong RnL, RnH, RnL, RnH, ResO, Res1, Res2;
unsi gned | ong tenpO, tenpl,tenp2,tenps;
| ong tenpmtenpn, f nLni;

tenpn=(1 ong) Read_Long(R[n]);
R n] +=4;
tenpm=(| ong) Read_Long(R[n]);
R nj +=4;

if ((long)(tenpn™tenpn)<0) fnLml=-1,;
el se fnLnlL=0;

if (tenpn<0) tenpn=0-tenpn;

if (tenpnx0) tenpn¥0-tenpm

tenmpl=(unsi gned | ong)tenpn;
tenp2=(unsi gned | ong)tenmpm

HITACHI 105

RnL=t enp1&0x0000FFFF;
RnH=(t emp1>>16) &0x0000FFFF;
RL=t enp2&0x0000FFFF;
RH=(t enp2>>16) &0x0000FFFF;

t enpO=RmL* RnL;
t enpl=RmH* RnL;
t emp2=RmL* RnH,
t enp3=RmH* RnH;

Res2=0;
Res1=t enpl+t enp2;
if (Resl<tenpl) Res2+=0x00010000;

t enpl=(Res1<<16) &0xFFFF0000;
ResO=t enp0+t enp1l;
if (ResO<tenp0) Res2++;

Res2=Res2+((Res1>>16) &x0000FFFF) +t enp3;

i f(fnLnx0){
Res2=~Res?2;
if (Res0==0) Res2++;
el se ResO=(~ResO0) +1;
}
if(S==1){
ResO0=MACL+ResO0;
if (MACL>Res0) Res2++;
Res2+=(MACH&0x0000FFFF) ;

i f(((long)Res2<0) &&(Res2<0xFFFF8000)) {
Res2=0x00008000;
Res0=0x00000000;

}

i f(((long)Res2>0) &&(Res2>0x00007FFF)) {
Res2=0x00007FFF;
Res0=0xFFFFFFFF;

106 HITACHI

}

MACH=Res?2;
MACL=ResO;

el se {
Res0=MACL+ResO0;

}

if (MACL>Res0) Res2++;
Res2+=MACH

MACH=Res?2;
MACL=ResO;

PC+=2;

}

Example:

TBLM

TBLN

TBLM RO
RO, R1
TBLN, RO

H 1234ABCD
H 5678EF01
H 0123ABCD
H 4567DEFO

Table address

Table address
MAC register initialization

Store result into RO

HITACHI 107

6.30 MAC (Multiply and Accumulate): Arithmetic Instruction (SH-1
CPU)

Format Abstract Code State T Bit

MAC. W With signed, (Rn) x (Rm) + 0100nnnnmmm111 3/(2) —
@m+, @ MAC - MAC

+

Description: Multiplies 16-bit operands obtained using the contents of general registers Rm
and Rn as addresses. The 32-bit result is added to contents of the MAC register, and the final
result is stored in the MAC register. Every time an operand is read, they increment Rm and
Rn by two.

When the S bit is cleared to 0, the 42-hit result is stored in the coupled MACH and MACL
registers. Bit 9 data is transferred to the upper 22 bits (bits 31 to 10) of the MACH register.

When the S bit is set to 1, addition to the MAC register is a saturation operation. For the
saturation operation, only the MACL register is enabled and the result is limited to a range of
H'80000000 (minimum) to H'7FFFFFFF (maximum).

If an overflow occurs, the LSB of the MACH register is set to 1. The result is stored in the
MACL register, and the result is limited to a value between H'80000000 (minimum) for
overflows in the negative direction and H'7FFFFFFF (maximum) for overflows in the positive
direction.

Note: The normal number of cycles for execution is 3; however, this instruction can be
executed in two cycles according to the succeeding instruction.

108 HITACHI

6.31 MAC.W (Multiply and Accumulate Word): Arithmetic I nstruction

Format Abstract Code State T Bit

MAC. W @ mt+, @Rn+ Signed operation, 0100nnnnmmmi111 3/(2) —
MAC @m+, @n+ (Rn) x (Rm) + MAC - MAC

Description: Signed-multiplies 16-bit operands obtained using the contents of general
registers Rm and Rn as addresses. The 32-bit result is added to contents of the MAC register,
and the final result is stored in the MAC register. Every time an operand is read, they
increment Rm and Rn by two.

When the S bit is cleared to 0, the operation is 16 x 16 + 64 — 64-bit multiply and
accumulate and the 64-bit result is stored in the coupled MACH and MACL registers.

When the S bit is set to 1, the operation is 16 x 16 + 32 - 32-bit multiply and accumulate
and addition to the MAC register is a saturation operation. For the saturation operation, only
the MACL register is enabled and the result is limited to a range of H'80000000 (minimum)
to H'7FFFFFFF (maximum).

If an overflow occurs, the LSB of the MACH register is set to 1. The result is stored in the
MACL register, and the result is limited to a value between H'80000000 (minimum) for
overflows in the negative direction and H'7FFFFFFF (maximum) for overflows in the positive
direction.

Note: When the S bit is 0, the SH-2 CPU performs a 16 x 16 + 64 — 64 bit multiply and
accumulate operation and the SH-1 CPU performs a 16 x 16 + 42 - 42 bit multiply and
accumulate operation.

Operation:

MACW I ong mlong n) /* MAC W @m+, @n+*/
{
| ong tenpmtenpn, dest, src, ans;
unsi gned | ong tenpl;
tempn=(1 ong) Read_Word(R[n]);
R n] +=2;
tempn=(1 ong) Read_Word(R[nj);
Rl m +=2;
t enpl =MACL;
tempne((| ong) (short)tenpn*(long)(short)tenmpm;

HITACHI 109

if ((long) MACL>=0) dest=0;
el se dest=1;
if ((long)tempm=0 {

src=0;
t empn=0;
}
el se {
src=1;
t enpn=0xFFFFFFFF;
}
src+=dest ;
MACL+=t enpm
if ((long) MVACL>=0) ans=0;
el se ans=1;
ans+=dest ;
if (S==1) {
if (ans==1) {
if (src==0 || src==2) For SH-1 CPU (these 2
lines
MACH| =0x00000001; not needed for SH-2 CPU)
if (src==0) MACL=0x7FFFFFFF;
if (src==2) MACL=0x80000000;
}
}
el se {
MACH+=t enpn;
if (tenpl >MACL) MACH+=1;
if ((MACH&0x00000200) ==0) For SH-1 CPU (these 3
lines
MACH8=0x 000003FF; not needed for SH-2 CPU)
el se MACH| =0xFFFFFCOO0;
}
PC+=2;

110 HITACHI

Example:

TBLM

TBLN

TBLM RO
RO, R1L
TBLN, RO

H 5678
H 0123
H 4567

Table address

Table address
MAC register initialization

Store result into RO

HITACHI 111

6.32 MOV (Move Data): Data Transfer Instruction
Format Abstract Code State T Bit
MoV Rm Rn Rm - Rn 0110nnnnmMmmMmD011 1 —
MV.B Rm @n Rm - (Rn) 0010nnnnmMmmmD000 1 —
MV. W Rm @n Rm - (Rn) 0010nnnnmmm©0001 1 —
MV.L Rm @n Rm - (Rn) 0010nnnnmmmmMD010 1 —
MOV. B @Rm Rn (Rm) - sign extension - Rn 0110nnnnmmmD000 1 —
MV. W @Rm Rn (Rm) - sign extension - Rn 0110nnnnnmmm®0001 1 —
MV.L @Rm Rn (Rm) - Rn 0110nnnnmmmD010 1 —
MOV. B Rm @-Rn Rn—-1 - Rn,Rm - (Rn) 0010nnnnmmmD100 1 —
MOV. W Rm @Rn Rn—-2 - Rn,Rm - (Rn) 0010nnnnmmm0101 1 —
MOV.L Rm @Rn Rn—-4 - Rn,Rm - (Rn) 0010nnnnmmMm0110 1 —
MOV. B @+, Rn (Rm) - sign extension — Rn, 0110nnnnmmmD100 1 —
Rm+1 - Rm
MOV. W @+, Rn (Rm) — sign extension — Rn, 0110nnnnnmmm0101 1 —
Rm+2 - Rm
MOV.L @Rmt, Rn (Rm) - Rn,Rm+4 - Rm 0110nnnnmmmmD110 1 —
MV.B Rm @RO, Rn) Rm - (RO +Rn) 0000nnNnNNMMMD100 1 —
MV. W Rm @RO, R1) Rm - (RO +Rn) 0000nnnnMMMD101 1 —
MV.L Rm @RO, Rn) Rm - (RO+Rn) 0000nnNNMMMO110 1 —
MV.B @RO,RM,Rn (RO+Rm) - sign extension 0000nnNNMMMML100 1 —
- Rn 0000nnnNMMMML101 1 —
MV. W @RO, R, R (RO+Rm) - sign extension 0000nNNAMMM110 1 .

MV.L @RO, Rm), Rn

- Rn
(RO+Rm) - Rn

Description: Transfers the source operand to the destination. When the operand is stored in
memory, the transferred data can be a byte, word, or longword. When the source operand isin
memory, loaded data from memory is stored in a register after it is sign-extended to a
longword.

Operation:

MOV(Iong mlong n) /* MOV Rm Rn */
{

RIn] =R ni;

PC+=2;

112 HITACHI

MOVBS(1 ong m | ong n) /* MOV.B Rm @Rn */

{
Wite_Byte(Rn],Rni);
PC+=2;
}
MOWAS(1 ong m | ong n) /[* MOV. WRmM @Rn */
{
Wite Word(R[n], R n);
PC+=2;
}
MOVLS(1 ong m | ong n) /[* MOV.L Rm @Rn */
{
Wite Long(R[n],RnmM);
PC+=2;
}
MOVBL(1 ong m | ong n) /[* MOV.B @m Rn */
{
R n] =(1 ong) Read_Byte(R(ni);
i f ((R[n] &x80)==0) R[n] &0x000000FF;
el se R[n] | =OxFFFFFFOO;
PC+=2;
}
MOWAL(1 ong m | ong n) [* MOV. W @Rm Rn */
{
R n] =(1 ong) Read_Word(R[n});
i f ((R[n] &x8000)==0) R[] n] &0x0000FFFF;
el se R[n]| =0xFFFF0000;
PC+=2;
}
MOVLL(1 ong m | ong n) /[* MOV.L @m Rn */
{
R[n] =Read_Long(R[mM) ;
PC+=2;
}

HITACHI 113

MOVBM | ong m | ong n) /* MOV.B Rm @Rn */

{
Wite Byte(R[n]-1, R ni);
R n] —=1;
PC+=2;

}

MOWW(| ong m | ong n) /* MOV. WRm @Rn */
{
Wite_ Word(R[n]-2,R[n);
R n] —=2;
PC+=2;
}
MOVLM | ong m 1 ong n) /* MOV.L Rm @Rn */

{
Wite Long(R n]-4, R n);

R n] —=4;

PC+=2;
}
MOVBP(l ong mlong n)/* MOV.B @mt, Rn */
{

R n] =(1 ong) Read_Byte(R[ni);
i f ((R[n] &x80)==0) R[n] &0x000000FF;
el se R[n] | =0xFFFFFFOO;
if (nl=m R n +=1;
PC+=2;
}

MOWAP(| ong m | ong n) /[* MOV. W @mt, Rn */
{
R n] =(1 ong) Read_Word(R M);
if ((R[n] &x8000) ==0) R[n] &0x0000FFFF;
el se R n] | =0xFFFF0000;
if (nl=m R mM+=2;
PC+=2;

114 HITACHI

MOWLP(1 ong m | ong n) /* MOV.L @Rm+, Rn */
{

R[n] =Read_Long(R[M) ;

if (nl=m R nj+=4;

PC+=2;
}

MOVBSO(| ong m | ong n) /* MOV.B Rm @RO0, Rn) */
{

Wite Byte(Rn]+R[0], R m);

PC+=2;
}

MOWAS0(| ong m | ong n) [* MOV.WRm @RO, Rn) */
{

Wite Wrd(R[n]+R[0], R n);

PC+=2;
}

MOVLSO(l ong m | ong n) /* MOV.L Rm @RO, Rn) */
{

Wite Long(R n]+R[0], R m);

PC+=2;
}

MOVBLO(| ong m | ong n) /* MOV.B @RO,Rm,Rn */
{

R n] =(1 ong) Read_Byte(R[n] +R[0]) ;

if ((R[Nn]&x80)==0) R n] &x000000FF;

el se R[n] | =0xFFFFFFOO;

PC+=2;
}

MOWWLO(| ong m | ong n) /* MOV.W@RO, Rm, Rn */
{

R n] =(1 ong) Read_Vord(R{nj +R[0]) ;

i f ((R n] &x8000)==0) R[n] &x0000FFFF;

el se R n] | =OxFFFF000O;

PC+=2;

HITACHI 115

MOVLLO(l ong m 1 ong n)
{
R n] =Read_Long(R[m +R[0]) ;

PC+=2;
}
Example:
MOV RO, R1 Before execution
After execution
MOV. W RO, @Rl Before execution
After execution
MOV.B @RO, R1 Before execution
After execution
MOV. W RO, @R1 Before execution
After execution
MOV.L @R0+ R1 Before execution
After execution
MOV. B R1, @RO, R2) Before execution

After execution

Before execution
After execution

MV. W @RO, R2), RL

116 HITACHI

/* MOV.L @RO, Rm), Rn */

RO = H'FFFFFFFF, R1 = H'00000000
R1 = H'FFFFFFFF

RO = H'FFFF7F80
@R1 = H7F80

@RO = H'80, R1 = H'00000000
R1 = H'FFFFFF80

RO = HAAAAAAAA, R1 = H'FFFF7F80
R1 = HFFFF7F7E, @R1 = HAAAA

RO = H'12345670
RO = H'12345674, R1 = @H'12345670

R2 = H'00000004, RO = H'10000000
R1 = @H'10000004

R2 = H'00000004, RO = H'10000000
R1 = @H'10000004

6.33 MOV (Move lmmediate Data): Data Transfer Instruction

Format Abstract Code State T Bit
MoV #i mm Rn imm - sign extension - 1120nnnniiiiiiii 1 —
Rn 1001nnnndddddddd 1 —
MV. W @disp, PC),Rn (disp x2+ PC) - sign
extension - Rn 1101nnnndddddddd 1 —

MWV.L @disp, PC,Rn (dispx4+PC) - Rn

Description: Stores immediate data, which has been sign-extended to a longword, into
general register Rn.

If the data is a word or longword, table data stored in the address specified by PC +
displacement is accessed. If the data is a word, the 8-bit displacement is zero-extended and
doubled. Consequently, the relative interval from the table is up to PC + 510 bytes. The PC
points to the starting address of the second instruction after this MOV instruction. If the data
is a longword, the 8-bit displacement is zero-extended and quadrupled. Consequently, the
relative interval from the table is up to PC + 1020 bytes. The PC points to the starting address
of the second instruction after this MOV instruction, but the lowest two bits of the PC are
corrected to B’00.

Note: The end address of the program area (module) or the second address after an
unconditional branch instruction are suitable for the start address of the table. If suitable table
assignment is impossible (for example, if there are no unconditional branch instructions
within the area specified by PC + 510 bytes or PC + 1020 bytes), the BRA instruction must
be used to jump past the table. When this MOV instruction is placed immediately after a
delayed branch instruction, the PC points to an address specified by (the starting address of
the branch destination) + 2.

Operation:

MVI (1 ong i,long n) /* MOV #immRn */

{
if ((i&x80)==0) R n]=(0x000000FF & (long)i);
el se R n] =(OxFFFFFFOO | (long)i);

PC+=2;
}
MOVW (1 ong d, l ong n) [* MOV. W @di sp, PC), R0 */
{

I ong di sp;

HITACHI 117

di sp=(0x000000FF & (1 ong)d);

R[n] =(1 ong) Read_Wor d(PC+(di sp<<1));

if ((R[n]&x8000)==0) R[n] & 0x0000FFFF;
el se R n] | =0xFFFF0000;

PC+=2;
}
MOVLI (1 ong d, | ong n) /* MOV.L @disp, PC),Rn */
{
I ong di sp;
di sp=(0x000000FF & (1 ong)d);
R[n] =Read_Long((PC&OXFFFFFFFC) +(di sp<<2));
PC+=2;
}
Example:
Addr ess
1000 MOV #H 80, R1 R1 = H'FFFFFF80
1002 MOV. W I MM R2 R2 = H'FFFF9ABC, IMM means @(H'08,PC)
1004 ADD #-1, RO
1006 TST RO, RO ~ PC location used for address calculation for
the MOV.W instruction
1008 MOVT R13
100A BRA NEXT Delayed branch instruction
100C MOV. L @4, PQO, R3 R3 = H'12345678
100E MM .data.w H 9ABC
1010 .data.w H 1234
1012 NEXT JMP @3 Branch destination of the BRA instruction
1014 CW/ EQ #0,RO ~ PC location used for address calculation for
the MOV .L instruction
.align 4
1018 .data.l H 12345678

118 HITACHI

6.34 MOV (Move Peripheral Data): Data Transfer Instruction

Format Abstract Code State T Bit

MV.B @disp, GBBR), RO (disp + GBR) - sign 11000100dddddddd 1 —
extension - RO

MV. W @disp, BR), R0 (disp x2 +GBR) - 11000101dddddddd 1 —
sign extension —» RO

MOV.L @disp, GBR), R0 (disp x4+GBR) — RO 11000110dddddddd 1 —
MV.B RO, @disp, GBR) RO - (disp + GBR) 11000000dddddddd 1 —
MOV. W RO, @di sp, GBR) RO — (disp x 2 + 11000001dddddddd 1 —
MOV.L RO, @disp, GBR) CBR) 11000010dddddddd 1 —
RO - (disp x4 +
GBR)

Description: Transfers the source operand to the destination. This instruction is suitable for
accessing data in the peripheral module area. The data can be a byte, word, or longword, but
the register is fixed to RO.

A peripheral module base address is set to the GBR. When the peripheral module data is a
byte, the 8-bit displacement is zero-extended. Consequently, an address within +255 bytes
can be specified. When the peripheral module data is a word, the 8-bit displacement is zero-
extended and doubled. Conseguently, an address within +510 bytes can be specified. When
the peripheral module data is a longword, the 8-bit displacement is zero-extended and is
quadrupled. Consequently, an address within +1020 bytes can be specified. If the
displacement is too short to reach the memory operand, the above @(R0,Rn) mode must be
used after the GBR data is transferred to a general register. When the source operand is in
memory, the loaded data is stored in the register after it is sign-extended to a longword.

Note: The destination register of a data load is always RO. RO cannot be accessed by the next
instruction until the load instruction is finished. Changing the instruction order shown in figure
6.1 will give better results.

MOV.B @(12, GBR), RO MOV.B @(12, GBR), RO

AND #80, RO ><: ADD #20, R1
ADD #20, R1 AND #80, RO

Figure 6.1 Using RO after MOV

HITACHI 119

Operation:

MOVBLE | ong d) /* MOV.B @disp, GBR), R0 */

{
I ong di sp;

di sp=(0x000000FF & (1 ong)d);
R[0] =(| ong) Read_Byt e(GBR+di sp) ;
if ((R0]&0x80)==0) R 0] &0x000000FF;
el se R[0] | =OxFFFFFFOO;
PC+=2;
}

MOWALG | ong d) /* MOV. W @disp, BR), RO */

{
I ong di sp;

di sp=(0x000000FF & (1 ong)d);
R[0] =(1 ong) Read_Wor d(GBBR+(di sp<<1));
i f ((R 0] &x8000)==0) R[0] &0x0000FFFF;
el se R 0] | =0xFFFF0000;
PC+=2;
}

MWLLG | ong d) /* MOV.L @disp, GBR),R0 */

{
I ong di sp;

di sp=(0x000000FF & (1 ong)d);
R[0] =Read_Long(GBR+(di sp<<2));
PC+=2;

}

MOVBSE | ong d) /* MOV.B RO, @disp, BR) */

{
I ong di sp;

120 HITACHI

di sp=(0x000000FF & (1 ong)d);
Wite_Byte(GBR+disp, R0]);

PC+=2;
}
MOVWSGE | ong d) /* MOV. WRO, @di sp, BR) */
{
I ong di sp;
di sp=(0x000000FF & (I ong)d);
Wite_Word(GBR+(di sp<<l),R0]);
PC+=2;
}
MOVLSEH | ong d) /* MOV.L RO, @disp, BR) */
{
I ong di sp;
di sp=(0x000000FF & (1 ong)d);
Wite_Long(GBR+(di sp<<2),R0]);
PC+=2;
}
Examples:

MV.L @2,GBR),R0 Before execution @(GBR + 8) = H'12345670
After execution RO = @H'12345670

MOV.B RO, @1, GBR) Before execution RO = H'FFFF7F80
After execution @(GBR + 1) = H'FFFF7F80

HITACHI 121

6.35 MOV (Move Structure Data): Data Transfer Instruction

Format Abstract Code State T Bit

MV. B RO, @disp, Rn) RO - (disp + Rn) 10000000nnnndddd 1 —

MV. W RO, @disp,Rn) RO - (disp x2+ Rn) 10000001nnnndddd 1

MV.L Rm @disp,Rn) Rm - (disp x4+ Rn) 0001nnnnmmmdddd 1 —
1

MV.B @disp, Ry, RO (disp + Rm) - sign 10000100nmMmdddd
extension - RO

MV. W @disp, Ry, RO (dispx2+Rm) - sign 10000101mmmdddd 1 —
extension - RO

MWV.L @disp, RM,Rn (dispx4+Rm) - Rn 0101nnnnmmmmdddd 1 —

Description: Transfers the source operand to the destination. This instruction is suitable for
accessing data in a structure or a stack. The data can be a byte, word, or longword, but when
a byte or word is selected, only the RO register is fixed. When the data is a byte, the 4-bit
displacement is zero-extend. Consequently, an address within +15 bytes can be specified.
When the data is a word, the 4-bit displacement is zero-extended and doubled. Consequently,
an address within +30 bytes can be specified. When the data is a longword, the 4-bit
displacement is zero-extended and quadrupled. Consequently, an address within +60 bytes
can be specified. If the displacement is too short to reach the memory operand, the
aforementioned @(R0O,Rn) mode must be used. When the source operand is in memory, the
loaded data is stored in the register after it is sign-extended to a longword.

Note: When byte or word data is loaded, the destination register is always RO. RO cannot be
accessed by the next instruction until the load instruction is finished. Changing the instruction
order in figure 6.2 will give better results.

MOV.B @(2, R1), RO MOV.B @(2, R1), RO

AND #80, RO ><: ADD #20, R1
ADD #20, R1 AND #80, RO

Figure 6.2 Using RO after MOV

122 HITACHI

Operation:

MOVBS4(| ong d, |l ong n) /* MOV.B RO, @di sp, Rn) */

{
I ong di sp;
di sp=(0x0000000F & (1 ong)d);
Wite Byte(R[n]+disp, R0]);
PC+=2;
}
MOWB4(long d,long n) /* MOV.WRO, @di sp, Rn) */
{
I ong di sp;
di sp=(0x0000000F & (Il ong)d);
Wite Word(R n] +(disp<<l),R0]);
PC+=2;
}

MOVLS4(1 ong mlong d,long n)
/* MW.L Rm @disp, Rn) */

{
I ong di sp;
di sp=(0x0000000F & (1 ong)d);
Wite_Long(R[n] +(disp<<2),Rn});
PC+=2;
}
MOVBL4(long mlong d) /* MOV.B @disp, R),R0 */
{
I ong di sp;
di sp=(0x0000000F & (1 ong)d);
R[0] =Read_Byt e(R m +di sp) ;
if ((R[0] &x80)==0) R[0] &0x000000FF;
el se R 0] | =0xFFFFFFOO;
PC+=2;
}

HITACHI 123

MOWAL4(long mlong d) /* MOV.W@disp, R, R0 */

{
I ong di sp;

di sp=(0x0000000F & (1 ong)d);
R[0] =Read_Wor d(Rl m] +(di sp<<1));
if ((R0]&0x8000)==0) R[0] & 0x0000FFFF;
el se R 0] | =0xFFFF0000;
PC+=2;
}

MOVLL4(1 ong mlong d, | ong n)
/* MOV.L @disp, R, Rn */

I ong di sp;

di sp=(0x0000000F & (1 ong)d);
R[n] =Read_Long(R n] +(di sp<<2));
PC+=2;

}

Examples:

MV.L @2,R0),RL Before execution @(RO + 8) = H'12345670
After execution R1 = @H'12345670

MOV.L RO, @H F, R1) Before execution RO = H'FFFF7F80
After execution @(R1 + 60) = H'FFFF7F80

124 HITACHI

6.36 MOVA (Move Effective Address): Data Transfer Instruction

Format Abstract Code State T Bit

MWVA @disp, PO, R0 disp x4+PC — RO 11000111dddddddd 1 —

Description: Stores the effective address of the source operand into general register RO. The
8-bit displacement is zero-extended and quadrupled. Consequently, the relative interval from
the operand is PC + 1020 bytes. The PC points to the starting address of the second
instruction after this MOV A instruction, but the lowest two bits of the PC are corrected to
B’'00.

Note: If this instruction is placed immediately after a delayed branch instruction, the PC must
point to an address specified by (the starting address of the branch destination) + 2.

Operation:

MWVA(long d) /* MOWVA @disp, PC), RO */

{
I ong di sp;
di sp=(0x000000FF & (1 ong)d);
R[0] =(PC&OXFFFFFFFC) +(di sp<<2);
PC+=2;
}
Example:
Addr ess .org H 1006
1006 MOVA STR, RO Address of STR - RO
1008 MV.B @R0, RL R1 =“X" ~ PC location after correcting
the lowest two bits
100A ADD R4, R5 « Original PC location for address calculation for

the MOV A instruction
.align 4
100C STR .sdata “XYzZP12”

2002 BRA TRGET Delayed branch instruction
2004 MOVA @0,PC,R0 Addressof TRGET +2 - RO
2006 NOP

HITACHI 125

6.37 MOVT (MoveT Bit): Data Transfer Instruction

Format Abstract Code State T Bit

MOVT R T - Rn 0000nnnn00101001 1 —

Description: Stores the T bit value into general register Rn. When T = 1, 1 is stored in Rn,
and when T = 0, O is stored in Rn.

Operation:

MWVT(long n) /* MOWT Rn */

{
R[n] =(0x00000001 & SR);
PC+=2;
}
Example:

XOR R,RR R2=0

CW/ PZ R T=1
MOVT RO RO=1
CLRT T=0
MOVT RL R1=0

126 HITACHI

6.38 MUL.L (Multiply Long): Arithmetic Instruction (SH-2 CPU)

Format Abstract Code State T Bit

ML.L RmRn Rn xRm - MACL 0000NnnNNNnMMMOD111 2to4 —

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm,
and stores the lower 32 bits of the result in the MACL register. The MACH register data does
not change.

Operation:

MULL(l ong mlong n) /* MJL.L RmRn */

{
MACL=R[n] *R[nj ;
PC+=2;
}
Example:

ML.L RO,R1L Before execution RO = H'FFFFFFFE, R1 = H'00005555
After execution MACL = H'FFFF5556
STS MACL,RO Operation result

HITACHI 127

6.39 MULSW (Multiply as Signed Word): Arithmetic Instruction

Format Abstract Code State T Bit
MJLS. WRM Rn Signed operation, Rn x Rm - 0010nnnnmmmil111 lto3 —
MILS RmRn MACL

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm,
and stores the 32-bit result in the MACL register. The operation is signed and the MACH
register data does not change.

Operation:

MULS(l ong mlong n) /* MILS RmRn */

{
MACL=((| ong) (short) R n]*(long) (short)R[ni);
PC+=2;
}
Example:

MILLS RO, RL Before execution RO = H'FFFFFFFE, R1 = H'00005555
After execution MACL = H'FFFF5556
STS MACL,RO Operation result

128 HITACHI

6.40 MULU.W (Multiply asUnsigned Word): Arithmetic Instruction

Format Abstract Code State T Bit
MULU. WRmM Rn Unsigned, Rn x Rm - MAC 0010nnnnmmmi110 lto3 —
MLU RmRn

Description: Performs 16-bit multiplication of the contents of genera registers Rn and Rm,
and stores the 32-bit result in the MACL register. The operation is unsigned and the MACH
register data does not change.

Operation:

MJLU(l ong mlong n) /* MJLU Rm Rn */
{
MACL=((unsi gned | ong) (unsi gned short) R n]
*(unsigned | ong) (unsigned short)R m);
PC+=2;
}

Example:

MLU RO, RL Before execution RO = H'00000002, R1 = H'FFFFAAAA
After execution MACL = H'00015554
STSMACL, RO Operation result

HITACHI 129

6.41 NEG (Negate): Arithmetic Instruction

Format Abstract Code State T Bit

NEG Rm Rn 0—Rm - Rn 0110nnnnmmm1011 1 —

Description: Takes the two’'s complement of data in general register Rm, and stores the
result in Rn. This effectively subtracts Rm data from 0, and stores the result in Rn.

Operation:

NEG Il ong mlong n) /* NEG RmRn */
{

RIn]=0-R(nj;
PC+=2;
}
Example:
NEG RO, R1 Before execution RO = H'00000001
After execution R1 = H'FFFFFFFF

130 HITACHI

6.42 NEGC (Negatewith Carry): Arithmetic Instruction

Format Abstract Code State T Bit

NEGC RmRn O—RmM-T - Rn,Borrow - T 0110nnnnnmmmi010 1 Borrow

Description: Subtracts general register Rm data and the T bit from 0, and stores the result in
Rn. If a borrow is generated, T bit changes accordingly. This instruction is used for inverting
the sign of a value that has more than 32 bits.

Operation:

NEGC(1 ong mlong n) /* NEGC RmRn */

{
unsi gned | ong tenp;
tenp=0-R{nj;
Rl n] =tenmp-T;
if (O<tenp) T=1;
el se T=0;
if (tenp<R[n]) T=1;
PC+=2;

}

Examples:
CLRT Sign inversion of R1 and RO (64 bits)

NEGC Ri1,RlL Before execution R1 =H'00000001, T=0
After execution R1 =H'FFFFFFFF, T =1

NEGC RO, R0 Before execution RO = H'00000000, T =1
After execution RO = H'FFFFFFFF, T = 1

HITACHI 131

6.43 NOP (No Operation): System Control Instruction

Format Abstract Code State T Bit

NOP No operation 0000000000001001 1 —

Description: Increments the PC to execute the next instruction.
Operation:

NOP() /* NOP */

{
PC+=2;
}
Example:

NOP Executes in one cycle

132 HITACHI

6.44 NOT (NOT—Logical Complement): Logic Operation Instruction

Format Abstract Code State T Bit

NOT Rm Rn ~Rm - Rn 0110nnnnmmm0111 1 —

Description: Takes the one’'s complement of general register Rm data, and stores the result
in Rn. This effectively inverts each bit of Rm data and stores the result in Rn.

Operation:

NOT(long mlong n) /* NOT RmRn */

{
Rin]=~R(ni;
PC+=2;
}
Example:

NOT RO, Rl Before execution RO=HAAAAAAAA
After execution R1 = H'55555555

HITACHI 133

6.45 OR (OR Logical) Logic Operation Instruction
Format Abstract Code State T Bit
xR Rm Rn Rn|Rm - Rn 0010nnnnmmmmml011 1 —
xR #i mm RO RO | imm - RO 1100102%iiiiiiii 1 —
R B (RO+GBR) |imm - (RO+ 1100111liiiiiiii 3 —

#i mm @RO, BB GBR)
R

Description: Logically ORs the contents of general registers Rn and Rm, and stores the

result in Rn. The contents of general register RO can also be ORed with zero-extended 8-hit
immediate data, or 8-bit memory data accessed by using indirect indexed GBR addressing
can be ORed with 8-bit immediate data.

Operation:

OR(long mlong n)

{
RIn|=R(n;
PC+=2;

}

ORI (long i) /* OR #i mm RO */

{
R[0] | =(0x000000FF & (long)i);
PC+=2;

}

ORMlong i) /* OR B #imm @R0, GBR) */

{
long tenp;
t emp=(1 ong) Read_Byt e(GBBR+R[0]) ;
t enp| =(0x0O00000FF & (long)i);
Wite_Byte(GBR+R 0], tenp);
PC+=2;

}

134 HITACHI

/* OR RmRn */

Examples:

R RO, RL Before execution RO = HAAAASG555, R1 = H'55550000
After execution R1 = H'FFFF5555

R #H FO, RO Before execution RO = H'00000008
After execution RO = H'000000F8

OR B #H 50, @R0, GBBR) Before execution @(RO,GBR) = H'A5
After execution @(RO,GBR) = H'F5

HITACHI 135

6.46 ROTCL (Rotatewith Carry Left): Shift Instruction

Format Abstract Code State T Bit

ROTCL Rn T<RnT 0100nnnn00100100 1 MSB

Description: Rotates the contents of general register Rn and the T bit to the left by one bit,
and stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.3).

MSB LSB

ROTCL <—| }‘_‘

Figure 6.3 Rotate with Carry Left
Operation:

ROTCL(long n) /* ROTCL Rn */
{
I ong tenp;

if ((R n]&x80000000)==0) tenp=0;
el se tenp=1,
R n] <<=1;
if (T==1) R[n]|=0x00000001;
el se R[n] &0xFFFFFFFE;
if (tenp==1) T=1,
el se T=0;
PC+=2;
}

Example:

ROTCL RO Before execution RO = H'80000000, T =0
After execution RO = H'00000000, T =1

136 HITACHI

6.47 ROTCR (Rotate with Carry Right): Shift Instruction

Format Abstract Code State T Bit

ROTCR Rn T-oRn->T 0100nnnn00100101 1 LSB

Description: Rotates the contents of general register Rn and the T bit to the right by one bit,
and stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.4).

MSB LSB

ROTCR ﬁ -

Figure 6.4 Rotate with Carry Right
Operation:

ROTCR(1 ong n) /* ROTCR Rn */
{
I ong tenp;

i f ((R[n]&x00000001)==0) tenp=0;
el se tenp=1;
Rl n] >>=1;
if (T==1) R n]|=0x80000000;
el se R n] &0x7FFFFFFF,
if (tenp==1) T=1,
el se T=0;
PC+=2;
}

Examples:

ROTCR RO Before execution RO = H'00000001, T =1
After execution RO = H'80000000, T =1

HITACHI 137

6.48 ROTL (Rotate Left): Shift Instruction

Format Abstract Code State T Bit

ROTL R T -« Rn - MSB 0100nnnn00000100 1 MSB

Description: Rotates the contents of general register Rn to the left by one bit, and stores the
result in Rn (figure 6.5). The bit that is shifted out of the operand is transferred to the T bit.

MSB LSB

roT -

Figure 6.5 Rotate Left
Operation:

ROTL(long n) /* ROTL Rn */
{
i f ((R n]&0x80000000)==0) T=0;
el se T=1;
R n] <<=1;
if (T==1) R[n]|=0x00000001;
el se R[n] &0xFFFFFFFE;
PC+=2;
}

Examples:

ROTL RO Before execution RO = H'80000000, T =0
After execution RO = H'00000001, T =1

138 HITACHI

6.49 ROTR (Rotate Right): Shift Instruction

Format Abstract Code State T Bit

ROTR Rn LSB - Rn - T 0100nnnn00000101 1 LSB

Description: Rotates the contents of general register Rn to the right by one bit, and stores the
result in Rn (figure 6.6). The bit that is shifted out of the operand is transferred to the T bit.

MSB LSB

core [

Figure 6.6 Rotate Right
Operation:

ROTR(1 ong n) /* ROTR Rn */

{
i f ((R[n]&x00000001)==0) T=0;
el se T=1;
R n] >>=1;
if (T==1) R[n]|=0x80000000;
el se R[n] & 0x7FFFFFFF;
PC+=2;

}

Examples:

ROTR RO Before execution RO = H'00000001, T=0
After execution RO = H'80000000, T = 1

HITACHI 139

6.50 RTE (Return from Exception): System Control Instruction
Class: Delayed branch instruction

Format Abstract Code State T Bit

RTE Stack area -~ PC/SR 0000000000101011 4 LSB

Description: Returns from an interrupt routine. The PC and SR values are restored from the
stack, and the program continues from the address specified by the restored PC value.

Note: Since this is a delayed branch instruction, the instruction after this RTE is executed
before branching. No address errors and interrupts are accepted between this instruction and
the next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

RTE() /* RTE */

{
unsi gned | ong tenp;
t enp=PC,
PC=Read_Long(R[15]) +4;
R 15] +=4;
SR=Read_Long(R 15]) &0x000003F3;
R[15] +=4;
Del ay_Sl ot (t enp+2) ;
}
Example:
RTE Returns to the original routine
ADD#8, R14 Executes ADD before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of
delayed branch instruction, then delay slot instruction. For example, even if the
register in which the branch destination address has been loaded is changed by the
delay dlot instruction, the branch will still be made using the value of the register
prior to the change as the branch destination address.

140 HITACHI

6.51 RTS(Return from Subroutine): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

RTS PR - PC 0000000000001011 2 —

Description: Returns from a subroutine procedure. The PC values are restored from the PR,
and the program continues from the address specified by the restored PC value. This
instruction is used to return to the program from a subroutine program called by a BSR or JSR
instruction.

Note: Since this is a delayed branch instruction, the instruction after this RTS is executed
before branching. No address errors and interrupts are accepted between this instruction and
the next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:
RTS() /* RTS */
{
unsi gned | ong tenp;
t enp=PC;
PC=PR+4;
Del ay_Sl ot (t enp+2) ;
}
Example:
MOV. L TABLE, R3 R3 = Address of TRGET
JSR a3 Branches to TRGET
NOP Executes NOP before JSR
ADD RO, R1 « Return address for when the subroutine procedure is
completed (PR data)
TABLE: .data. | TRGET Jump table
TRGET: MV RL, RO « Procedure entrance
RTS PR data - PC
MOV #12,R0O Executes MOV before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of
delayed branch instruction, then delay slot instruction. For example, even if the
register in which the branch destination address has been loaded is changed by the

HITACHI 141

delay dlot instruction, the branch will still be made using the value of the register
prior to the change as the branch destination address.

142 HITACHI

6.52 SETT (Set T Bit): System Control Instruction

Format Abstract

Code

State T Bit

SETT 1-T

0000000000011000

1

1

Description: Setsthe T bit to 1.

Operation:

SETT() /* SETT */

{
T=1,
PC+=2;
}
Example:

SETT Before execution T =0
After execution T=1

HITACHI 143

6.53 SHAL (Shift Arithmetic Left): Shift Instruction

Format Abstract Code State T Bit

SHAL Rn TRn<0 0100nnnn00100000 1 MSB

Description: Arithmetically shifts the contents of general register Rn to the left by one bit,
and stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.7).

MSB LSB

SHAL |<— 0

Figure 6.7 Shift Arithmetic Left
Operation:

SHAL(long n) /* SHAL Rn(Sanme as SHLL) */

{
if ((R[n] &x80000000)==0) T=0;
el se T=1;
Rl n] <<=1;
PC+=2;
}

Example:

SHAL RO Before execution RO = H'80000001, T =0
After execution RO = H'00000002, T =1

144 HITACHI

6.54 SHAR (Shift Arithmetic Right): Shift Instruction

Format Abstract Code State T Bit

SHAR R MSB - Rn - T 0100nnnn00100001 1 LSB

Description: Arithmetically shifts the contents of general register Rn to the right by one bit,
and stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.8).

MSB LSB

SHAR Iil

Figure 6.8 Shift Arithmetic Right

Operation:

SHAR(long n) /* SHAR Rn */

{
I ong tenp;
i f ((R[n] &x00000001)==0) T=0;
el se T=1,;
i f ((R[n] &x80000000) ==0) t enp=0;
el se tenp=1;
R n] >>=1;
i f (tenp==1) R[n]|=0x80000000;
el se R n] &0x7FFFFFFF,
PC+=2;

}

Example:

SHAR RO Before execution RO = H'80000001, T =0
After execution RO = H'C0000000, T =1

HITACHI 145

6.55 SHLL (Shift Logical Left): Shift Instruction

Format Abstract Code State T Bit

SHLL R TRn<0 0100nnnnN00000000 1 MSB

Description: Logically shifts the contents of general register Rn to the left by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.9).

MSB LSB

SHLL |<—o

Figure 6.9 Shift Logical Left
Operation:

SHLL(long n) /* SHLL Rn(Sanme as SHAL) */

{
if ((R[n] &x80000000)==0) T=0;
el se T=1;
Rl n] <<=1;
PC+=2;
}

Examples:

SHLL R Before execution RO = H'80000001, T =0
After execution RO = H'00000002, T =1

146 HITACHI

6.56 SHLLn (Shift Logical Left n Bits): Shift Instruction

Format Abstract Code State T Bit
SHLL2 Rn Rn<<2 - Rn 0100nnnn00001000 1 —
SHLL8 Rn Rn<<8 - Rn 0100nnnn00011000 1 —
SHLL16 R Rn<<16 - Rn 0100nnnn00101000 1 —

Description: Logically shifts the contents of general register Rn to the left by 2, 8, or 16 hits,
and stores the result in Rn. Bits that are shifted out of the operand are not stored (figure 6.10).

MSB LSB
SHLL2
o
MSB LSB
SHLLS | |
=
o
MSB LSB
SHLL16 | |

.
| o

Figure 6.10 Shift Logical Left n Bits

Operation:

SHLL2(long n) /* SHLL2 Rn */

R n] <<=2;
PC+=2;

HITACHI 147

SHLL8(long n) /* SHLL8 Rn */

{
R n] <<=8;
PC+=2;

}

SHLL16(long n) /* SHLL16 Rn */

{
R[n] <<=16;
PC+=2;
}
Examples:
SHLL2 RO Before execution RO = H'12345678
After execution RO = H'48D159E0
SHLL8 RO Before execution RO = H'12345678
After execution RO = H'34567800
SHLL16 RO Before execution RO = H'12345678
After execution RO = H'56780000

148 HITACHI

6.57 SHLR (Shift Logical Right): Shift Instruction

Format Abstract Code State T Bit

SHLR R O-Rn-> T 0100nnnn00000001 1 LSB

Description: Logically shifts the contents of general register Rn to the right by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.11).

MSB LSB

SHLR 0—>|

Figure 6.11 Shift Logical Right
Operation:

SHLR(long n) /* SHLR Rn */

{
i f ((R n] &x00000001)==0) T=0;
el se T=1;
R n] >>=1;
R[n] &0x7FFFFFFF;
PC+=2;

}

Examples

SHLR R Before execution RO = H'80000001, T =0
After execution RO = H'40000000, T =1

HITACHI 149

6.58 SHLRn (Shift Logical Right n Bits): Shift Instruction

Format Abstract Code State T Bit
SHLIR2 R Rn>>2 - Rn 0100nnnn00001001 1 —
SHLR8 R Rn>>8 - Rn 0100nnnn00011001 1 —
SHLR16 Rn Rn>>16 - Rn 0100nnnn00101001 1 —

Description: Logically shifts the contents of general register Rn to the right by 2, 8, or 16
bits, and stores the result in Rn. Bits that are shifted out of the operand are not stored
(figure 6.12).

MSB LSB
SHLR2
o
MSB LSB
SHLRS8 |
o —
MSB LSB
SHLR16 |

Figure 6.12 Shift Logical Right n Bits
Operation:

SHLR2(long n) /* SHLR2 Rn */
{

R[n] >>=2;

R[n] &=0x3FFFFFFF;

PC+=2;

150 HITACHI

SHLR8(l ong n) /* SHLR8 Rn */

{
R[n] >>=8;
R[n] &0x00FFFFFF;
PC+=2;
}
SHLR16(long n) /* SHLR16 Rn */
{
R n] >>=16;
R[n] &0x0000FFFF;
PC+=2;
}
Examples:
SHLR2 RO Before execution RO = H'12345678
After execution RO = H'048D159E
SHLR8 RO Before execution RO = H'12345678
After execution RO = H'00123456
SHLR16 RO Before execution RO = H'12345678
After execution RO = H'00001234

HITACHI 151

6.59 SLEEP (Slegp): System Control Instruction

Format Abstract Code State T Bit

SLEEP Sleep 0000000000011011 3 —

Description: Sets the CPU into power-down mode. In power-down mode, instruction
execution stops, but the CPU module state is maintained, and the CPU waits for an interrupt
request. If an interrupt is requested, the CPU exits the power-down mode and begins
exception processing.

Note: The number of cycles given is for the transition to sleep mode.
Operation:

SLEEP() /* SLEEP */

{
PC- =2;
Wait _for_exception;
}
Example:

SLEEP Transits power-down mode

152 HITACHI

6.60 STC (Store Control Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract Code State T Bit
STC SR Rn SR - Rn 0000nnNN00000010 1 —
STC GBR, Rn GBR - Rn 0000nnnn00010010 1 —
STC VBR, Rn VBR - Rn 0000nnnNn00100010 1 —
STC.L SR @Rn Rn—-4 - Rn, SR - (Rn) 0100nnnn00000011 2 —
STC L GBR @Rn Rn-4 - Rn, GBR - (Rn) 0100nnnn00010011 2 —
STC.L VBR @Rn Rn-4 - Rn, VBR - (Rn) 0100nnnn00100011 2 —

Description: Stores control registers SR, GBR, or VBR data into a specified destination.

Note: No interrupts are accepted between this instruction and the next instruction. Address

errors are accepted.
Operation:

STCSR(| ong n) /* STC SR, Rn */
{

R n] =SR

PC+=2;
}

STCGBR(| ong n) /* STC GBR, Rn */
{

R n] =GBR;

PC+=2;
}

STCVBR(long n) /* STC VBR Rn */
{

R n] =VBR,

PC+=2;

HITACHI 153

STCVSR(| ong n)

{
R n] -=4;
Wite_Long(R n], SR);
PC+=2;

}

STCMEBR(| ong n)

{
R n] - =4;
Wite_Long(R n], GBR);
PC+=2;

}

STCWBR(| ong n)

{
R n] - =4;
Wite_Long(R[n], VBR);
PC+=2;
}
Examples:
STC SR, RO Before execution

After execution
STC.L GBR @R15 Before execution
After execution

154 HITACHI

/* STC.L SR @Rn */

/* STC.L GBR @Rn */

/* STC.L VBR @Rn */

RO = H'FFFFFFFF, SR = H'00000000
RO = H'00000000

R15 = H'10000004

R15 = H'10000000, @R15 = GBR

6.61 STS(Store System Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract Code State T Bit
STS MACH, Rn MACH - Rn 0000nnNN00001010 1 —
STS MACL, Rn MACL - Rn 0000nnnn00011010 1 —
STS PR Rn PR - Rn 0000nnnn00101010 1 —
STS.L MACH @Rn Rn-4 - Rn, MACH - (Rn) 0100nnnn00000010 1 —
STS.L MACL, @Rn Rn-4 - Rn, MACL - (Rn) 0100nnnn00010010 1 —
STS.L PR @Rn Rn-4 - Rn,PR - (Rn) 0100nnnn00100010 1 —

Description: Stores system registers MACH, MACL and PR data into a specified destination.

Note: No interrupts are accepted between this instruction and the next instruction. Address

errors are accepted.

If the system register is MACH in the SH-1 series, the value of hit 9 is transferred to and
stored in the higher 22 bits (bits 31 to 10) of the destination. With the SH-2 series, the 32 bits
of MACH are stored directly.

Operation:

STSMACH(| ong n)

{
Rl n] =MACH,

/* STS MACH, Rh */

i f ((R[n]&x00000200)==0)
R[n] &0x000003FF;
el se R[n] | =OxFFFFFCOO;

PC+=2;
}

STSMACL(I ong n)
{
R[n] =MACL;
PC+=2;

/* STS MACL, Rn */

For SH-1 CPU (these 2 lines not

needed for SH-2 CPU)

HITACHI 155

STSPR(| ong n) /[* STS PR, Rn */
{

R n] =PR;

PC+=2;
}

STSMMVACH(I ong n) /* STS.L MACH, @Rn */
{
R n] —=4;

if ((MACH&0x00000200)==0)
Wite_Long(R n], MACH&0x000003FF) ; For SH-1 CPU

else Wite_Long
(R[n] , MACH| OxFFFFFQ00)

Wite Long(R[n], MACH); For SH-2 CPU

PC+=2;
}

STSMMACL(l ong n) /* STS.L MACL, @Rn */
{

R n] —=4;

Wite_Long(R n], MACL);

PC+=2;
}

STSMPR(| ong n) [* STS.L PR @Rn */

{
R n] —=4;
Wite_Long(R n], PR ;
PC+=2;
}
Example:

STS MACH, RO Before execution RO = H'FFFFFFFF, MACH = H'00000000
After execution RO = H'00000000

STS.L PR @R15 Before execution R15 = H'10000004
After execution R15 = H'10000000, @R15 = PR

156 HITACHI

6.62 SUB (Subtract Binary): Arithmetic Instruction

Format Abstract Code State T Bit

SUB Rm Rn Rn—Rm - Rn 0011nnnnmmm1000 1 —

Description: Subtracts general register Rm data from Rn data, and stores the result in Rn. To
subtract immediate data, use ADD #imm,Rn.

Operation:

SUB(long mlong n) /* SUB RmRn */

{
Rinl-=R(n;
PC+=2;
}
Example:

SUB RO,R1 Before execution RO = H'00000001, R1 = H'80000000
After execution R1 = H'7FFFFFFF

HITACHI 157

6.63 SUBC (Subtract with Carry): Arithmetic Instruction

Format Abstract Code State T Bit
SUBC RmMR Rn—Rm-T - Rn, Borrow - 0011nnnnmmm1010 1 Borrow
T

Description: Subtracts Rm data and the T bit value from general register Rn, and stores the
result in Rn. The T bit changes according to the result. This instruction is used for subtraction
of data that has more than 32 bits.

Operation:

SUBC(long mlong n) /* SUBC RmRn */

{
unsi gned | ong tnpoO, t npl;

tmpl=R(n]-Rni;
t npO=R{ n] ;
Rin] =tnpl-T,
if (tnmpO<tnpl) T=1;
el se T=0;
if (tmpl<R[n]) T=1;
PC+=2;
}
Examples:
CLRT RO:R1(64 bits) — R2:R3(64 bits) = RO:R1(64 bits)
SUBC R3,RL Before execution T =0, R1 = H'00000000, R3 = H'00000001
After execution T = 1, R1 = H'FFFFFFFF
SUBC R2, R0 Before execution T = 1, RO = H'00000000, R2 = H'00000000
After execution T = 1, RO = H'FFFFFFFF

158 HITACHI

6.64 SUBV (Subtract with V Flag Underflow Check): Arithmetic

Instruction
Format Abstract Code State T Bit
SUBVY RmPRn Rn—Rm - Rn, Underflow -~ T 001lnnnnnmmmilO1ll 1 Underflow

Description: Subtracts Rm data from general register Rn data, and stores the result in Rn. If
an underflow occurs, the T bit is set to 1.

Operation:

SUBV(long mlong n) /* SUBV Rm Rn */
{

| ong dest, src, ans;

if ((long)R n]>=0) dest=0;
el se dest =1;
if ((long) RQm >=0) src=0;
el se src=1;
src+=dest ;
RIn]-=Rn;
if ((long)R n]>=0) ans=0;
el se ans=1;
ans+=dest ;
if (src==1) {
if (ans==1) T=1;
el se T=0;
}
el se T=0;
PC+=2;
}

Examples:

SUBV RO,RlL Before execution RO = H'00000002, R1 = H'80000001
After execution R1 = H7FFFFFFF, T =1

SUBV R2,R3 Before execution R2 = H'FFFFFFFE, R3 = H'7FFFFFFE
After execution R3 = H'80000000, T = 1

HITACHI 159

6.65 SWAP (Swap Register Halves): Data Transfer Instruction

Format Abstract Code State T Bit

SWAP. B Rm Rn Rm - Swap upper and lower 0110nnnnmmmi000 1 —
halves of lower 2 bytes - Rn

SWAP. WRmM Rn Rm - Swap upper and lower 0110nnnnmmmi001 1 —
word - Rn

Description: Swaps the upper and lower bytes of the general register Rm data, and stores the
result in Rn. If a byte is specified, bits 0 to 7 of Rm are swapped for bits 8 to 15. The upper 16
bits of Rm are transferred to the upper 16 bits of Rn. If aword is specified, bits 0 to 15 of Rm

are swapped for bits 16 to 31.

Operation:

SWAPB(l ong mlong n) /* SWAP.B Rm Rn */

{
unsi gned | ong tenpO, tenpl;

t enpO=R[nj &xf f f f 0000;
t enmpl=(R n] &0x000000f f) <<8;
R n] =(R[nj >>8) &0x000000f f ;
RIn] =R n] | tenpl]| t enp0;
PC+=2;

}

SWAPW | ong m | ong n) /* SWAP. WRm Rn */
{

unsi gned | ong tenp;

t enp=(R[n] >>16) &0x0000FFFF;

Rl n] =R nj <<16;

R n] | =t enp;

PC+:2;
}

Examples

SWAP. B RO, Rl Before execution RO = H'12345678
After execution R1 = H'12347856

SWAP. W RO, Rl Before execution RO = H'12345678
After execution R1 = H'56781234

160 HITACHI

6.66 TAS(Test and Set): Logic Operation Instruction

Format Abstract Code State T Bit
TAS.B @n When(Rn)is0,1 -~ T,1 -~ MSB of 0100nnnn00011011 4 Test
(Rn) results

Description: Reads byte data from the address specified by general register Rn, and sets the
T bit to 1 if the datais O, or clears the T bit to O if the datais not 0. Then, data bit 7 is set to
1, and the data is written to the address specified by Rn. During this operation, the bus is not
released.

Operation:

TAS(long n) /* TAS.B @n */

{
I ong tenp;
tenp=(l ong) Read_Byte(R[n]); /* Bus Lock enable */
if (tenp==0) T=1,
el se T=0;
t enp| =0x00000080;
Wite_Byte(R n],tenp); /* Bus Lock disable */
PC+=2;

}

Example:
_LOOP TAS.B @7 R7 = 1000
BF _Loop Loops until data in address 1000 is 0

HITACHI 161

6.67 TRAPA (Trap Always): System Control Instruction

Format Abstract Code State T Bit
TRAPA #imm PC/SR - Stack area, (imm x 4 + 1100002%iiiiiiii 8 —
VBR) - PC

Description: Starts the trap exception processing. The PC and SR values are stored on the
stack, and the program branches to an address specified by the vector. The vector is a
memory address obtained by zero-extending the 8-bit immediate data and then quadrupling it.
The PC points the starting address of the next instruction. TRAPA and RTE are both used for
system calls.

Operation:

TRAPA(l ong i) /* TRAPA #i nm */

{
long i mm
i mm=(OX000000FF & i);
Rl 15] - =4;
Wite_Long(R[15], SR);
Rl 15] - =4;
Wite_Long(R 15], PC-2);
PC=Read_Long(VBR+(i mx<2)) +4;
}
Example:
Addr ess
VBR+H 80 .data.l 10000000

TRAPA #H 20 Branches to an address specified by data in address
VBR + H'80

TST #0, RO « Return address from the trap routine (stacked PC
value)

100000000 XOR RO, RO ~ Trap routine entrance
100000002 RTE Returns to the TST instruction
100000004 NOP Executes NOP before RTE

162 HITACHI

6.68 TST (Test Logical): Logic Operation Instruction

Format Abstract Code State T Bit

TST Rm Rn Rn & Rm, when resultis 0010nnnnmmmmi000 1 Test
0,1 -T results

TST #i mm RO RO & imm, when resultis 11001000iiiiiiii 1 Test
0,1 T results

TST. B (RO + GBR) & imm, when 11001100iiiiiiii 3 Test
#mm @RO, GBBR resultis0,1 -~ T results

)

Description: Logically ANDs the contents of general registers Rn and Rm, and sets the T bit
to 1if theresult is O or clears the T bit to O if the result is not 0. The Rn data does not
change. The contents of general register RO can also be ANDed with zero-extended 8-bit
immediate data, or the contents of 8-bit memory accessed by indirect indexed GBR
addressing can be ANDed with 8-bit immediate data. The RO and memory data do not
change.

Operation:

TST(long mlong n) /* TST RmRn */

{
if ((Rin]&R(nj)==0) T=1;
el se T=0;
PC+=2;
}
TSTI(long i) /* TEST #inm RO */
{
I ong tenp;
t enp=R[0] & 0x000000FF & (long)i);
if (tenp==0) T=1,
el se T=0;
PC+=2;
}
TSTMlong i) [/* TST.B #imm @RO, GBR) */
{
I ong tenp;

HITACHI 163

t emp=(1 ong) Read_Byt e(GBBR+R[0]) ;
t enp&=(0Xx000000FF & (long)i);

if (tenp==0) T=1;
el se T=0;
PC+=2;

}

Examples:

TST RO, RO

TST #H 80, RO

TST.B #H A5, @RO, GBR)

164 HITACHI

Before execution
After execution

Before execution
After execution

Before execution
After execution

RO = H'00000000
T=1

RO = H'FFFFFF7F
T=1

@(RO,GBR) = H'A5
T=0

6.69 XOR (Exclusive OR Logical): Logic Operation Instruction

Format Abstract Code State T Bit
XOR Rm Rn Rn~"Rm - Rn 0010nnnnmmm1010 1 —
XOR #i mm RO RO~ imm - RO 11001010iiiiiiii 1 —
XOR B #imm @R0, BR) (RO+GBR)"imm - (RO 11001110iiiiiiii 3 —

+ GBR)

Description: Exclusive ORs the contents of general registers Rn and Rm, and stores the
result in Rn. The contents of general register RO can also be exclusive ORed with zero-
extended 8-bit immediate data, or 8-bit memory accessed by indirect indexed GBR
addressing can be exclusive ORed with 8-bit immediate data.

Operation:

XOR(long mlong n) /* XOR RmRn */

{
RIn]*=R(n;
PC+=2;

}

XORI(long i) [/* XOR #immRO */

{
R 0] ~=(0x000000FF & (long)i);
PC+=2;

}

XORMlong i) /* XOR B #i nm @RO, GBBR) */

{
I ong tenp;
temp=(1 ong) Read_Byt e(GBBR+R[0]) ;
t enp”=(0x000000FF & (long)i);
Wite_Byte(GBR+R 0], tenp);
PC+=2;

}

HITACHI

165

Examples:

XOR RO, R1 Before execution RO = HAAAAAAAA, R1 = H'55555555
After execution R1 = H'FFFFFFFF

XOR #H FO, RO Before execution RO = H'FFFFFFFF
After execution RO = H'FFFFFFOF

XOR B #H A5, @ RO, GBR) Before execution @(RO,GBR) = H'A5
After execution @(RO,GBR) = H'00

166 HITACHI

6.70 XTRCT (Extract): Data Transfer Instruction

Format Abstract Code State T Bit
XTRCT RmRn Center 32 bits of Rmand Rn - 0010nnnnmmm101 1 —
Rn

Description: Extracts the middle 32 bits from the 64 bits of general registers Rm and Rn, and
stores the 32 bitsin Rn (figure 6.13).

MSB LSB MSB LSB
| Rm | | Rn

Rn

Figure 6.13 Extract
Operation:

XTRCT(l ong m | ong n) /* XTRCT Rm Rn */

{
unsi gned | ong tenp;
t emp=(R nj <<16) &0xFFFF0000;
R n] =(R[n] >>16) &x0000FFFF;
RIn] | =t enp;
PC+=2;

}

Example:

XTRCT RO, Rl Before execution RO = H'01234567, R1 = H'89ABCDEF
After execution R1 = H'456789AB

HITACHI 167

Section 7 Pipeline Operation

This section describes the operation of the pipelines for each instruction. This information is
provided to allow calculation of the required number of CPU instruction execution states
(system clock cycles).

7.1 Basic Configuration of Pipelines

Pipelines are composed of the following five stages:

e |IF (Instruction fetch) Fetches an instruction from the memory in which the program is
stored.

e ID (Instruction decode) Decodes the instruction fetched.

e EX (Instruction execution) Performs data operations and address cal culations
according to the results of decoding.

* MA (Memory access)Accesses data in memory. Generated by instructions that involve
memory access, with some exceptions.

« WB (Write back) Returns the results of the memory access (data) to a register.
Generated by instructions that involve memory loads, with some exceptions.

As shown in figure 7.1, these stages flow with the execution of the instructions and thereby
constitute a pipeline. At a given instant, five instructions are being executed simultaneously.
All instructions have at least 3 stages: IF, ID, and EX. Most, but not all, have stages MA and
WB as well. The way the pipeline flows also varies with the type of instruction. The basic
pipeline flow is as shown in figure 7.1; some pipelines differ, however, because of contention
between IF and MA. In figure 7.1, the period in which a single stage is operating is called a
dot.

4> 4> 4> O 4> P 4> P> 4> <> ;. Sot

Instruction 1 IF ID EX MA WB Instruction
Instruction 2 IF ID EX MA WB stream
Instruction 3 IF ID EX MA WB
Instruction 4 IF ID EX MA WB
Instruction 5 IF ID EX MA WB
Instruction 6 IF ID EX MA WB

-—>

Time

Figure 7.1 Basic Structure of Pipeline Flow

168 HITACHI

7.2 Slot and Pipeline Flow

The time period in which a single stage operates is called a slot. Slots must follow the rules
described below.

721 Instruction Execution

Each stage (IF, ID, EX, MA, and WB) of an instruction must be executed in one slot. Two or
more stages cannot be executed within one slot (figure 7.2), with exception of WB and MA.
Since WB is executed immediately after MA, however, some instructions may execute MA
and WB within the same slot.

X 4> 4—> 4> 4> 4> 4> <> 4> <> : Slot
Instruction 1 IF ID EX MA WB
Instruction 2 IF ID EX MA WB
Note: ID and EX of instruction 1 are being executed in the same slot.

Figure 7.2 Impossible Pipeline Flow 1

7.2.2 Slot Sharing

A maximum of one stage from another instruction may be set per slot, and that stage must be
different from the stage of the first instruction. Identical stages from two different instructions
may never be executed within the same slot (figure 7.3).

X 4> 4> 4> 4> 4> 4> <> <> <> <> : Slot
Instruction 1 IF ID EX MA WB
Instruction2 IF ID EX MA WB

Instruction 3 IF ID EX MA WB
Instruction 4 IF ID EX MA WB
Instruction 5 IF ID EX MA WB

Note: Same stage of another instruction is being executed in same slot.

Figure 7.3 Impossible Pipeline Flow 2

HITACHI 169

7.2.3 Slot Length

The number of states (system clock cycles) S for the execution of one slot is calculated with
the following conditions:

e S = (the cycles of the stage with the highest number of cycles of all instruction stages
contained in the slot)

This means that the instruction with the longest stage stalls others with shorter stages.
e The number of execution cycles for each stage:

O IF The number of memory access cycles for instruction fetch
0 ID Always one cycle

0 EX Always one cycle

0 MA The number of memory access cycles for data access

0 wB Always one cycle

As an example, figure 7.4 shows the flow of a pipeline in which the IF (memory access for
instruction fetch) of instructions 1 and 2 are two cycles, the MA (memory access for data
access) of instruction 1 is three cycles and all others are one cycle. The dashes indicate the
instruction is being stalled.

“——> “—> 4> «———p <> <> : Slot

2 (2) 1@ @O (1) (1) < Number of
Instruction 1 IF IF ID — EX MA MA MA WB cycles
Instruction 2 IF IF ID EX — — MA WB

Figure 7.4 Slots Requiring Multiple Cycles

170 HITACHI

7.3 Number of Instruction Execution States

The number of instruction execution states is counted as the interval between execution of
EX stages. The number of states between the start of the EX stage for instruction 1 and the
start of the EX stage for the following instruction (instruction 2) is the execution time for
instruction 1.

For example, in a pipeline flow like that shown in figure 7.5, the EX stage interval between
instructions 1 and 2 is five cycles, so the execution time for instruction 1 is five cycles. Since
the interval between EX stages for instructions 2 and 3 is one state, the execution time of
instruction 2 is one state.

If a program ends with instruction 3, the execution time for instruction 3 should be calculated
as the interval between the EX stage of instruction 3 and the EX stage of a hypothetical
instruction 4, using an MOV Rm, Rn that follows instruction 3. (In the case of figure 7.5, the
execution time of instruction 3 would thus be one cycle.) In this example, the MA of
instruction 1 and the IF of instruction 4 are in contention. For operation during the contention
between the MA and IF, see section 7.4, Contention Between Instruction Fetch (IF) and
Memory Access (MA). The execution time between instructions 1 and 3 in figure 7.5 is seven
states (5 + 1 + 1).

4“—> ¢“——> “—» «——P 4> <> : Slot

) 2 2 4 @ @
Instructonl IF IF ID — — MA MA MA WB
Instruction 2 IF IF D — — — —
Instruction 3 F IF — — — ID MA
(Instruction 4: MOV Rm, Rn IF 1D [EX])

Figure 7.5 How Instruction Execution States Are Counted

HITACHI 171

7.4 Contention Between Instruction Fetch (IF) and Memory Access
(MA)

7.4.1 Basic Operation When |F and MA are in Contention

The IF and MA stages both access memory, so they cannot operate simultaneously. When the
IF and MA stages both try to access memory within the same slot, the slot splits as shown in
figure 7.6. When there is a WB, it is executed immediately after the MA ends.

A B CcC D E F G
> > > > P> P> > <> <> Sot

Instruction1 IF ID EX WB MA of instruction 1 and IF of instruction 4
Instruction 2 IF ID EX WB contend at D

MA of instruction 2 and IF of instruction 5

Instruction 3 IF ID EX

contend at E
Instruction 4 ID EX
Instruction 5 ID EX

When MA and IF are in contention, the following occurs:

A B C D E F G
> > > “——> «——> <> <> : Slot
Instructon1 IF ID EX wB Split at D
Instruction 2 IF ID — EX wB Split at E
Instruction 3 IF — ID — EX
Instruction 4 — ID EX
Instruction 5 ID EX

Figure 7.6 Operation When IF and MA Arein Contention

The dlots in which MA and IF contend are split. MA is given priority to execute in the first
half (when there is a WB, it immediately follows the MA), and the EX, ID, and IF are
executed simultaneously in the latter half. For example, in figure 7.6 the MA of instruction 1
is executed in slot D while the EX of instruction 2, the ID of instruction 3 and IF of
instruction 4 are executed simultaneously thereafter. In slot E, the MA of instruction 2 is
given priority and the EX of instruction 3, the ID of instruction 4 and the IF of instruction 5
executed thereafter.

The number of states for a slot in which MA and IF are in contention is the sum of the
number of memory access cycles for the MA and the number of memory access cycles for the
IF.

172 HITACHI

7.4.2 The Relationship Between IF and the Location of Instructions in On-Chip
ROM/RAM or On-Chip Memory

When the instruction is located in the on-chip memory (ROM or RAM) or on-chip cache of
the SH microcomputer, the SH microcomputer accesses the on-chip memory in 32-bit units.
The SH microcomputer instructions are all fixed at 16 bits, so basically 2 instructions can be
fetched in a single IF stage access.

If an instruction is located on a longword boundary, an IF can get two instructions at each
instruction fetch. The IF of the next instruction does not generate a bus cycle to fetch an
instruction from memory. Since the next instruction IF also fetches two instructions, the
instruction |Fs after that do not generate a bus cycle either.

This means that |Fs of instructions that are located so they start from the longword boundaries
within instructions located in on-chip memory (the position when the bottom two bits of the
instruction address are 00 is A1 = 0 and AO = 0) also fetch two instructions. The IF of the
next instruction does not generate a bus cycle. IFs that do not generate bus cycles are written
in lower case as ‘if’. These ‘if’s aways take one state.

When branching results in a fetch from an instruction located so it starts from the word
boundaries (the position when the bottom two bits of the instruction address are 10 is Al = 1,
A0 = 0), the bus cycle of the IF fetches only the specified instruction more than one of said
instructions. The IF of the next instruction thus generates a bus cycle, and fetches two
instructions. Figure 7.7 illustrates these operations.

HITACHI 173

< 32 bits > > 4> > P> P> 4> > <> <> <> Sot

Instruc-|| Instruc- | -+ Instruction 1 ID EX
tion1 || tion2 Instruction 2 if ID EX
Instruc-|| Instruc- | -+ Instruction 3 D EX
tion 3 || tion 4 Instruction 4 if ID EX
Instruc-|| Instruc- | -+ Instruction 5 D EX
tion5 || tion 6 Instruction 6 if ID EX
(On-chip memory

or on-chip cache
P) : Bus cycle generated

if : No bus cycle

Fetching from an instruction (instruction 1) located on a longword boundary

> 4> 4> 4> 4> 4> 4> 4> 4> <> : Sot

Instruc- .
tion 2 || -+ Instruction 2 ID EX
-+ Instruction 3 ID EX
Instruc-|| Instruc- . .
tion 3 || tion 4 Instruction 4 if ID EX
- Instruction 5 ID EX
Instruc-|| Instruc- | ion 6 if
tion5 || tions nstruction i ID EX

: Bus cycle generated
if : No bus cycle

Fetching from an instruction (instruction 2) located on a word boundary

Figure 7.7 Relationship Between |F and Location of Instructions in On-Chip Memory

7.4.3 Relationship Between Position of Instructions Located in On-Chip ROM/RAM
or On-Chip Memory and Contention Between IF and MA

When an instruction is located in on-chip memory (ROM/RAM) or on-chip cache, there are
instruction fetch stages (‘if’ written in lower case) that do not generate bus cycles as
explained in section 7.4.2 above. When an if isin contention with an MA, the slot will not
split, as it does when an IF and an MA are in contention, because ifs and MAs can be
executed simultaneously. Such slots execute in the number of states the MA requires for
memory access, as illustrated in figure 7.8.

When programming, avoid contention of MA and IF whenever possible and pair MAs with ifs
to increase the instruction execution speed. Instructions that have 4 (5)-stage pipelines of IF,
ID, EX, MA, (WB) prevent stalls when they start from the longword boundaries in on-chip

174 HITACHI

memory (the position when the bottom 2 bits of instruction address are 00 is A1 = 0 and AO =
0) because the MA of the instruction falls in the same slot as ifs that follow.

< 32Dits “ 4> 4> 4> 4> <> 4> 4> > Sht
Instruc-|| Instruc- | - Instruction 1 IF 1D EX MA: WB

tionl || tion2 Instruction 2 if ID EX MA: WB

Instruc-|| Instruc- | -+ Instruction 3 IF ID — EX

tion3 || tion 4 Instruction 4 iif — D EX

Instruc-|| Instruc- | -+ Instruction 5 ID EX

tion5 || tion 6 Instruction 6 if ID EX

(On-chip memory . Splits

or on-chip cache) . if 1 : Does not split

MA in slot A is in contention with an if, so no split occurs.
MA in slot B is in contention with an IF, so it splits.

Figure 7.8 Relationship Between the Location of Instructions in On-Chip Memory and
Contention Between IF and MA

75 Effects of Memory Load I nstructions on Pipelines

Instructions that involve loading from memory return data to the destination register during
the WB stage that comes at the end of the pipeline. The WB stage of such a load instruction
(load instruction 1) will thus come after the EX stage of the instruction that immediately
follows it (instruction 2).

When instruction 2 uses the same destination register as load instruction 1, the contents of
that register will not be ready, so any slot containing the MA of instruction 1 and EX of
instruction 2 will split. The destination register of load instruction 1 is the same as the
destination (not the source) of instruction 2, so it splits.

When the destination of load instruction 1 is the status register (SR) and the flag in it is
fetched by instruction 2 (as ADDC does), a split occurs. No split occurs, however, in the
following cases:

* When instruction 2 is a load instruction and its destination is the same as that of load
instruction 1.

* When instruction 2 is Mac @Rm+, @Rn+, and the destination of load instruction 1 are
the same.

The number of states in the slot generated by the split is the number of MA cycles plus the
number of IF (or if) cycles, asillustrated in figure 7.9. This means the execution speed will

HITACHI 175

be lowered if the instruction that will use the results of the load instruction is placed
immediately after the load instruction. The instruction that uses the result of the load
instruction will not slow down the program if placed one or more instructions after the load
instruction.

<> 4> 4> «—>» <> <> Slot
Load instruction 1 (MOV.W @RO, R1) IF ID EX wB

Instruction 2 (ADD R1, R2) IF ID —
Instruction 3 IF — ID EX -
Instruction 4 IF ID -

Figure 7.9 Effects of Memory Load Instructions on the Pipeline

7.6 Programming Guide
To improve instruction execution speed, consider the following when programming:

e To prevent contention between MA and IF, locate instructions that have MA stages so
they start from the longword boundaries of on-chip memory (the position when the bottom
two hits of the instruction address are 00 is A1 = 0 and A0 = Q) wherever possible.

e Theinstruction that immediately follows an instruction that loads from memory should not
use the same destination register as the load instruction.

« Locate instructions that use the multiplier nonconsecutively. Also locate nonconsecutively
an access to the MACH or MACL register for fetching the results from the multiplier and
an instruction that uses the multiplier.

176 HITACHI

1.7 Operation of Instruction Pipelines

This section describes the operation of the instruction pipelines. By combining these with the
rules described so far, the way pipelines flow in a program and the number of instruction
execution states can be calculated.

In the following figures, “Instruction A” refers to the instruction being described. When “1F”
is written in the instruction fetch stage, it may refer to either “IF” or “if”. When there is
contention between IF and MA, the slot will split, but the manner of the split is not
described in the tables, with a few exceptions. When a slot has split, see section 7.4,
Contention Between Instruction Fetch (IF) and Memory Access (MA). Base your response on
the rules for pipeline operation given there.

Table 7.1 lists the format for number of instruction stages and execution states:

Table 7.1 Format for the Number of Stages and Execution States for Instructions

Type Category Stage State Contention Instruction
Functional Instruction Number Number Contention that Corresponding instructions
types sare of of occurs represented by mnemonic
catego- stages execu-
rized inan tion
based on instruc- states
operations tion when
no
conten-
tion
occurs

Table 7.2 Number of Instruction Stages and Execution States

Type Category Stage State Contention Instruction
Data Register- 3 1 — MoV #i Mm Rn
transfer register NOV Rm Rn
instructions transfer .
instructions MOVA @di sp, PC), RO
MWVT R
SWAP. B Rm Rn
SWAP. WRmM Rn
XTRCT RmRn

HITACHI 177

Table 7.2 Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction
Data Memory 5 1 » Contention MV. W @di sp, PC), Rn
transfer load occurs if the MOV. L @di sp, PC), Rn
instructions instructions instruction ' ' '
(cont) placed MOV. B @m Rn
immediately MOV. W @m Rn
after this one
uses the same MV. L @Rm Rn
destination MOV.B @, Rn
register MOV. W @+, Rn
* MA contends MOV.L @+, Rn
with IF MOV. B @disp, R, RO
MWV. W @disp, Rm, RO
MWV.L @disp, Rm,Rn
MWV.B @RO, Rm, Rn
MWV. W @ RO, Rm, Rn
MW.L @RO,RM, Rn
MWV.B @disp, GBR), RO
MWV. W @disp, GBR), RO
MWV.L @disp, GBR), RO
Memory 4 1 * MA contends M. B Rm @n
store with IF MOV. W Rm @R
instructions '
MOV.L Rm @Rn
MOV.B Rm @Rn
MOV. W Rm @-Rn
MOV.L Rm @Rn
MOV.B RO, @di sp, Rn)
MOV. W RO, @di sp, Rn)
MOV.L Rm @di sp, Rn)
M. B Rm @ RO, Rn)
MV. W Rm @ RO, Rn)
MOV.L Rm @ RO, Rn)
M. B RO, @di sp, GBR)

MOV. W
MOV. L

RO, @di sp, GBR)
RO, @di sp, GBR)

178 HITACHI

Table 7.2 Number of Instruction Stages and Execution States (cont)

Type

Category Stage State Contention

Instruction

Arithmetic
instructions

Notes 1.

Arithmetic 3
instructions
between
registers
(except
multiplic-

ation

instruc-

tions)

1 J—

ADD RM Rn
ADD #i mm Rn
ADDC RmRn
ADDV RmRn
CVP/ EQ #i nm RO
CWP/ EQ RmRn
CWP/HS Rm Rn
CWP/ GE RmRn
CW/ H RmRn
CWP/ GT RmRn
CWI PZ Rn
CW/ PL Ri
CWP/ STR Rm Rn
DVL RmRn

DVOS RmRn
D VouU
Dr Rn*3

EXTS.B Rm Rn
EXTS. W Rm Rn
EXTU. B Rm Rn
EXTU. W Rm Rn
NEG Rm Rn
NEGC Rm Rn
SUB Rm Rn
SUBC Rm Rn
SUBV Rm Rn

stages; in the SH-1 CPU, multiply/accumulate instructions are 8 stages, multiply
instructions 7 stages
2. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions)

SH-2 CPU instructions

HITACHI

In the SH-2 CPU, multiply/accumulate instructions are 7 stages, multiply instructions 6

179

Table 7.2 Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction
Arithmetic Multiply/ 7/8*1 3/(2)*2 « Multiplier contention MAC. W @Rm+, @+
instructions accumulate occurs when an
(cont) instructions instruction that uses
the multiplier follows
a MAC instruction
MA contends with IF
Double- 9 3/(2 to Multiplier contention MAC. L @m#+, @Rn+* 3
length 4y*2 occurs when an
multiply/ instruction that uses
accumulate the multiplier follows
instruction a MAC instruction
(SH-2 CPU MA contends with IF
only)
Multiplic- 6/7*1 1 to 3*2 Multiplier contention MJLS. WRmM Rn
ation occurs when an MULU. WRM Rn
instructions instruc-tion that uses
the multiplier follows
a MUL instruction
MA contends with IF
Double- 9 2 to 4*2 Multiplier contention DMJLS. L
length occurs when an Rm Rn*3
multiply/ instruction that uses DVULU. L
accumulate the multiplier follows Rm Rn* 3
instruction a MAC instruction ML.L RmR*3
(SH-2 CPU MA contends with IF '
only)
Logic Register- 3 1 — AND Rm Rn
operation register AND # mm RO
instructions logic
operation NOT Rm Rn
instructions OR Rm Rn
OR #i mm RO
TST Rm Rn
TST #i nm RO
XOR Rm Rn
XOR #i mm RO

Notes 1. Inthe SH-2 CPU, multiply/accumulate instructions are 7 stages, multiply instructions 6

stages; in the SH-1 CPU, multiply/accumulate instructions are 8 stages, multiply
instructions 7 stages

2. The normal minimum number of execution states (The number in parentheses is the
number of cycles when there is contention with following instructions)

3. SH-2 CPU instructions

180 HITACHI

Table 7.2 Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction
Logic . Memory logic 6 3 . MA contends AND.B #i mm @ RO, GBR)
cperater , gperatons, M e i@, @R
(cont) TST.B #i mm @ RO, GBR)
XOR B #i mm @ RO, GBR)
TAS instruction 6 4 * MA contends TAS.B @i
with IF
Shift Shift 3 1 — ROTL R
instructions instructions ROR R
ROTCL Rn
ROTCR Rn
SHAL Rn
SHAR Rn
SHLL R
SHLR R
SHLL2 Rn
SHR2 R
SHLL8 R
SHLR8 R
SHLL16 R
SHLR16 R
Branch Conditional 3 31 — BF | abel
instructions .branch. BT | abel
instructions
Delayed 3 2/11%4 — BF/S | abel *3
conditional BT/S |abel*3
instructions
(SH-2 CPU
only)
Unconditional 3 2 — BRA | abel
ibnr:tl:ﬁgtions BRAF Rt?
BSR | abel
BSRF Rnt3
JMP @Rm
JSR @Rm
RTS

Notes 3. SH-2 CPU instruction
4. One state when there is no branch

HITACHI 181

Table 7.2 Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction
System System 3 1 — CLRT
control _control 'ALU LDC Rm SR
instructions instructions
LDC Rm GBR
LDC Rm VBR
LDS Rm PR
NCP
SETT
STC SR Rn
STC @GBR, Rn
STC VBR, Rn
STS PR, Rn
LDC.L 5 3 + Contention LDC. L @Rm+, SR
instruction pccurs yvhen an | pcL @M+, GBR
instruction that
uses the same LDC L @Rmt+, VBR
destination
register is placed
immediately after
this instruction
* MA contends
with IF
STC.L 4 2 « MA contends STC.L SR @Rn
instructions with IF STC.L GBR @Rn
STC.L VBR @-Rn
LDS.L 5 1 » Contention LDS. L @m+, PR
instructions occurs when an
(PR) instruction that
uses the same
destination
register is placed
immediately after
this instruction
* MA contends
with IF
STS.L 4 1 * MA contends STS.L PR, @Rn
instruction with IF
(PR)

182 HITACHI

Table 7.2 Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction
System Register - 4 1 « Contention CLRVAC
control MAC occurs with LDS Rm MACH
instructions transfer multiplier
(cont) instruction « MA contends LDS Rm MACL
with IF
Memory - 4 1 « Contention LDS. L @m+, MVACH
MAC occurs with LDS. L @Rm+, MACL
transfer multiplier '
instructions « MA contends
with IF
MAC - 5 1 ¢ Contention STS MACH, Rn
register occurs with sTS MACL. Rn
transfer multiplier '
instruction « Contention
occurs when an
instruction that
uses the same
destination
register is placed
immediately after
this instruction
« MA contends
with IF
MAC - 4 1 + Contention STS.L NACH, @Rn
memory occurs with STS.L MACL, @Rn
transfer multiplier '
instruction « MA contends
with IF
RTE 5 4 — RTE
instruction
TRAP 9 8 — TRAPA #imm
instruction
SLEEP 3 3 — SLEEP
instruction

HITACHI

183

7.7.1 Data Transfer Instructions

Register-Register Transfer Instructions: Include the following instruction types:

¢ MOV #imm, Rn

« MOV Rm, Rn

« MOVA @(disp, PC), RO
« MOVT Rn

+ SWAP.B Rm, Rn
« SWAPW Rm, Rn
« XTRCT Rm, Rn

<> 4> 4> > > <> Slot
lInstruction A IF__ ID _EX]|
Next instruction IF ID EX -
Third instruction IF ID EX -

Figure 7.10 Register-Register Transfer Instruction Pipeline

Operation: The pipeline ends after three stages: IF, ID, and EX. Data is transferred in the EX
stage via the ALU.

Memory Load Instructions: Include the following instruction types:

« MOV.W @(disp, PC), Rn
« MOV.L @(disp, PC), Rn
« MOV.B @Rm, Rn

e MOV.W @Rm, Rn

e MOV.L @Rm, Rn

« MOV.B @Rm+, Rn

« MOV.W @Rm+, Rn

e MOV.L @Rm+, Rn

e MOV.B @(disp, Rm), RO
« MOV.W @(disp, Rm), RO
e MOV.L @(disp, Rm), Rn
- MOV.B @(RO, Rm), Rn
« MOV.W @(RO, Rm), Rn
« MOV.L @(RO, Rm), Rn
e MOV.B @(disp, GBR), RO

184 HITACHI

MOV.W
MOV .L

@(disp, GBR), RO
@(disp, GBR), RO

<> 4> 4> <> <> <4> : Sot

[Instruction A

MB__WB|

Next instruction
Third instruction

EX e

Figure 7.11 Memory Load Instruction Pipeline

Operation: The pipeline has five stages: IF, ID, EX, MA, and WB (figure 7.11). If an
instruction that uses the same destination register as this instruction is placed immediately
after it, contention will occur. (See Section 7.5, Effects of Memory Load Instructions on
Pipelines.)

Memory Store Instructions: Include the following instruction types:

MOV.B
MOV.W
MOV.L
MOV.B
MOV.W
MOV .L
MOV.B
MOV.W
MOV L
MOV.B
MOV.W
MOV .L
MOV.B
MOV.W
MOV L

Rm, @Rn

Rm, @Rn

Rm, @Rn

Rm, @-Rn

Rm, @-Rn

Rm, @-Rn

RO, @(disp, Rn)
RO, @(disp, Rn)
Rm, @(disp, Rn)
Rm, @(RO, Rn)
Rm, @(RO, Rn)
Rm, @(RO, Rn)
RO, @(disp, GBR)
RO, @(disp, GBR)
RO, @(disp, GBR)

HITACHI 185

<> 4> 4> > > <> Slot
linstructon A IF__ID _EX_MA]
Next instruction IF ID EX -
Third instruction IF ID EX -

Figure 7.12 Memory Store Instruction Pipeline

Operation: The pipeline has four stages: IF, 1D, EX, and MA (figure 7.12). Data is not
returned to the register so there is no WB stage.

77.2 Arithmetic Instructions

Arithmetic Instructions between Registers (Except Multiplication Instructions): Include
the following instruction types:

ADDRmM, Rn
ADD#imm, Rn

ADDC Rm, Rn
ADDV Rm, Rn
CMP/EQ #imm, RO
CMP/EQ Rm, Rn
CMP/HS Rm, Rn
CMP/GE Rm, Rn

CMP/HI Rm, Rn
CMP/GT Rm, Rn
CMP/PZ Rn
CMP/PL Rn
CMP/STR Rm, Rn
DIV1 Rm, Rn
DIVOS Rm, Rn
DIVOU

DT Rn (SH-2 CPU only)
EXTS.B Rm, Rn
EXTSW Rm, Rn
EXTU.B Rm, Rn
EXTU.W Rm, Rn

NEG Rm, Rn

NEGC Rm, Rn

186 HITACHI

« SUBRmM, Rn
e SUBC
« SUBV

Rm, Rn
Rm, Rn

<> <> 4> <> <> <> Sot

[Instruction A IF__ ID EX|
Next instruction IF ID EX -
Third instruction IF ID EX -

Figure 7.13 Pipeline for Arithmetic Instructions between Registers Except

Multiplication Instructions

Operation: The pipeline has three stages: IF, 1D, and EX (figure 8.13). The data operation is
completed in the EX stage viathe ALU.

HITACHI 187

Multiply/Accumulate Instruction (SH-1 CPU): Includes the following instruction type:

- MACW @Rm+, @Rn+

> > <> > > > <> <> Sot
[MACW IF ID EX MA MA mm mm mm]
Next instruction IF — ID EX MA WB
Third instruction IF ID EX MA WB

Figure 7.14 Multiply/Accumulate Instruction Pipeline

Operation: The pipeline has eight stages. IF, ID, EX, MA, MA, mm, mm, and mm (figure
8.14). The second MA reads the memory and accesses the multiplier. The mm indicates that
the multiplier is operating. The mm operates for three cycles after the final MA ends,
regardless of slot. The ID of the instruction after the MAC.W instruction is stalled for one slot.
The two MAs of the MAC.W instruction, when they contend with IF, split the slots as
described in section 7.4, Contention Between Instruction Fetch (IF) and Memory Access
(MA).

When an instruction that does not use the multiplier follows the MAC.W instruction, the
MAC.W instruction may be considered to be five-stage pipeline instructions of IF, ID, EX,
MA, and MA. In such cases, the ID of the next instruction simply stalls one slot and
thereafter the pipeline operates normally. When an instruction that uses the multiplier comes
after the MAC.W instruction, contention occurs with the multiplier, so operation is not as
normal. This occurs in the following cases:

When a MAC.W instruction is located immediately after another MAC.W instruction
When a MULS.W instruction is located immediately after a MAC.W instruction

When an STS (register) instruction is located immediately after a MAC.W instruction
When an STS.L (memory) instruction is located immediately after a MAC.W instruction
When an LDS (register) instruction is located immediately after a MAC.W instruction
When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

o A~ WDN P

188 HITACHI

1. When a MAC.W instruction is located immediately after another MAC.W instruction

When the second MA of a MAC.W instruction contends with an mm generated by a
preceding multiplier-type instruction, the bus cycle of that MA is extended until the mm

ends (the M—A shown in the dotted line box below) and that extended MA occupies one
slot.

If one or more instruction not related to the multiplier is located between the MAC.W
instructions, multiplier contention between MAC instructions does not cause stalls (figure
7.15).

4> 4> 4> > > > <—rp 4> <> <> Sot

|MAC.W IF ID EX MA MA mm :mm._mm:

MAC.W IF — ID EX MA M—A mm mm mm

Third instruction IF — ID EX — MA -

P O P P P P > > P> <> > <> Sot
[MACW IF ID EX MA MA mm mm .mm

Other instruction IF — ID EX MA WB
MAC.W IF ID EX MA MA: mm mm mm -

Figure 7.15 Unrelated Instructions between MAC.W Instructions

Sometimes consecutive MAC.Ws may not have multiplier contention even when MA and
IF contention causes misalignment of instruction execution. Figure 7.16 illustrates a case
of this type. This figure assumes MA and IF contention.

> > D D > D P> —P> 4> <4—> <> Sot
[MACW if ID EX MA MA mm mm n

MAC.W IF — ID EX MA — MA'mm:mm mm:
MAC.W f — — ID
MAC.W IF — ID EX — MA'M—A ‘mm -

Figure 7.16 Consecutive MAC.Ws without Misalignment

HITACHI 189

When the second MA of the MAC.W instruction is extended until the mm ends,
contention between MA and IF will split the dlot, as usual. Figure 7.17 illustrates a case of

this type. This figure assumes MA and IF contention.

4O O D > 4> > C——— P 4> 4> > > <> Sot

[MACW IF ID EX MA — '
if — — ID EX MA M—A: mm mm mm

MACW if — — ID EX MA:M—A

Other instruction IF — ID — — EX MA ...

Other instruction f — — ID EX .
IF

Other instruction

Figure 7.17 MA and IF Contention

190 HITACHI

2. When a MULS.W instructions is located immediately after a MAC.W instruction
A MULS.W instruction has an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with an operating MAC instruction multiplier (mm), the
MA is extended until the mm ends (the M—A shown in the dotted line box in figure 7.18)
to create a single slot. When two or more instructions not related to the multiplier come
between the MAC.W and MULS.W instructions, MAC.W and MULS.W contention does
not cause stalling. When the MULS.W MA and IF contend, the slot is split.

> > D > > > > > > > > > Sot

|MAC.W IF ID EX MA MA :
MULS.W IF — ID EX:

Other instruction IF ID

> > 4> 4> O 4> —> 4> 4> 4> 4> > > Slot

[MACW IF ID EX MA MA mm :mm mm:

Other instruction IF — ID EX
MULS.W IF ID EX M—A mm mm mm
Other instruction IF ID EX — MA -

P O 4 4 4 4 O > O 4D > 4> > <> Sot

[MACW IF ID EX MA MA mm mm :imm:

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB

MULS.W IF ID EX:MA mm mm mm
Other instruction IF ID EX MA -

Figure 7.18 MULSMW Instruction Immediately After a MAC.W Instruction

HITACHI 191

3. When an STS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in a general-purpose register using an
STS instruction, an MA stage for accessing the multiplier is added to the STS instruction,
as described later. When the MA of the STS instruction contends with the operating
multiplier (mm), the MA is extended until the mm ends (the M—A shown in the dotted
line box in figure 7.19) to create a single slot. The MA of the STS contends with the IF.
Figure 7.19 illustrates how this occurs, assuming MA and IF contention.

P D > P> > C——————————— p 4> 4> Sot

[MACW IF ID EX MA — MA mm mm mm|
STS f — — ID EX M——A WB
Other instruction IF D — — — EXMA
Other instruction f — — — ID EX
Other instruction IF ID EX -

[MAC.W
STS
Other instruction

Other instruction

Other instruction

Figure 7.19 STS (Register) Instruction Immediately After a MAC.W Instruction

192 HITACHI

4. When an STS.L (memory) instruction is located immediately after a MAC.W instruction
When the contents of a MAC register are stored in memory using an STS instruction, an
MA stage for accessing the multiplier and writing to memory is added to the STS
instruction, as described later. When the MA of the STS instruction contends with the
operating multiplier (mm), the MA is extended until one state after the mm ends (the
M—A shown in the dotted line box in figure 7.20) to create a single slot. The MA of the
STS contends with the IF. Figure 7.20 illustrates how this occurs, assuming MA and IF
contention.

> > > —> > « P> 4> 4> <> <> Slot
[MACW IF ID EX MA —
STS.L if — — ID
Other instruction IF
Other instruction f — — — — ID EX
Other instruction IF ID EX oo

O D > > > 4P 4> 4> > > > <> Sot

[MACW if ID EX MA MA mm mm mm:

STS.L IF — ID — EX M—A:
Other instruction if — ID EX
Other instruction IF ID — — EX
Other instruction f — — ID EX -

Figure 7.20 STS.L (Memory) Instruction Immediately After a MAC.W Instruction

HITACHI 193

5. When an LDS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction,
as described later. When the MA of the LDS instruction contends with the operating
multiplier (mm), the MA is extended until the mm ends (the M—A shown in the dotted
line box in figure 7.21) to create a single slot. The MA of this LDS contends with IF.
Figure 7.21 illustrates how this occurs, assuming MA and IF contention.

> > 4> > 4> —————————————p 4> > > Sot

[MACW IF ID EX MA — MA mm_mm mm]
LDS it — — ID EX M———A
Other instruction IF ID — — — EXMA
Other instruction f — — — ID EX
Other instruction IF ID EX -

> > > > > > > > > > > <> Sot

[MAC.W if '
LDS
Other instruction
Other instruction
Other instruction

Figure 7.21 LDS (Register) Instruction Immediately After a MAC.W Instruction

194 HITACHI

6. When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction,
an MA stage for accessing the memory and the multiplier is added to the LDS instruction,
as described later. When the MA of the LDS instruction contends with the operating
multiplier (mm), the MA is extended until the mm ends (the M—A shown in the dotted
line box in figure 7.22) to create a single slot. The MA of the LDS contends with IF.
Figure 7.22 illustrates how this occurs, assuming MA and IF contention.

G D P P P> P P> > <> Sot
[MACW IF ID EX MA
LDS.L if — —

Other instruction EX MA
Other instruction f — — — ID EX
Other instruction IF ID EX =

4> 4D 4D 44— —> 4> 4> > > > <> Slot

[MAC.W if]

LDS.L if — ID — EX M—A
Other instruction if — ID EX
Other instruction IF ID — EX MA
Other instruction if — ID EX -

Figure 7.22 LDSL (Memory) Instruction Immediately After a MAC.W Instruction

HITACHI 195

Multiply/Accumulate Instruction (SH-2 CPU): Includes the following instruction type:

- MACW @Rm+, @Rn+

> 4> > > > > <> <> Sot
[MACW IF ID EX MA MA mm mm|
Next instruction IF — ID EX MA WB
Third instruction IF ID EX MA WB

Figure 7.23 Multiply/Accumulate Instruction Pipeline

Operation: The pipeline has seven stages: IF, ID, EX, MA, MA, mm and mm (figure 7.23).
The second MA reads the memory and accesses the multiplier. The mm indicates that the
multiplier is operating. The mm operates for two cycles after the final MA ends, regardless of
dlot. The ID of the instruction after the MAC.W instruction is stalled for one slot. The two
MAs of the MAC.W instruction, when they contend with IF, split the slots as described in
Section 7.4, Contention Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.W instruction, the
MAC.W instruction may be considered to be a five-stage pipeline instructions of IF, ID, EX,
MA, and MA. In such cases, the ID of the next instruction simply stalls one slot and
thereafter the pipeline operates normally. When an instruction that uses the multiplier comes
after the MAC.W instruction, contention occurs with the multiplier, so operation is not as
normal. This occurs in the following cases:

When a MAC.W instruction is located immediately after another MAC.W instruction
When a MAC.L instruction is located immediately after a MAC.W instruction

When a MULS.W instruction is located immediately after a MAC.W instruction

When a DMULS.L instruction is located immediately after a MAC.W instruction

When an STS (register) instruction is located immediately after a MAC.W instruction
When an STS.L (memory) instruction is located immediately after a MAC.W instruction
When an LDS (register) instruction is located immediately after a MAC.W instruction
When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

O N A~ WP

196 HITACHI

1. When a MAC.W instruction is located immediately after another MAC.W instruction

The second MA of a MAC.W instruction does not contend with an mm generated by a
preceding multiplication instruction.

> 4> 4> 4> 4> 4> 4> 4> 4> <> <> St
[MACW F ID EX MA MA mm .mm:
MAC.W IF

Third instruction

Figure 7.24 MAC.W Instruction That Immediately Follows Another MAC.W
instruction

Sometimes consecutive MAC.Ws may have misalignment of instruction execution caused

by MA and IF contention. Figure 7.25 illustrates a case of this type. This figure assumes
MA and IF contention.

> 4 4> 4 4> > O 4 > 4> 4> 4> <> Sot

[MACW if ID EX MA MA mm mm]|

MAC.W IF — ID EX MA — MA mm mm
MAC.W if — — ID EX MA MA mm mm
MAC.W

IF — ID EX MA MA mm -

Figure 7.25 Consecutive MAC.Ws with Misalignment

HITACHI 197

When the second MA of the MAC.W instruction contends with IF, the slot will split as
usual. Figure 7.26 illustrates a case of this type. This figure assumes MA and IF

contention.
4> 4> 4> > > > > > 4> > <> > Sot
MACW IF ID EX MA — MA mm :mm:
MAC.W if — — ID EX MA:MA mm mm
Other instruction IF — ID — EX MA
Other instruction if — ID EX
Other instruction IF

Figure 7.26 MA and IF Contention

2. When a MAC.L instruction is located immediately after a MAC.W instruction
The second MA of a MAC.W instruction does not contend with an mm generated by a

preceding multipli

cation instruction (figure 7.27).

> 4> > > 4> 4> > 4> 4> <> <> Sot

[MACW IF ID EX MA MA mm mm:

MAC.L IF — ID EX MA : MA: mm mm mm mm

Third instruction

Figure 7.27 MAC.L Instructions Immediately After a MAC.W Instruction

198 HITACHI

. When a MULS.W instruction is located immediately after a MAC.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with an operating MAC.W instruction multiplier (mm), the
MA is extended until the mm ends (the M—A shown in the dotted line box in figure 7.28)
to create a single slot. When one or more instructions not related to the multiplier come
between the MAC.W and MULS.W instructions, MAC.W and MULS.W contention does
not cause stalling. There is no MULSW MA contention while the MAC.W instruction
multiplier is operating (mm). When the MULS.W MA and IF contend, the slot is split.

G O D D O > 4> > D > > > <> Sot

MULS.W IF —
Other instruction

MACW IF ID EX MA MA mm:mm:

Other instruction IF — ID EX
MULS.W IF ID EX :MA: mm mm
Other instruction IF ID EX MA

Figure 7.28 MULSMW Instruction Immediately After a MAC.W Instruction

. When a DMULSL.L instruction is located immediately after a MAC.W instruction
DMULSL.L instructions have an MA stage for accessing the multiplier, but there is no
DMULS.L MA contention while the MAC.W instruction multiplier is operating (mm).
When the DMULS.L MA and IF contend, the slot is split (figure 7.29).

P 4 > O > > O O O O > > <> <> Sot

MACW IF ID EX MA MA mm: mm:
DMULS.L IF — ID EX MA:MA:mm mm mm mm

Other instruction IF — ID EX MA

Figure 7.29 DMULSL Instructions Immediately After a MAC.W Instruction

HITACHI 199

5. When an STS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in a general-purpose register using an
STS instruction, an MA stage for accessing the multiplier is added to the STS instruction,
as described later. When the MA of the STS instruction contends with the operating
multiplier (mm), the MA is extended until the mm ends (the M—A shown in the dotted
line box in figure 7.30) to create a single slot. The MA of the STS contends with the IF.
Figure 7.30 illustrates how this occurs, assuming MA and IF contention.

G D 44— 4> > > > > > <> Sot

|MAC.W IF ID EX MA — MA‘mm mm:
STS f — — ID EX:M—A:WB
Other instruction IF ID — — EX MA
Other instruction f — — ID EX
Other instruction IF ID EX

MAC.W if ID EX MA MA mm:mm:

STS IF — ID — EX:MA:WB
Other instruction if — ID EX
Other instruction IF ID EX MA
Other instruction if ID EX

Figure 7.30 STS (Register) Instruction Immediately After a MAC.W Instruction

200 HITACHI

6. When an STS.L (memory) instruction is located immediately after a MAC.W instruction
When the contents of a MAC register are stored in memory using an STS instruction, an
MA stage for accessing the memory and the multiplier and writing to memory is added to
the STS instruction, as described later. Figure 7.31 illustrates how this occurs, assuming
MA and IF contention.

<> > P> P 4P 4> 4> > > > <> St
MACW IF ID EX MA —

STS.L if — — ID EX: M—,
Other instruction IF
Other instruction if — — ID EX
Other instruction IF ID EX

STS.L IF — ID — EX MA:
Other instruction if — ID EX
Other instruction IF ID EX
Other instruction if ID EX

Figure 7.31 STS.L (Memory) Instruction Immediately After a MAC.W Instruction

HITACHI 201

7. When an LDS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction,
as described later. When the MA of the LDS instruction contends with the operating
multiplier (mm), the MA is extended until the mm ends (the M—A shown in the dotted
line box in figure 7.32) to create a single slot. The MA of this LDS contends with IF.
Figure 7.32 illustrates how this occurs, assuming MA and IF contention.

G D D > 4> > 4> 4> > > > Sot

MACW IF ID EX MA — MA mm mm:
LDS f — — ID EX M—A :
Other instruction IF ID — — EX MA
Other instruction f — — ID EX
Other instruction IF ID EX

D O O 4 4> > D 4> D> D> > <> Sot

MAC.W if ID EX MA MA mm:mm:

LDS IF — ID — EX:MA:
Other instruction if — ID EX
Other instruction IF ID EX
Other instruction if ID EX

Figure 7.32 LDS (Register) Instruction Immediately After a MAC.W Instruction

202 HITACHI

8. When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction,
an MA stage for accessing the multiplier is added to the LDS instruction, as described
later. When the MA of the LDS instruction contends with the operating multiplier (mm),
the MA is extended until the mm ends (the M—A shown in the dotted line box in figure
7.33) to create a single slot. The MA of the LDS contends with IF. Figure 7.33 illustrates
how this occurs, assuming MA and IF contention.

> 4 > > > 4> 4> > > > <> Sot

MACW IF ID EX MA — MA mm mm:

LDS.L if — — ID EX M—A:
Other instruction IF ID — — EX
Other instruction f — — ID EX
Other instruction IF ID EX

MAC.W if :
LDS.L IF — ID — EX:MA:
Other instruction if — ID EX
Other instruction IF ID EX
Other instruction if ID EX

Figure 7.33 LDSL (Memory) Instruction Immediately After a MAC.W Instruction

HITACHI 203

Double-Length Multiply/Accumulate Instruction (SH-2 CPU): Includes the following
instruction type:

- MACL @Rm+, @Rn+ (SH-2 CPU only)

> 4> > > > > > > > St
[MACL IF ID EX MA MA mm mm mm mm |
Next instruction IF — ID EX MA WB
Third instruction IF ID EX MA WB

Figure 7.34 Multiply/Accumulate Instruction Pipeline

Operation: The pipeline has nine stages. IF, ID, EX, MA, MA, mm, mm, mm, and mm
(figure 7.34). The second MA reads the memory and accesses the multiplier. The mm
indicates that the multiplier is operating. The mm operates for four cycles after the final MA
ends, regardless of aslot. The ID of the instruction after the MAC.L instruction is stalled for
one slot. The two MAs of the MAC.L instruction, when they contend with IF, split the slots as
described in Section 7.4, Contention Between Instruction Fetch (IF) and Memory Access
(MA).

When an instruction that does not use the multiplier follows the MAC.L instruction, the
MAC.L instruction may be considered to be five-stage pipeline instructions of IF, ID, EX,
MA, and MA. In such cases, the ID of the next instruction simply stalls one slot and
thereafter the pipeline operates normally. When an instruction that uses the multiplier comes
after the MAC.L instruction, contention occurs with the multiplier, so operation is not as
normal. This occurs in the following cases:

When a MAC.L instruction is located immediately after another MAC.L instruction
When a MAC.W instruction is located immediately after a MAC.L instruction

When a DMULS.L instruction is located immediately after a MAC.L instruction

When a MULS.W instruction is located immediately after a MAC.L instruction

When an STS (register) instruction is located immediately after a MAC.L instruction
When an STS.L (memory) instruction is located immediately after a MAC.L instruction
When an LDS (register) instruction is located immediately after a MAC.L instruction
When an LDS.L (memory) instruction is located immediately after a MAC.L instruction

O N O A~ WDNRE

204 HITACHI

1

When a MAC.L instruction is located immediately after another MAC.L instruction

When the second MA of the MAC.L instruction contends with the mm produced by the
previous multiplication instruction, the MA bus cycle is extended until the mm ends (the
M—A shown in the dotted line box in figure 7.35) to create a single slot. When two or
more instructions that do not use the multiplier occur between two MAC.L instructions,
the stall caused by multiplier contention between MAC.L instructions is eliminated.

O > > D > P> —————p 4> > > <> Sot

| MAC.L IF ID EX MA MA :
MAC.L IF — ID EX
Third instruction IF —

> D 4 O 4 O 4P O O > > > <> Sot

[MACL IF ID EX MA MA mm mm mm:mm:

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
MAC.L IF ID EX MA:MA mm mm mm mm

Figure 7.35 MAC.L Instruction Immediately After Another MAC.L Instruction

Sometimes consecutive MAC.Ls may have less multiplier contention even when there is
misalignment of instruction execution caused by MA and IF contention. Figure 7.36
illustrates a case of this type, assuming MA and |F contention.

> > > > > > > > > 4> <> Sot

[MAC.L if

MAC.L

MAC.L f — — ID EX — MA M——--A mm mm mm mm
MAC.L IF — — ID EX — — MA

Figure 7.36 Consecutive MAC.Ls with Misalignment

HITACHI 205

When the second MA of the MAC.L instruction is extended to the end of the mm,
contention between the MA and IF will split the slot in the usual way. Figure 7.37
illustrates a case of this type, assuming MA and |F contention.

O 4> > > > > > 4> <> > Slot

| MAC.L IF ID EX MA — MA
MAC.L if — — ID EX

Other intruction IF —

Other intruction

Other intruction

Figure 7.37 MA and IF Contention

206 HITACHI

2. When a MAC.W instruction is located immediately after a MAC.L instruction

When the second MA of the MAC.W instruction contends with the mm produced by the
previous multiplication instruction, the MA bus cycle is extended until the mm ends (the
M—A shown in the dotted line box in figure 7.38) to create a single slot. When two or

more instructions that do not use the multiplier occur between the MAC.L and

MAC.W

instructions, the stall caused by multiplier contention between MAC.L instructions is

eliminated.

D D 4 > 4> D> 4—» > <> ;. Sot

|MAC.L IF ID EX MA MA mm:mm_ m
MAC.W F — '
Third instruction

[MACL IF ID EX MA MA mm mm mm:mm]

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
MAC.W IF ID EX MA MA mm mm

Figure 7.38 MAC.W Instruction Immediately After a MAC.L Instruction

HITACHI 207

3. When a DMULSL.L instruction is located immediately after a MAC.L instruction

DMULS.L instructions have an MA stage for accessing the multiplier. When the second
MA of the DMULSL.L instruction contends with an operating MAC.L instruction multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 7.39) to create a single slot. When two or more instructions not related to the
multiplier come between the MAC.L and DMULS.L instructions, MAC.L and DMULS.L
contention does not cause stalling. When the DMULS.L MA and IF contend, the slot is

split.
> 4> > > > P > > > > > St
[MACL IF ID EX MA MA
DMULS.L IF — ID EX mm mm
Other instruction IF —

> > > > > > > > > 4> 4> > <> Slot
|MAC.L IF ID EX MA MA mm mm: mm mm:
Other instruction IF — ID EX
DMULS.L IF ID EX MA:M—A ‘mm mm mm mm
Other instruction IF — ID — EX MA -
> 4> 4P > > D > P> > D> 4> 4> > <> Sot
[MACL IF ID EX MA MA mm mm mm:mm]
Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
DMULS.L IF ID EX MA MA mm mm mm mm
Other instruction IF — ID EX MA -

Figure 7.39 DMULSL Instruction Immediately After a MAC.L Instruction

208 HITACHI

4. When a MULS.W instruction is located immediately after a MAC.L instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with an operating MAC.L instruction multiplier (mm), the
MA is extended until the mm ends (the M—A shown in the dotted line box in figure 7.40)
to create a single slot. When three or more instructions not related to the multiplier come
between the MAC.L and MULS.W instructions, MAC.L and MULS.W contention does not
cause stalling. When the MULS.W MA and IF contend, the slot is split.

> O D D D D P> > <> > > <> Slot

|MAC.L IF ID EX MA MA mm:mm_ mm_ mm mm:

MULS.W IF — ID EX MA: M

Other instruction IF — ID EX — —

> D 4D D D D 4> > > > <> Sot

|MAC.L IF ID EX MA MA mm :mm mm_ mm:

Other instruction IF — ID EX
MULS.W IF ID EX: M—A ‘mm mm
Other instruction IF ID EX — — MA -

4> 4 4 4 4> D 4> P 4> 4> 4> 4> > Sot

|MAC.L IF ID EX MA MA mm mm :mm mm:

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB

MULS.W IF ID EX M—A . mm mm
Other instruction IF ID EX — MA -

P 4 > 4> > > 4> > O O > > > Slot

|MAC.L IF ID EX MA MA mm mm mm :mm:

Other instruction IF — ID EX MA WB

Other instruction IF ID EX MA WB

Other instruction IF ID EX MA WB
MULS.W IF ID EX MA mm mm

Other instruction IF ID EX MA -

Figure 740 MULSW Instruction Immediately After a MAC.L Instruction

HITACHI 209

5. When an STS (register) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are stored in a general-purpose register using an
STS instruction, an MA stage for accessing the multiplier is added to the STS instruction,
as described later. When the MA of the STS instruction contends with the operating
multiplier (mm), the MA is extended until the mm ends (the M—A shown in the dotted
line box in figure 7.41) to create a single slot. The MA of the STS contends with the IF.
Figure 7.41 illustrates how this occurs, assuming MA and IF contention.

4> 4 4> 4P > 4¢P 4P 4P <> <> Slot

|MAC.L IF ID EX MA — MA:mm mm mm mm:
Other instruction IF D — — — — EXMA
Other instruction f — — — — IDEX
Other instruction IF ID EX e

| MAC.L

STS

Other instruction
Other instruction

Other instruction

Figure 7.41 STS (Register) Instruction Immediately After a MAC.L Instruction

210 HITACHI

6. When an STS.L (memory) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are stored in memory using an STS instruction, an
MA stage for accessing the multiplier and writing to memory is added to the STS
instruction, as described later. The MA of the STS contends with the IF. Figure 7.42
illustrates how this occurs, assuming MA and IF contention.

> > > —> > <« > <4P>4><><> Slot
[MACL IF ID EX MA — MA mm mm mm mm]
sTSL if — — ID EX M—————A

Other instruction IF D — — — — EX MA

Other instruction f — — — — ID EX

Other instruction IF ID EX e

[MAC.L if
STS.L IF — ID — EX M—A
Other instruction if — ID EX
Other instruction IF ID — — EX
Other instruction if — — ID EX -

Figure 7.42 STS.L (Memory) Instruction Immediately After a MAC.L Instruction

HITACHI 211

7. When an LDS (register) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction,
as described later. When the MA of the LDS instruction contends with the operating
multiplier (mm), the MA is extended until the mm ends (the M—A shown in the dotted
line box in figure 7.43) to create a single slot. The MA of this LDS contends with IF.
Figure 7.43 illustrates how this occurs, assuming MA and IF contention.

> > > —> > < > 4> 4> <4><>: Sot
[MACL IF ID EX MA — MA mm mm mm mmj]
LDS f — — ID EX:M :
Other instruction IF D — — — — EX MA
Other instruction f — — — — ID EX
Other instruction IF ID EX -

P D D > 4> 4> > > > Sot
[MAC.L if ID EX MA MA mm ¥

LDS F — ID — EX M—A |
Other instruction if — ID EX
Other instruction IF ID — — EX
Other instruction f — — ID EX -

Figure 7.43 LDS (Register) Instruction Immediately After a MAC.L Instruction

212 HITACHI

8. When an LDS.L (memory) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are loaded from memory using an LDS instruction,
an MA stage for accessing the memory and the memory and the multiplier is added to the
LDS instruction, as described later. When the MA of the LDS instruction contends with
the operating multiplier (mm), the MA is extended until the mm ends (the M—A shown
in the dotted line box in figure 7.44) to create a single slot. The MA of the LDS contends
with IF. Figure 7.44 illustrates how this occurs, assuming MA and IF contention.

> > > —> > < > 4> <><4><>» Sot
| MAC.L IF ID EX MA — MA
LDS.L f — — ID EX: :
Other instruction F D — — — — EX MA
Other instruction f — — — — ID EX
Other instruction IF ID EX oo

| MAC.L
LDS.L
Other instruction

Other instruction

Other instruction

Figure 7.44 LDSL (Memory) Instruction Immediately After a MAC.L Instruction

HITACHI 213

Multiplication Instructions (SH-1 CPU): Include the following instruction types:

e MULSW Rm, Rn
« MULUW Rm, Rn

> 4> > > > > > <> Sot
[MULSW IF ID EX MA mm mm mm |
Next instruction IF ID EX MA WB
Third instruction IF ID EX MA WB

Figure 7.45 Multiplication Instruction Pipeline

Operation: The pipeline has seven stages: |F, ID, EX, MA, mm, mm, and mm (figure 8.45).
The MA accesses the multiplier. The mm indicates that the multiplier is operating. The mm
operates for three cycles after the MA ends, regardless of a slot. The MA of the MULS.W
instruction, when it contends with IF, splits the slot as described in Section 7.4, Contention
Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier comes after the MULS.W instruction, the
MULS.W instruction may be considered to be four-stage pipeline instructions of IF, ID, EX,
and MA. In such cases, it operates like a normal pipeline. When an instruction that uses the
multiplier comes after the MULS.W instruction, however, contention occurs with the
multiplier, so operation is not as normal. This occurs in the following cases:

When a MAC.W instruction is located immediately after a MULS.W instruction

When a MULS.W instruction is located immediately after another MULS.W instruction
When an STS (register) instruction is located immediately after a MULS.W instruction
When an STS.L (memory) instruction is located immediately after a MULS.W instruction
When an LDS (register) instruction is located immediately after a MULS.W instruction
When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

o A~ wWN P

214 HITACHI

1. When a MAC.W instruction is located immediately after a MULS.W instruction
When the second MA of a MAC.W instruction contends with the mm generated by a
preceding multiplication instruction, the bus cycle of that MA is extended until the mm
ends (the M—A shown in the dotted line box below) and that extended MA occupies one
slot.
If one or more instructions not related to the multiplier comes between the MULS.W and
MAC.W instructions, multiplier contention between the MULS.W and MAC.W
instructions does not cause stalls (figure 7.46).

> P O D P —> > > > <> <> Slot

[MULSW IF ID EX MA mm :mm mm|]

MAC.W IF ID EX MA:M—A ‘mm mm mm

Third instruction IF — ID EX — MA -

> 4> 4> > > > > > > > <> <> Sot

[MULSW IF ID EX MA mm mm mm:

Other instruction IF ID EX MA WB

MAC.W IF ID EX MA MA mm mm mm ---

Figure 7.46 MAC.W Instruction Immediately After a MULS.W Instruction

HITACHI 215

2. When a MULS.\W instruction is located immediately after another MULS.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with the operating multiplier (mm) of another MULS.W
instruction, the MA is extended until the mm ends (the M—A shown in the dotted line
box in figure 7.47) to create a single slot. When two or more instructions not related to the
multiplier are located between the two MULS.W instructions, contention between the
MULS.Ws does not cause stalling. When the MULS.W MA and IF contend, the slot is

split.

D D P P> > > > > P> 4> <> <> Sot

[MULSW IF ID EX
MULS.W IF D

Other instruction IF

4P 4> 4> > > > > > > > > > > St
|MULS.W IF ID EX MA mm:mm mm: |

Other instruction IF ID EX
MULS.W IF ID EX :M—A: mm mm mm
Other instruction IF ID EX — MA -

> 4 O 4 O 4 O O O O > > > > Sot

|MULS.W IF ID EX MA mm mm :mm:

Other instruction IF ID EX MA WB
Other instruction IF ID EX MA WB

MULS.W IF ID EX :MA:mm mm mm
Other instruction IF ID EX MA -

Figure 7.47 MULSW Instruction Immediately After Another MULS.W Instruction

216 HITACHI

When the MA of the MULS.W instruction is extended until the mm ends, contention
between MA and IF will split the slot, as is normal. Figure 7.48 illustrates a case of this
type, assuming MA and IF contention.

D D 4> > 4> 4> 4> > 4> > <> Sot

MULS.W if ID EX:
Other instruction IF ID
Other instruction if
Other instruction IF ID

Figure 7.48 MULSW Instruction Immediately After Another MULS.W Instruction
(IF and MA Contention)

HITACHI 217

3. When an STS (register) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are stored in a general-purpose register using an
STS instruction, an MA stage for accessing the multiplier is added to the STS instruction,
as described later. When the MA of the STS instruction contends with the operating
multiplier (mm), the MA is extended until the mm ends (the M—A shown in the dotted
line box in figure 7.49) to create a single slot. The MA of the STS contends with the IF.
Figure 7.49 illustrates how this occurs, assuming MA and IF contention.

D D D > > > > > 4> > <> Sot

[MULSW IF ID EX MA :mm mm_mm]

STS if ID EX:M———A :WB
Other instruction IF D — — — EX MA
Other instruction f — — — ID EX
Other instruction IF ID EX -

[MULSW if ID EX MA mm:

STS IF ID — EX:N

Other instruction if — ID

Other instruction IF
Other instruction

Figure 7.49 STS (Register) Instruction Immediately After a MULS.W Instruction

218 HITACHI

4. When an STS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from memory using an STS instruction,
an MA stage for accessing the multiplier and writing to memory is added to the STS
instruction, as described later. When the MA of the STS instruction contends with the
operating multiplier (mm), the MA is extended until one cycle after the mm ends (the
M—A shown in the dotted line box in figure 7.50) to create a single slot. The MA of the
STS contends with the IF. Figure 7.50 illustrates how this occurs, assuming MA and IF
contention.

> 4> €D > P 4> <> 4> <> <> <> Slot

[MULS.W IF
STS.L
Other instruction
Other instruction f — — — ID EX
Other instruction IF ID EX -

D > > > > > > > > > > > Sot
[MULS.W if ID EX MA mm:mm mm:

STS.L IF ID — EX:M—A
Other instruction if — ID EX
Other instruction IF ID — EX
Other instruction if — ID EX -

Figure 750 STS.L (Memory) Instruction Immediately After a MULS.W Instruction

HITACHI 219

5. When an LDS (register) instruction is located immediately after a MULS.W instruction
When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction,
as described later. When the MA of the LDS instruction contends with the operating
multiplier (mm), the MA is extended until the mm ends (the M—A shown in the dotted
line box below) to create a single slot. The MA of this LDS contends with IF. Figure 7.51
illustrates how this occurs, assuming MA and |F contention.

D D D > 4> > > > 4> > <> Sot

[MULSW IF ID EX MA :mm mm_mm]

LDS if ID EX: M——A
Other instruction IF D — — — EX MA
Other instruction f — — — ID EX
Other instruction IF ID EX -

[MULS.W if
LDS IF ID — EX:M—A:
Other instruction if — ID EX
Other instruction IF ID — EX
Other instruction if — ID EX -

Figure 7.51 LDS (Register) Instruction Immediately After a MULS.W Instruction

220 HITACHI

6. When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction,
an MA stage for accessing the memory and the multiplier is added to the LDS instruction,
as described later. When the MA of the LDS instruction contends with the operating
multiplier (mm), the MA is extended until the mm ends (the M—A shown in the dotted
line box in figure 7.52) to create a single slot. The MA of the LDS contends with IF.
Figure 7.52 illustrates how this occurs, assuming MA and IF contention.

4P 4> > > > 4> 4> 4> > <> > Sot
|MULS.W IF ID EX MA 5kh'rh"'fh'm"'rhfhf|

LDS.L if ID EX: M—A :

Other instruction IF D — — — EX MA

Other instruction f — — — ID EX

Other instruction IF ID EX -

G D P > > > > P> > 4> <> <> Sot
[MULSW if ID EX MA mm:r]

LDS.L IF ID — EX M—A:
Other instruction if — ID EX
Other instruction IF ID — EX
Other instruction if — ID EX -

Figure 752 LDS.L (Memory) Instruction Immediately After a MULS.W Instruction

HITACHI 221

Multiplication Instructions (SH-2 CPU): Include the following instruction types:

e MULSW Rm, Rn
« MULUW Rm, Rn

<> 4> 4> 4> <> <> 4> <> : Sot
[MULSW IF ID EX MA mm mm |
Next instruction IF ID EX MA WB
Third instruction IF ID EX MA WB

Figure 7.53 Multiplication Instruction Pipeline

Operation: The pipeline has six stages: IF, ID, EX, MA, mm, and mm (figure 8.53). The MA
accesses the multiplier. The mm indicates that the multiplier is operating. The mm operates
for two cycles after the MA ends, regardiess of the slot. The MA of the MULS.W instruction,
when it contends with IF, splits the slot as described in Section 7.4, Contention Between
Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier comes after the MULS.W instruction, the
MULS.W instruction may be considered to be four-stage pipeline instructions of IF, ID, EX,
and MA. In such cases, it operates like a normal pipeline. When an instruction that uses the
multiplier is located after the MULS.W instruction, however, contention occurs with the
multiplier, so operation is not as normal. This occurs in the following cases:

O N O O WD

222 HITACHI

When a MAC.W instruction is located immediately after a MULS.W instruction

When a MAC.L instruction is located immediately after a MULS.W instruction

When a MULS.W instruction is located immediately after another MULS.W instruction
When a DMULS.L instruction is located immediately after a MULS.W instruction

When an STS (register) instruction is located immediately after a MULS.W instruction
When an STS.L (memory) instruction is located immediately after a MULS.W instruction
When an LDS (register) instruction is located immediately after a MULS.W instruction
When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

1. When a MAC.W instruction is located immediately after a MULS.W instruction

The second MA of a MAC.W instruction does not contend with the mm generated by a
preceding multiplication instruction.

> > > > > > > > > > <> Sot
[MULSW IF ID EX MA mm mm]|
MAC.W IF ID EX MA MA mm mm
Third instruction IF — ID EX MA ...

Figure 7.54 MAC.W Instruction Immediately After a MULS.W Instruction

2. When a MAC.L instruction is located immediately after a MULS.W instruction
The second MA of a MAC.W instruction does not contend with the mm generated by a
preceding multiplication instruction.

> > > > > > > > > > <> Sot
[MULSW IF ID EX MA mm mm|
MAC.L IF ID EX MA MA mm mm mm mm
Third instruction IF — ID EX MA -

Figure 755 MACL.L Instruction Immediately After a MULS.W Instruction

HITACHI 223

3. When a MULS.W instruction is located immediately after another MULS.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with the operating multiplier (mm) of another MULS.W
instruction, the MA is extended until the mm ends (the M—A shown in the dotted line
box in figure 7.56) to create a single slot. When one or more instructions not related to the
multiplier is located between the two MULS.W instructions, contention between the
MULS.Ws does not cause stalling. When the MULS.W MA and IF contend, the slot is
split.

P> D > D P> D > D > P> <> <> Sot
[MULSW IF ID EX MA mm.mm]

MULS.W IF ID EX:M—A i mm mm

Other instruction IF ID EX — MA -

[MULSW IF ID EX MA mm:mm]

Other instruction IF ID EX
MULS.W IF ID EX:MA: mm mm
Other instruction IF ID EX MA -

Figure 7.56 MULSW Instruction Immediately After Another MULS.W Instruction

When the MA of the MULS.W instruction is extended until the mm ends, contention
between the MA and IF will split the slot in the usual way. Figure 7.57 illustrates a case
of this type, assuming MA and IF contention.

D D P P> > 4> 4> > > > <> Sot
[MULSW IF_ID EX MA mm_mm|

MULS.W if ID EX:M—A : mm mm
Other instruction IF D — — EX MA -
Other instruction if — — ID EX -
Other instruction IF ID -

Figure 7.57 MULSW Instruction Immediately After Another MULS.W Instruction
(IF and MA contention)

224 HITACHI

4. When a DMULSLL instruction is located immediately after a MULS.W instruction

Though the second MA in the DMULS.L instruction makes an access to the multiplier, it

does not contend with the operating multiplier (mm) generated by the MULS.W
instruction.

> O O D > P O D > > 4> <> <> Sot
[MULSW IF ID EX MA mm mm |

DMULS.L IF ID EX MA MA mm mm mm mm
Other instruction IF — ID EX MA -

Figure 7.58 DMULSL Instruction Immediately After a MULS.W Instruction

HITACHI 225

5. When an STS (register) instruction is located immediately after a MULS.W instruction
When the contents of a MAC register are stored in a general-purpose register using an
STS instruction, an MA stage for accessing the multiplier is added to the STS instruction,
as described later. When the MA of the STS instruction contends with the operating
multiplier (mm), the MA is extended until the mm ends (the M—A shown in the dotted
line box in figure 7.59) to create a single slot. The MA of the STS contends with the IF.
Figure 7.59 illustrates how this occurs, assuming MA and IF contention.

D D 4P 4> 4> 4> 4> 4> > > <> Sot

|MULS.W IF ID EX MA:mm_mm:

STS if ID EX:M—A @ WB
Other instruction IF ID — — EX MA
Other instruction if — — ID EX
Other instruction IF ID EX -

[MULSW if ID EX MA mm mm:

STS IF ID — EX :MA: WB
Other instruction if — ID EX
Other instruction IF ID EX
Other instruction if ID EX o

Figure 7.59 STS (Register) Instruction Immediately After a MULS.W Instruction

226 HITACHI

6. When an STS.L (memory) instruction is located immediately after a MULS.W instruction
When the contents of a MAC register are stored in memory using an STS instruction, an
MA stage for accessing the multiplier and writing to memory is added to the STS
instruction, as described later. The MA of the STS contends with the IF. Figure 7.60
illustrates how this occurs, assuming MA and IF contention.

> O 4> > 4> 4> 4> 4> 4> <> > Sot

[MULS.W IF
STS.L
Other instruction
Other instruction if — — ID EX
Other instruction IF ID EX -

D O D 4> P D D D D> > 4> <> Sot

[MULSW if ID EX MA mm mm:

STS.L IF ID — EX :MA:
Other instruction if — ID EX
Other instruction IF ID EX
Other instruction if ID EX -

Figure 760 STS.L (Memory) Instruction Immediately After a MULS.W Instruction

HITACHI 227

7. When an LDS (register) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction,
as described later. When the MA of the LDS instruction contends with the operating
multiplier (mm), the MA is extended until the mm ends (the M—A shown in the dotted
line box below) to create a single slot. The MA of this LDS contends with IF. The
following figures illustrates how this occurs, assuming MA and IF contention.

O > > > > 4> > > > <> <> St
|MULS.W IF ID EX MA:mm mm:

LDS if ID EX:M—A:
Other instruction IF ID — — EX MA
Other instruction if — — ID EX
Other instruction IF ID EX -

[MULSW if ID EX MA mm :mm]

LDS IF ID — EX :MA:
Other instruction if — ID EX
Other instruction IF ID EX
Other instruction if ID EX -

Figure 7.61 LDS (Register) Instruction Immediately After a MULS.W Instruction

228 HITACHI

8. When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction,
an MA stage for accessing the multiplier is added to the LDS instruction, as described
later. When the MA of the LDS instruction contends with the operating multiplier (mm),
the MA is extended until the mm ends (the M—A shown in the dotted line box in figure
7.62) to create a single slot. The MA of the LDS contends with IF. Figure 7.62 illustrates
how this occurs, assuming MA and IF contention.

D D D D 4> 4> 4> 4> 4> <> <> Sot

|MULS.W IF ID EX MA:mm_mm:

LDS.L if ID EX:M—A
Other instruction IF ID — — EX MA
Other instruction f — — ID EX
Other instruction IF ID EX -

> O D > > 4> 4 > > 4> <> <> Sot
[MULSW if ID EX MA mm :mm:

LDS.L IF ID — EX:
Other instruction if — ID
Other instruction IF ID EX
Other instruction if ID EX -

Figure 7.62 LDS.L (Memory) Instruction Immediately After a MULS.W Instruction

Double-Length Multiplication Instructions (SH-2 CPU): Include the following instruction
types:

e DMULSL Rm, Rn (SH-2 CPU only)
« DMULU.L Rm, Rn (SH-2 CPU only)
e MUL.L Rm, Rn (SH-2 CPU only)

> > > > > G > D> > > <> Sot
[DMULSL IF ID EX MA MA mm mm mm mm |
Next instruction IF — ID EX MA WB
Third instruction IF ID EX MA WB

Figure 7.63 Multiplication Instruction Pipeline

HITACHI 229

The pipeline has nine stages: IF, ID, EX, MA, MA, mm, mm, mm, and mm (figure 7.63). The
MA accesses the multiplier. The mm indicates that the multiplier is operating. The mm
operates for four cycles after the MA ends, regardless of a slot. The ID of the instruction
following the DMULS.L instruction is stalled for 1 slot (see the description of the
multiply/accumulate instruction). The two MA stages of the DMULS.L instruction, when they
contend with IF, split the slot as described in section 7.4, Contention Between Instruction
Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier comes after the DMULS.L instruction,
the DMULSL.L instruction may be considered to be a five-stage pipeline instruction of IF, ID,
EX, MA, and MA. In such cases, it operates like a normal pipeline. When an instruction that
uses the multiplier comes after the DMULS.L instruction, however, contention occurs with
the multiplier, so operation is not as normal. This occurs in the following cases:

When a MAC.L instruction is located immediately after a DMULS.L instruction

When a MAC.W instruction is located immediately after a DMULS.L instruction

When a DMULSLL instruction is located immediately after another DMULS.L instruction
When a MULS.W instruction is located immediately after a DMULS.L instruction

When an STS (register) instruction is located immediately after a DMULS.L instruction
When an STS.L (memory) instruction is located immediately after a DMULS.L instruction
When an LDS (register) instruction is located immediately after a DMULS.L instruction

When an LDS.L (memory) instruction is located immediately after a DMULS.L
instruction

O N O O WD

1. When a MAC.L instruction is located immediately after a DMULS.L instruction
When the second MA of a MAC.L instruction contends with the mm generated by a
preceding multiplication instruction, the bus cycle of that MA is extended until the mm
ends (the M—A shown in the dotted line box below) and that extended MA occupies one
slot.
If two or more instructions not related to the multiplier are located between the DMULS.L
and MAC.L instructions, multiplier contention between the DMULS.L and MAC.L
instructions does not cause stalls (figure 7.64).

230 HITACHI

> 4> > > P> P > > > > Sot

| DMULS.L IF ID EX MA MA mm :n :
MAC.L IF — ID EX MA I

Third instruction IF — ID

D D O D 4> > D > 4> D > P> <> Sot

| DMULS.L IF ID EX MA MA mm mm mm:mm:

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
MAC.L IF ID EX MA:MA mm mm mm mm

Figure 764 MAC.L Instruction Immediately After a DMULS.L Instruction

2. When a MAC.W instruction is located immediately after a DMULS.L instruction
When the second MA of a MAC.W instruction contends with the mm generated by a
preceding multiplication instruction, the bus cycle of that MA is extended until the mm
ends (the M—A shown in the dotted line box below) and that extended MA occupies one
dot.
If two or more instructions not related to the multiplier are located between the DMULS.L
and MAC.W instructions, multiplier contention between the DMULS.L and MAC.W
instructions does not cause stalls (figure 7.65).

> 4> > > P> P > > > > Sot

| DMULS.L IF ID EX MA MA mm :
MAC.W IF — ID EX MA

Third instruction IF — ID

> 4 4> O > 4> 4> 4> P> > 4> > <> Sot

|DMULS.L IF ID EX MA MA mm mm mm:mm:

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
MAC.W IF ID EX MA MA: mm mm

Figure 7.65 MAC.W Instruction Immediately After a DMULS.L Instruction

HITACHI 231

3. When a DMULSLL instruction is located immediately after another DMULS.L instruction

DMULS.L instructions have an MA stage for accessing the multiplier. When the MA of
the DMULSL.L instruction contends with the operating multiplier (mm) of another
DMULS.L instruction, the MA is extended until the mm ends (the M—A shown in the
dotted line box in figure 7.66) to create a single slot. When two or more instructions not
related to the multiplier are located between two DMULS.L instructions, contention
between the DMULS.Ls does not cause stalling. When the DMULS.L MA and |IF contend,
the slot is split.

G D P D > P> > 4> 4> 4> <> <> Slot

| DMULS.L IF ID EX MA MA mm :mm.mm. mm.:

DMULS.L IF — ID EX MA: M—A :mm mm mm mm

Other instruction IF — ID EX — — MA -

> O 4> O O O 4> 4> 4> 4> > > <> Sot

|DMULS.L IF ID EX MA MA mm mm:mm mm:

Other instruction IF — ID EX
DMULS.L IF ID EX MA: M—A: mm mm mm mm
Other instruction IF — ID EX — MA -

> O 4> O O > 4> > 4> > > > > <> Sot

[DMULSL IF ID EX MA MA mm mm mm.mm |

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB

DMULS.L IF ID EX MA:MA: mm mm mm mm
Other instruction IF — ID EX MA -

Figure 766 DMULS.L Instruction Immediately After Another DMULS.L Instruction

232 HITACHI

When the MA of the DMULS.L instruction is extended until the mm ends, contention
between the MA and IF will split the slot in the usual way. Figure 7.67 illustrates a case
of this type, assuming MA and IF contention.

> 4> > > 4—> < > <> <> <> :Slot
| DMULS.L IF ID EX MA MA — B
DMULS.L if — EX — ID MA'M mm mm mm
Other instruction IF
Other instruction EX oo
Other instruction IF ID e

Figure 7.67 DMULSL Instruction Immediately After Another DMULS.L Instruction
(IF and MA Contention)

4. When a MULS.W instruction is located immediately after a DMULS.L instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with the operating multiplier (mm) of a DMULS.L
instruction, the MA is extended until the mm ends (the M—A shown in the dotted line
box in figure 7.68) to create a single slot. When three or more instructions not related to
the multiplier are located between the DMULS.L instruction and the MULS.W instruction,
contention between the DMULS.L and MULS.W does not cause stalling. When the
MULS.W MA and IF contend, the slot is split..

G D D > 4> > > > <> Slot

MULS.W IF —
Other instruction

> 4 4> 4 O > 4 4> > 4> > > > <> Slot

[DMULSL IF ID EX MA MA mm mm mm:mm:

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
Other instruction IF ID EX MA WB
MULS.W IF ID EX:MA: MA mm mm
Other instruction IF ID EX MA -

Figure 7.68 MULS.W Instruction Immediately After a DMULS.L Instruction

When the MA of the DMULS.L instruction is extended until the mm ends, contention
between the MA and IF will split the slot in the usual way. Figure 7.69 illustrates a case
of this type, assuming MA and IF contention.

HITACHI 233

“r 4> 4> > > < > 4> > > Sot

[DMULSL IF ID EX MA — MA mm_mm_mm. mm_]
MULS.W f — — D EX M— A mmmm
Other instruction IF ID — — — — EXMA---
Other instruction if — — — — ID EX:
Other instruction IF ID «-e

Figure 7.69 MULSW Instruction Immediately After a DMULS.L Instruction (IF and
MA Contention)

5. When an STS (register) instruction is located immediately after a DMULS.L instruction

When the contents of a MAC register are stored in a general-purpose register using an
STS instruction, an MA stage for accessing the multiplier is added to the STS instruction,
as described later. When the MA of the STS instruction contends with the operating
multiplier (mm), the MA is extended until the mm ends (the M—A shown in the dotted
line box in figure 7.70) to create a single slot. The MA of the STS contends with the IF.
Figure 7.70 illustrates how this occurs, assuming MA and IF contention.

> > > —> > < > 4> <> Sot
|DMULS.L IF ID EX MA — MA:mm mm mmmm:
STS if — —
Other instruction
Other instruction f — — — — ID EX
Other instruction IF ID EX -

DMULS.L if ID EX MA MA mm:mm mm mm:

STS IF — ID — EX;MﬁAEWB
Other instruction if — ID EX
Other instruction IF D — — EX
Other instruction if — — ID EX

Figure 7.70 STS (Register) Instruction Immediately After a DMULS.L Instruction

234 HITACHI

6. When an STS.L (memory) instruction is located immediately after a DMULS.L instruction
When the contents of a MAC register are stored in memory using an STS instruction, an
MA stage for accessing the multiplier and writing to memory is added to the STS
instruction, as described later. The MA of the STS contends with the IF. Figure 7.71
illustrates how this occurs, assuming MA and IF contention.

“r 4O O 4> 4>« > 4> <> <> <«»> <> Slot
DMULS.L IF ID EX MA — MA mm mm mm mm:
STS.L f — — ID EX M——A:
Other instruction IF D — — — — EX MA
Other instruction f — — — — ID EX
Other instruction IF ID EX

STS.L IF — ID
Other instruction if
Other instruction
Other instruction

Figure 7.71 STS.L (Memory) Instruction Immediately After a DMULS.L Instruction

7. When an LDS (register) instruction is located immediately after a DMULS.L instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction,
as described later. When the MA of the LDS instruction contends with the operating
multiplier (mm), the MA is extended until the mm ends (the M—A shown in the dotted
line box below) to create a single slot. The MA of this LDS contends with IF. The
following figure illustrates how this occurs, assuming MA and IF contention.

HITACHI 235

G D P P 4> > > <> <> Slot

DMULS.L IF ID EX MA — MA:mm mm mm mm:

LDS if — — ID EX:M—A:
Other instruction F D — — — — EXMA
Other instruction f — — — — ID EX
Other instruction IF ID EX

DMULS.L if ID EX MA MA mm:

LDS F — ID — EX M——A:
Other instruction if — ID EX
Other instruction IF D — — EX
Other instruction if — — ID EX

Figure 7.72 LDS (Register) Instruction Immediately After a DMULS.L Instruction

8. When an LDS.L (memory) instruction is located immediately after a DMULS.L
instruction
When the contents of a MAC register are loaded from memory using an LDS instruction,
an MA stage for accessing the memory and the multiplier is added to the LDS instruction,
as described later. When the MA of the LDS instruction contends with the operating
multiplier (mm), the MA is extended until the mm ends (the M—A shown in the dotted
line box in figure 7.73) to create a single slot. The MA of the LDS contends with IF.
Figure 7.73 illustrates how this occurs, assuming MA and IF contention.

236 HITACHI

AP AP P> P p 4> <> 4> <> <> Sot

DMULS.L IF ID EX MA —
LDS.L if — — ID EX
Other instruction IF
Other instruction f — — — — ID EX
Other instruction IF ID EX

DMULS.L if ID EX MA MA mm:
LDS.L IF — ID — EX.M——A
Other instruction if — ID EX
Other instruction IF D — — EX
Other instruction if — — ID EX

7.7.3

Figure 7.73 LDS.L (Memory) Instruction Immediately After a DMULS.L Instruction

Logic Operation Instructions

Register-Register Logic Operation Instructions: Include the following instruction types:

ANDRmM, Rn
AND#imm, RO
NOT Rm, Rn
OR Rm, Rn
OR #imm, RO
TST Rm, Rn
TST #imm, RO
XORRmM, Rn
XOR#imm, RO

<> 4> 4> <> <> <4> : Sot

lInstruction A IF__ID _EX|
Next instruction IF ID EX -
Third instruction IF ID EX o

Figure 7.74 Register-Register Logic Operation Instruction Pipeline

HITACHI 237

Operation: The pipeline has three stages: IF, 1D, and EX (figure 8.74). The data operation is
completed in the EX stage via the ALU.

Memory Logic Operation Instructions: Include the following instruction types:

- ANDB #mm, @(RO, GBR)
- ORB #mm, @(RO, GBR)
. TSTB #mm, @(RO, GBR)
- XORB #mm, @(RO, GBR)

> 4> 4> 4> > > <> 4> <> Sot
[Instruction A IF_ID EX MA EX MA]
Next instruction IF — — ID EX -
Third instruction IF ID EX -

Figure 7.75 Memory Logic Operation Instruction Pipeline

Operation: Operation: The pipeline has six stages: IF, ID, EX, MA, EX, and MA (figure
7.75). The ID of the next instruction stalls for 2 slots. The MAs of these instructions contend
with IF.

TAS Instruction: Includes the following instruction type:

» TASB @Rn

> 4> 4> 4> > > <> 4> <> Sot
[Instruction A IF_ID EX MA EX MA]|
Next instruction IF — — — ID EX -
Third instruction IF ID EX -

Figure 7.76 TAS Instruction Pipeline

Operation: The pipeline has six stages: IF, ID, EX, MA, EX, and MA (figure 7.76). The ID
of the next instruction stalls for 3 slots. The MA of the TAS instruction contends with IF.

7.7.4 Shift Instructions
Shift Instructions: Include the following instruction types:

* ROTL Rn

238 HITACHI

* ROTR Rn
+ ROTCL Rn
* ROTCR Rn

e SHAL Rn
« SHAR Rn
e SHLL Rn
e SHLR Rn
e SHLL2 Rn
« SHLR2 Rn
e SHLLS Rn

« SHLRS8 Rn
 SHLL16 Rn
« SHLR16 Rn

> 4> 4> 4> > > <> 4> <> Slot
linstruction A IF_ ID EX]
Next instruction IF ID EX -
Third instruction IF ID EX -

Figure 7.77 Shift Instruction Pipeline

Operation: The pipeline has three stages: IF, 1D, and EX (figure 7.77). The data operation is
completed in the EX stage via the ALU.

7.7.5 Branch Instructions

Conditional Branch Instructions: Include the following instruction types:

e BF label
« BT label

Operation: The pipeline has three stages: IF, ID, and EX. Condition verification is performed
in the ID stage. Conditional branch instructions are not delayed branch.

HITACHI 239

1. When condition is satisfied

The branch destination address is calculated in the EX stage. The two instructions after
the conditional branch instruction (instruction A) are fetched but discarded. The branch
destination instruction begins its fetch from the slot following the slot which has the EX
stage of instruction A (figure 7.78).

<« 4> 4> > 4> <> 4> <> <> ;. St
[Instruction A IF_ ID EX|

Next instruction IF — (Fetched but discarded)
Third instruction IF — (Fetched but discarded)
Branch destination — IF ID EX -
...... = ID EX -

Figure 7.78 Branch Instruction When Condition is Satisfied

2. When condition is not satisfied

If it is determined that conditions are not satisfied at the ID stage, the EX stage proceeds
without doing anything. The next instruction also executes a fetch (figure 7.79).

<> 4> 4> 4> 4> 4> 4> <> 4> : Slot
[Instructon A IF__ID__EX]

Next instruction IF ID EX -
Third instruction IF ID EX -
...... IF ID EX e

Figure 7.79 Branch Instruction When Condition is Not Satisfied
Note: SH-2 always fetches instructions with a long word. Therefore, "1. When condition is
satisfied", 2 instructions are overrun when fetched, if that address is at the boundary of
the 4n address.

Delayed Conditional Branch Instructions (SH-2 CPU): Include the following instruction
types:

« BFIS label (SH-2 CPU only)
e BT/S label (SH-2 CPU only)

Operation: The pipeline has three stages: IF, 1D, and EX. Condition verification is performed
in the ID stage.

240 HITACHI

1. When condition is satisfied
The branch destination address is calculated in the EX stage. The instruction after the
conditional branch instruction (instruction A) is fetched and executed, but the instruction
after that is fetched and discarded. The branch destination instruction begins its fetch from
the slot following the slot which has the EX stage of instruction A (figure 7.80).

P 4> 4> P> 4> P> 4> P> <> St
[Instruction A IF ID EX|

Next instruction IF — ID EX MA WB
Third instruction IF — (Fetched but discarded)
Branch destination IF ID EX -
...... |F |D EX

Figure 7.80 Branch Instruction When Condition is Satisfied

2. When condition is not satisfied

If it is determined that conditions are not satisfied at the ID stage, the EX stage proceeds
without doing anything. The next instruction also executes a fetch (figure 7.81).

<+ 4> 4> 4> <> 4> 4> <«P»> <> : Slot
[Instruction A IF__ID__EX|

Next instruction IF ID EX -
Third instruction IF ID EX -
...... IF ID EX e

Figure 7.81 Branch Instruction When Condition is Not Satisfied

Note: SH-2 always fetches instructions with along word. Therefore, "1. When condition is
satisfied”, 2 instructions are overrun when fetched, if that address is at the boundary of
the 4n address.

Unconditional Branch Instructions: Include the following instruction types:

+ BRAlabel

« BRAF Rm (SH-2 CPU only)
+ BSRIlabel

« BSRF Rm (SH-2 CPU only)
« JMP @Rm

* JSR @Rm

« RTS

HITACHI 241

> 4> 4> 4> 4> 4> 4> <> 4> : Slot
[Instruction A IF_ ID EX]

Delay slot IF — ID EX MA WB
Branch destination IF ID EX -
...... IF ID EX -

Figure 7.82 Unconditional Branch Instruction Pipeline

Operation: The pipeline has three stages: IF, 1D, and EX (figure 7.82). Unconditional branch
instructions are delayed branch. The branch destination address is calculated in the EX stage.
The instruction following the unconditional branch instruction (instruction A), that is, the
delay slot instruction is fetched and not discarded as the conditional branch instructions are,
but is then executed. Note that the ID slot of the delay slot instruction does stall for one
cycle. The branch destination instruction starts its fetch from the slot after the slot that has
the EX stage of instruction A.

7.7.6 System Control Instructions

System Control ALU Instructions: Include the following instruction types:

CLRT
LDCRm, SR
LDCRm, GBR
LDCRm, VBR
LDSRm, PR
NOP

SETT

STC SR, Rn
STC GBR, Rn
STC VBR, Rn
STS PR, Rn

242 HITACHI

> 4> 4> 4> > > <> 4> <> Sot
Linstruction A IF 1D EX]
Next instruction IF ID EX -
Third instruction IF ID EX -

Figure 7.83 System Control ALU Instruction Pipeline

Operation: The pipeline has three stages: IF, ID, and EX (figure 7.83). The data operation is
completed in the EX stage viathe ALU.

LDC.L Instructions: Include the following instruction types:

« LDCL @Rm+, SR
« LDCL @Rm+, GBR
« LDCL @Rm+, VBR

> 4> 4> 4> > > <> 4> <> Slot
lIinstructon A IF__ID EX MA EX|
Next instruction IF — — ID EX -
Third instruction IF ID EX -

Figure 7.84 LDC.L Instruction Pipeline

Operation: The pipeline has five stages: IF, ID, EX, MA, and EX (figure 7.84). The ID of the
following instruction is stalled for two slots.

STC.L Instructions: Include the following instruction types:

« STCL SR, @-Rn
« STICL GBR, @-Rn
« STCL VBR, @-Rn

> 4> 4> 4> > > <> 4> <> Slot
linstruction A IF_ ID EX MA]
Next instruction IF — ID EX -
Third instruction IF ID EX -

Figure 7.85 STC.L Instruction Pipeline

HITACHI 243

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 7.85). The ID of the
next instruction is stalled for one slot.

LDS.L Instruction (PR): Includes the following instruction type:

« LDSL @Rm+, PR

> > > P> > > 4> <> <> Slot
[Instructon A IF_ID EX MA WB]
Next instruction IF ID EX -

Third instruction IF ID EX -

Figure 7.86 LDS.L Instruction (PR) Pipeline

Operation: The pipeline has five stages: IF, ID, EX, MA, and WB (figure 7.86). It is the
same as an ordinary load instruction.

STS.L Instruction (PR): Includes the following instruction type:

« STSL PR, @-Rn

<> 4> > > > > <> <> <> Slot
[Instruction A IF_ ID EX MA]
Next instruction IF ID EX -

Third instruction IF ID EX -

Figure 7.87 STS.L Instruction (PR) Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 7.87). It is the same as
an ordinary store instruction.

Register -~ MAC Transfer Instructions: Include the following instruction types:

« CLRMAC
« LDSRm, MACH
« LDSRm, MACL

244 HITACHI

> 4> 4> 4> 4> 4> 4> <> 4> : Slot
[Instructon A IFE_ ID EX MA]

Next instruction IF ID EX -
Third instruction IF ID EX -

Figure 7.88 Register -~ MAC Transfer Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 7.88). The MA isa
stage for accessing the multiplier. The MA contends with the IF. This makes it the same as
ordinary store instructions. Since the multiplier contends with the MA, see the section for the
SOP instruction, multiply instruction, and double precision multiply instruction.

Memory - MAC Transfer Instructions. Include the following instruction types:

« LDSL @Rm+, MACH
« LDSL @Rm+, MACL

<« 4> 4> > 4> <> 4> <> <> ;. St
[Instruction A IF_ ID EX MA]
Next instruction IF ID EX -

Third instruction IF ID EX -

Figure 7.89 Memory — MAC Transfer Instruction Pipeline

Operation: The pipeline has four stages: IF, 1D, EX, and MA (figure 7.89). The MA contends
with the IF. The MA is a stage for memory access and multiplier access. This makes it the
same as ordinary load instructions. Since the multiplier contends with the MA, see the

section for the SOP instruction, multiply instruction, and double precision multiply
instruction.

MAC - Register Transfer Instructions: Include the following instruction types:

*+ STS MACH, Rn
« STS MACL, Rn

HITACHI 245

> 4> 4> 4> 4> 4> <> <> <> Sot
[Instructon A IF__ ID EX MA WB]
Next instruction IF ID EX -

Third instruction IF ID EX -

Figure 790 MAC - Register Transfer Instruction Pipeline

Operation: The pipeline has five stages: IF, ID, EX, MA, and WB (figure 7.90). The MA isa
stage for accessing the multiplier. The MA contends with the IF. This makes it the same as
ordinary load instructions. Since the multiplier contends with the MA, see the section for the
SOP instruction, multiply instruction, and double precision multiply instruction.

MAC - Memory Transfer Instructions: Include the following instruction types:

« STSL MACH, @-Rn
« STSL MACL, @-Rn

<> 4> 4> > 4> <> 4> <> <> : St
[Instructon A IF_ ID EX MA]
Next instruction IF ID EX -

Third instruction IF ID EX -

Figure 791 MAC - Memory Transfer Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 7.91). The MA isa
stage for accessing the memory and the multiplier. The MA contends with IF. This makes it
the same as ordinary store instructions. Since the multiplier contends with the MA, see the

section for the SOP instruction, multiply instruction, and double precision multiply
instruction.

RTE Instruction: Includes the following instruction type:

« RTE

246 HITACHI

> 4> > > > > > > <> Sot
[RTE_IF_ID EX MA MA]
Delay slot IF — — — ID EX -
Branch destination IF ID EX -

Figure 792 RTE Instruction Pipeline

The pipeline has five stages: IF, ID, EX, MA, and MA (figure 7.92). The MAs contend with
the IF. The RTE is a delayed branch instruction. The ID of the delay slot instruction is stalled
for 3 slots. The IF of the branch destination instruction starts from the slot following the MA
of the RTE.

TRAP Instruction: Includes the following instruction type:

« TRAPA #mm

4> 4 4 4> 4> 4O 4> 4> > 4> 4> 4> <> ;. Slot
[TRAPA IF _ID EX EX MA MA MA EX EX]|
Next instruction IF

Third instruction IF
Branch destination IF ID EX -«

Figure 7.93 TRAP Instruction Pipeline

The pipeline has nine stages: IF, ID, EX, EX, MA, MA, MA, EX, and EX (figure 7.93). The
MAs contend with the IF. The TRAP is not a delayed branch instruction. The two instructions
after the TRAP instruction are fetched, but they are discarded without being executed. The IF
of the branch destination instruction starts from the slot of the EX in the ninth stage of the
TRAP instruction.

SLEEP Instruction: Includes the following instruction type:

+ SLEEP

HITACHI 247

> 4> 4> 4> 4> 4> 4> <> 4> : Slot
[SLEEP IF ID EX]
Next instruction IF

Figure 7.94 SLEEP Instruction Pipeline

Operation: The pipeline has three stages: IF, ID and EX (figure 7.94). It is issued until the IF
of the next instruction. After the SLEEP instruction is executed, the CPU enters sleep mode
or standby mode.

7.9.7 Exception Processing

Interrupt Exception Processing: Includes the following instruction type:

e Interrupt exception processing

> 4> 4 O O O O > 4> 4> > > <> Sot

Next instruction IF

Branch destination IF ID EX -

Figure 7.95 Interrupt Exception Processing Pipeline

Operation: The interrupt is received during the ID stage of the instruction and everything
after the ID stage is replaced by the interrupt exception processing sequence. The pipeline
has ten stages: IF, ID, EX, EX, MA, MA, EX, MA, EX, and EX (figure 7.95). Interrupt
exception processing is not a delayed branch. In interrupt exception processing, an overrun
fetch (IF) occurs. In branch destination instructions, the IF starts from the slot that has the
final EX in the interrupt exception processing.

Interrupt sources are external interrupt request pins such as NMI, user breaks, and on-chip
peripheral module interrupts.

248 HITACHI

Address Error Exception Processing: Includes the following instruction type:

e Address error exception processing

P 4 4 O O O O O O O < <> <> Sot

Next instruction IF
Branch destination IF ID EX -
...... IE ID -

Figure 7.96 Address Error Exception Processing Pipeline

Operation: The address error is received during the ID stage of the instruction and everything
after the ID stage is replaced by the address error exception processing sequence. The
pipeline has ten stages: IF, ID, EX, EX, MA, MA, EX, MA, EX, and EX (figure 7.96).
Address error exception processing is not a delayed branch. In address error exception
processing, an overrun fetch (IF) occurs. In branch destination instructions, the IF starts from
the dlot that has the final EX in the address error exception processing.

Address errors are caused by instruction fetches and by data reads or writes. For details of the
error cause, refer to the appropriate hardware manual.

Illegal Instruction Exception Processing: Includes the following instruction type:

« lllegal instruction exception processing

P 4 4 O O O O O O O < <> <> Sot

|IIIegaI instruction :IF _ID: EX EX MA MA MA EX EX

Next instruction IF
(Third instruction IF)

Branch destination IF ID EX -
...... IF ID -

Figure 7.97 |Illegal Instruction Exception Processing Pipeline

Operation: Theillegal instruction is received during the ID stage of the instruction and
everything after the ID stage is replaced by the illegal instruction exception processing
sequence. The pipeline has nine stages. |IF, ID, EX, EX, MA, MA, MA, EX, and EX (figure
7.97). lllegal instruction exception processing is not a delayed branch. In illegal instruction
exception processing, an overrun fetch (IF) occurs. Whether there is an IF only in the next
instruction or in the one after that as well depends on the instruction that was to be executed.

HITACHI 249

In branch destination instructions, the |F starts from the slot that has the final EX in the
illegal instruction exception processing.

Illegal instruction exception processing is caused by ordinary illegal instructions and by
illegal dlot instructions. When undefined code placed somewhere other than the slot directly
after the delayed branch instruction (called the delay slot) is decoded, ordinary illegal
instruction exception processing occurs. When undefined code placed in the delay slot is
decoded or when an instruction placed in the delay slot to rewrite the program counter is
decoded, an illegal slot instruction exception handling occurs.

250 HITACHI

Appendix A Instruction Code
See “6. Instruction Descriptions’ for details.

A.l Instruction Set by Addressing Mode

Table A.1 lists instruction codes and execution states by addressing modes.

HITACHI 251

Table A.1 Instruction Set by Addressing Mode

Types
Addressing Mode Category Sample Instruction SH-2 SH-1
No operand — NOP 8 8
Direct register addressing Destination operand only MOVT =] 18 17
Source and destination ADD Rm Rn 34 31
operand
Load and store with control LDC Rm SR 12 12
register or system register
STS MACH, Rn
Indirect register Source operand only JMP @m 2 2
addressing Destination operand only TAS.B @ 1 1
Data transfer with direct MOV.L Rm @n 6 6
register addressing
Post increment indirect Multiply/accumulate MAC. W @m+, @GR+ 2 1
register addressing operation
Data transfer from direct MOV.L @m+, Rn 3 3
register addressing
Load to control register or LDC.L @m+, SR 6 6
system register
Pre decrement indirect Data transfer from direct MV.L Rm @Rn 3 3
register addressing register addressing
Store from control register or STC. L SR, @Rn 6 6
system register
Indirect register addressing Data transfer with direct MV.L Rm @disp, Rn) 6 6
with displacement register addressing
Indirect indexed register Data transfer with direct MOV.L Rm @RO, Rn) 6 6
addressing register addressing
Indirect GBR addressing Data transfer with direct MWV.L R @disp, GBR 6 6
with displacement register addressing
Indirect indexed GBR Immediate data transfer AND B # rm @R, BR 4 4
addressing
PC relative addressing with Data transfer to direct MWV.L @disp, PO, Rn 3 3
displacement register addressing
PC relative addressing with Branch instruction BRAF Rm 2 0
Rm
PC relative addressing Branch instruction BRA | abel 6 4
Immediate addressing Arithmetic logical operations ADD #i mm Rn 7 7
with direct register
addressing
Specify exception processing TRAPA #i nmm 1 1
vector
Total: 142 133

252 HITACHI

A.1.1 No Operand

Table A.2 No Operand

Instruction Code Operation State T Bit
CLRT 0000000000001000 0-T 1 0
CLRVAC 0000000000101000 0 - MACH, MACL 1 —
D VoU 0000000000011001 0 - M/IQIT 1 0
NOP 0000000000001001 No operation 1 —
RTE 0000000000101011 Delayed branch, Stack area 4 LSB
- PC/SR
RTS 0000000000001011 Delayed branch, PR - PC 2 —
SETT 0000000000011000 1-T 1
SLEEP 0000000000011011 Sleep 3 —

HITACHI 253

A.1.2

Table A.3 Destination Operand Only

Direct Register Addressing

Instruction Code Operation State T Bit
CWP/ PL R 0100nnnn00010101 Rn>0,1-T 1 Comparison result
CVP/ PZ R 0100nnnNn00010001 Rn>=0,1-T 1 Comparison result
Dor Rn* 0100nnnn00010000 Rn-1 - Rn 1 Comparison result
WhenRnis0,1 - T,
when Rn is nonzero,
0T
MVT Rn 0000nNnNNn00101001 T - Rn 1 —
ROTL R 0100nNNn00000100 T « Rn ~ MSB 1 MSB
ROTR Rn 0100nNnNn00000101 LSB - Rn - T 1 LSB
ROTCL Rn 0100nnnNn00100100 T<Rn T 1 MSB
ROTCR R 0100nnnn00100101 T-Rn-T 1 LSB
SHAL R 0100nNnNn00100000 T<Rn<0 1 MSB
SHAR Rn 0100nNnNn00100001 MSB - Rn - T 1 LSB
SHLL R 0100nNNn00000000 T « Rn < 0O 1 MSB
SHLR R 0100nNNN00000001 0O-Rn-T 1 LSB
SHLLZ2 Rn 0100nNNN00001000 Rn<<2 - Rn 1 —
SHLRZ R 0100nnnn00001001 Rn>>2 - Rn 1 —
SHLL8 Rn 0100nNnNn00011000 Rn<<8 - Rn 1 —
SHLR8 Rn 0100nnnNn00011001 Rn>>8 - Rn 1 —
SHLL16 Rn 0100nnnn00101000 Rn<<16 - Rn 1 —
SHLR16 R 0100nnnn00101001 Rn>>16 - Rn 1 —
Note: SH-2 CPU instruction
Table A.4 Source and Destination Operand
Instruction Code Operation State T Bit
ADD Rm Rn 0011nnnnnmmmmil100 Rn+RmM - Rn —
ADDC RmRn 0011lnnnnmmmi110 Rn+Rm+T - Rn, Carry
carry - T
ADDV RmRn 001lnnnnmmmillll Rn+Rm - Rn, Overflow
overflow - T
AND Rm Rn 0010nnnnmmmil001 Rn & Rm - Rn —

254 HITACHI

Table A.4 Source and Destination Operand (cont)

Instruction Code Operation State T Bit
CWP/ EQ Rm Rn 0011nnnnmMmmmD000 WhenRn=Rm,1 - T 1 Comparison
result
CVP/ HS Rm Rn 0011nnnnmmmmD010 When unsigned and Rn 1 Comparison
>Rm,1 - T result
CWP/ GE Rm Rn 0011nnnnmmm©D011 When signedand Rn = 1 Comparison
Rm,1 - T result
CVWP/H Rm Rn 0011nnnnnmm0110 When unsigned and Rn 1 Comparison
>Rm,1- T result
CWP/ GT Rm Rn 0011nnnnmmmo0111 When signed and Rn > 1 Comparison
Rm,1 - T result
CWP/ STR 0010nnnnnmmmmi100 When a byte in Rn 1 Comparison
RmM Rn equals bytes in Rm, 1 result
- T
D Vi Rm Rn 0011nnnnmmmm0100 1-step division (Rn + 1 Calculation
Rm) result
DIVOS RmRn 0010nnnnmmm0111 MSB of Rn - Q, MSB 1 Calculation
ofRm - M,M"Q - result
T
DMULS. L 0011nnnnmmmmil101 Signed, Rn x Rm - 2to 41 —
Rm Rn*?2 MACH, MACL
DMULU. L 0011nnnnnmmm0101 Unsigned, Rn xRm - 2to4*1 —
Rm Rn*2 MACH, MACL
EXTS. B Rm Rn 0110nnnnnmmmi110 Sign — extends Rm 1 —
from byte —» Rn
EXTS. WRmM Rn o110nnnnmMmmi111 Sign — extends Rm 1 —
from word - Rn
EXTU. B Rm Rn 0110nnnnnmmmi100 Zero — extends Rm 1 —
from byte - Rn
EXTU. WRmM Rn 0110nnnnmmmil101 Zero — extends Rm 1 —
from word - Rn
MOV Rm Rn 0110nnnnmMmmmD011 Rm - Rn 1 —
ML.L RmRn*2 0000nnnnnmm0111 RnxRm - MACL 2t0 41 —
MJLS. WRmM Rn 0010nnnnmmmmil111 Signed, Rn x Rm - 1to3*1 —
MAC
MULU. WRm Rn 0010nnnnMMMM110 Unsigned, RnxRm - 1to3*1 __
MAC
NEG Rm Rn 0110nnnnnmmmmmi 011 0-Rm - Rn 1 —
NEGC RmRn 0110nnnnnmmmi010 0-Rm-T - Rn, 1 Borrow
Borrow - T
Notes: 1. The normal minimum number of execution states

2. SH-2 CPU instruction

HITACHI 255

Table A.4 Source and Destination Operand (cont)

Instruction Code Operation State T Bit

NOT Rm Rn 0110nnnnmmm0111 ~Rm - Rn 1 —

R Rm Rn 0010nnnnnmmMM1011 Rn|Rm - Rn 1 —

SUB Rm Rn 0011nnnnmmmi000 Rn—Rm - Rn 1 —

SUBC RMRn 0011lnnnnmmmi010 Rn—-Rm-T - Rn, 1 Borrow
Borrow - T

SUBY RmMRn 0011nnnnnmmmil011 Rn—Rm - Rn, 1 Underflow
Underflow - T

SWAP. B Rm Rn 0110nnnnmmmmi.000 Rm - Swap upper and 1 —
lower halves of lower 2
bytes - Rn

SWAP. WRmM Rn 0110nnnnmmmi001 Rm - Swap upper and 1 —
lower word — Rn

TST Rm Rn 0010nnnnmmmil000 Rn & Rm, when result is 1 Test results
0,1 T

XOR Rm Rn 0010nnnnMmmm1.010 Rn~"Rm - Rn 1 —

XTRCT RmRn 0010nnnnmmm1101 Center 32 bits of Rm 1 —
and Rn - Rn

Table A.5 Load and Store with Control Register or System Register

Instruction Code Operation State T Bit
LDC Rm SR 0100mMmmD0001110 Rm - SR 1 LSB
LDC Rm GBR 0100mmM®D0011110 Rm - GBR 1 —
LDC Rm VBR 0100mmmMD0101110 Rm - VBR 1 —
LDS Rm MACH 0100mMmmD0001010 Rm - MACH 1 —
LDS Rm MACL 0100mMmmD0011010 Rm - MACL 1 —
LDS Rm PR 0100mmm00101010 Rm - PR 1 —
STC SR Rn 0000nnNn00000010 SR - Rn 1 —
STC GBR Rn 0000nnnNn00010010 GBR - Rn 1 —
STC VBR, Rn 0000nnnNn00100010 VBR - Rn 1 —
STS MACH, Rn 0000nnnn00001010 MACH - Rn 1 —
STS MACL, Rn 0000nnnn00011010 MACL - Rn 1 —
STS PR, Rn 0000nnnn00101010 PR - Rn 1 —

256 HITACHI

A.1.3 Indirect Register Addressing

Table A.6 Destination Operand Only

Instruction Code

Operation State

T Bit

JMP @m 0100mmD0101011

Delayed branch, Rm - PC 2

JSR @m 0100mmmD0001011

Delayed branch, PC - PR, 2

Rm - PC

TAS.B @xn 0100nnnn00011011

When (Rn)is0,1 - T,1 - 4

MSB of (Rn)

Test results

Table A.7 Data Transfer with Direct Register Addressing

Instruction Code Operation State T Bit

MOV.B Rm @n 0010nnNnmmm0000 Rm - (Rn) 1 —

MOV. W Rm @Rn 0010nnnnnMMmMD001 Rm - (Rn) 1 —

MOV.L Rm @un 0010nnnNnMmMMD010 Rm - (Rn) 1 —

MOV.B @Rm Rn 0110nnnnmmmD000 (Rm) - sign extension -~ Rn 1 —

MOV. W @Rm Rn 0110nnnnnmmm0001 (Rm) - sign extension -~ Rn 1 —

MV.L @m Rn 0110nnnnmmm©D010 (Rm) - Rn 1 —

A.1.4 Post Increment Indirect Register Addressing

Table A.8 Multiply/Accumulate Operation

Instruction Code Operation State T
Bit

MAC. L @m+, @n+*2 0000nnnnmmmml111 Signed, (Rn) x (Rm) + MAC 3/(to4r —

- MAC
MAC. W @mt, @Rn+ 0100nnnnnmmml111 Signed, (Rn) x (Rm) + MAC 3/(2)*! —

- MAC

Notes: 1. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions).

2. SH-2 CPU instruction

HITACHI 257

Table A.9 Data Transfer from Direct Register Addressing

Instruction Code Operation State T Bit

MOV. B @R+, Rn 0110nnnnmmmmD100 (Rm) - sign extension — 1 —
Rn,Rm+1 -~ Rm

MOV. W @R+, Rn 0110nnnnmmmD101 (Rm) - sign extension — 1 —
Rn,Rm+2 -~ Rm

MOV. L @Rmt, Rn 0110nnnnmmmD110 (RM) - Rn,Rm+4 - Rm 1 —

Table A.10 Load to Control Register or System Register

Instruction Code Operation State T Bit

LDC. L @m+, SR 0100nMmmMmMD0000111 (Rm) - SR,Rm+4 - Rm 3 LSB

LDC. L @Rm+, GBBR 0100mmmD0010111 (Rm) - GBR,Rm+4 - Rm 3 —

LDC.L @Rm+, VBR 0100mmmD0100111 (Rm) - VBR,Rm+4 - Rm 3 —

LDS.L @Rm+, MACH 0100mmmD0000110 (Rm) -~ MACH,Rm+4 — Rm 1 —

LDS.L @Rm+, MACL 0100mmm00010110 (Rm) - MACL,Rm+4 - Rm 1 —

LDS.L @m+, PR 0100nmMmmMD0100110 (Rm) - PR,Rm+4 - Rm 1 —

A.1l.5 Pre Decrement Indirect Register Addressing

Table A.11 Data Transfer from Direct Register Addressing

Instruction Code Operation State T Bit

MOV.B Rm @Rn 0010nnnnmmmMD100 Rn-1 - Rn,RmM - (Rn) 1 —

MOV. W Rm @Rn 0010nnnnmmm™D101 Rn-2 - Rn,Rm - (Rn) 1 —

MWV.L Rm @Rn 0010nnnnmmMD110 Rn-4 - Rn,Rm - (Rn) 1 —

258 HITACHI

Table A.12 Store from Control Register or System Register

Instruction Code Operation State T Bit

STC L SR @Rn 0100nnnn00000011 Rn-4 - Rn, SR - (Rn) 2 —

STC L GBR @Rn 0100nnnn00010011 Rn-4 - Rn,GBR - (Rn) 2 —

STC.L VBR @Rn 0100nnnn00100011 Rn-4 - Rn, VBR - (Rn) 2 —

STS.L MACH, @Rn 0100nnnn00000010 Rn-4 - Rn, MACH - (Rn) 1 —

STS.L MACL, @Rn 0100nnnn00010010 Rn-4 - Rn,MACL - (Rn) 1 —

STS.L PR @Rn 0100nnnNn00100010 Rn-4 - Rn,PR - (Rn) 1 —

A.1.6 Indirect Register Addressing with Displacement

Table A.13 Indirect Register Addressing with Displacement

Instruction Code Operation State T Bit

MOV. B RO, @di sp, Rn) 10000000nnnndddd RO - (disp + Rn) 1 —

MOV. W RO, @di sp, Rn) 10000001nnnndddd RO - (disp x 2 + Rn) 1 —

MV.L Rm @di sp, Rn) 0001nnnnmmmdddd Rm - (disp x4+Rn) 1 —

MV.B @disp, R, RO 10000100mMmmdddd (disp + Rm) - sign 1 —

extension — RO
MV. W @disp, R, RO 10000101mmmdddd (disp x2+Rm) - 1 —
sign extension - RO

MV.L @disp, R, Rn 0101nnnnmmmdddd (disp x4+Rm) - Rn 1 —

A.1.7 Indirect Indexed Register Addressing

Table A.14 Indirect Indexed Register Addressing

Instruction Code Operation State T Bit

MV.B Rm @RO, Rn) 0000nnnnnmmmm0100 Rm - (RO + Rn) 1 —

MV. W Rm @RO, R1) 0000nnnnmmm0101 Rm - (RO + Rn) 1 —

MV.L Rm @RO,Rn) 0000nnnnmmm0110 Rm - (RO + Rn) 1 —

MWV.B @RO, RM,Rn 0000nnnnnmmm100 (RO +Rm) - sign 1 —
extension — Rn

MV. W @RO, Rm,Rn 0000nnnnnmmml101 (RO +Rm) - sign 1 —
extension - Rn

MWV.L @RO, RM,Rn 0000nnnnnmmmmmi110 (RO+Rm) - Rn 1 —

HITACHI 259

A.1.8 Indirect GBR Addressing with Displacement

Table A.15 Indirect GBR Addressing with Displacement

Instruction Code Operation State T Bit
MOV. B RO, @di sp, GBR) 11000000dddddddd RO - (disp+ GBR) 1 —
MOV. W RO, @ di sp, GBR) 11000001dddddddd RO — (disp x 2 + 1 —
GBR)
MOV.L RO, @disp, GBR) 11000010dddddddd RO - (disp x4 + 1 —
GBR)
MOV. B @ disp, GBR), RO 11000100dddddddd (disp + GBR) — sign 1 —
extension - RO
MV. W @di sp, GBR), RO 11000101dddddddd (disp x2+GBR) - 1 —
sign extension - RO
MV.L @disp, GBR), RO 11000110dddddddd (disp x4+ GBR) - 1 —
RO
A.19 Indirect Indexed GBR Addressing
Table A.16 Indirect Indexed GBR Addressing
Instruction Code Operation State T Bit
AND. B #imm @R0, GBR) 1100110%iiiiiiii (RO+GBR)&imm - (RO 3 —
+ GBR)
OR B #inmm @R0,GBR) 1100111liiiiiiii (RO+GBR)|imm - (RO 3 —
+ GBR)
TST.B #imm @RO, GBR) 11001100iiiiiiii (RO+ GBR)&imm,when 3 Test
resultis0,1 - T results
XOR B #imm @RO, GBR) 11001110iiiiiiii (RO+GBR)"imm - (RO 3 —
+ GBR)
A.1.10 PC Relative Addressing with Displacement
Table A.17 PC Relative Addressing with Displacement
Instruction Code Operation State T Bit
MV. W @disp, PC), Rn 1001nnnndddddddd (disp x2+PC) - sign 1 —
extension - Rn
MV.L @disp, PC,Rn 1101nnnndddddddd (disp x4+ PC) - Rn 1 —
MOVA @disp, PC), R0 11000111dddddddd disp x4 +PC - RO 1 —

260 HITACHI

A.1111 PC Relative Addressing with

Rm

Table A.18 PC Relative Addressing with Rm

Instruction Code

Operation

State T Bit

BRAF Rnt2 0000nmmmM00100011

Delayed branch, Rm + PC - PC

BSRF Rnt2 0000nmmmD0000011

Delayed branch, PC - PR,Rm+PC 2

- PC

Notes: 2. SH-2 CPU instruction

A.1.12 PC Relative Addressing

Table A.19 PC Relative Addressing

Instruction Code Operation State T Bit

BF | abel 10001011dddddddd When T =0, disp x 2 + PC - PC; 3/1*3 —
When T = 1, nop

BF/S label*2 10001111dddddddd When T =0, dispx2+PC - PC; 2/1*3 —
When T =1, nop

BT | abel 10001001dddddddd When T =1, disp x 2+ PC - PC; 3/1*3 —
When T = 0, nop

BT/S label*2 10001101dddddddd When T =1,dispx2+PC - PC; 2/1*3 —
When T = 0, nop

BRA | abel 1010dddddddddddd Delayed branch, disp x 2+ PC - 2 —

PC

BSR | abel 1011dddddddddddd

Delayed branch, PC - PR, disp x 2 —

2+PC - PC

Notes: 2. SH-2 CPU instruction
3. One state when it does not br

anch

HITACHI 261

A.1.13 Immediate

Table A.20 Arithmetic Logical Operation with Direct Register Addressing

Instruction Code Operation State T Bit

ADD #HimmRn Olldinnnniiiiiiii Rn+imm - Rn 1 —

AND #imm RO 1100100%iiiiiiii RO & imm - RO 1 —

CW/ EQ#imm RO 10001000iiiiiiii When RO=imm,1 - T 1 Compariso

n result

MOV #imm Rn 1110nnnniiiiiiii imm - sign extension - Rn 1 —

OR #imm RO 1100101%iiiiiiii RO |imm - RO 1 —

TST #imm RO 11001000iiiiiiii RO & imm, when resultis 0, 1 Test results

1T
XOR #imm RO 11001010iiiiiiii RO~ imm - RO 1 —

Table A.21 Specify Exception Processing Vector

Instruction Code Operation State T Bit
TRAPA #i mm 1100001%iiiiiiii PC/SR - Stack area, immx4+ 8 —
VBR) - PC

A.2 Instruction Sets by Instruction For mat

Tables A.22 to A.48 list instruction codes and execution states by instruction formats.

262 HITACHI

Table A.22 Instruction Sets by Format

Types
Format Category Sample Instruction SH-2 SH-1
0 — NOP 8 8
n Direct register addressing MNVT Rn 18 17
Direct register addressing (store with control STS MACH, Rn 6 6
or system registers)
Indirect register addressing TAS.B @
Pre decrement indirect register addressing STC.L SR, @Rn
m Direct register addressing (load with control LDC Rm SR
or system registers)
PC relative addressing with Rn BRAF Rm 2 0
Direct register addressing JWP @Rm 2 2
Post increment indirect register addressing LDC. L @mt, SR
nm Direct register addressing ADD Rm Rn 34 31
Indirect register addressing MV.L Rm @un 6 6
Post increment indirect register addressing MAC. W @ m+, @Rn+ 2 1
(multiply/accumulate operation)
Post increment indirect register addressing MOV. L @ m+, Rn 3 3
Pre decrement indirect register addressing MOV.L Rm @Rn 3 3
Indirect indexed register addressing MOV.L Rm @ RO, Rn) 6 6
md Indirect register addressing with MWV.B @disp, RM, RO 2 2
displacement
nd4 Indirect register addressing with MWV.B RO, @di sp, Rn) 2 2
displacement
nmd Indirect register addressing with MWV.L Rm @di sp, Rn) 2 2
displacement
d Indirect GBR addressing with displacement MOV.L RO, @di sp, GBR) 6 6
Indirect PC addressing with displacement MOVA @di sp, PO), RO 1 1
PC relative addressing BF | abel 4 2
di2 PC relative addressing BRA | abel 2 2
nd8 PC relative addressing with displacement MW.L @disp, PO, Rn 2 2
i Indirect indexed GBR addressing AND. B #i nm @ RO, GBR) 4 4
Immediate addressing (arithmetic and logical AND #i mm RO 5 5
operations with direct register)
Immediate addressing (specify exception TRAPA #i mm 1 1
processing vector)
ni Immediate addressing (direct register ADD #i mm Rn 2 2

arithmetic operations and data transfers)

Total: 142 133

HITACHI 263

A.2.1 0 Format

Table A.23 0 Format

Instruction Code Operation State T Bit

CLRT 0000000000001000 0-T 1 0

CLRVAC 0000000000101000 0 - MACH, MACL 1 —

Dl VOU 0000000000011001 0 - M/IQIT 1 0

NOP 0000000000001001 No operation 1 —

RTE 0000000000101011 Delayed branching, stack 4 LSB
area - PC/SR

RTS 0000000000001011 Delayed branching, PR - 2 —
PC

SETT 0000000000011000 1-T 1 1

SLEEP 0000000000011011 Sleep 34 —

Notes: 4. This is the number of states until a transition is made to the Sleep state.

264 HITACHI

A.22

n Format

Table A.24 Direct Register Addressing

Instruction Code Operation State T Bit

CVWP/ PL R 0100nnnn00010101 Rn>0,1 - T 1 Comparison result
CMVP/ PZ R 0100nnnn00010001 Rn=0,1 - T 1 Comparison result
Dr Rn* 2 0100nnnn00010000 Rn-1 - Rn; 1 Comparison result

IfRnis0,1 - T,ifRn
is nonzero,0 - T

MVT Rn 0000nnnn00101001 T - Rn 1 —

ROTL R 0100nnnn00000100 T « Rn ~ MSB 1 MSB

ROTR Rn 0100nnnn00000101 LSB - RN - T 1 LSB

ROTCL Rn 0100nnnn00100100 T « Rn ~ T 1 MSB

ROTCR Rn 0100nnnn00100101 T - Rn - T 1 LSB

SHAL R 0100nnnn00100000 T « Rn ~ 0O 1 MSB

SHAR Rn 0100nnnn00100001 MSB - Rn - T 1 LSB

SHLL R 0100nnnn00000000 T « Rn < 0O 1 MSB

SHLR R 0100nnnn00000001 O - Rn - T 1 LSB

SHLL2 Rn 0100nnnn00001000 Rn<<2 - Rn 1 —

SHLRZ R 0100nnnNn00001001 Rn>>2 - Rn 1 —

SHLL8 Rn 0100nnnn00011000 Rn<<8 - Rn 1 —

SHLR8 Rn 0100nnnn00011001 Rn>>8 - Rn 1 —

SHLL16 Rn 0100nnnNn00101000 Rn<<16 - Rn 1 —

SHLR16 R 0100nnnn00101001 Rn>>16 - Rn 1 —

2.

Notes:

SH-2 CPU instruction.

Table A.25 Direct Register Addressing (Store with Control and System Registers)

Instruction Code Operation State T Bit
STC SR Rn 0000nnNNN00000010 SR - Rn 1 —
STC GBR, Rn 0000nnnNn00010010 GBR - Rn 1 —
STC VBR, Rn 0000nnNnNNn00100010 VBR - Rn 1 —
STS MACH, Rn 0000nnnn00001010 MACH - Rn 1 —
STS MACL, Rn 0000nnnn00011010 MACL - Rn 1 —
STS PR Rn 0000nnnNNn00101010 PR - Rn 1 —

HITACHI 265

Table A.26 Indirect Register Addressing

Instruction Code Operation State T Bit
TAS.B @n 0100nnnn00011011 When(Rn)is0,1 - T,1 - 4 Test results
MSB of (Rn)

Table A.27 Pre Decrement Indirect Register

Instruction Code Operation State T Bit
STC L SR @Rn 0100nnnn00000011 Rn-4 - Rn, SR - (Rn) 2 —
STC. L GBR @Rn 0100nnnn00010011 Rn-4 - Rn,GBR - (Rn) 2 —
STC L VBR @Rn 0100nnnn00100011 Rn-4 - Rn,VBR - (Rn) 2 —
STS.L MACH, @Rn 0100nnnn00000010 Rn-4 - Rn,MACH - (Rn) 1 —
STS.L MACL, @Rn 0100nnnn00010010 Rn-4 - Rn,MACL - (Rn) 1 —
STS. L PR @Rn 0100nnnn00100010 Rn-4 - Rn,PR - (Rn) 1 —

266 HITACHI

A.2.3 m Format

Table A.28 Direct Register Addressing (Load with Control and System Registers)

Instruction Code Operation State T Bit
LDC Rm SR 0100nMMMD0001110 Rm - SR 1 LSB
LDC Rm GBR 0100mMmmmMD0011110 Rm - GBR 1 —
LDC Rm VBR 0100mmmMD0101110 Rm - VBR 1 —
LDS Rm MACH 0100nMmMMD0001010 Rm - MACH 1 —
LDS Rm MACL 0100mmmD0011010 Rm - MACL 1 —
LDS Rm PR 0100mMmmmD0101010 Rm - PR 1 —

Table A.29 Indirect Register

Instruction Code Operation State T Bit

JWP @m 0100mmMmmD0101011 Delayed branch, Rm - PC 2 —

JSR @m 0100mmMm00001011 Delayed branch, PC - PR, 2 —
Rm - PC

Table A.30 Post Increment Indirect Register

Instruction Code Operation State T Bit

LDC. L @m+, SR 0100nmmmD0000111 (Rm) - SR, Rm+4 -~ Rm 3 LSB

LDC. L @m+, GBR 0100mm®D0010111 (Rm) -~ GBR,Rm+4 - Rm

3
LDC. L @m+, VBR 0100nmmmD0100111 (Rm) - VBR,Rm+4 - Rm 3 —
1

LDS. L 0100nmmmMD0000110 (Rm) - MACH, Rm+4 - Rm —
@Rmt+, MAC

H

LDS. L 0100mmmD0010110 (Rm) - MACL,Rm+4 - Rm 1 —
@m+, MAC

L

LDS. L @m+, PR 0100mmMmmD0100110 (Rm) - PR,Rm+4 - Rm 1 —

HITACHI 267

Table A.31 PC Relative Addressing with Rm

Instruction Code Operation State T Bit
BRAF Rnt2 0000nmmm00100011 Delayed branch, Rm + PC - PC 2 —
BSRF Rm2 0000nmmmD0000011 Delayed branch, PC - PR,Rm+PC 2 —

- PC

Notes: 2. SH-2 CPU instruction

268 HITACHI

A.24

nm Format

Table A.32 Direct Register Addressing

Instruction Code Operation State T Bit
ADD Rm Rn 001lnnnnmmmil100 Rn+Rm - Rn 1 —
ADDC RmMmRn 001l1lnnnnmmmll110 Rn+Rm+T - Rn,carry 1 Carry
- T
ADDV Rm Rn 0011nnnnmmmill1l1ll Rn+Rm - Rn, overflow 1 Overflow
- T
AND Rm Rn 0010nnnnmmm1001 Rn&Rm - Rn 1 —
CWP/ EQ Rm Rn 0011nnnnmmm0000 WhenRn=Rm,1 - T 1 Comparison
result
CWP/ HS Rm Rn 0011nnnnmmmmO010 When unsigned and Rn > 1 Comparison
Rm,1 T result
CW/ GE Rm Rn 0011nnnnmmmDO011 When signed and Rn = 1 Comparison
Rm,1 T result
CW/ H RmRn 0011nnnnmmm0110 When unsigned and Rn> 1 Comparison
Rm,1 - T result
CWP/ GT' Rm Rn 001l1lnnnnmmm®D111 When signed and Rn > 1 Comparison
Rm,1 T result
CWP/ STR 0010nnnnmmm100 When a byte in Rn equals 1 Comparison
Rm Rn abyteinRm,1 - T result
DVl RmRn 0011nnnnmmm0100 1-step division (Rn + Rm) 1 Calculation
result
DIVOS RmRn 0010nnnnmmmO0111 MSBofRn - Q, MSB of 1 Calculation
Rm - M,\M"*"Q - T result
DMULS. L 001lnnnnmmmil101 Signed, Rn x Rm - 2to —
Rm Rn*2 MACH, MACL 4x1
DMULU. L 0011nnnnmmmm0101 Unsigned, Rn x Rm - 2to —
Rm Rn*2 MACH, MACL 4x1
EXTS. B Rm Rn 0110nnnnmmml110 Sign-extends Rm from 1 —
byte - Rn
EXTS. WRmM Rn 0110nnnnmmml111l Sign-extends Rm from 1 —
word - Rn
EXTU. B Rm Rn 0110nnnnnmmmi100 Zero-extends Rm from 1 —
byte - Rn
EXTU. WRM Rn 0110nnnnmmmil101 Zero-extends Rm from 1 —
word - Rn
MoV Rm Rn 0110nnnnmmmmD011 Rm - Rn 1 —
Notes: 1. The normal minimum number of execution states

2. SH-2 CPU instruction

HITACHI 269

Table A.32 Direct Register Addressing (cont)

Instruction Code Operation State T Bit

ML.L RmRn*2 0000nnnnmmmD111 Rn x Rm - MACL 2to4*1 —

MULS. WRmM Rn 0010nnnnnmmmil111 Signed, Rn xRm -~ MAC 1to3* —

MJLU. WRM Rn 0010nnnnmm110 Unsigned, Rn x Rm - l1to3* __
MAC

NEG Rm Rn 0110nnnnnmmmil011 0-Rm - Rn 1 —

NEGC RmRn 0110nnnnmmmi010 O—-Rm-T - Rn, borrow 1 Borrow
- T

NOT Rm Rn 0110nnnnnmmm0111 ~Rm - Rn 1 —

OR Rm Rn 0010nnnnnmmMm1011 Rn|Rm - Rn 1 —

SUB Rm Rn 0011nnnnmmmi 000 Rn—Rm - Rn 1 —

SUBC RmRn 0011nnnnnmmmi010 RNn—-RmM-T - Rn, 1 Borrow
borrow - T

SUBV RmRn 0011lnnnnmmmi0l11l Rn—-Rm - Rn, underflow 1 Underflow
- T

SWAP. B Rm Rn 0110nnnnmmmi000 Rm - Swap upper and 1 —
lower halves of lower 2
bytes - Rn

SWAP. WRmM Rn 0110nnnnmmi001 Rm - Swap upper and 1 —
lower word - Rn

TST Rm Rn 0010nnnnmmmil000 Rn & Rm, when result is 1 Test results
0,1 -T

XOR Rm Rn 0010nnnnmMMmmMm1.010 Rn~"Rm - Rn 1 —

XTRCT RmRn 0010nnnnmmmil101 Center 32 bits of Rmand 1 —

Rn - Rn

Notes: 1. The normal minimum number of execution cycles.
2. SH-2 CPU instructions

270 HITACHI

Table A.33 Indirect Register Addressing

Instruction Code Operation State T Bit
MOV. B Rm @n 0010nnNNMMDO00 Rm - (Rn) 1 —
M. W Rm @Rn 0010nnnnmmmm0001 Rm - (Rn) 1 —
MV.L Rm @n 0010nnnnnmMMM0010 ~ Rm - (Rn) 1 —
MV.B @Rm Rn 0110nnnnMmmMMDO00 (Rm) - sign extension - Rn 1 —
MOV. W @Rm Rn 0110nnnnnmmm0001 (Rm) - sign extension - Rn 1 —
MOV.L @Rm Rn 0110nnnnmmm®D010 (Rm) - Rn 1 —
Table A.34 Post Increment Indirect Register (Multiply/Accumulate Operation)
Instruction Code Operation State T Bit
MAC. L @Rm+, @Rn+* 2 0000nnnnmMMML111 Signed, (Rn) x (Rm) + 3/(2 to —
MAC - MAC 4y<1
MAC. W @R+, @Rn+ 0100nnnnnmmm111 Signed, (Rn) x (Rm) + 3 —

MAC - MAC

Notes: 1. The normal minimum number of execution cycles.(The number in parentheses in the
number of cycles when there is contention with preceding/following instructions).

2. SH-2 CPU instruction.

Table A.35 Post Increment Indirect Register

Instruction Code Operation State T Bit

MV.B @+, Rn 0110nnnnnmmmm©O100 (Rm) - sign extension — 1 —
Rn,Rm+1 - Rm

MOV. W @Rm+, Rn 0110nnnnmmm0101 (Rm) - sign extension - 1 —
Rn,Rm+2 - Rm

MOV.L @Rm+, Rn 0110nnnnMmmm®0110 (Rm) -~ Rn,Rm+4 - Rm 1 —

Table A.36 Pre Decrement Indirect Register

Instruction Code Operation State T Bit

MOV.B Rm @Rn 0010nnnnmmmO100 Rn-1 - Rn,Rm - (Rn) 1 —

MOV. W Rm @Rn 0010nnnnmmmmOD101 Rn-2 - Rn,Rm - (Rn) 1 —

MOV.L Rm @Rn 0010nnnnmmmO110 Rn-4 - Rn,Rm - (Rn) 1 —

HITACHI 271

Table A.37 Indirect Indexed Register

Instruction Code Operation Cycles T Bit
MV.B Rm @RO, Rn) 0000nnnnnmmmD100 Rm - (RO + Rn) 1 —
MV. W Rm @RO, Rn) 0000nnnnnmmm0101 Rm - (RO + Rn) 1 —
MV.L Rm @RO,Rn) 0000nnnnmmm0110 Rm - (RO +Rn) 1 —
MV.B @RO, R, Rn 0000nnnnnmmmM1100 (RO +Rm) - sign 1 —
extension — Rn
MV. W @RO,Rm,Rn 0000nnnnmmmi1101 (RO +Rm) - sign 1 —
extension - Rn
MV.L @RO,RmM,Rn 0000nnnnnmmm1110 (RO+Rm) - Rn 1 —
A.25 md Format
Table A.38 md Format
Instruction Code Operation State T Bit
MV.B @disp, Rm, RO 10000100mmmdddd (disp + Rm) - sign 1 —
extension — RO
MV. W @disp, R, RO 10000101mmmdddd (disp x 2 + Rm) - 1 —
sign extension -
RO
A.26 nd4 Format
Table A.39 nd4 Format
Instruction Code Operation State T Bit
MOV. B RO, @di sp, Rn) 10000000nnnndddd RO - (disp + Rn) 1 —
MV. W RO, @di sp, Rn) 10000001nnnndddd RO - (disp x 2+ Rn) 1 —
A.27 nmd Format
Table A.40 nmd Format
Instruction Code Operation State T Bit
MOV.L Rm @di sp, Rn) 0001nnnnmmmdddd Rm - (disp x4 + Rn) 1 —
MWV.L @disp, R, Rn 0101lnnnnmmmdddd (disp x 4+ Rm) - Rn 1 —

272 HITACHI

A.2.8 d Format

Table A.41 Indirect GBR with Displacement

Instruction Code Operation State T Bit
M. B RO, @di sp, GBR) 11000000ddddddd RO - (disp+ GBR) 1 —
d
M. W RO, @di sp, GBR) 11000001ddddddd RO — (disp x 2 + 1 —
d GBR)
MOV.L RO, @di sp, GBR) 11000010ddddddd RO - (disp x4 + 1 —
d GBR)
MOV.B @disp, GBR), RO 11000100ddddddd (disp + GBR) - sign 1 —
d extension - RO
MV. W @disp, GBBR), RO 11000101ddddddd (dispx2+GBR) - 1 —
d sign extension —» RO
MV.L @disp, GBR), RO 11000110ddddddd (disp x4+ GBR) -~ 1 —
d RO
Table A.42 PC Relative with Displacement
Instruction Code Operation State T Bit
MWVA @disp, PC), R0 11000111dddddddd dispx4+PC - RO 1 —
Table A.43 PC Relative Addressing
Instruction Code Operation State T Bit
BF | abel 10001011dddddddd When T =0, disp x2+ PC - PC; 3/1*3 —
When T =1, nop
BF/ S 10001111dddddddd When T =0, disp x2+ PC - PC; 2/1*3 —
| abel When T = 1, nop
*2
BT | abel 10001001dddddddd When T =1, disp x2+ PC - PC; 3/1*3 —
When T = 0, nop
BT/ S 10001101dddddddd When T =1, disp x2 + PC - PC; 2/1%3 —
| abel When T = 0, nop

*2

Notes: 2. SH-2 CPU instruction

3. One state when it does not branch

HITACHI 273

A.29 d12 Format

Table A.44 d12 Format

Instruction Code Operation State T Bit
BRA 1010dddddddddddd Delayed branch, disp x2+ PC - PC 2 —
| abe
I
BSR 1011dddddddddddd Delayed branching, PC - PR, disp x 2 —
| abe 2+PC - PC
I
A.210 nd8 Format
Table A.45 nd8 Format
Instruction Code Operation State T Bit
MV. W @disp, PC), Rn 1001nnnndddddddd (disp x 2 + PC) - sign 1 —
extension - Rn
MV.L @disp, PC,Rn 1101nnnndddddddd (disp x4+ PC) - Rn 1 —
A.211 i Format
Table A.46 Indirect Indexed GBR Addressing
Instruction Code Operation State T Bit
AND.B #imm @R0O, BR) 11001101%iiiiiiii (RO+GBR)&imm - 3 —
(RO + GBR)
R B 11001111iiiiiiii (RO+GBR)|imm - (RO 3 —
#i nm @ RO, GBR) + GBR)
TST.B #imm @RO, BR) 11001100iiiiiiii (RO+GBR)&imm, 3 Test
whenresultis0,1 -~ T results
XOR B #imm @RO, GBBR) 11001110iiiiiiii (RO+ GBR)”imm - 3 —

(RO + GBR)

274 HITACHI

Table A.47 Immediate Addressing (Arithmetic Logical Operation with Direct Register)

Instruction Code Operation State T Bit

AND #i mm RO 1100100%1iiiiiiii RO&iImm - RO 1 —

CWP/ EQ #i nm RO 10001000iiiiiiii WhenRO=imm,1 - T 1 Comparison

results
OR #i mm RO 1100101%iiiiiiii RO|imm - RO 1 —
TST #i mm RO 11001000iiiiiiii RO &imm,whenresult 1 Test results
is0,1 - T
XOR #i mm RO 11001010iiiiiiii RO~imm - RO 1 —

Table A.48 Immediate Addressing (Specify Exception Processing Vector)

Instruction Code

Operation

State T Bit

TRAPA #imm 11000022iiiiiiii

PC/SR - Stack area, (imm x 4 +
VBR) - PC

A.2.12 ni Format

Table A.49 ni Format

Instruction Code Operation State T Bit

ADD Ollinnnniiiiiiii Rn +imm - Rn —
#imm R

n

MoV 1110nnnniiiiiiii imm - sign extension - Rn —
#imm R

n

HITACHI 275

A.3 Instruction Set in Order by Instruction Code

Table A.50 lists instruction codes and execution states in order by instruction code.

Table A.50 Instruction Set by Instruction Code

Instruction Code Operation State T Bit
CLRT 0000000000001000 0-T 1 0
NCP 0000000000001001 No operation 1 —
RTS 0000000000001011 Delayed branch, PR 2 —

- PC
SETT 0000000000011000 1T 1 1
Dl VOU 0000000000011001 0 - M/QIT 1 0

276 HITACHI

Table A.50 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit
SLEEP 0000000000011011 Sleep 3 —
CLRVAC 0000000000101000 0 - MACH, MACL 1 —
RTE 0000000000101011 Delayed branch, stack 4 LSB
area —» PC/SR
STC SR Rn 0000nnnn00000010 SR - Rn —
BSRF Rt 2 0000nMMMD0000011 Delayed branch, PC 2 —
- PR,Rm+PC - PC
STS MACH, Rn 0000nnnn00001010 MACH - Rn 1 —
STC GBR, Rn 0000nnnNn00010010 GBR - Rn 1 —
STS MACL, Rn 0000nnnn00011010 MACL - Rn 1 —
STC VBR, Rn 0000nnnNn00100010 VBR - Rn 1 —
BRAF Rt 2 0000mMmmMMD0100011 Delayed branch, Rm + 2 —
PC - PC
MWVT R 0000nnnn00101001 T - Rn 1 —
STS PR Rn 0000nnnn00101010 PR - Rn 1 —
M. B Rm @ RO, Rn) 0000nNNNMMMO100 Rm - (RO + Rn) 1 —
MOV. W Rm @ RO, Rn) 0000NnNNNMMD101 Rm - (RO + Rn) 1 —
MV.L Rm @ RO, Rn) 0000nnnNMMMO110 Rm - (RO + Rn) 1 —
ML.L Rm Rn*2 0000NnnnnmMmMmMmMD111 RnxRm - MACL 2 —
(to 4)x1
MWV.B @RO, RM, Rn 0000nNNNMMML100 (RO +Rm) - sign 1 —
extension — Rn
MV. W @RO, Rm, Rn 0000nNNnMMMML101 (RO +Rm) - sign 1 —
extension - Rn
MV.L @RO, RM, Rn 0000nnNnNMMML110 (RO+Rm) - Rn 1 —
MAC. L @ m#, @Rn+* 2 0000nnnnmMMMML111 Signed, (Rn) x (Rm) + 3/ (2 —
MAC - MAC to 4)*1
MV.L Rm @disp, Rn) 0001lnnnnnmmmmdddd Rm - (disp x4+Rn) 1 —
MOV.B Rm @n 0010nnnnmmm0000 Rm - (Rn) 1 —
MOV. W Rm @Rn 0010nnnnnmMmMmMO001 Rm - (Rn) 1 —

Notes: 1. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions)

2. SH-2 CPU instruction

HITACHI 277

Table A.50 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit
MOV.L Rm @n 0010nnnnnmMmMmMO010 Rm - (Rn) 1 —
MV.B Rm @Rn 0010nnnnnMMmMMD100 Rn-1 - Rn,RmM - 1 —
(Rn)
MV. W Rm @Rn 0010nnnnnmmmmM0101 Rn-2 - Rn,Rm - 1 —_
(Rn)
MOV.L Rm @Rn 0010nnnnnMmMmMMD110 Rn-4 - Rn,RmM - 1 —
(Rn)
DVOS RmRn 0010nnnnmmm®0111 MSBof Rn - Q, 1 Calculation
MSB of Rm - M, M~ result
Q-T
TST Rm Rn 0010nnnnnmmML 000 Rn & Rm, whenresult 1 Test results
is0,1 - T
AND Rm Rn 0010nnnnmmmil001 Rn&RmM - Rn 1 —
XOR Rm Rn 0010nnnnmmmi1010 Rn”Rm - Rn 1 —
OR Rm Rn 0010nnnnnmmM011 Rn|Rm - Rn 1 —
CWP/ STR 0010nnnnMmmmML100 When a byte in Rn 1 Comparison
Rm Rn equals a byte in Rm, 1 result
- T
XTRCT RmRn 0010nnnnmmmil101 Center 32 bits of Rm 1 —
and Rn - Rn
MJULU. WRmMm Rn 0010nnnnmmm110 Unsigned, Rn xRm - 1to 3
MAC
MJLS. WRM Rn 0010nnnnmmml111l Signed, Rn X Rm - l1to3*1 —
MAC
CWVP/ EQ Rm Rn 0011nnnnnmmO000 WhenRn=Rm,1 - T 1 Comparison
result
CWP/ HS Rm Rn 0011nnnnmmm™DO010 When unsigned and 1 Comparison
Rn>=Rm,1- T result
CWP/ GE Rm Rn 0011nnnnmmmD011 When signed and Rn 1 Comparison
>Rm,1 - T result
DVLI RmRn 0011nnnnmmmmD100 1-step division (Rn + 1 Calculation
Rm) result
DMULU. L 0011nnnnmmmD101 Unsigned, RnxRm - 2to YL —
Rm Rn*2 MACH, MACL

Notes: 1. The normal minimum number of execution states
2. SH-2 CPU instruction

278 HITACHI

Table A.50 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit
CW/ H RmRn 0011nnnnmmm0110 When unsigned 1 Comparison
and Rn>Rm, 1 result
- T
CWP/ GT' Rm Rn 001linnnnmmmmD111 When signed and 1 Comparison
Rn>Rm,1 - T result
SUB Rm Rn 0011nnnnnMmmmil000 Rn—RmM - Rn 1 —
SUBC RmMRn 0011nnnnmmmi010 RNn—Rm-T - 1 Borrow
Rn, borrow - T
SUBV RmMRn 001lnnnnmmmiO0l1 Rn—-Rm - Rn, 1 Underflow
underflow - T
ADD Rm Rn 0011nnnnmmmil100 Rm+Rn - Rn 1 —
DMULS. L Rm Rn*2 001lnnnnmmmrill01 Signed, RnxRm 2to 4*1 —
- MACH, MACL
ADDC RmMmRn 0011nnnnnmmmmil110 Rn+RmM+T - 1 Carry
Rn,carry - T
ADDV Rm Rn 001lnnnnmmmilll Rn+Rm - Rn, 1 Overflow
overflow - T
SHLL R 0100nnnn00000000 T<Rn<0O 1 MSB
SHLR R 0100nnnn00000001 O-Rn-> T 1 LSB
STS.L MACH, @Rn 0100nnnn00000010 Rn-4 - Rn, 1 —
MACH - (Rn)
STCL SR @Rn 0100nnnn00000011 Rn-4 - Rn,SR 2 —
- (Rn)
ROTL R 0100nnnn00000100 T~<Rn- MSB 1 MSB
ROTR R 0100nnnn00000101 LSB - Rn - T 1 LSB
LDS. L @ m+, MACH 0100MmmMD0000110 (Rm) - MACH, 1 —
Rm+4 - Rm
LDC. L @m+, SR 0100mMmmMD0000111 (Rm) - SR,Rm+ 3 LSB
4 - Rm
SHLL2 Rn 0100nnnn00001000 Rn<<2 - Rn 1 —
SHLR2 Rn 0100nnnn00001001 Rn>>2 - Rn 1 —
LDS Rm MACH 0100nMmMmMD0001010 Rm - MACH 1 —

Notes: 1. The normal minimum number of execution states
2. SH-2 CPU instruction

HITACHI 279

Table A.50 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit
JSR @m 0100mmMD0001011 Delayed branch, PC 2 —
- PR,Rm - PC
LDC Rm SR 0100mMmMM00001110 Rm - SR 1 LSB
DT Rn*2 0100nnnn00010000 Rn-1 - Rn;ifRnis 1 Comparison
0,1 - T,ifRnis result
nonzero,0 - T
CVWP/ PZ Rh 0100nnnn00010001 Rn=0,1-T 1 Comparison
result
STS.L MACL, @Rn 0100nnnn00010010 Rn-4 - Rn, MACL 1 —
- (Rn)
STCL GBR @Rn 0100nnnn00010011 Rn-4 - Rn,GBR - 2 —
(Rn)
CVMP/ PL R 0100nnnn00010101 Rn>0,1 - T 1 Comparison
result
LDS. L @m+, MVACL 0100mm00010110 (Rm) -~ MACL,Rm+ 1 —
4 . Rm
LDC. L @Rm+, GBR 0100mmMmMD0010111 (Rm) -~ GBR,Rm+4 3 —
- Rm
SHLL8 Rn 0100nnnn00011000 Rn<<8 - Rn 1 —
SHLR8 Rn 0100nnnn00011001 Rn>>8 - Rn 1 —
LDS Rm MACL 0100nMmmMm00011010 Rm - MACL 1 —
TAS.B @ 0100nnnn00011011 When (Rn)is 0,1 - 4 Test results
T,1 —» MSB of (Rn)
LDC Rm GBR 0100nMmmMMD0011110 Rm - GBR 1 —
SHAL Rn 0100nnnn00100000 T<Rn<0 1 MSB
SHAR Rn 0100nnnn00100001 MSB - Rn - T 1 LSB
STS.L PR @Rn 0100nnnn00100010 Rn-4 - Rn,PR - 1 —
(Rn)
STC. L VBR @Rn 0100nnnn00100011 Rn-4 - Rn,VBR - 2 —
(Rn)
ROTCL Rn 0100nnnn00100100 T<RnT 1 MSB
ROTCR Rn 0100nnnn00100101 T-oRn-T 1 LSB
LDS. L @m+, PR 0100nMmMM00100110 (Rm) - PR,Rm+4 - 1 —
Rm
LDC. L @m+, VBR 0100mMmmMmMD0100111 (Rm) - VBR,Rm+4 3 —
- Rm
Notes: 2. SH-2 CPU instruction

280 HITACHI

Table A.50 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit
SHLL16 Rn 0100nnnNn00101000 Rn<<16 - Rn 1 —
SHLR16 Rn 0100nnnn00101001 Rn>>16 - Rn 1 —
LDS Rm PR 0100nmmMmM®D0101010 Rm - PR 1 —
JWP @m 0100mmMmD0101011 Delayed branch, Rm 2 —
- PC
LDC Rm VBR 0100mmmD0101110 Rm - VBR 1 —
MAC. W @Rmt, @+ 0100nnnnmmmmi111 Signed, (Rn) x (Rm) 3/(2* —
+ MAC - MAC
MOV.L @disp, RM),Rn 0101lnnnnnmmdddd (disp + Rm) —» Rn 1 —
MOV.B @Rm Rn 0110nnnnmmmD000 (Rm) - sign 1 —
extension — Rn
MOV. W @m Rn 0110nnnnmmmD001 (Rm) - sign 1 —
extension — Rn
MOV.L @Rm Rn 0110nnnnmmmm™D010 (Rm) - Rn 1 —
MoV Rm Rn 0110nnnnmmm®O011 Rm - Rn 1 —
M. B @R+, Rn 0110nnnnmmm0100 (Rm) - sign 1 —
extension - Rn, Rm
+1 -5 Rm
MOV. W @+, Rn 0110nnnnmmmo0101 (Rm) - sign 1 —
extension — Rn, Rm
+2 -5 Rm
MOV.L @Rm+, Rn 0110nnnnmmmD110 (RM) - Rn,Rm+4 1 —
- Rm
NOT Rm Rn 0110nnnnmMmmm0111 ~Rm - Rn 1 —
SWAP. B Rm Rn 0110nnnnmmm1 000 Rm - Swap upper 1 —
and lower halves of
lower 2 bytes —» Rn
SWAP. WRmM Rn 0110nnnnmmm1001 Rm - Swap upper 1 —
and lower word —
Rn
NEGC RmRn 0110nnnnmmmi1010 O-Rm-T - Rn, 1 Borrow
borrow - T
NEG RmMm Rn 0110nnnnnmmmi011 0-Rm - Rn 1 —

Notes: 1 The normal minimum number of execution states (The number in parentheses is the
number in contention with preceding/following instructions)

HITACHI 281

Table A.50 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit

EXTU. B Rm Rn 0110nnnnnmmm100 Zero-extends Rm 1 —
from byte - Rn

EXTU. WRmM Rn 0110nnnnnmmmmil101 Zero-extends Rm 1 —
from word - Rn

EXTS. B Rm Rn 0110nnnnmmm1110 Sign-extends Rm 1 —
from byte - Rn

EXTS. WRmM Rn 0110nnnnmmm1111 Sign-extends Rm 1 —
from word - Rn

ADD #i mm Rn Olldnnnniiiiiiii Rn+imm - Rn 1 —

M. B RO, @disp, Rn) 10000000nnnndddd RO - (disp + Rn) 1 —

MV. W RO, @di sp, Rn) 10000001nnnndddd RO - (disp x2 + 1 —
Rn)

MV.B @disp, Ry, R0 10000100mmmdddd (disp + Rm) — sign 1 —
extension - RO

MV. W @disp, Ry, RO 10000101mmmdddd (dispx2 + Rm) - 1 —
sign extension -
RO

CWP/ EQ #i nm RO 10001000iiiiiiii When RO =imm, 1 1 Compariso
- T n results

BT | abel 10001001dddddddd When T = 1, disp x 3/1:3 —
2 +PC - PC;
When T = 0, nop.

BT/S | abel* 10001101dddddddd When T = 1, disp x 2/1*3 —
2 +PC - PC;
When T = 1, nop.

BF | abel 10001011dddddddd When T = 0, disp x 3/1%3 —
2 +PC - PC;
When T = 0, nop

BF/S | abel* 10001111dddddddd When T =0, disp x 2/1%3 —
2+PC - PC;
When T =1, nop

MV. W @disp, PC),Rn 1001nnnndddddddd (dispx2 +PC) - 1 —
sign extension —
Rn

BRA | abel 1010dddddddddddd Delayed branch, 2 —

dispx2 +PC -
PC

Notes: 2. SH-2 CPU instruction
3. One state when it does not branch

282 HITACHI

Table A.50 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit
BSR | abel 1011dddddddddddd Delayed branch, PC - 2 —
PR, dispx2 +PC - PC
MOV.B RO, @di sp, GBR) 11000000dddddddd RO - (disp + GBR) 1 —
MOV. W RO, @di sp, GBR) 11000001dddddddd RO - (disp x 2 + GBR) 1 —
MOV.L RO, @di sp, GBR) 11000010dddddddd RO - (disp x4 + GBR) 1 —
TRAPA #i mm 11000011iiiiiiii PCISR - Stack area, 8 —
(imm x 4 + VBR) - PC
MOV.B @disp, GBR), R0 11000100dddddddd (disp + GBR) - sign 1 —
extension - RO
MOV. W @disp, BBR), RO 11000101dddddddd (disp x 2 + GBR) - sign 1 —
extension - RO
MWV.L @disp, GBBR), RO 11000110dddddddd (disp x4 + GBR) — RO 1 —
MOVA @disp, PO), RO 11000111dddddddd disp x4 + PC - RO 1 —
TST #i mm RO 11001000iiiiiiii RO &imm, when resultis 1 Test
0,1 -T results
AND #i mm RO 1100100%iiiiiiii RO&imm - RO 1 —
XOR #i mm RO 11001010iiiiiiii RO”~imm - RO 1 —
OR #i mm RO 1100101%iiiiiiii RO|imm - RO 1 —
TST.B #i nm @ RO, GBR) 11001100iiiiiiii (RO+ GBR)&imm,when 3 Test
resultis0,1 - T results
AND. B #i rm @ RO, GBR) 1100110%iiiiiiii (RO+GBR)&imm - (RO 3 —
+ GBR)
XOR B #i nm @ RO, GBR) 11001110iiiiiiii (RO+GBR)"imm - (RO 3 —
+ GBR)
OR B #imm @ R0, GBR) 1100111%iiiiiiii (RO+GBR)]|imm - (RO+ 3 —
GBR)
MV.L @disp, PO, Rn 1101nnnndddddddd (disp x4 + PC) - Rn 1 —
MoV #i mm Rn 1110nnnniiiiiiii imm - sign extension - 1 —

Rn

HITACHI 283

A4

Operation Code Map

Table A.51 is an operation code map.

Table A.51 Operation Code Map

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011-1111

MSB LSB |MD: 00 MD: 01 MD: 10 MD: 11

0000 |Rn Fx 0000

0000 [Rn |Fx 0001

0000 |Rn |Fx 0010 |STC SR, Rn* |STC GBR, Rn |STC VBR, Rn

0000 (Rm Fx 0011 |[BSRF Rt BRAF R

0000 (RN |Rm |01MD|MOV. B MOV. W MOV. L MUL. L
Rm @RO,Rn) |Rm @RO,Rn) |Rm @RO, Rn) |Rm Rn*

0000 (0000 |Fx 1000 |[CLRT SETT CLRVAC

0000 (0000 |Fx 1001 |NOP Dl VOU

0000 (0000 |Fx 1010

0000 (0000 |Fx 1011 |RTS SLEEP RTE

0000 [Rn |Fx 1000

0000 |Rn |Fx 1001 MVT R

0000 |Rn Fx 1010 |STS MACH, Rn |STS MACL, Rn STS PR Rn

0000 [Rn |Fx 1011

0000 |Rn Fx 11MD |MOV. B MOV. W MOV. L MAC. L
@RO,RmM,Rn |[@RO,RM,Rn |@RO, R, Rn |@m+, @Rn+*

0001 [Rn Rm |disp [MOV.L Rm @disp: 4, Rn)

0010 [Rn Rm |OOMD|MOV.B Rm @n | MOV.W Rm @un [MOV.L Rm @un

0010 |Rn Rm |01IMD | MOV. B MOV, W MOV. L DVOS RmRn
Rm @ Rn Rm @Rn Rm @ Rn

0010 [Rn Rm 10MD|TST Rm Rn |AND RmRn | XOR Rm Rn |OR Rm Rn

0010 |Rn Rm 11MD|QwP/ STR XTRCT RmRn |MULU WRm Rn |MULS. WRmM Rn
Rm Rn

0011 |Rn Rm |00OMD |CMP/ EQ Rm Rn CWP/ HS Rm Rn |COWP/ GE Rm Rn

0011 [Rn Rm |01MD|D V1 Rm Rn |\ DMULU. L CW/ H RmRn |COW/ GT Rm Rn

Rm Rn*
0011 |Rn Rm 10MD |SUB Rm Rn SUBC RmRn |[SUBV RmRn
0011 [Rn Rm 11MD |ADD Rm R |\ DMULS. L ADDC RmRn [ADDV RmRn
Rm Rn*
0100 |Rn Fx 0000 |SHLL R Dr Rn* SHAL R

284 HITACHI

HITACHI 285

Table A.51 Operation Code Map (cont)

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011-1111
MSB LSB |MD: 00 MD: 01 MD: 10 MD: 11
0100 |Rn Fx 0001 |[SHLR Rn CWP/ PZ R SHAR Rn
0100 |Rn Fx 0010 |STS. L STS. L STS. L
MACH, @-Rn MACL, @-Rn PR, @-Rn
0100 |Rn Fx 0011 |STC. L STC. L STC. L
SR, @Rn GBR, @-Rn VBR, @Rn
0100 |Rn Fx 0100 |ROTL R ROTCL Rn
0100 |Rn Fx 0101 |ROTR R CWP/ PL R ROTCR Rn
0100 |\Rm |Fx 0110 |LDS. L LDS. L LDS. L
@Rm+, MACH @m+, MACL @mt, PR
0100 |Rm |Fx 0111 |LDC. L LDC. L LDC. L
@+, SR @m+, GBR @mt, VBR
0100 |Rn Fx 1000 [SHLL2 R SHLL8 Rn SHLL16 R
0100 |Rn Fx 1001 [SHHRZ R SHLR8 Rn SHLR16 R
0100 |Rm |Fx 1010 |[LDS Rm MACH [LDS Rm MACL | LDS Rm PR
0100 |Rm/ |Fx 1011 |JSR @m TAS.B @Rn JIMWP @m
Rn
0100 |Rm |Fx 1100
0100 |Rm |Fx 1101
0100 |Rn Fx 1110 |LDC Rm SR |LDC Rm GBR|LDC Rm VBR
0100 |Rn Rm |1111 |[MAC W @Rm+, @Rn+
0101 [Rn Rm |[disp |[MOV.L @disp:4,RM,Rn
0110 |Rn Rm |OOMD/MOV.B RmRh [MOV.W @m Rn|MOV.L @Rm Rn|MOV Rm Rn
0110 |Rn Rm |0IMD|MOV.B Rm+, Rn|MOV.W @, R |MOV.L @, R |NOT Rm Rn
0110 |Rn Rm |10MD |SWAP. B SWAP. W NEGC RmRn |NEG Rm Rn
Rm Rn Rm Rn
0110 |Rn Rm |11IMD|EXTU. B Rm Rn |[EXTU. WRm Rn |EXTS. B Rm Rn |EXTS. WRmM Rn
0111 |Rn imm ADD #imm 8, Rn
1000 |00OMD |Rn disp [MV.B R, MOV W RO,
@d sp: 4, R) @di sp: 4, R)
1000 |[0OAIMD|Rm |disp |MOV. B MOV. W
@ di sp: 4, @ di sp: 4,
R1), RO R, RO
1000 (10MD| imm/disp |CMP/ EQ BT label:8 BF |abel:8
#i mm 8, RO

286 HITACHI

Table A.51 Operation Code Map (cont)

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011-1111
MSB LSB |MD: 00 MD: 01 MD: 10 MD: 11
1000 [11MD| imm/disp BT/ S BF/ S
| abel : 8* | abel : 8*
1001 |Rn disp MOV. W @ di sp: 8, PC), Rn
1010 disp BRA | abel : 12
1011 disp BSR | abel : 12
1100 |OOMD | imm/disp |[MOV.B RO, MOV. W RO, MOV.L RO, TRAPA #inmm 8
@di sp: 8, @di sp: 8, @di sp: 8,
GBR GBR GBR
1100 |01MD disp MOV. B MOV. W MOV. L MOVA
@ di sp: 8, @ di sp: 8, @ di sp: 8, @ di sp: 8,
&BR), RO &BR), RO &BR), RO PO, RO
1100 |10MD imm TST AND XOR OR
#imm 8, RO #imm 8, RO #imm 8, RO #imm 8, RO
1100 |11MD imm TST. B AND. B XOR B R B
#imm 8, #imm 8, #imm 8, #imm 8,
@ RO, GBR) @ RO, GBR) @ RO, GBR) @ RO, GBR)
1101 |Rn disp MV.L @disp:8,PC), RO
1110 |Rn imm MoV #i mm 8, Rn
1111
Note: SH-2 CPU instructions

HITACHI 287

Appendix B Pipeline Operation and Contention

The SH-1 and SH-2 CPU is designed so that basic instructions are executed in one state. Two
or more states are required for instructions when, for example, the branch destination address
is changed by a branch instruction or when the number of states is increased by contention
between MA and IF. Table B.1 gives the number of execution states and stages for different
types of contention and their instructions. Instructions without contention and instructions that
require 2 or more cycles even without contention are also shown.

Instructions experience contention in the following ways:

» Operations and transfers between registers are executed in one state with no contention.
< No contention occurs, but the instruction still requires 2 or more cycles.

« Contention occurs, increasing the number of execution states. Contention combinations
are as follows:

O MA contends with IF

0 MA contends with IF and sometimes with memory loads as well
O MA contends with IF and sometimes with the multiplier as well
O

MA contends with IF and sometimes with memory loads and sometimes with the
multiplier

288 HITACHI

Table B.1 Instructions and Their Contention Patterns

Contention State Stage Instruction

None 1 3 Transfer between registers

Operation between registers (except
multiplication instruction)

Logical operation between registers
Shift instruction
System control ALU instruction

2 3 Unconditional branch
3/1*3 3 Conditional branch
3 3 SLEEP instruction
4 5 RTE instruction
8 9 TRAP instruction
MA contends with IF 1 4 Memory store instruction and STS.L
instruction (PR)
2 4 STC.L instruction
3 6 Memory logic operations
4 6 TAS instruction
MA contends with IF and 1 5 Memory load instructions and LDS.L

sometimes with memory loads as instruction (PR)
well

3 LDC.L instruction
MA contends with IF and 1 4 Register to MAC transfer instruction,
sometimes with the multiplier as memory to MAC transfer instruction and
well MAC to memory transfer instruction
1t03 6/7+1 Multiplication instruction
*2
3/(2)x2 7/8*1 Multiply/accumulate instruction
3/2to 9 Double-length multiply/accumulate
4y*2 instruction (SH-2 only)
2t04*2 9 Double-length multiplication instruction
(SH-2 only)
MA contends with IF and 1 5 MAC to register transfer instruction

sometimes with memory loads
and sometimes with the multiplier

Notes: 1. With the SH-2 CPU, multiply/accumulate instructions are 7 stages and multiplication
instructions are 6 stages, while with the SH-1 CPU, multiply/accumulate instructions
are 8 stages and multiplication instructions are 7 stages.

2. The normal minimum number of execution states (The number in parentheses is the
number in contention with preceding/following instructions).

3. One stage when it does not branch.

HITACHI 289

