HITACHI MICROCOMPUTER SUPPORT SOFTWARE
H SERIESLIBRARIAN
USER'SMANUAL

HS6400LBCU1SE
ADE-702-087

Preface

This manual describes how to use the H Series Librarian. The manual is divided into the following
eight sections.

Sections1and 2......cccceoevveeieiinienennene Librarian functions

SECHION 3 .. Executing the Librarian

SECHON 4 ..o Librarian options and subcommands
SECHIONS ..o Input to the Librarian

SECHON 6 ..o Output from the Librarian

SECHON 7 i Error messages

SECHION 8 ..o Restrictions

APPENTIX A oo Examples of Use of Librarian

Installation of the Librarian is covered in the Installation Guide supplied with the Librarian.

Refer to the following user's manuals for additional information on the other support toolsin the
H series cross system.

H Series Linkage Editor User's Manual

» HB8/300 Series Cross Assembler User's Manual
» HB8/500 Series Cross Assembler User's Manual
» H32 Series Cross Assembler User's Manual

» SH Series Cross Assembler User's Manual

» HB8/300 Series C Compiler User's Manual

» HB8/500 Series C Compiler User's Manual

» H32 Series C Compiler User's Manual

» SH Series C Compiler User's Manual

Notes:

The following symbols have special meaningsin this manual.

<item> : <specification item>

{ } . One of the items between the bracketsis to be selected.

[] . The enclosed item is optional (i.e., can be omitted).

. The preceding item can be replaced.

A . Blank space(s) or tab(s)

3 - Press the Return (Enter) key.

UNIX isan operating system administrated by the UNIX System Laboratories (United States).
MS-DOS is an operating system administrated by the Microsoft Corporation (United States).

Contents

SECHON 1. OVEIVIEW ..ottt bbb 1
Section 2. Librarian FUNCHIONS..........ooirnccnscece et eenees 2
2.1 Creating Library FIlES ... 2
2.2 Editing EXIiSting Library FilESccooiiiieeee e 2
2.3 Extracting Modulesfrom aLibrary File.........ccoooviiriiiiieee e 4
2.4 Displaying the Contents of aLibrary File ... 4
Section 3. Executing the Librarian ..., 5
3.1 CommaNd LiNE FOMMELccerieieiiesiiriesiesiesie ettt 5
3.2 Executing by Command LiNe........cccooiiiiiiiriinieieeseese e 6
3.3 Executing by SUBCOMMENGScoeiiiirieeee e 7
331 Executing in INteraCtive MOde...........ooeririiieieeresee e 7
3.3.2 Executing from a Subcommand File..........ccooeiiiiininineeee e 8
3.4 Terminating Librarian Operations..........cocooererieiieiieriesiesie s 9

Section 4. Librarian Options and SUDCOMMANGS...........ccoorerereenrereeneneneeeeneenes 10

4.1 Option and SUBCOMMAN FOIMELScc.oieiiririeieee e 10

4.2 List of Options and SUDCOMMENGSccceriririiieieee e 14

4.3 FIECONIIO ...ttt bbbttt ettt b e b saenrenneas 18

431 LIBRARY — Specifiesthe library fileto be edited..........ccooeiinininininins 18

4.3.2 OUTPUT — Specifiesan output library file ... 19

4.4 EXECULION CONLIOL ..ottt sttt ettt bbbt e et b e e saesbenneas 20

441 SUBCOMMAND — Specifiesasubcommand filecccooeiininiiienienennns 20

442 CREATE — Createsalibrary file ... 21

4.4.3 ADD — AddSMOCUIEScoeiiiiiriisiesientieeeee et 22

444 REPLACE — ReplaceSmMOUIES.........ccooueririiieierie s 24

445 DELETE — DeleteSMOAUIEScccoiviieiriieieeesieee e 27

44.6 EXTRACT — EXtractS MOAUIES.........cccoeiririeieierie e 28

4.4.7 END — Specifiesend of subcommand inputccoeevererieeienenenenesenns 29

448 EXIT — Specifiesend of Librarian Operationsc.ccoceveerverrerenenenenennens 30

449 ABORT — Abortslibrarian Operations............cccccevevenenenieeieeieeseseseese e 31

A5 LISEDISPIAY .oveeieiieieiesiesie sttt sttt bbbt e et b b naennenne s 32

45.1 LIST — Displays contentsof alibrary file........ccooiiiiniieies 32

Section 5. Inputtothe Librarian..........cicecccsce e 34

51 ODJeCt MOAUIE FIIES ..ottt sneas 34
5.2 Relocatable Load MOAUIE FIlES.........cooiiiiiiiiee e 34
LG N | o] =V 1 == S SRS 34
Section 6. Output fromthe Librarian ... 35
G20 R T o) = VA | =SS PPP SR 35
6.2 LIDrarian LiSIS ...cooueiiiiiiieeee et 35
6.3 CONSOIEIMESSAGEScveiiiieitieeiee ittt et s e et sae e e te e sbe e e be e s seeebeesreeeseesneeeraens 38
SECioON 7. EITOr MESSAJES.........coovceeeiet ettt 39
SECtioN 8. RESIMICHIONS ...t 44
Appendix A Examples of Useof Librarian ..., 45
A.1 Librarian Execution by Command LiNeccccceeiieiiiiiie i 45
A.2 Librarian Execution by SUDCOMMANGScccoiiiiiiiiiciee e 47
INTEX ..ot 49

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 6-1
Figure 6-2
Figure 6-3
Figure A-1
Figure A-2

Figures

Creating aNew Library File ... 2
AdAING AMOUUIE ...t 3
DEEiNg @MOUIE ... e 3
RePIaCing @MOUIE.........c.ooiiie e 4
EXracting MOGUIES ..o e 4
Librarian List FOMMELcoooiiiiriiiisineeeee e 35
Librarian List (with (S) SPeCIfiCation)cccerereririninireeeeee e 37
Librarian List (N0 (S) SPECITICALION)cceeeeieiirieiresesieresee e 37
Results of Librarian Execution by Command Lineccccoceeveveneneneneneniennenn 46
Results of Librarian Execution by Subcommand............ccoceveeieieneninencnenennne 48

Table 3-1
Table 4-1
Table 4-2
Table 7-1
Table 7-2
Table 7-3
Table 8-1

Tables

How Command Line Specification Determines the Form of Execution................ 6

List of Options and SUDCOMMENGSccoeieeriereninereeeeee e 14
Interrelation among Options and SUDCOMMANGScevvveereereeee e 15
List Of Warning MESSAgES.........ccuuiueruirierieeieeeiee ettt sre e 40
LiSt Of EFTOr IMESSAEScueeviiiriesiesiesiesieeiee ettt sttt b e 41
List Of Fatal Error MESSAgESccevuirierieiieiee ettt 43
Restriction on Librarian ProCESSINGccoeeererierinereseseseseeeesee e 44

vi

Section 1. Overview

A program is usually developed by dividing it into functional modules and cresting a separate
source program for each module. Next, each source program module is compiled or assembled to
create an object module. The object modules are then linked together using a linkage editor,
resulting in an executable program.

The H Series Librarian introduced in this manual (hereafter called the Librarian) playsavita rolein
this process. It brings together the many object modules output by the C compiler and assembler, as
well as relocatable load modules output by the linkage editor, to make library files.

The Librarian provides the following advantages.

Simplified Module Management: The many modules making up a program (including relocatable
load modules as well as object modules) are stored in alibrary file for the particular program. They
can then be dealt with all at once. Moreover, it is possible to create generic library files that can be
used later to streamline the creation of other programs.

A library file can be edited by adding, deleting, or replacing individual modules. In thisway the
modules can be kept up to date.

Enhanced Linkage: The Linkage Editor can search library files to find, extract, and link modules
that define unresolved import symbols. Use of the library files thus makes linkage editing more
efficient.

Section 2. Librarian Functions
2.1 CreatingLibrary Files
This function makesit possible to create new library files, and to enter object modules output by the

C compiler or assembler as well as relocatable load modules output by the linkage editor.
Figure 2-1 isan illustration of the library file creation concept.

Entered modules New library file
Module A —
Module A
Creation

o :> o
Module C
Module C

Figure2-1. CreatingaNew Library File

2.2 Editing Existing Library Files
Modules can be added to, deleted from, or replaced in existing library files.

Adding Modules. Modules can be added to already existing library files. The concept of module
addition isillustrated in Figure 2-2.

Existing library file Edited library file

Module A Update Module A
Module B |:> Module B
Addition Module C Module C

(Module D (- Module D

Figure 2-2. AddingaModule

Deleting Modules. Unnecessary modules can be deleted from existing library files. Figure 2-3
illustrates the modul e del etion concept.

Existing library file Edited library file
Module A
Module A
Update
Module B
L~ Module B

Deletion — M C

- Module D
Module D

Figure 2-3. DeletingaModule

Replacing Modules: Modulesin existing library files can be replaced with new modules. The
concept of module replacement isillustrated in Figure 2-4.

Existing library file Edited library file

Module A
Replacement Update Module A
Module B' Module B) Module B'
Module D Module D

Figure 2-4. ReplacingaModule
2.3 Extracting Modulesfrom aLibrary File

Modules can be extracted from existing library files and used to create new library files. The
concept of module extraction isillustrated in Figure 2-5.

Existing library file New library file

Module A Extraction

[Module B

Extraction

Module B

Figure 2-5. Extracting M odules
2.4 Displayingthe Contentsof aLibrary File
A librarian list giving information about the modules and export symbolsin alibrary file can be
output to a standard output device or alist file. A librarian list tells when the library file was created
and when it was last revised, indicates when each module was stored, and gives the names of export

symbols and other useful information.

For further details, see section 6.2, Librarian Lists.

Section 3. Executing the Librarian

To execute the Librarian, first start the Librarian by entering acommand line. The command line
specifies the name of the library file to be edited and various options, which give instructions to the
Librarian. If theseinstructions are sufficient, the Librarian can be executed using the command line
alone. If further instructions are needed, they can be given in subcommands.

Command Line Execution: The Librarian can be executed simply by specifying alibrary file and
options on the command line. The method is useful when library editing is relatively
straightforward.

Subcommand Execution: The Librarian can aso be executed by entering both acommand line
and subcommands. The subcommands specify input and output files and parameters that control the
Librarian. This method is useful for specifying alarge number of files or modules, or for editing
two or more library files together. Subcommands can be entered interactively, or from a
subcommand file. Details are given in section 3.3, Executing by Subcommands.

3.1 Command Line Format
The following format is used for the Librarian command line.

UNIX System:
Ibr[A[<library file name>][[A]-<option name>[[A]-<option name>...]]]3

MS-DOS system:
Ibr[A[<library file name>][[A]/<option name>[[A]/<option name>...]]] 3

Command Name: "lbr" isthe command that starts the Librarian.

Library File Name: To edit or extract modules from an existing library file, type the name of the
library file in the command line.

Option Names. Each option name must start with a hyphen (-) at UNIX system or with a slash (/)
at MS-DOS system. One or more spaces or tabs may also be used to separate an option hame from
a preceding option name or library file name, but these spaces or tabs are not required. Option
names are described in detail in section 4, Librarian Options and Subcommands. The Librarian
edits the library file according to the order in which the options are specified.

Specifying the M ode of Execution: The content of the command line determines whether the
Librarian will be executed by the command line specifications only, or by subcommands. See Table
31

Thelibrary file name and each option name must be specified in 128 characters or less (not
including the final carriage return).

Table 3-1. How Command L ine Specification Deter mines the Form of Execution

Option Specification

No Option SUBCOMMAND CREATE Option Option Other than
Library File Name Specified Option Specified Specified CREATE or
Specification SUBCOMMAND
Specified
Library file name — — — Executed by
specified specifying
command line
No library file name Executed by Executed by Executed by —
specified specifying specifying specifying
subcommands subcommands command line

Notes: 1. For SUBCOMMAND and CREATE options, see section 4, Librarian Options and
Subcommands.
2. The combinations of option and library file names indicated by dashes (—) are not permitted.

An error will occur, and the librarian will not be executed.
3.2 Executing by Command Line

With this method, the Librarian is executed according to the information specified in the command
line alone. Editing procedures and other conditions are specified to the Librarian in the form of
options. When the editing process is straightforward and simple, command line specification is
sufficient for creating or updating alibrary. Examples of execution by command line are given
below.

EXAMPLE 1 (UNIX system):

% lbrA-CREATE=sysdlib.lib-ADD=0bj00.0bj,prg.lib 3

—~ \v—/

1 2

1 Createsanew library file named sydlib.lib.
2 Addsthe modulesin object module file obj00.0bj and library file prg.lib to sydib.lib.

The CREATE option by itself will not create alibrary file unless modules are added using the ADD
option.

EXAMPLE 2 (MS-DOS system):

% |brAsyslib.lib/ADD=0bj00.0bj/DEL ETE=mod13

—_— T
1 2 3

1 Designateslibrary file sydlib.lib asthe file to be edited.
2 Addsthe module in object module file obj00.0bj to sydib.lib.
3 Deletes existing module mod1l from sydlib.lib.

3.3 Executing by Subcommands

Since the number of characters that can be typed on the command line is limited, the command line
may not be able to accommodate alarge number of specifications. In such cases, subcommands are
used to execute the Librarian. Subcommands can be input interactively, one at atime, from the
keyboard or other standard input device. Alternatively, a subcommand file consisting of a group of
subcommands can be created in advance, and subcommands can be input from this subcommand
file.

3.3.1 Executingin Interactive Mode

When no library file is specified in the command line and there are no option specifications,
execution proceeds in interactive mode. A colon (:) appears on the screen as a prompt, indicating
that the Librarian is waiting for a subcommand to be input. In thisway you can enter the necessary
subcommands. This method is useful when the number of subcommandsisrelatively small, or
when you want to check Librarian lists as you enter the subcommands.

An example of execution by interactive input of subcommandsis given below. Functions of the
subcommands listed here are detailed in section 4, Librarian Options and Subcommands.

EXAMPLE:
% Ibr3

CREATEAprg.lib 3
ADDAmain.obj 3

ADD Asend.obj,receive.obj,exchange.obj 3

ADD Aaccount.obj 3
LISTA(S) 3
EXIT3

N~ o o1 M w N P

Starts the Librarian in interactive mode.

Creates anew library file named prg.lib

Adds the module in main.obj to prg.lib.

Adds the modules in send.obj, receive.obj and exchange.obj to prg.lib.

Adds the module in account.obj to prg.lib.

Outputs alibrarian list, including symbol information, to the standard output device.
Terminates the Librarian operation.

N o oA WODN P

3.3.2 Executing from a Subcommand File

This method uses a subcommand file that was created in advance and that contains the
subcommands necessary for Librarian operations. This subcommand file is then specified on the
command line as a parameter of the SUBCOMMAND option. This method is useful when many
subcommands must be specified, or when the same editing processis carried out repeatedly. It
eliminates the need to input subcommands from the keyboard or other standard input device each
time.

Use an editor to create the subcommand file. An example of execution from a subcommand fileis
given below. Functions of the subcommands listed here are detailed in section 4, Librarian Options
and Subcommands.

% IbrA-SUBCOMMAND=prglib.sub 3 w1

Contents of subcommand file prglib.sub:
CREATEAfunction.lib
ADDASsIn.obj,cos.obj,tan.obj
ADDAasin.obj,acos.obj,atan.obj
ADDAhsin.obj,hcos.obj,htan.obj
ADDAIog.obj,l0g10.0bj

EXIT

N O Ok WD

Starts the Librarian and inputs subcommands from subcommand file prglib.sub.
Creates anew library file function.lib.

Adds the modules in object module files sin.obj, cos.obj and tan.obj to function.lib.
Adds the modules in object module files asin.obj, acos.obj and atan.obj to function.lib.
Adds the modules in object module files hsin.obj, hcos.obj and htan.obj to function.lib.
Adds the modules in object module fileslog.obj and log10.0bj to function.lib.
Terminates Librarian operations.

N o oA WODN P

3.4 Terminating Librarian Operations

When the Librarian terminates operations, it gives the system areturn code indicating an error level.
The return code can be used to control the execution of acommand file. The error levels and their
return codes are;

UNIX system:
Normal completion
Warning

Error

Fatal error

= = O O

MS-DOS system:
Normal completion
Warning

Error

Fatal error

A N O O

Section 4. Librarian Optionsand Subcommands

Options and subcommands tell the Librarian what editing operations to perform. The three main
functions of options and subcommands are file control, execution control, and list display. These
functions can be used individually or in combination to create and edit library files.

Options and subcommands have the same names and equivalent functions, but are specified in
different formats. Moreover, there are some specifications which can be made only with options,
and others only with subcommands. Sections 4.1, Option and Subcommand Formats, and 4.2, List
of Options and Subcommands, must accordingly be read carefully. Option and subcommand
functions are outlined below.

File Control Functions: File control functions indicate the name of the library file to be edited, or
the name of alibrary file to which extracted modules are to be outpui.

Execution Control Functions: Execution control functions instruct the Librarian to perform
editing operations, or terminate its processing. These functions are used, for example, to input

subcommands from a subcommand file, to create anew library file, or to update alibrary file.

List Display Functions: List display functions are used to display information such as names of
modules stored in alibrary file, or export symbol names.

Note: The examples are written for UNIX system, please write slash (/) instead of hyphen (-) for
MS-DOS system and write all options and commands in capital |etters.
4.1 Option and Subcommand Formats

Each option or subcommand consists of a name and parameters, which together must not exceed
128 characters.

Option and Subcommand Structure: Options and subcommands differ as to the way of
separating the name from the parameters. Options use an equals sign (=), while subcommands use
one or more spaces or tabs.

Option format

<Name>=<parameters>

10

Subcommand format

<Name>A<parameters>
EXAMPLES:
—OUTPUT=IDF ..o option
OUTPUTAIDS .o, subcommand

In these examples, OUTPUT is the name, and Ibf is the parameter.

(& Name

The name gives the name of the option or subcommand.

(b) Parameters

The parameters give the names of files,* 1 module,* 2 etc. on which the option or subcommand
operates. There are different requirements and methods of specification depending on the type of
option or subcommand. For details, refer to section 4.3, File Control, section 4.4, Execution
Control, and section 4.5, List Display.

Notes:

1. A filename consists of three parts: the path name, main file name, and file type.

If thefiletypeis omitted, afile typeis assumed as follows.

Library file....ccccoeeveinreeneeeeene lib
Object modulefileobj
Relocatable load modulefile.................. .obj
Subcommand file........cccvevininininene .sub
IS B 1= R dst

2. A module name is the name defined in an object module or relocatable load module. In
module names, capital |etters are distinguished from small letters. The pairs of names
below, for example, are treated as different names.

EXAMPLES: modull -«—————» MODULL1

11

abcde —-=-——» Abcde

Continuation Specification in a Subcommand: When a subcommand istoo long to be specified
on one line, a continuation specifier isused. This consists of an ampersand (&) at the end of the
line. 1t must always be placed between two parameters; if it is placed within a parameter, it will not
be treated as a continuation specifier. Also, if acharacter (including a space or tab) istyped after
the ampersand, an error will occur and the subcommand will not be continued.

In interactive input of subcommands, a hyphen (-) appears as a prompt for further input after
continuation has been specified.

EXAMPLES:

ADDAO0b;00.lib(mod0,mod1),& 3

_ 0bj0L.obj02 3 Li

ADDAO0D]00.lib(mod0,mod1),0b& 3

T

Continuation specifier

Specifying continuation
inthe middle of a
parameter occursin
error.

A subcommand line in a subcommand file can be continued in the same way. The line after the line
with the continuation specifier becomes the continuation line.

12

EXAMPLE:

Subcommand file

DELETEAsubl,sub2,& 3 N -
~a—— Continuation specifier

sub3 3 S
- Continuation line

Specifying Commentsin a Subcommand File: A comment specifier isused to place notes or
other comments in a subcommand file. The specifier isasemicolon (;) placed on a subcommand
line, indicating that the rest of the lineisacomment. 1f the semicolon follows a subcommand name
or parameter, it must be separated by at least one space or tab.

If the semicolon is placed at the beginning of a subcommand line, the entire line istreated as a
comment.

EXAMPLES:

; EXAMPLE OF LIBRARIAN SUBCOMMAND

... the entire line is a comment.

LIBRARYAsydlibA; INDICATESLIBRARY FILE

... INDICATES LIBRARY FILE isacomment.

ADDAmModule.obj;abc

... module.obj;abc is treated as a single parameter
abc is not treated as a comment.

13

4.2 List of Optionsand Subcommands
There are eight options and eleven subcommands, aslisted in Table 4-1.

Table4-1. List of Optionsand Subcommands

No. Type Name Function Opt. Sub. Section
1 File control ~ LIBRARY Specifies the library file to be No Yes 4.3.1
edited
OUTPUT Specifies an output library file Yes Yes 4.3.2
2 Execution SUBCOMMAND Specifies a subcommand file Yes No 441
control CREATE Creates a library file Yes Yes 4.4.2
ADD Adds modules Yes Yes 4.4.3
REPLACE Replaces modules Yes Yes 4.4.4
DELETE Deletes modules Yes Yes 445
EXTRACT Extracts modules Yes Yes 4.4.6
END End of subcommand input No Yes 4.4.7
EXIT End of Librarian operations No Yes 4.4.8
ABORT Aborts Librarian operations No Yes 4.4.9
3 List LIST Displays contents of library file Yes Yes 451
display

Notes: 1. The underlined letters of a name are the shortest permissible abbreviated form.
2. The Opt. and Sub. columns indicate whether a name is available as an option or

subcommand.

Abbreviating Option and Subcommand Names. Names of options and subcommands may be
abbreviated to the point where the name can till be distinguished from other names. Asan
example, consider the name EXTRACT.

E ... Cannot be distinguished from EXIT or END, so an error occurs.
EX ... Cannot be distinguished from EXIT, so an error occurs.

EXT ... Recognized as EXTRACT.

EXTRA ... Recognized as EXTRACT.

EXTRACT ... Recognized as EXTRACT.

EXTRACTS ... No such name, so an error occurs.

14

Interrelation among Different Optionsand Subcommands: Once an option or a subcommand
has been specified, other options or subcommands with conflicting functions cannot be specified.
Thisinterrelationship is shown in Table 4-2.

Table4-2. Interrelation among Options and Subcommands

Later Specification

=
Specified 8 g E_:J % E % § E

m L] o | = = = a = O
Option/ 8 % ?:_) <D: Ih':J g E 8 (g E ﬁ 2
Subcommand
SUBCOMMAND X X X X X X X X x X X X
LIBRARY X X X 0 o o 0 o o 0 o o
CREATE X X X 0 o o X X o 0 o o
ADD X X X 0 o o X X o 0 o o
REPLACE X X X 0 o o X X o 0 o o
DELETE X X X 0 o o X X o 0 o o
EXTRACT X X X X X X 0 o o 0 o o
OUTPUT X X X X X X 0 X o 0 o o
LIST X X X 0 o o 0 o o 0 o o
END X 0 0 X X X X X X X 0 0
EXIT X X X X X X X X X X X X
ABORT X X X X X X X X X X X X

o: Later specification enabled.

x: Later specification disabled, since it conflicts with already specified option or subcommand.

15

EXAMPLES:

% lbrA-SUBCOMMAND=funlib.sub-LIST 3

Thisresultsin an error since no other option can
be specified after a SUBCOMMAND option.

% lbr3

LIBRARY Afunclib.lib 3

CREATEANnewlib.lib 3 -a—— A CREATE subcommand cannot be specified
after aLIBRARY subcommand. An error occurs,
and the CREATE subcommand isignored.

END 3

LIST 3 - Specifying aLIST subcommand after an End
subcommand, occursin an error. After END, only the

EXIT 3 LIBRARY, CREATE, EXIT or ABORT subcommand
isvalid.

16

In the following sections, the format below is used to describe each option and subcommand.

Heading for each option or

:l subcommand

Section Section number, and
number heading for option or
subcommand

Option or subcommand

name, and format for

specifying parameters

The underlined part of the name
isthe shortest abbreviated form

Format Name Option Subcommand

Parameters
Function Summary of option or
subcommand functions
Explanation Detailed description of
functions and restrictions
Examples Examples of option or

subcommand specifications

17

LIBRARY

4.3 FileControl

4.3.1 LIBRARY — Specifiesthelibrary file to be edited.

Format Name LIBRARY Option Subcommand

No Yes

Parameters <Library file name>

Function Specifies an existing library file for editing.

Explanation (1) Thissubcommand is specified at the beginning of an editing operation that

edits an existing library file or extracts modules from an existing library file.

(2 Only alibrary file created by this Librarian can be specified

(3 When nofiletypeis specified as part of the library file name, thetypeis
assumed to be .lib.

(4) Thissubcommand cannot be used together with the CREATE subcommand,
which specifies creation of anew library file.

(5 If, astheresult of editing an existing library file, the number of modules
becomes zero, the library file will not be updated.

(6) The accessright to the updated library file is the same as the accessright to a
newly created file. Note that the access right prior to the update is not
preserved.

Examples LIBRARYAsydlib
Specifies editing of the library file sydib.lib.

18

OUTPUT

4.3.2 OUTPUT — Specifies an output library file.

Format Name OUTPU Option Subcommand
Yes Yes
Parameters Option <Library file name>

Subcommand <Library file name> Héﬁ))u

Function

Specifiesalibrary file for output of extracted modules.

Explanation (1)

@

)

4

©)

©)

Specify the OUTPUT option or subcommand whenever amoduleisto be
extracted from an existing library file.
Specify anew library file name. When no file type is specified as part of the
library file name, the type is assumed to be .lib.
The attribute (S) or (U) is assigned to the output file. 1f unspecified, the
attribute is assumed to be (U).

(S) ... System library

(V) ... User library
This attribute determines the order of priority in which library files are
searched by the Linkage Editor. A user library has higher search priority. The
(S) and (U) parameters cannot be included when OUTPUT is specified as an
option.
OUTPUT may be specified either before or after the EXTRACT option or
subcommand, which specifies extraction of modules.
OUTPUT cannot be used together with the CREATE, ADD, DELETE, or
REPL A CE options or subcommands.
When the number of extracted modulesis zero, the library file specified by the
OUTPUT option or sub-command is not created.

Examples -OUTPUT=PROG86

Modules extracted using the EXTRACT subcommand will be output as a user
library to afile named prog86.lib.

OUTPUTAClib.o(S)

Modules extracted using the EXTRACT subcommand will be output as a
system library to afile named clib.o.

19

SUBCOMMAND

4.4 Execution Control

4.4.1 SUBCOMMAND — Specifies a subcommand file.

Format Name SUBCOMMAND Option Subcommand
Yes Yes

Parameters <Subcommand file name>

Function Inputs subcommands from a specified file.

Explanation (1) Inputsand processes subcommands from a specified subcommand file one at a

time.

(2 When an EXIT subcommand or the end of the subcommand file (EOF) is
detected, Librarian operations end.

(3 When nofiletypeis specified as part of the file name, the type is assumed to
be .sub.

4 A SUBCOMMAND option cannot be specified more than once, or used
together with other options.

Examples —-SUBCOMMAND=makelib
Subcommands are input from the subcommand file makelib.sub for usein
editing alibrary file.

20

CREATE

4.4.2 CREATE — Createsalibrary file.

Format

Name CREATE Option Subcommand

Yes Yes

Parameters Option <Library file name>

Subcommand <Library file name> Héﬁ))u

Function

Creates anew library file.

Explanation (1)

@

)

4
©)

Specified at the beginning of a group of options or subcommands ending with
END or EXIT.
Specify anew library file name. When no file type is specified as part of the
library file name, the type is assumed to be .lib.
The attribute (S) or (U) is assigned to the output file. If unspecified, the
attribute is assumed to be (U).

(S) ... System library

(V) ... User library
This attribute determines the order of priority in which library files are
searched by the Linkage Editor. A user library has higher search priority. The
(S) and (U) parameters cannot be included when CREATE is specified as an
option.
CREATE cannot be used together with the LIBRARY subcommand.
If the number of modulesis zero, no library fileis created.

Examples

—CREATE=userlib.lib

Creates userlib.lib as anew user library.

CREATEASSib(S)

Creates sidib.lib as a new system library.

CREATEAdatax

Creates datax.lib as a new user library.

21

ADD

4.4.3 ADD — Adds modules.

Format Name ADD Option Subcommand
Yes Yes
Parameters Option <Object module file name>

<Relocatable load module file name>; [,...]
<Library file name>

Subcommand [<Opject module file name>
<Relocatable load module file name> [,--r]
<Library file name>[(<module name>[,...])]

Function

Adds modules from specified filesto alibrary file.

Explanation (1)

2

)

4

ADD isused to store modulesin anew library file, or add modules to an
existing library file.

When only afile nameis specified, if no file typeis specified, the typeis
assumed to be .obj. When a module name is specified after afile name, the
fileisassumed to be alibrary file, so if no filetype is specified, the typeis
assumed to be .lib.

When only certain modules from alibrary file are to be added, specify the
module names after the library file name. Up to 10 module names may be
specified. However module names can not be included when ADD is
specified as an option.

EXAMPLE: ADD |bf (m1,m2,m3)

‘ 4— Module names
Library file name

When modulesin alibrary file are specified, the specified module names are
sorted in alphabetical order and the modules are added in that order. They are
not added in the order in which specified.

EXAMPLE: ADD |bf (e84 d, c b
5 1, 4, 3, 2... Orderinwhich modulesare
added

(Continued on next page)

22

Explanation (5)
(cont)

©)

Y

®

©

When the names of modulesin alibrary file are not specified, all modulesin
the library file are added.

EXAMPLE: ADD |bf.lib

4_Library file name

When a modul e to be added has the same name as a modul e already in the
library file being edited, or when an externally defined symbol defined in the
module to be added has the same name as an externally defined symbol in the
library file being edited, a warning message is displayed and the module is not
added.

The name of an object module or relocatable load module is the name defined
inthe module. The LIST option or subcommand is a convenient way of
confirming which modules are stored in alibrary file.

ADD cannot be used together with EXTRACT or OUTPUT options or
subcommands.

Errorswill occur and the parameters after the error occurs will not be
processed when:

(@ A specified file does not exist.

(b) A specified module does not exist in alibrary file.

(c) The content of the specified fileisinvalid.

(d Thenumber of modulesto be stored exceeds 32,767.

() Memory capacity isinsufficient to add more modules.

(H Thenumber of input files exceeds 12.

Examples —-ADD=mod1,mod2,modx.o

Adds al modules from the object module files mod1.obj, mod2.obj and
modx.o.

ADDAiofnc(keyin,crtout)

Adds the two modules keyin and crtout from the library fileiofnc.lib.

ADDAsydlib.lib

Adds al modules from the library file sydlib.lib.

23

REPLACE

4.4.4 REPLACE — Replaces modules.

Format Name REPLACE

Option Subcommand

Yes Yes

Parameters Option

<Object module file name>
<Relocatable |oad module file name>; [,...]
<Library file name>

Subcommand]]
<Object module file name>

<Relocatable load module file name> [,-..]
<Library file name>[(<module name>[,...])]

Function Substitutes modules in a specified file for modules of the same name in the
library file being edited.
Explanation (1) When amodulein thelibrary file being edited has the same name as a module

@

)

4

in the specified file, the former isreplaced by the latter. If thereisno module
with the same name in the library file being edited, the module is simply
added as with the ADD option or subcommand.

When only afile name is specified, if no file type is specified, the typeis
assumed to be .obj. When a module name is specified after afile name, the
fileisassumed to be alibrary file, so if no filetype is specified, the typeis
assumed to be .lib.

To substitute only certain modules from alibrary file, specify the module
names after the library file name. Up to 10 module names may be specified.
However, module names cannot be included when REPLACE is specified as
an option.

EXAMPLE: REPLACE |bf (m1,m2,m3)

{ L Module names
Library file name
When modulesin library files are specified, the specified module names are
sorted in aphabetical order and modules are replaced in that order. They are
not replaced in the order in which specified.

EXAMPLE: REPLACE |bf (e a d c Db
5 1, 4, 3, 2 ..Order of replacement

(Continued on next page)

24

Explanation
(cont)

®)

©)

Y

®

©

When the names of modulesin alibrary file are not specified, all modulesin
the file are substituted.

EXAMPLE: REPLACE |bf.lib

4_Libraryfile name

The name of an object module or relocatable load module is the name defined
inthe module. The LIST option or subcommand is a convenient way of
confirming which modules are stored in alibrary file.

REPL A CE cannot be used together with EXTRACT or OUTPUT options or
subcommands.

The following cases will result in error, and the parameters after the error
position will not be processed.

(@ A specified file does not exist.

(b) A specified module does not exist in alibrary file.

(c) The content of the specified fileisinvalid.

(d Thenumber of modulesto be stored exceeds 32,767.

() Memory capacity isinsufficient for the substitution to be performed.

(H Thenumber of input files exceeds 12.

The process of replacing a module involves deleting the module of the same
name in the library file being edited, then inputting the module from the file
specified by the REPLACE option or subcommand and storing it in the library
file. Thefollowing special caution isthus required: If amodule to be
substituted contains an externally defined symbol already defined in another
module in the library file, the old module will be deleted, but the replacement
module will not be stored.

(Continued on next page)

25

Examples —REPLACE=userlib.lib
All modulesinthelibrary file userlib.lib are stored in the library file being
edited, replacing modules with the same name.

REPLACEAloadx.rel,loady.rel
The two modulesin the relocatable load module files loadx.rel and
loady.rel are substituted for modules of the same name in the library file
being edited.

REPL A CEAdatax(member),omf
The module named member in library file datax.lib, and the modulein the
object module file omf.obyj, are substituted for modules of the same namein
the library file being edited.

26

DELETE

4.45 DELETE — Dédetes modules.

Format Name DELETE Option Subcommand

Yes Yes

Parameters <Module name> [,...]

Function Deletes specified modules from the library file being edited.

Explanation (1) If aspecified module does not exist in the library file, an error occurs, and the
parameters after the error occurrence are not processed.

(2 Thename of an object module or relocatable load module is the name defined
inthe module. The LIST option or subcommand is a convenient way of
confirming which modules are stored in alibrary file.

(3 DELETE cannot be used together with EXTRACT or OUTPUT options or
subcommands.

Examples —-DELETE=inchar,outchar
Deletes the two modules inchar and outchar.

DELETEAdatatbl,sort
Deletes the two modul es datatbl and sort.

27

EXTRACT

4.4.6 EXTRACT — Extracts modules.

Format Name EXTRACT Option Subcommand

Yes Yes

Parameters <Module name> [,...]

Function Extracts specified modules from the library file being edited.

Explanation (1) The extracted modules are output in library file format with the file name
specified by the OUTPUT option or subcommand.

(2 The name of an object module or relocatable load module is the name defined
inthe module. The LIST option or subcommand is a convenient way of
confirming which modules are stored in alibrary file.

(3) If aspecified module does not exist in the library file, an error occurs, and the
parameters after the error occurrence are not processed.

(4 EXTRACT cannot be used together with the CREATE, ADD, DELETE or
REPL A CE options or subcommands.

Examples —-EXTRACT=add,sub,mul,div

Extracts the four modules add, sub, mul, and div from the library file being
edited.

EXTRACTAa pha,upper,lower,digit,cntrl
Extracts the five modules a pha, upper, lower, digit, and cntrl from the library
file being edited.

28

END

4.4.7 END — Specifiesend of subcommand input.

Format Name END Option Subcommand

No Yes

Parameters None

Function Outputs a newly created or updated library file.

Explanation (1) When more than one library fileis edited in one Librarian execution, the
editing of each library fileisterminated by an END subcommand.
(2) Specification of the END subcommand causes the Librarian to output the
edited library file. If, however, the number of modules stored in the library
fileis zero, thelibrary fileisnot created or updated.

Examples END
Outputs alibrary file.

29

EXIT

4.4.8 EXIT — Specifies end of Librarian operations.

Format Name IT Option Subcommand

No Yes

Parameters None

Function Terminates Librarian operations.

Explanation (1) The EXIT subcommand is used to terminate a set of Librarian operations
executed by the subcommand specification.

(2 When executing from a subcommand file, all subcommands following after an
EXIT subcommand are ignored. If the EXIT subcommand is not specified,
awarning message will be displayed.

(3) When the EXIT subcommand is used, the immediately preceding END
subcommand may be omitted. In that case the EXIT subcommand serves also
as an END subcommand, causing the library file to be output before
terminating the Librarian operation.

Examples EXIT
Terminates Librarian operations.

30

ABORT

4.4.9 ABORT — Aborts Librarian operations.

Format Name BORT Option Subcommand

No Yes

Parameters None

Function Aborts Librarian operations.

Explanation (1) When executing by the subcommand specification, the ABORT subcommand
can be used to abort editing operations.

(2 Whenthe ABORT subcommand is specified, the library file being edited will
not be created or updated. If, however, alist file was output by aLLIST
subcommand before the ABORT subcommand, the list file will remain
unchanged.

Examples ABORT
Aborts Librarian operations.

31

LIST

4.5 List Display

45.1 LIST — Displays contents of alibrary file.

Format Name LIST Option Subcommand

Yes Yes

Parameters Option [<List file name>]

Subcommand [[<List file name>][(S)]]

Function Outputs alist of the contents of the library file being edited to the
standard output device or to afile.

Explanation (1) The names of modules stored in the library file, export symbol names, and
other information is output on alist. For the list format, see section 6.2,
Librarian Lists.

(2 Whennolist file nameis specified, the list is output to the standard output
device.

(3 Whenalist file nameis specified, thelist is output to afile. Specify anew list
file name; the list cannot be appended to an existing file. If an existing fileis
specified, the existing file contents will be replaced.

(4 When nofiletypeis specified as part of the list file name, the type is assumed
to be .Ist.

(5 Toobtainalist of export symbols designated in modules, specify the (S)
parameter. If the (S) parameter is not specified, only the module names will
be listed. The (S) parameter cannot be included when LIST is specified asan
option.

(6) TheLIST option or subcommand may be specified any number of times
during the editing process. The library file contents at the point of
specification will be listed.

(Continued on next page)

32

Examples —-LIST
A list is output to the standard output device.
Export symbols are not shown.

LIST
A list is output to the standard output device.
Export symbols are not shown.

LISTAlibx(S)
A list including export symbolsis output to afile named libx.lst.

33

Section 5. Input totheLibrarian
5.1 Object Module Files

Object module files output from a C compiler or assembler can be input to the Librarian and stored
asmodulesin library files.

5.2 Relocatable Load Module Files

A relocatable load module file output from the Linkage Editor can be input and stored in alibrary
file as one module.

5.3 Library Files
The Librarian inputs the library fileit is editing. Also, modules to be stored in thislibrary file can
be input from other library files. Either specified modules can beinput, or all the modulesin a

library file can be input at one time.

Input can be made only from library files created using this Librarian.

34

Section 6. Output from the Librarian
6.1 Library Files
The Librarian can combine two or more modules into a single output library file. It can also update
an existing library file, or extract modules from an existing library file, and output the result in
library file format.

6.2 Librarian Lists

When the LIST option or subcommand is specified, alist of the library file contentsis output to the
standard output device or to afile. Theformat of alibrarian list is shown in Figure 6-1.

Library file name: 1)
)]

Attribute: __ (2) Creator: (11)
Number of modules: _ (3) Creation date: 5
Number of symbols: _ (4) Revision date: (6)

(7) (8) Entry date: (9)

(10) (10)

(7) (8) Entry date: (9)

Figure6-1. Librarian List Format
() Showsthelibrary file name. If the nameistoo long to fit on onelineit is continued to the next
line. When modules are extracted from an existing library file, the list shows the contents of the
exigting library file.
(2 Showsthelibrary file attribute.
SYSTEM System library
USER User library

(3) Showsthetotal number of modules stored in the library file, in decimal notation.

(4 Showsthetotal number of externally defined symbolsin the library file, in decimal notation.

35

(5 Showsthe date and time of library file creation. Thisinformation isgiven in the following
format.

©

Y

©

©

dd - mmm -yy hh: mm: ss

“ [L
second
minute

hour

year (last 2 digits)
month (3 letters)
day

Shows the date and time of the most recent library file update. In the case of library files
newly created using the CREATE option or subcommand, thisis the same as the date of
creation. The format isthe same asfor the creation date, above.

Shows the names of modules stored in the library file, in alphabetical order.

Shows the kind of editing operation performed on the module.

BLANK amodule stored in an existing library file
(A) .. an added module
(R) .. areplacement module

(E)

.. an extracted module

Modules deleted by means of the DELETE option or subcommand are not listed.

Shows the date and time a module was stored in the library file. The format is the same as for
the library file creation date and revision date.

(10) When the (S) parameter is specified with the LIST subcommand, the export symbolsin each
module are shown. These symbol names are listed in alphabetical order two on each line.

An example of alist when the (S) parameter is specified with the LIST subcommand is given in
Figure 6-2. Figure 6-3 shows alist without the (S) specification.

MS-DOS system:
(12) Showsthe name of the tool used to create the library file (Librarian model). If the nameis
longer than 40 characters, only the first 40 characters are shown.

36

Library file name:
Attribute:

clib.lib
USER

Number of modules. 6 Creation date:
Number of symbols. 6 Revision date:

ABS.C

_abs
ATOF.C

_atof
ATOI.C

_atoi
ATOL.C

_atol
_ALOCBUF

_acobuf
_DIVvI

_divi

Entry date:

Entry date:

Entry date:

Entry date:

(A) Entry date:

(A) Entry date:

08-Jan-90 14:18:47
01-Mar-90 19:56:33

08-Jan-90 14:18:47

08-Jan-90 14:18:47

08-Jan-90 14:18:47

08-Jan-90 14:18:47

01-Mar-90 19:56:33

01-Mar-90 19:56:33

Figure6-2. Librarian List (with (S) specification)

Library filename: clib.lib

Attribute: USER

Number of modules; 6 Creation date:
Number of symbols. 6 Revision date:

ABS.C
ATOF.C
ATOI.C
ATOL.C
_ALOCBUF
DIV

Entry date:
Entry date:
Entry date:
Entry date:
(A) Entry date:
(A) Entry date:

08-Jan-90 14:18:47
01-Mar-90 19:56:33

08-Jan-90 14:18:47
08-Jan-90 14:18:47
08-Jan-90 14:18:47
08-Jan-90 14:18:47
01-Mar-90 19:56:33
01-Mar-90 19:56:33

Figure6-3. Librarian List (no (S) specification)

37

6.3 Console M essages
The Librarian displays the following messages on the standard output device.
Opening Message: Displayed when the librarian command is input.
H SERIES OBJECT LIBRARIAN Ver.1.2B
Copyright (C) Hitachi, Ltd. 198X
Licensed Material of Hitachi, Ltd.
Normal Completion Message: Displayed when library file editing has ended normally.

OBJECT LIBRARIAN COMPLETED

Abort Message: Displayed when thelibrary file editing is aborted by either an error or an ABORT
subcommand.

OBJECT LIBRARIAN ABORT

Subcommand Prompt: Indicates that the Librarian isin subcommand input wait state during
Interactive execution.

Subcommand Continuation Symbol: Request for a continuation line, when continuation of a
subcommand is specified during interactive execution.

38

Section 7. Error Messages

The Librarian outputs error messages in the following form.

** <Error number> <Error message> [(<Additional information>)]

Error number: Thefirst digit indicates the level of the error. (xx represents the second and
third digits.)
1xx : Warning Processing of a particular module is skipped.
2xx : Error If started by input from the command line or a

subcommand file, processing is stopped. In
interactive mode, processing of the subcommand is
stopped when the error is detected, and a prompt is
displayed for the next subcommand.

3xx : Fatal error Processing is stopped.

A list of error messagesis given below in Tables 7-1, 7-2 and 7-3, in the following format.

Error number Error message Additional information

Description of error

Corrective action, etc.

Note: Additional information includes the name of the file in which the error occurred, or the
module name or symbol name. Inthelist of errors, --- means that no additional
information is given.

39

Table7-1. List of Warning M essages

101 DUPLICATE MODULE Module name
An attempt was made to add a module already stored in the library file.
Processing of the module is skipped.

102 DUPLICATE SYMBOL Module Symbol

name *x name

An attempt was made to add an export symbol already present in the library file.
Processing of the module is skipped.

103 MODULE NAME TOO LONG Module name

-ALLOWED UP TO 32

A module name of more than 32 characters was specified.
The name isvalid up to the 32nd character. The rest isignored.

104 EXIT SUBCOMMAND NOT

FOUND - ASSUMED

No EXIT subcommand was specified.

Processing continues as though an EXIT subcommand had been specified.

40

Table7-2. List of Error M essages

201

INVALID SUBCOMMAND/OPTION -

The option or subcommand specified isinvalid in this context.

Specify avalid option or subcommand.

202

SYNTAX ERROR —

Syntax of the specified option or subcommand is incorrect.

Check the syntax and re-specify the option or subcommand.

203

SUBCOMMAND LINE LENGTH -

TOO LONG
Length of the subcommand entry exceeds 128 characters.

Re-specify, keeping the length within 128 characters.

204

CONFLICTING SUBCOMMAND -

Subcommands are specified in the wrong order, or an illegal combination of subcommandsis
specified.

Check the order of subcommands and re-specify.

205

ILLEGAL FILE NAME -

The specified file nameis not valid.

Specify acorrect file name.

206

ILLEGAL MODULE NAME -

The specified module name is not valid.

Specify a correct module name.

207

MODULE NOT FOUND Module name

The specified module cannot be found.

Check the name of the module, then re-specify.

(Continued on next page)

41

Table7-2. List of Error M essages (cont)

208

MISSING OUTPUT FILE NAME -

No output file was specified with an EXTRACT option or subcommand.

Use the OUTPUT option or subcommand to specify an output file.

209

TOO MANY INPUT FILES -

More than 12 input files were specified for input at the same time.

First output the library file, then re-input the library file and input the remaining files.

210

TOO MANY MODULES —

The number of modules exceeds the allowable number.

No more modules can be stored in the library file now being created or edited. Store any
additional modulesin a separate library file.

211

TOO MANY SYMBOLS —

The number of symbols exceeds the allowable number.

Thelibrary file now being created or edited cannot contain any more symbols. Modules with
additional symbols must be stored in a separate library file.

212

ILLEGAL FILE FORMAT -

The specified file format is incorrect.

Check the file contents and re-execute.

213

MEMORY OVERFLOW —

There is no space remaining in the Librarian's usable memory.

Obtain additional memory and re-execute.

214

FILE NOT FOUND File name

The specified file cannot be found.

Check the directory and the specified file name, then re-specify.

(Continued on next page)

42

Table7-3. List of Fatal Error Messages

301

INVALID COMMAND PARAMETER -

Animproper command parameter was specified.

Check the command parameters and re-execute.

302

CONFLICTING OPTION -

There is a contradiction among different options specified.

Check the order of option specification, then re-specify.

303

CANNOT OPEN FILE File name

File cannot be opened, or the CREATE or OUTPUT option or subcommand specified an
already existing file.

Check the specified file name. If the file name is correct, the disk may be

full, or there may be adisk hardware error. Check the problem, then re-execute.

If an existing file was specified by the CREATE or OUTPUT option or subcommand,
delete the existing file, then re-execute.

304

CANNOT INPUT FILE File name

File cannot be input.

Check the specified file name. If the file name is correct, there may be
adisk hardware error. Check the problem, then re-execute.

305

CANNOT OUTPUT FILE File name

File cannot be outpuit.

Check the specified file name. If the file nameis correct, the disk may be
full, or there may be adisk hardware error. Check the problem, then re-execute.

306

CANNOT CLOSE FILE File name

File cannot be closed.

Check the specified file name. If the file name is correct, the disk may be
full, or there may be adisk hardware error. Check the problem, then re-execute.

Note:

The Librarian uses temporary files with names in the format shown below. These temporary
file names may appear as additional information in error messages.

Annnnn.TEMP

5 digits, decimal

Section 8. Restirictions

Restriction on the Librarian are shown in Table 8-1. |If the numerical restrictions are exceeded,
Librarian operations will not execute correctly.

Table8-1. Restrictionson Librarian Processing

No. ltem Limits Remarks
1 The number of modules Max. 32,767 Assumes that the system on which
that can be stored in a Librarian runs has adequate
library file memory.
2 The number of symbols Max. 65,535
that can be presentin a
library file
3 The number of input files Max.12 Total number of files specified by
LIBRARY, ADD, or REPLACE not
including subcommand files.
4 The number of modules Max. 10 When specifying a library file with
that can be specified in a ADD or REPLACE
library file
5 Length of command line Depends on OS
6 Length of option or Max. 128 characters Not including 3
subcommand
7 Length of file name Max. 128 characters Includes default file-type
characters. File name format
depends on OS.
8 Length of module name Max. 32 characters
9 Length of symbol name Max. 32 characters
10 Input file formats » Object module file output by

assembler or C compiler.
» Relocatable load module file.

* Library file created using this

Librarian.

Appendix A Examplesof Useof Librarian

A.1l Librarian Execution by Command Line

% |brA-CREATE=func-ADD=abs,mod,sqrt,exp,log 3

...(1) Creation
~—
1 2
o lbrAfunc-ADD=sin,cos-DELETE=abs,mod-LIST 3 "
—~— NN ...(2) Editing
3 4 5 6
% IbrAfunc-EXTRACT=sgrt,exp-OUTPUT=newfnc 3 (3) Extraction

N~
7 8 9

1. The CREATE option at the beginning of the option line is specified to create a new
library file.

2. Thefile names for the modules to be entered are specified using the ADD option.

3. The name of the library file to be edited is specified.

4. Thefile names for modules to be added to the existing library file are specified using
the ADD option.

5. The names of the modules to be deleted from the existing library file are specified using

the DELETE option.

The LIST option is specified to confirm the editing results.

An existing library file from which modules are to be extracted is specified.

The names of the modulesto be extracted are specified using the EXTRACT option.

The name of anew library file to which the extracted modules are to be output is specified

using the OUTPUT option.

© 0o N o

This processisillustrated in Figure A-1.

45

\
abs.obj func.lib
abs abs
mod.obj mod
mod (1) Creation sqrt
S O e
sqrt.obj 1,2
exp.obj
sin.obj
exp
sin
lob.obj
B 0s.obj
(log (
) o cos
File name

Module name

(2) Editing

-0

3to6

func.lib

sqrt

exp

log

sin

Cos

List

P

(3) Extraction

LD

7t09

newfnc.lib

exp

Figure A-1. Resultsof Librarian Execution by Command Line

46

A.2 Librarian Execution by Subcommands

% lbr3
CREATEAfunc 3
ADDAsgrt,exp,log,sin,cos 3
END 3
LIBRARY Afunc 3
REPL ACEAS n.new,cos.new,tan.new 3
END 3
LIBRARY Afunc 3
LIST 3
EXTRACTAsgrt,exp 3
OUTPUTANnewfnc 3
END 3
EXIT3

(1) Creation

(2) Editing

© o ~N O U W NP

N
o

(3) Extraction

b
N B
_

N
w

The Librarian is started.

The CREATE subcommand at the beginning of the option lineis specified in order to create a

new library file.

The file names of modules to be |oaded are specified using the ADD subcommand.

The END subcommand is specified to terminate the creation process.

The name of the library file to be edited is specified.

Modulesin the existing library file are replaced, using the REPLACE subcommand. Thefile

names of the modules to be replaced is specified.

The END subcommand is specified to terminate the editing process.

An existing library file is designated for extraction of modules.

9. TheLIST subcommand is specified to confirm the contents of the existing library file.

10. The names of the modules to be extracted are specified using the EXTRACT subcommand.

11. Thename of anew library file to which the extracted modules are to be output is specified
using the OUTPUT subcommand.

12. The END subcommand is specified to terminate the extraction process.

13. The EXIT subcommand is specified to terminate the Librarian program.

o gk w

o N

Thisprocessisillustrated in Figure A-2.

47

sqrt.obj

sqrt

exp.obj

exp

log.obj

sin.obyj

sin

(1) Creation

- D

2to 4

func.lib

t sqrt

exp

log

sin

cos

File name

b

Module name —>
J

sin.new

sin'

cos.new

cos'

tan.new

(2) Editing

- D

5to7

func.lib

, sqrt

exp

log

sin'

cos'

tan

(3) Extraction

F D

81012

List

newfnc.lib

exp

Figure A-2. Resultsof Librarian Execution by Subcommand

48

A

Abortslibrarian 31
Abbreviated form 14, 17
Abort message 38

Addition 2

Additional information 39, 43
Assembler 1, 2, 34,44
Attribute 19, 21, 35, 37

C

C compiler 1,2, 34,44
Command line 5, 6, 44, 45, 46
Command lineformat 5
Comment 13

Console message 38
Continuation specification 12
Creation 1, 2, 18, 36, 47
Creation date 35, 37

D
Deletion 3

E

Error message 39, 41, 42, 43
Error number 39

Examples of use of librarian 45
Execution control 10, 20
Extraction 4

F

Fatal error 39

Fatal error message 43
File control 10, 11, 14, 18
Filename 5, 11, 44

| ndex

49

I

Input file format 44
Input files 23, 25, 42, 44
Interactive mode 7, 8, 39

L

Length of file name 44
Librarian 1

Librarian list 35, 37

Library file 35

Library file attribute 35
Library file name 5, 6, 35
Linkage editor 1, 2,19, 21, 34

M
Module 1, 2, 3, 4, 34
Module name 11, 44

N

Normal completion message 38
Number of input files 23, 25, 44
Number of symbols 35, 37, 42, 44

O

Object module
(Object modulefile) 11, 34, 44

Option 10

Option format 10

Option name 5

R
Relocatable load module

(Relocatable load modulefile) 11, 34, 44

Replacement 3, 24, 25, 36
Restrictions 44

S

Subcommand 5, 6, 7, 10, 20, 38, 44, 47
Subcommand file 8, 20

Subcommand continuation symbol 38
Subcommand format 11

System library 19, 21, 35

U
User library 19, 21, 35

w
Warning 9, 39
Warning message 40

50

