

Hitachi Microcomputer Support Software

SH Series C Compiler

USER’S MANUAL

HITACHI

ADE-702-095

HS0700CLCU1SE

The Copyright Statement

Preface

This manual explains the facilities and operating procedures for the SH series C compiler (Ver. 2.0).

The C compiler translates source programs written in C into relocatable object programs or

assembly programs for Hitachi SH7000 series RISC microcomputers.

This manual consists of four parts and appendixes. The information contained in each part is

summarized below.

(1) PART I OVERVIEW AND OPERATIONS

The overview sections cover the following:

V C compiler functions

W Developing procedures

The operation sections cover the following:

X How to invoke the C compiler

Y Optional functions

Z Listings created by the C compiler

(2) PART II PROGRAMMING

This part explains the limitations of the C compiler and the special factors in object

program execution which should be considered when creating a program.

(3) PART III SYSTEM INSTALLATION

This part explains the requirements when installing an object program generated by the C

compiler on a system. They are the object program being written in ROM and memory

allocation. In addition, specifications of the low-level interface routine must be made by

the user when using standard I/O library and memory management library.

(4) PART IV ERROR MESSAGES

This part explains the error messages corresponding to compilation errors and the standard

library error messages corresponding to run time errors.

This manual corresponds to operating systems that function on UNIX, MS-DOS, or IBM-PC

systems. In this manual, operating systems functioning on MS-DOS or IBM-PC systems are

referred to as PC systems.

i

Notes on Symbols: The following symbols are used in this manual.

Symbols Used in This Manual

Symbol Explanation

< > Indicates an item to be specified.

[] Indicates an item that can be omitted.

... Indicates that the preceding item can be repeated.

∆ Indicates one or more blanks.

(RET) Indicates the carriage return key (return key).

| Indicates that one of the items must be selected.

(CNTL) Indicates that the control key should be held down while pressing the

key that follows.

UNIX is an operating system administrated by the UNIX System Laboratories (United States).

MS-DOS is an operating system administrated by the Microsoft Corporation (United States).

IBM-PC is an personal computer system administrated by IBM (United States).

ii

Contents

Part I OVERVIEW AND OPERATIONS .. 1

Section 1 Overview... 3

Section 2 Developing Procedures ..4

Section 3 C Compiler Execution..5

3.1 How to Invoke the C Compiler ..5

3.2 Naming Files... 8

3.3 Compiler Options.. 9

3.4 Option Combinations .. 11

3.5 C Compiler Listings.. 12

Part II PROGRAMMING... 19

Section 1 Limitations of the C Compiler... 21

Section 2 Executing a C Program ... 23

2.1 Structure of Object Programs...24

2.2 Internal Data Representation... 26

2.3 Linkage with Assembly Programs .. 31

2.3.1 External Identifier Reference.. 32

2.3.2 Function Call Interface ... 34

Section 3 Extended Specifications.. 43

3.1 Interrupt Functions...43

3.2 Intrinsic Functions .. 47

Section 4 Notes on Programming ... 51

4.1 Coding Notes ...51

4.2 Notes on Programming Development... 54

iii

Part III SYSTEM INSTALLATION ... 55

Section 1 Overview... 57

Section 2 Allocating Memory Areas.. 58

2.1 Static Area Allocation..58

2.1.1 Data to be Allocated in Static Area .. 58

2.1.2 Static Area Size Calculation ... 58

2.1.3 ROM and RAM Allocation .. 61

2.1.4 Initialized Data Area Allocation... 61

2.1.5 Example: Memory Area Allocation and Address Specification at Program

Linkage ..61

2.2 Dynamic Area Allocation ..63

2.2.1 Dynamic Areas ... 63

2.2.2 Dynamic Area Size Calculation ... 63

2.2.3 Rules for Allocating Dynamic Area ... 66

Section 3 Setting the Execution Environment ... 67

3.1 Vector Table Setting (VEC_TBL)..68

3.2 Initialization (_ _INIT) ... 69

3.3 Section Initialization (_ _INITSCT) ... 70

Section 4 Setting the C Library Function Execution Environment 73

4.1 Setting Vector Table (VEC_TBL)..74

4.2 Initializing Registers (_ _INIT) .. 75

4.3 Initializing Sections (_ _INITSCT) .. 76

4.4 Initializing C Library Functions (_ _INITLIB) .. 76

4.4.1 Creating Initialization Routine for Standard I/O Library Function

(_INIT_IOLIB)... 77

4.4.2 Creating Initialization Routine for Other Library Function

(_INIT_OTHERLIB).. 78

4.5 Closing Files (_ _CLOSEALL) .. 79

4.6 Creating Low-Level Interface Routines.. 80

iv

Part IV ERROR MESSAGES.. 89

Section 1 Error Messages Output by the C Compiler .. 91

1.1 Error Message Format... 91

1.2 C Compiler Action and Programmer Response for Each Error Level.............................. 92

1.3 List of Error Messages .. 93

Section 2 Error Messages Output for the C Library Functions 140

APPENDIX ..143

Appendix A Language and Standard Library Function Specifications
of the C Compiler ... 145

A.1 Language Specifications of the C Compiler ... 145

A.1.1 Compilation Specifications .. 145

A.1.2 Environmental Specifications .. 145

A.1.3 Identifiers ... 145

A.1.4 Characters ... 146

A.1.5 Integer ... 147

A.1.6 Floating-Point Numbers ... 148

A.1.7 Arrays and Pointers .. 149

A.1.8 Register ... 149

A.1.9 Structure, Union, Enumeration, and Bit Field Types.. 150

A.1.10 Modifier .. 150

A.1.11 Declarations .. 151

A.1.12 Statement .. 151

A.1.13 Preprocessor.. 152

A.2 C Library Function Specifications .. 153

A.2.1 stddef.h .. 153

A.2.2 assert.h ... 153

A.2.3 ctype.h... 154

A.2.4 math.h ... 154

A.2.5 stdio.h ... 155

A.2.6 string.h .. 156

A.2.7 Not Supported Library.. 156

A.3 Floating-Point Number Specifications.. 157

A.3.1 Internal Representation of Floating-Point Numbers... 157

v

A.3.2 float... 159

A.3.3 double and long double... 160

A.3.4 Floating-point Operation Specifications... 162

Appendix B Parameter Allocation Example.. 165

Appendix C Usage of Registers and Stack Area .. 168

Appendix D Creating Termination Functions ... 169

D.1 Creating Library onexit Function.. 169

D.2 Creating exit Function... 170

D.3 Creating abort Routine.. 171

Appendix E Examples of Low-Level Interface Routine... 172

Appendix F ASCII Codes... 177

Index ...178

vi

Figures

Part I
2-1 Relationship between the C Compiler and Other Software.. 4

3-1 Source Listing Output for show=noinclude and noexpansion.. 13

3-2 Source Listing Output for show=include and expansion.. 13

3-3 Object Listing ... 15

3-4 Statistics Information.. 16

3-5 command line specification .. 17

Part II
2-1 Allocation and Deallocation of a Stack Frame... 34

2-2 Parameter Area Allocation ... 39

2-3 Example of Allocation to Parameter Registers... 41

2-4 Return Value Setting Area Used When Return Value Is Written to Memory 42

3-1 Stack Processing by an Interrupt Function ... 44

Part III
2-1 Section Size Information .. 58

2-2 Static Area Allocation .. 62

2-3 Nested Function Calls and Stack Size .. 65

3-1 Program Configuration (No C Library Function is Used).. 67

4-1 Program Configuration When C Library Function Is Used ... 73

4-2 FILE-Type Data .. 78

Part IV
1-1 Error Messages Format (UNIX Systems)... 91

1-2 Error Messages Format (PC Systems).. 91

Appendix
A-1 Structure for the Internal Representation of Floating-Point Numbers 157

C-1 Usage of Registers and Stack Area... 168

vii

Tables

Part I
3-1 Standard File Extensions Used by the C Compiler .. 8

3-2 C Compiler Options.. 9

3-3 Macro Names, Names, and Constants Specified by the define Option 10

3-4 Option Combinations.. 11

3-5 Structure and Contents of C Compiler Listings.. 12

Part II
1-1 Limitation of the C Compiler ... 21

2-1 Memory Area Types and Characteristics.. 24

2-2 Internal Representation of Scalar-Type Data.. 26

2-3 Internal Representation of Aggregate-Type Data ... 27

2-4 Bit Field Member Specifications .. 28

2-5 Rules on Changes in Registers After a Function Call .. 35

2-6 General Rules on Parameter Area Allocation... 40

2-7 Return Value Type and Setting Location .. 42

3-1 Interrupt Specifications... 43

3-2 Intrinsic Functions .. 47

4-1 Troubleshooting.. 54

Part III
2-1 Stack Size Calculation Example... 65

4-1 Low-Level Interface Routines .. 80

Part IV
1-1 C Compiler Action and Programmer Response for Each Error Level 92

Appendix
A-1 Compilation Specifications... 145

A-2 Environmental Specifications ... 145

A-3 Identifier Specifications ... 145

A-4 Character Specifications ... 146

A-5 Integer Specifications ... 147

A-6 Integer Types and Their Corresponding Data Range ... 147

A-7 Floating-Point Number Specifications ... 148

viii

A-8 Limits on Floating-Point Numbers ... 148

A-9 Array and Pointer Specifications .. 149

A-10 Register Specifications ... 149

A-11 Specifications for Structure, Union, Enumeration, and Bit Field Types 150

A-12 Modifier Specifications .. 150

A-13 Declaration Specifications .. 151

A-14 Statement Specifications... 151

A-15 Preprocessor Specifications .. 152

A-16 stddef.h Specifications.. 153

A-17 assert.h Specifications .. 153

A-18 ctype.h Specifications ... 154

A-19 Set of Characters that Returns True.. 154

A-20 math.h Specifications.. 154

A-21 stdio.h Specifications.. 155

A-22 Infinity and Not a Number.. 156

A-23 string.h Specifications .. 156

A-24 Libraries Not Supported by the C Compiler... 156

A-25 Types of Values Represented by Floating-Point Numbers ... 158

ix

x

xi

PART I

OVERVIEW AND OPERATIONS

Section 1 Overview

The SH series C compiler inputs source programs written in C and outputs relocatable object

programs or assembly source programs.

The C compiler supports the SH7000-series microcomputers (referred to as SH).

3

Section 2 Developing Procedures

Figure 2-1 shows the relationship between the C compiler package and other software for program

development. The C compiler package includes the software enclosed by the dotted line.

Figure 2-1 Relationship between the C Compiler and Other Software

Standard
include

file

Standard
library

file

SH series
C compiler

User
library

file

Load
module

Software
included in
the package

*1

Relo-
catable
object

program

*2

*3

User
include

file

User
include

file

Assembly
 source
 program

User
assembly
source
program

S-type
load

module

Target system

SH series
cross assembler

H series
linkage editor

H series
object converter

SH series
simulator/debugger

User
include

file

C source
file

creation

Notes: *1. Assembly source programs are output

based on chosen options.

*2. The standard include file defines C

library functions and their macro

names in order to use C library

functions.

*3. A functional group, consisting of C

library functions and run time routines

is used as standard in the C program.

(Refer to section 2.1, Note, in Part II,

System Installation.)

is related software required during

program development.

4

Section 3 C Compiler Execution

This section explains how to invoke the C compiler, specify C compiler options, and interpret C

compiler listings.

3.1 How to Invoke the C Compiler

The format for the command line used to invoke the C compiler is as follows.

UNIX systems:

PC systems:

The general operations of the C compiler are described below.

Compiling Programs:

The C source program test.c is compiled.

C Compiler Options (UNIX):

Insert minus (-) before options (debug, listfile, and show). When multiple options are specified,

separate them with a space (

∆). Also when multiple suboptions are specified, separate them with a

comma (,).

shc[∆<option>...]∆[<file name>]

shc∆test.c (RET)

shc[∆<option>...][∆<file name>[∆<option>...]...]

shc∆-debug∆-listfile∆-show=noobject,expansion∆test.c (RET)

5
5

C Compiler Options (PC):

Insert a slash (/) before the options (debug, listfile, and show). When multiple options are

specified, separate them with a space (∆). Also when multiple suboptions are specified, separate

them with a comma (,) and enclose them in parentheses.

Compiling Multiple Programs:

Several C source programs can be compiled by a single command on UNIX systems.

Example 1: Specifying multiple programs

Example 2: Specifying options for all C source programs

The listfile option is valid for both test1.c and test2.c.

Example 3: Specifying options for particular C source programs

The listfile option is valid for only test2.c. Options specified for particular C source programs have

priority over those specified for all C source programs.

shc∆/debug∆/listfile∆/show=(noobject,expansion)∆test.c

shc∆test1.c∆test2.c(RET)

shc∆-listfile∆test1.c∆test2.c (RET)

shc∆test1.c∆test2.c∆-listfile (RET)

6

Option List:

Instead of compiling, the C compiler outputs the standard command line format and option list.

shc (RET)

7

3.2 Naming Files

A standard file extension is automatically added to the name of a file when omitted. The standard

file extensions used by the C compiler and related software are shown in table 3-1.

Table 3-1 Standard File Extensions Used by the C Compiler

File Extensioner Description

c Source program file written in C

h Include file

lst, lis Listing file*1

obj Relocatable object program file

src Assembly source program file

lib Library file

abs Absolute load module file

rel Relocatable load module file

map Linkage map listing file

Note: *1. The listing file extension is lis on UNIX systems and 1st on PC systems.

The general conventions for naming files depend on the host machine. Refer to the manual of the

host machine in use.

8

9

3.3 Compiler Options

Table 3-2 shows C compiler option formats, abbreviations, and defaults. Characters underlined

indicate the minimum valid abbreviation. Bold characters indicate default assumption.

Table 3-2 C Compiler Options

Item Format Suboption Specification
Optimization optimize = 0 | Object without optimization is output.
level 1 Object with optimization is output.
Listings and show = source |nosource | Source list yes/no
formats*1 object |noobject | Object list yes/no

statistics |nostatistics | Statistics information yes/no
include |noinclude | List after include expansion yes/no
expansion |noexpansion | List after macro expansion yes/no

*2 width = <numeric value> | Maximum characters per line: 0, 80–132
*2 length = <numeric value> Maximum lines per page: 0, 40–255

Default: w = 132, l = 66
Listing file listfile [= <listing file name>] *3 Output

nolistfile No output
Object file objectfile = <object file name> Output
Object code = machine code | Program in machine language is output.
progam format asmcode Assembly source progam is output.
Debug debug Output
information nodebug No output
Macro name define = <macro name> = <name> | <name> is defined as <macro name>

<macro name> = <constant> | <constant> is defined as <macro name>
<macro name> *4 <macro name> is assumed to be defined.

Include file include = <path name> *5 Include file destination path name is specified.
(Multi-specification is possible.) *4

Section name section = program = <section name> | Program area section name is specified.
*5 const = <section name> | Constant area section name is specified.

data = <section name | Initialized data area section name is specified.
bss =<section name> Non-initialized data area section name is

specified.
Default: p = P, c = C, d = D,b = B

Help message help*6 Output

Notes: *1. show option is invalid when listfile is specified.

*2. The assignments of show = width = 0 or show = length = 0 are interpreted as below.

show = width = 0: No line feed is performed until line feed code is output.

show = length = 0: Maximum line number is not specified, and page feed is not performed.

*3. If file name is not specified, standard file extension is added to the source file name.

*4. Macro names specified by options are shown in table 3-3.

Table 3-3 Macro Names, Names, and Constants Specified by the define Option

Item Explanation

Macro name A character string beginning with an alphabetic letter or an underscore

followed by zero or more alphabetic letters, underscores, and numbers

(0 to 9).

Name A character string beginning with a letter or an underscore followed by zero

or more alphabetic letters, underscores, and numbers.

Constant A character string of one or more numbers, or a character string of one or

more numbers followed by a period (.) and zero or more numbers.

*5. Refer to descriptions in Preprocessor Specifications,in Appendix A.1 for details on how to

retrieve the include file.

*6. When the help option is specified, all other options are invalid.

3.4 Option Combinations

10

If a pair of conflicting options or suboptions are specified for a file, only one of them is

considered valid. Table 3-4 shows such option combinations.

Table 3-4 Option Combinations

Option Combinations

Valid Option Invalid Options

nolistfile show

code = asmcode debug, and show = object

help All other options

3.5 C Compiler Listings

11

This section describes C compiler listings and their formats.

Structure of C Compiler Listings: Table 3-5 shows the structure and contents of C compiler

listings.

Table 3-5 Structure and Contents of C Compiler Listings

List Structure Contents Option Specification Method *1 Default

Source listing Listing consists of show = source Output

source programs show = nosource

Source program listing (show = include) *2 No output

after include file and (show = expansion)

macro expansion (show = noinclude)

(show = noexpansion)

Object listing Machine language generated show = object Output

by the C compiler show = noobject

Statistics Total number of errors, the show = statistics Output

number of source program show = nostatistics

lines, length of each section

(byte), and the number of

symbols

command line File names and options — Output

specification specified on the command

line

Notes: *1. All options are valid when listfile is specified.

*2. The option enclosed in parentheses is only valid when show = source is specified.

Source Listing: The source listing can be output in two ways. When show = noinclude and show

= noexpansion is specified, the unpreprocessed source program is output. When show = include

12

or show =expansion is specified, the preprocessed source program is output. Figures 3-1 and 3-2

show these output formats, respectively. Bold characters in figure 3-2 show the differences.

Figure 3-1 Source Listing Output for show = noinclude and noexpansion

Figure 3-2 Source Listing Output for show = include and expansion

Object Listing: Figure 3-3 shows an example of an object listing.

************ SOURCE LISTING ************

FILE NAME: m0260.c

Seq File Line 0----+––––1––––+––––2––––+––––3––––+––––4––––+––––5––
1 m0260.c 1 #include "header.h"
4 m0260.c 2
5 m0260.c 3 int sum2(void)
6 m0260.c 4 { int j;
7 m0260.c 5
8 m0260.c 6 #ifdef SMALL
9 m0260.c 7 j=SML_INT;

10 m0260.c 8 #else
11 m0260.c 9 j=LRG_INT;
12 m0260.c 10 #endif
13 m0260.c 11
14 m0260.c 12 return j; /* continue123456789012345678901234567

V W X +2345678901234567890 */

************ SOURCE LISTING ************

FILE NAME: m0260.c

Seq File Line 0----+––––1––––+––––2––––+––––3––––+––––4––––+––––5––
1 m0260.c 1 #include "header.h"

2 header.h 1 #define SML_INT 1
3 header.h 2 #define LRG_INT 100
4 m0260.c 2
5 m0260.c 3 int sum2(void)
6 m0260.c 4 { int j;
7 m0260.c 5
8 m0260.c 6 #ifdef SMALL
9 m0260.c 7 X j=SML_INT;

10 m0260.c 8 Z #else

11 m0260.c 9 E j=100;

12 m0260.c 10 [#endif

13 m0260.c 11
14 m0260.c 12 return j; /* continue123456789012345678901234567

Y

13

Description

V Listing line number

W Source program file name or include file name

X Line number in source program or include file

Y Source program lines resulting from an include file expansion when show = include is

specified.

Z Source program lines that are not to be compiled due to conditional directives such as #ifdef

and #elif are marked with an X when show=expansion is specified.

[Lines containing a macro expansion due to #define directives are marked with an E when

show=expansion is specified.

\ If a source program line is longer than the maximum listing line, the continuation symbol (+) is

used to indicate that the source program line is extended over two or more listing lines.

14

Figure 3-3 Object Listing

Description
V Section attribute (P, C, D, B) of each section
W The offset indicates the offset address relative to the beginning of each section.
X Contents of the offset address of each section
Y Assembly code corresponding to machine language

Z Comments indicating the C program structure (only output when not optimized; however,

labels are always output)

[Line information corresponding to the C program (only output when not optimized)

\ Stack frame size in bytes (always output)

Statistics Information: Figure 3-4 shows an example of statistics information.

************ SOURCE LISTING ************

FILE NAME: m0251.c

Seq File Line 0----+----1----+----2----+----3----+----4----+----5-
1 m0251.c 1 extern int sum(int);
2 m0251.c 2
3 m0251.c 3 int
4 m0251.c 4 sum(int x)
5 m0251.c 5 {
6 m0251.c 6 int i;
7 m0251.c 7 int j;
8 m0251.c 8
9 m0251.c 9 j=0;
10 m0251.c 10 for(i=0; i<=x; i++) {
11 m0251.c 11 j+=i;
12 m0251.c 12 }
13 m0251.c 13 return j;
14 m0251.c 14 }

************ OBJECT LISTING ************

FILE NAME: m0251.c

SCT OFFSET CODE C LABEL INSTRUCTION OPERAND COMMENT

V W X Y

Z

P ; File m0251.c , Line 4 ; block

00000000 _sum: [; function: sum

; frame size=8 \

00000000 7FF8 ADD #-8,R15
; File m0251.c , Line 5 ; block
; File m0251.c , Line 9 ; expression statement

00000002 E300 MOV #0,R3
00000004 2F32 MOV.L R3,@R15

; File m0251.c , Line 10 ; for
00000006 E300 MOV #0,R3
00000008 1F31 MOV.L R3,@(4,R15)
0000000A A009 BRA L104
0000000C 0009 NOP

15

Figure 3-4 Statistics Information

Description

V Total number of messages by the level

W Number of compiled lines from the source file

X Size of each section and total size of sections

Y Number of external reference symbols, number of external definition symbols, and total

number of internal and external labels

Note: Section size information (X) and label information (Y) are not output if an error-level

error or a fatal-level error has occurred when option noobject is specified. In addition,

section size information (X) is not output when option code = asmcode is specified.

command Line Specification: The file names and options specified on the command line when

the compiler is invoked are displayed. Figure 3-5 shows an example of command line

******** STATISTICS INFORMATION ********

********** ERROR INFORMATION ***********

NUMBER OF ERRORS: 0
NUMBER OF WARNINGS: 0

******* SOURCE LINE INFORMATION ********

COMPILED SOURCE LINE: 13

******* SECTION SIZE INFORMATION *******

PROGRAM SECTION(P): 0x00004A Byte(s)
CONSTANT SECTION(C): 0x000000 Byte(s)
DATA SECTION(D): 0x000000 Byte(s)
BSS SECTION(B): 0x000000 Byte(s)

TOTAL PROGRAM SIZE: 0x00004A Byte(s)

********** LABEL INFORMATION ***********

NUMBER OF EXTERNAL REFERENCE SYMBOLS: 0
NUMBER OF EXTERNAL DEFINITION SYMBOLS: 1

Y

X

V

W

16

specification information.

Figure 3-5 command Line Specification

*** COMMAND PARAMETER ***

-listfile test.c

17

PART II

PROGRAMMING

Section 1 Limitations of the C compiler

Table 1-1 shows the limits on source programs that can be handled by the C compiler. Source

programs must fall within these limits. To edit and compile efficiently, it is recommended to split

the source program into smaller programs (approximately 2 ksteps) and compile them separately.

Table 1-1 Limitation of the C Compiler

Limit

Classification Item UNIX PC

Invoking the Number of source programs that can be 16 1

C compiler compiled at one time

Total number of macro names that can be 16 16

specified using the define option

Length of file name (characters) 128 128

Source programs Length of one line (characters) 4096 512

Number of source program lines 32767 16383

Preprocessing Nesting level of files in an #include directive 8 5

Total number of macro names that can be 4096 1024

specified in a #define directive *1

Number of arguments that can be specified 63 31

using a macro definition or a macro call operation

Depth of the recursive expansion of a macro name 32 16

Nesting level of #if, #ifdef, #ifndef, #else, or #elif 32 6

directives

Total number of operators and operands that can 512 210

be specified in an #if or #elif directive

Declarations Number of function definitions 512 256

Number of external identifiers used for external 4096 511

linkage*2

Number of internal identifiers that can be used 4096 512

in one function

Number of internal labels*3 16384 2048

Number of symbol table entries*4 8192 1024

Total number of pointers, arrays, and functions 16 16

that qualify the basic type

Array dimensions 6 6

211

Table 1-1 Limitation of the C Compiler (cont)

Limit

Classification Item UNIX PC

Statements Nesting levels of compound statements 32 15

Levels of statement nesting in a combination of 32 15

repeat (while, do, and for) and select (if and

switch) statements

Number of goto labels that can be specified in 511 256

one function

Number of switch statements 256 128

Nesting levels of switch statements 16 15

Number of case labels 511 255

Nesting levels of for statements 16 15

Expressions Number of arguments that can be specified using 63 31

a function definition or a function call operation

Total number of operators and operands that can About 500 About 200

be specified in one expression

C library functions Number of files that can be opened simultaneously 20 20

by the open function

Notes: *1. As the C compiler itself defines five macro names (_ _ LINE _ _, _ _ FILE _ _, _ _ DATE _ _,

_ _ TIME _ _, and _ _ STDC _ _), the user can define a maximum of 4091 macro names in

UNIX systems and a maximum of 1019 macro names in PC systems.

*2. As the C compiler itself defines two symbols, the user can define a maximum of 4094 external

identifiers in UNIX systems and a maximum of 509 external identifiers in PC systems.

*3. An internal label is internally generated by the C compiler to indicate a static variable address,

case label address, goto label address, or a branch destination address generated by if,

switch, while, for, and do statements.

*4. The number of symbol table entries is determined by adding the following numbers:

Number of external identifiers

Number of internal identifiers for each function

Number of string literals

Number of initial values for structures and arrays in compound statements

Number of compound statements

Number of case labels

Number of goto labels

222

Section 2 Executing a C Program

This section covers object programs which are generated by the C compiler. In particular, this

section explains what items are required to link C programs with assembly programs and how to

install programs on the SH system (see PART III, SYSTEM INSTALLATION). This section

consists of the following three parts.

Section 2.1 Structure of Object Programs
This section discusses the characteristics of memory areas used for C source programs and standard

library functions.

Section 2.2 Internal Data Representation
This section explains the internal representation of data used by a C program. This information is

required when data is shared among C programs, hardware, and assembly programs.

Section 2.3 Linkage with Assembly Programs
This section explains the rules for variable and function names that can be mutually referenced by

multiple object programs. This section also discusses how to use registers, and how to transfer

arguments and return values when a C program calls a function. The above information is required

for C program functions calling assembly program routines or assembly program routines calling C

program functions.

Refer to respective hardware manuals for details on SH hardware.

23

2.1 Structure of Object Programs

This section explains the characteristics of memory areas used by a C program or standard library
function in terms of the following items.

V Sections
Composed of memory areas which are allocated statically by the C compiler. Each section has
a name and type. A section name can be changed by the compiler option section.

W Write Operation
Indicates whether write operations are enabled at program execution.

X Initial Value
Shows whether there is an initial value when program execution starts.

Y Alignment
Restricts addresses to which data is allocated.

Table 2-1 shows the types and characteristics of those memory areas.

Table 2-1 Memory Area Types and Characteristics

Memory Area Section Section Write Initial
Name Name * Type Operation Value Alignment Contents
Program area P code Disabled Yes 4 bytes This area stores machine

codes.
Constant area C data Disabled Yes 4 bytes This area stores const data.
Initialized data D data Enabled Yes 4 bytes This area stores data
area whose initial values

are specified.
Non-initialized B data Enabled No 4 bytes This area stores data
data area whose initial values

are not specified.
Stack area — — Enabled No 4 bytes This area is allocated at

run time and is required
for C program execution.
Refer to section 2.2,
Dynamic Area Allocation,
in PART III, SYSTEM
INSTALLATION.

Heap area — — Enabled No — This area is used by a C
library function (malloc,
realloc, or calloc).
Refer to section 2.2,
Allocation to Dynamic Area,
in PART III, SYSTEM
INSTALLATION.

Note: * Section name shown is the default generated by the C compiler when a specific name is not

specified by the compiler option section.

24

Example: This program example shows the relationship between a C program and the sections
generated by the C compiler.

main() {...}

c

a

b

C program Section generated by the C compiler

int a=1;
char b;
const int c=0;

main()
{

.

.

.
}

Program area

Constant area

Initialized data area

Non-initialized data area

25

2.2 Internal Data Representation

This section explains the internal representation of C language data types. The internal
representation of data is determined according to the following four items:

V Size
Shows the amount of memory needed to store the data.

W Alignment
Restricts the addresses to which data is allocated. There are three types of alignment, 1-byte
alignment in which data can be allocated to any address, 2-byte alignment in which data is
allocated to an even byte address, and 4-byte alignment in which data is allocated to an address
indivisible by four.

X Data range
Shows the range of scalar-type data.

Y Data allocation example
Shows how the elements of aggregate-type data are allocated.

Scalar-Type Data: Table 2-2 shows the internal representation of scalar-type data used in C.

Table 2-2 Internal Representation of Scalar-Type Data

Data Range

Size Alignment Minimum Maximum

Data Type (bytes) (bytes) Sign Bit Value Value

char 1 1 Used –27 (–128) 27 – 1 (127)

signed char 1 1 Used –27 (–128) 27 – 1 (127)

unsigned char 1 1 Unused 0 28 – 1 (255)

short 2 2 Used –215 (–32768) 215 – 1 (32767)

unsigned short 2 2 Unused 0 216 – 1 (65535)

int 4 4 Used –231 (–2147483648) 231 – 1 (2147483647)

unsigned int 4 4 Unused 0 232 – 1 (4294967295)

long 4 4 Used –231 (–2147483648) 231 – 1 (2147483647)

unsigned long 4 4 Unused 0 232 – 1 (4294967295)

enum 4 4 Used –231 (–2147483648) 231 – 1 (2147483647)

float 4 4 Used – ∞ + ∞
double 8 4 Used – ∞ + ∞
long double

Pointer 4 4 Unused 0 232 – 1 (4294967295)

26

Aggregate-Type Data: This part explains the internal representation of array, structure, and

union data types. Table 2-3 shows the internal data representation of aggregate-type data.

Table 2-3 Internal Representation of Aggregate-Type Data

Data Type Alignment (bytes) Size (bytes) Data Allocation Example

Array type Array element (Number of array elements) int a[10];

alignment x (Element size) Alignment: 4 bytes

Size: 40 bytes

Structure type Maximum structure Total member size *1 struct {

member alignment int a, b;

};

Alignment: 4 bytes

Size: 8 bytes

Union type Maximum union Maximum value of member union {

member alignment size *2 int a,b;

};

Alignment: 4 bytes

Size: 4 bytes

Notes: *1. When structure members are allocated, unused area may be generated between structure

members to align data types.

struct {

char a;

int b;}z;

If a structure has 4-byte alignment and the last member ends at an address indivisible by four,

the remaining bytes are included in this structure.

struct {

int a;

char b;}x

z.a z.b

4 bytes

1 byte

4 bytes

Unused area

x.a

4 bytes

1 byte

4 bytes

x.b

27

*2. When an union has 4-byte alignment and the maximum size of its members is not a multiple of

four, the remaining bytes up to a multiple of four are included in this union.

union {

int a;

char b[7];}w

Bit Fields: A bit field is a member of a structure. This part explains how bit fields are allocated.

• Bit field members

Table 2-4 shows the specifications of bit field members.

Table 2-4 Bit Field Member Specifications

Item Specifications

Type specifiers allowed for bit fields char, unsigned char, short, unsigned short, int, unsigned int,

long, and unsigned long

How to treat a sign when data is A bit field with no sign (unsigned type is specified): Zero extension *2

expanded to the declared type *1 A bit field with a sign (unsigned is not specified): Sign extension *2

Notes: *1. To use a member of a bit field, data in the bit field is expanded to the declared type.

*2. Zero extension: Zeros are written to the high order bits during extension.

Sign extension: The most significant bit of a bit field is used as a sign and is written to all higher-

order bits generated during data extension.

Note: One-bit field data with a sign is interpreted as the sign, and can only indicate 0 and –1. To

indicate 0 and 1, bit field data must be declared with unsigned.

w.a

w.b[0] w.b[1] 1 bytew.b[2] w.b[3] w.b[4] w.b[5] w.b[6]

4 bytes 4 bytes

28

• Bit field allocation

Bit field members are allocated according to the following five rules:

V Bit field members are placed in an area beginning from the left, that is, the most

significant bit.

Example:

struct b1{

int a:2;

int b:3;

}x;

W Consecutive bit field members having type specifiers of the same size are placed in the

same area as much as possible.

Example:

struct b1{

long a:2;

unsigned int b:3;

}y;

X Bit field members having type specifiers with different sizes are allocated to different

areas.

Example:

struct b1{

int a:5;

char b:4;

}z;

: Unused area

2 3

031

x. a

x. b

2 3

031
y. a

y. b

031
z.a

5

4

031
z.b

29

Y If the number of remaining bits in the area is less than the next bit field size, though

type specifiers indicate the same size, the remaining area is not used and the next bit

field is allocated to the next area.

Example:

struct b2{

char a:5;

char b:4;

}v;

Z If an anonymous bit field member or a bit field member with a bit field size of 0 is

declared, the next member is allocated to the next area.

Example:

struct b2{

char a:5;

char :0;

char c:3;

}w;

31

v.a

5 4

1624

v.b

5

31

w.a

3

1624

w.c

30

2.3 Linkage with Assembly Programs

Because C is suitable for writing system programs, it can be used to describe almost all processes in

microcomputer application systems. In particular, the SH-series C compiler supports operations,

such as access to the SH microcomputer registers as intrinsic functions. Refer to section 3.2,

Intrinsic Functions, in Part II, Programming, for details on intrinsic functions.

Processes which cannot be written in C, for example, calculations like multiplication and addition

performed by the MAC instruction, must be written in assembly language, and then linked with the

C program.

This section explains two key items which must be considered when linking a C program to an

assembly program:

• External identifier reference

• Function call interface

31

2.3.1 External Identifier Reference

Functions and variable names declared as external identifiers in a C program can be referenced or

modified by both assembly programs and C programs. The following are regarded as external

identifiers by the C compiler:

• A global variable which has a storage class other than static

• A variable name declared in a function with storage class extern

• A function name whose storage class is other than static

When variable or function names which are defined as external identifiers in C programs, are used

in assembly programs, an underscore character (_) must be added at the beginning of the variable or

function name (up to 31 characters without the leading underscore).

32

Example 1: An external identifier defined in an assembly program is referenced by a C program

• In an assembly program, symbol names beginning with an underscore character (_)

are declared as external identifiers by an .EXPORT directive.

• In a C program, symbol names (with no underscore character (_) at the head) are

declared as external identifiers.

Assembly program (definition) C program (reference)

Example 2: An external identifier defined in a C program is referenced by an assembly program

• In a C program, symbol names (with no underscore character (_) at the head) are

defined as external identifiers.

• In an assembly program, external references to symbol names beginning with an

underscore character (_) are declared by an .IMPORT directive.

C program (definition) Assembly program (reference)

int a; .IMPORT _a
.SECTION P,CODE,ALIGN=2
MOV.L A_a,R1
MOV.L @R1,R0
ADD #1,R0
RTS
MOV.L R0,@R1
.ALIGN 4

A_a: .DATA.L _a

.EXPORT _a, _b

.SECTION D,DATA,ALIGN=4
_a: .DATA.L 1
_b: .DATA.L 1

.END

extern int a,b;

f()
{

a+=b;
}

33

2.3.2 Function Call Interface

When either a C program or an assembly program calls the other, the assembly programs must be

created using rules involving the following:

(1) Stack Pointer

(2) Allocating and Deallocating Stack Frames

(3) Registers

(4) Setting and Referencing Parameters and Return Values

Stack Pointer: Valid data must not be stored in a stack area with an address lower than the stack

pointer, since the data may be destroyed by an interrupt process.

Allocating and Deallocating Stack Frames: In a function call (right after the JSR or the BSR

instruction has been executed), the stack pointer indicates the lowest address of the stack used by

the calling function. Allocating and setting data at addresses greater than this one is a role of the

calling function. After the called function deallocates the area it has set with data, control returns

to the calling function usually with the RTS instruction. The calling side then deallocates the area

having an address higher than the return value address and the parameter area.

Figure 2-1 Allocation and Deallocation of a Stack Frame

Lower addresses

Higher addresses

After function call and after
control returns from a function

Return value address

Parameter area

SP

0

~~ ~~

34

35

Registers: Some registers change after a function call, while some do not. Table 2-5 shows how

registers change according to the rules.

Table 2-5 Rules on Changes in Registers After a Function Call

Item Registers Used in a Function Notes on Programming

Guaranteed registers R0 – R7 If registers used in a function contain valid data

when a program calls the function, the program

must push the data onto the stack or register

before calling the function.

Non-guaranteed R8 – R15, MACH, MACL, and PR The data in registers used in functions is

pushed onto the stack or register before calling

the function, and popped from the stack or

register only after control returns from the

function.

The following examples show the rules governing register changes.

(a) A subroutine in an assembly program is called by a C program

Assembly program (called program)

C program (calling program)

extern void sub();
f()
{

sub();
}

.EXPORT _sub

.SECTION P,CODE,ALIGN=2
_sub: MOV.L R14,@-R15

MOV.L R13,@-R15
ADD #-8,R15

.

.

.
ADD #8,R15
MOV.L @R15+,R13
RTS
MOV.L @R15+,R14

Data in those registers needed by the called
function is pushed onto the stack.

Function processing
(Since data in registers R0 to R7 is pushed onto a
stack by the calling C program, the assembly
program can use them freely without having to save
them first.)

Register data is popped from the stack.

(b) A subroutine in a C program is called by an assembly program

C program (called program)

Assembly program (calling program)

void sub()
{

.

.

.
}

.IMPORT _sub

.SECTION P,CODE,ALIGN=2
.
.
.

STS.L PR,@-R15

MOV.L R1,@(1,R15)
MOV R3,R12
MOV.L A_sub,R0
JSR @R0
NOP
LDS.L @R15+,PR

.

.

.
A_sub: .DATA.L _sub

The called function is declared by the .IMPORT
control instruction with an underscore character
(_) at the beginning.

Store the PR register (return address storage
register) when calling the function.
If registers R0 and R7 contain valid data,
the data is pushed onto the stack or stored
in unused registers.

The sub function is called.

The PR register is restored.

Address data of the sub function

36

Setting and Referencing Parameters and Return Values: This section explains how to set and

reference parameters and return values. The rules for parameters and return values differ depending

on whether or not the type of each parameter or return value is explicitly declared in the function

declaration. A function prototype declaration is used to explicitly declare the type of each

parameter or return value.

The rest of this section explains the general rules concerning parameters and return values, how the

parameter area is allocated, and how areas are established for return values.

(a) General rules concerning parameters and return values

(i) Passing parameters

A function is called only after parameters have been copied to a parameter area in registers or

on the stack. Since the calling function does not reference the parameter area after control

returns to it, the calling function is not affected even if the called function modifies the

parameters.

(ii) Rules on type conversion

Type conversion may be performed automatically when parameters are transferred or a return

value is returned. This section explains the rules on type conversion.

— Type Conversion of Parameters Whose Types are Declared

Parameters whose types are declared by prototype declaration are converted to the declared

types.

— Type conversion of parameters for which types are not declared

Parameters whose types are not declared by prototype declaration are converted according

to the following rules:

• Parameters whose types are char, unsigned char, short, or unsigned short are converted

to int.

• Parameters whose types are float are converted to double.

• Other parameters are not converted.

— Return value type conversion

A return value is converted to the data type returned by the function.

37

Example:

Note: When parameter types are not declared by a prototype declaration, the correct

specifications must be made by the calling and called functions so that parameters are

correctly transferred. Otherwise, correct operation is not guaranteed.

Example:

Incorrect specification Correct specification

Since the parameter type belonging to function f is not declared by a prototype declaration in the

incorrect specification above, parameter x is converted to double when function main calls function

f. Function f cannot receive the parameter correctly because the parameter type is declared as float

in function f. Use the prototype declaration to declare the parameter type, or make the parameter

declaration double in function f.

The parameter type is declared by a prototype declaration in the correct specification above.

V long f();

long f()
{ float x;

return x;
The return value is converted to long.

}

W void p (int,...);

f()
{ char c;

P (1.0, c);
} c is converted to int because a type is not declared for the

f(x)
float x;
{
.
.
.

}

main()
{

float x;
f(x);

f(float x)
{
.
.
.

}

main()
{

float x;
f(x);

}

38

(b) Parameter area allocation

Parameters are allocated to registers, or when this is impossible, to a stack parameter area.

Figure 2-2 shows the parameter area allocation. Table 2-6 lists the general parameter area

allocation rules.

Figure 2-2 Parameter Area Allocation

Table 2-6 General Rules on Parameter Area Allocation

Return value address

Stack

Parameter
area

Lower
addresses

Parameter storage registers

Parameter area
allocation

SP

R4

R5

R6

R7

39

Allocation Rules

Parameters Allocated to Registers

Parameter

Storage Registers Target Type Parameters Allocated to a Stack

R4 – R7 char, unsigned char, short, V Parameters whose types are other than target

unsigned short,int, types for register passing

unsigned int, long, W Parameters of a function which has been

unsigned long, float, and declared by a prototype declaration to have

pointer variable-number parameters*

X Other parameters are already allocated to R4 –

R7.

Note: * If a function has been declared to have variable-number parameters by a prototype definition,

parameters which do not have a corresponding type in the declaration and the immediately

preceding parameter are allocated to a stack.

Example:

int f2(int,int,int, int,...);

:

f2(a,b,c,x,y,z);

:

(c) Parameter allocation

x, y, and z are allocated to a stack.

40

(i) Allocation to parameter storage registers

Following the order of their declaration in the source program, parameters are allocated to

the parameter storage registers starting with the smallest numbered register. Figure 2-3

shows an example of parameter allocation to registers.

Figure 2-3 Example of Allocation to Parameter Registers

(ii) Allocation to a stack parameter area

Parameters are allocated to the stack parameter area starting from lower addresses, in the

order that they are specified in the source program.

Note: Regardless of the alignment determined by the structure type, structure type or union

type parameters are allocated using 4-byte alignment. Also, the area size for each

parameter must be a multiple of four bytes. This is because the SH stack pointer is

incremented or decremented in 4-byte units.

Refer to appendix B, Parameter Allocation Examples, for examples of parameter allocation.

(d) Return value location

f(char a,int b)
{

:
}

R4

R5

a

b

Sign extension

41

The return value is written to either a register or memory depending on its type. Refer to

table 2-7 for the relationship between the return value type and location.

When a function return value is to be written to memory, the return value is written to the area

indicated by the return value address. The calling side must allocate this return value setting

area in addition to the parameter area, and must set the address of the former in the return value

address area before calling the function. The return value is not written if its type is void.

Table 2-7 Return Value Type and Setting Location

Return Value Type Return Value Location

char, unsigned char, short, unsigned short, R0: 32 bits

int, unsigned int, long, unsigned long, (If the return value type is char or short, perform sign

float, and Pointer extension before setting the return value in R0. If the

return value type is unsigned char or unsigned short,

perform zero extension before setting it in R0.)

double, long double, structure, and union Return value setting area (memory)

Figure 2-4 Return Value Setting Area Used When Return Value Is Written to Memory

Return value
address area

Return value
setting area
(allocated by the
calling side)

Parameter
area

42

Section 3 Extended Specifications

This section describes two C compiler extended specifications: interrupt functions and intrinsic

functions.

3.1 Interrupt Functions

A preprocessor directive (#pragma) specifies an external (hardware) interrupt function. The

following section describes how to create an interrupt function.

Description:

#pragma interrupt (function name [(interrupt specifications)]

[, function name [(interrupt specifications)]...])

Table 3-1 lists interrupt specifications.

Table 3-1 Interrupt Specifications

Item Form Options Specifications

Stack switching sp= <variable> | The address of a new stack is specified with a

&<variable> | variable or a constant.

<constant> <variable>: Variable (object type) value

&<variable>: Variable (pointer type) address

<constant>: Constant value

Trap-instruction tn= <constant> Termination is specified by the TRAPA instruction

return <constant>: Constant value

(trap vector number)

Explanation: #pragma interrupt declares an interrupt function. An interrupt function will

preserve register values before processing (all registers used by the function are pushed onto and

popped from the stack when entering and exiting the function). The RTE instruction directs the

function to return. However, if the trap-instruction return is specified, the TRAPA instruction is

executed at the end of the function. An interrupt function with no specifications is processed in the

usual procedure. The stack switching specification and the trap-instruction return specification can

be specified together.

43

Example:
extern int STK[100];

int *ptr = STK + 100;

#pragma interrupt (f(sp=ptr, tn=10))

V W

Explanation:
V Stack switching specification: ptr is set as the stack pointer used by interrupt

function f.
W Trap-instruction return specification: After the interrupt function has completed its

processing, TRAPA #10 is executed. The SP at the beginning of trap exception
processing shown in the figure below. After the previous PC and SR (status
register) are popped from the stack by the RTE instruction in the trap routine,
control is returned from the interrupt function.

Figure 3-1 Stack Processing by an Interrupt Function

Note the following when using this function.

Table 3-2 Intrinsic Functions (cont)

Just after the interrupt function
has completed processing
(Immediately before the TRAPA
instruction is issued)

Lower addresses

STK[0]

STK[99]

Immediately after interrupt

ptr

Higher addresses

:

SP

During interrupt function
processing

STK[0]

STK[99]

Previous PC

Previous SR

Lower addresses

Higher addresses

Previous PC

Previous SR

Previous PC

Previous SR

SP

:

SP

44

Warnings:

V The storage class specifier of the interrupt function must be extern. Even if storage class

static is specified, the storage class is handled as extern.

The function must return void data. The return statement cannot have a return value. If

attempted, an error is output.

Example:

#pragma interrupt(f1(SP=100),f2)

void f1(SP=100){...} (a)

int f2(){...} (b)

Description:

(a) is declared correctly.

(b) returns data that is not void, thus (b) is declared incorrectly. An error is output.

W A function declared as an interrupt function cannot be called within the program. If

attempted, an error is output. However, if the function is called within a program which

does not declare it to be an interrupt function, an error is not output but correct program

execution cannot be guaranteed.

Example (An interrupt function is declared):

#pragma interrupt(f1)

void f1(void){...}

int f2(){ f1();} (a)

Description: Function f1 cannot be called in the program because it is declared as an

interrupt function. An error is output at (a).

Example (An interrupt function is not declared):

int f2(){ f1();} (b)

Description: Because function f1 is not declared as an interrupt function, an object for

extern int f1(); is generated. If function f1 is declared as an interrupt function

not to be compiled in the same file as f2, correct program execution is not

guaranteed.

45

X A function declared as an interrupt function cannot be referenced in the same file.

Example:

#pragma interrupt(f1)

main(){

void (*a)(void);

a=f1; (a)

}

Description: Since the address of interrupt function f1 cannot be referenced at (a), an error

is output.

If an interrupt function is referenced to set, for example, a vector table, it must not be

declared as an interrupt function in the same file.

Examples:

#pragma interrupt(f1) extern void f1(void); (b)

. main()

. {

void f1(void)

{ void (*a)(void);

. a=f1;

.

} }

File with an interrupt function definition File referencing an interrupt function

Description: To reference the address of interrupt function f1 at (b), f1 is not declared as an

interrupt function.

46

3.2 Intrinsic Functions

In this C compiler, system control instructions of the SH microcomputer can be written in C as

intrinsic functions. The following describes the intrinsic functions provided.

Intrinsic Functions: The following functions can be specified by intrinsic functions.

V Setting and referencing the status register

W Setting and referencing the vector base register

X I/O functions using the global base register

Y System instructions which do not compete with register sources in C

Description: #include <machine.h> must be specified when using intrinsic functions.

Intrinsic Function Specifications: Table 3-2 lists intrinsic functions.

Table 3-2 Intrinsic Functions

Item Function Specification Description

Status Setting the status void set_cr(int cr) Sets cr (32 bits) in the status

register register register

Referencing the int get_cr(void) References the status register

status register

Setting the interrupt void set_imask(int mask) Sets mask (4 bits) in the interrupt

mask mask (4 bits)

Referencing the int get_imask(void) References the interrupt mask

interrupt mask (4 bits)

Vector Setting the vector void set_vbr(void **base) Sets **base (32 bits) in VBR

base base register

register Referencing the int **get_vbr(void) References VBR

(VBR) vector base register

Global Setting GBR void set_gbr(void *base) Sets *base (32 bits) in GBR

base Referencing GBR void *get_gbr(void) References GBR

register Referencing GBR- unsigned char References byte data (8 bits) at

(GBR) based byte gbr_read_byte(int offset) the address indicated by adding

GBR and the offset specified

Referencing GBR- unsigned word References word data (16 bits) at

based word gbr_read_word(int offset) the address indicated by adding

GBR and the offset specified

47

Item Function Specification Description

Global Referencing GBR- unsigned long References long word data (32

base based long word gbr_read_long(int offset) bits) at the address indicated by

register adding GBR and the offset specified

(GBR) Setting GBR-based void gbr_write_byte(Sets data (8bits) at the address

(cont) byte int offset, unsigned char data) indicated by adding GBR and the

offset specified

Setting GBR-based void gbr_write_word(Sets data (16 bits) at the address

word int offset, unsigned short data)indicated by adding GBR and the

offset specified

Setting GBR-based void gbr_write_word(Sets data (32 bits) at the address

long word int offset, unsigned long data) indicated by adding GBR and the

offset specified

AND of GBR base void gbr_and_byte(ANDs mask with the byte data at

int offset, unsigned char mask) the address indicated by adding

GBR and the offset specified, and

then stores the result at the same

address

OR of GBR base void gbr_or_byte(ORs mask with the byte data at the

int offset, unsigned char mask) address indicated by adding GBR

and the offset specified, and then

stores the result at the same

address

XOR of GBR base void gbr_xor_byte(XORs mask with the byte data at the

int offset, unsigned char mask) address indicated by adding GBR

and the offset specified, and then

stores the result at the same

address

TEST of GBR base void gbr_tst_byte(Checks if the byte data at the offset

int offset, unsigned char mask) from GBR is 0 or not, and sets the

result in the T bit

Special SLEEP instruction void sleep(void) Executes the SLEEP instruction

instruc- TAS instruction void tas(char *addr) Executes TAS.B @addr

tions TRAPA instruction int trapa(int trap_no) Executes TRAPA #trap_no

48

Warnings: The offsets and masks shown in table 3-2, Intrinsic Functions, must be constants. Also,

the specification range for offsets is +255 bytes when the access size is shown in bytes, +510 bytes

when the access size is shown as a word, and +1020 bytes when the access size is shown as a long

word. Masks which can be specified for performing logical operations (AND, OR, XOR, or TEST)

on a location relative to GBR (global base register) must be within the range of 0 to +255. As GBR

is a control register whose contents are not preserved by all functions in this C compiler, take care

when changing GBR settings.

Example:

#include <machine.h>

#define CDATA1 0

#define CDATA2 1

#define CDATA3 2

#define SDATA1 4

#define IDATA1 8

#define IDATA2 12

struct{

char cdata1; /* offset 0*/

char cdata2; /* offset 1*/

char cdata3; /* offset 2*/

char sdata1; /* offset 4*/

char idata1; /* offset 8*/

char idata2; /* offset 12*/

}table;

void f()

{

set_gbr(&table); /* Set the start address of table to GBR */

:

gbr_write_byte(CDATA2, 10); /* Set 10 to table.cdata2. */

gbr_write_long(IDATA2, 100); /* Set 100 to table.idata2. */

:

if(gbr_read_byte(CDATA2) != 10) /* Reference table.cdata2. */

gbr_and_byte(CDATA2, 10); /* AND 10 and table.cdata2, and set it */

: /* to table.cdata2. */

gbr_or_byte(CDATA2, 0x0F); /* OR H'0F and table.cdata2, and set it */

: /* to table.cdata2. */

sleep(); /* Expanded to the sleep instruction */

}

49

Effective use of intrinsic functions:

V Set the start address of a structure which is allocated to memory and frequently accessed

in GBR and access its members by gbr_read_byte, gbr_write_byte, etc.

W In the case of V, byte data frequently used in logical operations should be declared

within 128 bytes from the start address of the structure.

50

Section 4 Notes on Programming

This section contains notes on coding programs for the C compiler and on troubleshooting when

compiling or debugging programs.

4.1 Coding Notes

Functions with float Parameters: For a function that declares float for parameters, either a

prototype must be declared or parameters must be declared as double. Correct processing is not

guaranteed if a function that has float parameters is called without a prototype declaration.

Example:

void f(float);V

g()
{

float a;
f(a);

}

void
f(float x)
{

}

Since function f has a float parameter, a prototype must be declared as shown at V.

Program Whose Evaluation Order is Not Regulated: The effect of the execution is not

guaranteed in a program whose execution results differ depending on the evaluation order.

Example:

a[i]=a[++i];.... The value of i on the left side differs depending on whether the right side of
the assignment expression is evaluated first.

sub(++i, i);.... The value of i for the second parameter differs depending on whether the
first function parameter is evaluated first.

51

Overflow Operation and Zero Division: At run time if overflow operation or zero division is

performed, error messages will not be output. However, if an overflow operation or zero division is

included in the operations for one or more constants, error messages will be output at compilation.

Example:

Assignment to const Variables: Even if a variable is declared with const attribute, if assignment

main()
{

int ia;
int ib;
float fa;
float fb;

ib=32767;
fb=3.4e+38f;

/* Compilation error messages are output when an overflow operation and */
/* zero division are included in operations for one or more constants. */

ia=99999999999; /* (W) Detect integer constant overflow. */
fa=3.5e+40f; /* (W) Detect floating pointing constant overflow. */
ia=1/0; /* (E) Detect division by zero. */
fa=1.0/0.0; /* (W) Detect division by floating point zero. */

/* No error message on overflow at execution is output. */

ib=ib+32767; /* Ignore integer constant overflow. */
fb=fb+3.4e+38f; /* Ignore floating point constant overflow. */

}

52

is done to a variable other than const converted from const attribute or if a program compiled

separately uses a parameter of a different type, the C compiler cannot detect the error.

Example:

V const char *p; /* Because the first parameter p in library*/

. /* function strcat is a pointer for char, */

. /* the area indicated by the parameter p */

strcat(p, "abc") /* may change. */

W file 1

const int i;

file 2

extern int i; /* In file 2, parameter i is not declared as */

: /* const, therefore assignment to it in file 2 */

i=10; /* is not an error. */

4.2 Notes on Programming Development

53

Table 4-1 shows troubleshootings for developing programs at compilation or when debugging.

Table 4-1 Troubleshooting

Trouble Check Points Solution References

Error 314, cannot The section name which is Specify the correct Part II, Programming,

found section, is output by the C compiler must section name. 2.1

output at linkage be specified in capitals in start

option of linkage editor.

Error 105, undefined If identifiers are mutually Reference parameters Part II, Programming,

external symbol, is referenced by a C program with the correct para- 2.3.1

output at linkage and an assembly program, an meters.

underscore must be attached to

the symbol in the assembly

program.

Check if the C program uses a Specify a standard Standard library specifi-

library function. library as the input cation: Part II, Progra-

library at linkage. mming, 4.2.1 (3)

An undefined reference symbol Execution routine in a

identifier must not start with a _ _ standard library: Part III,

(A run time routine in a standard System Installation,

library must be used.) 2.1 (2)

Check if a standard I/O library Create low level Part III, System Installa-

function is used in the C interface routines for tion, 4. (6)

program. linking.

Debugging at the C debug option must be specified Specify debug option Part I, Overview and

source level cannot at both compilation and linkage. at both compilation and Operation, 3.3

be performed linkage.

A linkage editor of Ver.5.0 or Use a linkage editor of

higher must be used. Ver.5.0 or higher.

54

PART III

SYSTEM INSTALLATION

Section 1 Overview

Part III describes how to install object programs generated by the C compiler on a SH system.

Before installation, memory allocation and execution environment for the object program must be

specified.

• Memory allocation

Stack area, heap area, each section of a C-compiler-generated object program must be

allocated in ROM or RAM on a SH system.

• Execution environment setting for a C-compiler-generated object program

The execution environment can be specified by the register initialization processing, memory

area initialization, and C program initiation processing. These must be written by assembly

language.

If C library functions for I/O are used, library must be initialized according to the execution

environment specification. Specifically, if I/O function (

stdio.h) and memory allocation

function (stdlib.h) are used, the user must create low-level I/O routines and memory allocation

routines appropriate to the user system.

Section 2 describes how to allocate C programs in memory area and how to specify linkage editor's

commands that actually allocate a program in memory area, using examples.

Section 3 describes items to be specified in execution environment setting and execution

environment specification programs.

Section 4 describes how to create C-library function initialization and low-level routines.

57

Section 2 Allocating Memory Areas

To install an object program generated by the C compiler on a system, the size of each memory area

must be determined, then the areas must be appropriately allocated in memory.

Some memory areas, such as the area used to store machine code and the area used to store data

declared using external definitions, are allocated statically. Other memory areas, such as the stack

area, are allocated dynamically.

This section describes how the size of each area is determined and how to allocate an area in

memory.

2.1 Static Area Allocation

2.1.1 Data to be Allocated in Static Area

Sections of object programs such as program area, constant area, initialized data area, and non-

initialized data area are allocated to the static area.

2.1.2 Static Area Size Calculation

The static area size is calculated by adding the size of C-compiler-generated object program and

that of library functions used by the C program. After object program linkage, the static area size

can be determined from each section size including library size output on a linkage map listing.

Before object program linkage, the static area size can be approximately determined from the

section size information on a compile listing. Figure 2-1 shows an example of section size

information.

Figure 2-1 Section Size Information

* * * * * * *

SECTION SIZE INFORMATION * * * * * * *

PROGRAM SECTION(P): 0x00004A Byte(s)
CONSTANT SECTION(C): 0x000018 Byte(s)
DATA SECTION(D): 0x000004 Byte(s)
BSS SECTION(B): 0x000004 Byte(s)

TOTAL PROGRAM SIZE: 0x00006A Byte(s)

58

If the standard library is not used, the static area size can be calculated by adding memory area size
used by sections to the size shown in section size information. However, if the standard library is
used, the memory area used by the library functions must be added to the the memory area size of
each section. The standard library includes C library functions based on C language specifications
and arithmetic routines required for C program execution. Accordingly, the standard library must
be linked even if library functions are not used in the C source program.

For details on memory area size used by the standard library functions, refer to the attached
Standard Library Memory Stack Size Listing. The following example shows how to calculate static
area size based on the section size information shown in figure 2-1.

Calculation Example

<ctype.h>

1. isalnum function of <ctype.h> is used

Add 32 bytes to section P and 256 bytes to section C.

2. isalnum and isalpha functions of <ctype.h> are used

When a library function is used by multiple functions, memory size required for the library
need not to be duplicated. The following table shows memory size example, when library
function _ctype is used by multiple functions.

Function Low- Memory Size (Bytes) Stack Size

Name Level Routine Library *1 Section P Section B Section C Section D (Bytes)

isalnum None isalnum, 32 0 256 0 16

_ctype

isalpha None isalpha, 32 0 256 0 16

_ctype

Note: *1. Library functions required for linkage. The library functions include those used by the C program

and the library function itself.

Size (Bytes)

Section Name C Program Library Total

P 74 32 106

B 24 0 24

C 4 256 260

D 4 0 4

<Library common routine>

Memory Size (Bytes)

Section Name Section P Section B Section C Section D

_ctype 0 0 256 0

59

Each section size is calculated by the following formula:
Note: *1. Section size = C program + Library 1 + Library 2 – Duplicated library

(isalnum) (isalpha) (_ctype)

Note: The standard library supplied by the C compiler includes C library functions (based on C
language specification), and arithmetic routines (required for C program execution). The
size required for run time routines must also be added to the memory area size in the same
way as C library functions.

Run time routine names used by the C programs are output as external symbols in
theassembly programs generated by the C compiler (option code = asmcode). The user
can see the run time routine names used in the C programs through the assembly program
listing.

The following shows the example of C program and assembly program listings.

An external reference definition (.IMPORT) beginning with __ indicates a
run time routine. In the above example, __divls is a run time routine used in the C
program.

Size (Byte)

Section Name C Program Library 1 Library 2 Duplicated Library Total *1

P 74 32 32 0 138

B 24 0 0 0 24

C 4 256 256 256 260

D 4 0 0 0 4

 C program

 f(int a, int b)
 {
 a /= b;
 return a;
 }

 Assembly program output by the C compiler

.IMPORT __divls ; An external reference definition for the run time routine
 .EXPORT _f
 .SECTION P,CODE,ALIGN=4
_f:
 MOV R5, R1
 MOV.L A_divls, R2
 JSR @R2
 MOV R4, R0
 RTS
 NOP
A_divls: DATA.L __divls
 .END

60

2.1.3 ROM and RAM Allocation

When allocating a program to memory, static areas must be allocated to either ROM and RAM as

shown below.

Program area (section P): ROM

Constant area (section C): ROM

Non-initialized data area (section B): RAM

Initialized data area (section D): ROM, RAM (for details, refer to the following section)

2.1.4 Initialized Data Area Allocation

The initialized data area contains data with initial value. Since the C language specifications allow

the user to modify initialized data in programs, the initialized data area is allocated to ROM and is

copied to RAM before program execution. Therefore, the initialized data area must be allocated in

both ROM and RAM.

However, if the initialized data area contains only static variables that are not modified during

program execution, only a ROM area needs to be allocated.

2.1.5 Example: Memory Area Allocation and Address Specification at Program Linkage

Each program section must be addressed by the option or subcommand of the linkage editor when

the absolute load module is created, as described below.

Figure 2-2 shows an example of allocating static areas.

61

Figure 2-2 Static Area Allocation

Specify the following subcommands when allocating the static area as shown in figure 2-2.

:

ROM

∆(D,R) ----------------

➀

START∆P,C,D(400),R,B(9000000)--------➁

:

Description:
➀ Define section R having the same size as section D, in the output load module. To reference the

symbol allocated to section D, copy the contents of section D to section R and reference to the

symbol in section R. Sections D and R are allocated to initialized data section in ROM and

RAM, respectively.

➁ Allocate sections P, C, and D to internal ROM starting from address 0x400 and allocate sections

R and B to RAM starting from address 0x9000000.

Interrupt vector
area

Program area
(section P)

Noninitialized data area
(section B)

Dynamic area

Internal ROM

Internal RAM

Initialized data area
(section D)

Constant area
(section C)

Initialized data area
(section R)

RAM

P, C, D, B:

R:

Default section name generated
by the C compiler

Section name specified by theROM
option of the linkage editor

0x0000000

0x0000400

0x9000000

0xFFFF800

0xFFFFFFF

62

2.2 Dynamic Area Allocation

2.2.1 Dynamic Areas

Two types of dynamic areas are used:

➀ Stack area

➁ Heap area (used by the memory allocation library functions)

2.2.2 Dynamic Area Size Calculation

Stack Area: The stack area used in C programs is allocated each time a function is called and is

deallocated each time a function is returned. The total stack area size is calculated based on the

stack size used by each function and the nesting of function calls.

• Stack area used by each function

The size of stack used by each function can be determined from the object list (frame size)

output by the C compiler. However, note that this does not account for the size of parameters

to be pushed onto the stack when a function is called. Accordingly, the parameter size must be

added to stack area size.

The following example shows the object list, stack allocation, and stack size calculation method.

Example:

The following shows the object list and stack size calculation in a C program.

extern int h(char, int *, double);
int
h(char a, register int *b, double c)
{

char *d;

d= &a;
h(*d,b,c);
{

register int i;

i= *d;
return i;

}
}

63

The size of stack used by a function is determined by adding frame size and parameter area size
(for stack parameter). Accordingly, in the above example, the stack size used by the function is
calculated as follows: 20 (➀) + 8 (➁) = 28 bytes
For details on the size of parameters to be pushed onto the stack, refer to the description of
parameter and return value setting and referencing in section 2.3.2 of Part II.

b

R4

R5

a

c

Upper addresses

Lower addresses

0

Frame
size
➀

Stack
frame

Parameter
area
(For stack
parameter)
➁ (8 bytes)

Area used in a
function

Stack

28

20

R15 (SP)

************ OBJECT LISTING ************

FILE NAME: m0251.c

SCT OFFSET CODE C LABEL INSTRUCTION OPERAND COMMENT

P

00000000 _h: ; function: h

; frame size=20

00000000 2FE6 MOV.L R14,@-R15 ➀

00000002 2FD6 MOV.L R13,@-R15

:

64

• Stack size calculation

The following example shows a stack size calculation depending on the function call
nesting.

Example:

Figure 2-3 illustrates the function call nestings and stack size.

Figure 2-3 Nested Function Calls and Stack Size

If funtion g is called via function f, stack area size is calculated according to the formula
listed in table 2-1.

Table 2-1 Stack Size Calculation Example

As can be seen from table 2-1, the maximum size of stack area required for the longest function

calling route should be determined (80 bytes in this example) and this size of memory should be

allocated in RAM.

When using standard library functions, the stack frame sizes for library functions must also be

accounted for. Refer to the Standard Library Memory Stack Size Listing, included with the

C compiler package.

Note: If recursive calls are used in the C source program, first determine the stack area required

for a recursive call, and then multiply with the maximum number of recursive calls.

main ()

f ()

g ()

Function Name Stack Size (Bytes)

main 24

f

g

32

24

Function Calling Route Total Stack Size

main (24) —> f(32) —> g(24) 80 bytes (Maximum size of stack area)

main (24) —> g(24) 48 bytes

65

Heap Area: The total heap area required is equal to the sum of the areas to be allocated by

memory management library functions (calloc, malloc, or realloc) in the C program. An

additional 4 bytes must be summed because a 4-byte management area is used every time a

memory management library function allocates an area.

An input/output library function uses memory management library functions for internal

processing. The size of the area allocated in an input/output is determined by the following

formula: 516 bytes x (maximum number of simultaneously open files)

Note: Areas released by the free function, a memory management library function, can

be reused. However, since these areas are often fragmented (separated from one

another), a request to allocate a new area may be rejected even if the net size of the

free areas is sufficient. To prevent this, take note of the following:

➀ If possible, allocate the largest area first after program execution is started.

➁ If possible, specify data area size to be reused as a constant.

2.2.3 Rules for Allocating Dynamic Area

The dynamic area is allocated to RAM. The stack area is determined by specifying the highest

address of the stack to the vector table, and refer to it as SP (stack pointer). The heap area is

determined by the initial specification in the low-level interface routine (sbrk). For details on stack

and heap areas, refer to section 3.1, Vector Table Setting (VEC_TBL), and section 4.6, Creating

Low-Level Interface Routine, respectively.

66

Section 3 Setting the Execution Environment

This section describes the environment required for C program execution. A C-program
environment specification program must be created according to the system specification because
the C program execution environment differs depending on the user systems. In this section, basic
C program execution specification, where no C library function is used, is described as an example.
Refer to section 4, Setting C Library Function Execution Environment, for details on using C
library functions.

Figure 3-1 shows an example of program configuration.

Figure 3-1 Program Configuration (No C Library Function is Used)

Each routine is described below.

➀ Vector table setting (VEC_TBL)

Sets vector table so as to initiate register initialization program _ _INIT and set the stack
pointer (SP) by power-on reset.

➁ Initialization (_ _INIT)

Initializes registers and sequentially calls initialization routines.

➂ Section initialization (_ _INITSCT)

Clears the non-initialized data area with zeros and copies the initialized data area in ROM to
RAM.

How to create the above routines are described as follows.

: Required routine

: Required table

Power-on
reset

_ _INIT VEC_TBL

_ _INITSCT User program

➀➁

➂

67

3.1 Vector Table Setting (VEC_TBL)

To call register initialization routine _ _INIT at power-on reset, specify the start address of function
_ _INIT at address 0 in the vector table. Also to specify the SP, specify the highest address of the
stack to address H'4. When the user system executes interrupt handlings, interrupt vector settings
are also performed in the VEC_TBL routine. The coding example of VEC_TBL is shown below.

Example:

.SECTION VECT,DATA, LOCATE=H'0000

; Assigns section VECT to address H'0 by the section directive.

.IMPORT _ _INIT

.IMPORT _IRQ0

.DATA.L _ _INIT ; Assigns the start address of INIT to addresses H'0x0 to H'0x3.

.DATA.L (a) ; Assigns the SP to addresses H'0x4 to H'0x7.

; (a): The highest address of the stack

.ORG H'00000100

.DATA.L _IRQ0 ; Assigns the start address of IRQ0 to addresses H'0x100 to

.END H'0x103.

68

3.2 Initialization (_ _INIT)

_ _INIT initializes registers, calls initialization routine sequentially, and then calls main function.
The coding example of this routine is shown below.

Example:

/* Calls section initialization routine __INITSCT. */

/* Calls main routine _main. */

/* Branches to endless loop after executing main */

/* function and waits for reset. */

extern void _INITSCT(void);
extern void main(void);

void _INIT()
{
 _INITSCT();
 main();
 for(; ;)
 ;
}

69

3.3 Section Initialization (_ _INITSCT)

To set the C program execution environment, clear the non-initialized data area with zeros and copy

the initialized data area in ROM to RAM. To execute the _ _INITSCT function, the following

addresses must be known.

• Start address (1) of initialized data area in ROM.

• Start address (2) and end address (3) of initilalized data area in RAM

• Start address (4) and end address (5) of non-initialized data area

Interrupt
vector

Program area
(section P)

Non-initialized data area
(section B)

Dynamic area

ROM

Initialized data area
(section D)

Constant area
(section C)

Initialized data area
(section R)

RAM

0

(1)

(2)

(3)

(4)

(5)

70

To obtain the above addresses, create the following assembly programs and link them together.

Notes: V Section names B and D must be the non-initialized data area and initialized data area

section names specified with the compiler option section.

W Section name R must be the section name in RAM area specified with the ROM

option at linkage.

 .SECTION D,DATA,ALIGN=4
 .SECTION R,DATA,ALIGN=4

 .SECTION B,DATA,ALIGN=4
 .SECTION C,DATA,ALIGN=4

_ _D_ROM .DATA.L (STARTOF D) ; start address of section D (1)
_ _D_BGN .DATA.L (STARTOF R) ; start address of section R (2)
_ _D_END .DATA.L (STARTOF R) + (SIZEOF R) ; end address of section R (3)
_ _B_BGN .DATA.L (STARTOF B) ; start address of section B (4)
_ _B_END .DATA.L (STARTOF B) + (SIZEOF B) ; end address of section B (5)

 .EXPORT _ _D_ROM
 .EXPORT _ _D_BGN
 .EXPORT _ _D_END
 .EXPORT _ _B_BGN
 .EXPORT _ _B_END
 .END

71

If the above preparation is completed, section initialization routine can be written in C as shown

below.

Example:

 extern int *_D_ROM, *_B_BGN, *_B_END, *_D_BGN, *_D_END;
 extern void _INITSCT();

 void _INITSCT()
 {

 short *p, *q ;

 /* Non-initialized area is initialized to zeros */

 for (p=_B_BGN ; p<=_B_END ; p++)
 *p=0 ;

 /* Initialized data is copied from ROM to RAM */

 for (p=_D_BGN , q=_D_ROM ; p<=_D_END ; p++, q++)
 *p=*q ;
 }

72

Section 4 Setting the C Library Function
Execution Environment

To use C library functions, they must be initialized to set C program execution environment. To use
I/O (

stdio.h) and memory management (stdlib.h) functions, low-level I/O and memory allocation
routines must be created for each system.

This section describes how to set C program execution environment when C library functions are
used.

Figure 4-1 shows a program configuration when C library functions are used.

Power-on
reset

_ _INIT VEC_TBL

_ _INITLIB User program

Standard library

(2) (1)

(3) (4) (5)

(6)

: Table always required

: Routine always required

: Routine required when library is used.

: Supplied by the C compiler

_ _INITSCT _ _CLOSEALL

Low-level
interface

73

Each routine required to execute library functions as follows.

(1) Setting vector table (VEC_TBL)

Sets vector table to initiate register initialization program (_ _INIT) and set the stack pointer
(SP) at power-on reset.

(2) Initializing registers (_ _INIT)

Initializes registers and sequentially calls the initialization routines.

(3) Initializing sections (_ _INITSCT)

Clears non-initialized dasta area with zeros and copies the initialized data area in ROM to
RAM. This routine is supplied as a standard library function.

(4) Initializing C library functions (_ _INITLIB)

Initializes C library functions required to be initialized and prepares standard I/O functions.

(5) Closing files (_ _CLOSEALL)

Closes all files with open status.

(6) Low-level interface routine

Interfaces library functions and user system when standard I/O and memory management
library functions are used.

Creation of the above routines is described below.

Note: When using the C library functions that terminates program execution such as exit, onexit,
or abort, the C library function must be created according to the user system. For details,
refer to addpendix D, Termination Processing Function Example.

In addition, when using C library function assert macro, the abort function must be
supplied.

4.1 Setting Vector Table (VEC_TBL)

Same as when no C library function is used. For details, refer to section 3, Setting the Execution
Environment.

74

4.2 Initializing Registers (_ _INIT)

Initializes registers and sequentially calls the initialization routine _ _INITLIB and file closing
routine _ _CLOSEALL. The coding example of _ _INIT is shown below.

extern void _INITSECT(void);
extern void _INITLIB(void);
extern void _CLOSEALL(void);
extern void main(void);

void _INIT(void)
{
 _INITSCT(); /* Calls section initialization routine _ _INITSCT. */

 _INITLIB(); /* Calls library initialization routine _ _INITLIB. */

 main(); /* Calls C program main function. */

 _CLOSEALL(); /* Calls file close routine _ _CLOSEALL. */

 for(; ;) /* Branches to endless loop after executing main */

 ; /* function and waits for reset. */

}

75

4.3 Initializing Sections (_ _INITSCT)

Same as when the C library functions are not used. For details, refer to section 3, Setting Execution
Environment.

4.4 Initializing C Library Functions (_ _INITLIB)

Initialization must be performed for related C library functions before being used. The following
description assumes the case when the initialization is performed in _ _INITLIB in the program
initiation routine.

To perform initialization, the following must be considered.

(1) errno indicating the library error status must be initialized for all library functions.

(2) When using each function of <stdio.h> and assert macro, standard I/O library function must
be initialized.

(3) The user low-level interface routine must be initialized according to the user low-level
initialization routine specification if required.

(4) When using the rand and strtok functions, library functions other than I/O must be initialized.

Library function initialization program example is shown below.

Example:

The following shows examples of initialization routine (_INIT_IOLIB) for standard I/O library
function and initialization routine (_INIT_OTHERLIB) for other standard library function.
Initialization routine (_INIT_LOWLEVEL) for low-level interface routine must be created

#include <stdlib.h>

extern void _INIT_LOWLEVEL(void) ;
extern void _INIT_IOLIB(void) ;
extern void _INIT_OTHERLIB(void) ;

void _INITLIB(void) /*Deletes an underline from symbol name used in the assembly routine*/
{
 errno=0; /*Initializes library functions commonly*/

 _INIT_LOWLEVEL() ; /*Calls low-level interface initialization routine*/
 _INIT_IOLIB() ; /*Calls standard I/O initialization routine*/
 _INIT_OTHERLIB() ; /*Calls initialization routine other than that for standard I/O*/
}

76

according to the user low-level interface routine's specifications.

#include <stdio.h>

void _INIT_IOLIB(void)
{
 FILE *fp ;

 /*Initializes FILE-type data*/

 for (fp=_iob; fp<_iob+_NFILE; fp++){
 fp -> _bufptr=NULL ; /*Clears buffer pointer */
 fp -> _bufcnt=0 ; /*Clears buffer counter */
 fp -> _buflen=0 ; /*Clears buffer length */
 fp -> _bufbase=NULL ; /*Clears base pointer */
 fp -> _ioflag1=0 ; /*Clears I/O flag */
 fp -> _ioflag2=0 ;
 fp -> _iofd=0 ;
 }

 /*Opens standard I/O file */

 *1
 if (freopen("stdin" , "r", stdin)==NULL) /*Opens standard input file */
 stdin->_ioflag1=0xff ; /*Disables file access *2 */
 stdin->_ioflag1 |= _IOUNBUF ; /*No data buffering *3 */
 *1
 if (freopen("stdout" , "w", stdout)==NULL)/*Opens standard output file*/
 stdout-> _ioflag1=0xff ;
 stdout->_ioflag1 |= _IOUNBUF ;
 *1
 if (freopen("stderr", "w", stderr)==NULL) /*Opens standard error file */
 stderr-> _ioflag1=0xff ;
 stderr->_ioflag1 |= _IOUNBUF ;
 }

77

4.4.1 Creating Initialization Routine (_INIT_IOLIB) for Standard I/O Library Function

The initialization routine for standard I/O library function initializes FILE-type data used to
reference files and open the standard I/O files. The initialization must be performed before
opening the standard I/O files.

The following shows an example of _INIT_IOLIB.

Example:

Notes: *1.Standard I/O file names are specified. These names are used by the low-level interface
routine open.

*2.If file could not be opened, the file access disable flag is set.
*3.For equipment that can be used in interactive mode such as console, the buffering

disable flag is set.

Figure 4-2 FILE-Type Data

4.4.2 Creating Initialization Routine (_INIT_OTHERLIB) for Other Library Function

 /*Declares FILE-type data in the C language*/

 #define _NFILE 20
 struct _iobuf{
 unsigned char *_bufptr; /*Buffer pointer */
 long _bufcnt; /*Buffer counter */
 unsigned char *_bufbase; /*Buffer base pointer */
 long _buflen; /*Buffer length */
 char _ioflag1; /*I/O flag */
 char _ioflag2; /*I/O flag */
 char _iofd; /*I/O flag */
 }_iob[_NFILE];

#include <stddef.h>

extern char *_s1ptr ;
extern void srand(unsigned int) ;

void _INIT_OTHERLIB(void)
{

 srand(1) ; /*Sets initial value when rand function is used*/
 _s1ptr=NULL ; /*Initializes the pointer used in the strtok function*/
}

78

Figure 4-1 Program Configuration When C Library Function Is Used
4.5 Closing Files (_ _CLOSEALL)

When a program ends normally, all open files must be closed. Usually, the data destined for a file
is stored in a memory buffer. When the buffer becomes full, data is output to an external storage
device. Therefore, if the files are not closed, data remaining in buffers is not output to external
storage devices and may be lost.

When an program is installed in a device, the program is not terminated normally. However, if the
main function is terminated by a program error, all open files must be closed.

The following shows an example of _ _CLOSEALL.

Example:

#include <stdio.h>

void _CLOSEALL(void) /*Deletes an underline from symbol name in assembly routine*/

{

 int i;

 for (i=0; i<_NFILE; i++)

 /*Checks that file is open*/

 if(_iob[i]._ioflag1 & (_IOREAD|_IOWRITE|_IORW))

 /*Closes opened files*/

 fclose(&_iob[i]) ;
}

79

4.6 Creating Low-Level Interface Routines

Low-level interface routines must be supplied for C programs that use the standard input/output or

memory management library functions. Table 4-1 shows the low-level interface routines used by

standard library functions.

Table 4-1 Low-Level Interface Routines

Refer to the attached Standard Library Memory Stack Size Listing for details on low-level interface

routines required for each C library function.

Initialization of low-level interface routines must be performed when the program is started. For

more information, see the explanation concerning the _INIT_LOWLEVEL function in

section 4.4, Initializing C Library Functions (_ _INITLIB).

The rest of this section explains the basic concept of low-level input and output, and gives the

specifications for each interface routine. Refer to appendix E, Examples of Low-Level Interface

Routines, for details on the low-level interface routines that run on the SH-series simulator

debugger.

Note: The open, close, read, write, lseek, and sbrk are reserved words for low-level interface

routines. Do not use these words in C programs.

(1) Concept of I/O Operations

Standard input/output library functions manage files using the FILE-type data. Low-level

interface routines manage files using file numbers (positive integers) which correspond directly

to actual files.

No. Name Explanation

1 open Opens files

2 close Closes files

3 read Reads data from a file

4 write Writes data to a file

5 lseek Sets the file read/write address for data

6 sbrk Allocates a memory area

80

The open routine returns a file number for a given file name. The open routine must determine

the following, so that other functions can access information about a file using the file number:

➀ File device type (console, printer, disk, etc.)

(For a special device such as a console or printer file, the user chooses a specific file name

that can be recognized uniquely by the open routine.)

➁ Information such as the size and address of the buffer used for the file

➂ For a disk file, the offset (in bytes) from the beginning of the file to the next read/write

position.

The start position for read/write operations is determined by the lseek routine according to the

information determined by the open routine.

If buffers are used, the close routine outputs the contents to their corresponding files. This

allows the areas of memory allocated by the open routine to be reused.

(2) Low-Level Interface Routine Specifications

This section explains the specifications for creating low-level interface routines, gives examples

of actual interfaces and explains their operations, and notes on implementation.

The interface for each routine is shown using the format below.

Create each interface routine by assuming that the prototype declaration is made.

Example:

(Routine name)

Purpose (Purpose of the routine)

Interface (Shows the interface as a C function declaration)

Parameters No. Name Type Meaning

1 (Parameter name) (Parameter (Meaning of the parameter)

type)
• • • •
• • • •
• • • •

Return value Type (Type of return value)

Normal (Return value for normal termination)

Abnormal (Return value for abnormal termination)

81

Explanation:

The open routine opens the file specified by the first parameter (file name) and returns a file

number. The open routine must determine the file device type (console, printer, disk, etc.) and

assign this information to the file number. The file type is referenced using the file number each

time a read/write operation is performed.

The second parameter (mode) gives processing specifications for the file. The effect of each bit of

this parameter is explained below:

➀ O_RDONLY (bit 0)

If this bit is 1, the file becomes read only.

➁ O_WRONLY (bit 1)

If this bit is 1, the file becomes write only.

➂ O_RDWR (bit 2)

If this bit is 1, the file becomes read/write.

(a) open routine

Purpose Opens a file

Interface int open (char *name,

int mode);

Parameters No. Name Type Meaning

1 name Pointer String literal indicating a file name

to char

2 mode int Processing specification

Return value Type int

Normal File number of the file opened

Abnormal

−1

5 4 3 2 1 015

O_RDONLY

mode

O_WRONLY
O_RDWR
O_CREAT
O_TRUNC
O_APPEND

82

➃ O_CREAT (bit 3)

If this bit is 1 and the file indicated by the file name does not exist, a new file is created.

➄ O_TRUNC (bit 4)

If this bit is 1 and the file indicated by the file name exists, the file contents are discarded and

the file size is set to zero.

➅ O_APPEND (bit 5)

If this bit is 1, the read/write position is set to the end of the file. If this bit is 0, the read/write

position is set to the beginning of the file.

An error is assumed if the file processing specifications contradict with the actual characteristics of

the file.

The open routine returns a file number (positive integer) which can be used by the read, write,

lseek, and close routines, provided the file opens normally. The relationship between file numbers

and actual files must be managed by the low-level interface routines. The open routine returns a

value of –1 if the file fails to open properly.

83

Explanation:

The file number, determined by the open routine, is given as the parameter.

The area of memory allocated by the open routine for file management information is freed, so that

it can be reused. If buffers are used, the contents are output to their corresponding files.

Zero is returned if the file closes normally. Otherwise, –1 is returned.

(b) close routine

Purpose Closes a file

Interface int close(int fileno);

Parameters No. Name Type Meaning

1 fileno int File number of the file to be closed

Return value Type int

Normal 0

Abnormal –1

84

Explanation:

The read routine loads data from the file indicated by the first parameter (fileno) into the area

indicated by the second parameter (buf). The amount of data to be read is indicated by the third

parameter (count).

If an end of file is encountered during a read, less than the specified number of bytes are read.

The file read/write position is updated using the byte length of the data actually read.

If data is read normally, the routine returns the number of bytes of the data read. Otherwise, the

read routine returns a value of –1.

(c) read routine

Purpose Reads data from a file

Interface int read (int fileno,

char *buf,

unsigned int count);

Parameters No. Name Type Meaning

1 fileno int File number of the file to be read

2 buf Pointer to Area to be used to store the read data

char

3 count unsigned Byte length of data to be read

int

Return value Type int

Normal Byte length of the data actually read

Abnormal −1

85

Explanation:

The write routine outputs data, whose byte length is indicated by the third parameter (count), from

the area indicated by the second parameter (buf) into the file indicated by the first parameter

(fileno).

If the device (such as a disk) where a file is stored becomes full, data less than the specified byte

length is written to the file. If zero is returned as the byte length of data actually written several

times, the routine assumes that the device is full and sends a return value of –1.

The file read/write position must be updated using the byte length of data actually written.

If the routine ends normally, it returns the byte length of data actually written. Otherwise, the

routine returns a value of –1.

(d) write routine

Purpose Writes data to a file

Interface int write (int fileno,

char *buf,

unsigned int count);

Parameters No. Name Type Meaning

1 fileno int File number

2 buf Pointer to char Area storing data to be

written in the file

3 count unsigned int Byte length of the data to be written

Return value Type int

Normal Byte length of the data actually written

Abnormal −1

86

Explanation:

The lseek routine determines the next read/write position as an offset in bytes. The next read/write

position is determined according to the third parameter (base) as follows:

➀ Base = 0

The second parameter gives the new offset relative to the beginning of the file.

➁ Base = 1

The second parameter is added to the current position to give the new offset.

➂ Base = 2

The second parameter is added to the file size to give the new offset.

An error occurs if the file is on an interactive device (such as a console or printer), the new offset

value is negative, or the new offset value exceeds the file size in the case of ➀ or ➁, above.

If lseek correctly determines a new file position, the new offset value is returned. This value

indicates the new read/write position relative to the beginning of the file. Otherwise, the lseek

routine returns a value of –1.

(e) lseek routine

Purpose Determines the next read/write position in a file

Interface long lseek (int fileno,

long offset,

int base);

Parameters No. Name Type Meaning

1 fileno int File number of the target file

2 offset long Offset in bytes from specified point in

the file

3 base int Base used for offset (bytes)

Return value Type long

Normal The offset (bytes) from the beginning of the file

for the next read/write position

Abnormal −1

87

Explanation:

The size of the area to be allocated is given as a parameter.

Create the sbrk routine so that consecutive calls allocate consecutive areas beginning with the

lowest available address.

An error will occur if there is insufficient memory.

If the routine ends normally, it returns the start address of the allocated area. Otherwise, the routine

returns (char *) – 1.

(f) sbrk routine

Purpose Allocates a memory area

Interface char *sbrk(unsigned long size);

Parameters No. Name Type Meaning

1 size unsigned long Size of the area to be allocated

Return value Type Pointer to char

Normal Start address of the allocated area

Abnormal (char *) – 1

88

PART IV ERROR MESSAGES

Section 1 Error Messages Output by the C Compiler

The C compiler checks C source programs for errors. This section explains the format and

meaning of error messages that may be generated during compile time, and gives appropriate

programmer responses.

1.1 Error Message Format

Error messages are output to the standard output file (normally a terminal). Figures 1-1 and 1-2

show the formats used for error messages.

Figure 1-1 Error Messages Format (UNIX Systems)

Figure 1-2 Error Messages Format (PC Systems)

Explanation:

V File name

File name (sample.c) of the source program in which the error was detected.

W Line number

Line number (23) where the error was detected.

X Error number

This number is unique to the error message. See section 1.3, List of Error Messages, for details

on the errors and appropriate programmer responses.

Y Message level

The severity of the error. See section 1.2, Message Levels, for details.

Z Message text

This describes the error.

Note: When an error not related to the source program has occurred (e.g., an error internal to the

compiler), the file name is not output; for the line number here, 0 is output in UNIX

systems, and nothing is output in PC systems.

"sample.c" line 23 : 2011 (E) Line too long

V W X Y Z

sample.c (23) : 2011 (E) Line too long

V W X Y Z

91

1.2 C Compiler Action and Programmer Response for Each Error Level

Error messages are classified into the following four levels according to their severity. Table 1-1

shows C compiler action for each level of errors.

Table 1-1 C Compiler Action and Programmer Response for Each Error Level

Object

Error Error Error Program Processing

No. Level Meaning Symbol Number Output Continues User Response

1 Warning A mistake with respect (W) 1000 to Yes Yes Check the list of error messages to

to language specifica- 1999 decide whether error recovery

tions : The compiler performed by the C compiler is

has performed error correct. If necessary, modify and

recovery. recompile the source program.

2 Error A mistake in language (E) 2000 to No Yes Correct the error and recompile the

specifications 2999 source program.

3 Fatal The source program (F) 3000 to No No Correct the error and recompile the

exceeds the limit of the 3999 source program.

C compiler

4 Internal An error has occurred — 4000 to No No Contact the sales office or represen-

in an internal process 4999 tative where the C compiler was

of the C compiler purchased.

92

1.3 List of Error Messages

This section gives lists of error messages in order of error number. A list of error messages are

provided for each level of errors.

Example:

V Error Number

W Error Message

This message is sent to the standard output device (normally a terminal).

X Explanation

This gives more details about the error.

Y System Action

This indicates the reaction of the C compiler to the error.

Z Programmer Response

This indicates to the programmer how to resolve the error.

Error Number Message Explanation

V 2226 W Scalar required X Binary operator && or || is used in an

for an "operator" expression that is not scalar.

Y S: Assumes that the result is int and continues

processing.

Z P: Specify a scalar expression as the operand.

93

Error No. Message Explanation

1000 Illegal pointer

assignment

1001 Illegal comparison in

"

operator"

1002 Illegal pointer for

"operator"

1005 Undefined escape

sequence

1007 Long character

constant

1020 Illegal constant

A pointer is assigned to a pointer with a

different data type.

S: Sets the left hand side to the internal

representation of the right hand side

pointer. The resultant type is the same as

the data type of the left pointer.

P: Use the cast operator to specify explicit

type conversion.

The operands of the binary operator == or !=

are a pointer and an integer other than 0.

S: Selects an internal representation for the

operands.

P: Specify the correct type for the operands.

The operands of the binary operator ==, !=, >,

<, >=, or <= are pointers assigned to different

types.

S: Assumes that the operands are pointers

assigned to the same type.

P: Use a cast operator so that the same

operand type will be used.

An undefined escape sequence (a character

following a backslash) is used in a character

constant or string literal.

S: Ignores the backslash.

P: Remove the backslash or specify the

correct escape sequence.

The length of a character constant is 2

characters.

S: Uses the specified characters.

P: Check that the correct character constant is

specified.

The operands of the binary operator – in a

(1) Warning-Level Messages

94

Error No. Message Explanation
1008 Identifier too long

1010 Character constant too

long

1012 Floating point

constant overflow

1013 Integer constant

overflow

1014 Escape sequence

overflow

An identifier's length exceeds 31 characters.

S: Uses the first 31 characters and ignores the

rest.

P: Use identifiers with 31 or less characters.

The length of a character constant exceeds

four characters.

S: Uses the first four characters and ignores

the rest.

P: Use character constant with four or less

characters.

The value of a floating-point constant exceeds

the limit.

S: Assumes the internally represented value

corresponding to +∞ or –∞ depending on

the sign of the result.

P: Specify floating-point constants within

their limits.

The value of unsigned long integer constant

exceeds the limit.

S: Ignores the overflow and uses the

remaining bits.

P: Specify integer constants within their

limits.

The value of an escape sequence indicating a

bit pattern in a character constant or string

literal exceeds 255.

S: Uses the low order byte.

P: Change the value of the escape sequence to

255 or lower.

95

Error No. Message Explanation
1015 Floating point

constant underflow

1016 Argument mismatch

1017 Return type mismatch

1019 Illegal constant

expression

The absolute value of a floating-point constant

is less than the lower limit.

S: Assumes 0.0 as the value of the constant.

P: Change the value of the constant to 0.0 or

specify a constant whose value can be

represented.

The data type assigned to a pointer specified as

a formal parameter in a prototype declaration

differs from the data type assigned to a pointer

used as the corresponding actual parameter in

a function call.

S: Uses the internal representation of the

pointer used for the function call actual

parameter.

P: Use a cast operator for the function call

actual parameter to convert the formal

parameter to the type specified in the

prototype declaration.

The function return type and the expression

type in a return statement are pointers but the

data types assigned to these pointers are

different.

S: Uses the internal representation of the

pointer specified in the return statement

expression.

P: Use a cast operator for the expression

specified in the return statement

expression to convert it to the type of the

function return value.

The operands of the relational operator <, >,

<=, or >= in a constant expression are pointers

to different data types.

S: Assumes 0 as the result value.

P: Use an expression other than a constant

expression to obtain the correct result.

96

Error No. Message Explanation

expression of "-"

1200 Division by floating

point zero

1201 Ineffective floating

point operation

1300 Command parameter

specified twice

1301 Too many define options

constant expression are pointers to different

data types.

S: Assumes 0 as the result value.

P: Use an expression other than a constant

expression to obtain the correct result.

Division by the floating-point number 0.0 is

carried out in the evaluation of a constant

expression.

S: Assumes the internal representation of the

value corresponding to +∞ or –∞
depending on the sign of the operands.

P: Specify the correct constant expression.

Invalid floating-point operations such as ∞ – ∞
or 0.0/0.0 are carried out in a constant

expression.

S: Assumes the internal representation of not

a number to indicate the result of an

ineffective operation.

P: Correct the constant expression.

The same C compiler option is specified more

than once.

S: Uses the last specified compiler option.

P: Check that options are specified correctly.

The number of macro names specified as

suboptions in the define option exceeds 16.

S: Uses the first 16 suboptions.

P: Define the 17th and subsequent macro

names using #define directives at the

beginning of the source program.

97

Error No. Message Explanation

2000 Illegal preprocessor

keyword

2001 Illegal preprocessor

syntax

2002 Missing ","

2003 Missing ")"

2004 Missing ">"

An illegal keyword is used in a preprocessor

directive.

S: Ignores the line containing the preprocessor

directive.

P: Correct the keyword in the preprocessor

directive.

There is an error in preprocessor directive or in

a macro call specification.

S: Ignores the line containing the preprocessor

directive or macro call. If there is an error

in a constant expression used in the

preprocessor directive, the system assumes

that the constant expression is 0.

P: Specify the correct preprocessor directive

or macro call.

A comma (,) is not used to delimit two

arguments in a #define directive.

S: Assumes that there is a comma.

P: Insert a comma.

A right parenthesis “)” does not follow a name

in a defined expression. The defined

expression determines whether the name is

defined by a #define directive.

S: Assumes that there is a right parenthesis.

P: Insert a right parenthesis.

A right angle bracket (>) does not follow a file

name in an #include directive.

S: Assumes that there is a right angle bracket.

P: Insert a right angle bracket.

(2) Error-Level Messages

98

Error No. Message Explanation

2005 Cannot open include file

"file name"

2006 Multiple #define's

2008 Processor directive #elif

mismatches

2009 Processor directive #else

mismatches

2010 Macro parameters mismatch

The file specified by an #include directive

cannot be opened.

S: Ignores the #include directive.

P: Specify the correct file name. If the file

name is correct, check that the file does not

have write only status.

The same macro name is redefined by #define

directives.

S: Ignores the second #define directive.

P: Modify one of the macro names or delete

one of the #define directives.

There is no #if, #ifdef, #ifndef, or #elif

directive corresponding to an #elif directive.

S: Ignores the #elif directive.

P: Insert the corresponding preprocessor

directive or delete the #elif directive.

There is no #if, #ifdef, or #ifndef directive

corresponding to an #else directive.

S: Ignores the #else directive.

P: Insert the corresponding preprocessor

directive or delete the #else directive.

The number of macro call arguments is not

equal to the number of macro definition

arguments.

S: Ignores the excess arguments if there are

too many, or assumes blank string literals

if the number of arguments is insufficient.

P: Specify the correct number of macro

arguments.

99

Error No. Message Explanation
2011 Line too long

2012 Keyword as a macro name

2013 Processor directive #endif

mismatches

2014 Missing #endif

2016 Preprocessor constant

expression too complex

After macro expansion, a source program line

exceeds the limit of 4095 characters for UNIX

systems, and 512 characters for PC systems.

S: Ignores the 4096th and subsequent

characters.

P: Separate the line so that the length of each

resulting line is within the limit after macro

expansion.

A preprocessor keyword is used as a macro

name in a #define or #undef directive.

S: Ignores the #define or #undef directive

P: Change the macro name.

There is no #if, #ifdef, or #ifndef directive

corresponding to an #endif directive.

S: Ignores the #endif directive.

P: Check that the #endif directive is used

correctly.

There is no #endif directive corresponding to

an #if, #ifdef, or #ifndef directive, and the end

of file is detected.

S: Assumes that there is an #endif directive.

P: Insert an #endif directive.

The total number of operators and operands in

a constant expression specified by an #if or

#elif directive exceeds the limit of 512 for

UNIX systems, and 210 for PC systems.

S: Assumes the value of the constant

expression to be 0.

P: Correct the constant expression so that the

number of operators and operands is less

than or equal to the limit.

100

Error No. Message Explanation
2017 Missing ”

2018 Illegal #line

2019 File name too long

2020 System identifier "name"

redefined

2100 Multiple storage classes

A closing double quotation mark (") does not

follow a file name in an #include directive.

S: Assumes that there is a closing double

quotation mark.

P: Insert a closing double quotation mark.

The line count specified by a #line directive

exceeds the limit of 32767 for UNIX systems,

and 16383 for PC systems.

S: Ignores the #line directive.

P: Modify the program so that the line count

is less than or equal to the limit.

The length of a file name exceeds 128

characters.

S: Uses the first 128 characters as the file

name.

P: Change the file name so that the length is

less than or equal to 128 characters.

The name of the defined symbol is the same as

that of the run time routine.

S: Continues processing as a unique symbol.

P: Define the symbol with a different name

from that of the run time routine.

Two or more storage class specifiers are used

in a declaration.

S: Uses the first storage class specifier and

ignores others.

P: Specify the correct storage class specifier.

101

Error No. Message Explanation
2101 Address of register

2102 Illegal type combination

2103 Bad self reference

structure

2104 Illegal bit field width

2105 Incomplete tag used in

declaration

The unary operator & is used on a register

variable.

S: Assumes that the auto storage class is

specified for the variable and continues

processing.

P: Modify the declaration so that the storage

class of the variable is auto .

A combination of type specifiers is illegal.

S: Uses the first and longest legal

combination of type specifiers and ignores

the rest.

P: Change the type specifiers to a legal

combination.

A struct or union member has the same data

type as its parent.

S: Assumes the data type of the member is

int.

P: Declare the correct data type for the

member.

A constant expression indicating the width of a

bit field is not an integer or it is negative.

S: Ignores the bit field width specification and

assumes that the member is not a bit field.

P: Specify the correct width for the bit field.

An incomplete tag name declared with a struct

or union, or an undeclared tag name is used in

a typedef declaration or in the declaration of a

data type not assigned to a pointer or to a

function return value.

S: Assumes that the incomplete or undeclared

tag name is an int.

P: Declare the incomplete or undeclared tag

name.

102

Error No. Message Explanation

2106 Extern variable

initialized

2107 Array of function

2108 Function returning array

2109 Illegal function

declaration

2110 Illegal storage class

2111 Function as a member

A compound statement specifies an initial

value for an extern storage class variable.

S: Ignores the initial value.

P: Specify the initial value for the external

definition of the variable.

An array with a function member type is

specified.

S: Ignores the function or array type.

P: Specify the correct type.

A function with an array return value type is

specified.

S: Ignores the function or array type.

P: Specify the correct type.

A storage class other than extern is specified

in the declaration of a function variable used in

a compound statement.

S: Assumes extern as the storage class.

P: Specify the correct storage class.

The storage class in an external definition is

specified as auto or register.

S: Assumes that the storage class is extern.

P: Specify the correct storage class.

A member of a struct or union is declared as a

function.

S: Assumes int as the member type.

P: Declare the correct member type.

103

Error No. Message Explanation

2112 Illegal bit field

2113 Bit field too wide

2114 Multiple variable

declarations

2115 Multiple tag declarations

2117 Empty source program

2118 Prototype mismatch

The type specifier for a bit field is illegal.

char, unsigned char, short, unsigned short,

int, unsigned int, long, unsigned long, or a

combination of const or volatile with one of

the above types is allowed as a type specifier

for a bit field.

S: Ignores the bit field specification and

assumes that the member is not a bit field.

P: Specify the correct type.

The width of a bit field is greater than the size

(8, 16, or 32 bits) indicated by its type

specifier.

S: Ignores the bit field specification and

assumes that the member is not a bit field.

P: Specify the correct bit field width.

A variable name is declared more than once in

the same scope.

S: Uses the first declaration and ignores

subsequent declarations.

P: Keep one of the declarations and delete or

modify the rest.

A struct, union, or enum tag name is declared

more than once in the same scope.

S: Uses the first declaration and ignores

subsequent declarations.

P: Keep one of the tag name declarations and

delete or modify the rest.

There are no external definitions in the source

program.

S: Terminates processing.

P: Specify and compile the correct source

program.

104

Error No. Message Explanation

2119 Not a parameter name

2120 Illegal parameter storage

class

2121 Illegal tag name

2122 Bit field with 0

2123 Undefined tag name

A function type differs from the one specified

in the declaration.

S: Ignores the current declaration if the

function prototype declaration is being

processed. Ignores the previous

declaration if the declaration of an external

function definition is being processed.

P: Correct the declaration so that the function

types match.

An identifier not in the function parameter list

is declared as a parameter.

S: Ignores the parameter declaration.

P: Check that the function parameter list

matches all parameter declarations.

A storage class other than register is specified

in a function parameter declaration.

S: Ignores the storage class specifier.

P: Delete the storage class specifier.

The combination of a tag name and struct,

union, or enum differs from the declared

combination.

S: Assumes struct, union, or enum

depending on the tag name type.

P: Specify the correct combination of a tag

name and a struct, union, or enum.

The width of a bit field which is a member of a

struct or union is 0.

S: Ignores the bit field specification and

assumes that the member is not a bit field.

P: Delete the member name or specify the

correct bit field width.

An undefined tag name is specified in an

105

Error No. Message Explanation

2124 Illegal enum value

2125 Function returning

function

2126 Illegal array size

2127 Missing array size

2128 Illegal pointer

declaration for "*"

enum declaration.

S: Ignores the declaration.

P: Specify the correct tag name.

A non-integral constant expression is specified

as a value for an enum member.

S: Ignores the value specification.

P: Change the expression to an integer

constant expression.

A function with a function return value is

specified.

S: Ignores one of the function types.

P: Specify the correct type.

The value that specifies the number of

elements in an array is other than an integer

between 1 and 2147483647.

S: Assumes the number of array elements to

be one.

P: Specify a valid number of array elements.

The number of elements in an array is not

specified where it is required.

S: Assumes that the number of array element

is one.

P: Specify the number of array elements.

A type specifier other than const or volatile is

106

Error No. Message Explanation

2129 Illegal initializer type

2130 Initializer should be

constant

2131 No type nor storage class

2132 No parameter name

2133 Multiple parameter

declarations

specified following an asterisk (*), which

indicates a pointer declaration.

S: Ignores the type specifier following the

asterisk.

P: Specify the correct type specifier following

the asterisk.

The initial value specified for a variable is not

a type that can be assigned to the variable.

S: Does not initialize the variable.

P: Specify the correct type of initial value.

A value other than a constant expression is

specified as either the initial value of a struct,

union, or array variable or as the initial value

of a static variable.

S: Does not initialize the variable.

P: Specify a constant expression as the initial

value.

Storage class and type specifiers are not given

in an external data definition.

S: Assumes int as the type specifier.

P: Insert the storage class or type specifier.

A parameter is declared even though the

function parameter list is empty.

S: Ignores the parameter declaration.

P: Insert the parameter name in the function

parameter list or delete the parameter

declaration.

Either a parameter name is declared in a

107

Error No. Message Explanation

2134 Initializer for parameter

2135 Multiple initialization

2136 Type mismatch

2137 Null declaration for

parameter

function definition parameter list more than

once or a parameter is declared inside and

outside the function declarator.

S: Uses the first declaration if a parameter is

declared more than once in the function

parameter list. Uses the declaration inside

the function declarator if a parameter is

declared inside and outside the function

declarator.

P: Keep one of the declarations and delete the

rest.

An initial value is specified in the declaration

of an parameter.

S: Does not use the initial value specification.

P: Delete the initial value specification.

A variable is initialized more than once.

S: Ignores the second and subsequent

initialization directives.

P: Delete any redundant directives.

An extern or static variable or function is

declared more than once with different data

types.

S: Uses the type specified in the definition

declaration where a definition is declared.

Otherwise, the data type specified in the

first declaration is used.

P: Use the same data type in the declarations.

An identifier is not specified in the function

108

Error No. Message Explanation

2138 Too many initializers

2139 No parameter type

2140 Illegal bit field

2141 Illegal bit field

2142 Illegal void type

parameter declaration.

S: Ignores the corresponding parameter

declaration.

P: Delete the parameter declaration or insert

the correct parameter name.

The number of initial values specified for a

struct or array is greater than the number of

struct members or array elements. This error

also occurs if two or more initial values are

specified when the first members of a union

are scalar.

S: Uses only the initial values corresponding

to the number of struct members, array

elements, or the first members of union.

The rest are ignored.

P: Specify the correct number of initial

values.

A type is not specified in a function parameter

declaration.

S: Assumes int as the parameter declaration

type.

P: Specify the correct type for the parameter

declaration.

A bit field is used in a union.

S: Ignores the bit field.

P: Use the bit field in a struct.

An unnamed bit field is used as the first

member of a struct.

S: Ignores the bit field.

P: Specify the name of the bit field.

void is used illegally.

109

Error No. Message Explanation

2143 Illegal static function

2144 Type mismatch

2200 Index not integer

S: Assumes that void is int.

P: void can only be used in the following

cases:

(1) To specify a type assigned to a pointer

(2) To specify a function return value type

(3) To explicitly specify that a function

whose prototype is declared does not

have a parameter

A static storage class function has no

definition in the source program.

S: Ignores the function declaration.

P: Either delete the function declaration or

define the function.

extern variables or functions with the same

names are declared with different data types in

different valid ranges.

S: The currently declared variable or function

type is valid within the range that can be

referenced. However, when linked with

another file, the valid data type is

determined as shown below.

(1) If there is a declaration that acts as a

definition, that data type is valid.

(2) If there is no declaration that acts as a

definition:

— The previously declared data type is

valid when the current declaration

is in the function.

— The currently declared data type is

valid when the current declaration

is not in the function.

P: Declare the same data types for extern

variables or functions.

An array index expression type is not an

110

Error No. Message Explanation

2201 Cannot convert parameter

2202 Number of parameters

mismatch

2203 Illegal member reference

for "."

2204 Illegal member reference

for "->"

integer.

S: Assumes that the type is int.

P: Specify an integer expression for the array

index.

The nth parameter of a function call cannot be

converted to the type of parameter specified in

the prototype declaration.

S: Assumes that the correct parameter type is

specified and continues processing.

P: Specify an expression whose type

corresponds to the one specified in the

prototype declaration.

The number of parameters for a function call is

not equal to the number of parameters

specified in the prototype declaration.

S: Assumes that the number of parameters for

the function call is equal to the number of

parameters specified in the prototype

declaration, and continues processing.

P: Specify the correct number of parameters.

The expression to the left of the (.) operator is

not a struct or union.

S: Assumes that the member is not referenced

and continues processing.

P: Use a struct or union expression to the left

of the (.) operator.

The expression to the left of the –> operator is

111

Error No. Message Explanation

2205 Undefined member name

2206 Modifiable lvalue

required for "operator"

2207 Scalar required for "!"

2208 Pointer required for "*"

2209 Arithmetic type required

for "operator"

not a pointer to a struct or union.

S: Assumes that the member is not referenced

and continues processing.

P: Use an expression which deals with pointer

to struct or union to the left of the –>

operator according to the member.

An undeclared member name is used to

reference a struct or union.

S: Assumes that the member is not referenced

and continues processing.

P: Specify the correct member name.

The operand for a unary prefix or suffix

operator ++ or – – has a left value that cannot

be assigned (a left value whose type is not

array or const).

S: Assumes that the expression with a left

value that can be assigned is specified as

an operand and continues processing.

P: Specify an expression, whose left value can

be assigned, as an operand.

The unary operator ! is used on an expression

that is not scalar.

S: Assumes int as the type of the result and

continues processing.

P: Use a scalar expression as the operand.

The operand for the unary operator * is an

expression of pointer to void or is not an

expression of pointer.

S: Ignores *.

P: Use an operand that is an expression other

than pointer to void.

The unary operator + or – is used on a non-

arithmetic expression.

112

Error No. Message Explanation

2210 Integer required for "~"

2211 Illegal sizeof

2212 Illegal cast

2213 Arithmetic type required

for "operator"

S: Assumes that the operand type is int and

continues processing.

P: Change the expression to an arithmetic

expression.

The unary operator ~ is used on a non-integral

expression.

S: Assumes that the result type is int and

continues processing.

P: Change the expression to an integral

expression.

A sizeof operator is used for a bit field

member, function, void, or array with an

undefined size.

S: Assumes int as the operand type and

continues processing.

P: A sizeof operator cannot be used to obtain

the size of a bit field, function, void, or

array with an undefined size. Use an

appropriate operand.

Either array, struct, or union is specified in a

cast operator, or the operand of a cast operator

is void, struct, or union and cannot be

converted.

S: Assumes that the result is int and continues

processing.

P: Cast operation can only be performed on

scalar data items.

Use appropriate operands.

The binary operator *, /, *=, or /= is used in an

expression that is not arithmetic.

113

Error No. Message Explanation

2214 Integer required for

"operator"

2215 Illegal type for "+"

2216 Illegal type for parameter

2217 Illegal type for "-"

S: Assumes int as the result and continues

processing.

P: Specify arithmetic expressions as the

operands.

The binary operator <<, >>, &, |, ^, %, <<=,

>>=, &=, | =, ^=, or %= is used in an

expression that is not an integer expression.

S: Assumes int as the result type and

continues processing.

P: Specify integer expressions as the

operands.

The combination of operand types used with

the binary operator + is illegal.

S: Assumes the result type is int and

continues processing.

P: Specify a correct type of operands. Only

the following type combinations are

allowed for the binary operator +:

— Two arithmetic operands

— Pointer and integer

void is specified for a function call parameter

type.

S: Ignores the parameter type and continues

processing.

P: Specify a function call parameter type so

that a value can be passed to the function.

The combination of operand types used with

the binary operator – is not allowed.

S: Assumes that the result type is int and

114

Error No. Message Explanation

2218 Scalar required

2219 Type not compatible in

"?:"

continues processing.

P: Specify a correct type combination of

operands. Only the following three

combinations are allowed for the binary

operator:

(1) Two arithmetic operands

(2) Two pointers assigned to the same data

type

(3) The first operand is a pointer and the

second operand is an integer.

The first operand of the conditional operator ?:

is not a scalar.

S: Assumes that the first operand is a scalar

and continues processing.

P: Specify a scalar expression as the first

operand.

The types of the second and third operands of

the conditional operator ?: do not match with

each other.

115

Error No. Message Explanation

2220 Modifiable lvalue required

for "operator"

2221 Illegal type for "operator"

2222 Type not compatible for

S: Assumes that the result type is int and

continues processing.

P: Specify a correct type combination of

operands. Only one of the following six

combinations is allowed for the second and

third operands when using the ?: operator:

(1) Two arithmetic operands

(2) Two void operands

(3) Two pointers assigned to the same data

type

(4) A pointer and an integer constant

whose value is 0 or another pointer that

is assigned to void that was converted

from an integer constant whose value

is 0

(5) A pointer and another pointer assigned

to void

(6) Two struct or union variables with the

same data type

An expression whose left value cannot be

assigned (a left value whose type is not array

or const) is used as an operand of an

assignment operator =, *=, /=, %=, +=, –=,

<<=, >>=, &=, ^=, or | =.

S: Assumes that the left expression whose left

value can be assigned is used and continues

processing.

P: Specify a left expression whose left value

can be assigned.

The operand of the unary suffix operator ++ or

– – is function type, a pointer assigned to void,

or not scalar type.

116

Error No. Message Explanation

"="

2223 Incomplete tag used in

expression

2224 Illegal type for assign

S: Assumes that the result type is int and

continues processing.

P: Use a scalar type that is not a function or a

pointer assigned to void as the operand.

The operand types for the assignment operator

= do not match.

S: Assumes that the result type is int and

continues processing.

P: Specify a correct type combination of

operands. Only the following five type

combinations are allowed for the operands

of the = assignment operator:

(1) Two arithmetic operands

(2) Two pointers assigned to the same data

type

(3) The left operand is a pointer and the

right operand is an integer constant

whose value is 0 or another pointer that

is assigned to void that was converted

from an integer constant whose value

is 0.

(4) A pointer and another pointer assigned

to void
(5) Two struct or union variables with the

same data type

An incomplete tag name is used for a struct or

union in an expression.

S: Assumes that the incomplete tag name is

int and continues processing.

P: Declare the tag name.

The operand types of the assignment operator

+= or –= are illegal.

S: Assumes that the result type is int and

117

Error No. Message Explanation

2225 Undeclared name

2226 Scalar required for

"operator"

continues processing.

P: Specify a correct type combination of

operands. Only the following two type

combinations are allowed as operands for

the assignment operator += or –=:

(1) Two arithmetic operands

(2) The left operand is a pointer and the

right operand is an integer.

An undeclared name is used in an expression.

S: Assumes that the name is declared as an

int external identifier and continues

processing.

P: Either declare the name or modify it so

that it corresponds with one of the

declared names.

The binary operator && or || is used in a non-

scalar expression.

S: Assumes that the result type is int and

continues processing.

P: Use scalar expressions as operands.

118

Error No. Message Explanation
2227 Illegal type for equality

2228 Illegal type for

comparison

2230 Illegal function call

The combination of operand types for the

equality operator == or != is not allowed.

S: Assumes that the result type is int and

continues processing.

P: Specify a correct type combination of

operands. Only the following three

combinations of operand types for the

equality operator == or != are allowed:

(1) Two arithmetic operands

(2) Two pointers assigned to the same data

type

(3) A pointer and an integer constant

whose value is 0 or another pointer

assigned to void

The combination of operand types for the

relational operator >, <, >=, or <= is not

allowed.

S: Assumes that the result type is int and

continues processing.

P: Specify a correct type combination of

operands. Only the following two

combinations of operand types are allowed

for a relational operator:

(1) Two arithmetic operands

(2) Two pointers assigned to the same data

type

An expression which is not a function type or

a pointer assigned to a function type is used

for a function call.

S: Ignores the actual argument list and the

parentheses which indicate this list.

P: Specify a function type expression or

pointer assigned to a function type

correctly.

119

Error No. Message Explanation

The unary operator & is used on a bit field.

S: Ignores the bit field, assumes that the unary

operator & is correctly specified, and

continues processing.

P: Correct the expression. A bit field address

cannot be used.

A type that is not a scalar, or that is a pointer

assigned to a function or void is specified as

the operand for the prefix operator ++ or – –.

S: Assumes int as the result type and

continues processing.

P: Use an operand that is a scalar other than a

pointer assigned to a function or void.

An expression used as an array is not one of

the following types:

— Array

— Pointer assigned to a data type other

than a function or void

S: Ignores the square brackets ([]) and the

array subscript enclosed.

P: When an array subscript is required,

specify the correct expression.

A typedef name is used as a variable in an

expression.

S: Ignores the expression.

P: Use typedef correctly.

An attempt is made to cast a pointer with a

floating-point type.

S: Ignores the attempt.

P: Cast the pointer with an integer type, then

with a floating-point type.

2231 Address of bit field

2232 Illegal type for "operator"

2233 Illegal array reference

2234 Illegal typedef name

reference

2235 Illegal cast

120

Error No. Message Explanation
An attempt is made to cast a pointer with a

char or short.

S: Ignores the cast operation.

P: Use an expression other than a constant

one.

In a constant expression, a pointer constant is

cast with an integer and the result is

manipulated.

S: Assumes that the conversion is not

specified and continues processing.

P: Use an expression other than a constant

expression.

The unary operator & is used on the left value

or is used in an expression other than function

type.

S: Assumes that an expression with a left

value is specified as the operand and

continues processing.

P: Specify an expression that has a left value

or a function type expression as the

operand.

A case label is specified outside a switch

statement.

S: Ignores the case label.

P: Specify the case label in a switch

statement.

A default label is specified outside a switch

statement.

S: Ignores the default label.

P: Specify the default label in a switch

statement.

2236 Illegal cast in constant

2237 Illegal constant

expression

2238 Lvalue or function type

required for "&"

2300 Case not in switch

2301 Default not in switch

121

Error No. Message Explanation

A label is defined more than once in a

function.

S: Ignores redundant label definitions.

P: Keep one label name and delete or modify

the other.

A continue statement is specified outside a

while, for, or do statement.

S: Ignores the continue statement.

P: Only use the continue statement in a

while, for, or do statement.

A break statement is specified outside a while,

for, do, or switch statement.

S: Ignores the break statement.

P: Only use the break statement in a while,

for, do, or switch statement.

A return statement specifies a return value for

a function with a void return type.

S: Ignores the return statement expression.

P: For a function with a void return type, do

not specify an expression in a return

statement or do not use the return

statement.

A case label expression is not an integer

constant expression.

S: Ignores the case label.

P: Use an integer constant expression for the

case label.

Two or more case labels with the same value

are used in one switch statement.

S: Ignores redundant case labels.

P: Modify the switch statement so that each

case label has a unique value.

2302 Multiple labels

2303 Illegal continue

2304 Illegal break

2305 Void function returns

value

2306 Case label not constant

2307 Multiple case labels

122

Error No. Message Explanation

Two or more default labels are specified for

one switch statement.

S: Ignores redundant default labels.

P: Modify the switch statement so that it has

only one default label.

There is no label corresponding to the

destination specified by a goto statement.

S: Continues processing.

P: Specify the correct label in the goto

statement.

The control expression (that determines

statement execution) for a while, for, or do

statement is not a scalar.

S: Assumes that an int control expression is

specified and continues processing.

P: Use a scalar expression as the control

expression for a while, for, or do

statement.

The control expression (that determines

statement execution) for a switch statement is

not an integer.

S: Assumes that an int control expression is

specified and continues processing.

P: Use an integer expression as the control

expression for the switch statement.

The control expression (that determines

statement execution) does not follow a left

parenthesis “(” for an if, while, for, do, or

switch statement.

S: Assumes that the control expression

follows a left parenthesis "(" and continues

processing.

P: Specify the control expression for an if,

while, for, do, or switch statement and

enclose it in parentheses.

2308 Multiple default labels

2309 No label for goto

2310 Scalar required

2311 Integer required

2312 Missing (

123

Error No. Message Explanation

A do statement is ended without a semicolon

(;).

S: Assumes that the do statement ends with a

semicolon (;) and continues processing.

P: Place a semicolon (;) at the end of the do

statement.

A control expression (that determines

statement execution) for an if statement is not

a scalar.

S: Assumes that an int control expression is

specified and continues processing.

P: Use a scalar expression as the control

expression for if statement.

An expression in a return statement cannot be

converted to the type of value expected to be

returned by the function.

S: Assumes that the expression in the return

statement is the type expected to be

returned by the function and continues

processing.

P: Convert the expression in the return

statement so that it matches the type of

value expected.

An illegal character is detected.

S: Assumes that the character is a blank

character and continues processing.

P: Delete the illegal character.

2313 Missing ;

2314 Scalar required

2316 Illegal type for return

value

2400 Illegal character "character"

124

Error No. Message Explanation
An end of line indicator is detected in the

middle of a character constant.

S: Assumes that a quotation mark (') is placed

before the end of line indicator and

continues processing.

P: Correct the character constant.

An end of line indicator is detected in the

middle of a string literal.

S: Assumes that a double quotation mark (")

is placed before the end of line indicator

and continues processing.

P: Correct the string literal.

An end of file indicator is detected in the

middle of a comment.

S: Assumes that the program ends when the

end of file indicator is reached and

continues processing.

P: End the comment with */.

An illegal character code is detected.

S: Assumes that the character code is a blank

character and continues processing.

P: Delete the illegal character code.

There are no characters in a character constant

(i.e., no characters are specified between two

quotation marks).

S: Assumes that “ \0” is specified and

continues processing.

P: Correct the character constant.

2401 Incomplete character

constant

2402 Incomplete string

2403 EOF in commment

2404 Illegal character code

"character code"

2405 Null character constant

125

Error No. Message Explanation

The number of significant digits in a floating-

point constant exceeds 17.

S: Depending on the sign, the system assumes

+∞ or –∞.

P: Ensure that the number of significant digits

in a floating-point constant is less than or

equal to 17.

A backslash (\) or a backslash followed by an

end of line indicator (\ RET) is specified as

the last character in a non-empty source file.

S: Ignores the last logical line.

P: Delete the backslash or continue the

physical line.

An illegal token sequence is used.

S: Ignores data up to a semicolon (;), left

brace ({), right brace (}), comma (,), or

keyword (if, while, for, switch, do, case,

default, return, break, or continue).

P: Correct the token sequence.

An integer is divided by zero in a constant

expression.

S: Assumes a result value of zero and

continues processing.

P: Modify the constant expression so that an

integer is not divided by zero.

An error message specified by string literal

#error is output to the list file if nolist option is

not specified.

S: Continues processing.

2406 Out of float

2407 Incomplete logical line

2500 Illegal token

2501 Division by zero

2600 character string

126

Error No. Message Explanation

The specified address does not match the

required byte alignment.

S: Uses the address with the lowest bit

masked when accessing word data, and the

address with the lowest two bits masked

when accessing long word data.

P: Specify the address so as to match the byte

alignment.

A function already declared as a normal

function has been specified with the interrupt

function declaration #pragma interrupt.

S: Ignores the interrupt function declaration.

P: Declare the function as an interrupt

function before it is declared as a normal

function.

A function has been declared as an interrupt

function with #pragma interrupt more than

once.

S: Ignores the interrupt function declaration.

P: Delete the declarations following the first

one.

The same type of interrupt specifications have

been specified more than once.

S: Ignore the interrupt function declaration.

P: Delete one of the interrupt specifications.

The specifications for the interrupt function

declaration #pragma interrupt are not correct.

S: Ignores the interrupt function declaration.

P: Specify correctly.

2650 Invalid pointer reference

2700 Function "function name" in

#pragma interrupt already

declared

2701 Multiple interrupt for

one function

2702 Multiple #pragma

interrupt options

2703 Illegal #pragma interrupt

declaration

127

Error No. Message Explanation

An interrupt function is illegally referenced.

S: Ignores the attempt to reference the

interrupt function.

P: An interrupt function cannot normally be

referenced. Define another function for

referencing.

There are different parameter types in an

interrupt function.

S: Ignores the interrupt function declaration.

P: Specify correct parameter types.

The variables used in the option specification

by the interrupt function are not specified.

S: Ignores the interrupt function declaration.

P: Declare the variables before declaring the

interrupt function declaration #pragma

interrupt.

Parameter tn in an interrupt function exceeds

256.

S: Ignores the value of parameter tn.

P: Modify the value of parameter tn so it does

not exceed 256.

The number of parameters used in an intrinsic

function does not match the required number.

S: Ignores the intrinsic function.

P: Specify the correct number of parameters.

There are different parameter types in an

intrinsic function.

S: Ignores the intrinsic function.

P: Specify the correct parameter types.

A parameter exceeds the range that can be

2704 Illegal reference to

interrupt function

2705 Illegal parameter in

interrupt function

2706 Missing parameter

declaration in interrupt

function

2707 Parameter out of range in

interrupt function

2800 Illegal parameter number

in in-line function

2801 Illegal parameter type in

in-line function

2802 Parameter out of range in

128

Error No. Message Explanation

specified by an intrinsic function.

S: Ignores the intrinsic function.

P: Check the range that can be specified for

the parameter and specify it correctly.

A parameter is specified improperly by an

intrinsic function.

S: Ignores the intrinsic function.

P: Check the intrinsic function specifications

and specify it correctly.

in-line function

2803 Invalid offset value in

in-line function

129

Error No. Message Explanation

The nesting level of an if, while, for, do, and

switch statements exceeds the limit of 32 for

UNIX systems, and 15 for PC systems.

S: Terminates processing.

P: Modify the program so that the nesting

level is less than or equal to the limit.

The nesting level of compound statements

exceeds the limit of 32 for UNIX systems, and

15 for PC systems.

S: Terminates processing.

P: Modify the program so that the nesting

level is less than or equal to the limit.

The conditional compilation (#if, #ifdef,

#ifndef, #elif, and #else) nesting level exceeds

the limit of 32 for UNIX systems, and 6 for PC

systems.

S: Terminates processing.

P: Modify the program so that the nesting

level is less than or equal to the limit.

The number of external identifiers exceeds the

limit of 4096 for UNIX systems, and 511 for

PC systems.

S: Terminates processing.

P: Divide the program so that the number of

external identifiers is less than or equal to

the limit.

The number of effective identifiers (internal

3000 Statement nest too deep

3001 Block nest too deep

3002 #if nest too deep

3003 Too many external

identifiers

(3) Fatal-Level Messages

130

Error No. Message Explanation

identifiers) in one function exceeds the limit of

4096 for UNIX systems, and 512 for PC

systems.

S: Terminates processing.

P: Divide the compound statements so that the

number of identifiers declared in one

compound statement is less than or equal to

the limit.

The number of macro names defined in a

#define directive exceeds the limit of 4096 for

UNIX systems, and 1024 for PC systems.

S: Terminates processing.

P: Divide the program so that the number of

macro names is less than or equal to the

limit.

The number of parameters in either a function

declaration or a function call exceeds the limit

of 63 for UNIX systems, and 31 for PC

systems.

S: Terminates processing.

P: Divide the compound statements so that the

number of identifiers declared in one

compound statement is less than or equal to

the limit.

The number of parameters in a macro

definition or a macro call exceeds the limit of

64 for UNIX systems, and 31 for PC systems.

S: Terminates processing.

P: Modify the program so that the number of

macro parameters is less than or equal to

the limit.

After a macro expansion, the length of a line

3004 Too many local identifiers

3005 Too many macro identifiers

3006 Too many parameters

3007 Too many macro parameters

131

Error No. Message Explanation

exceeds the limit of 4095 characters for UNIX

systems, and 512 characters for PC systems.

S: Terminates processing.

P: Divide the line so that its length does not

exceed the limit after macro expansion.

The length of string literals exceeds 512

characters. The length of string literals is the

byte number generated after the specified

string is connected continuously. The length

of string literals in the source program is not

the length of the source program, in the string

data. This byte number is located in the string

literal data with the expansion sign counted as

one character.

S: Terminates processing.

P: Modify the program so that the total length

of string literals does not exceeds 512

bytes.

The nesting level of the #include directive

exceeds the limit of 8 for UNIX systems, and 5

for PC systems.

S: Terminates processing.

P: Ensure that the file inclusion nesting level

does not exceed the limit.

The nesting level of macro expansion

performed by a #define directive exceeds the

limit of 32 for UNIX systems, and 16 for PC

systems.

S: Terminates processing.

P: Modify the program so that the nesting

level of macro expansion never exceeds the

limit. Note that a macro may be defined

recursively.

The number of function definitions exceeds the

3008 Line too long

3009 String literal too long

3010 Processor directive

#include nest too deep

3011 Macro expansion nest too

deep

132

Error No. Message Explanation

limit of 512 for UNIX systems, and 256 for PC

systems.

S: Terminates processing.

P: Divide the program so that the number of

function definitions is less than or equal to

the limit in one compile unit.

The number of switch statements exceeds the

limit of 256 for UNIX systems, and 128 for PC

systems.

S: Terminates processing.

P: Divide the program so that the number of

switch statements is less than or equal to

the limit in one compile unit.

The nesting level of for statements exceeds the

limit of 16 for UNIX systems, and 15 for PC

systems.

S: Terminates processing.

P: Ensure that the for nesting level does not

exceed the limit.

The number of symbols to be generated by the

C compiler exceeds the limit of 8192 for

UNIX systems, and 1024 for PC systems.

S: Terminates processing.

P: Divide the file so that the number of

symbols does not exceed the limit.

The number of internal labels to be generated

by the C compiler exceeds the limit of 16384

for UNIX systems, and 2048 for PC systems.

S: Terminates processing.

P: Divide the file so that the number of

internal labels does not exceed the limit.

The number of case labels in one switch

3012 Too many function

definitions

3013 Too many switches

3014 For nest too deep

3015 Symbol table overflow

3016 Internal label overflow

133

Error No. Message Explanation

statement exceeds the limit of 511 for UNIX

systems, and 255 for PC systems.

S: Terminates processing.

P: Ensure that the number of case labels does

not exceed the limit.

The number of goto labels defined in one

function exceeds the limit of 511 for UNIX

systems, and 256 for PC systems.

S: Terminates processing.

P: Ensure that the number of goto labels

defined in a function does not exceed the

limit.

A source file cannot be opened.

S: Terminates processing.

P: Specify the correct file name.

A source or include file cannot be read.

S: Terminates processing.

P: Check that the file is not read protected.

The C compiler cannot allocate sufficient

memory to compile the program.

S: Terminates processing.

P: Divide the file so that less memory is

needed for compilation.

The nesting level of switch statements exceeds

the limit of 16 for UNIX systems, and 15 for

PC systems.

S: Terminates processing.

P: Ensure that the switch nesting level does

not exceed the limit.

The number of types (pointer, array, and

3017 Too many case labels

3018 Too many goto labels

3019 Cannot open source file

"file name"

3020 Source file input error

"file name"

3021 Memory overflow

3022 Switch nest too deep

134

Error No. Message Explanation
function) that qualify the basic type exceeds

16.

S: Terminates processing.

P: Ensure that the number of types is less than

or equal to 16.

An array has more than six dimensions.

S: Terminates processing.

P: Ensure that arrays have no more than six

dimensions.

A source file name is not specified in the

command line.

S: Terminates processing.

P: Specify a source file name.

An expression is too complex.

S: Terminates processing.

P: Divide the expression into smaller units.

The nesting level of statements in the program

is too deep or an expression is too complex.

S: Terminates processing.

P: Reduce the nesting level of statements or

divide the expression.

The last source line number exceeds the limit

of 32767 for UNIX systems, and 16383 for PC

systems.

S: Terminates processing.

P: Modify both the line count specified in the

#line directive and the source program so

that the last source line number is less than

or equal to the limit.

The number of physical lines (including the

3023 Type nest too deep

3024 Array dimension too deep

3025 Source file not found

3026 Expression too complex

3027 Source file too complex

3028 Source line number

overflow

135

Error No. Message Explanation

include files) exceeds the limit of 32767 for

UNIX systems, and 16383 for PC systems.

S: Terminates processing.

P: Divide the file so that the number of

physical lines does not exceed the limit.

The size of an array or a structure exceeds

2147483647.

S: Terminates processing.

P: Reduce the size of the array or the structure

until it is less than or equal to 2147483647.

The number of symbols used for debug

information exceeds 30719.

S: Terminates processing.

P: Divide the file so that the number of

symbols does not exceed 30719.

The size of the object program exceeds

4 Gbytes.

S: Terminates processing.

P: Divide the program so that the size of the

object program does not exceed 4 Gbytes.

An error has occurred in either one of the

3029 Physical line overflow

3031 Data size overflow

3033 Symbol table overflow

3201 Object size overflow

136

Error No. Message Explanation

following cases:

(1) An intermediate file internally generated

by the C compiler cannot be opened.

(2) A file having the same name as the

intermediate file already exists.

(3) The path name for listing file specifications

exceeds 128 characters.

(4) A file used internally by the C compiler

cannot be opened.

S: Terminates processing.

P: (1) Check that the intermediate file

generated by the C compiler is not

being used.

(2) Do not use the intermediate file name

for other files.

(3) Ensure that the path name for listing

file specifications does not exceed 128

characters.

(4) Check that the disk has sufficient

capacity for files.

An intermediate file internally generated by

the C compiler cannot be closed.

S: Terminates processing.

P: (1) Check that there are no mistakes in the

compiler installation procedure.

(2) Check that there are no abnormalities

on the hard disk.

An intermediate file internally generated by

the C compiler cannot be read.

S: Terminates processing.

P: (1) Check that there are no mistakes in the

compiler installation procedure.

(2) Check that there are no abnormalities

on the hard disk.

An intermediate file internally generated by

3300 Cannot open internal file

3301 Cannot close internal file

3302 Cannot input internal file

137

Error No. Message Explanation
the C compiler cannot be written.

S: Terminates processing.

P: Increase the disk size.

An intermediate file internally generated by

the C compiler cannot be deleted.

S: Terminates processing.

P: Check that the intermediate file generated

by the C compiler is not being used.

An invalid compiler option is specified.

S: Terminates processing.

P: Specify the correct option.

An interrupt generated by a CNTL C

command (from a standard input terminal) is

detected during compilation.

S: Terminates processing.

P: Input the compile command again.

File versions in the C compiler do not match.

S: Terminates processing.

P: Refer to the Install Guide for the

installation procedure, and reinstall the C

compiler.

The command line specification exceeds 256

characters.

S: Terminates processing.

P: Ensure that the command line does not

exceed 256 characters.

An error has occurred in either of the

3303 Cannot output internal

file

3304 Cannot delete internal

file

3305 Invalid command parameter

"option name"

3306 Interrupt in compilation

3307 Compiler version mismatch

3320 Command parameter buffer

overflow

138

Error No. Message Explanation

following cases:

(1) The environment variable SHC_LIB is

not specified.

(2) The file name does not satisfy file

name specification rules or the path

name exceeds 118 characters.

S: Terminates processing.

P: (1) Specify the environment variable

SHC_LIB.

(2) Specify the file name according to file

name specification rules.

(3) Ensure that the path name does not

exceed 118 characters.

An internal error occurs during compilation.

S: Terminates processing.

P: Report the error occurrence to your local

Hitachi dealer.

3321 Illegal environment

variable

4000 Internal error

to

4999

139

Section 2 Error Messages Output for the C
Library Functions

Some library functions set error numbers to macro

errno defined by the header file <stddef.h> in

the C library function when an error occurs during the library function execution. Error messages

corresponding to error numbers have already been defined and can be output. The following shows

an example of a program which causes an error message output.

Example:

Description:

1. An error occurs because the file pointer value NULL is passed to the fclose function as

an actual argument. In this case, an error number is set in errno.

2. If the error number is passed to the strerror function as an actual argument, a pointer to the

corresponding error message is returned. Specifying the character string to be output in the

printf function outputs the error message.

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

main ()

{

FILE *fp

fp=fopen("file","w");

fp=NULL;

fclose(fp); /* error occurred */-----------

➀

printf("%s\n",strerror(errno)) ; /*print error message */--------➁

}

140

Functions to Set
Error No. Message Explanation Error Numbers

1100 Data out of range

1101 Data out of domain

1102 Division by zero

1104 Too long string

1106 Invalid file
pointer

1200 Invalid radix

1202 Number too long

1204 Exponent too large

1206 Normalized
exponent too large

An overflow occurs.

Results for mathematical

parameters are not defined.

Division by zero was performed.

The length of the character string

exceeds 512 characters.

NULL pointer constant is specified

as file pointer value.

An invalid radix was specified.

The specified number exceeds 17

digits.

The specified exponent exceeds

three digits.

The exponent exceeds three digits

when the character string is

normalized to the IEEE standard

decimal format.

C Library Function Error Messages

atan, cos, sin, tan,

cosh, sinh, tanh, exp,

fabs, frexp, ldexp,

modf, ceil, floor, strtol,

atoi, fscanf, scanf,

sscanf, atol

acos, asin, atan2, log,

log10, sqrt, fmod, pow

divbs, divws, divls,

divbu, divwu, divlu

strtol, strtod, atoi, atol,

atof

fclose, fflush, freopen,

setbuf, setvbuf, fprintf,

fscanf, printf, scanf,

sprintf, sscanf,

vfprintf, vprintf,

vsprintf, fgetc, fgets,

fputc, fputs, ungetc,

fread, fwrite, fseek,

ftell, rewind, perror

strtol, atoi, atol

strtod, fscanf, scanf,

sscanf, atof

strtod, fscanf, scanf,

sscanf, atof

strtod, fscanf, scanf,

sscanf, atof

141

Functions to Set
Error No. Message Explanation Error Numbers

1210 Overflow out of
float

1220 Underflow out of
float

1250 Overflow out of
double

1260 Underflow out of
double

1270 Overflow out of
long double

1280 Underflow out of
long double

1300 File not open

1302 Bad file number

1304 Error in format

A float-type decimal value is out of

range (overflow).

A float-type decimal value is out of

range (underflow).

A double-type decimal value is out

of range (overflow).

A double-type decimal value is out

of range (underflow).

A long double-type decimal value is

out of range (overflow).

A long double-type decimal value is

out of range (underflow).

The file is not open.

An output function was issued for

an input file or output function is

issued for input file.

An erroneous format was specified

for an in input/output function using

format.

strtod, fscanf, scanf,

sscanf, atof

strtod, fscanf, scanf,

sscanf, atof

strtod, fscanf, scanf,

sscanf, atof

strtod, fscanf, scanf,

sscanf, atof

fscanf, scanf

fscanf, scanf

fclose, fflush, setbuf,

setvbuf, fprintf,

fscanf, printf, scanf,

sprintf, sscanf,

vfprintf, vprintf,

vsprintf, fgetc, fgets,

fputc, fputs, gets,

puts, ungetc, fread,

fwrite, fseek, ftell,

rewind, perror,

freopen

fprintf, fscanf, printf,

scanf, sprintf, sscanf,

vfprintf, vprintf,

vsprintf, fgetc, fgets,

fputc, fputs, gets,

puts, ungetc, perror,

fread, fwrite

fprintf, fscanf, printf,

scanf, sprintf, sscanf,

vfprintf, vprintf,

vsprintf, perror

142

APPENDIX

Appendix A Language and Standard Library Function
Specifications of the C Compiler

This section shows the implementation dependent specifications of the C compiler that are not
included in the C language specifications (in ANSI standard for the C programming language).

A.1 Language Specifications of the C Compiler

A.1.1 Compilation Specifications

Table A-1 Compilation Specifications

Item C Compiler Specification

Error information when an error is detected Refer to part IV, Error Messages

A.1.2 Environmental Specifications

Table A-2 Environmental Specifications

Item C Compiler Specification

Actual argument for the main function Not specified

Interactive I/O device configuration Not specified

A.1.3 Identifiers

Table A-3 Identifier Specifications

Item C Compiler Specification

Number of valid characters of internal identifiers not used for

external linkage

The first 31 characters are valid

Number of valid characters of external identifiers used for external

linkage

The first 31 characters are valid

Lowercase and uppercase character distinction in external

identifiers used for external linkage

Lowercase characters are

distinguished from uppercase

characters.

Note: Two different identifiers with the same first 31 characters are considered to be identical.

Example:
(a) longnameabcdefghijklmnopqrstuvwx;
(b) longnameabcdefghijklmnopqrstuvwy;

Identifiers (a) and (b) are indistinguishable because the first 31 characters are the same.

145

A.1.4 Characters

Table A-4 Character Specifications

Item C Compiler Specification

Elements of character set and codes used during program

execution

ASCII character set

Kanji used in host environment can be

used for source program comment.

Shift state used for encoding multiple-byte characters Shift state is not supported

The number of bits used to indicate a character sets during

program execution

Eight bits are used for each character.

Correspondence between the program compilation character set

and the execution

ASCII is used for both.

Extended representation that appears either in a character

constant or a string literal and that is not defined in the language

specifications

Characters and extended

representation other than that

specified by the language are not

supported.

Character constant or wide character constant of two or more

characters

The upper four characters of the

character constant is valid, and the

upper two characters of the wide

character is valid. If a wide character

of more than one character is

specified, a warning error message is

output.

locale specifications used to converting multiple-byte character to

wide character

locale is not supported

Simple char having normal the value range same as signed char The same range as the signed char

or unsigned char.

146

A.1.5 Integer

Table A-5 Integer Specifications

Item C Compiler Specification

Integer-type data representation and value Table A-6 shows data

representation and value.

Effect when an integer is too large to be converted into a signed

integer-type value or signed char

The lower one or two bytes of

the integer is used as the

conversion result.

The result of bitwise operations on signed integers signed value

Sign of the remainder for integer division Same as the sign of the dividend

Effect of a right shift operation on the sign bit of signed integer-type data The sign bit is unchanged by the

shift operation.

Table A-6 Integer Types and Their Corresponding Data Range

Type Range of Values Data Size

char –128 to 127 1 byte

signed char –128 to 127 1 byte

unsigned char 0 to 255 1 byte

short –32768 to 32767 2 bytes

unsigned short 0 to 65535 2 bytes

int –2147483648 to 2147483647 4 bytes

unsigned int 0 to 4294967295 4 bytes

long –2147483648 to 2147483647 4 bytes

unsigned long 0 to 4294967295 4 bytes

147

A.1.6 Floating-Point Numbers

Table A-7 Floating-Point Number Specifications

Item C Compiler Specification

Data that can be represented as

floating-point type and value

The float, double, and long double are provided as floating-

point types.

Data converted from double or long

double to float

See section A.3, Floating-Point Number

Specifications, for details on floating-point

Internal representation of floating-point

data

numbers (internal representation, conversion specifications, and

operation specifications). Table A-8 shows the limits on

representing floating-point numbers.

Table A-8 Limits on Floating-Point Numbers

Limit

Item Decimal *1 Internal Representation

Maximum float 3.4028235677973364e+38f

(3.4028234663852886e+38f)

7f7fffff

Positive minimum float 7.0064923216240862e–46f

(1.4012984643248171e–45f)

00000001

Maximum double or long double 1.7976931348623158e+308

(1.7976931348623157e+308)

7fefffffffffffff

Positive minimum double or long

double

4.9406564584124655e–324

(4.9406564584124654e–324)

0000000000000001

Note: *1. Limits on decimal is non-zero minimum value or maximum value not infinitive value. Values

within () indicate theoritical values.

148

A.1.7 Arrays and Pointers

Table A-9 Array and Pointer Specifications

Item C Compiler Specification

Integer type required for array's maximum size

(size_t)

unsigned long

Conversion from pointer-type data to integer-type

data (Pointer-type data size ≥ Integer-type data size)

The lower byte of pointer-type data is used.

Conversion from pointer-type data to integer-type

data (Pointer-type data size < Integer-type data size)

Extended with signs

Conversion from integer-type data to pointer-type

data (Integer-type data size ≥ Pointer-type data size)

The lower byte of integer-type data is used.

Conversion from integer-type data to pointer-type

data (Integer-type data size < Pointer-type data size)

Extended with signs

Integer type required for holding pointer difference

between members in the same array (ptrdiff_t)

long

A.1.8 Register

Table A-10 Register Specifications

Item C Compiler Specification

The maximum number of register variables that can

be allocated to registers

7

Type of register variables that can be allocated to

registers

char, unsigned char, short, unsigned short, int,

unsigned int, long, unsigned long, float, and

pointers

149

A.1.9 Structure, Union, Enumeration, and Bit Field Types

Table A-11 Specifications for Structure, Union, Enumeration, and Bit Field Types

Item C Compiler Specification

Effect of setting a union member and referencing a

union member using another member whose data type

is different

Reference is possible but the referred value is

not guaranteed.

Structure member alignment Structures consisting of char members are

aligned in 1-byte units, while structures consisting

of short members are aligned in 2-byte units.

Structures consisting of any other members are

aligned in 4-byte units.*1

Sign of an int bit field Assumed to be signed int

Allocation order of bit fields in int area Beginning from the high order bit to low order

bit.*2

Result when a bit field has been allocated in an int area

and the next bit field to be allocated is larger than the

remaining int

The next bit field is allocated to the next int

area.*2

Type specifier allowed for bit field char, unsigned char, short, unsigned short,

int, unsigned int, long, and unsigned long

Integer describing enumeration int

Notes: *1. See section 2.2 (2), Aggregate Data, in part II for details on structure member allocation.

*2. See section 2.2 (3), Bit Fields, in part II for details on bit field allocation.

A.1.10 Modifier

Table A-12 Modifier Specifications

Item C Compiler Specification

volatile data access type Not specified

150

A.1.11 Declarations

Table A-13 Declaration Specifications

Item C Compiler Specification

Number of types that can qualify the basic types (pointer,

array, and function)

Up to 16 types can be specified.

(a) Example of counting the number of types that qualify the basic types

Examples:

(i) int a;

a is int (basic type) and the number of types that qualify the basic type is zero.

(ii) char *f();

f is a function type that returns pointer to char (basic type). The number of types that

qualify the basic type is two.

A.1.12 Statement

Table A-14 Statement Specifications

item C Compiler Specification

The number of case label specified by a switch statement Up to 511 labels can be specified.

151

A.1.13 Preprocessor

Table A-15 Preprocessor Specifications

Item C Compiler Specification

Correspondence between single character constant and

execution environment characters in the conditional

compilation

Character strings in the preprocessor

statement match the execution environment

characters

Reading an include file The file within < > is read from a path specified

by the include option. (Defalut: The path

specified by environment variable SHC_LIB)

Supporting an include file whose name is enclosed in a

pair of double quotation marks

The C compiler supports include files whose

names are delimited by double quotation

marks. The C compiler reads these include

files from the current directory. If the include

files are not in the current directory, the C

compiler reads them from the directory

specified in advance.

Source file character string correspondence (blank

character in a character string after macro expansion)

Strings of blanks are expanded as one blank

character.

#pragma directive operation #pragma interrupt is supported.*1

Value of _ _DATE_ _, _ _TIME_ _ Data depending on the host machine timer

when the compilation starts.

Note: *1. See section 3.1, Interrupt Functions, in part II for details on #pragma interrupt specifications.

152

A.2 C Library Function Specifications

This section explains the specifications for C library functions declared in standard include files.

Refer to the include file for the actual macro names defined in a standard include file.

A.2.1 stddef.h

Table A-16 stddef.h Specifications

Item C Compiler Specification

Value of macro NULL The value 0 of pointer to void

Contents of macro ptrdiff_t long

A.2.2 assert.h

Table A-17 assert.h Specifications

Item C Compiler Specification

Information output and terminal operation of

assert.h

See (a) for the format of output information. The

program outputs information and then calls the abort

function to stop the operation.

(a) The following message is output when the expression is 0 for assert (expression):

Assertion Failed: <expression> File <file-name>, Line <line-number>

153

A.2.3 ctype.h

Table A-18 ctype.h Specifications

Item C Compiler Specification

The character set for which the isalnum, isalpha, iscntrl,

islower, isprint, and isupper functions

Table A-19 shows the character set that

results in a true return value.

Table A-19 Set of Characters that Returns True

Function Name Characters That Become True

isalnum '0 ' to '9 ', 'A' to 'Z', 'a ' to 'z'

isalpha 'A ' to 'Z ', 'a' to 'z'

iscntrl '\0 ' to '\037 ', '\177'

islower 'a ' to 'z '

isprint '\40 ' to '\176 '

isupper 'A ' to 'Z '

A.2.4 math.h

Table A-20 math.h Specifications

Note: math.h defines macro names EDOM and ERANGE that indicates a standard library error number.

Item C Compiler Specification

Value returned by a mathematical function if an input

parameter is out of the range

Returns a nonnumeric value

Is errno set to the value of macro ERANGE if an underflow

error occurs in a mathematical function?

Yes, it is set.

Does a range error occur if the 2nd parameter in the fmod

function is 0

A range error occurs

154

A.2.4 stdio.h

Table A-21 stdio.h Specifications

Item C Compiler Specification

Is a return character indicating input text end

required?

Not specified. Depends on the low-level interface

routine specifications.

Is a blank character immediately before the carriage

return read?

Number of NULL characters added to data written to

binary file

Initial value of file position specifier in addition mode

Is a file data lost following text file output?

File bufferring specifications

Is a file with file length 0 exists?

File name configuration rule

Can the same files be opened simultaneously?

Output data representation of the %p format

conversion in the fprintf function

Hexadecimal representation

Input data representation of the %p format

conversion in the fscan function, the meaning of – in

the fscanf function

Hexadecimal representation

If – does not follow ^, indicates the range between

the previous and following characters.

Value of errno specified by fgetpos and ftell

functions

The fgetpos function is not supported. The ftell

function does not specify the errno value. The errno

value is determined depending on the low-level

interface routine.

Output format of messages generated by the perror

function

See (a) below for the output message format.

calloc, malloc, or realloc function operation when

the size is 0

0 byte area is allocated.

(a) Messages generated by a perror function follow this format:

<string-literal> : <error-message correpsonding to the error number indicated by errno>

(b) Table A-22 shows the format used to indicate infinity and not a number for floating-point

numbers when using the printf or fprintf function.

155

Table A-22 Infinity and Not a Number

Value Format

Positive infinity ++++++

Negative infinity ––––––

Not a number ******

A.2.6 string.h

Table A-23 string.h Specifications

Item C Compiler Specification

Error message returned by the strerror function See part IV, section 2, Standard Library Error Messages.

A.2.7 Not Supported Library

Table A-24 lists libraries in the C language specifications not supported by the C compiler

Table A-24 Libraries Not Supported by the C Compiler

Header File Library Name

signal.h signal, raise

stdio.h remove, rename, tmpfile, tmpnam

stdlib.h getenv, system

time.h clock, difftime, time, asctime, ctime, gmtime, localtime

156

A.3 Floating-Point Number Specifications

A.3.1 Internal Representation of Floating-Point Numbers

The internal representation of floating-point numbers follows the standard IEEE format. This

section explains this standard.

Internal Representation Format: float is represented in IEEE single precision (32 bits), double

and long double are represented in IEEE double precision (64 bits).

Internal Representation Structure: Figure A-1 shows the structure of float, double, and long

double in internal representation.

float

0

Sign
(1 bit)

Exponent
(8 bits)

Mantissa
(23 bits)

31 30 23 22

double long doubleand

063 62 52 51

Mantissa
(52 bits)

Exponent
(11 bits)

Sign
(1 bit)

Figure A-1 Structure for the Internal Representation of Floating-Point Numbers

The elements of the structure have the following meanings.

(i) Sign

This indicates the sign of a floating-point number. Positive and negative are represented by

0 and 1, respectively.

(ii) Exponent

This indicates the exponent of a floating-point number as a power of two.

(iii) Mantissa

This determines the significant digits of a floating-point number.

157

Types of Values: Floating-point numbers can represent infinity in addition to general real numbers.

The rest of this section explains the types of values that can be represented by floating-point

numbers.

(i) Normalized Number

The exponent is not 0 or the maximum. A normalized number represents a general real

number.

(ii) Denormalized Number

The exponent is 0 and the mantissa is not 0. A denormalized number is a real number

whose absolute value is very small.

(iii) Zero

The exponent and mantissa are both 0. Zero represents the value 0.0.

(iv) Infinity

The exponent is the maximum and mantissa is 0.

(v) Not a Number

The exponent is the maximum and the mantissa is not 0. This is used to represent an

operation result that is undefined (such as 0.0/0.0, ∞/∞, ∞ − ∞).

Table A-25 shows the conditions used to determine values represented by floating-point

numbers.

Note: A denormalized number represents a floating-point number whose absolute value is so

small that it cannot be represented as a normalized number. Denormalized numbers have

less significant digits than normalized numbers. The significant digits of a result are not

guaranteed if either the operation result or an intermediate result is a denormalized number.

Table A-25 Types of Values Represented by Floating-Point Numbers

Exponent

Mantissa 0 Other than 0 or Maximum Maximum

0 0 Normalized number Infinity

Other than 0 Denormalized number Not a number

158

A.3.2 float

float is internally represented as 1 sign bit, 8 exponent bits, and 23 mantissa bits.

Normalized Number: The sign bit is either 0 (positive) or 1 (negative). The exponent is a number

from 1 to 254 (28 – 2). From this value 127 is subtracted and the result is used as the actual

exponent. The range of actual exponents is –126 to 127. The mantissa is a value from 0 to 223 – 1.

For an actual mantissa, it is assumed that the highest order bit (223) is 1 and a decimal point follows

it.

Value represented by a normalized number:

(−1)<sign>
 × 2<exponent> − 127 × (1+ <mantissa> × 2−23)

Example:

Sign: −
Exponent: 10000000(2) − 127 = 1 ((2) indicates decimal data throughout this manual.)

Mantissa: 1.11(2) = 1.75

Value: −1.75 × 21 = –3.5

Denormalized Number: The sign bit is either 0 (positive) or 1 (negative). The exponent is 0 which

makes the actual exponent equal to –126. The mantissa is a value from 1 to 223 – 1. For an actual

mantissa, it is assumed that a highest order bit (223) is 0 and a decimal point follows it.

Value represented by a denormalized number:

(−1)<sign>
 × 2−126 × (<mantissa> × 2−23)

Example:

Sign: +
Exponent: −126

Mantissa: 0.11(2) = 0.75

Value: 0.75 × 2−126

159

Zero: The sign bit is either 0 (positive) or 1 (negative), (i.e., there are two distinct zero values, +0.0

and –0.0). The exponent and mantissa are 0. Both +0.0 and –0.0 represent 0.0. See appendix

A.3.4, Floating-Point Operation Specifications, for differences in each operation depending on the

sign.

Infinity: The sign bit is either 0 (positive) or 1 (negative) (i.e., +∞ and –∞ can be represented).

The exponent is 255 (28 – 1). The mantissa is 0.

Not a Number: The exponent is 255 (28 – 1) and the mantissa is not equal to 0.

Note: The sign of a not a number is arbitrary and the value of the mantissa is not limited (except

that it may not be equal to 0).

A.3.3 double and long double

A double or long double is represented as 1 sign bit, 11 exponent bits, and 52 mantissa bits.

Normalized Number: The sign bit is either 0 (positive) or 1 (negative). The exponent is a number

from 1 to 2046 (211 – 2). From this value 1023 is subtracted and the result is used as the actual

exponent. The range of actual exponents is –1022 to 1023. The mantissa is a value from 0 to 252 –

1. For an actual mantissa, it is assumed that the highest order bit (252) is 1 and a decimal point

 follows it.

Value represented by a normalized number:

(−1)<sign>
 × 2<exponent> − 1023 × (1 + <mantissa> × 2−52)

Example:

Sign: +

Exponent: 1111111111(2) − 1023 = 0

Mantissa: 1.111(2) = 1.875

Value: 1.875 × 20 = 1.875

160

Denormalized Number: The sign bit is either 0 (positive) or 1 (negative). The exponent is 0

which makes the actual exponent equal to –1022. The mantissa value is from 1 to 252 – 1. For an

actual mantissa, it is assumed that the highest order bit (252) is 0 and a decimal point follows it.

Value represented by a denormalized number:

(−1)<sign>
 × 2−1022 × (<mantissa> × 2−52)

Example:

Sign: −
Exponent: −1022
Mantissa: 0.111(2) = 0.875

Value: 0.875 × 2−1022

Zero: The sign bit is either 0 (positive) or 1 (negative) (i.e., there are two distinct zero values +0.0
and –0.0). The exponent and mantissa are 0. Both +0.0 and –0.0 represent 0.0. See appendix
A.3.4, Floating-Point Operation Specifications, for differences in each operation depending on the
sign.

Infinity: The sign bit is either 0 (positive) or 1 (negative) (i.e., +∞ and –∞ can be represented).

The exponent is 2047 (211 – 1). The mantissa is 0.

Not a Number: The exponent is 2047 (211 – 1) and the mantissa is not equal to 0.

Note: The sign of a not a number is arbitrary and the value of the mantissa is not limited (except

that it may not be equal to 0).

161

A.3.4 Floating-point Operation Specifications

This section explains the floating-point arithmetic used in C language functions. It also gives the

specifications for converting between the decimal representation and the internal representation of

floating-point numbers generated during C compiler or standard library function processing.

Arithmetic Operation Specifications:

(i) Result Rounding

If the precise result of a floating-point operation exceeds the significant digits of the

internally represented mantissa, the result is rounded as follows:

➀ The result is rounded to the nearest internally representable floating-point number.

➁ If the result is directly between the two nearest internally representable floating-point

numbers, the result is rounded so that the lowest bit of the mantissa becomes 0.

(ii) Overflow and Underflow Handling

Invalid operations, overflows and underflows resulting from numeric operations are

handled as follows:

➀ For an overflow, positive or negative infinity is used depending on the sign of the result.

➁ For an underflow, positive or negative zero is used depending on the sign of the result.

➂ An invalid operation is assumed when: (i) infinity is added to infinity and each infinity

has a different sign, (ii) infinity is subtracted from infinity and each infinity has the

same sign, (iii) zero is multiplied by infinity, (iv) zero is divided by zero, or (v) infinity

is divided by infinity. In each case, the result is not a number.

➃ In any case, the variable errno is set to the error number corresponding to the error. See

part IV, Error Messages, section 2, C Library Error Messages, for the error number.

Note: Operations are performed with constant expressions at compile time. If an overflow,

underflow, or invalid operation is detected during these operations, a warning-level error

occurs.

(iii) Special Value Operations

More about special value (zero, infinity, and not a number) operations:

➀ The result is positive zero if positive zero and negative zero are added.

➁ If zero is subtracted from zero and both zeros have the same sign, the result is positive

zero.

➂ The operation result is always a not a number if one or both operands are not a

numbers.

➃ Positive zero is equal to a negative zero for relational operations.

162

➄ If one or both operands are not a numbers in a relational or equivalence operation, the

result of != is always true and all other results are false.

Conversion between Decimal Representation and Internal Representation: This section

explains the conversion between floating-point constants in a source program and floating-point

constants in internal representation. The conversion between decimal representation and

internal representation of ASCII string literal floating-point numbers by library functions is also

explained.

(i) To convert a floating-point number from decimal representation to internal representation,

the floating-point number in decimal representation is first converted to a floating-point

number in normalized decimal representation. A floating-point number in normalized

decimal representation is in the format ±M × 10±N. The following ranges of M and N are

used:

➀ For normalized float

0 ≤ M ≤ 109 − 1
0 ≤ N ≤ 99

➁ For normalized double and long double

0 ≤ M ≤ 1017 − 1
0 ≤ N ≤ 999

An overflow or underflow occurs if a floating-point number in decimal representation

cannot be normalized. If a floating-point number in normalized decimal representation

contains too many significant digits, as a result of the conversion, the lower digits are

discarded. In the above cases, a warning-level error occurs at compile time and the

variable errno is set equal to the corresponding error number at run time.

To convert a floating-point number from decimal representation to normalized decimal

representation, the length of the original ASCII string literal must be less than or equal to

511 characters. Otherwise, an error occurs at compile time and the variable errno is set

equal to the corresponding error number at run time.

To convert a floating-point number from internal representation to decimal representation,

the floating-point number is first converted from internal representation to normalized

decimal representation. According to a specified format, the result is then converted to an

ASCII string literal.

163

(ii) Conversion between Normalized Decimal Representation and Internal Representation

If the exponent of a floating-point number to be converted between decimal representation

and internal representation is too large or too small, a precise result cannot be obtained.

This section explains the range of exponents for precise conversion and the error that

results from exceeding the range.

a) Range of Exponents for Precise Conversion

Rounding as explained in the description, Result Rounding, in appendix A.3 4,

Floating-point Operation Specifications, is performed precisely for floating-point

numbers whose exponents are in the following ranges:

➀ For float : 0 ≤ M ≤ 109 − 1, 0 ≤ N ≤ 13

➁ For double and long double: 0 ≤ M ≤ 1017 − 1, 0 ≤ N ≤ 27

An overflow or underflow will not occur if the exponent is within the proper

ranges.

b) Conversion and Rounding Error

The difference between, (i) the error occurring when the exponent outside the proper

range is converted, and (ii) the error occurring when the value is precisely rounded,

does not exceed the result of multiplying the lowest significant digit by 0.47. If an

exponent outside the proper range is converted, an overflow or underflow may occur.

In such a case, a warning-level error occurs at compile time and the variable errno is set

equal to the corresponding error number at run time.

164

Appendix B Parameter Allocation Example

Example 1: Register parameters are allocated to registers from R4 to R7 depending on the order of

declaration.

Example 2: Parameters which could not be allocated to registers from R4 to R7 are allocated to

the stack area as shown below. If a char (unsigned) or short (unsigned) type parameter is

allocated to a parameter area on a stack, it is extended to a 4-byte area.

int f(char,short,int,float);
 :
 f(1,2,3,4.0);

:

R4

R5

R6

R7

1Sign extension

2

3

4.0

Sign extension

int f(int,short,long,float,char);
 :
 f(1,2,3,4.0,5);

 :

R4

R5

R6

R7

1

2

3

4.0

Sign extension

5Sign extension
Parameter area
(stack)

Lower address

Upper address

165

Example 3: Parameters having a type that cannot be allocated to registers from R4 to R7 are

allocated to the stack area.

Example 4: If a function whose number of parameters changes is specified by prototype

declaration, parameters which do not have a corresponding type in the declaration and the

immediately preceding paramters are allocated to a stack.

struct s {int x,y;} a;
int f(int,struct s,int);
 :
 f(1,a,3);
 :

R4

R5

1

3

a.xParameter area
(stack)

Lower address

Upper address

a.y

int f(double,int,int,...)
 :
 f(1.0,2,3,4);
 :

R4 2

Parameter area
(stack)

Lower address

Upper address

4

3

1.0

166

Example 5: If no prototype is declared, char and float types are extended to int and double types,

respectively.

Example 6: If a value returned by a function exceeds 4 bytes, or is a structure type, a return value

is specified just before parameter area. If structure size is not a multiple of four, an unused area is

generated.

Parameter area
(stack)

Lower address

Upper address

int f();
char a;
float b;
 :
 f(a,b);
 :

b

aR4

Parameter area
(stack)

Lower address

Upper address

struct s{char x,y,z;}a,b;
double f(struct s);
 :
 f(a);
 :
 :

Return value
setting area

Return value address

a.za.x a.y
Unused
area

167

Appendix C Usage of Registers and Stack Area

This section describes how to use registers and stack area by the C compiler. The user does not

need to note how to use this area, because registers and stack area used by a function are operated

by the C compiler. Figure C-1 shows the usage of registers and stack area.

Figure C-1 Usage of Registers and Stack Area

For return value storage

R0–R14: For variable or temporary data storage
R4–R7: For parameter storage (indicated by

R0

R1

R2

R3

R4

R5

R6

R7

R10

R9

R8

R11

R12

R13

R14

R15 (SP)

Frame size
Area used by
the function

Return value address

Parameter area

Stack area

4 bytes

Stack frame

Lower address

Upper address

Stack area

)

168

Appendix D Creating Termination Functions

D.1 Creating Library onexit Function

This section describes how to create library onexit function that defines termination routines. The

onexit function defines a function address, which is passed as a parameter, in the termination

routine table. If the number of defined functions exceeds the limit value (assumed to be 32 in the

following example), or if the same function is defined twice or more, NULL is returned.

Otherwise, value other than NULL is returned. In the following example, an address in which a

function is defined is returned. An example of onexit routine is shown below.

Example:

#include <stdlib.h>
typedef void *onexit_t ;

int _onexit_count=0 ;
onexit_t (*_onexit_buf[32])(void) ;

extern onexit_t onexit(onexit_t (*)(void)) ;

onexit_t onexit(f)
onexit_t (*f)(void) ;
{
 int i;

 for(i=0; i<_onexit_count ; i++) /*Checks if the same function has been defined*/
 if(_onexit_buf[i]==f)
 return NULL ;
 if (_onexit_count==32) /*Checks if the No. of defined functions exceed limit*/
 return NULL ;
 else{
 _onexit_count++ ;
 _onexit_buf[_onexit_count]=f ; /*Defines the function address*/
 return &_onexit_buf[_onexit_count];
 }
}

169

D.2 Creating exit Function

This section describes how to create exit function that terminates program execution. Note that the

exit function must be created according to the user system specifications refereing to the following

example, because how to terminate a program differs depending on the user system.

The exit function terminates C program execution based on the termination code returned as a

paramter and then returns to the environment at program initiation. Returning to the environment at

program initiation is achieved by the following two steps:

(1) Sets a termination code in an external variable

(2) Returns to the environment that is saved by the setjmp function immediately before

calling the main function

An example of the exit function is shown below.

#include <setjmp.h>
#include <stddef.h>

typedef void * onexit_t ;
extern int _onexit_count ;
extern onexit_t (*_onexit_buf[32])(void) ;

extern jmp_buf _init_env ;
extern int _exit_code ;

extern void _CLOSEALL();
extern void exit(int);

void exit(code)
int code ;
{
 int i;

 _exit_code=code ; /*Sets return code to _exit_code */

 for(i=_onexit_count-1; i>0; i--) /*Sequencially executes functions defined by onexit*/
 (*_onexit_buf[i])();

 _CLOSEALL(); /*Closes all files opened*/

 longjmp(_init_env, 1) ; /*Returns to the environment saved by the setjmp*/

}

170

Note: To return to the environment before program execution, create the callmain function and

call the callmain function instead of calling the main function from the init routine as shown

below.

D.3 Creating abort Routine

To terminate the routine abnormally, the program must be terminated by a abort routine prepared

according to the user system specifications. The following shows an example of abort routine in

which an error message is output to the standard output device, closes all files, enters endless loop,

and wait for reset.

Example:

#include <setjmp.h>

jmp_buf _init_env;
int _exit_code;

void callmain()
{

 /*Saves current environment by setjmp function and calls the main function */

 /*Terminates C program if a termination code is returned from the exit function*/

 if(!setjmp(_init_env))
 _exit_code=main();
}

#include <stdio.h>

extern void abort(void);

extern void _CLOSEALL();

void abort()
{

 printf("program is abort !!\n"); /*Outputs message */

 _CLOSEALL(); /*Closes all files */

 while(1); /*Enters endless loop */

}

171

Appendix E Examples of Low-Level Interface Routine

/**/
/* lowsrc.c: */
/*- */
/* SH-series simulator debugger interface routine */
/* - Only standard I/O files (stdin, stdout, stderr) are supported */
/**/
#include <string.h>

/* file number */

#define STDIN 0 /* Standard input (console) */
#define STDOUT 1 /* Standard output (console) */
#define STDERR 2 /* Standard error output (console) */

#define FLMIN 0 /* Minimum file number */
#define FLMAX 3 /* Maximum number of files */

/* file flag */

#define O_RDONLY 0x0001 /* Read only */
#define O_WRONLY 0x0002 /* Write only */
#define O_RDWR 0x0004 /* Both read and write */

/* special character code */

#define CR 0x0d /* Carriage return */
#define LF 0x0a /* Line feed */

/* size of area managed by sbrk */

#define HEAPSIZE 1024

/**/
/* Declaration of reference function */
/* Reference of assembly program in which the simulator debugger input or */
/* output characters to the console */
/**/
extern void charput(char); /* One character input */
extern char charget(void); /* One character output */

/**/
/* Definition of static variable: */
/* Definition of static variables used in low-level interface routines */
/**/

char flmod[FLMAX]; /* Open file mode specification area */

static union {
 long dummy ; /* Dummy for 4-byte boundary */
 char heap[HEAPSIZE]; /* Declaration of the area managed by sbrk */
 }heap_area ;

static char *brk=(char *)&heap_area;/* End address of area assigned by sbrk */

172

173

/**/
/* open:file open */
/* Return value:File number (Pass) */
/* -1 (Failure) */
/**/
int open(char *name, /* File name */
 int mode) /* File mode */
{
 /* Check mode depending on file name and return file numbers */

 if(strcmp(name,"stdin")==0){ /* Standard input file */
 if((mode&O_RDONLY)==0)
 return -1;
 flmod[STDIN]=mode;
 return STDIN;
 }

 else if(strcmp(name,"stdout")==0){ /* Standard output file */
 if((mode&O_WRONLY)==0)
 return -1;
 flmod[STDOUT]=mode;
 return STDOUT;
 }

 else if(strcmp(name,"stderr")==0){ /* Standard error file */
 if((mode&O_WRONLY)==0)
 return -1;
 flmod[STDERR]=mode;
 return STDERR;
 }

 else
 return -1; /* Error */
}

/**/
/* close:File close */
/* Return value:0 (Pass) */
/* -1 (Filure) */
/**/
int close(int fileno) /* File number */
{
 if(fileno<FLMIN || FLMAX<fileno) /* File number range check */
 return -1;

 flmod[fileno]=0; /* File mode reset */
 return 0;
}

/**/
/* read:Data read */
/* Return value:Number of read characters (Pass) */
/* -1 (Failure) */
/**/
int read(int fileno, /* File number */
 char *buf, /* Destination buffer address */
 unsigned int count) /* Number of read characters */
{
 unsigned int i;

 /*Check mode according to file name and stores each character in buffer*/

 if(flmod[fileno]&O_RDONLY||flmod[fileno]&O_RDWR){
 for(i=count; i>0; i--){
 *buf=charget();
 if(*buf==CR) /*Line feed character replacement*/
 *buf=LF;
 buf++;
 }
 return count;
 }
 else
 return -1;
}

/**/
/* write:Data write */
/* Return value:Number of write characters (Pass) */
/* -1 (Failure) */
/**/
int write(int fileno, /* File number */
 char *buf, /* Destination buffer address */
 unsigned int count) /* Number of write characters */
{
 unsigned int i;
 char c;

 /* Check mode according to file name and output each character */

 if(flmod[fileno]&O_WRONLY || flmod[fileno]&O_RDWR){
 for(i=count; i>0; i--){
 c=*buf++;
 charput(c);
 }
 return count;
 }
 else
 return -1;
}

174

/**/
/* lseek:Definition of file read/write position */
/* Return value:Offset from the top of file read/write position(Pass)*/
/* -1 (Failure) */
/* (lseek is not supported in the console input/output) */
/**/
long lseek(int fileno, /* File number */
 long offset, /* Read/write potision */
 int base) /* Origin of offset */
{
 return -1;
}

/**/
/* sbrk:Data write */
/* Return value:Start address of the assigned area (Pass) */
/* -1 (Failure) */
/**/
char *sbrk(unsigned long size) /* Assigned area size */

 char *p ;

 if(brk+size>heap_area.heap+HEAPSIZE) /* Empty area size */
 return (char *)-1 ;

 p=brk ; /* Area assignment */
 brk += size ; /* End address update */
 return p ;
}

175

;- -
; lowlvl.src |
;- -
; SH-series simulator debugger interface routine |
; -Input/output one character- |
;- -
 .EXPORT _charput
 .EXPORT _charget
SIM_IO: .EQU H'0080 ;Specifies TRAP_ADDRESS

 .SECTION P, CODE, ALIGN=4

;- -
; _charput: One character output |
; C program interface: charput(char) |
;- -

_charput:
 MOV.L A_PARM, R1
 MOV R4, R0 ;Specifies data
 MOV.B R0, @(3, R1)
 MOV #H'21, R0 ;Specifies function code
 MOV.B R0, @R1
 MOV.L A_FILENO, R0 ;Specifies file number
 MOV.B @R0, R0
 MOV.B R0, @(2, R1)
 MOV R1, R0 ;Specifies parameter block address
 TRAPA #SIM_IO
 NOP
 RTS
 NOP

;- -
; _charget: One character input |
; C program interface: char charget(void) |
;- -

_charget:
 MOV.L A_PARM, R1
 MOV #H'20, R0 ;Specifies function code
 MOV.B R0, @R1
 MOV.L A_FILENO, R0 ;Specifies file number
 MOV.B @R0, R0
 MOV.B R0, @(2, R1)
 MOV R1, R0 ;Specifies parameter block address
 TRAPA #SIM_IO
 NOP
 MOV.L A_PARM, R1
 MOV.B @(3, R1), R0 ;References data
 RTS
 NOP

 .ALIGN 4
A_PARM: .DATA.L PARM ;Parameter block address
A_FILENO: .DATA.L FILENO ;File number area address

;- -
; I/O buffer definition |
;- -

 .SECTION B,DATA,ALIGN=4

PARM: .RES.L 1 ; Parameter block area
FILENO: .RES.B 1 ; File number area

 .END

176

Appendix F ASCII Codes

0 1 2 3 4 5 6 7

0 NUL LE SP 0 @ P ` p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 " 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB ' 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ l |

D CR GS – = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL

LOWER 4 BITS

UPPER 4 BITS

177

Numbers

Decimal and internal representation 163

A
abort routine (termination routine) 171
Aggregate-type data 27
Alignment 24, 26
Area size calculation 58, 63

Heap area 66
Stack area size calculation 58
Stack area 63

Array type 27
ASCII codes 177
asmcode (suboption) 9

B
Bit field 28, 150
bss (suboption) 9

C
C compiler listings 12
char-type data 26, 146
C library function 60, 153

Error messages output for the C library
functions 140

C library function execution environment
setting 73

Closing files 79
Initialization 75
Initializing C library functions 76
Initializing sections 76
Low-level interface routines 80
Program configuration 73
Vector table setting 74

close routine (low-level interface routine) 84
code (option) 9
Coding notes 51
command line specification (C compiler
listings) 17
Compiler option 9

C compiler options 5, 6
C compiler option listings 9
Option combinations 11

const (suboption) 9
Constant area 24
cpu (option) 9
Creating low-level interface routines 80

Creating termination function 169
Creating abort routine 171
Creating exit function 170
Creating library onexit function 169

D
data (suboption) 9
debug (option) 9
Debug information 9, 11, 54
define (option) 9
Denormalized number 158
double 26, 148, 160
Dynamic area 24, 63

Dynamic area allocation 63
Heap area 24, 66
Stack area 24, 63

Dynamic area size calculation 63

E
errno 76
Error levels (error message levels) 92

Error level 92
Fatal level 92
Internal level 92
Warning level 92

Error messages 91
C compiler action and programmer
response for each error level 92
Error levels 92
Error message format 91
Error message output for the C compiler
library functions 140

Execution environment setting 67
Initialization 69
Program configuration 67
Section initialization 70
Vector table setting 68

exit function (termination routine) 170
expansion (suboption) 9
Exponent 157
Extended specifications 43

Interrupt functions 43
Intrinsic functions 47

External identifier 32

Index

179

F
Fatal level (error message level) 92
File close 79
File extension 8
File I/O operation 57, 77, 80

close routine 84
lseek routine 87
open routine 82
read routine 85
sbrk routine 88
write routine 86

File naming 8
float 26, 148, 159
Floating-point number specifications 148, 157

Denormalized number 158
Exponent 157
Infinity 158
Limits on floating-point numbers 148
Internal representation format 157
Mantissa 157
Normalized number 158
Not a number 158
Sign 157
Types of values 158

Floating-point operation specifications 162
Conversion between decimal represen-
tation and internal representation 163
Invalid operation 162
Overflow 162
Result rounding 162
Special value operations 162
Underflow 162

Frame size 15, 64, 168
Function call interface 34

G
Global base register (GBR) 47, 48

H
Heap area 24, 66
help (suboption) 9
How to invoke the C compiler 5

I
include (option) 9
include (suboption) 9
Include file 8

Reading an include file 152
Standard include file 4

Infinity 158

int 26, 147
Initialization 67, 69, 74, 75
Initialized data area 24
Internal data representation 26
Internal errors 92
Internal representation 26, 157
Internal representation of scalar-type data 26
Interrupt functions 43

Stack switching specification 43, 44
Trap-instruction return specification 43, 44

Intrinsic functions 47
Invalid operation 162
I/O operation 57

Concept of I/O operations 80
Low-level interface routine 80
Routine for standard library function 77

J

K

L
Language specifications 145

Arrays and pointers 149
assert.h 153
Characters 146
C library function specifications 153
Compilation specifications 145
ctype.h 154
Declarations 151
Environmental specifications 145
Floating-point numbers 148
Floating-point number specifications 157
Identifiers 145
Integer 147
Integer types and their corresponding data
range 147
Limits on floating-point numbers 148
math.h 154
Modifier 150
Not supported library 156
Preprocessor 152
Register 149
Statement 151
stddef.h 153
stdio.h 155
string.h 156
Structure, union, enumeration, and bit
field types 150

length (suboption) 9

180

Library 4
C library function 4, 60
Error messages output for the C library
functions 140
Initializing C library functions 76
Low-level interface routine 80
Not supported library 156
Run time routine 4, 60
Standard library file 4

Limitation 21, 22
Linkage with assembly programs 31

Allocating deallocating stack frames 34
External identifier reference 32
Function call interface 34
Registers 35
Setting and referencing parameters and
return values 37
Stack pointer 34

listfile (option) 9
Listing 12

command line specification 17
Object information listing 15
Source listing 13
Statistics information 16
Structure of C compiler listings 12

long double 26, 148, 160
Low-level interface routines 80

close routine 84
Examples of low-level interface routine
172
lseek routine 87
open routine 82
read routine 85
sbrk routine 88
write routine 86

lseek routine (low-level interface routine) 87

M
machinecode (suboption) 9
Macro name definition 9
Mantissa 157
Memory allocation 57

sbrk routine 80, 88
Memory area allocation 58

Area size calculation 58, 63
Example: Memory area allocation and
address specification at program
linkage 61
Dynamic area allocation 63
Initialized data area allocation 61

ROM and RAM allocation 61
Static area allocation 58

N
Non-initialized data area 24
Normalized number 158
Not a number 158
Notes on programming 51

Coding notes 51
Notes on programming development 54

O
object (suboption) 9
objectfile (option) 9
Object information (C compiler listings)
12, 15
onexit function (termination routine) 169
open routine (low-level interface routine) 82
optimize (option) 9
Optimization level 9
Overflow 162

P
Parameter 37

Parameter allocation example 165
Parameter area allocation 39
Passing parameters 37
Rules on type conversion 37
Stack parameter area 39
Storage registers 41

#pragma interrupt 43
program (suboption) 9
Program area 24
Program configuration 67, 73
Program development notes 54
PR register 36

Q

R
read routine 85
Register 149

Parameter register 41, 168
Return value storage register 42
Rules on changes in registers after a
function call 35
Usage of registers 168

Reserved words 80
Result rounding 162

181

Return value 37
General rules concerning return values 37
Return value address 42
Return value setting location 42
Return value storage register 42

ROM (linkage editor option) 62
ROM and RAM allocation 61
ROM option 62
Run time routines 4, 60

S
sbrk routine (low-level interface routine) 88
section (option) 9
Section 24

Constant area 22
Initialized data area 22
Non-initialized data area 22
Program area 22
Section name 9, 22
Section initialization 70, 76

short 26, 147
show (option) 9
SH series 3
Sign 157
Sign extension 30
source (suboption) 9
Source listing information (C compiler list-
ing) 12, 13
Stack area 24, 63

Higher addresses 34
Lower address 34

Stack frame 34, 168
frame size 15, 168

Stack pointer (SP) 34, 66, 68
Stack switching specification (interrupt
function) 43, 44
Standard include file 4
Standard library file 4, 59
start (linkage editor option) 62
Static area size calculation 58
statistics (suboption) 9
Statistics information (Compiler listings)
12, 16
Status register (SR) 44, 47
Structure of object programs 24
Structure type 27, 150
Suboption 9
Systems 5

System installation 57
Initialization 69
Program configuration 67
Section initialization 70
Vector table setting 68

T
TRAPA instruction (interrupt function) 43
Trap-instruction return specification
(interrupt function) 43, 44
Troubleshooting 54

U
Underflow 162
Union type 27, 150
unsigned 26, 147

V
Vector base register (VBR) 47
Vector table setting 67, 68, 74

W
width (suboption) 9
write routine (low-level interface routine) 86

X

Y

Z
Zero extension 28

182

