Hitachi Microcomputer Support Software

SH Series C Compiler
USER’'SMANUAL
HITACHI

ADE-702-095
HSO0700CLCU1SE

The Copyright Statement

Preface

Thismanual explains the facilities and operating procedures for the SH series C compiler (Ver. 2.0).
The C compiler translates source programs written in C into rel ocatable object programs or
assembly programs for Hitachi SH7000 series RISC microcomputers.

Thismanual consists of four parts and appendixes. The information contained in each part is
summarized below.

(1) PART I OVERVIEW AND OPERATIONS
The overview sections cover the following:
v C compiler functions
w Developing procedures
The operation sections cover the following:
X How to invoke the C compiler
Y Optional functions
Z Listings created by the C compiler

(2) PART Il PROGRAMMING
This part explains the limitations of the C compiler and the special factorsin object
program execution which should be considered when creating a program.

(3) PART Il SYSTEM INSTALLATION
This part explains the requirements when installing an object program generated by the C
compiler on asystem. They are the object program being written in ROM and memory
alocation. In addition, specifications of the low-level interface routine must be made by
the user when using standard 1/0 library and memory management library.

(4) PART IV ERROR MESSAGES
This part explains the error messages corresponding to compilation errors and the standard
library error messages corresponding to run time errors.

This manual corresponds to operating systems that function on UNIX, MS-DOS, or IBM-PC
systems. In this manual, operating systems functioning on MS-DOS or IBM-PC systems are
referred to as PC systems.

Notes on Symbols:. The following symbols are used in this manual.

Symbols Used in This Manual

Symbol Explanation
<> Indicates an item to be specified.
[] Indicates an item that can be omitted.

Indicates that the preceding item can be repeated.

A Indicates one or more blanks.

(RET) Indicates the carriage return key (return key).

| Indicates that one of the items must be selected.

(CNTL) Indicates that the control key should be held down while pressing the

key that follows.

UNIX isan operating system administrated by the UNIX System Laboratories (United States).
MS-DOS is an operating system administrated by the Microsoft Corporation (United States).
IBM-PC is an personal computer system administrated by IBM (United States).

Contents

Part | OVERVIEW AND OPERATIONS. ..., 1
SECHON L OVEIVIEW ..ottt b 3
Section 2 DevelOping ProCRAUIES............ccoiirencneeceeeie st 4
Section 3 C COMPIlEr EXECULION|........ooooooooceeeeoeeeeeeeeeeeseeeseeeeeessssesesosssenees s 5
3.1 How to Invoke the C COMPITENoiiiieee e 5
3.2 NAMING FIIES.....eiee et b e bttt b e bbbt enes 8
3.3 COMPIIEN OPLIONS.....ceiiiitiitisieeieeieeee ettt bbbttt et e b e b b besreeneenes 9
3.4 OptioN COMDINGLIONS........citiiiirieeieeieee ettt e et se et b b ae st ne e s e nsestesbesbesneeneeneas 11
I O @0 o /o | = g I (] 00 SRRV 12
Part Il PROGRAMMINGI ...ttt 19
Section 1 Limitations of the C Compiler.|........ccooovuiiviecceieececeeeeeee e, 21
Section 2 Executing @ C PrOgramM |.........c.cccicuiieicinieieeeeee e, 23
2.1 Structure of OBJECt PrOgramS........ccceiueeiiiiie ettt 24
2.2 Internal Data REPIrESENIALION.........cciviieeceeie ettt e ee e e sreeeesreenneas 26
2.3 Linkage with ASSembly Programs..........ccccceeceieeiiiieeiiese st see s sie e s see e e 31
2.3.1 Externa ldentifier REFEIENCE........cociiiiriiieeerese e 32
2.3.2 FUNCLION Call INEEITACE......ceeeeee e 34

| Section 3 Extended SPECifiCatioNnS..............oooovooooooooeeceeccceeerereeseeeeeeeeesesssssssssss s 43
3.1 INEETUPL FUNCLIONS.......cuieieceecie ettt e n e e s ne e neeneesreenenneens 43
3.2 INLINSIC FUNCHIONS ..ottt sttt b e b snenneeneas 47
Section 4 Notes on Programming|............ccccuueeerieerereieessee e sessenan, 51
L R @0 To] oo T NN () (== PR 51
4.2 Noteson Programming DevElOPMENt...........ccoeiieiieii e 54

Part Il SYSTEM INSTALLATION [55

SECHON L OVEIVIEW [ttt 57
Section 2 Allocating MemOry ATE8S,.......c.cvvueveueeeiereeeeeee e e, 58
2 S v (o AN (== W Y oo o] o PSSO 58
211 DatatobeAllocated iN StaliC ATEa........ccveeeeerieriene st 58
212 Static AreaSize CalCUlAtioN........ccooiiiieiieieie e 58
2.1.3 ROM and RAM AIIOCALIONccueiuiiieiiieiesieeieee et eneas 61
214 Initialized Data Area AllOCEHON.........ccoeiieieieere et 61
2.1.5 Example: Memory Area Allocation and Address Specification at Program
LINKBOE ...ttt e e re e e reeanas 61
2.2 DynamiC Ar€a AllOCALIONcoueiieeeeie ettt 63
A R B 1Y 0= 10 T o AN == SRS 63
2.2.2 Dynamic AreaSize CalCulationccccoeieeiiieieeceeceee et 63
2.2.3 Rulesfor Allocating DYNamiC AT€a........cccceeiueiieeieeie et 66
Section 3 Setting the Execution ENVIiroNmMent |...............ccoeeeeeeeeeeecseeecieseceeen, 67
3.1 Vector Table Setting (WVEC TBL) ...c.ooiieiceeeee ettt s 68
3.2 INItIAiZation (. INIT) coeeeceee ettt e saeesreenesnaene s 69
3.3 Section INitialization (_ INITSCT) .ottt s 70
| Section 4 Setting the C Library Function Execution Environment |....................... 73
4.1 Setting Vector Table (VEC _TBL) ...ociiiieece ettt st 74
4.2 Initializing REGISLEIS (_ INIT) oo 75
4.3 Initializing SeCtionNS (. _INITSCT) ..uocoieee ettt 76
4.4 Initializing C Library FUNctions (_ _INITLIB) ..cocieiieieceeeeeseee et 76
4.4.1 Creating Initialization Routine for Standard 1/0 Library Function
(UINTT_TOLIB) vttt ettt sttt sttt sttt sttt seneenesnns 77
4.4.2 Creating Initialization Routine for Other Library Function
(UINIT_OTHERLIB) .ttt 78
45 ClosiNg FIlES ((_CLOSEALL) .ottt sne e 79
4.6 Creating Low-Level Interface ROULINES.........ccooveiieieee e 80

Part IV ERROR MESSAGES...........coooiiee s 89

Section 1 Error Messages Output by the C Compiler .L.......ccccoeevcvicicciicecre. 91
1.1 Error MESSAgE FOIMME@L.........uvi ittt s tee e tee ettt esbe e s e e sabe e e snne e e snneeennseeens 91
1.2 C Compiler Action and Programmer Response for Each Error Level.............cccccveuneeeee. 92
1.3 LiSt Of ErTOr MESSAQES. ... cciuiiueeiticiecie st ettt sttt ettt st te s e e steeneeneesbeenesneenneenne e 93
Section 2 Error Messages Output for the C Library Functionsi............................ 140
APPENDIX [ttt ettt b e 143

Appendix A | Language and Standard Library Function Specifications

Of the C COMPIIEN ..., 145

A.1 Language Specifications of the C COMPIIErccccevieiiiieeiieieeeseee e 145
A.1.1 Compilation SPECITICALIONScccueiueeiiiciecieecieee e 145
A.1.2 Environmental SPeCIfiCalioNSccccveieiieiice e 145
N S T [1= 01 1= SRR 145
N O = o (= TSRS 146
N T 1= [OSSR 147
A.1.6 Floating-Point NUMDENSccoiiiiieiece e e 148

A L7 ArrayS and POINLErSccoeiuieiiicie ettt ettt re e 149
FN T o 1 1= SRS 149
A.1.9 Structure, Union, Enumeration, and Bit Field Types.........cccceeeveeiveieceesieenee, 150
N O IV oo [= RS 150
A.L11 DECIArBIIONS. .. .cveieeeeeeieeieeeeie ettt stesbe st b sbeese e e e e steseesbesresnensennens 151

F I S = = 101 | S 151

N B B o 1 0] 10005 o SRR 152

A.2 CLibrary FUNCtiON SPECITICALIONS..........cceiuieiieeiieciecteee et 153
A21 SIAAEFN i 153

A 2.2 BSSEMTN it re e 153
G T o Y/ o= o TSRS 154
A28 MBININ e et nre s 154
A25 SIAION oo e 155
N ST 1 o X o OSSR 156
A.2.7 NOt SUPPOIEd LIDIarycccueeieeieceece ettt s 156

A.3 Foating-Point Number SpeCifiCations............cceoiieiiieie i 157
A.3.1 Internal Representation of Floating-Point Numbers...........ccccceveevviieceeciecnee 157

ALB2 FIOBL ... e 159

A.3.3 doubleand 1ong dOUDIE..........ccooiiiiiie e 160

A.3.4 Floating-point Operation SPeCifiCatioNS.........ccccoieereriirriereeie e 162
Appendix B Parameter Allocation Example]..........ccconcnnncneeeeres 165
Appendix C Usage of Registers and Stack Area........cccooeveveveenenieneseseees 168
Appendix D Creating Termination FUNCHIONS |...........ccoeveninenieseneseeeseees 169
D.1 Creating Library onexit FUNCHON.couiiirieiieeee e 169
D.2 Creating eXit FUNCLION.coiiiiiieiieie ettt sbe e s nes 170
D.3 Creating abort ROULINE..........couiiiiieie ettt sbe e s nes 171
Appendix E Examples of Low-Level Interface Routing|............ccccocvevinicininnnnes 172
APPENTIX F ASCIH COUES,.......corieiieeiririesenie et 177
1070 1= OO 178

Vi

Figures

Part |

2-1 Relationship between the C Compiler and Other Software...........cccooecvevvevecveeceececee 4
3-1 Source Listing Output for show=noinclude and NOEXPaNSION...........cccceeeveeeerreeieeseennens 13
3-2 Source Listing Output for show=include and expansion............ccccccceeveeveseesesieseennns 13
1 e B @ o 1= o: I oo SRS 15
34 SEtiStCS INFOMMELION.cc.iiiiiieiee et b e e eneas 16
35 command line SPECITICALION.........cceeiuiiiicieie e 17
Part ||

2-1 Allocation and Deallocation of a Stack Frame..........ccoceveviiiniencieneree e 34
2-2 Parameter Area AllOCELIONcccoiiieieieeeeie et 39
2-3 Example of Allocation to Parameter REQISLENS.........ccveivviiecieiececeee e 41
2-4 Return Value Setting Area Used When Return Value Is Written to Memory 42
3-1 Stack Processing by an Interrupt FUNCLION............coviieiicie e 44
Part 11

2-1 Section SIZe INFOrMELTONcc.eeieieese e e 58
2V S P ([AN == WY 1 (oo 1 o] o SRR 62
2-3 Nested Function Calls and Stack SIZe.........ccceeeeiieieiene e 65
3-1 Program Configuration (No C Library Function isUSed)........cccccveeeiieieieesecie e 67
4-1 Program Configuration When C Library Function IsUsedccccocevieveiciececcie e, 73
N e I Y 01N B L - R 78
Part IV

1-1 Error Messages Format (UNIX SYyStEMS)......c.ccceieeiieieeiee et 91
1-2 Error Messages Format (PC SYSIEMS)cceeiuieiieieeciecie ettt 91
Appendix

A-1 Structure for the Internal Representation of Floating-Point Numbers.............c.c......... 157
C-1 Usage of Registers and StaCk AF€a...........covveveiiieiecie e 168

vii

Tables

Part |

3-1 Standard File Extensions Used by the C Compilercceoveieieevicie e 8
32 CCOMPIEr OPLIONS......cccuiiiiiieiti ettt e et beetesaeesse e s e saeenbeensesreenseenne e 9
3-3 Macro Names, Names, and Constants Specified by the define Option..............c.c......... 10
34 Option COMDINGLIONS........cceeitiiieitiesie ettt e s e ste e sre e e e sseesseeresreesseensesneensens 11
3-5 Structure and Contents of C Compiler LiStiNgS........cccceeveieiieiieiieciese e 12
Part ||

1-1 Limitation of the C COMPIIENoceeiieeeeeeee e 21
2-1 Memory AreaTypes and CharaCteritiCS........coueiiiiiiiciice et 24
2-2 Internal Representation of Scalar-Type Data...........ccceevveeeiieeiiiie e 26
2-3 Internal Representation of Aggregate-Type Data.........cccocovevveevieeiecieie e 27
2-4 Bit Field Member SpeCifiCations..........c.covieeiieiicie et 28
2-5 Ruleson Changesin Registers After aFunction Callcccccoeveiieii e 35
2-6 Genera Ruleson Parameter Area AllOCELION..........ccoveieierininieee e 40
2-7 Return Value Type and Setting LOCAHIONccoeiieieeiiecie et 42
31 INnterrupt SPECITICALIONS.........ccui ettt e st e e nesae e 43
3-2 INLNSIC FUNCLIONS ..ottt st besbesne s nneas 47
e R N (01U o] = a0 o) 1] oo TSRS 54
Part 11

2-1 Stack Size Calculation EXAMPIE.........ccveiiieeiieiecee et ne s 65
4-1 Low-Level INterface ROULINEScccoviiieieieieeie e 80
Part IV

1-1 C Compiler Action and Programmer Response for Each Error Level 92
Appendix

A-1 Compilation SPECITICALIONS........cceieeiecie ettt esree e 145
A-2 Environmental SPECIiCaliONS.ccceiieiiiiie e 145
A-3 ldentifier SPECITICALIONScoeeiieeiece e st 145
A-4 Character SPECITICALIONS.ciieieeiececie e ne s 146
A-5 Integer SPECITICALIONScc.ccueeiieeiecie sttt e nre e e saee e 147
A-6 Integer Typesand Their Corresponding Data Rangeccooveeeveeeeceeceecie s 147
A-7 Floating-Point Number SpeCifiCationScccovieeiieieiie e 148

viii

A-9

A-10
A-11
A-12
A-13
A-14
A-15
A-16
A-17
A-18
A-19
A-20
A-21
A-22
A-23
A-24
A-25

Limits on Floating-Point NUMDENS..........ccov e 148

Array and Pointer SPECITICALIONS.........ccccoieiiieiie e ree 149
RegiSter SPECITICAIONSeciiie e 149
Specifications for Structure, Union, Enumeration, and Bit Field Types........c.cccoceenee. 150
Modifier SPECITICALIONSoccuieiiiecie et nreesneas 150
Declaration SPeCIfiCatiONS.cccuieiiiiiece e 151
Statement SPECITICALIONS.........cociiiie e e 151
Preprocessor SPECITICALIONS........ccvciieiiieiie et 152
stddef.h SPECITICALIONS........cceeiie e e 153
ASSErt.N SPECITICALIONS ... e e e re e 153
Ctype.n SPECITICALIONS.eeiiecciie e et 154
Set of Charactersthat REtUINS TIUE.........ooiiiiriiiiereeie e e 154
Math.n SPECITICALIONS........ooiuiicecce e e 154
SEAI0.N SPECITICALIONS.......c.eeeceieciee et 155
Infinity and NOt @NUMDENccueiiiece e ere e 156
SEHNQG.N SPECITICALIONS ...t 156
Libraries Not Supported by the C COMPILES.........ccceeiiiicieiecec e 156
Types of Values Represented by Floating-Point NUMbers..........ccccceeveeiiecieeciiecnen, 158

Xi

PART |

OVERVIEW AND OPERATIONS

Section 1 Overview

The SH series C compiler inputs source programs written in C and outputs rel ocatabl e object
programs or assembly source programs.

The C compiler supports the SH7000-series microcomputers (referred to as SH).

Section 2 Developing Procedures

Figure 2-1 shows the relationship between the C compiler package and other software for program
development. The C compiler package includes the software enclosed by the dotted line.

User
include

source

C source
file

creation

SH series
C compiler

Standard

SH series
cross assembilel

Relo-
catable
object

User
library
file

progra

H series
linkage editol

H series
object convertel

Load

S-type

load
module

module

SH series
simulator/debugge

Target systerr

Software
included in

. the package
include

file

Standard
library
file

Notes: *1. Assembly source programs are output

based on chosen options.

*2. The standard include file defines C

library functions and their macro
names in order to use C library

functions.

*3. A functional group, consisting of C

library functions and run time routines
is used as standard in the C program.
(Refer to section 2.1, Note, in Part Il,

System Installation.)

[is related software required during

program development.

Figure 2-1 Relationship between the C Compiler and Other Software

Section 3 C Compiler Execution

This section explains how to invoke the C compiler, specify C compiler options, and interpret C
compiler listings.

3.1 How to Invoke the C Compiler
The format for the command line used to invoke the C compiler is as follows.

UNIX systems.

shc[A<option>...][A<file name>[A<option>...]...]

PC systems:

shc[A<option>...]A[<file name>]

The general operations of the C compiler are described below.

Compiling Programs:

shcAtest.c (RET)

The C source program test.c is compiled.

C Compiler Options (UNIX):

shcA- debugA- i stfil eA- show=noobj ect, expansi onAt est. c (RET)

Insert minus (-) before options (debug, listfile, and show). When multiple options are specified,
separate them with a space (A). Also when multiple suboptions are specified, separate them with a
commac(,).

C Compiler Options (PC):

shcA/ debugA/ i stfil eAl show=(noobj ect, expansi on)Atest. c

Insert aslash (/) before the options (debug, listfile, and show). When multiple options are
specified, separate them with a space (A). Also when multiple suboptions are specified, separate
them with acomma (,) and enclose them in parentheses.

Compiling Multiple Programs:

Severa C source programs can be compiled by a single command on UNIX systems.

Example 1: Specifying multiple programs

shcAt est 1. cAt est 2. c(RET)

Example 2: Specifying options for all C source programs

shcA-listfileAtestl. cAtest2.c (RET)

Thelistfile option isvalid for both test1.c and test2.c.

Example 3: Specifying options for particular C source programs

shcAtestl. cAtest2.cA-listfile (RET)

Thelistfile option isvalid for only test2.c. Options specified for particular C source programs have
priority over those specified for al C source programs.

Option List:

shc (RET)

Instead of compiling, the C compiler outputs the standard command line format and option list.

3.2 Naming Files

A standard file extension is automatically added to the name of afile when omitted. The standard
file extensions used by the C compiler and related software are shown in table 3-1.

Table 3-1 Standard File Extensions Used by the C Compiler

File Extensioner Description

c Source program file written in C
h Include file

Ist, lis Listing filex1

obj Relocatable object program file
src Assembly source program file
lib Library file

abs Absolute load module file

rel Relocatable load module file
map Linkage map listing file

Note: *1. The listing file extension is lis on UNIX systems and 1st on PC systems.

The general conventions for naming files depend on the host machine. Refer to the manual of the
host machine in use.

3.3 Compiler Options

Table 3-2 shows C compiler option formats, abbreviations, and defaults. Characters underlined
indicate the minimum valid abbreviation. Bold characters indicate default assumption.

Table 3-2 C Compiler Options

Item Format Suboption Specification
Optimization optimize= 0 | Object without optimization is output.
level 1 Object with optimization is output.

Listings and show =
formats™

source |[nosource

Source list yes/no

object [noobject

Object list yes/no

statistics |nostatistics

Statistics information yes/no

include [noinclude

List after include expansion yes/no

expansion |noexpansion |

List after macro expansion yes/no

*2 width = <numeric value> | Maximum characters per line: 0, 80-132
*2 length = <numeric value> Maximum lines per page: 0, 40-255
Default: w =132, 1 =66
Listing file listfile [= <listing file name>] *3 Output
nolistfile No output

Object file objectfile = <object file name> Output
Object code = machine code | Program in machine language is output.
progam format asmcode Assembly source progam is output.
Debug debug Output
information nodebug No output

Macro name define =

<macro name> = <name>

<name> is defined as <macro name>

<macro name> = <constant> |

<constant> is defined as <macro name>

<macro name> 4

<macro name> is assumed to be defined.

Include file include =

<path name> ’5

Include file destination path name is specified.
(Multi-specification is possible.) "4

Section name section =
*
5

program = <section name> |

Program area section name is specified.

const = <section name>

Constant area section name is specified.

data = <section name

Initialized data area section name is specified.

bss =<section name>

Non-initialized data area section name is
specified.

Default: p=P,c=C,d=D,b=B

Help message help*s

Output

Notes: *1. show option is invalid when listfile is specified.
*2. The assignments of show = width = 0 or show = length = 0 are interpreted as below.
show = width = 0: No line feed is performed until line feed code is output.
show = length = 0: Maximum line number is not specified, and page feed is not performed.
*3. If file name is not specified, standard file extension is added to the source file name.
*4, Macro names specified by options are shown in table 3-3.

Table 3-3 Macro Names, Names, and Constants Specified by the define Option

Item Explanation

Macro name A character string beginning with an alphabetic letter or an underscore
followed by zero or more alphabetic letters, underscores, and numbers
(0to9).

Name A character string beginning with a letter or an underscore followed by zero

or more alphabetic letters, underscores, and numbers.

Constant A character string of one or more numbers, or a character string of one or

more numbers followed by a period (.) and zero or more numbers.

*5. Refer to descriptions in Preprocessor Specifications,in Appendix A.1 for details on how to

retrieve the include file.

*6. When the help option is specified, all other options are invalid.

3.4 Option Combinations

10

If apair of conflicting options or suboptions are specified for afile, only one of themis
considered valid. Table 3-4 shows such option combinations.

Table 3-4 Option Combinations

Option Combinations
Valid Option Invalid Options

nolistfile show

code =asmcode debug, and show = object

help All other options

3.5 C Compiler Listings

11

This section describes C compiler listings and their formats.

Structure of C Compiler Listings. Table 3-5 shows the structure and contents of C compiler
listings.

Table 3-5 Structure and Contentsof C Compiler Listings

List Structure Contents Option Specification Method 1 Default
Source listing Listing consists of show = source Output
source programs show = nosource
Source program listing (show =include) *2 No output
after include file and (show = expansion)
macro expansion (show = noinclude)

(show = noexpansion)

Object listing Machine language generated show = object Output
by the C compiler show = noobject

Statistics Total number of errors, the show = statistics Output
number of source program show = nostatistics

lines, length of each section

(byte), and the number of

symbols
command line File names and options — Output
specification specified on the command

line

Notes: *1. All options are valid when listfile is specified.

*2. The option enclosed in parentheses is only valid when show = source is specified.

Source Listing: The source listing can be output in two ways. When show = noinclude and show
= noexpansion is specified, the unpreprocessed source program is output. When show = include

12

or show =expansion is specified, the preprocessed source program is output. Figures 3-1 and 3-2
show these output formats, respectively. Bold charactersin figure 3-2 show the differences.
Figure 3-1 Source Listing Output for show = noinclude and noexpansion

khkkhkkkkhkkkkkkhx SQJRCE LI STI'\G************

FI LE NAVE: n0260. c

Seq File Li ne 0----+ 1 + 2 + 3 + 4 + 5—(
1 nD260.c 1 #i ncl ude "header.h"
4 nD260. c 2
5 nD260. c 3 int sun2(void)
6 nD260.c 4 { int j;
7 nD260. c 5
8 nD260. c 6 #i f def SMALL
9 nD260. c 7 j =SML_I NT;
10 nD260.c 8 #el se
11 n0260.c 9 j =LRG_I NT;
12 nD260.c 10 #endi f
13 n0260. c 11 &
14 nD260.c 12 return j; /* continuel23456789012345678901234567
vV W X +2345678901234567890 */

Figure 3-2 Source Listing Output for show = include and expansion

R o SwRCE Ll STING************

FI LE NAME: nD260.c

Seq File Li ne 0----+ 1 + 2 + 3 + 4 + 5—¢&
1 nD260.c 1 #i ncl ude "header.h"
2 header.h 1 #define SML_I NT 1 }Y
3 header. h 2 #define LRG_ I NT 100
4 nD260. c 2
5 nD260. c 3 int sun(void)
6 nD260. c 4 { int j;
7 nD260. c 5
8 nD260. c 6 #i f def SMALL
9 nD260. c 7 X j =SML_I NT;
10 nD260. c 8 Z #else
11 nD260.c 9 E j =100;
12 nD260. c 10 [#endif
13 mD260. ¢ 11 “
14 nD260. c 12 return j; /* continuel23456789012345678901234567 «

Object Listing: Figure 3-3 shows an example of an object listing.

13

Description

\Y,

< X =

Listing line number

Source program file name or include file name

Line number in source program or include file

Source program lines resulting from an include file expansion when show = includeis
specified.

Source program lines that are not to be compiled due to conditional directives such as #ifdef
and #elif are marked with an X when show=expansion is specified.

Lines containing a macro expansion due to #define directives are marked with an E when
show=expansion is specified.

If asource program lineislonger than the maximum listing line, the continuation symbol (+) is
used to indicate that the source program line is extended over two or more listing lines.

14

Figure 3-3 Object Listing

kkkkhkkkhkkkhkkk*k SaJRCE Ll STING************

FI LE NAME: nD251.c

Seq File Li ne [e e S L S P
1 n0251.c 1 extern int sun(int);
2 nD251.c 2
3 nD251. ¢ 3 i nt
4 nD251.c 4 sun(int x)
5 nD251.c 5 {
6 nD251.c 6 int i;
7 nmD251.c 7 int j;
8 nD251.c 8
9 nD251.c 9 j =0;
10 nD251. ¢ 10 for(i=0; i<=x; i++) {
11 nD251.c 11 j =i
12 nD251.c 12 }
13 nD251.c 13 return j;
14 nD251.c 14 }

kkkkkkhkkkhkkk*k (BJEC‘I’ Ll STING************

FI LE NAME: nD251.c

SCT CFESET CODE C LABEL I NSTRUCTI ON OPERAND COMVENT
\% " X Y
V4
P . File n0251.c , Line 4 ;. bl ock
00000000 _sum [; function: sum
; _frane size=8 \
00000000 7FF8 ADD #- 8, R15
File nD251.c , Line 5 bl ock
File nD251.c , Line 9 expressi on statenent
00000002 E300 MoV #0, R3
00000004 2F32 MOV. L R3, @R15
File nD251.c , Line 10 for
00000006 E300 MoV #0, R3
00000008 1F31 MOV. L R3, @ 4, R15)
0000000A A009 BRA L104
0000000C 0009 NOP
Description

Vv Section attribute (P, C, D, B) of each section

The offset indicates the offset address relative to the beginning of each section.

w

X Contents of the offset address of each section

Y Assembly code corresponding to machine language
z

Comments indicating the C program structure (only output when not optimized; however,

labels are always output)

[Lineinformation corresponding to the C program (only output when not optimized)

\ Stack frame size in bytes (always output)

Statistics Information: Figure 3-4 shows an example of statistics information.

15

Figure 3-4 Statistics Information

*kxxxxxx STAT| STICS | NFORVATI ON * %%k xxx

*kkkkkkk*k k% ERRm INmeTIm *kkkkkkkkk k%

NUVBER OF ERRORS: 0 } \

NUVBER OF WARNI NGS: 0

xxx%kx%% SOURCE LI NE | NFORMATI ON **** %% %% }
W

COVPI LED SOURCE LI NE: 13

*kxxxxx SECTI ON S| ZE | NFORMAT] ON ** %% %

PROGRAM SECTI ON(P) : 0x00004A Byt e(s) X
CONSTANT SECTI ON(C): 0x000000 Byte(s)
DATA SECTI ON(D) : 0x000000 Byt e(s)
BSS SECTI ON(B) : 0x000000 Byt e(s)

TOTAL PROGRAM Sl ZE: 0x00004A Byt e(s)

N
kkkkkkhkkk*k LABEL I NmeTI O\I kkkkkhkkhkkkkhk*x L

Y
NUVBER OF EXTERNAL REFERENCE SYMBOLS: 0 J
NUMVBER OF EXTERNAL DEFI NI TI ON SYMBOLS: 1
Description

v Total number of messages by the level

Number of compiled lines from the sourcefile

Size of each section and total size of sections

Number of external reference symbols, number of external definition symbols, and total
number of internal and external labels

< X =

Note: Section size information (X) and label information (Y) are not output if an error-level
error or afatal-level error has occurred when option noobject is specified. In addition,
section size information (X) is not output when option code = asmcode is specified.

command Line Specification: The file names and options specified on the command line when
the compiler isinvoked are displayed. Figure 3-5 shows an example of command line

16

specification information.

Figure 3-5 command Line Specification

*** COVMAND PARAVETER ***

-listfile test.c

17

PART Il

PROGRAMMING

Section 1 Limitations of the C compiler

Table 1-1 shows the limits on source programs that can be handled by the C compiler. Source
programs must fall within these limits. To edit and compile efficiently, it is recommended to split
the source program into smaller programs (approximately 2 ksteps) and compile them separately.

Table 1-1 Limitation of the C Compiler

Limit
Classification Item UNIX PC
Invoking the Number of source programs that can be 16 1
C compiler compiled at one time
Total number of macro names that can be 16 16
specified using the define option
Length of file name (characters) 128 128
Source programs Length of one line (characters) 4096 512
Number of source program lines 32767 16383
Preprocessing Nesting level of files in an #include directive 8 5
Total number of macro names that can be 4096 1024
specified in a #define directive *1
Number of arguments that can be specified 63 31
using a macro definition or a macro call operation
Depth of the recursive expansion of a macro name 32 16
Nesting level of #if, #ifdef, #ifndef, #else, or #elif 32 6
directives
Total number of operators and operands that can 512 210
be specified in an #if or #elif directive
Declarations Number of function definitions 512 256
Number of external identifiers used for external 4096 511
Iinkage*2
Number of internal identifiers that can be used 4096 512
in one function
Number of internal labels™3 16384 2048
Number of symbol table entries™4 8192 1024
Total number of pointers, arrays, and functions 16 16
that qualify the basic type
Array dimensions 6 6

211

Table 1-1 Limitation of the C Compiler (cont)

Limit
Classification Item UNIX PC
Statements Nesting levels of compound statements 32 15
Levels of statement nesting in a combination of 32 15
repeat (while, do, and for) and select (if and
switch) statements
Number of goto labels that can be specified in 511 256
one function
Number of switch statements 256 128
Nesting levels of switch statements 16 15
Number of case labels 511 255
Nesting levels of for statements 16 15
Expressions Number of arguments that can be specified using 63 31
a function definition or a function call operation
Total number of operators and operands that can About 500 About 200
be specified in one expression
C library functions Number of files that can be opened simultaneously 20 20
by the open function
Notes: *1. Asthe C compiler itself defines five macronames (__LINE__, __FILE__, _ DATE__,

__TIME __,and __ STDC __), the user can define a maximum of 4091 macro names in
UNIX systems and a maximum of 1019 macro names in PC systems.

*2. As the C compiler itself defines two symbols, the user can define a maximum of 4094 external
identifiers in UNIX systems and a maximum of 509 external identifiers in PC systems.

*3. Aninternal label is internally generated by the C compiler to indicate a static variable address,
case label address, goto label address, or a branch destination address generated by if,
switch, while, for, and do statements.

*4. The number of symbol table entries is determined by adding the following numbers:
Number of external identifiers
Number of internal identifiers for each function
Number of string literals
Number of initial values for structures and arrays in compound statements
Number of compound statements
Number of case labels
Number of goto labels

222

Section 2 Executing a C Program

This section covers object programs which are generated by the C compiler. In particular, this
section explains what items are required to link C programs with assembly programs and how to
install programs on the SH system (see PART 111, SYSTEM INSTALLATION). This section
consists of the following three parts.

Section 2.1 Structure of Object Programs
This section discusses the characteristics of memory areas used for C source programs and standard
library functions.

Section 2.2 Internal Data Representation
This section explains the internal representation of data used by a C program. Thisinformation is
required when data is shared among C programs, hardware, and assembly programs.

Section 2.3 Linkage with Assembly Programs

This section explains the rules for variable and function names that can be mutually referenced by
multiple object programs. This section also discusses how to use registers, and how to transfer
arguments and return values when a C program calls afunction. The above information is required
for C program functions calling assembly program routines or assembly program routines calling C
program functions.

Refer to respective hardware manuals for details on SH hardware.

23

2.1 Structure of Object Programs

This section explains the characteristics of memory areas used by a C program or standard library
function in terms of the following items.

V Sections

Composed of memory areas which are allocated statically by the C compiler. Each section has
aname and type. A section name can be changed by the compiler option section.
W Write Operation

Indicates whether write operations are enabled at program execution.

X Initial Value
Shows whether there is an initial value when program execution starts.

Y Alignment

Restricts addresses to which data is alocated.

Table 2-1 shows the types and characteristics of those memory areas.

Table2-1 Memory Area Typesand Characteristics

Memory Area Section Section Write Initial

Name Name * Type Operation Value Alignment Contents

Program area P code Disabled Yes 4 bytes This area stores machine
codes.

Constantarea C data Disabled Yes 4 bytes This area stores const data.

Initialized data D data Enabled Yes 4 bytes This area stores data

area whose initial values
are specified.

Non-initialized B data Enabled No 4 bytes This area stores data

data area whose initial values
are not specified.

Stack area — _ Enabled No 4 bytes This area is allocated at
run time and is required
for C program execution.
Refer to section 2.2,
Dynamic Area Allocation,
in PART Ill, SYSTEM
INSTALLATION.

Heap area — — Enabled No — This areaisused by a C

library function (malloc,
realloc, or calloc).

Refer to section 2.2,
Allocation to Dynamic Area,
in PART Ill, SYSTEM
INSTALLATION.

Note: * Section name shown is the default generated by the C compiler when a specific name is not
specified by the compiler option section.

Example: This program example shows the relationship between a C program and the sections
generated by the C compiler.

int a=1; Program area main() {---}
char b;
const int c=0;
Constant area Cc
mai n() >
{
Initialized data area a
} Non-initialized data area b
C program Section generated by the C compiler

25

2.2 Internal Data Representation

This section explains the internal representation of C language datatypes. The internal
representation of data is determined according to the following four items:

\Y

w

Size

Shows the amount of memory needed to store the data.

Alignment

Restricts the addresses to which datais allocated. There are three types of alignment, 1-byte
alignment in which data can be alocated to any address, 2-byte alignment in which datais
allocated to an even byte address, and 4-byte aignment in which datais alocated to an address
indivisible by four.

Datarange

Shows the range of scalar-type data.

Data allocation example

Shows how the elements of aggregate-type data are allocated.

Scalar-Type Data: Table 2-2 shows the internal representation of scalar-type dataused in C.

Table 2-2 Internal Representation of Scalar-Type Data

Data Range

Size Alignment Minimum Maximum
Data Type (bytes) (bytes) Sign Bit Value Value
char 1 1 Used 27 (-128) 27 -1 (127)
signed char 1 1 Used 27 (-128) 27 -1(127)
unsigned char 1 1 Unused 0 28 _1 (255)
short 2 2 Used —215 (-32768) 215 _1(32767)
unsigned short 2 2 Unused 0 216 _ 1 (65535)
int 4 4 Used 231 (—2147483648) 231 — 1 (2147483647)
unsigned int 4 4 Unused 0 232 _ 1 (4294967295)
long 4 4 Used —231 (—2147483648) 231 1 (2147483647)
unsigned long 4 4 Unused 0 232 _ 1 (4294967295)
enum 4 4 Used 231 (—2147483648) 231 1 (2147483647)
float 4 4 Used — 00 + 00
double 8 4 Used — + 00
long double
Pointer 4 4 Unused 0 232 _ 1 (4294967295)

26

Aggregate-Type Data: This part explains the internal representation of array, structure, and
union datatypes. Table 2-3 showsthe internal data representation of aggregate-type data.

Table 2-3 Internal Representation of Aggregate-Type Data

Data Type Alignment (bytes) Size (bytes) Data Allocation Example
Array type Array element (Number of array elements) int a[10];
alignment X (Element size) Alignment: 4 bytes

Size: 40 bytes

Structure type Maximum structure Total member size *1 struct {
member alignment int a, b;
H
Alignment: 4 bytes
Size: 8 bytes
Union type Maximum union Maximum value of member uni on {
member alignment size "2 int a,b;
H

Alignment: 4 bytes
Size: 4 bytes

Notes: *1. When structure members are allocated, unused area may be generated between structure

members to align data types.

struct {
char a: — 4 bytes - 4 bytes
, = z.a z.b
int b;}z; ——
1 byte

Unused arec

If a structure has 4-byte alignment and the last member ends at an address indivisible by four,

the remaining bytes are included in this structure.

struct {
int a;
char b;}x = ——— 4 bytes AYa 4 byte
x.a x.b
1 byte

27

*2. When an union has 4-byte alignment and the maximum size of its members is not a multiple of

four, the remaining bytes up to a multiple of four are included in this union.

uni on {
; . 4 bytes 4 bytes
int a;
r wa Y A\
char b[7];}w A
-~ Y

H_J;Y_J_Y_/ \1 b t_/
w.b[0] w.b[1] W.b[2] w.b[3] w.b[4] w.b[5] w.b[6] ~ *Y'€

Bit Fields: A bit field isamember of astructure. This part explains how bit fields are allocated.
* Bitfield members
Table 2-4 shows the specifications of bit field members.
Table 2-4 Bit Field Member Specifications

Item Specifications

Type specifiers allowed for bit fields char, unsigned char, short, unsigned short, int, unsigned int,

long, and unsigned long

How to treat a sign when data is A bit field with no sign (unsigned type is specified): Zero extension "2

expanded to the declared type 1 A bit field with a sign (unsigned is not specified): Sign extension *2

Notes: *1. To use a member of a bit field, data in the bit field is expanded to the declared type.
*2. Zero extension: Zeros are written to the high order bits during extension.
Sign extension: The most significant bit of a bit field is used as a sign and is written to all higher-

order bits generated during data extension.

Note: One-bit field datawith asign isinterpreted as the sign, and can only indicate 0 and —1. To
indicate 0 and 1, bit field data must be declared with unsigned.

28

Bit field allocation

Bit field members are allocated according to the following five rules:

Vv Bit field members are placed in an area beginning from the left, that is, the most
significant bit.

Example:
struct bif |:| . Unused area
int a:2;
M - - Xl a
int b:3; 31 0
}X; | — X. b
'~
2 3

w Consecutive bit field members having type specifiers of the same size are placed in the
same area as much as possible.

Example:
struct bi{
Y y-a
| on a: 2;
g 31 0
unsigned int b:3; = y. b
. —~
by: 2 3

X Bit field members having type specifiers with different sizes are allocated to different
areas.

31 0
Example: z.a
struct bi{ "
- e = S
int a:.b; 31 0
char b: 4; z.b
}z; Y
4

29

Y If the number of remaining bitsin the areais less than the next bit field size, though

type specifiers indicate the same size, the remaining areais not used and the next bit
field is alocated to the next area.

Example:
struct b2{ 31 24 16
char a:5; = v.a v.b
char b: 4; ——
}v; 5 4

Z If an anonymous bit field member or a bit field member with abit field sizeof O is
declared, the next member is allocated to the next area.

Example:
struct b2{
char a:5;
31 24 16
char
w.a w.c
char c¢:3 =
w; 5 3

30

2.3 Linkage with Assembly Programs

Because C is suitable for writing system programs, it can be used to describe almost all processes in
microcomputer application systems. In particular, the SH-series C compiler supports operations,
such as access to the SH microcomputer registers asintrinsic functions. Refer to section 3.2,
Intrinsic Functions, in Part 11, Programming, for details on intrinsic functions.

Processes which cannot be written in C, for example, calculations like multiplication and addition
performed by the MAC instruction, must be written in assembly language, and then linked with the

C program.

This section explains two key items which must be considered when linking a C program to an
assembly program:

« External identifier reference
* Function call interface

31

2.3.1 External Identifier Reference

Functions and variable names declared as external identifiersin a C program can be referenced or
modified by both assembly programs and C programs. The following are regarded as external
identifiers by the C compiler:

* A global variable which has a storage class other than static
A variable name declared in afunction with storage class extern
* A function name whose storage class is other than static

When variable or function names which are defined as external identifiersin C programs, are used

in assembly programs, an underscore character (_) must be added at the beginning of the variable or
function name (up to 31 characters without the leading underscore).

32

Example 1: An external identifier defined in an assembly program is referenced by a C program

* Inan assembly program, symbol names beginning with an underscore character ()
are declared as external identifiers by an .EXPORT directive.
* InaC program, symbol names (with no underscore character () at the head) are

declared as external identifiers.

Assembly program (definition) C program (reference)

-EXPORT ~ _a, _b extern int a,b;
. SECTI ON D, DATA, ALI G\=4
a. .DATA L 1
_b: .DATA.L 1 f()
. END {
a+=b;

}

Example 2: An external identifier defined in a C program is referenced by an assembly program

* InaC program, symbol names (with no underscore character (_) at the head) are
defined as externa identifiers.

* Inan assembly program, external references to symbol names beginning with an
underscore character () are declared by an .IMPORT directive.

C program (definition) Assembly program (reference)
int a; . | MPORT a
. SECTI ON P, CODE, ALl G\=2
MOV. L A a, Rl
MOV. L @1, RO
ADD #1, RO
RTS
MOV. L RO, @RL
CALIGN 4
A a: .DATA L _a

33

2.3.2 Function Call Interface

When either a C program or an assembly program calls the other, the assembly programs must be
created using rules involving the following:

(1) Stack Pointer

(2) Allocating and Deallocating Stack Frames

(3) Registers

(4) Setting and Referencing Parameters and Return Values

Stack Pointer: Valid data must not be stored in a stack areawith an address lower than the stack
pointer, since the data may be destroyed by an interrupt process.

Allocating and Deallocating Stack Frames: In afunction call (right after the JSR or the BSR
instruction has been executed), the stack pointer indicates the lowest address of the stack used by
the calling function. Allocating and setting data at addresses greater than thisoneisarole of the
calling function. After the called function deallocates the area it has set with data, control returns
to the calling function usually with the RTS instruction. The calling side then deallocates the area
having an address higher than the return value address and the parameter area.

After function call and after
control returns from a function

0

)
L1
)
L4

}

Lower addresses

Sp —b
Return value addres:

Parameter area

Higher addresses

J

Figure2-1 Allocation and Deallocation of a Stack Frame

34

Registers: Some registers change after a function call, while some do not. Table 2-5 shows how
registers change according to the rules.

Table 2-5 Rules on Changesin Registers After a Function Call

Iltem Registers Used in a Function Notes on Programming

Guaranteed registers RO - R7 If registers used in a function contain valid data
when a program calls the function, the program
must push the data onto the stack or register

before calling the function.

Non-guaranteed R8 — R15, MACH, MACL, and PR The data in registers used in functions is
pushed onto the stack or register before calling
the function, and popped from the stack or
register only after control returns from the

function.

The following examples show the rules governing register changes.

(a) A subroutinein an assembly programis called by a C program
Assembly program (called program)

. EXPORT _sub
. SECTI ON P, CODE, ALI G\=2
_sub: MOV. L R4, @ R15 } Data in those registers needed by the called
MOV. L R13, @R15 function is pushed onto the stack.
ADD #- 8, R15
Function processing
(Since data in registers RO to R7 is pushed onto a
. stack by the calling C program, the assembly
ADD #8, R15 program can use them freely without having to save
MOV. L @R15+, R13 them first.)
RTS
NOV. L @R15+, R14 Register data is popped from the stack.

C program (calling program)

extern void sub();
1;()

sub();

35

C program (called program)

voi d sub()
{

Assembly program (calling program)

.1 MPORT _sub
. SECTI ON P, CODE, ALI G\=2

STS. L

PR, @ R15

MOV. L Rl, @1, R15)
MOV R3, R12
MOV. L A sub, RO
JSR @ro
NOP
LDS. L @R15+, PR

A sub: .DATA.L _sub

36

[S C——;

(b) A subroutinein a C program is called by an assembly program

The called function is declared by the .IMPORT
control instruction with an underscore character
() at the beginning.

Store the PR register (return address storage
register) when calling the function.

If registers RO and R7 contain valid data,

the data is pushed onto the stack or stored

in unused registers.

The sub function is called.

The PR register is restored.

Address data of the sub function

Setting and Referencing Parametersand Return Values: This section explains how to set and
reference parameters and return values. The rulesfor parameters and return values differ depending
on whether or not the type of each parameter or return value is explicitly declared in the function
declaration. A function prototype declaration is used to explicitly declare the type of each
parameter or return value.

Therest of this section explains the general rules concerning parameters and return values, how the
parameter areais allocated, and how areas are established for return values.

(a) General rules concerning parameters and return values
(i) Passing parameters

(i)

A function is called only after parameters have been copied to a parameter areain registers or
on the stack. Since the calling function does not reference the parameter area after control
returnsto it, the calling function is not affected even if the called function modifies the
parameters.

Rules on type conversion

Type conversion may be performed automatically when parameters are transferred or areturn
valueisreturned. This section explains the rules on type conversion.

— Type Conversion of Parameters Whose Types are Declared

Parameters whose types are declared by prototype declaration are converted to the declared

types.

Type conversion of parameters for which types are not declared

Parameters whose types are not declared by prototype declaration are converted according

to the following rules:

» Parameters whose types are char, unsigned char, short, or unsigned short are converted
toint.

» Parameters whose types are float are converted to double.

 Other parameters are not converted.

Return value type conversion

A return value is converted to the data type returned by the function.

37

Example:

vV long f();
long f()
{ float x;
return x;
The return value is converted to long.
}
W voidp (int,...);

()

{ char o T
P (1.0, c);
} c is converted to int because a type is not declared for the

Note: When parameter types are not declared by a prototype declaration, the correct
specifications must be made by the calling and called functions so that parameters are
correctly transferred. Otherwise, correct operation is not guaranteed.

Example:
f(x) f(float x)
float x; {
{
}
}
mai n()
mai n() {
{ float x;
float x; f(x);
f(x); }
Incorrect specification Correct specification

Since the parameter type belonging to function f is not declared by a prototype declaration in the
incorrect specification above, parameter x is converted to double when function main calls function
f. Function f cannot receive the parameter correctly because the parameter type is declared as float
in function f. Use the prototype declaration to declare the parameter type, or make the parameter
declaration doublein function f.

The parameter type is declared by a prototype declaration in the correct specification above.

38

(b) Parameter area allocation
Parameters are allocated to registers, or when thisisimpossible, to a stack parameter area.
Figure 2-2 shows the parameter area allocation. Table 2-6 lists the general parameter area
alocation rules.

Stack

Lower
- addresses
SP

Return value address

R4
R5
Parameter
area R6
R7

Parameter storage registers

Parameter area
allocation

Figure 2-2 Parameter Area Allocation

Table 2-6 General Ruleson Parameter Area Allocation

39

Allocation Rules

Parameters Allocated to Registers

Parameter

Storage Registers Target Type Parameters Allocated to a Stack

R4 - R7 char, unsigned char, short, V Parameters whose types are other than target
unsigned short,int, types for register passing
unsigned int, long, W Parameters of a function which has been
unsigned long, float, and declared by a prototype declaration to have
pointer variable-number parameters”

X Other parameters are already allocated to R4 —
R7.

Note: * If a function has been declared to have variable-number parameters by a prototype definition,
parameters which do not have a corresponding type in the declaration and the immediately
preceding parameter are allocated to a stack.

Example:

int f2(int,int,int, int,...);

f2(a,b,c,x,y, 2);

i X, Y, and z are allocated to a stack.

(c) Parameter alocation

40

(i) Allocation to parameter storage registers
Following the order of their declaration in the source program, parameters are alocated to
the parameter storage registers starting with the smallest numbered register. Figure 2-3
shows an example of parameter allocation to registers.
Figure 2-3 Example of Allocation to Parameter Registers

f(char a,int b)
{

}

R4 Sign extension a

R5 b

(i) Allocation to a stack parameter area
Parameters are allocated to the stack parameter area starting from lower addresses, in the
order that they are specified in the source program.

Note: Regardless of the aignment determined by the structure type, structure type or union
type parameters are allocated using 4-byte alignment. Also, the area size for each
parameter must be a multiple of four bytes. Thisis because the SH stack pointer is

incremented or decremented in 4-byte units.

Refer to appendix B, Parameter Allocation Examples, for examples of parameter alocation.

(d) Return value location

41

The return value is written to either aregister or memory depending on itstype. Refer to
table 2-7 for the relationship between the return value type and location.

When a function return value is to be written to memory, the return value is written to the area
indicated by the return value address. The calling side must allocate this return value setting
areain addition to the parameter area, and must set the address of the former in the return value
address area before calling the function. The return value is not written if itstype isvoid.

Table 2-7 Return Value Type and Setting L ocation

Return Value Type Return Value Location

char, unsigned char, short, unsigned short, RO: 32 bits

int, unsigned int, long, unsigned long, (If the return value type is char or short, perform sign
float, and Pointer extension before setting the return value in RO. If the

return value type is unsigned char or unsigned short,
perform zero extension before setting it in RO.)

double, long double, structure, and union Return value setting area (memory)

Figure 2-4 Return Value Setting Area Used When Return Value IsWritten to Memory

Return value
address area

Return value
setting area
(allocated by the
calling side)

Parameter
area

42

Section 3 Extended Specifications

This section describes two C compiler extended specifications. interrupt functions and intrinsic
functions.

3.1 Interrupt Functions

A preprocessor directive (#pragma) specifies an external (hardware) interrupt function. The
following section describes how to create an interrupt function.

Description:

#pragma i nterrupt (function name [(interrupt specifications)]
[, function name [(interrupt specifications)]...])

Table 3-1 listsinterrupt specifications.

Table 3-1 Interrupt Specifications

Item Form Options Specifications

Stack switching sp= <variable> | The address of a new stack is specified with a
&<variable> | variable or a constant.
<constant> <variable>: Variable (object type) value

&<variable>: Variable (pointer type) address

<constant>; Constant value

Trap-instruction tn= <constant> Termination is specified by the TRAPA instruction
return <constant>: Constant value

(trap vector number)

Explanation: #pragma interrupt declares an interrupt function. An interrupt function will
preserve register values before processing (all registers used by the function are pushed onto and
popped from the stack when entering and exiting the function). The RTE instruction directs the
function to return. However, if the trap-instruction return is specified, the TRAPA instruction is
executed at the end of the function. An interrupt function with no specificationsis processed in the
usual procedure. The stack switching specification and the trap-instruction return specification can
be specified together.

43

Example:
extern int STK[100];

int *ptr = STK + 100;
#pragma interrupt (f(sp=ptr, tn=10))

\Y W
Explanation:
Vv Stack switching specification: ptr is set as the stack pointer used by interrupt
function f.

W Trap-instruction return specification: After the interrupt function has completed its
processing, TRAPA #10 is executed. The SP at the beginning of trap exception
processing shown in the figure below. After the previous PC and SR (status
register) are popped from the stack by the RTE instruction in the trap routine,
control isreturned from the interrupt function.

Figure 3-1 Stack Processing by an Interrupt Function

Just after the interrupt function

Immediately after interrug During interrupt function has completed processing
processing (Immediately before the TRAP/
instruction is issued)
Lower addresses?
STKIC] STK[O]
STK[99]
— STK[99]
ptr sp
Higher addresses¢
Lower addresses¢
sp—» , - sp—» .
Previous PC Previous PC Previous PC
Previous SR Previous SR Previous SR

Higher addresses¢

Note the following when using this function.

Table 3-2 Intrinsic Functions (cont)

44

War nings:
vV The storage class specifier of the interrupt function must be extern. Even if storage class
static is specified, the storage classis handled as extern.

The function must return void data. Thereturn statement cannot have areturn value. |If
attempted, an error is output.

Example:
#pragma i nterrupt (f1(SP=100), f2)
void f 1(SP=100) { } (a)
i nt f2(){} (b)
Description:

(@) is declared correctly.
(b) returns data that is not void, thus (b) is declared incorrectly. An error is output.

W A function declared as an interrupt function cannot be called within the program. If
attempted, an error is output. However, if the function is called within a program which
does not declare it to be an interrupt function, an error is not output but correct program
execution cannot be guaranteed.

Example (An interrupt function is declared):
#pragma interrupt(f1)
void f1(void){---}
int f20){ f1();} ~---cr s (a)

Description: Function f1 cannot be called in the program because it is declared as an
interrupt function. An error is output at (a).

Example (Aninterrupt function is not declared):

i nt f2(){ fl()’} (b)

Description: Because function f1 is not declared as an interrupt function, an object for
externint f1(); isgenerated. If function f1is declared as an interrupt function
not to be compiled in the same file as 2, correct program execution is not
guaranteed.

45

X A function declared as an interrupt function cannot be referenced in the same file.

Example:
#pragma interrupt(fl)
mai n() {
void (*a)(void);
a:f 1; (a)
}

Description: Since the address of interrupt function f1 cannot be referenced at (a), an error
is output.

If aninterrupt function is referenced to set, for example, a vector table, it must not be
declared as an interrupt function in the samefile.

Examples:
#pragma interrupt(fl) extern void fi1(void); ---- (b)
mai n()

: {
voi d f1(void)
{ void (*a)(void);

a=f 1;

} }

File with an interrupt function definition File referencing an interrupt function

Description: To reference the address of interrupt function f1 at (b), f1 is not declared as an
interrupt function.

46

3.2 Intrinsic Functions

In this C compiler, system control instructions of the SH microcomputer can be written in C as
intrinsic functions. The following describes the intrinsic functions provided.

Intrinsic Functions: The following functions can be specified by intrinsic functions.
Vv Setting and referencing the status register
W Setting and referencing the vector base register
X 1/0O functions using the global base register
Y System instructions which do not compete with register sourcesin C

Description: #include <machine.h> must be specified when using intrinsic functions.

Intrinsic Function Specifications: Table 3-2 listsintrinsic functions.

Table 3-2 Intrinsic Functions

Iltem Function Specification Description
Status Setting the status void set_cr(int cr) Sets cr (32 bits) in the status
register register register
Referencing the int get_cr(void) References the status register
status register
Setting the interrupt voi d set _i mask(i nt mask) Sets mask (4 bits) in the interrupt
mask mask (4 bits)
Referencing the int get_i mask(void) References the interrupt mask
interrupt mask (4 bits)
Vector Setting the vector void set_vbr(void **base) Sets **base (32 bits) in VBR
base base register
register Referencing the int **get_vbr(void) References VBR
(VBR) vector base register
Global Setting GBR voi d set_gbr(void *base) Sets *base (32 bits) in GBR
base Referencing GBR voi d *get _gbr (void) References GBR
register Referencing GBR- unsi gned char References byte data (8 bits) at
(GBR) based byte gbr _read_byte(int offset) the address indicated by adding

GBR and the offset specified

Referencing GBR-

based word

unsi gned word

gbr _read word(int offset)

References word data (16 bits) at
the address indicated by adding
GBR and the offset specified

47

Item Function Specification Description
Global Referencing GBR- unsi gned | ong References long word data (32
base based long word gbr _read | ong(int offset) bits) at the address indicated by
register adding GBR and the offset specified
(GBR) Setting GBR-based void gbr_write_byte(Sets data (8bits) at the address
(cont) byte int offset, unsigned char data) indicated by adding GBR and the
offset specified
Setting GBR-based void gbr_write_word(Sets data (16 bits) at the address
word int offset, unsigned short data) indicated by adding GBR and the
offset specified
Setting GBR-based void gbr_write_word(Sets data (32 bits) at the address
long word int offset, unsigned | ong data) indicated by adding GBR and the
offset specified
AND of GBR base void gbr_and_byt e(ANDs mask with the byte data at
int offset, unsigned char nmask) the address indicated by adding
GBR and the offset specified, and
then stores the result at the same
address
OR of GBR base voi d gbr_or_byt e(ORs mask with the byte data at the
int offset, unsigned char nmask) address indicated by adding GBR
and the offset specified, and then
stores the result at the same
address
XOR of GBR base void gbr_xor_byt e(XORs mask with the byte data at the
int offset, unsigned char nmask) address indicated by adding GBR
and the offset specified, and then
stores the result at the same
address
TEST of GBR base voi d gbr_tst_byte(Checks if the byte data at the offset
int offset, unsigned char mask) from GBR is 0 or not, and sets the
result in the T bit
Special SLEEP instruction voi d sl eep(void) Executes the SLEEP instruction
instruc- TAS instruction voi d tas(char *addr) Executes TAS.B @addr
tions TRAPA instruction int trapa(int trap_no) Executes TRAPA #trap_no

48

Warnings: The offsets and masks shown in table 3-2, Intrinsic Functions, must be constants. Also,
the specification range for offsetsis +255 bytes when the access size is shown in bytes, +510 bytes
when the access size is shown as aword, and +1020 bytes when the access size is shown as along
word. Masks which can be specified for performing logical operations (AND, OR, XOR, or TEST)
on alocation relative to GBR (global base register) must be within the range of 0 to +255. As GBR
isacontrol register whose contents are not preserved by all functions in this C compiler, take care
when changing GBR settings.

Example:

#i ncl ude <machi ne. h>

#def i ne CDATAL
#def i ne CDATA2
#defi ne CDATA3
#def i ne SDATAl
#def i ne | DATAL
#define | DATA2 12

o A~ N L O

struct{
char cdatal; /* offset 0*/
char cdat a2; /* offset 1*/
char cdat a3; /* offset 2*/
char sdatal; /* offset 4%/
char idatal; /* offset 8*/
char idataz2; /* offset 12*/
}tabl e;
voi d f()
{
set _gbr(&table); /* Set the start address of table to GBR */
gbr _write byte(CDATA2, 10); /* Set 10 to table.cdata2. */
gbr_wite long(| DATA2, 100); /* Set 100 to table.idata2. */
i f(gbr_read byte(CDATA2) != 10) /* Reference table. cdata2. */
gbr _and_byte(CDATA2, 10); /* AND 10 and table.cdata2, and set it */
: /* to table.cdataz2. */
gbr_or_byte(CDATA2, O0xOF); /* OR H OF and table.cdata2, and set it */
: /* to table.cdata2. */
sl eep(); /* Expanded to the sleep instruction */
}

49

Effective use of intrinsic functions:
Vv Set the start address of a structure which is allocated to memory and frequently accessed
in GBR and access its members by gbr_read byte, gbr_write_byte, etc.

W In the case of v, byte data frequently used in logical operations should be declared
within 128 bytes from the start address of the structure.

50

Section 4 Notes on Programming

This section contains notes on coding programs for the C compiler and on troubleshooting when
compiling or debugging programs.

4.1 Coding Notes

Functionswith float Parameters: For afunction that declares float for parameters, either a
prototype must be declared or parameters must be declared as double. Correct processing is not
guaranteed if afunction that has float parametersis called without a prototype declaration.

Example:
VOidf(roat); vV

a()
{

float a;
f(a);
}

voi d
f(float x)
{

}

Since function f has afloat parameter, a prototype must be declared as shown at V.

Program Whose Evaluation Order isNot Regulated: The effect of the execution is not
guaranteed in a program whose execution results differ depending on the evaluation order.

Example:
a[i]=a[++i]; ---- Thevalueof i ontheleft side differs depending on whether the right side of
the assignment expression is evaluated first.
sub(++i, i);---- Thevaueof i for the second parameter differs depending on whether the

first function parameter is evaluated first.

51

Overflow Operation and Zero Division: At run timeif overflow operation or zero division is
performed, error messages will not be output. However, if an overflow operation or zero divisionis
included in the operations for one or more constants, error messages will be output at compilation.

Example:

mai n()

{ . .
int ia;
int ib;
float fa;
float fb;

i b=32767;
f b=3. 4e+38f;

/* Conpilation error nessages are output when an overfl ow operation and */
/* zero division are included in operations for one or nore constants. */

i @=99999999999; /* (W Detect integer constant overflow */

f a=3. 5e+40f ; /* (W Detect floating pointing constant overflow. */
i a=1/ 0; /* (E) Detect division by zero. */
fa=1.0/0. 0; /* (W Detect division by floating point zero. */

/* No error nessage on overflow at execution is output. */

i b=i b+32767; /* lgnore integer constant overflow */
fb=f b+3. 4e+38f; /* Ignore floating point constant overflow */

Assignment to const Variables: Even if avariableis declared with const attribute, if assignment

52

is done to a variable other than const converted from const attribute or if a program compiled
separately uses a parameter of a different type, the C compiler cannot detect the error.

Example:
V const char *p; /* Because the first paraneter p in library*/
/* function strcat is a pointer for char, */
/* the area indicated by the paraneter p */
strcat(p, "abc") /* may change. *|
w filel
const int i;
file2
extern int i; /* In file 2, paraneter i is not declared as */

/* const, therefore assignnent to it in file 2 */

i =10; /* is not an error. */

4.2 Noteson Programming Development

53

Table 4-1 shows troubleshootings for developing programs at compilation or when debugging.

Table 4-1 Troubleshooting

Trouble

Error 314, cannot

Check Points

The section name which is

Solution

Specify the correct

References

Part Il, Programming,

found section, is

output at linkage

Error 105, undefined

output by the C compiler must

be specified in capitals in start

option of linkage editor.

If identifiers are mutually

section name.

Reference parameters

21

Part Il, Programming,

external symbol, is

output at linkage

Debugging at the C

referenced by a C program

and an assembly program, an

underscore must be attached to

the symbol in the assembly

program.

Check if the C program uses a

with the correct para-

meters.

Specify a standard

23.1

Standard library specifi-

library function.

An undefined reference symbol

identifier must not start witha _

(A run time routine in a standard

library must be used.)

Check if a standard 1/O library

library as the input

library at linkage.

Create low level

cation: Part Il, Progra-
mming, 4.2.1 (3)
Execution routine in a
standard library: Part Il
System Installation,
2.1(2)

Part lll, System Installa-

function is used in the C

program.

debug option must be specified

interface routines for
linking.
Specify debug option

tion, 4. (6)

Part I, Overview and

source level cannot

be performed

at both compilation and linkage.

A linkage editor of Ver.5.0 or

at both compilation and
linkage.

Use a linkage editor of

higher must be used.

Ver.5.0 or higher.

Operation, 3.3

54

PART I11

SYSTEM INSTALLATION

Section 1 Overview
Part 111 describes how to install object programs generated by the C compiler on a SH system.
Before installation, memory allocation and execution environment for the object program must be
specified.

* Memory allocation

Stack area, heap area, each section of a C-compiler-generated object program must be
alocated in ROM or RAM on a SH system.

» Execution environment setting for a C-compiler-generated object program
The execution environment can be specified by the register initialization processing, memory
areainitialization, and C program initiation processing. These must be written by assembly
language.
If Clibrary functions for 1/0 are used, library must be initialized according to the execution
environment specification. Specificaly, if 1/0 function (stdio.h) and memory alocation
function (stdlib.h) are used, the user must create low-level 1/0 routines and memory allocation

routines appropriate to the user system.

Section 2 describes how to alocate C programs in memory area and how to specify linkage editor's
commands that actually allocate a program in memory area, using examples.

Section 3 describes items to be specified in execution environment setting and execution
environment specification programs.

Section 4 describes how to create C-library function initialization and low-level routines.

57

Section 2 Allocating Memory Areas

To install an object program generated by the C compiler on a system, the size of each memory area
must be determined, then the areas must be appropriately allocated in memory.

Some memory areas, such as the area used to store machine code and the area used to store data
declared using external definitions, are allocated statically. Other memory areas, such as the stack
area, are allocated dynamically.

This section describes how the size of each areais determined and how to allocate an areain
memory.

2.1 Static Area Allocation
2.1.1 Datato beAllocated in Static Area

Sections of object programs such as program area, constant area, initialized data area, and non-
initialized data area are allocated to the static area.

2.1.2 Static Area Size Calculation

The static area size is calculated by adding the size of C-compiler-generated object program and
that of library functions used by the C program. After object program linkage, the static area size
can be determined from each section size including library size output on alinkage map listing.
Before object program linkage, the static area size can be approximately determined from the
section size information on acompilelisting. Figure 2-1 shows an example of section size
information.

Frxxxxx SECTI ON Sl ZE | NFORMATI ON * * * * % %

PROGRAM SECTI ON(P) : 0x00004A Byt e(s)
CONSTANT SECTI ON(C) : 0x000018 Byt e(s)
DATA SECTI ON(D) : 0x000004 Byt e(s)
BSS SECTI ON(B) : 0x000004 Byt e(s)

TOTAL PROGRAM SI ZE: 0x00006A Byt e(s)

Figure2-1 Section Size Information

58

If the standard library isnot used, the static area size can be calculated by adding memory area size
used by sections to the size shown in section size information. However, if the standard library is
used, the memory area used by the library functions must be added to the the memory area size of
each section. The standard library includes C library functions based on C language specifications
and arithmetic routines required for C program execution. Accordingly, the standard library must
be linked even if library functions are not used in the C source program.

For details on memory area size used by the standard library functions, refer to the attached
Standard Library Memory Stack Size Listing. The following example shows how to calculate static
area size based on the section size information shown in figure 2-1.

Cdlculation Example

<ctype.h>
Function Low- Memory Size (Bytes) Stack Size
Name Level Routine Library *1 Section P Section B Section C Section D (Bytes)
isalnum None isalnum, 32 0 256 0 16

_Cctype
isalpha None isalpha, 32 0 256 0 16

_ctype

Note: *1. Library functions required for linkage. The library functions include those used by the C program
and the library function itself.

1. isalnum function of <ctype.h> is used

Add 32 bytes to section P and 256 bytes to section C.
Size (Bytes)

Section Name C Program Library Total
P 74 32 106
B 24 0 24
C 4 256 260
D 4 0 4
2. isalnum and isalpha functions of <ctype.h> are used

When alibrary function is used by multiple functions, memory size required for the library
need not to be duplicated. The following table shows memory size example, when library
function _ctypeis used by multiple functions.

<Library common routine>

Memory Size (Bytes)
Section Name Section P Section B Section C Section D
_Ctype 0 0 256 0

59

Each section sizeis calculated by the following formula:
Note: *1. Section size = C program + Library 1 + Library 2 — Duplicated library

Size (Byte)
Section Name C Program Library 1 Library 2 Duplicated Library Total *1
P 74 32 32 0 138
B 24 0 0 0 24
C 4 256 256 256 260
D 4 0 0 0 4

(isalnum) (isalpha) (_ctype)

Note: The standard library supplied by the C compiler includes C library functions (based on C
language specification), and arithmetic routines (required for C program execution). The
sizerequired for run time routines must also be added to the memory area size in the same
way as C library functions.

Run time routine names used by the C programs are output as external symbolsin
theassembly programs generated by the C compiler (option code = asmcode). The user
can see the run time routine names used in the C programs through the assembly program
listing.

The following shows the example of C program and assembly program listings.

C program

f(int a, int b)
{
al=b;
return a;

}

Assembly program output by the C compiler

JOMPORT divls ; An external reference definitionfor the runtime routine
.EXPORT _f
. SECTI ON P, CCDE, ALI G\=4

MoV R5, R1
MOV. L Adivls, R
JSR a2
MoV R4, RO
RTS
NOP
A divls: DATA. L _divls
. END

An externa reference definition (.IMPORT) beginning with __ indicatesa
run time routine. In the above example, __ divisisarun time routine used in the C
program.

60

2.1.3 ROM and RAM Allocation

When allocating a program to memory, static areas must be allocated to either ROM and RAM as
shown below.

Program area (section P): ROM

Constant area (section C): ROM

Non-initialized data area (section B): RAM

Initialized data area (section D): ROM, RAM (for details, refer to the following section)

2.1.4 Initialized Data Area Allocation

The initialized data area contains data with initial value. Since the C language specifications allow
the user to modify initialized datain programs, the initialized data areais allocated to ROM and is
copied to RAM before program execution. Therefore, the initialized data area must be allocated in

both ROM and RAM.

However, if the initialized data area contains only static variables that are not modified during
program execution, only a ROM area needs to be allocated.

2.1.5 Example: Memory Area Allocation and Address Specification at Program Linkage

Each program section must be addressed by the option or subcommand of the linkage editor when
the absolute load module is created, as described below.

Figure 2-2 shows an example of allocating static areas.

61

0x0000000
Interrupt vector

area

0x0000400)
Program area

(section P)

Constant area

(section C) > Internal ROV

Initialized data area

(section D)
J
0x9000000 .]
Initialized data area
(section R)
- RAM
Noninitialized data areg
(section B) P, C, D, B: Default section name generated
: by the C compiler
OxFFFF800] R: Section name specified by th&OM
Dynamic arez - Internal RANV option of the linkage editor
OXFFFFFFF

Figure2-2 Static Area Allocation

Specify the following subcommands when allocating the static area as shown in figure 2-2.

ROWA(D,R) emeemeemeenn 0

STARTAP, C, D(400) , R, B(9000000) - - - - - - - - 0
Description:

0 Define section R having the same size as section D, in the output load module. To reference the

symbol allocated to section D, copy the contents of section D to section R and reference to the
symbol in section R. Sections D and R are allocated to initialized data section in ROM and
RAM, respectively.

O Allocate sections P, C, and D to internal ROM starting from address 0x400 and all ocate sections
R and B to RAM starting from address 0x9000000.

62

2.2 Dynamic Area Allocation
2.2.1 Dynamic Areas
Two types of dynamic areas are used:
0 Stack area
0 Heap area (used by the memory allocation library functions)
2.2.2 Dynamic Area Size Calculation
Stack Area: The stack areaused in C programsis allocated each time afunctioniscaled andis
deallocated each time afunction isreturned. The total stack areasizeis calculated based on the
stack size used by each function and the nesting of function calls.
» Stack area used by each function
The size of stack used by each function can be determined from the object list (frame size)
output by the C compiler. However, note that this does not account for the size of parameters
to be pushed onto the stack when afunction is called. Accordingly, the parameter size must be
added to stack areasize.
The following example shows the object list, stack allocation, and stack size cal culation method.

Example:

The following shows the object list and stack size calculation in a C program.

extern int h(char, int *, double);
i nt
h(char a, register int *b, double c)

{

char *d;

d= &a;
?(*d,b,c);

register int i;

i= *d;
return i;

) }

63

¥k kkkkkkkkxk w\]EC‘I’ LI STING************

FI LE NAME: nD251.c

9}

jv)

COFFSET CODE C LABEL I NSTRUCTI ON OPERAND COVIVENT
00000000 _h: ; function: h
;_franme size=20
00000000 2FE6 MOV. L R14, @ R15 O
00000002 2FD6 MOV. L R13, @ R15
Lower addresses%
R15 (SP) 0 3 S
R4 a E
rame
Area used ina | » size
RS b function 0
Stack
frame
20 <
Parameter
area
c ? (For stack
parameter)
28 /0 (8 bytes) 7
Upper addresses*
Stack

calculated as follows:

64

The size of stack used by afunction is determined by adding frame size and parameter area size
(for stack parameter). Accordingly, in the above example, the stack size used by the functionis
20 (O) + 8 () = 28 bytes
For details on the size of parameters to be pushed onto the stack, refer to the description of
parameter and return value setting and referencing in section 2.3.2 of Part 1.

* Stack size calculation

The following example shows a stack size calculation depending on the function call
nesting.

Example:

Figure 2-3 illustrates the function call nestings and stack size.

main ()

Function Name Stack Size (Bytes'

main 24

f 32
9()

f()

Figure 2-3 Nested Function Callsand Stack Size

If funtion g is called viafunction f, stack area size is calculated according to the formula
listed in table 2-1.

Table 2-1 Stack Size Calculation Example

Function Calling Route Total Stack Size
main (24) —> f(32) —> g(24) 80 bytes (Maximum size of stack area)
main (24) —> g(24) 48 bytes

As can be seen from table 2-1, the maximum size of stack arearequired for the longest function
calling route should be determined (80 bytes in this example) and this size of memory should be
alocated in RAM.

When using standard library functions, the stack frame sizes for library functions must also be
accounted for. Refer to the Standard Library Memory Stack Size Listing, included with the

C compiler package.

Note: If recursive calls are used in the C source program, first determine the stack area required
for arecursive call, and then multiply with the maximum number of recursive calls.

65

Heap Area: Thetotal heap arearequired isequal to the sum of the areas to be allocated by
memory management library functions (calloc, malloc, or realloc) in the C program. An
additional 4 bytes must be summed because a 4-byte management areais used every time a
memory management library function allocates an area.

An input/output library function uses memory management library functions for internal
processing. The size of the area alocated in an input/output is determined by the following
formula: 516 bytes x (maximum number of simultaneously open files)

Note: Areas released by the free function, a memory management library function, can
be reused. However, since these areas are often fragmented (separated from one
another), arequest to allocate a new area may be rejected even if the net size of the
free areasis sufficient. To prevent this, take note of the following:

[0 If possible, allocate the largest areafirst after program execution is started.
O If possible, specify data area size to be reused as a constant.

2.2.3 Rulesfor Allocating Dynamic Area

The dynamic areais allocated to RAM. The stack areais determined by specifying the highest
address of the stack to the vector table, and refer to it as SP (stack pointer). The heap areais
determined by the initial specification in the low-level interface routine (sbrk). For details on stack
and heap areas, refer to section 3.1, Vector Table Setting (VEC_TBL), and section 4.6, Creating
Low-Level Interface Routine, respectively.

66

Section 3 Setting the Execution Environment

This section describes the environment required for C program execution. A C-program
environment specification program must be created according to the system specification because
the C program execution environment differs depending on the user systems. In this section, basic
C program execution specification, where no C library function is used, is described as an example.
Refer to section 4, Setting C Library Function Execution Environment, for details on using C
library functions.

Figure 3-1 shows an example of program configuration.

|:| : Required routine
Power-on
: Required table reset
¢ O 0

_INIT VEC_TBL

PN

_ _INITSCT User program

Figure3-1 Program Configuration (No C Library Function isUsed)
Each routine is described bel ow.
0 Vector table setting (VEC_TBL)

Sets vector table so asto initiate register initialization program __INIT and set the stack
pointer (SP) by power-on reset.

O Initidlization (_ _INIT)
Initializes registers and sequentialy callsinitialization routines.
0 Sectioninitialization (__INITSCT)

Clears the non-initialized data area with zeros and copies the initialized data areain ROM to
RAM.

How to create the above routines are described as follows.

67

3.1 Vector Table Setting (VEC_TBL)

To call register initialization routine _ _INIT at power-on reset, specify the start address of function
_ _INIT at address 0 in the vector table. Also to specify the SP, specify the highest address of the
stack to address H'4. When the user system executes interrupt handlings, interrupt vector settings
are aso performed in the VEC_TBL routine. The coding example of VEC_TBL is shown below.

Example:

. SECTI ON VECT, DATA, LOCATE=H 0000

Assi gns section VECT to address H 0 by the section directive.

JOMPORT INIT
.IMPORT _IRQ
.DATA.L _ INT ; Assigns the start address of INIT to addresses H Ox0 to H 0x3.
.DATA.L (a) ; Assigns the SP to addresses H Ox4 to H 0x7.
(a): The highest address of the stack
. ORG H 00000100
.DATA. L _IRQ ; Assigns the start address of IRQ to addresses H 0x100 to
. END H 0x103.

68

3.2 Initialization (__INIT)

__INIT initializes registers, calls initialization routine sequentially, and then calls main function.
The coding example of this routine is shown below.

Example:

extern void _|I NITSCT(void);
extern void main(void);

voi d _INIET()
{
_INITSCT(); [* Calls sef:tion ir]itiali_zation routine __INITSCT. */
mai n() ; [* Calls main routine _main. */
for(:) /* Branches to endl ess | oop after executing main */
. /* function and waits for reset. */
}

69

3.3 Section Initialization (__INITSCT)

To set the C program execution environment, clear the non-initialized data area with zeros and copy
theinitialized data areain ROM to RAM. To executethe __INITSCT function, the following
addresses must be known.

o Start address (1) of initialized data areain ROM.
o Start address (2) and end address (3) of initilalized data areain RAM
o Start address (4) and end address (5) of non-initialized data area

0
Interrupt
vector
Program area
(section P)
Constant area
(section C) r ROM
1) —»
Initialized data area
(section D)
(2)—p e
Initialized data area
(section R)
3) » RAM
(4) » Non-initialized data areg
(section B) (
65—
Dynamic aree

70

To obtain the above addresses, create the following assembly programs and link them together.

. SECTI ON D, DATA, ALI G\=4
. SECTI ON R, DATA, ALI G\=4
. SECTI ON B, DATA, ALI G\=4
. SECTI ON C, DATA, ALI G\=4

_ D RoM . DATA. L (STARTOF D) ; start address of section D (1)
_ _D BGN . DATA. L (STARTOF R) ; start address of section R (2)
_ _D END . DATA. L (STARTOF R) + (SIZEOF R) ; end address of section R (3)
_ _B BGN . DATA. L (STARTOF B) ; start address of section B (4)
_ _B END . DATA. L (STARTOF B) + (SIZECOF B) ; end address of section B (5)

.EXPORT _ _D ROM

.EXPORT _ D B&N

.EXPORT _ _D END

.EXPORT _ B BGN

.EXPORT _ _B END

. END

Notes; v Section names B and D must be the non-initialized data area and initialized data area
section names specified with the compiler option section.

W Section name R must be the section name in RAM area specified with the ROM
option at linkage.

71

If the above preparation is completed, section initialization routine can be written in C as shown
bel ow.

Example:

extern void ‘NI TSCT(

externint * DROM * B BGN, * BEND, * D BGN, * D END
)

void _INTSCT()

{
short *p, *q ;
/* Non-initialized areais initialized to zeros */
for (p=_B BGN ; p<=_B END ; p++)
*p:O ,
/[* Initialized data is copied fromROMto RAM */
for (p=_D BGN, g=_D ROM; p<=_D END ; p++, Qq++)
} *p:*q :

72

Section 4 Setting the C Library Function
Execution Environment

To use C library functions, they must be initialized to set C program execution environment. To use

I/O (stdio.h) and memory management (stdlib.h) functions, low-level 1/0 and memory alocation
routines must be created for each system.

This section describes how to set C program execution environment when C library functions are
used.

Power-on
reset
4) (1)

_ _INIT VEC_TBL
_ _INITSCT _ _INITLIB User program __CLOSEALL

'

Standard library

4 ©)

Low-level
interface

: Table always required

- Routine always required

: Routine required when library is used.

: Supplied by the C compiler

Figure 4-1 shows a program configuration when C library functions are used.

73

Each routine required to execute library functions as follows.
(1) Setting vector table (VEC_TBL)

Sets vector table to initiate register initialization program (__INIT) and set the stack pointer
(SP) at power-on reset.

(2) Initializing registers (_ _INIT)
Initializes registers and sequentially calls the initialization routines.
(3) Initializing sections (_ _INITSCT)

Clears non-initialized dasta area with zeros and copies the initialized dataareain ROM to
RAM. Thisroutineis supplied as a standard library function.

(4) Initializing C library functions(__INITLIB)

Initializes C library functions required to be initialized and prepares standard 1/0 functions.
(5) Closing files(_ _CLOSEALL)

Closes all files with open status.
(6) Low-level interface routine

Interfaces library functions and user system when standard 1/0 and memory management
library functions are used.

Creation of the above routines is described below.
Note: When using the C library functions that terminates program execution such as exit, onexit,
or abort, the C library function must be created according to the user system. For details,

refer to addpendix D, Termination Processing Function Example.

In addition, when using C library function assert macro, the abort function must be
supplied.

4.1 Setting Vector Table (VEC_TBL)

Same as when no C library functionisused. For details, refer to section 3, Setting the Execution
Environment.

74

4.2 Initializing Registers(_ _INIT)

Initializes registers and sequentialy callstheinitialization routine __INITLIB and file closing
routine_ CLOSEALL. Thecoding exampleof _ _INIT is shown below.

extern void _I NI TSECT(void);
extern void _I NI TLIB(void);
extern void _CLOSEALL(voi d);
extern void mai n(void);

void _I NI T(void)

{
_INITSCT(); /* Calls sectioninitializationroutine _ _INITSCT. */
_INITLIB(); /* Callslibraryinitializationroutine _ _INTLIB. */
mai n() ; /* Calls C programnain function. */
_CLOSEALL(); /* Calls file close routine _ _CLOSEALL. */
for(; ;) /* Branches to endl ess | oop after executing main */
; /* function and waits for reset. */

}

75

4.3 Initializing Sections (__INITSCT)

Same as when the C library functions are not used. For details, refer to section 3, Setting Execution
Environment.

4.4 Initializing C Library Functions(__INITLIB)

Initialization must be performed for related C library functions before being used. The following
description assumes the case when the initialization is performed in __INITLIB in the program
initiation routine.

To perform initialization, the following must be considered.

(1) errnoindicating the library error status must be initialized for all library functions.

(2) When using each function of <stdio.h> and assert macro, standard |/O library function must
be initialized.

(3) The user low-level interface routine must be initialized according to the user low-level
initialization routine specification if required.

(4) When using the rand and strtok functions, library functions other than 1/0 must be initialized.

#i ncl ude <stdlib. h>

extern void _INIT_LOALEVEL(voi d) ;
extern void _INT_IOLIB(void) ;
extern void _I NI T_OTHERLI B(voi d) ;

void _I NI TLI B(voi d) / *Del et es an underline fromsynbol nane used in the assenbly routine*/
{

errno=0; [*Initializeslibraryfunctions conmonl y*/

_INIT_LOMEVEL() ; /*Callslowlevel interfaceinitializationroutine*/

JINNT_IOLB() /*Calls standard I/Oinitializationroutine*/

_INIT_OTHERLI B() ; /*Callsinitializationroutineother thanthat for standard I/C/
}

Library function initialization program example is shown below.
Example:
The following shows examples of initialization routine (_INIT_IOLIB) for standard 1/O library

function and initialization routine (_INIT_OTHERLIB) for other standard library function.
Initialization routine (_INIT_LOWLEVEL) for low-level interface routine must be created

76

according to the user low-level interface routine's specifications.

#i ncl ude <stdio. h>
void _INT_I QLI B(void)
FILE *fp ;
[*Initializes FILE-type data*/

for (fp=_iob; fp<_iob+ NFILE fp++){

fp -> bufptr=NULL ; /[*Clears buffer pointer */
fp -> _bufcnt=0 ; /| *Clears buffer counter */
fp -> buflen=0 ; /| *C ears buffer Iength */
fp -> _buf base=NULL ; / *C ears base pointer */
fp -> _ioflagl=0 ; /*Cdears I/0flag */
fp -> _ioflag2=0 ;
fp -> _iofd=0 ;
}
/| *Opens standard 1/Ofile */
*1
if (freopen("stdin" , "r", stdin)==NULL) /*Opens standard input file */
stdi n->_i of | ag1=0xff ; /| *Di sables file access *2 */
stdin->_ioflagl | = _I OQUNBUF ; /*No data buffering *3 */
*1
if (freopen("stdout” , "w', stdout)==NULL)/*Cpens standard output file*/
stdout-> _iofl agl=0xff ;
stdout->_ioflagl | = _I OQUNBUF ;
*1
if (freopen("stderr", "w', stderr)==NULL) /*Cpens standard error file */
stderr-> _ioflagl=0xff ;
stderr->_ioflagl | = _I OQUNBUF ;
}

77

/*Decl ares FILE-type data in the C |anguage*/

#define _NFILE 20
struct _i obuf{

unsi gned char *_bufptr; /*Buffer pointer */
| ong _bufcnt; /*Buffer counter */
unsi gned char *_bufbase; /*Buffer base pointer */
| ong _buflen; /*Buffer length */
char _ioflagl; /*1/Oflag */
char _ioflag2; /*1/Oflag */
char _iofd; /*110O fl ag */

} i ob[_NFILE] ;

4.4.1 Creating Initialization Routine (_INIT_IOLIB) for Standard I/O Library Function
Theinitialization routine for standard 1/O library function initializes FI L E-type data used to
reference files and open the standard 1/O files. The initialization must be performed before
opening the standard I/O files.

The following shows an exampleof INIT_IOLIB.

#i ncl ude <stddef. h>

extern char *_slptr ;
extern void srand(unsigned int) ;

void _I NI T_OTHERLI B(voi d)

{
srand(1) ; [*Sets initial value when rand function is used*/
_Siptr=NULL ; /*Initializes the pointer used in the strtok function*/
}
Example:

Notes: *1.Standard I/O file names are specified. These names are used by the low-level interface
routine open.
*2.1f file could not be opened, the file access disable flag is set.
*3.For equipment that can be used in interactive mode such as console, the buffering
disableflag is set.

Figure4-2 FILE-TypeData

4.4.2 Creating Initialization Routine (_INIT_OTHERLIB) for Other Library Function

78

Figure4-1 Program Configuration When C Library Function Is Used
4.5 Closing Files(_ _CLOSEALL)

When a program ends normally, all open files must be closed. Usually, the data destined for afile
is stored in amemory buffer. When the buffer becomes full, data is output to an external storage
device. Therefore, if thefiles are not closed, data remaining in buffersis not output to external
storage devices and may be lost.

When an program isinstalled in a device, the program is not terminated normally. However, if the
main function is terminated by a program error, all open files must be closed.

The following shows an exampleof __ CLOSEALL.

#i ncl ude <stdio. h>

void CLOSEALL(voi d) /*Del et es an under | i ne fromsynbol nane i n assenbl y routi ne*/

{
int i;
for (i=0; i< NFILE; i++)
/*Checks that file is open*/
if(_iob[i]._ioflagl & (_I OREAD| _| OARI TE| _I ORW)
/*Cl oses opened fil es*/

fclose(& iob[i]) ;

Example:

79

4.6 Creating Low-Level Interface Routines
Low-level interface routines must be supplied for C programs that use the standard input/output or
memory management library functions. Table 4-1 shows the low-level interface routines used by

standard library functions.

Table4-1 Low-Leve Interface Routines

No. Name Explanation

1 open Opens files

2 close Closes files

3 read Reads data from a file

4 write Writes data to a file

5 Iseek Sets the file read/write address for data
6 sbrk Allocates a memory area

Refer to the attached Standard Library Memory Stack Size Listing for details on low-level interface
routines required for each C library function.

Initialization of low-level interface routines must be performed when the program is started. For
more information, see the explanation concerning the INIT_LOWLEVEL functionin
section 4.4, Initializing C Library Functions (__INITLIB).

Therest of this section explains the basic concept of low-level input and output, and gives the
specifications for each interface routine. Refer to appendix E, Examples of Low-Level Interface
Routines, for details on the low-level interface routines that run on the SH-series ssmulator
debugger.

Note: The open, close, read, write, Iseek, and sbrk are reserved words for low-level interface
routines. Do not use these words in C programs.

(1) Concept of I/0O Operations
Standard input/output library functions manage files using the FIL E-type data. Low-level
interface routines manage files using file numbers (positive integers) which correspond directly
to actual files.

80

The open routine returns afile number for agiven file name. The open routine must determine
the following, so that other functions can access information about a file using the file number:

[0 Filedevicetype (console, printer, disk, etc.)
(For a special device such as a console or printer file, the user chooses a specific file name
that can be recognized uniquely by the open routine.)

0 Information such as the size and address of the buffer used for the file

0 For adisk file, the offset (in bytes) from the beginning of thefile to the next read/write
position.

The start position for read/write operations is determined by the |seek routine according to the
information determined by the open routine.

If buffers are used, the close routine outputs the contents to their corresponding files. This
allowsthe areas of memory allocated by the open routine to be reused.

(2) Low-Level Interface Routine Specifications
This section explains the specifications for creating low-level interface routines, gives examples

of actual interfaces and explains their operations, and notes on implementation.

The interface for each routine is shown using the format below.
Create each interface routine by assuming that the prototype declaration is made.

Example:

(Routine name)

Purpose (Purpose of the routine)
Interface (Shows the interface as a C function declaration)
Parameters No. Name Type Meaning
1 (Parameter name) (Parameter (Meaning of the parameter)
type)
Returnvalue Type (Type of return value)
Normal (Return value for normal termination)
Abnormal (Return value for abnormal termination)

81

(a) open routine

Purpose Opens afile
Interface i nt open (char *nane,
node) ;

Parameters No. Name Type Meaning

1 name Pointer String literal indicating afile name

to char

2 node int Processing specification
Returnvalue Type int

Normal File number of the file opened

Abnormal -1

Explanation:

The open routine opens the file specified by the first parameter (file name) and returns afile
number. The open routine must determine the file device type (console, printer, disk, etc.) and
assign thisinformation to the file number. Thefiletypeis referenced using the file number each
time a read/write operation is performed.

The second parameter (mode) gives processing specifications for the file. The effect of each bit of

this parameter is explained below:

15

* |10
bl B>
v W
* N
™ |O

N)
mode| </\

[0 O _RDONLY (bit 0)

—

O_RDONLY
L O_WRONLY
O_RDWR
O_CREAT
O_TRUNC
O_APPEND

If thishit is 1, the file becomes read only.

0 O WRONLY (bit 1)

If thishit is 1, the file becomes write only.

[0 O _RDWR (it 2)

If thishitis 1, the file becomes read/write.

82

0O O_CREAT (hit 3)
If thishit is 1 and the file indicated by the file name does not exist, anew fileis created.

0 O_TRUNC (bit 4)
If thishit is 1 and the file indicated by the file name exists, the file contents are discarded and
thefilesizeis set to zero.

0 O_APPEND (hit 5)
If thisbit is 1, the read/write position is set to the end of the file. If thisbitisO, the read/write
position is set to the beginning of the file.

An error is assumed if the file processing specifications contradict with the actual characteristics of
thefile.

The open routine returns a file number (positive integer) which can be used by theread, write,
Iseek, and close routines, provided the file opens normally. The relationship between file numbers
and actual files must be managed by the low-level interface routines. The open routine returns a
value of -1 if the file fails to open properly.

83

(b) close routine

Purpose Closes afile
Interface int close(int fileno);
Parameters No. Name Type Meaning
1 fileno int File number of the file to be closed
Returnvalue Type int
Normal 0
Abnormal -1
Explanation:

The file number, determined by the open routine, is given as the parameter.

The area of memory allocated by the open routine for file management information is freed, so that
it can be reused. If buffers are used, the contents are output to their corresponding files.

Zero isreturned if the file closes normally. Otherwise, —1 is returned.

84

(c) read routine

Purpose Reads data from afile
Interface int read (int fileno,
char *buf,
unsi gned int count);
Parameters No. Name Type Meaning
1 fileno int File number of thefile to be read
2 buf Pointer to Areato be used to store the read data
char
3 count unsigned Byte length of datato be read
int
Returnvalue Type int
Normal Byte length of the data actually read
Abnormal -1
Explanation:

The read routine loads data from the file indicated by the first parameter (fileno) into the area
indicated by the second parameter (buf). The amount of datato be read isindicated by the third
parameter (count).

If an end of fileis encountered during aread, less than the specified number of bytes are read.

The file read/write position is updated using the byte length of the data actually read.

If datais read normally, the routine returns the number of bytes of the dataread. Otherwise, the
read routine returns a value of —1.

85

(d) write routine

Purpose Writes datato afile
Interface int wite (int fileno,
char *buf,
unsi gned int count);
Parameters No. Name Type Meaning
1 fileno int File number
2 buf Pointer to char Areastoring datato be
written in thefile
3 count unsigned int Byte length of the data to be written
Returnvalue Type int
Normal Byte length of the data actually written
Abnormal -1
Explanation:

The write routine outputs data, whose byte length is indicated by the third parameter (count), from
the areaindicated by the second parameter (buf) into the file indicated by the first parameter
(fileno).

If the device (such as adisk) where afileis stored becomes full, data less than the specified byte
length iswritten to thefile. If zeroisreturned as the byte length of data actually written several
times, the routine assumes that the device is full and sends areturn value of —1.

The file read/write position must be updated using the byte length of data actually written.

If the routine ends normally, it returns the byte length of data actually written. Otherwise, the
routine returns a value of —1.

86

(e) Iseek routine

Purpose Determines the next read/write position in afile
Interface | ong I seek (int fileno,
| ong of f set,
i nt base);
Parameters No. Name Type Meaning
1 fileno int File number of the target file
2 of f set long Offset in bytes from specified point in
thefile
3 base int Base used for offset (bytes)
Returnvalue Type long
Normal The offset (bytes) from the beginning of the file
for the next read/write position
Abnormal -1
Explanation:

The |seek routine determines the next read/write position as an offset in bytes. The next read/write
position is determined according to the third parameter (base) as follows:
0 Base=0
The second parameter gives the new offset relative to the beginning of the file.
[l Base=1
The second parameter is added to the current position to give the new offset.
0 Base=2
The second parameter is added to the file size to give the new offset.

An error occursif the fileis on an interactive device (such as a console or printer), the new offset
value is negative, or the new offset value exceeds the file size in the case of U or [J, above.

If Iseek correctly determines anew file position, the new offset value isreturned. Thisvalue

indicates the new read/write position relative to the beginning of the file. Otherwise, the |seek
routine returns a value of —1.

87

(f) sbrk routine

Purpose Allocates a memory area
Interface char *sbrk(unsigned | ong size);
Parameters No. Name Type Meaning
1 si ze unsigned long Size of the areato be allocated
Returnvalue Type Pointer to char
Normal Start address of the allocated area
Abnormal (char*) -1
Explanation:

The size of the areato be alocated is given as a parameter.
Create the sbrk routine so that consecutive calls allocate consecutive areas beginning with the
lowest available address.

An error will occur if there isinsufficient memory.

If the routine ends normally, it returns the start address of the alocated area. Otherwise, the routine
returns (char *) — 1.

88

PART IV ERROR MESSAGES

Section 1 Error Messages Output by the C Compiler

The C compiler checks C source programs for errors. This section explains the format and
meaning of error messages that may be generated during compile time, and gives appropriate
programmer responses.

1.1 Error Message Format

Error messages are output to the standard output file (normally aterminal). Figures 1-1 and 1-2
show the formats used for error messages.

"sanple.c" line 23 : 2011 (B Line too | ong
v w X Y z

Figure1-1 Error Messages Format (UNIX Systems)

sanple.c (23) : 2011 (E) Line too | ong

\% W X Y 4

Figure 1-2 Error Messages Format (PC Systems)

Explanation:
v Filename
File name (sample.c) of the source program in which the error was detected.
W Line number
Line number (23) where the error was detected.
X Error number
This number is unique to the error message. See section 1.3, List of Error Messages, for details
on the errors and appropriate programmer responses.
Y Messagelevel
The severity of the error. See section 1.2, Message Levels, for details.
Z Message text

This describes the error.

Note: When an error not related to the source program has occurred (e.g., an error internal to the

compiler), the file name is not output; for the line number here, 0 is output in UNIX
systems, and nothing is output in PC systems.

91

1.2 C Compiler Action and Programmer Response for Each Error Leve

Error messages are classified into the following four levels according to their severity. Table 1-1
shows C compiler action for each level of errors.

Table1-1 C Compiler Action and Programmer Response for Each Error Level

Object
Error Error Error Program Processing

No. Level Meaning Symbol Number Output Continues User Response

1 Warning A mistake with respect (W) 1000to Yes Yes Check the list of error messages to
to language specifica- 1999 decide whether error recovery
tions : The compiler performed by the C compiler is
has performed error correct. If necessary, modify and
recovery. recompile the source program.

2 Error A mistake in language (E) 2000to No Yes Correct the error and recompile the
specifications 2999 source program.

3 Fatal The source program F 3000to No No Correct the error and recompile the
exceeds the limit of the 3999 source program.
C compiler

4 Internal An error has occurred — 4000to No No Contact the sales office or represen-
in an internal process 4999 tative where the C compiler was

of the C compiler

purchased.

92

1.3 List of Error Messages

This section giveslists of error messages in order of error number. A list of error messages are

provided for each level of errors.

Example:

Error Number Message

Explanation

Vv 2226 W Scal ar required

for an "operator"

X Binary operator && or || isused in an
expression that is not scalar.
Y S: Assumesthat the result isint and continues
processing.
Z P: Specify ascalar expression as the operand.

VvV Error Number
w Error Message

This message is sent to the standard output device (normally aterminal).

X Explanation

This gives more details about the error.

Y System Action

Thisindicates the reaction of the C compiler to the error.

Z Programmer Response

Thisindicates to the programmer how to resolve the error.

93

(1) Warning-L evel M essages

Error No.

M essage

Explanation

1000

Il egal

poi nt er

assi gnnent

A pointer is assigned to a pointer with a

different data type.

S. Setstheleft hand side to the internal
representation of the right hand side
pointer. The resultant type isthe same as
the data type of the left pointer.

P:. Usethe cast operator to specify explicit
type conversion.

1001

Il egal
" operator”

conparison in

The operands of the binary operator == or =

are a pointer and an integer other than 0.

S. Selectsan internal representation for the
operands.

P. Specify the correct type for the operands.

1002

Il egal
" operator”

poi nter for

The operands of the binary operator ==, !=, >,

<, >=, or <= are pointers assigned to different

types.

S. Assumes that the operands are pointers
assigned to the same type.

P. Useacast operator so that the same
operand type will be used.

1005

Undef i ne
sequence

d escape

An undefined escape sequence (a character

following a backslash) is used in a character

constant or string literal.

S. Ignores the backdash.

P. Remove the backslash or specify the
correct escape sequence.

1007

Long cha
const ant

racter

The length of a character constant is 2

characters.

S. Usesthe specified characters.

P. Check that the correct character constant is
specified.

1020

Il egal

const ant

94

The operands of the binary operator —in a

Error No.

M essage

Explanation

1008

Identifier too |ong

Anidentifier's length exceeds 31 characters.

S Usesthefirst 31 characters and ignores the
rest.

P: Useidentifierswith 31 or less characters.

1010

Character constant too
| ong

The length of a character constant exceeds

four characters.

S Usesthefirst four characters and ignores
therest.

P:. Use character constant with four or less
characters.

1012

Fl oati ng poi nt
constant overfl ow

The value of afloating-point constant exceeds

the limit.

S: Assumestheinternally represented value
corresponding to +oo or —co depending on
the sign of the result.

P:. Specify floating-point constants within
thelr limits.

1013

| nt eger const ant
overfl ow

The value of unsigned long integer constant

exceeds the limit.

S: Ignoresthe overflow and uses the
remaining bits.

P:. Specify integer constants within their
[imits.

1014

Escape sequence
overfl ow

The value of an escape sequence indicating a

bit pattern in a character constant or string

literal exceeds 255.

S Usesthelow order byte.

P. Change the value of the escape sequence to
255 or lower.

95

Error No.

M essage

Explanation

1015

Fl oati ng poi nt
const ant underfl ow

The absolute value of afloating-point constant

isless than the lower limit.

S. Assumes 0.0 as the value of the constant.

P. Change the value of the constant to 0.0 or
specify a constant whose value can be
represented.

1016

Argunent m snat ch

The data type assigned to a pointer specified as
aformal parameter in a prototype declaration
differs from the data type assigned to a pointer
used as the corresponding actual parameter in
afunction call.

S. Usesthe internal representation of the
pointer used for the function call actual
parameter.

P. Useacast operator for the function call
actual parameter to convert the formal
parameter to the type specified in the
prototype declaration.

1017

Return type m snmatch

The function return type and the expression
typein areturn statement are pointers but the
datatypes assigned to these pointers are
different.

S. Usesthe internal representation of the
pointer specified in the return statement
expression.

P. Useacast operator for the expression
specified in the return statement
expression to convert it to the type of the
function return value.

1019

Il egal constant
expr essi on

The operands of the relational operator <, >,

<=, or >= in aconstant expression are pointers

to different data types.

S: Assumes 0 as the result value.

P: Use an expression other than a constant
expression to obtain the correct result.

96

Error No. M essage Explanation

expression of "-" constant expression are pointersto different

data types.

S: Assumes O as the result value.

P: Use an expression other than a constant
expression to obtain the correct resullt.

poi nt zero

carried out in the evaluation of a constant
expression.

S: Assumestheinternal representation of the
value corresponding to +co Or —o
depending on the sign of the operands.

P Specify the correct constant expression.

poi nt operation

or 0.0/0.0 are carried out in a constant

expression.

S: Assumestheinternal representation of not
anumber to indicate the result of an
ineffective operation.

P: Correct the constant expression.

specified tw ce than once.

S: Usesthe last specified compiler option.
P: Check that options are specified correctly.

suboptions in the define option exceeds 16.

S: Usesthefirst 16 suboptions.

P. Define the 17th and subsequent macro
names using #define directives at the
beginning of the source program.

97

(2) Error-Level Messages

Error No. Message

Explanation

2000

1l egal preprocessor
keywor d

Anillegal keyword is used in a preprocessor

directive.

S: Ignoresthe line containing the preprocessor
directive.

P:. Correct the keyword in the preprocessor
directive.

2001

1l egal preprocessor
synt ax

Thereisan error in preprocessor directive or in

amacro call specification.

S: Ignoresthe line containing the preprocessor
directive or macro call. If thereisan error
In a constant expression used in the
preprocessor directive, the system assumes
that the constant expression is 0.

P: Specify the correct preprocessor directive
or macro call.

2002

M ssing ",

A comma (,) is not used to delimit two
arguments in a #define directive.

S. Assumes that thereis a comma.

P. Insert acomma.

2003

Mssing ")"

A right parenthesis “)” does not follow a name
in adefined expression. The defined
expression determines whether the nameis
defined by a #define directive.

S. Assumesthat thereis aright parenthesis.

P: Insert aright parenthesis.

2004

M ssing ">"

A right angle bracket (>) does not follow afile
name in an #include directive.

S. Assumesthat there is aright angle bracket.
P: Insert aright angle bracket.

98

Error No. Message

Explanation

2005

Cannot open include file
" file name"

The file specified by an #include directive

cannot be opened.

S: Ignoresthe #include directive.

P: Specify the correct file name. If thefile
name s correct, check that the file does not
have write only status.

2006

Mul tiple #define's

The same macro name is redefined by #define

directives.

S. Ignores the second #define directive.

P: Modify one of the macro names or delete
one of the #define directives.

2008

Processor directive #elif
m smat ches

Thereis no #f, #ifdef, #ifndef, or #elif

directive corresponding to an #elif directive.

S. Ignoresthe #elif directive.

P: Insert the corresponding preprocessor
directive or delete the #elif directive.

2009

Processor directive #el se
m smat ches

Thereis no #if, #ifdef, or #ifndef directive

corresponding to an #else directive.

S. Ignoresthe #else directive.

P: Insert the corresponding preprocessor
directive or delete the #else directive.

2010

Macro paraneters m smatch

The number of macro call argumentsis not
equal to the number of macro definition
arguments.

S: Ignoresthe excess argumentsiif there are
too many, or assumes blank string literals
if the number of argumentsisinsufficient.

P: Specify the correct number of macro
arguments.

99

Error No. Message

Explanation

2011

Li ne too | ong

After macro expansion, a source program line

exceeds the limit of 4095 charactersfor UNIX

systems, and 512 characters for PC systems.

S: Ignores the 4096th and subsequent
characters.

P: Separate the line so that the length of each
resulting line is within the limit after macro
expansion.

2012

Keyword as a nacro nane

A preprocessor keyword is used as a macro
name in a#define or #undef directive.

S: Ignores the #define or #undef directive
P: Change the macro name.

2013

Processor directive #endif

m smat ches

Thereis no #if, #ifdef, or #ifndef directive

corresponding to an #endif directive.

S: Ignoresthe #endif directive.

P: Check that the #endif directive is used
correctly.

2014

M ssi ng #endi f

There is no #endif directive corresponding to
an #f, #ifdef, or #ifndef directive, and the end
of fileis detected.

S: Assumesthat there is an #endif directive.
P: Insert an #endif directive.

2016

Preprocessor constant
expressi on too conpl ex

The total number of operators and operandsin

aconstant expression specified by an #if or

#elif directive exceeds the limit of 512 for

UNIX systems, and 210 for PC systems.

S Assumes the value of the constant
expression to be 0.

P: Correct the constant expression so that the
number of operators and operandsisless
than or equal to the limit.

100

Error No. Message

Explanation

2017 M ssing ”

A closing double quotation mark (") does not

follow afile namein an #include directive.

S. Assumesthat thereis a closing double
guotation mark.

P: Insert a closing double quotation mark.

2018 Il1legal #line

The line count specified by a#line directive

exceeds the limit of 32767 for UNIX systems,

and 16383 for PC systems.

S. Ignoresthe #line directive.

P: Modify the program so that the line count
islessthan or equal to the limit.

2019 File name too |ong

The length of afile name exceeds 128

characters.

S. Usesthefirst 128 characters as thefile
name.

P: Change the file name so that the length is
less than or equal to 128 characters.

2020 Systemidentifier "name"
redef i ned

The name of the defined symbol is the same as

that of the run time routine.

S: Continues processing as a unique symbol.

P: Define the symbol with a different name
from that of the run time routine.

2100 Mul ti pl e storage cl asses

Two or more storage class specifiers are used

in a declaration.

S. Usesthefirst storage class specifier and
ignores others.

P: Specify the correct storage class specifier.

101

Error No. Message

Explanation

2101

Address of register

The unary operator & isused on aregister

variable.

S. Assumes that the auto storage classis
specified for the variable and continues
processing.

P: Modify the declaration so that the storage
class of the variableisauto .

2102

Il egal type conbination

A combination of type specifiersisillegal.

S: Usesthefirst and longest legal
combination of type specifiers and ignores
therest.

P: Change the type specifiersto alega
combination.

2103

Bad sel f reference
structure

A struct or union member has the same data

type asits parent.

S. Assumes the data type of the member is
int.

P: Declare the correct data type for the
member.

2104

Illegal bit field width

A constant expression indicating the width of a

bit field is not an integer or it is negative.

S: Ignoresthe bit field width specification and
assumes that the member is not a bit field.

P: Specify the correct width for the bit field.

2105

I nconplete tag used in
decl aration

An incompl ete tag name declared with a struct

or union, or an undeclared tag nameisused in

atypedef declaration or in the declaration of a

data type not assigned to a pointer or to a

function return value.

S. Assumes that the incomplete or undeclared
tag nameisanint.

P: Declare the incomplete or undeclared tag
name.

102

Error No. Message

Explanation

2106

Extern vari abl e
initialized

A compound statement specifies an initial
value for an extern storage class variable.
S: Ignorestheinitial value.

P: Specify theinitial value for the external
definition of the variable.

2107

Array of function

An array with afunction member typeis
specified.

S: Ignoresthe function or array type.

P: Specify the correct type.

2108

Function returning array

A function with an array return value typeis
specified.

S: Ignoresthe function or array type.

P: Specify the correct type.

2109

I1legal function
decl arati on

A storage class other than extern is specified
in the declaration of afunction variable used in
acompound statement.

S Assumes extern as the storage class.

P: Specify the correct storage class.

2110

Il egal storage cl ass

The storage class in an external definitionis
specified as auto or register.

S: Assumesthat the storage classis extern.
P: Specify the correct storage class.

2111

Functi on as a nenber

A member of astruct or union isdeclared asa
function.

S: Assumesint asthe member type.

P. Declare the correct member type.

103

Error No. Message

Explanation

2112

Illegal bit field

The type specifier for abit field isillegal.
char, unsigned char, short, unsigned short,
int, unsigned int, long, unsigned long, or a
combination of const or volatile with one of
the above typesis allowed as a type specifier
for abit field.
S: Ignoresthe bit field specification and
assumes that the member is not a bit field.
P: Specify the correct type.

2113

Bit field too w de

The width of abit field is greater than the size

(8, 16, or 32 hits) indicated by its type

specifier.

S: Ignoresthe bit field specification and
assumes that the member is not a bit field.

P: Specify the correct bit field width.

2114

Mul tiple variabl e
decl arati ons

A variable name is declared more than oncein

the same scope.

S. Usesthefirst declaration and ignores
subsequent declarations.

P: Keep one of the declarations and delete or
modify the rest.

2115

Mul ti ple tag decl arations

A struct, union, or enum tag name is declared

more than once in the same scope.

S. Usesthefirst declaration and ignores
subsequent declarations.

P: Keep one of the tag name declarations and
delete or modify the rest.

2117

Enpty source program

There are no external definitions in the source

program.

S: Terminates processing.

P: Specify and compile the correct source
program.

2118

Pr ot ot ype m snat ch

104

Error No. Message Explanation
A function type differs from the one specified
in the declaration.

S: Ignoresthe current declaration if the
function prototype declaration is being
processed. Ignores the previous
declaration if the declaration of an external
function definition is being processed.

P: Correct the declaration so that the function
types match.

2319— Not—a paranreterpae—— — — — — 00—
An identifier not in the function parameter list
is declared as a parameter.

S: Ignores the parameter declaration.

P:. Check that the function parameter list
matches all parameter declarations.

2120—+legalparaneter storage——— — — —

cl ass A storage class other than register is specified
in afunction parameter declaration.

S: Ignores the storage class specifier.

P:. Delete the storage class specifier.

2»2r—+Htegat tagaé—— — — — — — — — — 00—
The combination of atag name and struct,
union, or enum differs from the declared
combination.

S Assumes struct, union, or enum
depending on the tag name type.

P: Specify the correct combination of atag
name and a struct, union, or enum.

2122 Bit field with O

The width of abit field which isamember of a

struct or union isO.

S: Ignoresthe bit field specification and
assumes that the member is not a bit field.

P. Delete the member name or specify the
correct bit field width.

2123 Undefined tag nane
An undefined tag name is specified in an

105

Error No. Message Explanation

enum declaration.

S: Ignores the declaration.

P: Specify the correct tag name.
2124 Il egal enum val ue

as avalue for an enum member.

S: Ignores the value specification.

P: Change the expression to an integer
constant expression.

2125 Function returning
specified.
S: Ignores one of the function types.
P: Specify the correct type.
2126 Il egal array size
- Thevauethat specifiesthenumberof ———
elementsin an array is other than an integer
between 1 and 2147483647.
S. Assumes the number of array elementsto
be one.
P. Specify avalid number of array elements.
2127 M ssing array size
- Thenumberofdementsinanarrayishot—
specified where it is required.
S Assumes that the number of array element
isone.
P: Specify the number of array elements.

2128 1l egal pointer
decl aration for "*" A type specifier other than const or volatileis

106

Error No. Message Explanation

specified following an asterisk (*), which
indicates a pointer declaration.
S: Ignores the type specifier following the
asterisk.
P: Specify the correct type specifier following
the asterisk.
2129 Illegal initializer type
atype that can be assigned to the variable.
S: Doesnot initialize the variable.
P: Specify the correct type of initial value.
2130 Initializer should be
constant A value other than a constant expression is
specified as either the initial value of astruct,
union, or array variable or astheinitia value
of astatic variable.
S: Doesnot initialize the variable.
P: Specify a constant expression astheinitial
value.

2131 No type nor storage class

in an external data definition.
S: Assumesint as the type specifier.
P: Insert the storage class or type specifier.

2132 No par aneter name

function parameter list is empty.

S: Ignores the parameter declaration.

P: Insert the parameter name in the function
parameter list or delete the parameter
declaration.

2133 Mul ti pl e paraneter
decl arati ons
Either a parameter name isdeclared in a

107

Error No. Message Explanation

function definition parameter list more than

once or a parameter is declared inside and

outside the function declarator.

S Usesthefirst declaration if a parameter is
declared more than once in the function
parameter list. Usesthe declaration inside
the function declarator if a parameter is
declared inside and outside the function
declarator.

P: Keep one of the declarations and delete the

2134 Initializer for paraneter rest.

of an parameter.
S: Does not use theinitial value specification.
2135 Multiple initialization P: Deletetheinitial value specification.

bleisinitialized I .
S: Ignores the second and subsequent
initialization directives.
2136 Type m smat ch P: Delete any redundant directives.

. b canction
declared more than once with different data
types.

S: Usesthe type specified in the definition
declaration where a definition is declared.
Otherwise, the data type specified in the
first declaration is used.

P: Use the same data type in the declarations.

2137 Nul I declaration for
par anmet er
An identifier is not specified in the function

108

Error No. Message Explanation
parameter declaration.
S: Ignores the corresponding parameter
declaration.
P. Delete the parameter declaration or insert
2138 Too many initializers the correct parameter name.

| ber-of-iritial-val -

struct or array is greater than the number of

struct members or array elements. Thiserror

also occursif two or moreinitial values are
specified when the first members of aunion
are scalar.

S: Usesonly theinitial values corresponding
to the number of struct members, array
elements, or the first members of union.
Therest areignored.

P. Specify the correct number of initial

2139 No paraneter type values.

: fiedinafunct

declaration.
S. Assumesint asthe parameter declaration
type.
P:. Specify the correct type for the parameter
2140 I[Ilegal bit field declaration.

A bit field isused in aunion.
S: Ignoresthe bit field.
2141 I[Ilegal bit field P: Usethebit field in a struct.

An unnamed hit field is used as the first
member of astruct.

S: Ignoresthe bit field.

P: Specify the name of the bit field.

2142 I1legal void type

void isused illegally.

109

Error No. Message

Explanation

2143

I1legal static function

S: Assumesthat void isint.
P: void can only be used in the following
cases:
(1) To specify atype assigned to a pointer
(2) To specify afunction return value type
(3) To explicitly specify that afunction
whose prototype is declared does not
have a parameter

: s Tt

2144

Type m smatch

definition in the source program.

S: Ignores the function declaration.

P: Either delete the function declaration or
define the function.

bl functi i

2200

| ndex not

I nt eger

names are declared with different data typesin

different valid ranges.

S. The currently declared variable or function
type isvalid within the range that can be
referenced. However, when linked with
another file, the valid datatypeis
determined as shown below.

(1) If thereisadeclaration that actsasa
definition, that data typeisvalid.

(2) If thereis no declaration that actsasa
definition:

— The previously declared datatypeis
valid when the current declaration
isin the function.

— The currently declared datatypeis
valid when the current declaration
isnot in the function.

P: Declare the same data types for extern
variables or functions.

An array index expression typeis not an

110

Error No. Message

Explanation

2201

Cannot convert paraneter

integer.

S: Assumesthat thetypeisint.

P: Specify an integer expression for the array
index.

- Thenthparameter of afunction call cannot be"

2202

Nunber of paraneters
m smat ch

converted to the type of parameter specified in

the prototype declaration.

S. Assumes that the correct parameter typeis
specified and continues processing.

P: Specify an expression whose type
corresponds to the one specified in the
prototype declaration.

2203

1l egal nmenber reference
for "."

Thenumberof parameters for afunctioncalt-is
not equal to the number of parameters
specified in the prototype declaration.

S Assumes that the number of parameters for
the function call is equal to the number of
parameters specified in the prototype
declaration, and continues processing.

P Specify the correct number of parameters.

I'he expression to the left of the (.) operator is

not a struct or union.

S Assumes that the member is not referenced
and continues processing.

P: Useastruct or union expression to the left
of the (.) operator.

2204

Il egal nmenber reference
for II_>II

The expression to the |eft of the — operator is

Error No. Message Explanation

not a pointer to a struct or union.
S: Assumes that the member is not referenced
and continues processing.
2205 Undefi ned nmenber nane P: Use an expression which deals with pointer
to struct or union to the left of the —
operator according to the member.

reference a struct or union.
2206 Modi fi abl e | val ue S: Assumes that the member is not referenced
required for "operator" and continues processing.

P: Specify the correct member name.

I 't ; i
operator ++ or —— has aleft value that cannot
be assigned (a left value whose type is not
array or const).

S Assumes that the expression with a left
value that can be assigned is specified as

2207 Scal ar required for "!" an operand and continues processing.

P: Specify an expression, whose | eft value can
be assigned, as an operand.

The unary operator ! isused on an expression
that is not scalar.
2208 Pointer required for "*" S: Assumesint asthe type of the result and
continues processing.
P: Useascalar expression as the operand.

- Theoperand for the unary operator * isan
expression of pointer to void or isnot an

2209 Arithnetic type required expression of pointer.
for "operator" S. Ignores*.

P: Use an operand that is an expression other
than pointer to void.

The unary operator + or —is used on anon-

arithmetic expression.

112

Error No. Message Explanation

S Assumes that the operand typeisint and
continues processing.

2210 Integer required for "~" P: Change the expression to an arithmetic
expression.

The unary operator ~ is used on a non-integral
expression.
S: Assumes that the result typeisint and
2211 1l egal sizeof continues processing.

P: Change the expression to an integral
expression.

A sizeof operator is used for abit field

undefined size.

S: Assumesint asthe operand type and
continues processing.

P: A sizeof operator cannot be used to obtain

2212 1l egal cast the size of abit field, function, void, or

array with an undefined size. Use an
appropriate operand.

Either array, struct, or union is specified ina

isvoid, struct, or union and cannot be
converted.
S Assumes that the result isint and continues
processing.
P. Cast operation can only be performed on
2213 Arithnmetic type required scalar dataitems.
for " operator" Use appropriate operands.

The binary operator *, /, *=, or /=isused in an
expression that is not arithmetic.

113

Error No. Message Explanation

2214 I nteger required for S. Assumesint asthe result and continues
" operator" processing.
P: Specify arithmetic expressions as the
operands.

The binary operator <<, >>, &, |, ®, %, <<=,
>>= &= 1= "= or%=1isusedinan
expression that is not an integer expression.
2215 Il'legal type for "+" S Assumesint as the result type and
continues processing.
P. Specify integer expressions as the
operands.

The combination of operand types used with
S: Assumestheresult typeisint and
continues processing.
P. Specify acorrect type of operands. Only
2216 Il'legal type for parameter the following type combinations are
allowed for the binary operator +:
— Two arithmetic operands
— Pointer and integer

void is specified for afunction call parameter
type
. Ignores the parameter type and continues
processing.
P: Specify afunction call parameter type so
that a value can be passed to the function.

2217 Il1legal type for "-"

The combination of operand types used with
the binary operator —is not allowed.
S. Assumesthat the result typeisint and

114

Error No. Message

Explanation

2218

Scal ar required

continues processing.

P: Specify a correct type combination of
operands. Only the following three
combinations are allowed for the binary
operator:

(1) Two arithmetic operands

(2) Two pointers assigned to the same data
type

(3) Thefirst operand is a pointer and the
second operand is an integer.

Thefirst operand of the conditional operator ?:
isnot ascalar.

S Assumesthat thefirst operand isa scalar
and continues processing.

P: Specify ascalar expression as the first
operand.

2219

Type not conpatible in
II?: n

115

The types of the second and third operands of
the conditional operator ?: do not match with
each other.

Error No. Message

Explanation

S: Assumesthat the result typeisint and
continues processing.
P. Specify a correct type combination of
operands. Only one of the following six
combinationsis allowed for the second and
third operands when using the ?: operator:
(1) Two arithmetic operands
(2) Two void operands
(3) Two pointers assigned to the same data
type

(4) A pointer and an integer constant
whose value is 0 or another pointer that
isassigned to void that was converted
from an integer constant whose value

isO
2220 Modi fi abl e | val ue required (5) A pointer and another pointer assigned
for "operator" to void
(6) Two struct or union variables with the
same data type

An expression whose |eft value cannot be

assigned (aleft value whose type is not array

or const) is used as an operand of an
assignment operator =, *=, /=, %=, +=, —,
<<=, >>z, &=, M= or | =,

S Assumes that the left expression whose | eft
value can be assigned is used and continues
processing.

P: Specify aleft expression whose left value

2221 I1legal type for "operator" can be assigned.
The operand of the unary suffix operator ++ or
——isfunction type, a pointer assigned to void,
2222 Type not conpatible for

116

or not scalar type.

Error No. Message

Explanation

S: Assumes that the result typeisint and
continues processing.

P: Useascalar type that is not afunction or a
pointer assigned to void as the operand.

The operand types for the assignment operator
= do not match.

: het 1 | L int e

2223 Inconplete tag used in
expr essi on

2224 Il egal type for assign

continues processing.

P Specify a correct type combination of
operands. Only the following five type
combinations are allowed for the operands
of the = assignment operator:

(1) Two arithmetic operands

(2) Two pointers assigned to the same data
type

(3) Theleft operand isapointer and the
right operand is an integer constant
whose value is 0 or another pointer that
isassigned to void that was converted
from an integer constant whose value
isO.

(4) A pointer and another pointer assigned
to void

(5 Two struct or union variables with the
same data type

An incomplete tag name is used for astruct or
union in an expression.

int and continues processing.
P. Declare the tag name.

117

The operand types of the assignment operator
+=or —=areillegal.
S: Assumes that the result typeisint and

Error No. Message Explanation
continues processing.
P. Specify a correct type combination of
operands. Only the following two type
2225 Undecl ared nane combinations are alowed as operands for
the assignment operator += or —:
(1) Two arithmetic operands
(2) Theleft operand isapointer and the
right operand is an integer.

An undeclared nameis used in an expression.
S: Assumesthat the nameis declared as an
" operator" processing.
P: Either declare the name or modify it so
that it corresponds with one of the
declared names.

The binary operator && or || isused in anon-
scalar expression.

S: Assumes that the result type isint and

continues processing.
P: Use scalar expressions as operands.

118

Error No. Message

Explanation

2227

Il1legal type for equality

The combination of operand types for the
equality operator == or !=is not allowed.
S Assumesthat the result typeisint and
continues processing.
P: Specify a correct type combination of
operands. Only the following three
combinations of operand types for the
equality operator == or != are allowed:
(1) Two arithmetic operands
(2) Two pointers assigned to the same data
type

(3) A pointer and an integer constant
whose value is 0 or another pointer
assigned to void

2228

I1legal type for
compari son

The combination of operand types for the
relational operator >, <, >=, or <= isnot
allowed.

S: Assumes that the result typeisint and
continues processing.

P: Specify a correct type combination of
operands. Only the following two
combinations of operand types are allowed
for arelational operator:

(1) Two arithmetic operands
(2) Two pointers assigned to the same data

type

2230

Il egal function call

An expression which is not afunction type or

a pointer assigned to afunction type is used

for afunction call.

S: Ignoresthe actual argument list and the
parentheses which indicate this list.

P:. Specify afunction type expression or
pointer assigned to a function type
correctly.

119

Error No. Message Explanation

2231 Address of bit field The unary operator & isused on abit field.

S: Ignoresthe bit field, assumes that the unary
operator & is correctly specified, and
continues processing.

P: Correct the expression. A bit field address
cannot be used.

2232 'l egal type for "operator" A typethatisnotascalar, or that isapointer
assigned to afunction or void is specified as
the operand for the prefix operator ++ or ——.
S: Assumesint asthe result type and

continues processing.
P: Usean operand that is ascalar other than a
pointer assigned to a function or void.

2233 IlTegal array reference An expression used as an array is not one of

the following types:
— Array
— Pointer assigned to a data type other

than afunction or void

S: Ignores the square brackets ([]) and the
array subscript enclosed.

P: When an array subscript is required,
specify the correct expression.

2234 Il legal typedef nane

A typedef nameisused asavariablein an
reference

expression.
S: Ignores the expression.
P. Usetypedef correctly.

2235 I'l'l egal cast An attempt is made to cast a pointer with a
floating-point type.
S: Ignores the attempt.
P. Cast the pointer with an integer type, then
with a floating-point type.

120

Error No. Message

Explanation

2236 Il egal cast in constant

An attempt is made to cast a pointer with a

char or short.

S: Ignoresthe cast operation.

P: Use an expression other than a constant
one.

2237 Il egal constant

expr essi on

In aconstant expression, a pointer constant is

cast with an integer and the result is

manipul ated.

S. Assumes that the conversion is not
specified and continues processing.

P: Use an expression other than a constant
expression.

2238 Lval ue or function type

required for "&"

The unary operator & is used on the left value
or is used in an expression other than function
type.

S. Assumesthat an expression with aleft
valueis specified as the operand and
continues processing.

P. Specify an expression that has aleft value
or afunction type expression as the
operand.

2300 Case not in switch

A case label is specified outside a switch

statement.

S: Ignoresthe case label.

P: Specify the case label in aswitch
statement.

2301 Default not in switch

A default label is specified outside aswitch

Statement.

S: Ignoresthe default label.

P. Specify the default label in aswitch
Statement.

Error No. Message

Explanation

2302 Mul tiple | abels

A label is defined more than oncein a

function.

S. Ignores redundant label definitions.

P: Keep one label name and delete or modify
the other.

2303 Il egal continue

A continue statement is specified outside a

while, for, or do statement.

S: Ignores the continue statement.

P: Only use the continue statement in a
while, for, or do statement.

2304 1l egal break

A break statement is specified outside awhile,

for, do, or switch statement.

S. Ignoresthe break statement.

P: Only usethe break statement in awhile,
for, do, or switch statement.

2305 Voi d function returns

val ue

A return statement specifies areturn value for

afunction with avoid return type.

S. Ignoresthereturn statement expression.

P: For afunction with avoid return type, do
not specify an expression inareturn
statement or do not use the return
Statement.

2306 Case | abel not const ant

A case label expression is not an integer

constant expression.

S. Ignoresthe case label.

P: Use an integer constant expression for the
case label.

2307 Mul ti ple case | abels

Two or more case labels with the same value

are used in one switch statement.

S: Ignores redundant case labels.

P: Modify the switch statement so that each
case label has a unique value.

122

Error No. Message

Explanation

2308 Mul tiple default | abels

Two or more default labels are specified for

one switch statement.

S: Ignores redundant default labels.

P: Modify the switch statement so that it has
only one default 1abel.

2309 No | abel for goto

Thereisno label corresponding to the

destination specified by a goto statement.

S: Continues processing.

P. Specify the correct label in the goto
statement.

2310 Scal ar required

The control expression (that determines

statement execution) for awhile, for, or do

statement is not a scalar.

S Assumesthat an int control expressionis
specified and continues processing.

P. Useascalar expression as the control
expression for awhile, for, or do
statement.

2311 I nteger required

The control expression (that determines

statement execution) for aswitch statement is

not an integer.

S: Assumesthat anint control expressionis
specified and continues processing.

P: Use an integer expression as the control
expression for the switch statement.

2312 M ssing (

The control expression (that determines

statement execution) does not follow aleft

parenthesis “(” for an if, while, for, do, or
switch statement.

S: Assumes that the control expression
follows a left parenthesis (" and continues
processing.

P: Specify the control expression for an if,
while, for, do, or switch statement and
enclose it in parentheses.

123

Error No. Message

Explanation

2313 M ssing ;

A do statement is ended without a semicolon

()-

S: Assumes that the do statement ends with a
semicolon (;) and continues processing.

P. Place asemicolon (;) at the end of the do
statement.

2314 Scal ar required

A control expression (that determines

statement execution) for an if statement is not

ascalar.

S Assumesthat an int control expressionis
specified and continues processing.

P: Useascalar expression as the control
expression for if statement.

2316 II'legal type for return
val ue

An expression in areturn statement cannot be
converted to the type of value expected to be
returned by the function.

S: Assumes that the expression in the return
statement is the type expected to be
returned by the function and continues
processing.

P: Convert the expression in thereturn
statement so that it matches the type of
value expected.

2400 Il egal character "character"

Anillega character is detected.

S Assumes that the character is a blank
character and continues processing.

P. Deletetheillegal character.

Error No. Message

Explanation

2401 I nconpl ete character
const ant

Anend of lineindicator is detected in the

middle of acharacter constant.

S: Assumes that a quotation mark (') is placed
before the end of line indicator and
continues processing.

P. Correct the character constant.

2402 I nconpl ete string

An end of lineindicator is detected in the

middle of astring literal.

S Assumes that a double quotation mark (")
is placed before the end of line indicator
and continues processing.

P. Correct the string literal.

2403 ECF i n commment

Anend of fileindicator is detected in the

middle of acomment.

S Assumes that the program ends when the
end of fileindicator isreached and
continues processing.

P. End the comment with */.

2404 Il egal character code

" character code"

Anillegal character code is detected.

S Assumes that the character codeis a blank
character and continues processing.

P. Deletetheillegal character code.

2405 Nul I character constant

There are no characters in a character constant

(i.e., no characters are specified between two

guotation marks).

S: Assumesthat “\0” is specified and
continues processing.

P. Correct the character constant.

125

Error No. Message

Explanation

2406

Qut of fl oat

The number of significant digitsin afloating-

point constant exceeds 17.

S: Depending on the sign, the system assumes
+00 Or —0o.

P: Ensure that the number of significant digits
in afloating-point constant is less than or
equal to 17.

2407

I nconpl ete | ogi cal

i ne

A backslash (\) or a backslash followed by an

end of lineindicator (\(RED) is specified as

the last character in a non-empty sourcefile.

S: Ignoresthelast logical line.

P: Delete the backslash or continue the
physical line.

2500

1l egal token

Anillegal token sequenceis used.

S: Ignores data up to asemicolon (;), left
brace ({), right brace (}), commac(,), or
keyword (if, while, for, switch, do, case,
default, return, break, or continue).

P: Correct the token sequence.

2501

Di vision by zero

An integer is divided by zero in a constant

expression.

S: Assumes aresult value of zero and
continues processing.

P: Modify the constant expression so that an
integer is not divided by zero.

2600

character string

An error message specified by string literal
#error isoutput to thelist file if nolist option is
not specified.

S: Continues processing.

126

Error No. Message

Explanation

2650

Invalid pointer reference

The specified address does not match the

required byte alignment.

S: Uses the address with the lowest bit
masked when accessing word data, and the
address with the lowest two bits masked
when accessing long word data.

P: Specify the address so as to match the byte
alignment.

2700

Functi on "function name"' i n
#pragma i nterrupt al ready
decl ar ed

A function already declared as a normal

function has been specified with the interrupt

function declaration #pragma interrupt.

S: Ignoresthe interrupt function declaration.

P:. Declare the function as an interrupt
function before it is declared as a normal
function.

2701

Mul tiple interrupt for
one function

A function has been declared as an interrupt

function with #pragma interrupt more than

once.

S: Ignoresthe interrupt function declaration.

P. Delete the declarations following the first
one.

2702

Mul ti pl e #pragma
i nterrupt options

The same type of interrupt specifications have
been specified more than once.

S Ignoretheinterrupt function declaration.
P. Delete one of the interrupt specifications.

2703

1l egal #pragma interrupt

decl arati on

The specifications for the interrupt function
declaration #pragma interrupt are not correct.
S: Ignoresthe interrupt function declaration.
P: Specify correctly.

127

Error No. Message

Explanation

2704

Illegal reference to
interrupt function

Aninterrupt function isillegally referenced.

S. Ignores the attempt to reference the
interrupt function.

P. Aninterrupt function cannot normally be
referenced. Define another function for
referencing.

2705

Il egal paraneter

in

interrupt function

There are different parameter typesin an
interrupt function.

S. Ignores the interrupt function declaration.
P:. Specify correct parameter types.

2706

M ssi ng paraneter

declaration in interrupt

functi on

The variables used in the option specification

by the interrupt function are not specified.

S. Ignores the interrupt function declaration.

P. Declare the variables before declaring the
interrupt function declaration #pragma
interrupt.

2707

Par anet er out

of

range in

interrupt function

Parameter tn in an interrupt function exceeds

256.

S. Ignores the value of parameter tn.

P. Modify the value of parameter tn so it does
not exceed 256.

2800

Il egal paraneter

nunber

inin-line function

The number of parameters used in an intrinsic
function does not match the required number.

S. Ignoresthe intrinsic function.

P. Specify the correct number of parameters.

2801

Il egal paraneter type in

in-l1ine function

There are different parameter typesin an
intrinsic function.

S. Ignoresthe intrinsic function.

P. Specify the correct parameter types.

2802

Par anet er out

of

range in

128

A parameter exceeds the range that can be

Error No. Message Explanation

in-1ine function specified by an intrinsic function.
S: Ignoresthe intrinsic function.
P: Check the range that can be specified for
the parameter and specify it correctly.

in-line function intrinsic function.
S: Ignores the intrinsic function.
P: Check theintrinsic function specifications
and specify it correctly.

129

(3) Fatal-L evel M essages

Error No. Message

Explanation

3000 St at enent nest too deep

The nesting level of an if, while, for, do, and

switch statements exceeds the limit of 32 for

UNIX systems, and 15 for PC systems.

S. Terminates processing.

P. Modify the program so that the nesting
level islessthan or equal to the limit.

3001 Bl ock nest too deep

The nesting level of compound statements

exceeds the limit of 32 for UNIX systems, and

15 for PC systems.

S. Terminates processing.

P. Modify the program so that the nesting
level islessthan or equal to the limit.

3002 #i f nest too deep

The conditional compilation (#if, #ifdef,

#ifndef, #elif, and #else) nesting level exceeds

the limit of 32 for UNIX systems, and 6 for PC

systems.

S. Terminates processing.

P. Modify the program so that the nesting
level islessthan or equal to the limit.

3003 Too many ext er nal

identifiers

The number of external identifiers exceeds the

limit of 4096 for UNIX systems, and 511 for

PC systems.

S. Terminates processing.

P. Divide the program so that the number of
external identifiersislessthan or equal to
the limit.

130

The number of effective identifiers (internal

Error No. Message

Explanation

3004 Too many |l ocal identifiers

identifiers) in one function exceeds the limit of

4096 for UNIX systems, and 512 for PC

systems.

S: Terminates processing.

P: Divide the compound statements so that the
number of identifiers declared in one
compound statement is less than or equal to
the limit.

I : efined.i

#define directive exceeds the limit of 4096 for

UNIX systems, and 1024 for PC systems.

S: Terminates processing.

P: Divide the program so that the number of
macro names is less than or equal to the
limit.

3005 Too many macro identifiers

3006 Too many paraneters

declaration or afunction call exceeds the limit

of 63 for UNIX systems, and 31 for PC

systems.

S: Terminates processing.

P: Divide the compound statements so that the
number of identifiers declared in one
compound statement is less than or equal to
the limit.

- _Thenumber of parametersinamacro

3007 Too many nmacro paraneters

definition or amacro call exceeds the limit of

64 for UNIX systems, and 31 for PC systems.

S: Terminates processing.

P: Modify the program so that the number of
macro parametersis less than or equal to
the limit.

131

After amacro expansion, the length of aline

Error No. Message

Explanation

3008 Li ne too | ong

exceeds the limit of 4095 characters for UNIX

systems, and 512 characters for PC systems.

S: Terminates processing.

P. Dividetheline so that its length does not
exceed the limit after macro expansion.

he lenath of Srina literal |

3009 String literal too |ong

characters. The length of string literalsisthe
byte number generated after the specified
string is connected continuously. The length
of string literalsin the source program is not
the length of the source program, in the string
data. This byte number islocated in the string
literal data with the expansion sign counted as
one character.
S: Terminates processing.
P: Modify the program so that the total length
of string literals does not exceeds 512
bytes.

3010 Processor directive

#i ncl ude nest too deep

exceeds the limit of 8 for UNIX systems, and 5

for PC systems.

S: Terminates processing.

P. Ensurethat the file inclusion nesting level
does not exceed the limit.

he nesting el of .

3011 Macro expansi on nest too

deep

performed by a #define directive exceeds the

[imit of 32 for UNIX systems, and 16 for PC

systems.

S: Terminates processing.

P: Modify the program so that the nesting
level of macro expansion never exceeds the
l[imit. Note that a macro may be defined
recursively.

The number of function definitions exceeds the

132

Error No. Message Explanation

3012 Too many function limit of 512 for UNIX systems, and 256 for PC
definitions systems.

S: Terminates processing.

P: Divide the program so that the number of
function definitionsis less than or equal to
the limit in one compile unit.

'he number of switch statements exceeds the
3013 Too many switches limit of 256 for UNIX systems, and 128 for PC
systems.
S: Terminates processing.
P: Divide the program so that the number of
switch statementsis less than or equal to
the limit in one compile unit.

I g tevel of £ st
3014 For nest too deep limit of 16 for UNIX systems, and 15 for PC
systems.
S: Terminates processing.
P. Ensure that the for nesting level does not
exceed the limit.

- The number of symbolsto-be generated by the-
3015 Synbol table overflow C compiler exceeds the limit of 8192 for

UNIX systems, and 1024 for PC systems.

S: Terminates processing.

P: Divide thefile so that the number of
symbols does not exceed the limit.

- Thenumber of internal labelsto be generated
3016 I nternal |abel overflow by the C compiler exceeds the limit of 16384
for UNIX systems, and 2048 for PC systems.
S: Terminates processing.
P: Divide the file so that the number of
internal 1abels does not exceed the limit.

The number of case labelsin one switch

133

Error No. Message

Explanation

3017

Too many case | abels

statement exceeds the limit of 511 for UNIX

systems, and 255 for PC systems.

S: Terminates processing.

P: Ensure that the number of case labels does
not exceed the limit.

I berof tabets defimed

3018

Too many goto | abels

function exceeds the limit of 511 for UNIX

systems, and 256 for PC systems.

S: Terminates processing.

P:. Ensure that the number of goto labels
defined in afunction does not exceed the
limit.

3019

Cannot open source file
" file name"

A source file cannot be opened.
S: Terminates processing.
P: Specify the correct file name.

3020

Source file input error
" file name"

A source or inctude fite cannot be read.
S: Terminates processing.
P: Check that the file is not read protected.

3021

Menory overfl ow

The Ccompiter-cannot attocate sufficient

memory to compile the program.

S: Terminates processing.

P. Dividethefile so that less memory is
needed for compilation.

3022

Swi tch nest too deep

I'he nesting Tevel of switch statements exceeds

the limit of 16 for UNIX systems, and 15 for

PC systems.

S: Terminates processing.

P. Ensure that the switch nesting level does
not exceed the limit.

134

The number of types (pointer, array, and

Error No. Message Explanation
3023 Type nest too deep function) that qualify the basic type exceeds
16.
S: Terminates processing.
P: Ensure that the number of typesislessthan
or equal to 16.

I han Six di ons.
3024 Array di nensi on too deep S: Terminates processing.
P: Ensure that arrays have no more than six
dimensions.

" . oo

3025 Source file not found command line.
S: Terminates processing.
P: Specify a source file name.

An expression istoo complex
3026 Expression too conpl ex S: Terminates processing.
P: Divide the expression into smaller units.

I e level of ot
3027 Source file too conpl ex IS too deep or an expression is too complex.
S: Terminates processing.
P: Reduce the nesting level of statements or
divide the expression.

hel I I s the limi
3028 Source |ine nunber of 32767 for UNIX systems, and 16383 for PC
overfl ow systems.
S: Terminates processing.
P: Modify both the line count specified in the
#line directive and the source program so
that the last source line number isless than
or equal to the limit.

The number of physical lines (including the

135

Error No. Message Explanation
3029 Physi cal |ine overflow include files) exceeds the limit of 32767 for
UNIX systems, and 16383 for PC systems.
S: Terminates processing.
P: Divide the file so that the number of
physical lines does not exceed the limit.

- Thesize-of-an-array or-astructure exceeds——
3031 Data size overfl ow 2147483647.
S: Terminates processing.
P: Reduce the size of the array or the structure
until it isless than or equal to 2147483647.

The number of qymhnlq used for_debt 19
3033 Synbol table overfl ow information exceeds 30719.
S: Terminates processing.
P: Divide thefile so that the number of
symbols does not exceed 30719.

he sz of the.obi I
3201 Cbj ect size overflow 4 Gbytes.
S: Terminates processing.
P: Divide the program so that the size of the
object program does not exceed 4 Ghytes.

An error has occurred in either one of the

136

Error No. Message Explanation

3300 Cannot open internal file following cases:

(1) Anintermediate file internally generated

by the C compiler cannot be opened.

(2) A file having the same name as the

intermediate file aready exists.

(3) The path name for listing file specifications

exceeds 128 characters.

(4) A file used internally by the C compiler

cannot be opened.

S. Terminates processing.

P: (1) Check that the intermediate file
generated by the C compiler is not
being used.

(2) Do not use the intermediate file name
for other files.

(3) Ensure that the path name for listing
file specifications does not exceed 128
characters.

(4) Check that the disk has sufficient
capacity for files.

: itefile] | 1

3301 Cannot close internal file theC compiler cannot be closed.
S. Terminates processing.
P: (1) Check that there are no mistakesin the
compiler installation procedure.
(2) Check that there are no abnormalities
on the hard disk.

: i tofile] | !

3302 Cannot input internal file theC compiler cannot be read.
S. Terminates processing.
P: (1) Check that there are no mistakesin the
compiler installation procedure.
(2) Check that there are no abnormalities
on the hard disk.
Anintermediate file internally generated by

137

Error No. Message Explanation

3303 Cannot out put i nternal the C compiler cannot be written.
file S: Terminates processing.

P: Increasethedisk size.

Anintermediate file inrprnally gpnpm‘rm hy

3304 Cannot del ete internal the C compiler cannot be deleted.
file S: Terminates processing.

P. Check that the intermediate file generated
by the C compiler is not being used.

vali ' . ol

3305 Inval i d command paranmeter S Terminates processing.
" option name" P:. Specify the correct option.

An interrupt generated by a CNTL C
3306 Interrupt in conpilation command (from a standard input terminal) is
detected during compilation.
S: Terminates processing.
P: Input the compile command again.

' onsin ler d "

3307 Conpi | er version mismatch S Terminates processing.
P. Refer to the Install Guide for the

installation procedure, and reinstall the C
compiler.

The command.line grjprifi cation exceeds 256
3320 Conmand par anet er buffer characters.
overfl ow S: Terminates processing.
P: Ensure that the command line does not
exceed 256 characters.

An error has occurred in either of the

138

Error No. Message Explanation

3321 Il egal environnment following cases:
vari abl e (1) Theenvironment variable SHC _LIB is
not specified.

(2) Thefile name does not satisfy file
name specification rules or the path
name exceeds 118 characters.

S: Terminates processing.
P: (1) Specify the environment variable
SHC_LIB.

(2) Specify the file name according to file
name specification rules.

(3) Ensure that the path name does not
exceed 118 characters.

4000 Internal error S: Terminates processing.

to P: Report the error occurrence to your local

4999 Hitachi dealer.

139

Section 2 Error Messages Output for the C
Library Functions

Some library functions set error numbers to macro errno defined by the header file <stddef.h>in
the C library function when an error occurs during the library function execution. Error messages
corresponding to error numbers have already been defined and can be output. The following shows
an example of aprogram which causes an error message output.

Example:
#i ncl ude <stdi 0. h>
#i ncl ude <string. h>
#i ncl ude <stdlib. h>
main ()
{
FILE *fp
fp=fopen("file","wW");
f p=NULL;
fclose(fp); /* error occurred */----------- U
printf("%\n",strerror(errno)) ; /*print error nessage */-------- U
}
Description:

1. Anerror occurs because the file pointer value NUL L is passed to the fclose function as
an actual argument. In this case, an error number isset in errno.

2. If the error number is passed to the strerror function as an actual argument, a pointer to the

corresponding error message is returned. Specifying the character string to be output in the
printf function outputs the error message.

140

C Library Function Error Messages

Functions to Set

Error No. Message Explanation Error Numbers
1100 Data out of range Anoverflow occurs. atan, cos, sin, tan,
cosh, sinh, tanh, exp,
fabs, frexp, ldexp,
modf, ceil, floor, strtol,
atoi, fscanf, scanf,
sscanf, atol
1101 Data out of domain Results for mathematical acos, asin, atan2, log,
parameters are not defined. log10, sqrt, fmod, pow
1102 Di vision by zero Division by zero was performed. divbs, divws, divls,
divbu, divwu, divlu
1104 Too long string The length of the character string strtol, strtod, atoi, atol,
exceeds 512 characters. atof
1106 Invalid file NULL pointer constant is specified fclose, fflush, freopen,
poi nt er as file pointer value. setbuf, setvbuf, fprintf,
fscanf, printf, scanf,
sprintf, sscanf,
viprintf, vprintf,
vsprintf, fgetc, fgets,
fputc, fputs, ungetc,
fread, fwrite, fseek,
ftell, rewind, perror
1200 I nvalid radix An invalid radix was specified. strtol, atoi, atol
1202 Nunber too | ong The specified number exceeds 17 strtod, fscanf, scanf,
digits. sscanf, atof
1204 Exponent too | arge The specified exponent exceeds strtod, fscanf, scanf,
three digits. sscanf, atof
1206 Nor nal i zed The exponent exceeds three digits strtod, fscanf, scanf,

exponent too |arge

when the character string is
normalized to the IEEE standard
decimal format.

sscanf, atof

141

Functions to Set

Error No. Message Explanation Error Numbers

1210 Overfl ow out of A float-type decimal value is out of strtod, fscanf, scanf,

fl oat range (overflow). sscanf, atof

1220 Under f| ow out of A float-type decimal value is out of strtod, fscanf, scanf,

fl oat range (underflow). sscanf, atof

1250 Overfl ow out of A double-type decimal value is out strtod, fscanf, scanf,

doubl e of range (overflow). sscanf, atof

1260 Under f| ow out of A double-type decimal value is out strtod, fscanf, scanf,

doubl e of range (underflow). sscanf, atof

1270 Overfl ow out of A long double-type decimal value is fscanf, scanf

| ong doubl e out of range (overflow).

1280 Under f| ow out of A long double-type decimal value is fscanf, scanf

| ong doubl e out of range (underflow).

1300 File not open The file is not open. fclose, fflush, setbuf,
setvbuf, fprintf,
fscanf, printf, scanf,
sprintf, sscanf,
viprintf, vprintf,
vsprintf, fgetc, fgets,
fputc, fputs, gets,
puts, ungetc, fread,
fwrite, fseek, ftell,
rewind, perror,
freopen

1302 Bad fil e nunber An output function was issued for fprintf, fscanf, printf,

an input file or output function is scanf, sprintf, sscanf,

issued for input file. viprintf, vprintf,
vsprintf, fgetc, fgets,
fputc, fputs, gets,
puts, ungetc, perror,
fread, fwrite

1304 Error in fornmat An erroneous format was specified fprintf, fscanf, printf,

for an in input/output function using
format.

scanf, sprintf, sscanf,
viprintf, vprintf,
vsprintf, perror

142

APPENDI X

Appendix A Language and Standard Library Function
Specifications of the C Compiler

This section shows the implementation dependent specifications of the C compiler that are not
included in the C language specifications (in ANSI standard for the C programming language).

A.1 Language Specifications of the C Compiler

A.1.1 Compilation Specifications

Table A-1 Compilation Specifications

Item

C Compiler Specification

Error information when an error is detected

Refer to part IV, Error Messages

A.1.2 Environmental Specifications

Table A-2 Environmental Specifications

Iltem C Compiler Specification
Actual argument for the main function Not specified
Interactive /O device configuration Not specified

A.1.3 ldentifiers

Table A-3 Identifier Specifications

Item

C Compiler Specification

Number of valid characters of internal identifiers not used for

external linkage

The first 31 characters are valid

Number of valid characters of external identifiers used for external

linkage

The first 31 characters are valid

Lowercase and uppercase character distinction in external

identifiers used for external linkage

Lowercase characters are
distinguished from uppercase

characters.

Note: Two different identifiers with the same first 31 characters are considered to be identical.

Example:
(& longnameabcdefghijklmnopgrstuvwx;
(b) longnameabcdefghijklmnopgrstuvwy;

Identifiers (a) and (b) are indistinguishable because the first 31 characters are the same.

145

A.1.4 Characters

Table A-4 Character Specifications

Item

C Compiler Specification

Elements of character set and codes used during program

execution

ASCII character set
Kanji used in host environment can be

used for source program comment.

Shift state used for encoding multiple-byte characters

Shift state is not supported

The number of bits used to indicate a character sets during

program execution

Eight bits are used for each character.

Correspondence between the program compilation character set

and the execution

ASCI!I is used for both.

Extended representation that appears either in a character
constant or a string literal and that is not defined in the language

specifications

Characters and extended
representation other than that
specified by the language are not

supported.

Character constant or wide character constant of two or more

characters

The upper four characters of the
character constant is valid, and the
upper two characters of the wide
character is valid. If a wide character
of more than one character is
specified, a warning error message is

output.

locale specifications used to converting multiple-byte character to

wide character

locale is not supported

Simple char having normal the value range same as signed char

The same range as the signed char

or unsigned char.

146

A.15 Integer

Table A-5 Integer Specifications

Item

C Compiler Specification

Integer-type data representation and value

Table A-6 shows data

representation and value.

Effect when an integer is too large to be converted into a signed

integer-type value or signed char

The lower one or two bytes of
the integer is used as the

conversion result.

The result of bitwise operations on signed integers

signed value

Sign of the remainder for integer division

Same as the sign of the dividend

Effect of a right shift operation on the sign bit of signed integer-type data

The sign bit is unchanged by the

shift operation.

Table A-6 Integer Typesand Their Corresponding Data Range

Type Range of Values Data Size
char —128 to 127 1 byte
signed char —128to 127 1 byte
unsigned char 0 to 255 1 byte
short —32768 to 32767 2 bytes
unsigned short 0 to 65535 2 bytes
int —2147483648 to 2147483647 4 bytes
unsigned int 0 to 4294967295 4 bytes
long —2147483648 to 2147483647 4 bytes
unsigned long 0 to 4294967295 4 bytes

147

A.1.6 Floating-Point Numbers

Table A-7 Floating-Point Number Specifications

Iltem C Compiler Specification

Data that can be represented as The float, double, and long double are provided as floating-
floating-point type and value point types.

Data converted from double or long See section A.3, Floating-Point Number

double to float Specifications, for details on floating-point

Internal representation of floating-point numbers (internal representation, conversion specifications, and
data operation specifications). Table A-8 shows the limits on

representing floating-point numbers.

Table A-8 Limitson Floating-Point Numbers

Limit

Item Decimal *1 Internal Representation

Maximum float 3.4028235677973364e+38f TE7fffff
(3.4028234663852886e+38f)

Positive minimum float 7.0064923216240862e—-46f 00000001
(1.4012984643248171e—-45f)

Maximum double or long double 1.7976931348623158e+308 Tfefffffffffffff
(1.7976931348623157e+308)

Positive minimum double or long 4.9406564584124655e-324 0000000000000001

double (4.9406564584124654e—-324)

Note: *1. Limits on decimal is non-zero minimum value or maximum value not infinitive value. Values

within () indicate theoritical values.

148

A.1.7 Arraysand Pointers

Table A-9 Array and Pointer Specifications

Iltem C Compiler Specification

Integer type required for array's maximum size unsigned long

(size_t)

Conversion from pointer-type data to integer-type The lower byte of pointer-type data is used.

data (Pointer-type data size 3 Integer-type data size)

Conversion from pointer-type data to integer-type Extended with signs

data (Pointer-type data size < Integer-type data size)

Conversion from integer-type data to pointer-type The lower byte of integer-type data is used.

data (Integer-type data size 3 Pointer-type data size)

Conversion from integer-type data to pointer-type Extended with signs

data (Integer-type data size < Pointer-type data size)

Integer type required for holding pointer difference long

between members in the same array (ptrdiff_t)

A.1.8 Register

Table A-10 Register Specifications

Iltem C Compiler Specification

The maximum number of register variables that can 7

be allocated to registers

Type of register variables that can be allocated to char, unsigned char, short, unsigned short, int,
registers unsigned int, long, unsigned long, float, and
pointers

149

A.1.9 Structure, Union, Enumeration, and Bit Field Types

Table A-11 Specificationsfor Structure, Union, Enumeration, and Bit Field Types

Iltem C Compiler Specification

Effect of setting a union member and referencing a Reference is possible but the referred value is
union member using another member whose data type not guaranteed.

is different

Structure member alignment Structures consisting of char members are
aligned in 1-byte units, while structures consisting
of short members are aligned in 2-byte units.
Structures consisting of any other members are

aligned in 4-byte units."1

Sign of an int bit field Assumed to be signed int

Allocation order of bit fields in int area Beginning from the high order bit to low order

bit.*2

Result when a bit field has been allocated in an int area The next bit field is allocated to the next int
and the next bit field to be allocated is larger than the area.”?

remaining int

Type specifier allowed for bit field char, unsigned char, short, unsigned short,

int, unsigned int, long, and unsigned long

Integer describing enumeration int

Notes: *1. See section 2.2 (2), Aggregate Data, in part Il for details on structure member allocation.

*2. See section 2.2 (3), Bit Fields, in part Il for details on bit field allocation.

A.1.10 Modifier

Table A-12 Modifier Specifications

Item

C Compiler Specification

volatile data access type

Not specified

150

A.1.11 Declarations

Table A-13 Declaration Specifications

Iltem C Compiler Specification

Number of types that can qualify the basic types (pointer, Up to 16 types can be specified.

array, and function)

(8 Exampleof counting the number of typesthat qualify the basic types

Examples:
(i) inta
aisint (basic type) and the number of types that qualify the basic typeis zero.
(i) char *f();
f isafunction type that returns pointer to char (basic type). The number of types that
qualify the basic type is two.

A.1.12 Statement

Table A-14 Statement Specifications

item C Compiler Specification

The number of case label specified by a switch statement Up to 511 labels can be specified.

151

A.1.13 Preprocessor

Table A-15 Preprocessor Specifications

Item

C Compiler Specification

Correspondence between single character constant and
execution environment characters in the conditional

compilation

Character strings in the preprocessor
statement match the execution environment

characters

Reading an include file

The file within < > is read from a path specified
by the include option. (Defalut: The path

specified by environment variable SHC_LIB)

Supporting an include file whose name is enclosed in a

pair of double quotation marks

The C compiler supports include files whose
names are delimited by double quotation
marks. The C compiler reads these include
files from the current directory. If the include
files are not in the current directory, the C
compiler reads them from the directory

specified in advance.

Source file character string correspondence (blank

character in a character string after macro expansion)

Strings of blanks are expanded as one blank

character.

#pragma directive operation

#pragma interrupt is supported.*?

Value of __DATE_ , __TIME_ _

Data depending on the host machine timer

when the compilation starts.

Note:

152

*1. See section 3.1, Interrupt Functions, in part Il for details on #pragma interrupt specifications.

A.2 C Library Function Specifications

This section explains the specifications for C library functions declared in standard include files.
Refer to the include file for the actual macro names defined in a standard includefile.

A.21 stddef.h

Table A-16 stddef.h Specifications

Item C Compiler Specification
Value of macro NULL The value 0 of pointer to void
Contents of macro ptrdiff_t long

A.22 assert.h

Table A-17 assert.h Specifications

Iltem C Compiler Specification
Information output and terminal operation of See (a) for the format of output information. The
assert.h program outputs information and then calls the abort

function to stop the operation.
(@ Thefollowing message is output when the expression is O for assert (expression):
Assertion Fail ed: <expresson> Fil e <fileename>, Li ne <line-number>

153

A.2.3 ctype.h

Table A-18 ctype.h Specifications

Iltem C Compiler Specification
The character set for which the isalnum, isalpha, iscntrl, Table A-19 shows the character set that
islower, isprint, and isupper functions results in a true return value.

Table A-19 Set of Charactersthat Returns True

Function Name Characters That Become True
isalnum '0'to'9','Ato' Z,'a'to"' z'
isalpha '‘A'to 'Z','a' to 'z'

iscntrl "\ 0'to"\037',\ 177"

islower 'a'to'z'

isprint "40'to "\ 176'

isupper '‘A'to 'Z'

A.24 math.h

Table A-20 math.h Specifications

Note: math.h defines macro names EDOM and ERANGE that indicates a standard library error number.

Iltem C Compiler Specification

Value returned by a mathematical function if an input Returns a nonnumeric value

parameter is out of the range

Is errno set to the value of macro ERANGE if an underflow Yes, it is set.

error occurs in a mathematical function?

Does a range error occur if the 2nd parameter in the fmod A range error occurs

functionis 0

154

A.2.4 stdio.h

Table A-21 stdio.h Specifications

Iltem C Compiler Specification
Is a return character indicating input text end Not specified. Depends on the low-level interface
required? routine specifications.

Is a blank character immediately before the carriage

return read?

Number of NULL characters added to data written to

binary file

Initial value of file position specifier in addition mode

Is a file data lost following text file output?

File bufferring specifications

Is a file with file length O exists?

File name configuration rule

Can the same files be opened simultaneously?

Output data representation of the %p format Hexadecimal representation

conversion in the fprintf function

Input data representation of the %p format Hexadecimal representation

conversion in the fscan function, the meaning of —in If — does not follow #, indicates the range between

the fscanf function the previous and following characters.
Value of errno specified by fgetpos and ftell The fgetpos function is not supported. The ftell
functions function does not specify the errno value. The errno

value is determined depending on the low-level

interface routine.

Output format of messages generated by the perror See (a) below for the output message format.

function

calloc, malloc, or realloc function operation when 0 byte area is allocated.

the size is 0

(8 Messages generated by aperror function follow thisformat:
<string-literal> : <error-message correpsonding to the error number indicated by errno>
(b) Table A-22 shows the format used to indicate infinity and not a number for floating-point
numbers when using the printf or fprintf function.

155

Table A-22 Infinity and Not a Number

Value Format

Positive infinity F++++

Negative infinity = ————

Not a number Xk kkok ok

A.2.6 string.h

Table A-23 string.h Specifications

Item C Compiler Specification

Error message returned by the strerror function See part IV, section 2, Standard Library Error Messages.

A.2.7 Not Supported Library

Table A-24 lists libraries in the C language specifications not supported by the C compiler

Table A-24 Libraries Not Supported by the C Compiler

Header File Library Name

signal.h signal, raise

stdio.h remove, rename, tmpfile, tmpnam

stdlib.h getenv, system

time.h clock, difftime, time, asctime, ctime, gmtime, localtime

156

A.3 Floating-Point Number Specifications
A.3.1 Internal Representation of Floating-Point Numbers

The internal representation of floating-point numbers follows the standard |EEE format. This
section explains this standard.

Internal Representation Format: float isrepresented in |EEE single precision (32 bits), double
and long double are represented in IEEE double precision (64 bits).

Internal Representation Structure: Figure A-1 shows the structure of float, double, and long
doublein internal representation.

float

31 30 2322 0
! 1 hi
[| |

Sign Exponent Mantissa

(1 bit) (8 bits) (23 bits)

double and long double

63 62 5251 0
! ! !
I I I

Sign Exponent Mantissa

(1 bit) (11 bits) (52 bits)

Figure A-1 Structurefor theInternal Representation of Floating-Point Numbers

The elements of the structure have the following meanings.

(i) Sign
This indicates the sign of afloating-point number. Positive and negative are represented by
0 and 1, respectively.
(i) Exponent
This indicates the exponent of afloating-point number as a power of two.
(iii) Mantissa
This determines the significant digits of a floating-point number.

157

Types of Values: Floating-point numbers can represent infinity in addition to general real numbers.
Therest of this section explains the types of values that can be represented by floating-point
numbers.

(i) Normalized Number
The exponent is not 0 or the maximum. A normalized number represents a general real
number.

(i) Denormalized Number
The exponent is 0 and the mantissaisnot 0. A denormalized number is area number
whose absolute value is very small.

(iii) Zero
The exponent and mantissa are both 0. Zero represents the value 0.0.

(iv) Infinity
The exponent is the maximum and mantissais 0.

(v) Not aNumber
The exponent is the maximum and the mantissaisnot 0. Thisis used to represent an
operation result that is undefined (such as 0.0/0.0, ¥ /¥, ¥ - ¥).

Table A-25 shows the conditions used to determine val ues represented by floating-point
numbers.

Note: A denormalized number represents a floating-point number whose absolute value is so
small that it cannot be represented as a normalized number. Denormalized numbers have
less significant digits than normalized numbers. The significant digits of aresult are not
guaranteed if either the operation result or an intermediate result is a denormalized number.

Table A-25 Typesof Values Represented by Floating-Point Numbers

Exponent
Mantissa 0 Other than 0 or Maximum Maximum
0 0 Normalized number Infinity
Other than O Denormalized number Not a number

158

A.3.2 float
float isinternally represented as 1 sign bit, 8 exponent bits, and 23 mantissa bits.

Normalized Number: Thesign bit is either O (positive) or 1 (negative). The exponent is anumber
from 1 to 254 (28 — 2). From this value 127 is subtracted and the result is used as the actual
exponent. The range of actual exponentsis—126 to 127. The mantissais avalue from 0to 223 —1.
For an actual mantissa, it is assumed that the highest order bit (223) is 1 and adecimal point follows
it.
Value represented by a normalized number:
(- 1)<sign> -~ o<exponent>- 127 - (1+ <mantissa> ~ 2 23)

Example:
3130 e i

[tjtooooono{11000000000000000000000

Sign: -

Exponent: 100000002 - 127 =1 ((2) indicates decimal data throughout this manual.)
Mantissaa 1.11(2 = 1.75

Value: -1.75" 21 =-35

Denormalized Number: The sign bit is either O (positive) or 1 (negative). The exponent is 0 which
makes the actual exponent equal to —126. The mantissaisavalue from 1 to 223 —1. For an actual
mantissa, it is assumed that a highest order bit (223) is 0 and a decimal point followsiit.

Value represented by a denormalized number:
(- 1)<sign> © 2-126° (<mantissa> = 2 23)

Example:

1 Fa]
[oJocooooonf11000000000000000000000

Sign: +

Exponent: - 126
Mantissaa 0.11(2) =0.75
Value: 075" 2-126

159

Zero: Thesign bit iseither O (positive) or 1 (negative), (i.e., there are two distinct zero values, +0.0
and —-0.0). The exponent and mantissaare 0. Both +0.0 and —0.0 represent 0.0. See appendix
A.3.4, Floating-Point Operation Specifications, for differences in each operation depending on the
sign.

Infinity: Thesign bitiseither O (positive) or 1 (negative) (i.e., +¥ and —¥ can be represented).
The exponent is 255 (28 —1). The mantissaisO.

Not a Number: The exponent is 255 (28 — 1) and the mantissais not equal to 0.

Note: Thesign of anot anumber isarbitrary and the value of the mantissais not limited (except
that it may not be equal to 0).

A.3.3 double and long double
A doubleor long doubleis represented as 1 sign bit, 11 exponent bits, and 52 mantissa bits.

Normalized Number: Thesign bitisether O (positive) or 1 (negative). The exponent is a number

from 1 to 2046 (211 —2). From thisvalue 1023 is subtracted and the result is used as the actual

exponent. The range of actual exponentsis—1022 to 1023. The mantissais avalue from 0 to 252 —

1. For an actual mantissa, it is assumed that the highest order bit (252) is 1 and a decimal point
followsit.

Value represented by a normalized number:
(- 1)<sign>~ 2<exponent>- 1023 * (1 + <mantissa> = 2-59)

Example:

Bd 5251 0
|D|Dll1111111]]111EIEIEIIJEIIJIJEIIJEIIJEIEIIJEIIJEIEIIJEIIJEIEIIJEIIJDDDDDDDDDDDDDDDDDDDDDDD

Sign: +

Exponent: 11111111112)- 1023=0
Mantissas 1.111(2) = 1.875

Value: 1.875° 20 =1.875

160

Denormalized Number: Thesign bit iseither O (positive) or 1 (negative). The exponent isO
which makes the actual exponent equal to —1022. The mantissavalueisfrom 1to 252 —1. For an
actual mantissa, it is assumed that the highest order bit (252) is 0 and adecimal point followsit.

Value represented by a denormalized number:
(- 1)<sign>" 2-1022° (<mantissa> "~ 2-529)

Example:
K] L2 6 i

|1|IJIJIJIJIJIJIJIJIJIJIJ|111EIIJEIIJEIEIIJEIIJEIIJIJEIIJEIIJEIEIIJEIIJEIIJIJEIIJDDDDDDDDDDDDDDDDDDDDDDD

Sign: -

Exponent: - 1022
Mantissaz 0.111(2) = 0.875
Value: 0.875° 2-1022

Zero: Thesign bit iseither O (positive) or 1 (negative) (i.e., there are two distinct zero values +0.0
and —-0.0). The exponent and mantissaare 0. Both +0.0 and —0.0 represent 0.0. See appendix
A.3.4, Floating-Point Operation Specifications, for differences in each operation depending on the
sign.

Infinity: Thesign bitiseither O (positive) or 1 (negative) (i.e., +¥ and —¥ can be represented).
The exponent is 2047 (211 —1). The mantissaisO.

Not a Number: The exponent is 2047 (211 — 1) and the mantissais not equal to O.

Note: Thesign of anot anumber is arbitrary and the value of the mantissais not limited (except
that it may not be equal to 0).

161

A.3.4 Floating-point Operation Specifications

This section explains the floating-point arithmetic used in C language functions. It also givesthe
specifications for converting between the decimal representation and the internal representation of
floating-point numbers generated during C compiler or standard library function processing.

Arithmetic Operation Specifications:

(i) Result Rounding
If the precise result of afloating-point operation exceeds the significant digits of the
internally represented mantissa, the result is rounded as follows:

[
[

The result is rounded to the nearest internally representabl e floating-point number.
If the result is directly between the two nearest internally representable floating-point
numbers, the result is rounded so that the lowest bit of the manti ssa becomes 0.

(i) Overflow and Underflow Handling
Invalid operations, overflows and underflows resulting from numeric operations are
handled as follows:

[
[
[

For an overflow, positive or negative infinity is used depending on the sign of the result.
For an underflow, positive or negative zero is used depending on the sign of the resullt.
Aninvalid operation is assumed when: (i) infinity is added to infinity and each infinity
has adifferent sign, (ii) infinity is subtracted from infinity and each infinity has the
same sign, (iii) zero ismultiplied by infinity, (iv) zero isdivided by zero, or (v) infinity
isdivided by infinity. In each case, the result is not a number.

In any case, the variable errno is set to the error number corresponding to the error. See
part IV, Error Messages, section 2, C Library Error Messages, for the error number.

Note: Operations are performed with constant expressions at compile time. If an overflow,
underflow, or invalid operation is detected during these operations, awarning-level error
OCCUIS.

(iii) Special Value Operations
More about specia value (zero, infinity, and not a number) operations:

[
[

Theresult is positive zero if positive zero and negative zero are added.

If zero is subtracted from zero and both zeros have the same sign, the result is positive
zero.

The operation result is always a not a number if one or both operands are not a
numbers.

Positive zero is equal to anegative zero for relational operations.

162

[0 If one or both operands are not anumbersin arelationa or equivalence operation, the
result of !=isawaystrue and all other results are false.

Conversion between Decimal Representation and I nternal Representation: This section
explains the conversion between floating-point constants in a source program and floating-point
constantsin internal representation. The conversion between decimal representation and
internal representation of ASCII string literal floating-point numbers by library functionsis also
explained.

(i) To convert afloating-point number from decimal representation to internal representation,
the floating-point number in decimal representation is first converted to a floating-point
number in normalized decimal representation. A floating-point number in normalized
decimal representation isin the format +M ~ 10N, The following ranges of M and N are

used:
[For normalized float
0EME£109- 1
0ENE£99
[For normalized double and long double
OEME£1017- 1
O£ N £ 999

An overflow or underflow occursif afloating-point number in decimal representation
cannot be normalized. If afloating-point number in normalized decimal representation
contains too many significant digits, as aresult of the conversion, the lower digits are
discarded. In the above cases, awarning-level error occurs at compile time and the
variable errno is set equal to the corresponding error number at run time.

To convert afloating-point number from decimal representation to normalized decimal
representation, the length of the original ASCII string literal must be less than or equal to
511 characters. Otherwise, an error occurs at compile time and the variable errnois set
egual to the corresponding error number at run time.

To convert afloating-point number from internal representation to decimal representation,
the floating-point number isfirst converted from internal representation to normalized
decimal representation. According to a specified format, the result is then converted to an
ASCI|I string literal.

163

(if) Conversion between Normalized Decimal Representation and Internal Representation
If the exponent of a floating-point number to be converted between decimal representation
and internal representation istoo large or too small, a precise result cannot be obtained.
This section explains the range of exponents for precise conversion and the error that
results from exceeding the range.

a)

b)

Range of Exponents for Precise Conversion

Rounding as explained in the description, Result Rounding, in appendix A.3 4,
Floating-point Operation Specifications, is performed precisely for floating-point
numbers whose exponents are in the following ranges:

0 Forfloat : OEME£109- 1, 0ENE£13

[0 For doubleandlongdouble: O£M £1017- 1, 0EN £ 27

An overflow or underflow will not occur if the exponent is within the proper
ranges.

Conversion and Rounding Error

The difference between, (i) the error occurring when the exponent outside the proper
range is converted, and (ii) the error occurring when the value is precisely rounded,
does not exceed the result of multiplying the lowest significant digit by 0.47. If an
exponent outside the proper range is converted, an overflow or underflow may occur.
In such acase, awarning-level error occurs at compile time and the variable errno is set
equal to the corresponding error number at run time.

164

Appendix B Parameter Allocation Example

Example 1. Register parameters are allocated to registers from R4 to R7 depending on the order of
declaration.

int f(char,short,int,float); - -
. R4 Sign extension 1
f(1,2,3,4.0);
' R5 | Sign extension 2
R6 3
R7 4.0

Example 2: Parameters which could not be alocated to registers from R4 to R7 are allocated to

the stack area as shown below. If achar (unsigned) or short (unsigned) type parameter is
allocated to a parameter area on a stack, it is extended to a 4-byte area.

int f(int,short,long,float,char);
: 1
f(1,2,3,4.0,5);
. R5 | Sign extension 2
R6 3
R7 4.0
* Lower address
Parameter area) :
5
(stack) Sign extension
* Upper address

165

Example 3: Parameters having atype that cannot be allocated to registers from R4 to R7 are
allocated to the stack area.

struct s {int x,y;} a; R4 1
int f(int,struct s,int);
f(1,a,3); R5 3
* Lower address
Parameter area
a.
(stack) X
a.y

* Upper address

Example 4: |If afunction whose number of parameters changes is specified by prototype
declaration, parameters which do not have a corresponding type in the declaration and the
immediately preceding paramters are allocated to a stack.

int f(double,int,int,...) R4 >

f(1.0,2,3,4);
* Lower address

Parameter area
(stack)

* Upper address

166

Example5: If no prototype is declared, char and float types are extended to int and double types,
respectively.

int f();
char a;
float b;

R4 a

f(a,b);
: * Lower address

Parameter area
(stack) ~ [TTttTtmremrmtmomeeees --mrmmrmmmeee

* Upper address

Example 6: If avalue returned by afunction exceeds 4 bytes, or is astructure type, areturn value
Is specified just before parameter area. |If structure sizeis not a multiple of four, an unused areais
generated.

* Lower address
struct s{char x,y,z;}a,b;
doubl e f(struct s);

Return value addres:

f (a) ; Unused
. Parameter area a.x ay a.z area

(stack)

* Upper address

Return value

setting area

167

Appendix C Usage of Registers and Stack Area

This section describes how to use registers and stack area by the C compiler. The user does not
need to note how to use this area, because registers and stack area used by a function are operated
by the C compiler. Figure C-1 shows the usage of registers and stack area.

For return value storage

-

R1
R2
R3

Stack aree

}

R4

R5

R6

R7

Area used by

R8

the function

R9

R10

\

R11

Return value addres:

R12

R13

R14

Parameter ares

R15 (SP)

Stack aree

RO-R14: For variable or temporary data storage
R4-R7: For parameter storage (indicated [])

f

> Frame sizg¢

Lower address

2

> Stack frame
4 bytes

»

Upper address

Figure C-1 Usage of Registersand Stack Area

168

Appendix D Creating Termination Functions
D.1 Creating Library onexit Function

This section describes how to create library onexit function that defines termination routines. The
onexit function defines a function address, which is passed as a parameter, in the termination
routine table. If the number of defined functions exceeds the limit value (assumed to be 32 in the
following example), or if the same function is defined twice or more, NULL is returned.
Otherwise, value other than NULL isreturned. In the following example, an addressin which a
function is defined is returned. An example of onexit routine is shown below.

Example:

#i nclude <stdlib. h>
typedef void *onexit_t ;

int onexit_count=0 ;
onexit_t (*_onexit_buf[32])(void) ;

extern onexit_t onexit(onexit_t (*)(void)) ;

onexit_t onexit(f)
onexit_t (*f)(void) ;

{ . .
int i;
for(i=0; i<_onexit_count ; i++) | *Checks i f the same function has been defi ned*/
i f(_onexit_buf[i]==f)
return NULL ;
if (_onexit_count==32) [*Checks if the No. of defined functions exceed linmt*/
return NULL ;
el se{
_onexit_count ++ ;
_onexit_buf[_onexit_count]=f ; /*Definesthe function address*/
return & onexit_buf[_onexit_count];
}
}

169

D.2 Creating exit Function

This section describes how to create exit function that terminates program execution. Note that the
exit function must be created according to the user system specifications refereing to the following
example, because how to terminate a program differs depending on the user system.

The exit function terminates C program execution based on the termination code returned as a
paramter and then returns to the environment at program initiation. Returning to the environment at
program initiation is achieved by the following two steps:
(1) Setsatermination codein an external variable
(2) Returnsto the environment that is saved by the setjmp function immediately before
calling the main function

An example of the exit function is shown below.

#i ncl ude <setjnmp. h>
#i ncl ude <stddef. h>

typedef void * onexit_t ;
extern int _onexit_count ;
extern onexit_t (*_onexit_buf[32])(void) ;

extern jnp_buf _init_env ;
extern int _exit_code ;

extern void _CLOSEALL();
extern void exit(int);

voi d exit(code)

int code ;
{
int i;
_exit_code=code ; /| *Sets return code to _exit_code */
for(i=_onexit_count-1; i>0; i--) /*Sequencially executes functions defined by onexit*/
(*_onexit_buf[i])();
_CLOSEALL(); /*doses all files opened*/
longjnp(_init_env, 1) ; /*Returns to the environnent saved by the setj np*/
}

170

Note: To return to the environment before program execution, create the callmain function and
call the callmain function instead of calling the main function from theinit routine as shown
below.

#i ncl ude <setj np. h>

jmp_buf _init_env;
i nt _exit_code;

void cal | mai n()

{

/ * Saves current environnment by setjnp function and calls the main function */
/*Terminates Cprogramif atermnation code is returned fromthe exit function*/

if(!setjmp(_init_env))
_exit_code=main();

D.3 Creating abort Routine

To terminate the routine abnormally, the program must be terminated by a abort routine prepared
according to the user system specifications. The following shows an example of abort routinein
which an error message is output to the standard output device, closes all files, enters endless |oop,
and wait for reset.

Example:

#i ncl ude <stdio. h>
extern void abort(void);
extern void CLOSEALL();

voi d abort ()

{
printf("programis abort !!'\n"); /*Qutputs nessage */
_CLOSEALL(); /*Coses all files */
while(l); /*Enters endl ess | oop */
}

171

Appendix E Examples of Low-Level Interface Routine

/**/

/* | owsrc. c: */
/*____________________________________*/
/* SH-series sinulator debugger interface routine */
/* - Only standard I/O files (stdin, stdout, stderr) are supported */

/**/

#i ncl ude <string. h>

/* file nunber */

#define STDIN 0 /* Standard i nput (console) */
#defi ne STDOUT 1 /* Standard output (console) */
#defi ne STDERR 2 /* Standard error output (console) */
#define FLM N O /* Mnimumfile nunber */
#define FLMAX 3 /* Maxi mum nunber of files */

/* file flag */

#defi ne O RDONLY 0x0001 /* Read only */
#defi ne O WRONLY 0x0002 /* Wite only */
#define O RDWR 0x0004 /* Both read and wite */

/* special character code */

#defi ne CR 0x0d /* Carriage return */
#defi ne LF Ox0Oa /* Line feed */

/* size of area nanaged by sbrk */

#def i ne HEAPSI ZE 1024

/**/

/* Declaration of reference function */
/* Reference of assenbly programin which the sinulator debugger input or */
/* output characters to the console */
/**/
extern void charput(char); /* One character input */
extern char charget(void); /* One character output */

/**/

/* Definition of static vari abl e: * [
/* Definition of static variables used in |lowlevel interface routines * [

/**/

char fl nod[FLMAX] ; /* Open file node specification area */
static union {
long dummy ; /* Dumry for 4-byte boundary */
char heap[HEAPSI ZE] ; /* Declaration of the area managed by sbrk */
}heap_area

static char *brk=(char *)&heap_area;/* End address of area assigned by sbrk */

172

/**/

/* open:file open */
/* Return val ue: Fil e nunber (Pass) */
/* -1 (Fail ure) */
/**/
i nt open(char *nane, /* File nane */
i nt node) /* File node */
{
/* Check node depending on file nane and return file nunbers */
i f(strcnp(nane, "stdin")==0){ /* Standard input file */
i f((nbde&O RDONLY) ==0)
return -1;
f | mod[STDI N] =node;
return STDI N,
}
el se if(strcnp(nane, "stdout")==0){ /* Standard output file */
i f((nbde&O WRONLY) ==0)
return -1;
f | mod[STDOUT] =node;
return STDOUT;
}
el se if(strcnp(nane, "stderr")==0){ /* Standard error file */
i f((nbde&O WRONLY) ==0)
return -1;
f | mod[STDERR] =node;
return STDERR,
}
el se
return -1; /* Error */
}

/**/

/* close: File close */
/* Return val ue: 0 (Pass) */
/* -1 (Filure) */
/**/
int close(int fileno) /* File number */
{

if(fileno<FLM N || FLMAX<fil eno) /* File nunmber range check */

return -1;

flmod[fil eno] =0; /* File node reset */

return O;
}

173

/**/

/* read: Data read */
/* Ret urn val ue: Nunber of read characters (Pass) */
/* -1 (Failure) */
/**/
int read(int fileno, /* File nunber */
char *buf, /* Destination buffer address */
unsigned int count) /* Nunber of read characters */
{
unsigned int i;
/ *Check node according to file name and stores each character in buffer*/
if(flmod[fileno]l & RDONLY||flnmod[fil eno] &0 RDWR) {
for(i=count; i>0; i--){
*puf =char get () ;
i f(*buf==CR) /*Line feed character replacenent*/
*puf =LF;
buf ++;
}
return count;
}
el se
return -1,
}
/**/
/* wite:Data wite */
/* Ret urn val ue: Nunber of wite characters (Pass) */
/* -1 (Failure) */
/**/
int wite(int fileno, /* File nunber */
char *buf, /* Destination buffer address */
unsigned int count) /* Number of wite characters */
{
unsigned int i;
char c;
/* Check nmode according to file nane and out put each character */
if(flrmod[fileno]l & WRONLY || flnod[fileno] &0 RDWR){
for(i=count; i>0; i--){
c=*buf ++;
charput (c);
}
return count;
}
el se
return -1,
}

174

/**/

/* | seek: Definition of file read/wite position */

/* Return value: O fset fromthe top of file read/wite position(Pass)*/

/* -1 (Failure) */

/* (Iseek is not supported in the consol e i nput/output) */

/**/

Il ong I seek(int fileno, /* File number */
| ong of fset, /* Read/write potision */
int Dbase) /[* Origin of offset */

{

return -1;
}

/**/

/* sbrk: Data wite */
/* Return val ue: Start address of the assigned area (Pass) */
/* -1 (Failure) */
/**/
char *sbrk(unsigned |ong size) /* Assigned area size */
char *p ;
i f(brk+si ze>heap_ar ea. heap+HEAPSI ZE) /* Enpty area size */
return (char *)-1 ;
p=brk ; /[* Area assignnent */
brk += size ; /* End address update */
return p ;

175

low vl .src |

SH seri es sinmul ator debugger interface routine |

- | nput / out put

one character- |

_char put
. EXPORT _char get
SIMIC EQU H 0080 ; Speci fi es TRAP_ADDRESS
. SECTI ON P, CODE, ALIG\=4
; _charput: One character output |
; C program i nterface: charput(char) |
_char put :
MOV. L A PARM R1
MOV R4, RO ; Speci fies data
MOV. B RO, @3, R1)
MOV #H 21, RO ; Speci fies function code
MOV. B RO, @Rl
MOV. L A FILENO RO ; Specifies file nunber
MOV. B @0, RO
MOV. B RO, @2, R1)
MoV R1, RO ; Speci fies paraneter bl ock address
TRAPA #SIM | O
NOP
RTS
NOP
; _charget: One character input |
; C program i nterface: char charget(void) |
_charget:
MOV. L A PARM R1
MoV #H 20, RO ; Speci fies function code
MOV. B RO, @1
MOV. L A _FI LENO, RO ; Specifies file nunber
MOV. B @0, RO
MOV. B RO, @2, R1)
MOV R1, RO ; Speci fies paraneter bl ock address
TRAPA #SIM_ | O
NOP
MOV. L A PARM R1
MOV. B @3, R1), RO : Ref erences dat a
RTS
NOP
. ALl GN 4
A _PARM . DATA. L PARM ; Paranet er bl ock address
A FILENO .DATA L FI LENO ;File nunber area address
; 1/ O buffer definition
. SECTI ON B, DATA, ALI G\=4
PARM . RES. L 1 ; Paraneter bl ock area
FI LENO .RES. B 1 ; File nunber area
. END

176

Appendix F ASCII Codes

DEL

SP

%

LE

SYN

ETB

CAN

EM
SUB

ESC
FS

RS

NUL

SCOH DC1

STX

ETX

ECT DC4

ENQ [NAK
ACK

BEL

BS

LF

FF

SO
S

UPPER 4 BITS

LOWER 4 BITS

177

| ndex

Numbers
Decimal and internal representation 163

A

abort routine (termination routine) 171

Aggregate-type data 27

Alignment 24, 26

Areasize calculation 58, 63
Heap area 66
Stack area size calculation 58
Stack area 63

Array type 27

ASCII codes 177

asmcode (suboption) 9

B
Bit field 28, 150
bss (suboption) 9

C
C compiler listings 12
char-type data 26, 146
C library function 60, 153
Error messages output for the C library
functions 140
C library function execution environment
setting 73
Closing files 79
Initialization 75
Initializing C library functions 76
Initializing sections 76
Low-level interface routines 80
Program configuration 73
Vector table setting 74
close routine (low-level interface routine) 84
code (option) 9
Coding notes 51
command line specification (C compiler
listings) 17
Compiler option 9
C compiler options 5, 6
C compiler option listings 9
Option combinations 11
const (suboption) 9
Constant area 24
cpu (option) 9
Creating low-level interface routines 80

Creating termination function 169
Creating abort routine 171
Creating exit function 170
Creating library onexit function 169

D
data (suboption) 9
debug (option) 9
Debug information 9, 11, 54
define (option) 9
Denormalized number 158
double 26, 148, 160
Dynamic area 24, 63
Dynamic area allocation 63
Heap area 24, 66
Stack area 24, 63
Dynamic area size calculation 63

E
errno 76
Error levels (error message levels) 92
Error level 92
Fatal level 92
Internal level 92
Warning level 92
Error messages 91
C compiler action and programmer
response for each error level 92
Error levels 92
Error message format 91
Error message output for the C compiler
library functions 140
Execution environment setting 67
Initialization 69
Program configuration 67
Section initialization 70
Vector table setting 68
exit function (termination routine) 170
expansion (suboption) 9
Exponent 157
Extended specifications 43
Interrupt functions 43
Intrinsic functions 47
External identifier 32

179

F

Fatal level (error message level) 92

File close 79

File extension 8

File I/O operation 57, 77, 80
close routine 84
|seek routine 87
open routine 82
read routine 85
sbrk routine 88
write routine 86

File naming 8

float 26, 148, 159

Floating-point number specifications 148, 157
Denormalized number 158
Exponent 157
Infinity 158
Limits on floating-point numbers 148
Internal representation format 157
Mantissa 157
Normalized number 158
Not a number 158
Sign 157
Types of values 158

Floating-point operation specifications 162
Conversion between decimal represen-
tation and internal representation 163
Invalid operation 162
Overflow 162
Result rounding 162
Special value operations 162
Underflow 162

Frame size 15, 64, 168

Function call interface 34

G
Global base register (GBR) 47, 48

H

Heap area 24, 66

help (suboption) 9

How to invoke the C compiler 5

I
include (option) 9
include (suboption) 9
Include file 8
Reading an include file 152
Standard includefile 4
Infinity 158

int 26, 147
Initialization 67, 69, 74, 75
Initialized data area 24
Internal data representation 26
Internal errors 92
Internal representation 26, 157
Internal representation of scalar-type data 26
Interrupt functions 43
Stack switching specification 43, 44
Trap-instruction return specification 43, 44
Intrinsic functions 47
Invalid operation 162
1/O operation 57
Concept of 1/0 operations 80
Low-level interface routine 80
Routine for standard library function 77

J
K

L

Language specifications 145
Arrays and pointers 149
assert.h 153
Characters 146
C library function specifications 153
Compilation specifications 145
ctype.h 154
Declarations 151
Environmental specifications 145
Floating-point numbers 148
Floating-point number specifications 157
|dentifiers 145
Integer 147
Integer types and their corresponding data
range 147
Limits on floating-point numbers 148
math.h 154
Modifier 150
Not supported library 156
Preprocessor 152
Register 149
Statement 151
stddef.h 153
stdio.h 155
string.h 156
Structure, union, enumeration, and bit
field types 150

length (suboption) 9

180

Library 4
C library function 4, 60
Error messages output for the C library
functions 140
Initializing C library functions 76
Low-level interface routine 80
Not supported library 156
Run time routine 4, 60
Standard library file 4
Limitation 21, 22
Linkage with assembly programs 31
Allocating deallocating stack frames 34
External identifier reference 32
Function call interface 34
Registers 35
Setting and referencing parameters and
return values 37
Stack pointer 34
listfile (option) 9
Listing 12
command line specification 17
Object information listing 15
Source listing 13
Statistics information 16
Structure of C compiler listings 12
long double 26, 148, 160
Low-level interface routines 80
close routine 84
Examples of low-level interface routine
172
|seek routine 87
open routine 82
read routine 85
sbrk routine 88
write routine 86
Iseek routine (low-level interface routine) 87

M

machinecode (suboption) 9

Macro name definition 9

Mantissa 157

Memory allocation 57
sbrk routine 80, 88

Memory area allocation 58
Areasize calculation 58, 63
Example: Memory area allocation and
address specification at program
linkage 61
Dynamic area allocation 63
Initialized data area allocation 61

ROM and RAM allocation 61
Static area alocation 58

N
Non-initialized data area 24
Normalized number 158
Not a number 158
Notes on programming 51
Coding notes 51
Notes on programming development 54

O

object (suboption) 9

objectfile (option) 9

Object information (C compiler listings)
12,15

onexit function (termination routine) 169
open routine (low-level interface routine) 82
optimize (option) 9

Optimization level 9

Overflow 162

P

Parameter 37
Parameter allocation example 165
Parameter area allocation 39
Passing parameters 37
Rules on type conversion 37
Stack parameter area 39
Storage registers 41

#pragma interrupt 43

program (suboption) 9

Program area 24

Program configuration 67, 73

Program devel opment notes 54

PR register 36

Q

R

read routine 85

Register 149
Parameter register 41, 168
Return value storage register 42
Rules on changes in registers after a
function call 35
Usage of registers 168

Reserved words 80

Result rounding 162

181

Return value 37
General rules concerning return values 37
Return value address 42
Return value setting location 42
Return value storage register 42
ROM (linkage editor option) 62
ROM and RAM allocation 61
ROM option 62
Run time routines 4, 60

S
sbrk routine (low-level interface routine) 88
section (option) 9
Section 24
Constant area 22
Initialized data area 22
Non-initialized data area 22
Program area 22
Section name 9, 22
Section initialization 70, 76
short 26, 147
show (option) 9
SH series 3
Sign 157
Sign extension 30
source (suboption) 9
Source listing information (C compiler list-
ing) 12, 13
Stack area 24, 63
Higher addresses 34
Lower address 34
Stack frame 34, 168
frame size 15, 168
Stack pointer (SP) 34, 66, 638
Stack switching specification (interrupt
function) 43, 44
Standard include file 4
Standard library file 4, 59
start (linkage editor option) 62
Static area size calculation 58
statistics (suboption) 9
Statistics information (Compiler listings)
12, 16
Status register (SR) 44, 47
Structure of object programs 24
Structure type 27, 150
Suboption 9
Systems 5

System installation 57
Initialization 69
Program configuration 67
Section initialization 70
Vector table setting 68

T
TRAPA instruction (interrupt function) 43
Trap-instruction return specification
(interrupt function) 43, 44
Troubleshooting 54

U

Underflow 162
Union type 27, 150
unsigned 26, 147

Vv

Vector base register (VBR) 47

Vector table setting 67, 68, 74

W

width (suboption) 9

write routine (low-level interface routine) 86
X

Y

Z
Zero extension 28

182

