SPARC
SH Series Simulator/Debugger

User's Manual

When using this document, keep the following in mind:

1.
2.

This document may, wholly or partially, be subject to change without notice.

All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document
without Hitachi's permission.

Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons
during operation of the user’s unit according to this document.

Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of
Hitachi’'s semiconductor prodocuts. Hitachi assumes no responsibility for any intellectual property claims or other
problems that may result from applications based on the examples described herein.

No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the
written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life
support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning
to use the products in MEDICAL APPLICATIONS.

Preface

The SPARCstation™1 SH Series Simulator/Debugger (referred to in this manua as the
simulator/debugger) is a software tool that simulates execution of programs for the SH series of
single-chip 32-bit microcomputers on the SUNOS*2 to support program development and
debugging.

Thismanual gives agenera description of the functions and usage of the simulator/debugger.

Related information concerning the SH-series microcomputers and their C compiler, assembler,
linkage editor, and librarian can be found in the following manuals.

e SH7032, SH7034 Hardware Manua

* SH Series C Compiler User's Manual

* SH Series Cross Assembler User’s Manual
* SH Series Linkage Editor User’'s Manua

e SH SeriesLibrarian User’s Manua

Notes: 1. SPARCstation is aregistered trademark of SPARC International Inc. It is developed by
the Sun Microsystems Corp.
2. SunOSis atrademark of Sun Microsystems Corp.

Notation

The following notational conventions are used in this manual.

1.

2.

{A|B} meansthat either A or B must be selected, but not both.

[A] meansthat A may be omitted.

Information to be keyed in by the user is underlined.

<CTRL> + <\> means to press the back slash (\) key while pressing the control key.
<CTRL> + <C> means to press the C key while pressing the control key.

(RET) indicates the return key.

(LF) indicates the line-feed key.

A triangle (A) indicates one or more spaces or tabs.

Hexadecimal values are preceded by H'. (Example: H'F81A)

Contents

Part | Simulator/Debugger

SECHION L OVEIVIEW ..ottt nae e sraenneenee e 3
L1 FEAIUIES ...ttt n et 3
1.2 Debugging ObjECt PrOgrams.........cccoeveieeieiiesiesiesiesieseeseesseseeseesesessessessessessessessessessenseses 4
1.3 SIMUIBLHON RENGE..... .ottt ettt sbe b bbbt sa e b s 5
Section2 Simulator/Debugger FUNCLIONS..........ccooverireeieeieeresee e 7
21 Environment SPECITICALION.cccvuiiiiiririeere e 7
2.2 Simulator/Debugger Memory Management.........cccceieeererereerieseeseeseesessesessesessessessenes 7
2.3 Loading Debugging ObjECt ProgramsS........cccceveeeieiienesie e seesieeeseseesese et sne e e 9
24 Setting Register Initial Values, Displaying and Changing Register Values.................... 11
25 Displaying the Memory Map, and Allocating, Displaying,
Changing, and REI€aSiNG MEMOTYccoeiiiiriiriniieereeeseeesee e 12
2.6 EXECULION @NA TIACE .ovvveieeieeieieseeteee e et see st stesee et sa e e e e eseesessesnesressesnnssessenes 14
A A = (o'~ o 1o g T = 010755] o 15
28 Standard I/O and File [/O ProCESSINGccoveerereetesesiestesiesieseessesseseeseesesessessessessessesseses 17
2.9 Saving and Restoring the SImulation SEALUS..........c.ccverirererierieeeeeeeere e 17
210 C SoUurce Level DEDUGOING......ccciviirrirereiietinieiesieeesiee sttt 18
211 BreaK CONAItIONS.....cciiiieieisieieiesieieee ettt sttt e e esesse s s sreseeseeseensees 20
212 MemOry ManipUIBLIONcccoueiriiiriierieeeieiee ettt 24
213 Macro (Command CombiNGLioN)........c.couerueerereeeseseses e e seeseeese e e ere e sre e sreseeses 24
214 Command Chains and Saving Execution Resultsto aFile........cccccoevevniecenvvcenc s, 25
215 Saving Input CommaNndSto @Fleccoiriiiiiiie e 26
AN L == ¥ 1o TP 26
2.16.1 SHUD FUNCHION......ueitiiiiectieieie ettt seesee e e neeneeneens 26
2.16.2 CoVErage MEBSUIEIMENLcceererrerierrinresiesresre e see e ee e ere e sresresnesresrenre e 26
Section 3 Using the Simulator/DebuggErccoveveveevecie e 29
31 Sample Program DESCriPLION.......ccceeirieirirere sttt 29
3.2 Procedure for Creating the Debugging Object Program............cccceeeeeerienieneneneseneens 30
3.3 Simulator/Debugger Usage EXamPIe.........ccoeirieireiinieinerese e 31
3.3.1 Creating the CPU InfOrmation File.........cccccurrirrineiniererieseseeseee s 31
3.3.2 Loading the Programccccvieieiie et eese ettt 32
3.3.3 Memory Map Display and Memory AlOCELIONcccceeeeirieneceneve e 33
3.3.4 Displaying Section Load Address and Allocating Memory Areas.........c.ccoe.ee. 34
3.3.5 Disassembly DiSPlayccccoeeireiiiiene et e 35
3.3.6 Checking Memory CONLENES.........ccuviiriiririrereneeteseeiesee e 35

3.3.7 System Call Start AdAreSS.......ccveiriirierereee e 36

3.3.8 Setting and Checking Breakpoints..........ccoevveeveviereeieeenesieseseseseseseeseesseseeseens 36

RGeS 7 10 To = B = oY RS 37
3.3.10 Program EXECULIONc.coeiiruirieriesieniesie st sre e sre st e e b e seens 37
3.3.11 SiNgle SEEP EXECULION......cvcuirieeirieierieertesee et 37
3.3.12 Single SUbrouting EXECULIONc.coviirieiriierieeeieseeiesee e 39
3.3.13 Trace BUFfer DISPlay......cccocereiriiirieirie et 40
3.3.14 SymbOl DIiSPla ...ccveereeieriie ettt 41
3.3.15 Automatic Command Execution during Simulation............cccceeeevievievenenieseinens 41
3.3.16 Coverage RANGE DiSPlacoceeereriinienierierieie e s 42
3.3.17 Starting Coverage Data ACQUISITIONcccouiereireerineeeireeiesieereee e 42
3.3.18 Setting and Executing Sequential Breakpoints.........cococeveereeneeenenscneseneenes 43
3.3.19 Coverage INformation DiSplay........cceeverrinrinieineereere s 44
Section4 Simulator/Debugger Invocation and Command Input 47
41 Invoking the SImulator/DEDUGOEYcoeriiiririie et 47
4.2 EXiting the SIMUISLOr/DEDUGEYc.coveirieirieirierintesesie sttt 47
4.3 Simulator/Debugger COMMENTS..........coureirieririererieresie st 48
4.4 Specifying Command ParametersS.........ccoerreririerieeneee st 50
441 EXPrESSIONS....ueiteieestestesseseeseeeseesessessessestessessessessessessessessssssssssessessessessessensensessens 50
4.2 LOCAHIONS.....cocueuiereeteieesesietee sttt b bt e b e b b re e bt nenenas 56
A3 DEA....eceiieeeieieee ettt ettt b s 56
4.4.4 Floating POINt DEA........c.courueiriieriiieiiiees et 57
445 CharaCter SINGSc.coveerieerieeriiirierisi ettt st 57
AA.6 FIlENGIMES......ccceieiriiriesereeeee ettt te e se e e e e e eseesessesaesaesaessensensenenns 58
447 COMMENE LINES....oiiiiririeieirereeeesese et 58
4.4.8 Limitations 0N C EXPrESSIONS.......couiveiiererieiristisieseessssaeseeseeessesessessessessessessessens 58
Section5 Simulator/Debugger COmMMAaNS...........coereeieereenrereneseseseseenens 59
51 ASSEMBLE ... Assembleslineby line.......ccocoveenicncees 61
52 BREAK .., Sets, displays, and cancels breakpoints based on
instruction execution address............cocovvrereierreereeenes 63
53 BREAK_ACCESS. Sets, displays, and cancels break conditions based
on access to arange of MEMONY........ccoceveererereereenienes 66
54 BREAK_DATA ..o Sets, displays, and cancels breakpoints based
on the value of memory data...........cceeveereerecnienens 69
55 BREAK_REGISTER Sets, displays, and cancels break conditions based
onthevaueof datain aregisterccoevvevvvvvvreennne 73
56 BREAK_SEQUENCE Sets, displays, and cancel s breakpoints based
on aspecified execution SEqUENCE..........ccccevereereennne. 77
57 CALL i CallsafuncCtion.........ccoceeeierenereeeee e 79
58 COMMAND_CHAIN Executes commands from afile.........cccooveinennenn 83

59 COMPAREcccoovvvvvriens Compares memory CONENESccccvveereereereeseerennnens 85

510 CONVERTccooviveviniein Calculates EXPreSSiON.......ccevevereereereeee e 86
511 COVERAGEcoooirine Starts and stops coverage measurement..............c....... 87
512 DATA_SEARCHcccoeunenne Searches for data.........occveerrieicenrieeere s 0
513 DEBUG_LEVEL Specifiesdebug level ... 92
514 DISASSEMBLEccc...... Disassembles and displays memory contents............. 95
515 DISPLAY _CHARACTERS.. Displayscharacter Stringcccccoceveieieeveneniesesenenns 97
516 DISPLAY_COVERAGE Displays coverage data........cccoceveeveeerierienieniesieseseenns 98
517 DUMP ..ot Displays memory CONtents..........ccceeeeverererererereenens 102
518 EXEC _MODEccocoovune Switches execution MOde..........cccovereereerienenenereenn, 104
519 FILL e InitializeS MeMOry @reaL........coveereeeereenerireeeees 106
520 GO . Executes instructions continuougly..........c.ccccoceeerenne. 107
521 HELP e Displays command name and input format 110
522 LOAD ..ot LOBAS Il .o 112
523 LOAD_STATUSccceeneene Restores simulator/debugger memory and register

LS (= TSP 115
524 MACRO ... Defines, displays, executes, and deletes

simulator/debugger command Macros..........ccvvveeene 116
525 MAP . Defines, displays, modifies, and deletes

MEMONY @IEBS....cciuviiireerieesieesteeseeesreesreesreesreesressrees 128
526 MEMORY ..o Modifies memory CONtents.........c.ccoovvereerenenereseenen. 133
527 MOVE ... Copiesmemory BlocK ... 136
528 PRINT ..o Creates execution history file.........cooovevnennenncnenn 137
529 QUIT . Exits the simulator/debuggeroceoeveeerererenenienenn 140
530 RADIX .o SESTNE FAdiX.c.cvveieeereee s 141
531 REGISTERccccoovvvviennne Displays register CONtents.........ccceeeeveeevenenesieseseenn 142
532 RESET ..o Resets the simulator/debuggercccovevereneneneenn. 143
533 SAVE ... Saves memory datato afile.......cccoevnenninninncn 144
534 SAVE STATUS ... Saves the current simulator/debugger status

11 0 1 = 2SS 145
535 SCOPE ... Displays the function that includes the current

EXECULION AOANESS.......oveeeeirereeieese s 147
536 SET_COVERAGE SELS COVErage raNgEo.veeveereeieeeiee e 148
537 SHOW_CALLS ... Displaysfunction call ... 150
538 STEP ..ot Performs step execution in subroutine units............... 152
539 STEP_INTO ...cocovviriiiirinne Performs step eXeCUtion...........coeeveererenenenenesenene 154
540 STUB ..o Executes command during smulation............ccccee..... 156
541 SYMBOL...oovievievesenne Displays symbol information...........cc.cceeeveeeienieiennnnn. 159
542 TRACE.....oiiiiien Displaystrace bUuffer ..., 163

543 TRACE_CONDITION Sets trace condition, and starts or stopstrace............. 167

544

545
5.46
5.47
5.48

AOANESS ...t 170
TYPE e Displaysvariablevalue...........cccoovonininneneienenn. 193
VECTOR.....coovieiriiieiee Executes from an interrupt vector address.................. 195
SIEgister>..iieee e Modifiesregister CoNtentccovereerererererenerenene 197
PR STRORN [NMVOKES SUD-PrOCESS.......oeeviecierieeerieesee s 199

Part I CPU Information Analysis Program

Section1 Creating the CPU INnformation...........ccoeveviieeiieicie e 203
0 O 1 o o PP 203
1.2 1nVOKING the CIA PrOgraM......cccciieirieirieireeesteesie sttt 203
1.3 CIA Usage Procedures and SElection MENUS..........ccvereireineenecnieeseeeseesee e 204
14 ClA SAMPIE SESSIONS......ccieiiriiiietisteseseses e stesees e seeseeeesee e eeesessessessesresaesrestesteseessensenes 206
15 ClA LiMItBHONS....cuitiiieieieiisieieee ettt n s 211

Part II1 Appendix

Appendix A Differences between Line Assemble Command and

SH-Series Cross Assembler SyntaX..........ceeeeeeeererenenesenennn 215

Appendix B SH-Series Assembler MNemMONICS........ccocevveeveeceseeseecie e 216
Appendix C SH-SerieS Memory Maps........cccoerererenenineeieeseesee e 217
Appendix D Sample Programs..........c.ccceeeererenenesesesesee e 219
Appendix E Limitations on Debugging Object Programs............ccccceeeveeueenee. 233
APPENTIX ' MESSAGES.cueeieeieieierie ettt 235
F1 InfOrmMation MESSAgES.c.eoueuirietirieierieiert ettt b et b e b 235
F1.1 Information Messages at Instruction Execution INterruption...........coceeeveeveenene 235

F.1.2 Information Messages during Command ANalYSIS......ccccovveeerierenesienesenseenees 236

F2 EITOr MESSA0ESceiiei ittt sttt st s be e bbb s b e e et e st e e b e e sabeeneenanas 237
F2.1 Error Messages during Startup or Load Command Execution.............ccccceeeee. 237

F.2.2 Error Messages during Command EXECULIONcceereerererneneeeniec s 239

F.2.3 Error Messages during SIMUIELIONcceveireenenineeneseeeseeee e 245

F.3 CIA EIMON MESSAJESceuiiiiriiriietteresie sttt sttt sttt ene b bt e r b e n e s 247
F3.1 /O Related Error MESSAQES.......ccivvveieiieirieriesiesiesieseeseeeesesessessessessestessesaessenseses 247

F3.2 Keyboard Input Related Error MESSAgES......ccvveriereereeeeeeieeesese e ste e see s s 248

Appendix G ASCII Code Table ..o 249

AppendiX H INStallationcceecueiieiece e 250
H.1 Contents of the Cartridge TapE........ccoereririniie e e 250
H.2 How to Install the Simulator/Debugger in the Host System.........ccocoeveivcenieinicicnieens 250
H.3 EQUIPMENT. .ottt bbbttt b et b e et se b e b nnene s 251
H.4 SPECIEI KEYS ..ottt b e bbb e sa e naene s 251

Figures

Part | Simulator/Debugger

1-1 Methodsfor Creating Debugging Object Programs..........ccccceerereneneneseseseseeseenie s 4
2-1 Relocatable Section LOad Map.........uovviiriirieiirieiieesieesesiee e 10
2-2 INitial REGISIEr VEIUES......c..ciieiiiiieeeee e bbb 11
3-1 Input File Example (INPUL.ODJ) ..coveeieiiiricceee e 29
3-2 SH7000 Memory Map (MOUE 2)ccveeeieieiesie ettt e et sne s 31
5-1 Command DESCription FOMMELccccueieeiieiriiise e se e stesee e se e sse e st st snesre e es 59
5-2 Macro Interna Variable ¥SIMSTAT ...ttt e 120
5-3 Display Range Specified by the Start Instruction INdeX..........cccocvveeeneeneinenenernen 164
5-4 Display Range Specified by the Start Instruction Index and the Instruction Count....... 165
5-5 Trace BUfer CONENES........cviirieiereeeeieeeeees sttt et 168

Part Il CPU Information Analysis Program

1-1 CIA USAQE PrOCEAUIEcoueiuiitiiiitteteste sttt ettt a e sbe s sbe b bbbt see e e b nes 204

Tables

Part |

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
4-1
4-2
4-3
5-1

Simulator/Debugger
IMBIMONY TYPES ..ottt ettt ettt sb e st b e e bt e b e eb e e bt eae e s e emeesneeneesreennesnean
EX@mMPIe MEMOIY M@0 ..ottt s b e e b e e s
Stack Addresses Used t0 SaAve PC and SRcoovviiririnieireneeeseeesees e
Limitations Of C DEDUGGING -...coveververerieirienesieresieresie sttt et
Processing When Satisfying a Break Condition...........ccoceeeveveereeceeieeieeese e
Execution Time Increase Due to Break Condition Specifications..........cccccecvevvieneenenn.
List Of SIMUIAION BITOS ..ot s e
Register States at Simulation Error StOPccovereeereeineneee e
Simulator/Debugger COMMBINGS..........eerreerreertereeiereeieseere et se s se e seenes
Operators and Operator PriOMTIES.ccoiiiiereirereeereee s
C Expression Limitations and WOrkarounds............ccccevererereereesesesieseseseseseeseesee s
System Call FUNCLIONS.........cceoicieice ettt st snesresbe st srens

Part Il CPU Information Analysis Program

1-1

(Ol N T 1 11 7= 0 RS

Part 111 Appendix

A-1

B-1
c-1
F-1
F-2
F-3
F-4
F-5
F-6
F-7
G-1

Differences between Line Assemble Command and SH-Series Cross

ASSEMDIEY SYNEBX ...ttt et ettt b bbb e e e
Assembler Mnemonics Recognized by the Line Assemble Command............c.cccceee...
SH7000 MEMOIY M8 ...ttt s
Information Messages at Instruction Execution INterruptionc.cceevevvennerenenenn
Information Messages during Command ANAYSIS.......ccceeererereereeieeresese e seese e seees
Error Messages during Startup for Load Command EXECUtioN..........cccccevevreeererennennn.
Error Messages during Command EXECULION...........c.overireriereeiieieeeeeeerese e
Error Messages during SIMUIALTONccoeiiiiiinene e
[/O Related ErTOr MESSAgES.cviveirieerie sttt sttt sttt
Keyboard Input Related Error MESSAgES.coveririeriririee sttt
ASCI COUE TADIE. ...t

Section 1 Overview

The SH-series simulator/debugger provides simulation and debugging functions for SH-series
microcomputer CPUs and supports efficient debugging of software written in either C or assembly
language.

When used in conjunction with the following software, the SH-series simulator/debugger reduces
the effort required for software devel opment.

* SH Series C compiler

* SH Series cross assembler
* H Serieslinkage editor

* H Serieslibrarian

* H Series object converter

» SH Series CPU information analysis program

1.1 Features

» Sincethe simulator/debugger runs on a host computer, software debugging can start without
using an actual SH-series target system, thus reducing overall system development time.

e A designated CPU information file can be used to specify an environment corresponding to
any of the memory maps used with the SH-series MCUs.

e The simulator/debugger provides the following functions which enable efficient program
testing and debugging.

— The ability to handle dl of the SH7000 CPUs

— C debugging functions

— Debugging functions for optimized C programs (which may differ from those of non-
optimized C programs)

— Test functions (stub, coverage measurement)

— Subroutine execution functions

— Macros (command combinations)

— Tracing instructions or subroutines

— Functions for stopping or continuing execution when an error occurs during object
program execution

— Standard 1/0 and file I/O

— A comprehensive set of break functions

— Saving the execution history to afile

— Saving command lines to afile, and inputting command lines from afile

1.2 Debugging Object Programs

The simulator/debugger can debug object modules generated by a C compiler or cross assembler,
and load modules generated by a linkage editor. These object modules and load modules are
referred to as debugging object programs.

Figure 1-1 shows the software associated with creating debugging object programs.

Assembler
source
program

C source

program

SH-series SH-series CPU information
cross assembler C compiler analysis program
- |
 j Librarian
Object _ CPU'
module information

0 file
Library file

Linkage editor

Load
module

SH-series
simulator/debugger

Figure1-1 Methodsfor Creating Debugging Object Programs

1.3 Simulation Range

1

The simulator/debugger supports the following SH-series MCU functions.

» All executable CPU instructions (including delayed branch instructions)
» Exception processing

» General registers, control registers, and system registers

» All address areas

Refer to the SH Series Programming Manual for details regarding the delay branch
instructions.

The simulator/debugger does not support the following SH-series MCU functions. Programs
which use these functions must be debugged using the SH-series emulator.

» Direct memory access controller (DMAC)
» Watchdog timer (WDT)

* Integrated timer pulse unit (ITU)

» Serial communications interface (SCI)

* A/D converter

e 1/O port

» Timing pattern controller (TPC)

* Interrupt controller (INTC)

e User break controller (UBC)

Section 2 Simulator/Debugger Functions

2.1 Environment Specification
The simulator/debugger handles SH7000 CPUs.

When creating a CPU information file, use the CPU information analysis program (CIA) to select
the CPU type. Details of the CIA program are given in part |1, CPU Information Analysis
Program, of this manual.

Theinstructions that can be used differ according to the CPU type. Refer to the SH Series
Programming Manual for details of the CPU specifications.

2.2 Simulator/Debugger Memory Management
(1) Memory Map Specification
The simulator/debugger supports the memory types shown in table 2-1.

Table2-1 Memory Types

Memory Type Access Type Debugging Object Program Execution
Internal ROM Read only Yes
Internal RAM Read/write Yes
External bus area Read/write Yes
Internal I/O area Read/write No

The SH-series CPU memory map is a combination of the above memory types. The user must
create a CPU information file which correctly specifies the memory map for the CPU used.

The CPU information analysis program is used to create a CPU information file. Thisfile can be
used to specify the CPU (its type and address bus width) and the memory (its types, the start and
end addresses of the memory areas, the number of memory access states, and the memory data bus
width).

When the simulator/debugger is started, a memory map corresponding to the user system is created
from the specified CPU information file. (When no fileis specified, external bus areais assumed.)

(2) Memory Allocation

When the simulator/debugger is started or when aLOAD command is entered, the simulator/
debugger allocates memory on the host computer for both the SH-series debugging object program
load area and the vector area. Areas other than these are alocated with the MAP command.

a

Vector area

When avector areais allocated by the debugging object program, it must be specified as an
absolute address section starting at location H'0. The simulator/debugger all ocates addresses
H'0 to H'3FF as the vector area when no absolute address section has been allocated in this
area.

Stack area

Although the stack pointer is set to the address following the end address of the internal RAM,
no stack areais allocated.

When there is no stack area allocated within the debugging object program, allocate a stack
area using the simulator/debugger MAP command.

When thereis no internal RAM space, the stack pointer will be cleared to 0.

When there is a stack area allocated within the debugging object program, set the stack pointer
either by an instruction included in the program or by a.<register> command.

Undefined symbol area

When the U option is specified with the LOAD command, a 4-byte areais allocated for each
undefined symbol and taken as the symbol’s address. Undefined symbol areas are allocated to
an empty areain either the external bus area or the internal RAM.

(3) Memory Access Types

The memory access type is determined from the memory type corresponding to the load address of
the debugging object program. The memory access type can be either read-only or read/write.
Sinceit isan error for the debugging object program to write to read-only memory, it is possible to
detect memory access errors. The memory access type for each memory area can be changed with
the MAP command.

2.3 Loading Debugging Object Programs

The simulator/debugger [oads debugging object programs in the order that sections appear in the
source program. The loading method differs depending on whether the section is rel ocatable or
not, as described below.

(1) Relocatable Sections

Individual sections are loaded consecutively starting at address H'400 so that they do not cross
boundaries between the internal ROM space, the internal RAM, and theinternal 1/0 area.

Example: If aprogram consists of three rel ocatable sections, use a memory map based on the
SH7000 memory map (mode 0) with an external bus area set up as shown in table 2-2.

Table 2-2 Example Memory Map

Memory Type Address Number of States Data Bus Width
External bus area 1 H'0000000 to H'OFFFFFF 3 8

External bus area 2 H'1000000 to H'4FFFFFF 2 8

Internal 1/O area H'5000000 to H'5FFFFFF 3 8

External bus area 3 H'6000000 to H'7FFFFFF 3 8

Internal RAM H'FO00000 to H'FFFFFFF 1 32

Figure 2-1 shows the sizes and load addresses of the three rel ocatabl e sections.

Address —_
H'0000000 Vector area?
H'0000400 .
Section A External bus area 1
H'0500400
H'1000000 .
Section B "t
H'4500000 External bus area 2
H'5000000 X
ilnternal 1/O area
H'6000000 v
Section C *
H'6700000 External bus area 3
H'8000000
H'FO00000
I Internal RAM area
H'FFFFFFF
Section Load Address Size
A H'400 H'500000
B H'1000000"1 H'3500000
C H'6000000"1 H'700000
Notes: 1. Since section B would cross the boundary between external bus areas 1 and 2 if it
was loaded following section A, it is loaded from the start address of external bus
area 2, i.e.,address H'1000000. Similarly, section C is loaded from the start
address of external bus area 3, i.e., address H'6000000 so that it does not cross
the boundary between external bus areas 2 and 3. Relocatable sections cannot
be loaded to the internal I/O area.
2. Regions allocated when the simulator/debugger is started up.

Figure 2-1 Relocatable Section Load Map

(2) Absolute Address Sections

Absolute address sections are |oaded at the specified address. A load error is generated if the
absolute address section crosses any of the boundaries between the internal ROM area, the external
bus area, the internal RAM area, and theinternal 1/0 area. Thismakesit possible to verify that

absolute address sections are correctly loaded into the appropriate memory area.

An error occurs if the load address of either arelocatable section or an absol ute section exceeds the

10

CPU addressing range. A load error also occurs if an attempt is made to load a program into an
invalid memory area (an area which does not correspond to the actual memory) which the user
specified.

Rel ocatabl e sections cannot be loaded to the internal 1/O area.
2.4 Setting Register Initial Values, Displaying and Changing Register Values
The simulator/debugger supports the following SH-series registers.

e Generd registers (RO to R15, SP(R15))
e Control registers (SR, GBR, VBR)
e System registers (MACH, MACL, PR, PC)

(1) Initial Register Values

Figure 2-2 shows the initial values when the simulator/debugger is started up.

Register name =~ % 82 bits B Initial value
RO | RO H'00000000
R14 R14 H'00000000
R15 (SP) SP Internal RAM last address + 1*1
SR | SR | 00000000
GBR | GBR | H'00000000
VBR | VBR | H'00000000
MACH H'00000000
MACHIL MACL H'00000000
PR | PR | H'00000000
pC | PC | Entry point address*2

Notes: 1. The address following the last address of internal RAM is loaded into R15. When
there is no internal RAM , R15 is set to H'00000000.

2 The entry point address is the address within the section specified either by the
assembler .END directive or the ENTRY option of the linkage editor. The start
address of the first section of code is used if no entry point is specified. If there is
no code section, this resister is set to 0.

Figure2-2 Initial Register Values
11

(2) Displaying and Changing Register Values

The REGISTER command is used to display and confirm the contents of the global, control, and
system registers.

The .<register> command is used to change the values of these registers.

2.5 Displayingthe Memory Map, and Allocating, Displaying, Changing,
and Releasing Memory

(1) Displaying Section Addresses and the Memory Map

The addresses where the debugging object program is loaded can be confirmed by using the MAP
command to display the section addresses.

In addition, the MAP command M option can be used to display the memory map from the CPU
information file specified at simulator/debugger start-up.

(2) Memory Area Allocation

The MAP command is used to allocate vector areas and stack areas, and to allocate memory areas
which have not yet been allocated by the debugging object program.

The following conditions must be satisfied when allocating an area, otherwise an error will occur.
» Theallocated area must not overlap a previously allocated section.

» Theallocated area must not cross over the boundary between two different memory types.

* Theallocated area must not include any part of aninvalid area.

The MAP command can allocate a maximum of 20 memory areas.

12

(3) Displaying Memory Contents
The memory contents can be displayed by using the DUMP or DISASSEMBLE command.

» DUMP: The memory contents of the specified address range are displayed as
hexadecimal and ASCII data, or in floating point format.

 DISASSEMBLE: The memory contents of the specified address range are displayed as
instruction mnemonics and operands.

An error is generated if an unallocated areais specified as the memory area.
(4) Changing the Contents of Memory
The contents of memory can be changed by using the MEMORY or ASSEMBLE command.

e MEMORY: Theinput values are converted to hexadecimal and stored in the specified
address.

e ASSEMBLE: Theinstruction mnemonics and operands are converted to instruction codes
and stored in the specified address.

The MEMORY and ASSEMBL E commands continue converting and storing contents to memory

(updating the storage address each time) until atermination symbol is read.
(5) ReleasingaMemory Area

Memory areas allocated with the MAP command can be released. The simulator/debugger
commands operate as follows when amemory areais released.

» |f abreak has been set with a break-related command, it will be cancelled.
e TheLOAD_STATUS command retains the released state.

* TheSET_COVERAGE command treats released sections as errors at
DISPLAY _COVERAGE execution.

» The TRACE command displays an error during assembly and display.

13

2.6 Execution and Trace
(1) Execution Types

The simulator/debugger supports five ways of executing programs that are being debugged:
continuous execution, single instruction execution, single line execution, single function
(subroutine) execution, and execution starting from an interrupt vector address.

a Continuous execution

The GO command starts continuous execution of the object program. Continuous execution
starts from the specified starting address or from the current value of the program counter.
Execution continues until a break condition is satisfied or until execution isforcibly
terminated by a (CTRL) + (C). When execution stops, the simulator/debugger displaysthe
number of instructions executed, the contents of the registers, the last instruction executed (as
adisassembled instruction), and termination information messages.

b. Singleinstruction execution

When the N or | option is specified with the DEBUG_LEVEL command, the execution unit
for the STEP and STEP_INTO commands becomes the single instruction. (The STEP
command executes subroutines as asingle step.) Each time asingle instruction is executed,
the mnemonic of the executed instruction is displayed. If the R option was specified, the
contents of the registers after execution is also displayed.

c. Singleline execution

When the S option is specified with the DEBUG_L EVEL command, the execution unit for the
STEP and STEP_INTO commands becomes the single line.

d. Singlefunction execution

In single function execution, the CALL command creates the C language function call stack
frame, and the simulator/debugger executes the function. Execution is stopped immediately if
an error occurs or if abreak condition is satisfied.

14

e. Execution starting from an interrupt vector address

The simulator/debugger generates a vector address from the vector number specified with the
VECTOR command and initiates interrupt processing. Execution continues until a break
condition is satisfied or until execution isforcibly terminated by a<CTRL> + <C>. When
execution stops, the simulator/debugger displays the number of instructions executed, the
contents of the registers, the last instruction executed (as a disassembled instruction), and
termination information messages.

(2) Trace

When trace is enabled during instruction execution, the results of the execution of each instruction
are written into the trace buffer. The trace buffer can hold the results for up to 1023 instruction
executions. (When the 1023th instruction is a delayed branch instruction, the trace buffer can store
up to 1024 instruction executions.) The TRACE_CONDITION command enables tracing, and the
TRACE command displays the acquired trace information.

The following information is stored in the trace buffer.

» Thevalues of the genera registers (RO to R15, SP(R15))

» Thevalues of the control registers (SR, GBR, VBR)

* Thevalues of the system registers (MACH, MACL, PR, PC)
e The accessed memory data

Note that the TRACE_CONDITION command is used to specify the types of acquired instructions
traced, the tracing start and end points, and the processing performed when the trace buffer
becomes full.

In addition, the SHOW_CALLS command can display the functions called before arriving at the
current execution address. SHOW_CALLS displays the line numbers called in reverse order. The
file name, function name, line number, and arguments of the called functions are displayed.

2.7 Exception Processing

The simulator/debugger generates exception processing corresponding to the TRAPA instruction,
genera illegal instructions, slot illegal instructions, and address errors. (Other exception
processing is supported as simulates exception processing by the VECTOR command.)

Exception processing ssimulation is performed in the following sequence.

15

* When the EXEC-MODE command select continuous mode:
1 Thesimulator/debugger detects the exception generated during instruction execution.

2 PCand SR are saved in the stack area. If an error occurs during the saving operation, the
simulator/debugger stops exception processing, indicates occurrence of an exception
processing error, and enters command input wait state.

3. Thestart addressis read out of the vector address corresponding to the vector number. If an
error occurs during this read operation, the simulator/debugger stops exception processing,
indicates occurrence of an exception processing error, and enters command input wait state.

4. Ingtruction execution is simulated from the start address. |If the start addresswas 0, the
simulator/debugger stops exception processing, indicates occurrence of an exception
processing error, and enters command input wait state.

e When the EXEC-MODE command selects stop mode:
The simulator/debugger executesthe above steps 1 to 3, and stops.

Note: In the SH-series, the stack address which saves the PC and SR during exception processing
differs depending on the access size, the type of memory, and the bus width. The addresses
used by the simulator/debugger to save PC and SR are shown in table 2-3. These can be
used to easily determine the values of PC and SR at the time of exception processing.

Table2-3 Stack Addresses Used to Save PC and SR

Type of Register Stack Address
PC The address of SP-8 when the exception processing occurs
SR The address of SP-4 when the exception processing occurs

16

2.8 Standard I/0O and File I/O Processing

The simulator/debugger supports standard 1/0 and file I/O processing so that the object program
can perform /O from standard /O (usually the console and keyboard) or from disk files.

The following 13 1/O processing types are supported.

» Single character input from standard input
» Single character output to standard output
e Singlelineinput from standard input

» Singleline output to standard output

e Single byte input from afile

» Single byte output to afile

» Singlelineinput from afile

» Singleline output to afile

» Fileopen

» Fileclose

e Filepointer reference

* Filepointer move

* EOF (end of file) check

The TRAP_ADDRESS command is used to implement these functions. The user writes a
subroutine branch instruction (BSR or JSR) to a special location for I/O in the object program.
The program is then executed by the simulator/debugger with that special location specified by the
TRAP_ADDRESS command after starting the simulator/debugger. The simulator/debugger
performs 1/O processing with the contents of RO and R1 as parameters when a subroutine call
(BSR or JSR) to the specified location is detected during debugging object program execution.

The simulator/debugger restarts simulation at the instruction following the subroutine call
instruction after completion of the 1/0O processing

2.9 Saving and Restoring the Simulation Status
(1) Saving Simulation Status

The current simulation state can be saved using the SAVE_STATUS command. After executing
this command, the LOAD_STATUS command can be used to return to the simulator/debugger
status at the time the SAVE_STATUS command was executed. Command options can be used to
specify the type of saved information. The following types of information can be saved.

* Option M: Saves only the current contents of memory and registers.

e Option A: Savesthe complete, current status of the simulator/debugger.

17

(2) Restoring Simulation Status

The LOAD_STATUS command restores the contents of memory and registers saved when the
SAVE_STATUS command was executed.

Restoring the status saved when the A option was specified is not performed with the
LOAD_STATUS command, but by a specification at simulator/debugger startup.

However, if the current memory map differs from the memory map in use, at the time the
SAVE_STATUS command was executed, an error occurs and the state is not restored.

2.10 C Source Level Debugging

The simulator/debugger also provides functions for debugging programs written in C. The most
important of these functions are described bel ow.

(1) C SourcelLineDisplay

The C source lineis displayed at the time of disassembly display, trace display, coverage display,
and step execution.

However, the format will differ depending on options specified by the DEBUG_LEVEL command.
(2) Single Function and Single Sour ce Line Stepping Function

The debugging object program can be executed in units of C source functions (subroutines) or
lines.

Single function execution is performed using the CALL command, and single source line
execution is performed using the DEBUG_LEVEL, STEP, or STEP-INTO command.

(3) Symbol Reference

There are three classes of symbol scopein C: global symbols, which are valid over the entire
program, static symbols, which are valid in asinglefile, and local symbols, which are valid within
afunction.

When only the name of the symbol is specified, symbolswill be considered valid in the current file
or function indicated by the program counter. The valid file and function names can be examined
using the SCOPE command. Symbolsin other files or functions can be examined by stating the
name of the file and function explicitly. Symbol related information can also be examined using
the SYMBOL command.

Table 2-4 shows debugging limitation, when a C program is compiled with optimization.

18

Table2-4 Limitations of C Debugging

Iltems Limitations
1 Local symbols of the current function cannot be referenced.
2 Source lines deleted by optimization cannot be debugged.
3 Because lines may change places due to optimization, the program execution order or
the disassembly display may differ from the order of the source listing.
Example:
Source listing Simulator disassembly display
12 for (i=0; i<6; i++) 14 i_2 =i+1,;
13 { 12 for (i=0; i<6; i++)
14 i 2=i+l; 17 i 2++;
15 i_2++
16 }
17 i 2++
4 In “for” and “while” loops, disassembly display may be performed twice: once at the

loop entrance and once at the loop exit.

19

2.11 Break Conditions

The simulator/debugger provides the following conditions for breaking (interrupting) the
simulation of an object program during execution started by a CALL, GO, STER, STEP_INTO, or
VECTOR command.

» Break dueto satisfaction of a condition set by a break command

» Break dueto detection of arun-time error in the object program

» Break dueto overflow of the trace buffer

* Break due to execution of a SLEEP instruction

e Break duetoinput of (CTRL) + (C)

(1) Break Dueto the Satisfaction of a Condition Set by a Break Command
There are 5 break commands as follows:

* BREAK: Break based on the location of the instruction executed
» BREAK_ACCESS: Break based on accessto arange of memory

* BREAK_DATA: Break based on the value of data written to memory
e BREAK_REGISTER: Break based on the value of datawritten to aregister
« BREAK_SEQUENCE: Break based on a specified execution sequence

When a break condition is satisfied while executing an object program, the instruction at the break
point may or may not have been executed depending on the type of the break, as listed in table 2-5.

20

Table 2-5 Processing When Satisfying a Break Condition

Command Instruction When Satisfying a Break Condition
BREAK Not executed

BREAK_ACCESS Executed

BREAK_DATA Executed

BREAK_REGISTER Executed

BREAK_SEQUENCE

Not executed

When abreak condition is specified, the simulator/debugger program execution time increases.
Table 2-6 shows which break types can increase program execution time.

Table2-6 Execution Time Increase Dueto Break Condition Specifications

Command Change in Execution Time Due to Break Condition Setting
BREAK Not increased

BREAK_ACCESS Increased

BREAK_DATA Increased

BREAK_REGISTER Increased

BREAK_SEQUENCE

Not increased

If abreak condition is specified at an address location other than the beginning of an instruction,
the break condition will not be detected.

When abreak condition is satisfied during object program execution, a break condition satisfaction
message is displayed and execution stops.

(2) Break Dueto Detection of a Run-timeError in the Object Program

The simulator/debugger supports a simulation error to detect program errors which cannot be
detected by the CPU exception generation functions. The EXEC _MODE command specifies
whether to stop or continue the simulation when such an error occurs. Table 2-7 lists the types of
errors, the error causes, and the action of the simulator/debugger if execution continues.

21

Table 2-7 List of Simulation Errors

Processing in

Error Type Error Cause Continuation Mode
Memory access error 1. Access to a memory area that has not ~ On memory write,
been allocated nothing is written;

on memory read, all

2. Write to a memory area having the .
cloa ory are 9 bits are read as 1.

write protect attribute

3. Read from a memory area having
the read disable attribute

4. Access to a memory area where
memory does not exist

Invalid SP instruction 1. Execution of an instruction that places The simulation
R15 (SP) outside the four-byte boundary continues identically

MOV.B reg, @-R15 to the operation of

MOV.B @R15+, REG the device.
MOV.W reg, @-R15
MOV.W @R15+, REG
lllegal operation 1. Zero division is executed by the DIV1 The simulation
instruction. continues identically
to the operation of
the device.

If the simulator/debugger isin stop mode when a simulation error occurs, the simulator/debugger
returns to command wait mode after stopping instruction execution and displaying the error
message. Table 2-8 lists the states of the PC and SP at simulation-error stop.

22

Table 2-8 Register Statesat Simulation Error Stop

Error Type Value of the PC Value of the SP
Memory access error Error on instruction read: Unchanged

The address of the instruction that caused

the error

Error during instruction execution:
The address following the instruction that caused

the error
Invalid SP instruction The address of the instruction that caused
the error
lllegal operation The address following the instruction that caused

the illegal operation

Use the following procedure when debugging programs which include instructions that generate
simulation errors.

a. First execute the program in stop mode and confirm that there are no errors except those in the
intended locations.

b. After confirming the above, execute the program in continuation mode.

Note: If an error occursin stop mode and simulation is continued after changing the simulator
mode to continuation mode, the simulation may not be performed correctly. When
restarting a simulation, always restore the register contents (general, control, and system
registers) and memory contents to the state prior to the occurrence of the error.

The SAVE_STATUS and LOAD_STATUS commands can be used to save and restore the
simulation state during debugging.

(3) Break Dueto Overflow of the Trace Buffer

When the B option has been specified with the TRACE_CONDITION command, the simulator/
debugger stops execution when the trace buffer becomesfull. The following message is displayed
when execution is stopped.

TRACE BUFFER FULL

If execution is resumed with a GO, STEP, STEP_INTO, or VECTOR command the trace buffer is
overwritten starting from the beginning of the buffer.

23

(4) Break Dueto Execution of a SLEEP Instruction

When a SLEEP instruction is executed during simulation, the simulator/debugger stops execution.
The following message is displayed when execution is stopped.

SLEEP
Execution can be resumed with a GO, STEP, STEP_INTO, or VECTOR command.
(5) Break Dueto Input of (CTRL) + (C)

Execution can be forcibly terminated by the user during simulation using the above keys. The
following message is displayed when execution is terminated.

MANUAL BREAK

Execution can be resumed with a GO, STEP, STEP_INTO, or VECTOR command.

2.12 Memory Manipulation

The simulator/debugger providesthe COMPARE, FILL, and MOV E commands as functions to
increase debugging ability.

1. The COMPARE command compares memory contents. It isused, for example, to compare
the results of executions. The COMPARE command displays unmatched data.

2. TheFILL command fillsamemory areawith initial data. It isused to initialize memory prior
to program execution.

3. The MOVE command copies the contents of a specified memory areato a specified
destination area.

2.13 Macro (Command Combination)

A macro function is afunction that produces new commands by combining multiple commands.
Macros can be created in the simulator/debugger by using the MACRO command.

Macros can use macro internal variables and macro internal commands. Macro interna commands
are control commands which define macro internal conditions, or which can be executed.

The following macro internal commands are provided.
* WHILE

* FOR

24

+ DO/WHILE

+ IFELSE
* MBREAK
*+ CONTINUE

An executing macro command can be stopped by inputting (CTRL) + (C).
Thereis no limitation on the number of macro calls within a macro (the number of nesting levels).

Refer to section 5.24, MACRO (Definition, Display, Execution, and Deletion of Macro
Commands), for details on the MACRO command.

2.14 Command Chains and Saving Execution Resultsto a File
(1) Command Chains

Commands can be input from files which are created with atext editor. Command files can be
specified by the COMMAND_CHAIN command, or by a parameter when the simulator/debugger
isstarted. It ispossible to include data that makes use of standard 1/0 processing in command
files.

(2) Saving Execution Resultsto a File

There are two methods for saving simulator/debugger execution resultsto afile: the PRINT
command and redirection.

a PRINT command

The PRINT command savesto afile all command input and all execution results during the
time that saving is specified. In addition, saving can be temporarily stopped and then
restarted.

b. Redirection
The results of executing a single command can be saved to afile by using redirection.
Unlike the PRINT command, however, command input is not saved.
There are two redirection specification formats as follows:

Writing to anew file: <command line>A\>A"<file name>"
Appending to an existing file: <command line>A\>>A"<file name>"

Note that redirection cannot be used with the COMMAND _CHAIN command.

25

2.15 Saving Input Commandsto a File

The PRINT command also provides afunction for saving only command input. Test re-execution
can be automated by using this function to create a command file and using that command file
with the COMMAND_CHAIN command.

2.16 Test Functions
2.16.1 Stub Function

During simulation of a object program, the simulator/debugger can stop execution and execute a
specified set of simulator/debugger commands each time the program passes a l ocation specified
with the STUB command. When this execution is completed, the simulator/debugger returnsto
simulation of the abject program. Thisisreferred to asa“stub”.

The return location following stub execution can be specified as desired. When the stub execution
location is not the same as the return location, the resulting execution can be seen as stub execution
replacing one part of the program simulation. Thisisreferred to as “stub proxy execution”.

Stub proxy execution is used, for example, to jJump over subroutine processing that has not yet
been implemented. This alows simulation to be performed even if the program is not compl eted.

On the other hand, when the return location is the same as the stub location, since the simulation
returns to the same location after executing the simulator commands, this function can be used to
insert instructions in the debugging object program. Thisisreferred to as an “insertion stub”.
Insertion stubs can be used, for example, to insert a patch in a program.

Up to 16 stubs can be specified.
2.16.2 Coverage Measurement

The final stages of program development, i.e, the stepsimmediately prior to release as a product,
include functional evaluation, performance evaluation, optimization, and quality assurance. The
simulator/debugger supports the coverage method, which is atesting technique used for quality
assurance.

The coverage function is a function to investigate whether program testing has covered all the
program’s functions, and to determine if those tests are adequate. While there are several coverage
techniques, this simulator/debugger supports CO and C1 coverage.

CO0 coverage indicates what sections of the program code have been executed as a percentage of
the entire object of measurement.

C1 coverage indicates as a percentage, which branch instructions have been tested for the cases of

26

branch taken and branch not taken, for al branch instructions within the object of measurement.
Furthermore, the simulator/debugger supported coverage functions not only indicate the results as
percentages, but can also indicate exactly which lines of code have been executed.

(1) Coverage Measurement Sequence

The coverage measurement sequence and the commands used are as follows.

Measurement range specification: SET_COVERAGE
Coverage start declaration: COVERAGE file name
Program execution: Simulator commands
Temporary stop, restart,

and initialization of

the coverage measurement: COVERAGE ; option
Display of measurement results: DISPLAY_COVERAGE
Coverage termination: COVERAGE-

M easurement range specification

The SET_COVERAGE command specifies the range of the measurement area.

Up to 16 coverage areas can be specified. The program code sections (and no other sections)
are automatically set as the coverage measurement range when the simulator/debugger is
started, or when an object program (object module or load modulefile) isloaded with the
LOAD command.

Coverage start
The start of the coverage function is declared with the COVERAGE command.

Prior to actually starting measurement, the file used to store the measured data is specified
with the COVERAGE command. If afile which already holds measurement datais specified,
the measurement range and the measurements stored in that file are read out and used, thus
allowing the measurement to be continued. In this case, since the measurement range will be
read from thefile, there is no need to specify the range with the SET_COVERAGE command.
Furthermore, the range from the file takes precedence over any SET_COVERAGE command
range setting.

27

Program execution

When coverage measurement preparations are complete, use a GO, STEP, STEP_INTO,
CALL, or VECTOR command to execute the object program.

Temporary stop, restart, and initialization of coverage measurement

Coverage data measurement is performed between the start of coverage and coverage
termination. However, temporary stop of measurement, restart, and initialization of
measurement data can be selected with the D (disable), E (enable), and R (reset) COVERAGE
command options, respectively.

Display of measurement results

The DISPLAY_COVERAGE command is used to display the measurement results. Four
types of display methods (selected by options) for different purposes are supported.

e T option: Displays C0O and C1 coverage
» Goption: Displays the coverage resultsin units of source line
* D option: Displays the coverage results in units of machine language

« NOandN21options: Displaysthe addresses of lines that were not executed
Coverage termination

Coverage is terminated using the COVERAGE command termination specification:
COVERAGE-.

The measured data is stored in the file specified in the coverage start declaration.

28

Section 3 Using the Simulator/Debugger

This section describes the use of the simulator/debugger with a sample program. See appendix D,
Sample Program, for a source listing of the sample program.

3.1 Sample Program Description

The sample program used in this manual dumps each record of an SH-series object file. Lines of
data are read from the file and dumped one at afigure. Figure 3-1 shows an example of the input
data

80200080 00800080 00008080 80808080
80008080 00000000 00000000 0000005F
842B2039 31303830 36313432 35343200
01003031 30300810 10000000 00000470
726F6706 48382F33 3030D886 25400001
00000003 0470726F 6708415F 48382F33
30303931 30383036 31343235 34320000

Figure3-1 Input File Example (input.obj)

This program consists of 5 modules.

e main(): Handles loop control of the initialization, reading, editing, and display
operations.

e Print_rec(): Reads, edits, and displays data.

* Read rec(): Reads asingle record.

* Bin_ascii(): Converts binary datato ASCII.

e Ph read(): Inputs data by calling an assembly language routine.

Note that when executing the sample program, an assembly language routine must be written to
allow binary datato be read into a C source file.

29

3.2 Procedurefor Creating the Debugging Object Program
This section describes the procedure for creating the debugging object program.
(1) Source Program Creation

The C source program to be debugged is created with atext editor. Here we assume that thefile
containing this C source program is sample.c, and that the assembler source program fileis
prog.src.

(2) Object Module Creation

The object moduleis created by compiling the C source program with the SH-series C compiler.
Specify the DEBUG and OPTIMIZE options when compiling the sample program.

% shc” sanpl e. ¢c” - debug™ -optim ze=0 (RET)
1 2 3 4

Notes: 1 shcisthe SH-series C compiler command.
2 Thefile name of the C source program (sample. c in this case).
3 A command line option to the C compiler. This option specifies that debugging
information is output to the relocatable object program.
4 This option specifies the optimization level.

Refer to the SH-Series C Compiler User’s Manual for more information.

Create an object module by assembling the source program prog.src with the SH-series cross
assembler, using the following command.

% asnsh” prog. src” -debug (RET)

Refer to the SH-Series Cross Assembler User's Manual for more information.
(3) Creating the Debugging Object Program

Use the linkage editor to combine the object module output by the C compiler with the object
module output by the cross assembler, by entering the following command line. Be sureto include
the EXCLUDE, DEBUG, and ENTRY options.
% | nk™ sanpl e, prog” - excl ude” - debug”
-entry = main -start=P/ 8000400
-start= D, B, dt /9000000 (RET)

30

Here, standard library (shclib.lib) and low-level library must be specified as defaullt libraries.
Refer to the H-Series Linkage Editor User's Manual for more information.

3.3 Simulator/Debugger Usage Example

This section describes the command inputs and simulator/debugger outputs for a sample
simulator/debugger session.

3.3.1 Creating the CPU Information File

A CPU information file which corresponds to the SH-series device to be used must be created
before using the simulator/debugger. Refer to part |1, CPU Information Analysis Program, in this
manual.

Our example uses the memory map for the SH7000 extended mode with ROM (mode 2). Figure
3-2 gives an overview of the SH7000 mode 2 memory map. Refer to appendix C.1, SH7000
Memory Map for more information.

H'0000000 " "~ " Tt N .
. Internal ROM area (32 bits, 1 state) :
HOFFFFFF =~~~ 7 i i
H'5000000 .
Internal I/O area (16 bits, 3 states)
H'SFFFFFF
H'8000000
Vector area
H'9000000 Internal ROM area (32 bits, 1 state)
External ROM area (16 bits, 3 states)
H'FO00000
H'EFEEFFFE Internal RAM area (32 bits, 1 state)

Figure 3-2 SH7000 Memory Map (Mode 2)

Theinterna ROM areas H'0000000 to H'OFFFFFF and H'8000000 to H'8FFFFFF correspond to
the same areain the SH series, but are treated separately by the simulator/debugger. To use the
internal ROM area ranging from H'8000000 as the vector area, specify either of the following.

31

(1) Copy the data from H'8000000 to H'800000F to the memory starting from H'0.

MAP 8000000 800000F (RET)

MOVE 8000000 800000F O (RET)

(2) Write H'8000000 to VBR.

VBR 8000000 (RET)

Since VBR is not affected by reset interrupts, copy the data from H'8000000 to H'800000F to the
memory starting from H'0 by entering the command line as shown in item (1).

3.3.2 Loading the Program

When the simulator/debugger is invoked by the following command line, the debugging object
program is loaded and the simulator/debugger enters the command wait state.

% sdsh” sanpl e. abs™ - cpu=npde2 (RET)

I |
1 2

SH SERI ES SI MULATOR- DEBUGGER Ver. 1.1 (HS0700SDCU1LSM
Copyright (C Hitachi, Ltd. 1992

Li censed Material of Hitachi, Ltd.

: 3

Notes: 1 “sdsh” isthe simulator/debugger command.

2 “sample.abs’ isthe debugging object program file name.
3 Thecolon isthe simulator/debugger command prompt.

32

3.3.3 Memory Map Display and Memory Allocation
The MAP command is used to verify the memory map as follows.

MAP : M (RET)

<KI ND> <START> <END> <STATE> <BUS>

NOT_A 00000000 - OAFFFFFF

/0 05000000 - O5FFFFFF 3 16

NOT_A 06000000 - O7FFFFFF

ROM 08000000 - O8FFFFFF 1 32

EXT 09000000 - OeFFFFFF 3 16

RAM O0F000000 - OFFFFFFF 1 32

| | | | |
1 2 3 .

MAP OF000000 OFFFFFFF (RET) 5

Notes. The M option displays the memory map specified in the CPU information file.

1 Indicatesthe type of memory.

ROM: Internal ROM area EXT: External bus area
NOT_A: Unused area 1/O: Internal 1/O area
RAM: Internal RAM area

Thefirst and last addresses of the memory area.

The number of states.

The width of the data bus.

This command allocates the area from H'FO00000 to H'FFFFFFF as a stack area.

a b~ owN

33

3.3.4 Displaying Section Load Addresses and Allocating Memory Areas

The following commands are used to determine at what addresses the program sections are loaded
and to change the section attributes.

. MAP RET
<START> <END> <ATTR> <SECT_NAME=>

08000400
09000000
09000068
090035AC
0F000000

08000083 R P
09000064 RW D
B
d

090035AB RW
09003663 RW
OFFFFFFF RW

MAP 5000000 5FFFFFF ;RW (RET) 5]

. MAP _ (RET)
<START> <END> <ATTR> <SECT_NAME>

05000000
08000400 - 08000D83 R
09000000 - 09000064 RwW
09000068
090035AC
0F000000

05FFFFFF RW

0 O T

090035AB RW
09003663 RW dt
OFFFFFFF RW

Notes: The MAP command displays the currently allocated memory aress.

1
2

(&)

Thefirst and last address of each section.

The section attribute.

R: Read-only

W: Write-only

RW: Read/write

The section name. Sections without a name include the vector area and those allocated
by the MAP command.

The memory areas.

08000400 to 08000D83 is section P

09000000 to 09000064 is section D

09000068 to 090035AB is section B

090035AC to 09003663 is section dt

OF000000 to OFFFFFFF is stack area allocated with the MAP command.
This command allocates memory area.

The MAP command verifies the allocated memory areas.

34

3.3.5 Disassembly Display

The following command disassembles 16 lines and displays the result. (When option | is specified
by the DEBUG-LEVEL command.)

DI SASSEMBLE 8000A78 (RET)

%pr og. src! P: 1

08000A78 STS. L PR, @ R15
08000A7A MOV. L R4, RO
08000A7C MOV. L %orog. src! PARM 1, R1
08000A7E MOV. L RO, @r1
08000A80 MOV. L %rog.src!REQ CD 1, RO
08000A82 MOV. L %prog.src! TRP_AD 1, R3
08000A84 JSR @r3
08000A86 NOP
08000A88 MOV. L %pr og. src! PARM 1, R3
08000A8A MOV. L @3, R1
08000A8C MOV. B @r1, RO
08000A8E CWP/ EQ L #00000000, RO
08000A90 BT %prog.src!R EXIT
08000A92 MOV. L #00000001, RO
08000A94 MOV. L %orog.src! RTN_AD 1, R3
08000A96 BRA %orog.src!R_RTN
|] | |

2 3 4

Notes: 1 Theline“%prog.src! P’ isthe symbol defined for address H'8000A78. Here,
“prog.src” isthefile name and “P’ isthe labdl.
Note that “%prog.src! P’ can be specified instead of H'8000A78.
2 Thefirst address of the instructions.
3 Theinstruction mnemonics.
4 Theinstruction operand.

3.3.6 Checking Memory Contents

DUMP stop f @ (RET) 1
addr ess +0 +2 +4 +6 +8 +A +C +E ASCI |
09002F48 0000 0000 0000 0000 OOOO OOOO ...,
\ | \ |

2 3 4

35

Notes. 1

w N

This command displays six 2-byte blocks of data starting at the symbol “stop f” in
hexadecimal.

Thefirst address. Displayed in 16-byte units.

The contents of 12 bytes of data (six 2-byte blocks).

The contents of 3 as ASCII characters. Periods are displayed when the values cannot
be converted.

3.3.7 System Call Start Address

Line 24 of the sample program prog.src (see appendix D, Sample Program) inputs asingle line
using the instruction JISR @R3. The starting address of the system call is specified with the
simulator/debugger TRAP_ADDRESS command as follows.

TRAP_ADDRESS TRAP (RET) 1

Note: 1 Specifies TRAP asthe location for the start of the system call.

3.3.8 Setting and Checking Breakpoints

The following command sets a breakpoint so that the program will stop at location H'800040C.

BREAK 800040C (RET) 1

BREAK (RET) 2

<E/ D> <ADDR> <COUNT> <COWWAND LI NE> <SYMBOL

E

0800040C 1 - Ysanpl e. ¢/ mai n(# 38)
| | || || | |

4 5 6 7

Sets a breakpoint at address H'800040C.

Confirms the breakpoint settings.

The breakpoint enable or disable condition.

The location where the breakpoint is set.

The number of times the breakpoint has been passed.

Command to be executed when the program execution stops at the breakpoint.
Indicates the symbol corresponding to the location where the breakpoint is set. When
there is no corresponding symbol, nothing is displayed.

When there are multiple symbols corresponding to the same address, the displayed
symbol may be different from the symbol used in setting the breakpoint.

36

3.3.9 Startinga Trace
The following command starts acquiring trace information.

TRACE_CONDI TION_ (RET)

3.3.10 Program Execution

The following command executes the debugging object program starting at the current value of the
program counter.

. @GO RET
Exec instructions = 18 1
PC=0800040C SR=00000000; ****x**kxkkxkkxkkxkkxhk_____ . **. . SP=0FFFFFF8

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=0800040C
RO-7 00000000 090035AC 00000000 08000CB8 09000020 00000000 00000000 ooooocog
R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 OFFFFRFS
08000ACE LDS. L @R15+, PR
BREAK PO NT 3

Notes: 1 The number of instructions executed.
2 The contents of the registers at the point when the program stopped.
3 Indicates that the program has stopped at a breakpoint.

3.3.11 Single Step Execution

After the program has stopped at the breakpoint (H'800040C), the following command executes 3
instructions one at atime. At each step the executed instruction is displayed. (In this example, the
instruction following the delayed branch instruction is a so executed because the third instruction
is adelayed branch instruction.)

37

STEP_ I NTO 3;: R (RET)

PC=0800040E SR=00000000; ******* k& xxkkdkkkkxrk_____ **.. SP=0FFFFFF8
GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=0800040C
RO- 7 00000000 090035AC 00000000 08000CB8 09003554 00000000 00000000
R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000
Y%sanpl e. c# 38 Read(f _nane);
0800040C MOV. L @ 00000048, PC) , R4

PC=08000410 SR=00000000; ******* k& xxkkdkkkkxrk_____ **.. SP=0FFFFFF8
GBR=00000000 VBR=000000000 MACH=00000000 MACL=00000000 PR=0800040C
RO- 7 00000000 090035AC 08000A78 08000CB8 09003554 00000000 00000000
R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000
080040E MOV. L @ 0000004C, PC), R2

PC=08000A78 SR=00000000:; ********ksk&xxkkdkksxrrd_____ **_.. SP=0FFFFFF8
GBR=00000000 VBR=000000000 MACH=00000000 MACL=00000000 PR=08000414
RO-7 00000000 090035AC 08000A78 08000CB8 09003554 00000000 00000000
R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000
08000410 JSR ar2

PC=08000A78 SR=00000000:; ******* k& & xxkkdkhksxrhd_____ **.. SP=0FFFFFF8
GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=08000414
RO-7 00000000 090035AC 08000A78 08000CB8 09003554 00000000 00000000
R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000
08000412 NOP

STEP NORVAL END

38

00000000
OFFFFFF8

00000000
OFFFFFF8

00000000
OFFFFFF8

00000000
OFFFFFF8

3.3.12 Single Subroutine Execution

The following command executes 7 instructions starting at the current program counter
(H'8000406)). Each subroutine call is executed as a single step.

STEP 7 (RET)

08000406 MOV. L @ 0000004C, PC,) R3

08000408 JSR @r3

0800040A NOP

0800040C MOV. L @ 00000048, PC) , R4

0800040E MOV. L @ 0000004C, PQ), R2

08000410 JSR @2

08000412 NOP] 1
STEP NORVMAL END

Note: 1 Indicates that a subroutine was executed within the specified range.

39

3.3.13 Trace Buffer Display
The following command displays the contents of the trace buffer.

TRACE -17, @;A (RET) 1

08000400 MOV. L R8, @ R15 2
PC:08000402 SR:OOOOOOOO kkkkhkhhhhkkkkkhhhhhkkrk_ _ _ _ _ _ * Kk _ _ SP:OFFFFFFC
W=00000000

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000
RO- 7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
RS- 15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 ‘

OFFFFFFFC 3

|
08000402 STS. L PR @ R15 5
PC=08000404 SR=00000000; ****** %%k %k &k &k ks xkxk______ **.. SP=OFFFFFF8
W00000000

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000
RO-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000009 OFFFFFF8

08000404 MOV. L @ 00000048, PC) , R4
PC=08000406 SR=00000000: *******xx*kkkkkxxkkkhrx_ ... **-- SP=0FFFFFF8
R=09000020

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=0800000C
RO-7 00000000 00000000 00000000 00000000 09000020 00000000 00000000 00000000
R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 OFFFFFF8

Notes: 1 Displays 3 instructions from the trace buffer starting 17 instructions back. Option
“:A” specifiesthat all of the saved trace information is to be displayed.
2 The executed instructions are disassembled and displayed.
The contents of the registers after instruction execution.
4 “R=09000020" indicates that data H'9000020 was read from memory by the
instruction.
5 “W=00000000" indicates that data H'O was written to memory by the instruction.

w

40

3.3.14 Symbol Display

The following command displays the information related to the specified symbol from the global
area of the load module.

SYMBOL W stop_f (RET) 1

stop_f.... ... 09002F48 VAR S WORD 0002
|] | | |
2 3 4 5 6 7
Notes: Displays the information related to the symbol “stop_f” from the global area.

1
2 Thesymbol.

3 The symbol’s definition address.

4 Thesymbol type. “VAR” indicates that the symbol isvariable.

5 Indicates whether the datais signed. “S’ indicates that the datais signed.

6 Indicatesthe format of the data. “WORD” indicates that the datais atwo byte integer.
7 The size of the symbol in byte units.

3.3.15 Automatic Command Execution during Simulation

The following command instructs the simul ator/debugger to execute pre-registered simulator
commands when an attempt is made to execute a specified location.

. STUB 800055E { (RET) 1
STUB> DI SPLAY CHARACTERS ENTRY %anple.c/Print rec (REL).
STUB> REGQ STER (RET)

STUB> } (RET) 3 2
: STUB (RET) 4
<ENTRY ADDR> <RETURN ADDR> <SYMBCOL>
0800055E 0800055E %anple.c/Print_rec(# 85)
Y%spnpl e. c/ Print_rlec(# 85) \ | |
5 6 7 8

41

Notes: 1 This command instructs the simulator/debugger to start stub execution when the
instruction at address H'800055E is about to be executed.

2 Specifiesthe stub execution commands. Here a command to display a message
confirming passage through the stub point and a command to display the contents of
theregisters are specified. Notethat “STUB>" is the prompt used by the STUB
command.

I ndicates completion of the setting.

Confirms the setting.

The stub execution start address.

The simulation return address.

The symbol corresponding to the start address and its line number.
The symbol corresponding to the return address and its line number.

o~NO O~ W

3.3.16 Coverage Range Display

The following command displays the coverage range. When no coverage range has been set, the
code sections of the debugging object program are used as the default value.

SET COVERAGE (RET)
coverage area
08000400 - 08000D83

Notes: 1 The starting address for coverage data acquisition.
2 Theterminating address for coverage data acquisition.

3.3.17 Starting Coverage Data Acquisition

The following command starts the acquisition of coverage data. Since no coveragefileis
specified, the file “temp.cov” is used.

COVERAGE (RET)
coverage area
08000400 - 08000D83

42

3.3.18 Setting and Executing Sequential Breakpoints

The following command sets a breakpoint so that execution will stop when the debugging object
program passes through the 3 specified locations.

BREAK SEQUENCE 80004BA 80009E8 8000566 (RET) 1
BREAK SEQUENCE (RET) 2
1st BREAKPO NT = 080004BA %sanple.c/Print_rec (# 78)
2nd BREAKPO NT = 080009E8 %sanple.c/Bin_ascii (# 217)
3rd BREAKPO NT = 08000566 %sanple.c/Print_rec (# 87)
| | || |

3 4 5
<COMVAND_LI NE>

G0 (RET
ENTRY Y%anple.c/Print_rec 7]
PC=0800055E SR=00000000; ***** %% %%k sk kkkskkskskskskskk_____ . **.. SP=0FFFFE40
GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=0800055E

RO-7 00000000 OFFFFE44 08000030 OFFFFE45 OFFFFE45 00000000 00000000 OOOOOOOg
R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 OFFFFE40
Exec instructions = 156]
PC=08000566 SR=00000000; *******kkkskkkkskkskkkskskk____ **.. SP=0FFFFE40]
GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=08000566
RO-7 00000000 OFFFFE44 08000030 OFFFFE44 OFFFFE44 00000000 00000000 00000000
R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 OFFFFE4
Y%sanpl e.c# 225 }
BREAK SEQUENCE

Notes: 1 This command instructs the simulator/debugger to stop at location H'8000566 (the last
location) when the 3 locations H'80004BA, H'80009ES, and H'8000566 are passed in
sequence.

This command displays the sequential breakpoint settings.

Indicates the setting order.

The breakpoint address.

The symbol corresponding to the breakpoint address.

Command to be executed when the program execution stops at the breakpoint.

The output for confirming passage through the point set by the STUB command.
Register display set by the STUB command.

At this point the sequential break conditions are satisfied and execution stops.

© 00 ~NOO UL WN

43

3.3.19 Coverage Information Display

This section lists the coverage information for each of the command options.
(1) T Option Specification

This option displays the CO and C1 coverage values.

DEBUG LEVEL ;S (RET) 1

DI SPLAY COVERAGE /Read rec @4 ;T (RET) 2
0: 44.0% 3
Cl: 50.0% 4

Notes: 1 Thiscommand sets the debug level to source code line units.
2 Thiscommand sets symbol /Read_rec as the coverage start address. Coverageis
performed for 20 lines from the start address.
The CO coverage value
4 The Cl coverage value

w

44

(2) G Option Specification

The G option displays CO coverage over awide range.

DI SPLAY COVERAGE /Read rec @4 ;G (RET)

Y%sanple.c# 172 * void Read_rec()

Y%sanple.c# 177 * if (phg_pos == -1)

Y%sanpl e.c# 179 . Ph_r ead(phg_rec); /*: First 256 bytes.

Y%sanpl e.c# 180 . Ph_r ead(phg_rec+256); /*: First spare 256 bytes.
Y%sanpl e.c# 181 . phg_pos = (short)O; /*: Index initialize.
Y%sanpl e.c# 182 . rec_num = (short)O0; /*: Physical record nunber
initialize

Y%sanple.c# 185 * phg_I ng = phg_rec[phg_pos + 1];

Y%sanpl e.c# 186 * if (phg_lng < 0)

Y%sanpl e.c# 188 . phg_I ng += 256; /*: Adjust to unsigned char.
Y%sanpl e.c# 191 * wi = (short)O;

Y%sanple.c# 192 * while (wi <phg_| ng)

Y%sanple.c# 194 . | og_rec[w ++] = phg_rec[phg_pos++];
Y%sanple.c# 197 * if (phg_pos > 255)

Y%sanpl e.c# 200 . for (W = (short)0; wi < (short)256; w ++)
Y%sanpl e.c# 202 . phg_rec[wi] = phg_rec[w + 256];

Y%sanpl e.c# 205 . Ph_r ead(&phg_rec[256]);

Y%sanpl e.c# 206 . phg_pos —= 256;

Y%sanpl e. c# 207 . rec_num-+;

Y%sanpl e.c# 209 * }
r%sanpl e.c# ZJHJ ‘ voi d Bin_ascii(p)

Notes: 1

1 2 3

The file name and line number of the source code.
Indicates the coverage information symbolically.
o Asterisk (*): Indicates that this address was accessed and executed.

o Period (): Indicates that this line was not executed.
e Space (Q): Indicates that there is no machine language corresponding to this
line.

Displays the source code in the coverage range.

45

46

Section4 Simulator/Debugger Invocation and
Command Input

4.1 Invoking the Simulator/Debugger
The following command invokes the simulator/debugger.

U%sdsh[" {[<debuggi ng obj ect programfile nanme>]

1 2
[[T]-conme<command file nanme>][["] -cpu=<CPU information file nane>]}
3 4
| -stat=<sinulator state file nanme>] (RET)
5

Notes: 1 "sdsh" isthe command name of the simulator/debugger installed on the host computer.

2 Thefile name of the debugging object program loaded when the simulator/debugger
starts. When the file extension is omitted ".abs" is used as the default.

3 When the -com command line option is specified, the simulator/debugger reads a
command from the file whose name is specified following the equal sign (=) and
executes it.

4 When the -cpu command line option is specified, the simulator/debugger creates a
memory map from the information stored in the CPU information file whose name is
specified following the equal sign (=). When the file extension is omitted ".cpu” is
used as the default.

5 The state at the time a SAVE_STATUS command was executed in a previous
debugging session can be restored by specifying the smulator state file following an
equal sign (=) with the -stat command line option. When the file extension is omitted
".sav" isused as the default.

4.2 Exiting the Simulator/Debugger

To exit the simulator/debugger, enter the following simulator command line.

» QUIT (RET)
%

a7

4.3 Simulator/Debugger Commands

Table 4-1 lists the simulator/debugger commands.

Table4-1 Simulator/Debugger Commands

No. Command Abbreviation Function

1 ASSEMBLE A Assembles line by line

2 BREAK B Sets, displays, and cancels breakpoints
based on the instruction execution address

3 BREAK_ACCESS BA Sets, displays, and cancels break conditions
based on memory range access

4 BREAK_ DATA BD Sets, displays, and cancels break conditions
based on memory data values

5 BREAK_REGISTER BR Sets, displays, and cancels break conditions
based on register data values

6 BREAK_SEQUENCE BS Sets, displays, and cancels breakpoints
based on specified execution sequences

7 CALL CA Calls a function

8 COMMAND_CHAIN CcC Executes commands from a file

9 COMPARE CMP Compares memory contents

10 CONVERT Ccv Calculates expression

11 COVERAGE cov Starts and stops coverage measurement

12 DATA_SEARCH DS Searches for data

13 DEBUG_LEVEL DL Specifies debug level

14 DISASSEMBLE DA Disassembles and displays memory
contents

15 DISPLAY_CHARACTERS DCH Displays character string

16 DISPLAY_COVERAGE DCV Displays coverage data

17 DUMP D Displays memory contents

18 EXEC_MODE EM Switches execution mode

19 FILL F Initializes memory area

20 GO G Executes instructions continuously

21 HELP HE Displays command name and input format

22 LOAD L Loads file

23 LOAD_STATUS LS Restores simulator/debugger memory and

register state

48

Table4-1 Simulator/Debugger Commands (cont)

No. Command Abbreviation Function

24 MACRO MA Defines, displays, executes, and deletes
simulator/debugger command macros.

25 MAP MP Defines, displays, modifies, and deletes
memory areas.

26 MEMORY M Modifies memory contents

27 MOVE MV Copies memory block

28 PRINT P Executes history file

29 QUIT Exits the simulator/debugger

30 RADIX RX Sets the radix

31 REGISTER R Displays register contents

32 RESET RS Resets the simulator/debugger

33 SAVE YY) Saves memory data to a file

34 SAVE_STATUS SS Saves the current simulator/debugger state
in a file

35 SCOPE SCP Displays the name of function at the current
execution address.

36 SET_COVERAGE SCV Sets coverage range

37 SHOW_CALLS SHC Displays function call

38 STEP S Performs step execution in subroutine units

39 STEP_INTO Sl Performs step execution

40 STUB SB Executes command during simulation

41 SYMBOL SY Displays symbol information

42 TRACE T Displays trace buffer

43 TRACE_CONDITION TC Sets trace condition, and starts or stops
trace

44 TRAP_ADDRESS TA Sets, displays, and clears the system call
start address

45 TYPE TY Displays variable value

46 VECTOR \% Executes from an interrupt vector address

a7 .<register> — Modifies register contents

48 ! — Invokes sub-process

49

4.4 Specifying Command Parameters

The simulator/debugger commands allow parameter specification. This section describes the
aspects of parameter specification common to all commands. Refer to section 5,
Simulator/Debugger Commands, for more information on the command parameters.

4.4.1 Expressions
Expressions (integer expressions) consist of terms, operators, and parentheses.

Operations are performed in 32-bit unsigned operations, and overflows during operation is
ignored. However, divide by zero and floating-point operations generate errors.

(1) Terms
The following terms can be used in integer expressions.
a Numeric constants

Numeric constants represent 32-bit integer constants. Numeric constants can be prefixed with
B', Q, D', or H' to represent binary, octal, decimal, or hexadecimal constants respectively.

When the prefix is omitted, the base specified with the RADIX command is used.

Examples. Binary constant: B'1010
Octal constant: Q4567
Decimal constant: D'1234

Hexadecimal constant: H'A4FF

Note that aleading zero must be inserted at the head of a hexadecimal constant when the first
digitisA to F and the H' prefix is omitted.

Example: Towrite “H'AQ” without the prefix, use “0AQ".

50

b. Register values

Register value terms represent the current value stored inside the register at the time they are
evaluated. Register values are zero-extended to 32-bit integer values.

RO

|
R15
SP
PC
SR
GBR
VBR
MACH
MACL
PR

c. Symbols
Symbols represent an address or constant value.
The syntax for symbols is shown below.

o[!]synbol [. menber nane[...]]
*%ile nanme
o/ function nane

The <function name> indicates a C function. It isnot used with assembler language symbols.

Although alphanumerics and the $ and _ characters can be used in symbols (as well as
function and member names), symbols, function names, and member names must be 32 or
fewer charactersin length, and must start with either aletter, the“$’ character, or the“_”
character.

Upper and lower case |etters are distinguished.

Member names express elements of structures or unions. Member names are not used with
assembl er language symbols.

51

There are three classes of symbol scopein C: globa symbols which are valid over the whole
program, static symbolsthat are valid in asingle file, and local symbolsthat are valid within a
function.

If asymbol is specified, the smulator debugger searches for it with local symbolsin the
currently valid function, static symbolsin thefile, and global symbolsvalid in the whole
program, in that order. The simulator debugger allows the following specifications to refer to
the same symbols of other level, or those included in other functions or files.

o/ function! synbol
Refersto the local symbolsin the specified function

*% il elsynbol
Refers to the static symbolsin the specified file

* % synbol
Refers to the specified global symbol

The valid file and function names can be determined with the SCOPE command. For both file
names and symbol names, items specified with upper case letters and items specified with
lower case letters will be treated as distinct objects.

Examples: %ai n. c! sym Indicates the symbol "sym" which appearsin thefile
"main.c’.
/func! sym Indicates the symbol "sym" which appearsin the

function "func".

I TEST Indicates the symbol TEST that isincluded in the file
that the program counter is currently pointing to.

% sym Indicates the global symbol "sym".

Caution: The following points require caution when programs written in C and programs
written in assembler are linked together.

When an assembler language subroutine is to be called from a C program, the
subroutine name in the assembler language program must begin with an
underscore (_) character.

52

Example: C source Assembler source
Read(&b) . EXPORT _Read

_Read:

To apply a breakpoint to this“Read” subroutine, either of the following commands can be
used.

* From C: BREAK _Read
e From assembler: BREAK _Read

Indirect memory values
The contents of an address can be referenced by prefixing the address with an asterisk (*).

Examples: *1000: Indicates the contents of address H'1000.
*R1: Indicates the contents of the address pointed to by register R1.

Line numbers
Line numbers are preceded by a number sign (#).

The value of aline number is the address of the first location in the machine language code
into which that line was compiled.

Since line numbers should have consecutive values within asingle file, they must generally be
prefixed by afile name. If the file name is omitted, the file that includes the current value of
the program counter will be used.

The syntax for line numbers is shown below.
[%fil e nane>] #<line nunber>
Line numbers are always expressed in decimal.
The RADIX command has no influence on the interpretation of line numbers.
Examples. %sub. c#100 Indicatesline 100 in thefile“sub.c”.

#120 Indicates line 120 in the file which includes the current value
of the program counter.

Caution: » Line number specification is only valid when debugging information output
was specified during compilation. Also, if the specified line number isaline
number for which debugging information was not output, an error occurs.

53

f.

Special symbols that can be used as |ocation specifiers
The following special symbols can be used for location specification.
e @RTN: Return address of afunction

Usageexample: GO , @RTN (RET)

Execution will stop at the point the currently executing
function returns.

« (@END: The last addressin afile or function.

Usageexample: DA % il e.c/func @ND (RET)

This command disassembles and displays the function
func from itsfirst location to its last.

54

(2) Operators
Table 4-2 shows the operators that can be used in expressions and their priorities.

Table4-2 Operatorsand Operator Priorities

Priorities Symbol Description
1 . Structure member operator
-> Structure member operator
2 + Plus sign (unitary operator)
- Minus sign (unitary operator)
~ Bit inversion (unitary operator)
* Pointer (unitary operator)
& Address operator (unitary operator)
3 * Multiplication
/ Division
4 + Addition
- Subtraction
5 < Less than (relational operator)
<= Less than or equal (relational operator)
> Greater than (relational operator)
>= Greater than or equal (relational operator)
6 == Equal (relational operator)
I= Not equal (relational operator)
7 & Logical and
8 A Logical exclusive or
9 Logical or
10 = Assign the left hand side to the right hand side

(assignment operator)

Relational operators are used to compare the values on the right and left sides. If the comparison
is true, the value of the operation is H'FFFFFFFF, and if the comparison is false, H'00000000.
Parentheses can be used to override the operator precedence.

Assignment operator can only be used within the MACRO command.

55

4.4.2 Locations

Location expressions are expressions whose values are addresses. Instruction locations cannot
contain automatic variables or pointer variables.

The following symbols can be used for locations:
Variable name, label, function name, file name: Symbol addresses
EQUATE name: Symbol values
Note, however, that symbols defined for registers cannot be used for locations.
Examples. 1000 Indicates location 1000.

I ABCD Indicates the address of the symbol ABCD in the file associated with the
current value of the program counter.

#100 Indicates the address of line 100 in the file associated with the current
value of the program counter.

4.4.3 Data
Data expressions consist of an expression and a size indicator.
The syntax for data expressionsis shown below.
<expression>[:<size>]
size: B (byte): 8 hits

W (word): 16 bits

L (long): 32 bits
Word is the default size when the size specification is omitted.

When the value of the expression is larger than the size, the overflow digits areignored, i.e., only
the lower order <size> digits are valid.

56

The following symbols can be used for data:

Variable name and label: Symbol contents

Function name and file name: Symbol addresses

EQUATE name: Symbol values
Example: The data expression H'1234:B has the same value as the expression H'34:B.
4.4.4 Floating Point Data

Floating point constants are either single (S) or double (D) precision and have the following
syntax.

F L3 (LEMTy epria xal

Prefix indicating floating-point data. Cannot be omitted.

Integer part (in decimal)

Fraction part (in decimal)

Sign. +isisthedefault at omission.

Precision specifier. Sisthe default when the precision specifier is omitted.
S=Single precision

D = Double precision

xX: Exponent part (in decimal). 0 isthe default when the exponent specification is
omitted.

T 32T

Examples. F' 1. S Specifies 1.0 in single precision.
F.1D-2 Specifies0.1 x 102 in double precision.
4.4.5 Character Strings

Character strings are handled as data sequences consisting of the ASCII code of each character in
turn, and are enclosed by double quotation marks. To include a double quotation mark in a
character string, insert two double quotation marks in sequence. To include a non-text ASCI|
code, surround the numeric constant representing the code in angle brackets. Note however, that
the <numeric constant> notation can only be used with the MEMORY and DATA_SEARCH
commands.

Example: " ABCDEF" <0A>

Note when the number of characters within the double quotation marksis four or less, the string is
handled as a character constant.

57

4.4.6 File Names

File name notations must follow the restrictions on file names imposed by the operating system.
File names can be optionally enclosed in double quotation marks.

447 Comment Lines

Lines beginning with a semicolon are treated as comment lines by the simulator/debugger. The
simulator/debugger takes no action for comment lines.

4.4.8 Limitationson C Expressions
Table 4-3 lists the limitations on C expressions used in command parameters.

Table4-3 C Expression Limitations and Workarounds

No. Limitation Workaround

1 Arrays are limited to 2 dimensions Acquire the starting address of 3-dimensional or
greater arrays with the SYMBOL command and
then specify the address by computing the index
with an expression.

2 Parentheses are limited to 8 nesting Simplify the structure of the parameter to reduce
levels the number of parentheses.

3 Pointers and arrays are limited to Simplify the data structures or specify the
8 levels reference with an address.

Pointers: ********ptr
Arrays: a[b[c[d[e[f[g[h[0]]]]]]]]

58

Section 5 Simulator/Debugger Commands

This section provides detailed descriptions of the individual simulator/debugger commands.
Figure 5-1 shows the command description format used in this section.

Format
6

Parameter
7

Function
8

Description
9

Note

Example

Figure5-1 Command Description Format

The numbered items in the above format are described below.

Ok, WNPRE

Section number

Command name

Command abbreviation
Command function
Command name

Input format for the command

59

o O O

Description of command parameters and options.

» Optionsindicated as "start-up settings' are defaults at start-up only. Asaresult,
specifying these command options creates new default valuesto be used if the options are
omitted next time.

e Optionsindicated as "default" are not influenced by previous specificationsif later
omitted, i.e. these defaults do not change. However, in commands such asthe DUMP
command that continuously display memory, the value of the memory start address option
isinherited from the previous command specification if omitted.

Command function.

Command description.

Notes on command usage.

Usage examples.

60

ASSEMBLE

51 | ASSEMBLE Assemblesline by line
A

Format
ASSEMBLEA<st art addr ess>(RET)
Par ameter

» <start address>
Indicates the address to store the results of assembly.

Function

This command converts assembly language notations to machine language in line units and stores
the results starting at the indicated start address. Long word or word integer can be defined by the
.DATA directive.

Description

1. When this command is entered, the current contents of the specified address are displayed and
the command enters interactive mode. The display and input format are as follows.

ASSEMBLE <start address> (RET)

<instruction menoni c>

address xxxx ? <assenbly |anguage or .DATA notation> (RET)
address xxxx ? <assenbly | anguage or .DATA notation> (RET)

address xxxx ? . (RET)

The above terms are described below:

<instructi on menoni c> : The current disassembled contents of the start address.

addr ess . The start address.

XXXX . Thevalue of the first two bytes of the memory address
indicated by “address’.

periods (.) . Terminates the line assembly command.

61

ASSEMBLE

The following processing is performed if only (RET) is entered.

Prior to assembly language notation input

The address counter is advanced to value equal to the current address plus the instruction
length, the instruction mnemonic is displayed, and the command waits for assembly language
notation input.

After assembly language notation input
The address counter is advanced to the current address plus 2, and the command waits for
assembly language notation input.

Notes

1.

Refer to the SH-Series Cross Assembler User’'s Manual for details on assembly language
syntax and the .DATA directive.

Refer to appendix A, Differences Between SH-Series Cross Assembler Syntax and Line
Assembly Command, for differences between the notations used with this command and those
of the cross assembler.

Example

To interactively input assembly language expressions, convert them to machine language, and store
them starting at address H'400:

ASSEMBLE 400 (RET)

00000400 MOV. L #0000002E, R1
00000400 E12E ? RET
00000402 MOV. L #FFFFFFF, R2

00000402 E2FF ? MOV. L #OFF, R3 (RET)
00000404 0009 ? _ADD R1, R2 (RET)
00000406 0009 ? . (RET

DI SASSEMBLE 400 @ (RET)
00000400 MOV. L #0000002E, R1
00000402 MOV. L #FFFFFFFF, R3
00000404 ADD. L Rl, R2

62

BREAK

52 | BREAK Sets, displays, and cancels breakpoints based on
B instruction execution address
Format
Set: BREAKA<i nst ructi on address>[A<repeat count >]

[;"<command |ine>"] (RET)
Enable/disable: BREAKA<i nstructi on address>; {E| D} (RET)
Display: BREAK (RET)
Cancellation: BREAK- [A<i nstruction address>] (RET)
Parameters

e <instruction address>
Specifies the address of the breakpoint.

*+ <repeat count>
Specifies the number of times the instruction of the specific position is fetched before
breaking. (A value between H'1 and H'3FFF; defaultisH'1.)

e Option

— Enable/disable{ E| D}
E (enable): Enables previously set breakpoints.
D(disable): Disables previously set breakpoints.

e <command |ine>
Specifies a certain command line to be executed when the break occurs. To indicate a double
guotation mark in a character string, insert two double quotation marks in sequence.

Function
Sets, displays, and cancel s breakpoints based on instruction execution address.

When the instruction at the specified address has been fetched the specified number of times
during execution by a CALL, GO, STEP, STEP_INTO, or VECTOR command, instruction
execution is stopped.

63

BREAK

Description

Set: Sets a break address and count.
Program execution stops before the instruction at the break address is executed.
Up to 8 breakpoints can be set.
Note that breakpoints are automatically enabled when a breakpoint is set.

Enable/disable: Allows breaking to be enabled or disabled without changing the breakpoint
settings.

Display: Displays the breakpoints set with the BREAK command.

Cancellation: Cancels (clears) the breakpoints set with the BREAK command.
If no instruction addresses are specified, all breakpoints set with the BREAK
command are removed. In this case a confirmation message will be displayed.
Enter "Y" to remove al breakpoints or "N" to cancel the removal.

Notes

1. If abreakpoint is set at any address other than the first byte of an instruction, the break will
not be detected.

2. Theexecution count is reset at the point that instruction execution stops.

3. If abreakpoint is set at an instruction following a delayed branch instruction, execution stops
at the start address of the delayed branch instruction.

4. If conditions specified with the BREAK and BREAK _SEQUENCE commands are satisfied
simultaneously, the command line specified with the BREAK command is executed first.

64

BREAK

Examples

1.

To set a breakpoint that breaks just prior to the eighth time the instruction at address H'2000 is
about to be executed, and to execute the REGISTER command after stopping at the
breakpoint:

B 2000 8 ;"REG STER' (RET)

To disable the break at address H'2000:

B 2000 ; D (RET)

To display currently set breakpoints (note that addresses and counts are displayed in
hexadecimal):

. B (RET
<E/ D> <ADDR> <COUNT> <COWAND LI NE> <SYMBOL>
D 00002000 8 "REG STER' %ile.c!synbol (# 100)

To clear the breakpoint at address H'2000:

B- 2000 (RET)

65

BREAK_ACCESS

5.3 | BREAK_ACCESS Sets, displays, and cancels break conditions based
BA on access to a range of memory
For mat
Set: BREAK ACCESSA<start address>[A{<end address>| @byt e

count>}] [[{RIWRW]I[,"<comand |ine>"]] (RET)

Enable/disablee BREAK _ACCESSA<st art address>; {E| D} (RET)

Display: BREAK_ACCESS (RET)

Cancellation: BREAK_ACCESS- [A<start address>] (RET)

Parameters

<start address>A{<end address>| @byte count>}

Specifies the start address or the range of memory for which the simulator/debugger will stop
if accessed by the object program being debugged.

When the end addressis not specified, the range consists of only the specified address.

Options

— Accesstype{ Rl W RW
R (read): Break on aread from the specified memory.
W(write): Break on awrite to the specified memory.

RW(read/write): Break on either aread or awrite. (default)

— Enable/disable { E| D}
E (enable): Enables previously set break conditions.
D (disable): Disables previously set break conditions.

<conmand | i ne>
Specifies acommand line to be executed when the break occurs. To indicate adouble
guotation mark in a character string, insert two double quotation marks in sequence.

Function

This command sets, displays, and cancels breakpoints based on access to a specified memory
address or range.

66

BREAK_ACCESS

Instruction execution stops when the break condition (access of the specified type to the specified
memory area) is satisfied during program execution dueto a CALL, GO, STEPR, STEP_INTO, or

VECTOR command.
Description
Set: Sets a breakpoint so that program execution stops on an access of the specified
type to the specified memory range.
Up to two memory ranges can be specified.
Note that breakpoints are automatically enabled when a breakpoint is set.
Enable/disable: Allows breaking to be enabled or disabled without changing the breakpoint
Settings.
Display: Displays the breakpoints set with the BREAK_ACCESS command.
Cancellation: Cancels (clears) the breakpoints set with the BREAK _ACCESS command.
If no addresses are specified, al breakpoints set with the BREAK_ACCESS
command are removed. In this case, a confirmation message will be displayed.
Enter "Y" to remove al breakpoints or "N" to cancel the removal.
Note

If conditions specified with the BREAK_ACCESS, BREAK_DATA, and BREAK_REGISTER
commands are satisfied simultaneously, the corresponding command lines are executed in that

order.

Examples

1. To set abreakpoint so that execution stops when aread or awrite to memory in the range from
address H'1000 to H'1100 occurs, and to execute the REGISTER command after stopping at
the breakpoint:

BA 1000 1100 ; RW "REG STER' (RET)

2. Todisablethe breakpoint at address H'1000:

BA 1000 : D (RET)

67

BREAK_ACCESS

3. Todisplay the currently set breakpoints:

: BA (RET)
<E/ D> <START> <END> <ATTR> <COWAND LI NE> <SYMBOL>
D 00001000 00001100 RW “REG STER’ %ile.cltable_a (# 4)

4. To clear the breakpoint at address H'1000:

BA- 1000 (RET)

68

BREAK_DATA

54 | BREAK_DATA Sets, displays, and cancels breakpoints based on the
BD value of memory data
Format
Set: BREAK DATAA<br eak addr ess>A{<dat a>[: <si ze>] [A<nask>] |

<real number>}[;[{EQ NE}][,"<command |ine>"]] (RET)
Enable/disable: BREAK DATAA<br eak address>; {E| D} (RET)
Display: BREAK_DATA (RET)
Cancellation: BREAK_DATA- [A<br eak address>] (RET)
Parameters

* <break address>
Specifies the address whose contents are to be checked during execution.

* <data>[:<size>]
Specifies the accessed data.
Although word is the default size, when the break address corresponds to a high-level
language variable, the size of that variable will be used.

 Datasize{B| WL}

B (byte): Bytedata
W(word): Word data
L (long): Longword data

* <mask>
Only the bits for which the mask is set to 1 will be compared.
When omitted, all bits are compared.
Note that a mask may not be specified when areal number is specified.

* <real nunber>
Specifies floating point number.

69

BREAK_DATA

Options

— Datamatch/differ { EQ NE}
EQ(equal): Break when the data matches. (default)
NE (not equal): Break when the data differs.

— Enable/disable{ E| D}
E (enable): Enables previously set break conditions.
D (disable): Disables previously set break conditions.

<comand | i ne>
Specifies acommand line to be executed when the break occurs. To indicate a double
guotation mark in a character string, insert two double quotation marks in sequence.

Function

This command sets, displays, and cancels breakpoints based on data written to memory.

Instruction execution stops when the break condition (data written to the specified memory address
matches/differs from the specified value) is satisfied during program execution dueto a CALL,
GO, STEP, STEP_INTO, or VECTOR command.

Description
Set: Sets up to 8 breakpoints based on the data val ue written to memory.

Note that breakpoints are automatically enabled when a breakpoint is set.
Display: Displays the breakpoints set with the BREAK _DATA command.

Cancellation: Cancels (clears) the breakpoints set with the BREAK _DATA command.

If no arguments are specified, all breakpoints set with the BREAK _DATA
command are removed. In this case a confirmation message will be displayed.
Enter "Y" to remove all breakpoints or "N" to cancel the removal.

Note

If conditions specified with the BREAK_ACCESS, BREAK_DATA, and BREAK_REGISTER
commands are satisfied simultaneously, the corresponding command lines are executed in that
order.

70

BREAK_DATA

Examples

1.

To set a breakpoint so that execution stops when word-size data with the value 10 is written to
address H'2000 and execute the REGISTER command after stopping at the breakpoint:

BD 2000 10: W, "REG STER' (RET)

To set a breakpoint so that execution stops when byte-size data with a value other than 20 is
written to address H'AFQO:

BD 0AFO0 20:B ; NE (RET)

To set a breakpoint so that execution stops when a byte-size data whose lower 2 hits have the
value 10 is written to address H'FFOO:

BD OFFO0 2:B 3 (RET)

To disable the breakpoint at address H'2000:

BD 2000 : D (RET)

To generate a break if 100 iswritten to symbol rsym:

BD rsym 100 (RET)

71

BREAK_DATA

6. Todisplay the currently set breakpoints (note that addresses, data, and masks are displayed in
hexadecimal):

: BD (RET)
<E/ D> <ADDR> <DATA> <EQ NE> <COVNAND LI NE>
<MASK> <SYmMBOL>
D 00002000 0010: W EQ "REG STER'
YBile.cla(# 4)
E 0000AFO00 20: B NE = ccmmcmmmecaao-
%ile.clb(# 236)
E 0000FF00 02: B EQ W c--eeeao---
03 %ile.clc(# 246)
E R4 00000100: L EQ cmeeeememe---
-------- rsym

If asymbol assigned to aregister is specified as a break addresses, the register nameis
indicated at <ADDR>.

7. Toclear the breakpoint at address H'FFOO:

BD- OFFOO (RET)

72

BREAK_REGISTER

55 | BREAK_REGISTER Sets, displays, and cancels break conditions based
BR on thevalue of datain aregister
Format
Set: BREAK REG STERA<r egi st er >A[A<dat a>[: <si ze>] [A<nask>]]

[;[{EQ NE}][,"<comrand |ine>"]] (RET)

Enable/disables BREAK REQ STERA<r egi st er>; { E| D} (RET)

Display: BREAK_REG STER (RET)

Cancellation: BREAK_REG STER- [A<r egi ster>] (RET)

Parameters

<regi ster>
Specifies the register for which the break isto be set. SP can be specified instead of R15.

<dat a>[: <si ze>]
Specifies the data value for the break condition.
When the size is omitted, the register size is used as default.

Datasize{ B| W L}

B (byte): Bytedata
W(word): Word data

L (long): Longword data

<mask>
Only the bits for which the mask is one will be compared.
When omitted, all bits are compared.

Options

— Datamatch/differ { EQ NE}
EQ (equal): Break when the data matches. (default)
NE (not equal): Break when the data differs.

— Enable/disable { E| D}
E (enable): Enables previously set break conditions. (default)
D (disable): Disables previously set break conditions.

73

BREAK_REGISTER

« <command |ine>
Specifies acommand line to be executed when the break occurs. To indicate a double
guotation mark in a character string, insert two double quotation marks in sequence.

Function
This command sets, displays, and cancels breakpoints based on data written to the CPU registers.

Instruction execution stops when the break condition (data written to the specified register matches
the specified value) is satisfied during program execution dueto a CALL, GO, STEP,
STEP_INTO, or VECTOR command.

When the data value in the BREAK _REGISTER command is omitted, the simulator/debugger
stops execution on any write, regardless of the data value, to the specified register.

Description

Set: The command sets a break condition so that execution stops when the specified
register is accessed. Note that breakpoints are automatically enabled when a
breakpoint is set.

Up to 8 breakpoints can be set.

Enable/disable: Allows breaking to be enabled or disabled without changing the breakpoint
settings.

Display: Displays the breakpoints set with the BREAK _REGISTER command.

Cancellation: Cancels (clears) the breakpoints set with the BREAK _REGISTER command.
All breakpoints set with the BREAK_REGISTER command are removed if the
register is omitted from the break removal form of the command.

In this case, a confirmation message will be displayed. Enter "Y" to remove all
breakpoints or "N" to cancel the removal.

Notes

1. If abreak condition is satisfied at a delayed branch instruction, execution stops at the branch
destination.

74

BREAK_REGISTER

2. If conditions specified with the BREAK_ACCESS, BREAK_DATA, and
BREAK_REGISTER commands are satisfied simultaneously, the corresponding command
lines are executed in that order.

Examples

1. To set abreakpoint so that execution stops whenever RO is written:

: BR RO (RET)

2. To set abreakpoint so that execution stopsif the value FF is written to register R1, and to
execute the REGISTER command after the break:

BR R1 OFF ;,"REQ STER' (RET)

3. To set abreakpoint so that execution stopsif any value other than FF is written to register R2:

BR R2 OFF ; NE (RET)

4. To set abreakpoint so that execution stopsif a value whose lower two bits have the value 10 is
written to register R10:

BR R10 2 3 (RET)

5. To disable the breakpoint R1:

BR RL : D (RET)

75

BREAK_REGISTER

6. Todisplay the currently set breakpoints (note that data and masks are displayed in
hexadecimal):

. BR (RET)
<E/ D> <REGQ STER> <DATA> <EQ NE> <COMVAND LI NE>
<NASK>
E RO - EQ
D R1 0O00000FF EQ "REGQ STER"
E R2 O00000FF NE
E R10 00000002 EQ
00000003

7. Toclear the breakpoint RO:

BR- RO (RET)

76

BREAK_SEQUENCE

56 | BREAK_SEQUENCE Sets, displays, and cancels breakpoints based on a
BS specified execution sequence
Format
Set: BREAK SEQUENCEA<i nstructi on address>[A<i nstruction

address>[A<i nstruction address>[...]]]
[;"<command |ine>"](RET)

Display: BREAK_SEQUENCE (RET)
Cancellation: BREAK _SEQUENCE- (RET)
Parameters

e <instruction address>
Specifies the address(es) that will form the sequential breakpoint condition.

+ <command |ine>
Specifies acommand line to be executed when the break occurs. To indicate adouble
guotation mark in a character string, insert two double quotation marks in sequence.

Function
This command sets, displays, and cancels a breakpoint based on a specified execution sequence.

Instruction execution stops when the break condition (sequential execution of the specified
addresses) is satisfied during program execution dueto aCALL, GO, STEP, STEP_INTO, or
VECTOR command.

Description

Set: Sets a break condition so that execution stops at the last specified address when the
instructions at the specified addresses have been executed in the specified order.
Note that a sequence of up to 8 addresses can be specified with this command.

Display: Displays the breakpoints set with the BREAK_SEQUENCE command.

Cancellation: Cancels (clears) the breakpoints set with the BREAK_SEQUENCE command.

i

BREAK_SEQUENCE

Notes

1.

If abreakpoint is set at any address other than the first byte of an instruction, the break will
not be detected.

The execution sequence condition is reset at the point that instruction execution is stopped.

If the instruction following a delayed branch instruction is specified as the last instruction
address, execution stops at the start address of the delayed branch instruction.

If conditions specified with the BREAK and BREAK_SEQUENCE commands are satisfied
simultaneously, the command line specified with the BREAK command is executed first.

Examples

1.

2.

3.

To set asequentia breakpoint for addresses H'2000, H'2100, and H'3000, and to execute the
REGISTER command after break:

BS 2000 2100 3000 ; "REG STER' (RET)

Execution will break when execution has passed addresses H'2000, H'2100, and H'3000.
Note that “ passing an address” is defined as “ passing at least once”. Thus, the breakpoint
sequence is not reset when an address is executed more than once.

To display the currently set sequential breakpoint:

: BS (RET)
1ST BREAK PO NT

2ND BREAK PO NT

3RD BREAK PO NT

<COMVAND LI NE>
"REG STER'

00002000 % ile.c!'entry add(# 36)
00002100 % ile.c!'entry sub(# 58)
00003000 % ile.clentry mult(# 102)

To clear the sequential breakpoint:

BS- (RET

78

CALL

5.7 CALL Callsafunction
CA

Format

CALLA<function nanme>([[<argunent >],[<argunent>]...])
[A<return address>] (RET)

Parameters

« <function nane>
Specifies the name of the function to be simulated.

e <argunent>
These parameters specify the arguments to the function.
The arguments are pushed onto the stack in order from right to left.
Expressions which represent data values (including floating point values) can be used as
arguments. Data items are stored on the stack in the specified size.
Up to 63 arguments can be specified.
When arguments are omitted, zero (0) is assumed.

e <return address>
Specifies the address to store the return value.

Function

This command creates the stack frame required by C language functions, and calls the specified
function. It can be used for testing individual functions. Execution stopsif an error occurs or a
break condition is satisfied.

Description

Usage: The command line specifies the arguments to be passed to the function, and the
address to store the return value.
This specification creates the stack frame, sets up the SP, PC and PR registers,
and executes the function.
The following values are loaded into the SP, PC, and PR.
» SP: The SPisautomatically decremented by an amount corresponding to the
size of the area allocated.
* PC: ThePCisset to the entry address of the specified function.
* PR: The PR indicates the current PC address.

79

CALL

The format of the stack frameis as follows.

1. Stack frame when aregister is used to pass the return value.
Thisformat is used when the register is equal to or larger than the size of the returned data.

High Argument 1
Address
Low Argument n

When the function completes and returns, the return value is copied from register RO to the
specified address. However, if no return value storage address is specified, the value is not
copied.

2. Stack frame when the return value is passed to the specified address.
Thisformat is used when the size of the return value is greater than the CPU register size, and
the return value address was specified in the CALL command.

High Return value area address
(Argument 1
Address
Low Argument n

The return area address is set to the return value address specified in the command line.

80

CALL

3. Stack frame when the return value is passed on the stack.
Thisformat is used when the size of the return value islarger than the CPU register size, and
the return value address was not specified in the CALL command.

High Return value area address
Argument 1
Address
Argument n
Y
Low Return value area

Since the return value address was not specified, areturn value areais allocated on the stack,
and the return value is stored in that area.

The value of the stack pointer must be set to an appropriate value beforehand, since the current
stack area, registers, and memory areas are used during function execution.

Note that the SAVE_STATUS and LOAD_STATUS commands can be used to restore the system
to the simulator/debugger state prior to function execution after executing a function with the
CALL command.

Refer to the SH-Series C Compiler User’s Manual for more information on the function call
interface.

Note

If optimization is performed at compilation, arguments may be stored in the registersinstead of on
the stack.

81

CALL

Examples

1.

To call the function “funcl” with the arguments 1 and 10, and to store the return value at
address 5000:

CA /funcl(1,10) 5000 (RET)

To show the setup required to test the function “func2” shown below. The results of the
arithmetic operations are stored starting at address H'1800:

func2(p,i,j)
int *p ;
int i,j ;
{
*pH+ =0+
*pH+ =0 -
preo=0of g
*pr+ =0
}
L test2.0bj (RET) Loads the file test2.obj.
UNDEFI NED SYMBOL : synbol
MP 1000 @000 (RET) Allocates the stack and return areas.
: . R15 1800 (RET) Initializes the stack pointer.
CA /func2(1800, 50, 10) (RET) The return address will be H'100, i.e., the current value of the
PC.
D 1800 @O0 (RET) Confirms the results of the arithmetic operations.
addr ess +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F ASCI |
00001800 00 00 00 60 00 00 00 40 00 00 05 00 00 00 00 05
L@ ...

82

COMMAND_CHAIN

58 | COMMAND_CHAIN Executes commands from afile
CcC

Format

COMVAND _CHAI NA<fi | e nanme>[A["<actual paraneter>"],["<act ual
paranmeter>"]...] (RET)

Parameters

« <file nanme>
Specifies the name of the command file.

« <actual paraneter>
Specifies a character string to replace dummy parameters.
To omit an actual parameter, skip its position by inserting an extracomma.

Function
This command reads commands from afile and executes them in sequence.

Dummy arguments can be specified within a command file to be replaced with the “actual
parameters’ specified in the COMMAND_CHAIN command.

There are 10 dummy parameters, ¥0 to ¥9.

Use the strings ¥¥0 to ¥¥9 to represent ¥0 to ¥9 within character stings, or as character stringsin
option command lines of the BREAK, BREAK_ACCESS, or BREAK_DATA commands.

Dummy parameters for which no actual parameters are specified are replaced with NULL.
Notes

1. Toinclude adouble quotation mark in a character string, insert two double quotation marksin
sequence.

2. Command chain files can be nested up to 8 levels.

3. Redirection cannot be specified.

83

COMMAND_CHAIN

Examples
1. To execute the commands in the auto.com command file in sequence:

CC aut 0. com (RET)

P out.l og Execution history is stored in out.log.

S 100 The debugging object program is executed for H'100 steps starting
at the current PC.

; END A comment line.

2. Tousedummy parameters:

a. Thefollowing command file uses dummy parameters.

RADI X ¥0 The first parameter (¥0) is used as the argument to the RADIX command.
MEMORY ¥1 100| The second parameter (¥1) is used asthe first argument to the MEMORY
aut ol . sbt command.

b. Thefollowing command executes the commands in the “autol.sbt” command file.

CC autol.sbht "D', "1000" (RET)

RX D The RADIX command is executed with D as the actual parameter.
M 1000 100 The MEMORY command is executed with 1000 as the actual
parameter.

84

COMPARE

59 | COMPARE Compares memory contents
CMP

Format

COWPAREA<st art addr ess>A{<end addr ess>| @byt e count >}
A<conparison nenory start address> (RET)

Parameters

e <start address>A{<end address>| @byte count >}
Specifies the range of memory (the source data) to be compared.

e <conparison nmenory start address>
Specifies the start of the comparison data memory area.

Function

Compares the specified range of memory (the source data) with the comparison datain byte units.
When data that does not match is found, those data items and their addresses are displayed.
Example

To compare the H'500 bytes of data starting at address H'1000 with the H'500 bytes of data starting
at address H'2000, and to display the addresses and values of the source data and compared data
when data which does not match is found:

CvP 1000 @00 2000 (RET)
source data conpared data
00001005 3F 00002005 42

000014FE 00 000024FE 80

85

CONVERT

510 | CONVERT Calculates expression
CcVv

Format

CONVERTA<expr essi on> (RET)

Parameter

<expressi on>
Specifies an integer expression for conversion.

Function

The value of the expression is displayed in binary, octal, decimal, and hexadecimal and as ASCI|
characters.

Example

To display the result of evaluating the expression “3* 5" in binary, octal, decimal, and hexadecimal
and as ASCII characters:

B

"2 T QAQ

Cv 3*5 (RET)

00000000 00000000 00000000 00001111
00000000017

15

0000000F

Note

If

asymbol is specified in an expression, the symbol addressiis displayed.

86

COVERAGE

511 | COVERAGE Starts and stops cover age measurement
cov
Format
Start: COVERAGE[A<fi |l e nane>] (RET)

Restart/temporary halt/initialization: COVERAGE ; {E| Dl R} (RET)
Termination: COVERAGE-[; NI (RET)
Parameters

« <file nanme>
Specifies the file to hold coverage data.
The file "temp.cov" is used as default when the a file name is omitted.
When the file extension is omitted, ".cov" is supplied as defauilt.

» Options

— Restart and temporary halt coverage measurement { E| D}
E (enable): Restarts coverage measurement.
D (disable): Temporarily halts coverage measurement.

— Coverage datainitialization specification R

R (reset): Initializes coverage data.
— Coverage data storage specification N
N (not save): Coverage measurement is terminated without saving the acquired data to
afile.
Function

Starts, temporarily stops, restarts, and terminates coverage measurement data acquisition.
Description

Start: Starts the acquisition of coverage data.
Previously acquired coverage datais|ost.
The addresses of instructions executed by a CALL, GO, STER,
STEP_INTO, or VECTOR command following the input of this
command are saved as coverage data.

87

COVERAGE

If the specified file exists, the information in that fileisread in, thus
resetting the address range.

If the file name is omitted, the current coverage range setting is
displayed, and acquisition of coverage data begins.

Restart/temporary halt/ Dataacquisition is restarted, temporarily halted, or re-initialized with
initialization: no change in other settings.

Termination: Acquisition of coverage datais terminated, and the acquired datais
output to thefile.
Specify the N option to terminate coverage data acquisition without
saving the datato afile.

Notes
1. Usethe SET_COVERAGE command to confirm the setting state.

2. The coverage calculation involves disassembling the program to count instructions. Asa
result, correct values cannot be computed for programs which include data within their code
areas.

Examples

1. To start the acquisition of coverage data:

: GOV (RET)

coverage area
00001000 - OOO0O012FF
00001800 - OOOO1FFF

88

COVERAGE

To load a coverage file and start the acquisition of coverage data:

COV testl.cov (RET)
object file nane = test. abs
coverage area

00001000 - OO00012FF

00001800 - OOOO1FFF

To initialize coverage measurement:

COV : R (RET)

To terminate cover age measurement:

. COV- (RET)

89

DATA_SEARCH

5.12 | DATA_SEARCH Searchesfor data
DS

Format

DATA SEARCHA<st art address>A{<end address>| @byte count>}A
{<search string>| <search data>[:<size>][A<mask>]}[;[S=<byte
count>] [A{EQ NE}]] (RET)

Parameters

e <start address>A{<end address>| @byte count >}
Specifies the range of the addresses to be searched.

e {<search string>| <search data>[:<size>][A<mask>]}
Specifies the string or data to be searched for.

+ <size>
B (byte): Searchesfor byte sized data.
W(word): Searches for word sized data (default).
L (long): Searchesfor long-word sized data.

* <nmask>
Only bits which correspond to 1 bitsin the mask are tested.
The size of the mask data depends on the size of the search data.

e Options

— Search step width
S=<byt e count> : Specifiesthe search step width in byte units.
The default search step width isthe size of the data.

— Datamatch/differ { EQ NE}
EQ (equal): Searches for data that matches the search data (default).
NE (not equal): Searchesfor datathat differs from the search data.

90

DATA_SEARCH

Function

This command searches for the specified data in the specified memory range.
When the EQ option is specified, the addresses of data which match are displayed.
When the NE option is specified, the addresses of data which differ are displayed.

When the search step width is specified with the S (step) option, the command searches for data
only at addresses separated by the step width starting at the start address.

Example
To search for the value 005E from address H'1000 to address H'14FF:

DS 1000 14FF 5E (RET)
addr ess
00001004
00001100
000011A8

91

DEBUG_LEVEL

513 | DEBUG_LEVEL

Specifies debug level

DL

Format

Specification: DEBUG LEVEL [;] {S|I| N (RET)

Display: DEBUG LEVEL (RET)

Parameter

e Option

— Specification of the units for source line display and of the step count for the step
execution command. { S| | | N}

Option

Source Line Display S and SI Command Step Units

S (Source display, source
line step)

C source only Line units

I (Instruction and source
display, instruction step)

Both C source and machine Machine language instruction units
language

N (No source display,
instruction step)

Machine language only

Function

This command specifies whether high-level language debugging is performed or not.

There are three aspects to high-level language debugging as listed bel ow.

1. Sourcelinedisplay

The display consists of the source program corresponding to the results of command

execution.

The following commands display the source program in their execution results.

* Thedisassembly command (DA)
» Thetrace buffer display command (T)
» The debugging object program execution commands (G, S, Sl, V)

92

DEBUG_LEVEL

2. Step execution units
This specification determines whether or not the step execution commands (S and Sl) take the
C source line as the step.

3. BREAK stop address
This command also specifies whether the simulator/debugger stops on source line units or
machine instruction units when a break condition specified by a BREAK_ACCESS,
BREAK_DATA, or BREAK_REGISTER is detected.

Description

Specification: Sets the source program display and step execution unit.

» Soption: Only C source lines are displayed, and step execution stepsin
source line units. (Start-up setting)

e loption: Both C source lines and machine language are displayed, and step
execution steps in machine language units.

* Noption: Only machine language is displayed, and step execution stepsin
machine language units. (Assembly source programs are
displayed in the same way while the | option is specified.)

Display: Displays the current setting state.
Note

The Sand | options cannot be specified for files without debugging information.

93

DEBUG_LEVEL

Examples
1. Todisplay the setting state:

. DL (RET)
Source/lnstruction/Not display = S

2. To set the step unit for the STEP and STEP_INTO commands to machine language instruction
units:;

DL ;| RET
: S 10 (RET)
% il enane. c#100 a=->b+
00000556 MOV. L R1
00000558 MOV. L R3

1,
, RO
R2

% il enane. c#101 printf("sinulator debugger¥n");
MOV. L R5, R3

94

DISASSEMBLE

5.14 | DISASSEMBLE Disassembles and displays memory contents
DA

Format

DI SASSEMBLEA<st art address>[A{ @i nstruction count>| <end address>}
(RET)

Parameters

<start address>
Specifies the address from which to start disassembly of memory contents.

<instruction count>
Specifies the number of instructions to disassemble.

<end address>
Specifies the address at which disassembly is terminated.

Function

This command disassembles and displays the contents of memory in the range specified by the
start address and the end address or instruction count parameters.

Description

1

When the end address or instruction count parameter is omitted, 16 lines from the start address
are disassembl ed.

The hexadecimal representation for the two bytes of datais displayed when aniillegal
instruction is encountered.

Thefirst address of the instruction, the instruction mnemonic, the operands, and the symbol
are displayed.

Note that the address corresponding to a symbol displayed as alabel is the address of the
instruction displayed on the line following the symbol.

After thiscommand is executed, pressing the RETURN key again disassembles and displays
the next 16 lines until other commands are entered.

95

DISASSEMBLE

5. Whenthe SPis specified as aregister in PC-relative or register-indirect-with-displacement
addressing mode, the displacement value will be converted to the corresponding automatic
variable symbol and the conversion results will be displayed.

Note

Since the DISASSEMBL E command does not recognize delay branch instructions correctly,
symbol conversion may not be performed correctly.

Examples

1. To disassemble and display from addresses H'400 to H'406. In the output below,
“%sample.src! SECT1” isa symbol which corresponds to address H'404:

DA 400 406 (RET)

00000400 MOV. W @12,PC), RO

00000402 MOV. W @1, RO
%sanpl e. src! SECT1:

00000404 MOV. L #00000012, R3

00000406 ADD. L R2, R1

2. Todisassemble and display the four instructions starting at address H'400:

DA 400 @ (RET)

00000400 MOV. W @12,PCO, RO

00000404 MOV. W @R1, RO
%sanpl e. src! SECT1:

00000408 MOV. L #00000012, R3

0000040A ADD. L R2, R1

96

DISPLAY_CHARACTERS

515 | DISPLAY_CHARACTERS

DCH

Displays character string

Format

DI SPLAY_CHARACTERS " <character string>" (RET)

Par ameter

* <character string>

Specifies an arbitrary character string.

Function

Displays the specified character string on the screen.

This command can be used to display messages, for example, with the STUB command.

Examples

1. Todisplay "SIMULATOR" on the screen:

DCH "SI MULATOR' (RET)
SI MULATOR

2. Toinsert the DISPLAY CHARACTERS command in a STUB command sequence so that it
displaysits argument during simulation:

SB 10 { (RET)

STUB > DCH "PASS 10" (RET)

STUB > } (RET)
: G 8 (RET

PASS 10 The DCH command is executed when the instruction at address H'10 is executed.

97

DISPLAY_COVERAGE

5.16 | DISPLAY_COVERAGE Displays cover age data
DCV

Format

DI SPLAY COVERAGE [~ <first address>["{<end address>| @source |ine
count >| @i nstruction count>}]] [;{T| G D NO| N1}] (RET)

Parameters

. <first address>"{<end address>| @source |ine count>|
@i nstruction count >}
Specifies the range of coverage data to be displayed.

* Options
Display format specification { T| G D] NO| N1}
T (total): Specifies display of both CO and C1 coverage values.
G(generd): Specifies display of the resultsin source line units. (default)
D (detail): Specifies display of the resultsin machine instruction units.

NO, NI (not executed): Specifiesdisplay of addresses that were not executed.
Function
Displays CO and C1 coverage data.

WhentheT option is specified
Only coverage values are displayed.
If only the option is specified, (i.e., if the range specification is omitted) then the whole
coverage range is taken as the object of the coverage values.

* Whenthe G option is specified
The coverage results are displayed in source line units.
When the range specification is omitted, display continues from the previous use of the
command.
When the end address or source line count specification is omitted, 16 lines are displayed.

* When the D option is specified
The coverage results are displayed in machine instruction units.
When the range specification is omitted, display continues from the previous use of the
command.
When the end address or source line count specification is omitted, 16 lines are displayed.

98

DISPLAY_COVERAGE

WhentheNO or N1 option is specified
The addresses of unexecuted instructions are displayed.
Line numbers will be displayed if line number information is available.
NO specifies the addresses not executed under CO coverage, and N1 specifies the branches not
taken under C1 coverage.

Description

After the DISPLAY _COVERAGE command has been executed once, pressing (RET) again will
show the next 16 lines of coverage information until another command is entered.

Examples
1. Todisplay the coverage data with specifying the T option:

DCV 0 @0 ;T (RET)
C : 87.5%
Cl : 50.0%

2. Todisplay the coverage data with specifying the G option:

DCV 0 @0 ; G (RET) (ThisexampleisaC program.)
Y%sanpl e. c# 4 > for(i=0; i<20; ++i)

Ysanpl e. c# 6 . printf("Nunmber is %", nunber[i]);

* CO coverageisdisplayed.
» The objects of display are C and assembler source programs.
* Anindicator mark isinserted in column 1.
e Indicator interpretations:
* (asterisk) — This address was accessed and executed.
. (period) — Thisaddresswas not executed.
“ (space) — No machineinstruction was generated for thisline.

99

DISPLAY_COVERAGE

To display the coverage data with specifying the D option:

DCV 0 ;D (RET)

* 00000000 ADD. L #FFFFFFFC, R15
Y%sanpl e. c# 4 for(i=0; i<20; ++i)

* 00000002 MOV. L #00000000, R3
* 00000004 MOV. L R3, @15

* 00000006 BRA 00000010

* 00000008 NOP

* 0000000A MOV. L @R15, R2

* . 0000000C ADD. L #00000001, R2
* 0000000E MOV. L R2, @rR15

* 00000010 MOV. L @R15, R3

* 00000012 MOV. L #00000014, R2
* 00000014 CWP/ CE. L R2, R3

T 00000016 BF 0000040A

e The disassembled source program corresponding machine code are displayed.
e COand C1 aredisplayed.
* Anindicator mark isinserted to the left of the disassembled machine code.
» Indicator interpretations:
* (asterisk) — Accessed and executed.

T — Thetrue branch was taken.

F — The false branch was taken.

TF — Both branches have been taken.
. (period) — Not executed.

100

DISPLAY_COVERAGE

4. To display the coverage option with specifying the N option:

DCV 0 ;N1 (RET)
. F 0000002C %rai n#009

(Thisexampleis coverage data for a C program.)
* Therearetwo N options, NO and N1. NO displays the line numbers for addresses not
executed under CO, and N1 displays the line numbers for addresses not executed under C1.
* Anindicator mark isinserted at column 1 for the C1 display.
» Indicator interpretations:
T. — Thetrue branch was taken.
. F — Thefalse branch was taken.
— Not executed.

101

DUMP

517 | DUMP Displays memory contents

Format

DUVP <start address>[" {<end address>| @item count >}]
[;{BIWL|SID}] (RET)

Parameters

e <start address>[{<end address>| @item count >}]
Specifies the range of memory to be displayed.

e Options
— Datasize{ B| WL| S| D}
B (byte): Byte data (default).
w (word): Word data.
L (long): Long-word data.

S (single precision): Single-precision floating point data.
D (double precision): Double-precision floating point data.

Function

This command displays, in the specified format, the block of data from the start address to the end
address, or for the specified number of dataitems.

If the end address is omitted, 16 lines are displayed starting at the first address.

After executing the DUMP command once, the next 16 lines of data can be displayed by just
pressing (RET) before entering any other command.

102

DUMP

Examples
1. Todisplay the memory contentsin byte units starting at address H'1000:

: D 1000 : B (RET)
addr ess +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F ASCI |
00001000 FF 00 FF 00 FF 00 FF 00 FF 00 FF 00 FF 00 FF 00

00001070 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 ABCDEFGH JKLMNOP

2. Todisplay two items of single precision floating point data starting at address H'2000:

D 2000 @ ;S (RET
addr ess +0 +1 +2 +3
00002000 49 96 B4 38 1.234567S+6
00002004 3F 80 00 00 1.0S+0

103

EXEC_MODE

5.18 | EXEC_MODE Switches execution mode
EM
For mat
Set: EXEC_MODE ; {S| C (RET)
Display: EXEC_MODE (RET)
Parameter
e Options

Execution mode specifier { S| C}

S (stop) In this mode execution is stopped when the simulator/debugger detects an
abnormality (ssimulation error) in the debugging object program.

C (continue): In this mode simulation errors are ignored and execution continues when the
simulator/debugger detects an abnormality (simulation error) in the debugging
object program.

The simulator/debugger execution mode is set to S when first invoked.

Function

This command selects whether execution will continue or stop when an abnormality is detected
during debugging object program execution.

When the execution mode specifier is omitted, the current setting of the execution mode is
displayed.

Refer to section 2.11 (2), Break due to detection of an execution time error in the debugging object
program, for more information on abnormalities occurring while executing the debugging object
program.

Description

Set: Stop mode is recommended for the early stages of debugging, with continue mode
being useful in the later stages.

Display: “STOP” isdisplayed in stop mode, and “CONTINUE" in continue mode.

104

EXEC_MODE

Examples
1. To set the execution mode to continue mode;

EM;C (RET)

2. Todisplay the current execution mode;

. EM (RET
EXEC_MODE = CONTI NUE

105

FILL

519 | FILL Initializes memory area
F
For mat
Fill“<start address>"{<end address>| @data item count >}

"<initialization data>[:<size>] (RET)

Parameters

<start address>"{<end address>| @data item count >}
Specifies the range of addresses to be initialized.

<initialization data>
Specifies the data value to be stored.

<si ze> {B| WL}

B (byte): Initidizationis performed in byte units.
W(word): Initialization is performed in word units. (default)
L (long): Initialization is performed in long word units.

When the size specification is omitted, word is used as the default unless the start address was
specified with ahigh level language variable. In that case, the size will be the size of that
variable.

Function

Theinitiaization datais stored in the specified memory range.

Example

To clear addresses H'1000 to H'1FFF to zero:

F 1000 1FFF 0 (RET)

106

GO

520 | GO Executesinstructions continuously

Format
GO [“[<start address>][,[<break address>]][;D]] (RET)
Parameters

» <start address>
Specifies the address from which program execution starts.
When omitted, execution starts from the address specified by the current value of the program
counter.

 <break address>
Specifies the address at which to stop program execution.

e Options
— Break disable D
D (disable breaks): Breakpoints specified with the break commands are temporarily
disabled.
Function

This command executes the debugging object program continuously starting at the specified start
address.

The break address, break instruction execution cycle count, and break disable option specifications
are temporary disabled during GO command execution but are enabled again when execution
stops.

Description

1. Execution isinterrupted when either a condition set by a break command is satisfied, or when
an error occurs.
However, if the D option is specified, execution is not interrupted on the satisfaction of a break
condition.

107

GO

2. When execution is interrupted, the instruction execution count (in decimal), the current
register values, a disassembled display of the last instruction executed, and a confirmation
message are displayed.

3. If the E option has been specified with the TRACE_CONDITION command, the execution
history iswritten to the trace buffer.

Notes

1. If abreak addressis specified at a point that is not the start address of an instruction, the
break will not be detected.

2. |If abreak addressis specified at an instruction following a delayed branch instruction,
execution stops at the start address of the delayed branch instruction.

Examples

1. To execute the debugging object program continuously while temporarily ignoring the

currently specified break conditions:

G ;D RET
Exec Instructions = 159
PC=00000402 SR=00000000; *****x*kxkkxkskxkkxkkxkk____ .. **.. SP=05000000

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000

RO-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 05000000
00000400 SLEEP

SLEEP

108

GO

To execute the debugging object program from address H'1000 to address H'1020:

G 1000, 1020 (RET)
Exec Instructions = 30
PC=00001020 SR=00000000; ******xkxkkkkkkkkkkkhk______ **.. SP=05000000
GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000
RO-7 00000000 OOOOFFFF 00000000 00000000 01000000 00000000 00000000 00000000
R8- 15 00000000 00000000 00000010 00000000 OOOOFFFF 00000000 00000000 05000000
0000101E MOV. L RO, @4
BREAK PO NT

109

HELP

521

HELP

HE

Displays command name and input for mat

Format

HELP [~ <command nane>] (RET)

Parameter

e <command nane>

Specifies the name of the command for which the help message is to be displayed.

Function

Displays the help message for the specified command.

Description

e When acommand name is specified, the help message for the specified command is
displayed.

e When the command name is omitted, a table of commands s displayed.

110

HELP

Examples

1. Todisplay atable of commands:

: HE (RET)

Assenbl e Break_Regi st er Break_Access Br eak_Dat a Br eak
Br eak_Sequence CAl | Command_Chai n CoMPar e ConVert
COVer age Dat a_Sear ch Debug_Level Di sAssenbl e

Di spl ay_CHaracters

Di spl ay_CoVer age Dunp Exec_Mode Fill Go

HEl p Load Load_St at us MAcr o MaP
Menory MoVe Print Quit Radi X
Regi ster Re Set SaVe Save_Status SCoPe
Set - CoVer age SHow_Cal | s Step Step_Into StuB
SYnbol Trace Trace_Condi ti on Trap_Address TYpe
Vect or .<register> !

2. Todisplay the syntax of the HEL P command:

HE HELP (RET)
HE| HELP [command- nane]

111

LOAD

522 | LOAD L oadsfile

For mat
LOAD <file nane>["[<load address>][;[{OD A MI[,U]1] (RET)
Parameters

« <file name>
Specifies the name of the file to be loaded.
When the file format is omitted from the file name, ".abs" is supplied for debugging object
programs and ".dat" is supplied for memory image files.

» <l oad address>
Specifies the address to which thefile is |oaded.
If aload position is specified for an absolute load module, the specification will be ignored.
When omitted, relocatable load modules will be loaded at H'400. Absolute load modules will
be loaded at their load address. Memory image files are loaded starting at address H'0.

e Options

— Fileformat specifier { OD| O M
OD (object and debug information): Both the machine language and the debugging
information are loaded. (default)
O (object): Only the machine language is loaded.
M(memory imagefile): A memory image file is |oaded.

— Undefined symbol allocation U
U (undefined): Addresses are alocated for undefined symboals.

Function

This command loads debugging object programs and memory image files, including files created
with the SAVE command.

When amemory imagefileisloaded, the load start and end addresses are displayed after |oading.

When the U option is specified, a4-byte areais allocated for each undefined symbol, and its
addressis used as the value of the symbol. These areas are allocated in the external bus space or
internal RAM area, and are displayed on the screen.

112

LOAD

Although the LOAD command allocates the required memory when loading a debugging object
program, memory is not allocated when loading a memory image file.

In addition, before loading a memory image file, memory must be allocated using the MAP
command.

Description

The figure below shows the load map for a debugging object program and its undefined symbol
area.

Section 1
Internal ROM area

Unused

Section 2

External bus space
Undefined symbol area
(See note)

Note: The address of the area allocated will be filled with the number of undefined symbols.

Theinitia settings following the loading of a debugging object program are as follows:

Memory aress.......... The debugging object program areas and an undefined symbol area are
allocated.

Coverageccoovevenee. The coverage areas are automatically set to be the code sections. The
maximum number of areasis 16.

PC .o If an entry address was specified in the debugging object program, the PC is

set to that address. Otherwise, the PC is set to the start address of the code
segment that appeared first.
SPee The SPis set to the last address of the internal RAM area + 1.

No other registers or flags are set.

113

LOAD

Notes
1. Beforeloading amemory image file, memory must be all ocated using the MAP command.

2. Theinformation loaded by the LOAD_STATUS command differs from that loaded by the
LOAD command.

Examples
1. Toload “testl.abs’ asthe debugging object program:

L testl. abs (RET)

2. Toload “test2.dat” as a memory imagefile, starting at address H'3000:

L test2.dat 3000 ; M (RET)
<START> <END>
00003000 - OOO0030FF

114

LOAD_STATUS

523 | LOAD_STATUS Restores simulator/debugger memory and register
LS State

Format
LOAD STATUS [“<fil e nane>] (RET)
Parameter

« <file nanme>
Specifies the name of afile that was used to save the simulator/debugger memory and register
state.
If the file name is omitted, the file "sdsh.sav" is assumed.
If thefile format is omitted, ".sav" is supplied.

Function

The states of memory and the registers are restored to the point when the corresponding
SAVE_STATUS command was executed.

Notes

1. If the memory map differs from that at the point the SAVE_STATUS command was executed,
the memory and register state is not restored.

2. Filessaved by specifying the A option with the SAVE_STATUS command must be loaded at
simulator/debugger startup time.

Example
To load the memory and register state saved in the file “testl.sav”:

LS testl. sav (RET)

115

MACRO

524 | MACRO Defines, displays, executes, and deletes
MA simulator/debugger command macros
Format
Definition: MACRO <nacr o nane>{ (RET)
Display: MACR(Q ~ <nmacr o nane>] (RET)
Execution: <macro name> [~ ["<actual paraneter>"],["<actual
paraneter>"]...] (RET)
Deletion: MACRO [~ <macro nane>] (RET)
Parameters

<maecr o name>

Specifies the name of the macro.

A macro name must be an a phanumeric string starting with an alphabetic character.

A macro name must be 32 or fewer charactersin length.

Note that upper and lower case characters are not distinguished.

Since the following symbols are used as macro internal functions, they may not be specified as
Mmacro names.

— WHILE

— FOR

— DO

— IF

— ELSE

— MBREAK
— CONTINUE

Also note that if a simulator/debugger command name is redefined as a macro, the macro
usage will take precedence.

<actual paraneter>

Specifies the parameters passed to the macro.

To omit an actual parameter, specify both the comma delimiting the previous actual parameter
and a commato correspond to the omitted parameter.

Omitted actual parameters are replaced by ‘NULL’ during macro expansion.

116

Function

Definition:

Display:

Execution:

MACRO

Defines a macro command.

Up to 64 macro commands can be defined.

However, since the area used for storing the macro definitionsis limited, there are
cases when a full 64 macros cannot be defined.

When the command line “MACROA<macro name>{ (RET)” is entered, the
simulator/debugger displays a prompt (“0001>") indicating macro definition in
progress, and waits for input of the macro body.

The macro body can include multiple simulator/debugger commands, macro
commands, and macro internal commands.

Furthermore, %0 to %9 can be used as dummy arguments inside a macro body.
The dummy arguments are replaced with the actual parameters specified when the
macro is called.

Use the strings %%00 to %%9 to represent %0 to %9 in character stings, or in
command line option character stringsin BREAK, BREAK_ACCESS,
BREAK_DATA, BREAK_REGISTER, or BREAK_SEQUENCE command lines.
Note that no command line syntax checking is performed during macro definition.
Error checking is performed during macro command execution.

Macro command definition is terminated by entering “} (RET)” at nesting depth O.

The definition state of the specified macro command is displayed.

If the macro name is omitted, all the currently defined macro names are displayed.
When a macro name is specified, the macro body (i.e., the contents of the macro
definition) of the specified macro command is displayed.

The specified macro command is executed.

Processing is terminated if an error occurs in the macro command or if the user
performs a manual break with (CTRL) + (C).

Although a macro command with the same name as a simulator/debugger command
takes precedence over the simulator/debugger command, the simulator/debugger
command can be executed by preceding the name with a caret (""").

Macro commands are executed with the dummy arguments in the macro body
replaced with the actual parameters specified in the macro call.

117

MACRO

Deletion: A previously defined macro is del eted.
If amacro name is specified, the macro command defined with that name is del eted.
If the macro name is omitted, all defined macro commands are del eted.
In this case a confirmation message will be displayed. Respond "Y" to delete all
macro commands or "N" to cancel the deletion.

Notes

1. Macro display, definition, and deletion, as well as execution of “!” commands, are not allowed
within macro bodies.

2. Re-direct cannot be specified for macro command execution.
Examples

1. To define amacro command:
MA | STEP { (RET)
0001 > - PAR = % (RET)

0002 > | F(*1000 == - PAR) { (RET) If the value of address H'1000 agrees with the
parameter,

0003 > Sl (RET) the STEP_INTO command will be executed.

0004 > }ELSE{ (RET) If they are not the same, the STEP command will be
0005 > S (RET) executed.

0006 > RET Termination of the IF internal macro command.

0007 > RET Termination of the macro command definition.

2. Todisplay the ISTEP macro command:
MA | STEP (RET)
| STEP {

-PAR = %0

| F(*1000 == - PAR) {
Sl

} ELSE{
S

}

}

118

3.

4.

MACRO

To execute the | STEP macro command:

| STEP "10" (RET) Thevalue “10" is passed as the parameter.
STEP

To delete the ISTEP macro command:

MA- | STEP (RET)

Macro Internal Variables

Format

-<vari abl e nanme>

Description

1. Variables can be used within macro commands.

2. Thefirst character must be "¥", the second character must be alphabetic, and the remaining
characters must be alphanumeric.

3. Thevariable name, including the "¥", must be at least 2 characters and no more than 32
charactersin length.

4. Variablesrepresent 32-bit unsigned quantities.

5. Since macro variables are inherited when a macro cal is nested inside a macro definition,
variables of the same name within both macros are treated as the same variable, i.e., asa
global variable.

6. Variables can be assigned values using the assignment operator.

The assignment operator is an operator that can only be used inside a macro body, and has the
following syntax.

<vari abl e>=<expr essi on>

119

MACRO

The names and usage of pre-defined macro internal variables are described below.
These variables are reference-only variables, and thus their values cannot be changed by the user.

- SI MBTAT : Indicates the simulator stop factor.
When one of the bits shown in figure 5-2 is 1, the simulator/debugger has stopped
for the corresponding reason, and when abit is 0, that factor is not the cause of the
stop.

31
BREAK or BREAK_SEQUENCE

BREAK_ ACCESS, BREAK_DATA,
or BREAK_REGISTER
Error
STEP normal end
Trace buffer

Figure5-2 Macro Internal Variable ¥SIMSTAT

120

MACRO

Macro Internal Commands
(1) WHILE
Format

VWHI LE (<expression>){
<macro body>

}

Parameters

e <expression>
The <expression> parameter expresses the condition for macro body execution or iteration.

* <nacro body>
The <macro body> parameter expresses the sequence of commands or macro interna
commands to be executed while the condition is true.

Function

The <expression> is evaluated, and if its value is any value other than zero the macro body is
executed.

The macro body isiterated until <expression> evaluatesto zero.
If the value of <expression> iszero initially, the macro body is not executed even once.

Multiple simulator/debugger commands, macro commands, or macro internal commands can be
included in the macro body.

Example

To display the fifth to tenth elementsin array ABC:
-NUM = 5
VHI LE(- NUM <= 10) {

TYPE ABC] - NUM 1]
“NUM = - NUM + 1

121

MACRO

(2) FOR
Format

FOR ([<expression 1>];[<expression 2>];[<expression 3>]) {
<macr o body>

}

Parameters

e <expression 1>
The parameter <expression 1> is evaluated prior to testing the <macro body> execution
condition.

e <expression 2>
The parameter <expression 2> expresses the <macro body> execution or iteration condition.

e <expression 3>
The parameter <expression 3> is evaluated after <macro body> execution.

e <nacro body>
The <macro body> parameter expresses the sequence of commands or macro internal
commands to be executed when the condition is true.

Function

The FOR loop executes <expression 1> and then evaluates <expression 2>. If that |atter value was
any value other than zero, the FOR loop executes the <macro body> and then <expression 3>.

The <macro body> and <expression 3> areiterated until <expression 2> evaluates to zero.
If the value of <expression 2> is zero initially, the <macro body> is not executed even once.

Multiple simulator/debugger commands, macro commands, or macro internal commands can be
included in the <macro body>.

122

MACRO

Examples
1. Todisplay thefifth to tenth elementsin array ABC:

FOR(-NUM = 5; -NUM <= 10; -NUM = - NUMF1) {
TYPE ABC[- NUM 1]
}

2. Tooperateidentically to theloop in example (1):

-NUM = 5
FOR(; - NUM <= 10;) {
TYPE ABC[- NUM 1]

- NUM = - NUM+1
}
(3) DO/WHILE
Format
DO {

<macro body>
} WH LE <expression>

Parameters

e <expression>
The <expression> parameter expresses the <macro body> iteration condition.

e <nacro body>
The <macro body> parameter expresses the sequence of commands or macro internal
commands to be executed when the condition is true.

Function

The DO/WHILE loop first executes the macro body and then evaluates the <expression>. If that
valueisany value other than zero, the macro body is executed again.

123

MACRO

The macro body isiterated until the <expression> evaluates to zero.
If the value of <expression> is zero initially, the macro body is executed exactly once.

Multiple simulator/debugger commands or macro internal commands can be included in the
<macro body>.

Examples
To display the fifth to tenth elementsin array ABC:

“NUM = 5

DO {
TYPE ABC - NUM 1]
“NUM = - NUML

} W LE(- NUM <= 10)

4 IF
Format

| F (<expression>) {
<macro body 1>
[} ELSE {
<macro body 2>]

}

Parameters

e <expression>
The <expression> parameter expresses the condition for execution of <macro body 1>
selectively.

e <nacro body 1>
The <macro body 1> parameter expresses the sequence of commands or macro internal
commands to be executed when the condition is true.

124

MACRO

e <nacro body 2>
The <macro body 2> parameter expresses the sequence of commands or macro internal
commands to be executed when the condition is false.

Function

The <expression> is evaluated, and if its value is any value other than zero, the <macro body 1> is
executed.

When the value is zero, if the optional EL SE clause is present, <macro body 2> will be executed,
otherwise nothing is executed.

Multiple simulator/debugger commands or macro internal commands can be included in <macro
body 1> and <macro body 2>.

Examples
1. Todisplay the value of address H'2000 if its value is any value other than zero:

| F(*2000 != 0) {
D 2000
}

2. Todisplay the value of address H'2000 if its value is any value other than zero, and if its value
is zero, to display the value of address H'2100:

| F(*2000 !'= 0) {
D 2000

} ELSE{
D 2100

}

125

MACRO

(5) MBREAK
Format
VBREAK
Function

When an MBREAK command is executed, the enclosing WHILE, FOR, or DO/WHILE loop is
interrupted, and control exits one level of iteration nesting.

Notes
The MBREAK command can only be used inside a WHILE, FOR, or DO/WHILE loop.
Example

To display the values of addresses H'1000 to H'2000, and to terminate the display if the value zero
is encountered:

FOR(- ADDR = 1000; -ADDR <= 2000; -ADDR = - ADDR+2) {
D - ADDR
| F(*- ADDR == 0){
MBREAK
}
}

126

MACRO

(6) CONTINUE
Format

CONTI NUE
Function

When a CONTINUE command is executed, execution of the enclosing WHILE, FOR, or
DO/WHILE loop isinterrupted, and control proceeds to evaluation of the <expression> for a
WHILE or DO/WHILE loop, or to the evaluation of <expression 3> for a FOR loop.

Note
The CONTINUE command can only be used inside a WHILE, FOR, or DO/WHILE loop.
Example

To display the values of addresses H'1000 to H'2000, jumping over (i.e. ignoring) addresses whose
valueis zero:

FOR(- ADDR = 1000; -ADDR <= 2000; -ADDR = - ADDR+1) {
| F(*- ADDR == 0) {
CONTI NUE

}
D - ADDR

127

MAP

525 | MAP Defines, displays, modifies, and deletes memory
MP areas
For mat
Set: MAP” <start address> { @&byte count>| <end address>}
[{RIWRW] (RET)
Display: MAP [; M (RET)

Modification: MAP <start address> [;{R WRW] (RET)
Deletion: MAP-[“ <start address>] (RET)
Parameters

» <start address>
Specifies the address of the start address in the memory area.

e <byte count>
Specifies the number of bytes in the memory area.

* <end address>
Specifies the address of the end address in the memory area.

e Option
— Accesstype{ Rl W RW
R (read): Specifies the memory areato be read-only.
W(write): Specifies the memory areato be write-only.

RW(read/write): Specifies the memory areato be read/write.

When omitted, the accesstypeis set as follows.
/A Internal ROM area (only when defining amemory area): R
/E All other cases: RW

— CPU information memory map display: M

M(mapy): Specifies display of the memory map information from the CPU
information file.

128

Function

MAP

This command defines (sets) the memory areato be used by the object program, displays the state,
and changes the access type for the memory areas used by the debugging object program.

Description

Set:

Display:

Modification:

Deletion:

This command is used to allocate memory areas other than those allocated when
the debugging object program was loaded.
Up to 20 memory areas can be allocated with the MAP command.

Displays the start address, end address, access type, and section names of the
allocated memory aress.

When the“;M” option is specified, the CPU information file memory map is
displayed.

The memory map information is displayed in the following format.

<KI ND> <START> <END> <STATE> <BUS>

1 2 3 4 5
1 Memory type: Indicates the memory type with a keyword.
* ROM: Internal ROM area
e 1/C: Internal I/O area

* NOT_A: Unused area
 EXT: External bus space
* RAM: Internal RAM area

2 Start address: The address of the start address in the memory specified
by the memory classifier.

3 Last address: The address of the last address in the memory specified
by the memory classifier.

4 State count: The number of memory access states.

5 Buswidth: The width of the memory data bus.

Thisform of the command allows the access type of an already allocated memory
area to be changed by specifying its start address.

This form of the command allows an already allocated memory areato be deleted
by specifying its start address.

129

MAP

Notes

1. Always confirm the address of the start address in the memory area with the MAP command
before changing the access type.

2. Anerror occursif an attempt is made to use the MAP command to allocate a memory area
that is aready allocated.

3. Anerror occursif an attempt is made to use the MAP command to allocate a memory area
that includes any part of the invalid area.

4. Itisnot possible to allocate amemory areathat covers multiple memory areas, including the
internal ROM area, the external bus space, the internal RAM area, and the internal 1/0 space.

5. Areas other than those allocated with the MAP command cannot be deleted with the MAP
command.

6. Areas specified by the MAP command cannot be initialized.
Examples
1. To alocate addresses H'3000 to H'301F as a read-only memory area:

MP 3000 301F ;R (RET)

2. Toallocate a’50 byte area starting at address H'4000 as a write-only memory area:

MP 4000 @0 ; W (RET)

3. To change the access type for memory area alocated from address H'0 to address H'03FF to
write-only:

MP 0 ; W (RET)

130

MAP

4. Todisplay the current memory allocation state:

. MP_(RET
<START>
00000000
00002000
00003000
00004000
00004050

<END>

000003FF
000020EF
0000301F
0000404F
0000504F

<ATTR> <SECT_NAME>
W
RwW SECT1
R
W
RwW

5. Itisnot possible to allocate an area that includes an already allocated memory area:

MP 2000 2FFF (RET)

VEMORY AREA ALREADY EXI STS

6. The accesstype of amemory areathat has not been allocated cannot be changed:

MP 1050 ; R (RET)

I NVALI D ADDRESS

131

MAP

It is not possible to allocate a single memory are that covers multiple memory areas. For
example, when the area from H'0 to H'3FFF is the internal ROM area and the external bus area
starts at H'4000, the following command generates an error as shown:

: MP_3F00 40FF (RET)
ADDRESS EXCEEDS MEMORY SPACE BOUNDARY

In this case, this area must be allocated as two separate areas as shown below.

MP 3F00 3FFF (RET)
MP 4000 40FF (RET)

To display the memory map from the CPU information file:

: MP ;M (RET)

<KI ND> <START> <END> <STATE> <BUS>
EXT 00000000 - OOFFFFFF 3 8
EXT 01000000 - O4FFFFFF 2 8
/0 05000000 - O5FFFFFF 3 8
EXT 06000000 - O7FFFFFF 3 8
NOT_A 08000000 - OEFFFFFF
RAM 0OF000000 - OFFFFFFF 1 32

132

MEMORY

526 | MEMORY M odifies memory contents
M
Format
Modify: MEMORY” <start address>"{<data>[:size]|<real nunber>|

<character string>} (RET)

Interactive form: MEMORY” <start address>[;{B|WL| S| D}] (RET)

Parameters

<start address>
Specifies the start address to be modified.

<dat a>
Specifies the new value to be stored.

<si ze>

B (byte): Specifiesthat memory isto be modified in byte units.
W(word): Specifies that memory isto be modified in word units (default).
L (long): Specifiesthat memory isto be modified in long word units.

When the size specification is omitted, word units are used as the default unless the start
address was specified with a high level language variable. In that case, the size will be the
size of that variable.

<real nunber>
Specifies a floating point number.

<character string>
Specifies a character string.

Option

— Size specification{ B| W L| S| D}
B (byte): Specifies byte units.
W(word): Specifies word units (default).
L (long): Specifies long word units.

S (single precision): Specifies single precision floating point units.
D (double precision): Specifies double precision floating point units.

133

MEMORY

Function

Changes the contents of memory to an arbitrary value.

Examples

1. To change the contents of one byte of memory at address H'1000 to 3E:

M 1000 3E: B (RET)

2. Toinputininteractive form:
a. To modify memory interactively one byte at atime starting at address H'1000:

M 1000 ; B (RET)

00001000 3E_5F (RET)
00001001 FF (RET)

00001002 55 25 (RET)

00001005 CC . (RET

The following abbreviated commands can be used here, in addition to data specification:

(RET) only : The contents of the immediately following address are displayed.
n : The contents of the immediately preceding address are displayed.
. (period) : Terminates the command.

134

MEMORY

b. Tointeractively modify memory asingle precision floating point number at atime starting
at address H'2000:

M 2000 ;S (RET)
00002000 1.413991S-3 F -3.1415922S5+1 (RET)
00002004 1.234567S+5 . (RET)

135

MOVE

527 | MOVE Copies memory block
MV

Format

MOVE <start address>"{<end address>| @byte count>}"<transfer
destinati on address> (RET)

Parameters

e <start address>"{<end address>| @byte count >}
Specifies the range of addresses to be copied.

e <transfer destination address>
Specifies the address of the transfer destination.

Function

Copies the specified range of memory data to the specified transfer destination.

Note

The transfer destination area must have been allocated in advance with the MAP command.
Example

To copy the H'500 bytes of data starting at address H'1000 to the area starting at address H'2000:

MV 1000 @00 2000 (RET)

136

PRINT

528 | PRINT Creates execution history file
P
Format
Start: PRINT ["<file name>][";[A[C] (RET)

Temporary stop/restart: PRI NT ; {E| D} (RET)

Terminate: PRI NT- (RET)

Parameters

<file name>

Specifies the file name.

When the file name specification is omitted, the simulator/debugger creates afilein the
directory from which the simulator/debugger was started with the same name as the
debugging object program and the extension ".prt".

When the file extension is omitted, the extension ".prt" is supplied.

Options
— Append mode specification A
A (append): If afile name was specified, the execution history is appended to the
specified file.

When this option is omitted, the execution history is stored in the file
starting at the beginning of the file.

— Write data selection C
C(commands): When the C option is specified, only the input commands are written to
thefile.

— File output suspend/restart { E| D}
E (enable): File output is restarted.
D (disable): File output is temporarily stopped.

137

PRINT

Function

This command starts the output of a command execution history to afile.

When the C option is specified, only the input commands are saved to thefile.
Furthermore, the file output can be temporarily halted, restarted, and terminated.
Description

Start: Starts the output of an execution history to afile.
If the specified file exists, that file is deleted and anew fileis created.
If the A option is specified, the execution history is appended to the end
of the specified file.

Temporary stop/restart: File output is suspended when the D (disable) option is specified, and
restarted when the E (enable) option is specified.

Terminate: Execution history output is terminated.
Notes

1. The C (command) option only handles typed input, and commands executed from command
files are not output.

2. When an error occurs in command input or in single line 1/O processing, the input/output data
is not written to the output file.

3. Execution results from the “!” command (sub-process creation) are not written to the output
file.

138

PRINT

Examples

1.

To specify output of input command and displayed datato the file “samplel.prt”, and to start
output to that file:

P sanplel.prt (RET)

To specify output of only input command to the file “ sample2.prt”, and to start output to that
file:

P sanple2.prt ;C (RET)

To append an execution history to the file “samplel.prt”:

P sanplel.prt ;A (RET)

a. Totemporarily suspend execution history output:

P ;D (RET)

b. To resume execution history output:

P ; E (RET)

139

QUIT

529 | QUIT Exitsthe simulator/debugger

Format

QUI T (RET)

Function

Exits the simulator/debugger and returns to the OS.
Description

1. If an execution history fileis open, it will be closed.
2. If acommand fileis open, it will be closed.

3. If the COVERAGE command is being executed, the results up to the present will be written to
thefile and that file will be closed.

Note

If the coverage data could not be saved due to, e.g., insufficient disk space, when the
simulator/debugger is terminated during COVERAGE command execution (i.e., coverage has not
been terminated with a COVERAGE- command), the following message will be displayed.

Coverage data could not be saved
In such acase, check the program execution environment, and save the coverage data once again.
Example
To terminate simulator/debugger processing:
RET

%

140

RADIX

530 | RADIX Setstheradix
RX
Format
Set: RADI X' {B| Q D| H} (RET)

Display: RADI X (RET)

Parameter
* Options
— Radix {B| Q D| H
B : Setstheradix to binary.
Q : Setstheradix to octal.
D : Setstheradix to decimal.
H : Setstheradix to hexadecimal.

The radix is set to hexadecimal when the simulator/debugger is first invoked.

Function

Specifies the radix for command parameter input.

Displays the state of the radix setting.

Examples

1. Todisplay the current radix:

RX

RET

xadeci mal

2. Tochangetheradix to decimal:

. RX'D (RET)
. RX (RET)

Deci nal

141

REGISTER

531 | REGISTER Displaysregister contents
R

Format
REQ STER (RET)
Function

Displays the contents of the general registers (R0O-R15), the control registers (SR, GBR, VBR)
and system registers (MACH, MACL, PR, PC).

Description
1. Thesamevalueisdisplayed for the SP and R15.
2. The SRisdisplayed first as a value and then as the states of each hit.

« Bitswiththevalue 1: The mnemonic of these bitsis displayed.

T Indicates true or false referred to by the MOVT, CMP, TAS, TST, BT, BF, SETT,
and CLRT instruction, or indicates carry, borrow, over/underflow referred to by the
ADDV/C, SUBV/C, DIVOU/S, DIV1, SHAR/L, SHLR/L,ROTR/L and ROTCR/L
instructions.

S Referred to by the MAC instruction.

I: Functions as an interrupt mask bit.

Q, M: Referred to by the DIVOU/S and DIV 1 instructions.

« Bitswiththevalue 0: These hits are displayed asaminussign (-).
Example
To display the genera and control register values:

R (RET

PC=02000000 SR=000003F3: *******x*x*x*xx*x*x*x*x*x*x*x*x*x**MJ | | | **ST SP=0FFFFFF4
GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000

RO-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 OFFFFFF4

142

RESET

532

RESET

Resets the simulator/debugger

RS

Format
RESET (

Function

RET)

This function resets the simulator/debugger.

When this command is executed, the registers, the memory, the debugging object program, and the
commands are reset to the following states.

Registers:

Memory:

Debugging object program:

All registers are set to O.

All memory settings are cleared.
The simulator/debugger goes to the memory unspecified state.

All information concerning the debugging object program is deleted,
and the simulator/debugger goes to the no program loaded state.

Commands: Except for settings made with the following commands, all settings
are cleared, and the simulator/debugger returnsto itsinitia state.
+ EXEC_MODE
« MACRO
* RADIX

Example

To reset the simulator/debugger:

RS (RET

143

SAVE

533 | SAVE Saves memory data to afile

Format

SAVE <fil e nanme>"<start address>"{<end address>|
@byt e count>} (RET)

Parameters

« <file name>
Specifies the name of the file to be saved.
When the file extension is omitted, the extension ".dat" is supplied.

e <start address> {<end address>| @byte count >}
Specifies the range of addresses to be saved.

Function
Outputsto afile the contents of memory in the specified range as a memory image.
Notes

1. If the end address of the memory data exceeds the allocated memory areas, only that portion
of the data within allocated memory areasis saved.

2. The datasaved with this command differs from that saved with the SAVE_STATUS
command.

Examples
1. To save the memory data from addresses H'2000 to H'3000 in thefile “sample.lo”:

SV sanple.l o 2000 3000 (RET)

2. To save the H'100 bytes of memory starting at address H'3000 in the file “sampl2.10”:

SV sanpl 2.1 0 3000 @00 (RET)

144

SAVE_STATUS

534 | SAVE_STATUS Savesthe current simulator/debugger statusin a
file
SS

Format
SAVE_STATUS [“<file nanme>][";{M A}] (RET)
Parameters

« <file nanme>
Specifies the name of the file in which to save the simulator/debugger status.
If the file name is omitted, the file "sdsh.sav" is used.
If the extension is omitted, the extension ".sav" is supplied.

e Options

— Datasaved { M A}
M(memory and registers): The status of the memory and registersis saved. (default)
A (all): The complete state of the simulator/debugger is saved.

Function
Saves the current status of the simulator.

The status of the simulator/debugger immediately following the execution of this command can be
restored by executing the LOAD_STATUS command.

Description

1. Usewiththe M option
Only the status of the memory and registersis saved. This command is useful, for example,
when program errors are expected during execution by the GO, STER, or STEP_INTO
command. If the status of the simulator/debugger is saved prior to execution with the GO,
STEPR, or STEP_INTO command, then the status can be restored after an error occurs.

2. Usewith the A option
The complete state of the simulator/debugger is saved.
This form of the command is useful to resume program debugging from a particular point
after exiting and restarting the simulator/debugger.

145

SAVE_STATUS

Notes

1. When the A option is specified, the resultant status file is not loaded with the LOAD_STATUS
command, but rather, that fileis specified at simulator/debugger startup.

2. The A option cannot be specified from within acommand chain file.
Examples
1. To savethe current status of the memory and register in the file "testl.sav":

SS testl.sav ; M (RET)

2. To save the complete current status of the simulator/debugger in the file "test2.sav":

SS test2.sav ;A (RET)

146

SCOPE

535 | SCOPE Displaysthe function that includes the current
sCcP execution address
Format
SCOPE (RET)
Function

Displays the file and function that include the current value of the program counter.

This command allows the user to confirm the name of the currently executing function.

Example

To display the file and function that include the current value of the program counter:

: SCP (RET)

%al c. c/ add32

147

SET_COVERAGE

5.36 | SET_COVERAGE Sets coverage range
SCvV
Format
Set: SET _COVERAGE <start address>"{<end address>|

@byte count>} (RET)
Setting state display: SET_COVERAGE (RET)
Clear: SET COVERAGE- [~“<start address>] (RET)
Parameter

« <start address>"{<end address>| @byte count >}
Specifies the range for which coverage information isto be acquired.

Function

Sets, displays, and clears the range of addresses over which CO and C1 coverage information is
acquired.

Note that this command only sets the range for coverage measurement, and that the COVERAGE
command is used to start the acquisition of coverage information.

Description

Set: Setsthe area for the acquisition of CO and C1 coverage information.
Up to 16 address ranges can be specified.
The coverage ranges may not be set during coverage execution.
When a debugging object program is loaded with the LOAD command, the
code segment areas in that program are automatically set as the address
range.

Setting state display: Displays the setting state.
When the setting state is displayed during coverage execution, the address
range(s), the file name, and the enable/disable state are displayed.
When coverage is not being executed, only the coverage areas are

displayed.

Clear: The specified coverage areais made invalid.
When the address specification is omitted, all areas settings are cleared.

148

SET_COVERAGE

In this case a confirmation message will be displayed. Respond "Y" to
clear al areas or "N" to cancel the clear operation.

Examples

1.

To set the address range for coverage data acquisition to be from address H'1000 to address
H'12FF:;

SCV 1000 12FF (RET)

To display coverage setting following the start of coverage measurement:

. SCV (RET
file nanme = testl.cov
Enabl e/ Di sable = E

coverage area
00001000 - 000012FF
00001800 - O0O0001FFF

To cancel the area starting at address H'1000 from the coverage address ranges:

SCV- 1000 (RET)

149

SHOW_CALLS

537 | SHOW_CALLS

SHC

Displays function call

Format

SHOW CALLS [~ <di spl ay count>] (RET)

Parameter

e <display count>

Specifies the number of function calls displayed.
When omitted, all function calls are displayed.

Function

Displays the functions called up to arrival at the current address.

Description

1. Functions are displayed in the reverse order from the order called.

2. Thedisplay includes thefile, function, and line number of the call and the arguments.

3. When the specified display count exceeds the actual function call depth, the number of
function calls displayed is the actual function call depth.

4. Thefollowingis displayed when there is no debugging information or when the function was

written in assembler.

» Thefile, function, line number, and address are displayed.

e Arguments. A “?" isdisplayed.

150

Examples

1. Todisplay thelast 3 function calls:

: SHC 3 (RET)
%ile.c/func_d(#

%ile.c/func_c(#
%ile.c/func_b(#

2002)
1004)
777)

SHOW_CALLS

func_e(1, 3,0)
func_d()
func_c(2)

2. Todisplay all functions called up to the current function:

: SHC (RET
%ile.c/func_d(#
%ile.c/func_c(#
%ile.c/func_b(#
%ile.c/func_a(#
%ile.c/min(#

2002)

1004)
777)
307)

32)

151

func_e(1, 3,0)
func_d()
func_c(2)
func_b(0)
func_a(10, 1024)

STEP

538 | STEP Performs step execution in subroutine units

For mat
STEP [~ <step count>][; R (RET)
Parameters

+ <step count>
Specifies the number of instruction execution steps. (H'1 to H'7FFFFFFF)
When omitted, 1 step is executed.

e Option

— Register content display R
R (register): Displays the contents of the registers after instruction execution.

Function

Executes instructions one at atime starting at the current program counter for the specified number
of steps.

Description

1. Eachtimean instruction is executed the mnemonic of the executed instruction is displayed.
If the R option was specified, the contents of the registers are displayed after instruction
execution.

2. Thiscommand executes subroutines caled with aBSR or JSR instruction, from the start of
the subroutine through the RTN instruction, as a single step.

3. Execution is halted if a condition set by abreak command is satisfied, or if a
simulator/debugger error occurs. The cause of the halt is displayed when execution stops.

”

4. The simulator/debugger performs processing identical to that for the input of a“STEP (RET)
command lineif a (RET) isinput following the completion of STEP command execution.

152

STEP

Note

If adelayed branch instruction is executed during STEP command execution, execution stops at
the end of the instruction following the delayed branch instruction.

Example

To execute five instructions, with executing the subroutine as though it were a single step:

: S5 (RET)

00000000 STS. L PR, @R15

00000002 MOV. L @ 0000000C, PC), R3
00000004 JSR @6ile.c/func!subl
00000006 NCP

00000008 LDS. L @r15+, PR

STEP NORMAL END

153

STEP_INTO

539 | STEP_INTO Performs step execution

Sl

Format

STEP_I NTO [“<step count>][; R (RET)

Parameters

<step count >
Specifies the number of instruction execution steps. (H'1 to H'7FFFFFFF)
When omitted, 1 step is executed.

Options

— Register content display R
R (register): Displays the contents of the registers after instruction execution.

Function

Executes instructions one at atime starting at the current program counter for the specified number
of steps.

Description

1.

Each time an instruction is executed the mnemonic of the executed instruction is displayed.
If the R option was specified, the contents of the registers are displayed after instruction
execution.

The step unit is set to the source line unit at startup time, but can be changed to the machine
language instruction level with the | or N option to the DEBUG_LEVEL command.

When afunction is called within the program, the called function is also executed one step at a
time.

Execution is halted if a condition set by a break command is satisfied, or if a
simulator/debugger error occurs.
The cause of the halt is displayed when execution stops.

The simulator/debugger performs processing identical to that for the input of a“STEP_INTO
(RET)” command lineif a (RET) isinput following the completion of STEP_INTO command
execution.

154

STEP_INTO

Notes

If adelayed branch instruction is executed during STEP_INTO command execution, execution
stops at the end of the instruction following the delayed branch instruction.

Examples

1. To execute oneinstruction and then display the mnemonic of the executed instruction and the
contents of the registers following the instruction execution:

SI ;R (RET
PC=00000404 SR=00000000: *******k*kkkxkkkkdhxrk*_ .- **-- SP=0FE00000
GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000
RO-7 00000000 0000002E 00000000 00000000 00000000 00000000 00000000

00000000
R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000
OFEO0000

00000402 MOV. L #0000002E, R1

2. To execute three instructions:

Sl 3 (RET)

00000404 MOV. L #0000002E, R4
00000406 MOV. L #FFFFFFFF, R3
00000408 ADD. L R1, R2

STEP NORMAL END

155

STUB

540 | STUB Executes command during ssimulation
SB

Format

Set: STUB <stub start address>[" <return address>] {(RET)
Display: STUB[“<stub start address>] (RET)

Delete: STUB- [~ <stub start address>] (RET)

Parameters

» <stub start address>
Specifies the address in the debugging object program at which command execution is to be
performed.

e <return address>
Specifies the address of the address to restart the debugging object program after command
execution.
When omitted, the debugging object program is restarted at the <stub start address>.

Function

Specifies addresses and commands so that instruction execution is interrupted and command
execution is performed at the point that the simulator/debugger is about to execute the instruction
at the stub start address.

Also displays and clears the stub execution address and command settings.
Description

Set: Specifies the stub execution actions as simulator commands.
Up to 16 stub command executions can be specified.
However, since the command sequence storage areais limited, there are cases where a
full 16 stubs cannot be specified.
When the command “ STUBA<stub start address>{(RET) " isinput, a prompt
(“STUB>") indicating that STUB specification isin progressis displayed, and the
simulator/debugger waits for input of the execution command sequence.
Command line syntax is not checked during command sequence input.
Error checking is performed during stub execution.

156

STUB

Display: When the stub start address specification is omitted, atable of the stub execution start

and return positions specified with the STUB command is displayed.
When the stub start address is specified, the simulator command sequence specified for
that start address is displayed.

Deletion: Deletes the stub execution for the specified address.

When a stub execution is deleted, the replacement or insertion command set is del eted,
and the original execution sequence is restored.

When the stub start addressis omitted, all stub execution addresses are deleted.

In this case a confirmation message will be displayed. Respond "Y" to delete all stub
executions or "N" to cancel the deletion.

Notes

1

In the following case, the stub will be executed twice.

» If stub execution isinterrupted with a manual break, and execution resumed with a GO,
STEP, or STEP_INTO command, the stub will be executed twice.

Therefore, do not specify stubs that will generate different results when executed twice
(e.g., stubsthat increment memory) in situations where a manual break will be used.

2. The STUB command, “!” commands, and macro commands cannot be used within a stub.

3. If the stub start address is specified after a delayed branch instruction, stub execution starts
before the delayed branch instruction.

Examples

1. To specify acommand set starting with the MEMORY command to be executed just prior to

the execution of the instruction at address H'1200:

Simulation will be resumed at address H'1200 after execution of the stub commands.

SB 1200 { (RET) Sets the stub execution start address to be H'1200.
STUB > M 5000 FF (RET)
STUB > : Specifies the stub execution commands.
STUB > } (RET) Terminates specification.

157

STUB

To display atable of stub execution addresses:

: SB (RET)
<ENTRY ADDR> <RETURN ADDR> <SYMBOL>

00001000 00001000 %ile.cleradd(# 100) %ile.c!leradd(#
100)

00001200 00001200 %ile.clentrya(# 542) %ile.clentrya(#

542)

To display the simulator command set specified for the stub execution command registered at
address H'1200:

SB 1200 (RET)
entry address
return address
command {

M 5000 FF

00001200 % ile.c!entrya(# 542)
00001200 % ile.c!entrya(# 542)

To delete the stub execution registered at address H'1200:

SB- 1200 (RET)

158

SYMBOL

541

SYMBOL

SY

Displays symbol information

Format

SYMBOL ["[%file nane>][/<function nanme>][!<synbol >[. <menber

name>] | |

Parameters

e <file nanme>

(RET)

Specifies the file in which the referenced symbol is defined.

e <function nane>

Specifies the function in which the referenced symbol is defined.

+ <synbol >

Specifies the referenced symbol.

* <menber
Specifies the member referenced.

Function

Displays symbol information.

Description

name>

The following symbol information is displayed according to the specified parameters.

e Parameter specification and displayed information

Initems 1to 3 in the following table, information pertaining to the member will be displayed
if astructure or union member is specified along with the symbol.

159

SYMBOL

ltem Parameter Specification Displayed Information

1 SYMBOL %<file name>/<function name>!<symbol> Information pertaining to the
specified local symbol in the

SYMBOL /<function name>!<symbol> specified function is displayed.

2 SYMBOL %c<file name>!<symbol> Information pertaining to the specified
local symbol in the specified file is
displayed.

3 SYMBOL !<symbol> Information pertaining to the specified
global symbol is displayed.

4 SYMBOL %<file name>/<function name> Information pertaining to the local
symbols in the specified function is
displayed.

5 SYMBOL %<file name> Information pertaining to the local
symbols in the specified file is
displayed.

6 SYMBOL Information pertaining to all symbols
that can be referenced currently is
displayed.

7 SYMBOL ! symbol name Local symbols in the function, static

symbols in the file, and global
symbols are searched for in that
order, and the first symbol to be
detected is displayed.

Symbol information display format
Symbol information is displayed in the following format.
Symbol Value Symbol type Signinformation Typeinformation Size Bit offset

1 2 3 4 5 6 7
Undefined status
8

Description:
1 Symbol
2 Vaue

— AJArESS.....ooviiiieeee e <8 digit hexadecimal number>

— VaAlUB .ot <8 digit hexadecimal number>

— SPOffSat.iiiccc e SP+<4 digit hexadecimal number>

— Structure offSet......ccoveveeceeececececes +<4 digit hexadecimal number>

— Register name

— Cannot be referenced because of

C compiler optimizationc.ccccevenene. 'REG'

SYMBOL

Symbol type

— Variable.....ccoveeeeicecece e VAR
— LabE e 'LAB'
— FUNCLION .o, 'FUN'
— ValUB oot 'VAL'

— SIONE .o S

— UnsSigned.......ccceovveinenneese e U

— Undefinedcccooevninnineiercene -
Type information

— Character type (1-byte integer) '‘BYTE'
— Integer type (2-byte)ccovvriiiiiiis 'WORD'
— Integer type (4-byte)coevvviriiies '‘LONG'
— Floating point type (single precision)..... 'SGL'
— Floating point type (double precision) ... 'DBL'
— BittYPe.ic e ‘BITF
— Enumerated type.......cccoceriniiiiininenne ‘ENUM'
— SHUCIUIE LYPE...eevieeeeieeieeee et 'STRU'
— UNIONtYPE ... ‘UNI'
— POINter type....coeeveeeriereereee e 'PTR'
— All other typesS.....ccovevverecerese e e '
Size

The number of bytes (the number of bits for integer types with a bit field type
specification) is displayed as a 4-digit hexadecimal number.

Bit offset
A 2-digit hexadecimal valueis displayed only for integer types with a bit field type
specification.

Undefined status
— Undefined symbols.........ccccooeveiriinnncne v
— Any other object ... No display

161

SYMBOL

Examples

1. Todisplay information concerning the local symbols from the file sample:

SY %sanpl e. ¢ (RET)
number. 00000038 VAR S BYTE 0015

2. Todisplay information concerning the local symbols from the function “main” in thefile
sample:

SY %sanpl e. c/ mai n (RET)
...................................... SP+0008 VAR S LONG 0004

162

TRACE

5.42

TRACE

Displaystrace buffer

Format

TRACE ["-<start

instruction index>][~,{@kinstruction count>|-<end

instruction index>|][;{l|A}] (RET)

Parameters

. <start

instructi on i ndex>

Specifies the first instruction to display.

The value indicates the point in the trace buffer at which to start display as a number of
instructions back from the end instruction stored in the trace buffer.wWhen omitted, display
starts at the beginning of the trace buffer.

e <instruction count>
Specifies the number of instruction to display.
When both the instruction count and the end instruction index are omitted, the end instruction
executed is displayed.

e <end instruction index>
Specifies the end instruction to display.
The value indicates the point in the trace buffer at which to end display as a number of
instructions back from the end instruction stored in the trace buffer.

e Options

— Display content { | | A}
| (instruction): Only instruction addresses and mnemonics are displayed.
A@@l):

Function

Theinstruction address, instruction mnemonic, register data, and memory
access data are displayed.
When omitted, the | option is assumed.

Displays the trace results stored in the trace buffer.

163

TRACE

Description
1. Thefollowing information is displayed.

* The address of the executed instruction

» The mnemonic of the executed instruction

e The general registers (RO to R15), the control registers (SR, GBR, VBR), and the system
registers (MACH, MACL, PR, and PC)

» The memory access data (read datais displayed as R=xxxxxx and write data as
W=XXXXXX)

2. Display range specified by the start instruction index.

Figure 5-3 shows the contents of the trace buffer when displaying starting at 5 instructions
back from the end of the trace buffer.

(This example assumes the command “TRACE -5".)

«— First instruction executed

First instruction —» -5
displayed Display range
—1 =— Lastinstruction executed

0 <— Breakpoint
Trace buffer

Figure5-3 Display Range Specified by the Start Instruction I ndex

164

TRACE

3. Display range specified by the start instruction index and instruction count

Figure 5-3 shows the contents of the trace buffer when displaying 3 instructions starting at 5
instruction back from the end of the trace buffer.

(This example assumes the command “TRACE -5 @3".)

First instruction —»
displayed i

Last instruction —
displayed

Display range

-5
-4
-3

-2
-1

Trace buffer

0

<— First instruction executed

Instruction count

<«— Last instruction executed

<— Breakpoint

Figure5-4 Display Range Specified by the Start Instruction Index and
the Instruction Count

Notes

1. The addresses of the executed instructions are stored in the trace buffer during trace data

acquisition.

When displaying the contents of the trace buffer, the contents of the stored addressis
disassembled and displayed as a mnemonic instruction.

Asaresult, if memory contents are overwritten between trace data acquisition and trace buffer
display, the displayed mnemonic can differ from the actually executed instruction.

2. Thetrace buffer can hold 1023 instruction execution cycles of data. If the 1023th instruction
isadelayed branch instruction, the trace buffer can hold 1024 instructions.

165

TRACE

Examples

1.

To display the instruction addresses and mnemonics for the last five instructions stored in the
trace buffer:

T -5 (RET)
00000100 STS. L PR, @R15
00000102 MOV. L #00000000, R4
0000010E ADD. L #00000001, R4
00000110 MOV>L #0000000A, R3

00000114 CWP/ CE. L R3, R4

To display the instruction address, instruction mnemonic, register data, and memory access
data for the H'3 instructions starting five instructions back from the end of the trace buffer:

T-5@ ;A (RET)

00000400 STS. L PR @RI5
PC=00000402 SR=00000000: ** * %k % % k% sk x ko kx k. **.. SP=FFFFFF8
W-00000000

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000

RO-7 00000000 0000002E 00000000 0000000A 00000001 00000000 00000000 00000000
R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 FFFFFFF8
00000402 MOV. L #00000000, R4

PC=00000404 SR=00000000:; *******kkskxxxkkkkkxdhk_ - **-- SP=FFFFFF8
W=00000000

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000

RO-7 00000000 0000002E 00000000 0000000A 00000001 00000000 00000000 00000000
R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 FFFFFFF8
00000404 ADD. L #00000001, R4

PC=00000406 SR=00000000:; *******xkskxxxkkkkkxdhk_ .- **-- SP=FFFFFF8
W=00000000

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000

RO-7 00000000 0000002E 00000000 0000000A 00000001 00000000 00000000 00000000
R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 FFFFFFF8

166

TRACE_CONDITION

543

TRACE_CONDITION

TC

Setstrace condition, and startsor stopstrace

167

TRACE_CONDITION

Format

Start: TRACE_CONDI TION [[{I|SH["EI["{C B}]] (RET)
Stop: TRACE_CONDI TI ON ; D (RET)

Parameter

. Options

— Instruction type{ | | S}
I (instruction): All instructions are recorded in the trace buffer. (default)
S (subroutine): Only subroutine calling instructions (BSR and JSR) are recorded in the
trace buffer.
The | setting is assumed when this option is omitted.

— Trace start/stop { E| D}
E (enable): Starts recording to the trace buffer. (default)
D (disable): Turns off recording to the trace buffer.
The E setting is assumed when this option is omitted.

— Trace buffer full handling { C| B}
C(continue): Overwrites the previous contents of the trace buffer after the trace buffer
overflows.
B (break): Interrupts program execution when the trace buffer overflows.
The C setting is assumed when this option is omitted.

Function

Specifies the conditions for storing the results of instruction execution in the trace buffer during
debugging object program execution dueto a CALL, GO, STEP, STEP_INTO, or VECTOR
command.

168

TRACE_CONDITION

Description

1.

The following items are stored in the trace buffer.

» The general registers (RO to R15), the control registers (SR, GBR, VBR), and the system
registers (MACH, MACL, PR, and PC)
e The memory access data

The trace buffer isinitialized at trace start.
The trace buffer is organized as aring buffer with storage for 1023 instructions.

When the B option is specified, and when 1023 instructions for trace information have been
stored, instruction execution is halted, and the simulator/debugger returns to the command
wait state. However, note that if the 1023th instruction is a delayed branch instruction, the
simulator/debugger enters command wait state when the 1024 instructions of trace
information has been acquired.

When the C option is specified, if 1024 or more instructions have been executed, the buffer is
overwritten starting at the beginning.

Figure 5-5 shows the contents of the trace buffer.

1023 instructions l

Instruction 1 <— The instruction
Execution order . executed first

Instruction n <— The instruction
executed last

Figure5-5 Trace Buffer Contents

169

TRAP_ADDRESS

544 | TRAP_ADDRESS Sets, displays, and clearsthe system call start
TA address
Examples
1. Torecord al instructions in the trace buffer following the execution of the following

command:

TC ;1 (RET

To record only subroutine calls in the trace buffer:

TC :S E (RET)

To terminate recording in the trace buffer:

: TC ;D (RET)

To store the results of program execution in the trace buffer when instructions are executed by
aCALL, GO, STER, STEP_INTO, or VECTOR command:

. T1C ;1 RET

. B 348 (RET)

. G (RET)

Exec Instructions = 97 Cycl e=387

PC=00000348 SR=00000000: ******xxkxkkkkdkkhkksxxx_____._ **.. SP=0FF00000
GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000
RO-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000

R8- 15 00000000 00000000 00000000 00000000 00000000 00000000 00000000
OFFO0000

00000346 MOV. L R6, RS

: T -5 (RET)

00000340 MOV. L #00000000, R4
00000342 ADD. L #00000001, R4
00000344 MOV. L #0000000A, R3
00000346 MOV. L R6, RS

170

TRAP_ADDRESS

00000348 MOV. L R6, RS

Forrﬁat

Set; TRAP_ADDRESS' <i nstruction address> (RET)
Display: TRAP_ADDRESS (RET)

Clear: TRAP_ADDRESS- (RET)

Parameter

e <instruction address>
Specifies the system call start address.

Function

Sets, displays, and clears the system call start address used when the debugging object program
uses standard /O or file I/O.

Only one address can be specified.
Description

Set: If the branch address of an executed JSR or BSR instruction is the same as the address
specified with this command, normal simulation is not performed, but rather the system
call indicated by the function code is executed.

A parameter block and an 1/0 buffer must be allocated within the debugging object
program.

The debugging object program must set up RO and R1, the parameter block, and the I/0O
buffer before executing the JSR or BSR instruction.

Simulation is restarted from the instruction following the JSR or BSR when the system
call processing finishes.

The contents of RO and R1 and the other registers are shown below.

Since the contents stored in the parameter bock differ for each system call function, the
parameter block contents are described under each function.

171

TRAP_ADDRESS

MSB 1 byte 1 byte LSB
Register RO H'01 Function code — —
Register R1 Parameter block address

Display: Displays the state of the system call start address setting.
Clear: Clearsthe system call start address.
Notes

1. If aJSRor BSRinstruction is executed following a delayed branch instruction, an INVALID
SLOT INSTRUCTION error occurs during simulation.

2. If aJSR or BSRinstruction executed as a system call, the following instruction is executed as
anormal instruction, and not as a slot instruction. Accordingly, JSR and BSR instructions
must not be followed by an instruction whose execution results differ between the cases when
it is executed as a slot instruction and when it is executed as a normal instruction.

172

TRAP_ADDRESS

<System Call Functions>

The simulator/debugger provides functions to simulate system calls to the host system by the
debugging object program.
The table below lists the host system calls that can be used by a debugging object program.

Table5-1 System Call Functions

Item Function code Function Description

1-1 H'21 GETC Inputs one character from standard input.

1-2 H'22 PUTC Outputs one character to standard output.

1-3 H'23 GETS Inputs a line of characters from standard input.
1-4 H'24 PUTS Outputs a line of characters to standard output.
2-1 H'25 FOPEN Opens a file.

2-2 H'26 FCLOSE Closes a file.

2-3 H'27 FGETC Inputs one byte from a file.

2-4 H'28 FPUTC Outputs one byte to a file.

2-5 H'29 FGETS Inputs a line from a file.

2-6 H'2A FPUTS Outputs a line to a file.

2-7 HOB FEOF Checks for end of file.

2-8 H'0C FSEEK Moves the file pointer.

2-9 H'OD FTELL Returns the current position of the file pointer.

173

TRAP_ADDRESS

Standard 1/0
These functions perform 1/O from standard |/O.

Character input from standard 1/0O during COMMAND_CHAIN execution is taken from the
command file.

GETC

<Function>
Inputs one character from standard input.

<Function code>
H'21

<Parameter block>

MSB O 15

+0

+2

<Example>
To input one character from standard input (usually the keyboard):

MOV. L PAR_ADR R1
MOV. L REQ_COD, RO
MOV. L CALL_ADR, R3

JSR @r3
NOP

STOP NOP

SYS _CALL NOP
ALI GN 4

CALL_ADR DATA. L SYS_CALL
REQ COD . DATA. L H 01210000
PAR_ADR . DATA. L PARM

PARM . DATA. L | NBUF

174

1-2

TRAP_ADDRESS

| NBUF .RES.B 2
. END

PUTC

<Function>
Outputs one character to standard output.

<Function code>
H'22

<Parameter block>

MSB 0 15

+0

+2

<Example>
To output the character 'A' to standard output (usually the console):

MOV.L PAR_ADR R1
MOV.L REQ COD, RO
MOV.L CALL_ADR R3

JSR @3
NOP

STOP NOP

SYS CALL NOP
CALIGN 4

CALL_ADR. DATA. L SYS CALL
REQ COD . DATA. L H 01220000
PAR_ADR . DATA. L PARM

PARM . DATA. L QUTDATA
OUTDATA . DATA.B "A"
. END

175

TRAP_ADDRESS

176

TRAP_ADDRESS

1-3 GETS

<Function>

Inputs aline of characters from standard input.

A linefeed character (LF) terminates the input line.

Up to 79 characters can beinput in aline.

If more than 79 characters are input, the eightieth character will be converted to aline feed
(LP).

<Function code>
H'23

<Parameter block>

MSB 0 15

+0

+2

<Example>
To input one line from standard input (usually the keyboard):

MOV.L PAR_ADR Rl
REQ_COD, RO
MOV.L CALL_ADR R3
JSR @3

:

STOP NOP
SYS CALL NOP

. ALI GN 4
CALL_ADR DATA. L SYS_CALL
REQ COD . DATA. L H 01230000
PAR_ADR . DATA. L PARM

PARM . DATA. L | NBUF
| NBUF .RES. B 80
. END

177

TRAP_ADDRESS

1-4 PUTS

<Function>

Outputs aline of charactersto standard output.

A line feed character (LF) terminates the output line.

Up to 131 characters can be output on aline.

If more than 131 characters are output, the 132nd character will be converted to aline feed
(LP).

<Function code>
H'24

<Parameter block>

MSB 0 15

+0

+2

<Example>
To output the string "Hello world" to standard output (usually the console):

MOV. L PAR_ADR R1
MOV. L REQ_COD, RO
MOV. L CALL_ADR, R3

JSR @r3
NOP

STOP NOP

SYS _CALL NOP
.ALIGN 4

CALL_ADR . DATA. L SYS CALL
REQ COD . DATA. L H 01240000
PAR_ADR . DATA. L PARM

PARM . DATA. L OQUTDATA
OUTDATA . SDATA "Hell o worl d"
. DATA. B H OA

178

TRAP_ADDRESS

. END

2. Filel/O
A file number is returned when afile is opened with FOPEN.
All following operations on that file, including I/O and closing, are performed using that file
number.
Up to 16 files can be opened at the same time.

2-1 FOPEN

<Function>
Opens afile

<Function code>
H'25

<Parameter block>

MSB 0 8 15
+0 Return value File number
+2 Open mode Unused
+4
r--- Start address of file name ----
+6

e Return value (output)
0: Normal termination
—1: Error

* File number (output)
The value to be used in all processing following the open.

179

TRAP_ADDRESS |

» Open mode (Input)

00 : "r

01 : "w'

02 : "a"

03 : "r+"
04 : "w"
05 : "a+"
10 : "rb"
11 : "wb"
12 : "ab"
13 : "rb+"
14 : "wbh+"
15 : "ab+"

These modes are interpreted as follows.

"r" : Openfor reading.
"w' : Open for writing.
"a" . Openfor appending (write starting at the end of thefile).

"r+" : Open for reading and writing.

"wt" : Open anempty filefor reading and writing.
"a+" : Open for reading and appending.

"b" : Openinbinary mode.

e Start address of file name
The first address in the area that holds the file name.

180

2-2

<Example>
To open the file "sample.src”:

. EXPORT FNUM
MOV.L PAR_ADR Rl
MOV.L REQ COD, RO
MOV.L CALL_ADR R3

JSR @3
NOP

STOP NOP

SYS CALL NOP
. ALI GN 4

CALL_ADR DATA. L SYS_CALL
REQ COD . DATA. L H 01250000
PAR_ADR . DATA. L PARM

PARM

FOPEN BUF. RES.B 1

FNUM .RES.B 1
.DATA.B. 0
.RES.B. 1
. DATA. L FNAME

FNAME . SDATA "sanpl e. src”
.DATA.B 0O
. END

FCLOSE

<Function>

Closes afile.

<Function code>
H'06

<Parameter block>

181

TRAP_ADDRESS

TRAP_ADDRESS

MSB O 8

15

+0 Return value

File number

» Return value (output)
0: Normal termination
—1: Error

* File number (input)

The number returned when the file was opened.

<Example>

To close the file with the file number 2:
MOV. L FNUM ADR, RO
MOV. L #H 00000002, R1
MOV.B R1, @RO
MOV. L REQ COD, RO
MOV.L PAR _ADR R1
MOV. L CALL_ADR, R3
JSR @r3
NOP

STOP NOP

SYS CALL NOP

.ALI QN 4

CALL_ADR . DATA. L SYS CALL
REQ COD . DATA.L H 01060000
PAR_ADR . DATA. L PARM
FNUM_ADR . DATA. L FNUM

PARM
FCLSE BUF .RES.B 1
FNUM .RES.B 1
. END
2-3 FGETC
<Function>

Inputs one byte from afile.
<Function code>
H'27

<Parameter block>

182

MSB 0 8 15
+0 Return value File number
+2 Unused
+4
- Start address of input buffer ----
+6

» Return value (output)

0: Normal termination

—1: EOF detected

* File number (input)
The number returned when the file was opened.

* Input buffer start address
The start address of the buffer for writing input data.

<Example>
To read one byte of data from the file "sample.src":

.1 MPORT FNUM
MOV.L PAR ADR Rl
MOV. L REQ COD, RO
MOV.L CALL_ADR R3
MOV.L FNUM ADR, R2
MV.B @R, R4
MOV.L PAR ADR R2
ADD. L #01, R2
M. B R4, @2
JSR @3
NOP

STOP NOP

SYS CALL NOP
ALIGN 4

183

TRAP_ADDRESS

TRAP_ADDRESS

2-4

CALL_ADR .DATA. L SYS CALL
REQ COD . DATA. L H 01270000
PAR_ADR . DATA. L PARM
FNUM ADR . DATA. L FNUM
PARM
FGETC BUF .RES.B 2

.RES. W 1

. DATA. L | NBUF
| NBUF .RES. B

. END

FPUTC
<Function>

Outputs one byteto afile.

<Function code>

H'28

<Parameter block>

MSB

+0

+2

+4

+6

0 8

15

Return value

File number

Unused

+--- Start address of output buffer ----

» Return value (output)

0:
—1:

Normal termination
Error

e File number (input)
The number returned when the file was opened.

184

TRAP_ADDRESS

e Output buffer start address
The start address of the buffer used to hold the output data.

185

TRAP_ADDRESS

<Example>
To output one byte of data (the character ‘A") to the file "sample.src”:

.1 MPORT FNUM
MOV.L PAR_ADR R1
MOV. L REQ COD, RO
MOV.L CALL_ADR, R3
MOV.L FNUM ADR, R2
MV.B @R, R4
MOV.L PAR_ADR R2
ADD.L #01, R2
M. B R4, @2
JSR @3
NOP

STOP NOP

SYS_CALL NOP
CALIGN 4

CALL_ADR. DATA. L SYS_CALL
REQ COD . DATA. L H 01280000
PAR_ADR . DATA. L PARM
FNUM_ADR. DATA. L FNUM
PARM
FPUTC_BUF. RES. B 2

.RES. W 1

. DATA. L QUTDATA
OUTDATA . DATA.B "A"

. END

186

TRAP_ADDRESS

2-5 FGETS

<Function>

Readsin character string datafrom afile. Dataisread in until either anewline code or a
NULL codeisread, or until the buffer isfull.

A NULL code is appended to the end of the character string read from the file.

<Function code>
H'29

<Parameter block>

mMsB O 8 15
+0 Return value File number
+2 Buffer size
+4)
+--- Start address of input buffer ----
+6

» Return value (output)
0: Normal termination
—-1. EOF detected

e File number (input)
The number returned when the file was opened.

» Buffer size (input)
The size of the areafor storing data. A maximum of 256 bytes can be stored.

e Input buffer start address (input)
The start address of the buffer for storing input data.

187

TRAP_ADDRESS

<Example>
To read character string data from the file "sample.src”:

.1 MPORT FNUM
MOV.L PAR_ADR Rl
MOV.L REQ COD, RO
MOV.L CALL_ADR R3
MOV.L FNUM ADR, R2
MOV. B @R, R4
MOV.L PAR_ADR R2
ADD. L #01, R2
MOV.B R4, @2
JSR @3
NOP

STOP NOP

SYS_CALL NOP

CALL_ADR .DATA L SYS CALL
REQ COD . DATA L H 01290000
PAR ADR .DATA L PARM
FNUM ADR . DATA. L FNUM
PARM .RES.B 2

.DATA. W 256

. DATA. L | NBUF
OUTDATA .RES.B 256

. END

FPUTS

<Function>
Writes character string datato afile.
The NULL character terminating the character string is not written to thefile.

<Function code>
H'2A

188

TRAP_ADDRESS

<Parameter block>

mMsB O 8 15
+0 Return value File number
+2 Unused
+4
+6 Start address of output buffer

» Return value (output)
0: Normal termination
—1: Error

e File number (input)
The number returned when the file was opened.

e Output buffer start address (input)
The start address of the buffer used to hold the output data.

189

TRAP_ADDRESS

<Example>
To write the character string "Hello world" the file "sample.src™:

.1 MPORT FNUM
PAR_ADR, R1
REQ_COD, RO
CALL_ADR, R3
FNUM_ADR, R2
@, Ra
PAR_ADR, R2
#01, R2

R4, @2

JSR @3

orrrromrrHrHrr

STOP NOP
SYS_CALL NOP
.ALIGN 4

CALL_ADR . DATA. L SYS CALL
REQ COD . DATA.L H 012A0000
PAR_ADR . DATA. L PARM
FNUM ADR . DATA. L FNUM
PARM
FPUTS_BUF . RES. B 2

.RES. W1

. DATA. L QUTDATA
QUTDATA . SDATA "Hol | ow wor | d"

.DATA.B O

. END

190

TRAP_ADDRESS

2-7 FEOF

<Function>
Checks for end of file.

<Function code>
H'0B

<Parameter block>

MSB 0 8 15

+0 Return value File number

» Return value (output)
0: Filepointer isnot at EOF.
—1: EOF detected.

* File number (input)
The number returned when the file was opened.

<Example>
To test the file "sample.src” for EOF:

.1 MPORT FNUM
MOV.L PAR_ADR Rl
MOV. L REQ_COD, RO
MOV.L CALL_ADR R3
MOV.L FNUM ADR, R2
MV.B @R, R4
MOV.L PAR_ADR R2
ADD. L #01, R2
M. B R4, @2
JSR @3
NOP

STOP NOP

SYS CALL NOP
CALIGN 4

CALL_ADR . DATA. L SYS CALL
REQ COD . DATA. L H 010B0000

191

TRAP_ADDRESS

2-8

PAR ADR .DATA. L PARM
FNUM ADR . DATA. L FNUM
PARM
FEOF_BUF . RES.B 2

. END
FSEEK
<Function>

Moves the file pointer to the specified position.

<Function code>

H'0C

<Parameter block>

MSB

+0

+2

+4

+6

» Return value (output)
0. Normal termination

—1:

0

15

Return value

File number

Direction

Unused

Offset (upper word)

Offset (lower word)

Error

e File number (input)
The number returned when the file was opened.

« Direction (input)
0: The offset specifies the position as a byte count from the start of thefile.
1: The offset specifies the position as an offset from the current file pointer.
2: The offset specifies the position as a byte count from the end of the file.

* Offset (input)

192

TYPE

5.45

TYPE

TY

Displaysvariable value

The byte count to be interpreted as specified by the direction parameter.

193

TYPE

<Example>
To move the file pointer in "sample.src” to the H'100th byte from the start of the file:

.1 MPORT FNUM
PAR_ADR, R1
REQ_COD, RO
CALL_ADR, R3
FNUM_ADR, R2
@, Ra
PAR_ADR, R2
#01, R2

R4, @2

JSR @3

orrrromrrHrHrr

STOP NOP
SYS_CALL NOP
.ALIGN 4
CALL_ADR . DATA. L SYS CALL
REQ COD . DATA.L H 010C0000
PAR_ADR . DATA. L PARM
FNUM ADR . DATA. L FNUM
PARM
FSEEK_BUF .RES.B 2
.DATA.B 0
.RES.B 1
. DATA. WO
. DATA. WH 100
. END

194

VECTOR

546 | VECTOR

Executes from an interrupt vector address

\Y

2-9 FTELL

<Function>

Returns the current position of the file pointer.

<Function code>
H'0D

<Parameter block>

MsB O 15
+0 Return value File number
+2 Unused
+4 Offset (upper word)
+6 Offset (lower word)

195

VECTOR

e Return value (output)
0: Normal termination
—1: Error

* File number (input)
The value returned when the file was opened.

» Offset (output)
The current position of the file pointer, as a byte count from the start of thefile.

<Example>
To determine the current position of the file pointer in the file "sample.src":

.1 MPORT FNUM
PAR_ADR, R1
REQ_COD, RO
CALL_ADR, R3
FNUM_ADR, R2
@, Rd
PAR_ADR, R2
#01, R2

R4, @2

JSR @3

orrrromrrHrHrrr

STOP NOP
SYS _CALL NOP
.ALIGN 4
CALL_ADR .DATA. L SYS CALL
REQ COD . DATA. L H 010D0000
PAR ADR . DATA. L PARM
FNUM_ADR . DATA. L FNUM
PARM
FTELL_BUF . . B
. W
. W

196

<register>

5.47

<register> M odifiesregister content

Format

TYPE <variabl e>[;{Bl QD H A}] (RET)

Parameters

o <variable>
Specifies the variable whose value is to be displayed.

— Disgplay format specifier { B| Q D| H A}

* Options
B
Q
D
H
A
Function

: Display in binary.

. Display in octal.

. Display in decimal.
. Display in hexadecimal.
: Display asan ASCII character.

Displays the value of the specified variable in the specified format.

When the display format specification is omitted, pointer variables are displayed in hexadecimal,
character variables are displayed in ASCII, and other variables are displayed in decimal. However,
aperiod is displayed for character variables with values that cannot be displayed.

197

<register>

Examples
1. Todisplay the value of the variable "abc" in hexadecimal:

TY abc ;H (RET)
abc 100F

2. Todisplay the value of the variable "xyz". Sincethe display format specifier is omitted, the
valueisdisplayed in decimal:

TY xyz (RET)
xyz 14770

3. Todisplay the value of the static variable "efg":

TY %ile.clefg (RET)
%ile.clefg 32768

198

548 | ! I nvokes sub-process

Format
VECTOR <vect or nunber> (RET)
Parameters

e <vector number>
Specifies the interrupt vector number.

Function

Generates the vector address from the vector number and starts exception processing from the
contents of the vector address.

(1) The current PC and SR are saved on the stack.
(2) The vector addressis generated from the vector number and exception processing is
initiated from the contents of the vector address.

Description
1. Thiscommand is used to test the operation of exception handlers when exceptions occur.

2. Theterminating conditions are the same as those for the GO, STEP, and STEP_INTO, CALL
commands.

3. H'0to H'FF can be specified as the vector number.
Notes

1. When the content of the vector area memory address is H'O, execution halts after steps (1) and

Q).

2. Thereare cases where the range of vector numbers that can be specified in the
simulator/debugger differs from the range that can be specified with the actual CPU.

199

Example

To start execution at the address specified in vector number 1:

. VECTOR 1 (RET)
Exec Instructions = 159
PC=0000014A SR=00000000; ******** &k kkkkkkkkkkkk______ **_ . SP=0FF00000

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000

RO-7 00000000 00000000 00000000 OOOOOOOA 00000000 00000000 00000000 00000000
R8-15 00000000 00000000 00000000 00000000 00000000 00000000 OFFO0000 OFF00000
00000148 MOV. L R7, R6

BREAK PO NT

200

Part Il CPU Information Analysis Program

Section 1 Creating the CPU Information

The simulator/debugger uses a CPU information file to load segments according to the memory
map for the corresponding SH series CPU and to assure that segments are not loaded crossing
memory type boundaries. The CPU information fileis created using the CIA (CPU information
analysis) program. Note that the H-series linkage editor can also use the CPU information file to
check segment allocation. Refer to the H-Series Linkage Editor User’s Manual for details.

1.1 CIA Functions
The CIA program provides the following three functions.

1. CPU information file creation
Produces the CPU memory map information file for the SH-series CPU used.

2. CPU information file display
Allows the contents of the generated CPU information file to be checked.

3. CPU information file editing (deletion/addition)
Allows the contents of the generated CPU information file to be modified by deletion or
addition.

1.2 Invoking the CIA Program

The format of the command line used to invoke the CIA program is shown below.

% cia <CPU information file nanme> (RET)
1 2

SH SERIES CI A Ver. 1.1 (HS0700CI CULSM
Copyright (C Hitachi, Ltd. 1992

Li censed Material of Htachi, Ltd.
1 TheCIA invocation command.

2 Either an existent or anew CPU information file can be specified. When an existent CPU
information file is specified, the program requests the input of a name for the output CPU
information file. If the extension is omitted, the extension ".cpu” is supplied.

203

1.3 CIA Usage Procedures and Selection Menus

Figure 1-1 shows the procedure used with the CIA program.

1)

@)

®)

(4)

CIA program invocation

CPU selection

Bit size and comment input processing
(Continue)
Memory map specification processing
. (Exit)
(Continue)
Editing
'L (Exit)

CIA termination

Figure1-1 CIA Usage Procedure

1. Thefollowing is presented as a CPU information menu.

1: SH 7000

* When'1l' (SH 7000) is selected, the SH 7000 is specified.

204

Bit size and comment input

The bit size specifies the number of bits in addresses in the memory map, and thus defines the
settable range. For example, if abit size of 28 is specified, locations from H'0 to H'FFFFFFF
can be used, and if abit size of 32 is specified, locations from H'0 to H'FFFFFFFF can be
used.

A comment can be specified to identify the CPU information. A comment of up to 127
characters can be specified.

The bit size and comment are only input when creating a new CPU information file. The CIA
procedure starts with step (4), Editing, when an existent CPU information file is specified.

Memory map specification

The following options are presented as a CPU information input menu. Memory map
specification isiterated until a period (the exit command) is specified.

0:ROM 1. EXTERNAL 2:RAM 3:1/0 . END

» Options 0 to 3 specify amemory type, and each time one of these optionsis selected, the
system prompts for the start address, the end address, the number of states, and the data
bus width.

* Whenaperiod ('.") is entered, the memory map setup menu processing terminates.
Editing

The following options are presented as a CPU information editing menu.

1: ADD 2:DELETE 3:COMMENT 4:CIA ABORT .:CIA END

* When'1l' (ADD) is selected, the memory map specification of step (3) is performed.

* When'2' (DELETE) is selected, the system prompts (by index number) for input of an
address range to be deleted.

e When '3 (COMMENT) is selected, the system inputs a new comment line.

* When'4' (CIA ABORT) isselected, CIA processing is terminated without saving the CPU
information file.

When'' (CIA END) is selected, the system writes out the memory map information to the
CPU information file and completes CIA processing normally.

205

1.4 CIA Sample Sessions
This section presents two sample CIA sessions. The underlined sections are user inputs.
1. Creating anew CPU information file for the SH 7000 (mode 0).

% ci a shnodeO. cpu (RET) [T

SH SERIES CIA Ver. 1.1 (HS0700CI CULSM
Copyright (C) Hitachi, Ltd. 1992
Li censed Material of Hitachi, Ltd.

*%% NEW FI LE ***
* k% CPU '\/ENU * k *

1: SH 7000
2 1 (RET) (I
BIT SIZE 32 ? :32 (RET) . [T
COVVENT? ©* 93.01. 25 SH SAVPLE (RET) . (I
* k% % ,\/AP NENU * * %
0:ROM 1:EXTERNAL 2: RAM 3:1/0 .:END

2 1 (RET) « (I
* EXTERNAL START ADDRESS? 00000000 (RET)

« (I
END ADDRESS? OOFFFFFF (RET)
o [T
STATE COUNT ? 3 (RET) « [
8
DATA BUS S| ZE ? 8 (RET) « (I
9
* EXTERNAL START ADDRESS? 01000000 (RET)
END ADDRESS? 04FFFFFF (RET)
STATE COUNT 2 2 (RET
DATA BUS S| ZE 2 8 (RET
* EXTERNAL START ADDRESS? . (RET) . [T
0
* k% '\/AP NENU * % %
0:ROM 1:EXTERNAL 2: RAM 3:1/0 .:END
? 3 (RET

* 1/ O AREA START ADDRESS? 05000000 (RET)
END ADDRESS? OS5FFFFFF (RET)

STATE COUNT ? 3 (RET)
DATA BUS S| ZE ? 8 (RET)

206

w

* 1/ O AREA START ADDRESS? . (RET)

207

? .

* k * I\MP NENU * k *

0: ROM 1: EXTERNAL 2: RAM 3:1/0

? 1 (RET
* EXTERNAL START ADDRESS? 0600

: END

0000 (RET)

END ADDRESS? O07FF

FFFF_ (RET)

STATE COUNT ? 3
DATA BUS SI ZE ? 8

RET
RET

* EXTERNAL START ADDRESS? . (RET)

* % % ’\/AP NENU * % %

0: ROM 1: EXTERNAL 2: RAM 3:1/0

? 2 (RET)
* RAM AREA START ADDRESS? OF00

: END

0000 (RET)

END ADDRESS? OFFF

FFFF_ (RET)

STATE COUNT ? 1
DATA BUS SI ZE

RET

? 32 (RET)

* RAM AREA START ADDRESS? . (RET)

* k% '\/p\P NENU * k%

0: ROM 1: EXTERNAL 2: RAM 3:1/0

? . (RET) [T

* k k k% CPU INFO?IVATIO\I*****

CPU : SH 7000 « [T

' 93.01. 25 SH SAVPLE [T

BIT Sl ZE : 32 [T

No Devi ce Start

EXTERNAL : 00000000 -
EXTERNAL : 01000000 -
I/ O AREA : 05000000 -
EXTERNAL : 06000000 -
RAM AREA : 0F000000 -

g b W NP

End

OOFFFFFF
04FFFFFF
O5FFFFFF
07FFFFFF
OFFFFFFF

(d) C)) @ 0
** EDIT MENU **
1:ADD 2:DELETE 3: COMMENT 4:Cl A ABORT

(RET) (I

*** Cl A COWLETED ***

%

Description:

1
2
3

: END

3

P W wN

State

0)

.. CIA END

Bus

o

32

The name of anew CPU information file is specified when the CIA program isinvoked.
This item specifies the CPU type.
Thebit sizeis specified in decimal. The displayed default is taken if the specificationis

omitted.

208

@
(b)
(©

O O O 0N O U

Thislineisacomment. The comment field isleft blank if thislineis omitted. If more than
127 characters are entered, a warning message is displayed and the characters following the
first 127 are ignored.

The memory typeis entered as a number corresponding to the input menu.

The start address of the corresponding memory areais entered in hexadecimal.

The end address of the corresponding memory areais entered in hexadecimal.

The number of states for the corresponding memory areais entered in decimal.

The data bus width for the corresponding memory areais entered in decimal.

Data entry for the corresponding memory areais terminated with aperiod ('.").

The edit menu is automatically displayed when the input menu is terminated.

(a) The CPU type specified initem 2

(b) The comment entered in item 4

(c) Thehit size specified initem 3

(d) The map number

(e) The memory type specified initem 5

(f) The start address specified initem 6

(g) The end address specified initem 7

(h) The number of states specified initem 8

(i) The data buswidth specified initem 9

Thisinput terminates CIA processing normally. The memory map datais written to the file
specified when the CIA program was invoked.

209

2. A sample session in which an SH 7000 CPU information file is edited
Mode 0 is changed to mode 2 in this session.

% cia shnode0. cpu (RET) [T

SH SERIES CIA Ver. 1.1 (HS0700CI CULSM
Copyright (C Hitachi, Ltd. 1992
Li censed Material of Hitachi, Ltd.

*** OLD FILE ***
NEW CPU FI LE NAVE? shrmode2 (RET) - (T

*xxx%k CPU | NFORVATI QN *****
CPU : SH 7000
' 93.01. 25 SH SAMPLE
BIT SIZE : 32

No Devi ce Start End State
EXTERNAL : 00000000 - OOFFFFFF 3
EXTERNAL : 01000000 - O4FFFFFF
/O AREA : 05000000 - OSFFFFFF
EXTERNAL : 06000000 - O7FFFFFF
RAM AREA : OF000000 - OFFFFFFF

a b~ W NP
P W wN

** EDIT MENU **
1: ADD 2: DELETE 3: COMVENT 4:Cl A ABORT .:CIA END
? 2 (RET) . (T

DELETE MAP NUVBER? 1 (RET) « [T

*rkkk CPU | NFORMATI ON *xxx*

CPU : SH 7000

’93.01.25 SH SAWPLE

BIT SIZE : 32

Devi ce Start End State
EXTERNAL : 01000000 - O4FFFFFF 2
I/ O AREA : 05000000 - OS5FFFFFF 3
EXTERNAL : 06000000 - O7FFFFFF 3
RAM AREA : OF000000 - OFFFFFFF 1

-lkool\)l—‘g

210

Bus

o o

32

w

Bus

32

** EDIT MENU **

1: ADD 2: DELETE 3: COVWENT 4: Cl A ABORT .. CIl A END
? 1 (RET) [T
* % % IVAP 'VENU * % %
0: ROM 1: EXTERNAL 2: RAM 3:1/0 : END
? 0 (RET) « [
* ROM AREA START ADDRESS? 00000000 (RET)
END ADDRESS? O0OOFFFFFF (RET)
STATE COUNT ? 1 RET
DATA BUS SI ZE ? 32 (RET)
* ROM AREA START ADDRESS? . (RET)
* % % ,\MP ,\ENU * % %
0: ROM 1. EXTERNAL 2: RAM 3:1/0 . END
? . (RET
* Kk k k% C'DU INmeTIm*****
CPU : SH 7000
' 93. 01. 25 SH SAMPLE
BIT SIZE : 32
No Devi ce Start End State
1 : ROM AREA : 00000000 OOFFFFFF 1
2 : EXTERNAL : 01000000 04FFFFFF 2
3 : 1/0 AREA : 05000000 O5FFFFFF 3
4 : EXTERNAL : 06000000 07FFFFFF 3
5 : RAM AREA : 0F000000 OFFFFFFF 1
** EDIT MENU **
1: ADD 2: DELETE 3: COMVENT 4: Cl A ABORT .:ClA END

?_. (RET)
% C| A COMPLETED *
%

Description:

1 Thename of thefileto be edited is specified when the CIA programisinvoked. ".cpu” is

supplied if the extension is omitted.

Bus
32

[ee]

32

2 Thisitem specifies anew file to be created when editing isdone. If only (RET) is entered, the
datawill be output to the file specified initem 1 . If only the extension is omitted, ".cpu" will

be supplied. The map datais automatically displayed.

3 "DELETE" is specified to delete information to be changed in the edit menu.

211

4 Theinformation to be deleted is specified as amap number. The state of the map information
after the deletion is displayed.

ol

“ADD” is specified to input the changed information.

6 Theinput menu isdisplayed, and the memory type is entered in the same manner as that used
when creating anew CPU information file. The state of the map information after the

addition is displayed.

1.5 CIA Limitations

Table 1-1 lists the limitations on data specified using the CIA program. The CIA program cannot
handle values which exceed these limitations.

Table1-1 CIA Limitations

Iltem

Limitation Value

Notes

Input file format

CPU information files
output by the SH CIA

Bit size

Only values specified

in decimal

The specifiable range is
from 24 to 32

Address specifications

Only values specified in
hexadecimal

The specifiable range
depends on the bit size

The range is from H'O
to H'FFFFFF when the
bit size is 24.

Number of states

Only values specified in
decimal

The specifiable range is
from 1 to 65535

Specify the number of
states including the wait
states when wait states
are inserted.

Data bus width

Only values specified in
decimal
The specifiable values are

multiples of 8 between 8 and

65528

Comment length

Up to 127 characters

Number of map
information items

Up to 65535 items

Note that there may be
limitations imposed by
the memory capacity of
the system on which the
CIA program is running.
Invalid regions are also
included in the number
of items.

212

213

Appendix A Differences between Line Assemble Command
and SH-Series Cross Assembler Syntax

Table A-1 lists the differences between the syntax of the SH-series cross assembler and the syntax
of the simulator/debugger line assembly function.

Table A-1 Differences between Line Assemble Command and SH-Series Cross Assembler

Syntax
ltem Line Assemble Command SH-Series Cross Assembler
Location counter Not allowed Allowed
reference Example:
MOV.L @(H'100-$,R0),R1
Use of the '-' Not allowed Allowed
character to Example: Example:
represent unitary Use 0-10 to specify -10, The notation -10
negation e.g. MOV.L #0-10,R0 can be used,
e.g. MOV.L #-H'10,R0
Use of control Allowed in .DATA only Allowed
directives
Label definition Not allowed Allowed
Data value Hexadecimal Decimal

default radix

Handling of
instructions that
generate warnings
with the SH assembler.

These instructions are errors,
and no code is generated.

Code is generated.

An instruction following
a delay branch
instruction is

branch instruction.
(Invalid slot Instruction)

Code is generated.
During simulation,
exception processing
starts.

An error occurs and
no code is generated.

215

Appendix B SH-Series Assembler Mnemonics

Table B-1 lists the mnemonics that can be used with the simulator/debugger’s line assemble

commands.

TableB-1 Assembler M nemonics Recognized by the Line Assemble Command

Type Instruction Number of Instructions
Data transfer MOV, MOVA, MOVT, SWAP, XTRCT 5
Arithmetic ADD, ADDC, ADDV, CPM/cond, 17
operation DIV1, DIVOS, DIVOU, EXTS,

EXTU, MAC, MULS, MULU, NEG,

NEGC, SUB, SUBC, SUBV
Logic operation AND, NOT, OR, TAS, TAT, XOR 6
Shift and rotate ROTL, ROTR, ROTCL, ROTCR, 10

SHAL, SHAR, SHLL, SHLR,

SHLLn, SHLRNn
Branch, jump, BF, BT, BRA, BSR, JMP, JSR, 7
and return RTS
Privileged and CLRT, CLRMAC, LDC, LDS, NOP, 11

control register
manipulations

RTE, SETT, SLEEP, STC, STS,
TRAPA

216

Appendix C SH-Series Memory Maps

Table C-1 shows the SH7000 memory maps.

TableC-1 SH7000 Memory Map

Mode 0

(Extended mode without ROM)

Mode 1

(Extended mode without ROM)

Mode 2

(Extended mode with ROM)

Mode 7
(PROM mode)

H'0x00000—
H'OX003FF

H'1x00000

H'5x00000

H'6x00000

H'8x00000

H'9x00000

H'Fx00000

HFXFFFFF

Vector area

External bus area/csO
(Bus width: 8 bits)

External bus area/
csl-cs4
(Bus width: 8 bits)

Internal I/O area
(Bus width: 8/16 bits)

External bus area/
cs6 and cs7
(Bus width: 8/16 bits)

External bus area/csO
(Bus width: 8/16 bits)

External bus area/
csl-cs6
(Bus width: 16 bits)

Internal RAM area
(Bus witdth: 32 bits)

H'0x00000—
H'0X003FF

H'1x00000

H'5x00000

H'6x00000

H'8x00000

H'9x00000

H'Fx00000

HFXFFFFF

Vector area

H'0x00000—
H'0X003FF

External bus area/csO
(Bus width: 16 bits)

External bus area/
csl-cs4
(Bus width: 8 bits)

H'1x00000

Internal I/O area
(Bus width: 8/16 bits)

External bus area/
cs6 and cs7
(Bus width: 8/16 bits)

H'5x00000

H'6x00000

External bus area/csO
(Bus width: 16 bits)

H'8x00000

External bus area/
csl-cs6
(Bus width: 16 bits)

H'9x00000

Internal RAM area
(Bus witdth: 32 bits)

H'Fx00000

HFXFFFFF

Vector area H10x00000~ Vector area
H'0X003FF

External bus area/csO Internal ROM area

(Bus width: 32 bits) (Bus width: 32 bits)
H'1x00000

External bus area/

csl-cs4

(Bus width: 8 bits)

Internal 1/O area H'5x00000 Internal I/0 area

(Bus width: 8/16 bits) (Bus width: 8/16 bits)

External bus area/ H'6x00000

cs6 and cs7

(Bus width: 8/16 bits)
H'8x00000

Internal bus area Internal ROM area

(Bus width: 32 bits) (Bus width: 32 bits)
H'9x00000

External bus area/

csl-cs6

(Bus width: 16 bits)
H'Fx00000

Internal RAM area Internal RAM area

(Bus witdth: 32 bits) (Bus witdth: 32 bits)
HFXFFFFF

Notes: 1. The example in section 1.4.1, CPU Information File Creation Program, uses mode 0 (extended mode without ROM).

INEANN)

217

. The example in section 1.4.2, CPU Information File Creation Program, uses mode 2 (extended mode with ROM).
. In the SH-series, external bus spaces do not coexist with the same/csn (chip select pins).
. Two internal ROM areas exist in modes 2 and 7 are actually the same area in the SH-series.

'S3IBS-HS ay) Ul BaJe swes ay) A|[enide ale J pue g Sapow Ul 1SIXa Seale WOY [euJaiul OM |

‘(INOY YiM apow papuaixa) g apow sasn ‘welbold uoneal) a|i4 uonewuoju] NdD ‘Z''T uonoaas ul ajdwexs ay |

14
‘(suid 10913s diyd) usa/eWeS 8yl YHM 1SIX809 10U Op sadeds Sng [eulaixd ‘salas-HS ayr Ul 'S
4
T

*(INO¥Y INOYIM 3pow Papualxa) 0 apow sasn ‘welfold uoieal) 8|4 uonewlio| NdD ‘T’ T uondas ul ajdwexa ayl S910N
EEEEERCHS EEEEERCHS d4444%4.H d4444%4H
(snq z¢€ :uipum sng) (sHq z¢g :uipum sng) (snq z€ :upwum sng) (snq z€ :ypum sng)
eale N\YY [eulsiu| eale NYY [euwlsiu| eale NYY [eulalu| eale \vY [eulaiu|
00000%.H 00000%=.H 00000%.H 00000%4.H
(snq 9T :yipim sng) (snq 9T :yipim sng) (snq 9T :yipm sng)
9S0—-TSO 9SO-TS2 9SO0—TS2
/eale snq [eulaixgy Jeale snq [eusaixgy Jeale snq [eusaix3
00000X6:H 00000X6H 00000%6,H 00000X6H
(sng g€ :uypm sng) (suq zg :upm sng) (suq 9T :yIpm sng) (sug 9T/8 yIpim sng)
eale NOY [eulalu| eale sng [eulau| (0s9/eale snq [eutsixy (0s9/eale snq |eussixy
00000X8H 00000X8H 00000X8.H 00000X8.H
(sng 97/8 :uipim sng) (sna 91/8 :yipim sng) (snq 91/8 :uipim sng)
/SO pue 9s2 /S92 pue 9s2 1S9 pue 9sd
00000X9.H [eale snq [eulsixg 00000X9.H [eale snq [eulaixg 00000X9.H [eare snq [euIaix3 00000X9.H
(sng 97/8 :uipim sng) (sng 97/8 :uipim sng) (sna 91/8 :yipim sng) (snq 91/8 :yipim sng)
eale [eulalu eale eulalu eale jeulalu eale eulaju
St 00000XGH O/ feuisl 00000XSH Onfeuisil 00000XG.H O/ feussl 00000XSH
(sna 8 :ppim sng) (snq 8 :yipim sng) (suq 8 :yipm sng)
#S9-TS2 $S9-TS0 S0-TSO
/eale snq [eusaixy fealte snq [eusaixgy [eale snq [eusaix3
00000XTH 00000XTH 00000XT.H 00000XT.H
(sng zg ‘upim sng) (sng z€ ‘upim sng) (snq 9T :yipim sng) (sng 8 :ypim sng)
eale NOY |eulaiu| (0s9/eale snq [eulaix3 (0s9/eale snq [eutsix3y (0s9/eale snq [eulalx3y
eore 10100 44E00X0H 2ol 10100 44E00X0H eore J0100N 44E00X0.H NUp— 44€00X0H
—~00000X0H ~00000X0H —00000X0.H ~00000X0H

(epow NOXUd)
L 3pon

(WO¥ ynm apow papuaix3)

¢ 9PonN

(NO¥Y 1noyym dpow papudlx3)

T 9ponN

(WO¥ InoyMm dpow papualxl)

0 9pon

de N Alows N 000LHS T-D9l0eLl

218

Appendix D Sample Programs

/***************************************/

[** FILE NAME | S sanple.c *x
/***************************************/
#i ncl ude "stdio.h"
struct rec_ctl {

short rec_it;

short rec_|In;

short rec_no;

struct rec_ctl *rec_nx;

b

short Print_rec(void);
voi d Read_rec(void);

voi d Bi n_ascii (char *p);
voi d Ph_read(char *bp);

/ K o e */
/* ASSEMBLER |/ O SI MULATI ON SUBROUTI NES. */
| ¥ o L e e e e e e e e e e e e e e e e e e emieaas * [

extern short F_open(char *name, char *node, short f_id);
extern short F_close(short f_id);

extern short Read(char *p);

extern void Wite(char *p);

extern short F_read(short f_id char *p);

struct rec_ctl rec_v0[1000];

short stop_f, phg_pos, phg_lng, rec_num nxt_f, |_rec_no;
char | og_rec[512], phg_rec[1024];

char | _buf[30] = "---mmmmm e - ¥n";

char f _name[80] ;

short f_id;

short f_no;
voi d main()
[*: Make the file name pronpt. -----------mmmmm oo */

Wite("File Nane please.");
Read(f_nane) ;

/*: Try to open INPUT file@. -----mmmmm i */

/*: “F_open” will return O n : successful. The nunber is file ID. ----%*/

/*: -1 : open failed., -------------mmmmii */
f _no = (short)O;

f_id == F_open(f_nane, “rt”, f_no);

[* Initialization, ------ommmmm oo */
stop_f = (shortt)O; /*: Loop control. */
phg_pos = (shortt)-1; /*: Record extract index. (-1 = No data) */
nxt _f = (shortt)O; [*: EOF marker. */
| _rec_no = (shortt)O; /*: Record counter. */

L e */

/*: Loop of record read/print process. */

/*: “Print_rec” will return 1 when ending data had been processed. */

219

[*:
while (stop_f == 0)
{

/*
/~k
/*

/*:
/*:
[*:
[*:

stop_f = Print_rec();

}
: Conpleted. Cose and exit. -----------mmmmmmm
: “F_close” will return O : successful. ---------nmmmmmmmmnn
: 1 : unsuccessful. ----------------o-o
F_cl ose(f_no);

Nanme : Printf_rec; Read and print records.
Func : Read and printf 1 |ogical record.

shbrt Print_rec()

[*:

/*:

/*:

/*:

/*:

[*:

[*:

short wi, put_pos, rec_pos, rec_lng, rtncd;
char hex_buf[100], asc_buf[100],

| _char, r_char, il _char, ir_char, *hx_p;

Read 1 record. “Read_rec” sets the data to "log_rec" array. --------
Read-rec();

Save Record IT (ID), Length, and record nunber. --------------------
rec_ vO[1 rec_no].rec_it = (char)(0x7f & log_rec[O0]);
rec_v0[1l_rec_no].rec_In = (unsigned char)log_rec[l];
rec_v0[1_rec_no].rec_no = rec_num

Make | T characters. --------mmmmmm
il_char = (char)(rec_vO[Il_rec_no].rec_it >> 4);

ir_char = (char)(rec_vO[1 rec_no].rec_it & OxOf);

Bin_ascii (& | _char);

Bi n_ascii (& r_char);

Make record length characters. ---------cmmmmmmm e
| _buf[15] =il _char;

| _buf[16] = ir_char;

Print header. IT and length., -------cmmmmmm oo
Wite(l _buf);

Endi ng record check. Ending record IT is Ox7F., ---------------------
if (rec_vO[1_rec_no}.rec_it == (char)Ox7f)

rtncd = (short)l;
return (rtncd);

}

Not a endinf record. Edit and print each 16 bytes. -----------------
rec_Ing = (short)(

rec_vO[l _rec_no].rec_In - (short)2); /*: length adjust.
rec_pos = (short)?2; /*: data position.

for (wi = (short)0; wi < (short) 36;

hex_buf[w ++] = (char)0x20); [*: buffer initial

for (wi = (short)0; wi < (short)16;

asc_buf[w ++] = (char)0x20); [*: cl ear.
hx_p = &hex_buf[0]; /*:
put _pos = (short)O0; /*: 1 line position.

220

*/

*/

*/
*/

*/

*/

*/

*/

*/

*/

*/

*/

*/
*/

*/

A e e */
while (rec_Ing > 0)

{
if (put_pos == 16)

/*: buffer full with 16 bytes. print themvia asm 1/0O sinulation. */
hex_buf[36] = (char)0x00; /*: Term nal NULL. */
asc_buf[16] = (char)0x0a; /*: Term nal LF and */
asc_buf[17] = (char) 0x00; /*: NULL */
Wite(hex_buf);

Wite(" ");
Wite(asc_buf);

/*: Re-initialization, -------mmmm oo */
for (wi = (short)0; wi < (short)36; hex_buf[w ++] = (char)0x20);
for (wi = (short)0; wi < (short)16; asc_buf[w ++] = (char)0x20);
hx_p = &hex_buf[0];
put _pos = (short)O;

}
/*: Set 1 byte data. Hex-dunp and ASCI| image. ------------------------- */

1 char = (char)(log_rec[rec_pos] >> 4);
r_char = (char)(log_rec[rec_pos] & (char)O0x0f);
[* HEX- UMD, - - s - m o m oo m oo e o o e oo */
Bi n_ascii (&l_char);
Bi n_ascii (& _char);
*hx_p++ = 1_char;
*hx_p++ = r_char;

if ((put_pos %4) == 3) /*: space gap for 4-bytes */
{
*hx_p++ ="' '
b
J* ASCll T MBQE. - - - -m s s s m oo oo oo */
if (log_rec[rec_pos] >= Ox7f || log_rec[rec_pos] <= Oxlf)

asc_buf [put _pos] = (chart) '.";
el se

asc_buf [put _pos] = log_rec[rec_pos];

/*: pointer increnent and counter decrement. ---------------oo- */
put _pos++;
rec_pos++;
rec_|l ng—
}
[*: Final printf. ----ommi oo */
hex_buf[36] = (chart)0x00;
asc_buf[16] = (chart)OxO0a;
asc_buf[17] = (chart)0xO00;
Wite(hex_buf);
Wite(" ")
Wite(asc_buf);
/*: Increment the record nunber for next read. ------------------------- */
1 rec_no++;
rtncd = (short)O;

~

221

return (rtncd);

}
A R R LR R LR L TR */
/*: Name : Read_ rec; Read 1 |logical record. */
/*: Func : Read 1 |ogical from physical record buffer. */
R e LR P */
voi d Read_rec()
short w ;
/*: Initial record reading check. ---------------mmmmm o */
if (phg_pos == -1)
{
Ph_read(phg_rec); /*: First 256 bytes. */
Ph_r ead(phg_rec+256); /*: first spare 256 bytes. */
phg_pos = (short)O0; /*: Index initialize. */
rec_num = (short)O0; /*: physical record nunber initialize. */
/*: Top of data. It is the record length. ---------mmmmmmmmmo */

bhg_l ng = phg_rec[phg_pos + 1];
if (phg_lng < 0)
{

phg_l ng += 256; /*: Adjust to unsigned char. */
}
/*: Record extracting loop. --------- oo */
W = (short)O;
while (wi <phg_Il ng)

log_rec[w ++] = phg_rec[phg_pos++];

/*: physical record buffer arranging. ---------------ommm o */
if (phg_pos > 255)
{

/*: Set spare 256 bytes to normal extracting area. --------------------- */
for (W = 0; W < (short)256; w ++)

{
phg_rec[wi] = phg_rec[w + 256];
}
/*: Read next spare 256 bytes. ---------ommmm oo */

Ph_r ead(&hg_rec[256]);
phg_pos -= 256;

rec_num+;
}
}

LA e e */
/*: Name : Bin_ascii; Binary — ASCI| conver. */
/*: Func : Convert 4 bit binary data to 1 ASCI| character. */
LA e I R R */
void Bin_ascii(p)
char *p;

{
if (*p >= (char)0x0a)
{

222

*p += (char)((char)0x41 - (char)0x0a);
}

el se
{
*p += (char)0x30;
}

}

T
/*: Name : Ph_read; physical 256 bytes read.

/*: Func : Read 256 bytes via ASM /O sinmul ation subroutine.
s

voi d Ph_read(bp)
char *bp;
{

char pb[256], *pp;
short pi, pj, pcl, pcr, f_no ;

/*: Read loop. "F_read" reads 16 bytes data as 1 |line |NPUT.

f_no = (short)O;
if (F_read(0, bp) !'=0)
{

[*: Data | ess than 256 byte block., ---------------mmmmmm

if (F_close(0) !'=0)
{
Wite("ALSO, CLCSE failed.¥n");
}

nxt_f = (short)1;

}
}

223

*/

*/

*/
*/
*/

*/

*/

EEE R R Sk Sk R R R R R R S R R R R S R R S R R R
1

FILE NAME | S PROG SRC *

1

;¥ TH'S PROGRAM | S DESI GNATED FOR SH

;* SAMPLE OF SD38 1/ 0O SI MULATI ON.

IE R SRR SRR EEEEEEEEEEEEREEEREEEEEREEEEEEEEEEEEEE SR SR RS SRR SRR S SR
1

© 1 LINE READ FROM CONSOLE . . .\ ooe oo -
7 Read
. REG STER SAVI NG
STS. L PR, @RL5: SAVE PR
. PARAMVETER BLOCK SETTI NG
NOV. L R4, RO . | NPUT AREA ADDRESS (ARGUVENT 1
RA)
MOV, L PARM 1, R - PARAMETER ARER ADRESS
MOV. LPO, @R1 - SET
. GO TRAP
MOV, L REQ CD 1, RO . REQUEST CODE
MOV, L TRP_AD 1, R3 " TRAP ADDRESS SET
JSR a3 . GO TRAP! (DELAY BRANCH)
NOP
. RETURN CODE CHECK. |F TOP OF DATA IS 0, NO DATA HAD BEEN READ.
MOV, L PARM 1, R3 - BUFFER ADDRESS, ADRRESS
MOV, L @3, Rl . BUFFER ADDRESS
NOV. B @Rl RO . READ CHECK
CVP/EQ #0, RO " |F 0X00, NOTHI NG HAD BEEN READ
BT REXIT NORMAL
. RETURN CODE SET. I/0O ERROR OR ECF = 1
NOV. L #1, RO
MOV. L RTN_AD 1, R3
BRA R RTN _ : DELAY BRANCH
MOV, L RO, @3 . SET 1

. EXPORT TRAP
.EXPORT _Read, Wite

.EXPORT _F open, _F cl ose, _F read

RETURN CODE SET. NORMAL END = 0.

SUB.L RO,RO
MV.L RTN.AD 1, R4
MV.L RO, @4

RETURNNI NG SEQUENCE

R_RTN

1

MOV L RTN_AD_1, R2
MOWV.L @2, RO

RETURN PO NTER SET
SET RETUTRN CODE
DELAY RETURN

LOAD PR

PO NTER AREA

224

PARM _1 . DATA. L PARM

REQ CD 1 . DATA. L H 01230000

TRP_AD 1 . DATA. L TRAP

RTN_AD 1 .DATA. L RTN_CD

1 LINE WRITE TO CONSCLE e -
’_Wi te

. REG STER SAVI NG
STS.L PR @RI5 . SAVE PR

" PARAMETER BLOCK SETTI NG
MV.L R4, RO . I NPUT AREA ADDRESS (ARGUMENT 1 = R4)
MOV.L PARM 2, Rl

. GO TRAP.
MOV. L REQ CD_2, RO
MOV. L PARN 2, Rl
MV.L TRP_AD 2, R3
JSR a3
NOP

W RTN
SUB. L RO, RO : SET RETURN CODE
RTS . DELAY RETURN
LDS. L @15+, PR : LOAD PR

.align 4
PARM 2 . DATA. L PARNM
REQ CD 2 . DATA. L H 01240000
TRP_AD 2 . DATA. L TRAP
; FILE OPEN

. REG STER SAVI NG

STS. L PR, @ RL5 . SAVE PR
: PARAVETER BLOCK SETTI NG
MOV. L R5, RO : OPEN MODE (ARGUNVENT 2 = R5)
BSR CNV_MODE : CHAR — MODE-ID
NOP : (DELAY BRANCH)
MOV. L FP_ FUNUM 3, R3 ; SET
MOV. B RO, @3
CW/PZ RO
BF FR_ERROR : -1, MODE- CONVERS| ON ERROR
MOV. L R6, RO : FILR NUMBER (ARGUMVENT 3 = R6)

225

mrrrrrrrmr

FP_FNUM 3, R3

RO, @R3

R4, RO
FP_FNMVA 3, R3
RO, @3

RO, RO
FP_RCOD_3, R3
RO, @3
REQ CD 3, RO
PARM FP_3, RL
TRP_AD_3, R3
@3

; RETURN CODE SAVI NG

’

; MODE CONVERSI ON ERROR. RETURN - 2.

FR_ERROR
MOV. L
MOV. L
MOV. L

#H FE, RO
RTN_AD 3, R3
RO, @3

; RETURNNI NG SEQUENCE

FO_RTN:

REGQ STER SAVI NG

RTN_AD 3, R8
@8, RO

@15+, PR

DATA. L FP_FUNM
DATA. L FP_MODE
DATA. L FP_FNMVA
DATA. L FP_RCOD
DATA. L H 01250000
DATA. L PARM FP
DATA. L TRAP
DATA. L RTN_CD

STS.L PR @R15

SET

FI LE NAME ADDRESS (ARGUMENT_1

SET

CLEAR RETURN CODE AREA

REQUEST CODE
PARAM AREA ADDRESS

GO TRAP !

WWORK
LOAD RETURN CODE

GOTO RETURN SEQUENCE

SAVE RETURN CODE (DELAY BRANCH)

SET RETURN CODE
DELAY RETURN
LOAD PR

SAVE PR

226

R4)

; PARAMETER BLOCK SETTI NG

MOV. L R4, RO ; FI'LE NUMBER (ARGUNVENT_1
MOV. L FP_FNUM 4, R3 ; SET
MOV. B RO, @3 ;
SUB. L RO, RO ;
MOV. L FP_RCOD 4, R3 ;
MOV. L RO, @3 ; CLEAR RETURN CCDE AREA
; GO TRAP.
MOV. L REQ CD 4, RO ; REQUEST CCDE
MOV. L PARM FR4, R1 ; PARAM AREA ADDRESS
MOV. L TRP_AD 4, R3 ; GO TRAP !
JSR @3
; RETURN CODE SAVI NG
SUB. L 0, RO ;. VWORK
MOV. L FP_RCOD 4, R3 ;
MOV. B @3, Ro ; LOAD RETURN CCDE
EXTU. B RO,RO ;
MOV. L RTN_AD 4, R3 ; SAVE RETURN CCDE
MOV. L RO, #r3 ;
; RETURNNI NG SEQUENCE
C_RTN:
MOV. L RTN_AD 4, R2
MOV. L @2, rRo ; SET RETURN CCDE
RTS ; DELAY BRANCH
LDS. L @R15+, PR ; LOAD PR
; PO NTER AREA
align 4
FP_FNUM 4 DATA. L FP_FNUM
FP_RCOD 4 DATA. L FP_RCCOD
REQ CD_4 DATA. L H 01060000
PARM FP_4 . DATA. L PARM FP
TRP_AD 4 DATA. L TRAP
RTN_AD_4 DATA. L RTN_CD
;7 1 LINE READ FROM FILE -
_F_read;
; REG STER SAVI NG
STS. L PR, @R15; SAVE PR
; PARAMETER BLOCK SETTI NG
MOV. L R4, RO ; FI'LE NUMBER (ARGUMENT_1
MOV. L FR_FNUM 5, R3 ; SET
MOV. L RO, @3 ;
MOV. L R14, R8 ;
ADD #H 10, R8 ;| NPUT AREA ADDRESS
MOV. L @8, R0 ; SET
MOV. L FR_BUFP_5, R3 ;

227

R4)

R4)

MOV. L RO, @3 ;
SUB. L RO, RO ;
MOV. L FR_RCOD 5, R3 ;
MOV. B RO, @3 ; CLEAR RETURN CODE AREA
; GO TRAP.
MOV. L REQ CD_5, RO ; REQUEST CODE
MOV. L PARM FR 5, R1 ; PARAM AREA ADDRESS
MOV. L TRP_AD 5, R4 : GO TRAP!
JSR (@22 ; DELAY BRANCH
NOP
; RETURN CODE SAVI NG
SUB. L RO, RO 7 VWORK
MOV. L FR_RCOD5, R4 ;
MOV. B @4, RO ; LOAD RETURN CODE
EXTU. B RORO ;
CWP/ EQ #0, RO ;
BT FR_SET ; NORMAL
MoV #H FF, RO ; ECOF
FR_SET:
MOV. L RTN_AD_5, R3 ; SAVE RETURN CCD
MOV. L RO, @3 ;
; RETURNNI NG SEQUENCE
FR_RTN:
MOV. L RTN_AD_5, R8
MOV. L @8, RO 7 SET RETURN CODE
RTS ; DELAY RETURN
LDS. L @r15+, PR ; LOAD PR
; PO NTER AREA
align 4
FR_FNUM 5 DATA. L FR_FNUM
FR BUFP_5 DATA. L FR_BUFP
FR_RCOD_5 DATA. L FR_RCOD
REQ CD 5 DATA. L H 01290000
PARM _FR5 DATA. L PARM FR
TRP_AD 5 DATA. L TRAP
RTN_AD 5 DATA. L RTN_CD
; CONVERT MODE STRI NG TO BE MODE | D NUMBER. -
CNV_MCDE:
STS. L PR, @ R15 ;. PR SAVE
MOV. L R8, @ R15 ; R8 SAVE
MOV. L SV_RIP, R8
MOV. L R1, @8 ; RL SAVE
MOV. L SV_R2P, R8
MOV. L R2, @8 ; R2 SAVE
MOV. L SV_R3P, R8
MOV. L 3, @8 ; R3 SAVE
MOV. L SV_R4P, R8
MOV. L R4, @8 ; R4 SAVE

228

MOV. L SV_R5P, R8
MOV. L R5, @r8 ; RS SAVE
MOV. L SV_R6P, R8
MOV. L R6, @r8 ; R6 SAVE
MOV. L SV_R7P, R8
MOV. L R7, @8 ;. R7 SAVE
; LOAD USER SPECI FI CATI ON AND CONVER TO BE | ower CASE STRI NG
MOV. L CNV_STR6, R2
CNV000:
MOV. B @R, R1 I +
EXTU. B R1, R1 ;. TERM NATOR +
SUB. L R4, R4 ; +
CWP/ EQ R1, R4 ; +
BT CNV100 ; +
MOV #H 61, R4 ; +
CwWP/ GT R1, R4 ; + -- | ower CHANGE LOOP
BF CNV0101 ; +
ADD #H 20, R1 : +
EXTU. B R1R ;. TO BE | ower +
CNV010: ; +
MOV. B R1, @r2 ; LOCAL SAVE +
ADD. L #1, RO ; +
BRA CNV000 ; DELAY BRANCH +
ADD. L #1, R2 e +
;. COVPARE W TH MODE- STRI NG.
CNV100:
MOV. L CNV_TBL6, ER1 ; TOP OF COMPARE STRI NG ADDRESS ARRAY
SUB. L R2, R2 ;. LOCAL | NDEX
CNV110:
MOV. L @r1, R3 . DATA ADDRESS
SUB. L R6, R6 ; WORK 0 CLEAR
CWP/ EQ R6, R3
BT CNVv400 ; NULL, NO DATA MORE. IT IS AN
ERRCR
MOV. L CNV_STR6, R4 ;. TOP OF USER STRI NG
CNV120:
MOV. B @4, RS ; LOAD 1 CHAR
MOV. L #0, R7 ;
CWP/ EQ R5, R7 ;
BT CNV300 ; NULL- CHAR, NOW COVPLETED
MOV. B @R3, R6 ;. SET TO UPPER
CWP/ EQ R5, R6 ;. SAVE?
BF CNV190 ;. NO, TRY NEXT
ADD #1, R3
BRA CNV120
ADD #1, R4
;. TRY NEXT STRI NG
CNV190:
ADD #4, R1 ;. NEXT STRI NG TABLE ENTRY
ADD #1, R2 ;| NCREMENT THE | NDEX

BRA CNV110 ;o TRY NEXT

229

; COVPARE SUCCESSFUL.

ER2 HAS THE MCDE- 1 D | NDEX.

RO, RO ;

CNV_RC6, R4 ; RESET THE RC.

RO, @r4 :

MODE_TBL6, R3 ; MODE-| D NUMBER TABLE
R2 ; INDEX * 2

R2, R2 ;

R2, R3 ; TABLE ENTRY

@R3, RO ; RO NOW THE MODE- I D
#2, R4 ; SAVE TEMPORARY
CNV500 ; GO TO RETURN SEQUENCE
RO, @4

SV_RILP, R8

@8, R1
SV_R2P

, R2

8

SV_R3P, R8

3

282828

@r8, R6

R4P, R8

R8

B

SV_R7P, R8 :

_DATA.

CNV300:
SUB. L
MOV. L
MOV. L
MOV. L
SHLL
EXTU. B
ADD. L
MOV. W
ADD. L
BRA
MOV. W

CNV400:
MOV. L
MOV. L
MOV. L

; RETURNNI NG RESEQUENCE

CNV500:
MOV. L
MOV. L
MOV. L
MOV. L
MOV. L
MOV. L
MOV. L
MOV. L
MOV. L
MOV. L
MOV. L
MOV. L
MOV. L
MOV. L
MOV. L
MOV. L
MOV. L
RTS
LDS. L

; PO TER AREA

align 4

SV_R1P

SV_R2P

SV_R3P

SV_R4P

SV_R5P

SV_R6P

SV_R7P

CNV_STR6

CNV_TBL6

CNV_RC6

MODE_TBL6

- DATA.

230

RELOAD REG STER

LOAD RETURN CODE

" LOAD R8 REQ STER
" DELAY BRANCH
. PR LOAD

TRAP NOP
. DATA AREA. PARANETER BLOCK AND |/ O BUFFER -
’ .section dt, data
© OONSOLE 1/ 0 SI MULATI ON PARAVETER BLOCK. -
PARM RES. L 1 - 1/ 0 BUFFER ADDRESS
© FILE 1/ 0 S| MULATI ON PARAVETER BLOCK. -
PARM FP
FP ROOD .RES.B 1 . RETURN CODE AREA
FP_FNUM .RES.B 1 - FILE | D NUVBER
FP_MODE .RES.B 1 . OPEN MODE
FP_RESV .RES.B 1 . RESERVED
FP_FNMA .RES.L 1 . FILE NAVE AREA ADDRESS
* FILE 1/0 SI MULATI ON / FI LE- READ PARAMVETER BLOCK. -
PARM FR:
FR ROOD .RES.B 1 . RETURN CODE AREA
FRFNUM .RES.B 1 " FILE | D NUMBER
.align 4
FRBUFP .RES.L 1 . FILE NAME AREA ADDRESS
FR SIZE .DATAW H 100 : RESERVED
.align 4
RTN_CD RES.L 1 . RETURN CODE SAVE AREA
. OPEN MODE CONVERSI ON TABLE. -
CNV._TBL
_DATA L STRO
DATA L STR 1
_DATA L STR 2
_DATA L STR 3
DATA L STR 4
_DATA L STR5
DATA L STR 10
DATA L STR 11
_DATA L STR 12
DATA L STR 13
_DATA.L STR 14
_DATA'L STR 15
STR 0 _SDATAZ "r"
STR 1 _SDATAZ "w'
STR 2 _SDATAZ "a"
STR 3 SDATAZ "r+"
STR 4 SDATAZ "w"
STR 5 _SDATAZ "a+"
STR 10 .SDATAZ "rb"

231

STR 11 . SDATAZ "wp"

STR 12 . SDATAZ "ab"
STR 13 .SDATAZ "r+b"
STR 14 .SDATAZ "wb"
STR 15 .SDATAZ "a+b"
MODE_TBL:
.DATA.W H 0000
DATAW H 0001
DATAW H 0002
DATA W H 0003
DATAW H 0004
.DATA.W H 0005
DATAW H 0010
DATAW H 0011
DATA W H 0012
DATAW H 0013
DATA W H 0014
DATAW H 0015

SV_RL RES. L 1
SV R RES. L 1
SV_R3 RES. L 1
SV R4 RES. L 1
SV_R5 RES. L 1
SV_R6 RES. L 1
SV_R7 RES. L 1
C\V_STR . SRES 16
CNV_RC RES. L 1
. END

232

Appendix E Limitations on Debugging Object Programs

The following type of programs cannot be loaded as debugging object programs. An error
message will be displayed on attempts to load such programs.

Condition
1. Section areas overlap

Coding example 1.
. SECTI ON SC1, CODE, LOCATE=0
. RES. W 1000

. SECTI ON SC2, CODE
. DATA 100

Since SC2 isarelocatable section, it will be loaded starting at address H'400. However, this
overlaps SC1, causing an error.

Coding example 2:
. SECTI ON SC3, CODE
. ORG H 1000
MOV.L RO, R1
. ORG H 2000
MOV.L RO, R2
. SECTI ON SC4, CODE, LOCATE=H 1500
. DATA 100
. END

The section SC3 extends from address H'400 to address H'2401 due to the use of the .ORG
control statement. Asaresult, section SC4 overlaps that section and generates an error.

Note that is possible to avoid this overlap by specifying an appropriate start address for the
relocatable section to the H-series linkage editor.

2. A section with the same name but with a differing attribute (CODE, DATA, STACK, or
COMMON) existsin another unit.

Coding example:

: UNI T1 - UNI T2
. SECTI ON SC, CODE . SECTI ON SC, DATA
NOP . DATA. W 100
. END . END

233

Since the attributes of SC in unit 1 and SC in unit 2 differ, an error occurs.

3. Anobject module or load module has a section size of 0.
Coding example:
. SECTI ON SC, CODE
. END
Since SC has a section size of 0, an error occurs.

4. A sectionisallocated across the boundary between memory areas with differing attributes, or
an absolute address section is alocated to an invalid area.
Coding example: Assuming an SH 7000 CPU information file.
. SECTI ON SC, CODE, LOCATE=H EF00000.
SDATAB H 20000, "0123456789ABCDEF"
. END
Although SCis allocated from addresses H'EFO0000 to H'FOFFFFF, an error occurs since the
memory type changes at address H'FO00000.T he following measures can be used to avoid the
above errors.

Process

1. Review the starting addresses of absolute sections and the section sizes, and modify the
program so that overlaps do not occur.

2. Code programs so that sections with the same name have the same attribute.

3. Specify modules that have actual contents.

4. Modify the start addresses of absolute section so that section allocation across memory

boundaries does not occur. Alternatively, modify the memory map specified in the CPU
information file so that sections to not cross memory area boundaries.

234

Appendix F Messages

The simulator/debugger outputs the following two types of message.

1. Information messages
These messages inform the user of the simulator/debugger execution process.

2. Error messages
These messages inform the user that an error has occurred.

F.1 Information M essages

F.1.1 Information Messages at | nstruction Execution I nterruption

Table F-1 lists the messages that are displayed when execution is interrupted during instruction
execution initiated by a GO, STEP, STEP_INTO, VECTOR, or CALL command.

TableF-1 Information Messages at I nstruction Execution Interruption

Error
No. Message Description
1001 BREAK ACCESS Execution was interrupted due to the occurrence
(<first location> - <last location>) of a break access condition.
1002 BREAK DATA Execution was interrupted due to the occurrence
(<break location>AA<data>) of a break data condition.
1003 BREAK POINT Execution was interrupted due to the occurrence
of a breakpoint condition.
1004 BREAK REGISTER Execution was interrupted due to the occurrence
(<register>A<data>) of a break register condition.
1005 BREAK SEQUENCE Execution was interrupted due to the occurrence
of a break sequence condition.
1006 MANUAL BREAK Execution was interrupted due to <CTRL> +
<C>.
1007 SLEEP Execution was interrupted due to the execution
of a SLEEP instruction.
1008 STEP NORMAL END Execution due to a STEP or STEP_INTO
command completed normally.
1009 TRACE BUFFER FULL Execution was interrupted at the point the trace

buffer became full, since the B option was
specified to the TRACE_CONDITION command.

235

F.1.2 Information M essages during Command Analysis

Table F-2 lists the messages displayed by the simulator/debugger during command analysis.

Table F-2 Information Messages during Command Analysis

Error

No. Message Description

2001 FIXED UNRESOLVED EXTERNAL An address was allocated for an unresolved
REFERENCE SYMBOL external reference symbol.

2002 NO BREAK ACCESS There is no break access condition set.

2003 NO BREAK DATA There is no break data condition set.

2004 NO BREAK POINT There is no breakpoint condition set.

2005 NO BREAK REGISTER There is no break register condition set.

2006 NO BREAK SEQUENCE There is no break sequence condition set.

2007 NO FUNCTION CALL No function was called.

2008 NO MACRO DEFINITION No macro was defined.

2009 NO STUB POINT No stub point was set.

2010 NO TRAP ADDRESS The system call start location trap address

was not set.

236

F.2 Error Messages

F.2.1 Error Messagesduring Startup or Load Command Execution

Table F-3 lists the error messages displayed by the simulator/debugger during startup and during
execution of the LOAD command.

TableF-3 Error Messagesduring Startup or Load Command Execution

Error
No.

Message

Error Description and Recovery Procedure

3001

ADDRESS SPACE
DUPLICATED : sect

The section indicated by “sect” overlaps with
another section. Correct the program so that
sections do not overlap.

3002

CAN NOT GET MEMORY SPACE

Memory space required by the simulator/
debugger could not be allocated. Increase
memory or modify the debugging object
program.

3003

CAN NOT GET TABLE AREA

The table memory area required by the
simulator/debugger could not be allocated.
Increase the user memory area on the host
computer.

3004

CAN NOT GET TRACE BUFFER

The required trace buffer memory area could not
be allocated.

Increase the user memory area on the host
computer.

However, commands other than the trace system
commands will operate normally.

3005

CAN NOT OPEN

A file could not be opened.
Specify the correct file name.

3006

CAN NOT OPEN CPU
INFORMATION FILE

The CPU information file could not be opened.
Specify the correct directory and file name.

3007

CAN NOT OPEN OBJECT FILE

The debugging object program file could not be
opened.
Specify the correct file name.

3008

CAN NOT READ

A file could not be read.
Check the contents of the file.

3009

COMMAND LINE SYNTAX
ERROR

There was an error in the command line.

237

Table F-3 Error Messages during Startup or Load Command Execution (cont)

Error
No.

Message

Error Description and Recovery Procedure

3010

DEVICE TYPE IS NOT
CONSISTENT

The debugging object program file identifying
information (the ID that indicates whether the
program is for the SH series) does not

agree with the file identifying information from
the CPU information file (set by the CIA
program).

Check that the object program is actually

an SH-series program.

3011

ILLEGAL BLOCK TYPE

The debugging object program contains one or
more errors.

Correct any errors that occurred in creating the
debugging object program.

3012

INTERNAL ERROR (nnn)

An internal error occurred.
Contact your Hitachi, Ltd. sales representative.

3013

INVALID CPU INFORMATION

There was an error in the CPU information file.
Check and correct the CPU information file.

3014

INVALID OBJECT FORMAT

The input file exceeds the range of debugging
object programs.
Specify the correct file name.

3015

INVALID RELOCATION
EXPRESSION

An invalid relocation expression occurred in
the debugging object program.
Correct any errors that occurred in creating
the debugging object program.

3016

LOADING FAILED : sect

The section specified by “sect” could not be
loaded.

Either modify the CPU information file or modify
the start address of the section.

3017

RELOCATION SIZE

OVERFLOW : sect

The result of relocating the section indicated
by “sect” exceeded the relocation size.

Review both the displacement size of the
section of the corresponding name in the
source program as well as the valid object size.

3018

SECTION NUMBER =0

There were no executable sections in the
debugging object program.

Add code and data sections to the debugging
object program.

3019

UNDEFINED SYMBOL : symbol

The symbol indicated by “symbol” was not
defined in the debugging object program.
Correct the program to define the corresponding
symbol.

238

F.2.2 Error Messages during Command Execution

Table F-4 lists the error messages displayed during simulator/debugger command execution.

TableF-4 Error Messages during Command Execution

Error
No.

Message

Error Description and Recovery Procedure

4001

ADDRESS EXCEEDS MEMORY
SPACE BOUNDARY

It is not possible to allocate areas that exceed
the boundaries of the internal ROM area, the
external bus area, the internal RAM area,

and internal 1/O area.

Divide the area into multiple sections and
allocate each section within the boundaries of
aregion.

4002

BREAK ACCESS ADDRESS
CONFLICTS

There is already a condition set for the location
specified with the BREAK_ACCESS command.
Check the current settings and specify the
address correctly.

4003

BREAK DATA ADDRESS
CONFLICTS

There is already a condition set for the location
specified with the BREAK_DATA command.
Check the current settings and specify the
address correctly.

4004

BREAK POINT CONFLICTS

There is already a condition set for the location
specified with the BREAK command.

Check the current settings and specify the
address correctly.

4005

BREAK REGISTER CONFLICTS

There is already a condition set for the register
specified with the BREAK_REGISTER command.
Check the current settings and specify the
register correctly.

4006

BREAK SEQUENCE CONFLICTS

There is already a condition set for the sequence
specified with the BREAK_SEQUENCE
command.

Check the current settings and specify the
address correctly.

4007

CAN NOT ACCESS EXTERNAL
MEMORY

An address not allocated for the memory map
was specified.
Specify a correct address.

4008

CAN NOT CLOSE

The specified file cannot be closed.
If there is inadequate user disk space, increase
the available disk space.

4009

CAN NOT OPEN

The specified file could not be opened.
Specify the correct file name.

239

Table F-4 Error Messages during Command Execution (cont)

Error
No.

Message

Error Description and Recovery Procedure

4010

CAN NOT READ

The specified file cannot be read.
Specify the correct file name.

4011

CAN NOT WRITE

The specified file cannot be written.

The disk may be full, or there may be a disk
hardware error.

Re-execute the write after checking the disk
status.

4012

COMMAND NOT FOUND

A non-existent command name was specified.
Specify the command correctly.

4013

COVERAGE ALREADY STARTED

An attempt was made to start coverage
measurement when coverage measurement had
already been started.

Or, an attempt was made to change the coverage
area setting.

To measure a differing range of locations,
terminate the current measurement, reset the
range, and restart the measurement.

4014

COVERAGE NOT STARTED

Coverage has not been started.
Check the state of the coverage settings.

4015

COVERAGE RANGES EXCEED 16

Up to 16 coverage areas can be specified.
To add another area, first remove any
unnecessary coverage areas.

4016

COVERAGE RANGE NOT
DEFINED

An attempt was made to start coverage
measurement with no coverage areas defined.
Specify the coverage areas before starting
coverage measurement.

4017

DIVIDE BY ZERO

A divisor of 0 appeared in an integer expression.
Modify the divisor to be a value other than 0.

4018

DUPLICATE ADDRESS

The specified address was already specified.
Check the value of the address used.

4019

EXPRESSION TOO COMPLEX

An expression was overly complex.
Expressions are overly complex when there are
8 or more parentheses.

4020

FLOATING POINT DATA
OVERFLOW

A floating point overflow occurred in the specified
precision.
Review the precision or the data values.

4021

FLOATING POINT DATA
UNDERFLOW

A floating point underflow occurred in the
specified precision.
Review the precision or the data values.

240

Table F-4 Error Messages during Command Execution (cont)

Error

No. Message Error Description and Recovery Procedure

4022 FUNCTION NOT FOUND The function specified in a CALL command does
not exist. Check the name of the function.

4023 ILLEGAL EXPRESSION There was an error in an integer expression.
Re-input the command with a correct expression.

4024 ILLEGAL FLOATING POINT DATA There was an error in the format of a floating
point data item.
Review the format of the floating point data item.

4025 ILLEGAL MACRO NAME A name which cannot be specified as a macro
name was specified.
Check the macro name.

4026 ILLEGAL SYMBOL FORMAT There was a syntax error in a symbol.
Re-input the command with the correct syntax.

4027 INVALID ADDRESS The value used was invalid as an address value.
Specify a valid value.

4028 INVALID DATA The value used was invalid as an address value.
Specify a valid value.

4029 INVALID MNEMONIC An instruction mnemonic specified to the
ASSEMBLE command was incorrect.
Input a correct mnemonic.

4030 INVALID OPERAND The specified instruction operand was incorrect.
Input a correct operand.

4031 LINE NUMBER NOT FOUND The specified line number could not be found.
Check the line numbers in the source program.

4032 MACRO BUFFER OVERFLOW The macro registration buffer overflowed.
Delete any unnecessary macros.

4033 MACRO VARIABLE NOT FOUND An attempt was made to reference a macro
internal variable whose value had not been set.
Modify the macro to reference the macro internal
variable only after its value has been set.

4034 MEMORY AREA ALREADY EXISTS The specified memory area was already

allocated. (Itis also possible that the address
specification was incorrect.)

Check the memory area allocations with the MAP
command and then specify a correct value.

241

Table F-4 Error Messages during Command Execution (cont)

Error
No.

Message

Error Description and Recovery Procedure

4035

MEMORY AREA NOT EXIST

The specified memory area has not been
allocated.

Allocate memory areas with the MAP command
as necessary, and then specify memory areas
that have already been allocated.

4036

NESTING OF COMMAND_CHAIN
EXCEEDS 8

The command chain nesting exceeded 8 levels.
Revise usage of the COMMAND_CHAIN
command so that the nesting level does not
exceed 8 levels.

4037

NOT A COVERAGE FILE

The specified file was not a coverage file.
Check the file.

4038

NO SCOPE SET

A function name could not be found due to an
unusual value in the PC.

After checking the value of the PC, modify the
program to operate normally.

4039

NOT A SAVE_STATUS FILE

The specified file was not a SAVE_STATUS file.
Alternatively, insufficient information.
Check the file.

4040

SAVE_STATUS OPTION CONFLICT

The file cannot be loaded since the options used
when saving the file were different.
Check the file.

4041

STUB BUFFER OVERFLOW

The STUB command registration buffer
overflowed.
Delete any unnecessary stubs.

4042

STUB POINTS EXCEED 16

Up to 16 stub points can be specified.
Delete any unnecessary stubs and retry the
command.

4043

SYMBOL NOT FOUND

The specified symbol was not registered.
Specify the correct symbol name.

4044

SYNTAX ERROR

The command parameters were incorrect.
Specify the parameters correctly.

4045

SYSTEM ERROR (<error number>)

An OS error occurred during execution of a “I”
command. The specified OS command was not
executed. Review the system environment.

4046

TOO MANY ARGUMENTS

Too many arguments were specified in a function
call.
Check the function’s specifications.

242

Table F-4 Error Messages during Command Execution (cont)

Error
No.

Message

Error Description and Recovery Procedure

4047

TOO MANY BREAK ACCESS

The number of break access conditions
exceeded the number supported.
Up to 2 break access conditions can be set.

4048

TOO MANY BREAK DATA

The number of break data conditions exceeded
the number supported.
Up to 8 break data conditions can be set.

4049

TOO MANY BREAK POINTS

The number of breakpoints exceeded the number
supported.
Up to 8 breakpoints can be set.

4050

TOO MANY BREAK REGISTERS

The number of break register conditions
exceeded the number supported.
Up to 8 break register conditions can be set.

4051

TOO MANY MACRO DEFINITION

The number of macro definitions exceeded the
number supported.

Up to 64 macros can be defined.

Delete any unnecessary macros and re-input the
macro definition that generated the error.

4052

TOO MANY MACRO VARIABLE

The number of macro variables exceeded the
number supported.
Up to 255 macros variables can be used.

4053

TOO MANY SECTIONS

The number of memory areas allocated with the
MAP command exceeded the number supported.
Up to 10 areas can be allocated.

4054

TOO MANY UNDEFINED SYMBOL

There are too many undefined symbols.
Addresses can not be allocated for any other
undefined symbols.

4055

TRACE COMMAND NOT
AVAILABLE

The trace command cannot be used since a
trace buffer was not allocated.

Expand the user environment so that a trace
buffer can be allocated.

4056

TRAP ADDRESS CONFLICTS

Only 1 system call start address can be specified.
Check the specified address by using the
TRAP_ADDRESS command.

243

Table F-4 Error Messages during Command Execution (cont)

Error
No. Message Error Description and Recovery Procedure
4057 MEMORY SPACE The size of the memory area is too small
INSUFFICIENCY to display all the functions called.
Check the size of memory available for the
simulator/debugger size.
4058 CAN NOT REFER TO The specified symbols could not be
THE SYMBOL referred due to C compiler optimization.
Specify the address or data for the symbols.
4059 ILLEGAL ADDRESS RANGE The specified memory area size is too large.

SPECIFIED

Divide the memory areas and specify each.

244

F.2.3 Error Messages during Simulation

Table F-5 lists the error messages displayed during simulator/debugger simulation of a debugging

object program.
Table F-5 Error Messages during Simulation

Error

No. Message

Error Description and Recovery Procedure

5001 GENERAL INVALID

INSTRUCTION

One of the following conditions caused a general

invalid instruction error.

1. The program attempted to execute a code
that is not an instruction.

2. An error occurred during exception
processing of general invalid instructions.

Correct the debugging object program so that the

error does not occur.

5002 INVALID SLOT

INSTRUCTION

One of the following conditions caused an invalid

slot instruction error.

1. The branch instruction to change PC
immediately after the branch instruction was
executed.

2. An error occurred during exception
processing of the invalid slot instruction.

Correct the debugging object program so

that the error does not occur.

5003 ADDRESS ERROR

One of the following conditions caused an
address error.

1. The value of the PC became an odd number.
2. The program attempted to read an instruction
from internal I/O space.

An attempt was made to access a long word
data at an address other than 4n.

An attempt was made to access a word data
at an address other than 2n.

VBR and SP are not in multiples of four.

An error occurred during exception
processing of the address error.

Correct the debugging object program so that
the error does not occur.

3.

245

Table F-5 Error Messages during Simulation (cont)

Error
No.

Message

Error Description and Recovery Procedure

5004

EXCEPTION ERROR

An error occurred during exception processing.
Correct the debugging object program so that the
error does not occur.

5005

ILLEGAL OPERATION

Division by zero was caused by a DIV1
instruction.

Correct the debugging object program so that the
error does not occur.

5006

MEMORY ACCESS ERROR

One of the following conditions caused a memory

access error.

1. The program attempted to access a memory
area that was not allocated.

2. The program attempted to write to a memory
area that has the write-protect attribute.

3. The program attempted to read from a
memory area that has the read-protect
attribute.

4. An attempt was made to access an area with
no memory.

Either modify the memory allocation and

attributes, or correct the debugging object

program so that the corresponding memory
access error does not occur.

5007

INVALID SP INSTRUCTION

The program executed the instruction to make
R15 (SP) to point to an address other than 4-byte
boundary.

Correct the debugging object program so that the
error does not occur

5008

SYSTEM CALL ERROR

A system call error occurred.
Correct the error(s) in the contents of the
parameter block and/or registers RO and R1.

246

F.3 CIA Error Messages

F.3.1 I/O Related Error Messages

Table F-6 shows the CIA error messages related to /0.

TableF-6 1/0O Related Error M essages

Error
No. Message Error Description and Recovery Procedure
6001 CAN NOT GET MEMORY SPACE The memory for CIA use could not be allocated.
Check the OS environment and assure that there
is adequate memory allocated for CIA use.
6002 CAN NOT OPEN INPUT CPU The specified existent CPU information file could
INFORMATION FILE not be opened. (See note.)
6003 CAN NOT OPEN OUTPUT CPU The specified output CPU information file could
INFORMATION FILE not be opened. (See note.)
6004 CAN NOT READ A file could not be read. (See note.)
6005 CAN NOT WRITE Write to a file failed. (See note.)
6006 CAN NOT CLOSE The output CPU information file could not be
closed. (See note.)
6007 INVALID CPU INFORMATION Errors were encountered in the CPU information
file.
Check the contents of the file and correct the
errors.
6008 SYNTAX ERROR There was an error in the file specification

syntax.
Enter the file name correctly.

Note: In these cases, if the file name was correct, the disk may be full, or there may be a disk

hardware error. After checking the disk status, re-execute the CIA program.

247

F.3.2 Keyboard Input Related Error M essages

Table F-7 lists the error messages related to keyboard input.

Table F-7 Keyboard Input Related Error M essages

Error

No. Message Error Description and Recovery Procedure

7001 COMMENT LINE TOO LONG The specified comment line exceeded 127
characters.

The comment line must be 127 chracters or less.

7002 ADDRESS RE-USE Address ranges overlap.

Check the addresses and re-enter correctly.

7003 ADDRESS SIZE OVERFLOW An address value exceeding the bit size was
specified.

Enter a correct address value.

7004 INVALID VALUE A numeric value outside the allowed range was
specified.

Correct the input to specify a value within the
allowed range.

7005 INVALID CHARACTER A character that cannot be used was input.
Input a character that corresponds to one of the
selection choices.

7006 INVALID END ADDRESS An end address smaller than the start address

was specified.
Re-enter the end address with the correct value.

248

Appendix G ASCII Code Table

TableG-1 ASCII Code Table

Upper 4 Bits

Lower 4 Bits

SP

DLE
DC1
DC2
DC3
DC4

NUL
SOH
STX

ETX

EOT

%

NAK
SYN
ETB

ENQ
ACK
BEL
BS
HT

CAN
EM

SUB
ESC
FS
GS

LF
VT

FF

CR

RS
us

SO
Sl

DEL

249

Appendix H Installation

The following instructions describe how to install the SH-series simulator/debugger in the host
system.

H.1 Contentsof the Cartridge Tape
The simulator/debugger is provided with a cartridge tape, which contains the following files.

» filetype: archivefile
» filename
— Simulator/debugger: sdsh
— CPU information analysis program: cia

H.2 How to Install the Simulator/Debbuger in the Host System

To install the simulator/debugger in the host system, follow the instructions below. Underlined
sections should be input by the user.

e Making adirectory

To make adirectory for storing simulator/debugger files, enter the command below. The path
name is/usr/tool in this example.

% mkdirA/usr/tool (RET) (RET): Pressthereturn key
A: Press the space bar or tab key

e Changing the directory

To change the current directory to the directory /usr/tool made above, enter the command
below.

% cdA/usr/tool (RET)

* Copyingfiles

To copy the simulator/debugger files from the cartridge tape to the directory made in the
above step, enter the command below. In this example, /dev/rst0 is the name of the cartridge
tape drive.

% tarA-xvfA/dev/rstOAsdshAcia (RET)

250

Setting the start-up environment
To set the start-up environment for the simulator/debugger, follow the instructions below.
— Add thefollowing command to the file".login" in the home directory.

% setApath=(/usr/tool) (RET)

If apath has already been specified, add the path name "/usr/tool"
separated by a space to the path list in parentheses.

— When the Born-shell or Corn-shell is used:
Add the following command to the file ".profile" in the home directory.

% PATH =/usr/tool (RET)
% exportAPATH (RET)

If apath has already been specified, add acolon (:) and the path
name "/usr/tool” after the path list.

H.3 Equipment

The following equipment is required when using the simulator/debugger.

Host computer: SPARC Station

OS: SUnOS (release 4.0.3 or later version)
User memory space: 4 Mbytes or over
Hard disk drive

Cartridge tape drive

H.4 Special Keys

Two special keys are used by the simulator/debugger: (CTRL) + (C) and (CTRL) + (). (CTRL) +
(C) or (CTRL) + (\) indicates pressing C or \ while the control key is being pressed. To use the
simulator/debugger, first make the following settings with the SunOS stty command.

stty intr (CTRL) +(C)
stty quit (CTRL)+ ()

(CTRL) + (C)

When the special key (CTRL) + (C) is entered, command execution stops immediately and the
simulator/debugger returns to the command wait state.

251

(Ex.1) During execution of the user program by aCALL, STER,
STEP_INTO, or VECTOR command, (CTRL) + (C) stops the program
execution are returns the simulator/debugger to the command wait
State.

(Ex.2) Whilethe contents of memory or the trace buffer are being
displayed by aDUMP or TRACE command, (CTRL) + (C) stopsthe
command execution and returns the simul ator/debugger to the
command wait state.

(Ex.3) During execution of acommand fileby a COMMAND_CHAIN
command, (CTRL) + (C) stops the command execution and
returns the simulator/debugger to the command wait state.

Note: During interactive command input, (CTRL) + (C)

does not return the simulator/debugger to the command wait state.

To exit the interactive command input state, enter ".".
(CTRL) + (V)

The special key (CTRL) + (\) terminates the simulator/debugger and
returnsit to the SUnOS command wait state.

Note: When (CTRL) + (\) is entered, SunOS creates the corefile "core"
on the current directory.

252

