
What is SIFF?
SIFF stands for Scene Interchange File Format. It is an attempt at creating
a reasonable interchange format for 3D data.

Why is it SIFF 1.0?
The 1.0 is specified to show that it is the first level SIFF format. A SIFF
2.0 is planned for the near future. It will accommodate higher order
graphics (curves, NURBs, etc.).

Who did it?
SIFF was developed by Sega and a number of its vendors.

What is Sega’s motivation?
We have a very real need for portable 3D data. Current interchange
methods are either very cumbersome, or very damaging to the data in
process. By establishing a common format and enlisting the support of
major 3D package vendors, we can achieve this interchange transparently.

Is it limited to video game development?
No. Sega very deliberately made the format general purpose. If we limited
the formats usefulness to video games, we would have difficulty in gaining
support from major tool vendors. So limiting to format hinders its
usefulness to us.

Why would Sega give away such an advantage?
Again, if we keep it to ourselves it becomes more difficult to garner
support. By releasing the specification, we hopefully help the graphics
community, which in turn will help us with a larger selection of tools.

What is being done to promote it?
Well, we’re just getting underway. So, we’re preparing sample code and
data and working with a few vendors to establish support. Then we’ll hit
everybody.

What services are available?
Right now, just clarification of the format.

What services will be available?
In the near future, a chunk registry will be set up to maintain the chunk
definitions. Also, we’ll be able to arbitrate problems within the
specification.

SIFF 1. 0

Scene Interchange File Format

October 1996

Purpose

To provide a mechanism for the exchange of three-dimensional scene, animation, and
model data for the general graphics community.

SIFF and the IFF Standard

The file format described is compliant with the IFF standard as specified by Electronic Arts.

Reference

Since voluminous documentation on the IFF standard exists, this document will not
reiterate those descriptions. Most people working with file formats will already be familiar
with IFF type file. The official format document is the EA IFF 85 Standard for Interchange
Format File, Jerry Morrison (Electronic Arts), January 14, 1985.

FORM for SIFF

SIFF 1.0 is specifically defined as a “FORM” group chunk of type “SF1Q”, thus the general
file format it:

“FORM”
<size of group>

“SF1Q”
<chunk definition>
<chunk definition>
…
<chunk definition>

Alignment and Padding

The IFF standard requires chunks to be aligned on 32-bit boundaries with nulls used to
pad out chunks. The size fields account only for actual data, not padding information.

Endian

IFF and SIFF assume the use of big-endian storage. (68000, not 80x86 style).

Ordering of chunks

SIFF chunks are designed to contain the necessary data of relationship with other chunks.
As a result, ordering of chunks is arbitrary and no meaningful data should be inferred from
such ordering.

SIFF General Notes

3-D Coordinate System

SIFF assumes a right-handed coordinate system with the positive x-axis directed towards
the right; the positive y-axis directed down; and, the positive z-axis directed into the
screen. Rotations about an axis are clockwise as viewed towards to positive directions.

UV Coordinate System

UV coordinates are used within SIFF to apply texture information to geometry.

Given a standard rectangular texture, the u-axis covers the range [0.0,1.0] with 0.0
indicating the left-edge of the left-most pixel of the texture; and 1.0 indicating the right-
edge of the right-most pixel of the texture. The v-axis covers the range [0.0,1.0] with 0.0
indicating the top-edge of the top-most pixel of the texture; and 1.0 indicating the bottom-
edge of the bottom-most pixel of the texture.

Since the UV coordinates are represented by floating-point values, they can be specified
outside of the [0.0,1.0] range. This is accepted as legal and implies that the texture repeats
infinitely in all directions without deviation.

Linear Algebra Conventions

Although implementation details can vary considerably, the following rules define SIFF
expected mathematics. Only alternative methods and notation that yield identical result are
considered compliant.

• Standard 4x4 homogenous matrices are used to represent transformations.

• Cumulative transformations are of the form: T* = T0T1T2…, where TN represents the
transformation at depth N in the hierarchy.

• Points are transformed to global space with the following: P* = PT*, where P
represents the original point in the form (X,Y,Z,1).

Types

The following data types are used within the SIFF specification. Note that these are more
precise names than the identical types defined within the IFF specification.

Uint8 unsigned 8-bit integer (UBYTE in IFF)
Uint1 6 unsigned 16-bit integer (UWORD in IFF)
Uint3 2 unsigned 32-bit integer

float 32-bit IEEE single precision floating-point value
string zero-terminated string

Names

Most of the SIFF chunks have associated “names” which are used as unique identifiers of
the particular component that a chunk contains.

There is no restriction on the length of names or their contents. No restrictions are defined
since naming schemes that a globally legal are very limited in ability. As a result, applications
should use reasonable naming schemes. Ensuring legal names for the intended use is
the responsibility of the application.

Tags

Many of the SIFF chunks have associated “tags” which contain user-defined (not
application defined) data associated with a particular component. Tags are zero-terminated
strings containing possibly multiple-field data. Semicolons are used to delimit fields within a
single tag.

CHUNK TYPES

The following are the defined chunk types SIFF 1.0.

Geometry Chunk Types

The following chunk types define the geometric makeup of the scene. Hierarchy is
inherent since each element has a specified parent. No element of the hierarchy is
‘displayed’ until it is associated with visual information (see Visual Chunk Types below).

All coordinates are local to the given object. The world space in inherited from the
hierarchical parent, and can be changed with the transformation chunks. All
transformations are cumulative within their hierarchies as would be expected, therefore
transformations take place in the world space of their parent.

There are a limited number of restrictions or rules regarding usage of the hierarchy:

• Cycles within the data are restricted (as in two elements having each other as their
respective parents).

• Elements that cannot reach global space through the parental chain are restricted.
This is also a cyclical graph problem, but the intention of this rule is to ensure that
elements can resolve their space in the global coordinate system.

NODE - Generic Node

A Generic Node is a placeholder or hook in the geometry intended to suit organizational
purposes. It is also the base form for all of the geometric types.

Name string Unique identification string of this piece of
geometry.

Tag string User defined information.

Pare nt string Identification string of parent geometry.
If NULL, then parent is global space.

MTRX - Matrix

Matrix data is used to incorporate standard homogenous matrix transforms of the form

a a a a

a a a a

a a a a

a a a

0 0 0 1 0 2 0 3

1 0 1 1 1 2 1 3

2 0 2 1 2 2 2 3

3 0 3 1 3 2 1



















.

Name string Unique identification string of this piece of
geometry.

Tag string User defined information.

Pare nt string Identification string of parent geometry.
If NULL, then parent is global space.

a0 0 float
a0 1 float
a0 2 float
a0 3 float
a1 0 float
a1 1 float
a1 2 float
a1 3 float
a2 0 float
a2 1 float
a2 2 float
a2 3 float
a3 0 float
a3 1 float
a3 2 float

TRAN - Translate

Shorthand chunk for the specification of a translation-only transformation matrix.

Name string Unique identification string of this piece of
geometry.

Tag string User defined information.

Pare nt string Identification string of parent geometry.
If NULL, then parent is global space.

TransX float
TransY float
TransZ float

S CAL - Scale

Shorthand chunk for the specification of a scaling-only transformation matrix.

Name string Unique identification string of this piece of
geometry.

Tag string User defined information.

Pare nt string Identification string of parent geometry.
If NULL, then parent is global space.

Scale X float
Scale Y float
Scale Z float

ROTX - Rotate about the X-Axi s

Shorthand chunk for the specification of an x-axis rotation-only transformation matrix.

Name string Unique identification string of this piece of
geometry.

Tag string User defined information.

Pare nt string Identification string of parent geometry.
If NULL, then parent is global space.

Rotate X float

ROTY - Rotate about the Y-Axi s

Shorthand chunk for the specification of a y-axis rotation-only transformation matrix.

Name string Unique identification string of this piece of
geometry.

Tag string User defined information.

Pare nt string Identification string of parent geometry.
If NULL, then parent is global space.

Rotate Y float

ROTZ - Rotate about the Z-Axi s

Shorthand chunk for the specification of a z-axis rotation-only transformation matrix.

Name string Unique identification string of this piece of
geometry.

Tag string User defined information.

Pare nt string Identification string of parent geometry.
If NULL, then parent is global space.

Rotate Z float

ROTQ - Rotate about Quarternion Defined Axi s

The rotation component of a transformation matrix.

Name string Unique identification string of this piece of
geometry.

Tag string User defined information.

Pare nt string Identification string of parent geometry.
If NULL, then parent is global space.

Rotate X float
Rotate Y float
Rotate Z float

A quarternion of the form (s,(x,y,z)) can be converted to a homogenous matrix with the
following formulae:

1 2 2 2 2 2 2 0

2 2 1 2 2 2 2 0

2 2 2 2 1 2 2 0

0 0 0 1

2 2

2 2

2 2

− − − +
+ − − −
− + − −



















y z xy sz xz sy

xy sz x z yz sx

xz sy yz sx x y

VERT - Vertex

A vertex defines a point in space. It’s location is specified in local coordinates; it’s
orientation is inherited from its parent.

Name string Unique identification string of this piece of
geometry.

Tag string User defined information.

Pare nt string Identification string of parent geometry.
If NULL, then parent is global space.

X float
Y float
Z float

EDGV - Edge (Value Specified)

Two points specified with discrete locations

Name string Unique identification string of this piece of
geometry.

Tag string User defined information.

Pare nt string Identification string of parent geometry.
If NULL, then parent is global space.

X0 float
Y0 float
Z0 float
X1 float
Y1 float
Z1 float

EDGR - Edge (Reference Specified)

Two points specified by reference to points already transformed to global space.

Name string Unique identification string of this piece of
geometry.

Tag string User defined information.

P0 string Names of points to inherit from.
P1 string

TRIV - Triangle (Value Specified)

Three points specified with discrete locations

Name string Unique identification string of this piece of
geometry.

Tag string User defined information.

Pare nt string Identification string of parent geometry.

If NULL, then parent is global space.

X0 float
Y0 float
Z0 float
X1 float
Y1 float
Z1 float
X2 float
Y2 float
Z2 float

TRIR - Triangle (Reference Specified)

Three points specified by reference to points already transformed to global space.

Name string Unique identification string of this piece of
geometry.

Tag string User defined information.

P0 string Names of points to inherit from.
P1 string
P2 string

QADV - Quadri lateral (Value S peci fi ed)

Four points specified with discrete locations

Name string Unique identification string of this piece of
geometry.

Tag string User defined information.

Pare nt string Identification string of parent geometry.
If NULL, then parent is global space.

X0 float
Y0 float
Z0 float
X1 float
Y1 float
Z1 float
X2 float
Y2 float
Z2 float
X3 float
Y3 float

Z3 float

QADR - Quadri lateral (Reference S peci fi ed)

Four points specified by reference to points already transformed to global space.

Name string Unique identification string of this piece of
geometry.

Tag string User defined information.

Pare nt string Names of points to inherit from.
P1 string
P2 string
P3 string

PLYV - Polygon (General Case, Value S peci fi ed)

An n-gon of at least 1 point, specified with discrete value. It is a superset capable
containing vertices, edges, triangles, and quadrilaterals, any of which may be specified
here.

Name string Unique identification string of this piece of
geometry.

Tag string User defined information.

Pare nt string Identification string of parent geometry.
If NULL, then parent is global space.

N float Number of points

X0 float
Y0 float
Z0 float
… … List points as necessary

PLYR - Polygon (General Case, Reference S peci fi ed)

An n-gon of at least 1 point, specified with referenced values. It is a superset capable
containing vertices, edges, triangles, and quadrilaterals, any of which may be specified
here.

Name string Unique identification string of this piece of
geometry.

Tag string User defined information.

N float Number of points

P0 string Names of points to inherit from
… … List points as necessary

PLXV - Polygon (Convex Case, Value Specified)

A special case polygon which is entirely convex. The differentiation in chunks is to serve as
a hint for optimal processing of the data.

Name string Unique identification string of this piece of
geometry.

Tag string User defined information.

Pare nt string Identification string of parent geometry.
If NULL, then parent is global space.

N float Number of points

X0 float
Y0 float
Z0 float
… … List points as necessary

PLXR - Polygon (Convex Case, Reference Specified)

A special case polygon which is entirely convex. The differentiation in chunks is to serve as
a hint for optimal processing of the data.

Name string Unique identification string of this piece of
geometry.

Tag string User defined information.

N float Number of points

P0 string Names of points to inherit from
… … List points as necessary

INS T - Instance of Geometry Data

Declares an instance of data.

Name string Unique identification string of this piece of
geometry.

Tag string User defined information.

Pare nt string Identification string of parent geometry.
If NULL, then parent is global space.

Original string Name of original geometry to copy (can be a
hierarchy)

Visual Chunk Types

The following chunk types define the visual properties of the scene.

COLR - Color

Defines a color in 16-bit per channel form, including alpha. Since most systems are not
using 16-bits per channel, the data for lower bit depths should be aligned to the most-
significant-bit of the data space. Additionally, IFF specifies the repetition of data bits to the
lower order unused space. For example,

bit-depth value (hex) store as (hex)
4 F FFFF
8 4F 4F4F
12 34F 34F3

Name string Unique identification string for visual data.

Tag string User defined information.

Re d Uint16 Red Channel

Gree n Uint16 Green Channel

Blue Uint16 Blue Channel

Alpha Uint16 Alpha Channel (transparency) – 0 is
transparent, FFFF is opaque

PALT - Palette

Defines a series of colors in 16-bit per channel form, including alpha. The same
conventions regarding bit-use apply as in the COLR chunk.

Name string Unique identification string for visual data.

Tag string User defined information.

N Uint16 Number of colors in this palette

Re d0 Uint16

Gree n0 Uint16

Blue 0 Uint16

Alpha0 Uint16

… … List colors as necessary

TXTP - Texture us ing Palette Data

Defines a texture map using palette data. Data is listed row-by-row from left-to-right. Each
pixel gets is own byte (if 256 or fewer colors are used) or 16-bit word (if more than 256 are
used). Palette indices are enumerated beginning with zero.

Name string Unique identification string for visual data.

Tag string User defined information.

Pale tte string Name of the palette to use

Offse t Uint16 Offset within palette to starting color

Size Uint16 Number of colors assumed to be in palette

Width Uint16 in Pixels

He ight Uint16 in Pixels

data Uint8 | Uint16 Row-by-row dump of palette indices.

… … List entries as necessary

TXTR - Texture us ing Raw Data

Indicates a texture map using raw data.

Supported are 8-bit per channel and 16-bit per channel data, including alpha. Color entries
follow the same rules as in the COLR chunk. Data is stored row-by-row, left-to-right.

Name string Unique identification string for visual data.

Tag string User defined information.

De pth Uint16 Color depth per channel.

Width Uint16 in Pixels

He ight Uint16 in Pixels

Re d0 0 Uint8 | Uint16 Red channel.

Gree n0 0 Uint8 | Uint16 Green channel.

Blue 0 0 Uint8 | Uint16 Blue channel.

Alpha0 0 Uint8 | Uint16 Alpha channel.

… … List entries as necessary

APLY - Apply to Object

Applies visual information to geometry.

In general, any visual information can be applied to any geometry. Some of these are
appropriate; other make little sense. Specified results are as follows:

• COLR applied to <any> ‡ <any> is solid-colored with specified color.

• PALT applied to <any> ‡ <any>’s points are colored with a series of colors from the
palette. The indices of the palettes are specified by the U coordinate of each point.
This is to allow for Gouraud shading.

• TXT* applied to <any> ‡ <any>’s surface area is mapped with the specified texture data
linearly mapped in 3-space.

A visual chunk can be applied to multiple pieces of geometry. A piece of geometry can
have multiple visual chunks applied to it. If an object has multiple visual attributes, they are
assumed to mix equally.

Textures are specified with UV coordinates. As many UV coordinates as the target
geometry has are specified (1 for VERT, 2 for EDG*, 3 for TRI*, 4 for QAD*, N for PL*).

Name string Unique identification string for this chunk

Tag string User defined information.

Visual string Name of visual chunk to apply

Ge ome try string Name of geometry chunk to apply to.

Points Uint32 Number of points expected in target
geometry. (32 bits are used to maintain
alignment)

U0 float U coordinate for first point

V0 float V coordinate for first point

… … List UV entries as necessary

GRUP - Declare a Group of Chunks

Identifies a set of chunks as a named set. The named set could be used for group
selection, or operation. The primary intent of this feature is to allow a group of visual
information to be applied to a group of geometry information.

There are many situations where this feature is undesirable – as in the parent of a geometry
item. As a result this chunk is only legally named as part of the APLY chunk, or by itself.

Name string Unique identification string of this group.

Tag string User defined information.

N Uint32 Number of members in this group

Me mbe r0 string Name of members to be included

… string List members as necessary

Animation Chunk Types

ANML - Animate Linear

Straight linear interpolated animation (or key-framed data)

Name string Unique identification string for this chunk

Tag string User defined information.

Points Uint16 Number of control points in function.

Time 0 float Time of first control point.

Param0 float Value at first control point.

… … List Time/Parameter pairs as necessary.

ANIM - Animate Parameter

Applies animation function to an arbitrary parameter. Due to the nature of variable length
records, the context of the target needs to be understood for the animation data to be
correctly placed and converted to integer if necessary.

Name string Unique identification string for this chunk

Tag string User defined information.

Anim string Name of animation function to apply

Targe t string Name of chunk to apply to.

Param Uint32 Parameter index of animated value (staring
with zero for ‘Name’)

VALU - Value

This chunk is a container for a single value. It is used for evaluation of animation.

Name string Unique identification string for this chunk

Tag string User defined information.

Param float The value

ASGN - Assign Value to Parameter

Copies a value to an arbitrary parameter. Due to the nature of variable length records, the
context of the target needs to be understood for the animation data to be correctly placed
and converted to integer if necessary.

Name string Unique identification string for this chunk

Tag string User defined information.

Value string Name of value to copy

Targe t string Name of chunk to apply to.

Param Uint32 Parameter index of animated value (staring
with zero for ‘Name’)

ARTH - Arithmetic function, s imple

Performs simple three component arithmetic (two sources, one destination). It operates
exclusively on VALU chunks. The hierarchy exists to force ordering when necessary –
processing is expected to be depth-first.

Name string Unique identification string for this chunk

Tag string User defined information.

Pare nt string Identification string of parent arithmetic.
If NULL, then function is top-level.

Oper string Function identification

A string Name of source value 1

B string Name of source value 2

Re sult string Name of result value

Oper Re sult
+ A+B
- A-B
* A*B
/ A/B

% A%B
abs as defined by “C” language
acos as defined by “C” language
asin as defined by “C” language
atan as defined by “C” language
cos as defined by “C” language

cosh as defined by “C” language
exp as defined by “C” language
log as defined by “C” language

log10 as defined by “C” language
pow as defined by “C” language
sin as defined by “C” language

sinh as defined by “C” language
tan as defined by “C” language

tanh as defined by “C” language
sqrt as defined by “C” language

Order of Animation evaluation

Order of evaluation of animation data is as follows:

• determination of Time
• ANIM/ANML chunks
• ARTH chunks
• ASGN chunks

• evaluation of Geometry

Miscellaneous Chunk Types

LTAM - Light, Ambient

Defines an ambient light source

Name string Unique identification string of this piece of
geometry.

Tag string User defined information.

R float Color of light (1.0 being full intensity)
G float
B float

LTPT - Light, Point

Defines a point light in space. It’s location is specified in local coordinates; it’s orientation is
inherited from its parent.

Name string Unique identification string of this light.

Tag string User defined information.

Pare nt string Identification string of parent geometry.
If NULL, then parent is global space.

R float Color of light (1.0 being full intensity)
G float
B float
X float Coordinate location
Y float
Z float

LTDR - Light, Directional

Defines a directional light in space. It’s location is specified in local coordinates; it’s
orientation is inherited from its parent.

Name string Unique identification string of this piece of
geometry.

Tag string User defined information.

Pare nt string Identification string of parent geometry.
If NULL, then parent is global space.

Pare nt string Identification string of parent geometry.
If NULL, then parent is global space.

R float Color of light (1.0 being full intensity)
G float
B float
X float Coordinate location
Y float
Z float

CAMR - Camera

Defines a simple pinpoint camera in space. It’s location is specified in local coordinates; it’s
orientation is inherited from its parent.

Name string Unique identification string of this piece of
geometry.

Tag string User defined information.

Pare nt string Identification string of parent geometry.
If NULL, then parent is global space.

Dist float distance to view plane
X float Coordinate location
Y float
Z float

USR* - Appl ication defined usage

Any chunk beginning with “USR” is assumed to be application defined. Though not official
sanctioned as a chunk, it is included for application writers who are unable to or do not have
time to register their chunk usage and definition, and for development stage work.

NORM - Defines a Surface Normal

Define a surface normal which can be attached to a piece of geometry. The parent is
defined at having this normal. This chunk is not considered a core geometry type since
normals are very application specific. Therefore, specification and usage of these normals
is application defined. Applications that use this data should have an option to ignore this
data.

Name string Unique identification string of this piece of
geometry.

Tag string User defined information.

Pare nt string Identification string of parent geometry.

If NULL, then parent is global space.

NX float Surface normal value
NY float
NZ float

	What is SIFF?
	SIFF 1. 0
	Purpose
	SIFF and the IFF Standard
	Reference
	FORM for SIFF
	Al ignment and Padding
	Endian
	Or deri ng o f chunks

	S IFF General Notes
	3- D Coordi nate System
	UV Coordinate System
	Li near Algebra Conventions
	Ty pes
	Names
	Tags

	CHUNK TYPES
	Geometry Chunk Types
	NODE - Generic Node
	MTRX - Matrix
	TRAN - Translate
	SCAL - Scale
	ROTX - Rotate about the X-Axi s
	ROTY - Rotate about the Y-Axi s
	ROTZ - Rotate about the Z-Axis
	ROTQ - Rotate about Quarternion Defined Axis
	VERT - Vertex
	EDGV - Edge (Value Specified)
	EDGR - Edge (Reference Specified)
	TRIV - Triangle (Value Specified)
	TRIR - Triangle (Reference Specified)
	QADV - Quadrilateral (Value Speci fied)
	QADR - Quadrilateral (Reference Speci fied)
	PLYV - Polygon (General Case, Value Specified)
	PLYR - Polygon (General Case, Reference Speci fied)
	PLXV - Polygon (Convex Case, Value Specified)
	PLXR - Polygon (Convex Case, Reference Specified)
	INST - Instance of Geometry Data

	Vi sual Chunk Types
	COLR - Color
	PALT - Palette
	TXTP - Texture using Palette Data
	TXTR - Texture using Raw Data
	APLY - Apply to Object
	GRUP - Declare a Group of Chunks

	Animation Chunk Ty pes
	A NML - Animate Linear
	ANIM - Animate Parameter
	VALU - Value
	ASGN - Assign Value to Parameter
	ARTH - Arithmetic function, simple

	Mi scel laneous Chunk Ty pes
	LTAM - Light, Ambient
	LTPT - Light, Poi nt
	LTDR - Light, Directional
	CAMR - Camera
	USR* - Appl i cation defined usage
	NORM - Defines a Surface Normal

