ALS-8 PROGRAM DEVELOPMENT SYSTEM

OPERATOR S MANUAL

PROCESSOR TECHNOLOGY CORPORATI ON
6200 Hollis Street
Enmeryville, CA 94608

(415) 652-8080

©Copyright 1977 by Processor Technol ogy Corporation Manual No. 727013

| MPORTANT NOTI CE

This copyrighted software product is distributed on an i ndividual
sal e basis for the personal use of the original purchaser only. No
license is granted herein to copy, duplicate, sell or otherw se
distribute to any other person, firmor entity. This software
product is copyrighted and all rights are reserved; all fornms of the
program are copyrighted by Processor Technol ogy Corporation.

THREE MONTH LI M TED WARRANTY

Processor Technol ogy Corporation warrants this software product to
be free fromdefects in material and workmanship for a period of
three nonths fromthe date originally purchased.

This warranty is nade in lieu of any other warranty expressed or
inplied and is limted to repair or replacenent, at the option of
Processor Technol ogy Corporation, transportation and handling
char ges excl uded.

To obtain service under the terns of this warranty, the defective
part nust be returned, along with a copy of the original bill of
sale, to Processor Technol ogy Corporation within the warranty
peri od.

The warranty herein extends only to the original purchaser and is
not assignable or transferable and shall not apply to any software
product whi ch has been repaired by anyone ot her than Processor
Technol ogy Corporation or which may have been subject to altera-
tions, m suse, negligence, or accident, or any unit which may have
had the nane altered, defaced or renoved.

ALS- 8 PROGRAM DEVELOPMENT SYSTEM - OPERATOR S MANUAL

TABLE OF CONTENTS

CHAPTER | General DescCription 1
CHAPTER 1 | Menory & Program Structure of the ALS-8 4
CHAPTER 111 Talking to the ALS- 8 i, 9
CHAPTER IV Menory Related Conmands 12
CHAPTER V Files and File Commands 15
CHAPTER VI BEdit Commands 18
CHAPTER VI1 /O Drivers and Commands 21
CHAPTER VI Il System Commands 23
CHAPTER | X Conmand SUMMBIY et 27
CHAPTER X The ALS-8 Assenmbler 35
Assenbler Error Indications..................... 37
Assenb!y_LanPuage Instructions 41
Unconditional Transfers......................... 48
Conditional Transfers............., 48
Carry Bit Instructions 49
Subroutine Transfers......... 50
Subroutine Conditional Instructions............. 51
16 Bit Operations........... 54
Stack Qperations..... e 55
| nput/ Qut put Instructions....................... 56
Interrupt Related Instructions.................. 57
Variable Storage and the NOOP.................. 59

SI MULATOR EXTENSI ON PACKAGE

OQperating Manual 62
Set Commands 62
Breakpoi nts and "Real Tine Run" Addresses....... 65
Input Instructions 66
Qutput Instructions............, 67
I nput/Qutput Commands 68
optional Simulator Entry Point 69
O her SIM1 Extension Functions................. 69

TXT-2 EXTENSI ON PACKAGE

Operator's Manual 70
Editor ... 70
Cursor Positioning Command 71

©Copyright 1977 by Processor Technol ogy Corporation Manual No. 727013

Tabl e of Contents (cont.)

TXT- 2 EXTENSI ON PACKAGE (cont.)

Screen Scroll Commands 71
Direct File Positioning Conmands 72
File Modification Commands 73
O her Commands 74
FIND . ..o 74
ESET Command 75
APPENDI X A - Standard System Notes............. 77
APPENDI X B - ASSI, Assenbly fromlInput Driver 80
APPENDI X C - ALS-8 on Cassette and with SOLOS/CUTER. 81
APPENDI X D - SOLOS/ CUTER Interface Specifications................ 84

ALS- 8 PROGRAM DEVELOPMENT SYSTEM

OPERATOR S MANUAL

CHAPTER |

The ALS-8 is a single term nal operating system designed
for use with "8080" based m cro-conputers. The system software
is contained on a printed circuit board in progranmbl e
read-only nmenory. This sanme board also has circuitry which wll
normal ly start the operating systemonce the conputer is turned
on. This configuration, called a "turnkey systent, elimnates
the startup procedures usually required fromthe conputer's
front panel switches. The fact that the ALS-8 programis al ways
stored in nenory, regardless of power conditions, elimnates the
system | oad or "bootstrapping" nornmally needed by snal
machi nes.

In this manual, the nanme "ALS-8" will refer not only to the
circuit board but also the operating system program contai ned on
the board. The manual w Il describe the many capabilities of
the ALS-8 and how they are used. Chapter Two al so describes the
har dware requirenents for running an ALS-8.

The ALS-8 is a personalized operating systemwhich attenpts
to maxi m ze conveni ence in program devel opnment w t hout over-
controlling the machine. Operating systens, even the |arge
conputer variety, can be guilty of "over-control" when design
assunptions becone user restrictions. The ALS-8 has assunptions
incorporated into its design as nust any program but the ALS-8
al l ows access to "paraneters"” which can redefine these
assunptions. In this way, various input/output devices or
menory configurations can be accommobdated. Another personalized
feature allows the user to expand the ALS-8 by addi ng his own
functions to it. Each of the initial operating system functions
resides inits own section of the ALS-8 nenory and is activated
by a command or word or "key word" sent fromthe term nal.

Addi tional functions only have to be given a nenory start
address and a nane for the associated conmand. The new function
i s executed whenever the ALS-8 sees the custom command nane
associated with that function.

The ALS-8 relies heavily on the concept of paranmeters in
its internal design and its command interpretation. The
fundanmental idea is contained in the observation that two
simlar tasks differing by some el enent should be a single task
which nodifies its operation based on the value of this
"element". A sinple exanple of this concept is the ALS-8 out put
formatting routine. A nunmber of printing termnals are
avai |l abl e which could be interfaced to the conputer with

(1)

ALS-8, and these termnals often vary in the wdth of paper they
accept. Sone standard widths are 72, 80, 110, and 132
characters per line. It is conceivable then that a separate
ALS- 8 package could be witten to handl e the specific term nal
attached to its conputer. The paraneter principle suggests
instead that a single ALS-8 be nade with provision for defining
or redefining this paraneter, the termnal width. This is, in
fact, exactly what is done. Before printing, the output routine
checks this value to see how it should format the output |ine.
The ALS-8 has several such paranmeters which it uses to contro
its various functions.

This concept of paraneters is carried into the command
structure in nmuch the sane way. While interpreting a command,
the ALS-8 checks for an optional list of "argunents," which
could be one or two nunbers, and for a nanme enclosed in slash
marks (/). These values are stored in the order found, and if
the function chosen by the conmand nanme needs this information
for its owm functioning, it retrieves it froma predeterm ned
| ocation in nenory. The only appreciable difference between
argunents and paranmeters is that argunments are tenporarily
stored and only for the current conmand, while paraneters
describe conditions which may be of interest to many functions.
Using the features which arise fromthis principle, the user can
tailor the operating systemto his own personal requirenents.

The ALS-8 contains an assenbler, file handling routines,
editing, and managenent functions. The functions within these
logically distinct sections of the operating system can be
conbined in many ways to aid in the witing and debuggi ng of
prograns. The text for a program and oftentines data, is
witten fromthe termnal onto a "file" in nmenory where it can
be exam ned, altered, added to, or saved for later. The ALS-8
resi dent assenbl er can convert the programtext on such a file
into the numeric machi ne | anguage required by the CPU. This
machi ne | anguage is then stored by the assenbler at sonme user-
desi gnated nenory | ocation where it can be run. Up to six of
these files can be managed at one tine by the ALS-8.

A very inportant aspect of the ALS-8 in program devel opnent
is the fact that any user program has access to all the ALS-8
functions and support routines. For many problens this neans
that half the programis witten, debugged, and ready as soon as
the computer is powered up. All the user's programmnust do is
call the already existing routines. Naturally the user program
has to be aware of the conventions and assunpti ons associ at ed
with the routines that it calls, but it is far sinpler and much
faster to learn these than to wite such routines from scratch
each time a particular function is needed. Later sections of
this manual will deal with this feature in detail.

(2)

Anot her inportant design feature of the ALS-8 is its
ability to maintain and effectively use a SYSTEM SYMBOL TABLE.
The user, through the appropriate commands, can enter and del ete

names in this list or "table". These nanes carry only an
associ ated nunber with themwhich is interpreted as the val ue of
the label. This table is accessible to the assenbl er and any

ot her function (user program which cares to reference it. This
can be used quite effectively to link together prograns witten
at different tinmes. The address (or value) of a certain
quantity does not have to be known at the tinme that a programis
bei ng assenbl ed. Instead, that program can contain code which

| ooks for this value in the synbol table.

(3)

CHAPTER | |

MEMORY AND PROGRAM STRUCTURE OF THE ALS-8

A structural description of the ALS-8 is given here to
define the m ni mum hardware requirenents and to outline the
principles behind its construction so that the full est advantage
may be taken of the features available. The programALS-8 is
distributed on the printed circuit board nentioned in Chapter |
and it is this board that defines sone of the hardware
constraints. The programitself could be used on any 8080 based
conput er which has retai ned the 64K addressing schene of the
8080 chip. However, the circuit board does restrict correct
mechani cal and el ectrical characteristics avail abl e.

The circuit board also determ nes the |ocation in nenory
for the program The board itself is capable of hol ding 8K
bytes of PROM of which the ALS-8 takes over half. This menory
page is hardwired on the board to reside in the | ast 8K page of
menory so that it addresses from EOOO hex to FFFF hex. The
programitself also has nmenory requirenents; the software
assunes that at |east 1K of random access nenory (RAM resides
in nmenory, starting at |ocation DOOO hex.

VWhile this nenory configuration is enough to let the ALS-8
operate, it is insufficient for nbst progranm ng requirenents.
It is strongly suggested that a separate nenory be provided in
the |l ow part of nmenory, preferably starting at 0000 to serve as
the user's free space for putting in prograns, files and data.
This is suggested because there is very little free space around
the DOOO RAM and it is also suggested that the system RAM board
be 4K (from DOOO to DFFF).

The ALS-8 is very flexible with regard to peri pheral
devices, but it does nmake sone initial assunptions about the
term nal which constitute a hardware requirenent. Devices
attached to any 8080 based conputer identify thenselves to the
conputer with a nunber called a "device code". There are 256
possi bl e codes for input devices and 256 for output devices. As
initialized, it is assuned that the keyboard is | NPUT DEVI CE
code 1 and that the print nechanismis OUTPUT DEVICE 1. It is
al so assuned that the conputer, or the ALS-8 in this case, can
retrieve status information about the termnal frominput 0, the
nmost significant bit, 10000000, represents the busy status of
t he out put device and the next |lower bit, 01000000, has the busy
status of keyboard. The termnal printer is busy when its bit
is 0, and the data is assunmed avail able fromthe keyboard when
its bit is 1. This I/Odriver is in the System RAM area, and it
can be changed by the user follow ng systeminitialization;
however, since this convention is assumed by a good deal of the
software witten for 8080 based conputers, it is suggested that
it be foll owed.

(4)

The ALS-8 keeps a great deal of information in the system
RAM area, and to use the ALS-8 to its fullest, the reader should
learn how this information is used. In the follow ng di scussion
on the system RAM area, it will be assuned that the 4K space
reserved for it is actually filled wiwth nenory. The reasons
W || becone clear as the discussion progresses.

The first block of information in this area occupies
addresses D000 to D25C and is called the System d obal Area.
Paranmeters defining or describing I/O devices, program status,
and other information are stored here. Immediately follow ng
this is the Custom Command Tabl e which contains a |ist of nanes
defined by the user with the CUSTE conmand which wll be
detailed later. Each entry in this table is paired with an
address gi ven when the conmand was defined. Wen the user types
in one of these Customnanes, the ALS-8 realizes that it isn't a
name fromits own command set. It then searches this custom
tabl e, picks up the correspondi ng address and perforns a
subroutine junp (call) to that address. This table ends at D2FF
whi ch | eaves room for 22 custom nanes.

The System Synbol Table follows the custom comrands and
continues out to DFFF where the ALS-8 software begins. This
table, like the Custom Command Tabl e, contains nanmes and
correspondi ng si xteen-bit nunbers which are usually thought of
as addresses. This is used nost often by the ALS-8 resident
assenbler, but it is open for use to any user routine which
cares to access it. It allows user routines to be paraneterized
so that the routine can access information not available at the
tinme it is witten and assenbled. This is especially useful for
connecting prograns and subroutines witten at nmuch different
tinmes. Note that systens having only 1K board at DOOO w Il be
restricting this System Synbol Table to the area D300 to D377,
only sixty-four bytes of nenory. This severely limts the
useful ness of this feature.

It was suggested earlier that RAM be placed in the | ow part
of menory space for the user. This serves to mnimze
congestion and the possible nmenory conflicts arising between the
system and user software. 1In keeping with this philosophy,
special user witten routines designed to handle I/O devices
shoul d be stored sonewhere in the system These routines,
called I/O drives, can be put anywhere, but shoul d probably be
| ocated in the RAMjust under the EOOO start of the ALS-8
programuntil they are put in nore permanent form This stil
gi ves the System Synbol Table as nuch room as possible while
mai nt ai ni ng the system user separation.

The di agram on page (6) summarizes the nenory map descri bed
so far and shows the suggested | ocations for the Video D splay
Modul e and optional nenory.

(5)

DFFF

p4co
D2EF

mn5Q
DEBP

1/0 DRIVERS
(OPTIONAL)

— — —

SYETEM SYMBOL TABLE

cuUsToM LOMMAND TABLE

SYSTEM GLOBAL AREA

/

/

/
/

/

(6)

X
EPITOR

SIMULATOR
SOFTWARE

ALS-8 APPROXIMATE
8K SIZE OF ALs-8
PFEOM BOARD l

Fooo

ECOO

SYSTEM RAM
AREA

Looo

& VIPEDDISPLAY
MODPULE

K MEMORY BOARD

- — e — e —— -

» 2K PROM BOARD

>

™~

CLOO
cyoo

N cop0

T

USER'S FILE
AND PROGRAM
AREA

cooo

The separation of system space from user space results in
an upward progression of address values for user nenory and a
downwar d progression for system nmenory. Future products have
assuned that this policy has been carried out and that the Video
Di spl ay Module (VDM, for instance, is |ocated just bel ow the
D000 start of systemRAM This VDM should then start at
| ocati on CC00 hexadecimal. The presence of the VDMin the
C000- CFFF bl ock neans that no 4K board coul d be pl aced there.
It is, however, suited to a 2K PROM board and perhaps a 1K
menory board, should it becone inportant to fill up this space
conpletely. The space from 9000 all the way to BFFF has been
mar ked as the best l|ocation for further extensions of the
System As |/Odrivers, |oaders and other user software is
devel oped, it is suggested that they be placed in PROMin the
CO00 to C7FF bl ock. Future software packages will assune this

menory structure.

The program structure of the ALS-8 is nost easily described
with the aid of the follow ng diagram The conceptual parts to
the program are shown as parts of a heirarchy not conpletely
unli ke the structure of a governnment or business. In such a
diagram it is assuned that the higher levels are able to

command the | ower | evels but not
program sense then, the top nost
routi nes bel ow as subordi nat es.

the other way around. In the
| evel can call on any of the
It is assuned also in this

diagram that routines on the same |evel may call each other as

needed.

e EXECUTIVE LEVEL

‘ l y

ASBM MODE cusT

I R

FUNCTION LEVEL
(COMMANDS)

SUPPORT

LEVEL

@ENERAL SUPPORT

S s e N S L) L
I
!
|

l/0 PRIVERS

The top level, the executive level in this diagram

represents the control center.

It is this section which

controls the communications with the term nal, decides which
function is to be executed, and reports on errors to the user.

Each bl ock on the function | evel

corresponds to a conmand from

the ALS-8 command set. These routines, for efficiency' s sake,

make heavy

(7)

use of the support routines on the next |evel, making the
overal |l package much snmaller. These support routines have been
divided into two parts: general support, and I/O drivers. The
| /O drivers are support routines which handle the transfer of
data to or fromexternal devices. They are logically distinct
fromthe general support routines because only the drivers
handl e I/ O and because the ALS-8 allows the user to define his
own routines as drivers, thereby adding to this part of the
system Each new driver added usually has charge of a single
device. Only drivers can be used (as will be described in the
chapter on I/Odrivers) to control high speed paper tape
readers, cassette recorders or printers. The custom conmands
al so add to the structure diagrambut do so on the function
level. 1In addition, they can nmake use of all the general
support, 1/Odrivers, or other function |evel blocks to mnimze
their owm size and conplexity. Oher conplete, self-contained
prograns may be considered custom functions (like BASIC or
FOCAL) and this interaction with support routines or drivers is
only a conveni ence, not a requirenent.

It is inportant to realize that many of the decisions nmade
by the ALS-8 in choosing support routines or drivers for a given
task depend on status information kept in the system RAM ar ea.

Al though there may be quite a nunmber of 1/O driver routines
identified to the system only one input driver and one out put
driver are considered current at any one tine and their
identities are kept in this nmenory area. Simlarly, certain
paranmeters will influence the flow of control through the
program structure.

(8)

CHAPTER | I |

TALKI NG TO THE ALS-8

The command set recognized by the ALS-8 can be naturally
divided into five categories; MEMORY, FILE, ED TING 1/0O and
SYSTEM commands. The nenory commands are used to enter data
into nenory or exam ne the contents of a section of nenory.
Usual |y these data transfers are between nmenory and the keyboard
and printer of the termnal but with proper equi pnent and
drivers, the nenory commands becone a neans of saving and
restoring prograns. The file commands verify, relocate, and
manage up to six files of information in nmenory while the edit
commands mani pul ate the contents of the files. The category of
system commands includes all the commands which define system
paraneters, synbols, and drivers. It also contains commands
whi ch execute the assenbler, the optional simulator, or any user
designated location(s) in nenory. The following table lists the
command nanes in their respective categories. The nanmes marked
with an asterisk are commands used only by the optional VDM
Editor or Sinulator software packages.

MVEMORY FI LE ED T SYSTEM

ENTR FI LE DELT | ODR
DUMP FI LES EDIT (*) SWCH
FCHK LI ST MODE
FMOV TEXT ASST
FIND (*) RNUM ASSM
EXEC
SIMJ (*)
AUTO (*)
SYM.
SYMLE
SYMLD
STAB
CUST
TERM
FORM
NFOR

The above list represents the default command set
recogni zed by the ALS-8 executive routine. Individual ALS-8
functions, while operating, will recognize other lines as
inputs. The ENTR conmand, for exanple, takes control of the
termnal and expects to receive nuneric input data to place in
menory. This function nust be given a special character
signifying the end of input before it will return control to the
ALS-8 executive. The ENTR function will not recogni ze entries
fromthe

(9)

executive's conmmand set. An error nessage is output to the
term nal when an entry line is unrecogni zabl e.

O her than custom commands whi ch have been covered, the
ALS- 8 executive does recognize a command |ine type not shown in
the command set list. Lines beginning with a nunber are assuned
to be line entries to a file of information stored in nenory.
Files are a very powerful feature of the ALS-8 which will be
t hor oughly covered in Chapter V. For the nonent it suffices to
note that they contain text (usually programtext for the
assenbler) and that they normally sequence their contents by
I ine nunbers. The text you are now readi ng, however, is an
exanple of a text file without |ine nunbers using the optional
TXT-2 extension to the ALS-8.

A nunber of the executive comrands accept "argunents" as
nodi fiers for the associated function. The ALS-8 executive
al l ows a maxi nrum of two nuneric val ues and one ASCI| argunent as
nodi fiers to a command. How the argunents are used if they are
used at all, depends on the command chosen. |In use, the
argunents are interpreted by the order in which they appear.
Commands using an ASCII argunent will expect it to be the first
argunent given. The ASCI| argunent, usually a nane in one of
the many tables used by the ALS-8, also has the requirenent that
it nmust be enclosed in slash marks(/). The follow ng exanple
shows a nunber of commands as they m ght appear with argunents.

ASSM 2000
ASSM 2000 3000
FI LE / FNAME/ 100

DUWP 101 110
CUSTE / HACF/ 307
| ODR / TAPES/ DFO0 DF80

Most of the ALS-8 functions contain |logic to handle
i nstances where an argunent has been omtted. |In such instances
a default rule, peculiar to the conmand and argunent in
question, will be applied. The "ASSM' comrand shown in the
exanpl e above can be used with one or two argunents. The
command starts the assenbl er which begins by checking for a pair
of arguments. It interprets the first argunent as the origin
(ORG) address for the program being assenbled. The second
argunment specifies the starting address for the assenbler's
bi nary out put (machine instructions). |If this second argunent
is mssing, the assenbler wll take the value given in the first
argunent for both argunents. The assenbler has no provision for
defaulting two argunents so it wll signal an error if the ASSM
command is given with no argunments. Default rules for al
executive commands will be given in the detailed description of
t hese conmands in the upcom ng chapters.

(10)

Again it is nmentioned that the user functions attached to custom
commands have full use of the argunent handling support

routines; the treatnent of default conditions is naturally up to
t he progranmer.

Finally, it nust be noted that there are some mnor rules
to be observed in the use of command inputs with argunments. The
ALS- 8 executive needs to separate the characters belonging to
the command fromthose of the argunments. Simlarly, it needs to
separate argunents from one another. The requirenent is
therefore put on the user to place at | east one blank after the
command word and at | east one bl ank between a pair of nuneric
argunents. The slash at the end of an ASCI|I nane argunent is
sufficient to separate the name fromany foll ow ng nunbers.
Nuneric argunents may follow an ASCI| argunment wth no
separating blanks as long as the ASCII argunent was term nated
with a slash mark

Responses fromthe ALS-8 in general depend upon the conmand
chosen. For the standard ALS-8 conmand set, the user is always
assured of a response; if a response is not a nornmal duty for a
command, the ALS-8 executive will send the word "READY" to the
user's termnal after conpleting the command.

(11)

CHAPTER | V

MEMORY RELATED COMVANDS

The sinplest commands in the ALS-8 repertoire are the
menory related commands, ENTR and DUMP. They provi de a neans of
changi ng and exam ning nenory |locations directly fromthe user's
termnal. The output printing format of the DUMP conmand has
been made conpatible with input format requirenents of the ENTR
command. This permts these commands to be used for saving
prograns on a mass storage device and returning it to nenory at
a later tinme. This feature will be covered here and in the
chapter on I/O drivers.

The ENTR command requires a single argunent defining the
starting address for the data to be entered. The command starts
t he correspondi ng ENTR functi on whi ch assunmes control of the
user's selected input device until receiving the character"/"
signifying the end of the input stream The actual input to the
ENTR function is a list of values, each between 0 and 255
decimal in magnitude. These values nust be listed in the order
they are to be placed in nenory, and each nust be separated from
adj acent val ues by at | east one blank. The follow ng shows
typi cal sequences using this command. Note that the input |ist
may use any nunber of lines up to the "/" mark.

ENTR 100
20 303 55 40
16 12
107 200 303 100 O
/
READY
ENTR 2001
101 200 /
READY
ENTR 3
o 7/
READY

The argunent and input |ist can be in octal, as shown
above, or in hexadeci mal depending on the current node paraneter
set by the systemclass cormmand MODE. The MODE command affects
t he operation of other ALS-8 commands, not just nenory conmmands.
It takes a single deciml argunent, 8 or 16, which is stored in
the system paraneter defining the base for command inputs. |If
any inputs are received which are inpossible to decode with the
current base. a "WHAT?" will be sent to the user's termnal.
The ALS-8 initializes this paraneter at start tinme to 16 and
this value is changed only with MODE. The foll owi ng shows
possi bl e errors associated with the MODE paraneter:

MODE 16
ENTR 156000 (Cctal address)
VWHAT?

(12)

MODE 8
ENTR CCOD (Hex address)
WHAT?

MODE 16

ENTR BF2

52 49 EE 4F 52 F6 43 50
5 A0 O 84 E4

43 2 303 22

WHAT?

In the last of the exanples, the values up to the error are
properly stored by the ENTR function. The corrected input wll
have to restart at the place of the error.

An added feature of the ENTR command is that the present
storage address may be changed during input wthout having to
stop the process and restart with a new argunent. The "present
storage address" always starts with the value given by the
attached argunent to ENTR, and the first input value is put in
this location; inputs are placed in successive |ocations. The
user has an opportunity at the start of each input line to
redefine this current address. |If the first value is followed
i mredi ately by a colon(:), it is treated as a new address rather
than a nenory value. While this seens only a m nor conveni ence,
it becones the key to nmaking the output of DUMP conpatible with
ENTR i nput. The follow ng shows the first exanple of this
chapter rewitten using this feature.

MODE 8

ENTR 100

2 303 55 40 16 12 107 200
303 100 O

2001: 101 200

3: 03/

READY

The DUWP command di spl ays the contents of nmenory starting
at the address specified in the first argument and continuing to
the address specified by the second. As with ENTR, both the
argunents and the output follow the base paraneter set by MODE
The DUVP command can al so be used with just a single argunent;
in this case it types out only the location specified in the
first argunent.

The lines output by the DUVMP command each start with the
current address followed by a colon. The remainder of the line
contains the hexadeci mal or octal contents of the nenory
| ocations beginning with the printing address. 1In either the
octal or hexadeci mal node, the DUMP command puts sixteen val ues
on each line. Because this output is fornulated properly for
ENTR, those users with a paper tape punch can save the out put
directly on tape and reread it later with ENTR In this case,
the standard ALS-8 I/O driver could be used. Saving prograns on
ot her devices will require

(13)

usi ng special drivers. The follow ng shows a sinple exanple of
DUWP i n the hexadeci mal node.

DUWP 40 52

0040: OA D8 D6 07 C9 DB 00 E6 45 00 DC 01 D3 02 F8 CF
0050: E6 7F C9

(14)

CHAPTER V

FI LES AND FI LE COMVANDS

The ALS-8 relies very heavily on the use of files; for they
represent a very powerful way of managing data in text form A
file is a sequence of information stored in user designated
menory. The information is broken into "lines" which are dupli-
cates of the termnal input |lines which define them Each |ine,
both as it is input and as it is stored in nenory, starts with a
line nunber defining its position in the file relative to other
lines. Lines with the lower |ine nunbers are at the start or
"top", of the file while higher nunbered |ines have positions
farther "down" in the file. The lines do not have to be entered
in nuneric order by the line nunbers. The ALS-8 will reposition
other lines to make sure the proper order is kept internally.
Once in nenory, files can be renunbered using the RNUM command.

Files are known to the ALS-8 by nanme and up to six files
can be defined and nanaged at any one tine. File nanes may have
up to five characters. Rather than having each file-related
command specify which file is to be operated on, the ALS-8 has
the user define "Current File". Using the FILE command, the
user can specify which of his defined files is to be considered
"current". Al file operations wll apply to this file until
the Current File is redefined with the FILE comand.

To create a file the user nust give a nane for the file and
a starting address for it. This is done by using the FILE
command with an ASCI| argunent for the FILE NAME and a nuneric
argunment as the START ADDRESS for that file. 1In this way, the
FI LE command can be used to create a new file as well as nake an
already existing file current. File nanmes are kept in the
system RAM area in a table called the "File Nane Table". These
names can al so be renoved fromthis list of defined files by
using the FILE command; a nuneric argunent of zero erases the
name fromthe table but does not affect the menory containing
that file. These file paraneters may be restored later with the
FCHK command thereby allowi ng the user to actually have nore
than six files of information in nmenory at one tinme. The ALS-8
does not, however, keep track of nore than six. The follow ng
shows three short files being created. Note that the FILE
command used wth no argunents returns a nessage to the term nal
defining the Current File, its start and end addresses.

FI LE/ ONE/ 100
ONE 100 100 (RETURNED BY ALS-8)

1 This is the first line of file ONE
26 THHS I S THE SECOND

(15)

29 Line 3
FILE / TWO 200

TWO 200 200
FI LE / THREE/ 6Al

THREE 6Al1 6A1l
10 Dear John,

12 Pay me or I won't be
14 your friend.

15 See you soon,
17 | gor

FI LE / TWO

TWO 200 200

1300 File Two gets this line
1984 UPPER CASE K.

1000 | ower case ok.

2710 End TWO

FI LE

TWO 0200 02C0

Thi s exanpl e points out a nunber of requirenents and
features omtted in the discussion so far. Line nunbers, for
instance, are normally followed by a blank but this is not
required by the editor functions. The exanple also illustrates
the fact that |ine nunbers do not have to be absolutely
consecutive nunbers. File line nunbers are always deci mal and
must lie in the range 0 to 9999.

Afile, "TWD' in the exanple, can be entered into the File
Nane Tabl e and saved during the definition of : THREE" although
it is enpty. Later it can be made the current file and
information can be entered into it.

Files naturally have a length as well as a start |ocation
and the user nust be careful that, in adding text to a file, he
does not accidentally wite file information over a program or
another file. The ALS-8 assunes that the user knows where file
information and prograns are |ocated. To help the user manage
his files, the ALS-8 provides three file related conmands: FILES
(different fromFILE), FMOV, and FCHK

The FILES command produces a listing of the files in the
File Nanme Table. This listing includes the start and end
addresses for the files so it is a sinple matter for the user to
spot and avoid nenory conflicts. Should a nenory conflict
threaten, the current file can be noved to a different |ocation
in menory with the FMOV command. FMOV requires only a single
argunent defining the destination address for the Current File.
Thi s argunment may not be zero, but no other restrictions are
pl aced on it.

(16)

The last of the file related commands is FCHK whi ch
verifies the internal structure of the Current File and updates

the file and address if necessary. |If, for any reason, the file
is not properly formatted in nenory, FCHK will send the nessage
"FILE ERR' to the termnal. This command can be very useful in

restoring files. Earlier it was nentioned that the contents of
a file were not affected by renoving the file's name fromthe
list of defined files. Assum ng that subsequent operations have
not altered the nenory contents for that file's information,
FCHK can return it to an active, useful status. Simlarly, the
contents of a previously saved file could be ENTR ed into nenory
and reactivated wiwth FCHK. The foll ow ng exanpl e shows sone
typi cal uses of FCHK

FI LE / COPY/ 700 define a file nane. Leave enpty.

COPY 700 700
FILE /OLD) 600 define file "COLD'. Store programin it.

QLD 600 600

10 WVAIT |IN 377

15 CvWP A

20 JZ WAIT

25 RET

40 END

FMOV 700 move OLD to start of COPY

OLD 700 736

FI LES

OLD 700 736 ODis O K

COPY 700 700

FILE /O.LD O delete OLD from i st.
FI LES check defined files.

COPY 700 700 only COPY. thought to be enpty.
FI LE / COPY/ make it the current file.

COPY 700 700

FCHK redefi ne end address.
COPY 700 736

FI LES

NEW 600 600
COPY 700 736

FCHK examne file starting at 600.
NEW 600 636

FI LE check Current File, "NEW.
NEW 600 636 contents recovered.

17

CHAPTER VI

EDI T COVIVANDS

The ALS-8 contains a nunber of editing conmands designed to
mani pul ate the contents of a file. Al of these conmands
operate on the Current File so the user is cautioned to check
the status, and perhaps identity, of the Current File before
using these functions. This, as described in the |ast chapter,
can be done with the FILE conmand. ALL the EDI T commands use
decimal |ine nunbers as argunents where required. (NOTE: These
commands are separate fromthe optional VDM ED TOR package, TXT-
2, sold by Processor Technol ogy.)

The EDI T conmand set contains two comrands designed to
print the contents of the Current File: LIST and TEXT. The LIST
command outputs the Current File ordered by increasing line
nunber. It accepts up to two argunents defining the start and
stop line nunber for the printing. If only one argunent is
given, the LIST function assunes that it is only to print the
single line identified by the first argunent. Wen both
argunents are omtted, the entire file is printed. The
foll ow ng exanpl e exerci ses these options. (Exanples show
formatted output.)

FILE /SMPL/ 1A2B

0 WVAIT E

0010JMP WAl T+1

0020 * TH'S SETS | NTERRUPT AND WAI TS

0024 END

LIST O

0000 WAIT El

LI ST

0000 WAIT El

0010 JMP WAl T+1

0020 * THI' S SETS | NTERRUPT AND WAI TS
0024 END

The TEXT command is very nmuch |ike LIST; the only
difference is that its output omts the line nunbers. This
feature is generally used for files containing regular text as
opposed to programcode. This allows letters, notices, or
papers to be printed without |ine nunbers. Since the user nust
specify line nunbers for argunents in edit commands, the TEXT
command obeys the argunent conventions used for LIST.

(18)

The foll ow ng shows the | ast exanple reprinted using TEXT.

TEXT

VWAI'T E
JMP VA T+1

* TH'S SETS | NTERRUPT AND WAI TS
END

The ALS-8 system RAM has two paraneters pertaining to LIST
and TEXT; the formatting flag and the term nal wi dth paraneter.
"Formatting"” refers to the spacing or |ayout of the printed
results fromthe two functions. A formatting "flag" paraneter
is awrdin a system RAM which tells LIST or TEXT whet her or
not they should rearrange the contents of each line in a form
especially suited to assenbly | anguage output. This paraneter
is controlled by two system commands: FORM and NFOR, which
indicate "formatting" and "no formatting" respectively.
Naturally, a file not containing a programis nore readabl e when
not formatted. The FORM and NFOR commands require no argunents,
and the paraneter set by themremains in effect until explicitly
reset by the user.

The termnal wi dth paraneter, set by the conmand TERM
contains an integer which represents the line wdth for the
current output device nmeasured in characters. This paraneter
has no influence on LI ST or TEXT when the formatting feature is
suppressed. Wen formatting output for either output command,
the termnal width value determines the extent of formatting.
When it is fewer than 80, mninumformatting is perforned. Wen
it is nore than 80, the maxi mumformatting is perforned.

Termnal wdth also controls the maxi mum | ength of input |ines
as well as the acceptable line I ength during FCHK

The DELT conmand all ows the user to delete a line or group
of lines fromthe Current File. It accepts one or two argunents
identifying the first and last |ine nunbers of the group to be
DELETED FROM THE FILE. Wen used with only one argunment, DELT
assunes that it is only to delete the single |line designated by
the first argument. The ALS-8 executive, however, rejects line
nunbers input with no line. Thus, Iine 40 in the follow ng can
be deleted with "DELT 40" or sinply 40 followed by a carriage
return.

FORM
FI LE

A 0280 02AF

(19)

LIST 36 44
0036 DUP LXI HO

0039 DAD SP
0040 SHLD HOLD
0044 RET

DELT 40

LIST 36 44

0036 DUP LXI HO
0039 DAD SP
0044 RET

The last command in the edit set is RNUM which renunbers a
file given a start line nunber and increnent. Wen finished,
the Current File's line nunbers will begin with this first
nunber, and all adjacent |line nunbers will differ by the val ue
of the second argunent. |If the second argunent is omtted, the
RNUM function will use five as the increment. The |argest val ue
allowed for this increment is twenty-five. The RNUM function
also will change the increnent to one if the |line nunbers exceed
9000. The exanpl e bel ow shows a small program bei ng renunber ed.

LI ST

0025 | NSTAT W\ TTS
0030 ANI DR
0035 JZz | NSTAT

RNUM 8000 10
TEST 1000 1030

LI ST

8000 | NSTAT W\ TTS
8010 ANI DR
8020 JZz | NSTAT

(20)

CHAPTER VI |

| /O DRI VERS AND COMVANDS

The term"I/O Driver"” refers to a routine used to transfer
textual data between the ALS-8 routines (or user routines) and
an associ ated input or output device. Its basic duties are to
interpret a request for data transfer fromsone calling routine
and to translate it into a sequence of reads or wites suited to
t he conventions assuned by the el ectronics of the external
device. This relieves the calling routine of the responsibility
of handling separate conventions for many devices.

Conceptual ly, an ALS-8 routine can ask for data from any i nput
device in the sane way or send data to any output device. It
must formnmul ate the request and sinply choose the routine to
handl e the request and the device.

The ALS-8 has a table of driver routines in its system RAM
area and a paraneter identifying the current pair of drivers
(1t nput and output). When an ALS-8 function requires input or
out put of a character, it uses this paraneter to choose the
proper driver. The table for these routines contains a nane and
pair of addresses for each entry. The I ODR conmand handl es
entries to and deletions fromthis table, as well as defining
the "current" driver and printing out the table's contents.
Used with a nanme argunent of one to five characters and two
nunmeri c argunents obeying the current value of MODE, the | ODR
command will enter the nane and addresses into the table. If
used with no argunents at all, IODR prints the contents of the
table. Since drivers are selected as pairs, special functions
can be inplenmented such as read from hi gh speed paper tape both
with and without printout. Entries can be deleted by using | CDR
with the entry nanme as an argunment followed by a single zero
argunent. The exanpl e shows | ODR being used in these ways.

| ODR / TAPES/ DFOO DF40
TAPES DFOO DF40

| OOR / TVIWI/ DF80 DFCO
TVIWI DF80 DFCO

| ODR

SYSI O E200 E240

TAPES DFOO DF40
TVIWI DF80 DFCO

(21)

|ODR / TVIWI/ O

| ODR
SYSI O E200 E240
TAPES DFOO DF40

SYSIO shown in the above, is the default 1/0O driver which
handl es the main termnal. It remains the current driver until
another fromthe list is explicitly defined by ICDR in yet
another form IODR with just a nanme argunent. Making a driver
"current" assunes that the corresponding routines are | oaded and
ready for use because the subsequent ALS-8 commands wil | have
switched to using those addresses for 1/O Assum ng that
"TAPES" in these exanples represents drivers for a cassette
recording unit, data could be |loaded into nenory with the
fol | ow ng:

| CDR / TAPES/

ENTR 200

(the ENTR function will retrieve data fromthe cassette and
not the term nal keyboard)

The di scussion on drivers so far has covered only the basic
duties of drivers. Because the systemonly has to know where
the routine starts, the programrer has an enornous anount of
flexibility. The driver is a program capable of handling any
nunmber of devices in a single call if desired. It has access to
system paraneters and tables so it can check status words or
find file information. Wen used with functions |ike ENTR, the
driver can accept data in whatever formthe device wll provide
it and then reformat it so that the necessary address and col on
are appended to the start of each line. There is also no
restriction that nore than one driver can't be assigned to a
single device. One line printer driver mght sinply echo the
data given to it on the page. Another driver in the list m ght
count lines so it can automatically skip the paper folds and
print headings at page tops. Simlarly, a set of drivers could
exi st for communication with the VDM as within the TXT-2
ext ensi on package.

These capabilities are futher enhanced by the fact that any
user program has access to the driver list. It can, if desired,
ignore the "current" driver pair, search the table for a
specific name, retrieve the correspondi ng addresses and begin
using those routines. To wite such a program the user nust
know t he addresses of the table, the paranmeter identifying the
current driver, and the ALS-8 routines which search tables. The
conventions for the routines and nenory storage nust al so be
| earned, but the enormous flexibility conpensates for the
troubl e.

(22)

CHAPTER VI | |

SYSTEM COMVANDS

The commands described in this chapter cover a w de range
of functions. ASSM ASSI, and their derivatives assenble a
program and | oad the resultant machine instructions into a
desi gnated section of nmenory. CUST and its derivatives, CUSTE
and CUSTD, nmani pul ate the Custom Command Tabl e stored in system
RAM SYM., SYMLE and SYM.D are |like the CUST set except that
t hey nmanage the System Synbol Table in the system RAM O her
commands in this group define I/O drivers, set system
paranmeters, and execute routines starting at user defined
addr esses.

Al'l of the commands related to the ALS-8 resident assenbl er
accept one or two argunents. The first argunent defines the
origin for the program while the second, if given, specifies
the start address for the machine | anguage out put of the
assenbler. |If only one argunent is given, the assenbler uses it
for both the programorigin and the start address for the binary
formof the program The binary machi ne | anguage out put by the
assenbler is known as "object code". It is the only form
execut abl e by the 8080 CPU. The programtext by contrast is not
execut abl e but nmuch nore readable for humans. It is called
"source code".

The set of assenbler-rel ated commands ASSM ASSME, ASSMX,
ASSMS, ASSI, ASSI X and ASSI S all produce assenbl ed object code
prograns for the program source code. Each has, however, its
own option associated wwth it. The fourth, and where applicable
the fifth, character in these conmand nanmes is used to sel ect
the options to be used on a particular assenbly run. The fourth
character, "M or "I", divides the group into two sets of four
commands. These sets differ in the source they use for program
text. The "M group uses the Current File as its source whereas

the "I" group reads the source programthrough the CURRENT | NPUT
DRIVER. The fifth character of the assenbly command nanes
control options for the assenbler output listing. |If omtted,

as in ASSM or ASSI, the listing is a

one-out put-1line-per-source-line printout identifying errors,
addresses, and machi ne | anguage val ues produced fromthe
program s instructions. An "E" suffix suppresses all printout
except for those lines containing errors. "S' and "X" suffixes
list the contents of the synbol table imediately follow ng the
program source listing. The "X' option adds cross reference

i nformati on between program synbol nanmes and the |ine nunbers
that they occurred in. Formatting of the assenbl er output
listing depends on the paraneter defining the termnal w dth and
the "FORM' swi tch.

(23)

The CUST conmand prints out the current contents in the
Cust om Conmand Table. The custom nanes nust be four or five
characters and are consi dered unique to only four characters.
When a customnanme is given to the ALS-8 as a conmand, this
address is retrieved fromthe table and the ALS-8 passes control
to this address (as a subroutine call). Entries to this table
are made with the CUSTE command whi ch requires an ASCI| argunent
to be used as the new nane and an address to be called for the
command. The address argunent follows the base set by the |ast
MODE command. CUSTD del etes custom nanes fromthe table. It
requires only the single nane argunent. Users are cautioned
that the twenty-two customnane |imt is their responsibility to
wat ch as the ALS-8 does not warn when the nunber of entries
exceeds the table' s boundary.

Cust om conmands can be attached to any kind of program
The FOCAL and BASI C software packages both | oad starting at
address zero, so they cannot be in the machine at the sane tine.
Ei t her could be | oaded, though, and its nane entered as a custom
command. Both software packages cone with a short program which
must be ENTR ed first; this program|oads | NTEL format paper
tapes. This loader is then started and the paper tape data is
stored in nenory. The follow ng outlines such a sequence.

MODE 16

ENTR 1800

(type in hexadeci mal for |INTEL paper tape | oader)
/

CUSTE / LCAD/ 1800

LOAD

(start paper tape-when done reading restart ALS-8 at
E060)

READY

CUSTE / FOCAL/ 0

CUST

LOAD 1800 FOCAL O

FOCAL

* (this is the ready asterisk from FOCAL)

The System Synbol Table is managed with the SYM.,, SYM.E
and SYMLD commands. SYM., |ike CUST, only prints out the
contents of the table. SYMLE and SYM.D enter and del ete nanes
and their associated values fromthe synbol table. SYME
requires a name argunent of five letters or less and a nuneric
argunment representing the synbol's value. SYM.D handl es the
del etion of synbol nanes fromthe table and, |i ke CUST, requires
only the name argunent. Unlike the customtable, the System
Synbol Table is not restricted much by a maxinmumlength. |Its
physi cal

(24)

| ocation allows it just over 3K of nmenory and it is all but

i nconcei vabl e that this could be overrun. The user can
effectively set a maximum |l ength of his own by setting up other
tables or drivers in this 3K expanse. The exanple here shows
two i nportant symnmbol nanes being entered into the System Synbol
Tabl e.

SYMLE / SP/ 6

SYMLE / PSW 6

SYM.

SP 6 PSW6

D30E (End of Table address printed follow ng |isting)

The synbols shown in the exanpl e above are needed by the
resi dent assenbler for progranms which access the 8080 Stack
Poi nter, "SP", or the Program Status Wrd, "PSW. The resident
assenbl er can only recogni ze single letter register nanmes |ike
B, C D E H L, and AL The user can define the SP and PSW
synbols in each programhe wites or enter themonce in the
System Synbol Table for all the assenblies he perforns. The
assenbl er produces a table for the synbols it finds in a program
and this table, inaccessible to the user, is called the Assenbly
Synbol Table. It is created fromscratch for each assenbly. |If
the programinstructions nmake reference to a synbol which has
been given no value in the programitself, the assenbler wll
try to fetch the value fromthe systemis table. It is a great
conveni ence then to be able to define synbols once in this
System Synbol Table rather than each tinme in a program This
makes prograns both shorter and nore versatile, since single
changes in the synbol table values can affect the origins,
paraneters, or subroutine connections for a nunber of prograns.

The ALS-8 allows the user the freedom of specifying where
the Assenbly Synbol Table should start in nmenory. The STAB
command defines this |location froman argunent which obeys the
current MODE value. This start |ocation nust be defined before
the first assenbly is made and it is suggested that this table
be placed at D700 hexadecimal. This puts it well into the
system RAM area | eaving over 1K for the System Synbol Table. It
al so | eaves over 2K for the assenbly Synbol Table which is
sufficient for all but the |largest prograns. This assunes
naturally that the area between D700 and EOOO is not full of 1/0O
driver routines (see Chapter Il). The follow ng m ght be used
to start an assenbly.

STAB D700
ASSM 1A0

(25)

The | oaded output of the assenbler, the object code, can be
executed w thout having to nake an entry in the Custom Command
Tabl e. The EXEC command generates a subroutine call to the
address specified by its argunent. Wen finished, the program
at this location only has to generate a return with the 8080 RET
assenbly instruction and control will return to the ALS-8
executive. The argunment to the EXEC command naturally follows
t he nunber type specified by the MODE paraneter. In an earlier
exanpl e, the nane "FOCAL" was entered into the Custom Conmmand
Tabl e with an associ ated address of zero. Wen "FOCAL" was
given as a command the address 0 was given control by the ALS-8.
This could al so have been done by giving the conmand "EXEC 0".

In the event that a program does not automatically return
to the ALS-8, it will be necessary to stop the machine fromthe
front panel, set the address switches to EO60 and hit the RESET,
EXAM NE, RUN swi tches. FOCAL, BASIC, and I NTEL LOADER are
exanpl es of prograns which normally do not have an ALS-8 return.
| f a user program goes awy the same procedures can be used to
restart the ALS-8. The user may want to check his files and
data to ascertain whether or not they have been damaged by the
errant program

(26)

CHAPTER | X

COMVAND SUMVARY

This chapter contains a sunmary of the ALS-8 conmands in
the order they were presented. The reader is advised to consult
earlier chapters for any details omtted here. Follow ng
chapters will cover the ALS-8 assenbly | anguage instruction set.
The descriptions given here use the convention of enclosing an
argunment in parentheses when it is optional. Argunents will be
signified by | ower case nanes suggestive of their use; "addr1l"
for instance, wll be an argunent representing an address.

ENTR addr

This command reads nuneric data fromthe current i nput
driver and stores it in consecutive nenory |ocations starting
with the address specified by the argunent. The data may
continue for any nunber of lines; the function will return
control to the ALS-8 executive only when it encounters a sl ash
(/). At the beginning of every line, the current address
poi nter can be changed by specifying a new value foll owed by a
colon (:). Both the data and addresses are interpreted in octal
or hexadeci mal according to the currently defined MODE. The
length of any input lineis limted by the current val ue of
termnal width

DUVP addr 1 (addr?2)

This command di spl ays the contents of nenory from "addr1l"
to address "addr2". If only one argunent is given, only the
contents of address "addrl1l" are displayed. The argunents and
printed results obey the nunber base set by MODE

MODE base

The argunent "base" for this command sets an ALS-8
paraneter which is used in converting binary data to readabl e
form The argunent is decinmal and nust be either 8 for octal or
16 for hexadecinmal. Al ALS-8 argunents representing nenory
data or addresses will be affected by this conmand. Argunents
whi ch specify setting termnal width or line nunber wll always
be decimal. Initially the ALS-8 assunes a node of 16.

(27)

FI LE COVVANDS

The FILE command has many different forns each with its own
distinct function. The follow ng describes each particul ar
form Al name argunents ray be one to five characters | ong.

FI LE

This formw Il print the name of the current file, its
start address and end address.

FI LE /f nane/

This will search through the current list of file nanes for
"fname". \Wen found, this file will be marked as the current
file and all subsequent file operations wll be made on it. |If
not found, the error nessage "WHAT" is sent to the term nal.

FI LE /fnane/ addr

This enters a file nane, "fnane", into the list of nanes
kept it the file table. The argunment sits both the start and
stop addresses associated wth the nane. If the file already

exists in the table an error nessage FCON is output to the SYSIO
out put device. The file "fname" al ways beconmes the Current
File. Addresss "addr" nust not he zero.

FILE /fnane/ O

File "fnanme" is renoved fromthe file table and forgotten
There will be no Current File when this command is finished.

FI LES

The FILES command uses no argunents. It |lists the nanes,
start and end addresses for all the files known by the ALS-8.
This command does not affect the status of the Current File.

FCHK

This command checks the structure of the Current File. It
begins at the start address contained in the file table and

(28)

continues until it finds an end of file mark (01 hexadeci mal) or
an error. An error is signaled with the nessage "FILE ERR "

foll owed by the address of the error. The location of the end
of file mark beconmes the end address of the Current File. Using
FCHK, files may be input directly into menory from magnetic tape
or disc and recreat ed.

FMOV addr

The Current File is noved by this function to nenory
| ocations starting at "addr". The start and end address val ues
associated wwth the file are al so changed. The copy renuains the
Current File and an FCHK is automatically perfornmed. |If the

file was inadvertently noved to a | ocation w thout nenory, a new
file can be created at the old address and the contents
recovered using the FCHK conmand.

VWiile there is no restriction prohibiting a file from bei ng
moved to an address contained by the original, the user should
note that only the copy will have a valid structure after such a
nove.

Text can be input to a file by sinply specifying the line
nunber and contents for that line. The |line nunber is an
integer fromO to 9999 and it nornmally is foll owed by one bl ank.
If the file contains a line with this sanme nunber, the new data
is entered in place of the old. The contents of any file can be
interpreted as text or as assenbly | anguage source. Lines
i ntended for the assenbler are conposed of distinct fields which
are separated by groups of blanks. These fields can be
repositioned during printout by an automatic formatting feature
controlled by the TERM FORM and NFOR comrands. The TERM NAL
W DTH paraneter also controls the maxi mum | ength of |ines input
to the file.

TERM wi dt h

The ALS-8 paraneter representing termnal wdth is
initially set to 80. The user can, however, reset this at any
time wwth the TERM conmand. The deci mal argument "w dth"
contains the size of the termnal line. This influences not
only output formatting, but also input line length for files
(FCHK). The maxi num value for TERMis 119.

FORM

This command sets a paraneter in the system RAMfor the
ALS- 8 which specifies whether or not printed listings of
assenbl er source or files are to be formatt ed.

(29)

NFOR

This deactivates the formatting feature described above.
The ALS-8 is initialized to the non-formatted state.

LI ST linel (line2)

This is used to print out contents of a file between the
specified |ine nunbers. Wen only one argunent is used, the
single line identified by linel is printed. Line nunbers and
[i ne nunber argunents are al ways deci mal nunbers. This command
prints the contents of each line follow ng the correspondi ng
[ine nunber. (Wen using the optional VDM EDI TOR, the LIST
command will list files entered without |ine nunbers.)

TEXT linel (line2)

Li ke LI ST, this command prints file contents fromlinel to
"line2". It does not, however, print out the |line nunbers at
the start of each line. This is a useful feature for letter
copy. Both TEXT and LI ST contain the formatting routine which
is controlled by FORM NFOR, and TERM

DELT linel (line2)

DELT renoves a line or series of lines fromthe Current
file starting at |ine nunber |inel and continuing through
"line2". In its single argument form only the line specified
by "linel" is deleted; it is usually easier to delete single
i nes, however, by typing the line nunber followed by just a
carriage return.

RNUM | i ne# (i ncrenment)

RNUM renumbers the Current File so that its first |line
nunber will be "line:" and each successive |ine number wll be
greater than the last by the quantity defined in "increment".

I[f "increment” is omtted, RNUMw || use a default i1ncrement of
five. The largest allowable value for the increnent is twenty-
five and, regardl ess of increnent value at the outset, RNUM w ||
use an increment of one after the |line nunbers reach 9000. RNUM
ends by calling FCHK, thereby checking the file after
renunberi ng.

ASSEMBLER COVVANDS

The ALS-8 resident assenbler is activated with different
options fromthe eight conmands summari zed bel ow. Each requires

(30)

an origin which is used as the address fromwhich the routine
must eventually be run. The second argunent to each of these
commands is the start address for the storage of the assenbl ed
program A program"origin" and "load point" nust agree if it
is to be run rather than tenporarily stored. The variations in
the commands mainly affect listing |length and i nput source.

ASSM origin (load address)

This form assenbl es from source contained on the Current
File. |If the "load address” argunent is omtted, the assenbler
will load at the address given by "origin". A full listing of
the assenbly and errors is witten to the current output driver.

ASSME origin (load address)

This is the same as ASSM except that only |lines containing
errors are |isted.

ASSM5 origin (load address)

This formproduces a full listing and adds a listing of the
assenbler's synbol table to the end. The current val ues,
usual Il y addresses, of the synbols are al so given.

ASSMX origin (load address)

This is a further expansion of ASSMS in that the synbol
table listing provided at the end is cross referenced to file
line nunbers. The summary for each synbol then contains its
name, value, and a list of |ocations which used it.

The four remaining assenbl er commands ASSI, ASSIE, ASSIS,
ASSI X are simlar to the four commands just |isted except for
the source of the assenbly | anguage code. These four use the
| /O driver selected by IODR for reading the program source. A
special driver is required for this use and the user is referred
to the ALS-8 Specification sheet outlining the requirenments of
this driver.

ASSI origin (load address) assenble with full listing.

ASSIE origin (load address) assenble. ||ist only errors.
ASSI S origin (load address) assenble. [|ist with synbol table.
ASSI X origin (load address) assenble. [|ist with cross

ref erence table.

(31)

STAB address

This command sets the starting |ocation for the Assenbl er
Synbol Table. This address is not initialized to a usable val ue
so this command nust be call ed before any assenblies are
at t enpt ed.

CUST

This will print out the contents of the Custom Conmmand
Tabl e. Each output line will contain name and address pairs.
The addresses are printed according to the base by MODE and the
end address of the table is printed following the |list of nanes.

CUSTE /[/cnane/ address

This will enter the nane, "cnane", into the Custom Command
Table with its associated address value. |If this nane already
exists in the table, it is nerely given a new associ ated val ue.
The nane may be four or five characters long, but it is only
unique to four. Thus "HEART" is the sanme custom nane as "HEAR'
A maxi mrum of twenty-two such nanmes is permtted each requiring
ei ght bytes of table space. The table nust not go beyond D300
or interference with the System Synbol Table will result.

CUSTD [/ cnane/

This del etes the specified name fromthe Custom Comrand
Tabl e.

EXEC addr
The EXEC conmand perforns a subroutine call to the address
specified by "addr". The argunent, being an address, obeys the

nunber convention set by MODE

SYML

This command lists the contents of the System Synbol Tabl e.
The values listed in the nanme/val ue pair are assuned to be
addresses and, as such, wll follow the current MODE for type.
The nanes can be one to five characters in length. The end
address of the table is printed following the list of nanes and
val ues.

(32)

SYMLE / snane/ addr

SYMLE is used to enter a nane and its correspondi ng val ue
into the System Synbol Tabl e.

SYMLD / snane/

This will delete the synbol, "snane", fromthe System
Synbol Tabl e.

| / O DRI VER COMVANDS

There are only two nanes in the I/O driver conmmand set but
one, I ODR, has many forns. The follow ng sumarizes its
functions and describes the other command, SWCH

| ODR /dnane/ in out

This formof 10ODR enters the nanme "dnane"” into the I/0
driver table with the two addresses, "in" and "out". Wen this
driver pair becones active, the ALS-8 functions wll try to read
text data through a routine |ocated at the address "in".
Simlarly, output fromthese functions will be sent to the
routine assuned to be at address "out". This formof the
command does not activate this driver pair, only defines it. |If
address "in" is zero, followed by a proper output address, the
current SYSIO input driver will be assigned as the input driver.
Also, if the output driver address is zero, the current SYSIO
output driver will be assigned. |If the output address is
omtted, after being preceded by a valid input address, a
speci al output address will be assigned to all ow no output.

(BI T BUCKET)

| ODR

Used without argunments, this command prints out the
contents of the I/Odriver table. Each Iine of the printed
summary contains the nane, the input driver address, and the
out put driver address.

| CDR / dname/

This infornms the ALS-8 that the default systemdriver,
SYSIO, is to be used for one nore conmmand line. The driver
pair, "dnanme", is then used until an ALS-8 command returns
control to the executive. This one command del ay enabl es the

(33)

user to choose an ALS-8 function fromhis term nal before
switching control to the new drivers. SYSIO the term nal
driver pair, is automatically reactivated at the concl usion of
the ALS-8 function or under error conditions.

SWCH

When used after the above formof 1 0ODR, the new drivers are
activated for use by the ALS-8 executive, not an ALS-8 function.
The executive then will read a command and any associ ated data
with these drivers before returning to SYSI O

(34)

CHAPTER X

THE ALS-8 ASSEMBLER

The resident assenbler is perhaps the strongest feature of
the ALS-8. It is a programdesigned to convert the text for a
programinto the binary machi ne code formof a program The
textual representation, called "source code", is very readable
by humans but only binary formis executable by the conputer
hardware. 1In typical use, the source programis witten onto a
file and edited. This is then assenbled with one of the ASSM
commands and the resultant binary, or "object code", is stored
in menory. There it can be used as a driver, a custom conmmand,
or a programto be run by the EXEC conmand.

A source programwitten in assenbly |anguage is
interpreted by the assenbler on a line-by-line basis. Since
files are also line structured, they becone a natural storage
area for program source. (The ASSI comrand series insures that
ALS-8 files are not the only storage nmedium for prograns.)

Each line of the program nmust conformto certain rules in
order to be assenbled correctly. An asterisk at the start of a
line identifies the line as being a coment and its contents are
not subject to the rules of the assenbly |anguage. Lines
W thout an asterisk are "statements" and these can be divided
into as many as four separate parts called "fields". Each field
has an entirely different function to the assenbler. The first,
the "l abel field", gives a synbolic nane to that |ine which can
be referenced by any statenment in the program The |abel nust
start with an al phabetic character in colum 1 of the line

(after any file line nunbers). It may be any nunber of

conti nuous characters, though the assenbler will ignore al
characters beyond the fifth. This nmeans that the |abel nanes
"bridge", "bridg", and "bridget" will all represent the sane

| abel. Al fields are separated from one another by one or nore
bl anks.

STATEMENTS may contain either synbolic 8080 machi ne
instructions or pseudo-ops. The four fields of each statenent,
NAME, OPERATI QN, OPERAND and COMMENT are scanned |left to right by
the assenbler. The assenbler requires at |east one bl ank

NAVE OPERATI ON OPERAND COMVENT

bet ween each field for identification. For automatic formatting
however, the comment field nmust be preceded by at |east TWOD
BLANKS. Instructions which use only the operation field as does

(35

RZ shoul d be followed by a "dunmy" operand if conments are to be
used with the statenent. (Blanks in the follow ng exanple are
shown as dashes ["-"] for clarity.)

RZ-. - - COMVENTS ADDED AFTER TWO SPACES

CONSTANTS

kkhkkkkkkh*k*%x

The ALS-8 Assenbler allows the use of constants within the
operand field. Hexadecimal and decimal, as well as octal
constants nmay be used. \When using either octal or hexadeci nmal,
the value should be followed by a "Q'" or "H' to indicate OCTAL
and HEX respectively. Wen a value does not include a follow ng
identifier, it defaults to DECIMAL but a "D' nmay be used for
clarity when desired.

W1 A 128 Move 128 decimal to register A

LXl H, 2FH Move 2F hexadecimal to registers H&L.
WI B, 40Q Move 40 octal to register B

JMP OFFH Junp to address FF hexadeci nmal .

As shown by the |last exanple, all constants nmust begin with
a nuneric quantity. Wen hexadeci nal val ues begin with the
letters A-F, they should be preceded by the nuneric val ue zero.

EXPRESSI ONS

kkhkkkhkkkikkkh*k*%x

An expression is a sequence of one or nore SYMBCLS,
CONSTANTS or ot her expressions separated by arithnetic
operators. The ALS-8 Assenbler allows the use of four primry
operators: ADDI TION (+), SUBTRACTION (-), MJLTIPLICATION (*) and
DIVISION (/). Expressions are scanned left to right wth no
precedence given to any operator. Calcul ations are nade using
16 bit arithnmetic (nodul e 65536) and overflow of values is
allowed. Single byte values for imediate instructions (as with
MWI A) nust evaluate to a val ue between -256 to +255 or an
assenbler error will result.

Wi A, 2550/ 10H
LDA POITS/ 256* OFSET
LXI SP, 30* 2+STACK

There are two other special operators which nay be used to
reference either the right (>) or the left (<) byte of a 16 bit
val ue. For exanpl e:

<1234H eval uates to 12H
>1234H eval uates to 34H.

(36)

ASSEMBLER ERROR | NDI CATI ONS

R R I b b S b b b I b b S b Sk b S S Rk S I b

The follow ng error flags are output by the assenbl er when
the error occurs. As determned by the type of error, sonme of
the flags are output during pass one to indicate an invalid
assenbl y.

O -- OPCODE ERROR The synbol found in the
operation field was not
recogni zed as a valid 8080
instruction or pseudo operation
of the assenbler.

L -- LABEL ERROR The synbol found in the nane
field contains inproper
characters.

D -- DUPLI CATE LABEL Two | abels with the sane nane
wi thin the assenbly.

M-- M SSI NG LABEL Instruction requiring a | abel
doesn't have synbol in nane
field.

V -- VALUE ERROR Expression in operand field is
out si de range required.

U -- UNDEFI NED SYMBOL Nane given for operand cannot
be found in synbol tables.

S -- SYNTAX ERROR Syntax of statenent does not
follow the requirenents of the
assenbl er.

R -- REQ STER ERROR Fal se nane given to register.

A -- ARGUMENT ERROR Argunent for operand i nproper

Since the |l abel field is optional, the assenbl er nust have
a convention for identifying the second type of field, the
operation field, when the label is mssing. The operation field
must, for this reason, be preceded by at |east two bl anks when
it starts a line. The contents of this field will be a two,
three, or four letter menoni ¢ chosen fromthe assenbly | anguage
set. This menonic defines the general instruction to be
assenbled and it uses, where necessary, the third field, the
"operand”, to nodify or conplete the instruction. An "ADD' in

(37)

the operation field tells the assenbler that one of the 8080
registers is to be added to the 8080 accunul at or.

The fourth possible field is the coment field which, as
its nanme inplies, is reserved for coments. The assenbl er,
then, disregards anything after the third field. In statenments
whi ch have no operand field, it is a good idea to precede the
coment with a period followed by two blanks. Since no operand
is required, the period has no affect and the listing will be
properly formatted. Most of the exanples in this chapter are
listed as though they were formatted and printed by the TEXT
command. The exanpl e bel ow shows how a sanple programfile
m ght actually be input and exist in nenory. Blanks are witten
as "-" to show their significance; file Iine nunbers are al so
shown.

3-*-TH S- SUBROUTI NE- SHI FTS- (H, L) - Cl RCULAR- LEFT
5- LUP- XRA- A- - CLEAR- THE- CARRY

8- - CMP- B- - SEE- | F- SHI FT- COUNT- DOMWN
13--RZ-.--RETURN- TO- CALLI NG ROUTI NE
14- - DCR- B- - DECREMENT- COUNT

16- - WI - A, 80H- - TEST- MsB- OF- HL

22- - ANA- H - COMVENTS- OPTI ONAL
24--DAD-H - SHI FT- LEFT

26--JZ- LUP- - | F- MSB- WAS- ZERO

29- -1 NX- H - Cl RCULAR- BI T-1 N
35--JMP- LUP

40- - END

The above illustrates the fact that "columm 1" of each
program statement |ine nust be separated fromthe file |ine by
at | east one blank. Wen printed with the TEXT function the
above becones:

* TH'S SUBROUTINE SHI FTS (H, L) C RCULAR LEFT

LUP XRA CLEAR THE CARRY
CcwP B SEE | F SH FT COUNT DONE
RZ : RETURN TO CALLI NG ROUTI NE
DCR B DECREMENT COUNT
v A 80H TEST MsB OF H L
ANA H COMVENTS OPTI ONAL
DAD H SHI FT LEFT
JZz LUP | F MSB WAS ZERO
I NX H ClRCULAR BIT IN
JWP LUP
END

(38)

Instructions in the assenbly | anguage nmani pul ate seven
8-bit registers, a 16-bit programcounter called "PC', nenory,
|/ O devices, and a 16-bit stack pointer "SF'. Both the
assenbl er and the hardware use a nunber convention for
identifying these registers. The nunbers 0,1,2,3,4,5, and 7
each represent one of the 8-bit registers. Depending on the
instruction, a 6 can represent nenory, the stack pointer, or a
speci al program status word, "PSW. Many of the instructions
assunme a destination register for the results they generate and
many wi || al so nmake assunptions on one of their input operands.
Addition, for exanple, is handled by the ADD instruction in the
assenbly | anguage and it assunes that the contents of register
7, called the accunulator, will be added to an eight bit
gquantity fromnenory (6) or the registers (1 through 5). Its
result always goes to register 7. The operand for this register
is a nunber specifying which 8-bit value is to be added to
register 7. This operand appears in the operand field for the
i nstruction as shown.

LABL ADD 7 DOUBLE THE ACCUMULATOR
ADD O ADD I'N REGQ STER 0O

XAD ADD 3 ADD I N REGQ STER 3
ADD 6 ADD I N VALVE FROM MEMORY

The assenbl er uses a pair of tables, the Assenbler Synbol
Tabl e and the System Synbol Table, to find nunber val ues
associated with a synbol nane. Label nanes fromthe | abel field
are stored into the Assenbler Synbol Table along with the
addresses they represent in the object code. Assenbling the
short exanpl e above woul d have added the nanmes "LABL" and " XAD'
to this table. The assenbler always has eight entries in this
table, B_C, D E,H L, M and A for which it has the values 0
through 7. These are the names given to the registers and the
assenbler will replace one of these nanes found in an
instruction with the appropriate register nunber. The | ast
exanpl e could be rewitten

LABL ADD A DOUBLE THE ACCUMULATOR
ADD B ADD I N REG STER B

XAD ADD E ADD I N REGQ STER E
ADD M ADD I'N VALUE FROM MEMORY

A nunber of the 8080 operations use pairs of registers for
16-bit operands and for these operations, register Bis paired
wth C Dwth E, Hwith L, and the program status word PSWis

(39)

paired with A, B, D, H and PSWare the high order bytes in
these values. The instruction DAD, for instance, perforns a
"doubl e add" between the (H, L) pair and the (B,C) or (D E) pair.
The result is stored again it (H/L). For these instructions,
the pair is designated the nanme of the nost significant byte so
t he possible PAD instructions are:

DAD B
DAD D
DAD H
DAD H
DAD SP

whi ch are equival ent to:

DAD O
DAD 2
DAD 4
DAD ©

Note that 6, which could represent nenory, SP, or PSW is
taken by the DAD instruction hardware to nean the stack pointer.
"DAD M' or "DAD PSW are equivalent to "DAD 6" and will then be
treated by the hardware as "add SP to (H,L)". Note also the
default list of register nanmes does not include PSWor SP.

These may be entered into either the System Synbol Table with
the SYMLE executive command or into the Assenbl er Synbol Table
with the EQU assenbler instruction (to be described). The
assenbler will first try to fetch a value for a synbol fromits
own table and, failing, wll then try the System Synbol Tabl e.

A nunber of the 8080 instructions are "conditionals"
meani ng that the full operation is perfornmed only if a condition
is met. The program status word, PSW uses five of its eight
bits to represent the testable conditions. These bits are
called Sign, Zero, Aux, Parity, and Carry, and they reflect the
state of the accunul ator after certain instructions. The nore
significant bit of the accunulator is copied to Sign by certain
instructions. Simlarly, certain instructions will set the Zero
bit (to 1) when the accumul ator contains a zero value and it is
reset (to 0) when Ais non-zero. Parity is set to 1 when A
contains an odd nunber of binary 1's and is reset when even.

The Carry bit's function is nost easily described with the
conceptual aid of a ninth bit on the accunmulator. Sone
instructions will put the opposite (0 for 1; 1 for 0) of the
carry value into Carry; others will copy carry into Carry. The
reader is again rem nded that sonme instructions do not

(40)

affect the values in PSWregardl ess of the contents of A The
actions taken by each instruction concerning the PSWcondition
bits will be given with the description of each instruction.

In the upcom ng instruction summary, two types of assenbl er
instructions will be described: executable instructions and
"pseudo-ops". The executable instructions are those assenbly
statenments which nust be converted into binary object formfor
eventual execution by the CPU. Pseudo-ops, or pseudo-—
oper ati ons, have the appearance of other program statenents but
do not produce object code for the CPU. Instead they are used
to pass information to the assenbler programitself. "ORG' for
instance, is used with its operand to define the "current
address counter"” for that position in the program being
assenbl ed. "END', another pseudo-op, signals the end of the
assenbl y | anguage source code; the assenbler will not try to
read or interpret |lines beyond the Iine containing "END".

ASSEMBLY LANGUAGE | NSTRUCTI ONS

R R b S bk S b b b S b S b Sk S b S b I

Thi s section describes the assenbly | anguage instructions
and their function ordered by increasing conplexity. An
al phabetically ordered sunmary will be given later with the
obj ect codes generated for each instruction. 1In the follow ng
description, optional fields will be enclosed in parentheses and
operands for the instructions will be represented by a short
| oner case mmenonic. The operand "reg represents any constant,
synbol, or expression wits a value fromzero to seven. This
value is used to select one of the seven registers or nmenory: B,
C D E H L M A Operand "addr" can be an expression,
constant, or synbol which gives a value to be used as a 16-bit
argunment, usually an address. A nuneric argunent is represented
by "const 8" and "const" val ues supplied for "const 8" nust be 8
bits or less in magnitude.

The follow ng three instructions provide the nost direct
means of transferring 8-bit data fromregister to register,
menory to register, or register to nenory. There is no single
instruction to transfer fromone nenory |ocation directly to
anot her .

(I abel) LDA addr - LOAD Accunul at or

(41)

This instruction fetches a byte fromthe nenory | ocation
specified by "addr”. This value is then stored in A. PSWis
not affect ed.

(1 abel) MOV dreg, sreg - nove register to register

This instruction noves the contents of the source register,
"sreg", to the destination register "dreg". B, C, D E H L,
M and A (O through 7) are |egal values for "sreg" and "dreg"
except that both may not specify nmenory (M. Wen either "sreg"
or "dreg" specify nenory, the CPU uses the contents of the (H L)
regi ster pair as the address of the nenory byte to fetch or
store. The contents of the source register are not affected.
PSWis also not affected by the instruction.

MoV ME nove contents of E into nmenory
| ocation specified by (HL).
MOVER MOV E,B copy Binto E
MOV CM load C from nenory

(l abel) STA addr STORE accurnul at or

STA transfers the contents of the accunulator to the nenory
| ocation specified by "addr". PSWis unaffected.

Arithnetic, |ogical, and conparison operations are handl ed
by eight instructions. Each of these operations is assuned to
t ake pl ace between the accumul ator and a register (or nenory
| ocation) specified in the operand field. All, except CW,
produce an 8-bit result which is placed in the accunulator. The
program status word bits in PSWare all affected by any of these
i nstructions.

(label) ADD reg - ADD register to accunul ator

The value in register "reg" is added to the accunul ator and
PSWis updated. PSW"Carry" is set to 1 if the arithnetic
produces an overflow fromthe nost significant bit (MSB)

(label) SUB reg - Subtract register fromA

This instruction subtracts the value specified by "reg" and
pl aces the result in A The PSWcarry bit is set to 1 if a
borrow was necessary during the subtraction; the actual ninth
bit carry, discussed earlier, would actually be zero in a borrow
situation. This is an exanple of carry being inverted for
storage in Carry.

(42)

(label) ADC reg - Add the specified register and Carry
to the Accumul at or

The specified register and the current contents of Carry
are added to A and the result is placed in Al This is used
primarily in "multiple precision” additions in which a nunber is
actually contained in several (usually adjacent) nenory
| ocations. Such an addition starts at the |ow order end of the
two nunbers with the Carry bit reset to zero. Successive
additions with ADC on nore significant bytes in the nunbers are
corrected for overflow fromthe last (less significant)
addi ti on.

(label) SBB reg - Subtract with borrow fromA
This is the multiple precision formof SUB. It subtracts
the Carry (borrow) fromA as well as the value in "reg". This

is actually done by adding the Carry bit to the value in "reg"
before the subtraction is made. The PSWstatus bits are updated
after the subtraction.

(label) ANA reg - logically AND reg and A

This function perforns a "logical and" (a Bool ean
mul tiplication) on the contents of "reg" and the accunul ator.
Conceptual ly this operation is performed i ndependently on each
bit position of the two operands (A and "reg"). The
corresponding bit position in the result is set to 1, if, and
only if, both of the operand bits are 1's. 00110011 and
01010101 w Il Il eave the value 00010001 in A. The Carry bit is
al ways reset; other status bits are set or reset according to
the result.

(label) ORA reg - logically ORreg and A

This instruction perforns a bit-wise "logical or" (Boolean
add) on the accunul ator and the specified register. Each bit of
the result is set to 1 if either of the correspondi ng operand
bits is 1. 00110011 OR 01010101 will produce 01110111 for a
result. The Carry bit is always reset to zero. Oher status
bits are set as dictated by the properties of the result.

(label) XRA reg - logical EXCLUSIVE OR reg and A

XRA is a bit-wi se |ogical "exclusive-OR' function for the

(43)

OPERANDS, A and "reg". Each bit of the result will be 1 if one
(and only one) of the corresponding operand bits is 1. The
operand val ues 00110011 and 01010101 produce an "excl usive-OR"
result in the accumul ator of 01100110. PSWstatus bits are
handl ed as in ANA, ORA. This function is often used to clear
the accunulator and Carry with an "XRA A"

(label) CwW reg - Conpare Ato Reg

This instruction perforns an 8 bit unsigned conpare of the
values in A and "Reg". The followi ng status results:

(A) < (Reg) Carry is set, zero is reset
(A (Reg) Carry is reset, zero is set
(A (Reg) Carry is reset, zero is reset

\

A conpare is actually done by internally subtracting "Reg" from
A but storing the result.

There are eight instructions nmuch |ike the register
oper ati ons descri bed above, and they are called the I medi ate
Instructions. They differ fromregister operations in that a
regi ster (or menory) value is not used as an operand. |nstead,
t he operands are the accunul ator as before, and an eight bit
val ue which is given in the operand field of the instruction.
This operand value may be the result of an expression, the val ue
of a synbol, of a constant, as long as the nagnitude of the
val ue does not exceed eight bits. As with register operations,
all PSWhits are affected by these instructions.

(1 abel) ADI const8 - add value of const8 to A
The 8-bit value of "const8" is added to the accunul ator.

As in ADD, its register operation counterpart, all PSWhits are
af f ect ed.

(I abel) SuU const8 - subtract imediate fromA

The immedi ate value is subtracted fromA. PSWhits,
including Carry, follow conventions of SUB

(I abel) Ad const8 - add value and Carry to A

"Const8" and the Carry bit are added to A. PSWis
af f ect ed.

(44)

(1 abel) SBI const8 - subtract imediate with borrow

This instruction subtracts Carry bit and i medi ate val ue.

(I abel) AN const8 - AND the imediate with A
ANl performs a |logical AND on the i medi ate val ue and the

accunulator. It is often used to isolate certain bits in A for
testing. The |ogical operation is described in ANA

(I abel) ORI const8 - imediate ORwith A

This function perfornms a | ogical OR on the i medi ate val ue
and register A

(label) XRI const8 - imediate exclusive OR on A

Thi s produces an exclusive-OR result from A and the val ue
follow ng. See XRA

(1 abel) CPI const8 - conpare imediate with A

This perfornms a conpare of Register A wth the CONST8. See
CcwP

There are several other commands which affect the contents
of the 8 bit registers. They have been separated since they
behave differently wth respect to the program status word, PSW
Note that these instructions affect sonme condition bits and not
ot hers.

(I abel) Wi reg,const8 - nove value into register
This instruction is simlar in some ways to the imedi ate

instructions though it does not affect the PSW The 8-bit val ue
of "const8" is noved into the specified register.

(45)

(label) INR reg - increnent register

The register specified by "reg" is increnented by one and
all the PSWhits except CARRY are updat ed.

(label) DCR reg - decrenent register

The register, or nenory |location addressed by the H& L
registers, is decrenented by 1. As with INR all PSWhits
except carry are affected.

(label) CMA - conplenent the accunul ator

This instruction reverses each bit of the accunul at or. 1's
becone 0's and 0's becone 1's. The PSWis not affected.

There are four instructions used to shift the contents of
accunmul ator. Each of these instructions shifts the contents
only one place left or right depending on the particul ar
instruction. None of the shifts affect any PSWhits except
carry. The direction "right" or "left" in these descriptions
assunes that the nore significant bits of the accumulator lie to
the left.

(label) RLC - rotate left, through carry

This is a circular left shift in which the carry bit
receives the bit value shifted fromthe nost significant bit of
the accunulator. This same value shifted into carry is also
shifted into the least significant bit of A 01101110 becones
11011100 after the shift and the Carry bit is left as O.

Anot her shift of this value gives 10111000 and a Carry val ue of
1

(label) RRC - rotate right, through carry

This shift is aright shift simlar to RLC except the |east
significant bit is shifted to Carry and the MSB position.

(46)

(label) RAL - 9O bit shift left

This function shifts the accunul ator one place |left. The
nost significant bit is shifted into Carry as in RLC, but the
old value of Carry is shifted into the low end of the reg A
Shifting 01101110 with a value of 1 in Carry produces 11011101
and a Carry of 0. A second shift of this data produces 10111010
and a Carry of 1.

(label) RAR - 9 bit right shift

The accunul ator contents are shifted one place right with
the |l east significant bit being sent to Carry and the old val ue
of carry being shifted into the MSB of the accunul at or.

(label) LDAX reghd - load A fromnenory (indexed)

The accunul ator is |oaded with the value from nenory whose
address is obtained fromthe register pairs (B,C) or (D, E). The
operand, "regbd", can then only equal "B" or "D

(label) STAX regbd - store Ainto nmenory (indexed)

The contents of A are stored in nenory at the address given
by the (B,C) or (D E) register pairs. The pair is chosen by the
operand "regbd" which may only be "B" or "D'

The 8080 is also equipped with a full set of transfer
i nstructions which have the ability to alter the flow of a
program t hrough execution. There are three categories of
transfers: "junps" "subroutine related instructions" and
"interrupt transfers”". O the ten junp instructions, only two
are "unconditional transfers" neaning that the execution
sequence of the programis always altered by them The
"conditional transfers”, on the other hand, exam ne the status
word PSWto see if the proposed junp is to be made. If the
condition bits of the PSWdo not neet the requirenents of the
instructions, no transfer is made and the programw || resune
execution at the next instruction in nmenory.

(47)

UNCONDI T ONAL TRANSFERS

(I abel) JMP addr

This instruction always transfers control to the address in
menory specified by the operand field, "addr". The next
instruction to be executed will be the one starting at this
addr ess.

(I abel) PCHL

This perforns the sane function as the JMP instruction
except the address for the transfer is taken fromthe H and L
pair of registers and not the operand field. Generally this
instruction is used to branch to a routine in nenory whose
address has been located in a table. It could be used to branch
to a conputed address, but any small errors in the cal cul ation
coul d produce sone nysterious bugs.

CONDI TI ONAL TRANSFERS
(label) Jz addr Junp if zero

JZ exam nes the status bit "ZERO' of the PSWand transfers
to the address "addr" if this bit is set to 1. This 1 in the
ZERO bit represents a zero value in a register at the last tine
the condition bits were set by an instruction. Mst of the
instructions affecting the PSWreflect the status of the
accunul ator, register A though a few (INR DCR) w |l change the
ZERO bit and others when their result goes to any of the
regi sters.

(label) JNZ addr Junp if non-zero
This instruction al so exam nes the ZERO bit of the PSW but

it transfers when the [ast pertinent result was a non-zero
value. A non-zero result resets the ZERO status bit to O.

(label) JP addr Junp if plus (non-m nus)

JP examnes the SIGN bit within the PSWand transfers

(48)

when this bit is zero. A zero for the SIGN bit represents a
positive value for the |last pertinent operation,

(label) JM addr Junp if m nus

JM exam nes the SIGN bit and transfers when it represents a
negative value (mnus) for the last result.

(I abel) JC addr Junp i f CARRY

This instruction junps if the CARRY bit has been set on the
| ast operation. For addition operations, a junp is made if the
sum of the two operands has exceeded the limt of 8-bit nunbers.

The overflow bit is stored in the PSWbit, CARRY. Subtractions
requiring a "borrow' will also set this CARRY.

(I abel) JNC addr Junp if no CARRY

Ajunp to the address, "addr", is nmade if the | ast
operation did not produce a CARRY.

(1 abel) JP addr Junmp if PARITY even
The PARITY bit of the PSWis "even" when the nunber of bits

set to 1l inthe result is even. This instruction transfers to
"addr" when this condition exists.

(1 abel) JPO addr Junmp if PARITY odd

JPO transfers to the address "addr" when the PARITY bit in
the PSWrepresents a result with odd parity. Parity is
generally used to verify data transmtted from an external
devi ce.

CARRY BI T | NSTRUCTI ONS

There are two special instructions which mani pulate only

(49)

the status of the CARRY bit in the PSW These will affect al
CARRY related conditionals as well as the addition, subtraction,
and shift instructions which use CARRY. These two instructions
are frequently used to return a sinple status condition froma
subrouti ne.

(I abel) STC - set CARRY (to 1)

This instruction sets the value of CARRY to 1. No ot her
condition bits are affected by this command.

(I abel) (@/\Y/ O conpl enmrent CARRY

CMC reverses (conplenments) the current value of CARRY. |f
CARRY equaled 1, this instruction will change it to a 0. |If
CARRY was 0, CMC changes it to a 1

SUBRQOUTI NE TRANSFERS

A transfer to a subroutine is nade with one of the CALL
i nstructions described below. Wen a CALL instruction is nade,
two addresses becone inportant. The "transfer address", the
address of the subroutine being called, is contained in the
operand field of the CALL instruction. Programcontrol will be
transferred to this address immediately following the call. As
the call is being nmade, however, a "return address" is conputed
and stored on the next position of the stack. Wen the
subroutine is finished, it can execute one of the RETURN
instructions which will fetch this address fromthe stack (pop
the stack) and a junp will be made to this address. This return
address represents the location of the instruction imredi ately
followng the call instruction which gave control to the
subroutine. Subroutine calls within subroutines store their
return addresses at successive stack | ocations so the
corresponding return instructions can properly locate their
return addresses.

As with the junp instructions, both the CALL and RETURN
operations are divided into unconditionals and conditionals with
the sanme suffix convention as used with JUWPS.

(I abel) CALL addr - call the subroutine at "addr"

(50)

This instruction perforns an unconditional subroutine cal
to the address specified by the operand "addr"

(I abel) RET - return to address found on stack
RET pops a value off the stack which it uses as a transfer
address for a junp. Since it always retrieves its "operand”

fromthe stack, it does not need anything in the operand field.
This return is unconditional.

SUBROUTI NE CONDI TI ONAL | NSTRUCTI ONS

The reader is rem nded that only certain instructions
i nfluence the condition bits of the PSW (program status word).
A full description is given at the beginning of this chapter.

(1 abel) CZ addr - call if last result equaled O
This instruction calls the routine |ocated at address

"addr" if the ZERO bit of the PSWis set to 1 representing a
zero result in the | ast operation.

(I abel) CNZ addr - call if last result was non-zero

A call is rade if the last PSWrel ated operati on produced a
non-zero result.

(I abel) CP addr - call if result positive

This instruction exam nes the status of the SIGN bit within
the PSWand perforns a subroutine call if this bit indicates a
positive result fromthe |ast instruction.

(I abel) CM addr - call if negative result (m nus)

(51)

CMcalls the routine at address if the SIGN bit is set
representing a negative result fromthe |ast PSWrel ated
i nstruction.

(1 abel) CC addr - call if CARRY
CC calls the subroutine at "addr" if the CARRY bit has been
set to 1. CARRY is set to 1 when there is a carry from an

addition, a borrow froma subtraction, or there is a bit 1
produced by one of the shift or Carry instructions.

(I abel) CNC addr - call if no CARRY

This instruction calls the subroutine at address "addr" if
the CARRY bit is zero.

(I abel) CPE addr - call if PARITY even

This instruction calls "addr" if the PARITY bit was reset
by the |l ast PSWrel ated operation. "Resetting" PARITY is
equivalent to making it a zero. Even parity for a result
indicates that it contained an even nunber of binary 1's (and
0's).

(1 abel) CPO addr - call if PARITY =1, "parity odd"

The subroutine call is made if the PARITY bit of the PSWis
set to 1 indicating "odd parity".

(1 abel) Rz - return if last result was zero

A return fromsubroutine is nade if the |ast result
recorded in the PSWwas a zero.

(I abel) RNZ - return if last result was non-zero

(52)

This instruction returns fromthe present subroutine if the
| ast result was non-zero.

(1 abel) RP - return if positive

A return, using the address pulled off the stack is made if
the last result had a zero sign (was positive).

(1 abel) PM - return if mnus

This returns fromthe routine if the last result was m nus.

(1 abel) RC - return if CARRY (=1)
This instruction perforns a subroutine if the PSWhit CARRY

is set to 1. CARRY is set by the Carry instructions, shifts,
additions with overflow, or subtractions with borrows.

(1 abel) RNC - return if no CARRY (=0)

RNC returns if there was no CARRY generated fromthe | ast
instruction. See the above instruction.

(1 abel) RPE - return if PARITY even

A return is executed if the value of the PARITY is O
indicating even parity in the |ast operation.

(1 abel) RPO - return if PARITY odd
Anot her instruction, RST, also perforns transfers, but it

is rarely used as such. It will be described later with the
interrupt related instructions.

(53)

16- BI T OPERATI ONS

A nunber of the 8080 functions can performarithnetic
operations on 16-bit values stored in register pairs. The B and
Cregisters forma pair as do D E and H L; the Stack Pointer,

SP, is used as a fourth possible operand for these instructions.
None of these instructions affect any of the condition bits.

(1 abel) LHLD addr - load HHL with the val ues at
"addr"

This instruction noves two bytes frommenory into the H/L
regi ster pair. The operand, "addr", identifies the address of
the byte to be transferred to the L register and the next nmenory
address is used for H

(I abel) SHLD addr - store H L into nenory at "addr"

The contents of the L register are noved to the address
specified by "addr" and the contents of the H register are noved
to menory | ocation "addr+1"

(I abel) LXI rp, const - store 16-bit constant in
pair "rp"
The register pair "rp" is given a 16-bit value as
determ ned by the second operand, "const". Nunerically the

operand "rp" nmust equal O0,2,4,6 which are generally represented
by the synbolic nanes B,D,H SP. Either operand may be an
expression acceptable to the assenbler which will produce a
regi ster pair integer or a 16-bit value for those operand
posi t ons.

(label) INX rp - increment register pair "rp"

This instruction adds one to the register pair specified by
the operand "rp" No condition bits are affected even if carries
are produced internally for the operation

(label) DCX rp - decrenment register pair "rp"

(54)

DCX subtracts one fromthe register pair "rp". As with INX
and the other 16-bit instructions, none of the condition bits in
PSW ar e affected.

(label) DAD rp - add rp to H, L

This perforns a 16-bit add between the operand register
pair, "rp" and the HL registers; the result is stored in the
H L pair. The operand can be B,C ("B"), D E ("D'), HL ("H"),
or SP.

(1 abel) XCHG - exchange the contents of D E with H L

XCHG swaps the contents of the D E register pair with the
contents of the H L pair.

STACK OPERATI ONS

The "stack™ is an area in nenory identified and mani pul at ed
through the 16-bit address held in the "Stack Pointer”, SP. As
previ ously described, it is used by the subroutine rel ated
instructions, "CALL" and "RET" (and their conditional
relatives). 1In operation, a 16-bit value, an address for the
subroutine instructions; is sent to the nenory |ocations
identified by the address in the SP. The specific |ocations
chosen are SP-1 for the "nost significant" byte and SP-2 for the
| oner order byte. The SP contents are then decrenented by two
to be ready for the next stack operation. Such an operation is
called a "push" and the reverse operation where data is renoved
fromthe stack is known as a "pop". Note that the pointer noves
"down" in nenory with successive pushes and noves "up" for pops.

The operations about to be described give the progranmer
direct control of the stack and its pointer. The stack can be a
very versatile data storage area for particul ar applications,
but the programrer nust be careful that the data stored in the
stack is not confused with the return addresses stored there
from subroutine calls.

Two of the stack instructions use a register pair operand
which will be denoted by "rp" in the following. This operand
identifies B,C, D E, HL, AND PSWA. 1In the |last case, the
Program Status Wrd is placed at |ocation SP-1 and

(55)

the accunul ator is placed at SP-2 for stack pushes. This form
of saving the PSWis necessary for interrupt handling or sone
subroutine calling sequences.

(1 abel) PUSH rp - push contents of rp onto stack

The contents of the register pair "rp" are placed on the
stack and the pointer, SP, is decrenented by 2. Nunerically,
"rp" nust be 0,2,4,6 which represent the pairs, B,C D E H L and
PSW A.

(1 abel) POP rp - pop data fromstack into rp

Data is renmoved fromthe stack and placed into the
registers identified by the operand "rp". The ordering of the
bytes taken fromthe stack follows the sanme rules used for PUSH
The pointer SP is increnmented by 2 at the end of the operation.

(1 abel) SPHL - nmove H,L contents into SP

The contents of the H L pair are noved into the stack
poi nter, destroying its previous contents. This provides a
conveni ent way of changing the SP during a program thereby
allowng two or nore stacks to exist at one (one data, one
subroutine control, etc.). The SP is usually initialized by the
LXI instructions.

(I abel) XTHL - exchange SP and H L contents
The contents of the H/ L register pair are exchanged with
the two bytes at the top of the stack (as pointed to by the SP)

| NPUT/ QUTPUT | NSTRUCTI ONS

The two input/output instructions for the 8080, IN and OUT,
both operate on the accumul ator contents. The operand

(56)

field is used to define a "device code" which identifies the
external device which is to produce or receive an 8-bit val ue.
Thi s devi ce nunber car, be any nunber between 0 and 377 octal.
Each device attached to the conputer has such a nunber assigned
at the tine it is wired to the nmachine and the device code given
in the I/O command nust equal that of the device before it wll
respond. Reading a non-existent device nunber with the IN
instruction will put an octal 377 in the accumnul ator.

(I abel) IN dev - read devi ce nunber "dev"

The external device wth input device nunber "dev" wl|
return an 8-bit value which is stored in the accunulator. None
of the PSWcondition bits are affected. The default input
device for the ALS-8 is assuned to be device 1 and its status
(busy or idle) is accessible through input device O.

(1 abel) QUT dev - send contents of A to device
"dev"

The contents of the accunul ator A are sent to the out put
devi ce nunbered "dev". The ALS-8 assunes by default that an
out put device 1 exists and that its condition can be checked
al so through i nput device zero.

| NTERRUPT RELATED | NSTRUCTI ONS

The 8080 is prepared to accept signals from external
devices which can alter its programflow. This is invaluable
for handling certain types of sporadic or slow devices. It can
allow the CPU to work on a programw t hout worrying constantly
about the status of devices. This is acconplished with the aid
of the "Interrupt Enable Flag", also known as "INTE'. Wen this
flag is on (enabled) a device can force an interrupt which
initiates a sequence of events in the conputer. The "INTE" flag
is imediately disabled to keep other devices from confusing
things while the first interrupt is being handled. The CPU is
then required to take an instruction (8-bits only) fromthe
interrupting device, execute it and then continue. Special
hardware can be attached to the conputer which will cause the
CPU to junp to any predetermned | ocation in nmenmory. W thout
this special "vector interrupt” hardware, the normal convention
has the

(57)

interrupting device issue a Restart instruction which is a
subroutine, like junp to one of eight possible nenory |ocations:
0, 10, 20, 30, 40,50,60,70 octal. At the location specified by the
vector hardware or the restart, there should be a subroutine
capabl e of handling the interrupt condition. The restart
instruction ("RST") pushes a return address onto the stack so

t he program whi ch was operating can be properly resuned with an
RET instruction executed in the interrupt routine.

(1 abel) El - enable interrupts

This instruction enables the interrupt flag, "INTE".
Devices attenpting to interrupt while this flag is disabled wll
be ignored by the CPU and its related hardware; INTE is

automatical ly di sabl ed when an interrupt occurs.

(1 abel) Dl - di sable interrupts

This disables the interrupt flag, preventing any devices
fromaltering programflow with an interrupt. The conputer is
in the disabled state when the front panel switch "RESET" is
activated. For machines with no interrupting devices, the |INTE
[ight on the front panel can be used by these instructions to
signal certain program states such as "program done" or "error"

(1 abel) RST n - call routine at |ocation n*8

This transfer instruction generates a subroutine call to an
address which is conputed fromthe operand "n". The operand,
whi ch nust itself be between 0 and 7 in magnitude, is nultiplied
by 8 to produce one of the foll ow ng addresses:
0, 10, 20, 30, 40, 50, 60, 70 octal. The subroutine call is then nmade
to this address with the return address being stored on the
stack as in any other subroutine call. An "RET" in the
subroutine |l ocated by the RST will return control to an address
pulled fromthe stack. Devices using this instruction during
interrupt put the 8-bit equivalent of this instruction on the
data lines for the CPU to execute.

(58)

(I abel) HLT - halt the CPU and wait for interrupt

The CPU is conpletely stopped by this instruction and can
only be reactivated by an interrupt. Should the interrupt flag
happen to be disabled at the tine this instruction executes, the
whol e machi ne nust be reset fromthe front panel. The halt
condition is reflected in the front panel |ight marked "HLTA".

VARI ABLE STORAGE AND THE NO OP

The instructions presented so far represent operations or
functions within the 8080 hardware. The ALS-8 assenbl er
converts the textual formof these instructions into a binary
formwhich will be executed by the hardware. The assenbler al so
recogni zes a nunber of instructions which do not produce
"executabl e" code. In general, this class of assenbler
instructions defines storage arrangenents, addresses, or
contents for the program under construction. These instructions
are call ed "Pseudo-ops" (being "false" in the sense that they
don't produce executabl e code).

An instruction, the NOP, generates a binary instruction of

zero which is ignored by the execution hardware. It is
sonetinmes used in prograns to "pad" areas of code where changes
are expected to be made via the front panel. The versatility of

the ALS-8 nmakes this unnecessary, but the instruction can stil
be used to generate zero bytes for variable storage. As wll be
shown, there are instructions fromthe pseudo-op set which can
al l ocate bl ocks of nmenory for variables nuch nore easily than
successive NOP' s.

(I abel) NOP - do nothing. (reserve this space)
Thi s assenbly | anguage instruction corresponds to an

operation code (binary) of zero which is ignored by the CPU when
execut ed.

(1 abel) DS anount - reserve an "anmount" of nenory

Thi s pseudo-op reserves a nunber of successive nenory

(59)

| ocations starting at the current position in the program The
nunber of nmenory |locations is determ ned by the operand "anount"
whi ch can be any 16-bit nunber, or equival ent expression. The
contents of these locations is not defined.

(1 abel) DB n - define contents for single byte

This instruction reserves a single nenory |ocation and
defines for it a value as determ ned by the operand "n". The
val ue of the operand nmust not exceed eight bits.

(1 abel) DW n - define word and contents (16-Db)

The operand for this instruction is evaluated as a 16-bit
quantity and stored in two nenory | ocations. The |east
significant byte of the quantity is stored at the "current
address" and the nost significant is stored belowit.

(I abel) ASC #string# - put character string in
nmenory

This puts a string of characters into successive nenory
| ocations starting at the current |ocation and continuing until
the entire string has been put in nmenory. The special synbols
,# at either end of the above exanple are called "delimters";
t hey define the beginning and end of the ASCI| character string.
The assenbl er uses the first non-blank character found after the
menoni ¢ "ASC' as the delimter. The string is defined as
starting imedi ately after the first delimter and endi ng j ust
before the second occurrence of the delimter. Characters to
the right of the second delimter are assuned to be comments. A
carriage return will act as the second delimter in cases where
it is omtted. Wen formatting is used, the string nust not
contain two or nore successive spades within the first four
characters:

(I abel) EQU n - assign value n to synbol "I abel™
The synbol in the label field for this instruction is
entered into the assenbler's synbol table with the 16-bit

(60)

value found in the operand field. Note that both the | abel
field and an operand field are required for this instruction.

COM (synbol) - enter synbol into system synbol table

The synbol nust be previously defined and is entered into
t he System Synbol Tabl e.

NLST - suppress printed output of assenmbly |isting

This instruction sets a flag in the assenbler which wll
suppress the printing listing fromthis line until that flag is
reset by the LST instruction. Neither NLST or LST may have a
| abel field.

LST - begin assenbly listing

This reactivates the listing feature which will remain on
until turned off by NLST. |If the listing feature is already
active when this instruction is encountered, it is .sinply
ignored. Neither NLST or LST affect nenory position or contents
in any way.

END - mar ks the end of the program

This instruction is a signal to the assenbler that no nore
statenents are to be assenbled fromthe current device or file
bei ng assenbl ed. For prograns being assenbled froma file in
menory, this instruction is not necessary as the end-of-file
mark perfornms the sanme function.

(61)

SI MULATOR EXTENSI ON PACKAGE

R R I b b S bk S b S b R R R Ik b b b S b Sk b b S b S 4

OPERATI ON IMANUAL

The SIM 1 Extension Package for the ALS-8 is a program
designed to "run" 8080 nmachi ne | anguage in the sane nmanner as
t he 8080 conputer running the sinulator program Because the
Sinmulator is an operating program the user has full control of
the "run" allow ng powerful program debugging as well as a
direct view of the conputer's operation. Since each
instruction, as well as its effects, can be viewed on a single
step basis, the Sinulator represents an ideal "teaching" machine
for 8080 M cro-Conputer operation.

By using the Sinulator comands, the user can nodify or
di spl ay storage, set sinulated 8080 flags and registers, perform
or test input and output operations, set and reset breakpoints
and realtinme run addresses, as well as trace program fl ow

The Sinulator is entered fromthe ALS-8 by giving the SI MJ
command. On entry the program does a carriage return/linefeed
on the | ast sel ected output device, followed by an asteri sk
pronpt. The last selected MODE also remains in effect and is
used by the Sinulator.

After giving the pronpt, the sinulator is ready to receive
a command indicating the operation desired. Sone commands, such
as "run" (G for go), start operation of the software conputer.
Prior to running the program however, certain commands all ow
the operator to set the PROGRAM COUNTER or REAQ STERS in order to
set the proper conditions for the sinmulation prior to the
si mul ated conputer start-up.

SET COVMANDS

R R I b Sk S b S S b b b S

P address(H, Q D) --SET PROGRAM COUNTER

Set program counter to the val ue of
"address". Conversion of the paraneter is
determ ned by the | ast selected "MODE or by
the foll owm ng, optional, paraneter.

(62)

S regx=val ue (regy=value..) --SET REAQ STER VALUE

Set register "x,y.." to "value" where val ue
gi ven according to MODE or foll ow ng
paranet er (H HEX, Q OCTAL, D- DECI MAL) .

Mul tiple assignments per line are all owed;
however, each regi ster nane nust be foll owed
by the equal sign and then the sel ected

val ue. The next register nane nust then be
preceded by a space. Valid register nanes
are ABCDEHLwth"S" and "F" used to
i ndicate the Stack Pointer and Flags (PSW
respectively.

Al'l conmmands can be used any tinme the Sinulator has given a
pronpt. Wile running, the program checks the front panel
swtches as well as the SYSIO input port for display and/or
break indicators. Control "X' causes the Sinmulator to stop
running and return to the command node.

The two hi gh-order sense switches determ ne the display
node of the sinmulator as it sinulates the running program |[f
no breakpoint has been set, these switches are interpreted as
fol |l ows:

SW TCHES DI SPLAY MODE
*kkkkkkkkk*k R b b b b b b b b b b S R R I I b b b b I b b b S b Sk b b b b b

7 6

0 0 SI NGLE STEP MODE
Execute one instruction and di splay on
current output device. If CXis input to
the Systeminput driver, then return to the
command node. If any other character is

received then execute and di splay one nore
i nstruction.

0 1 CONTI NUOUS RUN (W th Displ ay)

Execute and di splay each instruction until
receiving ¢ X

1 0 Execute and di splay one instruction; then
return to the conmmand node.
1 1 Force return to conmand node from any

Si mul at or condi ti on.

(63)

The output display fromthe Sinmulator indicates the current
status of the software 8080 as well as the current conditions of
the program The display is initialized to follow the |ast MODE
setting but may be changed to decinmal by giving a sinulator node
command.

The display consists of the current |ocation of the program
counter followed by the FLAGS as set by the last instruction
executed. These are then followed by each of the registers and
the current nmenory |ocation pointed to by the H & L registers.
The stack pointer and instruction just executed then end the
display. This is illustrated bel ow

PPPP CZSPI AA BB CC DD EE HH LL MM SSSS Bl B2 B3

VWhere: PPPP -is the address of the sinmulated instruction. The
di splay shows results foll ow ng execution of the
i nstruction.

C- Carry Flag (0 or 1)
Z - Zero Flag
S - Sign Flag
P - Parity Flag
| - Interdigit Carry Flag
AA - Accumul ator (reg A
BB - Register B
CC - C
DD - D
EE - E
HH - H
LL - L

MM - Menory contents pointed to by HL
SSSS - Current address of the Stack Pointer
Bl
B2
B3

- Current instruction -
- Byte two of the instruction (if used)
- Byte three of the instruction (if used)

In addition to this display, the operator may dunp sel ected
menory | ocations or enter data to nenory | ocations using the
DUMP and ENTR commands.

D address (address) This comrand dunps the contents of
address to address follow ng the
conventions of the ALS-8 dunp command.

(64)

E address Enter data to nenory follow ng ALS-8
ENTR conventi ons.

The GO command starts the sinmulator at the current val ue of
the programcounter. It is used to initially start sinulation
as well as continuing after stopping.

G Go-- Start sinulation
X Exit-- Return to ALS-8

At this point, the user is advised to wite a short program
and assenble it to a known location in nenory. After obtaining
a listing, the Sinmulator conmands described so far should be
used in actual practice.

BREAKPO NTS AND "REAL TI ME RUN' ADDRESSES

Running a sinulation with the display on is normally used
only through the problemareas of the program |In order to
reach these areas, or to test values during a program/loop, a
BREAKPO NT is set to stop simulation and display only at the
address given by the breakpoint. The breakpoint is not cleared
at each display so program | oops may be checked repeatedly by
giving a new G command foll owi ng each display. Also, if single
step operation is again desired, the breakpoint should be
cleared prior to giving, the GO conmand.

B address -- SET BREAKPO NT

Breakpoint is set to "address" and the
simulator will display each tinme the program
reaches this address.

CB -- CLEAR BREAKPO NT

The sense switches are interpreted as foll ows when a
breakpoint is set:

SW TCHES DI SPLAY MODE

kkhkhkkhkhkhkkhhkhk khhkkhkkhkhkkhhkhkhhkhhkhkhhkhhkhhhkhhhkhhkkiirkhikx

7 6

0 0 Execute programuntil breakpoint is reached; display
current status and return to command after giving
pronpt .

(65)

1 Sane as above.

1 0 Execute only one instruction and return to
command node.
1 1 Uncondi tional return to command node.

Sone sub-routines require a speed of operation beyond that
of the Sinmulator. |In order to neet this requirenent, the Real
Ti me node of operation should be used. |If the real tinme address
is that of an 8080 CALL instruction, the sinulator will make a
REAL TIME CALL to that location, effectively giving up control

R address -- SET REALTI ME RUN ADDRESS
CR -- CLEAR REALTI ME RUN ADDRESS

| NPUT | NSTRUCTI ONS

R R Ak S b Sk b b S b b S b S b b

During sinulation input operations can be performed in
three different nodes, SI MJLATED, REALTI ME and PRE-SET. Each
met hod i s used depending on the information needed by the user.

SI MULATED

If an input instruction is encountered during the
simulation for a port defined as SI MULATED, the Sinmulator wll
stop and obtain input values fromthe operator. The follow ng
information is printed prior to receiving input:

| NPUT PORT n=

Where "n" equals the port given in the program being run by
the simulator. The sinmulator stops to the right of the equals
sign and waits for input fromthe operator. Since input goes to
the accunul ator, the value input nust lie in the range 0-255.

REALTI ME | NPUT

I f an input instruction is encountered during the sinu-

(66)

|ation for a port defined as REALTIME, the simulator will obtain
the required input directly fromthe indicated port. This
operation is identical to the standard 8080 obtai ning input.

PRE- SET | NPUT

The preset option allows any input port to have a val ue
preset between 0 and 255.

OUTPUT | NSTRUCTI ONS

R R Ak S b b b S b b S b S b b

Program out put, during sinmulation, can take one of three
forms for any desired output port. These options, SIMJILATED,
ASCI | or REALTIME, are sel ected depending on the information
requi red by the user.

SI MULATED

| f an output instruction is encountered during sinulation
for an output port defined as SI MJILATED, the Sinulator wll
i ndi cated that an output has occurred to the indicated port.
Thi s includes both the port nunber and out put value as indicated
below. (No actual output to the port occurs.)

OUTPUT PORT n=NN

Where "n" equals the port nunber and NN equal s the val ue
t hat woul d have been sent to the port.

ASCI | OUTPUT
The ASCII output option is simlar to Simulated output
except the value "NN' is output as an ASCI| character. |If the

value is a control Character, its output is identical to
Si mul at ed operati on.

REALTI ME QUTPUT

As inplied, REALTIME QUTPUT sends the value to the indi-
cated port just as though the actual 8080 were operating.

(67)

| NPUT/ QUTPUT COMVANDS

R R I b b S b b b I b b S b Sk b S S Rk S I b

IC portn SET SI MULATED | NPUT PORT

Set "portn" to SI MILATED node. (Al
ports are in this node on first entry to
t he simul at or)

IS portn val ue SET PRESET PORT
Set "portn" to PRESET "val ue"

IR portn SET REALTI ME PORT
Set "portn" to realtine node.

Cl Clear all input port assignnments and set
all to simul ated node.

OC portn SET SI MULATED OQUTPUT PORT

Set "portn" to Sinmulated. Al ports are
initialized to this node on entry to the

si mul at or.
QA portn SET ASCI | OUTPUT PORT

Set "portn" to sinulated ASCI| out put.
OR portn SET REALTI ME OUTPUT PORT

Define "portn" as realtine port.
CO CLEAR ALL QOUTPUT DEFI NI TI ONS

DI SPLAY MODE

R R I b S b S b b S b b b I

The di splay node of the Sinulator is normally determ ned by
the ALS-8 MODE on entry to simulation. This, being either octal
or hexadecimal, usually presents the proper information required
by the operator. The Sinmulator has one additional display node,
DECI MAL, which can be selected at any tine during sinulation.

This nmode conmand "M will select Decimal output if it is
foll owed by the value 10 (20 if entry node was octal).

(68)

OPTI ONAL SI MULATOR ENTRY PO NT

R R b b S b S b b S b S b S b S Ik I b S b b b b S b S b b S

Oten, during sinulator operation, it is desirable to
return to the ALS-8. In order to return to the sinul ator
w thout clearing I/O port definitions, it is required that the
command SI MJ fol |l owed by any non-bl ank character be used. SIMJS
is reconmended. This allows the exact conditions on exit to be
restored upon re-entry.

OTHER SI M1 EXTENSI ON FUNCTI ONS

R R bk S b b S b S b b S R R bk b b S b b b S b

AUTO COVIVAND

Every ALS-8 contains code to recogni ze commands ot her than
the standard set. AUTO is one such command whose actua
operating code is contained in the SIM1 Extension Package
(making it rather dangerous for those without it to use the AUTO
command). In use, the AUTO command all ows input to standard
ALS-8 files with the AUTO code adding the |ine nunbers.

COVMMAND FORM AUTO (n)

When used wi thout the optional paraneter "n", the AUTO
command will start sequencing |line nunbers begi nning at one and
increnmenting by one for each additional line. [|f the optional
paraneter is included, then |ine nunbers will begin one beyond
the last line in the current file. The paraneter "n" can be any
val ue between 0 and 7 with no significance placed on what the
value is. Return fromthe driver to the standard ALS-8 is nmade
by depressing the "ESC' key as the first character of a line.
(Note: If there are NOLINES IN A FILE, do not use the optional
par aneter.)

As a note of interest, the code conprising the AUTO conmand
represents a special 1/Odriver inplenented to pre-process input
fromthe selected I/Odriver. This is, of course, a driver on
top of a driver, but then the ALS-8 was designed for such
nonsense.

(69)

TXT-2 EXTENSI ON PACKAGE

R R I b b S b S b S b S R R R Ik b b b I b Sk b b S b S 4

OPERATOR S MANUAL

The TXT-2, an optional extension to the ALS-8, opens a new
di rension to the powerful file operation and managenent of the
ALS-8. In addition to an EDI TOR the TXT-2 also contains a VDM
out put driver and the FIND command. Code for one additional
function is also within the package, though the nane of the
command is not known to the ALS-8 (a mnor matter). The use of
t hese conmmands will be described foll ow ng the description and
operating procedure of the ED TOR

EDI TOR

kkhkkkhkhkkkikkhkk*k

The TXT-2 converts the contents of the "current” ALS-8 file
into a continuous display on the VDM screen. Single letter
control character commands allow cursor, as well as direct file
i ne novenent, on the screen. Since all file operations are
direct and the contents of the file are always displayed on the
screen, editing becones a sinple matter either with or w t hout
file line nunbers.

Upon entry, the EDI TOR programtakes control of the current
ALS-8 File and displays the file contents (or |ack thereof) on
the screen sixteen lines at a tine. Comrand keys are provided
toroll through the file or to position the cursor over any
character within the file (even in a position where none
exists). Also provided are controls to insert and delete
characters or lines as required by the result desired.

As wth all nmenory files, a file beginning and end address
exist. The TXT-2 EDI TOR al so has one additional paraneter, a
val ue indicating the end of assigned nenory. This paraneter can
be given any value and is used to prevent a file from grow ng
beyond assi gned bounds.

The EDITOR is entered by using the EDIT command of the
ALS-8. The current file is displayed on the screen and if there
are |l ess than sixteen |ines, a nunber of fill characters. As
lines are added, these fill characters di sappear off the bottom
of the screen.

Since a file must first exist, the user nust create or

(70)

select a file prior to entering the EDITOR The ALS-8 FILE
command is used for these operations.

In the explanation that follows, the user is urged to try
each command on an actual file. No words can describe the
vi sual effect each operation perforns on the screen. For best
"l earning"” results, the file should have, or be given, at |east
thirty-two |ines.

Prior to using the editor, the end of assigned nenory
paranmeter should be set to a known value. The paraneter can be
set to a null value by giving the coomand EXEC FFF3 (HEX). This
nullifies the proper operation of the paraneter and a further
explanation will cover the correct usage later in the manual.

CURSOR PCSI TI ONI NG COMVANDS

R R I b b S b S b S b S R R b Sk S b b b I b Sk b b b S 4

The keys, A, SSWZ, forma triangle on the input keyboard.
When pressed sinultaneously with the CONTROL KEY, they will nove
the cursor as indicated bel ow

CONTROL/ W nmove cursor u
A move cursor |eft
S nmove cursor right
Z nmove cursor down

Any character input, other than control characters, wll
normal Iy replace the character at the current cursor position.
The "normal ly" condition is placed on this statenent to all ow
for the character insert node to be described |ater

CONTROL/ Q CURSOR HOVE COVIVAND
In addition to the "triangle" novenent controls, the TXT-2
al so includes a "HOVE" key which sets the cursor to position

zero on line seven. Do not use this control unless there are at
| east seven lines on the screen.

SCREEN SCROLL COMVANDS

R R bk S bk S b S b b S b b b Sk S b b b R

Screen scroll commands are provided to allow the file to

(71)

be "rolled" through the screen area until the desired file line
is reached. Each command key corresponds to a position relative
to the triangle previously described.

CONTROL/ scroll up one line
scroll down one Iline
scroll up sixteen lines

scroll down sixteen |ines

Ox/Xm

DI RECT FI LE PGSI TI ONI NG COMVANDS

R R b b S b Sk b b S b S R R I bk S b b b S bk b b S b S S b b 4

In addition to cursor positioning controls, the TXT-2 al so
contains code to receive and search for specific text within the
file. The editor FIND command (different than the ALS-8 find
command) is CONTROL/ O.

CONTROL/ O editor text search

Upon depressing the search command, the screen will bl ank
and a colon (:) pronpt will appear. At this point, the editor
is waiting for an input Iine of one or nore characters fromthe
operator. This input can contain up to thirty-nine characters.
Any occurrence of these characters within the file, regardl ess
of preceding or follow ng characters, will represent a find.
Therefore, only enough characters to uniquely define the desired
text need be input. As an exanple, "the qu" can be used to
locate a line in the file containing "the quick brown fox".

After receiving a carriage return follow ng the input text,
the editor will search the file fromthe beginning forward for
an occurrence of the text input by the user. Upon finding the
line, the editor will position the Iine containing the text at
the first line on the screen. |If no occurrence was found within
the file, the editor will return to the first line of the file
for screen presentation.

CONTROL/ | conti nue search

| f an occurrence was found and the user wishes to continue
t he search, the continue conmand should be used. This command
causes the editor to pick up the first file line off the bottom
of the screen and to continue the search fromthere.

(72)

Any text on the screen is not searched.

FI LE MODI FI CATI ON COMVANDS

R R b Sk S b b b S b S b S b S R b Sk S bk b b S R

CONTROL/ T character insert node switch (on-off-on...)

Normal file characters, input fromthe termnal, are placed
inthe file in either of two nodes. These nodes, normal and
insert, are alternately selected using the insert node control

When of f, characters are placed at the present cursor
position and the cursor noves to the right one place. Wen on,
however, characters are inserted into the file at the current
cursor position, noving the character at that position and the
rest of the file right.

CONTROL/ H del ete character conmmand
The del ete character commuand renpves the character at the

current cursor position and noves the remaining portion of the
line to the left.

CONTROL/ B insert |ine comrand
The line insert control npbves the current cursor |ine down

and inserts a blank line in its place. The cursor is noved to
the first character position of the new line.

CONTROL/ P del ete |ine command

This control renpoves the current cursor line fromthe file.

CONTROL/ J (l'inefeed) blank remaining line and scroll up

Li nefeed del etes all characters on the current cursor line
fromthe current cursor position to the right. The file also

(73)

scrolls up one line and the cursor noves to the first position
on the new |ine.

CONTROL/ M (Carriage Return) scroll up and insert one |ine

Carriage return scrolls up one line and inserts a bl ank
line in the file. The cursor is noved to the first character
position of the new line.

OTHER COVMVANDS

R R I b S S b S S b S b S S b S b b

CONTROL/ F exit comrand

On EXIT, the editor clears the screen and does an FCHK on
the file prior to returning to the ALS-8 executive. For |ong
files sone delay nay be experienced (about 1/2 second) before
recei ving the "READY" nessage.

CONTROL/ Y repeat command

The repeat command requires two keystrokes follow ng the
command. The first represents the conmand or character to be
repeated, while the second is the nunber of repeat increnents.

The repeat increment is offset by an ASCI|I bias to all ow
the nunbers 1-9 to represent their actual values. Al other
characters have an equi val ent value as determ ned by their ASCl I
representation.

CONTRCL/ Y- - - - - >> COMVAND OR CHARACTER ------ >> # OF REPEATS

OTHER FUNCTI ONS PROVI DED BY THE EXTENSI ON PACKAGE

FI ND

R R b b S b S b b b

As was nentioned, the TXT-2 extension al so contai ns code

(74)

for the ALS-8 FIND COWAND. This command gets an input string
fromthe user and prints all occurrences of the string within
the current file.

After receiving the FIND conmand, followed by a carriage
return, a colon (:) pronpt will print on the current out put
device. At this point, the desired string is input, once again
followed by a carriage return. Following this, all occurrences
of the string will print out on the current output driver.

ESET COVIVAND

R R I b S S b S S b S b S S b S b b

The VDM EDI TOR uses a paraneter to limt the maxi num
address the file may reach. Code has been included within the
TXT-2 to set this value, but no correspondi ng command has been
provi ded. The standard ALS-8 CUST command can be used to insert
this coomand if the foll ow ng sequence is executed:

CUST / ESET/ FFF3

After this the conmand ESET, followed by an address, wll
set the paraneter to the value of the address given. It should
be noted that the file may reach but not exceed this val ue.

VDM DRI VER

Al'so included in the TXT-2 package is a driver to allow the
ALS-8 to use the VDM as an output device. This driver is in
PROM al | owi ng access at all tinmes. The address for the driver
is FE77 (hex) and the I ODR command is used to enter the nane in
the DRI VER TABLE. For use as a stand-by driver, the follow ng
sequence i s recommended:

| ODR / VDM i nput address FE77

The driver nmay al so be nade the- SYSTEM DRI VER by using the
fol |l ow ng sequence:

IODR /SYSIO 0 FE77

(75)

The standard term nal output driver can then be assigned as
a hard-copy supplenental driver by using the follow ng:

| ODR / PNTR/ 0 DOA9

The VDM driver is especially suited to conmandi ng the
ALS-8, and it is recommended that it be changed to the SYSIO
driver right after systeminitialization. The follow ng special
keys are inplenented in the driver:

CONTROL/ Z cl ear screen
A turn cursor on or off
S set display speed prior to operation

The di splay speed conmand wi Il output the nmessage: SPEED?
on the VDM screen whenever it is given. The user should respond
with a value between 1 and 9 indicating the display speed
desired. A value of 1 represents approximtely 2000 |ines per
second while 9 is rather slow at 3 characters per second.

The speed may al so be changed any tinme during output by
pressing the correspondi ng key between 1 and 9. The display can
al so be stopped by depressing the "space bar". Once stopped,
any character other than speed val ues or another space bar wll
continue the output at the sane speed. The space bar will all ow
one character to be printed for each sequential space character
recei ved.

During all output operations with either the standard ALS-8
termnal driver, or with the VDM driver, a test for the ESC
character is made. |If received, all output will be discontinued
and a return nmade to the SYSIO driver with a "READY" nessage.

When the built-in VDMdriver is first activated, the screen
must be cleared (CTL-Z) and the speed set (CTL-S) to initialize
the VDM For exanpl e:

| ODR / SYSI O 0 FE77

X Type anything to swtch drivers and
it will display: "Wat?"
Control -Z Cl ear the screen
Control -S and set the speed.

(76)

APPENDI X A - STANDARD SYSTEM NOTES

1. SystemEntry Points

There are three primary entry points into the ALS-8 system

The first is used to performsysteminitialization such as when
the systemis first powered on, or when the ALS-8 is first

| oaded. The second entry point is used to only partially reset
the system whil e keeping some of the internal tables intact for
| ater use. The third entry point is used to return control to
the ALS-8 nonitor. The entry points are:

Address (hex) Use

EO024 This is the entry point which wll
conpletely initialize the ALS-8 system
The various tables and data within the
system RAM area will be initialized.

EO0O This entry point will performa parti al
systemreset initializing only the system
standard 1/O drivers in the system RAM
ar ea.

EO60 This entry point is used to return control
to the ALS-8. This entry point requires a
valid stack pointer but will set the stack
poi nter after use.

2. Standard System 1/O Drivers

The ALS-8 nmakes use of a SYSTEM driver pair known as "SYSIO'.
This driver pair is conposed of an Input driver and an CQut put
driver. Wien the ALS-8 is initialized, these drivers, the nane
"SYSIO', and their addresses are noved fromthe ALS-8 to the
system RAM area. Changes may be nmade to these drivers, or

ot her drivers may be addressed to support non-standard devi ces.

The addresses of the SYSIO drivers at initialization are at
four locations, two each for Input and Qutput. The first

| ocation is the address of the current 1/O driver and the
second is the address of the drivers associated with the nanmed
driver pair "SYSIO'. Each address occupies two bytes, with the
| ow order byte of the address followed by the high order byte.

Current |nput Driver DOCD (addresses are in hex)
SYSI O I nput Driver D094
Current CQutput Driver DODO
SYSI O Qut put Driver D096

The standard system I nput driver is |ocated at D098, and the
Qutput driver is |located at DOA9. A special input status

(77)

APPENDI X A (cont)

D098
D098
D098
D098
D098
D098
D098
D098
D098
D09B
DO9E
DO9E
DOAO
DOA2
DOA3
DOA4
DOA4
DOAG
DOA8
DOA9
DOA9
DOA9
DOA9
DOAC
DOAF
DOB1
DOB3
DOBS
DOB8
DOBA
DOBC
DOBF
DOCOo
DOC2
DOC3
DOC3
DOC3
DOC3
DOC3
DOC3
DOC3
DOC3

DAV
QUTPS8
USTA

888 BLIBE 28

BRaREBIMBEEE

routine nust also be avail able at | ocation DOA4 and nust pass
back a ZERO flag only when no character is waiting to be input.
The standard system /O drivers are restored fromthe ALS-8 to
t he system RAM area whenever the systemis reset or initialized
(entry points EO024 or EO00). The followng is an assenbly
listing of the standard system|/O drivers to be used as an aid
both in understanding how the drivers work and how to wite

ot her drivers.

0001 *
0002 *
0003 * ALS-8 SYSTEM 1/ 0 DRI VERS
0004 *
0005 *
0006 *
0007 * I NPUT DRI VER
0008 *
A4 DO 0009 | NP8 CALL STAT GETSTATUS
98 DO 0010 Jz I NP8 LOOP UNTI L AVAI LABLE
0011 *
01 0012 I'N UDATA GET DATA FROM | NPUT PORT
7F 0013 ANI 127 STRIP OFF PARI TY
0014 MoV B, A PUT COPY | N ALTERNATE REG STER
0015 RET
0016 *
00 0017 STAT I'N USTA
40 0018 ANI DAV TEST FOR DATA AVAI LABLE
0019 RET
0020 *
0021 * QUTPUT DRI VER
0022 *
A4 DO 0023 QUTP8 CALL STAT GET | NPUT STATUS
B8 DO 0024 Jz NOCHR JUWP | F NO I NPUT HAS BEEN RECEI VED
01 0025 I'N UDATA GET CHARACTER
7F 0026 ANI 127
1B 0027 CPI ESC IS 1T AN ESCAPE?
60 EO 0028 Jz ECRMS | F SO CHANGE DRI VER AND QUTPUT " READY"
00 0029 NOCHR IN USTA
80 0030 ANI TBE I'S PORT READY FOR QUTPUT?
B8 DO 0031 Jz NOCHR
0032 MoV A B GET CHARACTER FOR QUTPUT
01 0033 aJr UDATA
0034 RET
0035 *
0036 UDATA EQU 1 DATA PCORT NUMBER
0037 USTA EQ 0 STATUS PORT NUMBER
0038 DAV EQU 40H DATA AVAI LABLE EST BIT
0039 TBE EQU 80H TRANSM TTER BUFFER EMPTY AT BIT 7
0040 ESC EQU 1BH ESCAPE CHARACTER
0041 *
0042 *
0040 ESC 001B I NP8 D098 NOCCHR DOB8
DOA9 STAT DOA4 TBE 0080 UDATA 0001
0000

(78)

APPENDI X A (cont.)

3.

System Return Points

The ALS-8 transfers control to a routine with a standard CALL
instruction for either the EXEC command or a custom conmand.

The CALL'd routine may use the stack, and (if used properly)

may return to the ALS-8 via a standard RET instruction. The

ALS-8 stack provides for 16 | evels of stacking.

When a routine is CALL'd, two paraneters are communi cat ed
between the routine and the ALS-8. These paraneters, known as
SWCH1 and SWCH3, are used to decide if the "READY" nessage IS
to be displayed and if the I/Odrivers are to be automatically
swi tched back to the SYSIO driver pair.

When SWCHL1 is not zero on returning to the ALS-8, the "READY"
message will be displayed and the SYSIO driver pair will be
selected. Only when SWCHL is zero is SWCH2 consi dered. \When
SWCH2 is not zero (and SWCH 1 is zero) no nessage will be

di spl ayed, and the I/Odrivers will remain as they were. Wen
SWCH2 is zero (and so is SWCH1) the SYSIO I/O drivers wll be
selected and a CRLF will be issued. SWCH1 is |ocated at DOFD
and SWCH2 is | ocated at DOFE. These two paraneters afford
control over 1/O driver selection.

There are five standard return points back into the ALS-8 when
a standard RET instruction is not used. These various return
points may be used as an alternate nethod of returning to the
ALS-8, but the stack nust be usable.

Name Address Function

EORVS EO60 This is the normal return point. The SYSIO
drivers will be selected, then the nessage
"READY" will be displayed.

FOR EOB7 The ALS-8 will performall the SWCH1 and
SWCH? tests as if a standard RET
i nstructi on had been issued.

EORNS EOD1 The current driver will remain in control,
and only a CRLF w || be issued.

VHAT E7DD The SYSIO driver will be selected, then the
message "WHAT?" will be displ ayed.

VESS E7EOQO The SYSIO driver will be selected, then the

message as pointed to by the HL register
pair will be displayed. This nessage nust
termnate with a CR (0D hex).

(79)

APPENDI X B - ASSI, Assenbly from Input Driver

The ASSI command all ows an assenbly to be perforned by reading
the source data froma user-supplied Input driver rather than
fromthe current source file in nenory. A typical exanple of
this application is when it is necessary to assenble a program
fromcassette tape which would otherwise not fit wthin the

exi sting menory.

The ASSI command uses the current input driver to retrieve the
source data. |Instead of inputting one byte at a tinme as would
a standard input driver, the input driver for the ASSI comand
i nputs one entire source line each time the driver is call ed.
For this reason, an ASSI input driver probably would not
function for any other purpose.

Each tinme the input driver is called it nust pass one entire
line into nmenory beginning at |ocation DLE4 (hex). |If line
nunbers are to be passed as well, the ASCI| characters for the
nunbers shoul d be placed into nenory beginning at |ocation D1DF
(hex) for four bytes. A line begins at |location DIE4 (this is
known as "IBUF") and termnates with a CR (0D hex).

The assenbler requires two passes of the source file in order
to conplete an assenbly. Therefore, the Input driver nmust nake
sone provision both for detecting the end of the first pass as
well as for rew nding the source data so that the entire source
data may be passed to the assenbler a second tinme. Wen the
end of the source is detected, the input driver nust pass a
line containing " END' to the assenbler so that the assenbler
wi Il know that the end of a pass has been reached.

(80)

APPENDI X C - ALS-8 on Cassette and with SOLOS/ CUTER

ALS-8 is distributed on various nedia, including CUTS fornat
cassette. This cassette consists of one file which |oads into
menory beginning at | ocation DF80 through the end of the ALS-8
(nearly FFFF, the end of nenory address space). Although the
ALS-8 program actually begins at EO000, a short programresides
in front of the ALS-8 which establishes the necessary |inkages
with either SOLCS or CUTER. This programresides at the very
end of the ALS-8 system RAM area and al so contains special 1/0
drivers which provide conpatible operation with either SOLCS,
CUTER or ot her conpatibl e surrogate.

When the ALS-8 cassette is first | oaded and executed at

| ocation DF80, the I/Odrivers will be properly altered so that
the standard SYSIO /O drivers wll function properly with
SOLOS/ CUTER, a "STAB D700" will be sinulated, and the begin
address of the SOLOS/ CUTER junp table will be used to sinmulate
an "ESET" command. An assenbly listing of this initialization
programfollows. The SYSIOI/Odrivers will be altered within
the ALS-8 itself, so that whenever the ALS-8 is |ater reset
(via entry at either E024 or EO00) the updated SYSI O drivers
conpatible wwth SOLOS/ CUTER wi || be noved into the system RAM
ar ea.

The ALS-8 cassette contains only one file called "ALS-8". To
| oad and execute this file under either SOLCS or CUTER

1. Be certain that 12K of RAM esists from DOOO t hrough
FFFF.

2. Pl ace the ALS-8 cassette into the cassette playback
unit.

3. Enter "XEQ ALS-8" to either SOLOCS or CUTER. The tape
wll nowread in, and the ALS-8 initialization
programw || automatically be execut ed.

4. Once the initialization program conpl etes, the ALS-8
wi |l display the nessage "READY".

(81)

APPENDI X C (cont.)

DF80
DF81
DF82
DF84
DF87
DF89
DFSA
DF8C
DF8F
DF90
DF93
DF96
DF98
DF99
DF9C
DF9F
DFA2
DFAS
DFA8
DRAB
DFAE
DFB1
DFB4
DFB7
DFBA

DFBC
DFBD
DFBE
DFBF
DECO
DFC1
DFC4

DFC7
DFCA
DFCB
DFCE
DFD1
DFD2

DFD5
DFD7

DF80

23
7E
FE

2E
7E
FE

7C
32
32
2E
2B
22
21
22
21
22
21
22
21
22
21
11
06

24
1F

3A
24
FC
00

91
E9

00
4F

EO
EE

11

DFBC

1A
77
23
13
05

ED

EO

R

D1
D1
D7
ED
El

El
El

C2 BC DF

C3

24

DOA4

DFC7

3A
B7
c2
CD

32

FF

B2
1F

FF

DFD5

3E

40

0011

9 88 W

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560
0570
0580
0590
0600
0610
0620
0630
0640
0650
0660
0670
0680
0690

TH'S PROGRAM | S LOADED AT THE VERY END OF THE
ALS-8 DOO0 RAM AREA. BECAUSE IT IS A PART OF THE
ALS-8 FILE ON CASSETTE TAPE, | T PERFORVS PRI MARY

CUTER

LP1

_|
>

>(-U)>(->(->(->(->(->(—>(->(‘>(—>(—>(—>(—

b

XXI NP
STAT2

MVLEN
*

EQU
EQU
LDA
ORA
INZ
CALL
RZ
STA
EQU
W
RET
EQU

*
*
*
* | NI TI ALl ZATION OF THE ALS-8 FOR EI THER SOLOS OR
*
*
*

THE ALS-8 FILE BEG NS EXECUTI ON HERE
CHECK BYTE 1 OF SOLOs/ CUTER JUWP TABLE
, M THI'S MUST BE A ' IMP
0C3H | F NOT THEN TH' S CANNOT BE SOLOS/ CUTER
ALS8 NO- - USE NORVAL ALS8 |/ O DRI VERS
L, >SI NP NOW CHECK THE SI NP ROUTI NE
A M THI'S MUST BE A ' LDA
3AH IF NOT THEN THIS | SN T SOLOS/ CUTER El THER
ALS8 NO -STD I /0 DRI VERS THEN
AH GET THE ADDRESS OF SOLOs/ CUTER
XXI NP+2 RELOCATE THE | NPUT CALL WIN STAT
XXOQUT+2 AND THE OQUTPUT CALL WIN OUTP8
L,0 PREP TO GET SOLOS/ CUTER M NUS ONE
H NOW IS M NUS ONE
ESET POST SOVE VALUE FOR ESET
H RET PT TO A RETURN | NSTRUCTI ON
CTLU RQUTINE FOR CTL-U DURING EDI T
H, 0D700H PI CK A DUMW STAR VALUE
STAB NOWALS8 WLL GET INNT' ED TO A "SAFE" STAB
H I NP8 GET THE ADDR OF THE | NPUT ROUTI NE
PTRS POST NEW ADDRESSES | NTO ALS-8
H, OQUTP8 ALSO THE QUTPUT ROUTI NE ADDR
PTRS+2 AND POST I T TOO
H WTO PT WHERE TO MOVE 2ND DATA
D, WFM THE STAT RQUTINE | S MOVED
B, WLEN TH S IS THE NUMBER OF BYTES TO MOVE

>T*

$ LOOP TO MOVE THE ENTI RE STAT ROUTI NE
D GET ONE BYTE

M A MOVE | T

H NEXT

D

B DO I T PROPER NUVMBER COF BYTES

LP1 MOVE ENTI RE ROUTI NE
ALS8 I NI TI ALI ZATION IS ALL DONE---START I T UP---

THESE ARE THE |/ 0 DRI VERS THAT WLL MAKE THE ALS-8
BE COWPATI BLE W TH SOLOS/ CUTER/ CONSCL.

TH'S ROUTI NE WLL BE THE STATUS ROUTI NE

THI'S I'S PLACED | NTO THE ALS-8 PROPER

BUT | S FINALLY PLACI D | NTO SYSTEM RAM AT LOCATI ON
DOA4

ODOA4H THE STAT ROUTI NE WLL BE HERE

5 TH S CODE WLL BE MOVED FROM HERE
CHAR SEE | F STATUS ALREADY GOTTEN
A I S THE STATUS ALREADY THERE

STAT2- WFMSTAT YES- - SAY SO AGAI N AND AGAI N AND AGAI N
SINP GET STATUS AND/ OR CHAR

. NO CHAR AVAI LABLE

CHAR POST TH'S CHAR | S WAI TI NG

$ CHAR ALREADY WAI TI NG

A 40H PASS BACK SOVE NON- ZERO CHAR

. AND STATUS IS NOW COVPLETE

SWFM TH S IS THE LENGTH OF THE CODE TO MOVE

(82)

APPENDI X C (cont.)

0700 * THESE RCUTI NES EXI ST AT THE TOP OF THE
0710 * 0000 4K BLOCK OF MEMCORY.
0720 *
0730 *
DFD8 0740 |1 NP8 EQU $ | NPUT ROUTI NE
DFD8 CD A4 DO 0750 CALL STAT GET STATUS
DFDB CA D8 DF 0760 Jz INP8 WAIT FOR A KEY
DFDE 3A FF DF 0770 LDA CHAR WHEN KEY IS HT, IT WLL RE HERE
DFE1 E6 7F 0780 ANl 7FH CLEAR H BIT I N CASE
DFE3 47 0790 MOV B, A PASS CHAR BACK I N REG B
DFE4 AF 0800 XRA A BUT WE ALSO HAVE TO CLEAR CHAR WAI TI NG
DFE5 32 FF DF 0810 STA CHAR NO CHAR | S WAI TI NG NOW
DFES 78 0820 MOV A B ALSO PASS RACK CHAR I N REG A
DFE9 C9 0830 RET RET . CHAR IN A AND B (ALSO USED FOR JUST A ' RET')
0840 *
0850 *
0860 *
DFEA 0870 QUTP8 EQU $ CHARACTER QUTPUT ROUTI NE
DFEA CD A4 DO 0880 CALL STAT | S THERE BY CHANCE A CHAR WAI TI NG
DEED CA FA DF 0890 JZ NOCHR NO- - THEN JUST DO AN OUTPUT
DFFO C5 0900 PUSH B SAVE CHAR TO BE OUTPUT
DFF1 CD D8 DF 0910 CALL | NP8 GET THE CHAR THAT IS THERE
DFF4 FE 1B 0920 CPI 1BH IS 1T AN ESCAPE?
DFF6 Cl 0930 POP B RESTORE CHAR TO BE QUTPUT 1ST
DFF7 CA 60 EO 0940 JZ EORMS YES- - THEN ABORT AND SAY READY
DFFA 0950 NOCHR EQU $ NOW VE CAN QUTPUT CHAR IN REG B
DFFA CD 19 CO 0960 XXOQUT CALL SQUT QUTPUT THE CHAR
DFFD 78 0970 MOV A B AND RETURN SAME CHAR I N REG A ALSO
DFFE C9 0980 RET . CHAR IS QUT NOW
0990 *
1000 *
DFFF 00 1010 CHAR DB 0 0=NO CHAR IS WAITING, ELSE IT IS THE CHAR
1020 *kkkkkkhkk*k END O: PRmM kkkkkkhkhkkhkkk
1030 *
1040 *
COLF 1050 SINP EQU OCO1FH SOLOS STANDARD | NPUT ROUTI NE
c019 1060 SQUT EQU 0C019H SOLOS STANDARD QUTPUT ROUTI NE
1070 *
E024 1080 ALS8 EQU OEO24H ALS-8 I NI TIAL ENTRY PO NT
E060 1090 EORV5 EQU OEO60H ALS8 RETURN IF ESCAPE IS HI'T
EO4F 1100 STAB EQU OEO4FH THE STAB CETS I NI T' ED HERE
D191 1110 ESET EQU OD191H ESET VALUE STORED HERE
D1Al 1120 CTLU EQU OD1A1H CTL-U DURING EDI T ROUTI NE ADDR HERE
E1DE 1130 PTRS EQU OE1IDEH PTRS TO | NP8 AND OQUTP8 WI N ALS8
E1EE 1140 WTO EQU OE1EEH THE STAT ROUTINE WIN THE ALS8
1150 *
1160 *
1170 *
ALS8 E024 0120 0160 0410
CHAR DFFF 0570 0620 0770 0810
CTLU D1Al 0240
EORMS EO060 0940
ESET D191 0220
1 NP8 DFD8 0270 0760 0910
LP1 DFBC 0400
MWFM DFC7 0320 0590 0660
MVLEN 0011 0330
MWTO E1EE 0310
NOCHR DFFA 0890
QUTP8 DFEA 0290
PTRS E1DE 0280 0300
RET DFE9 0230
SI NP COLF 0130 0600
SQUT C019 0960
STAB EO4F 0260
START DF80
STAT DOA4 0590 0750 0880
STAT2 DFD5 0590
XXINP DFCE 0180
XXOJT DFFA 0190

(83)

Appendi x D
SOLOS/ CUTER I nterface Specifications

The SOLOS/ CUTER interface is based on:

1. A predefined set of 'pseudo' 1/O ports allow ng software
conpatibility and providing an easy neans of supporting
any |/ 0O devi ce.

2. A well defined set of register usage conventions.
3. A systemjunp table of entry points.

4. A defined tape format including headers and CRC
characters.

Both SOLOS and CUTER observe and support these specifications
such that any programwitten using this interface will func-
tion (except for specific device dependencies) under the
control of either SOLCS or CUTER A part of the interface
specifications also allows a user witten SOLOS/ CUTER surr o-
gate. Such a surrogate, when properly witten, will allow a
programwitten for SOLOS/ CUTER to function with the surrogate.

The first aspect of the interface is that of the pseudo ports.
The basic SOLOS/ CUTER interface allows the support of four
"pseudo’ 1/O ports (0 - 3). These pseudo ports are |ogica
ports providing a reference for the programonly. System i nput
(keyboard) and output (display) are directed via these pseudo
ports. The STANDARD definition for pseudo ports is:

Pseudo Port | nput Qut put
0 Keyboar d VDM Di spl ay
1 Serial input Serial out put
2 Paral | el 1 nput Par al | el out put
3 User defined input User defined out put

These pseudo ports allow device independent I/O Provided that
devi ce dependent character sequences are not used, an |I/O
request to pseudo port O appears to the requesting programto
be the sane as a request to pseudo port 1, 2 or 3. what this
means is that, although four pseudo ports are defined in the
interface specifications, a user witten surrogate would not
need to decode pseudo ports.

©1977 Sof tware Technol ogy Cor poration
(84)

Appendi x D (cont.)

The second aspect of the SOLOS/ CUTER interface is the defined
regi ster usage. Each of the systementry points has specific
regi ster requirenents which wll be discussed |ater.

Whenever a programis executed via SOLOS/ CUTER t he stack
pointer, the stack, and registers HL are defined as foll ows:

1. The Stack Pointer (register SP) is valid and offers a
useabl e stack. The size of this stack is not specified
but should be adequate for at least a fewcalls. The
executed programis expected to establish its own
stack; however, sonme stack should be avail abl e.

2. The stack itself should be established such that:

(a) A "REV instruction can be used as an exit by the
executing program

(b) The locations at Stack Pointer -1 and -2 in
menory contain the address of the executed
programitself. This information can be
accessed by machi ne code simlar to:

LXI H -1 A constant ni nus one.
DAD SP HL=SP-1 now.
MOV A M A=our own hi gh address.

Code such as this can be used to allow a routine to be
made self-relocating to a 256 byte boundary.

3. Registers HL contain the address of the SOLOS/ CUTER j unmp
table. Because this junp table nay be | ocated at any
256 byte boundary in nenory, register L will be zero.
Regi ster H can then be used to alter the executing
program accordingly. As noted later, the junp table
al so provides an indication whether the programis
executing on a Sol or other conputer.

The third aspect of the SOLOS/CUTER interface is the junp
table. By making all systemrequests via this junp table, an
execut ed program can be nmade conpati bl e between SOLCS, CUTER or
other properly witten surrogate. The junp table is described
on the follow ng page. A nore conplete descriptionis
contained in the SOLOS/ CUTER User's Manual .

(85)

Appendi x D (cont.)
SOLOS/ CUTER JUMP TABLE

Address Label Length Brief Description

xx00 START 1 This byte all ows power-on reset for
SOLCS. It is 00 hex on a Sol; 7F hex on
ot her than a Sol.

xx01 I NI'T 3 This is a "JMP" to the power-on reset.

xx04 RETRN 3 Enter at this point to return control
froman executing program

xx07 FOPEN 3 Byte access file open.

XX0A FCLOS 3 Byte access file close.

xx0D RDBYT 3 Byt e access read one byte.

xx10 VRBYT 3 Byte access wite one byte.

xx13 RDBLK 3 Read an entire file into nenory.

xx16 WRBLK 3 Wite an entire file fromnenory.

XX19 SOQUT 3 Standard character output routine. This
must be an "LDA" pointing to the byte
containing the current system out put
pseudo port val ue.

xx1C ROUT 3 Character output to pseudo port
specified in register "A".

xx1F SI NP 3 St andard character input routine. This

must be an "LDA" pointing to the byte
containing the current system i nput
pseudo port val ue.

XX22 Al NP 3 Character input to pseudo port specified
in register "A".

The nost often used routines are: RETRN, SOUT and SINP. O her
entry points may or may not be used.

(86)

Appendi x D (cont.)
JUVP TABLE | NPUT ENTRY PO NTS

SI NP addr ess xx1F

This entry point will set register "A" to the current
system i nput pseudo port. This nust be an "LDA"
instruction. After loading register "A", this entry
poi nt proceeds by executing "Al NP" described bel ow

Al NP addr ess xx22

This entry point is used to i nput one character or
status information fromany pseudo port. On entry,

regi ster "A" indicates the desired pseudo port.

Because this entry point is a conbination status/get-
character routine, it is the user's responsibility to
interpret return flags properly. \When a character is
not available, the zero flag will be set. Wen a
character is available, the zero flag will be reset and
the character will be returned in the "A" register. As
an exanple, the following code will wait for a
character to be entered:

LOOP CALL SINP get status or the character
JZ LOOP status says character not
avai |l abl e yet
character is in register "A"

JUW TABLE OUTPUT ENTRY PO NTS

SOQUT address xx19

This entry point will set register "A" to the current
system out put pseudo port. This nust be an "LDA"
instruction. After loading register "A", this entry
poi nt proceeds by executing "AQUT" described bel ow

ACQUT addr ess xx1C

This entry point is used to output the character in the
"B" register to the pseudo port specified by the val ue
in the "A" register. On return, the PSWand register
"A" are undefined. Al other registers are as they
were on entry. A user witten output routine (AQUT
surrogate) may buffer or delay the output as required
for the supported device.

(87)

Appendi x D (cont.)

The fourth aspect of the SOLOS/ CUTER interface is the format in
which the data is recorded on tape. Wen data is witten to
tape, it is referred to logically as a "file". Each file has
its own header which describes the file. On cassette tape,
each header is followed by the file itself. The file itself is
witten to tape in segnents of 1 to 256 bytes. Each segnent is
i medi ately followed by a Cyclic Redundancy Check character
(the CRC). The followng is the general format of one file on
cassette tape:

Y
File ' , |
Preamble , Header : The File '
\' ' 1
“
g A B C D E F G H
—
Wher e:

A Pr eanbl e

Preceding every file header is a special preanble.
This is a series of at least ten nulls (zeroes)
followed by a one (01 hex). This special sequence,
and only this sequence, indicates a probable file
header foll ows.

B. Fi |l e Header

This is the 16 byte file header. The layout of a
file header is:

NAME ASC 'ABCDE' A 5 character file nane.
DB O Shoul d al ways be zero.
TYPE DB 'B +80H File type character. |If bit
7=1, this is a non-executable

data file.
SIZE DW LENGTH Nunber of bytes in file.
ADDR DW FROM Address file is to be read into
or witten from
XEQ DW EXEC Executi on begi nni ng address.
DS 3 Space not currently used.

C. Fil e Header CRC

This is the CRC character for the file header. |If,
when reading a file header, the CRC character is not
correct, then the file header is to be ignored. A
search woul d then be nade for a new preanble (A
above).

(88)

Appendi x D (cont.)

D. File Segnent First

This is the first segnent of the file itself. A
segnent is from1l to 256 bytes. In this exanple,
this segnent is 256 bytes.

E. File Segnent One CRC

This is the CRC character for the precedi ng segnent- -
in this exanple, the precedi ng 256 bytes.

F. File Segnent Last

This is the last segnent of the file. In this
exanple, this is 44 bytes. Therefore, the | ength of
this file is 256+44=300 byt es.

G File Segnent Last CRC

This is the CRC character for the preceding
segnent--in this exanple, the preceding 44 bytes.

H. Interfile GAP

This is a gap between files and is typically a clear
carrier for about five seconds.

CRC Conput ati on

The CRC character is conputed for each segnent or header. The
foll ow ng code perforns the CRC conputation assum ng: Regi ster
"A" is the character just witten to tape, and Register "C' is
the final CRC. Register C should be set to zero prior to
witing the first character of a segnent. After witing the

| ast character of a segnent and executing this code, Register
"C'" is the CRC character for this segnent.

An 8080 Subroutine to do CRC Conputation

DOCRC EQU A=NEXT character and C=CRC
SUB
MOV
XRA
CVA
SUB
MOV
RET

A

OO0 o000

>

(89)

