DEBUG

Advanced 8080 Debugger
User's Manual

Descri bes DEBUG 1.1

Processor Technology
Corporation

7100 Johnson Industrial Drive
Pleasanton, CA 94566
Telephone (415) 829-2600

Copyright (C 1978 by Processor Technol ogy Corporation
First Printing, August, 1978
Manual Part No. 727131
Al rights reserved.

| MPORTANT NOTI CE

This manual, and the programit describes, are copyrighted by Processor
Technol ogy Corporation. All rights are reserved. Al Processor
Technol ogy software packages are distributed through authorized deal ers
solely for sale to individual retail customers. Wolesaling of these
packages is not permtted under the agreenent between Processor Technol ogy
and its dealers. No license to copy or duplicate is granted with

di stribution or subsequent sale.

TABLE OF CONTENTS

SECTI ON PAGE
1 I NTRODUCTT ON e e e e 1-1
1.1 GENERAL INFORVATION e 1-1
1.2 LOADI NG AND | NI TI ALI ZATI ON OF THE DEBUGGER 1-1
1.3 BREAKPO NTS AND RESTARTS i 1-2
2 COMMANDS . . . 2-1
2.1 CONVENTIONS ... e 2-1
2.2 DEBUGGER COMVAND LIST e 2-2
2.3 DESCRIPTION OF COMVANDS e 2-4

2.4 A VWALK THROUGH THE DEBUGGER 2-14

SECTION 1
| NTRODUCTI ON

1.1 GENERAL | NFORMATI ON

This programis an aid for debugging a machi ne | anguage program

devel oped and assenbl ed on a Sol Term nal Conputer or other 8080
conput er system using CUTER software and CUTS format cassette tape.

Wth DEBUG you are permtted to set as many as fifteen "breakpoints" in
a programyou want to debug or exam ne. \When that programis executed
under the control of DEBUG it will stop at each of these addresses so
that CPU registers, flags, and specified nenory |ocations may be

exam ned and nodified. It is possible to resune execution at a
breakpoi nt (or at another specified nenory |ocation) after you have nade
nmodi fications. At the conclusion of debuggi ng, you can save the

nodi fied version of your programw th the SOLOS/ CUTER SAVE conmmand.

There are five versions of the DEBUG program on the cassette tape.
Each version is designed for use on a systemw th a particul ar anmount
of menory:

DB&EB is for a systemw th 8K of nenory, and occupi es nenory
bet ween OEOOH and 1FFFH

DBGL6 is for a systemw th 16K of nmenory, and occupi es nenory
bet ween 2EOOH and 3FFFH

DBG32 is for a systemw th 32K of nenory, and occupi es nenory
bet ween 6EOOH and 7FFFH

DBA8 is for a systemw th 48K of nenory, and occupi es nenory
bet ween AEOOH and BFFFH

DB&4 is for a systemw th 64K of nenory, and occupi es nenory
bet ween EEOOH and FFFFH

The versions are identical, except that they run at different nenory
| ocations. Each version occupies 4 1/2 K of nmenory and may be
restarted at the address at which it is | oaded. Hereafter DEBUG or
"the debugger” will be used to designate any version of the program

The DEBUG program contains its own VDM out put driver. Wen execution

begi ns, however, all output is sent to the current SOLOS/ CUTER
pseudo-port; a command is provided (the V command, described in Subsection
2.3) to direct output to the internal VDM driver, instead of to the
current pseudo-port.

1.2 LOADI NG AND | NI TI ALl ZATI ON OF THE DEBUGGER

1) Connect a cassette recorder to the conmputer. (Your Sol manual has
instructions for setting up a recorder.)

1-1 CDEBUG

2) Insert the cassette tape on which you have recorded the program you
want to debug. Use the SOLOS/ CUTER CAtal og command to rewind the tape and
position it before the part of the tape on which the programis recorded.
Use the MODE SELECT or CTRL and @keys to return to SOLOS/ CUTER conmand
mode. (Omt this step if the programyou want to examne is already in
menory.)

3) Use the GET command to | oad your programinto nenory. Do not use
XEQ because you do not want to execute the programuntil you can do
so under control of DEBUG

4) \When you have | oaded your own program renbve the cassette from
the recorder and insert the DEBUG programtape. Position the tape as
in step 1, and use the SOLOS/ CUTER XEQ command to | oad and execute
DEBUG.

When DEBUG begins to run, it will display the question
RST?

on the output device (probably the video display). Your response, a
nunmber between 0 and 7, inclusive, will determ ne which 8080 "restart™
| ocation will be used by the debugger to inplenent breakpoints.
(Subsection 1.3 discusses breakpoints and restarts.)

When the > pronpt appears, the debugger is ready to accept a conmand
fromthe keyboard.

1. 3 BREAKPO NTS AND RESTARTS

A BREAKPO NT is a |l ocation at which the operation of a program stops
to permt sonme kind of external intervention; in the case of DEBUG
the user program (or the program bei ng exam ned) stops to permt the
user to examne and nodify registers and nenory. A breakpoint can be
set at any address; when the debugger is in operation and a breakpoi nt
has been inplenented, it is possible to proceed fromthat breakpoint,
or even to determ ne that execution will no |onger stop there.

When a breakpoint is encountered by the debugger, the value of each
register is imediately displayed as a hexadeci mal nunber foll ow ng
the letter synbol for the register and an equals sign (=). For
exanpl e, B=3E neans that the nunber 3E is in register B. The synbols
for the registers are:

A for the Accumul at or

B for register B

Cfor register C

D for register D

E for register E

F for CPU Fl ags

H for register H

L for register L

M for the content of the nmenory location to
whi ch H and L point

P for Program Counter

S for Stack Pointer

1-2 CDEBUG

The flags that were set at the tinme of the
breakpoi nt are indicated by letter
synbols followng the letter "F' and an
equal s sign. The synbols for the flags
are:

S for the Sign flag

Z for the Zero flag

A for the Auxiliary Carry flag
P for the Parity flag

Cfor the Carry flag

N for no flag

Thus, f=ZAP neans that the Zero, Auxiliary Carry, and Parity flags
were set. (Qobviously, the letter Nwll only appear if no other
synbol follows the equals sign.)

The X conmand (di scussed in Subsection 2.3, below my be used to

nodi fy any of the values existing in the registers or flags at the
time of the breakpoint. There are also commands that make it possible
to exam ne and nodify the contents of nenory at any naned | ocati on.

The 8080 m croconputer allows for eight possible RESTART | ocations,
nunmbered 0 through 7 and corresponding to nenory addresses 0, 8, 16,
24, 32, 40, 48, and 56 Decimal. It is quite common to give a
much-used subroutine an origin at one of the restart |ocations,
because a call to such a location requires only the one-byte RST
instruction, rather than the three-byte CALL instruction. 1In the
debugger a subroutine for dealing with breakpoints has its origin at
what ever restart location is specified in answer to the RST?
question. The program provides for a choice of restart |ocations, in
order to allow the other restart addresses to remain available for
access by the user. (For exanple, the program bei ng debugged may use
restart addresses as origins for some of its subroutines.) |If al
eight of the restart locations are available for use by the debugger,
then the answer to RST? can be any nunber between 0 and 7.

1-3 CDEBUG

1- 4

CDEBUG

SECTI ON2
COVIVANDS

2.1 CONVENTI ONS

On the next page is a list of the conmands accepted by the DEBUG
program In this list and for the remai nder of the manual, the
foll ow ng conventions are used:

The synbol <cr> denotes the RETURN key.
Upper case letters are literal: the $Bexpr<cr> command actually
h

contains the upper case letter B. (Note that it also ends wt
carriage return.)

a

Lower case letters are not literal: the $Bexpr<cr> comand contains a
four character hexadeci nal address or an expression that evaluates to
a four character hexadeci mal address. (The rules governing
expressions are given below.) If a nunber occupying nore than four
hexadeci mal places is entered as an address, only the rightnost four
characters are significant. Simlarly, if an expression evaluates to
a nunber occupying nore than four hexadeci mal places, only the

ri ght nost four places are significant.

Brackets {} indicate that a paranmeter is optional. The comand
$P{n}<cr> contains an optional paranmeter represented by the letter n.

O her punctuation is literal, except that the dollar sign (%)
signifies the ESCape key, rather than the shift-4. (The ESCape key is
actually echoed on the screen as a dollar sign.)

EXPRESSI ONS

The letters expr denote an expression that points to an address in nenory,
i.e., an expression that evaluates to a nunber between 0 and 65535,
i nclusive. The characteristics of an expression are as foll ows:

1) An expression may involve any of the operators + (add), -
(subtract), * (multiply), and % (divide). Expressions are eval uated
fromleft to right, wth no operator precedence. Parentheses are not
al | oned.

2) An operand is assuned to be a hexadeci mal nunber, unless it is
preceded by an exclamation point (!), in which case it is assuned to
be a deci mal nunber.

100 is 100 Hexadecimal, or 256 Decinal.
1100 is 106 Decimal, or 64 Hexadeci mal .

2-1 CDEBUG

3) Multiplication and division operate on two 16-bit unsigned nunbers.
The result of division is truncated to its integer part, and the remnai nder
is |lost.

3D% eval uates to 0008.
4) There is no check for overflow or for division by zero.

It may be useful to imagine the acceptable range of numerical val ues
(correspondi ng exactly to the range of addressable nenory) on a
circular nunmber "clock,” with O at the twelve o' clock position and
val ues increasing in a clockw se direction. Thus the |argest nunber
in the system (65535) is next to the smallest (0), just

counter-cl ockwi se of twelve o' cl ock. If we follow the rule, "Mve
cl ockwi se to increnent a value, counter-clockw se to decrenent a
value," it becones clear that in this system3-5 will be 65534, and

65534+5 w Il be 3. Although it is possible to utilize this
arrangenent to advantage, it is probably |ess confusing to use
expressions that actually evaluate to a nunber neither |ess than
zero, nor greater than 65535.

Division by zero will always give the result 65535 Deci nal .

5) A period (.) in an expression represents the address of the | ast
menory | ocation exam ned. Thus, a nenory |ocation offset by 100
Hexadecimal fromthe |ast | ocation exam ned could be represented as
100+. or as .+100. |If no nenory |ocation has yet been exam ned, the
val ue of . is 0000.

6) BLANKS ARE NOT ACCEPTABLE W THI N EXPRESSI ONS

2.2 DEBUGGER COMVAND LI ST

Al of these commands will be described in the next subsection. A
command may be entered at any tine that the > pronpt appears on the
vi deo di spl ay.

SYNTAX FUNCTI ON

$A<cr > Set breakpoint nbde to Static.

$Bexpr <cr > Set breakpoint at address expr. Up to fifteen breakpoints
may be set.

$C<cr > Set output node to Character.

$Daddr <cr > Del ete the breakpoint at address expr.

$E<cr > Exit DEBUG return to PTDOS

expr/ D splay the content of the |ocation designated by expr.

Allow nodi fication of the value at that |ocation.

expr = Print the value of expr in Hexadeci nal.

2-2 CDEBUG

expr# Print the

$Fexpr 1, expr 2, bb<cr >

$H<cr >
$l <cr>
$K<cr >

$P{n}<cr>

$Rexpr <cr >

$Sexpr 1, expr 2, bb, mxcr >

$T<cr>

$Vv<cr>

$Wexpr 1{, expr 2} <cr >

$Xr <cr >

$Z<cr>

val ue of expr in Decinal.

Fill menory from address exprl to address
expr2 with byte bb.

Set out put node to Hexadeci nmal .

Set output node to Instruction.

Delete all currently set breakpoints.

Proceed from a breakpoi nt; continue

execution, skipping this breakpoint until it
is met again for the nth time. Default for
nis 1.

Begi n execution (of the program being
debugged or exam ned) at address expr.

Search menory from address exprl to address
expr2 for byte bb using mask mm

Display a list of current breakpoint
addr esses.

Change out put driver
Vi ce-versa).

(SQUT to VDM or
Dunp contents of nenory from address exprl
to address expr?2.

Di splay the content of CPU register r.
Al l ow nodi fication of that val ue.

Set breakpoi nt node to Renpve.

2-3

CDEBUG

2.3 DESCRI PTI ON OF COMVANDS

Thi s subsection describes all of the commands in the debugger and
provi des short exanples of their use. (There are no exanples in cases
in which the operation of a command is not evident on the display,
i.e., in which the DEBUG program sinply issues a carriage return and a
pronpt after the conmmand is executed.) For the purpose of this

di scussion, it is convenient to group the commands as foll ows:

GROUP 1 DEBUGGER CONTRCL

These are conmmands not directly related to the process of debugging a
program They determ ne where output will be sent fromthe debugger
(V), and whether the contents of nmenory will be represented as
hexadeci mal nunbers (H), characters (C), or 8080 instructions (I).
Also included in this group is the command that term nates execution
of the debugger (E)

GROUP 2 CONTROLLI NG EXECUTI ON OF THE USER PROGRAM

These conmands set and del ete breakpoints (B,D, T,K), start and
restart the program bei ng debugged (R, P)

GROUP 3 EXAM NI NG AND MODI FYI NG MEMORY

These conmands are related to the exam nation and nodification of
particular menory |ocations (expr/,WF,S), CPU registers and fl ags
(X). These commands are generally used after a breakpoi nt has been
encountered, although it is possible to exam ne nenory w t hout
setting any breakpoints.

Subsection 2.4, below, illustrates a typical sequence of steps
fol l owed whil e debugging a program

GROUP 1: V sets the output port.
H sets out put node to Hexadeci nal .
| sets output nobde to Instruction.
C sets output node to Character
E exits the program

CHANGE QUTPUT DRI VER $V<cr >

DEBUG can send output either to the internal VDM driver or to the
current SOLOS/ CUTER pseudo-port; the V command changes the out put
driver fromthe current pseudo-port to VDM or vice-versa. Wen the
programis first executed, output is sent to the current pseudo-port.
(Normal ly, this is also the video display.)

2-4 CDEBUG

The internal VDM driver has a variable speed option: while output is
bei ng displayed, it is possible to alter the speed of the display by
striking a key representing one of the digits (0 is fastest, 9 is
slowest). Qutput can be suspended tenporarily by the space bar and
reacti vated by any other key. The default display speed is 2.

SET OUTPUT MODE TO HEXADECI MAL $H<cr >

This command determ nes that when the content of a nmenory location is
exam ned (expr/ command), it wll be displayed as a hexadeci mal nunber.
(The commands to exam ne nenory are in Goup 3.) The default node for
output is Hexadecimal; it is therefore unnecessary to specify this node
unl ess another node is in force.

SET OUTPUT MCODE TO | NSTRUCTI ON FORVAT 8l <cr >

This command determ nes that when the content of a nmenory location is
exam ned (expr/ command) or dunped (Wcommand), it will be decoded
into the correspondi ng 8080 instruction menonic. (The twelve

undefi ned operation codes are output in Hexadecimal.) In Instruction
node, DEBUG wi || assune that the | ocation given by the expression in

the expr/ command is the first byte of an instruction. |If the

| ocation specified in the command is, in fact, the second or third
byte of a nultiple-byte instruction, DEBUG W I| still decode the byte
as an assenbly | anguage instruction menonic, and the result wll not

reflect what is actually happening in the object code.

There are two exceptions to the rule that every byte displayed in

I nstruction node will be displayed as an 8080 instruction menoni c.

If the Wconmmand is entered while Instruction node is set, or if expr/
specifies the first byte of a nmultiple-byte instruction and the
linefeed key is used to exam ne the next |ocation(s), the DEBUG
programw || display the second and third bytes of instructions in
Hexadeci mal format.

SET OQUTPUT MODE TO CHARACTER $C<cr >

Thi s command determ nes that when the contents of nenory are exam ned
(expr/ command), any value that corresponds to the code for a printable
ASCI| character will be displayed as that ASCI| character. Any val ue that
does not correspond to a printable ASCI|I character will be printed as a
hexadeci mal nunber.

EXIT TO SOLOS/ CUTER $E<cr >

This command term nates execution of the debugger and returns to

SOLOS/ CUTER. At this point the altered program may be saved from nenory,
or its source may be altered in EDIT. |If the. |If the programis going to
be saved from nenory, all current breakpoints nust be renoved before the E
command i s entered.

GROUP 2: B sets a breakpoint; D deletes a breakpoint.
T displays all breakpoints; K deletes all breakpoints.
A and Z set breakpoi nt node.
R and P begin and restart program execution.

2-5 CDEBUG

SET BREAKPO NT $Bexpr <cr >

This command sets a breakpoint at the | ocation specified by the expression
expr. A breakpoint causes program execution to stop inmedi ately BEFORE
the execution of the instruction at the specified address; for this reason
it is not permssible to set a breakpoint on the second or third byte of a
mul ti pl e-byte instruction.

There may be as many as fifteen breakpoints set at any given tine.

DELETE BREAKPO NT $Dexpr <cr >

Thi s command del etes the breakpoint currently set at the |ocation
specified by the expression expr. |If there is no breakpoint at the
speci fied address, a question mark will be printed.

DI SPLAY ALL CURRENT BREAKPO NTS $T<cr>

This command causes the addresses of all current breakpoints to be
di spl ayed; thus it becones evident how many breakpoints have been set and
whet her there are any that can be del et ed.

EXAMPLE:
>$T<cr > (command to type out current breakpoints)
4075 (addresses at whi ch breakpoi nts have been
4089 set wwth the B command)
4102

KI LL ALL CURRENT BREAKPO NTS $K<cr >

This command deletes all of the breakpoints that have been set. Once
a program has been debugged, it can be executed normally fromwthin
t he debugger if all breakpoints have been renoved. If the altered
version of a programis going to be saved followng a return to
PTDOS, it is necessary to delete all breakpoints before entering the
E command.

SET BREAKPO NT MODE TO STATIC $A<cr>

This command determ nes that breakpoints will NOT be deleted after

they are encountered, that is, that execution will stop again every
time a breakpoint address is reached. Static node is set when the

debugger is entered.

SET BREAKPO NT MODE TO REMOVE $Z<cr >
This command determ nes that breakpoints WLL be deleted after they

are encountered. Execution will stop only the FIRST tinme that the
br eakpoi nt address is reached.

2-6 CDEBUG

PROCEED FROM A BREAKPOI NT $P{n} <cr >

Thi s command causes program execution to resune after a breakpoint has
been encountered and rel ated exam nation or nodification of the code
has been conpleted. Execution will continue, beginning at the
instruction that caused the break, and will proceed until the next
breakpoint is encountered. All registers will be |oaded with val ues
that reflect the nodifications that have been nmade; a register or flag
whose val ue has not been nodified will retain the value that it
cont ai ned when the breakpoi nt was encount er ed.

If a nunber is given after the letter P, the conmmand is taken to nean:
proceed wth execution and do not stop again for this breakpoint until
it is encountered for the nth time. For exanple, the command $P5<cr>
w || cause the breakpoint just inplenented to be bypassed four tines;
all other breakpoints will be inplenmented normally. The default for n
isl; that is, normally execution will proceed, and any breakpoi nt

t hat has not been deleted or renoved will be inplenented nornally.

BEG N EXECUTI ON $Rexpr <cr >

This command will start execution of a programat the |location
specified by expression expr. The R command is used to execute a
programat its starting address; it should not be used to proceed from
a breakpoint, because the values of registers and flags will not be
restored! (The P conmand, by contrast, restores the val ues of

regi sters and fl ags.)

GROUP 3: X di splays CPU registers and fl ags.
W dunps a series of nenory |ocations.
Ffills a series of locations with a given val ue.
S searches a series of |locations for a given val ue.
expr/ displays the contents of |ocation expr.
expr= di splays the val ue of expr in Hexadeci nal.
expr# displays the value of expr in Decinal.

DI SPLAY CPU REGQ STERS AND FLAGS $Xr <cr >

This command is used to exam ne and nodify the values of CPU registers
and flags after a breakpoint has been encountered. The r in the
command format represents a synbol for the register that is to be
exam ned or nodified. |If no value is specified for r, the val ues of
ALL registers and flags are displayed. The carriage return is NOT
required if a value is specified for r.

SYMBCOLS DESI GNATI NG REG STERS AND FLAGS

Here is a list of the synbols for registers and nenory. Any of these
synbols may be used as the r elenent in the X comand.

2-7 CDEBUG

A for the Accumul at or
B for register B
Cfor register C
D for register D
E for register E
F for CPU Fl ags
H for register H
L for register L
M for the content of the nmenory | ocation
to which H and L point
P for Program Counter
S for Stack Pointer

These are the synbols for the flags. The X command will not display the
value of an individual flag; rather, the flags are displayed as a group
when F is specified in the X command.

S for the Sign flag

Z for the Zero flag

A for the Auxiliary Carry flag
P for the Parity flag

Cfor the Carry flag

N for no flag

MODI FYI NG A REA STER OR FLAG

In order to nodify a register or flag, enter the X command, follow ng
the letter "X" with the synbol that designates the register. To

nodi fy one of the flags, type $XF<cr>, NOT the synbol that stands for
the particular flag! If the letter "X" is followed sinply by a
carriage return, the values of all registers and flags wll be

di spl ayed agai n.

When the X command is entered, the value of the naned register will be
di spl ayed.

EXAMPLE

>$XB (command to display register B)
B=52 (hexadeci mal val ue of register B)

I f you do not want to nodify the register, after all, type a carriage
return to re-enter command node. |If you DO want to nodify the

regi ster, enter a new value at the cursor position, wthout inserting
addi tional punctuation or spaces. The value that you enter wll

repl ace the value currently in the register. Followthe entry with a
space or a carriage return; a space dictates that the next register be
di spl ayed (on the current line), while a carriage return effects a
return to command node. To nodify the value of a flag, enter the
synbols of all flags that are to be set, whether or not they are set

al r eady.

>$XF<cr > (exam ne fl ags)

F=SzC SzP<cr > (Sign, Zero, and Carry flags already set; user
sets Parity, alters carry so no | onger set)

> (back in comrand node)

2-8 CDEBUG

DUVP MEMORY $Wexpr 1{, expr 2} <cr >

This command causes the contents of a specified section of nenory to be
di splayed in the current output node (see Goup 1). If the node is not
Instruction format, nmenory will be dunped with fourteen bytes represented
on each line: first all bytes are displayed in Hexadecinal, and then al
are di splayed as characters. (A period will be printed if the val ue of
the byte does not correspond to a printable ASCII character.) 1In
Instruction format, nmenory will be dunped in decoded format, with one
instruction per line and the second and third bytes of nultiple-byte
instructions represented in Hexadeci mal .

Menory will be dunped starting at the |ocation specified by exprl and
continuing to that specified by expr2. If no value is specified for
expr2, the value exprl will be used; the dunp will continue as though
menory were circular, starting at exprl and continui ng past 65535 to O,
finally stopping when the byte before exprl is reached. To termnate a
dunp before it reaches expr2, type MODE SELECT or CTRL- @

>$WL00, 110<cr >
0100 01 07 00 21 50 00 11 65 00 78 B1 C8 OB 7E L IPoenxo o~
010E 12 24 14 . $.
FILL MEMORY WTH A G VEN BYTE $Fexpr 1, expr 2, bb<cr>
This command fills nmenory fromexprl to expr2 with byte bb. [If exprl
and expr2 are quite far apart in nmenory, a few nonents nmay pass before
the pronpt (>) reappears on the screen.

SEARCH MEMORY FOR A G VEN BYTE $Sexpr 1, expr 2, bb, { m} <cr>

This command searches nenory fromthe | ocation specified by exprl to
that specified by expr2 for byte bb, using mmas a nask.

As each byte is examned, it is ANDed with mask nm and then checked for

equality to byte bb. If the quantities are equal, then the nenory
address and the byte at the address are printed. |If the mask is not
specified, it will be assuned to have the val ue OFF Hexadecimal, i.e.,
all bits will be conpared.
EXAMPLE:
>$S2340, 2375, 4C<cr > (search for 4CH, using default mask)
2357 4C (4C is found at |ocation 2357)
>$S5261, 5269, 0, 1<cr > (search for even nunbers)
5261 C2 (even nunbers found at five |ocations)
5263 52
5264 3E
5265 OE
5266 90

2-9 CDEBUG

EVALUATE EXPRESSI ON OR EXAM NE MEMORY expr=, expr#, expr/

| f an expression is entered and followed i medi ately by an equal s sign
(), the expression is evaluated and the result is displayed as a
Hexadeci mal nunber.

>5*6=001E (result displayed in Hexadeci mal)

| f an expression is entered and followed i medi ately by a pound sign
(#). the expression is evaluated and the result is displayed as a
Deci mal nunber.

>5*6#00030 (result displayed in Decimal)

| f an expression is entered and followed by a slash (/), the
expression is evaluated and the content of the nenory | ocation
denoted by the expression is displayed in the current output nobde
(see Goup 1).

>$H<cr > (out put node set at Hexadeci nal)
>1 3492/ 40 (value of location 17 Decimal is displayed in
Hexadeci mal out put node)

Not e that none of these commands requires a carriage return.

In the rules for expressions (see Subsection 2.1), an expression was
defined as PONTING to an address in nenory. Actually, in the case of an
expression foll owed by an equals sign or a pound sign, the expression need
not denote a location that is to be exam ned; any arithnetic probl em whose

result will Iie between 0 and 65535, inclusive, can be entered, even if
the conmputer being used does not have any nenory at the designated
| ocation. |If the expr/ command is entered and there is no nmenory at the

specified location, the result will be FF in Hexadeci mal node, RST 07 in
| nstruction node.

Once expr/ has been entered and the | ocation has been displ ayed, several
different entries are possible.

A CARRI AGE RETURN effects a return to command node.
A SINGLE QUOTE MARK (') causes the value of the |location to be displayed

in Character node (w thout changing the current node setting for the
debugger) .

>$H<cr > (set output node to Hexadeci nal)
>5002/ 50 ' P<cr> (val ue displayed in Hex, then as
> Character; return to comrand node)

A SEM - COLON (;) causes the byte to be displayed in Instruction format;
the location is assuned to be the first byte of an 8080 instruction.
The current node setting for the debugger is not altered.

>$H<cr > (set output node to Hexadeci nal)
>1234/ 39 ; DAD SP<cr> (val ue displayed in Hex, then as
> I nstruction; return to command node)

2-10 CDEBUG

An EQUALS SIGN (=) causes the contents of the present nenory |ocation to
be displayed in Hexadecimal, w thout changing the current node setting
for the debugger.

>$l <cr > (set output node to Instruction)
>025F/ XCHG =EB<cr > (val ue di spl ayed as Instruction, then
> in Hex; return to comrand node)

A DOUBLE QUOTE MARK (") followed by a character specifies that
character as a replacenent for the current value of the |ocation.
Repl acenent input nust be term nated by a carriage return, |inefeed,
or up arrow, each of these delimters will also performthe function
ascribed to it elsewhere in this list, e.g., alinefeed will delimt
repl acenent input and then cause the next |ocation to be displayed.
If an attenpt is nade to enter nore than one character follow ng a
doubl e quote mark, DEBUG wi Il respond with a question mark and wl |
not accept either character entered.

>$C<cr > (set output node to Character)

>4708/ @" B<cr> (value displayed as Character, replaced

>/ B<cr> with [etter B, new val ue displ ayed)

> (return to command node)
(In this exanple, the period is used to designate the |last |ocation
di spl ayed; see the rules for expressions in subsection 2.1, above.)
A COLON indicates that subsequent input is an instruction. It is

possible to enter a multiple byte instruction in place of a single
byte instruction; input will be placed in successive nenory |ocations
and the previous contents of those locations will be overwitten.
Such a di sturbance of the previous contents of nmenory will sel dom be
desirabl e.

To enter a replacenent in Instruction format, type the menonic for
the instruction, rather than the correspondi ng nachi ne code. The
standard Intel instruction menonics have been inplenented. (See the
appendi x of 880 Qperation Codes.) Mst of the standard synbolic

names for registers my be used in the operand field; the two
exceptions are that "P" should be used to denote the Program Status
Wrd (PSW and "S" should be used to denote the Stack Pointer (SP)
The instruction nmust be entered i mediately after the colon. Use a
single blank to separate operands fromthe operation code, and a comma
to separate two operands. Term nate the input with a carriage return,
linefeed, or up arrow, any of these delimters will first delimt the
i nput and then performthe function ascribed to it elsewhere in this
list, e.g., a carriage return will delimt the input and than cause a
return to command node.

>$H<cr > (set output node to Hexadeci nal)
>2113/ 1C ;INR E : INR C<cr> (value displayed in Hex, then as
> I nstruction; Instruction input and

return to command node)

A LI NEFEED causes the contents of the next location to be displayed.
I f the current output node is Instruction node and the |ast |ocation

2-11 CDEBUG

exam ned was interpreted as the first byte of a nmultiple-byte
instruction, the next one or two |ocations, if exam ned by neans of
the linefeed, wll be displayed in Hexadeci nal .

>$l <cr > (set output node to Instruction)
>5002/ MOV D, B <linefeed> (value displayed; display next

5003 LXI SP, <linefeed> | ocation, and next...)

5004 3E <l i nefeed> (second and third bytes of nulti-byte
5005 F5 <cr> instruction are displayed in Hex)

> (return to command node)

An UP ARROW C) causes the content of the previous location to be

exam ned. |If the current node is Instruction node, the location wll
be assuned to be the first byte of an instruction (whether or not this
is actually the case) and will be decoded into an 8080 instruction
menoni c. (Consider that whereas it is possible to determne from an
operation code how many subsequent bytes are part of the instruction,
it is not always possible to tell whether or not PRECEDI NG bytes are
operation codes.)

>$C<cr > (set output node to Character)

>2300/ G~ (val ue di spl ayed as Character)

2299 U<cr> (val ue of previous |ocation displayed)
> (return to command node)

2-12 CDEBUG

Load user program (or programto be exam ned)
and a version of DEBUG >GET prog
>XEQ DB& (or anot her version)

‘

Det er mi ne out put port - V conmand

;

Set breakpoints - B command

Set breakpoint node - A or Z

;

Execut e user program - R conmmand

N
v v
Exanmi ne & nodify 4— Set output node -
registers & flags - X coomand ——»{ H, |, or C conmand

I

Exam ne menory -
expr/, W F, S comrands

; ;

Det er mi ne possi bl e changes in breakpoints - T, K D comands

|
v v

Kill all remaining Proceed with execution -

breakpoi nts - K command P command

!

Exit DEBUG - E conmmand

I

Save debugged version of program
>SAVE pr og, addl, add2, { add3}

i

Correct source program- >XEQ EDI T

Fig. 2-1 Typical Procedure for Using DEBUG to Debug A Program

2-13 CDEBUG

2.4 A WALK THROUGH THE DEBUGGER

The exanple below illustrates the use of DEBUG to | ocate and correct
the errors in an assenbly | anguage program The next few pages
consist entirely of tutorial material; they do not contain any
additional information about the features of the debugger. The
figure on the facing page is a generalized diagram of the process of
usi ng DEBUG to debug a program This figure and the conmand summary
in subsection 2.2 are intended to serve as your quick reference
materials after you have read the detail ed descriptions in the rest
of the manual .

SAMPLE PROBLEM

Below is the assenbler listing of a routine just added to a | arge
program call ed TEST. The purpose of this routine is to nove BC bytes
of information fromone area of nenory to another. Wen the routine
is first called, the Hand L registers point to the first of BC
consecutive |l ocations occupied by the information to be noved; the D
and E registers point to the first of BC consecutive |ocations to be
occupi ed by the sanme information when control returns to the calling
routine. The calling routine prints out the BC bytes begi nning at
the location to which the first byte was noved.

0100 78 BMOVE MOV A B
0101 B1 CRA C
0102 C8 RZ .
0103 OB DCX B
0104 7E MOV A M
0105 12 STAX D
0106 24 I NR H
0107 14 I NR D
0108 C3 00 01 JWP BMOVE

Let us assune that we have run TEST in SOLOS/ CUTER, and that where we
woul d expect 7 bytes, the characters F, |, D, D, L, E, and S, to be
printed out as the ASCI| string FIDDLES, we see a good first
character 'F followed by a great deal of suspicious screen activity.
(Wite and execute a programthat calls BMOVE and then prints out
about 100 bytes, beginning at the |ocation indexed by D and E at the
time of the call.) Let us also assunme that we do not imredi ately
recogni ze the bugs in the program and that we decide to use the
debugger to take a closer |look at the BMOVE routine during its
execution.

Renmenber that the synbol > is the pronpt character and should not be
typed. Also, $ signifies the ESCape key, not the dollar sign.

1) LOAD TEST and DEBUG from SOLOS/ CUTER

>CA<cr >

>CET TEST<cr > (SOLOS/ CUTER wi I'I print | oad address and
byte count on the sane line as the command.)

>CA<cr >

>XEQ DB&@<cr > (or whatever version you want to use.)

2-14 CDEBUG

TEST is | oaded but not executed. DEBUG is | oaded and execut ed.
RST? 3
DEBUG asks user to assign restart location. User enters 3.
2) DETERM NE OUTPUT PORT V conmand
>$v<cr >

Qutput will be sent to the internal VDM driver, instead of to the
current SOLOS/ CUTER pseudo-port. (If the current pseudo-port setting
is the VDM it really does not matter which output driver you use.)

3) SET BREAKPO NTS) with B command
>$B0102<cr >

Because only the first byte of information appears to have been noved
properly (see description above), it is worth checking whet her the
BMOVE | oop is executed only once, that is, whether the zero flag is set
and causes a return the second tinme the RZ instruction is reached. By
setting a breakpoint at 0102H, we can exam ne the condition of the
flags at the time of the RZ instruction. (Mre breakpoints could, of
course, be set; to sinplify this exanple, we set only one at a tine.)

4) SET BREAKPO NT MODE with A or Z command
>$A<cr >

Breakpoints will not be deleted automatically after they have been
encountered once. The distinction between the nodes is relevant here,
because the breakpoint at 0102H will give useful information only the
second time it is encountered. (It is actually unnecessary to use the A
command, unless the Z command has been used previously; Static

br eakpoi nt node is set when the DEBUG program begins to run.)

5) EXECUTE USER PROGRAM (or programto be exam ned) with R command
>$R1200<cr >

The address specified in this conmand is the starting address of the
program cal | ed TEST. Execution will proceed until it reaches the

br eakpoi nt address; then that address and the contents of all registers
and flags wll be displayed.

*0102
A=07 B=00 C=07 D=00 E=65 F=N H=00 L=50 MF46 5=625C P=0102

Assuming that we intended to nove 7 bytes of information beginning at
address 50 to consecutive addresses beginning at 65, all is well so far.
The STAX operation will put the value 46 (or ASCII '"F') in |location
0065H. (M represents the value of the |ocation addressed by H and L.)

2-15 CDEBUG

SET QUTPUT MODE Wth H, |, or C commands
EXAM NE MEMORY with expr, W F, or S conmand

For good neasure, we can EXAM NE MEMORY to make sure that the
characters F, I, D, D, L, E, and S are actually stored at consecutive
| ocati ons begi nning at 50. The Wcommand can be used to display the
| ocati ons; output node does not need to be set to Character, because
in the default Hexadecimal node the dunp w il appear both in
Hexadeci mal and in Characters.

>$Wh0, 56<cr >
0050 46 49 50 44 4C 45 53 FI PDLES

The dunp shows that the third character is incorrect. To insert the
correct character at address 52, we can enter

>$C<cr >
to set the output node to Character, and then

>52/
to display the contents of location 52. The contents of the | ocation
w Il be displayed right after the slash. To enter the correct
character, we type a double quote ("), the character, and a carri age
return. Now the line |ooks like this:

>52/ P " D<cr>

O course, the fact that there was a P instead of a D at |ocation 52
does not account for the fact that the program does not run properly.

6) DETERM NE POSSI BLE CHANGES | N BREAKPO NTS with T,K D, B

In this instance, we have no real reason to type out or del ete our one
breakpoi nt, but we m ght want to add a breakpoint at address 0108H.

By looking at the registers at that point, we can see whether the

| ocati ons addressed by HL and DE are what we woul d expect themto be,
i.e., whether the value of each of these register pairs has been

i ncrenented by 1.

>$B0108<cr >

7) PROCEED FROM BREAKPO NT wi th P command
>$P<cr >
Execution will continue until the next breakpoint is encountered.

*0108
A=46 B=00 C=06 D=01 E=65 F=N H=01 L=50 MF2E S=625C P=0108

Fromthis display of the values of registers and flags, it becones
clear that the register pairs that address nenory | ocations have

2-16 CDEBUG

actually been increnented not by 1, but by 100H (256 Decimal). In
order to verity that data is actually being stored at every hundredth
(or 256th) address, we can proceed with execution until the next tine
0108H is reached. Then we can use other commands to exam ne nmenory

| ocations in the areas fromwhich and to which we want to nove our
data. To proceed with execution, we enter the command

>$P<cr >

(W will not delete the breakpoint at 0102, because we m ght want to
ook at it again; the next tinme that breakpoint is encountered,
however, we can ignore it and Proceed wi th execution.)

When we reach 0108, the values of registers and flags are:

*0108
A=2E B=00 C=05 D=02 E=65 F=N H=02 L=50 M=06 S=625C P=0108

8) EXAM NE MEMORY with the expr/ command

If we enter the command to exam ne | ocations 150 and 165, we can

i ndeed see that the second byte to be noved was taken from |l ocation
150 and noved to 165, instead of being taken fromlocation 51 and
moved to 66

>150/ @xcr>
>165/ @xcr>

If we ook at | ocation 66, we find whatever value was at that |ocation
when t he debugger began its operation:

>66/ .<cr>

| f our sanple routine were not so short, we mght want to use the
MEMORY SEARCH (S) command to | ocate the part of the program containing
the INX instructions. The table of 8080 Operation Menonics in the
ASSM subsyst em manual indicates that INX H which should be one of our
i nstructions, corresponds to the Hexadeci mal value of 23. To search a
section of nmenory above our nost recent breakpoint, we can enter

>$S100, 108, 23<cr >

only to find that the BMOVE routine does not contain an INX H
instruction at all!

Usi ng the expr command to EXAM NE MEMORY, we can | ook at the code in
the sane area that we just searched for INX. First we shall change the
out put node to Instruction, so that we will see the contents of nmenory
as a series of assenbly |anguage instructions, rather than as
Hexadeci mal nunbers.

2-17 CDEBUG

>$I <cr >
>0100/ MOV A, B<li nef eed> (you enter the |inefeeds)
0101/ ORA C<li nef eed>
0102/ RZ . <li nef eed>
etc.
0106/ I NR H<I i nef eed>
0107/ | NR D<cr >

Now t he cause of our troubles is clear: instead of adding 1 to each of the
regi ster pairs HL and DE, we have added 1 to each of the single

registers Hand L. By examning | ocations 0106 and 0107 again, we can
change the two INR instructions to | T4X instructions and sol ve our

problem The colon indicates instruction input.

>0106/ INR H :INX HIi nef eed>
0107 INR D : 1 NX D<cr>

9) EXAM NE AND MODI FY REGQ STERS AND FLAGS with X command

We have found the bug in BMOVE and want to continue runni ng TEST,
rather than reinitiate execution of that calling program W can use
the X conmand to nodify several registers, and so backtrack in our
execution of the programto a point before BMOVE first put an
incorrect byte in an incorrect |ocation.

Renmenber,we are still at a breakpoint. The X conmand w thout a
regi ster specification will cause the contents of all registers and
flags to be displ ayed:

>$X<cr >
A=2E B=00 C=85 D=02 E=65 F=P H=02 L=50 P9=B6 S=625C P=0108

The bug in BMOVE caused all bytes but the first to be noved to
incorrect locations in nenory. To backtrack to the point from which
we want to reinitiate execution, we nust alter the foll ow ng

regi sters:

C, so that BCindicates that the last 6 of the 7 bytes
t hat conpose the (English) word FIDDLE nmust still be
noved:

>$XC
C=05 06

D and E, so that they point to the next |ocation
to which information should be noved:

>$XD

D=02 00

>$XE

E=65 66 and

2-18 CDEBUG

H and L, so that they point to the next |ocation
fromwhich information shoul d be taken.

>$XH
H=02 00
>$XL
L=50 51

10) KILL ALL BREAKPO NTS using K command

Before either proceeding with execution or exiting to PTDOS to save
the file, we kill all current breakpoints. |In order to have used

al nost all possible conmmands in this exanple, we nay as well type out
the breakpoints first with the T command.

>$T<cr>
0102
0108
>$K<cr >
11) EXIT DEBUG with the E conmand
>$E<cr >

This is the command to return to SOLOS/ CUTER. Once in SOLOS/ CUTER, we
can use the SAVE command to save the object file, and EDIT to alter the
source code file.

2-19 CDEBUG

