

8080 FOCAL ™

User's Manual

Processor Technology
Corporation

7100 Johnson Industrial Drive
Pleasanton, CA 94566
Telephone (415) 829-2600

Copyright 1977, 1978, by Processor Technology Cor poration
First Printing, April, 1978

Manual Part No. 727025

All rightsreserved.

IMPORTANT NOTICE

This manual, and the program it describes, are copyrighted by Processor Technology Corporation. All
rights are reserved. All Processor Technology software packages are distributed through authorized dealers
solely for sdle to individua retail customers. Wholesaling of these packages is not permitted under the

agreement between Processor Technology and its dealers. No license to copy or duplicate is granted with
distribution or subsequent sale.

FOCAL istheregistered trademark of Digital Equipment Corporation, Maynard, Massachusetts.

SECTION

1

TABLE OF CONTENTS

PAGE
INTRODUGCTIONiiiticti ettt sttt st e e st s st e st esessbessbesaassbesabesaessbesssshessbesatssbeasbesaessaessbesabssaeasbesasssreasbesanesrns 1-1
11 GO and QUIT COMIMEANGS......c.ccueerieietirieresieestees e s e see e ste e te e tesessesaesestesesbenessessssessesestenessenessessesessesens 1-2
(OO AV = A I L0\ TR 2-1
2.1 LU 0101 TR 2-1
2.2 AV = o 1< TR 2-1
23 EVAlUBLING EXPIESSIONS.....c.cieiiiiieieieseris ettt ses et b et et b et se b b et s bt e st se bt ane s bt ene e et ane e e ntans 2-2
2.4 LYz 1 g T U (o (0] TSR 2-2
25 [T SN N 1< g0 = 71T o o BSOSO 2-3
THE SET COMMAIND ...ttt ettt ettt st et s e s s be s besaaesbesbesaessbe s besasssbe s besasssbeesbesasesbeesbesasesbessbesanesens 31
INPUT/OUTPUT COMMANDSttt sttt st e b e s ts s ha s s besatssaessbestssaeasbesstssaessbesasssbnebesanesres 4-1
41 ThE TY PE COMIMANottt sttt st st s ae s s e s tesae st esaessae s besabssbessbesatssaessbesasesreasbesnnesres 4-1
4.2 THEASK COMMANG.......eiiiiiiiie it eete s e e et e st s s b e sbesaessbesbesaessbesasssaeasbesasssbesbesasssbessbesasesreesbesnsesres 4-2
BRANCH COMMANDS. ...ttt sttt st e st s e st s b e s ts s bessbesasssae s besasssbessbesasssbesbesasesbesabesasssbesstesanesbesntesns 5-1
51 The GOTO COMIMEANT........ciiuiieeitiiei et e e et e e et e st ssaessbesbssaessbesasssbeasbesasssbessbesasssaeesbesasesressbesnsssres 5-1
5.2 RSN IR = (< 111 L TR 5-1
5.3 LRSI S Y L2 7= = 1 1< | SRR 5-2
SUBROUTINES ...ttt ettt sttt st s e s e st s sae s s b e s tesheasbesatesaessbesasssaeesbesasssbeesbesatssaeesbesstssaessbesasssrnssbean 6-1
6.1 The DO and RETURN COMMENGS.......cciiiiiieiticii et see st s s st se s be st sressbssasssresbesasssressbesnnssens 6-1
LIOOPS.....c. ettt ettt et e e ts st e s b e s tssaeesbesatesaeesbesaeesbe s besaeesbe e besaeeshe e beeaeesbe e besaeesbe e besaeesbeeabesaeesbeebesanesreeteias 7-1
7.1 ThE FOR COMIMEAING ...ttt sttt st e st e s ae s s be s tssae s besasssae s besabssbesbesasssaeasbesasesrnasbesanesrns 7-1
7.2 SUDSCHIPLEA VATBDIES. ...ttt bbbt st sttt 7-2
7.3 ThE COMMENT SEAEMENLeeeeiiei ettt st e st s ae s e st sae st e st s sbe s be st s sbessbesatssaessbesasesbessbesanesrns 7-3
SUPERVISORY FUNGCTIONSottt sttt st s s st s st e s ts s e s sbestssasssbesatssbessbesatssaessbesssssaessbesasssrnssbean 8-1
8.1 ThEWRITE COMMEANG.......coiiiiiitiiiei et eetssee st e s st s st sstesaessbesstssaessbesasssae s besasssbessbesasssaessbesasesbeasbesnnssrns 8-1
8.2 ThE ERASE COMMEANT.......ciiiiiiitiiei ettt sttt st s st s sae s e st s e s st esaessae s besasssbessbesasssaessbesasesreasbesnnesrns 8-1
8.3 ThE MODIFY COMMEINTooieiitiiee ettt ee st s et s e s e s sbs e st e st s saessbe st s sbessbesasssaeesbesasssbeasbesanesrns 8-1
84 FOCal Library COMMENGS.........ccoiiruiiriririeineresieie ettt st bbb e ettt 8-1
85 THE TRACE FEAUIE.oo ettt sttt sttt e st s s e s b s s e s st e s s s sae et e sabssbessbesatssaessbesasesreasbesanesrns 8-3
RUNNING FOCAL . ..ottt ettt st e e st st s st e st s s ae s s beseesaessbesasssae s besasssbessbesasssbesabesasesbesabesasssbesstesanssrestasn 9-1
9.1 Haradware REQUITEIMENTS.........ouioiiirieeririeiee sttt st st b et st bbb se et e s et 9-1
9.2 AN o010 0= S (S R e 0] (0 1< (TR 9-1
9.3 MISCEHIANEOUS INOLES........oevieei ettt sttt st s e st s e s b e et e sae s sbe e besasesbesbesabssbeesbesabesbessbesasssrnnbess 9-2
9.4 ot (0] 5T 9-3

i FOCAL

1. INTRODUCTION

FOCAL is the name of a computer language as well as the name of the program which trandates and executes programs
written in that language. The program, FOCAL, belongs to a class of language processors called "interpreters,” and this
means that FOCAL, while operating, has complete control of the machine, and thus can assist in storing, editing and
running programs. Externaly, FOCAL communicates with a user through an input/output device like a teletype.
Internaly, it divides up memory into three sections containing the FOCAL program itself, the user's stored program and
any variables the user may have created. A minimum memory size of 8K is necessary for FOCAL, and additional memory
allows FOCAL to store larger programs and more variables. The additional machine requirements are described in the
section called "Running FOCAL."

The user controls FOCAL by typing aline of characters followed by a carriage return. The input line can be acommand to
FOCAL which it must execute immediately, or it could be a program line to be stored for later execution. These types of
input lines can be intermixed as there is no interference between them. An input line, which is to be stored as a program
statement must begin with a number identifying its location within the program. A line without a number is not stored but
executed immediately. FOCAL determines the order of execution for lines in the stored program from their line numbers,
not the order they were typed, which makes adding or replacing lines during a debugging session very easy. The following
sequences, listed as they were input, will both result in the same sequence of calculations.

*1.0 SET A=1
*2.0 SET B=A*3.2
*2.21 SET C=A+B
*4.0 SET X=A+C/ 2
*2.21 SET C=A+B
*1.0 SET A=1
*4.0 SET X=A+C/ 2
*2.0 SET B=A*3.2

The digits to the left of the decimal point in aline number make up what is called the GROUP NUMBER, and can be used
in some statements to identify a block of statements. The digits to the right of the decimal are known as the STEP
NUMBER and these have no specia significance; step numbers can be assigned values in the range 01 to 99; 0 and 00 are
illegal. Groups of statements will later be referenced by certain commands by a group number followed by a zero step
number. The reader should note that there is no single line in the program with a zero step number; this number refersto
the entire block having that group number.

Most computer systems draw a distinction between commands and statements. Commands are input lines given to a
program, usually called an "operating system,” which controls the entire machine. Statements, on the other hand, are lines
written in a strictly defined language, and these are interpreted by a program subordinate to the operating system; this
program could be a"compiler,” an "assembler" or an "interpreter." FOCAL is unusual in that it has the functions of both
an operating system and an interpreter, and this gives it an enormous flexibility. It can handle both statements from the
language FOCAL and commands of a supervisory nature. This distinction between operating systems and interpreters,
statements and commands is further weakened because FOCAL alows statements from the language to be executed
immediately much like commands in other machines. This manual will put little emphasis on the differences between
commands and statements; in fact, the terms will be used almost interchangeably.

At any given instant FOCAL will be in one of three states or operating modes READY, EXECUTION or PROGRAM
INPUT. FOCAL entersthe READY mode after it finishes the last command given to it, and as it enters this state it issues
an asterisk (*) to the user's terminal. It remains in this mode until the user has typed an input line followed by a carriage
return. In the short sequences given on the first page of the introduction, the asterisks were supplied by FOCAL and the
user typed the remainder of the line shown. The carriage return, needed at the end of every input line, forces FOCAL to
leave the ready mode and enter the EXECUTION mode to perform the actions specified by the input line. This may mean
that it only has to store the line as part of the program under construction. The input line could aso make FOCAL execute
theinput line as

1-1 FOCAL

though it were a part of a program; it could ask FOCAL to perform some supervisory function, or it could have FOCAL
execute the stored program.

The last mode, PROGRAM INPUT, occurs when FOCAL encounters and executes a specia instruction, ASK, which will
be described in full later. At that time FOCAL issues a question mark to the terminal and waits, as in the READY mode,
until the user enters a number followed by a carriage return. The difference between this mode and READY is that the
user is "talking" to his program through FOCAL. The execution mode is automatically re-entered after the input is
compl eted.

1.1 GO and QUIT Commands

The stored program begins execution when FOCAL is given the GO command. This execution begins at the lowest line
number in the stored program and will proceed from there to higher line numbers as the program logic allows. The
running program can be stopped by the user, by FOCAL or by the program itself; regardless of the reason, control will pass
to the "READY" mode of FOCAL at the conclusion of the run.

The program can stop itself with the QUIT statement, which can be stored anyplace, any number of times, throughout the
stored program. The instant this statement is executed the program stops and returns control to FOCAL which will issue a
ready prompt to signal the end of the program. The program is not atered in any way by running so that it can be
immediately re-run if desired. Examples of the GO and QUIT statements appear all throughout this manual .

In the event the program begins acting in some undesirable way, the user can halt the program by typing "MODE" (this can
also be done by hitting the "CNTL" key and the "@" simultaneously). FOCAL should respond with the READY prompt;
if not, the program has managed to annihilate part of the program FOCAL, and FOCAL will have to be rel oaded.

FOCAL will stop a program, if an error is discovered, or the program executes its highest numbered line and does not
jump back into the rest of the program. In this latter case, FOCAL tries to find a higher numbered line, and failing it
returns to the ready mode with an asterisk. Errors terminate a job with question marks and an error code which can be
deciphered with the table given in alater section.

1-2 FOCAL

2. CONVENTIONS

2.1 Numbers

All numbersin FOCAL are internally treated as floating point numbers occupying four memory bytes apiece. The largest
number which can be represented by FOCAL is 3.6 times 10 to the 38th power, and the smallest non-zero positive number
is 2.7 times 10 to the minus 39th power. This same range applies to negative numbers as well.

The accuracy for a number anywhere in this range is limited to approximately 7 decima places making 850.0000
equivalent to 850.00003. Any number can be given to FOCAL as an integer (without a decimal point) as a floating point
number (a number containing a decimal), or as a number in scientific notation. Numbers in the scientific notation format
consist of a mantissa and an exponent; the mantissa is written in decimal form followed by an E, followed by the exponent
value. Inthe scientifically formatated number, -7.2E-11, the number -7.2 is the mantissa and -11 is the exponent. The
value of this number is -7.2 times 10 to the -11th power or -.000000000072. Any form of number input may be signed
(+ or -) or unsigned.

In FOCAL the following numbers are equivalent:

700. 3240
700. 32403
7.003240E2
7.00324E+2. 0
7. 00324E01. 0
70. 0324E01. 0
700324.0E-3.0
. 0700324E4

All numbers printed by FOCAL can contain up to 7 decimal digits (excluding the sign).

2.2 Variables

A variable is a uniquely named storage location having an associated arithmetic value. 1ts name consists of a sequence of
letters and/or numbers, the first character being any letter other than F. (Names beginning with F are assumed to be
function names.)

FOCAL variable names are unique in their first two characters only. Thus, the variable names SA, SAM and SAMMY
refer to the same storage location.

LEGAL NANMES FOCAL RECOGNI ZES
KNOCK KN
PROFI T PR
COST1 CO (Thus COST1 and COST2
COsT2 CcO are the sane!)
| LLEGAL NAMES REASON
3ARM Fi rst character nust be
be al phabeti c.
FOOT Fi rst character nust
not be F.

To facilitate storage of large amounts of information, FOCAL allows variables to be subscripted. This feature will be
described later.

2-1 FOCAL

2.3 Evaluating Expressions

FOCAL, which is a contraction of FOrmula CAL culator, allows the user to construct arithmetic expressions or formulas
using the following symbols:

A EXPONENTI ATI ON
* MULTI PLI CATI ON
/ DI VI SI ON

+ ADDI TI ON

- SUBTRACTI ON

8080 FOCAL is similar to DEC FOCAL in that the evaluation of arithmetic expressions proceeds according to standard
operator priority. This priority follows the table above with the™ A" operation having the highest priority.

Occasionally it becomes necessary, due to the complexity of an expression, to NEST parts of the equation in parentheses.
Just asasingle pair of parentheses reorder the sequence of calculations in the above example, the "sub-expression™ within
parentheses can be reordered by separating its parts with parentheses. For instance,

*SET X=CA*A+B*C+B/ 2.6
*SET X=(CA*A+B) * (C+B/ 2. 6)
SET X=(CA(A+B))*((C+B)/ 2. 6)

all contain legal expressions. Each will, however, use a different sequence of multiplications, additions, etc., which will
produce a different value for the variable "X". Theinternal sequence of steps for evaluating the last of the above examples
would be:

ADD A TO B. PUT SUM I N TEMPORARY LOCATION "1" (TEMP)
ADD C AND B. SUM TO TEMP "2"

DI VIDE VALUE IN TEMP2 by 2.6 AND STORE QUOTI ENT I N TEMP2
MULTI PLY CA BY TEMP1. PRODUCT STORED IN TEMP 1

MULTI PLY TEMP1 BY TEMP2. PRODUCT STORED I N X

RN E=

The level of anest, or "Level number,” is equal to the number of left parentheses minus the number of right parentheses
found to the left of the term in question. FOCAL, as shown, eva uates the terms with the highest level number first, and
works down from there. Any level of nesting is allowed, as long as the statement occupies only oneline.

2.4 Math Functions

FOCAL provides eleven standard math functions along with a user-defined assembly language function. A function is a
routine internal to FOCAL which performs an arithmetic calculation on avalue called an "argument,” which is givento it.

This argument must be enclosed in parentheses immediately following the functions's name. FOCAL's generality permits
this argument to be a constant, variable or expression. Thefollowing isalist of the function names recognized by FOCAL

(throughout thislist, the character " X" represents the argument):

2-2 FOCAL

FUNCTI ON USE

FABS(X) ABSOLUTE VALUE

FSGN(X) "SIGN' OF X. VALUE RETURNED IS -1 WHEN X
| S NEGATI VE, 0 WHEN X=0, AND +1 WHEN X>0

FI TR(X) | NTEGER PART OF X

FRAN(X) RANDOM NUMBER BETWEEN .5 and 1.0 W TH RANDOM S| GN

FATN(X) ARC TANGENT

FEXP(X) EXPONENTI AL -- EAX

FLOG(X) NATURAL LOG

FSI N(X) SIN OF X

FCOS(X) COSI NE OF X

FSQT(X) SQUARE ROOT OF ABSOLUTE VALUE OF X

FHYS(X) HYPERBOLI C SI N

FUSR(X) USER DEFI NED. WHEN UNDEFI NED, THI S

RETURNS THE VALUE OF THE ARGUMENT UNCHANGED

In a statement of the form SET Y= FSIN(PHI), the variable Y is given the computed value of the sine of the angle, "PHI".
All of FOCAL's trigonometric functions assume that their arguments are given in radians (FATN returns a radian value
from minus pi to + pi). To convert degrees to radians simply divide by 57.29579.

2.5 Command Line Interpretation

FOCAL dlows and even encourages the programmer to put more than one statement on an input line. The additional
commands (statements) need to be separated by semicolons, and in one casg, the "FOR" statement, the entire line must be
ended with a semicolon. This multiple statement line feature can be used in both program store mode and immediate
mode.

FOCAL aso alows, for efficiency's sake, abbreviated commands; thus, for example, "SET,” "GO" and "QUIT" could all
be written as"S," "G" and "Q." Internally all commands are identified by their first letter only, so that "SHAKE", "GASP"
and "QUAKE" could be used for "SET," "GO" and "QUIT." All of these statements and their functions will be described
shortly.

To simplify the command recognition process, the FOCAL language has been constructed with amild emphasis on blanks.
In the commands to be discussed in the upcoming sections, all must begin with an easily recognized word (or
abbreviation) like"SET," "GO," "ASK" and "Q." Thisword, called a KEYWORD, must be followed by at least one blank.
Thisisacommon source of error for people new to the language. Line humbersin stored programs also require atrailing
blank for the same reason.

Most of the FOCAL language statements will expect a sequence of characters following the keyword and its blank. The
form and content of this part of the statement will depend on the command in question. Those commands not requiring
more than the keyword will ignore anything between the keyword and the next semicolon or carriage return. Telling
FOCAL to"*QUIT YER COMPLAININ" will only causeit to QUIT. Tellingitto-*GO TO HEAVEN" (?) will cause an
error, because "TO HEAVEN" is not the line number expected by the "G" or "GOTO" command. For the same reasons,
"GO TO 5.1" will force an error because "TO 5.1" isnot alegal line number. This command will be described |ater.

2-3 FOCAL

3. THE SET COMMAND
The most fundamental command in FOCAL isthe SET command. Initsgenera formit looks like:

*<|ine number> SET <variable> = <expression>

This command can al so be used in the immediate mode by omitting the line number.

The variable names (X, Y, Z and D in the example below) are defined by FOCAL and are given values (25.1, -6.88, etc.).
A memory location is associated with the variable name. If the specified variable name has not yet been encountered by
FOCAL, anew memory location is set aside and is associated with the name.

*10.4 SET z=12.01

*10.5 SET X=25.1

*10.6 SET Y=-6.88

¥10.7 SET D=FSQT((X*X) +(Y*Y) +(Z*2))
* GO

*

After the program has been run and FOCAL returns to the ready mode, the memory location for the variable D (from
above) contains the value of the expression FSQT ((X* X)+ (Y*Y)+ (Z* 2)).

The execution of the SET command produces the same results whether the command was stored and executed, or executed
in immediate mode. It is often very effective to use the command in both ways during a series of runs with a program.
Before the RUN command is given, the controlling values for the problem can be set or defined allowing the program to
be very general. Thefollowing illustrates atypical sequence of runs using this feature.

*1.1 SET A=FSQT(B/ C+B"3)*D I NPUT THE
*1.2 SET PROGRAM

*
*
*

(géneral i zed program

*
*

*99.9 QUIT

* SET B=10.1; SET C=12.77; SET-D=60 SET PARAMVETERS

* GO RUN THE PROGRAM

(resul ts) EXAM NE RESULTS

* SET B=10.6; SET C=11; SET D=100 MODI FY PARAMETERS

* GO RERUN THE PROGRAM
results

(Its) EXAM NE

3-1 FOCAL

4. INPUT/OUTPUT COMMANDS

4.1 The Type Command

Every FOCAL program must contain at least one TY PE statement if it is to produce printed results. The TY PE statement
prints values of variables, text strings and results of expressions. These can be combined using commas to separate the
itemsinto alist. Thefollowing example shows several TY PE statements and their resultant printout:

*SET A=1; SET B=2; SET AB=-6
*TYPE A #
1. 000000
*TYPE A B, AB, #
1. 000000 2. 000000-6.000000
*TYPE " QUOTATI ON MARKS START AND END TEXT"
QUOTATI ON MARKS START AND END TEXT: TYPE A, #
1. 000000
*TYPE !, "NOTE HOW THE # AND ! WORK", #
NOTE HOW THE # AND ! WORK
*TYPE A, !, B, #
1. 000000

2. 000000
*TYPE %. 02, AB, "hi ", 12345. 5456
- 6. 00hi 2345. 55:

The examples are in immediate mode where their results were immediately visible. The only modification for program
storage would be the addition of line numbers. It isimportant in the examples to watch how the special characters comma,
#,1 and " are used.

The % begins afield description of the form %w.0d which describes how numbers should be printed. The w is the width
to be used (maximum no. of digits), and the d is the number of these digits which are to appear after the decimal point.
The 0 is required. In the example above, note that truncation occurs if the number exceeds the field width. (Six digits
were retained because there is room for a sign.) The field description remains in effect for al TYPE statements until
another field description is seen.

The most readable output is usually made by combining text with printed values. The program can thus identify avalue as
well asprint itsvalue. The following shows this feature used in program store mode.

*1.1 SET G=32; SET T=5; SET D=.5*G*(T"2)

*2.1 TYPE "FOR ACCELERATION', G, "AND TI ME", T, " SECONDS" , #
*2.51 TYPE "AN OBJECT FALLS",D, "FEET.", #

*G&0

FOR ACCELERATI ON 32. 00000 AND TI ME 5. 000000 SECONDS

AN OBJECT FALLS 400. 0000 FEET.

#

Labeling results is a very good programming practice usually ignored by beginning programmers. It does require more
time and effort, but thisis more than offset by the amount of clarity added to the code and its output. For programs which
could he stored for any amount of time or for lengthy programs, any kind of documentation is very helpful and this
labeling with TY PE statementsis avery good form of documentation.

If a $ appears in the list of things to print (not in quotes) FOCAL will print out all the variables in use and their
corresponding values. The $ terminates the print list, that is, anything following it won't be printed.

4-1 FOCAL

A very powerful use of the TY PE statement comes from its ability to print the result of whole expressions. This means
your computer can be used as a super calculator which understands variables. This capability is generally used in the
immediate mode as shown below. The variables used are the same as those stored for use by the program.

*TYPE 572*16. , #

400. 0000

*TYPE FSQT(2*D/ 32), #

5. 000000

*TYPE "TI ME TO FALL", D, "FEET 1S", FSQT(D/ 16) , " SECONDS. ", #
TIME TO FALL 400. 0000 FEET I'S 5. 000000 SECONDS.

*SET D=144

*TYPE"TI ME TO FALL", D, "FEET | S", FSQT(D/ 16), " SECONDS. ", #
TIME TO FALL 144.0000 FEET IS 3. 000000 SECONDS.

4.2 The Ask Command

Input to a FOCAL program is handled by the ASK command. It isused in stored programs to define or redefine the values
of program variables. The command can contain a text string and a list of variables. No expressions may appear in the
ASK command although they are allowable responses to the command. When executing an ASK, FOCAL issues a
guestion mark to request avalue. The value, or expression, for which FOCAL can compute a value, must be followed by
a carnage return. FOCAL then issues a question mark for the next variable to be defined, and so on. Text is printed as
encountered in the command. In usethislookslike:

*70.6 ASK "DEFI NE STARSHI PS X, Y, Z COORDI NATES", X, Y, Z, #
*70.61 ASK "DEFINE X, Y, Z FOR KLI NGON SHI P", XK, YK, ZK, #
*70.65 SET XD=XK- X; SET YD=YK-Y; SET ZD=ZK-Z

70.66 SET DI ST=FSQT((XD XD) +(YD* YD) +(ZD* ZD))

*70.69 TYPE "DI STANCE TO ENEMY | S", DI ST, "LI GHT YEARS',
* GO

DEFI NE STARSHI PS X, Y, Z COORDI NATES?4?576

DEFI NE X, Y, Z FOR KLI NGON SHI P?9?4?1

DI STANCE TO ENEMY SHIP IS 7.141429 LI GHT YEARS

The ASK command aso has provisionsto allow a defined value to remain unchanged. The user can type the ESCAPE key
in response to the question mark, and the corresponding variable will be unchanged. Typing a carriage return will result in
the variable being set to 0. Typing an expression (which may even contain variable and functions) will cause FOCAL to
evaluate the expression and assign the resulting value to the variable in question. ASK will continue to issue question
marks for the remaining variable in itslist. Although the user follows each entry with a carriage return, aline is advanced
during an ASK command only when a colon or exclamation point appearsin the statement.

4-2 FOCAL

5. BRANCH COMMANDS

The computer's ability to ater the sequence of commands it will execute is known as branching. This very powerful
ability is represented in FOCAL by three commands: GOTO, IF and JUMP. These can alter the program flow rather than
executing statements in their numeric order. The computer can send control to a program line number specified in the
command. These commands differ in that GOTO aways transfers control to the single statement number given to it, while
JUMP and IF transfer to one of a number of possible statements based on atest.

5.1 The GOTO Command

In the following example, the GOTO statement sends control back to a statement that counts the number of times it has
been executed. Readers new to programming are strongly advised to follow the example and the results closely.

*1.1 SET N=0

*1.3 SET N=N+1

*1.6 TYPE "LOOP NUMBER =", N, #
*1.7 GOTO 1.3

*G&0
LOOP NUMBER = 1.000000
LOOP NUMBER = 2. 000000

Unfortunately, this program never ends, and the programmer will never see the READY asterisk from FOCAL. Program
segments which repeat are called "loops." The program shown above is an example of an "infinite loop”. To escape such a
loop, type MODE and the program will stop.

GO (GOTO) starts a program at the line number specified or at the lowest line number in the program, if no line number
follows. The GOTO statement can also be used in the immediate mode to transfer control to the program. In the next
example, the instruction GOTO 1.8 passes control to statement 1.8, and starts the loop with the loop counter aready
equalling 12.

*1.1 SET N=0

*1.3 SET N=N+1

*1.8 TYPE "LOOP NUMBER =", N, #
*1.9 GOTO 1.3

*SET N=12; GOTO 1.8

LOOP NUMBER = 12. 00000

LOOP NUMBER = 13. 00000

LOOP NUMBER = 14. 00000

LOOP NUMBER = 15. 00000

5.2 The IF Statement

In the above example, the program will again cycle indefinitely, since it has no condition for ending itself. For thisreason,
FOCAL includes the IF command which transfers control CONDITIONALLY. Thebasic form of an IF statement is;

*<|line number> I F (<expression>) L1,L2,L3

where L1,L2, and L3 represent statement numbers, and the expression, always enclosed in parentheses, stands for a single
variable or arithmetic formula containing variables.

5-1 FOCAL

When FOCAL encounters an |F statement, and the value in parentheses is negative, the control is transferred to the first
statement number inthelist. If the valueis zero, control goes to the second, and if it's greater than zero, it transfersto the
third. FOCAL recognizes abbreviated forms of the “IF' statement containing one or two statement numbers rather than
three. Should the IF statement only contain 2 statement numbersin its transfer list, control will be given to the statement
following the IF statement when the value is greater than zero. Similarly, when an IF statement contains only one
statement, a value greater than or equal to zero will have control transferred to the next sequential command. These
different styles of IF statements are shown in the following examples.

*1.2 IF (A-B) 1.5,1.4,1.3

*1.3 TYPE "A | S GREATER THAN B"; QUI'T
*1.4 TYPE "A IS EQUAL TO B"; QUI T
*1.5 TYPE "A IS LESS THAN B"; QUI'T

;‘22. 1 |IF (MONEY) 22.28, 22.28; TYPE "YOU STILL HAVE
FUNDS" , #
*22.3 DO 24.0, GOTO 15.4

*40.

6 IF (Il) 40.8; DO 70.0; GOTO 40.6
*40.8 TYPE "Il IS FI NALLY NEGATI VE. GOODBYE", #
*40.9 QUT

Note in the above that a space always separates the |F and the open parenthesis mark. These examples are shown only to
exercise the various aspects of the IF statement. They are not meant to be working parts of a single program.

5.3 The JUMP Statement

The last of the branch instructions is the JUMP command. This statement is frequently used when a program needs to
transfer to one of more than three locations. The general form of this multibranch instruction is

*<|ine number> JUWP (<expression>), L1,L2,L3,L4, . . .,Ln

L1 through Ln are the statement numbers much like those in the IF command definition, but there may be as many
numbers given as can fit in the command line. EXPRESSION, as before, is any single variable or arithmetic combination
of variables. If the value of the expression equals O, control transfers to the first statement number given. When the value
equals 1, the second statement number is chosen, and so on. Should the value contain a fractional part, like 2.37 or 2.98,
only the integer part is considered. The values 2.37 and 2.98 would both transfer control to the third statement listed. The
following shows this command being used to select a part of a program given some input from the user.

*1.2 ASK "1) RIGHT 2) LEFT 3) UP 4) DOWN 5) NO CHANGE", N
*1.4 JUWP (N-1), 10.1,15.34,12.3,65.98,2.02

If the computed value of the bracketed variable or expression islessthan zero, control goesto the first statement listed and
if it'stoo large for the list, FOCAL sends control to the last statement listed. If the user had responded 5 or larger to the
ASK statement above, control would have gone to the statement numbered 2.02.

5-2 FOCAL

6. SUBROUTINES

6.1 The DO And RETURN Commands

A subroutine, sometimes called a "routine,” is a special sequence of statements with the same group numbers. A group
number, as mentioned, is the integer part of a statement’s line number and the fractional part is the step number. A
subroutine, for instance, could be the sequence of statements between line numbers 52.01 and 52.99. This sequence is
"specia” because any part of the program can send control to this block of statements and receive it again when the block,
the subroutine, has finished. The "sending of control" is known as a subroutine "call" and the process used for a
subroutine to return this control to the code which called it is a "return” from subroutine. In FOCAL the subroutine is
thrown into execution by the DO statement, and the return from the routine by aRETURN statement.

The DO statement must specify a line number containing the group number for the subroutine to be caled and a step
number of zero; thus "DO 52.0" is acceptable, whereas "'DO 52" isnot. The RETURN statement requires no arguments,
it simply returns control to the statement following the DO statement which called it. Note, in the example below, that 1)
the same subroutine can be called from many places, and 2) a subroutine may call another subroutine, which may call yet
another, which. . .etc.

*10.1 DO 20.0;, DO 18.0

*10. 2 IF J NOT RIGHT, CALL 20.0
I
(

*10. 3 -J) 10.4; K=20*T, DO 20.0

*20.1 .F I =1, 10; DO 15.0;

*20.6 R

*18.1 DO 20.0: T K, #

*18.2 DO 16. 0

*18.3 R : C THESE EXAMPLES WERE NOT
TAKEN FROM

*18.4 C A WORKI NG PROGRAM

The next example further exercises the flexibility of the subroutine calling structure. In this example, a subroutine calls
ITSELF until a certain condition is satisfied, and then it begins a series of RETURNS while calculating a factoria for a
number. A return to itself is made for each call it made to itself; the last return sends control back to the DO statement
which originally called this factorial subroutine. This sort of subroutine calling is known as RECURSION. Computer
theory buffs should note that the initial variable list is used for al levels of the calling sequence; FOCAL does not
dynamically allocate new memory for copies of the variables.

*1.1 A N, C ASK FOR THE NUMBER TO USE

*1.2 S NF=1; DO 2.0; T N,"FACTORIAL IS",NF, #; Q

*2.1 C SEE IF N IS GREATER THAN 1. | F SO SUBTRACT

*2.2 C ONE AND CALL THI'S ROUTINE AGAIN UNTIL IT IS 1

*2.3 C THI S ROUTI NE RETURNS AS MANY TIMES AS I T WAS CALLED
*2.4 C AND THI' S CONTROLS THE FACTORI AL CALCULATI ON

*2.5 IF(N-1) 2.8,2.8 ; S N=N-1; DO 2.0

*2.6 C RETURNS ENTER HERE

*2.7 S N=N+1 ; S NF=NF*N

*2.8 R ; C RETURN FROM LAST CALL

6-1 FOCAL

If FOCAL runs out of step numbers for a subroutine, thus threatening to continue into the next group of line numbers, it
issues the RETURN. This makes it perfectly valid to omit the return statement from a subroutine. This optimizes
memory requirements at the expense of a program that becomes more difficult to read.

6-2 FOCAL

7. LOOPS

7.1 The FOR Command

Program loops can be constructed in FOCAL with the FOR command. This command executes the remaining statements
on its SAME LINE a specified number of times. The number of loops depends upon the numbers given to the FOR
command. In its full form, FOR uses 4 values; an index variable, a start value, increment and stop value for the index.
These, in order, look like:

*12.1 FOR 1=1,3,200 ; J=I/2 ; TYPE J,

In the above, the values 1, 3, and 200 could have been variable names, and the second and third statements on that line
could have been any legal statementsin the language. They must be followed by a blank and the ENTIRE LINE must be
followed by asemicolon. In the following example,

*12.4 FOR I1=VN,NN,Q ; TYPE |1, FSQT(I1), #;

the variable 11 isinitially given the value VN. On successive loops its value increases by the amount NN, and when this
value exceeds Q control is passed to the next LINE NUMBER. If only 2 values follow the equal sign, it is assumed that
the increment has been omitted, leaving only the start and end values for the next 11. In this case, the increment is set to
1.0.

Since the FOR command executes only the statements on its same line, it is convenient to use it in conjunction with the
DO command. The polynomia graphing given on this page shows thisin use.

¥20.2 S LX=40; S LY=70; S YN=O S YX=100
¥20.3 S XN=0; S XX=100

¥20.5 S SX=(XX-XN)/LX ; S SY=(YX-YN)/LY
*20.6 A "DEFINE A B, C FOR AX"2+BX+C' ,A B, C
¥20.7 T #,"GRAPH Y=AX"2+BX+C, X |'S DOWN,"
¥20.71 T "Y ACROSS'

¥20.9 F X=XN, SX, XX; DO 60. 0;

¥20.95 Q

¥60.1 S Y=XA2*A+(B*X)+C

*60.3 | (Y-YX) 60.5; S Y=YX; G 60.8

*60.5 | (YN-Y) 60.8; S Y=YN, G 60.8

*60.8 T "I"

60.83 F J=YN,SY,Y; T "";

*60.9 T # ;C RETURN

Jce)

DEFI NE A, B, C FOR AX"2+BX+C?1/ 807?- 1?40
(PRI NTS QUT GRAPH HERE)

The reader should study the example shown here, and compare this to the fully commented version. It should also be very
instructive to run this program as shown, then modify both the program and the data as desired.

The term "loop" refers to any sequence of statements which can be executed repeatedly; the "FOR" statement is only one
way of forming aloop. A common way of setting up aloop uses"SET," "IF" and "GOTQ" statements in such away that a
counter (or "loop index™), an increment value and a limit are manipulated by the program directly. The following shows
the code necessary for such aloop:

7-1 FOCAL

*23.25 CINDEX IN IS SET 1 | NCREMENT LONER THAN 1ST VALUE
*23.3 SET I N=0
*24. 1 C I NCREMENT LOOP | NDEX. 24.11 | S LOOP START
*24. 4 SET IN=I N+I C
*25.1 C TRANSFER OUT OF LOOP WHEN | NDEX EXCEEDS LIM T
*25.2 IF (INLIMT) 27.6

7

*25. C HERE STARTS THE CODE FOR THE BODY OF THE LOOP.

*27.5 dTFO 24.4 ; C FORCE NEXT LOOP
*27.6 C THIS STATEMENT | S OUT OF THE LOOP
*27.7 C REST OF PROGRAM CONTI NUES FROM HERE

Another exampleis given in the next section on subscripted variables.

7.2 Subscripted Variables

The variablesin a program generally represent the physical entities of the problem under study. The programmer can think
of hisvariable, "T," as containing the current time in seconds or another variable, "SP" as representing a vehicle's speed.
This association between variables and their physical meaning is fundamental to any type of computer programming.
Quite often, however, severa values must be simultaneously associated with a single concept, and thus, the programmer
would like to have a single variable name represent these many values. A chess board is a good example of this, since the
programmer would like 64 values held for the single board. While it would be possible to assign each of the squares a
separate name, FOCAL's subscripted variable feature allows all the squares to be referenced with the same name. A
variable which has many valuesis called an ARRAY/, and its separate values may he selected by means of a SUBSCRIPT
or INDEX. .A subscript is an integer tag identifying a particular value within an array. It is enclosed in parentheses
immediately following the array name. "BD(1)", for example, might be the first square of the board, while "BD(64)"
might be the last. Little advantage would be realized were it not for the fact that subscripts themselves can be variable
names or even expressions. In other words, any expression can be put into the parentheses following the array name;
FOCAL merely calculates the value of the expression, drops any fractional part, and uses the resultant integer to select a
single value from the array.

As an illustration, the following sequence of statements, written as a subroutine, counts the number of pieces a chess
bishop can threaten from his square. Some initial definitions at the beginning of the program are shown as is the routine
itself; the actual calls) from the main body of the program have been omitted.

7-2 FOCAL

*1.11 C 8 POSSI BLE DI RECTI ONS OF MOVEMENT STORED I N DX, DY
ARRAYS

*1.1 C DEFI NE ARRAYS TO BE USED BY LATER SUBROUTI NES
*1.12 S DX(1)=1 ; S DX(2)=1 ; S DX(3)=-1; S DX(4)=-1
*1.12 S DX(5)=1 ; S DX(6)=-1; S DX(7)=0 ; S DX (8)=0
*1.13 S DY(1)=1; S DY(2)=-1; S DY(3)=1; S DY(4)=1
*1.15 S DY(5)=0 ; S DY(6)=0 ; S DY(7)=1 ; S DY(8)=-1
*1.16 C FIRST 4 USED BY BI SHOP. LAST BY ROOKS. ALL BY QUEEN
KI NG
*
*
*
*
*
*
* .
*70.02 C TH' S SUBROUTI NE COUNTS THE NUMBER OF OPPOSI NG PLAYERS
*70.04 C THREATENED BY A KNI GHT AT ROW"NR', COLUMN "NC'
*70.06 C ASSUMES THAT OPPOSI NG Pl ECES ARE CODED AS NUMBERS W TH
*70.08 C OPPOSI TE SI GNS AND THAT EMPTY SQUARES CONTAI N ZEROS
*70.10 C "BD' HAS THE ENTI RE BOARD OF 64 SQUARES. "ZAP" COUNTS
*70.12 C THREATS FOR THE CALLI NG ROUTINE AND "LP" WLL
*70.14 C BE THE LOOP DI RECTI ON COUNTER | NTERNAL TO THI' S ROUTI NE
*70.16 C START BY ZERO NG COUNT AND STARTI NG DI RECTI ON | NDEX
*70.17 S ZAP=0 ; S LP=0
*70.18 C PUT BISHI P' S VALUE | NTO BT TO COVPARE LATER. FROM NR
NC

70.20 S BT=BD(NC- 1 B+NR)

*70.22 C START LOOP - RETURN WHEN LP PAST 4

*70.24 SL P=LP+1 ; | (LP-5) 70.26 ; RETURN

*70.26 C SET INI TIAL POSI TI ON OF MOVI NG SQUARE

*70.28 S NX=NR, S NY=NC

*70.30 C LOOP THROUGH NEXT SQUARES ON CHOSEN DI RECTI ON
*70.32 S NX=NX+DX(LP) ; S NY+DY(LP)

*70.34 C SEE IF YOU RE STILL ON THE BOARD. 1 < or = to NX,
NY < or =to 8

*70.36 | (NX) 70.24, 70.24 ; | (9-NX) 70.24,70.24

*70.38 | (NY) 70.24, 70.24 ; | (9-NY) 70.24,70.24

*70.40 C CALCULATE POSI TION (I NDEX) I N BOARD FOR THI S SQUARE
(NX, NY)

70.42 S SQ=BD(NY- 1 8+NX)

*70.43 C MJULTIPLY BY BISHOP -S VALUE TO CHECK SI GNS

*70.44 S PR=SQ*BT ; | (PR) 70.46, 70.32,70.24

*70.45 C FOUND OPPONENT - COUNT | T AS THREATENED. LOOP AGAI N

*70.46 S ZAP=ZAP+1 ; DO 71.0

*70.50 G 70.24; C END OF SUBROUTI NE

*71.1 C PRI NT OUT THREATS - MONI TOR PROGRAM PROGRESS

*71.2 T "PI ECE AT ROW, NX, "COLUWN', NY," IS THREATENED BY", #

*71.25 T "PIECE AT", NR, NC, #

*71.3 R

FOCAL allows subscriptsto have any valuesfrom -2047 TO + 2047.

7.3 The COMMENT Statement

FOCAL alows comments to be inserted into a program with the C command. This command requires a line number as
any other command in a stored program, but when FOCAL encounters this statement, it smply

7-3 FOCAL

skipsto the next command. This statement begins with aline number, the letter C, and at least one blank following the C.
Therest of the line, up to the semicolon, isignored by FOCAL. Since these statements have line numbers, branches can be
made to them. In this case, comments can be thought of as being "continue” statements (asin FORTRAN).

¥19.1 C -- POLYNOM AL GRAPHI NG PROGRAM - -
*19.2 C -- DOCUMENTED VERSI ON - -

*20.1 C PREPARE SCALI NG VALUES THAT RELATE THE S| ZE
¥20.12 C OF THE PHYSI CAL GRAPH TO THE FUNCTI ON VALUES
*20.14 C TO BE PLOTTED

¥20.2 S LX=40 ; S LY=70; S YN=0; S YX=100

¥20.22 C XN, XX ARE THE M NI MUM AND MAXI MUM X VALUES
*20.24 C YN, YX ARE THE M NI MUM AND MAXI MUM Y VALUES
¥20.3 S XN=0; S XXS=100

*20.42 C COVPUTE LENGTH BETWEEN SPOTS ON PLOT BY
*20.44 C COVPARI NG BOUNDS TO LENGTH AND W DTH

¥20.5 S SX=(XX-XN)/LX ; S SY=(YX-YN)/LY

*20.52 C | NPUT PARAMETERS FOR THE POLYNOM AL

*20.6 A "DEFINE A B, C FOR AX"2+BX+C ", A B, C

*20.7 T #, "GRAPH Y=AX"2+BX+C X DOWN, Y ACROSS', #
*20.8 C EACH LOOP OF 20.9 DOES 1 LINE OF PLOT

¥20.9 F X=XN, SX, XX; DO 60. 0;

¥20.95 Q

*60.05 C TH' S ROUTI NE COMPUTES POLYNOM AL FOR WHATEVER
*60.07 C VALUE OF X |'S PASSED. | TS THEN PLOTTED

*60.09 C (I F POSSI BLE) W THI N THE DEFI NED BOUNDS

*60.1 S Y=XA2*A+(B*X)+C

*60.24 C IF Y VALUE TOO LARGE OR TOO SMALL, PLOT ON EDGES
*60.3 | (Y-YX) 60.5; S Y=YX; G 60.8

*60.5 | (YN-Y) 60.8; S Y=N, G 60.8

*60.8 T "I"

*60.81 C PRI NT ASTERI SKS UNTIL | NDEX AS LARGE AS Y
60.83 F J=YN,SY,Y; T "";

*60.88 C FINISH THI'S LINE WTH CR AND RETURN FOR NEW X

7-4 FOCAL

8. SUPERVISORY FUNCTIONS

8.1 The WRITE Command

For editing purposes, FOCAL provides the ability to print all or parts of the program text with the WRITE command. It
can be used to print single lines or subroutines. WRITE 2.2 will print just the line which is numbered 2.2 WRITE 2.0 will
print only the lines between 2.01 and 2.99, and the command WRITE ALL will print the entire program ordered by
increasing line number.

8.2 The ERASE Command

The ERASE command is used to delete lines or groups of lines from a program. To erase a single line from the text, the
user only has to type ERASE followed by the line number asin ERASE 22.34. To erase an entire group of linessuch asa
subroutine, the user can type ERASE followed by the group number. To delete a subroutine with the group number 95,
the user should type ERASE 95.0.

ERASE can aso he used to clear an entire program, its variables and their values. Thisis only done when the user wants
to write a new program. The ERASE ALL releases al the memory assigned to the last program so that it can be used by
the new one. Itisnaturally agood habit to save any lengthy programs on cassette tape before erasing them.

8.3 The MODIFY Command

The MODIFY command is used in immediate mode to edit portions of lines in a FOCAL program. It accepts a line
number designating the statement to be edited; this line number must be followed by a carriage return. The actual editing
is performed on the line following the MODIFY command. The user must guide the MODIFY editor with certain
non-printing commands. After the carriage return, MODIFY waits for the user to type a single character from the
keyboard; this character will be used as the "search character.” MODIFY will print the line in question up to and including
this search character, or the user can direct modify to perform one of several other tasks described below. Each of these
tasks is selected with a specia character which is typed after the search character. If MODIFY does not recognize this
character as being amember of its special lit, it assumesthat atext insertion is being made.

1. "CNTRL/G". This does nothing to the text aready defined, but prepares the MODIFY function for a new search
character. This new search character must follow immediately; neither will be printed. Any searches through the rest of
the current line will use this new character.

2. "CNTRL/L" or "FORM FEED". This command restarts the search procedure in MODIFY which will begin typing the
rest of the line until the current search character is found. As in the first search sequence undertaken by MODIFY, the
search chyracter will be typed, and MODIFY will then wait for more commands.

3. "DELETE". Thisdeletesthe last character in the line. Successive DELETE's delete characters in order from right to
left towards the line number.

4. "CNTRL-X". This deletes everything in the line up to and including the last character printed. The rest of the line, as
yet imprinted, remainsintact. It will be shifted over, however, so that it follows the line number.

5. "RETURN". Thisdeletesanything to the right of the last character last printed.
6. "LINE FEED". Thisinstruction tells MODIFY to savethe line as presently defined.

8.4 FOCAL Library Commands

Processor Technology Cassette Focal has an interface with SOLOS/CUTER to save and recall programs and data from
cassettefiles. Thisinterfaceisthrough aseries of LIBRARY statements:

8-1 FOCAL

LI B SAVE <fil e nane> Save current program

LIB LOAD <fil e nane> Get program fromtape

LI B OPEN <#>,<fil e name> Open a data file

LI B TYPE <#>,<var |ist> "Type" data to file

LI B ASK <#>, <var |ist> "Ask" for data frost file

LI B REW ND <#> Rewi nd a data file

LI B CLOSE <#> Close data file

LIB QUT Return to SOLOS/ CUTER
<file name> is any valid SOLOS/ CUTER file name of 1 to 5

characters, with an optional unit specifies.

<#> is a digit between 0-9.
<var list> Val id FOCAL variable list which may contain

constants, variables and expressions for TYPE,
just variables for ASK. Mist not contain
quot ed t eXt , n $n , n #n , n ?n Or n ' n .

All LIBRARY commands may appear in a program or may be used in the immediate mode. Except for L TYPE and L
ASK, none of the library commands should precede other commands on the same line, since the rest of the line will be
ignored.

The L LOAD command may be used within a program to chain to another program. This will be discussed more fully
under LIB LOAD below.

Naturaly, all library commands can be abbreviated. For example LIB CLOSE 5 can bewrittenasL C5.

Due to the fact that only two cassette drives can be used at one time, only two files can be open at one time, one on each
unit. Whenever <filename> is specified, it may be followed by an optiona "/*" and a unit number, indicating which tape
driveto use. If no unit is specified, then tape unit 1 isassumed. For example:

*LI B OPEN 5, TUNA/ 2 Opens the file "TUNA" on
cassette drive #2;

*LI B LOAD FI SH Loads the file "FISH' from
cassette drive #1.

LIB SAVE < file name > will save an exact copy of the internal form of the current program in memory onto file
<file name>.

LIB LOAD < file name > will load in the data in the file over any program which is currently in memory. If the LIB
LOAD command was issued from a program, the newly read in program will he executed starting at its lowest line
number. This alows chaining of FOCAL programs. To pass data from the first program to the second, it should be
written onto adatafile by the first program (using LIB TY PE-see below) and read back from the same file number by the
second program. (using LIB ASK). It is not necessary to re-OPEN the data files during a chain as long as the same file
numbers are to he used in both programs. When chaining, variable's values are lost, unlessthey are saved on adatafile.

LIB OPEN < # > < file name > is used to set up adatafile for subsequent LIB TYPE or LIB ASK statements. The opened
file is assigned the number <#>, and this number must be used to refer to the file in any subsequent data file operations
suchas TYPE. REWIND, etc.

LIB TYPE < # >, <var list > is similar to the regular TY PE command except that its output goes to file < # > where the
number < # > has been assigned to afile using the LIB OPEN command. In addition, only numerical data can be written
to aFOCAL datafile-no ,quoted text, #, !, $ or ?. The datais written to the file in binary form-4 bytes per number. This
dataiswritten starting at the current cursor position for thefile. For example, the sequence

8-2 FOCAL

LI B OPEN 5, POTTS
LI B TYPE, 5, A B"10,9*1024
LI B CLOSE 5

results in the values of the three expressions A, B ” 10 and 9* 1024 being written to the beginning of the file POTTS.

LIB ASK <#>, <filename > isused to read values from afile which LIB TY PE has written on. The number < # > must
have previously been assigned to < file name > in an OPEN statement.

LIB REWIND < # > setsthe cursor for file < # > (which has been assigned in an OPEN) to the beginning of that file. This
is where the cursor is when the file is first opened. LIB REWIND can be useful when chaining between programs, since
the second program must start at the beginning to read the data from afile.

LIB CLOSE < # > removes the association between the given number and the file to which it was assigned in a previous
LIB OPEN, writes out the file's buffer if necessary, and frees the buffer space for later use. After executing a CLOSE, the
specified number may be re-used in aLIB OPEN statement. Re-using a number without first closing it will result in an
error.

LIB QUIT leaves FOCAL and returnsto SOLOS/CUTER. Beforeleaving, QUIT closes all files.

8.5 The TRACE Feature

The TRACE feature is provided to help debug stored programs. It can be activated from almost anywhere in a program
and can be deactivated as easily. While operating, trace types out each line it sees being executed by FOCAL and reports
on any variable values that are changed during each line of the program. A question mark is the symbol used to both
activate the trace and deactivate it. Any question mark encountered outside a comment statement and outside the text parts
of the "ASK" and "TYPE" commands will change the trace mode. If the question mark is encountered while trace is
active, the trace will be deactivated. If seen whiletraceis"OFF" the trace mode will be turned "ON".

8-3 FOCAL

9. RUNNING FOCAL

9.1 Hardware Requirements

In order to run FOCAL, an 8080-based computer must be equipped with at least 8K of resident random access memory,
and the SOLOS or CUTER monitor program. The memory should be addressed starting at zero continuously to 8K.
FOCAL is set up to use 16K of memory, allowing more than 9K for programs and data. More than 16K can be used by
changing memory locations 0006 and 0007 to contain the highest address of continuous available memory.

For example, if 20K (5000 Hex) is available, enter the following into memory:

ADDRESS 0006 OOH
0007 50H

These values may be changed any time after loading FOCAL. The number of memory locations used by any stored
program can be calculated from the rule: SIZE = 8S+ C+ 4L where S is the number of variables, C is the number of
charactersin the stored program text, and L is the number of lines in the program. FOCAL can be SAVEd with the new
vaueif desired.

FOCAL is saved on cassette in CUTS format, which may be read by any Sol computer, or any other computer with a
CUTS module and the CUTER monitor program. To load FOCAL, use the command: XEQ FOCAL <CR>, in
SOLOS/CUTER command mode.

When FOCAL is first loaded into memory, it checks itself in memory by the use of checksums. If the tape has been
damaged, a bad memory location is encountered, or other hardware problems have caused incorrect code to appear in
memory, the message "CHECKSUM TEST FAILED" will appear. The error may not be serious, and FOCAL may be
used, but it is best to try reloading the tape, correcting hardware problems, if present.

9.2 About Cassette Recorders

Successful and reliable results with cassette recorders require agood deal of care. Use the following procedures:

1) Use only a recorder recommended for digital usage. For use with the Processor Technology Sol or CUTS, the
Panasonic RQ-413 AS or Realistic CTR-21 is recommended.

2) Keep the recorder at least afoot away from equipment containing power transformers or other equipment which might
generate magnetic field picked up by the recorder as hum.

3) Keep the tape heads cleaned and demagnetized in accordance with the manufacturer's instructions.

4) Use high quality brand-name tape preferable alow noise, high output type. Poor tape can give poor results, and rapidly
wear down arecorder's tape heads. Bulk erase tapes before using.

5) Keep the cassettes in their protective plastic covers, in a cool place, when not in use. Cassettes are vulnerable to dirt,
high temperature, liquids, and physical abuse.

6) Experimentally determine the most reliable setting for volume and tone controls, and use these settings only.

7) On some cassette recorders, the microphone can be live while recording through the AUX input. Desactivate the mikein
accordance with the manufacturer's instructions. In some cases this can be done by inserting a dummy plug into the
microphone jack.

8) If you record more than one file on aside, SAVE an empty file named "END" for example, after the last file of interest.
If you read this file header, you will know not to search beyond it for filesyou are seeking.

9) Do not record on thefirst or last 30 seconds of tape on aside. Thetape at the ends gets the most physical abuse.

10) Most cassette recorders have afeature that allows you to protect a cassette from accidental erasure. On the edge of the
cassette opposite the exposed tape are two small cavities covered by plastic tabs, one at each end of

9-1 FOCAL

the cassette. If one of the tabs is broken out, then one side of the cassette is protected. An interlock in the recorder will
not allow you to depress the record button. A piece of tape over the cavity will remove this protection.

11) Use the tape counter to keep track of the position of files on the cassette. Always rewind the cassette and set the
counter to zero when first putting a cassette into the recorder. Time the first 30 seconds and note the reading of the
counter. Always begin recording after this count on all cassettes. Record the beginning and ending count of each file for
later reference. before recording a new file after other files, advance afew counts beyond the end of the last file to insure
that it will not be written over.

12) The SOLOS/CUTER command CATalog can be used to generate alist of al fileson a cassette. Exit FOCAL using L
Q, type CAT <CR>, rewind to the beginning of tape, and press PLAY on the recorder. As the header of each fileis read,
information will be displayed on the screen. If you have recorded the empty file called END, as suggested, you will know
when to search no further. If you write down the the catalog information aong with the tape counter readings and a brief
description of the file, you will be able to locate any file quickly. After completing the catalog, you may re-enter FOCAL
by typing EX 0 <CR>.

13) Before beginning work after any modification to the system, test by SAVEing and GETting a short test program. This
could prevent the loss of much work.

9.3 Miscellaneous Notes

Should you accidentally leave FOCAL before saving your program, you can restart it by typing EXEC 0 to SOLOS or
CUTER, without losing the program.

FOCAL does not understand lower case letters. All variables, commands, functions, etc. must be in UIPPER CASE.
Lower caseis okay within quotes or file names.

Remember that binary arithmetic is not exact-it is only very close. Therefore, you may expect very small (but nevertheless
disconcerting) errors such as

: T 23431
54. 00001

which are caused by FOCAL's attempts at rounding off numbers which it cannot store exactly. Y ou can make these errors
much less frequent by not printing as many digitsto the right of the decimal point. (See TYPE)

9-2 FOCAL

9.4 Errors

The following is alist of error codes issued by FOCAL. The error number represents the address in the FOCAL program
where the error was detected.

ERROR CODE MEANING

00.00 Mode-select restart.

00.0D BUFFER overflow, line.

02.96 Bad line number.

02.BB Bad line number.

03.22 Bad character.

03.27 Bad character.

04.43 Stack overflow - expression too complex.

05.48 Bad line number.

05.BE No such group.

05.FD DO reference;, missing line.

06.1D GOTO references missing line.

06.60 [llegal command.

06.08 Missing left paren in JUMP.

06.FO Missing left parenin IF.

07.39 Left of = bad in FOR or SET

07.59 Excessright parenin FOR or SET.

07.70 Bad expression in FOR.

09.85 No such line number.

0A.C5 Missing terminator.

OA.E5 Missing operator before left paren.

0B.39 Arithmetic overflow.

0B.D7 Missing left paren in function reference

OB.EF Missing left paren.

0C.18 Mismatched right paren.

0C.2D ERASEF??7?

0C.35 Bad argument in Erase.

10.79 Can't raise to a negative power.

10.D3 Bad library command.

10.EB Missing commain OPEN.

11.5E Missing comma after file number.

12.4C Bad file number.

1251 Bad file number.

12.91 Tape read error or user hit mode
select while reading.

12.94 File already open.

12.97 File not open.

12.9A Unit already open.

12.9D Unit not open.

12.A0 File name missing.

12.0B End of File encountered.

12.DE Error in read.

12.F6 Write operation not valid on thisfile.

13.44 Name too long.

13.65 Bad unit number.

9-3 FOCAL

