GAMEPAC 1

USER'S MANUAL

PROCESSOR TECHNOLOGY CORPORATION

7100 Johnson Industrial Drive
Pleasanton, CA 94566

Copyright 1977, Processor Technology Corporation Manual No. 727007

IMPORTANT NOTICE

This copyrighted software product is distributed on an individual sale basis for the
personal use of the original purchaser only. No license is granted herein to copy,
duplicate, sell or otherwise distribute to any other person, firm or entity. This software
product is copyrighted and all rights are reserved, all forms of the program are
copyrighted by Processor Technology Corporation.

THREE MONTH LIMITED WARRANTY

Processor Technology Corporation warrants this software product to be free from defects in
material and workmanship for a period of three months from the date originally purchased.

This warranty is made in lieu of any other warranty expressed or implied and is limited to
repair or replacement, at the option of Processor Technology Corporation, transportation and
handling charges excluded.

To obtain service under the terms of this warranty, the defective part must be returned, along
with a copy of the original bill of sale, to Processor Technology Corporation within the
warranty period.

The warranty herein extends only to the original purchaser and is not assignable or
transferable and shall not apply to any software product which has been repaired by anyone
other than Processor Technology Corporation or which may have been subject to alterations,
misuse, negligence, or accident, or any unit which may have had the name altered, defaced
or removed.

GAMEPAC 1

Table of Contents

. INTRODUCTION e e e e s 1

. GAMEPAC 1 INPUT ROUTINES ... e 3

. TARGET (TARG)

AL MISSION ...ttt 8
B SCOMNG - 8
C. Game Start and Action Speed...........ccoovvviiiiiiiiiiiiiiie, 9
D. Aiming and Flight Direction..............cccoiviiiiiiiiiiiii e, 9
E. Demonstration MOGEccoooiiiiiiiieeeeeeeeee e 9
Fo SOUN. ... 9
G. GaME TIME .oiiiiiiiiiiiiieeeeee e 10
H. EXEa TIME s 10
[. - Other CoOmMMANGSccooiieeee e 10
J. Exit from TARGET programccoeeeiiiiiinieeeeieeeeieee e 10
IV. LIFE (LIFE)
A. GenEetiC RUIES..........uiiiiiiiiiiiii e 11
B. Operating INStrUCLIONSoiiiiieiiieiiiiiii e 12
C. PAttern StOragevuuuiieeeeiieeei e 13
D. Generation SPEEAcccoiiiiiiieieeeeeee e 13

V. PATTERN (PTRN)

A. Loading PATTERN from CUTS Tapeccccvvvvvvvimmnnnnnnnnns 14
VI. ZING (ZING)
YA | N[@] o =] - 1[0 o RS 15
B. Paddle Operationuuiiiiiiiiiiieieie e 15
C. GAME SEAM . e 16
D. Sol Parallel Port SWitChescoooiiiiiiiiiee e 16
E. PatChes ... 18
APPENDIX A SOLOS/CUTER INterface.............uvvvvvevmmimemeeeniiiiniinnnnnnnns 19

Copyright 1977, Processor Technology Corporation Manual No. 727007

I. INTRODUCTION

GAMEPAC 1 is a collection of four games designed to run on a Sol or other 8080 based
computer with a Processor Technology VDM-1 Video Display Module. GAMEPAC 1 is
distributed on cassette requiring a hardware cassette interface such as the Processor
Technology CUTS circuit board to read the programs into memory for execution. Although
these programs are designed to interface with either SOLOS/CUTER, CONSOL or other user
written surrogate, standard input routines are also provided.

All input to the games is via either the SOLOS/CUTER jump table (refer to the interface
specification in the appendix) or the standard input routines provided. All output from the games
is to the screen--either the Sol display or the VDM-1.

A. Hardware Requirements for All of the Games

1. All of the games require no more than 4K of RAM from location zero through
OFFFH.

2. All games are entered or re-entered at location zero.

3. All games require either the Sol display circuitry or a Processor Technology VDM-1
circuit board. The display scroll port must be either OFEH or OC8H.

4. The character generator chip number 6574 is suggested.

5. The video display switches should be set as follows:

1 2 3 4 5 6
Sol off off off on off on
VDM-1 off on on on on off

B. CUTS Cassette Tape Information

The games of GAMEPAC 1 are recorded using the Processor Technology CUTS/Kansas City
standard recording format. The tape is loaded using a Sol with SOLOS or CONSOL personality
module or a computer running under CUTER and a CUTS (Computer Users Tape Standard)
audio cassette board. The SOLOS/CUTER interface specifications in the appendix describe the
format of the tape so that a user written routine may be used to read the games into memory
from tape.

To load a game from the GAMEPAC 1 tape, rewind the tape, set the tape counter to zero and

advance the tape to just ahead of the counter indication number for the game to be loaded.
Make sure the tone and volume are adjusted correctly and the necessary cables are connected.

©1977 Software Technology Corporation

[. INTRODUCTION (cont.)
The following examples show the SOLOS/CUTER commands used to load and execute the
games.
XEQ (name)cr
Where: XEQ is a SOLOS/CUTER command which causes
the next (or named) program to be read from
tape into memory.
(name) is the name of the program to be loaded. (name)
is optional, and the next program on the tape
will be loaded if it is not used.

cr This is the carriage return key.

The game, which is a program, will be loaded into memory and run at location zero. It will then
display any necessary instructions on the screen.

For example:
XEQ TARG to play TARGET
XEQ LIFE to play LIFE
XEQ PTRN to play PATTERN
XEQ ZING to play ZING

"GET (name)cr" may also he used to load the tape.

After the program loads and the prompt character reappears on the screen, type "EX Ocr" to
execute the program.

If you have any trouble loading the tape, refer to the cassette operating procedures in the Sol
manual or the CUTS manual.

II. GAMEPAC 1 INPUT ROUTINES

All of the games use the same standard input routines from location 0-26.

The first time a game is executed, this input routine will be initialized. A description of this input
routine and the initialization procedures follow. If the games are used with either

SOLOS/CUTER, CONSOL or a compatible surrogate, no modification will be necessary.

A standard input routine will be selected automatically in the event that none of the above
routines are used.

An assembly listing of the standard input and initialization routines is on the following pages.

©1977 Software Technology Corporation

II. GAMEPAC 1 INPUT ROUTINES (cont.)

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0041
0044
0045
0046
0047
0048
0049
0050
0051
0052
0055
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067

*
khkhkkhkhkhhhkhhhkhhhhhhhhhhhhhhhhhdhhhdhhhdhdhdddhrrdrrdrx%

* *
: < GAMEPAC 1 | NPUT RQUTI NES > **

khkhkkhkhkhhhkhhhkhhhhhhhhhhhhhhhhhdhhhdhhhdhdhdddhrrdrrdrx%

*

ALL OF THE GAMEPAC 1 PROGRAMS USE THE
SCLOS/ CUTER/ STANDARD | NPUT ROUTI NE.

THE ROUTI NE SOURCE CODE/ ASSEMBLY |'S SHOMWN
BELOW AS | T APPEARS IN ALL GAMEPAC 1 GAMES.

THE ' START' VALUE | N EACH PROGRAM W LL BE
THE STARTI NG ADDRESS OF THE ACTUAL GAME,
AND W LL BE UNDEFI NED I N THE LI STI NG BELOW

khkhkkhkhkhhhkhhhkhhhkhhhhhhhhdhhhhhhdhhhdhdhdhdhdddhddrxdx*x*x

< SOLOS/ CUTER AND STANDARD | NPUT ROUTI NES >
VERSION 2.4 APRIL 1,1977 S. DOWPI ER

*
*
*
*
*
khkhkkhkhkhhhkhhhkhhhkhhhhhhhhdhhhhhhdhhhdhdhdhdhdddhddrxdx*x*x

TH S PROGRAM VAY USE ONE OF THREE POSSI BLE

| NPUT ROUTINES. ON ENTRY TO THI'S | NI TI ALI ZI NG
ROUTI NE, THE FI RST TWO BYTES PO NTED TO BY
REG STERS HL ARE CHECKED TO DETERM NE | F

THE EXECUTI NG PROGRAM | S ' SOLCS' OR ' CUTER .

VWHEN A PROGRAM |'S CALLED BY THE ' XEQ OR ' EXEC
COMVAND FROM SOLOS/ CUTER, REG HL IS SET TO THE
FI RST ADDRESS COF SCLOS/ CUTER. THE FI RST TWD
BYTES OF SOLOS = 00 C3; THE FI RST TWD BYTES

OF CUTER = 7F C3. | F THE DATA I N THE FI RST TWO
BYTES PO NTED TO BE REG HL MATCHES, AND THE LDA
| NSTRUCTI ON (3AH) AT SOLOS/ CUTER ADDRESS xx1FH
ALSO MATCHES THE | NPUT ROUTI NE ADDRESS OF
SCLOS/ CUTER |'S I NSERTED AT "I NADD WHICH IS THE
I NPUT ROUTI NE CALL ADDRESS.

I F NO MATCH | S MADE, A STANDARD | NPUT ROUTI NE
IS USED WTH THE FOLLOW NG VALUES:

STATUS PORT = 0
DATA PORT =1
DAV MASK = 40H DATA AVAI LABLE

THERE IS ROOM TO ADD A ' CVA' | NSTRUCTI ON
TO COVPLEMENT THE | NPUT STATUS WORD FOR
ACTI VE LOW STATUS.
SEE THE STANDARD | NPUT ROUTI NE BELOW FOR
CTUAL VALUE ADDRESS | NFORVATI ON.)

TYPING ' ESC (escape) WLL EXIT THE MAIN
PROGRAM | F SOLCY/ ER HAS CALLED, A
JUWP BACK TO SOLOS/ CUTER ' RETRN (xx04H)
WLL BE MADE. TH S JUMP RETURNS TO THE

B ok ok Sk 3 SF 3 SF 3 SF % b 3k oF 3 b 3k b 3k b 3k 3 3k 3 3k 3 3k 3 3k 3k 3k 3k Sk 3k Sk ¥ SF 3k SF 3k Sk 3k SF 3k SF 3k Sk 3k O 3k F Sk F Sk X Ok X F X F

II. GAMEPAC 1 INPUT ROUTINES (cont.)

0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105 LDA
0106 LOWN
0107 *
0108 *
0109 *
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131 JZ
0132 RET
0133
0134
0135
0136
0137

LSB -

TYPI NG '

E I R I I R I T G T R .

007E
001B
00C3
00CD
0004
0000
007F
003A
001F

DEL
ESC
JwP
CALL
RETRN
NOP
MOVAA

£
£
£

=0
EQU
0000 é—%g

[IMP =

0000 C3
0001 27 00

DB

NI T
J Dw

VP

= %k Sk 3k Ok kT b 3k o Sk X Sk X Ok X X X

0003 CD QA 00
0006 CA 03 00
0009 9

E o I

©1977 Software Technology Corporation

WLL BE TAKEN
RETURN TO THE ' ALS8' ,

| F YU ARE USI NG THE STANDARD | NPUT ROUTI NE
AND W SH TO | NSERT YOUR OAN EXI T ADDRESS,
DO SO AT ' EXADD ADDRESS 001AH- 001BH

DEL'

7FH
1BH
0C3H
0CDH
4

0
7FH
03AH
1FH

INNT2 -

JwP

SCLOS/ CUTER MONI TOR AND | SSUES A PROVPT.
OTHERW SE THE DEFAULT RETURN JUMP ADDRESS
ITISINTIALLY SET TO

ADDRESS OEO60H

M5B
(SEE EXIT ROUTI NE BELOW)

WLL RESTART THE MAI N PROGRAM
AT I TS STARTI NG ADDRESS

A JUVP ADDRESS TO THE ACTUAL PROGRAM
|'S I NSERTED AT ' | JMP' AT THE COVPLETI ON
OF TH'S I NPUT | N TI LI AZI ON.

THI S ALLOAS RESTARTI NG THE GAME FROM
LOCATI ON' ZERO (00) .

khkhkkhkhkhhhkhhhkhhhkhhhhhhhhdhhhhhhdhhhdhdhdhdhdddhddrxdx*x*x

< | NPUT ROUTI NE EQUATES >

DELETE KEY CODE

ESCAPE KEY CODE

JUMP | NSTRUCTI ON CCDE

CALL | NSTRUCTI ON CODE

SOLOS/ CUTER RETURN LOW ADDRESS
SOLOCS FI RST BYTE

CUTER FI RST BYTE

SCOLOS/ CUTER | NPUT FI RST BYTE
SCLOS/ CUTER | NPUT LOW ADDRESS

PROGRAM EXECUTE ADDRESS
ASSEMBLER ORI G NATE ADDRESS

< I NI TI ALI ZE | NPUT ADDRESS >
I NI TI ALI ZE 1 NPUT ON PASS 1.

AFTER THE | NI TI ALl ZATI ON_PASS,
STARTI NG ADDRESS OF THE PROGRAM TO BE RUN

| IMP = THE

START JUWP

INNT2Z PASS 1= INIT2 PASS 2= START

< WAI'T FOR KEYBOARD | NPUT >
NVWAI T CALL

I NCHR CHECK | F | NPUT
INVAIT FOR | NPUT

W TH CHARACTER I N REG A

< I NPUT RQUTI NE CALL >

II. GAMEPAC 1 INPUT ROUTINES (cont.)

000A
000B
000D

000E
0010
0013
0015
0018

CD
1C 00
c8

FE 1B
CA 19 00

7F
CA 00 00

0019 &3

001A

0000

001cC
001E

001E
0021
0022
0024

0001
0040
007E
EO060

DB 00
00

E6 40

DB 01
E6 7F

0026 C9

0138 I NCHR DB CALL FI RST BYTE OF CALL | NSTRUCTI ON
0139 I NADD DW I NPUT | NPUT ROUTI NE ADDRESS

0140 Rz . NO | NPUT

0141 ~*

0142 *

0143 *

8%2@ : < EXI T/ RESTART CODE CHECK >

0146 RTEST CPI ESC ESCAPE KEY?

0147 JZ EXIT

0148 CPI DEL DELETE KEY?

0149 JZ START START PROGRAM OVER

0150 RET . CHARACTER I N REG A

0151 *

0152 *

0153 *

0154 * < PROGRAM EXI'T JUWP >

0155 *

0156 EXIT DB JwP

8%%; *EXADD Dw FORMS PROGRAM EXI' T ADDRESS

0159 *

0160 *

8%8% : < STANDARD | NPUT ROUTI NE >

0163 * TH'S ROUTINE | S USED | F THE CALLI NG PROGRAM
0164 * 1S NOTI SCLOS OR CUTER. THE DAV NMASK AND PORTS
0165 * MAY BF CHANGED AS REQUI RED FOR ANY | NPUT VALUES.
0166 * |F INPUT STATUS | S ACTI VE LOW | NSERT THE °

8%2; : (2FH) 1 NSTRUCTI ON AT THE ' NOP' ADDRESS 001EH BELOW
0169 *

0170 * ZERO FLAG IS SET I F NO INPUT RCV' D. (2)

0171 * ZERO FLAG IS RESET IF INPUT IS RCV' D. (N2)
8%;% : CHARACTER | S RETURNED IN REG A.

0174 * REGQ STERS MODI FI ED: A

0175 *

0176 STAT E 0 STATUS PORT

0177 DATA E 1 DATA PORT

0178 DAV E 40H DATA AVAI LABLE MASK- ACTI VE H GH
0179 PARITY E 7FH PARI TY MASK

8%%&) EGQI\/B EQU OEO60H EXI T ADDRESS

0182 *

0183 *

8%%% LNPUT I'N STAT STATUS PORT = O

0186 NCP I NSERT ' CVA' (2FH) HERE

8%%; : FOR ACTI VE LOW STATUS

0189 ANI DAV DATA AVAI LABLE MASK = 40H
0190 RZ NO | NPUT

0191 | NDATA I N DATA DATA PORT = 1

0192 ANI PARITY STRIP PARITY

0193 RET W TH CHARACTER IN REG A

0194 ~

0195 ~*

0196 *

0197 EE Rk S 2 Sk S Rk I S S b S S R S bk S b Sk bk S S
0198 *

0199 *

0200 *

8%8% : < INI'TI ALI ZE | NPUT ADDRESS (SOLOS/ CUTER) >
0203 * TH S CODE CAN GO ANYWHERE; I T IS USED

0204 * ONLY ONCE AND MAY BE OVERLAYED AFTER

8%82 : THE I NPUT IS I NI TI ALI ZED.

0207 * NOTE: TO FORCE STANDARD | NPUT ROUTI NE,

II. GAMEPAC 1 INPUT ROUTINES (cont.)

0027
0028
0029
002B
002E
002E
0030
0032

0035
0037

003A
003C
003D
003E

0042

0045
0047

004A
004D
0050

<ol
24

-

2222

2

SETUP

()]
>
3

3

588

T
S

AR285053
e §§>

2E
22

21
E9

00
3A

7F
4A
1F

3A
4A

0B

04
1A

00
01

00CD
0001
0040
007F
EO060
001B

001A

0019
004A
0001

000B
000A

0022
0000
0027
001C
0003

00C3
003A
001F
007E
0000
007F
0004
000E

003A
0000

00

00

00
00

00

00
00

0138
0191
0189
0148
0157
0146
0235
0147
0214
0241
0229
0130

0124
0139
0131
0123
0226
0224
0220
0217
0192
0234

0218
0184

CHECK SECOND BYTE (JMP)

P JVP | NSTRUCTI ON?
| DONE NO MATCH, USE STANDARD | NPUT

H

A M CHECK FI RST BYTE

NCP CHECK | F SOLCs: =ZERO
SETUP YES

MOVAA CHECK | F CUTER. =7FH
| DONE NOPE, USE STANDARD

L, LOWN SET SOLOS/ CUTER | NPUT >ADDR
A M CHECK FOR 3AH

LDA SCOLOS/ CUTER | NPUT FI RST BYTE
| DONE NOPE, USE STANDARD

I NADD SET | NPUT ROUTI NE ADDRESS

SET SCOLOS/ CUTER RETURN ADDRESS 023

L, RETRN SCOLOS/ CUTER RETURN (xx04)
EXADD | NSERT | NTO EXI T ROUTI NE

SET PROGRAM ADDRESS AT | JMP

H, START | NSERT PROGRAM START ADDRESS
JMP SET UP PROGRAM RESTART AT ZERO
GOTO PROGRAM

I AZI ON ROUTI NE >

I I NI TI ALI
hkhkkhkkhkhkhhhkhhhkhhhkhhhhhhhhhhhdhdhkrdhrrdrx*

0208 * EXEC ' | DONE
0209 *

0210 *

0211 INIT2 [INX
0212 MoV
0213 CPI
0214 INZ
0215 DCX
0216 MoV
0217 CPI
0218 Jz
0219 *

0220 CPI
0221 INZ
0222 *

0223 *

0224 SETUP W
0225 MoV
0226 CPI
0227 INZ
0228 *

0229 SHLD
0230 *

0231 *

0232 *

0233 *

0234 Wi
0235 SHLD
0236 *

0237 *

0238 *

0239 *

U 0239 IDONE LXI
0241 SHLD
0242 PCHL
0243 *
0244 ~
0245 * < END OF
0246 *kkhkkkkhkhkkkkhkk*k
0247 *

0221 0227

0156 0213

©1977 Software Technology Corporation

. TARGET (TARG)
(Version 2.4 January 7, 1977 S. Dompier)
TARGET is an animated Sol-VDM game with sound.
A. Mission

A movable photon missile is aimed and fired in an attempt to stop unmanned runaway
robot spaceships.

There are several types of spaceships containing dangerous cargoes of pesticides, DNA
experiments, artificial flavorings, TV commercials and so on. They should be stopped
before they reach a civilized area of the universe and endanger the populace.

Remote control of the missiles in flight is achieved by aiming the launching tube. The
ships (and their contents) are generated by random logic and follow no pattern.

If two ships should collide, the flight log as well as the most dangerous cargo on board
are jettisoned as a mass-seeking ion parachute which must be considered the most
dangerous hazard of all.

[Author's note: The game player may relate to the ships and missiles of TARGET
as objects personally imagined by him. The above scenario is
provided for those with an aversion to the destructive type games
who may otherwise mistake the robot spaceships as earthly in
origin. Aggression, still being a common human trait in 1977, is
better exercised with a zero-sum game than spent on the physical
real world. Besides--it's fun.]

B. Scoring
HITS:
BIG CARGO SHIPS 100 points
SMALL (& fast) SCOUT SHIPS 200 points
PARACHUTES 600 points (if you can hit them!)
Chain reaction multiple hits score extral!
MISSES:
ANY SHIP ESCAPING OFF-SCREEN -20 points

MISSILE MISSES (or wasted by hitting explosion) -30 points

Ill. TARGET (cont.)

Occasionally, an explosion will blow out the engines or destroy part of another nearby ship or
parachute, leaving parts of it floating in space. This space debris will remain until it is hit by a
missile or by another ship, the crash resulting in the generation of a parachute. A missile hitting
the debris will score.

C. Game Start and Action Speed

After the instructions are displayed on the screen, the game is started by typing one of the
numeric keys (1 - 9). This also determines the speed of play. The number keys may be used at
any time to change the action speed with 1 designating the fastest action.

D. Aiming and Flight Direction

nn nn

Missile aiming and in-flight direction are controlled by pressing the "," key to aim left and the ".
key to aim right. (The "," keytop has a "<" and the "." keytop has a ">".

There are five aiming positions: left, left-center, center, right-center and right. The missiles are
launched by typing any letter key or depressing the space bar. This keyboard arrangement is
the easiest to use.

As soon as the first missile has left the launching tube, another missile may be launched. The
directions of missiles already launched will be altered by the aiming position of the launching
tube.

The left and right aiming command keys may be changed if your keyboard layout makes the
standard keys undesirable. Place the ASCI | code (7 bits, MSB parity should be 0) for the keys
to be used as follows:

Left key: Address 0600H Currently 2CH (,)
060DH

Right key: Address 0607H Currently 2EH (.)
061CH

E. Demonstration (DEMO) Mode

A demonstration self-run mode may be initiated by typing "D" at the start of the game. The "D"
takes the place of a speed key (1 -9) to start the game. The game will run itself until stopped by
typing the "DEL" key. All aiming, launching and speed controls are enabled during the demo
mode, allowing for manual operation as the system "helps" the operator along!

F. Sound
TARGET is equipped with sound-effects. Place any AM radio near the computer and run the

demo mode. Adjust the radio dial and the radio itself in relation to the computer until a good
sound is found. Small ships, big ships, parachutes,

©1977 Software Technology Corporation

. TARGET (cont.)

and especially explosions should all be distinctive. For the best sound from a Sol, place the
radio next to the center of the left side.

G. Game Time

During play, "Time" will flash and a countdown will appear at the top of the screen when eight
seconds of play time remain. If the score is 4000 or greater, "extra time" goes into effect, and
20 extra seconds of play time are provided.

When the game is over, (TIME = 0), the instructions will be displayed on the screen and the
score information will remain until a new game is started by typing one of the speed keys (1 - 9).
If the current score is greater than the previous high score, it will become the "NEW HIGH
SCORE". The high score may be cleared by typing "R" before starting a new game.

H. Extra Time

The thousands digit in the score is used to determine whether "extra time" is to be initiated.
This value may be altered to any digit (1 - 9) by placing the ASCII value of the desired digit at
location DO2H in memory. For example, if 2000 is to be used as the minimum score to earn
extra time, place 32Hex at location DO2H in memory.

I. Other Commands

If the "DEL" (delete - 7FH) is typed at any time, the game will restart.

There are two commands which are not displayed on the screen. One is a super slow speed
activated by typing "%" (shift-5). To resume normal speeds, type any numeric key.

The other command is a continuous run mode which is activated by typing Control-C (03H)
either before or during the game action. The game will then run continuously until stopped by
typing the "DEL" key.

J. Exit from TARGET program

An exit from TARGET is provided by typing "ESC" (1BH), ("ALT" on some keyboards). See the
standard SOLOS/CUTER input routine for complete information.

10

IV. LIFE (LIFE)
(version 2.3 January 7, 1977 S. Dompier)

The game of LIFE was originally described in SCIENTIFIC AMERICAN magazine, October,

1970, in an article by Martin Gardner. The game was originated by John Conway of Cambridge

University, England.

The computerized version of LIFE can be found on many computer systems--in many cases

with Teletype print routines. This version, using the Sol computer's video display capabilities or

the VDM-1 Video Display Module with other computers, allows initial patterns to be composed

directly on-screen and instant visualization of each generation as it is created. In addition,
patterns may be stored and recalled from seven memory pattern registers. The generation
speed may be controlled from the console.

A. Genetic Rules

Cells (organisms, ducks, people, plants, etc.) reproduce, exist or die according to certain

genetic laws. Conway derived the genetic law of the game of LIFE from the following
criteria:

1. There should be no initial patterns for which there is a simple proof
that the population can grow without limit.

2. There should be initial patterns that apparently do grow without limit.
3. There should be simple initial patterns that grow and change for a
considerable period of time before coming to an end in one of three
possible ways:
a. fading away completely (no life)

b. becoming stable (no change in pattern or population)

c. a pattern oscillates in an endless cycle of two or more
periods.

Think of each cell as being a square of a checkerboard. A cell may be either empty (shown
as a space [no *] on the screen and in the following examples) or living (shown as an * both
on the screen and in the examples). In the following examples, a '+' indicates an empty cell
which is becoming a living cell.

1 2 3
4 * 5
6 7 8

11

©1977 Software Technology Corporation

IV. LIFE (cont.)

SURVIVALS Each live cell with TWO or THREE live neighbors
will survive for the next generation.

* * These cells
o * * * all survive.
DEATHS Each cell with FOUR or MORE live neighbors will die from

over-population.

*

* * - This cell dies (4 neighbors)
*
Each cell with ONE or NO live neighbors will die from
isolation.

* Both of these cells die from isolation,
* each having only one neighbor.

BIRTHS Each empty cell with EXACTLY THREE live neighbors is a
birth cell and a new live cell will appear at the next generation.

*

* + * =Dirth - three neighbors
Note: Births and deaths occur simultaneously.

Don't count a new cell until next generation.

Generation 1 Generation 2
+ * (+ = birth - had three neighbors)
* ok K = X * X = * (x=death - only one neighbor)
+ *

B. Operating Instructions

In this version of LIFE you have a choice of either a flat world or a round world display.

FLAT WORLD - Cells on the edge of the display do not have neighbors past the edge, and
any births that occur there immediately fall off and are not counted. In
computing the count of neighbors, cells past the edge are considered
empty. This is similar to a petri dish.

ROUND WORLD - Presented here as a flat surface projection, cells on the edge of the
display have neighbors at the opposite edge of the display (top-bottom;
left-right). If a pattern is moving off the edge of the display, it will continue
at the opposite side.

12

IV. LIFE (cont.)

The round world representation is more representative of our Earth, and it
usually yields more interesting pattern activity.

C. Pattern Storage

A pattern may be stored and recalled from seven memory pattern registers. When the question
is asked, type the appropriate register number (1 - 7) to recall a previous pattern. The pattern
stored in that register will be copied to the screen. The pattern may then be 'activated' by typing
a speed key (1 - 9 and 0) or modified by the edit functions and then run.

When the question is asked, type the register number (1 - 7) in which to save an initial or
modified pattern. The pattern will be saved after the numeric (speed) key is typed. (Note: If you
type 'DEL' to start over before the pattern has been run, no register storage will occur.)

There are seven preset patterns in register storage. When the LIFE program is first loaded from
tape, get and run these patterns in both the round and flat world modes. This provides
familiarity as well as examples of some of the possible LIFE activities.

D. Generation Speed

The time between each generation may be controlled by typing a speed key (1 - 9and 0). 1is
the fastest and 9 is the slowest. Typing '0' (zero) will stop the generation activity to allow
extended study of a pattern.

The pattern may then be SINGLE STEPPED by typing the space bar. Typing a speed key will
resume automatic generations.

Typing the 'DEL" key will restart the LIFE program.

Typing the 'ESC' key will exit from the program.

13

©1977 Software Technology Corporation

V. PATTERN (PTRN)

PATTERN is a pattern generating program for use with the Sol computer or a computer with a
VDM-1 Video Display Module. The patterns are generated in a kaleidoscopic format using a
horizontal and a vertical value as the initial input data.

The pattern may be selected from a possible list of 256 different patterns. Each combination of
vertical and horizontal values will produce a unique pattern. There is also an automatic pattern
mode which generates a sequence of some of the more interesting patterns.

The initial speed of PATTERN change is selected by typing any key. This key also starts the
program. The binary value of the key used to start the pattern is used as a timer; the lower the
value the faster the rate of change. The ASCII bias (30H) is removed from the speed key used,
and the resulting value is decremented by 1. Therefore, the fastest speed would be selected by
typing the number "1". The space bar produces a very slow rate of change. The number keys
(1 - 9) produce a good range of speeds, with the number "9" being quite slow.

The program may be restarted by typing the "DEL" key, or by restarting the program at location
zero. Typing the "ESC" key will exit from the PATTERN program.

A. Loading PATTERN from CUTS Tape

Set the GAMEPAC 1 tape so that PTRN is the next program on the tape, and read the tape
using the XEQ command, i.e., XEQ PTRN or just XEQ.

PATTERN will then load and run, printing instructions on the screen. The hexadecimal value of
the numbers typed for the pattern data is represented as an eight bit word on the screen and is
a good way to become familiar with the hex numbering system:
(0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F).

14

VI. ZING (ZING)

Written by: Terry L. Todd May 1976
Revised by: Steven Dompier June 3, 1976
Revised for SOLOS/CUTER/STANDARD July 5, 1977

ZING is a ping-pong type game played using a Processor Technology VDM-1 Video Display
Module or a Sol computer.

When using ZING with a Sol, a switch bank must be constructed in order to play the game.
Details and a schematic are provided in the following pages.

If the computer is other than a Sol, a switch bank may be constructed incorporating a parallel
port; however, the normal mode of play will use the front panel sense switches.

A. ZING Operation

Two paddles move up and down the screen sides and return any ball that hits them. Balls
are generated at random from the center of the screen, and up to five balls may be in play at
any one time. If all five balls have been returned, the balls will move faster. The balls will
gain momentum each time all five balls are returned until a maximum speed is attained. As
soon as any ball is missed, the initial slower speed is restored.

B. Paddle Operation

The left four sense switches control the left paddle, and the right four switches control the
right paddle. The paddles are positioned up or down according to the binary setting of each
player's four switches.

LEFT PADDLE RIGHT PADDLE
DATA LINE: D7 D6 D5 D4 : D3 D2 D1 DO
SWITCH: Al5 Al4 Al13 Al12 : All A1I0 A9 A8
ROW: 8 4 2 1 : 8 4 2 1

Row (above) specifies the row at which the Paddle is located. The row is selected by the
binary value of all four switches. The top row (0) is accessed by turning all four switches off.
Row 1 would require a switch setting of 0001. Row 3 would have both the one switch and
the two switch on, giving a total value of three (0011), and so on, counting in binary, until the
last row (15) has all four switches turned on: 1111 or F hexadecimal).

15

©1977 Software Technology Corporation

VI. ZING (cont.)
C. Game Start

The switch settings at the start of the game are used to determine two modes of play. If the
left player's "8" switch is on when the game starts, hexadecimal row numbering will be
displayed at the sides of the screen. If the right player's "1" switch is on at the beginning,
the game will run continuously until stopped by pushing the 'DEL' key to restart the game. If
the right player's "1" switch is off at the start, the game will declare a winner when either
player scores 21 points. The game may then be restarted by pushing the 'DEL" key.

SWITCH A15 up

Display hex numbering on screen side

SWITCH A15 down

No numbers

SWITCH A8 up Continuous game - No stop at 21
SWITCH A8Bdown = Winnerat21

The momentum of the game increases each time both players have returned all five balls
with no misses!

Run and restart game at location zero.
Type 'DEL' to restart game anytime.
Type 'ESC' to exit from the program.

D. Sol Parallel Port Switches

A bank of eight switches (or two bank’s of four switches--one bank for each player) are
required to play ZING.

These switches are connected to the parallel port at the rear of the Sol (connector J2M.
Use SPDT type switches without a middle "off" position. Connect the switches using a
DB-25 connector to mate with the parallel port connector J2 on the Sol. Provide enough
connecting wire so that the switches may be positioned conveniently for play.

Refer to the Sol manual for the parallel port pin-out information, and see the schematic
(Figure 1) for the correct hook-up of the switches.

If you wish to use external switches with a computer other than a Sol, construct the switch
bank(s) as shown and connect to a parallel port using the lines indicated.

On parallel ports other than the Sol, +5 volts must be obtained to power the switches. Notice
that this is obtained from pin 3 on the Sol J2 connector.

16

VI. ZING (cont.)

+5V

PIN3,J2,PIE O~ ?

o

PIDO

PIN 2,J2,GND- 1|}

<
S

PID |

PID 2

PID3

PID 4

PID 5

PID 6

©1977 Software Technology Corporation

Figure 1

A N O GO O

PID7

T

SPDT Switch

17

VI. ZING (cont.)

18

E. Patches

The GAMEPAC 1 programs use the SOLOS/CUTER or standard input routine and
determine if the computer running the program is a Sol using SOLOS, some other computer
using CUTER, or something else. The information below will allow you to modify the
program for different combinations, such as using external sense switches with the Sol
running SOLOS or some other computer running CUTER and using an external switch
bank.

If the computer is a Sol, the parallel port (FD) is used for the switch bank input. If the
computer is not a Sol running SOLOS, the sense switch port (FF) is used. To change this
input port, first run the program to initialize the input routines, then stop the computer and
make the patches needed, then restart ZING at location zero. The new port address will
then be used.

The switch bank input port used is loaded from address 0027H. Change this byte if
necessary.

APPENDIX A

SOLOS/ CUTER I nterface Specifications

The SOLOS/ CUTER interface is based on:

1. A predefined set of 'pseudo' /0O ports all ow ng
software conpatibility and providing an easy neans
of supporting any |/ O devi ce.

2. A well defined set of register usage conventions.
3. Asystemjunp table of entry points.

4. A defined tape format including headers and CRC
characters.

Bot h SOLOS and CUTER observe and support these specifications
such that any programwitten using this interface will function
(except for specific device dependenci es) under the control of
either SOLCS or CUTER. A part of the interface specifications
al so allows a user witten SOLOS/ CUTER surrogate. Such a
surrogate, when properly witten, will allow a programwitten
for SOLOS/ CUTER to function with the surrogate.

The first aspect of the interface is that of the pseudo ports.
The basic SOLOS/ CUTER interface allows the support of four
"pseudo’ 1/O ports (0 - 3). These pseudo ports are |ogica
ports providing a reference for the programonly. System i nput
(keyboard) and output (display) are directed via these pseudo
ports. The STANDARD definition for pseudo ports is:

Pseudo Port | nput Qut put
0 Keyboar d VDM Di spl ay
1 Serial input Serial out put
2 Paral | el input Par al | el out put
3 User defined input User defined out put

These pseudo ports allow device independent I/O Provided that
devi ce dependent character sequences are not used, an I/0O
request to pseudo port O appears to the requesting programto be
the same as a request to pseudo port 1, 2 or 3. Wat this neans
is that, although four pseudo ports are defined in the interface
specifications, a user witten surrogate would not need to
decode pseudo ports.

19

©1977 Software Technology Corporation

Appendix A (cont.)

The second aspect of the SOLOS/ CUTER interface is the defined
regi ster usage. Each of the systementry points has specific
regi ster requirenents which wll be discussed |ater.

Whenever a programis executed via SOLOS/ COTTER the stack
poi nter, the stack, and registers HL are defined as foll ows:

1

The Stack Pointer (register SP) is valid and offers a
useabl e stack. The size of this stack is not specified
but shoul d be adequate for at least a fewcalls. The
executed programis expected to establish its own stack;
however, sone stack should be avail abl e.

The stack itself should be established such that:

(a) A "REV instruction can be used as an exit by the
executing program

(b) The locations at Stack Pointer -1 and -2 in nenory
contain the address of the executed programitself.
This informati on can be accessed by machi ne code
simlar to:

LXI H -1 A constant ni nus one.
DAD SP HL=SP-1 now.
MV A M A=our own hi gh address.

Code such as this can be used to allow a routine to
be made self-relocating to a 256 byte boundary.

Regi sters HL contain the address of the SOLOS/ CUTER j unp
table. Because this junp table nay be |l ocated at any 256
byte boundary in nenory, register L will be zero.

Regi ster H can then be used to alter the executing program
accordingly. As noted later, the junp table al so provides
an indication whether the programis executing on a Sol or
ot her conputer.

The third aspect of the SOLOS/ CUTER interface is the junp table.
By making all systemrequests via this junp table, an executed
program can be made conpati bl e between SOLGS, CUTER or ot her
properly witten surrogate. The junp table is described on the
foll ow ng page. A nore conplete description is contained in the
SOLOS/ CUTER User' s Manual

20

Appendix A (cont.)

SOLOS/ CUTER JUWMP TABLE

Addr ess Label Lengt h
xx00 START 1
xx01 INIT 3
xXx04 RETRN 3
xx07 FOPEN 3
XX0A FCLCS 3
xxX0D RDBYT 3
xXx10 VRBYT 3
XX13 RDBLK 3
XX16 VRBLK 3
XX19 SOQUT 3
xX1C AQOUT 3
xX1F SI NP 3
XX22 Al NP 3

Bri ef Description

This byte allows power-on reset for
SOLCS. It is 00 hex on a Sol; 7F hex
on other than a Sol.

This is a "JMP" to the power-on reset.
Enter at this point to return contro
froman executing program

Byte access file open.

Byte access file close.

Byte access read one byte.

Byte access wite one byte.

Read an entire file into nmenory.

Wite an entire file from nenory.
Standard character output routine. This
nmust be an "LDA" pointing to the byte
containing the current system out put

pseudo port val ue.

Character output to pseudo port specified
in register "A".

Standard character input routine. This
must be an "LDA" pointing to the byte
containing the current system i nput
pseudo port val ue.

Character input to pseudo port specified
in register "A".

The nost often used routines are: RETRN, SOUT and SINP. O her entry

poi nts may or

may not be used.

21

Appendix A (cont.)

JUWP TABLE | NPUT ENTRY PO NTS

SINP address xx1F

This entry point will set register "A" to the current
system i nput pseudo port. This nust be an "LDA"
instruction. After loading register "A", this entry
poi nt proceeds by executing "Al NP" described bel ow

Al NP address xx22

This entry point is used to input one character or status
information from any pseudo port. On entry register "A"

i ndi cates the desired pseudo port. Because this entry
point is a conbination status/get-character routine, it
is the user's responsibility to interpret return flags
properly. Wen a character is not available, the zero
flag will be set. Wen a character is available, the
zero flag will be reset and the character wll be
returned in the "A" register. As an exanple, the
followng code will wait for a character to be entered:

LOOP CALL SI NP get status or the character
JZ LOOP status says character not
avai |l abl e yet
character is in register "A"

JUW TABLE OUTPUT ENTRY PO NTS

SQUT address xx19

This entry point will set register "A" to the current
system out put pseudo port. This nust be an "LDA"
instruction. After loading register "A", this entry
poi nt proceeds by executing "AQUT" described bel ow

AQUT address xx1C

This entry point is used to output the character in the
"B" register to the pseudo port specified by the value in
the "A" register. On return, the PSWand register "A"
are undefined. All other registers are as they were on
entry. A user witten output routine (AQUT surrogate)
may buffer or delay the output as required for the
supported devi ce.

22

Appendix A (cont.)

The fourth aspect of the SOLOS/ CUTER interface is the format in
which the data is recorded on tape. Wen data is witten to
tape it is referred to logically as a "file". Each file has its
own header which describes the file. On cassette tape, each
header is followed by the file itself. The file itself is
witten to tape in segnents of 1 to 256 bytes. Each segnent is
i mredi ately followed by a Cyclic Redundancy Check character (the
CRC). The following is the general format of one file on
cassette tape:

{

t
+ File ' . ;
Preamble ' Header : The File '
%E' A l B C D E F G H SE%
5

VWher e:
A. Preanbl e

Preceding every file header is a special preanble. This
is a series of at least ten nulls (zeroes) followed by a
one (01 hex). This special sequence, and only this
sequence, indicates a probable file header foll ows.

B. Fi | e Header

This is the 16 byte file header. The layout of a file
header is:

NAME ASC 'ABCDE' A 5 character file name.
DB O Shoul d al ways be zero.
TYPE DB 'B +80H File type character. |If bit
7=1, this is a non-executable

data file.

SIZE DW LENGTH Nunber of bytes in file.

ADDR DW FROM Address file is to be read into
or witten from

XEQ DW EXEC Executi on begi nni ng address.

DS 3 Space not currently used.
C. File Header CRC
This is the CRC character for the file header. | f, when

reading a file header, the CRC character is not correct,
then the file header is to be ignored. A search would
then be nade for a new preanble (A above).

23

Appendix A (cont.)
D. File Segnent First
This is the first segnent of the file itself. A segnent
is from1l to 256 bytes. In this exanple, this segnent is
256 bytes.
E. File Segnment One CRC

This is the CRC character for the preceding segnent-- in
this exanple, the preceding 256 bytes.

F. File Segnent Last
This is the last segnent of the file. In this exanple,
this is 44 bytes. Therefore, the length of this file is
256+44=300 byt es.

G File Segnent Last CRC

This is the CRC character for the preceding segnent--in
this exanple, the preceding 44 bytes.

H Interfile GAP

This is a gap between files and is typically a clear
carrier for about five seconds.

CRC Conput ati on

The CRC character is conputed for each segnent or header. The
foll ow ng code perforns the CRC conputation assum ng: Regi ster
"A" is the character just witten to tape, and Register "C' is
the final CRC. Register C should be set to zero prior to
witing the first character of a segnent. After witing the

| ast character of a segnent and executing this code, Register
"C' is the CRC character for this segnent.

An 8080 Subroutine to do CRC Conputation

DOCRC EQU
SUB
MOV
XRA
CVA
SUB
MOV
RET

A=NEXT character and C=CRC

OO0 000
>

>

24

