Cassette PILOT
UsersManual

Describes Cassette PILOT, Release 2.2

Processor Technology
Corporatnon

7100 Johnson Industrial Drive
Pleasanton, CA 94566
Telephone (415) 829-2600

Copyright (C) 1978 by Frocescsor Technology Corporation
First Edition, First Printing, June, 1978
Manual Part No. 727111
All rights reserved.

IMPORTANT NOTICE

This manual, and the program it describes, are copyrighted by
Processor Technology Corporation. All rights are reserved.
All Processor Technology software packages are distributed
through authorized dealers solely for sale to individual
retail customers. Wholesaling of these packages is not
permitted under the agreement between Processor Technology
and its dealers. No license to copy or duplicate is granted
with distribution or subsequent sale.

Cassette PILOT was developed by John A. Starkweather of the
University of California at San Francisco. Portions of this
manual and a related PILOT, Version 1.1, were prepared under
contract to the Lister Hill National Center for Riomedical Com-
munications, National Library of Medicine, Bethesda, Maryland.
PILOT Release 2.2 is an extensive revision for the Processor
Technology Sol Terminal Computer or a similar computer using
CUTER software.

TABLE OF CONTENTS

SECTION PAGE
1 INTRODUCTION. ..ot vsenenrens Cseseess et enssennenns 1-1
1.6 INTRODUCTION....... Chtssecccsstassesanecenann 1-1

1.1 WHAT CAN I DO WITH PILOT?
WILL I BE ABLE TO DO IT?..ccccecreccncaccann . 1-1

1.2 THE PILOT SYSTEM, AND HOW TO USE IT......... 1-2

1.3 HOW THIS MANUAL IS ORGANIZED....... veeaansan 1-3
1.4 TERMS AND CONVENTIONS....coeeessscssssscsans 1-4
2 MAKING CONTACT..ceevevevne ceenenns ceessesrsensses. 21
3 PREPARING A SIMPLE PILOT PROGRAM...ctseeeeccncnns 3-1
3.1 INTRODUCTION......c.v0v0 ceeceneasesseseraaas 3-1
3.2 CONDITONAL EXECUTION, CONTINUATION
LINES, LABELS...ci.ceevecccces ceeenn ceccccns 3-2
3.3 JUMPS AND SUBROUTINES.....ceecovoceccccannan - 3-4
3.4 PILOT VARIABLES....... ceesecoee cesesesas eeee 3-7
3.5 COMPUTE AND REMARK....eeeeconasne ceecesesscssas 3-9
3.6 IMMEDIATE OPERATION....ccccoon . 3~-19
4 PILOT STATEMENT DESCRIPTIONS..¢:cctirieeecroccccses 4-1
4.1 STATEMENT SUMMARY......eceeenees cresectceenns 4—1
4.2 CORE INSTRUCTIONS..eeevecoscoosaans me s eeen e 4-3

T, Y, N, TH, A, M, MC,
MJ, J, u, E, C, R, RW

4.3 CURSOR AND VIDEO CONTROL INSTRUCTIONS....... 4-14

ca, CH, CL, CE, ROLL,
Control-DELete Character

4.4 AIDS TO CONVERSATION...eeessooncesocancscsns 4-16

FOOT, PAUSE, NEWS$, BYE, PR, CALL

i PILOT

SECTION

TABLE OF CONTENTS (Continued)

4.5 SET PARAMETERS . .¢:cetteesocecccncosnsanonnasas
SET, INMAX
4.6 FILE MANIPULATION INSTRUCTIONS:..eteeeeneeens

OPENF, CLOSEF, WRITE
REWIND, LOALD, READ

4.7 COMMANDS USUALLY USED IN
IMMEDIATE MODE. . s ettt eeeeeionaancocanacsnenna

GET, RUN, LIST, SAVE, COPY
CUSTOM, SCRATCH, INFO, CLEAR

ENTERING AND EDITING YOUR PILCT PROGRAM.....cse..
5.1 THE EDIT COMMAND...veeeueensecnossnnasaonesns
5.2 COMMAND CONTROL KEY LIST::eseeoesccaneonnens
5.3 DETAILED COMMAND DESCRIPTION....eceiueveanns

Cursor Positioning Commands..........

Direct File Positioning Commands.....
File Modification CommandsS.....oeeeen

USING THE TEST PROGRAMS, PLTST AND WAPP..........

ERROR MESSAGES AND HOW TO DEAL WITH THEM.........

APPENDICES
1 USING CASSETTES
2 WRITE IN PILOT, READ IN BASIC

3 REFERENCES

ii

5.3.1
5.3.2 Screen Scroll CommandS..ceeeeeececess ‘
5.3.3
5.3.4

PILOT

SECTION 1

INTRODUCTION

1.6 INTRODUCTION

PILOT is a programming language for interactive programs,
i.e., for those programs in which the user participates in a
kind of conversation with the computer by typing responses to
guestions posed by the computer. PILOT stands for Programmed
Inquiry, Learning Or Teaching, and has been used most commonly
as a language for computer-assisted instruction. It was first
developed at the University of California in San Francisco and
has been implemented on a variety of large and small computers.

This guide provides a description and operating proce-
dures for a version of FILOT that runs on the Sol Terminal Com-
puter manufactured by Processor Technology Corporation, or on
an equivalent 8682 microcomputer that uses CUTER software and
has a video display and CUTS format cassette tape controlled by
CUTER software.

1.1 WHAT CAN I DO WITH PILOT? WILL I BE ABLE TO DO IT?

PILOT enables a person without any prior computer
experience to develop and test dialogue programs for use
in an instructional context. The simplicity of the syntax,’
as well as the conversational structure of the system, make
it easy for the teacher to prepare a program and easy for the
student to use it, even without any training.

FILOT makes it possible, for example, to present the stu-
dent with a reading passage, give him time to study it, and
then ask him a series of multiple-choice guestions to check on
his comprehension. The program might include computer responses
keyed to the answer a student has given, or it might ask him for
his reaction to the passege, scan his response, and comment or
provide suggestions based on that response.

A teacher can prepare a vocabulary quiz that keeps track
of a student's score and then moves on or repeats a lesson, de-
pending on the student's performance or choice.

A PILOT program can introduce a mathematical word-problem
and offer the solution, step by step, or it can give the student
the opportunity to discover as many of the steps as possible,
with the computer hinting along or even revealina a step, when
necessary.

But PILOT has more than traditional academic applications.

1-1 PILOT

PILOT is also a vehicle for learning about computers.
You can write a program that teaches how to write a PILOT pro-
gram and let the student save the program that he writes, so
that it can be executed or revised on another occasion. (Or he
can write, edit, and run the program in the same sitting.)

A user can have considerable control over the order of events in
a program, and is therefore not likely to find the experience
intimidating. (If he's clever, he can even cheat on the math
test by "peeking" at the answers.) He can select what he wants
to read, or decide whether to repeat an exercise or execute
another program. He can even determine where his response will
appear on the screen and put it in a funny place or make it
appear with reverse video (i.e., white letters on black, for a
screen set to black letters on white, or vice-versa) to empha-
size a particular word in his answer. He can keep his answers,
list them, and review the exercises with which he had difficulty.

PILOT is also suitable for writing conversational games.

Section 3 of this manual introduces the elements of
PILOT by proposing a simple program design and showing how the
PILOT language can be used to realize and expand it.

Just as in a spoken language, you can express many ideas

and accomplish many tasks by combining a handful of simple
statement types.

1.2 THE PILOT SYSTEM, AND HOW TO USE IT

To take advantage of PILOT and have your programs under-
stood by the computer, you will need to use a program called
PILOT, which is recorded on your cassette tape (see Section 2).
The purpose of this important program is to interpret the state-
ments of a program written in PILOT language, so that they may
be executed by the computer. A program that fulfills this func-
tion is called an INTERPRETER. The PILOT interpreter is written
in a more complex language than you will be using to write your
own programs. The interpreter makes it possible for the PILOT
language to be as straightforward as it is. (The dirty-work has
to happen somewhere.) o

Obtaining access to the interpreter by "playing" it into
the computer from cassette is the first step involved in using
PILOT. Here is a typical sequence of steps for using PILOT:

1) Make contact, "playing" the interpreter into the computer;

2) Prepare a program, using PILOT language statements;

3) Enter the program, using the EDITOR, a special part of
PILOT;

4) Save the program on cassette tape;

1-2 PILOT

5) Use a program that has been recorded on cassette tape; and

6) Make changes in the program, if necessary.

It should already be clear that, since PILOT is so
highly interactive, the person sitting at the keyboard and
playing the program from a cassette tape will be able to make
certain choices as to the way in which the program will behave.
To some degree, you can provide for this decision-making in the
program, itself; to some degree, PILOT provides for user
choices. 1In general, one of PILOT's primary features is that a
given program may not provide exactly the same experience every
time that it is used; rather its operation will be conditioned
by the needs and reactions of different users on different
occasions.

The order of events outlined above is not hard and fast.
For example, you may use the PILOT EDITOR to edit a form-letter,
or you may not want to enter a program of your own, but simply
to use one prepared and saved in advance. Another very common
practice would be bouncing back and forth between the inter-
preter and the EDITOR, saving the program only when you were
satisfied with its form.

WHY NOT BASIC?

It is possible to write interactive programs in a general
purpose programming language such as BASIC, APL, FORTRAN, or
PL/1 instead of in PILOT. The reverse is certainly not true,
for PILOT is a specialized language oriented toward dialogues,
drills, tests, etc., rather than toward some kinds of computation
handled well by general purpose languages. The advantage of
PILOT over general purpose languages such as BASIC is that
interactive programs are easier to write in PILOT. If a BASIC
program is to handle free-response dialogue, the programmer must
often make unwieldy arrangements for processing input and com-
paring words or portions of words that the program must recog-
nize. In PILOT this kind of processing is easy, and the programs
are more readable by human beings than they might be if they
were written in some other computer language.

1.3 HOW THIS MANUAL IS ORGANIZED =

This manual attempts to give complete written informa-
tion about PILOT programming and the operation of 8086 PILCT.

Section 1 - introduction, definitions and conventions

Section 2 - procedures for "making contact" with PILOT;

Section 3 - a tutorial introduction to the fundamental PILOT
statement types;

Section 4 - a detailed description of the syntax of the
PILOT language;

Section 5 - a description of the PILOT EDITOR;

Section 6 - comments on the two test programs distributed
with PILOT; and

Section 7 - a survey of errors and error messages.

1-3 PILOT

We encourage you to explore the actual operation of PILOT
instructions by using the test programs described in Section 6
and recorded on the same tape as PILOT, itself. Many PILOT
functions are demonstrated by these programs. After reading
this manual, you might even want to try quessing what combina-
tions of commands were used in the test programs. Then list
the programs--you will know how--and see whether you were cor-
rect! (Of course, as with any language, even given a limited
number of statement types, there will be several ways of expres-
sing the same idea "correctly." You will probably want to
approach problems in the ways that seem to you to be the clearest
and most convenient.)

1.4 TERMS AND CONVENTIONS

The following terms will appear freguently in our discus-
sion. The definitions given here are not technical, nor even
very complete, but should provide some insight into the kinds
of concepts that are being described when these words and ex-
pressions are used.

A BUFFER is a temporary storage space set aside inside the com-
puter for a collection of possible items. A PROGRAM

BUFFER, for example, is space set aside for the information
necessary to execute a certain program. (Think of setting up a
room in a theatre as a temporary dressing-room for a group of
visiting actors. Ideally, you provide a place where an actor,
or several actors, can go to change clothes, if necessary, with-
out having to worry about being disturbed. Actually, for the
plan to work, you must also take precautions against anyone's
accidentally walking into the room. There are similar precau-~
tions to be taken when using computers.)

A CHARACTER may be a letter, a punctuation mark, a number, or a
symbol. Note that CHARACTERS, even those which represent num-
bers, are not involved in computations, i.e., the symbol "3"
plus the symbol "2" does not yield the number "5," the symbol
"5," or, in fact, anything meaningful for our purposes. A
CHARACTER is not a guantity, but a representation. A CONTROL
CHARACTER is formed by hitting the control key and another key
simultaneously. Some CONTROL CHARACTERS function as commands
to the computer and are not displayed on the screen. Others
are displayed as special graphic symbels. (There is a chart
of these graphic symbols in Section 5.)

COCE has two meanings. 1In its more standard usage, the CODE for
something is a sign that is used to stand for the thing. A more
specialized meaning of the word is: that sequence of instruc-
tions, in a computer language, that makes up a computer program,
or part of a computer program. When you write a PILOT program,
you will be writing CODE which is translatable into activity by
the computer. ‘

A COMMAND is a direct instruction to the corputer. A STATEMENT,
by contrast, is indirect. It is entered as a line in a progran,

1-4 PILOT

and initiates no immediate activity. Almost every "sentence"
in the PILOT language can be used toth as a program STATEMENT
and as a direct CCOMMAND. The convention we will adopt for this
manual is to use the word STATEMENT, except in the context of
immediate execution. (As we shall see, the COMMANDS which be-
long to the PILOT EDITOR are not part of the PILOT language,
and always result in immediate execution.)

A CONSTANT is an item of data that has a fixed, or constant,
value. 32 is a CONSTANT.

A CURSOR is the rectangle that is visible on the video display

screen. It serves to show the screen position at which the next
CHARACTER will be displayed.

EDITING a FILE is modifying that FILE in any way, including
typing it into the computer for the first time. The EDITOR is
that program, or that part of a program, which enables you to
uce certain direct COMMANDS to EDIT a FILE.

EXECUTION is the actual "running" of a program. When execution
occurs, the computer follows programmed instructions.

A FILE is a collection of related information, usually named and
referenced as a unit. Think of a FILE as a way of saving such a
body of information for subsequent use. A FILE can contain a
program, text, or data of various kinds. A DATA COLLECTION FILE
is a FILE that you set up to store information that the computer
receives, in this case, from the keyboard, and that you designate
as something that you want to keep. A FILE is very different
from a BUFFER, in that 1) a BUFFER is a temporary storage area
that exists only during the operation of a program, whereas a
FILE (at least for our present purposes) is a permanent record,
2) a FILE is usually recorded on some kiné of device (e.g.,tape)
outside the "memcry" of the computer, whereas a BUFFER does not
exist, theoretically, when the computer is inactive, and 3) a
FILE consists of information, whereas a BUFFER is a place where
information can temporarily reside. (A FILE is analogous to the
group of visiting actors, all staying at the same motel, and
therefcre reachable at the same telephone number.) ~Recording a
FILE on an external device is called WRITING the FILE; retriev-
ing a FILE from storage is called READING it.

An INTEGER is a number that can be divided by one without leav-
ing a fractional remainder: 5,-5, and @ are all INTEGERS.

LOALING a program is reading into the computer the instruction
set that makes up the program. You cannot execute a FILOT pro-
gram that you have saved on cassette until you have LOADED it.

MEMORY is the storage area of the computer. One of the important
facts to remember about computer MEMORY is that it is limited.

It is possible for a program, or a DATA COLLECTION FILE, to be
too large for the computer to accommodate. Ve will discuss ways

1-5 PILOT

of making sure that the programs we are using are not too big to
fit into MEMORY. (A BUFFER is one way of allocating a portion o
MEMORY.)

A STRING, or CHARACTER STRING, is a set of consecutive CHARACTERS.
"DOG," "23," and "The cat is on the mat" are all STRINGS.

A VARIABLE, by contrast to a CONSTANT, is a name to which
different values can be assigned. The eguation x = 3 causes
a value of 3 to be assigned to a variable named x. Computer
languages have rules for designating VARIABLES. We will
discuss rules for PILOT variables in Section 3.4.

The following conventions will be used in this manual:

1. PILOT statements and commands will be represented in capital
letters, even though you do not really have to enter them in
capital letters. EDIT, LOAD, and MC are all examples of PILOT
commands.

2. Where an expression is enclosed by angle trackets <like this>,
the expression tells what kind of item should be typed as part
of a statement. For example, <number> indicates that a number
should be entered (without the brackets). <cr> indicates that a
carriage return should be struck.

3. Sguare brackets [like these] enclose an optional element in
a statement. For example, [<filename>] indicates that the use
of a filename is optional. The brackets, again, are not literal.

4., In examples that contain PILOT code, two rows of dots are

used to indicate code that was omitted because it was irrelevant
to the example.

<statement>

* e o

<statement>

5. "cond" is an abbreviation for "conditional expression." A
conditional expression is used in cases where a statement should
be executed only if a specific condition is met. <Conditional
expressions are discussed at length in Section 3.2.

6. Regard the video display screen as divisible into 16 horizon-
tal ROWS and 64 vertical CCLUMNS. When you type in a PILOT com-
mand, the characters that you type will fall in the same ROW,
but in consecutive COLUMNS. It is not necessary to begin typing
a PILOT statement in any particular COLUMN within a ROW. 1In the
examples in this manual, indentation may be used for the sake of
readability; it has no effect, whatever, on the operation of the
program.

1-6 PILOT

7. Quotation marks (" ") are used to enclose a message that
appears on the screen, e.g., "PREPARE TAPE 1."

8. Control characters, those formed by depressing the control

key in conjunction with another key on the keyboard, are denoted
by ctrl-<character>; for example, ctrl-aA.

1-7 PILOT

SECTION 2

MAKING CONTACT

The first step for using PILOT is to load the PILOT
interpreter into your computer. Unless you are very well-
versed in the use of cassette recorders, you might want
to look at the appendix called "Using Cassettes." (If you plan
to be reading and writing files, you can decide to use two tape
recorders, one for input and one for output. If you use sepa-
rate recorders for the two functions, use unit 1 for reading
programs and unit 2 for collecting data. See Section 7 of your
Sol manual or the appropriate section of your own system manual
to be sure that you correctly connect the recorders to the
interface device.) For our introduction to PILOT we will need
only one cassette recorder and the PILOT program tape.

Sit at your terminal or imagine yourself seated there.
(The former alternative is recommended.) Type the SOLOS/CUTER
CA command, rewind the tape and position it past the leader.
Now hit the MODE SELECT key and wait for the SOLOS/CUTER
prompt (>). Put the recorder in PLAY mode, type the SOLOS/CUTER
XEG command or the GET command (don't forget the carriage re-
turn), and wait for about a minute while the tape is being read.
If you used the GET command, you will have to enter EX 160 to
start the program.

EXAMPLES:

XEQ <cr> This command plays the program
from the cassette and starts the
program.

or

GET <cr> This command plays the program
from the cassette.

PILOT © 0196 1B57 when the tape has been read,
the computer displays this
message on the same line as the
GET command.

EX 188 <cr> This command starts the prodaram.

If PILOT has been accessed properly, you should see the follow-
ing message on your video screen.:

2-1 PILOT

8080 PILOT 2.2 (MOD 000)
Copyright (C) 1978, Processor Technology Corp.

Immediate commands are:

LOAD GET SAVE COPY READ
RUN EDIT INFO CLEAR SCRATCH
SET LIST REWIND BYE CUSTOM

Now that you have made contact with PILOT, you can enter
any of the PILOT immediate commands. We need to consider, at
this point, only two of the possible commands: LOAD and BYE.
If you want to try either, or both, of the test programs,

PLTST and WAPP, you can do so by typing LOAD or pressing the
LOAD key, and following whichever of these you entered with a
space, the program name, and a carriage return. (PLTST and
WAPP are described in Section 6.)

EXAMPLE:

—— T —— — —— - - —— —— ——— — ————— - ——— ———————— — — —— T — — ——— e —— —————— T — ——— — - d———

T —— — — — T = — G A —————————— T — ———— ——— ——— — ———— T T T ————— - ——— ——— A — o — ——

If you omit the program name, you will load and execute what-
ever program is recorded next on the cassette tape; if you enter
only a carriage return, nothing will happen.

You will notice that you started PILOT at "address" 100.
Between 160 and 103, where the message regarding immediate com-
mands arises, the PILOT system is INITIALIZED: that is, storage
space is allocated, various parameters are set, and the computer
is made ready for subsequent operations. Sometimes you will
want to discontinue or interrupt a PILOT program and return to
PILOT. For example, you may be thinking of adding some ques-
tions to a spelling test program that you have LOADed into the
program buffer from a cassette tape. To to discover exactly how
large the program already is and whether there will be enough
room to make the desired addition, you want to leave_ the program
and ask PILOT for that information. If you were to restart
PILOT at 168, it would reinitialize the whole system, erasing
your spelling test program, and any variables that you had
stored in the memory of the computer. The way to avoid this
disgruntling occurrence is to restart PILOT at 103, bypassing
the initialization of the system. This point, at which the
"Immediate commands..." message again appears (this time,
though, without title or copyright information) will be called
FILOT RESTART, and can be reached, as we will see, 1n a variety
of ways.

When you have finished with the test programs, or if you

want to wait until later to try them, leave PILOT by typing
BYE (an immediate command) and rewind your tape.

2-2 PILOT

SECTION 3

PREPARING A SIMPLE PILOT PROGRAM

3.1 INTRODUCTION

A student is sitting at the computer keyboard. He is about
to begin executing a PILOT program that he has been told consists
of a reading comprehension exercise. You have showed him how to
load the program, or he has read Section 2 of this manual and
found the instructions for himself. He types LOAD <program name>
<cr>, and soon sees on the screen the guestion:

"Do you like to read? (Type in an answer.)"

He types , "Not much,” and the computer replies:
"You don't? Well, this exercise isn't too long."

Or he types , "Yes, most of the time," and the computer replies:
"Oh, good. I hope you enjoy this exercise!"

The reading exercise program has done four things so far:
1) typed text, 2) accepted an answer, 3) matched that answer
with some kind of vocabulary data, and 4) replied accordingly
(by again typing text). Let us use a shorthand for the three
basic functions involved:

T: for "type text"
A: for "accept an answer"
M: for "match"

Let us also suppose that, by appending a Y or an N to one of the
codes, we can "condition" the performance of the function, i.e.,
we can make performance conditional upon a successful match of
the student's last response with the vocabulary data. Here is
the hypothetical program:

COLE FUNCTION
T:Do you like to read?... Type this text on the video display.
A: Accept an answer from the Kkeyboard.
M:no Check for a match with this text.
TY:You don't? That's... Type this text if a match was found.
TN:0h,good. I hope... Type this if a match was not found.

The sequence of statements in the column labeled "COLDE" is, as
you have probebly guessed, valid PILOT language.

3-1 PILOT

A FILOT program consists of a series of statements that
give a step-by-step description of what the computer must do to
interact with a person sitting at a keyboard. An instruction
code, consisting of one or more letters followed by a colon,
defines the statement type and determines its function.

Single letter codes define "core" instructions that oc-
cur in all versions of PILOT. Of these, the three most import-
ant are the ones we have already used (T, A and M).

The letters Y and N are "conditioners" that can be ap-
pended to another code, causing it to be effective or not depend-
ing upon the success of the last attempted match.

PILOT is designed for the development of conversational
programs that allow relatively free response by the user. As
indicated in the example above, recognition of user responses is
accomplished by searching the responses for specific words
or word stems. In ordinary conversation, one or more words in
a sentence often carry most of the sentence's meaning. The
M-statement is used to define those words, portions of words, or
word groups that we want recognized in an answer. 1In the example
we have been using, the M-statement will find the desired match

in the answers "no," "not much," "nope," "not really," "I don't
know," and "Not unless it's about sports." It will not respond
properly to "only comic books," "very seldom," or "Yes, especially
novels." '

Conversation in a PILOT program is facilitated both by
the structure of the language, and by the programmer's ingenuity
in designing questions and matching replies. For example, it is
more effective to search for a negative answer than to search
for a positive one, because the letter combination "no" will
occur in almost all negative answers. It is permissible to use
more than one word or word stem in an M: statement.

Detailed explanations of all of the statements in the
PILOT language are found in Sections 4.1-4.7.

3.2 CONDITIONAL EXECUTION, CONTINUATION LINES, LABELS

If we were limited to asking a guestion, scanning for a
particular word in the answer, and replying accordingly, PILOT
would not be a very useful language. Fortunately there are
other statements and options that we can use to accomplish more
complicated tasks. For our reading comprehension program, we
want to be able to present a reading passage more than one line
long, ask related questions, and, perhaps, move to one of
ceveral possible points in the program, depending upon the ful-
fillment of a certain condition. To do these things, we need
provisions (some of which we have already discovered) for condi-
tional execution, ways to continue text beyond the first line
entered, and a way of labeling parts of a2 program so that control
can be directed to any one of them by name. (To direct control
control is to determine which statement of the program will be
executed next.) PILOT has all of these capabilities.

3-2 PILOT

CONDITIONAL EXECUTION

As we have already seen, Y or N can be appended to any
statement, as a "conditioner" of that statement. Operation
will then depend upon whether the last M statement was success-
ful. Y: by itself is a shorthand form of TY: Likewise, N:
by itself is a shorthand form of TN:

The execution of a PILOT statement can also be made
dependent upon the value of a numeric variable or expression;
the variable or expression should appear in parentheses between
the command code and the colon. (Rules for variables are given
in Section 3.3; rules for expressions are in Section 4.2.)

If the value of the variable or expression is greater than 0,
then the statement will be executed. Otherwise it will be ig-
nored.

TY(X): will be executed if X=16¢, but not if X=0

If both a numeric condition and a Y-N condition are
used in the same statement, the statement will be executed only
if both of the prescribed conditions are satisfied. For example,
the statement TY(X): will type subseguent text only if the most
recent match was successful AND the value of X is positive.
(For instance, you can determine that a student may proceed to
the next exercise only if 1) he has no questions on the previous
exercise, and 2) his score on that exercise was acceptable.)
T(X)Y: and TY(X): are interchangeable.

CONTINUATION

If you want to type a number of lines of text, only
the first line must be preceded by a T: All subseguent lines
may be preceded simply by a colon, or, in fact, by no introduc-
tory character at all.

T:THIS TEXT WILL BE DISPLAYED
:AND THIS WILL ALSO BE DISPLAYED
AND SO WILL TREIS.

In fact, because PILOT will simply display any unexecutable

text, you can even "draw" a picture by arranging characters
on the screen:

3-3 PILOT

EXAMPLE:

(PILOT program) (display)
T: what shape is this? What shape is this?
A (user enters "triangular")

—————————— - _——————— - —— — T ——_— — i ——— A o f——_—— ——— . —— - —— — - - = - ———— — — o ——— - ————

PILOT LABELS

Any PILOT statement may include a label, either as the
first element of the statement or on the line above it. A
label serves as a kind of landmark in the code, so that you can
say in your precgram, "Go to this point right away, and do what-
ever you are told when you get there." (As we shall see, you
can also say, "and be sure to come back, when you're finished!")
FILOT labels begin with an asterisk (*) and end with a blank.
They may have a maximum of ten characters. If a label is the
only item in a line, it refers to the statement or group of
statements following it.

No complaint is made if there are duplicate labels, but
only the first in sequence will be found when the label is
referenced.

EXAMFLE:
(PILOT program) (display)
*LABEL
T:DISPLAY THIS DISPLAY THIS
3.3 JUMPS AND SUBROUTINES

Now that we have some additional tools, we can expand
and develop our reading exercise program. For the sake of con-
venience, let us say that the reading passage that we want to
use is a popular fairy tale.

T: Once upon a time....

And they lived happily ever after.

3-4 PILOT

The student will be considering the text in screenfuls, that is,
in segments a maximum of sixteen lines long. By inserting an

A statement &after every screenful of information, we give the
student an opportunity to indicate, by his response, that he has
finished reading that portion of the text and is prepared to
continue with the exercise. If we did not arrange for a pause,
the text would appear and then disappear off the top of the
screen much too fast for anyone to read it.

Thus, we might display the first part of "Beauty and the
Beast," 1in which a father takes leave of his three daughters
before setting out on a buciness trip. Ke asks each daughter,
in turn, what she would like him to bring her

We have already used one easy method of programming gues-
tion and answer seguences. Usging the T, A, and M statements, we

can ask a guestion and analyze the answer in either of the fol-
lowing ways: ~

T: What did the youngest daughter want her father
: to bring her when he returned from his journey?

A:

M: rose

TN: No, she wanted him to bring her a rose.

or

=

What did the youngest daughter want her father
to bring her when he returned from his journey?
Enter the number of the correct response.

TN: No, she wanted him to bring her a rose.

After the student has answered the first set -of gquestions,
we can give him another choice. We can use a T statement to
ask him, "Do you want to read the last story again?" Presumably,
if his answer is negative, we will want to go on to the next
story; if his answer is affirmative, we will want to jump back-
ward in the program and repeat execution of those statements
that cause the story to be displayed.

To effect the jump, we need two elements of PILOT
language: a label to which tc direct the action of the proaram,
and a statement that directs the action to that label. The
PILCT statement that initiates a jump to a specified label is
the J: statement. Let us go back an¢ insert a label at the
beginning of the original series of T statements:

3-5 PILOT

*STORY1
T: Once upon a time...

and then let us insert the J statement, after the first group of
guestions:

T: Do you want to read the last story again?
A:

M: yes

JY: *STCRY1

Notice the use of the conditioner as part of the J statement.

With the program arranged this way, the student who asks
to have the story repeated must answer all of the questions
again. The J statement does not provide for any return to the
original statement. What if you wanted the student to be able
to review the story without answering the questions again or to
look back at the story between questions to correct a wrong
answer before proceeding? We need a way to isolate a group of
statements to which we can jump from wherever we are, without
losing our place in the execution of the program. (We also need
a way to jump ahead in a program, without necessarily having
to skip all cf the intervening code.) A group of statements
that we reference as a unit and after whose execution we auto-
matically return to our prior position in the program, is
called a SUBROUTINE. A PILOT statement that calls for the USE
of a certain labeled group of statements as a subroutine is the
U statement.

To use a U statement to enable our student to review
what he has just read, we can to mark the beginning and end of
the set of statements that we want regarded as a subroutine.

The label *STORY1l, which we inserted to mark the destination of
a J statement, will mark the beginning cof the subroutine STORY1.
The statement to mark the end of a subroutine, or of an entire
program, is called the End, or E, statement.

In our example, the E statement should be placed at the
conclusion of the text:

*STORY1

T;.Aﬁd they lived happily ever after.
E:

3-6 PILOT

The U statement can replace the current J statement, or it can

be put after any one of the individual guestions, or it can be
inserted repeatedly, wherever you want the story to be displayed
again. At any of these points, you can have the student "detour"
to a vocabulary or grammar exercise within the same program by
marking a subroutine accordingly and calling it. The subroutine
can be called either unconditionally or depending upon fulfill-
ment of a specified condition. The syntax of a U statement is
identical to that of a J statement.

*STORY1

T: And they lived happily ever after.
E:

e o s &

-

T: Do you want to read the last story again?
A:

M: yes

UY: *STORY1

3.4 PILOT VARIABLES

A variable was defined earlier as "a name to which ‘
different values can be assigned." 1In PILOT, we can concern
ourselves with two types of variables: numeric variables, and

string variables.

STRING VARIABLES

PILOT allows the input to an Accept (A:) statement to be
saved as a character string and retrieved later in the program.
The string variatle name, with which the string will henceforth
be associated, is written after the colon in the A statement. A
string variable name begins with "$" and ends with a blank or
carriage return. o

Later on, if the string variable name appears in any
portion of a TYPE (T:) or REMARK WRITE (RW:) statement, it
will be replaced with the value most recently assigned to it.
If there has not been a value assigned to it, the variable
name, itself, will be used by default.

3-7 PILOT

EXAMPLE:

(PILOT program) (display)
T: What is your favorite story? What is your favorite story?
A:STITLE (User enters "Pinocchio")
T: Who is the hero in STITLE? Who is the hero in Pinocchio?
T: This is Sunknown. This is Sunknown.

A string variable name may have a maximum of ten char-
acters in addition to the dollar sign. The maximum length of a
character string to be stored as a string variable is dictated
by the parameter INMAX, which can be set within a PILOT program
and will be described in Section 4.4.

NUMERIC VARIABLES

Numeric variables may be assigned integer, or whole num-
ber, values in the range of -32768 to 32767. Numeric variable
names begin with the pound sign character (#) and consist of one
letter (A-Z). Like string variable names, they are inserted
after the colon in an Accept (A:) statement, so that whatever
legal value is entered becomes associated with the named numeric
variable. In the execution of an ensuing Type (T:) or Remark
Write (RW:) statement, the current value of a variable will be
substituted for the variable name. If no value has been assigned
to the variakle, the current value is assumed to be zero.

Any time that you return to PILOT restart to execute an
immediate command, you have the option of using the CLEAR com-
mand to reset all of your numeric veriables to zero. Otherwise,
the last values assigned to them are retained. String variables
are unaffected by a return to restart UNLESS you load a program
or program segment longer than the previous one, in which case
you risk locsing the variables most recently set. The INFO com-
mand, discussed later, will allow you to avoid such a problem.
There is also a NEWS command, which permits you to clear away
away string variables so that you can reclaim the space which
they have occupied in the program buffer.

EXAMFLE:
(PILOT program) (display)
Lidx "23" entered
T:THE VALUE IS #X THE VALUE IS 23

You can change the value of a numeric variable by accept-
ing a new value in another A statement (thereby causing the new
entry to supersece the former value), or by assigning s new
value as part of a Compute (C:) statement.

3-8 PILOT

3.5 COMPUTE AND REMARK

In our fairy tale example, we might want to dictate that
a jump be made, a subroutine used, or a message displayed,
depending on how well the student performed on the last set of
exercises. In anticipation of this need and other arithmetic
applications, PILOT provides a Compute (C) statement.

EXAMPLE:

(PILOT program) (display)
T: How o0ld are you? How o0ld are you?
A:#N (User enters "6")
C: N=N+1

T: Then you'll be #N next year. Then you'll be 7 next year.

To keep track of a student's score on an exercise, we can insert,
after every M statement following a guestion a command that adds

1l to the value of a numeric variable ON THE CONDITION that the
previous answer was correct:

T: What did the youngest daughter...

A:
M: rose
CY: N=N+1

The conditions governing the use of compute statements in PILOT
are discussed more explicitly in Section 4.2.

The final "core" cstatement in this initial overview of
PILOT is the Remark (R:) statment, which might, at first glance,
seem almost useless, since its function is to tell PILOT, "Ignore
this remark." Actually, the R statement can be very useful:
as you develop bigger and more complicated PILOT programs, you
might want to write yourself or another programmer notes about
what is heppening in the code at a particular point. Say, for
example, you have a very long program, so long that you have
divided it into several PROGRAM SEGMENTS to be executed in suc-
cession. At the beginning of a certain segment, you might want
to insert some documentation for yourself.

EXAMPLE:

R: This is the second segment of an exercise program
Kk: intended for students who performed below average
R: on the diagnostic test.

3-9 PILOT

3.6 IMMEDIATE OPERATION

Whenever PILOT is awaiting input from the keyboard, wheth-
er in response to an A statement, or at the PILOT restart point,
the user is able to submit a command of his own for immediate
execution. The syntax of such an "immediate command" is impor-
tant: any statement within PILOT can be entered as a command,
as long as it is preceded by a backslash (\) and, where there
is not already a colon in the syntax of the statement, termina-
ted by a colon (:). For example,"\U:*LABEL" will cause immedi-
ate execution of the referenced subroutine; \LOAD: will cause
a new program to be loaded from the cassette tape.

The interactive possibilities of PILOT are greatly enhanced
by the use of these immediate commands. For example, there is
the option of letting the student specify & detour to the sub-
routine of his choice, or of allowing him to calculate his own
score on an exercise, in order to determine whether to continue.

After the execution of an immediate command, PILOT
returns to the A statement in reply to which the immediate com-
mand was entered and awaits an answer. (The J and U commands
entered for inmediate execution work slightly differently, in
that the answer to the last question must be supplied for the
immediate command to take effect. In the other cases, the user
will be expected to answer the last gquestion only AFTER the exe-
cution of the immediate command.) Exceptions to the rule of
return to the A statement are the \LOAD:, \READ:, and \GET:
commands, whose execution obliterates the program in memory, and
\<cr>, which stops the current program and returns PILOT to its
restart point.

When PILOT begins operation, it displays commands that
are often used in an immediate mode. These are LOAD, GET, SAVE,
COPY, READ, KUN, EDIT, INFO, CLEAR, SCRATCH, SET, LIST, REWIND,
BYE, and CUSTOM. These commands move and alter files, make some
determinations as to how your equipment will function, and provide
information that is usually more useful to the programmer than
to the user. At this point of control, defined in Section 2
as "PILOT restart," these commands may be entered for immediate
operation without an initial backslash (\) or a terminal colon (:).

At PILOT restart, typing RUN will cause program execu-
tion to begin. Thus, if you have just entered a program in the
PILOT EDITor (see section 5), you will initiate the execution
cf that program. Otherwise, you will execute the last program
stored (using LOAL or GET or READ) in the program buffer (unless
you left PILOT in the meantime). Pressing the LOAD key is equi-
valent to typing the word LOAD, and causes another program or
program segment to be read from the cassette tape into the pro-
gram buffer. LOADing also initiates execution of any executable
file: that is, of a PILOT program.

3-10 PILOT

IMPORTANT NOTE ON IMMEDIATE COMMANDS

If you enter an immediate command from within a PILOT pro-
gram and you neglect to include the colon following the letter
code for the command, the line which you have entered will be
displayed on your video screen, without any other effect on the
operation of the program.

3-11 PILOT

SECTION 4

PILOT STATEMENT DESCRIPTIONS

4.1 STATEMENT SUMMARY

The following section describes each of the PILOT in-
structions provided in this version of PILOT for the 8086 micro-
processor. The descriptions include syntax, function, and
examples. Where appropriate, error messages that might be gen-
erated by invalid statements or invalid user response are des-
cribed. In the examples below, the column marked "display"
shows text and messages IN THE ORDER THAT THEY APPEAR ON THE
SCREEN. This order does not necessarily correspond to the order
of statements in the PILOT program

Section 3 of this manual provided a brief overview of the
PILOT core instructions, which will be treated in greater detail
on the pages indicated:

PILOT CORE INSTRUCTIONS

PAGE
T TYPE (includes Y: and N:)........ 4-3
A ACCEPT ..t cceeeeeosansancsossssscnnse 4-5
M: MATCH. ¢ coceeeecesnonsanse seesnenan 4-6
J JUMP . eeesteencncocns s s s essenrsmene . 4-7
U: USE.eieeeeececccaosososcsosasnscassoce 4-8
E END.veeereeenoeans sesesssssannse .o 4-16
C COMPUTE . et cteeesoescccnoscsosccscsos .o 4-11
R: REMARK. ..o teesesessseancs e .o 4-13

Note that the core instructions are limited to single
letter codes. These instructions are standard in syntax and
operation for many different implementations of PILOT. It is
therefore advantageous to use core instructions as much as pos-
sible, so that users of other versions of PILOT may _benefit
from your work. Multi-letter codes represent "keyword" instruc-
tions that have been added to PILOT to meet special needs. When
you use them, you should keep in mind that they do not necessarily
exist in all other versions of PILOT.

4-1 PILOT

8680 PILOT KEYWORD EXTENSICNS

PAGE
BYE: EXIT FROM PILOT . te.eeeeeeanaascoonscos 4-19
CA:r,c CURSOR ADDRESS (ROW & COLUMN).veveesun 4-14
CALL: CALL PROGRAM ELSEWHERE IN MEMORY..... 4-20
CE: CLEAR TO END OF SCREEN. .. v eeeeeaoceses 4-14
CH: CLEAR SCREEN AND HOME CURSOR.::eceveess 4-14
CL: CLEAR TO END OF LINE. . v eeeeeesocncsas 4-14
CLEAR: CLEAR NUMERIC VARIABLES ... ecocesoseaos 4-33
CLOSEF: CLOSE DATA COLLECTION FILE . ee:eeeeeses 4-24
COPrY COPY PROGRAM TAPE *...¢.eivececeneeenn 4-30
CUSTOM CUSTOM COPY FILOT AND PROGRAM. ¢+ v o v 4~30
EDIT: EDIT CURRENT PROGRAM. ...'veeee.n ee e 5-1
FCOT: FOOT OF SCREEN HALT AND PRCMPT....... 4-16
GET LOAD BUT DON'T EXECUTE *..cveeeueonnan 4-28
INFO FILE SIZE INFORMATION *,. .,eeceecees 4~32
INMAX: INFUT LINE LENGTH MAXIMUM...veeeeenon 4-22
LIST: LIST THE CURRENT PRCGRAM *.,,...... e e 4-30
LOAL: LOAD NEW PROGRAM. .. veveeenrreconacnne 4-26
MC: MATCH TEXT WITH COMMAS...eeeeveeen I 4-6
MJ: M: FOLLOWED BY JIN:@M. .. iveeoeenonnn 4-6
NEWS: ERASE STRING VARIABLES ceeeoneooss 4-18
OPENF: OPEN FILE FOR DATA COLLECTION........ 4-24
PAUSE:t PAUSE t SECONDS (PA:)eieceeescocsacsas 4-17
PR: PROBLEM START (target for J:@P)...... 4-19
READ: READ FROM DATA FILE.. ... ceeocssecns 4-27 -
REWIND: POWER MOTOR ON CASSETTE RECORDER..... 4-26
ROLL:n ROLL SCREEN n LINES (or RL:n)..e.o... 4-14
RW: REMARK WITH WRITE DATA..¢.ceeceoocess 4-13
RUN EXECUTE THE PROGRAM IN MEMORY *...... 4-29
SAVE SAVE CURRENT PROGRAM *.....icteccascss 4-30
SCRATCH DELETE PROGRAM **,¢iicveceeresoses 4-31
SET: SET SOLOS PARAMETERS S,0,N...ceceee., 4-21
TH: TYPE WITHOUT CR & LF.e.ecreeeriennnvene 4--3
WRITE: WRITE INTO DATA FILE (or WR:)........ 4-25

* usually used in immediate mode
** ONLY used in immediate mode

For purposes of our discussion, we divide PILOT instruc-
tions into six categories, corresponding, roughly, to the type
of instruction or to the service performed. We hope this method
cf organization will make it easier for you to use this manual
as a reference. The groupings are:

1) Core instructions--those which perform all of the
most basic functions in PILCT (already discussed).

2) Cursor and video control instructions--those which
enable you to determine where text will appear on
the video screen,

4-2 PILOT

3) Aids to conversation--those instructions which faci-

litate dialogue in PILOT by extending the available
core instructions,

4) Instruction that set various kinds of parameters

5) File manipulation instructions--those related to
storing and retrieving programs and data, and

6) Commands usually used in immediate mode from
PILOT restart. (They may actually be executed
from within a PILOT program, but might cause
complications if not used carefully.)

The EDIT command, which makes it possible for you to

enter and alter text or program files, has its own extensive
treatment in Section 5.

Before continuing, you may want to review the terms and
conventions introduced in Section 1.4.

4.2 CORE INSTRUCTIONS

These are the statements that you will be using most
frequently in your PILOT programming. They let you type text
on the video screen, accept and analyze responses, and alter the
order in which statements are executed. There are a number of
"keyword" instructions, which are discussed in connection with
with the core instructions to which they are closely related.
These are TH:, RW:, and the variations on J: and M:. Remember
that such instructions do not share the standardization of
of normal core instructions.

%k kK
STATEMENT * TYPE (T:), YES (Y:), and NO (N:)
* TYPE AND EANG (TH:)
* %k ok

SYNTAX:
[<label>] T ([<cond>] : <message>
[<label>] Y [<cond>] : <wmessage> e
[<label>] N [<cond>] : <message>
[<label>] TH [<cond>] : <message>

DESCRIFPTION: Display a message to the PILOT user. A
message consists of a character string that may include one or
more variable names. All character positions to the right of
the colon are reproduced literally except that the values of
variables are inserted as replacements for their names. Strina
variatle names are a maximum cf ten characters long and are

preceded by "$." QNumeric variable names sre one letter long
and are prececded by "#."

Sabacus is a string variable.
#a is a numeric variable.

4-3 PILOT

Typing a ctrl-DELete character in the text of a Type
statement causes the remainder of the line to be displayed on
the screen in reverse video. This capability is described
under the heading, "Cursor and Video Control."

YES (Y:) and NO (N:) statements are abbreviated forms
of TY: and TN: and are entirely eguivalent in operation. It
is acceptable to use the arithmetic conditional with either of
these forms. For example, Y(X): will be executed on the condi-
tion that 1) the last match was successful, AND 2) the value

of X is positive. (See the discussion of conditional execution
in Section 3.2.)

The TH statement is like the T statement, except that
the typing positicn "hangs" after the message is displayed. The
usual progress to the next line is suppressed, so that the user's
next response is displayed immediately after the message on the
screen, rather than on the next line. Thus,

TH: 6 + 7 =
A

allows the student to type his answer where it seems rost natu-
ral for the answer to appear.

ERRCR MESSAGES: Reference to a string variable that has
not yet been assigned a value will cause display of the string
variable name,including the "$." You may deliberately arrange
for a string variable name, rather than a value, to appear. If
the problem arises unexpectedly, it is usually caused by a mis-
spelling of the variable name. A numeric variable to which
no value has been assigned is displayed with a value of zero.

EXAMPLE:
(PILCT program) (Cisplay)

*START
T: Please tell me your Sname. Please tell me your Sname.
A:SNAME (user enters "Little _Red Hen")
T: Hi, S$SNAME! Hi, Little Red Hen!

: How o0l1ld are you? How o0lé are you?
A:#a (user enters "8")
T:Is it fun to be #a ? Is it fun to be 8 ?

4-4 PILOT

*kkk %k

STATEMENT * ACCEPT (A:)
* kK%

SYNTAX:
[<label>] A [<cond>] :
[<label>] A [<cond>] : $<string variable>
[<label>] A [<cond>] : #<numeric variable>

DESCRIPTION: Makes it possible for the user to communi-
cate with PILOT from the keyboard. While entering a response,
the user may cancel the last character entered by depressing the
DELete key, and cancel the current line by depressing ctrl-X.
("!" is displayed on the screen whenever ctrl-X is used.) A
A carriage return signals the termination of a line. 1If the
line being entered exceeds the maximum length allowed for a re-
sponse (i.e., if the present or default value of the parameter
INMAX is exceeded), PILOT supplies its own carriage return and
regards the line as terminated.

If there is nothing to the right of the colon in an A
statement, the response will be retained in a special "temporary
entry buffer," so that it may be considered by subseguent Match
and WRite commands (see later).

If a variable name is used, then the response will be
stored as a value for that variable.

If a numeric variable name is included and a non-numeric
response is entered, an error message will be displayed and
another response will be accepted.

LIMITATIONS: The length of a response is limited to 80
characters or to a lower limit set bty the keyword statement INMAX.
(The syntax of the INMAX statement will be given in Section 4.5.)
INMAX has an initial value of 64 in this version of PILOT. A

numeric variable response must be an integer between -32768 and
32767.

ERRCGR MESSAGES: "*NUMERIC RESPONGSE REQUIRED" occurs if
a non-numeric entry is attempted in re-
spcnse to a command reguesting a value
for a numeric variable. The user is
expected to enter another response.

"*NO ROOM" indicates that the area
available in memory for string variable
storage has been exhausted. (See discus-
sion of NEWS , in section 4.3, for some
ideas about how to cope with this prob-
lem.)

4-5 PILCT

EXAMPLE:

(PILOT program) (display)
T:WHO ARE YOU? WHO ARE YOU?
: (user enters "your son")
T:WHAT IS YOUR NAME? WHAT IS YOUR NAME?
A:SNAME (user enters "Timothy")
T:WHAT IS YOUR AGE? WHAT IS YOUR AGE?
A:#A (user enters "1@")
* %k k%
* MATCH (M:)
STATEMENT * MATCH FOR COMMA (MC:)
* MATCH JUMP (MJ:)
* k k%
SYNTAKX:

[<label>] M [<cond>] : <pattern>[,<pattern>...,<pattern>]
[<label>] MC [<cond>] : <pattern>[<pattern>... <pattern>]
[<label>] MJ [<cond>] : <pattern>[,<pattern>...,<pattern>]

LESCRIPTION: The response received by the last A state-
ment is scanned for occurrences of ANY of the character pat-
terns that follow the colon in the Match statement. 1If the
response is found to contain one or more such strings, a subse-
guent statement including a Y condition will be executed. In
this form of the M statement, commas are used to separate patterns
in the list, with blanks considered part of the pattern (except
those following the last item. (Any response is regarded as
as though it begins with a blank, however, so that the
statement M: YES will match a "yes" response to the previous
question, whether or not the user preceded the response
with a blank.) If you want to specify a pattern ending with
a2 blank as the last pattern in your list, follow that pattern
with a comma, as in the third example below. Contiguous
blanks are reduced to one. For example, the pattern
"M r." will be found to match with "M r." "Mr." will match
with neither "M r." nor "M r.", however. HKere is a more
technical description of how the Match statement operates:

1. Each pattern in the M statement has multiple blanks-
reduced to one.

2. The user's last response has a blank added tc each
end.

3. The ucser's last response has multiple blanks reduced
to one.

4-6 PILOT

4. A moving window scan of the response is made with

each pattern, until either a match is found or the
input is exhausted.

MC: 1is a keyword extension that allows a search for
text containing commas. In this case, a caret (") is used
as a separator between patterns. On some printers this character
(SEE) will appear as an up arrow or a vertical line.

The MATCH JUMP statement (MJ:) causes a jump to the next
M, MC, or MJ) statement, if the present attempt to match a re-
sponse is unsuccessful. Look at the example in the discussion
of the Jump statement MJ: YES would be exactly equivalent in
execution to M: YES followed by JN:@M.

EXAMPLES:
M:A,B,C
Matches A or B or HAT or ALICE or JOB
Loes not match TENT or X
Mm: A, B, C
Matches A or B or ALICE
Coes not match JOB or HAT
M: A, B, C,
Matches only A or B or C
* %k %k %
STATEMENT * JUMP (J:)
* %k k%
SYNTAX:

[<label>] J [<cond>] : [*] <destination label>
[<label>] J [<condg>] : @M
[<label>] J [<cond>] : @P

DESCRIPTION: Causes a jump to the specified destination
in the current program. The most common form of the statement is
that which results in a jump to a particular label. (The asterisk
is optional.)

The other two forms of the statement, illustrated above,
cause a jump to the next Match statement (M, MJ, MC), or
PR statement, respectively. The PR statement will be treated
in Section 4.4. 1In general, it serves only as a destination
for a J or U statement.

In case it is not immediately evident why one would want
to use the alternative forms, let us consider an example. The
student has just finished reading a passage about color and
color groupings. As a test of his comprehension, we ask hir to
name a warm primary color. We want to give him an opportunity

4-7 PILOT

to review any material that he does not seem to understand.
Thus we want not only to check whether his answer is correct,
but to determine in what respect his answer is incorrect, and
proceed accordingly. He need not be asked to review what he
already understands. Using the different forms of the Jump
instruction, we can generate the code in the example below.

The Match Jump statement (MJ:) provides a shorthand
for the sequence of Match (M:) followed by JN:@M. The syntax
is shown under our description of the Match statement (M:).

ERROR MESSAGES: The designation for a destination that
can not be found will be displayed, followed by:

"-NOT FOUND"

EXAMPLE:

(PILOT program)

T: Name a warm primary color.
*TEST1 A:S$color

M: red,yellow,blue

JY:@eM
T:$color is not a primary color;
:Let's review the primary colors.
: Now name a primary color.

J:*TEST1

M:blue

JN:@P
T: S$color is not a warm color;
:Let's review the warm and cool
:colors.

(display)

Name a warm primary color.
(user enters "green")
(match not found)

Green is not a primary color;
Let's review the primary

e o o o

Now name a primary color.
(user enters "blue")

Blue is not a warm color;
Let's review the warm.....

[*]<destination label>

PR:
* %k k%
STATEMENT * USE SUBROUTINE (U:)
* %k k Kk
SYNTAX:
[<label>] U [<coné&>]
[<label>] U [<cond>] : @M
[<label>] U [<cond>] : @P
LESCRIPTION:

the current program,
that subroutine,

Causes a jump to a specified subroutine in
and returns control,
to the statement following the Use instruction.

after the execution of

PILOT

The end of a subroutine is marked by an End (E:) statement; the

beginning of a subroutine is indicated by the label or instruc-
tion to the right of the colon in the Use statement.

Usually, the destination of this kind of jump is a label

(with optional asterisk). The other possible destinations are
@M and @P, just as in the J statement.

If you neglect to mark the end of a subroutine, the
next End statement in your program will be regarded as the sub-
routine terminator. If the next End statement is the final
statement in your program, control will return to the statement
following the Use. Therefore, it is a good idea to be careful
about marking subroutines, and to check for this kind of error
when you find that some unlikely portion of your program is be-
ing repeated. (Consider what must happen if your U statement
occurs between the desired subroutine and the next E statement
in your program: the calling statement will be encountered
AS PART OF THE SUBROUTINE, and will continually reinitiate the
execution of that subroutine!)

LIMITATIONS: A subroutine may be used within another
subroutine with the limitation that no more than seven Use
statements may be pending at once. (The example on the next
page has a maximum of three Use statements pending at any par-
ticular point in the program.)

ERROR MESSAGES: The name of a nonexistent destination
will be displayed, followed by: :

"-NOT FOUND"

If too many subroutines are pending, you will receive
the message:

"*USE DEPTH EXCEEDED"

If a subroutine is being re-executed within itself because the

programmer failed to include a subroutine termlnator (see above),
the Use depth will eventually be exceeded. a

4-9 PILOT

EXAMPLE:

(PILOT program) (display)
*START T:THIS IS WHERE WE START. THIS IS WHERE WE START.
T:D0O YOU NEED INSTRUCTIONS? DO YOU NEED INSTRUCTIONS.
A: (user enters "yes")
M: YES (match found)
UY:*INSTR (use subroutine INSTR)
*INSTR
T:THIS IS WHAT YOU NEED TO KNOW THIS IS WHAT YOU NEED TO KNOW
E: (return from subroutine)
* %k %k %k
STATEMENT * END OF SUBROUTINE OR PROGRAM (E:)
* %k k%
SYNTAX:

DESCRIPTION: Indicates the end of a subroutine or the
end of the current program. The first E-statement encountered
during the execution of a subroutine will be regarded as the end
of that subroutine, and will return control to the statement
following the calling (Use) statement for that subroutine. If
an End statement is encountered with no Use statement pending,
control is returned to PILOT restart.

Upon termination of the PILOT program, a data collection
file left open will be closed. Data collection files will be
discussed in Section 4.6.

LIMITATIONS: A maximum of seven subroutines may be

be in execution at a given point in a PILOT program. See the
error message in connection with the Use statement.

4-10 PILOT

EXAMPLE:

(PILOT program) (display)
*START U:*FIRST
T: TIME NOW
*END E: 1S
*FIRST U:*SECOND THE
T: THE TIME
E:
*SECOND U:*THIRD
T: IS
E:
*THIRD T: NOW
E:
%* % % %
STATEMENT * COMPUTE (C:)
* % % %
SYNTAX:
[<label>] C [<cond>] : <num variable> = <num expression>

DESCRIPTICN: Evaluates the numeric expression and
assigns the result to the numeric variable.

PILOT lets you add (+), subtract (-), multiply (*), divide
(/), return the remainder of a division (%), or call for a ran-
dom number (RND(n)). There are some general rules to remember
when you compute with PILOT:

1) There are no fractions or decimals: all numbers containing
fractions or decimals are truncated to their integer part.
4 divided by 5 is zero, -18 divided by 3 is -3.

2) The % operation returns only the remainder of a division.
If you wanted to execute a certain statement on condition
that n be an odd number, you could write:

C: A= n % 2
T(A):¥n 1is an odd number.

because if n is odd, the remainder of the division of #n by
2 will be greater than zero.

3) The expression RND(n) represents a random number in the
range of 1 to n, with n having a maximum value of 32767.

4) The order of operations is very important. In a numeric
expression containing multiple-operations:

4-11 PILOT

a) The unary negative (that which reverses the sign of a
number by negating it) is evaluated first.

b) Anything in parentheses is evaluated second. (Within
parentheses the normal order of operations applies.)

c) Multiplication, division, and the return-remainder opera-
tion are evaluated third. (In the absence of parentheses,
two operations of the same rank are performed from left
to right, so that 2*¥2/3=1, not 0.)

d) Addition and subtraction are evaluated last. (3-2+5=6)

LIMITATIONS: The expression to the left of the equals
sign must be a numeric variable name, with the # omitted; it
may or may not be a variable to which a value has already been
assigned in the PILOT program. (If there has been no previous
assignment within your program, the initial value is zero.)
Neither the result of a computation, nor any of its elements,
may be outside the acceptable range of integers -32678 to 32767:
an attempt to store too high or too low a value will result in

the assignment of -32768 or 32767, (whichever is closer to the
number indicatea).

ERROR MESSAGES: An offending expression is displayed,
followed by the message:

"*ILLEGAL EXPRESSION"
or
"*VALUE OUT OF RANGE (-32768 TO 32767)"

The message "*ILLEGAL EXPRESSION" can occur as a result
of bad syntax or in response to an illegal numeric variable
name. After the message is displayed, PILOT awaits
an entry from the keyboard. If <cr> is entered, execution
proceeds with the next PILOT line. (You can, alternatively,
supply an immediate commang.)

The second message occurs if there is an attempt to set

a value that is either too high or too low to be acceptable in
PILOT (not between -32768 and 32767).

EXAMPLES:
(PILOT program) (display)
C: x=(a+b)*(b-c) (computations are made)

C: g=(RND (n)+a) %10

- —— ———————_— . ————— A ——— " Sm S W ——— - — - T T — A T~ —— —— —— ——— — — - o ———— ———

4-12 PILOT

* % %k %

STATEMENT * REMARK (R:)
* REMARK WRITE (RW:)
* % %k %

SYNTAX:

[<label>] R : <text>
[<label>] RW : <text>

DESCRIPTION: The Remark statement is a way of including
useful descriptive information in the program listing without
having the computer "do" anything about it. A Remark may be
placed at any point in a PILOT program.

How easy was it to read the code given in relation to

the Jump statement? Does the insertion of R statements make
any difference?

EXAMPLE:

- —— ———-—— — ——————_— — ——— ————————— T P S — ————— — — — ———— " S > ————— ——————

(PILOT program) (display)

R:Test on Color (Same as for code in Jump section)
T:
:Name a warm primary color.
*TEST]
A:Scolor
R:Is $color primary?
M:red,yellow,blue
R:If the student named a primary color, jump to the next test.
JY:@M
R:If control reaches this point, $color is not primary.
R: Review lesson.
T:$color is not a primary color;let's review the primary colors.

:Now name a primary color.
R:kepeat the first test.

J:*TESTI

R:The color is primary. Test for warm or cool. B

*TEST2

M: blue

R: If there is no match, then the student has named a warm
R: primary color. Proceed to the next problem.

JN:@P

R: Scolor is not warm. Review lesson.
T: Scolor is not a warm color;let's review warm and cool colors.

4-13 PILOT

There are only two differences between this program and
the earlier version of it. The differences are 1l)that the
second version might be a bit easier to read, and 2)that the
second is somewhat longer than the first. Both of these factors
must be taken into consideration when you write a program. In
the example above, we have probably incorporated more comments
than are really necessary. A user who already knows PILOT will
not need very many of these. It is also important not to clut-
ter a program with unnecessary material, because the length of

a program is limited by the capacity of the computer. Every
character of Remark, although PILOT will not act on it in any
way, contributes to the length of the program.

The RW statement is a Remark statement that writes re-
marks on a cassette file. The RW statement is similar to the T
statement, in that it involves a string of text, with substi-
tution of current values for any string or numeric variables
included in the text. The major difference is that whereas
the T statement types text on the screen, the RW statement writes
text into an opened data collection file on your cassette tape.
Data collection files will be discussed in Section 4.6.

4.3 CURSOR AND VIDEO CONTROL INSTRUCTIONS

These instructions control the presentation of text on
the video display. Recall the following two concepts introduced
in Section 1.5:

1) The cursor marks the current position on the screen,
and,

2) The screen may be divided into horizontal rows and
vertical columns.

The position of the cursor on the video screen is called its
"address."

The cursor control statements are:

* kK K

* CURSOR ALDDRESS (CA:r,c)

* CLEAR AND HOME (CH:)
STATEMENT * CLEAR TO END OF LINE (CL:)

* CLEAR TO END OF SCREEN (CE:)

* ROLL DISPLAY (ROLL:n or KL:n)

* % %k %k
SYNTAX:
[<label>] CA [<cond>] : [<row>] [,<col>]
[<label>] CH [<cond>]

[<label>] CL [<cond>]

[<label>] CE [<coné>]

[<label>»] ROLL [<cond>] : [<num>] or
[<label>] RL [<cond>] : [<num>]

4-14 PILOT

DESCRIPTIONS: (Remember that the display is composed
of 16 horizontal rows and 64 vertical columns. For the pur-
pose of these commands, the first row on the screen should be

designated row 1, and the first column should be designated
column 1.)

CA: sets the cursor address by row and column at which
the next text is displayed or the next input is accepted. The
row and column may be indicated by either an integer constant or
a numeric variable name. If column indication is omitted, it
is set to 1, and if row is omitted, it is set to the last used
row + 1. To omit the row designation, follow the colon with a
comma and your desired column number. A statement of the form
CA:6 moves the cursor to row 6, column 1l; a statement of the
form CA:,6 moves the cursor down one line, and positions it at
the sixth column of that line.

CH: clears the screen and sets cursor address to row 1
and column 1.

CL: clears from the current cursor position to the end
of the current line. The cursor address is not changed.

CE: clears from the current cursor position to the end
of the screen. The cursor address is not changed.

ROLL: or RL: rolls screen information upward. Lines
disappear off the top of the screen and are filled in from the
bottom by blanks. The number of lines may be indicated by
either an integer constant or a numeric variable name. If no
number is given, the screen is rolled up one line.

EXAMPLES:
(PILOT program) (display)
CA:2,n (causes the next text to begin in the nth
column of the second row on the screen)
CA:,6 (causes the next text to begin in the sixth
column of the next row on the screen.)
RL:5 (causes the first 5 lines to be rolled off

the top of the screen, and all subseguent
lines to move upward. Blank lines count
as lines.)

IMPORTANT NOTE:

None of these "cursor control" statements make the cur-
sor appear as a character on the display screen. Outside of the
the PILOT editor (section 5), it is probabtly best to consider
the cursor as a position, rather than as a visible marker of
that position.

>
i

15 PILOT

In aadition to providing control of the cursor address
and making it possible to clear all or portions of the screen,
PILOT provides an easy way to emphasize portions of text with
reverse video (reversal of black and white in the display). A
ctrl-DELete character in the text of a PILOT Type statement
(T:) causes characters from that point to the end of the line to
be displayed in reverse video. Each ctrl-DELete character en-
countered causes the display to reverse again; thus, a single
word or letter can be reversed for emphasis. If the text of a
T statement consists of only a ctrl-DELete character at the
beginning and end separated by blanks, a line of solid cursor
blocks will be displayed. If a line is empty, with the excep-
tion of a ctrl-DELete character in its rightmost position, the
line will be defined as a series of blanks. (In this way, you
can easily "erase" a word or phrase from an existing display by
"typing" blanks over it.)

The TH statement in allows the user's next keyboard
entry to appear immediately following the given line of text,

instead of on the next line. There is an example in Section 4.1,
where the T and TH statements are described.

4.4 AIDS TO CONVERSATION

There are a number of PILOT statements that make it easier
to converse within the PILOT system. They are

* %k k %k

STATEMENT * FOOT OF SCREEN HALT AND PROMPT (FOOT:)
* % k %

SYNTAX:

—— e —— . —————— - —— —— ——— " ——— f— d— - T o~ —— - - ———_ - A T———— ——— ——— - —— ———— —————

—— i —— —— - —— Y —— —— - —— ———— t— ——————— - —— ——_———— - ————— T (T~ W - S G — . —- - —— —— ————

DESCRIPTION: Causes the text provided after the colon

to appear on the bottom line of the screen and executes an A
statement. If there is no text after the colon, the message is:

'PRESS "RETURN" TO GO ON..'

Execution will resume when the user hits the RETURN key. {Even
if the message is not "PRESS RETURN TO GO ON.")

When we thought about writing the reading exercise pro-
gram, two of the problems were how much text could be displayed
on the screen at once, and how to give the student enough time
to read it. We decided to display a screenful of text and then
ask a question at the bottom of the screen. FOOT is a combina-
tion of three commands:

CA:16
T: <text>
A:

4-16 PILOT

A possible reason to use FOOT,
statements, is that FOOT takes
buffer; a disadvantage is that

as opposed to the three other
up less space in the program
FOOT is not included in all

versions of PILOT.

EXAMPLE:

(PILOT program) (display)

T:Now we'll go on ...
FOOT:

Now we'll go on...
PRESS "RETURN" TO GO ON
(at line 16)

T:NEXT QUESTION: (user enters <cr>)

cee s s e NEXT QUESTION
* k k%
STATEMENT * PAUSE (PAUSE: or PA:)
* %k k%
SYNTAX:
[<label>] PAUSE [<cond>] [<num>]

[<label>] PAUSE [<cond>] : [<num>]

DESCRIPTION: Causes program operation to halt for-a
specified length of time, 1 to 99 seconds. The length of time
may be indicated by either an integer constant or a numeric
variable name. If no time is given, the wait is approximately
one second. (The figures given are for a normal Sol. Your
computer may differ slightly.)

The PAUSE statement permits you to regulate the amount
of time a student has to study text on the video screen. This
feature of PILOT has an obvious application to timed exercises
of various kinds. Consider how you could change the reading
exercise program, if you did not want to give the student un-
limited time to study each screenful of material. .

Although PAUSE is theoretically available as an immedi-
ate command, there is no reason for a user ever to enter it,
because at any time that he is free to enter such a command, he
has unlimited time to study whatever information is displayed on
the screen. (Remember that an immediate command may be entered
in response to any A statement, and that PILOT always waits for
the response to an A statement before resuming execution.)

EXAMPLE:

(PILOT program) (display)

PAUSE:3 (results in a 3 second pause)

PILOT

*k k%

STATEMENT * NEW STRING VARIABLES (NEWS:)
* % k%

SYNTAX:

—— e —— o —— —— —— ——— = — — — — . s S = o = G - - —————————— " =

DESCRIPTION: The NEWS statement clears all string
variables defined earlier in the program, and thereby reclaims
the storage space that these occupied. You can use the SNEW
statement to avoid cluttering the program buffer with unneces-
sary data whenever you have accumulated a lot of variables that
are no longer in use.

One of the most important conversational features of
PILOT is the ability to retain a user's response, so that it
can be retrieved later in the program. The NEW$ statement lets
the programmer deal with one of the major complications inherent
in programming: the limited storage capacity of the computer.

Every time that you Accept a value for a string variable,
that value must be stored in the program buffer area in the mem-
oey of the computer. In PILOT a new value assigned to a previously
defined string variable name does not supersed the old value
for that variable; rather, successive entries exist side by side.
Although only the most recent value is used by PILOT during the
execution of a program, any former values continue to take up
memory space. Eventually, if you keep assigning more values to
more variables-and particularly if your program requires a con-
siderable amount of room for 'its own storage—--you will receive
the message, "NO ROOM."

Note that this consideration does not apply to numeric
variables. Each value assigned to a numeric variable actually
replaces the 0ld one, so that there are always 26 numeric vari-
ables, corresponding to the letters of the alphabet, stored in
the memory of the computer. Each of these numeric variables
always has a value (assumed to be zero where no other has been
assigned) and none of them are stored with the program in the
program buffer area. Because of thece distinctions, there is
really no storage problem with numeric variables. Such values
are initialized, i.e., set to zero, rather than actually cleared
from memory, in response to a CLEAR command. (CLEAR is discussed
in Section 4.7, below.)

4-18 PILOT

EXAMPLE:

(PILOT program) (display)
T:GIVE YOUR ANSWER NOW. GIVE YOUR ANSWER NOW.
*ANSWER A:S$TEXT (user enters "jhgblj")
M:PATTERN (match not found)
N:SOMETHING'S WRONG. SOMETHING'S WRONG.
N:PLEASE TRY THAT AGAIN. PLEASE TRY THAT AGAIN.,
NEWSN: ceene
JN: *ANSWER ceane
T:FINE, LET'S GO ON. FINE, LET'S GO ON.
% % % %
STATEMENT * EXIT FROM PILOT (BYE:)
%* %k k k
SYNTAX:

DESCRIPTION: Causes PILOT to discontinue operation, and
returns control to SOLOS or CUTER.

This instruction is normally used in the immediate mode
at the PILOT restart point.

EXAMPLE:
BYE (at PILOT restart)
*kkk
STATEMENT * PROBLEM START (PR:)
* Kk k
SYNTAX

DESCRIPTION: Provides a destination for the J:@P or U:@P
command.

The PR: statement is very much like a label, in that it
initiates no activity but functions as a landmark to be con-
sidered by other operations. It can also have the mnemonic
advantages of a label, insofar as it can designate the begin-
ning of the next exercise, set of questions, or general phase of
a program. There are two reasons that you might decide to use a
PR statement, rather than a label:

4-19 PILOT

1) Unless you use labels only two characters long,
PR: statements are shorter.

2) By using PR: to signify the beginning of a new
section or procedure, you can avoid cluttering
your program with a lot of extra labels that
don't have very much significance. (You might want
to label every SET of guestions, but you probably
would not want to label every guestion.) Using
too many labels can be as confusing as using none:
imagine trying to find someone who has told you,
"In case you don't recognize me, I'll be wearing a
hat," in a crowd in which many people are wearing
hats. If you have any idea how the person looks,
you will very likely find him, but not nearly as
easily as you would if not many other people in the
crowd were wearing hats.

*kkk

STATEMENT * CALL PROGRAM ELSEWHERE IN
* MEMORY (CALL:)
*kkk

SYNTAX:
[<label>] CALL: <address> [,<argument>]
CALL: <address> (at PILOT restart)

CESCRIPTION: Calls the assembly language routine whose
address in memory 1s indicated by the first parameter following
the colon, and stores an argument, if one is given, in registers
D and E. The address must be a decimal number; the argument
must be a number greater than -32768 and less than 32767.

This statement permits you to call an assembly language
program that you have stored in memory outside the PILOT pro-
gram buffer. If the assembly language program includes a
RETurn instruction, control will return to the PILOT program
statement which immediately follows the CALL.

EXAMPLE:
(PILOT program) (function)
CALL: 16385,-25 (executes a program at

address 16385 and puts
a value of -25 into
registers D and E)

A T e et e . — r —— — — — —————_———— " — —f—— — —— ——— - = - . . e M = S L S S M - = e - e e o -

EN
1

20 PILOT

4.5 SET PARAMETERS

The statements described in this section specify the way
in which PILOT will accept input and present output. To set a
few of these parameters, you will need to know something about
the eguipment you are using. If you do not intend to use any

output device other than the video display, you will not need to
SET O or N at all.

Notice that the SET statement corresponds to the SOLOS/
CUTER SET commands. PILOT enables you to set these parameters
without exiting to SOLOS/CUTER.

* % % %
STATEMENT * SET SOLOS PARAMETERS (SET:)
* %k k%
SYNTAX:
[<label>] SET [<cond>] : S=n
[<label>] SET [<cond>] : O=n
[<label>] SET [<cond>] N=n
[<label>] SET [<cond>] M=n
SET S=n (etc.) (at PILOT restart)

DESCRIPTION: Sets the SOLOS parameters of DISPLAY SPEED,
OUTPUT PORT, NWUMBER OF NULLS, or memory setting, either during

the execution of a PILOT program or as a direct action at PILOT
restart.

SET S=n sets display speed of the screen, where n deter-
mines the speed with @ fastest and 9 slowest. You don't have to

set this parameter unless you are dissatisfied with the default
display speed.

SET C=n determines where output is to be sent by the
computer. Port @ is the screen, 1 is the serial port, 2 is the
parallel port, and 3 allows use of a user routine previously
set in SOLOS. The nature of your equipment determines how these
parameters should be set. For example, your printer MAY require
a serial port, but not necessarily. Find out exactly what
specifications are appropriate to your equipment. If you do not
set O at all, the output will appear on your videoO screen.

SET N=n sets the number of nulls provided after a
carriage return. Again, a particular printer will have a parti-
cular requirement in this respect. The only way to establish a
fit value for N is to know what your egquipment reqguires. The
default is no nulls.

SET M=n determines the upper limit of the program buf-
fer. 1If your computer has more than 16K of memory, you might
fina it advantageous to increase the size of the program buf-
fer, so that it can accommodate larger programs and text files.

4-21 PILOT

Any program or text that is stored in the program buffer at the
time of this command is lost, so it is a good idea to change
this parameter either before the intended file is put into the
buffer, or after it has been saved.

M must be a decimal number which points to a memory
location LOWER than the lowest memory location occupied
by SOLOS or CUTER. (For SOLOS, this memory location is C@@6 in
base 16, or 49152 in base 10. The location for CUTER is whatever
you indicate when you load CUTER into memory.) Remember that

the value you specify for M must be in base 18, not in base 16!
The default value for M is 16383,

The greatest value possible for M is 32767 Decimal, or
7FFF Hexadecimal. If you want to set an upper bound higher
than 7FFF, use the following formula: for every 160 Hex (or
256 Dec) greater than 7FFF, subtract 256 from 32767, and enter
the result as a negative number. Thus, to set an upper bound
of 8HFF, enter SET: M=-32511.

EXAMPLE: (Assumes that your printer uses the serial port)

(PILOT program)

SET: O=1 At PILOT restart, means "Now use printer.
LIST Command to produce a listing (on printer)
SET: 0=0 Means "Now use video display, again.”
* %k k %
STATEMENT * INPUT MAXIMUM NUMBER OF CHARACTERS (INMAX:)
* kkk

SYNTAX:

[<label>] INMAX [<cond>] : <integer>
[<label>] INMAX [<cond>] : <numeric variable>

DESCRIPTION: Limits the number of characters to be con-
sidered by subsequent A statements. The limit must be expressed
as either an integer (1-88) or a numeric variable name, and
must appear immediately to the right of the colon. (The maximum
number of characters includes blanks; e.g., the strings "123 123"
and "1231231" are both seven characters long. The maximum num-
ber does NOT include the carriage return.)

If the user supplies the maximum number of characters,
PILOT will add its own carriage return, and regard the response
given as complete. Any additional text tbat the user types will
be disregarded. (It will not even be visible on the screen.)
If INMAX is set to 1, for instance, PILOT will react immediately
to the first character entered, without the.user's having to
press the carriage return key. Of course, }f the user gives a
carriage return before the character limit 1s reached, the re-
sponse is regarded as complete at that point.

4-22 PILOT

LIMITATIONS: INMAX values should be set between 1 and
80. If you do not set INMAX, PILOT allows a length of 64 char-
acters, corresponding to the width of the video screen. A value
greater than 64 causes a harmless overflow to the next line on
the screen. INMAX may be set and altered any number of times
during a PILOT program.

The entry of an immediate command will temporarily over-
ride INMAX; upon return to program execution, the former value
of INMAX will be restored.

EXAMPLE:
(PILCT program) (display)
T:Enter a five digit number. Enter a five digit number.
INMAX:5 (User enters 123456.)
A:#N 12345
T:Thank you. Thank you.
T:You entered #N. You entered 12345.
4.6 FILE MANIPULATION INSTRUCTIONS

The next series of statements pertain to the collection,
storage, and retrieval of information on files. (The definition
and a few of the basic characteristics of a file were discussed
in Section 1.4 of this manual.) In general, you will be writing
files to serve the following purposes:

l) To make a record of data accumulated during the
execution of a PILOT program, oOr

2) To save a program or data that you have just entered
or altered using the EDITor.

Actually, every that ycu LOAD a program from the cassette, you
are reading a file. The two test procgrams are prodram files
exactly like those PILOT will permit you to create. You

can read a data file to EDIT it, LIST it, or execute it. (This
last option is available only if the data in the file happens to
be a collection of program statements.)

A1l files read and written by PILOT are in standard
SOLOS/CUTER format. A file created using PILOT WRite statements
has a "byte access" structure, whereas a file that has been
SAVEd, using the PILOT SAVE command, has a "block access" struc-
ture. (Look at Section 5 of your SCLOS/CUTER manual for further
details regarding file structures. WRite and SAVE will be intro-
duced in this and the next section.) In Appendix B you will
find an example of a BASIC program that reads data from a "byte
access" file written in PILOT. BASIC can be used to read only
those files that have "byte access" structure; "block access"
files can, however, be read from SOLOS/CUTER. If you want to
read a PILOT file (of the "byte access" type) in PTDOS, you must
use the CTAPEl driver described in your PTDOS manual.

4-23 PILOT

* k k k

STATEMENT * OPEN DATA FILE (OPENF:)
* CLOSE DATA FILE (CLOSEF:)
%k k ok

SYNTAX:

—— ——— —— — ——— e ———_— — — " S G S T - - —— — — —— T ——— - = - S - —— i T —— —— — ————— T ——

[<label>] OPENF ([<cond>] : [name] [/u]
[<label>] CLOSEF [<cond>] :

-——— — ———— - ————— — — O — G G ————— - — —— —— Ten . — - — = —— - S T T G G — - —— — G- — e W—

DESCRIPTION: To store data in a file, it is necessary to
"open" that file, just as, to store groceries in a cupboard, it
is necessary to open the cupboard door. It is also desirable to
open the correct cupboard door, in order not to store the tea
with the linens and risk unpleasant surprises. The OPENF state-
ment should be before the first WRite or RW statement in a PILOT
program. You will need more than one OPENF statement in a pro-
gram if you have closed one file and want to open another one.
ONLY one data file can be open at one time.

A file can be given a name one to five characters long,
with no blanks or slashes. Assigning a name to a file, and
using that name when you open, read, or load the file, is a prac-
tice that you are not likely to regret. (Think of trying to locate
a particular, unlabeled file in a large filing cabinet.) When
you give a file a name, the name literally becomes a part of
that file, so that when you try to read or load, the computer
can look for the filename. If a file does not have a name, the
only way to read or load it is to know exactly where that file
is recorded on the cassette tape, and to position the tape
accordingly.

A unit number may be affixed to a filename. (The /u
does not count as part of the five-character name.) If you do
not specify any unit number, unit 1 will be assumed. You may,
however, specify unit 2, so that tape unit 1 can be used for
reading PILOT program segments, and unit 2 used for data col-
lection. (The possibility of using two cassette recorders was
mentioned in Section 2.) S

The CLOSEF statement is used to close the current file,
ensuring that all data from prior WRITE statements is actually
entered on tape, and making it possible to open another file.
(To continue the previous analogy, there is now a closed
cupboard door between the dog and the dog food.) PILOT will
close any file that is open at the end of a proaram. One of the
primary uses of CLOSEF is to close a file during the execution
of a program, so that data collection can begin on another file.

4-24 PILOT

EXAMPLE:

(PILCT program) (display)
CPENF:FRED/2 (file "FRED" opened on unit 2)
WwR: (user's last response written
in FRED)
CLGSEF: (FRED closed)
* %k k %
STATEMENT * WRITE INTO DATA FILE (WRITE: or WR:)
* % %k k
SYNTAX:

DESCRIPTION: The last entry resulting from an A state-
ment is written to cassette tape.

A WRITE statement will be executed only if it has been
preceded in the PILOT instruction seguence by an OPENF
statement. The OPENF statement determines the file name and
tape unit in use.

If you Accept a value for a numeric variable, and then
alter the value of the variable in a Compute statement, a sub-
seguent WRite statement will store the last value entered by the
user, not the new value for the variable. If you want to record
anything other than the user's last entry to an A statement, you
must use the RW command, which records text, including the cur-
rent value for any named variable, in the open file. The RW
statement need not contain text other than the desired variable
name.

EXAMFPLE:
(PILOT program) (display)
OPENF:CITY ("CITY" opened on unit 1)
T: PLEASE TYPE YOUR ANSWER. PLEASE TYPE...
A: (user types "Pittsburg")
WRITE: (Pittsburg is written into

file CITY on tape unit 1)

- ——— — — ——————— ————— — —— - S ———— A v — - —— - — - ————— O ——————— - At G ——— - t————

4-25 PILOT

* k k%

STATEMENT * REWIND TAPE (REWIND:)

% k% %

SYNTAX:
[<label>] REWIND [<cond>] : [u]
REWIND [u] (at PILOT restart)

DESCRIPTION: Turns on the motor for tape unit 1 or 2
and displays the message:

"REWIND DECK 1" or
"REWIND DECK 2"

If you hit the MODE SELECT key, the motor will be turned
off. If you hit the MODE SELECT key while the reading a file,
you will get the message, "TAPE READ ERROR." Once the file has
been read, you MUST use the MODE SELECT to return control to
PILOT before you can enter any other command.

EXAMPLE:
(PILOT program) (display)
REWIND: 2 REWIND DECK 2
(The motor for tape unit 2
is turned on.)
* % %k %
STATEMENT * L,OAD NEW PROGRAM OR PROGRAM SEGMENT (LOAD:)
* %k %k %
SYNTAX:

—————————————— — ——— T ——————— o - —— - —— T~ ——— ——_———" " ——— > —— = — ————_—— ——— —

[<label>] LOAD [< file name>] [/u] [<cond>]
LOAD [< file name>] [/u] (at PILOT -restart)
(LOAD KEY, RETURN KEY) (at PILOT restart)

—-——— — —— —— — - — - - 7 ———— - - ——— — " — — O - — " — —— - T —— G — S G A T —— - —— v ————— —~ ——

DESCRIPTION: Loads a PILOT program, or any file that
has been SAVEd, into the program buffer and initiates execution
if the file is executable. If the file you are attempting
to LOAD is not a PILOT program, it is merely displayed on the
screen. The program or program segment just LOADed will replace
the program previously in operation. If a filename is not sup-
plied, the first file found on the tape will be LOACed. If a
tape unit number (e.g. /2) is not supplied, tape unit 1 will be
used.

This command is used in the immediate mode to load a new
program and also in a program segquence to replace the current
segment of a long program with the next segment.

4-26 PILOT

Any time that you return to PILOT restart to LOAD a
new segment of a large program, you have the option of using the
CLEAR command to set all numeric variables to zero; otherwise,
the values for these variables will be retained. 1In the case of
a program segment larger than the previous one, there is a good
chance that LOADing the larger segment will cause the loss of
some string variables. The way to avoid this difficulty is to
arrange your program segments so that each is shorter than the
last. (A program segment is just a program that is intended to
be executed in sequence with other programs.) The INFO command,
which will be described in Section 4.7, will enable you to
determine the size of any program or program segment.

If you want to EDIT or LIST a file that has been SAVEQ,
it is more convenient to use the GET command than to use LOAD.
(EDIT is discussed in Section 5 of this manual; GET and LIST
are described later in this section.)

ERRCR MESSAGES: "*TAPE READ ERROR" indicates that there
has been a bad read of the tape file or that MODE SELECT (ctrl-g@)
has caused termination of the loading process.

MODE SELECT (ctrl-@) from the keyboard will abort the load.

EXAMPLE:
(PILOT program) (display)
LOAD: PREPARE TAPE 1 {(or 2)
(user puts recorder in "play";
file loaded from tape unit 1)
* % k%
STATEMENT * READ FROM DATA FILE (READ:)
* kk*x
SYNTAX:

——— — ———— ————— T ———— ——————— ——————— ———— " " ———————— —— —— — — VLA, > T G ———————————

DESCRIPTION: Reads a data file in "byte access" format
(i.e., a file written by PILOT but not SAVEd) from the cassette
into the program buffer. Initiates execution, if possible. If
the data in the file is not executable PILOT code, for example,
if it is a collection of student scores and responses, it will
simply be displayed. It is this feature of PILOT, the attempted
execution of a data file, that makes it possible for a PILOT .
program to assist a user in developing another PILOT program!

If no filename is specified, the file recorded next on
the cassette tape will be READ. If no unit number is speci-
fied, unit 1 is used.

4-27 PILOT

Why would you want to READ a data file?

l) To obtain a LISTing of it. Use the SET command to

send the output to the appropriate printing device;
then use LIST (see below) to obtain your listing.

2) To EDIT it. For example, you or the user might want
to change a PILOT program because it does not "run"
in the expected fashion. 1If you want to EDIT a PILOT
program that has been SAVEd, it is better to GET it,
rather than READ it. 1If you READ it, you will have
to enter 1) an immediate \EDIT: or 2) a \ <carriage
return> followed by EDIT, in response to an Accept
statement in the program. If you intend to EDIT a
file containing only unexecutable data, you will ini-
tiate the EDIT from PILOT restart. (EDIT is described
in Section 5, below.)

3) To SAVE it. The SAVE command is treated below; it

causes a "byte access" file created with WR: and RW:
statements to be converted to "block access" format.

EXAMPLE:
(PILOT program) (display)
READ: PREPARE TAPE 1 (or 2)
(user puts recorder in "play";
file read from tape unit 1)
4.7 COMMANDS USUALLY USED IN IMMEDIATE MODE

Although all of these commands except SCRATCH can be
entered as program statements, they will probably be most useful
from PILOT restart. After a command is executed from the re-
start point, PILOT expects to receive a carriage return. When
you type the carriage return, you will be back at restart and
from there can enter another command or return to program exe-
cution.

kkk*

STATEMENT * GET PROGRAM (GET:)
*kkk

SYNTAX:
GET [< file name>] [</u>]
(at PILOT restart)

DESCRIPTION: Loads the named program from cassette into
the program buffer, without initiating execution. If a file
name is not specified, the next file found on thg tape is
loaded. If no unit number is specified, unit 1 is used.

4-28 PILOT

This command provides a convenient way of loading a
SAVEd file into memory for a purpose other than that of running
the program, for example, to EDIT or LIST. Only a "block access"
file, one that has been SAVEd either in PILOT or in SOLOS/CUTER,
can be loaded in this fashion. Once the file has been loaded,

PILOT returns to restart. If you decide that you want to execute
the program after all, type RUN.

EXAMPLE:
(command form) (display)
GET BOX/2 PREPARE TAPE 2
(user puts recorder in "play";
a file called BOX is loaded
from unit 2)
* %k % %
STATEMENT * RUN PROGRAM (RUN:)
* % %k %
SYNTAX:
RUN (at PILOT restart)

DESCRIPTION: Starts execution of the program in the
program buffer. If there is no program in the program buffer,
nothing happens.

If you have loaded a file using GET, or if you have
discontinued the execution of a program, you can give this
command from restart to execute the program, beginning at its
first executable statement, i.e., not wherever you left off.

EXAMPLE:

(command form) (function)
RUN Starts execution of the

program in memory

4-29 PILOT

* %k % %k

STATEMENT * LIST PROGRAM (LIST:)
*kkk

SYNTAX:
[<label>] LIST [<cond>] :
LIST (at PILOT restart)

T —— — —— O G T T T M — ——— — T —— —————— " {— ——— ——— - ——————— T —— ———— o ———

DESCRIPTION: Lists the program in memory on whatever
device is specified in the most recent SET O= statement.
This command will most often be used in the immediate mode,
either to review the program on the display screen or to create
a printed listing.

The LIST command may be given from within a program or
from PILOT restart. If you want to stop a LISTing that is
in progress, hit the ESCape key on your keyboard. Control will
return to the program in memory or to PILOT restart, depending
on the point from which the command was given. If you want to
halt a LISTing momentarily, you can hit the space-bar. The
LISTing resumes when another key is pressed. If you are LISTing
on the screen, you can reset the video display speed by hitting
number key: 0 is fastest, 9 is slowest.

KEYS 06-9: Reset video display speed; @=fast,9=slow.

EXAMPLE:
(command form) (function)
LIST lists program in memory
* % % %
* SAVE PROGRAM (SAVE)
STATEMENT * COPY PROGRAM (COPY) -
* CUSTOM COPY PILOT AND PROGRAM (CUSTOM)
* k% Xk .
SYNTAX:
SAVE [< file name>] [/u] (at PILOT restart)
CUSTOM [<file name>] [/u] (at PILOT restart)
COPY [n] (at PILOT restart)

DESCRIPTION: SAVE writes the PILOT program currently in
memory on cassette tape; CUSTOM writes both the PILOT interpreter
and the program in memory on cassette tape. The resulting pro-
gram files are in "block access" format. SAVEing a file is the
only way to record it after it has been EDITed, unless you also
want to record the interpreter. COPY copies n files from tape
unit 1 to tape unit 2.

4-30 PILOT

If a file name is not supplied as part of the SAVE or
CUSTOM command, the file name written on the tape will be blank.
If a /2 is not supplied, tape unit 1 will be used. The file
type will be "P."

To load a file written with the CUSTOM command, follow
the instructions for making contact with PILOT (Section 2).
Once the tape has been read, the program that was in the buffer
when you gave the command will begin to execute immediately.

If you want to EDIT the third of five program segments,
without having to LOAD or GET each of them in succession, use
COPY to copy the first two files from tape unit 1 to tape unit
2. Integer n specifies the number of files that you want to
COPY. If there is no n included in the command entered,

one file will be copied. (If you are not using two cassette
recorders, you will not use COPY.)

LIMITATIONS: SAVE, CUSTOM, and COPY are generally used
only in immediate mode at PILOT restart.

EXAMPLE:
(command form) (function)
SAVE TEST1 Saves a file called "TEST1"
on unit 1
COPY 4 Copies 4 files from unit 1
to unit 2)
CUSTOM TESTI1 Saves the PILOT interpreter
and "TEST1" on unit 1
* % % %
STATEMENT * SCRATCH CURRENT PROGRAM (SCRATCH)
* %k % %
SYNTAX:
SCRATCH (at PILOT restart)v

DESCKIPTICN: Deletes the current program from memory,
along with all string variables. If there is no program in
the program buffer, nothing happens. SCRATCH can be entered
only from PILOT restart.

The PILOT interpreter is not deleted by this command.

4-31 PILOT

* % %k %

STATEMENT * FILE SIZE INFORMATION (INFO:)
*x kk %
SYNTAX:
INFO (at PILOT restart)

—— - S S T = e e S T s = — - G — W —— ——— — " —— T ———————— T — . i " — — ——— —— " ——

DESCRIPTION: Tells where your PILOT program is in the

memory of the computer. Four items of information will be dis-
played on the screen:

1) MEMORY SETTING - This number, which is in base 16

(18 through 15 are denoted by the letters A through
F), tells where the program buffer ends.

2) FILE BEGINNING - This number, also in base 16, indi-
cates where the program buffer starts.

3) CHARACTERS IN FILE, including blanks - This number,

in base 16, indicates the number of characters in the
program.

4) SPACE REMAINING - This number, also in base 16, indi-

cates the number of unused characters remaining in
memory.

After this information has been displayed, PILOT awaits a car-
riage return before going back to PILOT restart.

The INFC command helps you to decide whether your pro-
gram is too long relative to the amount of memory allocated
to it. (Remember that string variables are stored along with
the program in the program buffer.) If your program almost fills
the buffer, you should consider shortening the program, dividing
it into segments, or assigning more memory (with the SET M=
statement.)

EXAMPLE:

(command form) (display)

INFO 5FFFE Memory setting.
1D69H File beginning.
2142 Characters in file.
14905 Space remaining
... Press RETURN

- S —— —— o —— -t — o ——— - — - — - ———— ———— T ——— A TS S S A S G e e - ————— - —

4-32 PILOT

* % k %

STATEMENT * CLEAR NUMERIC VARIABLES (CLEAR)
* k% %

SYNTAX:
CLEAR (at PILOT restart)

DESCRIPTION: Re-initializes all numeric variables to
zero. (If you have returned to PILOT restart to execute a new
program, you may want to make use of this command to prevent
using an old value accidentally.)

4-33 PILOT

SECTION 5

ENTERING AND EDITING YOUR PILOT PROGRAM
5.1 THE EDIT COMMAND

SYNTAX:

T —— e S - —— —— ———— —— —————————— ——— _— —— S — " — —— o G ———

DESCRIPTION: Makes available a new set of commands
that can be used to create and alter text and program files.
In EDIT the cursor may be positioned anywhere on the screen, lines
may be scrolled up and down, and characters and entire lines may
be inserted or deleted. There are also provisions for searching
the file for strings, and for moving quickly to any one-tenth
portion of the file from @ to

EDIT is different from all other PILOT commands, in that
when you enter it, or execute it within a program, you move into
an area of PILOT that is really quite separate from the inter-
preter. The EDITor is a kind of subsystem of PILOT. It enables
you to make changes in any SOLOS file (whether or not it was
created by PILOT, or for use with PILOT.) The EDITor does not
not know or care whether you are working with a PILOT program, a
BASIC program, a list of student responses, or a letter to your
veterinarian.

The EDIT command may be entered, with a slash preceding and
a colon following, in response to any A statement, or it may be
entered from restart without the slash and colon. If you want
to enter your PILOT program for the first time, give the EDIT
command from PILOT restart, without LOADing or READing anything
into the program buffer. If you want to EDIT a file that you
have created in PILOT with WRite statements and never SAVEd in
"block access" format, you must READ it into memory. If you
have SAVED a file and then want to EDIT it, use the GET command
to load it into memory without executing it.

When you enter the EDIT command from PILOT restart, the
first 16 lines of the file in memory are displayed on the Sol
video display or VDM-1l, with the cursor at line one and position
one (column #). If you give the command in response to an A
statement, or if EDIT: is actually a statement in your PILOT
program, the first line on the display will be the A statement
or the EDIT statement, respectively. If there are fewer than 15
lines of text to follow the first line on the display, or if the
program buffer is empty, the remaining portion of the screen

5-1 PILOT

will be filled with # signs. If you are entering a file for

the first time, just begin typing; otherwise, the file displayed
on the screen is ready for EDITing. The next few pages tell

how to go about changing a file by using control characters.
(Remember, a control character results from your pressing the
control key simultaneously with another key on the keyboard.)

Press MODE SELECT to exit from the EDITor and return con-
trol to the PILOT restart point. If you want to execute the
program you have just EDITed, press the carriage return and exe-
cution will begin. (Maybe you just wanted to look at a file be-
fore executing it to make sure that it was the right program, or

maybe you entered or changed a program, and now want to see
whether it really works.)

The EDITor in PILOT bears a great deal of similarity to
the video editor in PTDOS (the disk operating system available
with the Sol System III or IV). The two editors are NOT, how-
ever, identical!

Below is a list of the control keys used by the EDITor.
A more complete description of each command is given after the
list.
5.2 COMMAND CONTROL KEY LIST

CONTROL KEYS

FUNCTION:

CONTROL W - move cursor up one line

CONTROL Z -~ move cursor down one line

CONTROL A - move cursor left one character

CONTROL S - move cursor right one character

CONTROL E - move file up one line

CONTROL X - move file down one line

CONTROL R - scroll file up 16 lines

CONTROL C - scroll file down 16 lines

CONTROL T - toggle insert character mode; ON/OFF

CONTROL H - delete character under cursor

CONTROL B - insert line above cursor

CONTROL P = delete line

CONTROL V =~ initiate string search mode

CONTROL I - <continue search for string

CONTROL U - move cursor to indicated column of this line

CONTROL M -~ same as RETURN (below)

CONTROL J - same as LINEFEED (below)

CONTROL DEL - cause subseguent characters to be in reverse
video

5-2 PILOT

OTHER KEYS - FUNCTION:

TAB - same as control I
MODE SEL - exit editor
RETURN - insert line below cursor
LINE FEED - delete all text to the right from the cursor
& position cursor one line down
CURSOR UP - move cursor up one line (same as ctrl-w)

CURSOR DOWN -
CURSOR LEFT -
CURSOR RIGHT -
HOME CURSOR -
DELETE -
REPEAT -

move Cursor
move cCursor

down one line (same as ctrl-C)

left one character (same as ctrl-a)
move cursor right one character (same as ctrl-S)
move cursor to upper left corner of screen
backspace and erase a character

re-enter whatever other key, or combination of
keys, is depressed; continue while REPEAT key

is held

NOTE: The cursor keys on a Sol are on either side of the space-
bar.

The control-DELete character is recorded in the file and
displayed on the screen. On the Sol or VDM-1l it is a rectangle
made up of diagonal lines. There are also a number of control
characters which may be entered as text, without having any
effect on program or EDITor operation. Here is a list of those
characters, with the screen representation given to them by the
6574 Character Generator ROM. (If your system includes, instead,
the 6575 Character Generator ROM, some of the representations
will be different. .

ctrI-D:' o ctrl-LE \ ctrl-YE $ ctrl-/\':[B
ctrl-Fu: / ctrl-NE@ ctrl-Ei@ E
c1r|-G£ Q@ ctrl-Oi@ c'rrl-\im i
ctrl-Ki ¥ |ctr-Qi1Q | ctri-318] |

PILOT

5.3 DETAILED COMMAND DESCRIPTION
5.3.1 Cursor Positioning Commands
NOTE: Moving the cursor does not change the text.

The keys A,S,W,Z form a diamond on the input keyboard.
When pressed simultaneously with the 'CTRL' (control) key,
they move the cursor as indicated below:

CONTROL W move cursor up one line

CONTROL Z move cursor down one line
CONTROL A move cursor left one character
CONTROL S move cursor right one character

The Sol keyboard also contains four cursor control keys
to the left and right of the space bar. These keys may
be used to move the cursor in the direction indicated on
the top of the key. The HOME CURSOR key moves the cursor
to the upper left corner of the screen.

5.3.2 Screen Scroll Commands

Screen scroll commands are provided to allow the file to

be "rolled" through the screen area until the desired file 1line
is reached.

CONTROL E scroll up one line
CONTROL X scroll down one line
CONTROL R scroll up sixteen lines
CONTROL C scroll down sixteen lines

5.3.3 Direct File Positioning Commands

In addition to cursor positioning controls, the EDITor offers
a way of searching for a specific string of text within your
file. The search command is CONTROL V.

CONTROL V editor text search

When you type control V, lines 15 and 16 are cleared, line
15 is marked with a row of dashes, and the cursor is placed at
the first position in line 16. At this point the EDITor is
waiting for you to enter either: 1) An input line consisting of
one or more characters, or 2) a single digit. The input is
terminated by a carriage return.

If the CLEAR key is depressed in this mode, line 16 is
erased.

l. Character entry:

Any occurrence of the string entered, regardless of preceding

or following characters, will represent a find. Therefore, only
enough characters to define the desired text uniquely need be
supplied. As an example, "the agu" can be used to locate a line
in the file containing "the quick brown fox."

5-4 PILOT

Upon receiving a carriage return, the EDITor searches
the file, beginning one line below the current cursor position,
until a string match is made or until the end of the file is
reached. At the beginning of a file, the search begins at the
first line. If a match is found, the EDITor positions the line
containing the match at the top of the screen. Make your in-
tended changes--you have cursor control in search mode--and then
issue a carriage return if you want to look for more occurrences
of the same string later in the file. If no occurrence of the
string is found before the end of the file is reached, the first
16 lines will be displayed again. Press the MODE SELECT key to
get out of search mode. (In this situation, issuing a MODE

SELECT will not result in an exit from EDIT, but only from the
mode initiated by ctrl-Vv.)

2. Digit entry:

If you enter a digit from @ to 9 at line 16, the file will
be scrolled so that the top line on the video display screen
marks the end of that tenth of the file which corresponds to the
number entered. Thus, if the number is 5, the file will be po-
sitioned at the half-way point. If @ is entered, the file will
be positioned at the beginning. MODE SELECT will cause an exit
from control V mode.

CONTROL I continue search

If the user wishes to continue searching for text matches after
having left the control V mode, control I may be used to con-
tinue searching for the string that was last designated. The
EDITor resumes the search at the first line following that in
which the cursor resides at the time of the command and con-
tinues until a match is made or until the end of file is reached.
The control I command may be given as often as is desired.

NOTE: The 'TAB' key generates the same code as control I, and
may be used for the continue command.

5.3.4 File Modification Commands
CONTROL T character insert mode switch (on-off-om....)

Normal file characters input from the terminal are placed
in the file in either of two modes. These modes, normal and
insert, are alternately selected using the insert mode control.

When ctrl-T is OFF (default mode when EDITor is entered), each
character that you type replaces what was formerly at the cur-
rent cursor position, and the cursor moves to the right one
place. When ctrl-T is ON, characters are actually inserted
BEFORE the current cursor position, moving the character at that
location, and any characters to the right of it, one position to
the right. The cursor also advances one position. A line con-
sists of a maximum of 64 characters, so you may begin to lose
text that is pushed off the screen by the insertion.

5-5 PILOT

CONTROL H delete character mode

The delete character command removes the character at the

current cursor position and moves each character to the right
of the cursor one position to the left.

CONTROL B insert line command

The line insert command puts a new blank line at the present
cursor position, and moves each subsequent line of the file one
row down. The cursor is moved to the first character position
of the new line. Use this command to insert a new line 'above'
the current line.

CONTROL P delete line command

This control removes the current cursor line from the file.
CONTROL J or LINEFEED blank remaining line

Linefeed deletes all characters to the right of the current

cursor position (on the cursor line). The cursor appears at
the beginning of the next line in the file.

CONTROL M or CARRIAGE RETURN scroll up & insert line

Carriage return scrolls up one line and inserts a blank

line in the file. The cursor is moved to the first character
position of the new line. Use RETURN to insert a line 'BELOW'
the current cursor position. No characters on the current line
are deleted. The exception to this rule is that, if a file con-
tains fewer than 16 lines of text, RETURN will open a new blank
line below the last line of text but will not scroll the file.

CONTROL U move cursor to indicated column of current line

After entering ctrl-U, enter a character, corresponding
to the column at which you want the cursor to be positioned.
Each character in the line below is the one to be entered to
move the cursor to the column in which that character appears;
the character "9" will cause the cursor to be moved to the
tenth column of a line of text, so in the sample line, the char-
acter in that column is a "9." The character "[" moves the
cursor to column 44.

0123456789: ; <=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ [\] "-'abcdefghijklmno

5-6 PILOT

SECTION 6

USING THE TEST PROGRAMS, PLTST AND WAPP

In Section 2, about making contact with PILOT, it was
suggested that you try the two test programs recorded on your
PILOT cassette. PLTST is a program that lets you watch PILOT
in action. PILOT statements and some PILOT error messages are
introduced. You will not be asked to "express yourself in
PILOT." The information imparted by the program (mostly by
using T statements to type on the screen) is generally an indi-
cation of what will be going on next in the PLTST program, itself.
(If numeric variables have just been introduced, PLTST is proba-
bly about to use a numeric variable.) Notice that the program
will sometimes tell you how to form a certain mark of punctua-
tion, e.g., a caret (7). To some extent, such information is
keyboard dependent: 1if you have a Sol, for example, you happen
to have a key representing a caret on your keyboard.

In WAPP, or Write A PILOT Program, you will be asked to
supply one or more multiple choice guestions, a selection
of answers--you choose how many--and responses keyed to each
answer. Again, you will not have to do any of the formatting
and you will not need to use the standard PILOT syntax. WAPP
is an example of how one PILOT program can serve as a vehicle
for another to be written. You can actually save, and later
execute, the multiple-choice program that WAPP writes for you.

Both PLTST and WAPP are written in PILOT, so there is
nothing that either of these programs accomplishes that you
could not also accomplish with the statements described earlier
in this manual. If you cannot figure out how a program does
something, either LIST the program or display it in the EDITor,
and take a look at the PILOT code.

Once you have successfully loaded one of the test programs,
you will find that it is self-explanatory.

6-1 PILOT

SECTION 7

ERROR MESSAGES AND HOW TO DEAL WITH THEM

Most of these error messages have been introduced, either
in PLTST or at other points in this manual. Here we present
a summary which you might find useful as a reference. 1In each
case, an example of the message, as it might appear to a user,
is followed by a brief explanation of its likely implications.

*<label> or PR: or M: -NOT FOUND

The PILOT program in memory specifies a jump to a statement or

a subroutine that does not exist. Check for a possible misspellling
of the label in the J or U statement. The expression enclosed

by the angle brackets is the label as it appears spelled in

that statement. If the item not found is a PR or M statement,

there is probably no such statement between the J or U state-

ment and the end of the program.

<C statement>
*ILLEGAL EXPRESSION

A compute statement has incorrect syntax. Maybe it specifies
an operation that is not allowed, e.g. C: R= A OR B is syn-
tactically incorrect, since "OR" is not a recognized operation.

<C statement>
*VALUE OUT OF RANGE (~32768 TO 32767)

The compute statement in the angle brackets has either an
element or a result that is not in the possible range of numbers
allowed in PILOT. In such a case, the value assigned to the
designated variable is -32768 for a negative number or 32767

for a positive number.

<variable name>

If you refer to a string variable to which no value has been
assigned, and your immediate intention is not to accept a value
for that variable--say, for example, you wanted to print or
write it--that variable name, itself, is displayed. You may
want to make such a reference intentionally. If not, check for
a spelling error, make sure that the variable you are naming is
the one that you really intended to name, or find out if your
statement referring to a given variable really follows the as-
signment of a value to that variable. Did you put a NEWS

statement in your program and then try to retrieve a value that
you had erased?

7-1 PILOT

*NUMERIC RESPONSE REQUIRED

The user of a PILOT program receives this message if he gives a
non-numeric reply to an A statement that reguests a value for

a numeric variable. The solution is generally to give a numeric
reply.

*USE DEPTH EXCEEDED

The program being executed has more than seven subroutines in
execution.

*TAPE READ ERROR

Either the cassette tape has been read badly by the computer or
you hit the MODE SELECT key while the tape was being read. If
you really want the tape to be read--that is, if you did not hit
the MODE SELECT on purpose--try to rewind and play the tape
again. If you continue to get the message, there is probably
something wrong with your tape or other eguipment.

J

*NO ROOM

There is insufficient space in memory for the string variable
that you are trying to store. You may want to use a NEWS state-

ment to clear the area occupied by variables that you are no
longer using.

If you have not received one of the above messages, but

something seems to be going wrong, consider the following pos-
sibilities:

1) You have used more than one label with the same name;
control has been passed to the first such label to oc-
cur in the program, rather than to the label to which
you intended to jump. Rename one of the labels.

2) You have loaded a program that is too big or a text
file that is not executable as a program.

3) You have attempted to enter a response longer than
the present value of INMAX will allow. (This problem
does not apply to an immediate command. Immediate
commands override INMAX.)

4) You have misspelled or mispunctuated something.

5) You have LOADed or READ something into memory and
obliterated the former program (and possibly some
of your string variables.)

6) You have entered something that is not a command,
and it has simply been displayed.

7) You have neglected to mark the end of a subroutine
with an End statement.

8) You have relied on a zero value for a numeric varia--
ble, but you have not re-initialized numeric variables
since the last program was executed.

7-2 PILOT

APPENDIX 1

USING CASSETTES

Successful and reliable results with cassette recorders and
cassette files reguires a good deal of care. You need to use
consistent and careful methods, and you need to know what to

expect, when you try to read a manufacturer's tape, or your own.
The following methods are recommended:

1) Use only a recorder recommended for digital usage. For use
with the Processor Technology Sol or CUTS, the Panasonic
RQ-413AS or Realistic CTR-21 is recommended.

2) Keep the recorder at least a foot away from egquipment cont-
aining power transformers or other equipment which might gener-
ate magnetic fields, picked up by the recorder as hum.

3) Keep the tape heads cleaned and demagnetized in accordance
with the manufacturer's instructions.

4) Use high guality brand-name tape, preferably low noise, high

output tape. Poor tape can give poor results, and rapidly wear
down a recorder's tape heads.

5) Bulk erase tapes before reusing. It can be hard to find the
file you want in a jumble of o0ld file pieces. Bulk erasing also
decreases the noise level of the tape.

6) Keep cassettes in their protective plastic covers, in a
cool place, when not in use. Cassettes are vulnerable to dirt,
high temperature, liquids, and physical abuse.

7) Experimentally determine the most reliable settings for
volume and tone controls, and use these settings only.

8) On some cassette recorders, the microphone can be live while
recording through the AUX input. Deactivate the mike in accord-
ance with the manufacturer's instructions. In some cases this
can be done by inserting a dummy plug into the microphone jack.

9) If you record more than one file on a side, SAVE an empty
file, named "END" for example, after the last file of interest.
Once you read its name, you will know not to search beyond

it for files you are seeking. To avoid havinag to search

for files, you can record only one file per cassette, at the
beginning of the tape, if you can afford the extra cassettes.

AFPENDIX 1 Al-1 PILOT

19) Do not record on the first or last minute of tape on a
side. The tape at the ends gets the most physical abuse.

Do not be impatient when trying to read the first file on a
tape. You, or the manufacturer of a pre-recorded program, may
have recorded a lot of empty tape at the beginning.

11) Record a file more than once before it leaves memory. This
redundancy can protect you from bad tape, eguipment malfunction,
and accidental erasure.

12) Most cassette recorders have a feature that allows you to
protect a cassette from accidental erasure. On the edge of the
cassette opposite the exposed tape are two small cavities cover-
ed by plastic tabs, one at each end of the cassette. If one of
the tabs is broken out, then one side of the cassette is pro-
tected. An interlock in the recorder will not allow you to de-
press the record button. A piece of tape over the cavity will
remove this protection.

13) Use the tape counter to keep track of the position of files
on the cassette. Always rewind the cassette and set the counter
to zero when first putting a cassette into the recorder. Time
the first 3V seconds and note the reading of the counter. Al-
ways begin recording after this count on all cassettes. Record
the beginning and ending count of each file for later reference.
Before recording a new file after other files, advance a few
counts beyond the end of the last file to insure that it will
not be written over.

14) The SOLOS/CUTER command CATalog can be used to generate a
list of all files on a cassette. Exit to SOLOS/CUTER, type CAT
<CR>, rewind to the beginning of the tape, and press PLAY on the
recorder. As the header of each file is read, information will
be displayed on the screen. If you have recorded the empty file
called END, as suggested, you will know when to search no furth-
er. If you write down the the catalog information along with
the tape counter readings and a brief description of the file,
you will be able to locate any file guickly.

15) Before beginning work after any modification to the system,
test by SAVEing and GETting a short test program. This could
prevent the loss of much work.

In addition to using the above procedures methodically, you need
to know the various ways in which programs may be recorded on
tapes you have purchased:

1) If you cannot read a file consistently, and suspect the tape
itself, do not despair. The csame file may have been recorded
elsewhere on the tape. Processor Technology often records a
second versicn, later on the same side of the tape. When you
first get a tape, CATalog it with SOLOS or CUTER so you will
know exactly what it contains. Write down the tape counter
readings at the same time.

APPENDIX 1 Al-2 PILOT

2) An empty file named END is sometimes placed at the end of the
recorded portion of a tape, or between other files. When SOLOS/
CUTER CATalogs a file, the file header information is displayed
as soon as the beginning part of the file passes the tape head,
but nothing is displayed when the end of the program passes by.
If another filename such as END is displayed, you know you have
just passed the end of the previous file.

3) Some of the programs supplied by Processor Technology contain
a checksum test. When a program containing this test is first
executed after loading from tape, the checksum test reads all of
the program in memory, and calculates a checksum number which is
compared with a correct value. If the numbers match, this
assures that the program in memory is correct before it is

used. Nothing is displayed when the numbers match, but if they
do not, the message CHECKSUM TEST FAILED, or a similar message,
is displayed. The message may be followed by two numbers,
representing the correct and incorrect checksum numbers.

Even though the checksum test failed, it may be possible to
enter the program anyway, often by typing the carriage return
key. The bad data may not even be apparent, if it is in a
portion of the program you do not use. It is best, however, to
try to find and correct the problem causing the error so the
checksum test is passed. The error can be caused by the
cassette inteface circuitry, bad memory locations, bad tape,

a faulty recording, improper adjustment or settings on the
cassette recorder, or other eguipment problems.

APPENDIX 1 Al-3 PILOT

APPENDIX 2

WRITE IN PILOT, READ IN BASIC

Here is a sample PILOT program that you can type into
the EDITor. The program writes the student's name and responses
into a file called WHO? on tape unit 2. The responses can then
be read and printed by the BASIC program which follows. When
you enter the program, you might want to try inserting DELete
characters (video reverse) to emphasize titles.

When you write a data collection file, it is a good
idea to keep in mind that different users might be answering
questions in a different order, skipping questions, answering
guestions different numbers of times, etc. It is therefore
necessary to arrange your file so that it is possible to tell
which answer was given to which guestion, or by whom the ans-
wer was given. In the very crude example supplied below, the
student's name is recorded before any other information is
requested. You will also see that each guess is recorded
along with the number of guesses that have been made, and the
number of clues that have been given. Note that the words
"guess number," "after ... clues," and "final score" are not
really necessary; it is clear that whenever a line consists
of two numbers followed by a name, the first number is the.
guess number, and the second number is the number of clues
given. When a line has only one number in it, that number
always represents the student's final score.

This example is therefore not intended to be a model,
nor is the BASIC program which follows the only way in which
you can read or display a data collection file, even in BASIC.
BASIC permits you to isolate the numbers that appear in a
character string, so that you can use them in arithmetic.

As you continue to experiment with PILOT, and with PILOT

in relation to your own system, you will certainly devise

your own methods of setting up and dealing with data collection
files. : :

Notice that the last statement in the PILOT program
directs PILOT to load another program segment from tape unit
1. If you do not have another program segment in mind, you
can change the last statement to BYE. There is a reason that
you should NOT change the last statement to E. Can you tell
what the reason is? 1If you can't, try changing the statement
to E and executing the program.

APPENLCIX 2 A2-1 PILOT

T:Put tape unit 2 into "record" mode. Then press "RETURN,"

A:

ChH:

OPENF :WHO?/2

CA:7

T:What is your name?

A:

K:Record the player's name.

WR:

T:I am thinking of a famous person, and I want you to try to
:guess who the person is. There are some clues to help you.
:After each clue you will be able to choose whether to guess or
:to accept another clue. A correct answer is worth 166 points,
:minus 16 points for each additional clue, after the first one,
:and 20 points for each incorrect guess.

:Obviously, negative scores are possible.
FOOT:
CH:

T:If you want to know your score at any point during the game,
:you can request it by typing

\U: *SCORE

: (Of course, you can do this only if it is your turn to talk to
:PILOT. Type the reguest, then a carriage return, and then the
:answer to the original guestion.)

FOOT:

CH:

T:The first clue is: The person was a famous writer.

:Do you want to try to guess before seeing another clue?

: (Answer Y or N)

A:

M:Y

UY: *GUESS

R:Numeric variable C contains the number of extra clues given.
C:C=C+1

T:This writer lived in England in the 18th century.

:Do you want to guess? (Y or N)

A:

M:Y

UY:*GUESS

C:C=C+1

T:This writer wrote A Modest Proposal.

:Do you want to guess? (Y or N)

A:

M:Y

UY: *GUESS

C:C=C+1

T:This writer wrote Gulliver's Travels:Do you want to guess? (Y or
A:

M:Y

UY: *GUESS

T:There are no more clues.

PA:5

APPENDIX 2 A2-2 PILOT

J:*0UT

*GUESS T:What is your guess?

A :$WHO

R:Numeric variable G contains the number of guesses made.
C:G=G+1

R:Record the guess number, the number of clues given, and the
R:guess made. Report the same information to the screen.
RW:Guess number #G, after #C clue(s) is S$WHO.

T:Guess number #G, after #C clue(s) is SWHO.

PA:5

M:Swift

JY:*0UT

T:SWHO is not the correct answer.

U:*SCORE

E:

*SCORE

R:Numeric variable S contains the point score.
C:5==10*C-20*G

R:Numeric variable L contains the number of points lost.
C:L= =S

T:You have lost #L points.

E:

*QUT CH:

T:Swift is the correct answer.

CY:G=G-1

U: *SCORE

CY:S5=5+100

k:Record the final score. Report the final score to the player.
RW:Final score is #S.

T: Your final score is #8S.

: END OF GAME

PA:5

R:LOAD a new program segment, called NEW, from tape unit 1.
LOAD NEW:

This is the BASIC program that will read the file WHO?
from tape unit 2, and display the contents of that file on the
video screen.

16 DIM AS$(109)

20 FILE #1;"wHO?/2",1
30 READ #1;A$: GOTO 60
4@ PRINT AS

56 GCTO 3¢

60 PRINT "ALL DONE"

76 END

APPENDIX Z A2-3 PILOT

APPENDIX 3

REFERENCES

The following references were not used in the prepara-
tion of this manual. They are included here in case you are

interested in reading about other versions and implementations
of PILOT.

Black, Don. The computer in the schoolroom. Conference Pro-
ceedings, Second West Coast Computer Faire. Box 1579, Palo
Alto, CA 54392, 232-238.

Starkweather, John A. Guide to 8686 PILOT, Version 1l.1.
Dr. Dobb's Journal of Computer Calisthenics & Orthodontia.
April, 1977, 17-29.

Yob, Gregory. PILOT-73. Creative Computing. May/June 1977.

APPENDIX 3 A3-1 PILOT

ProcessorTechnology

Processor Technology 7100 Johnson Industnial Drve (415) 829-2600
Corporation Pieasanton, CA 94566 Cable Address -PROCTEC

Cassette PILOT Update 731068

Please incorporate the following note near the top of page 2-2 and at
the bottom of page 6-1 of your PILOT manual:

Before trying to LOAD PLTST or WAPP, type this command from PILOT
restart:

SET M=20480 <CR>
(If you have already read about the SET command in Section 4.5 of your
manual, you know that when you give this form of the command, you make

room in memory for a larger program than would otherwise fit in the
program buffer.)

731968 page 1 of 1 6/78 No ECN

	Table of Contents
	Section 1: Introduction
	Section 2: Making Contact
	Section 3: Preparing a Simple PILOT Program
	Section 4: PILOT Statement Descriptions
	Section 5: Entering and Editing Your PILOT Program
	Section 6: Using the Test Programs, PLTST and WAPP
	Section 7: Error Messages and How to Deal With Them
	Appendix 1: Using Cassettes
	Appendix 2: Write in PILOT, Read in BASIC
	Appendix 3: References
	Cassette PILOT Update 731068

