
C7 USER'S MANUAL 1 C7 USER'S MANUAL

C 7 U S E R ' S M A N U A L

The following is a description of the programs on Proteus
cassette C7. These programs have been donated by members of Proteus
who wanted to share the fruits of their labor. Proteus has
attempted to check some of the programs for validity, but you should
exercise caution using any of these programs since we can never be
sure they are error free. If you discover errors, please let us
know so we can try 0 keep the programs updated.

**

SCS16 -- SELF-CONTAINED SYSTEM, VERSION 1.6

Description

This is an assembler and disassembler for Sol, based upon
Software Package #1 that was long ago distributed into the public
domain by Processor Technology Corporation. It contains an editor
that creates files of ASCII text in RAM, an assembler that assembles
from these source files in RAM into object files elsewhere in RAN,
and a disassembler that recreates source files in PAM from object
programs in RAPS. The disassembler is based upon the one by Ward
Christensen published in Feb 1977 issue of Dr. Dobbs Journal. The
assembler is extremely fast since it doesn't have to do any
input/output except to the listing device, which is usually video.
This makes it very handy for rapid debugging and alteration of
source programs, provided the source code will fit into available
memory space.

Loading

SCS16 loads into the bottom of memory beginning at 100H. The
editor and assembler load into 0100H-1589H. The disassembler loads
into 2000H-27FFH. Files can be created at 2800H and beyond. SCS
can be loaded as a CP/M command file, since it doesn't disturb the
bottom page of memory (0000-0100). The area between the assembler
and dissembler is used for tables (symbol table, buffer, stack,
etc.). A maximum of 255 symbols can be created. I/O is done
through SOLOS. The entry point for initial entry to the SCS command
interpreter is 0100H (clears files). If you leave control of SCS
and want to re-enter without losing the files in RAM, enter at
0103H. The disassembler may he overwritten by files if you don't
want to use it. Entry to the disassembler will be described below.

Commands

On initial entry, the system will display the prompt, a
right-brace. At this point, SCS is executing the input command
processor and awaiting user input of commands. All commands are
four characters, however, some commands have a fifth character
option which invokes a variation in the command.

During command entry, the DEL key will backspace the cursor and
erase the last character from the screen. The RETURN key signals
the end of the command and causes the command to be executed.

In the following command descriptions, the literal command name
will be in upper case and the arguments which you must

C7 USER'S MANUAL 2 C7 USER'S MANUAL

C7 USER'S MANUAL 2 C7 USER'S MANUAL

supply will be named in lower case. Arguments are always taken as
hex numbers (addresses) or names.

FILE /name/ org

Creates a new file in RAM named "name" and located beginning at
address "org". You can have up to 6 files, one of which is the
"current" file. File names can he up to 5 characters long. After
this command is executed, the new file will be in the internal
directory with its beginning and ending pointers both set equal to
"org", and it will be marked as the Current file. You are
responsible for managing the files so that they do not grow to
overlap. Select an origin far enough away from the end of files
below it.

FILE /name/

Makes the named file the Current one. This is equivalent to
re-opening the file and closing the previous one. SCS will display
its beginning and ending addresses.

FILE /name/ 0

Origin zero signals SCS to delete the file.

FILES

Prints all files and their boundary addresses. The first file
listed is they Current file.

AUTO from incr

Begins automatic line numbering to create new lines in the
Current file. The first line number will be "from" and each
successive line number will be incremented by "incr". SCS will
display the line number and wait for you to enter a space.
Everything following the space until you enter a RETURN will be
placed into that line in the file. If the line number already
existed in the file, your new text will replace the entire line that
was there. If the line number is a new one to the file, your text
will be entered into the appropriate numerical location in the file,
along with the line number. Typing any character other than a space
after the line number will exit from the automatic line numbering
mode and the line number will be erased. You can temporarily break
sequence to enter a different line number, say to alter a previous
line, by entering the desired line number instead of the space.
After the text for the line is entered, the RETURN will cause the
text to be placed in the file and the auto-numbering will resume
where it left off.

LIST line

Lists the current file beginning at line number given. If no
line number is given, the whole file will be listed. In this
version there is one way to pause the listing: turn

3

3

sense switch #8 off. Whenever switch #8 on the Sol is off, the LIST
command will only list one line. In a future version in
preparation, the listing will pause when a space bar is pressed, but
that doesn't work in this version. The Solos display speed can be
set to slow down the listing and the Solos system output pseudoport
can be set to direct the output to a printer.

LTXT line

Lists the text in the file, without line numbers, beginning
with line number given. If line number not given, then the whole
file will be listed without line numbers.

SOLS

Returns control to Solos. You can get back to SCS16 by giving
the Solos command: EX 103.

SFIL

Saves the Current file onto tape #1 with type=F and the file's
own name. Outputs to the tape with Solos block mode format.

GFIL

Gets the next file from unit #1 and puts it into the load
address from the tape header. It replaces the Current file in the
directory, so you should create a new file entry prior to giving the
GFIL command, unless you want the Current file to be lost.

EOCT addr

Enters octal data into memory starting at "addr" address. It
works line the ENter command of Solos, but takes octal input rather
than hex.

DOCT from to

Dumps memory in octal. The "from" and "to" addresses define
the area of RAM to he dumped. These addresses are given in hex as
usual.

DASC from to

Like DOCT but dumps memory in ASCII.

DELT from to

Deletes lines beginning with the line numbered "from" through
the line numbered "to".

4

4

Giving a line number followed by text ending with a RETURN will
cause the line to be entered in the file in its appropriate
numerical sequence. If line number already was in the file, the old
line will be replaced by the new, line and the file space will he
compacted if necessary to avoid wasted space.

Line numbers can range from 0000 to 9999 (decimal) and
preceding zeros must be given to make the line number 4 digits. It
is suggested that lines originally be numbered with five or 10 units
difference so that there are numbers available to insert new lines
between any two lines.

ASSM from to

Assembles a file (assumed to contain an assembly language
program). The source file begins at address "from", and the
resulting object code is placed in memory beginning at location
"to". Assembly terminates when the "END" pseudo-operation is
reached in the source file, or when the end of the file is reached.
Program should begin with an "ORG" pseudo-operation to create object
code that can reside at the desired location.

Instructions in the source file have the following syntax:
line label opcode operands ;commentsRETURN

where
line represents the line number given by the editor,
 represents the space that follows the line number,
label represents the optional symbolic name of this

location in the memory, up to 5 characters, the
first must be alphabetic and no special symbols
allowed,

 represents one or more blank spaces or tabs (if
tabs are used they are expanded in the listing);
if no label field, you must still give these
spaces,

opcode represents the INTEL 8080 mnemonic operation
code or pseudo-operation code,

_ represents one or more blank spaces or tabs,
operands represents the parameters needed by the

instruction, separated by commas if more than
one,

 represents one or more blank spaces or tabs,
;comments represents the programmer's remarks which

will be listed but otherwise ignored, semi-colon
optional.

A colon can be placed after the label for compatibility with the
Intel assembler. A semi-colon or asterisk in the first column
(after the required blank following line number) will cause the
entire line to be taken as a comment line, that is, it will be
listed but otherwise ignored.

Some symbols are pre-defined by the assembler and may not be
used by the programmer except in the operand field. These symbols
are: A,B,C,D,E,H,L,M,SP,PSW. They represent the registers of the
8080, the memory addressed through HL, the stack pointer, and the
program status word (flags and A). In addition, the dollar-sign ($)
is defined to be the current value of the program counter after the
current instruction is assembled; that is, it points to the first
byte of the

5

5

next instruction.
Operands can be constants, symbolic names, or expressions.

Constants can be decimal integers (signed or unsigned), octal
numbers, hexidecimal numbers (signed or unsigned), or ASCII
constants. Hexidecimal numbers must have the letter "H" as suffix
and must not begin with a letter; a preceding zero may be used if
number would otherwise begin with a letter. For example, "0C000H"
is the starting address of Solos. Octal numbers must be suffixed
with the letter "O" or "Q". Decimal numbers may be suffixed with
the letter "D", but that is optional since numbers without a suffix
are taken to be decimal. ASCII constants are enclosed within single
quote marks; for example, 'C'. Expressions are symbols and constants
separated by arithmetic operators "+" or "-" and are computed using
16 bit arithmetic modulo 65536.

Pseudo-operations are instructions to the assembler rather
than mnemonics for 8080 instructions. This assembler recognizes the
following pseudo-ops:

ORG--"Origin". Sets the assembler's program location
counter to the value of the operand. The label if given
will be equated to the origin.

EQU--"Equals". Defines the label symbol to have the
value of the operand expression.

END--"End of assembly". Signals the end of the source
file.

DS--"Define Storage". Advances the assembler's
program location counter by adding the value of the
operand, effectively reserving a given number of bytes of
memory without placing any data in them.

DB--"Define Bytes". Defines bytes of data to be
placed in memory beginning at the assembler's current
program counter location. For example,

DB 'ABCD'
defines four bytes each containing the ASCII letters 'A',
'B', 'C', 'D', respectively. Mixed constant types may be
given if separated by commas, as

DB 'message',0DH,18
will define ASCII constants, followed by one byte hex
constant, and one byte having decimal 18.

DW--Define Word. Similar to DB but defines two bytes
of storage only, and the bytes will be placed in memory in
reverse order, which is the standard Intel 8080 placement
for two-byte addresses stored from registers or to be
loaded into 2-byte registers.

The assembler listing will flag errors detected by the
assembler. The flags are:

O Opcode error
L Label error
D Duplicate label
M Missing label
V Value error
U Undefined symbol
S Syntax error

6

6

R Register error
A Argument error

ASSME from to

Acts the same as the ASSM command above, except that the
listing will only show lines having error flags.

EXEC addr

Instructs SCS to begin execution of an object program at
address "addr". A return-from-subroutine (RET) instruction will
return control to SCS if the stack is properly maintained in the
executing program.

EXEC 2000 from -- Executes the disassembler.

The disassembler is more fully documented in the Dr. Dobbs
Journal article mentioned above, and it is essential that you read
that article to use it. To execute the disassembler, give this
command, where "from" is the hex address of the object program to be
disassembled. Sense switches are used to control the phases of the
disassembly. Control-Z character will pause the listing and space
bar will resume it. Control-X returns control to the SCS command
processor. When reading the article, keep in mind that the sense
switches are numbered 1-8 on the Sol PC board, whereas they are
referred to as 0-7 in the article. Also, when a Sol switch is OFF
it produces a 1 or HI value when read. This corresponds to the UP
position on the Altair or Imsai computer's sense switches.

ALS-8 Compatibility

SCS stores text files in memory the same way that Processor
Technology's ALS-8 program does. This makes it possible to read
source files written by ALS-8. To do this, the tape should be
positioned so that the desired file is ready to be read on the
cassette recorder. Use the CAtalog and GEt commands of Solos to
position the tape. Then create a file in SCS to receive the program
and give the GFIL command. SCS will read the file into memory and
set the directory entry to contain the file's name from the tape
header and the file's address limits in memory. You can then
manipulate the file with SCS.

IMPORTANT: If the file was written having an address that
overlaps SCS or its tables, you must relocate the file first by
reading it into memory with Solos at an address that will not harm
anything in memory (above your last file) and writing it back out
onto tape with the desired location in the header. Read the Solos
manual for details, but in brief, the following Solos commands will
do this:

GET file loc
SAVE file loc to addr

where "file" is the filename on tape,

7

7

"loc" is the hex address where you can store the file
temporarily,

"to" is the last address occupied by the file after Solos has
loaded it (add the file length given by Solos on
completion of the GET, to the starting address "loc",
minus one, using hex arithmetic),

"addr" is the address where you want SCS to place the file when
it reads it from tape (header address).

**

CSEL--CORRESPONDENCE SELECTRIC OUTPUT DRIVER

This is a custom output driver for Solos which will operate a
Correspondence-code, IBM 2741-compatible selectric terminal properly
hooked up to the Sol serial port. Examples of such terminals
include the Carterfone S15C terminal manufactured by Datel and
distributed by Carterfone, the Anderson-Jacobson 841-C (not the
ASCII modified one, the original one), and similar terminals. This
driver will not work correctly with the EBCDIC-code terminals, nor
with the ones modified to accept ASCII-code.

The proper electrical hook-up and Sol switch settings were
described on page 3 of Solus News, vol. 0, no. 2, Oct/Nov 1977. The
Terminal requires baud rate 134.5, word length 6 bits plus odd
parity plus one stop bit, standard RS-232 levels. To achieve the
non-standard baud rate of 134.5, the Sol's 110 baud rate must be
modified with a simple, reversible hardware alteration: pin 12 of
U84 (4029) is bent out so it doesn't engage the socket and it is
wired to +5 volt supply trace nearby. The wire can be applied to
the IC's pin using a simple wire-wrap tool, so the pin is not
harmed, and the other end of the jumper wire soldered to the +5 volt
feed-through hole. See the article cited for more details.

To use the driver, load it with Solos and EXecute C863. This
will initialize the driver and issue a message on the video, "TURN
ON SELECTRIC TERMINAL". The terminal should be off when you execute
this initialization, and you should turn it on as instructed. When
the terminal is powered on, it sends a special character to the Sol,
which the driver expects to find. When the character is received,
the driver sends another message to the video, "STRIKE ITS RETURN
KEY". At this point the Proceed light (or equivalent) on the
terminal should be on. Press the Carriage Return key on the
typewriter. The Proceed light should go out, the carriage should
return to the left. The driver will send a special character back
to the terminal (the digit "9") which does not print, and then the
typewriter should type "READY!".

The driver was written for a specific typesphere (print
element) which has the exclamation mark where ordinary office
typespheres have the one-half symbol. To see how your typesphere
matches the one assumed by the program, you can type out the entire
character set in order and see what comes out. I'm sorry I don't
know for sure which typesphere is the correct

8

8

one, but I think it is #072. (Another Selectric driver to be
donated to the Proteus library will have the source code and
instructions for altering the character set.) Nevertheless, the
driver will work correctly with any ordinary office selectric
typesphere for all of the letters, numbers, and most of the commonly
used punctuation. ASCII characters not available on the assumed
typesphere will print as blanks so that you can fill in the proper
character by hand. (The other driver to be donated will create
representations of all of the ASCII characters using overstrikes if
necessary.)

After the "READY!" message appears, the initialization routine
sets Solos so that the Custom Output driver address is C903 and the
output pseudo-port is 3, and then it returns to Solos for further
command processing. You may then run programs which direct output
to the system output port and the output will appear on the
typewriter. For example, doing a CAtalog command will list the file
information on the terminal rather thin on the video.

Notice that the location of the driver is in Sol scratchpad RAM
and that the initialization part of it is in the area which is
erased by a system reset when Solos initializes itself. If you must
do a reset and restart a program, you can do the initialization
yourself without reloading the driver. You must

>SET CO C903
>SET O=3

and restart your program. If the terminal is turned off for some
reason, remember that it must receive a "9" character as the first
thing it gets after power is turned on again; otherwise it won't
print anything. The initialization routine does this for you, but
if you do the initialization yourself you must arrange to get the
"9" out there before any other characters. A nine on the typewriter
keyboard won't do, it must be transmitted from the computer.

**

CUP--CASSETTE UTILITY PACKAGE by L. Morgenstern, 304 Rheem Blvd
Moraga, California 94556.

CUP is represented by 6 files on tape C7: CUP0, CUP1, CUP2,
CUP3, SCDO1, SCDO2. The complete documentation is in CUP0, as an
ALS-8 text file. The files contain as follows:

CUP0 is in ALS-8 format and contains an introduction to CUP and
SCDO.

CUP1 is in ALS-8 format and contains CUP documentation,
including a brief documentation of SCDO, a powerful feature of CUP
by which Solos commands can be executed from the screen, similar to
FORTRAN DO loops.

CUP2 is in ALS-8 format and contains the assembly source code
for CUP, including SCDO.

CUP3 is the assembled object file of CUP in Solos single-block
format, the way programs are usually saved.

SCDO1 is in ALS-8 format and contains SCDO documentation.
SCDO2 is in ALS-8 format and contains SCDO source file.

9

9

**

LIST--STORES A DIRECTORY OF FILES AT THE BEGINNING OF A TAPE

LIST makes a file at the start of your cassette so that you
know where your programs are located by counter reading on the
cassette recorder.

Record a cassette, leaving some space at the beginning for the
file to be created, and noting the counter reading for the start of
each program. Load and execute the LIST program. Rewind the tape
to be LIST'ed, and set it up to record at the beginning of tape.
slake entries in the form shown by LIST. When the last entry has
been made and entered by carriage return, press ESCAPE and the
program will generate a file called "CFILE", which will load and
execute at C900. Once CFILE has been executed, as long as the
system has not been reset (by UPPER CASE & REPEAT keys) the listing
may be reviewed by giving the Solos command "CF".

Correction to LIST program
Examine the byte located at LIST's origin + 1B2H. If it reads

"30" change it to "36". (Any CFILE's made with the old version
should have C933 changed from "30" to "36" also.) The custom
command address in the old version was incorrectly set to C900 so
that it CFILE is recalled, it re-enters the custom command routine
in Solos which, as per specifications, removes the command. This
correction will prevent that.

**

BSHIP--BATTLESHIP GAME

Battleship is a classical game wherein each player has a
playing board that cannot be seen by the other player. Each player
tries to shoot the opponents battleships without knowing where they
are, and the opponent is required to designate which shots hit and
which missed. Shots are given by the coordinates of the target.
The first player to destroy the opponents fleet is the winner.

In this version, you play against the computer. Execute the
program and you can ask for the rules of play.

**

TAPE2--GENERATES A TEST PATTERN ON CASSETTE TAPE

This program writes a pattern on the cassette and then reads it
back again to see if the recorder has been accurate.

Operation:
1. Use the GET command to load "TAPE2".
2. Set up the cassette recorder #1 in the record mode. (The
program does not use the motor-control relays. Leave the motor
cable unplugged from your recorder.)
3. Let it record for 15 seconds or so.

10

10

4. EXecute C900. (The program will run forever until you stop it.)
5. When you have recorded to the end of the cassette, turn off the
recorder and do a system reset at the keyboard (UPPER CASE/ REPEAT).
6. Rewind the cassette to the beginning.
7. Start the recorder in playback mode.
8. EXecute C930 when the recorder has passed the blank leader and
is reading the empty 15 seconds your first recorded.
9. The resulting display will start incrementing each character
position (starting at CF00) through all 256 possible character
combinations and then increment to the next character position.
This will continue for 4 lines and then repeat. Any errors that are
detected are displayed as follows:

F: Framing or overrun error
D: Data error
C: CRC error
S: Sync error.

When an error is printed out, the next character that is printed is
the byte that caused the error.

The tape format is:
4 bytes of 00
1 byte of 01
256 bytes 00
1 byte CRC
.
. repeats ad infinitum
.

**

PIRAN--PIRANHA VIDEO ARCADE GAME

The instructions are contained in a single video screen image
recorded in the file called "PRNIN". To view that file, do exactly
this:
1. Prepare the cassette #1 to playback, motor control and audio
cables properly in place.
2. Position the tape just before the PRNIN file, using the CA
command.
3. Press the CLEAR key, and then press MODE SELECT key 15 times.
This will give a trail of greater-than prompts down the left side of
the screen to the bottom.
4. Type "GET PRNIN" and RETURN. 5. The file will be loaded into the
video display area.

**

SSnA--SINGLE-LINE SIMULATOR

This program simulates the execution of a machine language
program residing somewhere in RAM. The original concept was based
on an article in the Sept 77 issue of Kilobaud. It was adapted by
John Zimmerman.

The simulator is recorded on tape C7 in files SS2A through
SS6A. The only difference between these versions is the

11

11

location where the program will be loaded. SS2A loads at 2A00, SS3A
loads at 3A00, and so on. Each one should be Executed at its first
address to begin execution.

To start

1. Execute starting address (SA) of the simulator.
2. Program will expect exactly 4 hex digits for the starting
address of the program to be simulated. The input routine is
primative--there is no delete key. Just restart the execution if
you make an error.
3. The simulator will simulate execution of the program one
instruction at a time each time the space bar is pressed.

Functions

1. Space bar or most other keys will advance the simulator.
2. S = output Stack data
3. L = Back up one instruction (won't back more than one).
4. M = output memory locations in hex. You enter 4 hex digits for
address to be examined
5. A = output 48 ASCII characters from memory. You give 4 digit
address.
6. G = go the specified number (hex) of instructions before
printing out another summary. Enter 4 hex digits. Each time you
press the space bar simulator will advance that many instructions.
You can give another command or another G command to do something
else.
7. B = breakpoint. Give the address to insert breakpoint as 4 hex
digits. Space bar continues.
8. R = range. Enter 4 hex digit low address and 4 hex digit high
address (1 beyond). Simulator will run outside this range, but will
only print summaries within the range.

Keyboard entry

A message is printed to indicate that the program being
simulated wants a character from the keyboard. It is echoed after
you give it, and simulation continues. A DEL key will cause
no-character to be returned as the entry. This is customized for
Solos: C02E=entry to keyboard routine, C036=exit address to keyboard
routine. For other systems, alter location +04D0 relative to the
origin of the program.

Exit and Restarting

The "E" key ends the simulation and returns control to Solos
via C004. The current step's information is saved so that upon
entry to the starting address of the simulator, pressing the space
bar 4 times in place of the starting address will cause the
simulator to resume where it left off.

**

BAUD--ASCII-TO-BAUDOT OUTPUT ROUTINE

12

12

See Proteus News, vol 2, no 2, p 11.

**

UTIL, MTEST--OBJECT FILES
UTSYM, MTSYM--SOURCE FILES

See Proteus News, vol 2, no 2, p 19 and p 14, respectively.

**

ASSM, TASSM--ASSEMBLER AND TAPE ASSEMBLER

See accompanying reprint from PRINT OUT, the newsletter of the
Central Texas accompanying Computer Association. Both are similar
to SCS16 on this tape, but TASSM assembles from source files
recorded on tape, thus allowing very large source programs to be
assembled, larger than could fit into available memory space.

**

13

13

8080 ASSEMBLER MODS
By Ron Parsons

I have made a number of
modifications to a version of the
editor/ assembler usually known as
Processor Technology's Software

Package #1. The source changes as well
as the new command syntax and command
operation are discussed. They are
presented here to stimulate your own
ideas for other possible changes.

Modifying software to increase its
capabilities or make it easier to use
can be very challenging. Learning to
understand the original software in
order to make the changes will improve
your skill in programming. If you have
made changes to existing software, write
them up for PRINT-OUT. Share your
ideas!

I will use the standard notation, that
is, optional parts of syntax are
enclosed in []. The PAGE command,
which moves a 256 byte segment from one
location in memory to another, has been
changed to MOVE and an optional
parameter added to specify the number of
bytes to be moved. The new syntax is

MOVE [/number/] (fm. addr) (to addr)

If (number) is not specified, the
default is 256 (it reverts to the old
PAGE command action). The value of
(number) can range from 1 to FFFF (hex).

14

14

The FILE command has been augmented
to provide for recovering an existing
file in memory after its directory has
been lost or trashed. (The directory is
cleared when you restart the monitor at
its beginning address, F000.) The
directory contains three essential
pieces of information - the beginning of
file address (BOFA), the end of, file
address, and the highest line number.
The command

FILEO /file name/(BOFA)

(mnemonic FILEOld) starts scanning the
file at the beginning of file address,
restores the directory, and makes (file
name) the current file. This is a lot
easier than reconstructing the directory
by hard (and more accurate, too). The _
between the FILE command and the / MUST
be a "blank."

A file renumbering command has been
created to renumber a file. The command

FILER [1st line # [line # increment]]

resequences the current file's line
numbers starting with the decimal first
line number, and incrementing by line
number increment. The defaults are both
10.

The LIST command has been changed to
permit listing the entire file, a single
line, or a group of lines without
resorting to sense switch flipping. The
syntax is

LIST [1st line # [last line #]]

If last line number is specified, lines
from "first" to "last," inclusive, are
printed. If last line number is
ommitted, only the "first" line is
printed. If the command is given
without parameters, all lines are
printed. For user convenience when

using a video display, output from LIST
or ASSM is suspended when any keyboard
key is depressed. Printing resumes when
a key is again depressed.

To help a non-typist enter text into
a file; say, for subsequent assembling,
the editor has been modified to provide
the line number automatically when lines
are being added at the end of the file.
The automatic line number increment is
10. A blank is also provided after the
line number. A carriage return entered
as the first character of the line exits
the automatic line number sequence.
Tabs have been added at 10, 15 and 20.

A new command has been created to print
the symbol table of the most recent
assembly. Four symbols and their
associated values or addresses are
printed par line. Keyboard input
suspends the output pending another
keypress. The symbols are sorted.
The syntax is

SYMB

All of the above changes require an
additional 200 (hex) bytes of code.
Since memory is my scarcest resource,
the assembler was modified to read
source code from cassette rather than
from memory. The tape is read into a
memory buffer until an end--of-line
character is read. The line is
"quickly" processed and the tape is read
again without missing a character.
Standard Kansas City speed (300 bits per
second) gives sufficient time to process
(and video display with a Processor Tech
VDM) each line. Higher tape speed (1200
bits per second) is too fast.

When the end-of-file is read from the
tape, the assembler displays YES? and
waits for keyboard input. If more files
remain, you position the tape at the
next file-and input "C" from the
keyboard. When all files have been
processed, you reposition the tape at
the first file and "2" is input to begin
the second pass. All files must be read
again in the sane order.

