LISP LORE: A GUIDE TO
PROGRAMMING THE LISP MACHINE

SECOND EDITION

LISP LORE: A GUIDE TO
PROGRAMMING THE LISP MACHINE

SECOND EDITION

by

Hank Bromley
AT&T Bell Laboratories

and

Richard Lamson
Symbolics, Inc.

B

KLUWER ACADEMIC PUBLISHERS
Boston/Dordrecht/Lancaster

Distributors for North America:
Kluwer Academic Publishers

101 Philip Drive

Assinippi Park

Norwell, Massachusetts 02061, USA

Distributors for the UK and Ireland:
Kluwer Academic Publishers

MTP Press Limited

Falcon House, Queen Square

Lancaster, LA1 1RN, UNITED KINGDOM

Distributors for all other countries:

Kluwer Academic Publishers Group
Distribution Centre

Post Office Box 322

3300 AH Dordrecht, THE NETHERLANDS

Consulting Editor: Tom M. Mitchell

Library of Congress Cataloging-in-Publication Data

Bromley, Hank.
Lisp lore.

Includes index.

1. LISP (Computer program language) 1. Lamson,
Richard. II. Title.
QA76.73.L23B75 1987 005.13'3 87-3639
ISBN 0-89838-228-9

The Lexical Scoping example on page 52 is quoted from Symbolics Common Lisp: Language Concepts,
Copyright © 1986 by Symbolics, Inc. Reprinted by permission.

Definitions from The Hacker’s Dictionary Copyright © 1983 by Guy L. Steele. Reprinted by permission.

Copyright © 1987 by Kluwer Academic Publishers

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, mechanical, photocopying, recording, or otherwise, without
the prior written permission of the publisher, Kluwer Academic Publishers, 101 Philip Drive, Assinippi
Park, Norwell, MA 02061.

Text masters produced on Symbolics 3600T™-family computers and printed on Symbolics LGP2 Laser
Graphics Printers.

Printed in the United States of America.

Table of Contents

Preface to the First Edition
Preface to the Second Edition
1. Introduction

2. Getting Started on the Lisp Machine

2.1 Why Use a Lisp Machine?
2.1.1 Why This Book?
2.1.2 Looking Ahead
2.2 The Keyboard
2.3 Typing to a Lisp Listener
2.4 Getting Around the Environment
2.5 The Mouse
2.5.1 The System Menu
2.6 The Monitor
2.7 The Editor
2.8 The Compiler and the Debugger
2.9 Getting Started
2.9.1 Bringing the Machine up
2.9.2 Logging in
2.10 A Word About Work Style
211 This and That
2.111 Problem Reporting
2.11.2 Backup
2.12 Problem Set #1

3. Flow of Control

Page
xiii

xvii

2 w©oa

13
15
17
18
19
21
23
24
25
27
30
31
31
32
33

37

vi

Lisp Lore

3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8
3.9

Conditionals
Blocks and Exits
Nonlocal Exits
Iteration

3.4.1 Mapping

3.4.2 Do

3.4.3 Loop

3.4.4 Implicit Iteration
Lexical Scoping
Macros
Unwind-protect
Fun and Games
Problem Set

4. More on Navigating the Lisp Machine

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

The Scheduler and Processes
Windows

Debugging

The Input Editor and Histories
Mouse Sensitivity

Poking Around

Fun and Games

Problem Set

5. What’s a Flavor?

51
5.2
5.3
5.4
5.5
5.6
5.7
5.8

Instance Variables
Methods
Making Instances

Initial Values for Instance Variables

Methods for Make-instance
Mixing Flavors

Combined Methods
Whoppers

37
40
41
42
44
45
47
51
52
53
55
57
58

67

67
73
80
83
86
90
92
94

97

98

99
101
102
105
105
108
11

Table of Contents

vit

5.9

5.10
5.11
5.12
513
5.14
5.15

Internal Interfaces

Vanilla Flavor

The Flavor Examiner Tools
Message Passing

The Window System

Fun and Games

Problem Set

6. User Interface

6.1
6.2
6.3
6.4
6.5

6.6

Program Frameworks: an Overview

Defining Commands

The Redisplay

Presentation Types

Mouse Sensitivity
6.5.1 Mouse Sensitivity — the Easy Part
6.5.2 Mouse Gesture Translations

Fun and Games

7. The Graph Example

7.1
7.2
7.3
7.4
7.5
7.6
7.7

The Nodes and Arcs

The Presentation Types

The Display

The Commands

The Mouse Gesture Translators
The Program

Problem Set

8. Streams and Files

8.1 Streams

8.2

8.1.1 Standard Stream Operations
8.1.2 Special-purpose Operations
8.1.3 Standard Streams
Accessing Files and Directories

115
115
116
117
120
121
122

131

132
135
137
138
141
142
144
147

149

150
154
155
157
157
159
169

173

174
175
177
179
180

viii Lisp Lore

8.2.1 Open and Other Functions for Operating 181

on Files

8.2.2 Directories 184

8.3 Pathnames 184
8.3.1 Component Values 187
8.3.2 Case in Pathnames 189

8.3.3 Defaults and Merging 190

8.3.4 Pathname Functions and Methods 191

8.3.5 Logical Pathnames 195

8.4 Making Other I/O Streams 198
8.5 Fun and Games 199
8.6 Problem Set 201
9. The Calculator Example 205
9.1 The Program Frame 205
9.2 The Redisplay 207
9.3 The Command-definition Macrology 209
9.4 The Program 210
9.5 Fun and Games 214
10. Systems, Storage and Errors 217
10.1 Systems 217
10.1.1 Defining a System 218
10.1.2 Compiling and Loading Systems 221
10.1.3 Patching a System 222

10.2 Storage Allocation 224
10.2.1 Allocation and the Garbage Collector 224
10.2.2 Areas 226
10.2.3 Resources 227
10.2.4 Stack Allocation 231

10.3 Condition Handling 233
10.3.1 Signalling Conditions 234

10.3.2 Handling Conditions 235

Table of Contents ix
10.3.3 Creating New Condition Flavors 236
10.3.4 Restart Handlers 237
10.3.5 Proceeding 238
10.3.6 A Few Examples 239

10.4 Fun and Games 243
11. The Card Game Example 245
11.1 Card Definitions 246
11.2 Presentation Types 248
11.3 Card Places 249
11.3.1 Basic Places 249
11.3.2 Presentation 250
11.3.3 Caching 251
11.8.4 Stacked Places 251

11.4 The Interactive Program 252
11.4.1 Games 253
11.4.2 Place Display 255

11.5 The Program 256
11.6 Problem Set 278
11.7 Fun and Games 278
12. More Advanced Use of the Editor 279
121 Keyboard Macros 280
12.2 Writing New Commands 282
12.2.1 Zwei Data Structure 282
12.2.2 Command Tables and Command 286

Definition

12.2.3 Reading From the Mini-buffer 289
12.2.4 A Real Example 290

12.3 Learning More About the Editor 290
12.4 Fun and Games 291
12,5 Problem Set 292

x Lisp Lore

13. A Quick Look At the Network 299

13.1 The Gee-whiz Look 299

13.1.1 What is a Network? 300

13.1.2 Levels of Abstraction 302

13.2 The Generic Network System 305

13.2.1 How Does Path-finding Work? 306

13.2.2 How Does Service Invocation Work? 307

13.2.3 Other GNS Functions 307

13.3 The Namespace System 308

13.4 Examples of the Use of the Generic Network 310
System

13.4.1 Time of Day 310

13.4.2 Who’s Logged in 311

13.4.3 Mail Delivery 311

13.5 Writing Your Own Network Software 314

13.5.1 Writing Your Own User End 317

13.5.2 Writing Your Own Server End 317

13.5.3 Sample User and Server Definition 318

APPENDIX A. Basic Zmacs Commands 325

Index 331

Figure 1.
Figure 2.

Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Figure 9.

List of Figures

Transitions among window states
Flavor inheritance hierarchy for
si:zindirect-escape-input-stream.
Structure of combined method

Grapher program display window

A Sample SYS:SITE;SYS.TRANSLATIONS
Calculator program display window
Card game program display window
Standard medium and protocol for Alert
Farmers.

All possible implementations of Alert
Farmers.

76
107

114
151
197
206
247
302

303

This
mail:

Preface to the First Edition

book had its genesis in the following piece of computer

From allegra!joan-b Tue Dec 18 89:15:54 1984
To: solalhjb
Subject: 1ispm

Hank, I’ve bheen ta1k1ng'w1th Mark Plotnik and Bill Gale
about asking you to conduct a basic course on using the
lisp machine. Mark, for instance, would really like to
cover basics like the flavor system, etc., so he could
start doing his own programming without a lot of trial
and error, and Bill and I would be interested in this,
too. I’m quite sure that Mark Jones, Bruce, Eric and
Van would also be really interested. Would you like to
do it? Bill has 1et me know that if you’d care to set
something up, he’s free to meet with us anytime this
week or next (although I’11 only be here on Wed. next
week) so we can come up with a plan. What do you think?

Joan.

xiv Lisp Lore

(All the people and computers mentioned above work at AT&T
Bell Laboratories, in Murray Hill, New Jersey.) I agreed, with
some trepidation, to try teaching such a course. It wasn’t clear
how I was going to explain the Lisp Machine environment to a
few dozen beginners when at the time I felt I was scarcely able
to keep myself afloat. Particularly since many of the
“beginners” had PhD’s in computer science and a decade or
two of programming experience. But the need was apparent,
and it sounded like fun to try, so we had a few planning ses-
sions and began class the next month.

From early January through late March we met once a week,
about a dozen times in all, generally choosing the topic for
each session at the conclusion of the previous one. I spent the
last few days before each meeting throwing together lecture
notes and a problem set (typically finishing shortly after the an-
nounced class time). By the end of the course, the students
had attained varying levels of expertise. In all likelihood, the
person who learned the most was the instructor; nothing
provides motivation to figure something out like having com-
mitted oneself to talking about it.

After it was over, another co-worker saw the sizable pile of
handouts I had generated and proposed that it would make a
good book. He offered to contact a publisher he had recently
dealt with. I was at first skeptical that the informal notes I
had hurriedly concocted would interest a reputable academic
publisher, but after taking another look at the materials that
had sprouted, and discussing the matter, we agreed that quite a
few people would find them valuable. I've spent the last few
months filling out and cleaning up the pile, and Presto,
change-o. My “set of handouts” is “a book.”

Preface to the First Edition xv

There are a number of people who have, in one way or another,
consciously or otherwise, helped create this book. Ken Church
was instrumental in arranging my first experience using the
Lisp Machine, and later was responsible for bringing me to Bell
Labs. He also taught a course here, before I came, which laid
some of the groundwork for my own course. Eva Ejerhed, in a
rare act of faith, hired me to work on a Lisp Machine
thousands of miles from the nearest expert assistance, without
my having ever touched one. Joan Bachenko and Bill Gale first
suggested I teach a course at the Labs. Many of my colleagues
who served as experimental subjects by participating in one of
the three trials of the course provided useful comments on the
class handouts; among those whose contributions I particularly
recall are Mark Liberman, Jeff Gelbard and Doug Stumberger.
Ted Kowalski first broached the idea of making a book from the
handouts, and also — with Sharon Murrel — supplied lots of as-
sistance with the use of their Monk text formatting system.
Wayne Wolf suggested improvements. to my coverage of manag-
ing multiple processes. dJon Balgley, of Symbolics, Inc.,! wrote
a helpful review of one version of the manuscript. Valerie Barr
introduced herself to the Lisp Machine by actually working
through an entire draft, making a great many valuable obser-
vations along the way. Mitch Marcus and Osamu Fujimura, my
supervision at the Labs, were most understanding about the
amount of time I put into this project. Carl Harris was an
obliging and patient Publisher. Finally, Symbolics, Inc. gra-
ciously allowed me to quote extensively from their copyrighted
materials, and Sheryl Avruch of Symbolics made possible the
distribution of a tape to accompany this book.

1Symbolics, Symbolics 3600, Symbolics 3640, Symbolics 3670, and Document
Examiner are trademarks of Symbolics, Inc. Zetalisp(r) is a registered trademark of
Symbolics, Inc.

xui Lisp Lore

I would like to hear about any problems readers have while
working their way through the text. Please don’t hesitate to
mail me any of your comments or suggestions.

Hank Bromley
December, 1985

computer mail: US mail:?

hjb@mit-mc (arpa) AT&T Bell Laboratories
alice room 2D-410

research } !solalhjb (uucp) 600 Mountain Avenue
allegra Murray Hill, NJ 07974

2As, of September, 1986, Hank is no longer working for AT&T. His new address is:

Hank Bromley
Martha's Coop

225 Lake Lawn Place
Madison, Wi 53703

Preface to the Second Edition

I received my copy of Lisp Lore back in July directly from
Hank; we had met at a course taught by Symbolics in
Cambridge and he had mentioned it to me. Immediately, I
recognized its value. Unfortunately, much of it was soon to be
made obsolete by the issuance of Release 7.0, which was
scheduled for a little over two months after its publication. I
wished I had had time to review it before publication.

Two days later, I received a copy of the following piece of com-
puter mail:

From: hjb.solaZbtl.csnet@CSNET-RELAY.ARPA
Date: Mon 21 Jul EDT 1986 18:51

To: SLUGBR28.UTEXAS.EDU

Subject: masochist, I mean writer, needed

The publisher of my book (“Lisp Lore: A Guide to Programming
the Lisp Machine”) would like to do a revised-for-Release-7
version. I don’t have the time to do the revision. If you
or anyone you know might be interested, have them call me
(281/582-4377), or send me mail, or call Carl Harris at
Kluwer Academic Publishers (617/871-6380).

XVili Lisp Lore

Well, here it is, months later, and I'm getting my “wish.” I
hope this edition is as valuable as I found the first. I’ve cer-
tainly had fun writing it.

An enormous number of people have contributed to my ability
to get this work done. First, of course, Hank Bromley, who
turned his manuscript over to me, both emotionally and
electronically. A number of my colleagues at Symbolics have
read the various drafts and commented quite helpfully: Muffy
Barkocy (who also drew the card font for the solitaire program),
Lois Wolf, Carmen Silva, Debbie Ward, Robert (“BigBob’’)
Westcott, Jon Balgley and Allan Wechsler. Thom Whitaker
greatly aided my efforts to make Scribe make the book print-
able. My managers during this project, Larry Rostetter and
Jim O’Donnell, were extraordinarily supportive. And my family
and loved ones, especially Joan Freedman, have given me en-
couragement and massages when all else failed.

I would certainly like to hear about problems you have while
reading this book and its accompanying examples. Please don’t
hesitate to send me comments or suggestions. I imagine there
will be later editions as this one becomes obsolete.

Preface to the Second Edition Xix

By the way, you might be slightly confused by the fact that
both Hank and I wrote sections of this book in first person.
I've adapted as much of Hank’s text as possible, including all
his “I’’s. However, I did write the following chapters from
scratch: 6, 9, 10, 11 and 13. Most of the other chapters have
had a pretty substantial updating.

Richard Lamson

November, 1986
computer mail: US mail:
rsl@Symbolics. ARPA Symbolics, Inc.

rsl@E.SCRC.Symbolics. COM 25 Van Ness Blvd.
San Francisco, Calif 94102

ACKNOWLEDGMENTS

The authors gratefully acknowledge AT&T Bell Labs and Symbolics, Inc., for their
research environment support for such forward-looking and creative activities as
produced this book.

We would also like to thank the companies listed below for their permission to use
the following registered trademarks or symbols:

Symbolics, Symbolics 3600, Symbolics 3670® , Symbolics
3675, Symbolics 3640, Symbolics 3645, Symbolics 3610,
Symbolics 3620, Symbolics 3650, Genera, Symbolics-
Lisp® , Wheels, Symbolics Common Lisp, Zetalisp® ,
Dynamic Windows, Document Examiner, Showcase,
SmartStore, SemantiCue, Frame-Up, Firewall,
S-DYNAMICS®, S-GEOMETRY®, S-PAINT,
S-RENDER® , MACSYMA, COMMON LISP MAC-
SYMA, CL-MACSYMA, LISP MACHINE MACSYMA,
MACSYMA Newsletter® and Your Next Step in Com-
puting® are trademarks of Symbolics, Inc.

“Unilogic’’ and ‘‘Scribe’’ are registered trademarks of
Unilogic, Ltd.

DECnet is a trademark of Digital Equipment Corporation.
Multics is a trademark of Honeywell, Inc.
UNIX is a trademark of AT&T Bell Laboratories.

VAX and VMS are trademarks of the Digital Equipment
Corporation.

LISP LORE: A GUIDE TO
PROGRAMMING THE LISP MACHINE

SECOND EDITION

1. Introduction

The full 13-volume set of documentation that comes with a
Symbolics Lisp Machine is understandably intimidating to the
novice. “Where do I start?” is an oft-heard question, and one
without a good answer. The thirteen volumes provide an excel-
lent reference medium, but are largely lacking in tutorial
material suitable for a beginner. This book is intended to fill
that gap. No claim is made for completeness of coverage — the
thirteen volumes fulfill that need. My goal is rather to present
a readily grasped introduction to several representative areas of
interest, including enough information to show how easy it is to
build useful programs on the Lisp Machine. At the end of this
course, the student should have a clear enough picture of what
facilities exist on the machine to make effective use of the com-
plete documentation, instead of being overwhelmed by it.

The desire to cover a broad range of topics, coupled with the
necessity of limiting the amount of text, caused many items to
be mentioned or referred to with little or no explanation. It’s
always appropriate to look up in the full documentation any-
thing that’s confusing. The manuals are perfectly adequate ref-
erence materials, as long as you know what you want to look
up. The point in this text is rarely to explain what some

2 Lisp Lore

specific function does in isolation — that’s what the manuals are
good for. The focus here is on how to integrate the isolated
pieces into real applications, how to find your way around the
landscape, how to use the multitudinous features described in
such splendid detail in the 13 volumes. The manuals provide a
wonderfully thorough, but static, view of what’s in the Lisp
Machine environment; I’ve tried to provide a dynamic view of
what that environment looks like in action, or rather in inter-
action with a human,

The book assumes some background in Lisp; the reader is ex-
pected to have experience with some dialect of the language. If
you lack such experience, you may want to do a bit of
preparatory st:udy.1 This book concentrates on those aspects of
the Lisp Machine language (Symbolics Common Lisp) which are
not found in most dialects, and on the unique overall program-
ming environment (called Genera) offered by the Lisp Machine.
No experience with the Lisp Machine itself is assumed.

Finding an ideal order of presentation for the various topics
would be difficult. Many topics are interdependent, such that
knowing either would help in figuring out the other. Present-
ing them simultaneously would only confuse matters, so I've
had to settle on one particular linear sequence of topics. It
may seem natural to some readers and bizarre to others. I've
tried to identify places where it might be helpful to look ahead
at sections further on in the text, but I'm sure I haven’t found
them all, so don’t hesitate to engage in a little creative re-
ordering if you feel the urge. One chapter whose position is
problematic is that on Flavors. A great deal of the Lisp

1Two widely available sources you may find well worth your time are Lisp (2nd
edition), Winston and Horn, Addison-Wesley, 1984, and Structure and Interpretation
of Computer Programs, Abelson and Sussman, MIT Press, 1984.

Introduction 3

Machine environment depends on Flavors, including the window
system and the process scheduler. I have chosen to place it
after the chapter that introduces both of those, because you
don’t really need to know flavors to get the concepts, and it
really belonged after Flow of Control. Feel free to sneak looks
at it at any time, though. Also, I’ve sprinkled references to the
Symbolics documentation liberally throughout the book; feel free
to chase down anything that interests you.

I’ve adopted a rather informal tone for most of the text: people
learn better if they’re relaxed. Just let me caution you that
“informal” doesn’t mean “‘sloppy.” There are few extra words.
Lots of information is present in only one place, and apparent
only if you read carefully. If you get fooled by the informality
into thinking you can scan half-attentively, yow’ll miss things.

It must be emphasized that learning to use the Lisp Machine is
more a matter of learning a way of thinking than of learning a
set of specific programming constructs. No amount of time
spent studiously poring over documentation can yield the
benefits gained from sitting at a console and exploring the en-
vironment directly. Time spent examining various parts of the
system software with no particular goal in mind is anything but
wasted. Once one has a feel for how things are done, an over-
view of how things fit together, the rest will follow easily
enough. Most Lisp Machine wizards are self-taught; the in-
tegrated nature of the environment, and ready access to the
system code, favors those who treat learning the machine as an
interactive game to play.

With that in mind, a word or two of advice on the problem
sets. Don’t get too wrapped up in finding the “right answer.”
Many of the problems are, shall we say, ‘“‘challenging;”’ they re-
quire knowledge not found in the text (and in some cases not
even found in the manuals). You will need to investigate, often
without knowing exactly what you're looking for. If the inves-

4 Lisp Lore

tigation fails to yield immediate results, I strongly recommend
that rather than head straight for my solutions, you continue to
investigate. Stick it out for a while, even if you don’t seem to
be getting much closer. You can’t learn to speak a foreign lan-
guage by consulting a dictionary every time you need a word
you don’t know - forcing yourself to improvise from what you
do know is the only way. Floundering is an unpleasant but ab-
solutely necessary part of the process, arguably the only part
during which you’re really learning. Similarly, you can’t be-
come a Lisp wiz just by assiduously studying someone else’s
code. Although seeing how an experienced programmer handles
a problem is certainly useful, it’s no substitute for struggling
through it yourself. The problem sets are largely a ruse to get
you mucking around on the machine. I don’t really care if you
solve them, as long as you come up with some ideas and try
them out with an open mind.

The examples in the text (barring typos) are known to work in
Release 7.0 of the Symbolics Genera software for the 3600
family of machines. A machine-readable copy of all the ex-
amples is available on a cartridge tape; it also includes all
problem solutions which are too long reasonably to be manually
copied from the text.

To order a copy of the tape, write to the following address (you
may wish to use the order form at the back of this book) and
include a check® for $40 made out to Symbolics, Inc. Instruc-
tions for loading the tape will accompany it.

2Unfortunately. Symbolics cannot accept purchase orders for this. Residents of the
followings states please add the appropriate sales tax: AZ, CA, CO, CT, FL, GA, TL, KS,
MA, MN, NI, NM, NY, OH, PA, TX, VA, WA,

Introduction

Software Release
Symbolics, Inc.

Eleven Cambridge Center
Cambridge, MA 02142

2. Getting Started on the Lisp Machine

2.1 Why Use a Lisp Machine?

Why would anyone use a Lisp Machine? It is expensive and
difficult to learn, true, but there must be a reason, since so
many of them are being sold.

The answer is that the Lisp Machine is a powerful computing
environment, well designed for a wide variety of tasks. These
include:

e Programming: The Lisp Machine has been designed with
programmers in mind. The system development cycle of
editing, compiling, testing and packaging for delivery is
heavily optimized. Many features have been added during
its decade of existence to make life blissful for program-
mers. These environment features lead to reduced
development time for software.

e Programming Experiments: Many computer programs
today are written before the problems they attempt to
solve are completely understood. For example, consider

8 Lisp Lore

the problem of making a computer understand human
speech. It is not known exactly how humans accomplish
this task. It is only by writing experimental computer
programs that we can learn which methods work and
which do not. The Lisp Machine offers an environment
wherein experimentation is efficient and painless.

e User interface experiments: Even if the underlying model
for how to solve the problem is well-understood, new
methods of presenting information to and accepting input
from people are often controversial. The Lisp Machine of-
fers a toolkit of user interface functions which may be
combined in new and exciting ways.

e Delivery of systems: While it is true that much of the
software developed on the Lisp Machine may be moved to
other computer systems, some of it remains dependent on
the software environment. If a decision is made to
deliver software on the Lisp Machine, more powerful
tools, such as the user interface toolkit, may be applied to
the solution of problems, simplifying maintenance and
shortening delivery times.

In short, use of the Lisp Machine simplifies design and speeds
coding and correction, and facilitates experiments in both user
interfaces and programming methods.

2.1.1 Why This Book?

A powerful system is powerful at least in part because it
provides experienced users with a lot of flexibility. This is cer-
tainly true of the Lisp Machine. As a result of great flexibility,
though, the learning process is difficult, because of two
obstacles:

Getting Started on the Lisp Machine 9

¢ The environment is intimidating. There are an enormous
number of commands, and the documentation set (all 13
volumes of it, and growing at each release) is huge.

¢ Part of the intimidation is historical. Many of the inter-
esting things people wanted to do were hard to figure out,
especially from the documentation. There were very few
published examples, and few of them were well-written or
easy to understand.

This book is an attempt to reduce the intimidation level. Part
of that process is teaching a basic level of expertise, which will
make many of your tasks easier. However, I also hope to teach
you something more fundamental, namely how to learn more on
your own.

I hope to teach you how to become an expert in using the Lisp
Machine. When we’re done, I hope:

* You will know how to write programs for the Lisp
Machine, including large ones.

¢ You will be able to learn new things about the system.

* You will understand a lot of features which are intimidat-
ing but not very hard to use.

2.1.2 Looking Ahead

The rest of this chapter is an introduction to the Lisp Machine
environment. It is best to read it in front of the console.
Don’t be afraid to try things out; it’s very difficult to make ir-
recoverable mistakes.

e The section The Keyboard gives a guided tour to typing
on the Lisp Machine’s console.

¢ Typing to a Lisp Listener describes one of the ways you
get the machine to do what you want.

10 Lisp Lore

e In Getting Around the Environment, you will learn how to
get to other facilities the Lisp Machine environment of-
fers.

e The section The Mouse describes the use the other input
device attached to your console.

e In The System Menu 1 outline another way to get around
the environment.

e In The Monitor, the mysteries of the screen display will
be discussed.

e The Editor provides a first lesson in using the Lisp
Machine editor (Zmacs).

e In The Compiler and the Debugger, 1 will introduce test-
ing and modifying your programs.

e In order to use your machine at all, it must be running
and you must be logged in. In Getting Started, I'll talk
about what to do if your machine isn’t already running,
or doesn’t know who you are.

e A Word About Work Style contains a few reassuring
remarks.

e In This and That will be everything else I wanted to tell
you that didn’t appear elsewhere in this chapter.

A final word: it’s easier than it looks. In a very short time you
will start doing useful work, using the Lisp Machine effectively.

Getting Started on the Lisp Machine 11

2.2 The Keyboard

Sit down at the console of your machine. You will see many
keys which don’t appear on a standard keyboard. Much of what
you need to know to start using a Lisp Machine boils down to
knowing what the various funny keys do.’

Apart from the keys for the standard printing characters (white
labels on grey keys), the keyboard has two kinds of special keys.
The beige keys with grey labels (shift, control, meta, super, hy-
per, and symbol) are all used like the “shift” key on a normal
typewriter — you hold them down while striking some other key.
These modifier keys may be used singly or in combination. So
“control-meta-K” means type K while holding down control and
meta. You may use either of the two modifier keys with the
same name, just like the “shift” key on regular typewriters.

Symbolics uses a standard set of abbreviations for the various
modifier keys. They’re all just what you’d expect except that
the abbreviation s stands for super rather than shift. Shift is
abbreviated sh.

The beige keys with white labels are special function keys, and
are typed like standard printing characters. Some of them
stand alone and have obvious meanings, like Clear-Input and
Help. These keys, of course, can be modified with any of the
modifier keys; some programs, for example, do something spe-
cial when they read meta-Help or control -Clear-Input. I recom-
mend that you use the Help key a lot. The information sup-
plied depends on the context, but typing Help usually tells you
what sort of input is wanted by the program you’re typing to.

1In order for much of this discussion to “work,” the machine must be running. See
the section “Bringing the Machine up," page 25.

12 Lisp Lore

Some of these special keys are used as prefix characters, such
as Select and Function. That is, “Select E” means to strike
Select, and then strike E. And “Select c-L” means to strike
Select, and then hold down control and strike L.

The Select key is used to select the program you wish to use.
It allows access to such programs as the Editor, the mail
reading/sending program, the remote login facility, and others.
Which program it selects depends on the next character you
type. For further information, try pressing Select Help. See
the section “Getting Around the Environment,” page 15.

The Function key, like Select, dispatches off the following
keystroke. RFunction Help displays a list of the options. The
most commonly used are Function F (“finger”), to find out
who’s logged in on the various machines, Function H (“host
status’), for a quick look at the status of all the hosts on the
local Chaosnet, and Function S to select a different window.
The exact behavior of many of the Function options is con-
trolled by an optional numeric argument; you pass the ar-
gument by pressing one of the number keys after the Function
key and before the chosen letter, e.g., Function 8 S.

The Suspend key generally causes the process you are typing to
to enter a “break loop”, that is, the state of its computation is
suspended and a fresh read-eval-print loop is pushed on top of
the current control stack. The Resume key will continue the in-
terrupted computation. Suspend takes effect when it is read,
not when it is typed. If the program isn’t bothering to check
for keyboard input, pressing Suspend will do nothing (until it is
read).

c-Suspend does the same thing as Suspend, but always takes ef-
fect immediately, regardless of whether the program is looking
for keyboard input.

m-Suspend, when read, forces the reading process into the

Getting Started on the Lisp Machine 13

debugger. The debugger is described later. (See the section
“The Compiler and the Debugger,” page 23.) When you're
done looking around you can continue the interrupted computa-
tion with Resume.

c-m-Suspend is a combination of c-Suspend and m-Suspend. It
immediately forces the current process into the debugger.

The Abort key is used to tell a program to stop what it’s doing.
The exact behavior depends on what program you’re typing to.
A Lisp Listener, for instance, will respond by throwing back to
the nearest read-eval-print loop (the top level or an intervening
break loop). Like Suspend, Abort only takes effect when read.
If the program isn’t waiting for keyboard input, you need to use
c-Abort instead.

m-Abort, when read, throws out of all levels and restarts the top
level of the process. c-m-Abort has this effect immediately.

2.3 Typing to a Lisp Listener

A Lisp Listener is a window with a Lisp interpreter running in
it. It reads a Lisp expression (or form) from the keyboard,
evaluates it, prints the returned value(s), and waits for another
expression. Booting a machine leaves you in a Lisp Listener.
Whenever you're not in a Lisp Listener you can get to one by
typing Select L.

While waiting for input, Lisp Listeners usually display
“Command:”’ as a prompt. The presence of this prompt indicates
that the Command Processor (CP) is active; it provides a con-
venient interface to many frequently called Lisp functions.
(The name of a CP command won’t necessarily be the same as
the name of the corresponding Lisp function.) CP commands
don’t use the same parentheses syntax as Lisp expressions do.

14 Lisp Lore

You simply type the name of the command (one or more words)
followed by any arguments to the command, and finish with the
Return key. But you needn’t type the name of the command in
its entirety — all that’s required is enough to uniquely identify
which command you mean.

The CP command Help (i.e., type out the letters h, e, 1, p, and
hit Return) lists all the defined commands. Once you have
started typing a command, pressing the Help key while partway
through a command will display a list of only those commands
which match your input thus far.

Volume 1 of the documentation describes all the CP commands
present in the software distributed by Symbolics (See the sec-
tion “Dictionary of Command Processor Commands” in User’s
Guide to Symbolics Computers.). You can define more of your
own. One command which may be particularly valuable to new
users is Show Documentation. You specify some topic you want
looked up in the manuals and it displays a facsimile of that
portion of the documentation on your screen.

You may be wondering how the Command Processor knows
whether you intend your typein to be interpreted as a CP com-
mand or as a Lisp expression. In its normal mode, the CP
looks at the first character on the line, and if it’s a letter, the
CP tries to interpret the line as a command. If this succeeds,
the line is a command.

If there is no command by that name, the CP next looks to see
if you have typed the name of a symbol with a value. If there
is one, the input is interpreted as a Lisp expression to be
evaluated, or form.

There are occasions when you want to type a form that begins

Getting Started on the Lisp Machine 15

with a letter, but is not a ssymbol.2 The solution here is to
type a comma at the beginning of the line. The comma has
special meaning for the command processor: it forces whatever
follows to be interpreted as a Lisp expression, regardless of
what the initial character is.

If you'd like to know about some other features that are avail-
able whenever you’re typing to a Lisp Listener and you don’t
already feel as though you've seen more than you can possibly
remember, you might look ahead a few chapters: See the sec-
tion “The Input Editor and Histories,” page 83. It’ll make life
much easier as you take on the first few problem sets.

2.4 Getting Around the Environment

The Lisp Machine environment actually consists of a number of
environments, called activities. Each activity is associated with
a particular window and its own way of interpreting what you
type.

For example, the Lisp Listener activity has a Lisp Listener win-
dow, and interprets what you type as being either commands or
Lisp forms. The Zmacs activity, on the other hand, displays an
editor window, and interprets your input as editor commands.

There are several ways to select an activity. One of them is
the Select Activity CP command. If you type

2For advanced readers: this happens, for example, when you want a package
prefix to apply to an entire form, as in tv: (make-window ’window). If you don't
understand this, you don't need to worry about it. ’

16 Lisp Lore

Select Activity Lisp

you will wind up looking at your Lisp Listener window. As
usual, pressing the Help key after typing the command name
will tell you your choices.

One of the quickest ways to switch among activities is the
Select key. To find out what your options are, type Select
Help. The display shows you that, among other programs that
may be reached in this way, you can get a Lisp Listener by
typing Select L, and an editor by typing Select E. This list is
by no means fixed. Users may add their own programs to the
list quite easily. Here are brief descriptions of the programs
that are already in the select list on a freshly booted Lisp
Machine:

€t Converse a convenient way to send and receive mes-
sages from users currently logged-in on other
machines (Lisp or otherwise)

D Document Examiner
a utility for finding and reading online
documentation; everything in the 13-volume
manual is available here

E Editor the powerful Zmacs editor, like Emacs plus
much more

F File System Editor
various display and maintenance operations
on the file system of the Lisp machine or of
other machines

I Inspector the structure editor for displaying and
modifying Lisp objects

L Lisp a Lisp Listener

Getting Started on the Lisp Machine 17

M Zmail a comprehensive mail-reading and sending
program,

N Notifications a display of all “notifications” (messages
from running programs) you’ve received

P Peek a status display of various aspects of the Lisp
Machine

Q@ Frame-up a utility program for laying out the display
for user-written programs.

T Terminal a program which allows you to use the Lisp
Machine as a terminal to log in to other com-
puters

X Flavor Examiner
a convenient way to find out about different
flavors (active objects), their message-
handlers, and their state variables.

The Function key can also be used to select among activities,
by choosing which window is selected. Try pressing Function
Help to see what Function S and Function B do.

Finally, the mouse may also be used to select activities. See
the section “The System Menu,” page 18.

2.5 The Mouse

The mouse is used for pointing to objects displayed on the
screen. You “point” by moving the mouse on the table while
watching its cursor move on the screen. As the mouse cursor
moves, certain objects on the screen will be highlighted, by
drawing a little box around them; these objects are said to be
mouse sensitive. Just pointing at objects is fun, but doesn’t say

18 Lisp Lore

much about what you want to do with (or to) them. To com-
municate your intent to the system, you can press any one of
its buttons, either quickly releasing it (called clicking) or hold-
ing the button down. Most of the usual uses of the mouse in-
volve clicking.

As of Genera 7.0, most items displayed on the screen are mouse
sensitive, which means that clicking on them will do something
of interest. What clicking will do depends on where you click,
which keyboard modifier keys you happen to be pressing, and
what your current activity is doing at the moment.

How can you tell what will happen when you click? The little
white-on-black area near the bottom of the screen documents
what the mouse will do. For example, as I type this into
Zmacs, the mouse documentation lines say:

Mouse-L: Move point; Mouse-M: Mark word; Mouse-R: Editor ...
To see other commands, press Shift, Control, Meta-Shift, ...

If T press Shift, the display changes as follows:

sh-Mouse-L: Move to Point; sh-Mouse-M: Save/Kill/Yank; ...
To see other commands, press Shift, Control, Meta-Shift, ...

While some of these may seem cryptic to you at first, you will
quickly learn to find the ones of interest.

2.5.1 The System Menu

The system menu is a collection of operations that people find
useful. You can cause the system menu to appear at any time

Getting Started on the Lisp Machine 19

by clicking Shift-Msze-Right:.3

The system menu contains three columns of options which may
be selected. The first column holds window-system operations,
such as creating a new window, selecting a window, or editing
the position of the windows on the screen. The second column
contains commands pertaining to the current window and the
process which owns it. These commands include changing the
shape of the window, hardcopying it, killing it, or resetting or
halting (“arresting”’) its process. The third column contains the
names of activities which may be selected by using the system
menu.

2.6 The Monitor

In addition to the mouse documentation, the bottom of the
screen contains a lot of other useful information. From left to
right, we have:

e the date and time
e the user-id of the currently logged-in user, if any

e the current package*

3In general, a mouse click which is performed by holding down the Shift button is
equivalent to clicking twice in rapid succession. In previous releases of the system, in
fact, people were told to “double-click Right" to get to the system menu. This mode
of using the mouse is considered obsolete, however, and might be removed from the
system in a future release.

4The set of all symbols Is partitioned into packages, to minimize name conflicts — a
cold-booted machine starts out in the “user" package, which Is where you'll probably
do most of your work at the beginning.

20 Lisp Lore

e the state of the current process (“User Input” means
awaiting keyboard input)

All the way on the right is a special little display area which
shows you other activities which might be happening on your
machine. At different times, this area might contain the names
of any files that are open for reading or writing, other
“progress notes” about things which are happening on your
machine, or a notice of what network services have been in-
voked on your machine by some other machine.

Underneath the line of text you can sometimes see a few thin
horizontal lines. These are the run bars. The one immediately
under the process state appears when some process is actively
running. The one a bit to the left of that; midway between the
process state and the current package, indicates that you are
paging, waiting for something to be brought in from disk. You
will see other run bars less often. They are related to garbage
collection, and to saving a snapshot of the Lisp environment on
the disk.

One last bit of information on the monitor. To adjust the
brightness, hold down the Local key and press B for brighter or
D for dimmer. [Yes, the key has the wrong color lettering; it’s
really a shift key and not a prefix. Sorry.] The volume of the
beep may be adjusted by holding down Local and pressing “L”
for louder or “Q” for quieter.5

5801h of these may also be adjusted by using the special form setf on the functions
sys:console-brightness and sys:console-volume, respectively.

Getting Started on the Lisp Machine 21

2.7 The Editor

The Lisp Machine’s Zmacs editor is based on Emacs, a text
editor written at MIT. You use the editor for typing programs
and other text files.

For typing programs, you could use the Lisp Listener, but the
editor is easier to use, and more powerful. —When editing a
Lisp program, for example, the editor helps you in balance your
parentheses and indent your code so it’s easier to read. You
can compile prototype or experimental code directly in the
editor, and immediately test it. When the compiler warns you
about source errors, the editor can be used to examine the er-
ror messages while fixing the source (using the Edit Compiler
Warnings editor command). And, of course, once you are done
modifying the source to your software, you can use the editor
to save it on disk.

The editor is also good for reading programs that other people
have written, including the source for the system as shipped by
Symbolics. The editor command m-. (pronounced “meta-dot,” or
[infrequently] “meta-period”’) prompts for the name of a func-
tion, variable or flavor; you may either type in the name, or
click on it with the mouse. When the command completes, you
will be looking at the source of the definition in question.
Similarly, there are editor commands for listing and editing the
callers of various functions and flavor components.

Some other things you might use the editor for include:

e Typing documentation or other text.
¢ Editing file directories.
¢ Sending mail.

As is true of most of the rest of the system, the editor is self-
documenting. The built-in editor commands are bewildering in

22 Lisp Lore

number, and the total number of available commands is con-
tinually growing because it’s fairly easy and very tempting to
add new ones. The Appendix lists the most basic commands,
but by far the best way to find out what’s around is to get used
to using the online documentation. Some aspects of the Lisp
Machine can be mastered by reading the manuals, but the
editor is not one of them. Press the Help key to an editor win-
dow, and press Help again. Start exploring. The most com-
monly helpful of the help options are A (Apropos), C
(Command), and D (Describe). To get started, use Help C on c-
X c-F and on c-X c-S. You should also try Help A on ‘“‘compile.”

If you type Suspend, you get a Lisp Listener which starts at the
top of the screen and grows as you need it. This funny window
is called the typeout window.® Resume returns to the editor.

Dired is a utility for editing directories. It is invoked by typing
m-X Edit Directory or c-X D. Call it on some directory and
press Help. (Keep in mind that if it’s a Lisp Machine directory,
there might be no security to keep you from deleting absolutely
anything. By default, the Lisp Machine file access control
mechanism is turned off. See the section *“Access Control
Lists” in Reference Guide to Streams, Files, and 1/0.)

6One problem with the editor typeout window is that when you're using it to debug
a program which is in the editor buffer, you can't use the editor to read or modify it.
The debugger provides a way to edit the source of a function which is not behaving
properly, which is harder to use from the editor's typeout window because it throws
away your debugging state. See the section “The Compiler and the Debugger,” page
23.

Getting Started on the Lisp Machine 23

2.8 The Compiler and the Debugger

The compiler transforms Lisp source into a binary form which
executes rapidly on the Lisp Machine. While it is true that you
can execute your Lisp code directly (in “interpreted” form), the
compiler is very fast, and produces much faster code; also, the
debugger has been optimized for use with compiled code.

The compiler operates in two modes: “core’” and file. In “core”
mode, the binary version of your source is placed directly into
“core” (i.e., directly into your Lisp environment). In file mode,
the binary version is put into a file, which may be loaded im-
mediately into your environment or later into some other en-
vironment (perhaps on a different Lisp Machine). Most fre-
quently, you will compile to “core” by using the editor com-
mand c-sh-C. To compile a source file into a binary file, you
can use the Compile File (m-X) command in the editor or in
the CP. To load a compiled file, use the Load File command in
the editor or the CP.

Often your program will not work properly the first time.
Since the Lisp Machine checks for many errors implict:ly,7 you
will probably wind up in the debugger fairly often while writing
and testing your software. You will not usually wind up in the
debugger just from typing something the Lisp Machine doesn’t
“understand;” usually, you get an informative diagnostic error
and are either permitted to correct your mistake or to try a dif-
ferent command. Don’t be afraid of the debugger, though. The
debugger is your friend.

The debugger prompt is a small right-pointing arrow. Once

7sueh as using data of the wrong type for most built-in operations, undefined
variables, etc.,

24 Lisp Lore

you have that, all kinds of commands are available for moving
up and down the stack,® getting information about the different
frames on the stack, restarting execution with or without
modifying arguments and variable values, etc. Try the Help key
and see what you can find out. Besides all the special com-
mands, any normal text you type will be evaluated by the Lisp
interpreter.

One debugger command you will find extremely wuseful is
control-E, which takes you to the editor and shows you the
source of the function you are debugging. This command
works even while using the editor’s typeout window, but will
throw away the state of the debugger and the error you are at-
tempting to understand when you use it in the typeout window.
Thus, while it is often useful to try out your code in the
typeout window, you must keep this restriction in mind when
you have complex errors to puzzle out.

2.9 Getting Started

It should be obvious that before you can use your machine, it
must be up and running. In addition, before you can use many
of the interesting facilities of the Lisp Machine, you must be
logged in.

8than a Lisp function calls another, the Lisp Machine must remember the calling
function, its local variables, efc. It does this in a data structure called the stack,
sometimes called a “push-down stack.” The computer literature apocryhpa claim it is
so-called because it resembles stacks of dishes in a cafeteria; when you add more,
the others are pushed down. You might even see a stack called a “push-down list,”
or PDL, in rare places in the system software.

Getting Started on the Lisp Machine 25

2.9.1 Bringing the Machine up

First of all, you need to be able to tell if the machine is up. If
the screen is dark, make sure the console is turned on, and
then hold down the Local and B keys until it gets bright
enough to read.®

Now, look at the display. When the machine is running, the
bottom left-hand corner has the time of day, and is updated
once per second. If this doesn’t appear, or isn’t being updated,
the machine is probably not running. If the screen is covered
with “snow,” the machine’s power is probably turned off.

When the Lisp Machine isn’t running, your typing is read by
another processor within the machine, called the Front End
Processor, or FEP. This is a microprocesor whose job it is to
bring up the machine, and to perform certain helping tasks
while the Lisp Machine is up (like listening to the keyboard
and running the cartridge tape drive). When the FEP is wait-
ing for you to type a command, it prompts you with the string
“FEP Command:”’.

Immediately after you turn on the power to your machine, the
FEP initializes itself, and suggests that you type Hello. When
told to so do, type Hello and a carriage return.

To bring up the machine from the FEP, you usually use the
Boot command. Type Boot and carriage return, and the
machine will read the commands in a file named “Boot.boot,”
which should actually bring up the machine. For further infor-
mation: See the section “Cold Booting” in Site Operations.

gln Genera 7.0, the system automatically dims the screen if nobody has touched
the keyboard or mouse for a few minutes. Try pressing the shift key or jiggling the
rmouse to see if the screen brightens.

26 Lisp Lore

Cold booting a machine which has been in use wipes out all the
changes that have been made to the world, including, for ex-
ample, your editor buffers and so forth. Once in a while, you
have a hardware or software problem which halts your machine
while you’re using it. If you cold boot, any work you have done
which has not been written on disk is lost.

Fortunately, there are a couple of other choices. If you type
Continue to the FEP, the machine will be restarted where it
was. If your machine crashed because of some serious system
error, this isn’t likely to work — you will probably be thrown
right back into the FEP. Once in a while this works; it’s al-
ways worth trying, because there’s no harm in it.

Another option is called warm booting. The Start command, by
itself, attempts to warm boot the machine. It tries to restart
all of the machines active processes while preserving the state
of the Lisp environment (i.e., function and variable bindings).
This is something of a kludge.10 It can put things into an in-
consistent state, and is something of a last resort, but it is

191 UGE, KLUDGE (Klooj) noun.
1. A Rube Goldberg device in hardware or software.

2. A clever programming trick intended to solve a particularly nasty case in an
efficient, if not clear, manner. Often used to repair BUGS. Often verges on
being a CROCK.

3. Something that works for the wrong reason.

4. verb. To insert a kluge into a program. ““I've kluged this routine to get around
that weird bug, but there's probably a better way.” Also “kluge up.”

5. A FEATURE that is implemented in a RUDE manner.

(The Hacker's Dictionary, Guy L. Steele, Jr.,et al, Harper & Row, Publishers, New
York, 1983.)

Getting Started on the Lisp Machine 27

sometimes the only way to get a wedged machine started again,
short of wiping the environment clean, and losing whatever
work was in progress. Often, a good thing to do when you
warm boot is to use the Logout command, which asks if you
want to save your file buffers, and then halt the machine
(using the Halt Machine command) and cold boot.

2.9.2 Logging in

Logging in is extremely simple. Use the Login command. For
example, this is what the screen looks like when I log in:

Command: Login rsl

It’s important to keep in mind the difference between a local
login to the Lisp Machine and remote logins to other machines
being used as file servers. Local logins are controlled by a
database called the namespace. To login locally with a certain
user-id requires that there be an entry in the namespace for
that user-id. It usually does not require a password, as by
default there is no internal security on the Lisp Machine.

Many things on the Lisp Machine can be done with no one
logged in. Some operations, however, do require that someone
be logged in. Modifying the namespace, for instance, is one of
these operations. How, then, you may ask, do you create a
namespace entry for yourself if you ean’t modify the namespace
unless you’re logged in, and you can’t log in unless you’re in
the namespace?

One option would be to log in as someone else so you can
create a namespace entry for yourself, and then log in as your-
self. In fact, there is a “user” in every namespace for that
very purpose, named “Lisp-Machine.”11 Once you’re logged in,

"You can log in as “Lisp-Machine” by saying (si:login-to-sys-host).

28 Lisp Lore

you can use the Edit Namespace Object comand to create your
user object.

However, nothing so underhanded is really necessary. The
Login command, if you attempt to log in as someone who is not
in the namespace, gives you the option of creating a namespace
entry for that user-id:'?

Command: Login george
The user named "george“ was not found:

Do you want to log in as a-new-user on some specific host?
(Y, Nor R) Yes

Host to log in to: your-file-server

Do you wish to add george to the user database?
(Y or N) Yes

You will enter the namespace editor, which will allow you to
fill in your user entry. For documentation on the namespace
editor: See the section ‘““Updating the Namespace Database” in
Networks.

Whenever you log in to a Lisp Machine, unless you explicitly
specify otherwise, it tries to find your personal initialization file
and load it into the Lisp environment. This is a file containing
any number of Lisp forms which customize the machine for
you. They will typically set some variable values, define func-
tions and commands, and perhaps load other files. Where your
machine looks for your “init file”” depends on what you
specified for your home host in your namespace entry. A file
named “lispm-init”’ in your home directory on that file server is
loaded using the usual rules: first it looks for a compiled file
(with type “bin”’), and if that fails it looks for a source file
(with type “lisp”).

2e0r this example, all underlined text is what the user types; everything not
underlined is typed out by the computer.

Getting Started on the Lisp Machine 29

The issue of remote logins arises whenever you use the net-
work to try to do something on another computer from the Lisp
Machine, like read or write a file. If the remote host is a Lisp
Machine, it won’t ask for a password and your local machine
can take care of establishing the connection with no interven-
tion on your part;.13 If the remote host is the sort that believes
in security, like Unix or VMS, it won’t let your Lisp Machine
do anything until you type an appropriate login id and
password. Your local machine will pass the request right along
to you. It’s essentially a matter between you and the remote
host — the local machine doesn’t care what username you use
on the remote machine, nor whether it’s one that exists in the
namespace. The local machine is just a messenger in this case.
It will, however, try to be helpful. If you specify in your
namespace entry what user-names you want to use on the
various remote hosts, the local machine will try those first,
even if those names are arbitrary nonsense as far as the local
machine can tell. If this fails, you can always override the
default usernames.

While we’re on the subject of remote file systems, there’s the
question of whether you should keep your files on a Lisp
Machine or some other sort of file server. It depends on what
sort of setup you have — how much disk space in what places,
how many users, etc. Wherever you store your files, make sure
they are regularly backed up to tape. You can imagine horror
stories of hardware failures which wipe out months or years of
work.

13Unless someone has turned on the Access Control mechanism on the Lisp
Machine. In such cases, the Lisp Machine will ask for passwords the way any other
security-minded system does.

30 Lisp Lore

2.10 A Word About Work Style

OK, you’re almost ready to have some fun with your Lisp
Machine. But first, a final word.

There are an almost mind-numbing number of different ways to
do anything you can think of. For example, some people really
like being able to point and click with the mouse, while others
don’t like taking their hands off the keyboard. At every level
of detail, from how your programs do their job to how you
manage your file system space, there are choices to make.

Some examples:

e Text editing: The text editor provides a large number of
ways, for example, to move the cursor. Some examples
include moving forward/backward by single characters,
lines, words, sentences or Lisp expressions. You can also
click on a place in the visible text, using the mouse, and
the cursor will move there.

¢ Debugging: There are two different user interfaces to the
debugger, the keystroke debugger (described above) and
the window debugger. Each one has its fans and detrac-
tors. The window debugger displays the current state in
a convenient format, and allows exploration of the error
via mouse clicks. The keystroke debugger is more
esoteric, but can be faster once you learn your way
around it.

e Directory editing: There are two independent programs
for viewing and editing the contents of a file system
directory. The File System Editor (Select-F) displays the
contents of a directory; the user updates the display and
performs operations on files using the mouse. The Direc-

Getting Started on the Lisp Machine 31

tory Editor (DIRED) is part of the Zmacs editor, and its
commands are primarily keyboard commands. It fits
seamlessly into the normal text editor.

[In the last two examples, the keyboard option is somewhat har-
der to learn, but is much faster to use once you’re good at it.]

By now, it should be clear that there is no one right way to use
the system which works for everybody. Each user will develop
a style which works for her or him. Don’t be afraid to experi-
ment.

2.11 This and That

I want to discuss a couple of subjects near and dear to my
heart: bug reporting and file backup. It is essential that some-
one at your site be responsible for these two operations.

2.11.1 Problem Reporting

There should be someone at your site who is your contact with
Symbolics. Perhaps you will be the person.

There are a number of useful facilities in the Lisp Machine en-
vironment for reporting problems. In the debugger, the com-
mand c-M will set you up to send mail concerning your problem.
The mail will already contain the version of the system you are
using, and a copy of the stack trace. You merely have to type
in what you did to cause the problem and type End.

There are also Report Bug commands in the CP and the editor.
They also set you up to send mail about your problem. In all
these mail buffers, you can put a file pathname into the mail if
you think your problem is related to its contents, using the Add
File Reference mail command, or include the contents of the
file using the Insert File command.

32 Lisp Lore

If your machine crashes, you can report information about the
problem in your mail once you bring the machine back up. Use
the Insert Crash Data mail command.

If you are the person who is your site’s liaison with Symbolics,
you should take mail which describes new problems and for-
ward it to the appropriate person at Symbolics. Your Symbolics
software support person will be able to tell you how to do that.

2.11.2 Backup

I can’t emphasize this enough. Make sure you back up your
file system regularly. Let me make that clearer. Make sure
you back up your file system regularly.

Your file system is the repository of your work on the Lisp
Machine. If your file system is damaged or destroyed, your
work will be wasted.

File systems do not normally become damaged or destroyed.
However, your file system can be damaged through hardware
problems with your disk, software problems in the file system
itself (which are hopefully rare) or in your programs, or mis-
takes made by users at your site (including yourself).

Backup is very cheap insurance. It takes only an hour or so a
week to do routine backup of Lisp Machine file systems; at
regular intervals an investment of several hours may also be
necessary.

I recommend a site perform an incremental dump at least daily.
Incremental dumps write only those files which have been
modified since the last dump to tape. Depending on how much
is changed on your file system, I recommend a consolidated
dump once a week or so; these dumps contain all files modified
since a specified date. I do consolidated dumps back to the last
consolidated or complete dump, after which all the incremental

Getting Started on the Lisp Machine 33

tapes in between may be recycled. Finally, I recommend a
complete dump when you first get your file server, and every
three to six months thereafter. Keep complete backup tapes for
a year or two, consolidated tapes for a year, and incrementals
for a couple of weeks after they have been consolidated.

If you store your files on some other machine than a Lisp
Machine file server, I still recommend you do backup. The
procedures for different file systems are different; consult
various systems’ documentation for further information.

By the way, just doing backup is not necessarily sufficient. If
you’re reasonably paranoid, you’ll keep at least some of your
tapes someplace other than your machine room. If you have a
fire or flood, not only will your machines be incapacitated, but
all your work will be lost. Machines can be replaced more
easily than a couple of years of your (and your colleagues’)
time.

2.12 Problem Set #1

This “problem set” is really just a sample programming ses-
sion, to familiarize you with basic operations on the Lisp
Machine.

Questions
1. Create a namespace entry for yourself.
2. Log in.

3. Switch to the editor and edit a file in your home directory
named “fact.lisp.”

4. Enter the text for a function named fact which returns

34 Lisp Lore

the factorial'® of its argument. Watch what happens
every time you type a close parenthesis. Try moving your
cursor to just after a close parenthesis on an earlier line.

5. Figure out what happens when you press Line while
entering your function.

6. Compile the function from the editory with c-sh-C, and
test it from the typeout window.

7. When you’re satisfied with the function’s performance,
save the buffer and compile the resulting file.

8. Cold boot the machine.
9. Log in, and note that the function fact is now undcfined.
10. Load the compiled version of your file.

11. Run your function successfully.

1"'Factorial of n is the produce of all the positive integers less than or equal to n.
So, (fact 4) should return 1x2x3x4=24.

Getting Started on the Lisp Machine 35

Solutions
1. One way to do it: login as yourself, as in the text.

Another way: (si:login-to-sys-host), then Edit Namespace
Object. Click on [Create], click on [User], enter your
chosen login-id. Fill in the required fields (marked with
x), fill in any optional fields you wish. Click on [Savel,
and then click on [qQuit].

2. Login your-user-id
3. Select E, c-X c-F fact.lisp
4, Here is one possible solution:

(defun fact (n)
(if (zerop n)
1
(x n (fact (- n 1)))))

Note the matching parenthesis blinking when your cursor
is right after a close parenthesis. The same happens (in
Genera 7.0) when you position the cursor over an open
parenthesis.

5. Typing Line takes you down to the next line, and indents
the right amount for where you are in the function. Try
it in the middle of a line to see what it does.

6. Type c-sh-C while anywhere inside the text of the func-
tion to compile it. Then press Suspend to get to the
typeout window, and evaluate (fact 5). The Resume key
returns to the editor window.

7. Type c-X c-S, m-X Compile File (Actually, if you skip the

36 Lisp Lore

c-X c-S, the Compile File command will ask if you want
to save the buffer first.)

8. Press Suspend or Select L, then type Halt Machine.
Answer the question about halting the machine Yes. Type
B and then carriage return to the Fep Command: prompt.

9. Type Login your-user-id, then (fact 5)
10. Type Load File fact

11. Type (fact 5)

3. Flow of Control

In this chapter we temporarily leave behind the “operating
system” of the lisp machine and examine aspects of the lisp
language itself. In particular, we’ll look at the various con-
structs for determining the flow of control. The notes are a lit-
tle sketchier than wusual, because this material is covered
reasonably well in the Symbolics documentation.

3.1 Conditionals

All non-trivial lisp programs execute only those ‘“‘statements,”
or forms, which are appropriate to their circumstances. They
specify which forms to execute using conditional special
operators. To test whether a condition is true, a predicate
function is used.

Virtually all conditionals test the truth or falsehood of the con-
ditions by comparing the result of the predicate with nil: if the
predicate returns nil, the condition it is testing is false; any-

37

38 Lisp Lore

thing else is considered to be true.’

Let’s start with a few simple conditional operators. The when
special operator tests the result of evaluating first “argument,”
which is usually a predicate form; if it is nil, the when form
returns nil without evaluating any of the rest of its subforms.
If it’s not nil, the rest of the forms are evaluated, and the
value of the last one is returned.? For example:

(when (< n 8)
(format t "N is negative”)

n)

will print “N is negative” when it is, and return the value of
n. If n is zero or positive, this form will return nil. The spe-
cial operator unless is just like when, except it inverts the

1When there is no other, more obvious non-nil value to return, most predicates
return the special symbol t. However, any value other than nil means “true.”

21 have quoted the word “argument” to show the distinction between normal
functions and special operators. Functions are called with arguments, which have
already been passed through eval. Special operators, on the other hand, aren’t
called with all their subforms already evaluated. Rather, special operators get to
decide which, if any, of their subforms get evaluated. when, for example, always
evaluates its first subform; only if it returns some non-nll value do the rest of the
subforms get evaluated.

Flow of Control 39

result of the predicate before testing it.® if is somewhat more
powerful. It evaluates its first “argument;” if its result is nil,
it evaluates its second subform, and returns its value. Other-
wise, it skips the second subform, and evaluates the rest of the
subforms, and returns the last one’s value. For example, here
is one way to take the absolute value of a number:

(if («<no
(- n)
n)

The great-granddaddy of all conditionals is called cond. All the
others can be implemented in terms of cond. Each of the
“arguments” (clauses) to cond is a list. The first element of
the clause is a predicate (sometimes called the antecedent), and
the rest of the list (if any) is called the consequent(s). The
clauses are examined one at a time, in order of appearance. If
a clause’s antecedent returns nil, the consequents are skipped
and the next clause is considered. When a clause is found
whose ancedent returns a non-nil value, that clause’s con-
sequents, if any, are all evaluated. The value of the last con-
sequent in that clause (or of the antecedent, if there are no
consequents) is the value returned by the cond, and the rest of

3You will sometimes see the special operators and and or misused for when and
unless. For example,
(and bright-day
glorious-day
(print "It is a bright and glorious day"))
should really be written:
(when (and bright-day

glorious-day)
(print "It is a bright and glorious day"))

40 Lisp Lore

the clauses are skipped. If every clause’s antecedent returns
nil, the cond returns nil. For example:

(cond ((< discriminant 0)
(error "Can’t solve this quadratic."))
((= discriminant 8) (/ (- b) (x 2 a)))
(t (list (/ (+ (- b) (sgrt discriminant)) (x 2 a))
(/ (- (- b) (sgrt discriminant)) (x 2 a)))))

Note the use of t as the last antecedent of cond. This is a
fairly common programming cliche, and means “if all else fails,
this is the answer.”

Other special operators based on cond include case, selector
and ecase. Here is an example of the use of case:

(case (fruit-type fruit)
(apple (make-applie-pie fruit))
(orange (make-orange-marmalade fruit))
(Temon (make-lemonade fruit))
(otherwise (error "I don’t know how to deal with “A"
fruit)))

Look in the Symbolics documentation for more information:
See the section “Conditional Functions” in Symbolics Common
Lisp: Language Concepts.

3.2 Blocks and Exits

block is the primitive special operator for defining a piece of
code which may be exited from the middle. The first
“agrgument” must be a symbol. It is not evaluated, and be-
comes the name of the block. The rest of the “arguments” are
forms to be evaluated. If a call to return-from occurs within

Flow of Control 41

the block, with a first “argument” of the block’s name, the
block is immediately exited. The next ‘“argument” to
return-from is evaluated and becomes the return value(s) for
the block.*

The scope of the name of the block is lexical, so the cor-
responding use of return-from must occur textually within the
block. It will not work to call return-from inside a function
which is called within the block. The next section discusses
that sort of nonlocal exit.

Blocks may be nested. That’s the whole point of naming them.
A return-from causes an immediate exit from the innermost
block with a matching name.

Some other constructs (including do and prog) create implicit
blocks. These blocks have nil for a name, and therefore they
may be prematurely exited with (return-from nil ...). They
may also be exited with the return special operator, which al-
ways exits the innermost block named nil.

Finally, certain constructs create implicit named blocks. Such
special operators as defun, for example, create blocks with the
obvious names.

3.3 Nonlocal Exits

catch and throw are analogous to block and return-from, but
they are scoped dynamically rather than lexically. A throw
may cause an exit from any catch on the control stack at the

“To return more than one value, say:

(return-from name (values v1 v2 ...))

42 Lisp Lore

time the throw is reached (unless an inner catch is shadowing
an outer catch with the same tag). catch’s equivalent to the
name of a block is its fag. The tag is the first argument to
catch; it is evaluated, and may return any lisp object. The
first argument to throw is its tag. It is also evaluated, and
the throw causes the exit of the innermost catch whose
evaluated tag is eql to the throw’s evaluated tag.

If a throw occurs, its second argument is evaluated and its
value(s) will be returned by the corresponding catch. If no
throw occurs, catch returns the values returned by its last
subform.®

3.4 lteration

There are three styles of built-in facilities for iteration. A
group of operators are available for mapping a function through
one or more lists; the do special operator allows more general
forms of iteration; and the loop macro provides even more
flexibility. This set, of course, is easily extended by writing
more macros.

When more than one of the iteration facilities is applicable to a
particular task, the choice is mainly a matter of personal taste.

All three are comparably efficient. The key issue is readability,
and on this score opinions differ. My own view is that the

SThere are obsolete forms of catch and throw, called *catch and *throw (both in
Zetalisp only). They differ from the newer versions mainly in what values are
returned. Some old system software might still use them. *catch and *throw should
not be used in new code.

GSea hacker's definition at end of chapter.

Flow of Control 43

mapping functions are succinct and to the point, and therefore
desirable, within the limited set of applications that are easily
expressed as mapping operations. For all other kinds of itera-
tion, do is often concise but I find it somewhat obscure.” I
think loop is much easier to read, but there are those who con-
sider it wordy and nebulous.

“loop forms are intended to look like stylized English
rather than Lisp code. There is a notably low den-
sity of parentheses, and many of the keywords are ac-
cepted in several synonymous forms to allow writing
of more euphonious and grammatical English. Some
find this notation verbose and distasteful, while
others find it flexible and convenient. The former
are invited to stick to do.”

[The preceding, as well as parts of the discussion of
loop below, is taken from the loop documentation
written by Glenn S. Burke: MIT Laboratory for Com-
puter Science TM-169.]

For the sake of comparison, here are three ways to print the
elements of a list:

(defun print-elts1 (list) ; mapping
(map nil #’print list))

(defun print-elts2 (1ist) ; do
(do ((1 Tlist (cdr 1)))
((null 1))
(print (car 1))))

7 ditto.

44 Lisp Lore

(defun print-elts3 (list) ; loop
(loop for elt in list
do (print elt)))

3.4.1 Mapping

There are seven basic mapping functions in Common Lisp, all
of which are defined on the Lisp Machine. One of them works
on all kinds of Common Lisp “sequences”, while the other six,
inherited from earlier Lisp designs and implementations, work
only on lists.

The modern, Common-Lispy way to do mapping is with the CL
function map. It works on any sort of sequence, by which is
meant either a list or a vector of objects. It takes the follow-
ing arguments:

e result-type — the type of the returned value. This is
usually something like ’list or ’vector, meaning to return
a sequence of the given type; it can also be nil, meaning
that you don’t care what is returned (it returns nil, in
fact), because you’re using map for side-effects.

e function — the function to apply to the elements of the
sequence(s). It should take as many arguments as the
number of sequences you pass to map. The function can
be a lambda expression instead of a function name. See
the section “Evaluating a Function Form” in Symbolics
Common Lisp: Language Concepts.

e sequence(s) — one or more arguments which are the se-
quences to be mapped over.

A few examples:

Flow of Control 45

(map ’list #+ (1 2 3 4) #(2 4 6 8))
— (369 12)

(map ’vector #'1ist #(1 2 3 4) *(2 4 6 8))
= #((1 2) (24) (36) (48)

(map nil #’ (1ambda (a b c)
(when (minusp (- (x b b) (x 4 a c)))
(return-from quad-solver (values nil ni1))))
a-vector b-vector c-vector)

This last example either returns nil or returns from an outer
block named quad-solver.

The other six mapping functions are left over from Zetalisp.
There are six of them because there are two different ways the
“mapped”” function might be called (on elements or sublists of
the input lists), and three different values they might return (a
list of the values, a list formed by nconcing the values, or an
uninteresting value [i.e., you're mapping for effect]). These
functions are called mape, mapl, mapcar, mapcan, maplist
and mapcon: look them up if you want to use them.

3.4.2 Do
A do looks like this:

(do ((var init repeat)
(var init repeat) ...)
(end-test exit-form exit-form ...)
body-form body-form ...)

The first subform is a list of iteration variable specifiers.
Upon entering the do, each var is bound to the corresponding
init. And before each subsequent iteration, var is set to repeat.
The variables are all changed in parallel.

46 Lisp Lore

The second subform contains the end-test and the exit-forms.
The end-test is evaluated at the beginning of each iteration. If
it returns a non-nil value, the exit-forms are all evaluated, and
the value of the last one is returned as the value of the do.
Otherwise the body-forms are all evaluated. Here’s an example
which fills an array with zeroes:

(do ((i B8 (1+ 1))
(n (array-length foo-array)))
((= i n))
(setf (aref foo-array i) 8))

Upon entry, i is bound to 0 and n is bound to the size of the
array. On each iteration, i is incremented. (n stays constant
because it has no repeat form.) When i reaches n, the do is
exited. On each iteration, the ith element of foo-array is set to
0.

And another, which is equivalent to (maplist #'f x y):

(do ((x x (cdr x))
(y y (cdr y))
(z nil (cons (f xy) 2)))
((or (null x) (null y))
(nreverse 2)))

Note that the preceding example has no body. It’s actually
fairly common for all the action in a do to be in the variable
stepping.

There are macros named dotimes and dolist which expand into
common do constructs. For instance, the following code mac-
roexpands into the equivalent of the first example above:

(dotimes (i (array-length foo-array))
(setf (aref foo-array i) 8))

Flow of Control 47

3.4.3 Loop
A typical call to loop looks like this:

(Toop clause
clause
clause ...)

Each clause begins with a keyword, and the contents of the rest
of the clause depend on which keyword it is. Some clauses
specify variable bindings and how the variables should be
stepped on each iteration. Some specify actions to be taken on
each iteration. Some specify exit conditions. Some control the
accumulation of return values. Some are conditionals which af-
fect other clauses. And so on. A full discussion of all the
clauses would be lengthy and not particularly useful, as they’re
all described coherently enough in the documentation. We’ll
Jjust look at some representative examples.

The repeat clause specifies how many times the iteration
should occur. The keyword is followed by a single lisp expres-
sion, which should evaluate to an integer. And the do keyword
is followed by any number of lisp expressions, all of which are
evaluated on each iteration. So putting the two together,

(Toop repeat 5
do (print "hi there"))

prints “hi there” five times.

The most commonly used (and complicated) of the iteration-
driving clauses is the for clause. The keyword is followed by
the name of a variable which is to be stepped on each iteration,
then some other stuff which somehow specifies the initial and
subsequent values of the variable. Here are some examples:

48 Lisp Lore

(loop for elt in expr
do (print elt))

expr is evaluated (it better return a list), elt is bound in turn
to each element of the list, and then the loop is exited.

(loop for elt on expr
do (print elt))

is similar, but elt is bound to each sublist in the list.
. for x = expr ...

expr is re-evaluated on each iteration and x is bound to the
result (no exit specified here).

. for x = exprl then expr2 ...

x is bound to exprl on the first iteration and expr2 on all suc-
ceeding iterations.

. for x from expr ...

x is bound to expr (it had better return a number) on the first
iteration and incremented on each succeeding iteration.

. for x from exprl to expr2 ...
like above, but the loop is exited after x reaches expr2.
. for x from exprl below expr2 ...
like above, but the loop is exited just before x reaches expr2.
. for x from exprl to expr2 by expr3 ...
x is incremented by expr3 on each iteration.
. for x being path ...

uses various other iterative constructs for looping over array
elements, hast table elements, and so forth.

Flow of Control 49

When there are multiple for clauses, the variable assignments
occur sequentially by default, so one for clause may make use
of variables bound in previous ones:

(Toop for i below 18
for j = (x i 4) ...)

i starts at 0 when from isn’t specified. Parallel assignment
may be specified by using and instead of for.

The with clause allows you to establish temporary local vari-
able bindings, much like the let special operator. It’s used like
this:

(Toop with foo = expr
expr is evaluated only once, upon entering the loop.

A number of clauses have the effect of accumulating some sort
of return value. The form

(loop for item in some-1list
collect (foo item))

or

(loop for item being the array-elements of some-array
collect (foo item))

applies foo to each element of some-list or some-array, and
returns a list of all the results, just like

(map ’list #’foo some-Tist)
and
(map ’list #’foo some-array)

The keywords nconc and append are similar, but the results
are nconced or appended together. Keywords for accumulating
numerical results are count, sum, maximize, and minimize.
All of these clauses may optionally specify a variable into which
the values should be accumulated, so that it may be referenced.
For instance,

50 Lisp Lore

(loop for x in list-of-frobs
count t into count-var ;“t”’ means always count
sum x into sum-var
finally (return (/ sum-var count-var)))

computes the average of the entries in the list.

The while and until clauses specify explicit end-tests for ter-
minating the loop (beyond those which may be implicit in for
clauses). Either is followed by an arbitrary expression which is
evaluated on each iteration. The loop is exited immediately if
the expression returns the appropriate value (nil for while, non-
nil for until).

(loop for char = (read-char xstandard-inputx)
until (char-equal char #\end)
do (process-char char))

The when and unless clauses conditionalize the execution of
the following clause, which will often be a do clause or one of
the value accumulating clauses. Multiple clauses may be con-
ditionalized together with the and keyword, and if-then-else con-
structs may be created with the else keyword.

(loop for i from a to b
when (oddp 1)
collect i into odd-numbers and do (print i)
else collect i into even-numbers
finally (return (values odd-numbers
even-numbers)))

The return clause causes immediate termination of the loop,
with a return value as specified:

(1oop for char = (read-char xstandard-inputx)
when (char-equal char #\end)
return "end of input”
do (process-char char))

Flow of Control 51

Please refer to the documentation for a more complete discus-
sion of loop features. Of particular importance are prologue
and epilogue code (the initially and finally keywords), the dis-
tinction between ways of terminating the loop which execute
the epilogue code and those which skip it, the way to name the
body of the loop for returns (named), aggregated boolean tests
(the always, never, and thereis keywords), the destructuring
facility, and iteration paths (user-definable iteration-driving
clauses).

3.4.4 Implicit lteration

No discussion of iteration would be complete without mention-
ing that many of the usual iterative functions you want to use
are already present in the language. There are certain itera-
tive constructs that everybody wants sometime in their pro-
gramming lives, and are so commonly used that they have be-
come part of the Lisp language. Some examples:

* remove — drop elements of a sequence when they fit some
criterion.

* union - create a sequence which contains all the ele-
ments of two or more sequences.

¢ intersection — create a sequence which contains all the
elements which two or more sequences have in common.

* reverse — create a sequence which contains the original
elements in the opposite order.

¢ find — search for an element of a sequence which meets
some criterion.

These have all been adopted by Common Lisp, and are imple-
mented on the Lisp Machine. See the section “Sequence

52 Lisp Lore

Operations” in Symbolics Common Lisp: Language Concepts.
Other examples of implicit iterative constructs include
do-symbols and maphash.

One other “iterative” function deserves mention here. The
sort function takes any sequence and puts it in order, according
to some sorting predicate you supply. For example, if you have
a list of strings you want sorted alphabetically, here is one way
to do it:

(setq strings (sort strings #’string-lessp))

3.5 Lexical Scoping

Whenever two different functions use the same name for a
variable, a conflict potentially occurs between them. Lexical
scoping helps keep the conflicts down to a manageable level.

Consider this example, taken from the Symbolics documen-
tation:

(defun my-mapc (funct Tist)
(loop for x in list do ; X is bound here
(funcall funct x)))

(defun print-long-strings (strings x) ;xisbound here
(my-mapc #’(lambda (str)
(if (> (length str) x) ;whichxis this?
(print str)))
strings))

If the x from my-mapc is used in evaluating the function, the
wrong result is assured. In order to keep programmers from
having to know everything about each other’s functions, Lexical
Scoping was adopted. Under lexical scoping, names refer to the

Flow of Control 53

variable whose binding surrounds the point at which they are
referenced. So, for example, in the definition of
print-long-strings above, the x in the internal function refers
to the x bound by the function print-long-strings. Lexical
scoping is usually what you want.

In addition to variables, other names are also lexically scoped.
These include function names (internal functions created using
flet, labels and macrolet) and block names (created with
block). Catch tags (catch) are explictly not lexically scoped.

It is possible to force the Lisp Machine to use the “other” type
of variable scoping, called Dynamic Scoping. To do this,
declare the variable to be special. This can be done by using
the declare special operator, or by creating the variable with
defvar or defparameter.

3.6 Macros

Macros are programmer-supplied extensions to the Lisp lan-
guage. They are special functions which the compiler and the
evaluator call to translate the source program they read into
the program they eventually compile: or evaluate. Macros are
probably best explained by example.

Suppose you were writing a program which tested numbers for,
say, being odd integers, and discovered that you were writing
the following all over your program:

8Thtsma is yet a third kind of scoping, which might be called “flavor scoping,” which
is used for instance variables and functions declared with defun-in-flavor. Inside the
lexical contour of a method or flavor function, for example, variable names are
checked to see if they might be instance variables before looking for global definitions.
This is a special case of lexical scoping. See chapter 5.

54 Lisp Lore

(when (and (integerp <variable>) (oddp <variable>))
(setq <variable> (- <variable> 1))
<do-something-or-other>)

After a while, you might like to do the following instead:

(with-odd-integer-rounded-down <variable>
<do-something-or-other>)

This is one way you might do this:®

(defmacro with-odd-integer-rounded-down (var &body body)
*(when (and (integerp ,var) (oddp ,var))
(setq ,var (- ,var 1))
,8body))

Now, I admit this is a pretty simple-minded example. You’re
unlikely to write such simple macros. However, in cases where
form you’re trying to create is

1. long,

2. tedious to type,

3. error-prone, or

4. used in a lot of places in your program,
a macro can be a lifesaver.

Some hints for debugging your macros:

An easy way to expand macro forms in a lisp listener is with
the CP command Show Expanded Lisp Code, or with the function
mexp. The former takes the macro form as an argument, and
a lot of keywords which allow you to tailor the exact level of
expansion. For example, certain things which are defined as
special operators for the interpreter are defined as macros for

gl will not be documenting how to write macros here. That is adequately covered in
the Symbolics documentation. See the section “Macros” in Symbolics Common Lisp:
Language Conceplts.

Flow of Control 55

the compiler; this command allows you to specify whether you
want the interpreter expansion or the compiler expansion.

mexp enters a loop which reads forms from the keyboard, ex-
pands them, and prints the result, using the pretty-printer for
readability. If you want to see how a macro expands when
given different sets of arguments, this is often a good way to
find out what they all do.

In the editor, a useful command to know is control-shift-M.
With the cursor positioned immediately before the form you
wish to expand, type c-sh-M. The editor will display the macro
expansion in the typeout window. If you would like to have the
macroexpansion inserted in the buffer, use c-sh-M with a
numeric argument.

c-sh-M only expands a given form once. Sometimes macros ex-
pand your code into code which in turn uses another macro!
To see the ultimate code the compiler or interpreter will see,
type m-sh-M. This macroexpands your input form until it con-
tains no more macros to expand. m-sh-M expands subforms as
well. ’

Of course, you can also use meta-. on a macro to edit its
definition, but it’s often more useful to see what a macro ex-
pands into than to see how it’s implemented.

3.7 Unwind-protect

One particular special operator needs to be mentioned, because
it is so useful, especially in conjunction with macros. The
operator unwind-protect is used to make sure you get a chance
to clean up after yourself, even if the function yowre running
doesn’t return normally.

56 Lisp Lore

Consider the following code fragment:

(defun operate-reactor (reactor)
(pull-out-control-rods reactor)
(generate-electricity reactor)
(push-in-control-rods reactor))

Now, suppose there is an error in your function
generate-electricity, and it enters the debugger. You poke
around, figure out the problem, and want to try it again. If
you type control-Abort, the last form in this function never gets
evaluated. You could wind up blowing up an area the size of
the state of Pennsylvania.

The way to make sure you get to clean up is with the special
operator unwind-protect. Here is the above form, recoded to
use it:

(defun operate-reactor (reactor)
(unwind-protect
(progn (pull-out-control-rods reactor)
(generate-electricity reactor))
(push-in-control-rods)))

The first subform in the unwind-protect is called the protected
form. It is executed in an environment which guarantees that
all the remaining forms, called the cleanup forms, will be ex-
ecuted when the protected form returns, or is aborted using
return, return-from or throw.'® The progn special operator is
how you make several forms into a single one; unwind-protect
is one of the few cases where a single form is required Gf is
another).

10Contr‘o1—Abortisimplementedusingthrow.

Flow of Control 57

Now, if you need to do this in more than one place in your
program, you will appreciate the following macro:

(defmacro while-reactor-running ((reactor) &body body)
* (unwind-protect (progn (pull-out-control-rods ,reactor)
,@body)
(push-in-control-rods ,reactor)))

(defun operate-reactor (reactor)
(while-reactor-running (reactor)
(generate-electricty reactor)))

A couple of examples of system macros which use
unwind-protect: with-open-file and with-open-stream.

3.8 Fun and Games

From The Hacker’s Dictionary, Guy L. Steele, Jr., et al:

TASTE noun. Aesthetic pleasance; the quality in programs
which tends to be inversely proportional to the number of
FEATURES, HACKS, CROCKS, and KLUGES programmed into it.

OBSCURE adjective. Little-known; incomprehensible; undocu-
mented. This word is used, in an exaggeration of its nor-
mal meaning, to imply a total lack of comprehensibility.
“The reason for that last crRAsH is obscure.” “That
program has a very obscure command syntax.” “This
KLUDGE works by taking advantage of an obscure FEATURE in
TECO.” The phrase “moderately obscure” implies that it
could be figured out but probably isn’t worth the trouble.

58

Lisp Lore

3.9 Problem Set

Questions

1. Write a function which takes a string as an argument,

and returns its position in the list *my-strings*. Try
doing this with do, loop and map (map requires the most
ingenuity). Your function should return 0 if the string is
the first element in the list, 1 if it’s the second, and so
forth. If the string is not in the list, your function
should return nil.

. Write a predicate which takes two strings and returns t if

the first one is earlier in the list *my-strings*. If either
string is not in *my-strings®*, it is later; if both are not
in the list, return t if the first string is alphabetically
earlier than the second.

. Write a function which reads characters from the user

one at a time, using read-char. When the user types the
#return character, it should take the characters accumu-
lated thus far, make them into a string, and add them to
the end of the list *my-strings®*. When the user types
the #\end character, it should return. Do this two ways:
one using string-append, and the other more efficiently
using storage by pre-allocating the string.

. Write a function like the last one, except that if the user

presses Abort no changes are made to the list
*my-strings®. Do this in two ways: use let and
unwind-protect.

. Write a function which takes two arguments, a number n

and a list of numbers list, and returns a list consisting of
the elements of list incremented by n.

Flow of Control 59

6. Write a function which takes one argument, n, and
returns the nth Fibonacci number.!! The only restriction
is that the time the function takes should increase
linearly in n (it’s easy to make a recursive one which be-
haves much worse!).

1dIThe Fibonacci sequence of numbers starts with 1, 1, 2, 3, 5, 8 ...; each Fibonacci
number atfter the first two numbers is the sum of the two preceding ones.

60

Lisp Lore

Answers

1. Three different solutions, using do, loop and map. Note
that this function is equivalent to using the position
function.

(defvar xmy-stringsx ’("This" “"is" "the" "cereal”
“that’s” "shot" “from” "guns"))

(defun find-string-do (string)
(do ((string-list xmy-stringsx (cdr string-list))
(n 8 (1+ n)))
((null string-list) nil)
(when (string-equal (car string-list) string)
(return n))))

(defun find-string-loop (string)
(loop for my-string in xmy-stringsx
as n upfrom @
when (string-equal string my-string)
return n))

(defun find-string-map (string)
(et ((n 8))
(map nil (lambda (my-string)
(when (string-equal .string my-string)
(return-from find-string n))
(incf n))
*my-stringsx)))

2. This one assumes one of the previous three functions was

named find-string.

(defun my-string-lessp (stringl string2)
(let ((index1 (find-string stringl))

Flow of Control 61

(index2 (find-string string2)))
(cond ((and index1 index2) (< index1 index2))
(index1 t)
(index2 nil)
(t (string-lessp stringl string2)))))

3. The second of these replaces string-append with
vector-push-extend, and append with nconc. I suggest
you look these up if you don’t know the difference be-
tween them.

(defun read-my-strings-siow ()
(loop with string = "*

for char = (read-char)

when (char= char #\end) return nil

when (char= char #\return)

do (setq xmy-stringsx

(append xmy-stringsx (list string))
string ")

else do (setq string

(string-append string char))))

(defun read-my-strings-fast ()
(Toop with string = (make-array
10
:element-type ’string-char
:fill-pointer 9)
for char = (read-char)
when (char= char #\end) return nil
when (char= char #\return)
do (setq xmy-stringsx '
(nconc xmy-stringsx (list string))
string (make-array
108
:element-type ’string-char

62

Lisp Lore

:fill-pointer 8))
else do (vector-push-extend char string)))

One problem with these functions is that if you make a
mistake, you’re dead; no provision has been made for rub-
bing out errors. Try modifying the second one to handle
the character #\rubout.

. Neither of these functions is very clear as to what it

does. A better solution will be shown below.

(defun read-my-strings-protected ()
(let ((result xmy-stringsx))
(let ((xmy-stringsx (copy-list xmy-stringsx)))
(read-my-strings)
(setg result xmy-stringsx))
(setqg xmy-stringsx result)))

(defun read-my-strings-protected ()
(let ((old-strings (copy-list xmy-stringsx)))
(unwind-protect
(progn (read-my-strings)
(setq old-strings xmy-stringsx))
(setq xmy-stringsx old-strings))))

The copy-list calls are only necessary if you use the ver-
sion of read-my-strings which uses nconc instead of ap-
pend.

A more perspicuous way:

(defun read-some-strings ()
(loop with string = "~
for char = (read-char)
when (char= char #\end) return nil

Flow of Control 63

when (char= char #\return)
collect (progl string (setq string ""))
else do (setq string
(string-append string char))))

(defun read—my—stringS—protected O
(let ((new-strings (read-some-strings)))
(setq xmy-stringsx
(nconc xmy-stringsx new-strings))))

This version doesn’t have any complicated interactions be-
tween binding variables and exiting from lexical contexts
unexpectedly, and therefore is easier to understand.

5. This one works only on lists:

(defun add-to-sequence (n list)
(map ’list (lambda (elem) (+ n elem)) list))

This one works on all Common Lisp sequences (vectors as
well as lists):

(defun add-to-sequence (n seq)
(map (if (listp seq) ’list (type-of seq))
(lambda (elem) (+ n elem))
seq))

6. Here are a couple of different solutions.

(defun fib (n)
(loop repeat n
for a =0 then b
for b = 1 then partial-sum
for partial-sum = (+ a b)
finally (return partial-sum)))

64

Lisp Lore

Here is a completely different way to do it:

(defun make-fibber (a b)
#’ (1ambda ()
(psetf ab b (+ a b))
a))

(defun fib (n)
(let ((fibber (make-fibber 8 1)))
(lToop repeat n do (funcall fibber)
finally (return (funcall fibber)))))

The function make-fibber returns a lexical closure, which
is a function that remembers the lexical environment in
which it was created. Each time you call the function
returned (the “fibber’’), it uses the values of a and b as
they were the last time that lexical environment was en-
tered. This kind of function is sometimes called a gener-
ator function.

It is possible to make closures of more than one function
in the same lexical environment, in which case whenever
any of them is invoked, it sees the variables in the state
they were in the last time any of them was invoked. For
example:

(defun make-cache-functions (cache-value)
(let ((cache-count 8))
(values #’' (lambda () (values cache-value
cache-count))
#’ (1ambda (new-value)
(incf cache-count)
(setf cache-value new-value)))))

(defun cache-user ()

Flow of Control 65

(multiple-value-bind (get set)
(make~-cache-functions 1)
(1ist (funcall get)
(progn (funcall set 185) (funcall get)))))

This simple function returns a list with two elements: 1
and 105.

4. More on Navigating the Lisp Machine

The last chapter discussed aspects of programming with the
Lisp language. This one is about some aspects of using the
Lisp Machine which are more or less independent of program-
ming on it, i.e., what you might call the operating system of
the Lisp Machine. Some parts of this chapter having to do
with sending messages to windows and process objects may be
confusing unless you know something about flavors. See chap-
ter 5, especially the section starting at page 117.

4.1 The Scheduler and Processes

A process is a single computational sequence within a computer.
The Lisp Machine supports multiple processes running
“simultaneously,” i.e., sharing the processor like a miniature
time-sharing system. Each process behaves like it has its own
simulated processor: it has its own “program counter,” its own
function-call history (stack), and its own special-variable bind-
ings.

Switching the processor back and forth among the different

67

68 Lisp Lore

processes can be explicitly controlled by the Lisp Machine
programmer (read the documentation on Stack Groups), but al-
most never is. A special module called the scheduler generally
handles this responsibility. Every 1/60th second the scheduler
wakes up and decides whether the current process should be al-
lowed to continue running, and if not, which other process
should get a chance.

If the current process has been running continuously for less
than a second, and wishes to continue, it is allowed to. (Note
that a full second is a long time for this sort of thing, com-
pared to other timesharing arrangements.) Or if it’s been run-
ning for a second but no other process wishes to run, it is still
allowed to continue. But if it’s been monopolizing the machine
for more than a second, and one or more other processes want
to run, it’s forced to take a rest while the scheduler gives the
others a chance. The process chosen by the scheduler is now
treated as the previous current process was: it will be allowed
to run until some other process(es) wish to run and the current
process either volunteers to give the others a chance, or passes
the one second mark.’

The way a process “volunteers to give the others a chance,” or,
in less emotionally-laden terms, informs the scheduler that it
doesn’t need to run, is with the function process-wait. The
function which calls process-wait specifies a condition the
process is waiting for. When the condition becomes true, the
process is ready to run. When the scheduler decides to resume
the process, the call to process-wait returns and the computa-
tion continues from there. The first argument to process-wait

The “one second” referred to is actually a shorthand way of saying “the process’
quantum.” The default runtime quantum is one second, but may be modified for any
process. See the section “Process Attribute Messages” in Internals, Processes, and
Storage Management.

More on Navigating the Lisp Machine 69

is a string to appear in the ‘“‘wholine”” (at the bottom of the
screen) while the process is waiting. The second argument is a
function and any remaining arguments are arguments to the
function. To see whether the process is ready to continue, the
scheduler applies the specified function to the specified ar-
guments. The return value of the function is what the
scheduler uses for the “condition” mentioned above. This func-
tion is often called the process’ Wait Function.

Here is a simplified version of the call to process-wait which is
responsible for “User Input” appearing in the wholine most of
the time:

(process-wait si:xwhostate-awaiting-user-inputx
#’ (1ambda (buffer) (not (io-buffer-empty-p buffer)))
buffer)

This call is buried somewhere in the code windows use for
reading from the keyboard. It says that the process will be
ready to continue when the function io-buffer-empty-p returns
nil when applied to the input buffer.

Suppose several processes’ wait functions would all return
non-nil values at a given moment. Which process gets to run
next? The scheduler orders all processes in a list by their
priorities; the highest-priority processes’ wait functions are
checked first. The priority of a process is set when you create
the process, although it can be changed by sending the process
object a :set-priority message.

Now a question for the bold: what happens if an error occurs
in the scheduler? It is, after all, just another piece of Lisp
code. And even if the scheduler code itself is bug-free, all the

wait-functions are called in the scheduler, and any loser? can

2See hacker's définition at the end of the chapter.

70 Lisp Lore

write a buggy wait-function. Blinking of flashing blinkers also
gets done from the scheduler. (There’s a clock function list of
things to be done every time the scheduler runs, and by default
the only things on the list are blinking the blinkers and updat-
ing the mouse documentation on the screen.) And any loser
can also write a buggy :blink method for his/her blinkers — I've
certainly done it. So what happens when the scheduler runs
into an error? The scheduler can’t use the Window System,
since any window it might use could be locked. How can the
debugger communicate with you?

What happens is that the scheduler enters the debugger and
uses what is called the cold-load stream. This is a very basic
stream which completely bypasses the Window System. It uses
the screen as it would a dumb terminal, with no regard for the
previous display contents, ignoring even window boundaries.
None of the input editor commands will work, apart from the
rubout and Clear-Input keys. Things like Control-Abort won’t
work. But you will be in a legitimate debugger, from which
you can attempt to set things right. So don’t panic.

Our view of scheduling is now fairly complete. The current
process owns the Lisp Machine until it either does a
process-wait, or uses up its second. When either of these oc-
curs, the scheduler calls the wait-functions of the other
processes. The first process whose wait-function returns a
non-nil value gets to become the *current-process*. If none of
them do, the old current process remains the current process.
And if any errors occur while in the scheduler, the debugger
uses the cold-load stream.

Fine. Now it’s time to complicate things again. At any given
time a process is either active or inactive. Inactive processes
are not even considered by the scheduler when it looks for an
alternative to the current process. Their wait-functions aren’t
called at all until they become active. And what makes a

More on Navigating the Lisp Machine 71

process active or inactive? Two of the instance variables of a
process are its run-reasons and its arrest-reasons. An active
process is one with no arrest reasons and at least one run
reason. Otherwise (at least one arrest reason or no run
reasons) the process is inactive. There are program interfaces
for looking at a process’ run and arrest reasons, and for adding
to or deleting from them. An interactive user, however, is
more likely to arrest or un-arrest a process in one of the fol-
lowing ways (all of which end up calling those same interfaces,
but are easier to use from the console):

1. The System Menu has options for arresting or un-
arresting the process in the window the mouse is over.

2. If you click on the name of a process in Peek’s display of
processes, you get a menu of useful things to do to that
process. The menu includes ‘“‘arrest” and “un-arrest” op-
tions.

3. Clicking right on the name of a process printed by the
Show Processes command will also provide a menu, this
time of CP commands which have to do with processes.

4. Typing Function A arrests the process the wholine is
watching. (This is usually the selected window’s process.
You can change which process the wholine watches with
Function W.) Function minus A un-arrests it.

5. Typing Function Control-A arrests all the processes except
for a few without which you couldn’t run the machine,
like the keyboard and mouse processes. You can then use
Function minus A on specific precesses, or Function minus
Control-A to turn them all back on.

Another common operation to perform on a process is to reset
it. This is very much like typing c-m-Abort to it. It flushes

72 Lisp Lore

everything on the process’ stack and restarts it. (More exactly,
it reapplies the process’ initial function to its initial arguments,
but you needn’t understand that just yet.) The only time you
can type c-m-Abort to a process when you can select its win-
dow, which isn’t always possible, but you can reset a process
anytime. The options for how to reset a process are similar to
those for un-/arresting one. You can use the [Reset] option in
the system menu to reset the process in the window under the
mouse, or you can use the menu in Peek’s display of processes.
A CP command, Restart Process, is also provided. Finally,
there is also a programmer’s interface for resetting a process.

Note that most of these ways of resetting depend on being able
to use the mouse. So if the mouse process is the one which is
in trouble, they won’t work. The CP command Initialize
Mouse (or the function tv:mouse-initialize) are provided for this
contingency.

One final note on resetting: (send *current-processx :reset)
doesn’t work. (It just returns nil) The usual method for un-
winding a stack doesn’t work from within that stack. To reset
the current process, you need to either spawn a new process for
the sole purpose of resetting your process (use
process-run-function), or use an optional argument to the
reset message: (send xcurrent-processx :reset :always) will
work.

Before long you will probably have cause to create your own
processes. The easy way to do this is with the function
process-run-function. See the section “Creating a Process’ in
Internals, Processes, and Storage Management.

More on Navigating the Lisp Machine 73

4.2 Windows

Processes usually communicate with the user through one or
more windows. A window is a rectangular piece of the screen,
which displays output sent to it, and obtains its input via the
keyboard and mouse.® '

The entire set of existing windows is organized into several
trees. The root of each tree is a screen, which is a software
representation of a “display.” Each window has a superior
(towards the root of the tree) and a (possibly empty) list of in-
feriors (towards the leaves). The [Windows] option in Peek dis-
plays all the trees (subject to a restriction mentioned below).

A window may be in one of four states:

1. Deactivated
2. Deexposed
3. Exposed

4. Selected

A newly-created window starts off in the deactivated state. The
window system doesn’t remember deactivated windows at all, so
if you don’t keep a pointer to it, its storage can be reused by
the garbage collector.? (Ignore this point for now if you don’t
understand garbage collection.)

3The programmer’s interface to the window system uses Flavors. Unfortunately,
the implementation of windows is much older than the current Flavors system, and
uses “message passing” interfaces. For further Information: See the section
“Message Passing,” page 117.

4Normally, the window system remembers a window in two places: (1) the
window's superior remembers all its inferiors, and (2) an array called
tv:previously-selected-windows remembers all windows which have been selected.

74 Lisp Lore

In order to use a window at all, you must activate it; this
usually happens automatically as part of exposing it on the
screen for the first time. Exposing a window means making it
completely visible on its superior. Since most windows you will
create will have a screen as their superiors, exposure means
that the window is visible on the screen. Note that it is pos-
sible for a window to be partially visible, because some other
window is covering up part of it; a partially visible window is
not exposed.

In order to write output to a window, the output must have
someplace to go. For exposed windows, this “someplace to go”’
is the window’s superior, e.g., the screen. A deexposed window
(including one which is partially visible) can have a bit-array,
called its bit-save array, which can be copied to the screen
later. See the section “Pixels and Bit-Save Arrays” in Pro-
gramming the User Interface, Volume B.

A deexposed window which is asked to display output (perhaps
with the write-char or graphics:draw-rectangle functions), has
several options. What happens is controlled by its deexposed
typeout action. It may specify, for instance, that the window
should try to expose itself, or that an error should be signaled.
The default value of deexposed-typeout-action, :normal, specifies
that the process doing the typeout should enter an ouiput hold
state. That means it will do a process-wait (remember those?)
with a wholine state of “Output Hold” and a wait-function
which essentially waits for the window to become exposed:

(process-wait "Output Hold"
#* (1ambda (sheet)
(not (sheet-output-held-p sheet)))
self)

You can also set the deexposed typeout action of a window to
:permit, either by sending it the appropriate message or by

More on Navigating the Lisp Machine 75

using Function 4 T or Function 5 T. In this case, output to the
window will proceed (if it has a bit-save array), but you won’t
be able to tell unless you expose it.%

So much for output. Suppose you have two exposed windows on
your screen, and each has a process which is waiting for typed
input. How does the Lisp Machine decide which one should get
the characters you type?

The answer is selection. The selected window is the one to
which keyboard input is directed. Although any number of win-
dows may be simultaneously exposed, as long as they can all fit
on your screen without overlapping, only one window at a time
may be selected. The currently selected window is always the
value of the symbol tv:selected-window. It usually has a blink-
ing rectangular cursor in it.®

If we imagine the four possible window states (deactivated,
deexposed, exposed, selected) occupying a spectrum, the various
operations for changing the state of window are pictured in
Figure 1. The vertical lines show the transitions between the
various states. The arrows mean that when you perform the
given operation on a window, its state gets pushed all the way
from where it is to the head of the arrow. So, for instance, if
you deactivate an exposed window, it will be both deexposed
and deactivated. A selected window would be deselected, deex-
posed, and deactivated. The operations only push in the direc-

5You might like a partially exposed window's contents to be updated on the screen
as output occurs. See the variable tviscreen-manage-update-permitted-windows
in Programming the User Interface, Volume B.

6There must, of course, be a process “listening" for input to the selected window
for keyboard input to have any effect. Otherwise, typing on the keyboard has no
effect, except for special keys like c-Abort, Function and Select.

76 Lisp Lore

Activation Exposure Selection

Deactivated Deexposed Exposed Selected

Fy

Deactivate

Activate Deexpose
Expose - ot Deselect
Select

¥
Fy

¥

Figure 1. Transitions among window states

tion of the arrows, they don’t pull. That is, if the window is
already at or beyond the arrowhead nothing happens. If a
selected window is activated, there is no effect. It is not pulled
back to the deexposed state.

A freshly instantiated window returned by tv:make-window will
be deactivated, unless you specify otherwise. This is also the
state of a window which has been explicitly deactivated or
killed. (Killing a window deactivates all of its inferiors as well
as itself.)

You can always change the state of a window by sending it an
appropriate message, but there are several ways to make these
messages be sent without explicitly sending them yourself. The
system menu has an option for killing the window under the
mouse, and one for selecting a window from the list in
tv:previously-selected-windows. The [Edit Screen] option in
the System Menu pops up another menu with options for killing
or exposing any partially visible window, and for exposing any
window in tv:previously-selected-windows. The Edit Screen

More on Navigating the Lisp Machine 77

menu also has options for creating, moving, or reshaping win-
dows. If you click on the name of a window while in the win-
dows display of Peek, you get a menu with options for select-
ing, deselecting, exposing, deexposing, deactivating or killing
the window.

There’s another way to select a window which you are already
familiar with: use the Select key. For the kinds of windows
accessible via the Select key (Select Help displays a list), the
effect of the Select key depends on how many instances of that
flavor of window exist.

Let’s take Select L (for the Lisp Listener) as an example. If
there are no existing LL windows, typing Select L will create
one and select it. If there is exactly one LL window, Select L
will select it (unless it is already the selected window, in which
case the console will beep and the window will remain the
selected window). If there are more than one existing LL win-
dows, and none of them are the selected window, Select L will
select the one which had most recently been the selected win-
dow. Typing Select L repeatedly will rotate through all the ex-
isting Lisp Listeners.

Typing Select c-L (hold down the control key while striking L)
will always create and select a new Lisp Listener window,
regardless of whether there any already exist.

Windows can also be selected with the Function key. Function
S selects the previously selected window. Typing a numeric ar-
gument (pressing digit characters between the Function key and
the S) allows rotation of the selected windows in various arcane
ways. Type Function Help and read about Function S for a full
description. [In addition to the usual ways of exposing the win-
dow, when an output hold occurs there is one extra way which
becomes available: type Function Escape.]

Changing the state of a window will often cause the state of

78 Lisp Lore

other windows to change. For instance, if I select one window,
the window which had been selected necessarily becomes
deselected. And if I deselect a window, some other window (the
previously selected one) becomes selected. Similarly, exposing a
window may partially or entirely cover some other window
which had been exposed; the latter window is forced to become
deexposed. And deexposing a window may uncover some other
window, thereby exposing it.

(A subtler point arises here. Simply sending the :deexpose
message usually does not have the intended effect. Since no
other windows will be covering the one which has just been
deexposed, it will immediately be automatically re-exposed. It
will look like nothing happened. What you probably meant to
do was either expose some other window [which will automati-
cally deexpose the first window], or send the first window the
:bury message, which in addition to deexposing it, puts the
window underneath all the other windows, so that the window
that ends up being auto-exposed is some other one. Function B
can be used to bury the selected window.)

The interactions among windows can become terribly con-
voluted. There are several kinds of locks intended to keep
everything straight. If something goes wrong and an error oc-
curs while the Window System is locked, the debugger won’t be
able to expose a window to use. So it uses the cold-load
stream, just as when an error occurs inside the scheduler.

If you've been messing with the Window System in unwise
ways, it’s possible to get it locked up so that you can’t do any-
thing. (I do it all the time). If the window which appears to
be selected isn’t responding to typein, and c-m-Abort doesn’t
help, and the mouse is dead, and you can’t select some other
window with the Select or Function keys, it may be that you’re
hung up in a locked Window System. Your last resort in such
a case (short of h-c-Function and a warm or cold boot) is to

More on Navigating the Lisp Machine 79

type Function c-Clear-Input. This clears all the locks in the
Window System. It’s a sledgehammer, and can break some
things, but it may revive your machine without having to boot.

When a window is sent more than one screenful of typeout at a
time, it may pause at the end of each screenful, type xxMORExx,
and wait for you to press any key before continuing. This be-
havior is called more processing. Whether more processing oc-
curs (as opposed to continuous output) is controlled by Function
M and Function c-M. Type Function Help for details. For more
processing to occur it must be turned on both globally and for
the individual window.

One last note about navigating around the Window System.
Many ways have been provided to get to other windows, not all
of which are immediately obvious. Here is a list of things
which you might want to try:

Select Key: Select Help -- A “Cheat sheet”

Function Key: Function Help -- A “Cheat sheet”
Function S -- select another window
Function B -- bury the current window,
selecting a new one
Function M -- modify **More** processing
Function T -- toggle deexposed-typeout-action
and deexposed-typein-action.

Certain special chararacters can be typed using the Symbol
modifier key. Type Symbol-Help (i.e., hold down Symbol while
typing Help) for a list of them.

80 Lisp Lore

4.3 Debugging

The Lisp Machine provides a number of tools to help you debug
your programs. These include:

e a compiler which diagnoses many of the more obvious er-
rors

e a powerful debugger which permits examination of your
execution state

¢ dynamic breakpoints

e a monitor facility which can automatically interrupt your
program when it sets or references a given variable

e source locators: when your program is interrupted, you
can see what place in your source is executing

¢ bug report mail

The debugger itself is the main tool for discovering what went
wrong. You should remember a few things about the debugger
from Chapter 2: it is entered whenever an error occurs, and
may be entered manually with the function break or by typing
c-m-Suspend. Breakpoints and references to monitored variables
(see below) can also cause your process to enter the debugger.
Once in the debugger, you can move up and down the stack
with c-P and c-N (for previous and next), and see the whole
stack with c-B (for backtrace). There are generally a series of
restart and other commands bound to the super keys, and to
Resume and Abort.

Now some debugger facilities that may be new. The local vari-
ables in the current frame, including the arguments, are acces-
sible by typing their names. Suppose the current function has

More on Navigating the Lisp Machine 81

an argument named array and I want to know what element #5
in the array is. I could type (aref array 5), just as it might
appear in my source for the function.” All symbols are inter-
preted as if they appeared in your source; variables, for ex-
ample, are found using the normal lexical scoping rules. Any
modifications to local variables will be used if you type Resunme.

You can also examine the values of arguments and local vari-
ables with the functions dbg:arg and dbg:loc. These two func-
tions take a single argument, which is either an integer or the
name of the variable (remember that arguments are numbered
from 0, not one! (dbg:arg 0) is the first argument.) Also, the
debugger commands c-m-A and c-m-L can be used for printing
out the contents of arguments and locals, respectively. c-2 c-
m-A prints the third argument, setting the variable * to it.

Suppose you're debugging some function which is part of an
enormous program. Your program has just spent the last 15
hours getting to the place where it blew up, and rather than
restarting the computation from the beginning, you would like
to continue from where you are.

If you have recompiled a function or one of its subroutines, you
can reinvoke it, that is, start it from the beginning, using the
debugger comand :Reinvoke. This can also be typed as a single
character, namely c-m-R. You can also change the values of the
arguments for reinvoking the function in one of two ways:

1. Modify the arguments by incanting:

7In fact, you can copy forms from the editor by pushing them onto the “kill ring"
and “yanking” them into the debugger, as long as you are careful about packages (if
you're not using packages, you won't need to worry about this.) See the section “The
Input Editor and Histories,"” page 83.

82 Lisp Lore

(setf (dbg:arg n) new-value)

and then reinvoke the function with c-m-R. [Remember
that arguments are numbered from zero, not one! n can
be an argument number or the symbol which names the
variable.]

2. Use the debugger command :Reinvoke :New Args. c-m-R
with a numeric argument is an abbreviation for this com-
mand.

You may find a few other debugger commands invaluable:

e c-E — takes you to the editor and positions the cursor at
the place where your function halted.®

e c-M — takes you to a mail-sending window with the con-
tents of the stack in the mail buffer. You can use this to
send bug reports to the maintainer of whatever software
you’re running (including Symbolics!).

e c-m-Z — the Analyze Frame command, which tries to figure
out what went wrong with your function. Usually it will
tell you things like what argument was probably passed in
wrong, and so forth.

Monitoring variables is a very powerful way to determine
what’s wrong with a program. For example, suppose you've

8This is broken in Genera 7.0; it will be fixed in a later release.

For this to work completely correctly, you must compile your code with Source
Locators. Currently, the only way to get source locators is with the editor's compila-
tion commands. By default, the command c-m-sh-C compiles with source locators,
and c-sh-C compiles without. You can reverse these by setting
compiler:*inhibit-using-source-locators* to nil in your init file.

More on Navigating the Lisp Machine 83 .

been staring at a program for a week, trying to figure out
when an instance variable gets set to nil instead of a number.
Instead of continuing to stare at it, you can merely monitor the
variable.

The simplest way to monitor a variable is to use the macro
dbg:monitor-variable. You can also explictly monitor instance
variables with dbg:monitor-instance-variable. Examples:

(dbg:monitor-variable xfoox)

Any attempt to write the variable *foo* will invoke the debug-
ger. If you press Resume, the program will continue.

(dbg:monitor-instance-variable *piex ’spice-ingredients
:read t)

If your program tries to read the instance variable
spice-ingredients of the instance *pie*, the debugger will be
entered.

(dbg:monitor-variable (pie-spice-ingredients xpiex) :read t)

will have the same effect as the previous example, if you have
declared the instance variable spice-ingredients to be locatable
(See the special form defflavor in Symbolics Common Lisp:
Language Concepts.)

4.4 The Input Editor and Histories

The input editor is active in most contexts outside of the editor.
Most notably, it is active when you’re typing to a Lisp Listener.
c-Help lists all the input editor commands. Most of them are
similar to the Zmacs commands, so you can do all sorts of edit-

84 Lisp Lore

ing of the input before it gets to the Lisp reader. Two of the
helpful features of the input editor are the histories it keeps,
the input history and the kill history. Every time you send a
form off to be evaluated by a Lisp Listener, the form is added
to that Lisp Listener’s input history. (Each Lisp Listener keeps
its own input history, even the editor’s typeout window.) Press-
ing the Escape key will display the input history of the window
you are typing to.

Every time you delete more than one character of text with a
single command (with, for example, m-D, m-Rubout, Clear-Input,
c-W, c-K), the deleted text is added to the kill history. There is
only one kill history; it is shared by all the windows which use
the input editor, and also the Zmacs window(s). c-Escape dis-
plays the kill history.

In both the input editor and in Zmacs, c-Y yanks the most
recent item off the kill history and inserts it at the current
cursor position. You can select an earlier element from the
history by giving c-Y a numeric argument. Typing m-Y im-
mediately after a c-Y does a yank pop; it replaces the text
which has just been yanked with the previous element from the
history. Repeatedly typing m-Y will rotate all the way through
the history. Giving m-Y a numeric argument will jump that
many items in the history.

Note that since all windows share the same kill history, it
provides a simple way to transfer text from the editor into a
Lisp Listener: just push the text onto the kill history while in
the editor, perhaps with c-W or m-W or a mouse command. Then
switch to a Lisp Listener, type c-Y, and presto! There’s your
text.

In the input editor, c-m-Y yanks from the input history. m-Y
again has the effect of rotating through the history. Only in-
put which is appropriate to the input context is actually yanked.

More on Navigating the Lisp Machine 85

So, for example, if you're supposed to be typing a command,
then c-m-Y and m-Y will yank commands you previously typed to
the window. If you've already typed a command name, and the
command is prompting you for a file pathname, c-m-Y/m-Y will
provide only pathnames.

In Zmacs, c-m-Y has the effect of yanking from what’s called
the command history, a record of all editing commands which
have used the mini-buffer. Immediately after a c-m-Y, m-Y has
the usual effect.

One nice property of m-Y you might not immediately discover is
that it takes numeric arguments, including negative ones. An
argument of, say, 4, gives you the fourth next element in the
history you’re examining. An argument of -1 gives you the one
you just m-Y’ed past; I usually use this one because because I
was too quick on the m-Y trigger. For example, try typing this
sequence to your Lisp Listener:

c-m-Y m-Y m-Y m-Y m-- m-Y

The ability to yank previous inputs into a Lisp Listener raises
an interesting question: how does the input editor know when
you’re finished editing and ready for the input to be sent off to
Lisp? Normally, if you just type your input without any yank-
ing, the input editor knows you’re done when you type some
sort-of delimiter at the end of the input string, like a close
paren, to complete-a well-formed Lisp expression. But if you’ve
yanked an already well-formed expression, how can you com-
plete it? The answer is that there is a special activation
character. It is the End key. Pressing End while anywhere
within a well-formed expression tells the input editor you’re
done, and it sends your input off to Lisp. So if you’ve yanked a
previous input with c-m-Y, you can press End immediately to re-
evaluate the same expression, or you can edit it some and press
End when finished, to evaluate the modified expression.

86 Lisp Lore

The input editor also has commands which access online
documentation of Lisp functions. These are:

e c-sh-A, which displays the argument list of the function
whose name you have typed.

e m-sh-A, which displays the Symbolics documentation for
the function whose name you have typed

e m-sh-D, which prompts you for the name of any Symbolics
documentation topic and displays it on the screen.

So if I type “(with-open-file ” to a Lisp Listener, and then
press c-sh-A, the following will appear on my screen:

WITH-OPEN-FILE (MACRO): ((STREAM-VARIABLE FILENAME . OPTIONS)
&BODY BODY)

c-sh-A, m-sh-A and m-sh-D also work in Zmacs.

4.5 Mouse Sensitivity

With Genera 7.0, Symbolics has introduced a wholly new
method of displaying output to and accepting input from the
user. Every time anything interesting is displayed on most
windows, the system remembers the object and its appearance
on the screen. Advantages:

1. The Window System remembers what was on the window
before the output was scrolled off the top. This means
that you can scroll back to earlier parts of your output to
see it again.

2. Everything on the screen is potentially mouse sensitive.

More on Navigating the Lisp Machine 87

Let’s take an example. Suppose you want to look at the con-
tents of a file, but you don’t remember what you called it.
Here is what you might do:1°

You type:
Show Directory LISP-LORE:EXAMPLES;CARD-GAME ;x.LISP
and the system displays:

LISP-LORE:EXAMPLES ; CARD-GAME ;% .LISP .NEWEST
375 free, 69595/69978 used (99%, 3 partitions)
(LMFS records, 1 = 4544, 8-bit bytes)

card-definitions.1isp.20 2 6509(8) ! 18/15/86

card-places.1lisp. 31 3 11423(8) ! 18/17/86 17:09:. ..
card-presentation-types.lisp.7 2 6014(8) ! 10/8. ..
card-system.lisp.2 1 4508(8) 18/02/86 18:49:3...
card-table.lisp.21 4 14205(8) ! 10/16/86 16:27:5. ..
gaps-game.lisp.9 2 3866(8) ! 18/14/86 16:89:32. ..
spider-game.lisp.13 2 3978(8) ! 10/15/86 17:43:...

16 blocks in the files listed
You could then type:
Edit File and stop.

At this point, the Edit File command prompts you for the path-
name of a file, and you could type one in. However, it might
be quicker for you to use the mouse to point at the one you
want and click on it.

1°| have truncated the output lines to fit on the page. They don't actually appear
with “...” on your screen. Yes, the columns really don't line up on your screen.

88 Lisp Lore

Edit File CD:>rsl>book>examples>card-game>card-system.lisp.2

Note that when I clicked on it, the entire pathname became
part of my input, just as if I had typed it. If, for example, I
decide that I really want to read version 1 of card-system.lisp, I
can change the version number before I type Return.’? If I click
left on the pathname while holding the Shift modifier key, the
CP behaves as if I had pressed the Return key after typing the
pathname.

Now, the interesting thing about this mouse-sensitivity is that
it is input context sensitive. For example, pathnames are not
mouse-sensitive unless the machine is waiting for you to type a
pathname. One refinement: if you are trying to read, say, a
command, and you or the system have provided a translation
which converts pathnames into commands, then pathnames will
be mouse-sensitive when the system is trying to read a com-
mand. For example, if you click on a pathname when the com-
mand processor is trying to read a command, it is translated
into the Show File command with that pathname as its ar-
gument.

In general, you can tell if an item displayed on the screen is
mouse sensitive by pointing at it with the mouse. If it is, a
box will be drawn around the sensitive output; this box will go
away when the mouse is moved (or the object is no longer
sensitive). At the bottom of the screen, there is a (usually)
black area called the Mouse Documentation area. It will con-
tain some text which describes what will happen if you click
the mouse. The first line of its display will contain the results

11If the pathname | wanted to click on had disappeared off the top of the screen, |
could press m-Scrol1 enough times until it reappsared, or click on the scroll bar in
the left-hand margin. See the section “Looking Back Over Your Output (Scrolling)" in
User’s Guide to Symbolics Computers.

More on Navigating the Lisp Machine 89

of clicking on the indicated object with the left, middle or right
buttons. The second line will tell you what other combinations
of shift keys (e.g., control, meta, shift) will give you other op-
tions.

For example, let’s point again to that pathname in the Show
Directory output. The mouse documentation window will
contain: "2

Mouse-L: Show File (file) CD:>rsl>; Mouse-M: (DESCRIBE '#P...
To see other commands, press Shift, Control, Control-Shift...

As you can see, what happens when you click the mouse on an
object depends on two things: what input context you’re in, and
what buttons you press. For example, if you’re in the middle of
typing in a Lisp expression, a pathname is sensitive as a Lisp
object. An example:

You type:
Command: (fs:file-properties

and click on the pathname card-system.lisp, and then type a
right parenthesis. Your screen might look like this:

Command: (fs:file-properties
"#P”CD:>rsl>book>card-game>card-system.lisp.2”)
(#P"CD:>rs1>book>examples>card-game>card-system.1isp.2"
:GENERATION-RETENTION-COUNT 2 :LENGTH-IN-BLOCKS 1
:REFERENCE-DATE 2739058608 :MODIFICATION-DATE 2737676975
:CREATION-DATE 2737676975 :AUTHOR "rs1" :BYTE-SIZE 8
:LENGTH-IN-BYTES 450 ...)

124 dited slightly for readability

90 Lisp Lore

4.6 Poking Around

Many features of the programming environment will make your
programming life much simpler. Learning these tools is often
hit-or-miss, especially if there are no experienced Lisp Machine
users at your site to suggest them to you. Here is a hodge-
podge of commands and functions which will get you started in
your exploration.

The function who-calls takes an argument, usually a symbol,
and returns the list of functions which use that symbol as a
function, a constant or a variable. It also returns declared
variables which contain that object, either directly or as a list
element. The editor commands List Callers and Edit Callers
use this function to take you to the source of the calling func-
tions.

In previous releases, who-calls was very slow. In Genera 7.0,
it maintains a database of functions and their callers, and is
thus much faster. By default, the database contains only those
functions which you have defined in the current session (.e.,
since you cold booted), so the system software isn’t searched.
You or your site administrator can build a world which contains
a full database containing the entire system. See the section
“Enabling the Who-Calls Database At Your Site” in Site Opera-
tions.

The CP command Find Symbol searches for symbols whose name
contains a string you provide. You can limit the search to only
function names, flavor names, variable names, and so forth.
You can also specify the packages to search.'®

13you can also use the function apropos for this, but it's less flexible.

More on Navigating the Lisp Machine 91

The command Show Compiled Code disassembles a function. This
shows you the Lisp Machine instructions the compiler generates
from your source code. The editor command Disassemble and
the Lisp function disassemble do the same thing. You can dis-
assemble flavor methods, including combined methods, by this
method as well:

Show Compiled Code
“(flavor:method :tyi si:interactive-stream)”

produces the following output:

Disassembled code for (FLAVOR:METHOD :TYI SI:INTERACTIVE-STREAM)
@ ENTRY: 3 REQUIRED, 1 OPTIONAL

1 PUSH-NIL

2 PUSH-INDIRECT #’ (DEFUN-IN-FLAVOR SI:TYI-INTERNAL SI:
3 PUSH-LOCAL FP|@ ;SELF

4 PUSH-LOCAL FP[1 ;SYS:SELF-MAPPING-TABLE
5 PUSH-CONSTANT ’:ANY-TYI

6 PUSH-LOCAL FP|3 ;ST:EOF

7 FUNCALL-4-RETURN

Finally, clicking left on a function name displayed by any dis-
assembly will disassemble that function.

The Lisp Listener loop maintains certain variables whose values
can be extraodinarily helpful. *, for instance, is always bound
to the value returned by the last form you typed in; / is a list
of all the values returned.'® ** is the second-to-last value, and
*** the third. Beyond that, you can click on old values, scrolling
back up to them if necessary. See the section “Looking Back
Over Your Output (Scrolling)” in User’s Guide to Symbolics
Computers.

14remember that Lisp forms can return more than one value.

92 Lisp Lore

4.7 Fun and Games

More definitions from The Hacker’s Dictionary (Guy L. Steele
Jr., et al), prompted by my spontaneous use of the term loser.

LOSE verb.

1. To fail. A program loses when it encounters an excep-
tional condition or fails to work in the expected manner.

2. To be exceptionally unaesthetic.

3. Of people, to be obnoxious or unusually stupid (as opposed
to ignorant). See LOSER.

DESERVE TO LOSE verb. Said of someone who willfully does
THE WRONG THING, or uses a feature known to be MARGINAL.
What is meant is that one deserves the consequences of
one’s losing actions. ‘“Boy, anyone who tries to use UNIX
deserves to lose!”

LOSE, LOSE interjection. A reply or comment on an un-
desirable situation. Example: “I accidentally deleted all
my files!” *“Lose, lose.”

LOSER noun. An unexpectedly bad situation, program,
programmer, or person. Someone who habitually loses
(even winners can lose occasionally). Someone who knows
not and knows not that he knows not. Emphatic forms are
“real loser,” “total loser,” and “complete loser.”

LOSS noun. Something (but not a person) that loses: a situa-
tion in which something is losing.

WHAT A LOSS! interjection. A remark to the effect that a
situation is bad. Example: Suppose someone said, “Fred
decided to write his program in ADA instead of LISP.”

More on Navigating the Lisp Machine 93

The reply “What a loss!” comments that the choice was
bad, or that it will result in an undesirable situation — but
may also implicitly recognize that Fred was forced to make
that decision because of outside influences. On the other
hand, the reply “What a loser!” is a more general remark
about Fred himself, and implies that bad consequences will
be entirely his fault.

LOSSAGE (lawss’;j) noun. The stuff of which losses are made.
This is a collective noun. “What a loss!” and “What
lossage!” are nearly synonymous remarks.

WIN

1. verb. To succeed. A program wins if no unexpected con-
ditions arise. Antonym: LOSE.

2. noun. Success, or a specific instance thereof. A pleasing
outcome. A FEATURE. Emphatic forms: MoBY win, super-
win, hyper-win. For some reason ‘“‘suitable win” is also
common at MIT, usually in reference to a satisfactory
solution to a problem. Antonym: Loss.

BIG WIN noun. The results of serendipity.

WIN BIG verb. To experience serendipity. “I went shopping
and won big; there was a two-for-one sale.”

WINNER noun. An unexpectedly good situation, program,
programmer, or person. Albert Einstein was a winner.
Antonym: LOSER.

REAL WINNER noun. This term is often used sarcastically,
but is also used as high praise.

WINNAGE (win’;j) noun. The situation when a LOSSAGE is cor-
rected or when something is winning. Quite rare. Usage:
also quite rare.

94 Lisp Lore

WINNITUDE (win’:-tood) noun. The quality of winning (as op-
posed to WINNAGE, which is the result of winning).

4.8 Problem Set

Questions

1. Define a function which produces a concordance of all
symbols in a package. That is, it makes two alphabetical
lists of all the functions and all the variables in the pack-
age. The list of functions should be a list of lists; the
first element should be the name of the function and the
rest of the list a list of its callers. [Hint: use do-symbols
or do-local-symbols.]

2. Run that function in the background. In order to be use-
ful, it should save the lists someplace you can get to
them. Notify the user when the function is done.

3. Make a function which displays a symbol concordance on
a pop-up window. Hook it up to a Function key, like, say,
Function Square, using tv:add-function-key. If you're un-
sure how to do this, look at the source for the function
tv:kbd-finger with the Zmacs command m-..

More on Navigating the Lisp Machine L 95

Answers
1. Here is one way to do it:

(defun make-symbol-concordance
(&optional (package xpackagex))
(Tet ((functions) (variables))
(do-local-symbols (symbol package)
(when (boundp symbol)
(push symbol variables))
(when (fboundp symbol)
(push (cons symbol (who-calls symbol))
functions))))
(values variables functions)))

Using do-local-symbols avoids all the symbols in the Lisp
package, like car and + these functions have many
callers, most of which are uninteresting for this use.

2. You should use the function tv:notify to tell the user
when you’re done doing something in the background.

(defvar xvariablesx)
(defvar xfunctionsx)

(defun make-symbol-concordance-background
(&optional (package xpackagex))
(process-run-function (:name "Make Concordance”
rpriority -1)
(Tambda () _
(let ((xstandard-outputx #’sys:null-stream))
(multiple-value-setq (xvariablesx xfunctionsx)
(make-symbol-concordance package)))
(tv:notify nil “Finished making concordance."))))

96

Lisp Lore

I bound *standard-output* to the ‘“null stream” because
who-calls does some output on that stream.

3. I chose to make this answer a little more complicated, so
you can see how to deal with a numeric argument to a
Function key.

(defun show-symbol-concordance-function-key
(numeric-arg &aux (package *packagex))
(tv:with-pop-up-window “Concordance window”
(when numeric-arg
(setq package (accept ’package
:prompt "Package”)))
(multiple-value-bind (vars funs)
(let ((xstandard-outputx #’sys:null-stream))
(make-symbol-concordance package))
;; Show the variables
(format t "Variables in package ~A:" package)
(dolist (sym vars) (format t "~Z~A" sym))
:; Show the functions.
(format t "~2%ZFunctions in package ~A:" package)
(dolist (fun funs) (format t “~Z~A" (car fun))
(when (cdr fun)
(format t “ called by: ~{~S™~, ~}"
(cdr fun))))
:: Allow the user to say when she is done.
(tv:type-a-space-to-flush xterminal-iox))))

;1 Hook it up to the Function key.
(tv:add-function-key
#\Square
* show-symbol-concordance-function-key
"Show symbol concordance for a package.")

5. What’s a Flavor?

(For a more detailed presentation of this material: See the sec-
tion “Flavors” in Symbolics Common Lisp: Language Concepts.
I have skipped many features of flavors which you may find
useful and which are fully described there.)

The Flavor System' is the Lisp Machine’s mechanism for defin-
ing and creating active objects, that Iis, objects which
“remember” their state and “know’” how to perform certain
operations. A flavor is a class of such objects. Each such ob-
ject is an instance of that flavor.2

Programming with flavors is especially useful when:

* You are modeling objects whose behavior might change
over the course of time. For example, a veterinarian’s as-

1See hacker's definition at end of chapter.

2The flavor system is similar to defstruct, in that they both provide a mechanism
for structuring data. However, the Flavor System also provides a way to specify
behavior of objects which depends on their type (flavor). See the macro defstruct in
Symbolics Common Lisp: Language Concepts.

97

98 Lisp Lore

sistant program might want to model the eating behavior
of dogs. Presumably, what they eat varies with their age
and health.

e You are providing a generic interface to different kinds of
objects. For example, a program which displays mailing
lists should not be required to know whether its output is
being displayed on a printer or a screen; it should use an
“output stream” object which always defines the operation
of “write this character at the current position.”

There are two primary characteristics of a flavor:

1. The set of state variables an instance of that flavor has.
These variables are called instance variables.

2. The set of operations which may be performed on all in-
stances of that flavor. These operations are implemented
by functions called methods.

5.1 Instance Variables

Every instance of a given flavor has the same set of instance
variables. The values of those variables are likely to be dif-
ferent from one instance to another.

When an instance is created, the instance variables are all in-
itialized. Those initial values can be declared at compile time
or supplied at run time. If no value is specified, the instance
variable is left uninitialized, and the Lisp Machine will signal
an uninitialized-variable error if the variable is referenced be-
fore it is set.

Flavors are defined with the defflavor special form. Here is a
simple definition of a flavor named ship, which might be used
in a program for an outer space game:

What’s a Flavor? 99

(defflavor ship
(x~-position y-position
x-velocity y-velocity
mass)

0)

It states that all instances of the flavor ship will have five in-
stance variables, as listed. (The empty list following the in-
stance variables is related to a feature we’ll consider in a
minute). Of course, two different ships will have different
places to store each of these variables, but it always makes
sense to ask, for example, the value of the instance variable
x-velocity of any given ship.

5.2 Methods

A method is a function which provides behavior for instances of
a flavor. All instances of a given flavor have the same
methods.

Methods are defined with defmethod, which looks very much
like defun.. Using defmethod, the programmer specifies a
method name, an argument list, and a body. The body will be
executed in an environment in which the names of the instance
variables will refer to the instance variables of the specific in-
stance.

Here are two methods for the ship flavor, to provide the
generic operations speed and direction:

(defmethod (speed ship) ()
(sqrt (+ (expt x-velocity 2) (expt y-velocity 2))))

100 Lisp Lore

(defmethod (direction ship) ()
(atan y-velocity x-velocity))

Instance variables are lexically scoped names within the body of
methods. The way you refer to an instance variable inside the
body of a method is by using its name. If you need to change
the value of an instance variable, you can do so with setf or
setq.

We might also wish to have methods which allow one to read
or modify the values of a ship’s instance variables from some-
place other than within a method. For example:

(defmethod (ship-x-position ship) ()
x-position)

Writing one of these methods for every instance variable would
be tedious and error-prone. Fortunately, there is an option to
defflavor which automatically generates accessors (like
defstruct accessors) for any instance variables you choose, in-
cluding all of them. There is also an option which causes def-
flavor automatically to generate setf methods for those acces-
SOTS.

(defflavor ship
(x-position y-position
x-velocity y-velocity
mass)
0
:readable-instance-variables
(:writable-instance-variables x-position y-position
x-velocity y-velocity))

This creates such accessors as ship-x-position and ship-mass.
You can use setf on the position and velocity instance variable

What’s a Flavor? 101

accessors, but not mass.3

5.3 Making Instances

To make an instance of a flavor, we use the make-instance
function:*

(setq my-ship (make-instance ’ship))

This will return an object whose printed representation looks
like #<SHIP 255645543>, (The funny number will be the virtual
memory address, in octal, of the instance.)

To *“call” a method of an instance, you merely use it as a func-
tion. We can now do things like:

(setf (ship-x-velocity my-ship) 1608) => 1000
(setf (ship-y-velocity my-ship) 500) => 500
(speed my-ship) => 1118.08339

In addition to the instance variables, another very important
variable is available to the body of a method. The value of the
variable self will be the instance itself. self is often used to
ask the object to perform another operation:

3:rcaadable- and :writable-Instance-varlables may either be present alone, mean-
ing they apply to all the instance variables, or at the head of a list, meaning that they
apply only to the listed variables. This allows the programmer complete control over
modularity. If it doesn’t make sense to allow programmers to read or change a part of
your instance, you don't have to permit them to do so.

4Windows are a special kind of flavor. To make instances of windows, you should
use tv:make-window instead of make-Instance.

102 Lisp Lore

(defmethod (check-speed ship) ()
(when (> (speed self) 3.8e8)
(error "travel at rates greater than the ~
speed of light is not permitted”)))

5.4 Initial Values for Instance Variables

Instances of our ship flavor start out with all their instance
variables unbound. Using the ship-x-position function on one,
for instance, would result in an unbound-variable error. But
there are two ways to arrange for initial values to be assigned
to an instance when it is made. If you have used the
:initable-instance-variables option to defflavor, then you may
specify the initial values in the call to make-instance. So,
with this defflavor:

(defflavor ship

(x-position y-position

x-velocity y-velocity

mass)

Q)
:readable-instance-variables
(:writable-instance-variables x-position y-position

x-velocity y-velocity)

:initable-instance-variables)

you could use this call to make-instance:

(make-instance ’ship :x-position 30 :y-position -150
:mass 18)

The instance variables named in the call will have the specified
initial values. Instance variables not mentioned will be un-
bound, as before. Now, suppose you want all instances to have
certain initial values for certain instance variables. Perhaps

What’s a Flavor? 103

you want the x-velocity and y-velocity of all new ships to be
0. You could specify so in every call to make-instance. But
there is an easier way. You can specify in the defflavor what
initial value you wish the instance variables to have. Here’s
our next version of the defflavor for ship:

(defflavor ship
(x-position
y-position
(x-velocity 0)
(y-velocity 8)
mass)
0
:readable-instance-variables
(:writable-instance-variables x-position y-position
i x-velocity y-velocity)
:initable-instance-variables)

Now all ships will start out with x- and y- velocities of 0 — un-
less you specify otherwise in the make-instance. As before,
the position and mass will be unbound by default. An initial
value specified in make-instance will override any default in-
itial values given in the defflavor.

Here is a slightly more complex example, taken from the flavor
documentation:

(defvar xdefault-x-velocityx 2.8)
(defvar xdefault-y-velocityx 3.8)

104 Lisp Lore

(defflavor ship
((x-position 0.0)
(y-position 0.8)
(x-velocity xdefault-x-velocityx)
(y-velocity xdefault-y-velocityx)
mass)
O
:readable-instance-variables
(:writable-instance-variables x-position y-position
x-velocity y-velocity)
:initable-instance-variables)

(setq another-ship (make-instance ’ship :x-position 3.4))

What will the values of the new ship’s instance variables be?®
The function describe can be useful for seeing what your in-
stance has in its instance variables. In general, describe tries
to print helpful information about its argument. When applied
to an instance, it prints all the instance variables. For ex-
ample,

(describe another-ship) would print

#<SHIP 4180810274>, an object of flavor SHIP,
has instance variable values:

X-POSITION: 3.4
Y-POSITION: 0.0
X-VELOCITY: 2.0
Y-VELOCITY: 3.0
MASS: unbound

5Answer: 3.4 for x-position (the make-instance specification overrides the default
of 0.0), 0.0 for y-position (the default), 2.0 for x-velocity and 3.0 for y-velocity (the
values of the two global variables); mass will be unbound.

What’s a Flavor? 105

5.5 Methods for Make-instance

One method which you may wish to write is for the
make-instance generic function. Each time you make an in-
stance, the last thing that is done before the make-instance
returns the instance to you is that it calls the make-instance
method for your new instance. For example:6

(defmethod (make-instance ship)
(8key name &allow-other-keys)
(push self xall-the-shipsx)
(setf (gethash xships-registryx name) self))

To allow keywords other than instance variable names for use
with make-instance, use the defflavor option :init-keywords.
See the special form defflavor in Symbolics Common Lisp: Lan-
guage Concepts.

5.6 Mixing Flavors

The real power of Flavors lies in its facility for producing new
flavors by combining existing ones. Suppose we wished to add
asteroids to our game. In many ways, an asteroid behaves the
same way a ship does: it obeys Newton’s laws, special relativity,
and so forth. In fact, all of our current ship’s instance vari-
ables and methods would be appropriate. But we do want to
have two distinct kinds of object, because as our program be-
comes more complete, ships and asteroids will not behave the
same. ship, for instance, might use an instance variable for its

GYou should always specify &allow-other-keys :for make-Instance methods be-
cause all the initialization keywords passed 1o make-instance are passed to your
method, whether you care about them or not.

106 Lisp Lore

engine power, or we might want to give each ship a name.
And we might want to characterize each asteroid’s composition
(perhaps part of the game requires replenishing resources by
mining asteroids).

One way to handle the situation would be to duplicate the Lisp
code for the common functionality in both flavors. Such
duplication would clearly be wasteful, and the program would
become far more difficult to maintain — any modifications would
have to be repeated in both places. A better approach would be
to isolate the common functionality and make it a flavor in it-
self. We can call it moving-object. Now the ship and as-
teroid flavors can be built on moving-object. We just need to
specify the added functionality each has beyond that provided
by moving-object. The defflavor for moving-object can be ex-
actly like our existing defflavor for ship. The new ship def-
flavor will have moving-object specified in its list of com-
ponent flavors, which up until now has been an empty list.

(defflavor ship (engine-power name)
(moving-object)
:readable-instance-variables
:initable-instance~-variables)

And asteroid:

(defflavor asteroid (percent-iron)

(moving-object)
:readable-instance-variables
:initable-instance-variables)

ship and asteroid both inherit all of moving-object’s instance
variables (including their default values) and all of its methods.
They are each specializations of the abstract type
moving-object. And the specialization could continue. We
could define a ship-with-passengers flavor, built on ship, with
an added instance variable passengers, and added methods for
add-passenger and remove-passenger.

107

What’s a Flavor?

Flavor inheritance hierarchy for

Figure 2.

input-stream.

indirect-escape-

S1

((Wy33 15-9nTOB01-01SHg

QTENTED

WH3¥1S
NIRTW-WHIN15-13341I0NT
AwmwxHzlzcmmhwlhummanH|UHw¢m
WH3Y1S WH3Y1S-INdNT
WH3YLS EImmhwlmmhummmrmJVIﬁ NIXTW-WE3Y1S-INIOHOT-3dHIS3

NIXIW-WH3Y1S-INdNI-10FATANT

WH3Y1S-1NdNT

UH3Y 18- INJNI-348953- 193V IANT)

108 Lisp Lore

A flavor is not limited to having only one component flavor — it
may have any number. So the set of components for a given
flavor is actually a tree, consisting of all the flavor’s direct
components, and all of their direct components, and so on.
Figure 2 shows the tree for flavor si:indirect-escape-input-
stream, a flavor of file stream.

5.7 Combined Methods

Simply saying that a flavor inherits all the methods of its com-
ponents sweeps an important issue under the rug. What hap-
pens if more than one of its components define methods for the
same generic function? Which gets used? '

It depends on the ordering of the component flavors. The Sym-
bolics documentation describes this pretty well: See the section
“Mixing Flavors” in Symbolics Common Lisp: Language Con-
cepts. Three basic rules govern the ordering in most flavor
combinations:

1. A flavor always precedes its own components.

2. The local ordering of flavor components is preserved, i.e.,
the order in which they appear in the defflavor form.

3. Duplicate flavors are eliminated from the ordering: if a
flavor appears more than once, it is placed as close to the
beginning of the ordering as possible, while still obeying
the rules.

If more than one component flavor defines a method for a given
generic function, with the kind of methods we have seen so far,
the one which appears first on the list is taken as the combined
flavor’s method for that generic function. In particular, this

What’s a Flavor? 109

means that any methods (again, of the type we have seen so
far) defined locally in the new flavor will supersede all methods
(for the same generic function) defined in any of its component
flavors, since the new flavor is first on the ordered list,

For example, a moving-object might have a method for the
generic function accelerate, which did nothing. A ship, or per-
haps the engine-mixin flavor on which it is built, might have
an accelerate method which calculated the new velocities based
on the mass of the ship and how much thrust its engine could
generate:7

(defmethod (accelerate moving-object) (pct-thrust delta-time)
;; One way to ignore arguments.
(ignore pct-thrust delta-time))

(defflavor engine-mixin
(thrust
orientation)
(moving-object)
:initable-instance-variables)

(defmethod (accelerate engine-mixin) (pct-thrust delta-time)
(letx ((true-thrust (x thrust pct-thrust .81))
(thrust~-x (x true-thrust (cos orientation)))
(thrust-y (x true-thrust (sin orientation))))
(incf x-velocity (x thrust-x delta-time))
(incf y-velocity (x thrust-y delta-time))))

;i; Redefine ship flavor to use new component flavors
(defflavor ship

7Of course, an asteroid, built on moving-object, would inherit the do-nothing
method, unless it also had an engine mixed in.

110 Lisp Lore

0

(engine-mixin moving-object))

As I’ve hinted, there are more kinds of methods than we have
so far seen. All our methods have been what are called
“primary’”’ methods, and by default, when there is more than
one primary method for the same generic function in the or-
dered list of component flavors, the one which appears first
overrides all others. But sometimes you don’t want to com-
pletely override the inherited primary method; sometimes you
would like to specify something to be done in addition to the
action of the inherited method rather than instead of. Then
you would define a :before or an :after method, often called
before and after daemons.

Here’s how it works. Suppose we add the following defmethod:

(defmethod (accelerate moving-object :after)
(ignore delta-time)
;; Another way to ignore arguments
(incf x-position (x x-velocity delta-time))
(incf y-position (x y-velocity delta-time)))

moving-object already has a primary accelerate method. Once
this new accelerate :after method is defined, both asteroid and
ship will have a ‘“‘combined method” for accelerate, consisting
of a call to the appropriate primary method followed by a call
to the moving-object :after method. Any number of flavors in
the ordered list of components may provide daemons. They will
all be included in the resulting combined method. The primary
method which appears first in the list will be called after all
the before daemons (even if some of the before daemons appear
later in the list than the primary method) and before all the
after daemons. The :before daemons will be executed in the
order in which they appear in the flavor ordering; the :after
daemons will be executed in the opposite order.

What’s a Flavor? 111

The value returned by a combined method is exactly the value
returned by the primary method — before and after daemons are
executed only for side effect, i.e., their return values are ig-
nored. It is allowable to have before and after daemons for a
generic function which has no primary method; in such a case
the combined method will return nil.

Unlike all the other methods we have described so far,
make-instance “primary” methods do not override each other.
For example:

(defmethod (make-instance ship)
(&ey name &allow-other-keys)
(push self xall-the-shipsx)
(setf (gethash xships-registryx name) self))

(defmethod (make-instance engine-mixin)
(8&ey fuel-source &allow-other-keys)
(if fuel-source
(setq fuel (obtain-fuel fuel-source fuel-capacity))
(setq fuel nil)))

The combined method for ship will both register the ship and
fill the fuel tank.

5.8 Whoppers

Before and after daemons provide a lot of flexibility (perhaps
more than you’d like to have just yet), but sometimes not
enough. Frequently, a situation demands altering the context
in which a primary method runs. Typical cases include:

* binding a special variable to some value around the ex-
ecution of the primary method

112 Lisp Lore

e putting the primary method into an unwind-protect or in-
side a catch.®

e deciding in some cases to skip the primary method al-
together, or call it more than once. ’

¢ modifying the argument list before invoking the method.

The kind of method which can do all of these is called a whop-
per. Whoppers are best explained by example. Here are
several, which handle the cases I just listed. To understand
them, you’ll need to know that continue-whopper is a system-
provided function which calls the regular (non-whopper)
methods (also called the continuation) for this generic function.

(defwhopper (some-generic some-flavor) (argl arg2)
(Tet ((xsome-special-variablex (compute-value argi1)))
(continue-whopper argl arg2)))

(defwhopper (operate-reactor reactor) (argl arg2)
(unwind-protect
(progn (slide-out-control-rods self)
(continue-whopper argl arg2))
(slide-in-control-rods self)))

Unlike before and after daemons, whoppers have control over
the value returned by the combined method. They most com-
monly just pass up the value(s) returned by continue-whopper
(which will be whatever the primary method returns, as before),
but they needn’t. I could, for instance, do this:

8If unwind-protect or catch are unfamiliar, you might want to look back to chapter
3.

What’s a Flavor? 113

(defwhopper (calculate doubling-mixin) (argl arg2)
(x 2 (continue-whopper argl arg2)))

And since continue-whopper is just a function like any other,
there’s no reason you couldn’t do something like this:

(defwhopper (some-generic yet-another-doubling-mixin)
(arg1 arg2)
(continue-whopper arg1 (continue-whopper arg? arg2)))

Or this:

(defwhopper (some-generic some-flavor) (argl arg2)
(when (some-special-test arg1)
(list (continue-whopper arg1 arg2)
(continue-whopper nil arg2))))

Note that the last example calls the continuation either twice
or not at all; the second time it calls it, argl is nil, not what
the user passed in. For a real example in the system source,
try looking at the whopper for the method ityo for the flavor
si:ascii-translating-output-stream-mixin.® One point about or-
dering needs to be clarified. A whopper surrounds not just the
primary method, but all the before and after daemons, too. So
suppose flavor out is built on top of in, and both out and in
have a whopper, a before daemon, an after daemon, and a
primary method for the generic function mumble. out’s com-
bined method for mumble would look like Figure 3.

In some older code, you may see a similar construct called a
wrapper (defined, of course, with defwrapper.) This was the
predecessor of the whopper, but now that the whopper exists,

gTo see the source, use the m-. editor command on the definition
(flavor:whopper :tyo si :asc‘i1'-trans'la;ting—output-str‘eam-mixin).

114 Lisp Lore

out-before
in-before
out-whopper in—whépper out-primary
in-after

out-after

Figure 3. Structure of combined method

there is seldom any need to use wrappers. Wrappers are much
more difficult to write and debug, although they can produce
slightly faster methods, because they are macros instead of
functions. To obtain the benefits of wrapper efficiency while
using whopper-like syntax: See the macro defwhopper-subst in
Symbolics Common Lisp: Language Dictionary.

The Flavor System defines other ways to combine methods I
have not described. For example, rather than returning only
the value of the primary method (or the whopper), you might
want to return the sum of all the values (the :sum method
combination type) or choose only one of the methods based on
another argument to the generic function (the :case method
combination type). This is well-documented by Symbolics. See
the section “Method Combination” in Symbolics Common Lisp:
Language Concepts.

What’s a Flavor? 115

5.9 Internal Interfaces

One of the reasons to use Flavors is to expose only a well-
defined interface to your implementation of a type of object. If
you define all the functions which know about your objects as
generic functions, however, other users will think that these
methods are part of the interface, and will call them. If you
ever want to change how your flavor is implemented, it will be
more difficult to maintain compatibility.

There is another way to define a function which has access to
all the instance variables (and self) of a flavor. The special
form defun-in-flavor creates a function which can be called
only from a method or another function in that flavor. These
functions are lexically scoped within the body of each method
and function of the flavor.

5.10 Vanilla Flavor

flavor:vanilla'® is the flavor on which all other flavors are
built. Even if your defflavor specifies no components, your
flavor will still have vanilla flavor mixed in, because the flavor
system does it automatically.

Don’t complain. Vanilla flavor is very handy. It provides
several extremely important methods. The sys:print-self
method is called whenever an instance is to be printed. (The
representation of the first ship instance we made,
#<SHIP 255645543>, was actually printed on my monitor by
ship’s sys:print-self method, inherited from vanilla flavor. The

10See hacker's definition at end of chapter.

116 Lisp Lore

method :describe, used by the function describe, prints the
type of object and its instance variables.

Vanilla flavor also supplies other methods. See the section
“Generic Functions and Messages Supported by flavor:vanilla”
in Symbolics Common Lisp: Language Concepts.

5.11 The Flavor Examiner Tools

The power of Flavors does not come without its costs, namely
potentially increased complexity. The system provides a num-
ber of tools to help disentangle the interrelationships of the
various parts of the Flavors database.

There are three places to find these tools. In the Flavor Ex-
aminer window, they are all assembled as a menu and a set of
display panes. To get to the Flavor Examiner window, type
Select X, or use the system menu or the Select Activity com-
mand.

In the command processor, all the flavor examination commands
begin with “Show Flavor ...”: If you type:

Show Flavor
and press the Help key, your output might look like:

These are the command names starting with "Show Flavor":

Show Flavor Components Show Flavor Initializations
Show Flavor Dependents Show Flavor Instance Variables
Show Flavor Differences Show Flavor Methods

Show Flavor Functions Show Flavor Operations

Show Flavor Handler

These commands are also available in the editor, by using
meta-X.

What’s a Flavor? 117

The other Flavors-related command you might wish to use is
Show Generic Function. All of these commands are documented
in the Symbolics documentation. See the section “Flavors
Tools” in Symbolics Common Lisp: Language Concepts.

One other useful tool in the editor deserves mention here. The
meta-X command Show Effect Of Definition will show you what
changes in your world a given form in your editor buffer will
cause, if you were to compile it using c-sh-C. This is not only
useful for flavors, but also methods, whoppers, and so forth.

5.12 Message Passing

In earlier (i.e., pre-release 7.0) versions of the system, Flavors,
although conceptually similar, used a different syntax than it
does today. The syntax for method definition was slightly dif-
ferent, and the syntax for method invocation was pretty
baroque. This earlier syntax was called message passing, al-
though what was meant by message passing is not what you
might intuitively think (especially if you’re familiar with the
use of that term in the computer science literature).

In genuine message passing, sending a message to an object
causes a (potentially) asynchronous response to your message.
This is just like the way, say, an office works: you “pass a
message” to your secretary, or your boss, or your colleague, and
(presumably) they do something for you. Meanwhile, you’re
free to go off and do other things.

In Flavors “message passing”, the syntax often suggested that
this asynchronous response would happen. In fact, all sending
a message did in Flavors was to look up the appropriate method
and invoke it (synchronously), just like generic functions in the
current release. Thus, the old syntax was somewhat mislead-
ing.

118 Lisp Lore

In addition, the old syntax made certain “Lisp-y” things hard to
do. For example, a common programming technique in Lisp is
to pass functions around as arguments to other functions.
With the current syntax, you can use a generic function
anywhere you could use any other function. In the old syntax,
this was harder.

The only reason you care about this now is that a lot of
software was written using the old style of flavors. This code
still works in the current implementation, and will continue to
work for the forseeable future. A lot of the system software is
still written using message-passing style, including the window
system. See the section “The Window System,” page 120.

Here are some examples of “old-style” and “new-style” flavors
code.

Old style:
(defmethod (hollerith-stream :tyi) ()
(convert-punch-to-ebcdic (get-next-input-byte self)))

New style:

(defmethod (:tyi hollerith-stream) ()
(convert-punch-to-ebcdic (get-next-input-byte self)))

or, better:

(defmethod (get-ebcdic-byte hollerith-stream) ()
(convert-punch-to-ebcdic (get-next-input-byte self)))

Old style:
(defun get-next-byte (hollerith-stream)
(ebcdic-to-char (send hollerith-stream 1tyi)))

New style:

What’s a Flavor? 119

(defun get-next-byte (hollerith-stream)
(ebcdic-to-char (get-ebcdic-byte hollerith-stream)))

0Old style:
(defflavor massive-object
(mass)
0O
:settable-instance-variables
:gettable-instance-variables)

(defun do-something-to-massive-object (object)
(let ((mass (send object :mass)))

(send object :set-mass new-mass)))

New style:
(defflavor massive-object
(mass)
0
:readable-instance-variables
:Writable-instance-variables)

(defun do-something-to-massive-object (object)
(et ((mass (massive-object-mass object)))

(setf (massive-object-mass object) new-mass)))

120 Lisp Lore

5.13 The Window System

Much of the “old-style” Flavors code in Genera 7.0 is in the
window system. The window system implementation is older
than the current implementation of Flavors. In prior releases,
programmers who wanted to do anything fancy at all with the
user interface pretty much had to define their own flavors of
windows. Since documentation was often scanty, many of these
window flavors are highly convoluted, are often hard to under-
stand, and frequently use the window system at the wrong level
of modularity.

The current release of the system defines a much simpler
programmer interface to the window system, and most likely
you won’t have to use flavors to write new window-using
software. Unfortunately, a lot of software has already been
written which does things the old way, defining flavors of win-
dows and various methods on them. To aid your comprehension
of these programs, in case you need to read or maintain one of
them, here are some hints.

1. Message passing — The entire window system is imple-
mented using message-passing.

9. The :init method — In the earlier version of Flavors, the
way to make something happen when you made an in-
stance was by defining an :init method. The current
flavor system still sends the :init message to newly-
created instances if they handle that message. :init is al-
ways sent after the make-instance method is run.

Certain flavors require that you write methods which run
after their :init methods. If you tried writing methods to
run after make-instance instead, it would not have the
desired effect.

What’s a Flavor? 121

3. :or method combination — The :mouse-click method is
combined using :or method combination. @ What this
means is that the methods are run one at a time, until
one returns something non-nil. If you try to read a
:mouse-click method, you won’t understand what’s hap-
pening until you understand this concept.

5.14 Fun and Games

And from The Hacker’s Dictionary, Guy L. Steele, Jr., et al:
FLAVOR noun.

1. Variety, type, kind. “Emacs commands come in two
flavors: single-character and named.” “These lights

come in two flavors: big red ones and small green ones.”
See VANILLA.

2. The attribute that causes something to be FLAVORFUL.
Usually used in the phrase ‘‘yields additional flavor.” Ex-
ample: “This feature yields additional flavor by allowing
one to print text either right-side-up or upside down.”

VANILLA adjective. Standard, usual, of ordinary FLAVOR. “It’s
just a vanilla terminal; it doesn’t have any interesting
FEATURES.” When used of food, this term very often does
not mean that the food is flavored with vanilla extract!
For example, “vanilla-flavored wonton soup” (or simply
“vanilla wonton soup”) means ordinary wonton soup, as op-
posed to hot-and-sour wonton soup.

This word differs from CANONICAL in that the latter means
“the thing you always use (or the way you always do it)
unless you have some strong reason to do otherwise,”

122

Lisp Lore

whereas “vanilla” simply means “ordinary.” For example,
when MIT hackers go to Colleen’s Chinese Cuisine, hot-
and-sour wonton soup is the canonical wonton soup to get
(because that is what most of them usually order) even
though it isn’t the vanilla wonton soup.

5.15 Problem Set

Questions
Part I

Let’s write a geometry system.

1

The

Define a flavor for rectangles. A rectangle should
remember its size. Define a generic function draw-self
that takes a window and x and y coordinates as ar-
guments and draws the rectangle. Test it out.

Define a mixin that draws itself on the screen when it is
first created, and then re-draws itself when it is moved.
This mixin should remember the location of the rectangle.
Mix that flavor into your rectangle flavor.

Create a move-self method for your mixin flavor. It
should update the location on the window.

. Define a mixin that pushes each new instance of itself

onto a list which is kept in a global variable. Mix that
into your rectangle flavor.

Define some more flavors for other shapes.

Part II

Flavor Examiner tools are quite powerful for helping debug

What’s a Flavor? 123

flavor problems, but there are a few tools missing. Here is a
tool you might write for practice: A Find Methods command,
which prints the methods of an instance whose name matches a
given string.

124

Lisp Lore

Hints
Part 1

. Use graphics:draw-rectangle. You probably won’t see it

if you test it on, say, the default Lisp Listener. Try
using dw:with-own-coordinates.

. It will probably have to remember the window on which it

is drawn. Mix it into your rectangle shape, and see what
happens when you create rectangles.

. Consider the use of tv:alu-xor for both drawing and eras-

ing.

. Remember that make-instance methods don’t overwrite

each other.

. You might want to abstract the draw/erase and remember-

each-instance flavor into a higher-level flavor.

Part I1

You can get a list of all the names of generic functions defined
for an instance by sending the instance the :which-operations
message. Remember (or find out) what the methods for setting
writable instance variables are called.

To define a command, use cp:define-command. The type of
objects you want to read are a string and a form to evaluate to
give the object. You might want the form to be *, i.e., the last
value typed out, by default.

What’s a Flavor? 125

Answers
Part I

1. I named the flavor rectangle

(defflavor rectangle
(width
height)
0
:initable-instance-variables
(:required-init-keywords :width :height))

(defmethod (draw-self rectangle) (xpos ypos window)
(Tet ((half-width (floor width 2))
(half-height (floor height 2)))

(graphics:draw-rectangle (- xpos half-width)
(- ypos half-height)
(+ xpos half-width)
(+ ypos half-height)
:stream window)))

(defun test-draw-self
(rectangle xpos ypos
8optional (window xstandard-outputx))
(dw:with-own-coordinates (window)
(draw-self rectangle xpos ypos window)))

2. Note that you have to know the location and window
when you create the instance. I have made them re-
quired init keywords. If you really care, you should test
to make sure they’re really what they’re supposed to be in
the make-instance method.

(defflavor place-remembering-mixin
(x-position y-position window)

126 Lisp Lore

0]
(:required-methods draw-self)
:initable-instance-variables
(:required-init-keywords :x-position :y-position
) :window))

(defmethod (make-instance place-remembering-mixin)
(&rest ignore)
(draw-self self x-position y-position window))

(defflavor rectangle
(width
height)
(place-remembering-mixin) ; Added mixin
:initable-instance-variables
(:required-init-keywords :width :height))

3. It is better to write a move-self method than to make
xpos and ypos writable because this allows for better
modularity.

(defmethod (move-self place-remembering-mixin)
(new-x new-y)
(setf x-position new-x y-position new-y))

(defwhopper (move-self place-remembering-mixin)
(new-x new-y)
(draw-self self x-position y-position window)
(continue-whopper new-x new-y)
(draw-self self x-position y-position window))

(defmethod (draw-self rectangle) (xpos ypos window)
(let ((half-width (floor width 2))
(half-height (floor height 2)))
(graphics:draw-rectangle (- xpos half-width)

What’s a Flavor? 127

(- ypos half-height)
(+ xpos half-width)
(+ ypos half-height)
:stream window

ss Draw using XOR
:alu tv:alu-xor)))

Putting the erase and draw steps in the whopper instead
of in the method is unnecessary in this particular ex-
ample, but consider the case where drawing and place-
remembering are in separate mixins.

4. First, define a global variable for the list. Then, the
mixin, its make-instance method, and finally mix it in.

(defvar xremembered-shapesx nil)

(defflavor shape-remembering-mixin
0
0)

(defmethod (make-instance shape-remembering-mixin)
(&rest ignore)
(push self xremembered-shapesx))

(defflavor rectangle
(width
height)
(shape-remembering-mixin
place-remembering-mixin)
:initable-instance-variables
(:required-init-keywords :width :height))

5. Here’s the mixin, and a circle flavor:

128 Lisp Lore

(defflavor basic-shape

0
(shape-remembering-mixin
place-remembering-mixin)
:abstract-flavor)

(defflavor circle
(radius)
(basic-shape)
:initable-instance-variables
(:required-init-keywords :radius))

(defmethod (draw-self circle) (xpos ypos window)
(graphics:draw-circle xpos ypos radius
:stream window
:alu tv:alu-xor))

Part II

Here is the command Find Method as defined in my init file. A
couple of extra features in my version:

e The function names are presented as generic function
names, rather than just printed as symbols.

e The argument list of the method is printed.

(cp:define-command (com-find-method :command-table “global”)
((substring ’string
:prompt "substring”)
(instance ’sys:expression
:prompt "for value”
:default ’x))
(loop for (nil . method) in
(sort
(lToop for method-name in

What’s a Flavor? 129

(send (eval instance) :which-operations)
as string-method-name =
(if (symbolp method-name)
method-name
(format nil "~S ~S"
(second method-name)
(first method-name)))
when (string-search substring
string-method-name)
collect (cons string-method-name
method-name))
#’string-lessp
:key #’car)
do
(dw:with-output-as-presentation
(:object method :type ’sys:generic-function-name)
(format t “~7~S: ~:A" method
(arglist (or
(si:function-spec-get
method ’flavor:generic)
(si:function-spec-get
method
*flavor: :compatible-generic)))))))

6. User Interface

In this chapter I will talk about a part of the operating system
environment of Genera, namely programming the user inter-
face.

In previous versions of the Lisp Machine system, user interface
programming has often proven to be the largest part of people’s
systems. The part of their program which was actually solving
their problem was often smaller than the part that took care of
presenting data, reading responses, and handling mouse input
and menu display.

Since most interactive programs need to be able to do certain
things, Symbolics decided to provide a substrate layer which
provided easy ways to do them. This substrate includes:

e A generic read/interpret/redisplay command loop which
works for any interactive system.,

¢ A mechanism for displaying many different types of data
on the screen, and having the system remember the ob-
ject and its underlying type.

¢ A means of dividing up screen ‘“real estate” into a

131

132 | ’ Lisp Lore

programmer-controlled framework, allowing the program-
mer to specify relative or absolute sizes of the divisions,
the types of display in each, and so forth.

¢ An interactive “layout designer” program which aids in
the construction of program frameworks.

Most of this is well-documented in volume 7A of the Symbolics
documentation set. This chapter is an overview and a few sug-
gestions for some things which work better than others.

6.1 Program Frameworks: an Overview

A Program Framework 1is the wuser interface nexus for
medium- and large-scale interactive systems. The idea comes
from the following observation:

Most interactive programs consist of an “infinite”
loop, consisting of command reading, command execu-
tion, and display update. This includes such primi-
tive interactors as the Lisp Listener, and as sophis-
ticated ones as the text editing and mail reading
programs.

The philosophical model is similar to that presented in Presen-
tation Based User Interfaces, a PhD thesis written by Gene Cic-
carelli at the MIT AI Lab. A “database” underlies the system,
the display presents its current state, and commands are used
to modify the database or the user’s view of it.

A program framework is a way to organize the following four
related items:

1. A window-layout declaration,
2. A set of window display definitions,

User Interface 133

3. A command loop, and
4. A set of commands.

A program framework is defined using the macro
dw:define-program-framework., It contains the name of the
program and a large number of options. Among other things,
dw:define-program-framework creates a flavor whose name is
the same as the name of the program. Here are some of the
interesting options:

¢ :panes — lists the window panes which divide up the real
estate of the total window. Each pane has a name, a
type, and some per-type redisplay information.

e :configurations — describes how the panes are actually
laid out on the screen.

¢ :select-key — defines the character which can be used
after Select to obtain this program window.

¢ :system-menu — declares that this program is to appear
in the third column of the system menu.

¢ :state-variables — a list of instance variables of the flavor
defined by dw:define-program-framework. All these in-
stance variable definitions must contain initialization
values. All commands will be methods of the flavor, so
these state variables will be accessible from command
bodies.

¢ :command-definer - declares that this program has a
command definer. The option may be the name of the
command definer. It may also be t, which means to
define a command defining macro named
define-program-name-command. If this option is not
specified, or is nil, no command definer is provided.

134 Lisp Lore

There are several types of panes. Here are some of the com-
mon ones:

e :interactor — A pane for interactive input/output. This
will hold your command history. [A :listener is the same,
except that it is taller and standard I/O variables like
query-io are bound differently]

o :display — A pane for output display. This is where your
database display might be done. You might have several
:display panes in your window.

e stitle — A constant display telling the user what the win-
dow is for.

e :command-menu - A menu of commands, mouse-
sensitive.

Pane options are used to define the size and shape of the pane
and its displayed contents. Here are some of the latter:

e :redisplay-function — a function which is called to
produce the output. It is passed two arguments, namely
the program instance and the window pane itself. A good
way to write one of these is to make it be a method on
the program flavor, which allows you to have access to its
state variables.

o :redisplay-after-commands - if non-nil, the redisplay
function is called after every command the user types. If
nil, it’s only called when the window is first created, and
when the entire frame is refreshed.

e :incremental-redisplay — if nil, the window’s output his-
tory is cleared before your redisplay function is called;
this has the effect of erasing all the contents of the win-

User Interface 135

dow. If this is t, your redisplay function is called as a
redisplayer, and is expected to use the standard incremen-
tal redisplay technology. If it’s the keyword
:own-redisplayer, your function is supposed to do its own
incremental redisplay, using some other technique to
remember what needs to be updated (the practical effect
of this value is that the :clear-history message is not
sent to the window before your function is called).

¢ :menu-level - is for command menus. It specifies which
set of commands goes in this menu. It’s for programs
that want to segregate their commands into more than
one menu, for example, for commands that affect groups
of objects and commands that affect single objects in your
database. The command definitions also have :menu-level
declarations in them.

* :name — Sets the name you can type to invoke this com-
mand. One use of this option is :name nil, which says
that you can’t type this command. If you do this, you
should supply some other way to invoke the command,
such as a menu accelerator.

Sample program framework definitions are included in each of
the example programs in this book. Symbolics also ships two
example program files with the system source:

¢ SYS:EXAMPLES;DEFINE-PROGRAM-FRAMEWORK.LISP
¢ SYS:EXAMPLES; UI-APPLICATION-EXAMPLE.LISP

6.2 Defining Commands

Program framework commands are defined using a macro
created by the dw:define-program-framework macro. If you

136 Lisp Lore

specify t for your program’s command definer, the name of the
command definer will be define-program-name-command; other-
wise, it will have whatever name you've specified in that posi-
tion.

Regardless of its name, its syntax is very much like the CP’s
command definition macro, cp:define-command. The first
operand is a list which has the name of the command and
various keyword options; the next is a list of arguments to the
command, whose presentation types you declare in the ar-
gument list. These are followed by the body of the function
which defines the command. Command bodies are always
methods of the flavor defined for your program, which means
that they can access the state variables as instance variables.

In addition to the cp:define-command keywords allowed in the
first subform, program command definitions are permitted
several extra keywords.

:menu-accelerator
The string which appears in the menu dis-
play for this command.

:menu-level The “level” of the menu in which this com-
mand is to appear.

:keyboard-accelerator

The one-character abbreviation for this com-
mand. This only works well if you specify
that the :command-table for your program
framework has a keyboard accelerator and
you read your commands without echoing
them by default. See the chapters 9 and
11 for how this is done.

User Interface 137

6.3 The Redisplay

Each of your :display panes may have a redisplay function. It
is responsible for the entire display content of the pane. By
default, all panes have a display history which remembers
everything you’ve printed on it. Also by default, however, every
pane’s output history is cleared just before your redisplay func-
tion is called, so your function must put everything your user
cares about into the window each time.

The way to avoid this (and, in the process, avoid driving your
users crazy) is with incremental redisplay. There are two dif-
ferent ways to do incremental redisplay.

1. You can use the system-supplied one (this is what the cal-
culator example does in chapter 9). Say
:incremental-redisplay t as part of the pane description.
All your output should use the redisplayable-output
facilities described in volume 7A (See the section
“Redisplay Facilities” in Programming the User Interface,
Volume a). For example, try using
dw:independently-redisplayable+format.

2. You can “roll your own,” and remember what’s supposed
to be redisplayed (this is what the card-game example
does in chapter 11). Say
:sincremental-redisplay :own-redisplayer in the pane
description. The primary effect of :own-redisplayer is to
suppress the clearing of the pane’s output history. [You
will have to do this if you are trying to use overlapping
output, because the system-supplied one doesn’t perform
overlapping output in a useful way.]

Another less-obvious way to do redisplay is to have your com-
mands to it explictly. To get your hands on the pane involved,

138 Lisp Lore

you need to use dw:get-program-pane, which I recommend you
look up.

6.4 Presentation Types

Lisp objects have an inherent type, which the Lisp Machine ar-
chitecture keeps track of. Additionally, the Common Lisp type
system allows the programmer to specify complicated types, as
well as simple ones. For example, a Common Lisp program
may specify that its first argument must be “an integer be-
tween 0 and 100,” or must be ‘“‘either a positive rational num-
ber or nil.” The way this is done is by specifying data-type ar-
guments as part of the type expression.

However, an object’s extrinsic meaning is whatever the
programmer assigns to it. For example, the system keeps the
time of day in the form of an integer which records the number
of seconds elapsed since January 1, 1900 at midnight GMT. If
you just print out that integer as an integer, you lose the
meaning that number had to the programmer, and it becomes
just an integer. On the other hand, if you print it as a time,
then it means a completely different thing to the reader. Sud-
denly, that integer has more semantic information attached to
it.

This is what presentation types are for. They describe the
translation between internal representation and printed
representation at a higher level than the Lisp type system can
(they are an extension to that system). Just as with Common
Lisp types, they have data-type arguments which can augment
or diminish the class of objects they describe. In addition,
there is another dimension along which data displays can vary:
they may be presented differently. For example, the number
represented by *“100” in base 10 is the same as the number

User Interface 139

represented by “144” in base 8, “64” in base 16, and “121” in
base 9. So, in addition to data-type arguments, presentation
types have presentation arguments.

The two functions which use presentation types are accept and
present. As with read and print, these functions convert be-
tween what the user types or reads and what the system stores
internally. They each take a presentation type as an argument;
present also, obviously, takes an ohject to present. Some
sample uses:

(present 188 ’integer) -> 108

(present 188 ’((integer) :base 8)) -> 144

(accept ’integer) 1008 -> 160.

(accept ’((integer) :base 8)) 100 -> 64.

(accept ’((integer 8 18) :base 8) 15 -> error
18 -> 8.

As you can see, a presentation type is either:
* A symbol

» A list. The first element of the list is a list which is a
Common Lisp type, with optional data-type arguments.
The rest of the list is a (potentially empty) list of presen-
tation arguments.

The system supplies a number of presentation types by default.
Many of them have very specialized applications, but a number
of them are for general use. Some simple ones:

boolean Accepts “Yes” or “No”, returns t or nil

keyword Accepts any string, returns a keyword symbol
by that name.

character Accepts the first character you type, and
' returns that character.

140 Lisp Lore

pathname Accepts a typed-in file pathname.

time:universal-time
Accepts a time of day, returns an integer.

time:time-interval
Accepts a time interval (eg., “3 weeks”),
returns the number of seconds in that inter-
val.

net:host Accepts the name of a computer in the net-
work database.

sys:printer Accepts the name of a printer in the network
database.
sys:form Any lisp input form.

Here are some which take required data-type arguments and
return one or more of them:

member returns one of the following objects.

subset returns zero or more of the following objects.

alist-member Accepts a string, returns the associated ob-
ject.

Here are some whose data-type arguments are more presen-
tation types:

token-or-type Accepts one particular token, or any element
of another presentation type.

null-or-type Special case of the above, takes “None” or
another type.

sequence-enumerated
Accepts the following presentation types, in
order, and returns a list of values.

User Interface 141

or Accepts any one of the following presentation
types.

You can write your own presentation types. See the section
“Presentation-Type Definition Facilities” in Programming the
User Interface, Volume a. Also, I've defined a number of
presentation types in the sample programs in chapters 7, 9 and
11

6.5 Mouse Sensitivity

We say that a displayed item on the screen is mouse sensitive
when pointing at it with the mouse has some defined meaning:
it will cause an action, or indicate a choice. Every displayed
output on a window is potentially mouse-sensitive.

In previous releases of Lisp Machine software, making mouse-
sensitive displays on the screen was very tedious, and fraught
with dangers. Writing software which did mouse-sensitive out-
put required learning a great deal about the innards of the
window system. In general, each program which wanted to do
such output required one or more new flavors of window, each
with some methods which ran in the mouse process. If there
were any bugs in your software (and there always were), you
spent a lot of debugging time in the cold load stream, or, worse
yet, crashing your machine.

No longer. Most programmers need only learn to make one
kind of window, namely a Dynamic window.' Dynamic Windows
remember all of the following for each item of output (in ad-
dition to its location on the window):

The flavor of window is dw:dynamic-window or a flavor built on it, as are, for
example, the panes in program frameworks.

142 Lisp Lore

1. What object the display represents,

2. What kind of display it is (its presentation type), and

3. Other display-related options (e.g., what base it was dis-
played in, whether a list was displayed as code, a property
list or data, etc.).

Note that which presentations are mouse-sensitive at any given
time depends on two things:

1. The input context. If you are using accept, for example,
only those presentations which are of the type you are ac-
cepting (or can be translated into that type: See the sec-
tion “Mouse Gesture Translations,” page 144.) are
mouse-sensitive.

2. The shift keys which are pressed at the time. “Shift
keys” includes not only the Shift button, but also Con-
trol, Meta, Super, Hyper, or any combination of them.

One other thing to keep in mind: Dynamic windows remember
all the output ever done on a window (until you clear its output
history). This includes the output which has scrolled off the
top of the window. Dynamic windows can be scrolled forward
and back (and left and right, if any of your output moves over
the right-hand edge of the window) to show output which has
scrolled off the screen. Any output which was presented with
an appropriate type, even if scrolled back onto the screen, will
be mouse sensitive at the appropriate times.

6.5.1 Mouse Sensitivity — the Easy Part

All output on Dynamic windows is mouse-sensitive. Depending
on how much control you want over the presentation type of
the display, you have three options for facilities with which to
present the output:

User Interface 143

1. Any printing operation, e.g., print or format, ‘presents its
output as simple presentation types. When you use print,
for example, on a lisp object, it is presented using its data
type (as defined by type-of) as its presentation type.

2. The present function permits you to specify the exact
presentation type you wish to use. You might use this,
for example, if you have an object which is an integer,
but represents a universal time. In general, present is for
objects whose data type doesn’t tell the whole story.

3. The macro dw:with-output-as-presentation permits you
to specify the data type and the manner in which the
data is presented on the screen. All output drawn on the
screen inside one of these forms becomes part of the
presentation. You can use this to make random? graphics
be part of your presentation.

Once you have presented your object, you probably want to read
it somehow. Mouse sensitivity is controlled entirely by what
your program is attempting to read at the time, ie., its input
context.

Just as there are three ways of presenting output, depending on
how much control you want to have over its appearance and un-
derlying type, there are three corresponding input mechanisms:

1. Any input operation, e.g., read, accepts its input in the
form of mouse clicks on sensitive items. The command
processor also accepts both whole commands and single
arguments to those commands; thus previously-typed com-
mands and other output are often sensitive while the com-
mand procesor is waiting for you to type a command.

2See the Fun and Games section at the end of this chapter.

144 Lisp Lore

2. The function accept is used to control this behaviour
more precisely. You can specify not only the presentation
type but its data arguments and presentation arguments.
accept is especially powerful inside a
dw:accepting-values form, where several calls to accept
become a single menu of choices.

3. The macro dw:with-presentation-input-context allows the
user to control exactly what input is sensitive while per-
forming any arbitrary input operations. This is the most
flexible input control you want: inside its body, you
specify what the keyboard-reading operation is, and also
what to do when a mouse operation is performed.

6.5.2 Mouse Gesture Translations

As I hinted earlier, a presentation is mouse-sensitive in a num-
ber of contexts. When you're accepting input of its presen-
tation type, obviously it’s mouse sensitive. Similarly, when
you're accepting input of a type which is a superset of the type
used to present the object, that presentation is also mouse-
sensitive. For example, presentations of type integer are sen-
sitive when you’re accepting numbers.

Another case is where the type you're accepting is a subset of
the type used to present the object, and the object happens to
fall into that subset. For example, if you are accepting in-
tegers between 0 and 9, the output displayed by (present 3
*number) is mouse sensitive.

The final context in which a display is mouse-sensitive is when
you (or the system) has defined a translation between the type
of the display and the presentation type given to accept. For
example, there is a system-defined translation which converts
pathname presentations to the Show File command. If the
machine is waiting for you to type a command, you can click on

User Interface 145

a pathname display, and it will be just as if you had typed Show
File pathname.

There are many such translations already defined in the sys-
tem. They are far too numerous to list here. You can discover
many of them by clicking right on presentations and looking at
the menu provided. Also, clicking right on presentations while
holding down the Super key will give you a great deal more to
explore via menus.

Presentation translators specify a “from” data type and a “to”
data type, and a function used to convert between them. In ad-
dition, the programmer may supply a number of other options:

itester A function which may be used to determine
whether the object is interesting to the user
in this context.

:gesture Which mouse gesture invokes this trans-
‘ lation.
:priority Whether this translator is more important

than other potentially selectable ones.
:suppress-highlighting

Whether drawing boxes around the sensitive

objects ought to be suppressed.

There are other options. For complete documentation: See the
macro define-presentation-translator in Programming the User
Interface, Volume a.

One variant of define-presentation-translator which is worth
mentioning is define-presentation-to-command-translator.
define-presentation-to-command-translator is used in the
same manner as define-presentation-translator, except that its
result is always a command. For example, the translator
described above which converts pathnames to the Show File
command is defined as follows:

146 Lisp Lore

(define-presentation-to-command-translator

si:com-show-file ; The name of the translator
(fs:pathname) ; What it translates from
(file) ; The argument to the body

‘(si:com-show-file (,file))) ; The body of the translator

Here is another example. What this one does is to offer the
command Load File when the file is a compiled object file.
While it has a higher priority than the previous one, its tester
keeps it from being used on any files which you might want to
print out.

(define-presentation-to-command-translator
si:com-load-binary-file
(fs:pathname
:gesture :select
;; boost it over Show File when tester succeeds
:priority 0.5
:tester ((path)
(eq (send path :canonical-type) ’:bin)))
(path)
(cp:build-command ’si:com-load-file (ncons path)))

[There is also another whole class of mouse-sensitivity defini-
tions, called presentation actions. These are defined using
define-presentation-action. They define side effects the user
might like to cause while the system is waiting for input. An
example of the kind of thing a presentation action is used for is
clicking c-m-Middle on structure and instance slots to replace
their contents.]

User Interface 147

6.6 Fun and Games

From The Hacker’s Dictionary, Guy L. Steele, Jr., et al:

RANDOM adj.

1. Unpredictable (closest to mathematical definition); weird.
“The system’s been behaving pretty randomly.”

2. Assorted; undistinguished. ‘“Who was at the conference?”’
“Just a bunch of random business types.”

3. Frivolous; unproductive; undirected (pejorative). “He’s
just a random loser.”

4. Incoherent or inelegant; not well organized. “The
program has a random set of misfeatures.” “That’s a
random name for that function.” “Well, all the names
were chosen pretty randomly.”

5. Gratuitously wrong, i.e., poorly done and for no good ap-
parent reason. For example, a program that handles file
name defaulting in a particularly useless way, or a
routine that could easily have been coded using only three
ac’s, but randomly uses seven for assorted non-overlapping
purposes, so that no one else can invoke it without first
saving four extra ac’s.

6. In no particular order, though deterministic. “The I/O
channels are in a pool, and when a file is opened one is
chosen randomly.”

7. noun. A random hacker; used particularly of high school
students who soak up computer time and generally get in
the way.

8. (occasional MIT usage) One who lives at Random Hall.

J. RANDOM is often prefixed to a noun to make a “name” out
of it (by comparison to common names such as ““J. Fred
Muggs’). The most common uses are ‘““J. Random Loser”
and “J. Random Nurd” (“Should J. Random Loser be al-
lowed to gun down other people?”’), but it can be used just

148 Lisp Lore

as an elaborate version of RANDOM in any sense. [See
also the note at the end of the entry for HACK]

RANDOMNESS noun. An unexplainable misfeature; gratuitous
inelegance. Also, a hack or crock which depends on a com-
plex combination of coincidences (or rather, the combina-
tion upon which the crock depends). “This hack can out-
put characters 40-57 by putting the character in the ac-
cumulator field of an XCT and then extracting 6 bits -- the
low two bits of the XCT opcode are the right thing.”
“What randomness!”

7. The Graph Example

This chapter, rather than present some abstracted features of
the lisp language or the lisp machine operating environment,
will cover a programming example which puts to use many of
the features we have previously discussed. The piece of code in
question allows one to display and manipulate simple undirected
graphs, that is, sets of nodes connected by arcs.

If your site has loaded the tape which accompanies this book,
you can load the code by using the CP command Load System
grapher. Once the code has been read, start the program by
typing Select Circle.! The program window will look some-
thing like figure 4.

This chapter contains a listing of the program. The first three
sections will point out and briefly discuss the interesting fea-
tures of the code. All of the program’s files live under the
logical directory LISP-LORE:EXAMPLES;GRAPHER;. The files are:

1Thca “Square,” “Circle” and “Triangle” keys on the top of the keyboard are
reserved for any application the user wants. Symbolics will never assign meanings to
them.

149

150 Lisp Lore

e NODES-AND-ARCS — the data abstraction

* PRESENTATION-TYPES — the translations between data ob-
jects and display presentations

¢ DISPLAY-FRAME — the program framework and commands

7.1 The Nodes and Arcs

There are two data types defined in this program. The first is
called node, and the second is arc. A list of nodes is kept in a
global (i.e., special) variable. The list of arcs is implicit — it is
derived from the list of nodes. Some notes:

e The two defvars: These declarations are for global vari-
ables that will be needed at various places throughout the
code. A defvar must precede the first use of the variable
so that the compiler knows the symbol refers to a special
variable. Another good reason for putting them at the
beginning is so anyone reading the code can quickly find
out what hooks are available for getting their hands on
the program’s internal data representation.

e The node flavor: Four of the instance variables are in-
itable, meaning that you can specify their values when
you create a node. The radius and unique instance vari-
ables are internal state not directly visible to the user.
The label and shape instance variables may be set (and
read) from outside the instance; in addition, the list of
arcs, and the node’s position and radius may be read.

e The make-instance and sys:print-self methods: The last
thing make-instance always does is to call the flavor’s
make-instance method, if it has one. Here, you can
specify operations to be performed on every instance of
your flavor, upon being initialized. I use this one to add
the node to the list of all nodes.

151

The Graph Example

Grapher program display window

Figure 4.

12qeq 33g
9983y

an0l

3poN 1313(
Y 333[3Q
2es)

24y ppy

B :pueuwuod uaydeug

s3n1q Y3 jJo

Y3Jiq 3y 3poy INoY :pusuwuod Jaydedg
83n{q Y3 yo

43diq 3yl , :[saniq 3y3 jo

4e38 3yl 3I|NRIIP] :saniq Y3 yo
3JR3S 3Y) Ipou Joy Iueu may

(3duoud) |9qe Spoy 33§ :puRwWoD Jaydedg
«S3019 343 Jo

34038 3y , :[seN(q Iy3 4o

Spou jue3godu}

sanLq ay3 Jo
Y3dpq 9y

2 In03GAL Y3im aueg mopuip OnusuAg

152 Lisp Lore

The functions print, princ, format and so forth all use
the sys:print-self method of instances. The first ar-
gument (after the instance itself) is the stream on which
to print the result, the second (not used here) is
print-level (as modified for the current prmtmg depth),
and the third is whether to print readably This last
means that read should be able to reconstruct the object
from the characters you print. Since this is impossible
for most flavor objects, we don’t even try to do this.
sys:printing-random-object is a macro which, among
other things, prints the “#<” and “>” around most in-
stances when they are printed out. The reader will signal
an error when it tries to read “#<.”

e ignore as an argument: Use of ignore in a lambda-list
for an argument which isn’t going to be used saves you
from getting a compiler warning about an unused vari-
able.

¢ map-over-nodes: This macro is used to iterate over all
the nodes. While it is not hard to write the loop in the
few places where it is necessary, I did it for symmetry
with the macro map-over-arcs, which is discussed below.

o :after methods for setf: The methods constructed for
setfing the instance variables declared with
:writable-instance-variables are just like any other
methods, and can have daemons and/or whoppers. For
more sophisticated applications, you can have special
method combinations, like :case (which might be used, for

You will sometimes see this called slashify-p, which means that you are sup-
posed to print “\" characters before all the special characters which need to be
quoted. | prefer readably, which indicates a little better what is going on.

The Graph Example 153

example, if there were only a small number of things you
wanted to set the instance variable to, and you wanted to
do something different for each of the possible values).

In this case, I used the :after method to write down the
fact that the previously calculated radius is likely to be
wrong, and needs to be recalculated.

e The move method: Remember that we didn’t declare the
x-pos and y-pos instance variables to be writable? This
is a small lesson in modularity. We want to say that the
only way to specify the position of a node is to “move” it
to a new position. If we wanted to attach other actions to
moving the node, we could create daemons or whoppers to
the move method; to do this for, say, (setf y-pos) as well
would be a potential modularity violation, in that we
would have to duplicate the code in more than one place.

¢ The present-self method: This is the output side of the
mouse-sensitive display of nodes. Note that there are two
versions of this in the text; the commented-out one is the
one I thought would be correct, but doesn’t produce the
correct result. The other one uses a clumsier mechanism
for producing the output, but makes the dynamic window
database be correct.

This method wuses dw:with-output-as-presentation to
make the output be a presentation. All of the output
within its contour is a single presentation “box’’, whose
presentation type is node and which refers back to the
node object itself.

Inside that macro, we say we want to surround the output
with whatever shape is appropriate using surrounding-
output-with-border. Inside that, we finally produce the
output, which is the label, if specified, or a blank string.

154

Lisp Lore

e map-over-arcs: I wrote this macro to have a handy way

to iterate over all the arcs. For each node, it runs
through all its arcs. If it has already seen that arc it
goes on. If it hasn’t, it executes the body forms with the
specified variable bound to the arc, and marks the arc as
visited. Note the use of make-symbol to ensure the
mark variable and node variables don’t shadow any vari-
able bindings.

The rest of the methods for arc: These are all parallel to
those for node. Note that presenting arcs doesn’t ac-
tually present them, because the Genera 7.0 display sub-
strate isn’t powerful enough to allow mouse-sensitive lines
(they become mouse-sensitive rectangles big enough to
surround the entire line, but also a lot more screen area).
This is supposed to be fixed for a later release.

7.2 The Presentation Types

Since we only present the nodes, there is only one presentation
type in the file. Some notes:

e It says :no-deftype t because there is already a “type” by

the name node. What is it? The flavor, of course. The
“type” namespace contains flavors (from defflavor), struc-
tures (from defstruct) and Common Lisp types (from
deftype), as well as presentation types.

e The parser appears to be an infinite loop. Fortunately,

it’s called in an environment where the system is looking
for mouse clicks. I call this parser the null parser; since
you have to supply a parser whenever you’re going to ac-
tually accept an object of the given type, this parser is
the one I use when you can’t type one in, and must there-
fore click on one.

The Graph Example 155

7.3 The Display

The program framework for this program is called grapher.
Some notes:

¢ The :select-key, :command-definer and :command-table
keywords are well-documented, and not discussed here.

e The :state-variables: none are supplied. To do this
program correctly, the data kept in the global wvariable
all-the-nodes should really be kept in a state variable
for the program instead. What this means is that if a
user creates more than one grapher frame at a time
(with, for example, Select Control-Circle), they will in-
teract incorrectly. I have left this cleanup as an exercise
for the reader. See the section “Problem Set,”” page 169.

e The graph pane is the interesting one. It is a :display
pane, which means that the only display output it gets is
what your program does to it. Here’s what the rest of
the keywords mean:

° :redisplay-after-commands means that every time
the user types a command (or performs one with the
mouse), the redisplay function will be called.

° :redisplay-function is how you specify what func-
tion actually does the redisplay. The function takes
two arguments, the program instance and the pane
on which it is to be called. One way to write this
function is as a method for the program flavor; this
allows you to use the state variables as instance
variables.

° :sincremental-redisplay is how you would specify

156 Lisp Lore

that you were only going to update part of the win-
dow instead of the whole thing. This program
clears the screen and displays the entire graph over
again from scratch after every command.

° :margin-components allows you to put things in the
margins of the window. The margin components ac-
tually in use are listed at the beginning of the file.
You get ‘“ragged’” borders whenever you’ve scrolled
some of the display off the screen, scroll bars in the
left margin and the bottom margin (the mouse
documentation talks about scrolling parts of the
“display”), and a little white space just inside the
scroll bars.

:typeout-window means that typing Suspend or
entering the debugger will happen on a typeout win-
dow in this pane.

e The :configurations keyword supplies the layout and
proportions of the panes declared in the :panes list. Both
the :panes and :configurations lists were written by
“Frame-Up’’, the program you get to with m-X Create
Program Framework in Zmacs, or <Select>Q. I then edited
the panes by hand to add the margin components and
change the order; I also converted it to lower-case, be-
cause I prefer to read and write my code in lower-case.

The method display-graph presents all the nodes on the dis-
play pane, followed by all the arcs. It is done in this order be-
cause displaying an arc requires calculating the radii of the
nodes involved, and presenting a node always calculates its
radius.

The Graph Example 157

7.4 The Commands

The commands are all pretty straightforward. They are defined
using define-grapher-command, the macro written in response
to :command-definer t in the program framework definition.

¢ com-create-node creates nodes. It can be typed as
Create Node <integer> <integer>. You can also click on
“Create” in the menu.

¢ com-set-node-label takes a node as an argument.
Remember that you can’t type them in; this means that
you have to click on a node in order to pass it as an ar-
gument to this command.

¢ com-move-node tracks the mouse until you click in the
place where you want. to move the node.

¢ com-add-arc creates an arc. Again, you have to click on
both nodes involved.

¢ com-delete-node and com-delete-arc work in the obvious
way. In com-delete-node, note the use of “~c” and “~>”
in format control strings to delimit character style
changes.

e com-reset-database clears the database of nodes.

7.5 The Mouse Gesture Translators

There are several translators which convert mouse gestures
into commands. Some of them are not the most elegant ways
that you might imagine were correct, but they are the
mechanisms I have found through trial and error. The bind-

158

Lisp Lore

ings between gesture names and the mouse characters which
invoke them is at the end of the file.

com-create-node-ex-nihilo translates a “create node” ges-
ture on an empty place in the frame into a node-creating
command.

com-set-node-label translates a “set node label” gesture
on a node into a call to a special internal command which
prompts for a label, and sets it.

com-move-node-from-here-to-there translates a ‘“move
node” gesture on a node into a “Move Node” command.

com-add-arc-from-here-to-there and com-delete-arc-
from-here-to-there translate “add arc” and “delete arc”
gestures, respectively, on a node into special internal com-
mands which accept a click on a second node and create
or delete an arc from one to the other.

com-delete-node translates a “delete node” gesture into
the command which deletes a node.

The define-grapher-mouse-gestures form at the end ac-
tually connects each gesture to its respective mouse click.
It uses setf on dw:mouse-char-for-gesture to do this.

The Graph Example 159

7.6 The Program

lisp-lore:examples;grapher;grapher-system.lisp

ti: —*= Mode: LISP; Syntax: Common-lisp; Base: 10 -*-—

(defpackage grapher
(:use scl)
{:colon-mode :external)
(texport *all-the-nodes*))

(defsystem grapher
(:patchable t
:default-pathname “lisp-lore:examples;grapher;*
imaintaining-sites :ssf
:pretty-name “Graph demo program“)
(:serial “nodes-and-arcs™ “presentation-types" “display-frame"))

160 Lisp Lore

lisp -lore:examples;grapher;nodes-and-arcs.lisp

: ~*—- Mode: LISP:; Syntax: Common-lisp: Package: GRAPHER: Base: 10 -*-
;i Node definitions

{defvar *all-the-nodes* nil
"a list of instances of flavor node.
only active nodes appear here")

(defvar *next-node-index* 0
“Unique index assigned to each node.*)

;/;; The flavor of each node in the graph
(defflavor node

{((axcs nil)

; list of arcs attached to this node

Xpos ; coordinates of the center of this node
ypos

(radius :needs=-calculation) ; radius of node

(label nil)

; a string
{(shape :circle) ; what shape border is displayed
(unique (incf *next-node-index*)}) For print-self
Q) ; No other flavors
;s You can set location, label and shape instance variables when you create
;; an instance of node. After creating, you can change the label and shape.
;; You can always read the list of arcs, position and radius, in addition to
;¢ label and shape. The position must be specified when creating a node.
(:initable-instance-variables xpos ypos label shape)
ritable-instance-variables label shape)
(:readable-instance-variables arcs xpos ypos radius)
{(:required~init-keywords :xpos :ypos})

s::; Called when new instances are created
(defmethod (make-instance node) (&rest ignore)

(push self *all-the-nodes*)) ; Record each active instance

;i¢ Print-self routine to make nodes print prettily.
(defmethod (sys:print-self node) (stream ignore readably)
(let ((name (or label (format nil "Unnamed node ~D* unique))))
(1f readably ; Print so read can "work”.
(sys:printing-random—object (self stream
stypep
:no-pointer)
(write--string name stream))
(write-string name stream))})

The Graph Example 161

i:; For performing an operation to all nodes.
{defmacro map-over-nodes ((node-var) &body body)
*(loop for ,node-var in *all-the-nodes*
do (progn ,@body)))

//; Need to recalculate radius
(defmethod ((setf node-label) node :after) (ignore)
(setf radius :needs-calculation))

s2: Move a node from here to there
(defmethod (move node) (new—xpos new-ypos)
(setf Xpos new-xpos ypos new-ypos))

;2: Self-explanatory
(defmethod (add-axc node) (arc)
(push arc arcs))

(defmethod (remove-arc mnode) (arc)
(setq arcs (delete arc arcs)))

162 Lisp Lore

;¢¢ Remove a node from the database
(defmethod (delete-self node) ()
;; (borrowed from tv:sheet’s :kill method)
;; Do it this way to prevent CDR‘ing down list structure being modified
(loop until (null arcs)
do (delete-self (car arcs)))
(setq *all-the-nodes* (delete self *all-the-nocdes*)))

;:; Display a node on the given window
(defmethod (present-self node) (window)

; Only required because we want to center

(calculate-radius self window) :
label where mouse click happened

;: This 1s written this way because of a bug in 7.0 —-— correct code below
(- xpos radlus) (- ypos radius))
(:stream window :object self

:type ‘node :single—box t)
(surrounding—cutput-with—border (window :shape shape)

(send window :string-out (or label * %)))))

{send window :set-cursorpos
{dw:with~output-as-presentation

#| Correct (i.e., Ideologically pure) version of the above:

:;: Display a node on the given window
(defmethod (present-self nods) (window)
(calculate~radius self window) : Only required because we want to center
; label where mouse click happened

(dw:with—-output-as-presentation (:stream window :object self
:type ‘node :single-box t)
(surrounding=-output—with—border (window :shape shape)
(graphics:draw-string (or label " ") (- xpos radius) ypos :stream window))))

i#

;/;; Calculate the radius of a node for a given window.
;:; We only care about this because we want to center the node at (xpos, ypos)
::; instead of having its upper left be there.
{defmethod (calculate-radius node) (window)
(when (and (stringp label) (zerop (string-length label}))
{setq label nil))
(when (eql radius :needs=-calculation)

(setq radius (ceiling
(multiple-value-bind (width height)

(dw:continuation—output-size
(Lambda (stream)
(surrounding-output-with-border

{stream :shape shape)
(send stream :string-out

window)

(max width height))
2))}

(or label * ")))}

radius)

The Graph Example

163

; Arc definitions
¢/ The flavor of each arc in the graph

defflavor are
((mark nil) ; arbitrary object for misc tagging purposes
nodel ¢/ the two "node" objects this arc connects
node2)

[§]
(:writable-instance-variables mark)
(:initable-instance-variables nodel node2)
(:readable-instance-variables nodel node2))

2:; Hook this arc up to its nodes

(defmethod (make-instance axc) (&rest ignore)
(add-arc nodel self)
(add-arc node2 self))

¢ss2 Aros always print in #<...> format.
(defmethod (sys:print-self ara) (stream &rest ignore)
(sys:printing-random-object (self stream :typep)
(format stream *"~A ¢-— ~A" nodel node2)))

;¢¢ Macro to perform an operation on all arcs.
/¢ Note that this cannot be nested iInside itself. Thus, it can’t be used

;::; to create relations whose domain and range are the set of arcs, for example.

(defmacro map~over—arcs ((arc-var) &body body)
(let ((mark-var (make—symbol *“MARK®))
(node-var (make—-symbol *NODE*)))
Y (loop with ,mark-var = (ncons nil) ! Create mark
for ,node-var in *all-the-nodes*
do (loop for ,arc~var in (node-arcs ,node-var)
unless (eq (arc-mark ,arc-var) ,mark-var)
do (progn ,@body
{setf (arc-mark ,arc-var)
smark-var)))))}

;22 Self-explanatory
(defmethod (delete-self ara) ()
(remove-arc nodel self)
(remove~arc node2 self))
7:; Currently, no good way to present arcs, just draw them instead. We can
count on the radius being OK because we always draw the nodes before the
arcs; otherwise we’d have to call calculate-radius on them.
(defmethod (present-self arc) (window)
(multiple-value-bind (x1 yl x2 y2)
(find-edges—-of-nodes (node—-radius nodel)
(node-xpos nodel)
(node-ypos nodel)
(node-radius node2)
(node-xpos node2)
(node~ypos node2))
(graphics:draw-line x1 yl x2 y2 :stream window)})

;

¢ :; Subroutine for the above.
(defun find-edges-of-ncdes (rl xposl yposl r2 xpos2 ypos2)
(let* ((dx (-~ xpos2 xposl))
{(dy (- ypos2 yposl))
(length (isqrt (+ (* dx dx) (* dy dy)))))
(values (+ xposl {ceiling (* dx rl) length))
(+ yposl (ceiling (* dy rl) length))
(= xpos2 (floor (* dx r2) length))
(= ypos2 (floor (* dy r2) length)))}))

(compile~flavor-methods node arc)

164 Lisp Lore

lisp-lore:examples;grapher;presentation-types.lisp
;:; =*- Mode: LISP; Syntax: Common-Lisp; Base: 10; Package: GRAPHER —-*-

;;; This 1s the presentation type for nodes
{(define~-presentation-type node
O
:tno-deftype t ; node is also a flavor
;; Standard parser for "you can’t read one of these.”
:parser ((stream) (loop do (dw:read-char-for-accept stream))))

#| We’re not presenting any of these at the moment.

;77 This is the presentation type for arcs
(define-presentation-type arc
)
ino-deftype t ; arc 1s also a flavor
;¢ Standard parser for "you can’t read one of these.”
:parser ((stream) (loop do (dw:read~char-for-—accept stream))))

1 ¥

The Graph Example 165

lisp-lore:examples;grapher:display-frame.lisp

;ii —*— Mode: LISP; Syntax: Common-Lisp: Base: 10; Package: GRAPHER =*—

(defparameter
grapher-display-margin-components
‘dw: { (margin-ragged-borders)
(margin-scroll-bar :history-noun *"display*)
(margin-scroll-bar :history-noun *display*
imargin :bottom)
(margin-white~borders :thickness 2)))

(dw:define-program-framework grapher
:select-key
#\Circle
:command-definer
t
:command-table
{:inherit=from * (*colon full command"
:state-variables
nil
:panes
((graph :display :redisplay-after-commands t
:redisplay-function ‘display-graph
:incremental-redisplay nil
:margin-components *grapher-display-margin-components*
:typeout-window t)
(commands :interactor)
(menu :command-menu :menu-level :top-level :columns 1)
iconfigurations
{(dw::main
(:layout (dw::main :column graph row-l
(row—-1 :row commands menu))
(:sizes (dw::main (graph 0.8) :then (row-1 :even))
(row=-1 (menu :ask-window self :size-for-pane menu)
ithen (commands :even}))))))

“standardiarguments" “standard scrolling"))

(defmethod (display-graph grapher) (display-pane)
(map-over-nodes (node) (present-self node display-pane)
(map-over-arcs (arc) (present-self arc display-pane)))

(define-grapher-command (com-create-node :menu-accelerator “Create")
({x “integer)
(y “integer))
(make-instance ‘node :xpos x :ypos y))

(define-presentation-to~command-translator com t d ihilo
{dw:no-type :blank-area t
:suppress—highlighting nil
:documentation "Create node here®

igesture create-node-ex-nihilo)
(ignore &key x y) (cp:build-command ’com-create-node x y))

(define-grapher-command (com-set-node-label :menu-accelerator “Set Label®)
({node ’‘node :prompt "a node")
(label ’ ((null-or-type string))
:default (node~label node)
:prompt "its label"™ :confirm t))
(setf (node-label node) label)

166 Lisp Lore

(define-grapher-command (com-set-node-label-\ (prompt\) :name nil)

{(node ‘node))

(let* ((label (accept ’string
:prompt (format nil “New name for node ~A: * node)

:default (node-label node))))
(setf (node-label node) label)))

(define-presentation-to-command~translator com-set-node-label
(node :gesture set-node-label)

(node)
{cp:build-command ‘com-set-node-label-\ (prompt\) node})

(defmacro with-mouse-tracking-node ((node pane) &body body)
:/; Done right, we would care about the node’s radius
(Let ((cld-mouse-char (make-symbol *"OLD-MOUSE~CHAR™)))
‘(let ({,old-mouse-char (send ,pane :mouse-~blinker-character)})
(unwind-protect
{progn (send ,pane :set-mouse-cursorpos
(node—-xpos ,node) (node-ypos ,node))
(send ,pane :set-mouse-blinker-character
#\mouse: fat-circle)
(send ,pane :mouse-standard-blinker)
, Bbody)
(send ,pane :set-mouse-blinker-character ,old-mouse=-char)
(send , pane :mouse-standard-blinker))}))

(define-grapher-command (com-move-node :menu-accelerator "Move")
({node ‘node :prompt “click on a node” :confirm t))
(let ((pane (send dw:*program—-frame* :get-pane ‘graph)))
{(with-mouse~-tracking-node (node pane)
(dw:tracking-mouse ()
(:who=-line~documentation-string
(1 "Specify new location for node. Right aborts”)

(:mouse-click (button x y)
(unless (char~mouse—equal button #\mouse-right)
(move node x y)) ;s Don’t move if clicked right

(return nil))))))

(define-presentation-to-command~translator com-move-node-from-here-to-there
(node :gesture move-node)

(node)
(cp:build-command ‘com-move-node node))

(define-grapher-command {com-add-axra :menu-accelerator “Add Arc")
((nodel "node :prompt “a node*)
(node2 ‘node :prompt “another node* :confirm t))

(1f (eq nodel node2)
(format t “~&Sorry, you can’t make an arc from a node to itself.*®)

(make-instance “arc :nodel nodel :node2 node2)))

(define-grapher~command (com-add-arc-by-mouse :name "*)
{(nodel ‘node))
(let ((node2 (accept ‘node
{com-add~arc nodel node2)
(setf nodel nil)))

;prompt "click on the other node®)))

The Graph Example 167

{define-presentation-to-command-translator com—add-arc-from-here-to-there
(node :gesture add-arc

;documentation "Create arc from this node")
(node)

(cp:build-command ’com-add-arc-~by-mouse node))

(define-grapher—command (ccom-delete-node :menu-accelerator "Delete Node")
((node ‘node :prompt "click on the node to delete*
iprovide-default nil :confirm nil))
{when (tv:mouse-y—-or-n-p
{format nil "Do you really want to delete node ~‘IC~A~D?*"
node))
(delete-self node)))

(define-presentation-to-command~translator com-delete-node
(node :gesture delete-node)
(node)
{cp:build-command ’com~delete-node node))

(define-grapher-command (cem-delete-ara :menu-accelerator “Delete Arc®)
{(nodel ‘node :prompt “click on one node")
(node2 ‘node :prompt “click on the other node”
iprovide-default nil))
(let ((n—deleted 0))
{map-over-arcs (arc)
(when (or (and (eq (arc-nodel arc) nodel)
{eq (arc-node2 arc) node2))
(and (eq (arc-nodel arc) node2)
{eq (arc—-node2 arc) nodel)))
(delete—-self arc)
(incf n-deleted)))
(when (= n-deleted 0)
(format t “~&Didn’t find an arc between~
~'Ic~A~2 and ~’Ic~A~D"
nodel node2))))

(define-grapher—command (com-delete-arc-by-mouse :name nil)
((nodel ‘node))

{let ((node2 (accept ‘node :prompt "click on the other node")))
(com-delete—arc nodel node2)))

(define-presentation~to-command-translator com-delete-arc-from-here-to-there

(node :gesture delete-arc)
(node)

(cp:build-command ’com-delete-arc~by-mouse node))

(define~grapher-command (com-reset-database :menu-accelerator “Reset"
(9]
(when (tv:i:mouse-y-or-n-p
“Do you really want to reset the entire database?™)
(setq *all-the-nodes* nil)))

tname nil)

168 Lisp Lore

(defmacro define-grapher-mouse-~gestures (&rest gesture-list)
“(progn ,@
(loop for (gesture mouse-char) in gesture-list
collect ‘(setf (dw:mouse-char—for-gesture ‘,gesture)
* ,mouse-char))))

(define-grapher-mouse~gestures
(create-node-ex-nihilo #\mouse-left)

(add-arc #\mouse-middle)
(delete-node #\control-mouse-left)
(delete-arc #\control-mouse-middle)
{(set-node-label #\mouse-left)

(move-node #\shift-mouse-left))

The Graph Example 169

7.7 Problem Set

Questions
1. Assure yourself that you understand the code.

2. Write a command which finds any nodes with no connec-
tions to other nodes and removes them from the graph.

There are a number of problems with the program as it stands.
Here’s your chance to improve the teacher’s work.

3. Any command causes a complete redisplay. This is really
unncessary, and quite unattractive, especially if there’s a
lot of stuff on the screen. Fix the display routines to do
minimal redisplay.

4. Currently, if two notes are connected by an arc which
cuts across another node, the line for the arc just runs
right through the node. Fix the present-self method for
arcs to be smart enough to go around obstacles.

5. Make the arcs mouse-sensitive, too. To do this right re-
quires features that are not present in Genera 7.0, like
non-rectangular mouse sensitive areas (which are to be
implemented in a later release).

170

Lisp Lore

Hints

. Play.

. The command should loop over all the nodes, using the

delete-self generic function on any which have no arcs.

Make the redisplay for the graph pane be incremental
Modify the redisplay function to use the incremental
redisplay functions.

. Open problem. I haven’t thought of a good way to do

this.

. Uncomment the presentation type for arc, and make the

present-self method for arcs use it.

The Graph Example 171

Answers
2. Here is one way to do it:

;s Command to clean up unused nodes.
(define-grapher-command (com-gc-nodes
:menu-accelerator "GC")
0
(map-over-nodes (node)
(when (nul1l (node-arcs node))
(delete-self node))))

3. One way to do it is to change :incremental-redisplay
from nil to t in the dw:define-program-framework form,
and then change display-graph to use the redisplay tech-
nology.

Here is a sketch of what’s needed:

(defvar *tick* g)
(defun tick () (incf xtickx))

55 The flavor of each node in the graph.
(defflavor node

(

[...]

(update-tick (tick))) ;For incremental redisplay
0

(:initable-instance-variables xpos ypos label shape)
(:writable-instance-variables label shape)
(:readable-instance-variables arcs xpos ypos radius
update-tick)
(:required-init-keywords :xpos :ypos))

(defmethod (do-tick node) ()

172 Lisp Lore

(setf update-tick (tick))
(loop for arc in arcs
do (do-tick arc)))

Similarly, you need an update-tick instance variable and
a do-tick method for arcs.

(defmethod ((setf node-label) node :after) (ignore)
(do-tick self)

(setf radius :needs-calculation))

(defmethod (move node) (new-xpos new-ypos)
(do-tick self)

(setf xpos new-xpos ypos new-ypos))

(defmethod (display-graph grapher) (display-pane)
(map-over-nodes (node)
(dw:with-redisplayable-output
(:stream display-pane :unique-id node
.cache-value (node-update-tick node))
(present-self node display-pane)))
(map-over-arcs (arc)
(dw:with-redisplayable-output
(:stream display-pane :unique-id arc
.cache-value (arc-update-tick arc))
(present-self arc display~pane))))

Problems 3, 4 and 5 are left for the interested reader to finish.

8. Streams and Files

In this chapter I will talk about program input/output. As with
everything else on the Lisp Machine, I/O has been made as
generic as possible. This means that:

¢ I/O is as device-independent as possible; the programmer
need not know in advance what kind of device is actually
the source of its input or the destination of its output;
and

» File 1/O is as system-independent as possible; if the user
wants to use files on a Lisp Machine, or a VAX running
VMS, or a machine running Unix, the programmer
doesn’t need to know in advance which system will ac-
tually be used.

Device-independent I/O is performed using a data abstraction
called a stream. Regardless of what kind of device is actually
involved, a stream presents a uniform interface to the program-
mer. This means, for example, that a program need not have
to be written differently if it takes its input from a tape, a disk
file, or from the console keyboard.

173

174 Lisp Lore

Similarly, system-independent file I/O involves making streams
which refer to files. The way to specify which file you mean is
with another data abstraction called a pathname. Each path-
name refers to a “place” in a file system. A program can be
written to deal with pathnames, rather than with, say, a Unix
file system.

8.1 Streams

Since the mechanics of interacting with different kinds of
peripheral devices vary widely, and are often quite messy, it is
desirable to shield programmers from having to know the
details of such operations. This shielding is accomplished by
routing all input and output operations through streams.

A stream is an object which obeys the stream protocol. Most
streams are implemented using Flavors. However, since the
stream protocol is older than the current Flavors system, much
of the low-level stream protocol is defined in terms of message-
passing. Most of the interfaces to streams are higher-level
ones which actually send the messages for you, so you might
never know how the stream is implemented.

All streams accept generic “commands,” to perform certain
operations, like, for example, “give me the next input
character,” and take care themselves of the details of perform-
ing that operation on their particular sort of device. This way,
knowledge about how to perform I/O operations is segregated
into the stream implementations themselves, freeing programs
(and programmers) from the need to understand the details of
these operations. All a program needs to know is how to deal

Streams and Files 175

with streams;1 the streams take care of the details.

Streams can be divided into two broad categories, depending on
which kinds of Lisp objects they accept or deliver. Character
streams operate on Lisp character objects; when asked for the
next input object, they return a character. Binary streams
operate on Lisp integers; when asked for the next input object,
they return a number. Similarly, when you want to deliver out-
put to a stream, you must pass in the correct data type: charac-
ter streams want characters, and binary streams want numbers.

8.1.1 Standard Stream Operations

Some streams only handle input; some only handle output; and
some do both. There is a small set of operations which all out-
put streams are required to handle. Similarly, there is another
set that all input streams are required to handle. For example,
all input streams handle the :tyi operation, which returns the
next input object.

Additionally, there is a somewhat larger set that all streams
are guaranteed to accept, even though they themselves do not
implement them directly. This bit of magic works through the
default handler. When a stream is asked to perform an opera-
tion it does not handle directly, it invokes the default handler,
which uses some combination of natively-implemented opera-
tions to produce the desired effect. For example, the default
handler for character streams implements the :line-in in terms
of :tyi. Some streams implement :line-in directly as well.

Most of the time, you will not need to use the low-level opera-
tions that the stream itself inherently supports. Instead, you

1And how to make the streams it wants to use. See the section “Making Other /O
Streams,"” page 198.

176

Lisp Lore

will use Common Lisp operations and Symbolics’ enhancements
to that set. For example, you will usually not use the :tyi or
:line-in messages to a stream; instead, you will use read-char
(or read-byte for binary streams) and read-line functions.

Here

are some operations you might use on input streams of

any kind:

Here

read-char — Returns the next character.
read-byte — Returns the next byte (binary streams).

unread-char — Puts the character back into the input
stream. You may only do this with the character you just
read.

peek-char - Equivalent to read-char followed by
unread-char; the character is returned.

listen — Returns t if the stream contains input.

read-char-no-hang — Returns the next input character, if
any; returns nil if none.

read-line — Returns the next line of input.
read — Returns the next Lisp expression.
clear-input — Clears any buffered input in the stream.

are some operations you might use on output streams of

any kind:

e write-char — Outputs a character.

¢ write-byte — Outputs a byte to a binary stream.

Streams and Files 177

e write-string — Writes a string of characters.

e write-line — Writes a string of characters, followed by a
newline character.

e terpri — Puts out just a newline character (an old Lisp
function name, apparently means ‘“Terminate Print
Line.”)

e fresh-line — Performs a terpri if the current line has any
characters on it. Not all streams support finding out
whether they are at the left margin; if the stream does
not support it, fresh-line always performs the terpri.

e finish-output - If the output stream is buffered or
asynchronous, this function attempts to ensure that all
output has reached its destination. This function will
return only when the device has acknowledged that it has
received its output.

¢ force-output — If the stream has any output buffered, it
must send it to the device immediately. This function
does not attempt to wait until the output actually arrives.

e clear-output — If there is any buffered output, it is dis-
carded immediately without attempting to transmit it to
the device.

You might also be interested in looking up the documentation
for these stream operations: input-stream-p, output-stream-p,
stream-element-type, and close.

8.1.2 Speclal-purpose Operations

There are a wide variety of operations particular to streams for
one or another of the “peripherals” (files, network streams,

178 Lisp Lore

windows, etc.). Most of these are not handled by the default
handler and will result in an error if invoked on a stream
which does not handle them. These are, by and large, imple-
mented using message-passing only, since they are usually at a
lower level than the other interfaces we have discussed thus
far. Most of the special-purpose operations are documented
along with the type of device they’re intended to be used with.
Here are a few of the more commonly-used of these operations:

e :read-cursorpos — This operation is supported by windows
and other interactive streams. It returns two values, the
current x and y coordinates of the cursor. Its optional ar-
gument is a keyword indicating in what units x and y
should be expressed. The keywords :pixel and :character
are understood by most streams.

¢ :set-cursorpos — This operation is supported by streams
which support :read-cursorpos. It sets the position of
the cursor.

¢ :clear-window - This operation erases the screen area on
which this stream is displayed.

e :clear-history - This operation is only accepted by
Dynamic windows; it clears all of the window’s output,
whether currently on display or scrolled off the edges.

e :read-location — This is a “pointer” into a file stream. It
returns a value which can be used with :set-location.
This value will always be useful to return the file to the
current position, even if you close the file and re-open it,
and even if you cold boot the machine, having saved this
location away someplace where you can get it back.

2Some binary streams implement an even more primitive version of this message,
:read-pointer, instead of :read-locatlon.

Streams and Files 179

¢ :set-location — Sets the stream’s “pointer’” so the next
place you read or write to it is the same as it was when
you obtained the location using :read-location.

8.1.3 Standard Streams

There are a number of special variables whose values are
streams widely used by many system (as well as user) func-
tions. Here are some of them:

standard-input In the normal Lisp top-level lop, input is read
from *standard-input* (i.e., whatever stream
is the value of *standard-input*.) Many in-
put functions, including read and read-char,
take a stream argument which defaults to the

- value of *standard-input*. Most of your in-
put should come from *standard-input*.

standard-output

‘ Analogous to *standard-input*; in the Lisp
top-level loop, output is sent to the stream
which is the value of *standard-output*, and
many output functions, including write-char
and print, take a stream argument which
defaults to *standard-output*. Most of your
output should be sent to *standard-output*.

terminal-io The value of *terminal-io* is the stream
which connects directly to the user, normally
through the system console. In a process
which is associated with a window, the value
of *terminal-io* is likely to be that window.
For background processes, for example, those
created using the function
process-run-function, *terminal-io* is a spe-
cial “background” stream which notifies the

180 Lisp Lore

user when the process wants input or to do
output. This stream appears as a little back-
ground window when the user exposes it
using Function 8 S. For certain other
processes (such as the keyboard process), the
value of *terminal-io* is a special marker
which will force the use of the cold load
stream if any attempt is made to use it for
I/0.

Some other useful stream variables are: *error-output®,
trace-output, *query-io* and *debug-io*, which are used for
printing errors, printing trace displays, asking questions, and
debugging, respectively.

standard-input®, *standard-output* and several others and
initially bound to synonym streams which pass all operations on
to the stream which is the current value of *terminal-io*. So,
if *terminal-io* is re-bound, the synonym streams see the new
value.

User programs generally don’t change the value of
terminal-io. A program which wants, for example, to divert
the output to a file should do so by temporarily binding
standard-output; that way, error messages sent to
*error-output® can still get to the user by going through
terminal-io, which is usually what is desired.

8.2 Accessing Files and Directories

Some of the information in this section will make more sense
after reading the following section.

Streams and Files : 181

8.2.1 Open and Other Functlons for Operating on Files

All reading from and writing to a file is done through streams.
To access a file, you must have an open stream to that file.
The fundamental way to obtain an open stream to a file,
whether for reading or writing, is with the open function,

open Takes a pathname and a sequence of keyword
options, and returns a stream connected to
the specified file. The pathname may be any-
thing acceptable to fs:parse-pathname,
generally either a string or an actual path-
name object. Some of the more frequently
used open keywords include :direction, which
specifies whether the file is to be read or
written, :element-type, which specifies
whether you want a binary or character
stream, and :if-does-not-exist, which tells
open what to do if the file is not there.

Most programs do not call open directly. They more commonly
use the with-open-file macro, which makes wuse of an
unwind-protect to guarantee that the stream will be closed
when you're done with it. If you call open directly, you should
also use an unwind-protect to make sure the stream gets
closed, because leaving around lots of open streams can create
problems.

with-open-file Evaluates the body forms with the variable
stream bound to a stream opened by applying
open to the pathname and option list. When
control leaves the body, either normally or
abnormally, the file is closed. If control
leaves abnormally (i.e., because of an error or
a throw), the file is closed in abort mode;
output files closed in abort mode are deleted.

182 Lisp Lore

So, if I wanted to write a new text file in my directory on my
Lisp Machine file server Cerridwyn, which contained only the
string “Wow, I'm on a disk!” (without the double quotes), I
would evaluate:

(with-open-file (stream "CD:>rsl>yippee” :direction :output)
(write-string "Wow, I’m on a disk!" stream))

Or, if I wanted to see how many characters into a certain file
the first “a’ occurred,

(with-open-file (stream "CD:>rsl1>1ispm-init.1lisp”)
(loop for i upfrom 1
as char = (read-char stream)
when (char= char #\a) return 1i))

Here are some more functions for operating on files. They
generally accept either a string or a pathname object, and some
of them also accept a stream open to the appropriate file.

rename-file Changes the name of the file. The CP com-
mand Rename File and the editor command
Rename File (m-X) use this function. See the
documentation for details on what happens

with links.
delete-file The specified file is deleted.
copy-file Copies one file to another. The CP command

3Watch out! char= compares for an exact match. Not only won't it return t for
(capital) A, it won't return t for a lower-case A which appears in the file in some other
character style. See the section “Overview of Characters™ in Symbolics Common
Lisp: Language Conceplts.

Streams and Files 183

Copy File and the editor command Copy File
(m-X) use this function. See the documen-
tation for details of merging, wildcard names,
and links, and for the meanings of its
keyword arguments.

probe-file If the specified file exists, returns the path-
name of its “true name”, i.e, its ultimate
destination in the file system. Note that this
might not be the same as the argument; in
the presence of links it might be wildly dif-
ferent.

load Loads the specified file into the Lisp environ-
ment. If it’s a text file, it is evaluated; if a
binary file, it’s loaded wusing the binary
(“*fasload’’) loader.

fs:file-properties returns a list: the first element of the list is
the “truename’’; the rest of the list is a list
of alternating keyword/value pairs, suitable
for use with getf. The second value returned
by fs:file-properties is a list of those
properties which can be set using fs:change-
file-properties. See the documentation for a
list of the possible file property indicators.

fs:change-file-properties

takes a pathname, an error-p flag, and a list
of alternating keyword/value pairs.
fs:change-file-properties alters the attributes
of the file accordingly, if possible. (Some
properties are not alterable. Which ones are
is a property of the host file system and the
user’s privileges on that file system.)

184

Lisp Lore

Certain operations are defined on file streams:

pathname

file-length

8.2.2 Directorles

directory

fs:directory-list

8.3 Pathnames

returns the pathname of the file to which the
stream is attached. [pathname also works
on strings and pathname objects, returning
pathname objects in all cases.]

returns the number of elements in the file.
For a binary file, the length is in units of the
:element-type specified when the file is
opened.

returns a list of files which matches the
given pathname.

finds all files matching the pathname, and
for each one gets the information that would
be returned by fs:file-properties for that file.
It collects all of these into a list, and adds
one element to the list containing information
about the file system as a whole; this added
element has nil in the place where the path-
name goes. The returned list has one more
element than there are files matching the
pathname. See the function fs:directory-list
in Reference Guide to Streams, Files, and 1/0.

Just as streams are intended to provide a uniform, device-
independent interface between programs and the different kinds
of peripherals, pathnames are intended to provide a uniform in-

Streams and Files 185

terface between programs and remote files systems. The idea
is to free the programmer from having to keep in mind the for-
mat for file names on the various remote hosts. With path-
names, you should be able to manipulate files on a file server
without knowing anything about that server’s syntax for file
names. :

All pathnames are instances of some flavor built on pathname.
Each pathname has six components which correspond to dif-
ferent parts of a file name. The mapping of the components
into the parts of the file names is done by the pathname
software, and is specific to each kind of host the software
knows about.

The six components of a pathname are the host, the device, the
directory, the name, the type, and the version. So, for example,
the pathname corresponding to the string “CD:>rsl>
lispm-init.1isp.105" might be an object of flavor fs:Imfs-
pathname:"’

#P“CD:>rs1>Tispm-init.lisp.185",
an object of flavor FS:LMFS-PATHNAME,
has instance variable values:

FS:HOST: #<LISPM-HOST CERRIDWYN 700106>
FS:DEVICE: :UNSPECIFIC

FS:DIRECTORY: ("rs1")

FS:NAME: "Tispm-init"

FS:TYPE: “lisp”

FS:VERSION: 1085

The pathname for the file /usr/hjb/l1ispm-init.1 on (4.2bsd)
Unix host “sola’’ would look like this:

4Pathnames actually contain more instance variables than this. The others are for
caching certain strings that represent the pathname in different contexts.

186 Lisp Lore

#P"SOLA:/usr/hjb/1ispm-init.1",
an object of flavor FS:UNIX42-PATHNAME,
has instance variable values:

FS:HOST: #<UNIX-HOST SOLA 787345>
FS:DEVICE: :UNSPECIFIC
FS:DIRECTORY: ("usr" "hjb")

FS:NAME: "lispm-init”

FS:TYPE: "1

FS:VERSION: :UNSPECIFIC

The special keyword :unspecific is used as a place-holder for
components which are not filled in; nil is used when the user
intentionally omits the component.

A pathname need not refer to a specific file. #P"CD:" is a per-
fectly legitimate pathname, even though it specifies only a host
and nothing else.

The conversion of a string into a pathname is done with the
function pathname.5 The first thing it has to do is determine
the host, since the methods for parsing the rest of the com-
ponents depends on which host it is. If there are any colons in
the input string, everything appearing before the first colon is
considered to be the name of the host.® Parsing of the
remainder proceeds according to the type of the host, and its
own syntax for file names. (If there are no colons, some
default value is used for the host — every pathname must have
a host.)

5Older code might use the function fs:parse-pathname.

6If the colon is the first character in the string, it is as if no host were specified, and
the default is used; this is useful for those hosts whose native syntax contains colons,
such as VMS, which uses colons to delimit disk names.

Streams and Files 187

Of course, there’s no need to go through strings (and worry
about the remove hosts’s file name syntax) at all. One of the
selling points of pathnames is precisely that you shouldn’t need
to do so. Accordingly, one may construct pathnames in this
manner:

(make-pathname :host "CD" :directory °’(“RSL")
:name "LISPM-INIT" :type "LISP"
:version 185)

which returns the same pathname whose printed representation
was shown above.

Pathnames are interned, just like symbols, meaning that there
is never more than one pathname with the same set of com-
ponent values. The main reason for maintaining uniqueness
among pathnames is that they have property lists, and it’s
desirable for two pathnames that look the same to have the
same property lists.’ Thus, the make-pathname expression just
above returns the same (eq) pathname object each time.

8.3.1 Component Values

The host component is always a host object (an instance of
some flavor built on net:basic-host). The permissible values
for the other components depends to some extent on the type of
the host, but there are some general conventions.

The type is always a string, or one of the symbols nil,
:unspecific, or :wild. Both nil and :unspecific denote a miss-

7Sometimes there are clusters of files which go together, such as a source and
object file for the same program. In order to share properties between these clusters,
a single pathname representing the entire cluster is chosen. This pathname is called
the generic pathname, and is derived by sending the :generic-pathname message to
the pathname representing any member of the cluster.

188 Lisp Lore

ing component. The difference is in what happens during
merging (see below); nil generally means to use the default, and
:unspecific means to keep that component empty. The symbol
:wild is sometimes used in pathnames given to directory, and
matches all possible values.

The type field gives an indication of what sort of stuff is in the
file. Lisp source files, for instance, usually have a type com-
ponent of “lisp,” and compiled Lisp code a type component of
“pbin.”” Since there are some system-dependent restrictions on
how many characters may appear in this field, a canonical type
mechanism exists to allow processing of file types in a system-
independent fashion.

The Symbolics documentation says: “A canonical type for a
pathname is a symbol that indicates the nature of a file’s con-
tents. To compare the types of two files, particularly when
they could be on different kinds of hosts, you compare their
canonical types.” For instance, a Lisp source file on a VMS
system might have a file type of ‘LSP,” and one on a UNIX sys-
tem might have a file type of ‘1.” When we ask these path-
names for their canonical type, we receive the keyword symbol
:lisp.

The version is either a number or one of the symbols nil,
:unspecific, :wild, :newest or :oldest. The first three have the
same meaning as for the type component. :newest refers to
the largest number that exists (when reading a file) or one
greater than that number (when writing a new file). :oldest
refers to the smallest number that exists.

The device component may be either nil or :unspecific, or a
string designating some device, for those file systems that sup-
port such a notion (VMS, TOPS-20, ITS).

The name component may be nil, :wild or a string.

Streams and Files 189

The directory component may be nil or :wild for any type of
host. On non-hierarchical file systems, a string is used to
specify a particular directory. On hierarchical systems, the
directory component (when not nil or :wild) can be the keyword
iroot or a list of directory level components. These are usually
strings. So the pathname #P"CD:>rsl>text>network.text” has
for its directory component the list (“RSL" "TEXT").

The directory level components can also be special keywords as
well as strings. :wild matches any single directory. :wild-
inferiors matches zero or more directory levels. So, the path-
name #P"SOLA:/usr/x/1ispm-init.1" has ("USR" :wild) as its
directory component, and the pathname #P"CD:>rsl>xx>
examples>x.11isp.newest” has {"RSL" :wild-inferiors
"EXAMPLES") for its directory component. Directory level strings
may also be partially wild, like ““xF00x”’,

The keyword :relative may appear first, meaning that the path-
name doesn’t start at the root (such a pathname can only be
valid for describing actual files when merged with an absolute
pathname). :relative may be followed by zero or more of the
symbol :up, which means that when it is merged with a path-
name, it first deletes that many components from the other
pathname’s directory component. Thus, the pathname
#P"SOLA:../foo/bar" has (:relative :up "F00") for its directory
component, and #P"CD:<<text>new>patch.lisp” has a directory
component of (:relative :up :up "TEXT" "NEW").

8.3.2 Case In Pathnames

Since the various host systems have different conventions as to
upper and lower case characters in file names, most pathname
functions perform some standardization of case to facilitate
manipulating pathnames in a host-independent manner. There
are two representations for any given component value, one in

190 Lisp Lore

raw case and one in interchange case. Raw case representation,
which is used internally for the instance variables of path-
names, corresponds exactly to what would be sent to the remote
machine to find the file corresponding to the pathname. Inter-
change case is the standardized form, and is what you get if
you ask a pathname for its component values. It’s also what
functions like make-pathname expect.

The standardization is simple. Each type of host is classified
as to whether its preferred case, or system default case, is upper
or lower. Any raw component which is in the preferred case
for its host has an upper case interchange form. A raw com-
ponent in mixes case has an identical (mixed case) interchange
form. Since LMFS and UNIX hosts are classified as having
lower case for the system default, this means that the raw
forms are case-inverted to get the interchange forms, and vice
versa.

The normal messages for accessing and setting the component
values of pathnames are based on interchange form. There are
other messages which deal explictly with raw form. Note that
the pathname parsing routines deal with raw form, since they
expect you to type pathnames in the form in which the host ex-
pects them.®

8.3.3 Defaults and Merging

In most situations where the user is expected to type in a path-
name, some default pathname is displayed, from which the
values of the components not specified by the user may be
taken. Many programs maintain their own default pathnames,

8|f a host is an upper-case-by-default host, pathnames will be uppercased when

parsed. However, it is possible to specify mixed- and lower-case components with
the pathname-combining functions and messages.

Streams and Files 191

containing component values that would be reasonable in the
particular context. For programs which really have no idea of
what sort of pathname to expect, there is a set of default
defaults.

The pathname provided by the user (actually, the pathname
constructed by pathname from the string provided by the user)
and the default pathname are then merged by the fuction
merge-pathnames. The details are a little messy, but the
basic idea is that components which aren’t specified in the
user’s pathname are taked from the default.

The programmer need not know much of this as of Genera 7.0.
The pathname presentation type takes care of merging as well
as parsing the string typed in by the user. Some variant of
(accept ’pathname) is really all that is required in most cases.

8.3.4 Pathname Functions and Methods

We’ve already seen two of the most important pathname func-
tions: pathname and merge-pathnames. Here are a few
more:

make-pathname In addition to the keywords it tells you about,
you can also specify such things as
:rraw-directory, :raw-name and so forth. You
can also specify :canonical-type, which takes
the canonical type as a keyword and inserts
the host-specific type correctly into the new
pathname.

fs:define-canonical-type
is how you define a new canonical type. The
canonical-type argument is the symbol for
the new type. The body is a list of specifica-
tions giving the surface type(s) corresponding

192

Lisp Lore

to this canonical type for various host types.
The default is the string used for any host
types not mentioned in the body. Here is
how the :lisp canonical type is defined:

(DEFINE-CANONICAL-TYPE :LISP "LISP"
((:TENEX :TOPS-28) “LISP" "LSP")
(:UNIX "L" “LISP")

(:UNIX42 "LISP" "L")
(:UMS4 "LISP" "LSP")
((:VMS :MSDOS) “LSP"))

Like the window system, the pathname system predates the cur-
rent implementation of Flavors, and much of the interface to
them is in terms of messages.

e The :host message to pathnames returns the host com-

ponent, which is an instance of some host flavor.

e The messages :device, :directory, :name and :type

return the corresponding component value, with any
strings given in interchange case.

The messages :raw-device, :raw-directory, :raw-name
and :raw-type are similar, but use raw case for all
strings.

The :version message returns the version (case is not an
issue, since versions are never strings).

The :canonical-type message returns two values;
together, they indicate the type component of the path-
name, and what canonical type — if any — it corresponds
to (See the documentation for details).

e The messages :new-host, :new-device, :new-directory,

Streams and Files 198

:new-name and :new-type all take one argument and
return a new pathname which is just like the one that
received the argument except that the value of the
specified component will be changed. All strings will be
accepted in interchange case (except for hosts, which are
converted to host objects).

* You can probably guess what :new-raw-device,
:new-raw-directory, :new-raw-name and :new-raw-type
do.

¢ :new-version and :new-canonical-type do the obvious
thing, and have no “raw’’ form for obvious reasons.

¢ :new-pathname allows wholesale replacement of com-

ponent values. Its arguments are alternating keywords
and values, with the same keywords accepted as by
make-pathname. :

¢ There are a set of messages for getting strings that
describe the pathname. The returned strings come in dif-
ferent forms for different purposes. :string-for-printing
returns the string that you see inside the printed
representation of a pathname. :string-for-host shows the
file name (not including the host) the way the host file
system likes to see it. There are several others.

¢ :get, :putprop, :remprop and :plist all do the obvious
thing with the pathname’s property list. Keep in mind
the distinction between the pathname’s property list and
the list returned by fs:file-properties. The latter are
properties of a file, and require accessing the host’s file
system. The former are the properties of a pathname, a
Lisp object which may not even correspond to any files.

Directory pathnames are a special case in most hierarchical file

194 Lisp Lore

systems. There are times when you would like to know about
the “location’” of the directory in its file system, and other
times when you really want to manipulate the directory’s con-
tents. For example, to rename a directory, you need to know
the former pathname, while to open a file in the directory you
want the latter.

Two methods have been defined on pathnames which converts
one form of pathname to the other:

¢ :pathname-as-directory converts “location” pathnames
into “contents’’ pathnames.

e :directory-pathname-as-file performs the inverse opera-
tion.

This is best explained by example:
(send #P"CD:>rs1>foo.directory” :pathname-as-directory)

-> #P"CD:>rs1>foo>"

(send #P"CD:>rs1>foo>" :directory-pathname-as-file)
-> #P“CD:>rs1>foo.directory.1”

Here is a small sample program which lists the files in all my
top-level subdirectories:

Streams and Files 195

(defun Tist-all-subdirs (&optional (path (fs:user-homedir)))
(setq path (send path :new-pathname
:name :wild
:type :wild
:version :wild))
(Toop for (path . props) in (fs:directory-1ist path)
when (and path
(getf props :directory))
append (directory
(send (send path :pathname-as-directory)
:new-pathname
:name :wild
:type :wild
:version :wild))))

8.3.5 Logical Pathnames

There are some pathnames which don’t correspond to any par-
ticular file server, but rather to files on a logicalg host. The
logical host may then be mapped onto any actual host, thus
defining a translation from “logical pathnames” to “physical
pathnames.” This feature improves the transportability of code.

Take the Lisp Machine software as an example. Every Lisp
Machine site keeps the source code on a different computer.,
There are many functions that want to be able to find these
files, no matter what site they’re running at. The solution is
to use logical pathnames: all the system software is in files on
the logical host “SYS”. Each site gives the “SYS” host an ap-
propriate definition, and then it works justto find open a file
with a name like ““SYS:I10;PATHNM.LISP”, which happens to be
the file containing the bulk of the pathname code. At my site

9See hacker's definition at the end of chapter.

196 Lisp Lore

that corresponds to the file “QX:>sys>io>pathnm.lisp;” at your
site it might be the VMS pathname “GENIE:SYS$SYMB:
[REL-7.I0JPATHNM.LISP.”

The function fs:set-logical-pathname-host defines the mapping
of file names from a logical host to the corresponding physical
pathnames. Rather than embedding this call in your code
(remember, the idea of this is transportation of code from site
to site without modification), you put it in the site directory in
a file called ‘“‘SYS:SITE;<host-name>.TRANSLATIONS.” Then, if
you call the function fs:make-logical-pathname-host with an
argument of the host name, it will look for and load the ap-
propriate file, thus evaluating the fs:set-logical-pathname-host.

The use of fs:set-logical-pathname-host is best explained by
example. Figure 5 contains abridged version of the contents of
“SYS:SITE;SYS.TRANSLATIONS,” which defines the location of the
Symbolics-supplied files at my site.

As you can see, this file contains Lisp code, and is read by the
normal Lisp reader. Some notes:

e This file is read and evaluated using the normal Lisp file
loader. It contains Lisp Code. That means you can use
conditionals, reader macros, etc., to make it do what you
want. It also means that it can contain anything you
like, as long as it eventually wuses fs:set-logical-
pathname-host someplace.

o This particular file has a conditional at the top level; it is
dispatching on the release of Lisp Machine software run-
ning on the reading machine. For each of releases 6 and
7, it does something different. It signals an error if you
try to read it into some other release.

e Each of the branches of the dispatch invokes

Streams and Files 197

55 =" Mode: Lisp; Syntax: Common-Lisp; Base: 10; -*-
(ecase (si:get-release-version)

;;» Release 6
((6)
(fs:set-1ogical-pathname-host
“SYS”
:ho-translate t
:translations ’(("SYS: xx;" "CD:>sys>xx>"))))

;> Release 7
()
(fs:set-logical-pathname-host
"sYs"
:physical-host "CERRIDWYN"
:translations
" (

i Release-independent files

("SYS:FONTS; %x;%. %, x" "CD:>sys>fonts>%xx>%. x. x")
("SYS:L-UCODE ;% ;x.x.x" “CD:>sys>1-ucode>xx>% . . x")
("SYS:DATA; xx;x.%x.x" "CD:>sys>data>kx>x.x.x")
("SYS:N-FEP;xx;%.x.x" “CD:>sys>N-Fep>xx>x.x.x")

. Everything else.

("SYS:ixx k. k. %" "QX:i>SYyS>Rkk>k.%.%x")))))

Figure 5. A Sample SYS:SITE;SYS.TRANSLATIONS

fs:set-logical-pathname-host. The release-6 version is
very straightforward; it merely says to find all files on
the SYS logical host in corresponding places under
CD:>sys>. The release-7 one is slightly more confusing.
It says that certain directories on the SYS logical host are
found on CD, in the same places as they are found under
release-6 (these files are those which do not change be-

198 Lisp Lore

tween releases, such as microcode files and fonts.) Every-
thing else is found in the corresponding directory on
another physical host, namely the Lisp machine named QX.

e As must be obvious, logical hosts do not necessarily cor-
respond to single physical hosts. You can spread the files
out to as many different hosts as you like. They needn’t
even be the same type of host: you could choose to keep
some files on, say, a Lisp Machine, and others on a VMS,
Unix, TOPS-20 or Multics host.

Given a pathname for some logical host, the mapping tophysical
pathname is carried out by sending the logical pathname the
:translated-pathname message (you can send this to physical
pathnames as well; they merely return themselves). So, for ex-
ample, under release 7, the file which defines pathnames

(#P"SYS:10;PATHNM.LISP") is translated into
#P"QX:>sys>jo>pathnm.lisp” at my site; the font file
#P"SYS:FONTS; TV ;CPTFONT.BFD" becomes

#P"CD:>sys>fonts>tv>cptfont.bfd”.

8.4 Making Other I/O Streams

Earlier, we showed you how file streams are made, using the
function open. Here are some other stream-making functions
to get you started hacking:

¢ hardcopy:make-hardcopy-stream — a stream whose out-
put is printed on a printer.

e tape:make-stream — a tape stream, supporting either in-
dustry standard 9-track tapes or 1/4-inch cartridge tapes.

e si:make-serial-stream - an RS-232 port, supporting
asynchronous devices up to 19,200 baud.

Streams and Files 199

s tv:make-window — a window on the screen.

» zwei:open-editor-stream — a stream which is attached to
an editor buffer.

Common Lisp provides a number of primitives for creating
streams:

* make-concatenated-stream — used to make a single input
stream out of a set of streams. Taking input from this
stream in turn takes input from the underlying streams
until each is exhausted. When the last one is at end-of-
file, the concatenated stream returns EOF.

» make-broadcast-stream — used to make a single output
stream which broadcasts to several underlying streams.

» make-string-input-stream - makes a stream which takes
its input from the string provided.

¢ make-string-output-stream - makes a stream which
places its output into a string.

8.5 Fun and Games

From The Hacker’s Dictionary, Guy L. Steele, Jr., et al:

LOGICAL adjective.
Conventional; assumed for the sake of exposition or con-
venience; not the actual thing but in some sense equivalent
to it; not necessarily corresponding to reality. -

Example: If a person who had long held a certain post (for
example, Les Earnest at Stanford) left and was replaced,
the replacement would for a while be known as the “logical

200 Lisp Lore

Les Earnest.”” Pepsi might be referred to as ‘“logical
Coke” (or vice versa).

At Stanford, “logical” compass directions denote a coor-
dinate system in which ‘“logical north” is toward San Fran-
cisco, “logical south” is toward San Jose, “logical west” is
toward the ocean, and “logical east” is away from the
ocean — even though logical north varies between physical
(true) north near San Francisco and physical west near San
Jose. The best rule of thumb here is that El Camino Real
by definition always runs logical north-and-south. In giving
directions, one might way, “To get to Rincon Tarasco Res-
taurant, get onto EL CAMINO BIGNUM going logical north.”
Using the word “logical” helps to prevent the recipient
from worrying about the fact that the sun is setting almost
directly in front of him as he travels “north.”

A similar situation exists at MIT. Route 128 (famous for
the electronics industries that have grown up along it) is a
three-quarters circle surrounding Boston at a radius of ten
miles, terminating at the coast line at each end. It would
be most precise to describe the two directions along this
highway as being “clockwise” and “counterclockwise,” but
the road signs all say “north”” and “south,” respectively. A
hacker would describe these directions as “logical north”
and “logical south,” to indicate that they are conventional
directions not corresponding to the usual convention for
those words. (If you went logical south along the entire
length of Route 128, you would start out going northwest,
curve around to the south, and finish headed due east!)

Streams and Files 201

8.6 Problem Set

Questions

1. Write a function which prints an arbitrary format string
into a file in your home directory; it should take the
name of the file as an argument, and the type of the file
should be “text.” The rest of its arguments should be
just like format: control string and optional arguments.

2. Write a similar function which does the same thing, only
it appends the new output to whatever is already in the
file.

3. Add a form to your init file which records all your logins;
it should put the time and the fact that you’ve logged in
in the file "login-history.text” in your home directory.

4. (Requires more research) Add a form to your init file
which records all your logouts. It should put it in the
same file that your login history goes in.

5. Suppose there is a binary file whose contents are numbers
in the range -2,147,483,648 < n < 2,147,483,647 (32-bit
integers). How can we read the file into an array of fix-
nums? It’d be convenient to open a 32-bit binary stream
to the file and just do :tyi’s or a :string-in, but most file
servers won’t allow a 32-bit stream. We’ll have to use a
16-bit stream. One strategy is to read two 16-bit bytes at
a time and build a 32-bit number by shifting one number
16 bits and adding them together. This will work, but it’s
awfully slow. Can you think of anything better? (Hint:
think about displaced arrays of different types.)

202 Lisp Lore

Answers

1. The trick here is to use the Lisp function apply to pass a
&rest argument to format:

(defun format-into-file (name format-string
&rest format-args)
(with-open-file (file (send (fs:user-homedir)
:new-pathname
:raw-name name
:canonical-type :text)
:direction :output)
(apply #’format file format-string format-args)))

2. Almost the same, but you need to specify the :direction
and :if-does-not-exist keyword arguments.

(defun format-append-file (name format-string
&rest format-args)
(with-open-file (file (send (fs:user-homedir)
:new-pathname
:raw-name name
:canonical-type :text)
:direction :append
:if-does-not-exist :create)
(apply #’format file format-string format-args)))

3. Place this into your init file, and you have it:
(format-append-file "login-history"
"Login by ~A at “\\datime\\"Z%"

S1:%XuUserk)

4. The variable sys:logout-list is provided for this very pur-
pose.

Streams and Files 203

(push ’(format-append-file
"lTogin-history"
“Logout by ~A at ~\\datime\\~%"
S1:xuserx)
sys:logout-1ist)

5. The slow way:

(defun read-file-32-slow (file &optional array)
(with-open-file (stream file :element-type
' (unsigned-byte 16))
(unless array
(setq array
(make-array (floor (send stream :Tength)

2))))

(Toop for i from O

for c¢1 = (read-byte stream nil)

for c2 = (read-byte stream nil)

while c¢1

do (setf (aref array i) (+ c1 (1sh c2 16))))
array))

The fast way:

204 Lisp Lore

(defun read-file-32-fast (file &optional array32)
(with-open-file (stream file :element-type
’ (unsigned-byte 16))
(unless array32
(setq array32
(make-array (floor (send stream :length) 2)
:initial-value 0)))
(send stream :string-in nil
(make-array (x 2 (length array32))
:element-type ’(unsigned-byte 16)
:displaced-to array32))
array32))

9. The Calculator Example

This chapter is very much like the graph example two chapters
back — a later section contains a code listing, and this one
describes some of the new features' of the system used in the
code. This program is derived from a program originally writ-
ten by Dan Weinreb, and rewritten for Genera 7.0 by Mike
McMahon,

Once again, if your site has the tape for this book, you can load
the code by using the CP command Load System Calculator.
After the code has been loaded, start the program by typing
Select + The calculator frame will look something like figure
6.

9.1 The Program Frame

The calculator program simulates a hand-held calculator doing
“reverse Polish notation” (RPN) calculations. Thus, you would

1See hacker's definition at end of chapter.

205

206 Lisp Lore

2.7182817

@ ®@@®
@ ®E®
O D@ ®
GEnter (o O WD

Figure 6. Calculator program display window

key in the two arguments of an operator first, separating them
with Enter, as required, followed by the operator itself. In this
program, the ‘“keyboard” is a menu: you can click on various
“buttons” in the display. Also, the regular console keyboard
can be used to type in the same commands: each digit you type
is as if you had “pressed” (i.e., clicked on) the equivalent but-
ton; the other commands are as you see them, except that Enter
is typed with the Return key.

As in the previous example, the calculator program framework
was written with “Frame-Up” (Select Q) and then transferred
to the editor. Thus, most of it was written automatically.

The essential differences between this version and the last are:

e The command table includes keyboard accelerators. This
is how the one-character commands work. If you type
“3.14159” as input, it is exactly equivalent to clicking on
those characters in the calculator’s keyboard pane.

The Calculator Example 207

¢ The top-level is specified. This is not because we want to
specify the top-level function (we are using the default
one, after all), but because we want to turn off echoing.
You may recall that every time you clicked on a node for
setting its label, or moving it, etc., that the command was
echoed in the interaction pane. This is how to turn it off.

e The value pane uses incremental redisplay. More about
this in the next section. You can also see how to specify
the default character style for a pane in this description.

¢ The keyboard pane specifies :more-p nil. Otherwise,
when its redisplay function tries to write the bottom line
of the display, it might get stuck in a “**more**” break.

e This program definition uses the :size-from-pane option.
This is how the calculator winds up being only a couple
of inches on a side, rather than taking up the entire
screen.

9.2 The Redisplay

Using incremental redisplay is completely simple in this ex-
ample. The display has only one item which might need to be
updated. To do this, the program wuses the function
dw:redisplayable-format. For further information: See the
function dw:redisplayable-format in Programming the User In-
terface, Volume a.

The keyboard layout is somewhat more complicated. This
program could have used the pane-type :command-menu, ex-
cept its author wanted more complete control over the layout of
the menu:

208 Lisp Lore

e The command menu items aren’t all in the same charac-
ter style. In particular, the “Enter” key is printed using
the :large size, while the remainder are printed using
:very-large.

e The oval borders surrounding the items could not be dis-
played using the :command-menu pane type.

The function dw:program-command-menu-item-list takes a
program, and optionally a menu level, and returns two values.
The first is a list of command strings which need to be dis-
played. Its order is undefined. The second value is the presen-
tation type which must be used when presenting the command
menu items. If you present the command name using this
presentation type, they will translate into commands when
clicked on.

The remainder of the redisplay function is straightforward if a
bit complex. The keyboard layout comes from the keyboard
layout variable. The nested loops are used to display the
keyboard in the order shown in that layout. The normal table
layout macros are used (formatting-table et. al.), and the bor-
der is drawn with surrounding-output-with-border. The
character size is chosen based on whether the menu item is a
single character or a string.

This redisplay function could also have been written as a
method for the flavor calculator, as was the one for the value.
It didn’t need access to any of the instance variables, though,
so there was no reason to do so.

The Calculator Example 209

9.3 The Command-definition Macrology

Again, what’s going on here is that we want to adopt as much
of the command menu and keyboard accelerator technology as
possible without having to use command menus in the default
way. Here, the primary aim is to define the digit and arith-
metic command function only once; it would be trivial to write
a macro that created, say, ten digit commands.

The macro define-digit-command uses two lower-level macros
which do portions of the job that define-calculator-command
would do with its :menu-accelerator and
:keyboard-accelerator options:

¢ dw:define-command-menu-handler is used to add the
decimal string for the digit to the command menu at level
:top-level. The command menu item translates into the
com-digit command.

¢ cp:define-command-accelerator is wused to add the
character representing the decimal digit to the command
accelerator table for the command table. It, too, trans-
lates into the com-digit command.

Both of these macro invocations depend on the fact that the
name of the command table defined for a program is the same
as the name of the program.

The macro define-digit-commands uses define-digit-command
ten times, for each of the decimal digits. It is used at top level
in the next form.

define-arithmetic-command works the same way as
define-digit-command, except it translates its menu items into
com-arithmetic.

210 Lisp Lore

9.4 The Program

lisp-lore:examples;calculator;calculator-system.lisp

;:; =-*- Mode: LISP; Syntax: Common-lisp; Package: USER; Base: 10 —=*-—

(defpackage calculator
(suse scl)
(:colon~mode :external))

{defsystem calculator
(:default=pathname “lisp-lore:examples;calculator;™
:maintaining-sites :saf
:pretty-name “Calculator demo program*)
{:serial “calculator“))

The Calculator Example - 211

Iculator.li

;:: —%- Mode: LISP; Syntax: Common-lisp:; Package: CALCULATOR:; Base: 10; Lowercase: Yes ~%-

/¢ The program framework
(dw:define-program-framework calculator
iselect-key #\+
:command—-definer t
tcommand-table (:inherit—from nil :kbd-accelerator-p t)
:top-level (dw:default-command-top-level :echo-stream ignore)
:panes ((value :display :redlsplay-function ‘calculator-display-value
:incremental-redisplay t
:default-style ’ (:fix :roman :large)
theight-in-lines 1)
(keyboard :display :redisplay-function ‘calculator-draw-keyboard
iredisplay-after-commands nil
:more-p nil)) .
:label-pane nil
:size-from-pane keyboard

:state~variables ((current-value 0.0) ;The current value displayed.
(value~stack nil) :The stack of pushed values.
(entry—-state ‘new) ;State controlling meaning of digits.

)
)
;:; The redisplay method for the value pane
(defmethod (calculator-display-value calculator) (stream)
(dw:redisplayable-format stream “~F“ current-value))

/7 The layout of the calculator keyboard.

(defvar *cala-keyboard-layout® 7 (("74 “8% #gu wyw)
(#4n w5u wgu w_w)
(M1% w2w w3w www)
(“Enter™ ®Q% =, » w/w)))

:¢7 The redisplay method for the keyboard pane

(defun calculator-draw-keyboard (program stream)

(multiple-value-bind (item~list presentation-type)

(dw:program~command-menu-item-list program)
(formatting-table (stream :inter-row-spacing 5 :inter-column-spacing 10)
(dolist (sublist *calc-keyboard-layout*)
(formatting-row (stream)
(dolist (name sublist)
(unless (member name item-list :test #’equal)
(error “The item ~S was in the layout but not a defined menu item." name))
(formatting—cell (stream :align :center)
(dw:with-output-as-presentation (:object name :type presentation~type
tstream stream
:isingle-box t :allow-sensitive-inferiors nil)
(surrounding-output-with-border (stream :shape :oval)
(with-character-size ((if (> (string-length name) 1)
:large :very-large)
stream
:bind-line-height t)
(write-string name stream)))))))))))

212 Lisp Lore

;:: The command associated with each digit command.
(define-calculator-command (com-digit) ((value ’number))
(cond ((eq entry-state ‘new)
;: Digit means start building a new number.
(push current-value value-stack)
(setq current-value (float value)
entry-state ‘continue))
({eq entry-state ‘new-no-push)
:; Digit means start building a new number but don’t push.
(setq current-value (float value)
entry-state ‘continue))
((eq entry-state ’continue)
:: Digit means continue building the number.
(setq current-value (+ (* current-value 10.0) value)))
({numberp entry-state)
:; Digits means continue building fraction part of the number.
(incf current-value (* entry-—-state value))
(setq entry-state (* .1 entry-state)))))

;;: A helper macro for defining digit commands
(defmacro define-digit-command (num)
*(progn
(dw:define-command-menu~handler (, (format nil *~D"™ num) calculator (:top-level))
9]
* (com=digit ,num))
(cp:define~command-accelerator , (intern (format () "COM-~D* num)) calculator
, (digit=char num) () ()
* (com~digit ,num))})

;:; The macro which actually defines all the digit commands.
(defmacro define-digit-commands ()
“(progn . , (loop for n from 0 to 9 collect *(define-digit-command ,n)}})

s:; Do it.
{define~digit-commands)

2:; The "." command
(define-calculator-command (com-decimal-point :menu-accelerator *.* :keyboard-accelerator #\.
¢
(when (eq entry-state ‘new)
{push current-value value-stack))
(when (member entry-state ’ (new new-no-push))
(setq current-value 0.0))
{(when (not (numberp entry-state))
(setq entry-state .1}))

The Calculator Example 213

/¢; The arithmetic commands: +, =, *, /. Depends on the command name
¢/7¢: belng the same as the function name.
{(define-calculator—command {(com—arithmetic)
{(fun ’asys:function-spec))
(setq current-value (funcall fun (or (pop value-stack) 0.0) current-value))
(setqg entry-state ‘new))

/¢: A helper macro for arithmetic command definitions
(defmacro define-arithmetic-ccmmand (fun)
“{progn
(dw:define-command-menu-handler (, (string fun) calculator (:top-level))
(4]
* {com—arithmetic , fun))
(cp:define-command-accelerator , (intern (format () “COM-~S* fun)) calculator
, {(character fun) () ()
* (com—arithmetic ,fun))))

2¢; The arithmetic command definitions
(define-arithmetic-command +)
{define-arithmetic~command =-)
(define-arithmetic-command W)
(define-arithmetic-command /)

;7; The enter command.
(define-calculator nd (com-ent imenu-accelerator “Enter™
:keyboard-accelerator #\Return)

(¢]
{(push current-value value-stack)
(setq entry-state ’new-no-push))

214 Lisp Lore

9.5 Fun and Games

From The Hacker’s Dictionary, Guy L. Steele, Jr., et al:

Feature

1. An intended property or behavior (as of a program).
Whether it is good is immaterial.

2. A good property or behavior (as of a program). Whether
it wasintended is immaterial.

3. A surprising property or behavior; in particular, one that
is purposely inconsistent because it works better that way.
For example, in the EMACS text editor, the “transpose
characters” command will exchange the two characters on
either side of the cursor on the screen, except when the
cursor is at the end of a line; in that case, the two
characters before the cursor are exchanged. While this
behavior is perhaps surprising, and certainly inconsistent,
it has been found through extensive experimentation to be
what most users want. The inconsistency is therefore a
feature and not a BUG.

4. A property or behavior that is gratuitous or unnecessary,
though perhaps impressive or cute. For example, one fea-
ture of the MACLISP language is the ability to print
numbers as Roman numerals. See BELLS AND WHISTLES.

5. A property or behavior that was put in to help someone
else but that happens to be in your way. A standard joke
is that a bug can be turned into a feature simply by
documenting it (then theoretically no one can complain
about it because it’s in the manual), or even by simply
declaring it to be good. “That’s not a bug; it's a
feature!”

The Calculator Example 215

The following list covers the spectrum of terms used to
rate programs or portions thereof (except for the first
two, which tend to be applied more to hardware or to the
SYSTEM, but are included for completeness):

CRASH . BUG CROCK WIN
STOPPAGE LOSS KLUGE FEATURE
BRAINDAMAGE MISFEATURE HACK PERFECTION

The last is never actually attained.

10. Systems, Storage and Errors

This chapter is for people who want to write applications
programs and package them professionally. I will be discussing
topics which programmers need to understand eventually if they
want to write completely self-contained software that is easy to
install and run and doesn’t scare its users.

10.1 Systems

The System Construction Tool (SCT) provides a mechanism for
keeping track of multiple files which together make up a single
program. You define a system with the defsystem macro; a
system is made up of files and, potentially, other systems. You
can compile a system with the CP command Compile System,
and load a system into your Lisp environment with Load System.

Systems can also be distributed on tape to other sites. To do
this, you would use the Distribute Systems command. Loading
such a tape is performed using the Restore Distribution com-
mand. :

217

218 Lisp Lore

10.1.1 Deflning a System

The defsystem macro is used to define a system. Unlike that
for previous releases, the documentation for defsystem is both
comprehensive and easy to understand. defsystem’s syntax is
as follows:

(defsystem name
(:option1 value1
:option2 value2 ...)
module1
module?2

L)

The options are used to declare the overall attributes of the
system. A few of the interesting ones include:

:pretty-name how to display the name of this system in the
herald.
:bug-reports to whom to send mail when there is some-

thing wrong with this system.

:patchable whether the system can be changed without
having to recompile the whole thing. See the
section “Patching e System,” page 222

:default-package what package to use if the source files don’t
say.

The modules describe the files (and systems, if any) which are
part of the system. Strictly speaking, a module defines the
operations which are performed on those files, such as compil-
ing and loading them. To do this, modules have a type, which
actually defines the operations. The default type is :lisp, al-
though that can be changed with the option
:default-module-type.

Systems, Storage and Errors 219

In addition, modules define dependencies, i.e., which operations
must be performed before an operation may be performed on
the files in this module. For example, a file full of macros
might need to be loaded before another file which uses those
macros can be compiled.

Module descriptions come in two varieties. “Short form”
. module descriptions specify files and their dependencies in a
simple syntax. Most of your module descriptions will be in this
form. “Long form” module descriptions are windier, but allow
you to specify completely the type of files, the permissible
operations, and the exact dependencies, when the short form
doesn’t do it completely.

Here is a short-form example from the documentation;

(defsystem adventure
(:default-pathname “games: code;"
:default-package adventure)
(:serial "defs" “macros”
(:parallel "things" "rooms")
“parser"))

This definition says that to compile this system, you first com-
pile the file games:code;defs.lisp, then load it; then compile
and load macros, then compile and load the files things and
rooms in unspecified order, and then compile the file parser.

You will need to use a long form module description to do any
of the following:

1. Load one or more files into a different package from the
rest of the system.

2. Specify a different module type from the rest of the sys-
tem (the default module type is :lisp; others are shown in

220

Lisp Lore

the documentation. See the section “defsystem
Operations” in Program Development Utilities.)

Specify a more complicated dependency relationship than
is possible using :serial and :parallel.

Specify that a file need only be loaded if you need it for
some other operation; e.g., if you only need macros for
compiling your other files, but not for loading them.

Here is a moderately complicated example from the IP-TCP sys-
tem declaration file:

(defsystem ip-tcp

(:maintaining-sites :scrc
:pretty-name "IP-TCP"
:default-pathname "SYS: IP-TCP;"
:advertised-in (:herald :disk-1label)
:patchable t
:distribute-sources t
:distribute-binaries t
:source-category :basic)

(:module components (tcp tcp-service-paths

ip-tcp-applications
ip-tcp-doc)
(:type :system))

(:module notice-text “"sys:site;notice.text”

(:type :text))

(:serial "chaos-unc-interface”

“ip-global”

(:parallel "ip" "ip-routing")
(:parallel "icmp" "udp” "egp")
components

notice-text))

Systems, Storage and Errors 221

(defsubsystem tcp
(:default-pathname "SYS: IP-TCP;*
:pretty-name “TCP*
:distribute-sources t
:distribute-binaries t
:source-category :basic)
(:module text-files "tcp-structure”
(:type :text))
(:serial (:parallel text-files "tcp-defs")
“tcp-error”
"tcp"
“tcp-user”
“tcp-debug”
“distribution"))

[There are three more subsystems declared in this file, namely
tcp-service-paths, ip-tcp-applications and ip-tcp-dac.]

10.1.2 Compiling and Loading Systems

To compile your system, write your defsystem form into a file,
and use the CP command Compile System. Similarly, to load
your system, use the command Load System. Other operations
are currently only available with function interfaces:
sct:hardcopy-system, for example.

Of course, I have begged one important question: how does the
Lisp Machine find the file in which you’ve put your defsystem
form? This is a job for a file in the site directory, SYS:SITE;
system-name.SYSTEM. This file should contain a sct:set-system-
source-file form. Since it’s good practice to define systems
using logical pathnames, that file might also want to include a
fs:make-logical-pathname-host form.

For example, here is the file which describes where to find the

222 Lisp Lore

“Grapher” example system:1

;33 —%- Mode: LISP; Syntax: Common-Lisp; Base: 18 -x-
(fs:make-logical-pathname-host “LISP-LORE")

(sct:set-system-source-file
“GRAPHER"
“LISP-LORE : EXAMPLES ; GRAPHER ; GRAPHER-SYSTEM")

It causes the logical host LISP-LORE to be defined the first time
it is loaded. Then it informs SCT where to find the defsystem
form for that system.

10.1.3 Patching a System

When a system has been declared patchable, that means that
you can make incremental changes to it. These changes, called
patches, are loaded after the system itself, and make modifica-
tions to the Lisp world, thus redefining whatever functions, etc.,
have been patched.

To create a patch, use the editor command m-X Start Patch.
You will be asked for the name of the system you wish to
patch. After your patch has been started, you may add as
many definitions to the patch from your editor buffers as you
wish. When you’re done, the command m-X Finish Patch writes
out the patch file, compiles it, and updates the patch directory.
After you’re done patching your system, you should remember
to save the file buffers you change; otherwise, next time you
recompile the system you will lose the changes you’ve made.

1The rest of the system is in Chapter 7. Logical pathnames were discussed in
chapter 8. See the section “Logical Pathnames,” page 195.

Systems, Storage and Errors 223

How do you add patches? Well, first you should modify the
definitions in your editor buffer. Compile them with c-sh-C
and test them out, to make sure they work as you expect.
Next, use the m-X Add Patch command. This command adds the
definition at the cursor to the patch file. As it does so, it asks
you for a comment about the change you are making.

You can also add patches wholesale. You can use m-X Add Patch
with a region set to add the contents of the region to your
patch. Also, the command m-X Add Patch Changed Definitions
and its relatives will scan one or more buffers to see what
youw've changed, and offer to patch those definitions, one at a
time.

When you’re done, use the command m-X Finish Patch. Your
patch will be written out and compiled, and the system patch
directory will be updated to remember the patch comments.

Sometimes you decide afterward that a patch was not correct
after all. You can get rid of it before you finish it with m-X
Abort Patch. If you've already finished it, you can still abort it,
but first you have to pretend you never finished it: use m-X Re-
sume Patch. You can also correct mistakes in patches with m-X
Edit Patch File.? After you save the file, you should compile it
with m-X Recompile Patch rather than m-X Compile File or the
CP equivalents, because m-X Recompile Patch will compile it
with the right logical pathname inside the file.

If a system has been patched since you loaded it, you can add
its patches to your world. Use the Load Patches CP command.
If a patch has been recompiled, you might like to use m-X
Reload Patch in the editor.

2Of course, you can always just patch the same definition again with the correct
version.

224 Lisp Lore

10.2 Storage Allocation

Every Lisp program creates and discards objects. The nature
of Lisp is such that programmers need not care about storage
allocation, as when you let go of an object, it just *“disappears.”

Well, so much for a nice fantasy. While all of this is true,
storage allocation can be one of the nastiest sources of in-

efficient program execution. Let’s discuss storage allocation
more fully.

10.2.1 Allocation and the Garbage Collector

Your programs don’t have to do anything interesting to use
storage allocation. Pretty much everything you do will create
new Lisp objects. Every time you create a new -object, it gets
put in the default place. The garbage collector (GC) will come
along eventually and reclaim the objects you are no longer
using. This is the ideal Lisp allocation scheme. After all, why
burden the programmer with details she left behind with
Fortran?

There are two inefficiencies with using this scheme. First of
all, allocating objects takes time, and might cause page faults.>
Secondly, the garbage collector itself takes time, and also might
cause page faults.

The other problem with most garbage collectors are their un-
predictability. The garbage collector can start up at any time

3Page faults are what happens when you refer to a part of your environment which
is not actually in the machine’s normal, physical memory. The machine comes to a
screeching halt, orders up the page of virtual memory containing that object from the
disk, and walts for the disk to give it the data. This can take a long time, on the order
of milliseconds. It's not good for performance to take many page faults.

Systems, Storage and Errors 225

the allocator decides that storage is getting tight, and can take
an arbitrarily large amount of your computing resources to do
its job. While a great deal of thought has gone into the con-
trols for the GC, once in a while it will start up right when
you need as much Lisp Machine as you can get.

In recent releases, Symbolics has added an optimization of the
standard garbage collector, called the ephemeral GC, or EGC.
Its job is to clean up potential garbage in recently allocated
storage, and be as quick and unobtrusive about it as possible.
It uses very little of your machine resources, and can therefore
be run frequently, without your noticing it. In fact, for many
applications it actually improves the overall performance of your
program, because it tends to bring related structures closer

together in memory, reducing the number of page faults you
take.

The full-blown, dynamic GC is responsible for the rest of the
garbage, and gets run as infrequently as possible. Many people
turn the EGC on and the Dynamic GC off. I usually run my
Lisp Machine that way. The EGC, while just as unpredictable
as the Dynamic GC, is nearly always over before you notice it.
Most aaplications only need the Dynamic GC if they are con-
sing up” a lot of objects. A compromise between always run-
ning the Dynamic GC and running with only the EGC is to
cause a Dynamic GC at some time when you don’t care about
how much machine it uses up. The function gc-immediately
will do just that; you can either run it just before you go home
at night (or whenever you do go home), or you can have a
background process which wakes up once a night and decides if
you’re not using your machine, and then runs the GC.

4This hacker's term is defined in the next chapter. See the section “Fun and
Games," page 277.

226 Lisp Lore

10.2.2 Areas

One way to decrease the number of page faults your machine
takes is to increase the number of useful objects you get with
each one. In general, virtual memory systems behave better
when you increase the locality of your references between ob-
jects. Thus, it is better to have related objects allocated
together, if possible.

Normally, you don’t take control over where your objects get al-
located. There is a way to do so, however. What you do is to
tell the system what area to use when it allocates your objects.
An area is a storage allocation space. While objects in the
same area are not guaranteed to reside on the same page, the
likelihood is much greater than if you don’t take any control
over allocation at all. Also, the paging system is more efficient
for objects residing on adjacent pages, since a page fault will
often cause several pages on one or both sides of the missing
page to get read in at the same time, which is faster than
reading them in one at a time.

To create an area, use the function make-area. It takes a
number of keywords; the only required one is :name, which
must be a symbol. The value of that symbol is set to a handle
to the area, called its area number. You will probably only
want to create an area once, perhaps using defvar or by
making it be a :once initialization.®

Most of the storage allocating functions either permit you to
specify the area directly or have variants which take an area as
an argument. For example, make-instance and make-array
have :area keyword arguments. cons and list have twin func-
tions named cons-in-area and list-in-area.

5See the section “Introduction to Initializations” in Internals, Processes, and
Storage Management.

Systems, Storage and Errors 227

For example:

(defvar xmy-areax (make-area :name ’xmy-areax))

(defun create-a-foo (&rest options)
(apply #’make-instance ’foo :area xmy-areax options))

There is also a global variable named *default-cons-area*,
which is used if you don’t specify an area in which to allocate
storage. You can bind that variable to your area, but be care-
ful: other *“system” allocations can go on behind your back, and
get stuck into your area.

10.2.3 Resources

Resources are actually quite well documented in volume 8, so I
will just discuss the highlights.

In cases where a program creates and then discards large ob-
jects at a high rate, it can be worthwhile to do the storage
management manually, rather than relying on the garbage col-
lector eventually to clean up. The resource facility provides a
simple way to do so, and is widely used throughout the system
software. The window system, for example, allocated and frees
certain kinds of windows (which are very large objects)
moderately often. It uses resources for this.

For each resource defined, there is conceptually a list of free
objects “in” that resource. Allocating an object from a resource
involves checking the list of free objects and returning one if
any is suitable; if not, a new one is created and returned.
Deallocating an object involves placing the previously allocated
object in the free list. The storage space occupied by a deal-
located object is not really freed in the sense that the GC can
claim the space; it does not become available to be used as part
of a newly created Lisp object. The original object continues to

228 Lisp Lore

occupy the storage space, but may itself be reused by being al-
located again.

The four functions and macros which compose the programmer
interface to the resource facility are:

¢ defresource, for defining new resources;

¢ allocate-resource, for allocating an object from a
resource;

¢ deallocate-resource, for freeing an allocated object; and

¢ using-resource, which temporarily allocates an object and
then deallocates it.

A call to defresource looks like this:

(defresource name paramelers
keyword value
keyword value
)

name should be a symbol, which will be the name of the
resource. parameters is a (possibly empty) list of pseudo-
arguments which will be used to determine which free objects
are actually suitable, and to allow the constructor to create a
good one if none are free. For example, a resource of two-
dimensional arrays might have two parameters, the number of
rows and the number of columns. When allocating an object
from this resource, you could specify how many rows and
columns it should have. The free list would be filtered for ar-
rays with the requested dimensions — if all arrays on the free
list had the wrong dimensions, a new one would be created.

There are seven possible keyword options. Only one, the
:constructor option, is required.

¢ :constructor — defines the function which creates a new
object.

Systems, Storage and Errors , 229

e :initializer — a function which is called when an object is
allocated, whether newly created or reused. If not
specified, it defaults to a no-op.

s :checker — a function which determines whether it is safe
to allocate an object. All objects in a resource, whether
the resource facility has been told they have been deal-
located or not, are considered by the checker; the default
checker tests for whether the object has been deallocated.

e :matcher — a function which determines whether a free
object is suitable, according to the parameters.

o :finder — a function which bypasses the entire allocation
scheme: the checker, matcher and constructor are all
folded into this one function.,

s :initial-copies — a number which tells the resource
facility how many objects to create in advance.

o :free-list-size — a number which informs the resource
facility how many objects you expect to create. The “free
list” is actually kept as an array which contains both al-
located and deallocated objects, and this number is the
default array size. :free-list-size is actually a bit of a
misnomer.

The rest of the resource facility is concerned with allocating
and deallocating objects:

¢ allocate-resource resource-name &rest parameters
An object is allocated from the specificed resource, match-
ing the given parameters. A second value, a resource
descriptor, is returned, but may be safely ignored.

o deallocate-resource resource-name object &optional

230

Lisp Lore

descriptor

The object is returned to the resource’s free-list. If you
saved the resource descriptor from allocate-resource,
passing it back now will make deallocating much faster.

using-resource (variable resource parameters ...) body ...
This macro, which .calls allocate-resource and
deallocate-resource, is preferred to calling those two func-
tions directly. The body forms are evaluated inside a con-
text where variable is bound to an object allocated from
resource with the specified parameters. The object is deal-
located at the end. An unwind-protect is used to
guarantee that the object is deallocated; using-resource
returns the value of the last form in the body.

Now an example. We define a resource of raster arrays, with
parameters for the number of rows and columns, which default
to 128 each. A matcher is provided which accepts any array
whose dimensions are at least as great as the given parameters
(the default matcher would require that the dimensions be ex-
actly the same, meaning that we would very rarely reuse an
object.) And an initializer fills the array with zeros.

(defresource sloppy-raster

(&optional (rows 128) (columns 128))

:constructor (make-raster-array rows columns

:element-type
’ (unsigned-byte 1))

:matcher (multiple-value-bind (width height)

(decode-raster-array object)
(and (2 columns width) (2 rows height)))

:initializer (bit-xor object object object))

And, to use our resource:

Systems, Storage and Errors 231

(defun mangle-window (window)
(multiple-value-bind (width height)
(send window :inside-size)
(using-resource (sheet-array sloppy-raster width height)
(send window :bitblt-from-sheet tv:alu-ior
width height @ 8 sheet-array 8 0)
(mangle-window-contents sheet-array)
(send window :bitblt tv:alu-ior
width height sheet-array 8 8 8 9))))

Debugging functions for wuse with resources include
deallocate-whole-resource, clear-resource and map-resource.
I encourage you to read the documentation for these functions
if you are interested.

10.2.4 Stack Allocation

There is one other place you can use to allocate objects you
know will be very short-lived. The stack can be used to hold
these objects.6 There is only one problem with this: you have to
be careful what you do with these objects you create, because
they go away when you return from the current function in-
vocation.

Let’s start with an example. Suppose you have a variable
named *search-space* which is ordinarily a list of all the
rooms you want to search for your algorithm. You might want
to restrict your search temporarily to, say, a list of three ob-
jects:

6There are actually three stacks which are managed by the Lisp Machine in
parallel: the control stack, which is used for function calling, arguments, and tem-
porary variables; the binding stack, which is used for special variable bindings, and
the data stack, which is only used for stack-allocated objects. You don't need to
understand this for the discussion which follows.

232 ‘ Lisp Lore

(defun search-apartment (object)
(with-search-restricted (1ivingroom bedroom kitchen)
(search-for object)))

Now, one way to do this would be to write your macro
with-search-restricted in the normal way:

(defmacro with-search-restricted ((&rest rooms) &body body)
*(let ((xsearch-spacex (list ,Brooms)))
,8body))

However, if you’re going to be doing this a lot, you don’t want
to create those lists every time you use this macro, only to be
dropped on the floor. Instead, you can allocate the list on the
stack:

(defmacro with-search-restricted ((&rest rooms) &body body)
*(stack-let ((xsearch-spacex (list ,@rooms)))
,@body))

In general, the macro stack-let knows how to deal with all
kinds of lists and arrays. In a future release, it is supposed to
know about instances as well. However, if stack-let doesn’t
know how to create the kind of object you want on the stack, it
will turn into a normal let.

Remember that warning about objects going away. It’s very
important that you not store any of these objects in permanent
storage, or return them as values from your functions. For ex-
ample, don’t do this:

(defun tear-up-rooms (livingroom bedroom kitchen)
(stack-let ((apartment (1ist 1ivingroom bedroom kitchen)))
(tear-up apartment)
apartment))

Systems, Storage and Errors 233

(it returns a stack object) or

(defun create-apartment (1ivingroom bedroom kitchen)
(stack-let ((apartment
(make-array 3
:initial-contents
*(,livingroom ,bedroom ,kitchen))))
(setq xthe-apartmentx apartment)))

(it stores a stack object in permanent storage) because your
Lisp Machine might crash or make the garbage collector very
confused.

10.3 Condition Handling

The condition system is also very well documented (See the sec-
tion “Conditions” in Symbolics Common Lisp: Language
Concepts.) Again, this section will just be an overview to get
you started.

The whole idea behind the condition system is that you should
be able to write your programs assuming that everything will
work properly, and then later provide other code which will be
used when something unusual happens. A condition is signalled
when such an event occurs.

A handler is a piece of software which is invoked when a con-
dition is signalled. Handlers can examine the condition and
determine the response to it: enter the debugger, retry using a
different argument, discard the attempt to do whatever caused
the error, and so forth. Handlers can be either global or
dynamic in scope. The system provides default global handlers
for all conditions: errors, for example, always enter the debug-
ger unless a dynamic handler overrides that response.

234 Lisp Lore

Certain conditions are errors, such as an attempt to divide by
zero, or to open a file which doesn’t exist. Other conditions
are not errors, but a program might like to know that they
have happened anyway, so as to make the machine do some-
thing other than what it usually does. These conditions include
an attempt to open a file when youre not yet logged into your
Lisp Machine, or when your Lisp Machine is about to ask you a
question. Perhaps your program has anticipated that you might
be asked a question, and “knows” the answer: it might provide
a handler which examines the question to make sure it’s the
right one, and then supplies the answer.

The condition mechanism is built on flavors, of course. There
are three ways to customize the condition mechanism for your
programs:

1. Signalling existing flavors of conditions within your code,
which may invoke the system’s default handlers or ones
that you’ve written.

2. Defining handlers for existing flavors of conditions which
may be signalled by system code.

3. Defining new flavors of conditions, which you may then
signal, and for which you may then write handlers.

10.3.1 Signalling Conditions

The mechanism for signalling conditions relies on flavors.
Each class of events corresponds to a flavor which is built on
the flavor condition. Signalling a condition involves creating
an object of the appropriate flavor and then running through
the appropriate handlers, finding one that will accept the con-
dition.

For example, when you attempt to divide by zero, the condition

Systems, Storage and Errors 235

object created is an instance of the flavor sys:divide-by-zero.
The instance variables of the condition object will contain infor-
mation that describe the event.

Every condition object has certain generic functions defined on
it. For example, dbg:report-string returns a string which the
debugger prints upon entry. dbg:report takes a stream and
prints that string on the stream (you can also use princ or for-
mat with ~A for this effect).

You can signal a condition with error or signal. If you want to
allow your handlers to do interesting things, you might try in-
vestigating signal-proceed-case. See the section “A Few
Examples,” page 240.

10.3.2 Handling Conditions

Each handler is defined to be applicable only for one flavor of
condition object. It is invoked by the signaller when a con-
dition of that flavor, or one built on it. The set of conditions a
handler can handle is thus determined by the flavor inheritance
mechanism. Dynamic handlers (i.e., not global ones) have
dynamic scope, so finding a handler for a given condition in-
volved stepping back through the stack and invoking handlers
which are applicable to that condition until one of them ac-
tually handles it. If no dynamic handler will accept the con-
dition, the signaller uses the global handlers instead.

There are several kinds of actions a handler can take.

¢ It may decline to handle the condition at all; in this case,
the signaller continues searching the stack or global
handlers for another handler.

¢ It may instruct the program to continue past the point
where the condition was signalled, possibly after correct-

236 Lisp Lore

ing the circumstances that led to the event being sig-
nalled. This is called proceeding.

e It may unwind the stack to the point where the handler
was bound, flushing the pending operations. This be-
havior is essentially equivalent to what you'd get with a
catch in place of the handler, and a throw - with the
correct tag — in place of the signalling of the condition.

e It may partially unwind the stack to some intermediate
point and re-execute from there. This kind of handler is
called a restart handler.

You can write condition handlers with one of the following spe-
cial operators: condition-case, condition-bind, condition-bind-
default or condition-call.” A special kind of handler is provided
with ignore-errors, which merely returns nil if any error is
signalled within its body. See the section “Bound Handlers” in
Symbolics Common Lisp: Language Concepts.

10.3.3 Creating New Condition Flavors

Condition objects are instances of the flavor condition. Two
more specialized flavors are built on top of condition:

¢ error — an error condition.

¢ dbg:debugger-condition — causes debugger to be entered
when signalled. This flavor is only here so you can write
handlers for error which don’t trap certain error con-
ditions, such as those that the debugger uses internally.
error is built on dbg:debugger-condition.

7Each of these has a conditional form, e.g., condition-bind-If, which only creates
a handler if a predicate you provide tests true.

Systems, Storage and Errors 237

You should probably make all your conditions be based on the
flavor error. :

All condition flavors must define a method for the generic func-
tion dbg:report.’3 It should take one argument, a stream, and
print its message on that stream.

Some program examples will appear later in this chapter. See
the section “A Few Examples,” page 240.

10.3.4 Restart Handlers

When a computation blows up into the debugger, a programmer
might want to allow the user to restart the process at a con-
trolled point, rather than just wherever it happened to die.
This is what a restart handler is for. A restart handler shows
up as one of the options in the debugger.

For example, suppose you’re copying a file via a network con-
nection and the remote host goes down. An error built on
sys:network-error would be signalled. Rather than trying to
pick up where the error is signalled, in general you would need
to open the file again from the beginning and start over.
Functions such as copy-file contain such restart handlers.

The basic restart handler is created with catch-error-restart.
You supply a set of conditions to which it applies. If the
debugger is entered and the user selects the corresponding op-
tion, catch-error-restart returns nil as its first value, and a
non-nil value as a second value. Otherwise, it returns the
value of its last form.

Fancier restart handlers can be written using error-restart and

8In old code, you might see a programmer define a method for the message
:report, which was the old way to do this.

238 Lisp Lore

error-restart-loop. I recommend you look at the documentation
for these. See the section “Restart Functions” in Symbolics
Common Lisp: Language Concepts.

[For advanced users: if you want to invoke restart handlers
from a handler established with condition-bind, you have two
choices: you can take pot luck and get whatever handler the
function dbg:invoke-restart-handlers chooses, or you can be
fancier. The restart handlers are in a global variable named
dbg:*restart-handlers®. They accept the following messages:

o :describe-restart stream — prints the string that appears
in the debugger for that restart handler.

¢ :handle-condition-p condition — tells you whether the res-
tart handler is supposed to handle the given condition.

e :handle-condition condition tag — invokes the restart
handler. How you get the tag is complicated. See the
source to dbg:invoke-restart-handlers.]

10.3.5 Proceeding

A cogent five-page discussion of what is involved in program-
ming proceedable errors is to be found in the documentation:
See the section “Proceeding” in Symbolics Common Lisp: Lan-
guage Concepts. 1 recommend reading it. I will include just a
few highlights here.

For proceeding to work, two conceptual agents must agree on a
protocol:

¢ The program that signals the error.

¢ The condition-bind handler that decided to proceed from
the condition, or else the user who told the debugger to
proceed.

Systems, Storage and Errors 239

The signaller signals the condition and provides a set of alter-
native proceed types. The handler choose from among the
proceed types to make execution proceed.

A proceed type is defined by giving the condition flavor a
sys:proceed method. Since sys:proceed methods are combined
with :case method combination, a condition flavor can have any
number of sys:proceed methods, each defining a different
proceed type. The first argument to the generic function
sys:proceed (after the condition object, of course) is a dispatch
argument which selects the actual method.

The body of the sys:proceed method can do anything it wants,
generally trying to repair the state of things so that execution
can proceed past the point at which the condition was signalled.
It may have side-effects on the environment, and may return
values (which will be returned by signal), so that the function
that called signal can try to fix things up. Its operation is in-
visible to the handler; the signaller is free to divide the work
between the function that calls signal and the sys:proceed
method as it sees fit.

An easy way to signal proceedable errors is with the macro
signal-proceed-case. This signals the error, providing only
those proceed types which it is willing to handle, and then dis-
patches on the returned value.

10.3.6 A Few Examples

(condition-case ()
(/7 ab)
(sys:divide-by-zero xinfinityx))

This form binds a handler for the sys:divide-by-zero condition,
and evaluates (/ a b) in that context. If the division finishes
normally, its value is returned from the condition-case. If b

240 Lisp Lore

turns out to be zero, the sys:divide-by-zero condition is sig-
nalled, and out handler is invoked, which simply causes the
condition-case to return the value of the symbol *infinity*.

(condition-case (result)
(do-something-interesting)
(error (format xerror-outputx
“Something intersting failed: ~—>7A7¢"
result))
(:no-error (do-something-else-to result)))

In this case, we call do-something-interesting with a condition
handler for all errors. If it works, we can do something else to
the returned value. Otherwise, we print the error message on
*error-output®.

(condition-bind ((sys:divide-by-zero
(1ambda (condition)
(sys:proceed condition
:return-values
(Tist xinfinityx)))))
(/7 a b))

has the same result as the first case above. The proceed type
.return-values for the condition sys:divide-by-zero takes a list
of values to return from the division instruction.

(defun copy-file-until-you-get-it-right (from-path to-path)
(1oop until (ignore-errors
(copy-file from-path to-path)
t)))

Systems, Storage and Errors 241

This is a simple program to retry copying a file until it suec-
ceeds,9 which is a handy thing to have when your network is
flaky:

(defun simple-copy-file (from-path to-path)
(error-restart ((sys:network-error)
“Retry copying ~A to ~A" from-path to-path)
(with-open-file (from from-path)
(with-open-file

(to to-path
:direction :output
:element-type (send from :element-type))

(stream-copy-until-eof from to)))))

This establishes a restart handler which retries to copy the file
if you have a network error. You would have to press Resume in
the debugger to invoke this restart handler.

Here is a sample program which uses proceeding. Some notes:

* Even though there are two proceed types for this error
flavor, only those which are explicitly listed in the
signal-proceed-case are offered to the user. If you don’t
want to allow all of the possible proceed types for a given
error, you don’t have to do so.

e When your proceed case wants to take values, you should
make them optional and allow your function to prompt for
them, if you ever want to use it from the debugger. The
debugger will not pass any values to your proceed method.

gSee hacker's definition at the end of the chapter.

242 Lisp Lore

(defvar xblock-colorsx ’(red blue green))

(defflavor block-wrong-color
(block color)
(error)
:readable-instance-variables
:initable-instance-variables)

(defmethod (dbg:report block-wrong-color) (stream)
(format stream "The block ~S was ~S, which was ~
an invalid color.”
block color))

(defmethod (sys:proceed block-wrong-color :add-new-color) ()
(push color xblock-colorsx)
(values :add-new-color))

(defmethod (dbg:document-proceed-type block-wrong-color
:add-new-color)
(stream)
(format stream "Add ~A to the list of valid colors” color))

(defmethod (sys:proceed block-wrong-color :ask-for-new-color)
(%optional (new-color
(accept ‘((member ,@xblock-colorsx))
:prompt “New Color")))
"Supply replacement color”
(values :ask-for-new-color new-color))

(defflavor block (location color)

0O

:initable-instance-variables)

Systems, Storage and Errors 243

(defmethod (make-instance block) (&rest ignore)
(unless (member color xblock-colorsx)
(signal-proceed-case
((new-color)
'block-wrong-color :color color :block self)
(:add-new-color)
(:ask-for-new-color (setf color new-color)))))

(defun make-block-force (color location)
(condition-bind ((block-wrong-color
(lambda (condition)
(sys:proceed condition
:add-new-color))))
(make-instance ’block :color color :location location)))

(defun make-block-valid-color (color location)
(condition-bind ((block-wrong-color
(Tambda (condition)

(sys:proceed
condition
:ask-for-new-color
(first xblock-colorsx)))))

(make-instance ’block :color color :location Tocation)))

10.4 Fun and Games

Flaky, Flakey adjective.
Subject to intermittent failure.
This use is, of course, related to the common slang use of
the word, to describe a person as eccentric or crazy. A
system that is flaky is working, sort of, enough that you
are tempted to try to use it; but it fails frequently enough
that the odds in favor of finishing what you start are low.
From The Hacker’s Dictionary, by Guy L. Steele, et. al.

11. The Card Game Example

This program grew out of a discussion I had with Muffy
Barkocy after seeing her Solitaire program for earlier releases.
The basic idea of this program is to provide a solitaire-program
substrate. The idea was to enable programmer to implement a
new solitaire game in an hour or so.

As before, if your site has loaded the tape that comes with the
book, do Load System Cards to load the code. Type Select
Square to get to the game itself,

There are four more-or-less independent parts of this system.
These are:

L the definitions of cards and card-playing behavior in
general;

2. the definition of *“places” in which cards are to be played
(and displayed);

3. the redisplay; and

4. the definitions of the various games which have been im-
plemented.

I will consider each of these in the sections which follow.

245

246 Lisp Lore

By the way, the card drawings were consed up1 using the Sym-
bolics Font Editor by Muffy Barkocy, with minor additions by
myself. They are stored in the font fonts:deck-of-cards. The
program display looks like figure 7.

11.1 Card Definitions

The basic parts of the card game database are cards and
card-decks. A card is implemented as a flavor instance, and
has a rank (a number between 1 and 13) and a suit (a keyword
symbol). Its other instance variables are all related to drawing
the card on the screen. The glyph is a number which is the
index into the font fonts:deck-of-cards of the glyph used to
draw the card. The color, draw-alu and overlay-alu instance
variables are used to draw the cards in color (the color im-
plementation will not be discussed in this chapter).

The two functions of interest in drawing cards are display-card
and erase-card-spot. The first draws a picture of the card in
its appropriate position (and color(s), as necessary). The second
clears the background away for the purpose of drawing the
card. Note that it draws a “black” glyph (the solid card back)
using either the “erase” alu (for B/W screens) or the “white”
alu (for color screens).

One other drawing primitive 1is also in the file.
display-empty-place is used for displaying other glyphs from
the card deck font. This is how card backs, white or black
spaces, and jokers are drawn, since they are not cards per se.

Card decks are arrays with structures in their leaders. This is

1See hacker's definition at the end of chapter.

247

window

lay

isp

Card game program d

The Card Game Example

Figure 7.

andur J3sn 1335N-13 LS4 [GZ:19:2T N"oN 8T STIIN
.(_wn:wgo.u&._wnmumz.uu_:mmmw.i.wv:mEEOQLw_._uowom o._.v /
.::wz"m-wm:ozuma:_omou:m_uuoo>oEnquEmﬁmucotzuugon{"z-wm:os"mnz_ouo...:m_u o>oz u._..om:on///
u/ /

7

...

U

oy

248 Lisp Lore

a common technique for adding structured data to arrays.
Making a structure of type :array-leader (or
:named-array-leader) gives you the structured data, and still
allows you to use aref on the array part. The two structure
elements, n-cards and next, are used, respectively, for allocat-
ing the right size array and for dealing out the next card in
the deck.

11.2 Presentation Types

There are several presentation types in this file. The card
presentation type was not used in this program, although it is
available for use by programmers who wish to use it to write
new games.

Its parser is the most interesting part. It uses accept recur-
sively, reading one of three types internally. These are:

e A rank, the string ‘“of’, and a suit (eg., “King of
Spades™).

e A rank followed by a suit (e.g., “Three Diamonds”).

e A suit followed by a rank (e.g., “Heart four”).

Note that the recursive call to accept provides the keyword ar-
gument :prompt nil. Try seeing what happens when you omit
this argument.

The two internal routines parse-card-description and find-card
are used to figure out the rank and suit from the input, and
look the card up (or create it), respectively.

The describer is used to prevent the default describer from get-
ting into the act. The describer for or presentation types goes
through, in loving detail, all the possible inputs. I decided that

The Card Game Example 249

this was undesirable.?

The remaining presentation types are used for presenting card
places on the screen. There are two types: card-places are
places where cards have actually been displayed. empty-places
are places where cards might be played.

11.3 Card Places

A card place is a data abstraction used to signify a place where
a card has been played, or where one might be played.

11.3.1 Basic Places

Each place has a (potentially empty) list of cards in it, called
its contents. Every place also has a number of rules associated
with it:

e addition rules determine whether it is legal to add a cer-
tain list of cards to that place.

e addition side effects cause things to happen when cards
are added to a place.

e removal rules determine whether it is legal to remove the
contents of a given place.

® removal side effects cause things to happen when cards
are removed from a place.

The basic-card-place flavor implements all of these. The three

2Try commenting it out and you'll see why.

250 Lisp Lore

methods which implement these are contents-may-be-removed,
contents-may-be-stored, and the :after method of
(setf place-contents). Note that you don’t want to perform
the side effects when you’re creating the card place object, so
the special variable *no-side-effects* is used to prevent that
from happening.

11.3.2 Presentation

Presenting the contents of a card place is the job of
self-presenting-mixin. This mixin presents two parts of the
place independently, namely the cards (the contents) and the
empty places. The reason it has to be so circuitous is that
some places will contain both cards and empty places, such as
stack-places, which contain some cards, and finally an empty
place at the bottom into which you might play one or more
other cards.

This mixin remembers the presentations for the cards and
empty places separately. One reason to do this is for the in-
cremental redisplay. The redisplay needs to remember where
every display is, so as to re-draw it as necessary. It also needs
to remember the presentations so as to erase those presen-
tations from the screen. It also uses an internal method of
presentations dw::presentation-mouse-sensitive-boxes to find
out exactly where the presentation is on the screen, so as to
“erase” them by overdrawing them with a background rec-
tangle. Highlighting and unhighlighting of card places is also
done using the information about the presentation itself.

Finally, this mixin is responsible for making sure that all
places whose contents have changed get redisplayed. It calls
the routine redisplay on itself and all its. superiors, which
schedules all those places for redisplay. It has a daemon on
the (setf place-contents) method for that purpose.

The Card Game Example 251

11.3.3 Caching

After I ran the game for a while, I discovered it was creating
and discarding lists and values all over the place. The mouse-
sensitivity testing was also invoking the addition and removal
rules methods quite frequently, and most of the time the result
of that calculation was being dropped on the floor.

Thus, I created two mixins, contents-remembering-mixin and
rules-remembering-mixin, which store the contents and results
of running the rules methods, respectively. These mixins do
not change the results of those methods, but just save the
values (and the conditions under which they are valid, in the
case of the addition rules) away for reuse.

11.3.4 Stacked Places

The normal card place, implemented with the flavor card-place,
can either be empty or hold exactly one card. The
place-contents method and its setf equivalent store and obtain
the contents in the ecard instance variable (the
empty-appearance 1.V. is what the place looks like when
empty, and can be any of the symbols in
empty-place-glyph-info or :invisible). In addition, the
contents-may-be-stored method enforces the requirement that
only a single card may be stored in a one-card place, and then
only if it’'s empty. card-place also has methods for
present-contents and present-empty-spaces, which hook it up
to self-presenting-mixin.

However, in many solitaire games, you actually want to have
more than one card in a place, and have them behave as a
stack which must be moved together or not at all. This is im-
plemented using a stack-place instance. A stack place only
remembers two things, just like a cons: the head of the list and
the rest. When you ask for the contents of a stack place, it

252 Lisp Lore

returns a list whose head is the head card, and whose cdr is
the contents of the rest of the stack. Setting the contents of a
stack-place involves making new instances for the places which
represent the rest of the stack, much akin to creating new cons
cells when you copy a list.

One peculiarity of stack places is the way they present them-
selves. It’s done recursively: first you present the card at the
top of the stack, and then present the rest of the stack. With
the whopper on present-self in the mixin
self-presenting-mixin, this causes the overlapping presentations
to become part of the overall presentation. Thus, when you
point the mouse at the (presumably partially overlapped) card
at the top of the stack, the whole stack becomes mouse-
sensitive (assuming it’s legal to remove the contents of the
place).

A minor variant of a stack-place is a
stack-with-face-down-cards-place. In addition to all the other
attributes of a stack place, a stack place with face down cards
has a special removal side-effect: if there are any face-down
cards, one of them becomes the new contents of the place. The
Spider game uses this kind of place for each of its piles.

11.4 The Interactive Program

The interactive part of the program is defined using the macro
dw:define-program-framework, which is again written using
the layout designer ‘“Frame-Up” (Select Q). The command
table claims not to inherit commands from any other command
table; actually, the :inherit-from list is supplied at run time,
and depends on the game you’re playing.

Once again, we have turned off command echoing. The echo is
very distracting.

The Card Game Example 253

There are two command menus in the window layout. One of
them, the menu for the :games menu level, will contain com-
mands which start different kinds of games. The other is used
for normal commands.

11.4.1 Games

The state variable of a card table program is the current game.
Since this variable is used in a number of different contexts, I
have defined three macros which can always be used to get at
it. They are both called current-game. One is a vanilla def-
macro, and is used in most code outside of the system. The
others are defined with defmacro-in-flavor, and make the game
accessible from inside methods of the program itself (e.g.,
commands) and from methods of the game (where, unsurpris-
ingly enough, the macro expands into a reference to self?).

Each game instance is a flavor defined on the low-level flavor
basic-game. The basic game flavor remembers several inter-
esting bits of state:

» A list of card places which are to be displayed for the
game.

o A list of card place descriptions for the game. When you
create a game, this list is filled in wusing the
make-card-place-descriptions method of the game. This
list, in turn, is used to create the list of card places, and
also contains information about where they are to be dis-
played.

» A pair of card decks, one “raw” and one shuffled. The
latter is made by calling shuffle-deck on the former at
the beginning of each game.

o A “place to move:” when you click on a card place whose

254 Lisp Lore

contents you want to move, but have not yet moved it by
clicking on the empty place you want to move them to,
the “from” place is remembered here. The macros
place-to-move-valid and place-to-move permit access to
this variable from whatever code you happen to be run-
ning.

Each time you start a new game, you re-make all its card
places from the card place descriptions. The method
make-card-place is defined using the :case method combination
type. The three common ones are defined on basic-game:
:card, :stack and :stack-with-face-down-cards.

A few commands are defined for all games. The commands
which allow you to specify the “from” and “to” places for a
move, for example, are defined here. The “Oops” command,
meaning that you didn’t really mean you wanted to move that
card, is also defined. The “new game” command is here, and
also the “next round” command. Finally, the command which
allows you to move the game to the color screen is also defined
here.

Finally, the macro define-game is defined here. This macro
causes the following definitions to be done:

e A command table for the command is created.
e A game flavor is defined.

e A command definer for the game is created.

e A command which selects the game is defined.

All game definitions begin with an invocation of define-game.

The Card Game Example 255

11.4.2 Place Display

The game board pane is defined to have a redisplay method
named display-game-board, which is invoked after each com-
mand. It explictly says that this function is an incremental
redisplay function, but doesn’t use the system-supplied redisplay
functions (:incremental-redisplay :own-redisplayer is how you
say this). I didn’t use the :incremental-redisplay t mechanism
because the normal redisplay technology doesn’t work for over-
lapping displays.

The variable *redisplay-list* contains a list of places which
must be redisplayed, because their contents have changed.
Items are placed on this list by the fuction redisplay. The
primary caller of this function is the setf method for self-
presenting places. Any function which wants to force a com-
plete redisplay calls the function complete-redisplay, which
schedules a complete redisplay.

The display function for the game board-determines whether a
complete redisplay is to be done; if so, it erases the window
(using the :clear-history message), draws the background rec-
tangle, and tells the game to display itself. If an incremental
redisplay can be done, only those places on the redisplay list
are told to do so.

256 Lisp Lore

11.5 The Program

lisp-lore:examples;card-game;card-system.lisp

;::; =%*- Mode: LISP; Syntax: Common-lisp:; Package: USER: Base: 10 —-*-
{(defpackage cards

(tuse SCL)
(:colon-mode :external))

(defsystem cards
(:patchable t
:default-pathname "lisp-lore:examples;card-game;™
:maintaining-sites :ssf
:pretty-name "Card demo program")
:module font ("deck-of-cards®™) (:type :font))
module rsl-games ("gaps—game" "spider-game"”))
module muffy-games ("baker’s-dozen-game" “canfleld-game" "klondike-game"))
module muffy-games-2 ("calculation-game"))

(
(
(
€
(:serial "card-definitions”

"dw-patch" : Adds dw:with-output-recording-disabled
(:parallel "card-presentation-types" "card-places" "card-table" font)
(:serial rsl-games muffy=-games muffy-games-2)))

The Card Game Example 257

finitions.li

;; =*= Mode: LISP; Syntax: Common-Lisp: Base: 10; Package: CARDS =*-

(defflavor card
(rank
sult
glyph
color
{(draw=-alu)
(overlay-alu)
)
(@]
tinitable~instance-variables rank suit)
:readable-instance-variables rank suit)
srequired-init-keywords :rank :suit))

;2 Font size
(defparameter *card-width®* 54)
. (defparameter *card-height* 74

(defparameter *guits* #(:spade :heart :diamond :club))

(defparameter *card-glyph-info*
*{(:Spade . #.(char-code #\A)) (:Heart . #.(char-code #\n))
(:Diamond . #.(char-code #\N)) (:Club . #.(char-code #\a))))

(defparameter “empty-place-glyph-info*
* {(:Black #.(char-code #\0) :white) (:White #.(char-code #\1) :white)
(:Joker #. (char-code #\2) :white)
(:Card-Back #. (char-code #\3) :blue)
(: fancy—card-back #.(char—code #\4) :blue)
(:funny-joker #.{char-code #\2) :white)))

(defparameter *black-glyph* (cadr (assoc :black *empty-place-glyph-info*}})

(defparameter *rank-names*
#("Ace" “"Deuce" “Trey" "Four® “Five" "Six" “Seven"
"Eight" “Nine™ "“Ten®" *"Jack® “Queen" "King"))

(defmethod (make-instance card) (&rest ignore)
(assert (< 1 rank 13) ()
"Your card must be an ace, a number between 2 and 10, or a jack, qgueen or king.")
{assert (find suit *suits*) ()
"Your suit must be Spade, Heart, Diamond or Club")
{(setf glyph (+ (cdr (assoc suit *card-glyph-info*)) rank -1))
(setf color (case suit
({:spade :club) :black)
({:heart :diamond) :red))))

(defmethod (sys:print-self caxd) (stream ignore print-readably)
(1f print-readably
(sys:printing-random—-object (self stream) (princ self stream))
(format stream *~A of ~:(~A~)s" (aref *rank-names* (l- rank)) suit)))

258 Lisp Lore

Definitions for drawing (including color drawing) of cards.

;:: What kind of screen is it? Possible values: nil, :dependent,
::: :independent mean BsW, 8-bit color, 24-bit color, respectively.
{defun color-scresn-map-mode (screen)
(multiple-value~bind (nil nil mode) (send screen :color-map-description) mode))

;22 Cache for color ALU’s -- only calculate new ones.
(defvar *color-alu-values* nil)

;/;: Get color ALU for a given symbollc color.
(defun color-alu (screen alu color &optional (mask -1))
(when color
(unless *color-—alu-values* (setup-colors screen))
{or (getf *color-alu-values* color)
(setf (getf *color-alu-values* color)
(let ((alu (send screen :compute=—color—alu alu color)))
(send alu :set-plane-mask mask)
alu)))))

;:: Add symbolic names for non-standard colors we will use.
{defun setup-coloxrs (screen)
(send screen :name-color ‘dark-green 0 .4 .1))

Return a color ALU or pattern for drawing backgrounds. For
example, the table background is elther dark green or a gray
;¢:; pattern, depending on whether the screen 1s color or
;7 black-and-white.
(defun eolor-alu-or-pattern (stream alu color pattern &optional (mask -1))
(declare (values alu pattern))
(let* {((screen (send stream :screen))
(mode (color-screen-map-mode screen)))
(case mode
((nil) (values color:alu-x+y pattern})
(:independent (values (color-alu screen alu color mask) t)))))

;:¢ Calculate the two alu‘s for cards. The first one 1s elther the
;:: :red or :black ALU. The second one 18 the :yellow alu for
;2; plcture cards only.
(defun-in-flavor (display-card-alus card) (stream)
(let* ((screen (send stream :screen))
{(mode (color-screen—-map-mode screen)))
(case mode
((nil) (values color:alu-x+y nil))
(:independent (values (color-alu screen color:alu-x color)
(color-alu screen color:alu-x*y
{(and (S 11 rank 13) :yellow)
(lognot #0377))))
(otherwise (error “We don‘t support ~A color screen maps yet." mode)))))

;:: Inside rectangle for the picture-card overlay
(defparameter *card-inside-left* 12)
(defparameter *card-inside-top* 5)

(defparameter *card-inside-right* 41)
(defparameter *card-inside-bottom* 69)

:::; For moving between the B&W and color screens, need to force
;:; recalculation of ALU’s
(defmethod (clear-card-alu acazd) ()

(setf draw-alu nil))

The Card Game Example 259

/:; Draw the card at the given spot.
(defmethod (display-card caxd) (stream x y)
(unless draw-—alu (multiple-value-setq (draw-alu overlay-alu) (display-card-alus stream)))
(erase-card—-spot stream x y)
(graphics:draw-glyph glyph fonts:deck-of-cards x y :stream stream :alu draw-alu)
(when overlay-alu ‘
(graphics:draw-rectangle (+ x *card-inside-left*) (+ y *card-inside-top*)
(+ x *card-inside-right*) (+ y *card-inside-bottom*)
1stream stream :alu overlay-alu)))

/¢ Draw a background rectangle for e card.
(defun exase-caxrd-spot (stream x y)
(let* ((screen (send stream :screen))
{(mode (color-screen-map-mode screen)))
(graphics:draw-glyph *black-glyph* fonts:deck-of-cards x y
1stream stream
talu (ecase mode
((nil) color:alu=-~x*y)
(:independent (color—alu screen color:alu-x :white))))))

;7; Draw special glyphs from font. Used for card backs and jokers.
(defun display-empty-place (empty-appearance stream x y)
(let* ((screen (send stream :screen))
(mode (color-sareen-map-mode screen))
(invisible-p (eql empty-appearance :invisible))
(glyph-data (unless invisible-p
(cdr (assoc empty-appearance *empty-place-glyph-info*))))
(alu (if invisible-p color:aiu-noop
(ecase mode
({nil) color:alu-x+y)
(:independent (color-alu ascreen color:alu-x (second glyph-data))))))
(glyph (if invisible-p *black-glyph* (first glyph-data))))
(unless invisible-p (erase-card—spot stream x y))
(graphics:draw-glyph glyph fonts:deck-of-cards x y :stream stream :alu alu)))

260 Lisp Lore

;+; Card decks. The array part is the deck. next 18 for dealing.
(defstruct (card-deck
{:type :named-array-leader)
({:make-array (:length n-cards))
(:copier nil)
(:size-symbol card-deck-leader-length))
n-cards
(next 0))

:/; Make a card deck out of (* n—decks 32) cards.
(defun make-deck (&optional (n-decks 1))
(let* ((n-cards (* n-decks 52))
(deck (make-card-deck :n-—cards n-cards)))
(loop for deck—-looper from 0 by 52 below n-cards
do (loop for suit being the array-elements of *suits*
for suit-looper from 0 by 13
do (loop for number from 1 to 13
do (setf (aref deck (+ deck-looper sult-looper number =1))
(make-instance ‘card :suit sult :rank number}))}))
deck))

;:; Shuffle a deck. The incoming deck is any kind of sequence. The
;+; result 1s an array. If you pass in an old deck, you can have
;::; cards shuffled into it.
;:; Note: the passed—-in deck might actually be a list of cards: GAPS uses this.
(defun shuffle-deck (deck
&optional to-deck
&aux (n-cards (length deck)))
(let ((n-cards (length deck)))
(unless to-deck (setq to-deck (make-card-deck :n-cards n-cards)))
(sys:with-stack—array (indices n-cards)
(declare (sys:array-register indices))
(loop for i from 0 below n-cards do (setf (aref indices 1) 1))
(loop for i from 0 below (l- n-cards)
as random = (random (- n-cards 1)) do (rotatef (aref indices i)
(aref indices (+ random 1i))))
(loop for 1 from 0 below n-cards
do (setf (aref to-deck 1) (elt deck (aref indices 1)}))))
(setf (card-deck-next to-deck) 0) .
to-deck)

;:: Get next card out of the deck.
(defun deal-caxrd (deck)
(when (= (card-deck-next deck) (card-deck-n-cards deck))
(error “Can’t deal any more cards from thls deck.*))
(progl (aref deck (card~deck-next deck})
{(incf (card-deck-next deck))))

;:; A macro to shuffle a sequence of cards Into a temporary deck.
(defmacro with-cards-shuffled ((shuffled-cards cards) &body body)
“(sys:with-stack—array (,shuffled-cards (length ,cards)
:named-structure-symbol ‘card-deck
:leader-length card-deck-leader—length)
(declare (sys:array-register ,shuffled-cards))
{(shuffle-deck ,cards ,shuffled-cards)
, @body))

The Card Game Example 261

;:: —*- Mode: LISP; Syntax: Common-Lisp; Base: 10: Package: CARDS —-*-

(defparameter *suit-translations* ’ (:spades :spade :hearts :theart
:diamonds :diamond :clubs :club))

(defparameter *suits-presentation-type* °((member ,@*suit—translations*)))

(defparameter *rank-translations® ’ (:ace 1 :deuce 2 :two 2 :trey 3 :three 3 :four 4 :five 5
:8ix 6 :seven 7 :eight 8 :nine 9 :ten 10
tjack 11 :queen 12 :king 13))

(defparameter *xanks-presentation-type*
‘ ((member :ace 2 :deuce :two 3 :trey :three 4 :four
5 :five 6 :8ix 7 :seven 8 :eilight 9 :nine
10 :ten :jack :queen :king)))

(define-presentation-type caxrd (() &key deck)
ino~deftype t
:parser ((stream)
(flet ((find-card (suit rank)
{let ((rank (or (getf *rank-translations* rank) rank))
(suit (or (getf *suit-translations* suit) suit)))
(1f (not deck)
(make—-instance ‘card :rank rank :sult suit)
(or (find nil deck :test {lambda {ignore card)
(and (eql (card-suit card) suit)
{eql (card-rank card) rank))))
(cerror “"Create ~:(~A ~A~) —- for debugging only.”
Can’t find ~:(~A ~A~) in deck ~s
suit rank))
(make~instance ‘card :rank rank :suit suit))))
(parse—card-description (card-description)
{(cond ((= (length card-description) 3)
{destructuring-bind (rank of suit) card-description
(ignore of)
(values suit rank)))
({member (first card-description) *suit-translations*)
(destructuring-bind (suit rank) card-description
(values suit rank)))
(t (destructuring-bind (rank suit) card-description
{(values suit rank)))}))
(let ((card-description
{accept ‘{((or ({(sequence-enumerated
,*ranks-presentation-type*
{(alist-member :alist (("of" . :0f))))}
,*sults-presentation-type*)
:sequence~delimiter #\space :echo-space nil)
{(sequence-enumerated
»*ranks-presentation-type*
s*sults-presentation-type*)
:sequence-delimiter #¥\space techo-space nil)
((sequence-enumerated
,*suits-presentation-type*
+*ranks—-presentation-type*)
:sequence~delimiter #\space :echo-space nil)))
:stream stream :prompt nil)))
(multiple-value-bind (suit rank)
{parse-card-description card-description)
(find-card suit rank)))))

262 Lisp Lore

Continuation of (define-presentation-type card (() &key deck)
:describer ((stream &key plural-count)
(cond ((null plural-count)
(princ "a card, rank of sult or suit rank" stream))
((eql plural-count t)
(princ “cards in the form rank of suit or suit rank* stream))
((numberp plural-count)
(format stream "~R cards in the form rank of suit or suit rank"
plural-count))
{t (format stream "~A cards in the form rank of suit or suit rank®
plural-count))))) :

Ex:

;:; Presentation types for things you can only click on, not type:
::; card-places and empty-places.

(define-presentation-type card-place ((&key empty-p))
:no-deftype t
:parser ((stream) (loop (dw:read-char-for-accept stream)))
:typep ((place) (if empty-p (null (place-contents place)) t)))

(define-presentation-type empty-place ((})
sno-deftype t
:parser ((stream) (loop (dw:read-char—for-accept stream))))

The Card Game Example 263

$i: —*- Syntax: Common-Lisp; Base: 10:; Mode: Lisp; Package: CARDS —*—

;s Error flavors
(defflavor place-errox
(place)
(error)
:initable-instance-variables)

(defflavor place-contents-may-not-bs-removed
(¢]

(place-error))

(defmethod (dbg:report place-contents-may-not-be-removed) (stream)
(format stream "The cards in ~S may not be removed. ~%They are:~{ ~A~*, ~}"
place (place-contents place)))

(defflavor pl ‘tents-nmay-not-be-st d
{contents)
(place-error)
:initable-instance-variables)
(defmethod (dbg:xeport pl tents-may-not-be-st d) (stream)

(format stream “The cards ~{ ~A~*, ~}) may not be stared in ~S" contents place))

(compile-flavor-methods place-contents-may-not-be-removed place-contents-may-not-be-stored)

¢¢; Required in order to compile (setf (place-contents ...) ...) before
/47 any flavor methods have been defined yet.
(defgeneric (setf place-contents) (place new-contents))

/7; The raison d’etre for this stuff
(defun move-contents (from-place to-place)
(unless (contents-may-be-removed from-place)
(error ‘place-contents-may-not-be-removed :place from-place))
(let ({contents (place-contents from-place)))
(unleas (contents-may-be-stored to-place contents)
(error ‘place-contents-may-not-be-stored :place to-place :contents contents)
(setf (place-contents to-place) contents
(place-contents from-place) nil)))

264 Lisp Lore

::: Like setf, only returns the first value instead of the last.
(defmacro setfl (referencel valuel &rest more-pairs)
“(progl (setf ,referencel ,valuel)
(setf ,Bmore-pairs)))

:;; There are superiors whose caches must also be invalidated. This 1s for them.
(defgeneric invalidate-caches (place)
(:method-combination :progn))

::¢ Encaching mixins -- for runtime and consing efficiency
(defflavor tents-r bering-aixin
(remembered-contents
{remembered-contents-p))
O
:abstract—-flavor
(:required-methods place-contents (setf place-contents})))

;:: Use setfl to return value of whopper continuation (see definition above)
(defwhopper (pl tents tant bering-mixin) ()
(1f remembered-contents-p
remembered-contents
(setfl remembered-contents (continue-whopper)
remembered-contents-p t)))

(defwhopper ((setf pl ‘tents) ‘tent bering-mixin) (new-contents})
;; Don’t encache new-contents.
:: Allow underlying flavor to be responsible for what the place contains.
(setf remembered-contents-p nil)
{continue-whopper new-contents))

(defmethod (invalidat h tent bering-mixin) ()
(setf remembered-contents-p nil))

(defflavor rules-remembering-mizin

(removal-rule-result
(removal-rule~result-stored~p)
store-rule-result
(store-rule-result—-stored-p))
QO

tabstract-flavor

(:required-methods (setf place-contents) contents-may-be-removed contents-may-be-stored))

(defwhopper ((setf place-contents) rules-remembering-mixin) (new-value)
(setf removal-rule-result—-stored-p nil store-rule-result-stored-p nil)
{continue-whopper new-—value))

(defmethod (invalidat h zules bexring-mixin) ()
(setf removal-rule-result-stored-p nil store-rule-result-atored-p nil))

:;; Use setfl to return value of whopper continuation (see definition above)
(defwhopper (contents-may-be-renoved rules-remexbering-mixin) ()
(L f removal-rule-result-stored-p
removal~rule-result
(setfl removal-rule-result (continue-whopper)
removal-rule-result-stored-p t)))

(defwhopper (contents-may-be-stored rules-remembering-mixin) (new-contents)
(1f (eql store-rule-result-—stored-p new-contents)
store-rule-result
(setfl store-rule-result (continue-whopper new-contents)
store-rule-result-stored-p new-contents)))

The Card Game Example ' 265

(defflavor self-presenting-mixin
((presentation)
(empty-presentation)
(window)
(presented-at-x)
(presented-at-y))
()

(defmethod (present-self self-presenting-mixzin) (stream x y)
(present-contents self stream x y)
(present-empty-spaces self stream x y))

7/ Use setfl to return value of continuation upward.
(defwhopper (present-contents self-presenting-mixin) (stream x y)
(setfl presentation
(dw:with-output-as-presentation (:stream stream iobject self
:type ‘card-place :single-box t)
(continue-whopper stream x y))
window stream presented-at-x x presented-at-y y))

(defwhopper (p t-empty
(setfl empty-presentation
(dw:with-output-as-presentation (:stream stream :object self :type ’empty-place
:single-box t)

P self-presenting-mixin) (stream x y)

(continue-whopper stream x y))))

(defmethod (erase-self self-presenting-mixin) (¢optional recursion?)
(macrolet ((erase-presentation (presentation)
*(when ,presentation
{let ((boxes (dw::presentation-mouse-sensitive-boxes .presentation window)))
(send window :delete-displayed-presentation ,presentation)
(loop for (left top right bottom) in boxes
do (draw-background-rectangle
window (- left 5) (- top 5) right bottom)))
(setf ,presentation nil))))
(erase-presentation presentation)
(erase-presentation empty-presentation)
(unless recursion?
(let ((superior (place-superior self)))
(when superior (erase-self superior t))))))

(defmethod (redisplay-self self-presenting-mixin) ()
{when presentation
(erase-self self)
(present-self self window presented-at-x presented-at=-y)))

(defmethod (highlight-self self-presenting-mixin) ()
(when presentation
(loop for (left top right bottom)
in (dw::presentation-mouse-sensitive-boxes presentation window)
do (draw-highlighting-rectangle window (- left 5) (- top 5) right bottom))))

(defmethod (unhighlight-self self-presenting-mixin) ()
(redisplay-self self)

(defmethod ((setf place-contents) self-presenting-mixin :after) (ignore)
(loop for place = self then (place-superior place)
while (place-superior place) N
finally (redisplay place)))

266 Lisp Lore

::: A place to put cards. Implements the rules supplied by a game.
(defflavor basic-card-place

((name (gensym))
superior
{game (card-table-game dw:*program*)}
{addition~rules)
(removal-rules)
(addition-side—effects)
(removal—-aide—effects))
{content s—remembering-mixin rules-remembering-mixin self-presenting-mixin)
:abstract-flavor
(:conc-name place-)
(:init-keywords :contents)
(:readable-instance-variables name superior)
:initable-instance-variables
(:required-init-keywords :superior :game)
(:required-methods present-self place-contents (setf place-contents)))

(defvar *no-side-effects* nil)

;; Make sure the contents of a place get stored in it.

(defmethod (make-instance basic-card-place) (&ékey contents &allow—other-keys)
(let ((*no—side-effects* t))

(setf (place-~contents self) contents)))

s:¢ Implement the removal rule.
(defmethod (contents-may-be-removed basic-card-place) ()
(and (place—contents self)
(catch ’forbidden
(Loop for rule in removal-rules
thereis (funcall rule game self (place-contents self))))))

:;; Implement the store rule.
(defmethod (contents-may-be-stored basic-card-place) (new-contents)
(when (not (place-contents self})
(catch ‘forbidden
(loop for rule in addition-rules
thereis (funcall rule game self new-contents)))))

(defmethod ((setf place-contents) basic-card-place :after) {new-contents)
(unless *no-side-effects*
(loop for side-effect in (1f new-contents addition-side-effects removal-side-effects)
do (funcall side-effect game self))))

The Card Game Example 267

/22 A place that holds exactly one card.
(defflavor card-place
((card)
empty-appearance)
(basic-card-place)
(:initable~instance-variables empty-appearance)
(:required-init-keywords :empty-appearance))

/¢7 Get back the cards in the place (all one of them).
(defmethod (place-contents card-place) ()
{and card (list card)))

s22 Put a card into its place.
(defmethod ((setf place-contents) card-place) (new-contents)
(setf card (first new-contents)))

22/ A card can only be stored into an empty card-place. Only one card to a place.
(defwhopper (contents-may-be-stored card-place) (new-contents)
(and (null card)
(null (cdr new-contents))
(continue-whopper new-contents)))

s/ A card place displays itself
{defmethod (p A tent d-place) (stream x y)
(when card
(display-card card atream x y)))

(defmethod (present-empty-spaces card-place) (stream x y)
(unless card

(display~empty-place empty—appearance stream x y)))

268

Lisp Lore

;¢¢ A stack of cards.
(defflavor stack-place
((cazd)

(rest-of~stack)

delta=-x

delta-y

empty-appearance)

{(basic-card-place)
(:readable-instance-variables card reat-of-stack)
(:initable~instance~variables delta-x delta-y empty—-appearance)
(:required-init-keywords :delta-x :delta-y :empty-appearance))

::;; Get the contents of a stack place.
(defmethod (place tents stack-pluce) ()
(and card

(list* card (if rest-—of-stack (place-contents rest-of—-stack)
(error “No rest of stack behind card??%)))))

;:; Store new contents into a stack.
(defmethod ((setf place-contents) stack-place) (new-contents)
(setf card (first new—contents)
rest-of-atack
(and card ’
(make-instance ‘stack-place :contents
:superior self
:game game
:addition-rules addition-rules
:removal-rules removal-rules
:addition-side-effects addition-side-effects
:removal-side-effects removal-side-effects
:delta-x delta-x :delta-y delta-y
:empty—appearance empty=-appearance)))
(loop for superior = self then (place-superior superior)
while superior
do (invalidate-caches superior))
(place-contents self))

(rest new-contents)

(defmethod (p: t tents st
{(when card

(display-card card stream x y)
(when rest-of-stack

k-place) (stream x y)

Holds zero cards, one card, or a card plus a stack of them.

(present~contents rest-of-stack stream (+ x delta-x) (+ y delta=y)))))

(defmethod (present-empty-spaces stack-place) (stream x y)
(1f card

(when rest—of-stack

(present-empty-spaces rest-of-stack stream (+ x delta-x) (+ y delta-y)))

(display-empty-place empty-appearance stream X y)))

(defwhopper (ex:

self stack-place) (&optional recursion?)
(when rest—of-stack (erase-self rest-of-stack t))
(continue-whopper recursion?))

The Card Game Example 269

(defflavor stack-with-face-down-cards-place
((face~down-cards))
(stack-place)
:initable-instance-variables)

(defwhopper ({setf place-contents) stack-with-face-down-cards-place) (new-contents)
(1€ new-contents
(continue-whopper new-contents)
(redisplay self)
(continue-whopper (and face-down-cards (list (pop face-down-cards))))))

(defwhopper (present-self stack-with-face-down-cards-place) (stream x y)
(Lf face—-down-cards

(display-empty—place :fancy-card-back stream (- x delta-x) (- y delta-y))

(let ((x (- x delta-x)) (y (- y delta-y)})
(display-empty-place :black stream x y)))
(sys:letf-if (not card) ((empty-appearance :white))

(continue-whopper stream x y)))

(compile-flavor-methods caxd-place stack-place stack-with-face-down-cards-place)

270 Lisp Lore

;:; —%*- Mode: LISP; Syntax: Common=-Lisp: Base: 10; Package: CARDS —*-

(dw:define-program-framework card-table
:select~key #\Square
:command-definer t
:command-table (:kbd-accelerator-p t
:inherit-from ‘ ())
:top-level (dw:default-command-top-level :echo-stream ignore)
istate-variables ((game))
:panes
(({board :display :typeout-window t
:redisplay-after~commands t
:incremental-redisplay :own-redisplayer
:redisplay-function * display-game~board)
(title :title :redisplay-string "Card Games*® theight-in-lines 1
:redisplay-after—commands nil)
(input :interactor :height-in-lines 8)
(games :command-menu :center-p t :columns 1 :menu-level :games)
(commands :command-menu :center-p t :columns 1 :menu-level :top-level))
:configurations
7 ((main
(:layout (main :column board title row-1)
(row-1 :row input games commands))
(:sizes (main (title 1 :lines) :then (row-1 8 :lines input) :then (board ieven))
{row-1
(games :ask-window self :size-for-pane games)
(commands :ask-window self :size~for-pane commands) :then
(input :even))))))

(defmacro current—game ()
v (card-table~game dw:*program*))

(defmacro-in-flavor (current-game card-table) ()
‘game)

(defmacro place-to-move-valid ()
“(and (boundp ‘dw:*program*) (typep dw:*program* rcard-table) (current-game)))

{defmacro place-to-move ()
* (game-place~to-move (current-game)))

(defmacro card-table () ‘ (dw:get-program-pane ‘board))

(defun complete-redisplay () (redisplay :complete-redisplay))
(defvar *redisplay-list* nil)

(defun redisplay (place) (pushnew place *redisplay-list*})

(defmethod (display-game-—board card-table) (stream)
(Lf (or (null *redisplay-list*) ; 27 Unsure this is the right thing.
(member :complete-redisplay *redlsplay-list*))
(display-whole-game-board self stream)
(loop for place in (nreverse (progl *redisplay-list* (setf *redisplay-list* nil)))
do (redisplay-self place)})))

(defmethod (display-whole-game-board card-table) (stream)
(setq *redisplay-list* nil)
(send stream :clear-history nil t)
(multiple-value-bind (left top right bottom) (send stream :inside-edges)
{draw-background-rectangle stream left top right bottom))
(when game
(display~-game game stream)))

The Card Game Example 271

(defun draw-background-rectangle (stream left top right bottom)
(dw:with-output-recording-disabled (stream)
(graphics:draw-rectangle left top right bottom :stream stream :filled t :alu tv:ialu-setz)
(multiple-value-bind (alu pattern)
{color-alu-or-pattern stream color:alu-x ‘dark-green tv:10%-gray)
(graphics:draw~rectangle left top right bottom :stream stream
:filled t :alu alu :pattern pattern))))

(defun draw-highlighting-rectangle (stream left top right bottom)
(dw:with-output-recording-disabled (stream)
(multiple~value-bind (alu pattern)
{color-alu-or-pattern stream color:alu-x*y :cyan tv:25%~-gray)
(graphica:draw-rectangle left top right bottom :stream stream
:filled t :alu alu :pattern pattern))))

(defflavor basic~game
((name)
(card-places)
(card-place~descriptions)
(raw~deck)
(shuffled-deck)
{place-to-move))
0
(:initable-instance-variables card-place-descriptions name)
(:writable-instance-variables place-to~-move)
(:conc—name game-)
(:method-combination start-new-game (:progn imost-specific~last)
make-card-place-descriptions (:append :most-specific-first)))

(defmacro-in-flavor (current—game basic-game) ()
‘self)

(defmethod (make-instance basic-game) (&rest ignore)
(unless name (setf name (string-capitalize-words (type—of self))))
(unless card-place-descriptions
(setf card-place-descriptions
(make-card-place-descriptions self (dw:get~program-pane ’board)))))

;2: Use #. to calculate constant at compile time.
(defun—~in-flavor (divide-up-space basic-game) (stream n—columns soptional n-rows)
(incf n-columns) (when n-rows (incf n-rows))
(multiple-value-bind (width height) (send stream :inside-size)
(let* ((column-width (round width (1+ n-columns)))
(column-extra column-width)
(row=-height (and n-rows (round height (1+ n-rows))))
(row-extra row~height))
(when (< column-width #.(round (* *card-width* 6/5)))
(setf column-width (round width n-columns) column—extra (round column-width 2)))
(vhen (and n-rows (< row-height #.(round (* *card-height* 6/5))))
(setf row-height (round height n-rows) row-extra (round row-height 2)))
(values column-extra column-width row-extra row-height))))

272 Lisp Lore

(defmethod (start-new-game basic-game) ()
(unless raw-deck (setf raw-deck (make-deck (game-n-decks self}))))
(setf shuffled-deck (setf shuffled-deck (shuffle-deck raw-deck shuffled=-deck)))
(setf card-places (make-card-places self)))

(defmethod (game-n-decks basic—-game :default) () 1) ; By default, all games use one deck.

(defmethod (display-game basic-game) (stream)
(loop for (nil (x y)) in card-place-descriptions
and place in card-places
do (present-self place stream X y))
(when (place-to-move)
(highlight~self (place-to-move))))

(defmethod (make-card-places basic-game) ()
(loop with *no-side-effects* = t
for (place-type () . keywords) in card-place—descriptions
collect (apply #‘make-card-place self place-type keywords)
finally (complete-redisplay)))

(defgeneric make-card-place {game place~type &rest place-keywords)
(declare (values card-place))
(:method~combination :case))

(defmethod (make-card-place baslc-game :card)
(srest options &key n-cards gallow-other-keys)
(si:with-rem-keywords (make-instance-~options options # (tn-cards))
(apply #’make-instance *card-place

:superior nil

:game (current-game)

:contents (when (and n-cards (plusp n—cards))

{Lf (= n-cards 1)

(list (deal-card shuffled-deck))
(error "n-cards # 12%)))

make-instance-options)))

(defmethod (make-card-place basic-game :1stack)
(érest options &key n-cards tallow-other-keys)
(si:with-rem-keywords (make-instance-options options ‘ (:n-cards))
(apply #’make~inatance ’ stack-place
:superior nil
:game (current-game)
:contents (when n-cards
{loop repeat n-cards
collect (deal~card shuffled-deck)))
make-instance-options)))

(defmethod (make-card-place baslc-game :stack-with~face~down-cards)
(srest options &key n-cards n-face-down &allow-other-keys)
(si:with-rem—keywords (make-instance-options options s (:n=caxds :n—face-down))
(apply #’make-instance s stack-with-face-down-cards-place
:superior nil
:game (current-game)
:contents (when n-cards
(Loop repeat n-cards
collect (deal-card shuffled-deck)))
: face-down—-cards (when n-face-down
(loop repeat n-face-down
collect (deal-card shuffled-deck)))
make—instance-options)))

The Card Game Example 273

(dw:define-presentation~action move-carcd-supply-from
(card-place cp:command
itester ((place) (and (place-to-move-valid) (not (place-to-move)
(contents-may-be-removed place)))
:documentation ((place) (format nil *Move~{ ~A~",~}* (place~-contents place))))
(from-place)
(setf (place-to-move) from-place)
{(highlight-self from-place)
)

(define-presentation-to-command~translator move-card-supply-to
(empty-place
itester ((place) (and (place-to-move-valid) (place-to-move)
(contents-may-be-stored place (place-contents (place-—to-move))))}
:documentation ((ignore) (format nil *“Move~{ ~A~",~}" (place~-contents (place-~to-move)))))
{to—-place)
* (com-move-contents-end ,to-place))

(define-card~table-command {(com-move-contents—end :name nil) ((to ‘card-place)
(move-contents (place-to-move) to)
(setf (place-to-move) nil))

(define-card-table~command (com-oops) ()
(let ((place (place-to-move)))
(when place
(loop for place = place then (place-superior place)
while (place-superior place)
finally (redisplay place)))
(setf (place~to-move) nil)))

(define-presentation-to-command-translator oops-my-dear

(t
igesture :middle
:tester (({ignore) (and (place~to-move-valid) (place-to-move)))
:documentation ((ignore) (format nil “Abort current attempted move of~{ ~A~",~}"

(place-contents (place-to-move))))

:blank-area t :suppress-highlighting t)

(ignore)

* (com~oops))

(define~card-table-command (com-start-new-game :menu-accelerator “New Game*) ()
(when game
(start-new—game game)
{cp: :command-table-update-options (cp:find-command-table “Card-Table")
iinherit~from (list (command-table-name game)))
(complete-redisplay))
(setf (place-to-move) nil))

(define~card-table-command (com-show-card-places :keyboard-accelerator #\2) ()
(when game (show-card-places game)))

{(define-card-~table-command (com-next-round :keyboard-accelerator #\complete
:menu-accelerator "Next Round") ()
(when game (start-next-round game)))

(defmethod (start-next-round basic-game :default) ()
(format t "2%I don’t know how to start a new round for a ~A.~2%"
(string-capitalize~words (type-of self))))

274 Lisp Lore

(define~card-table—command (com-color-screen :menu-accelerator “Color®} ()
(locally
(declare (special color:color-screen)) ; Get rid of warning.
(1f (send (send dw:*program-frame* :screen) :color-map-description)
(format t “~2%Already on the color screen.~2%")
(multiple-value~bind (type memory) {(color:color-system—description)
(cond ((not type)
(with-character—style (’ (nil :bold :very-large))
(format t “~2%Sorry, no color system on this machine.~2%")))
({< memory 3)
{(with-character—style (’(nil :bold :very-large))
(format t “~2%Sorry, this machine does not have 24-bit color.")))
(t (when (or (not (variable~boundp color:color-screen))
(null color:color~screen))
(setf color:color-screen
(funcall ‘color:make-color-screen ; Get rid of compiler warning.
:setup :standaxd))
(send color:color-screen :expose))
(send dw:*program-frame* :set—save-bits nil)
(send dw:*program-frame* :set-superior color:color-screen)
(when game (clear-card-alus game))
(tv:imouse-set-sheet color:color-screen))}))))

(define-card-table-command (com-béw-screen :menu-accelerator “B&W®) ()
(if (not (send (send dw:*program—frame* :screen) :color-map-description))
(format t "~2%Already on the black-and-white screen.~2%")
(send dw: *program-frame* :set-superior tv:main-screen)
(tvimouse-set~sheet tv:imain-screen)
(when game (clear-card-alus game))
(send dw:*program-frame* :set-save-bits t}))

(defmethod (clear-card—alus basic-game) ()
(loop for index below (card-deck-n-cards shuffled-deck)
do (clear-card-alu (aref shuffled-deck index))))

(defmethod (show-card-places basic-game) ()
(loop for card-place in card-places
do (format t “~%~S contains: ~{~A~*, ~}" card-place (place-contents card-place))))

The Card Game Example 275

(defprop define—-game “"Game" si:definition-type-name)

(defmacro define-game (name instance-variables &optional flavors-built-on &rest options)
(when (record-source-file-name name ‘define-game)
(let* ((game-name (string-capitalize-words name))
(comtab-name (string—append game-name * Command Table™))
(command~definer-name (intern (string-append "DEFINE-" name “-~COMMAND")
(symbol-package name)))
{command-name (intern (string-append “COM-" name) (symbol-package name))))
* (progn
(add-initialization , (format nil “Create ~A" comtab-name)
¢ (cp:make—command~table
¢ ,comtab~name
tinherit-from * (“Colon Full Command"
“Standard Arguments" "Standard Scrolling™))
’ (:once))

(si:defflavor-with-parent (,name define-game) ,name
,instance-variables
(,@flavors-bullt-on basic-game)
iwritable~instance-variables
,@options
(:default-init-plist :name ,game—~name))

{defmacro ,command-definer-name (command-name—-and-options args &body body)
(let* ({command~name-with-options (if (listp command-name-and-options)
command-name-and-options
{list command-name-and-options)))
(command-name (first command-name-with-options))
(real-command~name (intern (string—append ’,name “-* command-name)
(symbol-package command—-name)))
(command-options (rest command-name-with—-options}))
{command-name—string
(let ((command-name-string-temp (string-capitalize-words command-name)))
(1f (string-equal command-name-string-temp “Com “
tendl 4 :end2 4)
(substring command-name-string-temp 4)
command-name-string-temp)))
(arguments (loop for (name) in args collect name))
(internal-name (intern (string-append command-name *-COMMAND-BODY")
{symbol-package command-name))))
Y (progn (define-card-table-command
{,real-command-name :command-table ,,comtab-name
imenu-accelerator ,command-name-string
iname , command-name-satring
» Bcommand—-options)
.args
{declare (sys:function-parent ,’,name define-game))
(. internal-name game , farguments))
(defrethod (,internal-name ,’,name) {(,R@arguments)
»@body))))

(defmethod (command-table-name ,name) () ’,comtab—name)

(define-card-table a (d-name :menu-accelerator ,game-name
imenu-level :games)

(§]

(declare (sys:function-parent ,name define-~game))
(setf game (make-instance ’,name))
(com=-start-new—game))))))

(compile-flavor-methods card-table)

276 Lisp Lore

;:: =%= Mode: LISP: Syntax: Common-Lisp; Base: 10; Package: CARDS =-*-
{define-game gaps-game (aces (game-in-progress)))

(defmethod (make-card-place-descriptions gaps—game :append) (stream)
(multiple-value-bind (start-left column-width start-top row-height)
{(divide-up-space stream 13 4)
{loop for y from astart-top by row-height
for row from 1 to 4
nconc (loop for x from start-left by column-width
for column from 1 to 13
collect ‘(:card (,x ,y)
:in~cards 1
:addition-rules (,#‘valid-gaps-move)
iremoval-rules (, #’true)
:empty-appearance :invisible
:addition-side-effects (,#’ check-for-win)
:iname , {(+ (* row 13) column -14))))))

(defun—in-flavor (discard-aces gaps—game) ()
(setf aces (loop with *no-side-effects* = t
for card-place in card-places repeat 52
as card = (first (place-contents card-place))
when (eql (card-rank card) 1)
collect card
and do (setf (place-contents card-place) nil))))

(defmethod (start-new-game gaps-game) ()
(setf game-in-progress nil)
{unless (= (card—deck-next shuffled-deck) 0)
(setf shuffled-deck (shuffle-deck raw-deck shuffled-deck)))
{loop with *no-side-effects™ = t
for card-place in card-places repeat 52
as card = (deal-card shuffled-deck)
do (setf (place~contents card-place) (list card)))
(discard~aces)
(complete~redisplay)
(setf game-in-progress t))

(defmethod (valid-gaps-move gaps-game) (place new-contents)
{let* ((new-card (first new-contents))

(place-name (place-name place))

(prev-place (and (plusp (mod place-name 13)) (elt card-places (1- place-name)))))
;: A move is valid 1iff:
;2 1. The card to its left is one less than the current one in the current suit, or
;: 2. The card is a deuce, and is being played in the leftmost column.
(1f prev-place

(let ((prev-card (first (place-contents prev-place))))

(and prev-card (egl (card-sult prev-card) (card-suit new-card))
{= (card-rank new-card) (l+ (card-rank prev-card)))))
(= (card-rank new-card) 2))))

The Card Game Example 277

(defmethod (winning-counts gaps-game) ()
(locop repeat 4
with all-places = card-places
as row—card = (first (place-contents (pop all-places)))
as row—sult = (and row-card (card-suit row-card))
and row-rank = (and row-card (card-rank row=-card))
when (eql row-rank 2)
collect (1+
(loop repeat 11
as card = (first (place-contents (pop all-places)))
as suit-to-check = (and card (card-suit card))
and rank-to-check = (and card (card=-rank card))
when (and (eql suit-to-check row-suit)
(eql rank-to-check (incf row-rank)))
count t
else do (setq row-suit nil)
finally (pop all-places)))
else collect 0
and do (loop repeat 12 do (pop all-places))))

(defmethod (check—for-win gaps—-game) (place)
{ignore place)
(when game-in-progress
(let ((winning-ways (winning-counts self)))
{(when (equal winning-ways ° (12 12 12 12))
(setf game-in-progress nil)
(with-character-style (’(nil :bold :very-large) t :bind-line-height t)
{format t “~3%You Win! Click on \“New Game\"™ for another game.~2%")
(complete-redisplay)))))

(defmethod (start-next-round gaps—game) ()
(let* ((winning-counts (winning-counts self))
(losing-cards (loop for win-count in winning-counts
with all-places = card-places
do (loop repeat win-count do (pop all-places))
append (loop repeat (- 13 win-count)
collect
{or (first (place-contents (pop all-places)))
(pop aces))})))
(with-cards—-shuffled (new-shuffle losing-cards)
(loop for win-count in winning-counts
with all-places = card-places
do (loop repeat win-count do (pop all-places))
(loop repeat (- 13 win-count)
do (setf (place-contents (pop all-places))
{list (deal-card new-shuffle)))))))
{discard-aces))

278 Lisp Lore

11.6 Problem Set

1. Implement a new game.

2. Simplify application of the rules by making them be
methods on games instead of lists of functions to be
called.

11.7 Fun and Games

CONS (kahnz) verb. To add a new element to a list, usually to
the top rather than at the bottom.

CONS UP verb. To synthesize from smaller pieces; more
generally, to create or intent. Examples: “I'm trying to
cons up a list of volleyball players.” “Let’s cons up an
example.”

This term comes from the LisP programming language,
which has a function called cons that adds a data item to
the front of a list.

12. More Advanced Use of the Editor

The standard Zwei and Zmacs' commands are generally quite

well documented by the on-line help facilities, both within the
Document Examiner and within Zmacs itself. Thus, there
should be no difficulty in becoming fluent in the use of the
built-in commands simply by consulting the automatic documen-
tation. Or, if you prefer, many of the more common built-in
commands are described on paper: See the section “Writing
and Editing Code” in Program Development Utilities.

The methods for adding new commands, on the other hand, are
not documented so completely. It is upon that topic that this
chapter will concentrate. '

1As | understand it, eine and zwei, apart from being “one” and “two" in German,
were the names of the first two text editors written for MIT Lisp Machines. They are
recursive acronyms, respectively, for Eine |s Not Emacs, and Zwei Was Eine Initially.
Zwei is ,actually an editor substrate, used for implementing Zmail as well as Zmacs,
which is the text editor proper.

279

280 Lisp Lore

12.1 Keyboard Macros

Keyboard macros allow you to bundle up any number of
keystrokes and execute them all with one keystroke. (These ac-
tually are documented, but since they fit in with the rest of
this chapter, I thought we should look at them as well) The
Zmacs command “c-X (” starts a keyboard macro. Whatever
keys you press from then up until you type a *‘c-X)” are
remembered while they are executed. When you type the c-X)
the macro will be defined. It can be re-executed by typing c-X
E. The effect will be as though you had typed all the keystrokes
in the macro definition (but faster). Giving a numeric ar-
gument to c-X E will cause the macro to be repeated that many
times.?

c-X E always executes the most recently defined macro, so if
you define another macro with c-X (, the definition of the first
one will be lost, unless you have previously saved it somehow.
You can install it with m-X Install Macro, which will put it on
a keystroke.3 From then on (until you deinstall the macro, or
install some other command on the same key), typing that
keystroke will execute the macro.

Here’s a simple example, something which I often did while
working on the examples in this book. I'll define a keyboard
macro for changing the lisp expression I just typed into a bold
character style:

2You can also give the numeric argument to c-X), in which case it wilt be done
one fewer than that number of times (you already did it once as you typed itin!)

3vYou can also name it, with n-X Name Last Kbd Macro, after which you can
jater install it with m-X Install Macro.

More Advanced Use of the Editor 281

c-X (start keyboard macro definition
c-Space set the mark
c-m-B go back one form

c-X c-X swap point and mark”
c-X c-J change style in region
B Return to boldface

c-X) finish macro definition

m-X Install Macro
prompted with “name of macro to install”

Return Choose default, last one defined.
c-m-sh-J “Key to get it”
Zmacs “Install in what comtab:”>

The next step is to put something into my init file which would
automatically define this keyboard macro every time I login.
Here is one way to do it:

(zwei :define-keyboard-macro change-form-style-to-bold (ni1)
#\c-Space #\c-m-B #\c-x #\c-X #\c-X #\c-J #\B #\Return)

(zwei:command-store (zwei:make-macro-command
:change-form-style-to-bold)
#\c-m-sh-J
zwe1i :xzmacs-comtabx)

If I were adding several macros at one time, and to the same
command table, I would use zwei:set-comtab rather than
zwei:command-store. Command tables are discussed in the
next section. See the section “Command Tables and Command
Definition,” page 286.

4Not required, but it puts the “point” back where it was before the command.

5I could also have clicked on “Zmacs."

282 Lisp Lore

12.2 Writing New Commands

Many extensions to the editor are not expressible as a sequence
of keystrokes. For these, you need to write a function, with
zwei:defcom, and then add it to the command table of your
choice with zwei:command-store or zwei:set-comtab. Among
the things you may want to do from your function are: insert
text into a buffer, read text out of a buffer, get user input from
the mini-buffer, and send text to the typein window. All of
these are reasonably straightforward, once you know about a
few key variables and functions.

12.2.1 Zwel Data Structure

The Zwei data structure consists primarily of four parts, of
which I will describe three. The fourth, called a window, is
used mostly by the redisplay.

12.2.1.1 Lines

A line is the basic Zwei unit of text. It is a string array with
its leader used as a structure. The array itself holds the text
of the line. The structured part of a line contains at least the
following (accessors are listed in parentheses):

e The length of the line (fill-pointer)

e The lines immediately before and after this one
(zwei:line-previous and zwei:line-next)

e The “time” at which this line was last updated (called a
“tick””) — used by the redisplay (zwei:line-tick)

More Advanced Use of the Editor 283

12.2.1.2 BP’s

A BP (“buffer pointer”) is a pointer to a specific character in a
line. BP’s are lists, but their elements should be obtained with
the following accessors:

zwei:bp-line the line into which this BP points.
zwei:bp-index the character offset into the line.

zweicbp-status what kind of BP this is: :normal means that
it is an absolute location in the line. :moves
means that if you insert or delete text in
front of the BP, it will move accordingly.

zwei:bp-buffer the interval in which you can find this line.

Many operations are defined to take BP’s as arguments, often
returning other BP’s as their results. For example,
zwei:forward-char takes a BP and a numeric argument, and
returns the BP which points to the character that many charac-
ters forward from the given one (negative means backwards).
Other similar functions are zwei:forward-line, zwei:forward-
sentence, zwei:forward-paragraph and zwei:forward-sexp.

Other functions you are probably going to be interested in in-
clude zwei:move-bp and zwei:bp-<. The first takes either a
second BP or a line and index, and change the given BP to
point to that location. The second takes two BP’s and says
whether the first occurs earlier in its buffer than the second.

12.2.1.3 Intervals

An interval is a pair of BP’s which delimit the beginning and
end of the interval. Depending on what the interval is used
for, it might have other properties. For example, a file buffer
is an interval which remembers its pathname and whatever is
defined in the file; if it’s a file which contains lisp code, the

284 Lisp Lore

functions and variables declared in the file are remembered in
sub-intervals called sections.®

One thing to notice is that an interval doesn’t remember all
the lines in it, just the first and last. To find out whether one
line is before or after another is a potentially very slow
process; zweisbp-< is called as infrequently as possible. In
general, functions which take two BP’s as arguments take a
third argument called in-order-p, which is true if the first one
appears earlier than the second one in the interval. The macro
zwei:get-interval takes these three variables and puts the two
BP’s in order. You can also pass an interval as the first BP,
and nil as the second one, in which case you will get the BP’s
which refer to the beginning and end of the region.

12.2.1.4 Interval Streams

An easy way to read data from an interval, or add new data to
an interval, is with a flavor of stream called an interval stream.
The standard way to make an interval stream is with
zwei:open-editor-stream, and its sidekick zwei:with-editor-
stream. These open a bidirectional stream to an editor buffer.
They are analogous to open and with-open-file in that open-
editor-stream simply creates the stream and returns it, while
with-editor-stream puts a call to open-editor-stream inside a
useful wrapper, and so is preferable if your control structure al-
lows it. (The wrapper in this case guarantees not a zl:close,
which isn’t meaningful for editor streams, but a :force-
redisplay,) so any changes to the buffer will be apparent.)

There is some documentation on these two functions in chapter
45 of volume 7B, mainly on the various options for specifying
which buffer the stream should point to, and where in the buff-

6Which is how m-. manages to find most definitions accurately.

More Advanced Use of the Editor 285

er it should initially point. You must specify at least one of
the following options: :interval, :buffer-name, :pathname,
:window or :start. :buffer-name and :pathname are easy
enough. If a buffer exists which matches the given infor-
mation, it is used; if not, one is created (unless the :create-p
option has been used to specify otherwise).

Any interval you might have your hands on is suitable for
dinterval. A convenient one is often the value of
zwei:*interval®, which is valid in the editor process. You can
also create an interval with zwei:make-interval, which takes a
type (nil or a flavor built on zwei:interval) and the optional
keyword :initial-line, which can be any string (including one
with more than one line in it.)

:start can be a BP. It can also be :beginning, :end, :point,
:mark, or :region. The last three are only valid if you pass in
a :window argument.

:window is a zwei:window structure, not to be confused with
objects of flavor tviwindow. A Zwei window contains infor-
mation used by the redisplay, about the portion of the buffer
currently visible. Among its slots are a pointer to the interval
that window is displaying part of, a BP for the position of point
(the cursor), a bp for the first character in the line currently
displayed at the top of the screen, and a user-movable BP
which marks the “region” (called, unsurprisingly, the “mark.”).
The window structure you are most likely to be interested in is
in the variable zwei:*window®*, which is valid in the editor
process.

The macro zwei:point, called with no arguments, returns the
BP for the current point. As you might expect, it expands into
(window-point xwindowx), which means it is only valid inside
the editor. Similarly, there is a macro named zwei:mark,
which returns a BP for the most recently dropped mark.

286 Lisp Lore

Here are a few trivial examples, to illustrate the basic concepts
(all assume the current package is zwei).”

(with-editor-stream (stream :interval xintervalx)
(send stream :string-out
“surprise text insterted at end of current buffer”))

(with-editor-stream (stream :interval xintervalx
:start :beginning)
(send stream :string-out
"surprise inserted at beginning of current buffer”))

(with-editor-stream (stream :start (point))
(send stream :string-out
"surprise text inserted at point"))

(with-editor-stream (stream :start :region)
(read stream)) ; returns form in region.

(with-editor-stream
(stream :pathname “cd:>rsl1>11ispm-init.1isp”
:load-p t
:start :beginning)
(send stream :1ine-in)) ; reads first line of indicated file

12.2.2 Command Tables and Command Definition

Writing new commands becomes a matter of figuring out what
you want to do and expressing it in a function. Then, you need
to hook the function up to the Zwei command table mechanism.

The macro for defining new commands is zwei:defcom. Unfor-

7Warning! zwel is a Zetalisp package, not common lisp. Many pitfalls await the
unwary.

More Advanced Use of the Editor 287

tunately, it has a slightly confusing syntax, but is otherwise not
difficult. Its syntax is as follows:

(defcom com-foo documentation options-1ist &rest body)

This defines a function named com-foo®, The documentation is
any string you want to print in response to Help requests, or
the name of a function to print that help. The list of options
can be selected from:

¢ zweickm — This command preserves MARK if it is set
(the default is to remove it).

e zwei:sm — This command sets MARK.

e zwei:nm — This command removes MARK.

* zwei:r — Recenter screen like ¢-N if moved off (positive
arg means moving down)

¢ zwei:-r — Recenter screen like c-P if moved off (positive
arg means moving up)

¢ zwei:push — Point is pushed on the point-pdl before ex-
ecuting

The body is the function which actually implements the com-
mand. Note that there is no lambda-list: the command is called
with no arguments. Rather, arguments are passed in using
special variables. zwei:*numeric-arg* is the prefix numeric ar-
gument typed by the user. zwei:*numeric-arg-p* tells whether
a numeric argument was typed. zwei:*last-command-char* is
the keystroke that was actually typed.

One last thing: your command body must return the value of
one of the following variables to tell the redisplay what got
changed:

8Zwei commands, like CP commands, are traditionally named com-foo, for some
value of “foo.” See hacker's definition at the end of the chapter.

288 Lisp Lore

e zwei:dis-none — No redisplay needed.

¢ zwei:dis-mark-goes — No redisplay needed, except maybe
removing region underlining.

¢ zwei:dis-bps — Point and mark may have moved, but text
is unchanged.

e zwei:dis-line — Text in one line may have changed.

¢ zwei:dis-text — Any text might have changed.

e zwei:dis-all — Global parameters of the window have
changed. Clean the window and redisplay all lines from
scratch.

To make a new command usable, you must put it into a com-
mand table. Use zwei:command-store or zwei:set-comtab to
do so. You will want to put it into a command table which al-
ready exists, or one you create (for special-purpose editors you
might write: See the section “Making Standalone Editor
Windows” in Programming the User Interface, Volume B.) The
standard comtabs you might be interested in modifying include:

zwei:*standard-comtab*
all of the standard Zwei commands.

zwei:*zmacs-comtab*
the Zmacs commands, like those having to do
with buffers and files.

zwei:*zmail-comtab*
the Zmail commands (you should define these
with zwei:define-zmail-top-level-command
instead of zwei:defcom, which takes different
options, chosen from zwei:no-sequence-ok,
zwei:no-msg-ok, zwei:must-have-msg,
zwei:numeric-arg-ok or zwei:no-arg).

To see how these are set up, try looking at zweizinitialize-
standard-comtabs and zwei:initialize-zmacs-comtabs.

More Advanced Use of the Editor 289

12.2.3 Reading From the Mini-buffer

Another set of tools often used in writing editor commands are
the functions for reading from the mini-buffer. There are
many — and most of them are obsolete, special cases which
were designed before the invention of accept.

The proper tool to use in most cases is zwei:typein-line-accept,
which works just like accept with a few exceptions. Most
notable is that it takes two extra keyword arguments which al-
low you to specify what the user has “already typed in” before
it gets called. These keywords are :dinitial-input and :initial-
position.

A few others remain for the intrepid:

zwei:read-function-spec reads a function specification from the
mini-buffer. Clicking on function presentations, including those
in the editor buffer, will work. It takes a prompt string as an
argument, and optionally a default and a flag
(must-be-function) which says what kind of function is accept-
able: nil means anything which might be a function name, t
means it must refer to a defined function, and zwei:lambda-ok
means it is either a defined function or a lambda expression.

zwei:typein-line-history-readline reads a line from the user,
saving the result in an input history.

zwei:typein-line-history-read reads a lisp form from the user,
saving the result in an input history.

zwei:read-buffer-name and zweitread-defaulted-pathname do
what you’d expect.

290 Lisp Lore

12.2.4 A Real Example

Here’s something taken out of the editor code, the definition
for m-X Insert Date.”

(DEFCOM COM-INSERT-DATE
"Print the curent date into the buffer.
Calls TIME:PRINT-CURRENT-TIME, or if given an
argument TIME:PRINT-CURRENT-DATE"
0O
(LET ((STREAM (DPEN-INTERVAL-STREAM (POINT))))
(FUNCALL (IF *NUMERIC-ARG-Px
#’TIME : PRINT-CURRENT-DATE
#’TIME :PRINT-CURRENT-TIME)
STREAM)
(MOVE-MARK (POINT))
(MOVE-POINT (SEND STREAM ’:READ-BP)))
DIS-TEXT)

This command behaves differently depending on whether you
have provided a numeric argument or not. It uses zwei:open-
interval-stream, an internal version of zwei:open-editor-
stream.

12.3 Learning More About the Editor

There is a very powerful tool for learning how the editor works.
It’s invoked with m-X Edit Zmacs Command. Use it. There’s only
one way to really learn to write editor extensions, and that’s to
read others.

% was originally going to use m-X Evaluate Into Buffer for this example,
but it was too long to fit adequately onto the page. If you want to read that function,
“typem-X Edit Zmacs Command and then m-X Evaluate Into Buffer.

More Advanced Use of the Editor 291

12.4 Fun and Games

From The Hacker’s Dictionary, Guy L. Steele, Jr., et al:

FOO (foo)
1. interjection. Term of disgust. For greater emphasis, one
says MOBY FOO (see MOBY).

2. noun. The first metasyntactic variable. When you have
to invent an arbitrary temporary name for something for
the sake of exposition, FOO is usually used. If you need
a second one, BAR or BAZ is usually used; there is a
slight preference at MIT for bar and at Stanford for baz.
(It was probably at Stanford that bar was corrupted to
baz. Clearly, bar was the original, for the concatenation
FOOBAR is widely used also, and this in turn can be
traced to the obscene acronym “FUBAR” that arose in
the armed forces during World War II.)

Words such as “foo” are called “metasyntactic variables”
because, just as a mathematical variable stands for some
number, so “foo” always stands for the real name of the
thing under discussion. A hacker avoids using “foo” as
the real name of anything. Indeed, a standard convention
is that any file with “foo” in its name is temporary and
can be deleted on sight.

BAR (bar)
The second metasyntactic variable, after FOO. If a hacker
needs to invent exactly two names for things, he almost al-
ways picks the names “foo’” and “bar.”

292 Lisp Lore

12.5 Problem Set

Questions

1. Write com-comment-out-lines-in-region and com-
uncomment-lines-in-region to insert (and remove) semi-
colons at the beginning of each line in the region. (Both
of these already exist as parts of zwei:com-comment-out-
region, but that version includes lots of hair for handling
messy cases. Write something simple.)

2. Write a macro which can be used either inside or outside
the editor, which redirects all output during the execution
of its body to a newly-created editor buffer

3. Write the command com-change-expression-style-to-bold,
which does what the keyboard macro defined above does,
namely changes the character style in the expression to
the left of the cursor to boldface.

4. [For extra credit: write com-change-expression-style-to-
bolder, which makes, for example, (nil nil nil) into
(nil :bold nil), and (nil :ditalic nil) into
(nil :bold-italic nil)].

More Advanced Use of the Editor 293

Solutions

1. Comment out lines:

(defcom com-comment-out-1ines-in-region
"Comments out each line in the region."
0
(region-lines (start end)
(Toop for 1ine = start then (line-next 1ine)
until (eq line end)
do (insert (create-bp line 8) #\;)))
dis-text) '

Uncomment lines:

(defcom com-uncomment-1ines-in-region
“Removes semicolons from beginning of each line
in region."
O
(region-lines (start end)
(Toop for line = start then (line-next line)
until (eq line end)
when (and (> (line-length line) 0)
(char-equal (aref line 8) #\;))
do (letx ((end-idx (string-search-not-char
#\; line 1))
(start-bp (create-bp line 8))
(end-bp (if end-idx
(forward-char start-bp
end-idx)
(end-Tine start-bp))))
(delete-interval start-bp end-bp t))))

dis-text)

Don’t forget to add the commands to a comtab so you can
use them.

294 Lisp Lore

(set-comtab
xzmacs-comtabx
* (#\super-\; com-comment-out-1ines-in-region
#\hyper-\; com-uncomment-1ines-in-region)
(make-command-alist
’ (com-comment-out-1ines-in-region
com-uncomment-1ines-in-region)))

2. Anything sent to zl:st:a\ndard-output10 during execution
of body will be inserted into a buffer named buffer-name.
There will also be messages inserted before and after
body is executed.

(defmacro with-output-to-editor-buffer ((buffer-name)
&body body)
* (with-editor-stream (standard-output
:buffer-name ,buffer-name)
(format t “~2%;;; Diverting to buffer (T\datime\)~2%")
(multiple-value-prog1
(progn ,€body)
(format t "~2%;;; End of diversion (“\datime\)"))))

Note that this macro returns the values of the body.
This is good practice whenever you write macros whose
names start with with-.

3. Examine how c¢-X c¢-J is implemented to see how this
works.

10remtamber, zwel: is a Zetalisp package. The Common Lisp variable

standard-output is changed whenever you bind or otherwise modify
zl:standard-output.

More Advanced Use of the Editor 295

(defcom com-change-expression-style-to-bold

“Changes one SEXP’s style to (nil :bold nil).
Negative arguments are forward, positive backwards,
unlike all other commands.”

0O

(Tet ((bp (forward-sexp (point) (- xnumeric-argx))))
(change-style-interval (point) bp nil
(si:style-index ’(ni1 :bold nil) t))))

4. I have not solved the extra credit problem in the general
case. Here is a special case version of it for my particular
application, which was to convert comments to italics.

(defvar xdefault-comment-char-style-alistx
'(((ni1 nil nil) (nil :italic nil))
((nil1 :bold nil) (ni1 :bold-italic nil))))

(defcom com-change-style-to-comment
“Changes the style of the comment on this line
to italics. A kludge.”
0O
(Tetx
((Tine (bp-line (point)))
(start (find-comment-start line t))
(comment-start (and start (create-bp 1line start)))
(comment-end (end-Tine (point))))
(if (not comment-start)
(barf "No comment on this line.")
(undo-save comment-start comment-end t
"change character style")
(Toop for (from-style to-style) in
xdefault-comment-char-style-alistx
as from-style-index =
(si:style-index from-style t)
and to-style-index =

296 Lisp Lore

(si:style-index to-style t)
do
(change-one-style-interval-internal
comment-start comment-end t
from-style-index to-style-index)))
dis-text))

(defun change-one-style-interval-internal
(start-bp end-bp in-order-p from-style to-style)
(get-interval start-bp end-bp in-order-p)
(mung-bp-interval start-bp)
(do
((1ine (bp-line start-bp) (line-next-in-buffer line))
(1imit-1ine (bp-line end-bp))
(start-index (bp-index start-bp) 8)
(last-1line-p))
(nil) ; Don’t return here, only at bottom.
(setq last-lTine-p (eq line limit-line))
(or (zerop to-style) (string-fat-p line)
(setq line (set-line-array-type
Tine ’art-fat-string)))
(setq line (mung-line line))
(let ((1ine 1ine))
(declare (sys:array-register line))
(do ((index start-index (1+ index))
(limit-index (if last-line-p
(bp-index end-bp)
(1ine-1ength 1ine))))
((= index limit-index))
(let ((ch (aref line index)))
(when (= (si:char-style-index ch) from-style)
(setf (si:char-style-index ch) to-style)
(setf (aref 1line index) ch)))))
(and last-line-p (return nil))))

More Advanced Use of the Editor ' 297

Ideally, you’d want to have an internal function to which
you would pass a function which would return a new style
given the current style of the character; this would
prevent the mess which might happen if you happen to
convert into a style which was about to be converted out
of again.

13. A Quick Look At the Network

Although it is common to refer to a Lisp Machine’s connections
to the rest of the world as ‘“the network,” as if the machine
were connected via a single mechanism to a unified system of
linkages, such is not the case. There are several means of
communication, operating via several different. hardware and
software protocols. And there is considerable overlap, with dif-
ferent software protocols operating simultaneously over the
same hardware. It’s not very complicated, but it’s easy to be-
come highly confused if the basic issues are not kept clear.

13.1 The Gee-whiz Look

This section might be better titled ‘“How the network can be
completely invisible to the user.” You've probably been using
the network for quite some time, usually without thinking about
it. When you first log in, your machine connects to the
namespace server to obtain information about you from the
namespace database. Then your machine contacts your file
server to load your init file. You start working on a program
by editing a file containing the source; it comes from (perhaps)

299

300 Lisp Lore

a different file server. And you send mail to your coworkers
about problems you may be having with their software (or
answer their complaints about yours!).

All of these actions require the use of “the network,” unless
you have a single machine not connected to any other. The
point is, you can’t tell whether the network is in use or not, in
general, because programs such as the editor, the tape dumper,
the mailer, and so forth, are written in such a way that the
network level is immaterial; by the time the editor sees an in-
terface to the network, it’s a file stream, and behaves the same
regardless of whether the file is on the local machine, the file
server next door, or a machine across the country.

13.1.1 What is a Network?

There are many ways to think about computer networks. An
informal definition of a network might say something to the ef-
fect that it’s a way for computers to talk to each other.
However, computers are not like human beings: a pair of people
can get together and have independent conversations. On the
other hand, computers need to be told what to do, very ex-
plictly. In a computer network, one computer, or, to use the
“network-ese’” word for it, one host, tells another exactly what
to do.

The model used in the Symbolics network system is based on
services. A computer requests a service from another, which
provides it. The first computer, called the user host, says very
explictly what it wants the other computer, the server host,
what to do. A service can be pretty much anything a remote
computer might be expected to do for you, anything from stor-

A Quick Look At the Network 301

ing your files on its disk to operating a robot for you.1 Services
can also be used automatically by programs, such as mail
delivery programs which store mail destined for remote sites.

Since we'’re talking about a Lisp Machine, it’s not surprising
that the service model behaves very much like Lisp functions.
Invoking a service via a network is very much like invoking a
function: it might return values, perform side effects, and so
forth.

You might imagine a number of ways to implement a given ser-
vice, but there are two basic dimensions which might charac-
terize a given implementation. In Symbolics’ terminology, these
are called Medium and Protocol. A medium, conceptually, is a
combination of hardware and software which permits you to
communicate at all. A network protocol is a software agree-
ment as to what you actually say on the communication
medium in order to make your needs known.

Consider a service that, say, the host named “Paul-Revere”
might perform for the host “Old-North-Tower:” the Alert
Farmers of Invasion service. This service might return no in-
teresting values, but would have the side effect, say, of waking
all the users on hosts at the “Middlesex” site.

The traditional implementation of the Alert Farmers service can
be characterized as follows (figure 8):

¢ Medium: Lights on the top of Old North Church

¢ Protocol: One if by land, two if by sea.

1Years ago, at the MIT Al lab, there was a host which would respond to “fetch an
elevator” service requests by bringing an elevator to your floor. You could invoke this
service just before leaving for the night, and know there would be an elevator when
you got out of the lab.

302 Lisp Lore

N (e
o

Figure 8. Standard medium and protocol for Alert Farmers.

Now, each of these dimensions is independent of the other. For
example, you could use the traditional protocol, “one if by land
...”” but change the medium to flags instead of lights. Or, you
could preserve the medium, namely lights on top of the tower,
but change the protocol to “yellow over red if by land, red over
yellow if by sea.” You can even change both, and use both the
flag medium and the color protocol.

13.1.2 Levels of Abstraction

When network hackers discuss levels of abstraction, they merely
mean that each layer of a network system is built on top of
others. It is often helpful to implement large systems in terms
of layers of modularity, and networks are particularly sensitive
to this.

200th of these “media” use the same network hardware, namely the church tower.
You can Imagine a medium which involves lights, but not the same hardware, such as
a rowboat across the river carrying lanterns. Similarly, certain network media can be
implemented on top of different lower-level hardware and software substrates.

A Quick Look At the Network 303

Protocol Lights Flags

One/two

Colors

Figure 9. All possible implementations of Alert Farmers.

Here are some of the layers of network software, in increasing

modularity. Each of these uses the previous layer to get its job
done.

304

Lisp Lore

e The layers you don’t need to know about: how many wires

are in the cable, what the electrical characteristics of the
connection are, etc. These are sometimes called the
“Physical” layers.

The “Network’ layer: responsible for attempting to get
data from here to there. Concerned with routing, ad-
dressing, etc.

The “Transport” layer: responsible for getting data from
there to there which is more-or-less correct. Depending
on the transport layer’s definition, this might mean that
the bits are defined to arrive in the correct order, or all
be correct, or whatever. For applications where you don’t
care that all the bits get there, like transmission of
speech, you might use a transport layer which promises
that, say, over 85% of the bits arrive.

The “Session’’ layer: responsible for maintaining connec-
tions between cooperating processes on different hosts.
Can create the cooperating process on the server host if it
needs to.3

The “Application” layer: responsible for converting be-
tween application-specific data and a representation which
can be packaged and shipped via the transport layer, on
connections provided by the session layer.4

aThe layers up to this point correspond approximately to the “medium” portion of
obtaining service.

“This layer corresponds to the *“protocol” part. There may be some higher-level
“medium” aspects here as well. For example, consider the :byte-stream-with-mark
network medium. See the section “BYTE-STREAM-WITH-MARK Network Medium"”
in Networks.

A Quick Look At the Network 305

¢ Application programs: use interfaces provided by the ap-
plication layer to communicate intent, desires, etc.

In general, implementing earlier (lower) levels requires know-
ing more, and being able to hack closer to the hardware, etc.

The Symbolics documentation is very good about describing how
to write application programs which use the application layer.
It’s also pretty good at describing how to write new application
layers, although not quite as good. It’s pretty hard to write
new network, transport and session layers from the documen-
tation, but at least one Symbolics customer did it a couple of
years ago, and the documentation is considerably better now.

13.2 The Generic Network System

The Generic Network System (GNS) is concerned with the part
of the network system up to the the application layer. It
provides an interface between the application programs and the
various session and transport layers.

Just as the messenger who runs up to Old North Church and
tells the “host” there that she wants to invoke the Alert
Farmers service doesn’t really care what the medium and
protocol are, so the application program which invokes the ser-
vice doesn’t really care either.

The Generic Network System provides two classes of interfaces:

1. Finding a path to a service: In order to invoke a service,
you must be able to discover the protocols and media

5The GNS provides hooks which permit programmers who really do care to invoke
specific implementations of various services.

306 Lisp Lore

which implement it, and choose among them based on
how desirable the implementations are.

2. Invoking a given service access path, as found by the pre-
vious step.

The function net:invoke-service-on-host combines these two
steps into a single function call, which is usually what you
want. The only times you would want to worry about access
paths is when you

e are doing something fancy with multiple hosts,

e don’t care which host provides the service, or

e are going to do something fancy depending on which
protocol gets used.

13.2.1 How Does Path-finding Work?

Finding a path to a service means figuring out exactly what
must be done in order to invoke a given service on a given
host. There are functions which find a path to the given ser-
vice on a specific host, on any host, or find a way to invoke the
service via a “broadcast” mechanism.

In order to do its job, the path-finding function must consider
three separate sets of information.

1. Does the remote host implement the service? If so, what
protocol must one use, and on which media will that
protocol be useable?

9. How is the network configured? In other words, what
possible network connections exist between the local and
remote hosts which will support one or more of the
desired media?

A Quick Look At the Network 307

3. What protocols and media does the local host know how
to use to invoke the given service?

The first two sets of data come from the namespace database,
the place where network configuration is kept. The third is
stored in the local host’s Lisp world, and is dependent on which
software is loaded.

The result is a (possibly empty) list of service access path ob-
Jjects, sorted in order of desirability. Desirability is measured
in terms of how fast the network connection is, how powerful
the protocol is, and so forth.

13.2.2 How Does Service Invocation Work?

Service invocation is really the easy part of the process, once
you know how to get there:

1. It calls upon the services of the transport layer indicated
in the medium description to form a connection, and

2. It invokes the function which implements the protocol,
passing it a medium-specific handle to the network con-
nection (this handle is often a stream).

13.2.3 Other GNS Functions

In order to invoke a service on a host, you must first have a
host object which represents that host. If you want to convert a
string into a host object, you call net:parse-host:

(net:parse-host “CD*)
Usually, net:parse-host and net:invoke-service-on-host are all

you really need. However, there are plenty of other hooks into
the Generic Network system:

308

Lisp Lore

net:find-paths-to-service-on-host — returns a list of ser-
vice access paths, sorted in order of desirability.

net:find-path-to-service-on-host — returns the most
desirable service access path.

net:find-paths-to-service — returns a list of service access
paths to all hosts which support the requested service.

net:find-paths-to-service-using-broadcast — returns a list
of service access paths which ‘“‘broadcast” your request to
all hosts on your network. You would use this when
you're trying to get service from any host, and don’t mind
disturbing potentially every host on the network to get it.
Only services which are inexpensive to supply, such as
time of day, are invoked using the broadcast mechanism.

net:find-paths-to-protocol-on-host — returns service ac-
cess paths which implement a service using a particular
protocol.

net:invoke-service-access-path — does what it says.

net:invoke-multiple-services — allows you to invoke a list
of services at once. You might use this to find out who’s
logged into all the Lisp Machines at your site at once.
To see how this is used, read the function
neti:*scan-lispms.

13.3 The Namespace System

A Quick Look At the Network 309

The namespace system is a distributed® database system which
was designed primarily for the Generic Network System. For
this purpose, it contains two items of interest about hosts and
network topology:

1. Service attributes of hosts: a list of triples, consisting of
the service, the medium on which it is offered, and the
protocol by which it may be used.

2. Network addresses of hosts: a list of pairs, consisting of
the network to which the host is connected, and its ad-
dress.

As long as a fairly robust, distributed database system has been
implemented, we may as well use it to store other information.
Thus, in addition to host objects, the namespace database con-
tains information about a variety of other classes of objects.
Here are some other things kept in the namespace database:

e Other attributes of hosts: extra names, ‘‘pretty’’ names
(the mixed-case name), its operating system, its console
location, various peripherals attached to it, printers for
which it is the spooler, etec.

¢ Site attributes: its name, security information, mail
characteristics, the local timezone, “pretty name,” etc.

® User attributes: a login name, a full name, home and
work addresses and phone numbers, that person’s
birthday, etc. This is data commonly given out for
“Finger” network service.

6“Distributed," in this context, means that it is distributed over a number of different
hosts. Each host has some local information about the database, and knows which
host(s) to ask for more data.

310 Lisp Lore

e Printer attributes: what kind of printer it is, its location,
the host to which it is attached (and via what hardware),
and so forth.

¢ Network attributes: its name, what type of network it is,
its special topology requirements, etc.

o Namespace attributes: who are its servers, what other
namespaces it includes by reference, etc.

13.4 Examples of the Use of the Generic Network
System

Here are some sample application programs which use the net-
work to get their work done. In many cases, the “application
program” at the level that I will describe it has already been
written, usually more comprehensively than I will sketch out. I
will point out places in the system source you might look for
further information. Reference documentation for using net-
work services is in volume 9: See the section “How a Network
Service is Performed” in Networks.

13.4.1 Time of Day

To get the time of day from a specific host:

(net:invoke-service-on-host :time host)

This service has no side-effects, and returns the time of day, in
universal time (seconds since January 1, 1900).

A function which does this in a much fancier fashion is
net:get-time-from-network. It broadcasts its request, which is
a way of asking every host on a given network (or part of a
network) to respond simultaneously. Broadcast services usually

A Quick Look At the Network 311

only look at the first result returned, which is why they should
only be used for very inexpensive or very infrequent applica-
tions.

13.4.2 Who’s Logged in

To find out who’s logged in to a specific host, in as much
detail as that host can supply:

(net:invoke-service-on-host :show-users host
:whois t)

This service returns no interesting values, but as a side-effect
it prints the logged-in users from the foreign machine on the
stream *standard-output*. There are two optional keyword ar-
guments you can supply to this service:

* :whois - Return all possible information, such as ad-
dresses and phone number, birthday, and so forth. If the
host is a Lisp Machine, this data will come from whatever
the user has filled in in the namespace database.

¢ :user — Return information about the specific user. The
default is to return information on every currently logged-
in user.

For a system-supplied function which uses this service, see the
source for net:finger.

13.4.3 Mall Delivery

This version of mail delivery is considerably simpler than the
system-supplied one. The system-supplied macro mailer:with-
mailer takes a service access path as an argument, while the
one I'm about to define takes a host. The body of the macro
form should be identical in both cases.

312 Lisp Lore

~ As mentioned earlier, the invocation of a mail service (either
.store-and-forward-mail, which tries to deliver the mail no
matter where it goes, or :mail-to-user, which doesn’t guarantee
that it will try, although it might) returns a mailer object and
has no direct side effects. However, sending messages to the
mailer object is how you send mail, which usually entails side
effects.

The messages you can send to a mailer object include:
o :start-message — Takes the sender as an argument.

e :verify-recipient — Takes a recipient as an argument.
[Both sender and recipient are examples of a somewhat
complicated data structure, returned by such functions as
zwei:parse-addresses and zwei:parse-one-address].

¢ :receive-message — Takes a “trace line” (which goes at
the front of the mail, usually a “Received:” line or nil), a
header stream, and an optional body stream (if not sup-
plied, the first stream is supposed to have all the charac-
ters which go in the entire message).

o :finish-message — Tells the mailer host to actually deliver
the mail.

First, a macro which wraps up the important stuff.

b2 24

A Quick Look At the Network 313

(defmacro with-hack-mailer ((mailer host) &body body)
*(let ((,mailer nil))
(unwind-protect
(progn (setq ,mailer
(net:invoke-service-on-host

:store-and-forward-mail

(net:parse-host ,host)))
,@body)

(when ,mailer (close ,mailer)))))

(defun hack-mail (host recips msg-string)
(with-hack-mailer (mailer host)
(send mailer :start-message
(zwei:parse-one-address
(format nil "~{~A@~A~}" ; “foo@bar’’
(send si:xuserx :mail-address))))
(loop for recip in (zwei:parse-addresses recips)
do (send mailer :verify-recipient recip))
(with-input-from-string (msg-stream msg-string)
(send mailer :receive-message nil msg-stream))
(send mailer :finish-message)))

As I indicated earlier, a much more complete macro is
mailer:with-mailer. Instead, of a host, it takes a service access

path, so the function hack-mail above might have been written
as follows:

(defun hack-mail (host recips msg-string)
(mailer:with-mailer
(mailer (net:find-path-to-service-on-host
:store-and-forward-mail
(net:parse-host host)))
L...1))

314 ' Lisp Lore

13.5 Writing Your Own Network Software

Now, it’s all well and good to use software which has already
been written, but sometimes you want to make the machine do
something new. In networks, this often involves designing and
implementing a new protocol to perform that service.

What does this involve? In general, for a network protocol to
be successful, you must have both ends agree on each of these
points:

¢ Connection name: the two ends need to agree on how the
initial connection is established. For TCP, for example,
the two ends need to agree on a ‘‘well-known port.” For
Chaosnet, they must agree on the ‘‘contact name.” In
any case, the user end invokes the session layer with the
appropriate name for the protocol it wishes to speak.

e Data representation: in order to transmit your data, you
must encode it in some form which is amenable to trans-
mission on your network medium. For example, if your
medium transmits 8-bit bytes, you must convert integers,
strings, and other Lisp objects into some representation
which fits in integers between 0 and 255. At the receiv-
ing end, you must decode it into some useful represen-
tation. You can use the same format for transmitting
data in both directions, or have the two ends use com-
pletely different formats.

e Command/response format: how will the user end tell the
server end what to do? How will the server end reply
that it has been done? How can it say that there was an
error, and what happened instead of the desired result?
Again, your commands and responses must be encoded
into a form that your medium can transmit.

A Quick Look At the Network 315

¢ Auxilliary connections: you might like to be able to inter-
rupt transmission of long streams of data without having
to worry about the integrity of the data. One way to do
this is to reserve the original connection for sending com-
mands and interrupts, and create auxilliary connections
for the actual data. This is the way most file transfer
protocols work, for example. The two ends need to agree
on the “names” of these connections, or a mechanism for
communicating the name from one end to the other.

» Which end speaks first: again, computers need to be told
exactly what to do. If each end waits for the other to say
something before sending their first data, your protocol
isn’t going to work. Similarly, you have to have an
agreement on which end waits until the other is com-
pletely finished.

» Which end speaks last: a particularly nasty timing
problem is found at least in the Chaos network medium.
When both ends try to close a connection “cleanly,” each
of them waits for the other to acknowledge that all the
data has been received before either of them will say any
more. In order to get around this, one end must acknow-
ledge all data, including the End-of-File marker, from the
other. One way to do this is for one side to forcibly close
the connection (i.e., use the :abort keyword when closing
the stream). A cleaner way is for one side to explicitly
read the other’s EOF packet, by using
stream-copy-until-eof to copy from the stream to the
“null stream.”

If the protocol is intended to operate independently of human
intervention, its command data representations should be easy
for machines to parse. For example, consider the mail transfer

316 Lisp Lore

protocol SMTP’. This protocol is used by mail transmitting
and receiving programs, and is mostly expected to run
autonomously. In SMTP,

¢ all command names are four letters long, and are followed
by data in a very constrained format;

e responses are all three-digit numbers, with human-
readable strings attached to error response codes; and

e only a very small number of commands and responses are
valid at any point in the dialog between the user and
server programs.

In contrast, consider the remote login protocol named Telnet®.
In this protocol, the user is typing most of the input, and is
reading and (presumably) responding to the output. Thus, Tel-
net commands and responses, for the most part, are very un-
constrained.

For a new protocol, you will need to write both a user end and
a server end. If you are only planning to run, say, the user
end on the Lisp Machine (your server might be some other kind
of host), you only need to write the user end on the Lisp
Machine. For my own work, I find that writing both ends on
the Lisp Machine helps to clarify the issues, and makes it
easier to debug your protocol. Writing the “foreign” user or
server after that is easier, of course, because the algorithm is
already debugged.

For complete documentation on writing user and server network
software: See the section “Defining a New Network Service”
in Networks.

7The Simple Mail Transfer Protocol, defined in ARPAnet RFC 821.

8 ARPAnet RFC 854.

A Quick Look At the Network 317

13.5.1 Writing Your Own User End

On the Lisp Machine, the way to write your own user end is
with the macro net:define-protocol. See the special form
net:define-protocol in Networks. Writing a protocol is usually
very straightforward.

Most network protocols usually take place on a single network
connection, usually a reliable byte-stream type of connection.
Certain protocols will want to use a more sophisticated layer on
top of the byte stream, for reasons of synchronization or to aid
in conversion of Lisp objects into a representation which can be
placed into a byte stream. A couple of these are already in
place in Genera: :byte-stream-with-mark and :token-list media
are implemented by formatting data carefully onto byte streams
provided by TCP and Chaos, for example.

Usually the connection is used in both directions, often one at a
time in a sort of “lock-step” fashion. That is, the user end
sends a single command, and waits for a single response from
the server. The server waits for a command, and sends its
response to that command.

13.5.2 Writing Your Own Server End

Writing a server is the converse of writing a user-end. It is
also very straightforward, and is done with the macro
net:define-server. See the special form net:define-server in
Networks. Once again, both ends of the connection must agree
on all the details of the protocol.

One undocumented keyword you can supply to net:define-server
is :flavor. If you do this, then you don’t have to define the
server as the body of net:define-server. Instead, an instance of
that flavor is created, and a process is created which sends that
instance the message :server-top-level. Your flavor should be

318 Lisp Lore

based on the flavor net:byte-stream-server or one of its com-
ponents. For servers which will stay around for a long time,
such as file servers, this is often a good way to associate state
variables with the server, by using the instance variables of the
server instance. See, for example, the way the :namespace
server is implemented (fype meta-. :namespace followed by
meta-8@ meta-. until you find the right definition of
:namespace).

13.5.3 Sample User and Server Definition

Here is an implementation of a user-information service, a sort
of stripped-down “WHOIS” facility.

It might be invoked by a program doing the following on the
user host:

(defun who-is-using (host)
(setq host (net:parse-host host))
;; Convert it into host object
(let ((return-plist (net:invoke-service-on-host
:user-info host
:name t :work-phone t)))
(format t “~%~A is using ~A; work phone is “A"
(getf return-plist :name)
(send host :pretty-name)
(getf return-plist :work-phone))))

The protocol is quite simple, and can be implemented on any
byte-stream medium. Each interaction between the user and
the server consists of a single line of text (a “command’) from
the user, which must be one of “NAME”, “ADDRESS”,
“HOME PHONE” or “WORK PHONE”. The server replies
with a single line, which is either the character #\+ and a
response, or the character #\- and an error message.

A Quick Look At the Network 319

Note that the entire interaction takes place in the Lisp
Machine character set, and lines are delimited with Lisp
Machine #return characters. It is possible to define both a
user and a server which communicates in ASCII characters in-
stead, in which case the end-of-line character sequence would
be CR-LF (or just CR). [This latter is completely hidden from
the writer of the protocol, once s/he says :ascii-translation, the
matter is completely taken care of.] '

13.5.3.1 User-end Protocol Definition

The wuser end of the protocol is defined with
net:define-protocol. This definition must be loaded into the
user host’s lisp environment.

320 Lisp Lore

(net:define-protocol :user-info-protocol
(:user-info :byte-stream)
(:invoke-with-stream-and-close
(stream &key name address home-phone work-phone
&aux result)
(flet ((send-command (command)
(format stream "~A~%Z" command)
(send stream :force-output)
(let ((response (send stream :1ine-in)))
(when (< B8 (string-length response))
(selector (aref response 8) char-equal
(#\+ (substring response 1))
(#\- (error "Command failed: ~A: ~A"
command
(substring response 1)))
(otherwise
(error "Invalid response: ~A"
response)))))))
(when name
(push :name result)
(push (send-command “NAME") result))
(when address
(push :address result)
(push (send-command "ADDRESS") result))
(when home-phone
(push :home-phone result)
(push (send-command "HOME PHONE") result))
(when work-phone
(push :work-phone result)
(push (send-command “WORK PHONE") result))
(send-command “BYE")
(values (nreverse resuit)))))

flet is used to introduce a local function without having a
globally-named one; it is similar to let. In this case, the

A Quick Look At the Network 321

send-command function is used as the central control point to
ensure that the protocol is followed correctly.

13.5.3.2 Server-end Protocol Definition

The server end of a protocol is defined with net:define-server.
Note that the server definition doesn’t say what service it’s
supplying. A server for a particular protocol might actually
implement several services. For example, the SMTP server
implements :mail-to-user and :store-and-forward-mail, which
are not very different. It also implements :expand-mail-
recipient, which is a completely different service. The
net:define-protocol form, of course, needs to know which ser-
vice it’s performing.

This definition is loaded into the server host’s environment.

322 Lisp Lore

(net:define-server :user-info-protocol
(:medium :byte-stream :stream stream)
(1abels ((command-response (ok? result)
(format stream "~:[-";+]1"A~Z" ok? result)
(send stream :force-output))
(answer (info)
(command-response t (send si:xuserx info))))
(loop named server
for command = (send stream :line-in)
do (selector command string-equal
("NAME" (answer :personal-name))
("ADDRESS” (answer :work-address))
("HOME PHONE" (answer :home-phone))
("WORK PHONE" (answer :work-phone))
("BYE"
(command-response t “See you later")
:; Deal with EOF synchronization.
(stream-copy-until-eof
stream #’sys:null-stream)
(return-from server (values)))
(otherwise
(command-response
nil
(format nil "Invalid command: ~A"
command)))))))

13.5.3.3 Contact Names

The other part of the agreement between the user and server
ends is how they begin to talk to each other. Each kind of
transport medium has its own characteristic way to do this.

At least one of these must be loaded into both the user and
server hosts’ environments.

A Quick Look At the Network 323

;55 Here is how you hook up a protocol and a Chaos contact
;35 name, TCP protocol "well-known port”, or DNA contact id.

(chaos:add-contact-name-for-protocol :user-info-protocol)
(tcp:add-tcp-port-for-protocol :user-info-protocol 123)

(dna:add-dna-contact-id-for-protocol :user-info-protocol
"USERINFOPROTOCOL")

13.5.3.4 Updating the Namespace

So far, the user host knows how to invoke the service, and the
server host knows how to respond correctly to the protocol.
Also, they both agree on how the initial contact is to be sup-
plied.

Now, how does the user host find the path to service? The
answer is, you must update the namespace database to tell it.

Presumably, the two hosts are already recorded in the
namespace, and even have network addresses which allow them
to communicate. All that remains is telling the user’s host
how the server provides the service. To do that, you must add
a service entry to the server host’s namespace entry. For the
:user-info service we defined above, you would need to add one
or more of the following service entries to the server host:

USER-INFO CHAOS USER-INFO-PROTOCOL
USER-INFO TCP USER-INFO-PROTOCOL
USER-INFO DNA USER-INFO-PROTOCOL

13.5.3.5 Debugging the Protocol
When I first wrote this example, it had two bugs:

1. I left off the “~“%” in the format call in send-command,
and also in command-response. Since the other end was

324

Lisp Lore

expecting to read lines using :line-in messages, this was a
violation of the protocol.

Each end was waiting for the other to synchronize the
stream closing. In Chaos protocol, what happens is that
each sends an EOF packet, and waits for the other to ac-
knowledge it. Since neither is talking any more after it
sends the EOF, no packet with an acknowledgement ever
gets sent. I am not sure whether other network media
have similar timing problems, but I have found that it al-
ways makes sense for one end or the other to read the
final EOF packet, using stream-copy-until-eof to the null
stream.

Appendix A
Basic Zmacs Commands

While it is true that there are a great many Zmacs commands,
and trying to learn them all would be a close to hopeless task,
it is also true that the situation is really much less difficult
than it might at first appear. For one thing, you can edit files
quite effectively with a relatively small subset of the Zmacs
commands. (This should not be taken to imply that the
remaining commands are superfluous; the “quite effective” edit-
ing you can do without them is transformed into astonishingly
effective editing with them.) Another saving grace is that
there is some pattern to the pairing of keystrokes with editing
functions. For instance, control characters often act on single
letters or lines; meta characters on words, sentences, or
paragraphs; and control-meta characters on lisp expressions.
Thus c-F moves forward one character, m-F moves forward one
word, and c-m-F moves forward one lisp expression. c-K means
“kill” (delete) to the end of the line, m-K means kill to the end
of the sentence, and c-m-K means kill to the end of the current
lisp expression. So the amount of memorizing you have to do
to start editing is really not very great.

326 Lisp Lore

I can’t overemphasize the utility of the Help facility in Zmacs.
It can be a real lifesaver, both when you don’t know what com-
mands there are to do something, and when you’ve forgotten
how to invoke a command you know about. So don’t limit your-
self to the commands listed below. Consider the list a crutch,
to help get you started, but try to leave it behind as soon as
possible.

With Genera 7.0, Symbolics has introduced Reference Cards, a
little spiral-bound notebook full of “cheat sheets.” What fol-
lows is a distillation of the Zmacs section, with a few com-
mands added (I've underlined those).

Many of these commands also work in the Lisp Listener, and
are also useful for copying things from the editor to the
typeout window or minibuffer. The underlined mouse com-
mands are especially useful in this respect.

Movement Commands

c-F Move forward one character

c-B Move backward one character

c-N Move down one line (“next”)

c-P Move up one line (“previous’)
c-A Move to the beginning of the line
c-E Move to the end of the line

[mouse left] Move to mouse position

m-F Move forward one word

m-B Move backward one word

m-A Move to the beginning of the sentence
m-E Move to the end of the sentence ,
m-[Move to the beginning of the paragraph

m-] Move to the end of the paragraph
m-< Move to the beginning of the buffer
n-> Move to the end of the buffer

Basic Zmacs Commands 327

c-m-F Move forward one lisp expression

c-m-B Move backward one lisp expression

c-m-A, c-m-[Move to the beginning of the current definition
c-m-E, c-m-] Move to the end of the current definition

Deletion Commands

c-D Delete forward one character

Rubout Delete backward one character

Clear Input Delete to the beginning of the line

c-K Delete to the end of the line

m-D Delete forward one word

m-Rubout Delete backward one word

m-K Delete forward one sentence

c-m-K . Delete forward one lisp expression

c-m-Rubout Delete backward one lisp expression

c-Y Restore (“yank’) text deleted with any of the
above, except ¢-D and Rubout

m-Y Immediately following a c-Y or another m-v,

replace the yanked text with the previous ele-
ment of the kill history

Region Commands

c-Space Set the mark at the current position, and turn on
the “region.” Subsequent movement commands
will define the region to be the area between the
mark and the new position.
Delete the region, putting it on the kill history
Put the region on the kill history without delet-
ing it
[mouse middle]
Mark (make into the region) the object the mouse
is pointing at

?O
= =

328

Lisp Lore

[mouse left] hold

Mark the area dragged over (between button
press and button release)

control-mouse middlel

c-X c-F

c-X c-S
c-X c-W

Copy the object the mouse is pointing at to the
cursor. This is useful for copying whole forms;
point at the open or close parenthesis and click
c-[mouse-middie].

File Commands

Read (‘““find”’) a file into its own buffer, creating
an empty buffer if the file doesn’t exist

Write (“save”) a buffer back to its file

Write a buffer to any file, specified by name

M-x Compile File

c-X B
c-X c-B

c-sh-E

c-sh-C

Compile a file, i.e., write a binary version of the
file. This has no effect on the current Lisp en-
vironment. (Compare with M-x Compile Buffer.)

Buffer Commands

Switch to the previous (“last””) buffer; with a
numeric argument you can get to other previous
buffers.

Switch to a buffer specified by name

Display a list of the buffers

Lisp Commands

Evaluate (call the Lisp interpreter on) the region,
if it’s active, or the current definition if it’s not
Compile the region or current definition into the
Lisp environment

M-x Evaluate Buffer

Basic Zmacs Commands 329

Evaluate the entire buffer (usually you should
Jjust compile it)

M-x Compile Buffer

End, s-E

Suspend
m-.

c-X D
Help A
Help C

Help D

Compile the entire buffer into the environment.
This has no effect on the file system. (Compare
with M-x Compile File.)

Murray Hill Standard Utilities only. Evaluate the
region or current definition and insert the result
into the buffer.

Miscellaneous

Enter the typeout window. (Resume returns.)

Find the definition of a given function

Directory edit — shows a directory listing and en-
ables manipulation of the files in it

Apropos — list all commands containing a given
substring

Describe the command associated with a given
keystroke

Describe a command specified by name

* variable 90

current-process variable 67
default-cons-area variable 226
/ variable 90

:byte-stream-with-mark

317
:maii-to-user network service 311
:show-users network service 311
:store-and-forward-mail

311
:time network service 310
:token-list network medium 317

Abort key 11, 73

accept function 248

Accessing Files and Directories 180
Add Patch Zmacs command 222
allocate-resource function 227

Allocation and the Garbage Collector 224

Index

apropos function 90
Areas 226
ASCIL network protocols 318

Backup 32

Basic Places 249

Basic Zmacs Commands 325
block function 40, 52

Blocks and Exits 40

Bound condition handlers 235
BP's 283

break function 80

Bringing the Machine up 25

C-Abort key 11, 55
C-m-Abort key 11
C-m-Suspend key 11
C-m-Suspend key 80
C-m-Y key 83
C-sh-A key 83

332

Lisp Lore

C-sh-M Zmacs command 53
C-Suspend key 11
C-Y key 83
Caching, card game 251
Calculator Example 205
Callers of a function 90
Card Definitions 246
Card font 245
Card Game Example 245
Card Places 249
case function 37
Case in Pathnames 189
catch function 41
catch-error-restart function 237
Changing arguments 80
Chaos network medium 317
chaos:add-contact-name-for-protocol
function 322
Clear-input key 11
Clicking on input 86
Combined Methods 108
Command 13
Command-definition Macrology 209
Command Processor 13
Command Tables
286
Compilation dependencies 218
Compile System command 217, 221
Compiler 23, 80
Compiling and Loading Systems 221
Component Values 187
cond function 37
Condition system examples 239
Condition Handling 233, 235

condition-bind function 235, 238
condition-call function 235
conditlon-case function 235
Conditionals 37

Cons, hacker's definition 224
cons function 226

cons-in-area function 226
Contact Names 322

Converse 15
cp:define-command function 135
Creating New Condition Flavors 236

dbg:debugger-condition flavor 236
dbg:report function 234, 236
deallocate-resource function 227
Debugging 23, 80

Debugging the Protocol 323
Defaults and Merging 190

Defining a System 218

Defining Commands 135

Defining program commands 135
defmacro function 53

defresource function 227
Defsystem 218, 221

Directories 184

Disassembling compiled code 90
Distribute Systems command 217
Distribution tape 217

DNA network medium 317

dna:add-dna-contact-id-for-protocol func-

tion 322
dofunction 40, 42, 45
do-local-symbols function 94
do-symbols function 94
Document Examiner 15

Index

333

dolist function 45

dotimes function 45

dw:define-program-framework
132

dw:get-program-pane function 137

Dynamic Garbage Collector 224

Dynamic scoping 52

ecase function 37

Editing callers of a function 90

Editor (Zmacs) 21

Editor Command Example 290

Ephemeral Garbage Collector 224

error flavor 236

error function 234

error-restart function 237

error-restart-loop function 237

Examples of the Use of the Generic
System 310

Example Program Listing 158, 210, 255

Exposed windows 73

Feature 214

File System Maintenance 15

find function 51

Find Symbol command 90

Finger 11

Finish Patch Zmacs command 222

Flavor 121

Flavor Examiner 15, 116

flet function 52

Flow of Control 37

Font editor 245

Fortran 224

fs:make-logical-pathname-host
221

Fun and Games 57, 92, 121, 147, 199, 214,
243, 277, 291

Function A 67

Function key 11, 67, 73, 94

Functions for Operating on Files 181

Games, card 253

Garbage Collector 224
gc-immediately function 224
Generic Network System 305

Getting Around the Environment 15
Getting Started 24

Getting Started on the Lisp Machine 7
Grapher Example 149

Grapher Commands 157

Hacker's Dictionary, The 26, 57,92, 121, 214
Halting your machine 73

Handling Conditions 235

Help key 11, 73

Histories, Input 83

Host namespace attributes 308

Hostat 11

How Does Path-finding Work? 306

How Does Service Invocation Work? 307

If function 37

ignore-errors function 235

Implicit lteration 51

Incremental redisplay 132, 137

Index Breakpoints 80

Initial: Values for Instance Variables 102
Input:86

Input Editor 83

Input History 83

334

Lisp Lore

Inspector 15

Instance Variables 98
Internal Interfaces 115
intersectlon function 51
Interval Streams 284
Intervals 283
Introduction 19

Iteration 42

Keyboard 11
Keyboard Macros 280

labels function 52

Learning More About the Editor 290
Levels of Abstraction 302

Lexical Scoping 52

Lines 282

Lisp Compiler 80

Lisp Listener 13

list-In-area function 226

Load dependencies 218

Load Patches command 222
Load System command 217, 221
Logging in 27

Logical Pathnames 195, 221
Looking Ahead 9

loop function 42, 47

Lose 92

M-. Zmacs command 53
M-Abort key 11

M-sh-M Zmacs command 53
M-Suspend key 11

M-Y key 83

macrolet function 52

Macros 53

Mail Delivery 311

maliler:with-maller function 311
make-area function 226

make-array function 226
make-instance function 226

Making Instances 101

Making Other I/O Streams 198

map function 42, 44

Mapping 44

Message Passing 117

Methods 99

Methods for Make-instance 105
mexp function 53

Mixing Flavors 105

Modifier keys 11

Monitor 19

Monitoring variables 80

More Advanced Use of the Editor 279
More on Navigating the Lisp Machine 67
More processing 73

Mouse 17

Mouse Gesture Translations 144, 157
Mouse Process 67

Mouse Sensitivity 86, 141

Mouse Sensitivity - the Easy Part 142

Named blocks 40

Namespace attributes 308
Namespace database 306
Namespace server 317

Namespace service entry 323
Namespace System 308
net:byte-stream-server flavor 317
net:define-protocol function 317, 319

Index

336

net:define-server function 317, 321
net:find-path-to-service-on-host
311
net:find-paths-to-service-on-host
307
net:Invoke-service-access-path
307
net:invoke-service-on-host
307, 310, 311, 332
net:parse-host function 307, 311
Network application programs 299, 310
Network namespace attributes 308
Network Protocols 314
Nodes and Arcs, Grapher 150
Nonlocal Exits 41
Notifications window 15

Obscure 57
open function 181
Other GNS Functions 307

Parser for presentation type 248
Patching a System 222
Pathname Functions and Methods 191
Pathnames 184

Peek 15, 67

Place Display 255

Poking Around 90

Predicates 37

Presentation 250

Presentation type definition 248
Presentation Types 138, 154, 248
Printer namespace attributes 308
Priority of a process 67

Problem Reporting 31

Problem Set 33, 58, 94, 122, 169, 201, 277,
292

Proceeding 238

Process 67

process-run-function function 67, 94

process-wait function 67

prog function 40

Program Frame, Calculator 205

Program framework commands 135

Program framework display 137

Program Frameworks: an Overview 132

Program redisplay 132

Protocol 314

Quantum of a process 67
Quick Look At the Network 299

Reading From the Mini-buffer 289
Redisplay 137, 207

remove function 51

Resources 227

Restart Handlers 237

Restore Distribution command 217
Resume key 11

return function 40

return-from function 40

reverse function 51

Sample User and Server Definition 318
Scheduler 67

Scrolling 86

SCT 217

sct:set-system-source-file function 221
Select key 11, 15, 73

Selected window 73

336

Lisp Lore

Sequences 44

Server-end Protocol Definition 321

Service access path 305

Show Compiled Code command 90

Show Documentation 13

Show Expanded Lisp Code
53

signal function 234, 238

signal-proceed-case function 234, 238

Signalling Conditions 234

Site directory files 221

Site namespace attributes 308

SMTP 314

sort function 51

Special-purpose Operations 177

Stack Allocation 231

stack-let function 231

Stacked Places 251

Standard Stream Operations 175

Standard Streams 179

Start Patch Zmacs command 222

Storage Allocation 224

stream-copy-until-eof function 323

Streams 174

Streams and Files 173

Suspend key 11

Sys:null-stream stream 321, 323

sys:proceed function 238

System files in site directory 221

System Menu 18

Systems 217

Systems, Storage and Errors 217

Taste 57
TCP network medium 317

tcp:add-tcp-port-for-protocol function 322
TELNET 314

Terminal window 15

This and That 31

throw function 41, 55

Time of Day 310

tv:type-a-space-to-flush function 94
tv:with-pop-up-window function 94
Typing to a Lisp Listener 13

union function 51

unless function 37
unwind-protect function 55
Updating the Namespace 323
User Interface 131

User namespace attributes 308
User-end Protocol Definition 319
using-resource function 227

Vanilla 121
Vanilla Flavor 115

Wait function 67

What is a Network? 300
What's a Flavor? 97
when function 37

Who's Logged in 311
who-calls function 90, 94
Whoppers 111

Why This Book? 8

Why Use a Lisp Machine? 7
Win 92

Window system 73, 120
Windows 73
with-open-file function 55

Index

337

with-open-stream function 55

Work Style 30

Writing New Commands 282

Writing Your Own Network Software 314
Writing Your Own Server End 317
Writing Your Own User End 317

Yanking 83

Zmacs editor 15, 325
Zmail 15
Zwsi Data Structure 282, 334

APV EOL WAL iUl Ly

Please send me a copy of the examples tape that accompanies LISP LORE:
A GUIDE TO PROGRAMMING THE LISP MACHINE, SECOND EDI-
TION. Enclosed is my check for $40.00, plus applicable sales tax,* made
payable to Symbolics, Inc. This fee includes domestic postage and handling.
(Outside North America, add $10.00 for postage.)

Ship the tape to the following street address (no PO boxes, please):

(phone)

*Residents of the following states add appropriate sales tax: AZ, CA, CO, CT, FL, GA, IL, KS, MA, MN,
NJ, NM, NY, OH, PA, TX, VA, WA.

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338

