PROGRAMMING LANGUAGES AND THEIR COMPILERS
Preliminary Notes

Second Revised Version, April 1970

John Cocke and J. T. Schwartgz

Courant Institute of Mathematical Sciences
New York University

The Courant Institute publishes a number of
sets of 1lecture notes. A 1list of titles
currently available will be sent upon request.

Courant Institute of Mathematical Sciences
251 Mercer Street, New York, New York 10012

Copyright
Courant Institute of Mathematical Scilences
1970

ii

Table of Contents

Pr’eface...--...-'......1.............-....o-......... l

Chapter
L. OVErVIEW. ittt iineninsseeaessnonenanesensnenss
2. The principal SUDDPIrOCESS.veseanssssasoosennnns
3., The lexical ScCaAN.v.isesvrsssssosseressonnnnns
4. Data-directed parsing methodS.,,.eeeeesese..
5. Rigorous results concerning the principal
syntactic analysis methods...iveveeiverneeonns
6. Optimization methods for algebraic languages.
7. Special purpose languages: LISP and SNOBOL..
8. The self-compilling CompPller...yeeecescesrcness
Bibliography..... S e e et ec e ssreseae st e e eraeaenn
Appendix
I. A biblicgraphy of formal language theory.....
IT. Industrial compiler practice.....evveeeeennnn
ITI. Comparative figures for various compilers....

1i1

J114

.138

.2T4
.306
524
642
.661

.693
729
760

PREFACE

Our aim in the present volume is to describe the inner
working of a variety of programming languages, especially from
the point of view of the Compilers which translate these
languages from their original "source" form into executable
machine code. While this aim will of course make it necessary |
for us to describe in'sdme'detail'the‘external form of each of
the languages whiéh we Shall.study, no more detail will be given
than is strictly necessary in bfder»to make it possible for the
reader to gain a clear view of the machine code forms into which
the language will be translatéd and of the problems that a
compiler for the lahguage must handle. However, internal
description'of.the languages studied will be carriéd rather far.
Thus the attentive reader of the present work should gain a
rather good idea of the methods which can be employed to write
a compiler for a givyen language. On the other hand, he cannot
expect - to find in this book the detailed account of the source
conventions for any language’which‘he would need to use the
language. |

The present work also aims to treat the specific issues
involved in the construction of particular languages oﬁly
rather broadly, and does not discuss those issues of language
design which, while they may contribute in significant ways to
the convenlence or élegance of a particular language, lie at a
level of relative detail. The reader will therefore find that
the languages which we discuss at length constitute a collection
of elements maximally distinct from each other in form, purpose
and spirit. Thus; for'example, among the major algebraic
lahguages, only one, FORTRAN, is discussed in any detail.

From the standpoint of the'preseht volume, the differences which
‘separate FORTRAN from ALGOL and from other similar languages are
sufficiently small as to make a discussion of more than one of
these algebraic languagésssuperfiubus. For the same reason, we
do not discuss MAD, JOVIAL or other languages of this kind in

-1-

any detail. On the other hand, we do discuss SNOBOL, LISP,
SIMSCRIPT, etc.

Our sequence of chapters is as follows., A first chapter
sketches the compilation process in general and discusses the
main issues arising in language design, the general logical
function of a source language, and similar matters. Chapter 2
contains a systematic discussion of top-down, syntax directed

compilation. The issues arising in top-down compilation are
described using various metalanguages, derived from the so-called
Backus normal form, which serve for the formal description of the
flow of compilation. Various subsidiary issues arising in the _
design of syntactic metalanguageé are discussed. Chapter 2 ends
with a formal discussion of the Dartmouth algebraic language
BASIC which, because of the simplicity of its syntax and semantics,
provides a good laboratory example for the detailed development
of various sign;ficant,points.

In the third, relatively brief, chapter, the lexical scan process,
which generally forms the front section of a compiler system, is

discussed. Since the lexical scan process is quite simple,

Chapter 3 is rather short. At its end we discuss procedures for
the incorporation of simple macro handling features into a lexical
scan program.,

Chapter 4 completes our discussion of the syntax analysis of
mechanical languages by describing other schemes than the top-down
scheme avallable to the compiler writer. These include various
bounded context syntadtic analysis methods which, when applicable,

are normally faster and more efficient than todeown procedures.

Techniques permitting the combination of bounded context analysis

with top-down recursive analysis are discussed. The various

bottom-up syntactic methods are then compared with the top-down method.
The first four chapters have a highly pragmatic character;

theoretical considerations enter them only tangentially. Whereas

this pragmatic flavor is that generally intended for the present

work, Chapter 5 aims to preVent excessive one-sidedness in this

regard by developing a few formal theoretical results concerning

syntactic analysis which, in the author's belief, contribute

-o-

substantially to a clarification of the pragmatic issues arising
in syntax analysis. These results generally concern recursive
unsolvability, and serve to indicate the relative power of some
of the principal syntactic analysis methods by revealing the
extent to which it is or is not possible to replace one syntactic
analysis method by another, Various more fragmentary results
concerning the relative efficiency of various particular
syntactic analyzers are also given in Chapter 5.

The semi-final stage of compilation is the optimization of
compiller-generated sketch code. The final step of compilation is
the generation of machine code in directly executable form.
Chapter 6 treats the issues which arise in these two final
compilation stages. This chapter contains an account of various
systematic optimization methods that have been devised for use
with algebraic language compilers, especially FORTRAN compilers.
The issues which arise in optimization are rather multifarious;
our lengthy discussion of these issues 1s of necessity pragmatic
rather than theoretic.

Chapter 7 discusses two special-purpose languages, chosen
to be as different as possible from the algebraic languages
toward which the preceding chapters are directed. We discuss
SNOBOL, which is a string manipulation language having an
interesting and unusual statement form. We also discuss LISP,

a language devised for application to symbol manipulation,

The compiler algorithms described in the first nine chapters
of this book are all formalizable in source language terms.
Chapter 8 discusses the problems which arise when an attempt
1s made to use this fact systematically to develop 'a complete
compiler system written in its own language and hence
"boot-strapable" with relative ease from one machine to another;
a number of existing self-compiling compiler schemes are also
discussed and compared.

From time to time in the present work, formal algorithms
for various of the processes studied are given. Whereas these

...5_

algorithms have beeﬁ sight-checked by the euthor, none of them
are "certified"] these algorithms are available for use at user's
risk. The author will of course be glad to obtaln correctigas
to and certifications of these algorithms, as well as specifica-
tions of the algorithms in machine-available programming
languages. ‘

It should be noted that this wvolume consists of a highly .
preliminary set of notes. As such, 1t does not cover all of
the topics in compiler design that must be discussed.
Furthermore, the discussions included are necessarily incomplete.
An attempt to mitigate both of these faults will be made in
subsequent editions.

e

It is strongly hoped by the authors that circulation
of the present notes in their highly unfinished form will
encourage knowledgeable readers to comment on deficiencies
and possible improvements in the notes. Detailed technical
comments are especially hoped for. In certain cases an
effort has been made to survey the literature, with the
results contained in the sections of "Notes and Comments"
with which this second version of the notes are supplied.
Readers aware of significant papers not commented upon,
or differing seriously with the emphases given in the comments
made are also asked to communicate with the authors.

We wish to thank a number of friends for their active
assistance in bringing our work to its present level.
Patricia Cundall of the IBM Corporation supplied us with
many corrections and helped very actively in the develop-
ment of the "Notes and Comments" section appended to
ZThapter 4. 3Sheldon Best of Decision Systems Incorporated
also contributed to this section. &Chris zarnest of
Computers Sciences Corporation contributed very signif-
icantly to the work on optimization described in Chapter 5.
vValuable advice on this section was also contributed by
Fran Allen and Paula Newman of the IBM Corporation. To
all of them, and to all those others who supplied us with
advice and corrections we extend our thanks,

CHAPTER 1. OVERVIEW

1. Introduction. The Linguistic Approach to Programming.

To program is to specify, in all necessary detall, the steps
required for the computer realization of some desired function.
But, if the function is elaborate, the pattern of steps required
may be highly complex. Thus the "programming problem" is the
problem of expressing complex sequences of instructions and of
verifying their correctness. Now, an information structure is
complex to the extent that its most concise representation is

long; this length (measured in number of characters or bits
required) is the information content of the information

structure in the sense of Kolmogorov. Since a pattern of
information, brought into conjunction with a computer, may be
used to generate a longer pattern of information, the minimal
representation of any pattern P is in fact the Shortest program
which can be run on a computer to produce P.

The above very general considerations have direct application
to the programming problem. The difficulty of completing,
correcting, and testing a program is at least proportional to
the length of the program., This difficulty even may be propor-
tional to the square or to a higher power of the length of the
program if the program is highly "coherent". In this context
we may define the average coherence of a program, informally
but in a manner sufficient for our purposes, as the number of
other instructions to which the "average'" instruction in the
program stands in direct logical relation. If the coherence
of the program, taken in this sense, is low, i.e. if each
instruction has a relatively well defined small logical
environment within the program, the difficulty of completing
the program may simply be proportional to its length. If, on
the other hand, the coherence of the program is high, so that
the logical environment of each instruction consists of numer-
ous other instructions scattered through the program, then the

-6-

difficulty of completing the program may be proportional to
the square or to a higher power of its length.

The above reflections indicate the great importance, in
programming a given function, of reducing the length of the
required program and of restricting the logical environment
of the instructions constituting it as much as is feasible.

Minimal expression implies suitable language; and thus the
linguistic method appears as a principal tool for the efficient
description of complex function. However, a more primitive
step must precede the choice of a language. This step, which
itself contributes to the desired minimization, is the expres-

sion of the required function in terms of simpler subfunction
patterns which are as few 1in number and as stereotyped as
possible, 1In this sense, effective programming depends first
of all on the effective cholce of standardized subroutines.
Stereotypy brings with it a number of highly significant
advantages. In the first place, using only a few basic
elements repeatedly, one becomes familiar with them, accurate
in their use, and in this way proceeds more rapidly and
correctly in writing any desired program. But beyond this,
and more significantly, stereotypy has the crucial advantage
of permitting second level mechanlzation. That is, since the

stereotyped elements in terms of which a program may at first
be expressed are repetitive in form, they may themselves be
generated from a more condensed representation by another
program. Proceeding in this way one takes a large step toward
the desired goal of expression in minimal length, since
(a) a function to be programmed is written in terms of
stereotyped subunits,
(b) everything which is truly stereotyped can be generated
mechanically,
(c) using a mechanical stereotype generator, one needs only
to express the unstereotyped portion of a desired function
explicitly in order to program it.

We may remark in connection with the above that adherence
to the discipline involved in stereotypy is highly significant.
To violate this discipline is to introduce a large mass of
additional information into the expression of a function beyond
what 1s minimally required for its definition.
Such additional information may of course have a useful role
to play. Often, for instance, information.of this sort is

introduced into a program for purposes of program optimization.
Consider, to illustrate this issue, a given function as expressed
on the one hand in a problem oriented or source language, and,

on the other hand, directly in assembly or machine language. The

information content of the first program is considerably smaller
than the information content of the second program. From the
assembly standpoint the source program consists of a sequence
of "sketch" indications of the operations to be performed,
'The assembly language program, in addition to representing a
sequence of operations, also contains a‘great many specifications
concerning the particular machine registers or register types to
be used in performing these operations; the particular order in
which the necessary sequence of operations is to be stored within
the machine; the particular manner in which data is to be stored
within the machine; the detailed pattern in which intermediate
information is to be stored and reloaded, etc.

All of this additional material accumulates to a very
considerable mass with which the assembly language programmer
is necessarily concerned and which the source language programmer
need not even consider. The source language programmer relies
on the translator or compiler (which, from his source indications,
is to produce actual machine language) to handle all these
problems in a stereotyped way. That is, registers are chosen
in a stereotyped pattern by a compiler, temporary loads and
stores‘likewise; storage is laid out and instructions are chosen
and ordered in some standard fashion, etc. It is certainly true
that the compiler's stereotyped process may in certain cases
yield a program which is longer (perhaps) and less efficient

-8-

(perhaps) than a specially designed hand coded program provid-

ing the same function. (It is to be noted, however, that a
high quality code optimizer is in many cases Capable of
producing code that is superior and perhaps even considerably
superior to hand code.) Nevertheless, for the programming of
elaborate functions, stereotypy of approach is an essential
requirement, since a sufficiently complex program

becomes completely untransparent and impossible to complete
and test in a reasonable lenght of time.

Another consideration illustrating the manner in which an
ill-adapted language can actually penalize the programmer may
be added to the above. Often a language (like a machine
assembly language) which permits the specification of informa-
tion beyond that strictly necessary to describe a particular
function not only permits but requires this information. E.g.,
an assembly language normally not only permits detailed speci-
fication of the machine registers to be used to carry out a
sequence of operations but requires that this information be
specified in all cases. While the programmer using such a
language gains efficiency in certain parts of the code through
his ability to specify such information, he must pay the price
of specifying it everywhere, that is, even in those less
critical parts of code in which he would be content with a
less efficient code which could be represented in a much
sketchier way. Very often,especially in long codes, this
price will far outweigh any advantage obtained.

It is also worth noting that the use of an ill-chosen
language may also cause a substantial increase in the average
coherence of the program. Thus, for instance, machine registers
are normally explicit variables in an assembly language,
necessarily common to all parts of an assembly-written code.
This circumstance increases the strength of logical connection
between all parts of the code, introducing a whole class of
- register content errors which do not exist at all in a source

language in which the machine registers are hidden. By

handling the loading and unloading of registers in a completely

stereotyped way, by providing methods for the logical isolation
of subsections of a long program, and by reducing the amount

of information which must be specified in the description of

a given function, a well chosen programming language manages

to avoid many of these difficulties. v

The linguistic method in programming begins with the process
of stereotypy described above but carries it further. Stereo-
typed information, as has been indicated, can be mechanically
generated from a relatively minimal set of indications of its
form. A good language assists this minimization as follows.
Certain aspects of the pattern of information (or program
expressing a given function) to be generated are rigorously
determined by other parts of the information and can be
calculated from them. The minimal expression of such a pattern
therefore consists of that smallest subpattern from which all
the rest can be deduced. A sophisticated language processor
examines the string of information submitted to it, finds
indicative subpatterns therein, and, on detecting these,
supplies the omitted, contextually implied information which
is required. In this way, very considerable economies of
expression become possible, and it becomes feasible to program
complex functions, otherwise very difficult of expression,
rapidly and effectively.

The linguistic approach to the expression of complex functions
or of groups of complex functions belonging to a given field
and having a certain over-all similarity of form may then be
described in the following way:

(a) By direct experimental hand-analysis of the functions
required, arrive at a well chosen and maximally stereotyped
set of elements suitable for the expression of these
functions.

(b) Analyze repetitive patterns in the use of the stereotyped

-10 -

elements needed and develop a convenient and relatively
minimal set of indications from which the full structure
of element invocations can be derived. _

(c) Design a language processor or compiler capable of expand-
ing these minimal indications into the full pattern of
information describing the required function.

(d) Steps (a), (b), and (c) suitably carried out, will result

in the design of an effectively adapted problem oriented

language. The required function may then be expressed
effectively in this language.

Additional advantages accrue from the use of an appropriately
designed source language and from the mechanization of its
translation into machine code. The level of indirection
introduced in such translation results in a considerable reduc-
tion in the role played in any program by the detailed features
of the particular machine on which the program is to run. By
virtue of this fact the source-language programming process
attains a degree of machine independencewhich, while it may
still be quite imperfect, is nevertheless very high when compared
to the extreme machine dependence characterizing assembly '
language code. By substituting one translator for another, it
becomes possible in principle to carry a complex function over
to a new machine without changing much in the source-language
symbolic description of the function. To the extent that the
general process of programming complex function attains machine
independence, it gains 1in continuity, and 1s freed from the
intolerable burden of constant reprogramming that would otherwise
follow from rapid changes in machine technology and the repeated
re-design of machines which is a consequence of these advances.
Since the body of accumulated source language code can be very
considerably larger than the length of the compiler required to
translate all this code for a given machine, a considerable total
advantage may result from adherence to the use of a source

language 1in programming.

-11-

A given language will, as has béen indicated ahove, be'”
adapted more or less closely to the range of applications which
played an explicit or implicit role in its formulation. A
well-adapted language will permit the_convenient‘invécation of
the stéreotyped elementary functional processes which have been
found to be of most general use in the intended applications
area. At the simplest level these processes may consist simply
of stereotyped schemes for storage allocation, address calcula-
tion, register use, subprocess linkage and input-output; these
are the principal features of a basic algebraic language like
FORTRAN. Languages specially intended for areas requiring
other basic operations may contain more sophisticated elements.
Thus, list processing languages intended for the processing of
data structures which develop dynamically in unpredictable ways
will normally include one or another mechanism for the dynamic
allocation and reallocation of storage. Such languages may
include pushdown stacks, 1list space areas with automatic

garbage collection, and other dynamically varying storage

types as basic elements. Languages especially intended for
string processing may provide methods for the convenient and
concise specification of various processes of pattern matching
and subpattern location. A language developing in the context
of a particular application will normally develop those specific
dictions which are most concise for the particular applications
most often repeated, This principle, which has determined the
growth of languages from a very ancient period,may be called

the Masail principle: since cows are common and highly signifi-
cant objects on Masai culture, any adjective not referring to

an explicit noun is understood 1in Masal to refer to the implicit

noun COw.

In the present monograph we shall apply the general linguistic
method described above to the language translation process itself.
That is, we shall elaborate a language which is convenient for the
specification of language translation processes. Having

-12-

developed such a s&stem, we shall apply it to describe the
structure of a number of specific translators, including
translators from algebraic source'languages to machine
language, from list oriented source languages to machine
language, and also including various more special translators
wnhich translate from specialized condensed source languages
into more general expanded source languages intended for
further compilation. We shall also consider the relation
of the'syntactic methods uséd in translation of mechanical
languages to those which may be employed for the syntactic
analysis of natural languages like English.

2. General Structure of the Compilation Process

The process of compilation, that is, the translation and
expansion of one description of a given process into another
more detailed description, may be conveniently divided into
five substages. Material to be translated is normally
presented to a computer as an information string within which
certain key characters and key words are embedded; these keys
separate other character patterns which denote logical constants
or varlables of one or another type.

The first, rather simple, stage of the translation process,
the so-called lexical pass, consists in the scanning of this
input string, the detection in it of 'separator marks, and the
recognition of elementary word identifiers. The lexical scan
results in the reduction of the input string to a string of

atomic word designators, representing essentially the same
information, but representing it in a more condensed‘form
which can be used more efficiently by the complex analytic
steps which are to follow.,

The second logical stage of the translation process is
syntactic analysis. During this subprocess, the lexically

-13-

reduced input string is scanned to determine the manner in
which the paragraphs and sentences of the source string are

to be decomposed into their constituent clauses and phrases.
The result of this phase of the translation 1is a considerably
transformed, syntactically analyzed form of the source string
in which the implicit grammatical structure has been made
completely explicit by transformation of the order of the
source string and/or by the addition of any necessary explicit
marks, indicators or pointers. If,' for instance, one imagined
such a process being applied to English language source text,
the result would be an output in which the Subject word of the
sentence was explicitly flagged as "subject'", the verb word of
the sentence was explicitly flagged as '"verb", any adjectives
modifying the subject were supplied with explicit pointers
referencing the subject, the scope of clauses was indicated
by explicit insertion of parentheses, etc. Syntactic informa-
tlon can in principle be represented in a variety‘of equivalent
ways. It can, as indicated above, be represented by addition
to the source string of parentheses delimiting the various
subclauses of the sentences and of marks indicating the type
of each subclause. Equivalently we can represent the
 information developed by a syntactic. analyzer using a graph
or tree 1in which the words constituting the original sentence

appear as twigs and in which every node represents some specific
clause type. Such representations will be familiar to many
readers from elementary courses in English grammar; they are,

of course, logically equivalent to a parenthesized marking of
the source sentence in the style described above,

On completion of the explicit marking of the constituent
subclauses of all sentences and of the types of these subclauses,
the syntactic analysis phase of the translation process comes
to an end. The third phase of the translation process is the
explicit generation, from the fully marked tree structures
produced by syntactic analysis, of target code. In principle

=14 -

this process involves an ordered traversal of the analysis tree,
and the application at each node traversed of an appropriate
strictly local rule concerning the code to be generated when a
node of that type is encountered, followed by an iterative
stepping to the next node to be treated. The point to be noted
here is that each of these generation steps is strictly local

to an individual node; the precise point of the input string-»tree
transformation performed in phase two of compilation by the

syntactic analyzer is the development of all the pointers necessary
to reduce the information implicitly and globally indicated in

the original source string to an explicit and strictly local form,
The result of the third or code generation phase of translation

is an output string constituting the target code versian of the
original source program. This target code may be either an
assembly language code, a macro code suitable for relatively
straightforward expansion into assembly language code, or,
alternately, may be code written in the 1nput language of yet
another translator.

The translation process, carried through to the end of the
above third stage, can in principle be completed by one simple
additional step: assembly, i.e. the detailed laying-out of
instructions and data and the explicit calculation of numerical
addresses. However a fourth major process is often interpolated
after code generatioan and before final assembly. This fourth
phase of translation, which forms a conspicuous part of the
more sophisticated translators, is an optimization phase in

which the algorithm expressed by the compiled text is trans-
formed via a series of equivalent algorithms in order to
eliminate redundant calculations, to condense multiple steps

into single steps, to replace slow processes by faster processes,
to move instructions from frequently traversed to less frequently
traversed code paths where possible, etc. Only rather elaborate
optimizers attempt to perform all of the reductions described
above; a more primitive optimizer may merely Suppress unnecessary

-15-

loads and stores and eliminate redundant instructions on a
local basis. A good optimizer is on the other hand a very
extensive mechanized representation of the coding tricks

found in assembly-language coding experience to be valuable.
Coding tricks which are relatively stereotyped can in this
way be supplied mechanically, and the quality of code improved
to the level of programmer-produced assembly code or beyond.
The fifth, and final, stage of the translation process is
the assembly phase. In this phase explicit calculations of
the size and layout of all data and instruction blocks are
performed. The formal identifiers used to represent these
blocks during the earlier translation stages are explicitly
converted to machine addresses. A detailed choice of registers
may also be made at this stage. In a sophisticated translation
system, a final class of optimizations depending closely on the
machine hardware may also be made. Final rearrangement of the
order of machine instructions and final épecification of the
detailed local patterns of register use will be carried out.
The output from the assembly phase can be executable machine
code which a simple loader program can read into a computer
for immediate execution.

-16 -

Figure 1 diagrams the compilation process which has
been outlined above. '
Data Structures Processors

Input string

Phase 1
Lexical Analyzer

Condensed input string.
Initialized table of symbol
attributes.

N

Phase 2
Syntactic Analyze

P

eordered and syntactically
marked input string.
Completed table of symbol
attributes,

7

Phase 3
Code Generator

Sketch” target code String
Table of symbol attributes.

Phase 4
Code Optimizer

A

mproved sketch target
code string. _

Phase 5
Assembler

Final target code string.

AV

Figure 1. Schematic Flow of Translation Process.

-17-

The above outline of the compilation process is somewhat
over-schematic in the distinctions that it makes between the
successive stages of the translation process. Often Various
of the phases which we have depicted as separate are combined
into a single integrated subprocess of a translator. This is
sometimes done for purposes of efficiency and sometimes for
purposes of convenience.

In certain cases the specific conventions of the language
to be translated require the union of several translation
phases. Thus, for example, the fact that standard FORTRAN
does not use blanks as separators, so that the String
CALLAB(I,J) = K is a valid assignment statement, while the
lexically related string CALLAB(I,J) is a valid call state-
ment in which different inter-word breaks are to be made,
requires that the lexical and the syntactic scans in FORTRAN
be combined. S

It is also very common to combine the syntactic and the
code generation pass, which we have depicted above as separate
processes, into a single process. This is particularly
appropriate in that the syntactic analysis process produces the
information required for code generation in quite convenient
form; it is therefore more efficient and no more difficult to
accomplish code generation at once rather than to store syntax
trees and generate code at a later point in time. Indeed, in
the compilers described in this monograph, we will normally
combine syntactic analysis and code generation,developing the
metalinguistic conventions which we shall use in accordance
with this intent. Therefore, rather than speaking of a syntac-
tic analysis process succeeded by a code generation process, we
shall come to speak of a single main subprocess accomplishing
both steps.

Tt is not even uncommon for a compiler's code generation procedures

and the optimization process which it uses to be combined into a single
iterated algorithm. Such combination often results from the judgment

~-18-~

that the optimization process can make effective use of certain
information developed by the syntactic analyzer which it would
be inefficient or clumsy to store. Thus, for example, a FORTRAN
DO-loop is slightly harder to recognize after code generation
than during syntactic analysis, and it is sometimes found
convenlent to bring the syntactic analyzer and the optimizer
into a sufficiently close relationship to enable the former

to signal the latter at the beginning and end of loops.

Sketch code generation and final assembly are often combined,
and optimization may be combined with both of them. The combi-
nation of code generation and assembly is a not infrequent
response to efficiency considerations. The preparation of
sketch code output intended for subsequent assembly requires
a reasonably elaborate organization of subfields of information
into machine words or into BCD patterns. At the beginning of
the assembly process these words or patterns must be picked
apart once more. By combining code generation with assembly,
one is able to avoid two intermediate processes, thereby
gaining in translation speed, perhaps even substantially.

The translation process as we have outlined it is sometimes
elided in various useful ways. Instead of generating machine
code at all, it 1s possible to generate sketch code in
appropriate form and to end the translation process proper with
this sketch code. This code may then be executed interpretively
rather than directly. Such an alternative may for instance be
appealing for codes that are to be executed infrequently but
whose size is a consideration. In such circumstances, the sketch
code form can be specially chosen to permit highly dense storage,
and the resulting total program, consisting of sketch code plus
interpreter, may be considerably smaller in size than fully
expanded machine code. It is also possible to adapt the trans-
lator not to produce any code other than the source code at all,
but to combine the syntax analysis process directly with the
interpretation process. This option simply requires replacement

-19-

of the code generation subroutines of a syntax analysis-code
generation processor by corresponding routines for the direct
execution of the instructions which otherwise would be
generated. Direct interpretation of this kind, as well as
indirect interpretation in the style described Jjust above, are
sometimes particularly convenient in situations where code is
under debugging and only very short periods of execution are
expected. 1In such a situation the fact that the original
source form of the code has not been totally digested means
that incremental and even dynamic-on line_changes to the code
can be accomplished very readily. Moreover, an interprefation
process which keeps the symbolic source at hand can provide a
variety of useful debugging services, such as traces, traps,
etc., in particularly convenient form, i.e. provide printed
diagnostics which refer directly to the symbols of the original
input. Of course, a suitably designed machine code compiler
could also provide the same services.

The form of the sketch code to be generated by the main
translation subprocess is worth separate consideration. In
certain cases this sketch code is quite close to the final
machine code, and only differs from final machine code in that
addresses (and perhaps registers also) are designated symboli-
cally rather than numerically, the numerical determination of
these quantities being left for the final assembly step. In
other cases, the especially when a fairly elaborate optimization
phase is to follow, the generated sketch code consists not only
of schematic instructions but includes additional information
concerning the destination of branches, the dependence or
independence of referenced data fields, the nature of invoked
subroutines, and so forth. All of this additional information
is intended to facilitate the optimization process by providing
it with necessary information on the structure of the program
to be optimized. The code produced by the optimizer may have
a form directly‘adapted to the conventions of the machine

-20-

language for some particular machine. On the other hand, this
code may consist of a sequence of macros which is relatively
machine independent, and which, on submission to an appropriate
macro-expander program can be transformed into executable code
for any one of a variety of different machines.

The various principal phases of the translation process
have particular flavors which it is worth commenting on.
The lexical analysis pass 1is a rather simple one and is
normally accomplished by a simulated finite state process.
The syntactic analysis pass is highly recursive and typically

makes use either of implicit or explicit push-down stacks.

The code generation pass is normally straightforward and directly
computational; the computations of which it consists are often
combined directly with syntactic analysis. The code optimiza-
tion pass, if elaborately done, is rather complex, amounting as
it does to a mechanization of a miscellaneous assemblage of
brogramming tricks. It involves two principal families of
Subprocesses. The first family includes those processes which
analyze program flow and attempt the global elimination of
redundant instructions and the global motion of instructions
from frequent to less frequent code paths. The second main
family of optimization processes consists of procedures which
are somewhat more local in nature and amount essentially to

the local combination of multiple instructions into single
instructions where a machine order code set permits this.

The final assembly process is straightforward and
essentially arithmetic. It uses two sets of tables, one
describing the order codes of the machine for which code is
being assembled and a second which is an identifier table.

The identifier table is used in a straightforward way to
calculate the final address of each identifier in the sketch
code string produced by the code generator and to replace all
occurrences of logical identifiers by corresponding machine
addresses. |

=21~

The design of a compiler not only involves questlons concern-
ing the algorithms by which translations are effected but also
requires decisions as to how the data on which these algorithms
operate is to be held. That 1s, one must define the
data structures to be used by the compiller.

One data structure used by almost all compilers 1s the
symbol table alluded to above. This table, whose construction
begins during the lexical scan phase, 1s used throughout the

compilation process for the global accumulation of information.
As a general rule, an entry is made in the symbol table for
each name found in the input string and for each auxiliary
name generated by the compiler itself during the compilation
process. The table entry associated with each of these names
consists of a group of fields used to record the attributes

of the name as these are progressively determined in the
course of compilation. For example, the type of a variable
(e.g., character string or arithmetic; sometimes broken down
‘more finely, e.g., fixed or float, character string of length
n, etc.) is often recorded. One may record other attributes
as well, For example, one may record whether or not the name
is used as a subroutine argument or whether or not it
identifies a global (COMMON) variable. In some compiler
designs it also turns out to be convenient to admit additional
symbol table entries corresponding to elementary operations
(e.g., A+B). This technique, which we shall describe more
fully in a later chapter, allows one to treat\variables and
elementary operations in a uniform way and has certain other
technical advantages.

Although almost every compiler uses a symbol table,
the way in which this table 1s structured varies considerably.
For example, since the size of the symbol table required
for the compilation of one program may be quite different
from that required for a different program, one must _
decide how to allocate storage for the symbol table. Should
one allocate a fixed amount of storage at the beginning
of the compilation, or should one "acquire" storage from a
common storage pool as entries are made in the table?

-22-

Moreover, the information fragments assoclated with one

name may be quite different from those associated with
another name. For example, if a name 1is used as a .
subscripted variable, one must record both the dimensionality
and the bounds associated with that name; on the other hand,
if the name represents a simple identifier this information
is not needed. This raises the question of whether the
entries in the table should be uniform of whether the size
and information content of an entry should vary. The structure
of the language to be translated will also affect declsions
regarding the symbol table structure. For example, many
languages permit a single name to be used to represent
different variables at different points in the same program.
This fact must be suitably reflected in the symbol table.

Generally speaking, questions of this sort have no unique
best answers. The form of symbol tables adopted will depend
partly on other design criteria which the compller is to meet
and partly on the environment in which it must operate
(characterized, e.g., by memory size). For example, a
compiler that attempts to produce especilally good code
may require different information structures than a compller
for which fast translation time is the most important goal.
For reasons of this sort, one cannot specify a unique
general structure for a symbol table, although common
techniques can (and will) be elucidated.

The push—down'stack is a type of data structure that is
frequently used by compilers. Such a stack is characterized
by the fact that an entry 1s made only at the "top" of the
stack. Characteristically, in using a push-down stack,

this top element 1is accessed more frequently than other
elements of the stack. When the top element of a stack is
removed, the element immediately beneath it becomes accessible.
Stacks may be implemented uslng arrays, as shown in Figure 1.

-23-

"Filled"
stack
locations

}

< PDSTOP

"empty "

stack locations

a. Accessing the TOP of stack X.

PDSTOP -

X

other
"Pillead"
locations

ABC

PDSTOP+

X

other
"Filled"
locations

ABC

XYZ

b. Stacking an element on stack X.

PDSTOP -

X

other
"filled"
locations

ABC

XY4

————)

PDSTOP~+

X

other
"f1lled"
locations

ABC

XYZ

c. Unstacking an element from stack X.

TOP(X) is X(PDSTOP)

STACK('XYZ',X)

is
PDSTOP = PDSTOP+1
X (PDSTOP) = 'XYZ'

UNSTACK (X)
is

PDSTOP = PDSTOP -1

Figure 1. Typical use of a pushdown stack.

24

|

For example, two principal data structures used by a
compiler-compiler described later in this monograph are
pushdown stacks. These are the recursion control stack

and the argument stack. The recursion control stack 1s used

for sequencing the recursive recognition procedures and
contains machine addrésses (or their logical equivalents),
indicating the point from which a recognition routine was
called. In the process of analyzing a syntactic fragment,

a recognition routine may require the services of another

such routine. When this occurs, the current machine locations
is saved on the recursion control stack and a transfer to the
required subroutine is made. When this subroutine is finished,
it retrieves the address A to which it is to return from the
control stack, removes the top entry (thus making the next
lower entry available) and transfers to the address A.

Thus the top of the control stack always indicates the

address to which the current routine is to return when its
task is accomplished.

The argument stack 1s used for the transmission of
information from one fragmentary subprocess of syntactic
anslysis to another and also for the transmission of
information between the syntactic analysis processes and
interspersed code generation routines. Its use will be
described in more detail later in the present work.

-25-

It is seen from the above that the information which must be
supplied to define the syntactic analysls pass consists of two
principal subportions: the syntax specification describing
the phrase structure of the source language to be translated,
and the symbol table manipulating routines which are invoked at
appropriate points during the analysis. A source language to
be translated may therefore be complex either because the syntax
of the language is complex in and of itself, or because the set
of attributes being accumulated in the symbol table and the
routines for manipulating these attributes are complex. For
an algebraic language like FORTRAN, possessing a fairly straight-
forward syntax, but admitting a rather large family of variable
types and corresponding declarations, the symbol table manipulat-
ing routines will normally amount to a mass of code at least
equal in length to the syntax specifications needed.

26 =

CHAPTER 2. - THE PRINCIPAL SUBPROCESS.

In this section we shall describe methods used in analyzing
sentences of a programming language and ultimately for generating
code for these analyzed sentences, Our aim will be to develop
a language in which both of these programming tasks can be
performed comfortably. We will approach this goal through a
series of steps, beginning with a well-known language that is.
purely descriptive; i.e., that describes, in a concise and
elegant way, all the legal sentences of the language. We shall
show how a description written in this languagé relates, in a
natural way, to an algorithm for recognizing these sentences
in an input string. By a gradual (and, hopefully, well-motivated)
process of augmentation and modification we shall turn this
language into one closer to that ultimately required -- a language
in which it is possible to express both sentence analysis and
code generation in a natural way.

1. The Backus metalanguage.

For the effective description of language structure we
require a specialized language~-describing language, or a
metalanguage. (On the other hand, since a reasonably designed
metalanguage can describe itself, no meta-metalanguage will be

required.) We shall in the course of this section and the next
have occasion to consider a variety of metalanguages, each with
its own particular flavor. We shall begin our discussion with

the elegant metalanguage originated by John Backus of the

IBM Corporation, and called the Backus metalanguage or the

Backus normal form in his honor. We shall at first approach

this metalanguage somewhat informally, considering it to

consist of a set of rules for the iterative construction of

the family of all grammatical sentences of a specified language.
Each rule or definition of the Backus metalanguage consists of
a left hand portion, the definiens, of an equal sign separating
the left and the right hand portion of the rule, and of a

right hand portion: the definer. The definiens always consists

of the name of the syntactic type being defined enclosed
conventionally in pointed brackets as exemplified by:

(1) <story> .

The form allowed for a definer is somewhat more complicated.
Most simply, a definer might consist of a sequentially
concatenated string of syntactic type names, each syntactic
type name being enclosed in pointed brackets. Thus, for
example, a definer might have the following form.

(2) <beginning> <middle> <end>

The definition with the first displayed formula as definiens
and the second displayed formula as definer would then be

(3) <story> = <beginning> <middle> <end> .

Regarded as a rule for the production of the syntactic element
"story" this states that a story may be constructed in any
manner by the concatenation of a "beginning", a "middle",

and an "end". Of course, "beginning", "middle", "end" are
themselves syntactic types requiring further definition.

The definition of "beginning" might for instance be

(4) <beginning> = <title> <first subheading>

<introductory paragraph> .

Similarly, "middle" and "end" would require definitions, as
would the syntactic types constituting the definer of the
definiens "beginning", namely "title", "first subheading",
and "introductory paragraph". A .

It is evident that the procedure as so far outlined can
only lead from definitions to new definitions without end.
In order to enable the constructions specified by the Backus
metalanguage to lead not only from syntactic types to other
syntactic types but also from syntactic types to final sentences,
one includes atomic symbol strings in the Backus metalanguage.

These strings occur on the right hand or definer side of a
definition and, by convention, may be concatenated into a
definer at any point. They are distinguished from the syntactic
types occurring in a definer simply by not being included in
pointed brackets. Thus for instance we might include in our
collection of definitions some such definition as the following:

(5) <title> = HAMLET

for the syntactic type "title". This hypothetical rule states
that the only possible replacement for "title" is the literal
word HAMLET. Of course, a syntactic type which can only
represent a single literal word can as well be omitted. That
is, the logical effect of (4) and (5) could equivalently be

_29-.

conveyed by the following alternative definition of the syntactic
type "beginning".

(6) <beginning> = HAMLET <first subheading>

<introductory paragraph> .

A more realistic instance of the above sort of construction
is given by the following definition.

(7) ~<ifstatement> = IF <expression> <relationop> <expressions>

THEN <line number> ,

taken from an actual set of language definitions which we shall
consider in some detail later, namely the metalinguistic
definitions for the algebraic language known as BASIC.
Definition (7) states that an <ifstatement> in the BASIC
language consists of the literal word IF, followed by any string
that can be substituted directly or indirectly for the syntactic
type <expression>, followed by any string that may be similarly
substituted for the syntactic type <relationop>, followed by yet
another string which is substitutable for <expression>, followed
by the literal word THEN, followed finally by any string which
may be substituted for the syntactic type =<line number:>.

The description which we have given of the Backus metalanguage
is still incomplete in one essential regard. The metalanguage
permits definers which rather than describing only a single
‘prescribed form for a definiens, allow any one of a number of
options.‘ The options allowed are conventionally indicated
within the sequence of symbols constituting the definer by
subsequences separated by vertical bars. Thus, for eXample,
if the syntactic type "beginning" were defined by the equation

(8) <beginning> = HAMLET <first subheading> <introductory para-

graph> MACBETH <introductory paragraph> |,
then a "beginning" could be constructed either by following the

- 30-

literal word "HAMLET" by some string representing a "first
subheading" and some other string constituting an "introductory
paragraph", or alternatively by following the literal word
MACBETH with any string constituting an "introductory paragraph".
The number of alternatives which may be included in a Backus
normal form definer is unlimited; as indicated above, successive
alternatives are to be separated by vertical bars.

Given a set of metalinguistic definitions of the form
described above, one may choose a distinguished syntactic type,
called the basic or root definiens, or root type. A set of

definitions, together with a designated root type, is called a
context free grammar or a (simple) phrase structure grammar,;

the set of literal strings that can be generated from the root
type is called a phrase structure language. The set of

definitions describing such a language is sometimes called

the Backus Normal Form or BNF description of the lahguage.

Such a set of definitions formally determines a collection of
generated sentences in the following way. Let Zl be the one-
element set consisting of the basic definiens. If 2 is any set
of strings, let 7T(2) consist of the set of strings in = together
with every string which may be formed from the strings in 2 by
replacing a syntactic type by one of its alternative definitions.

Clearly, T(Z) o 2, Inductively write

2, = 7(&)) 23 = 1(22) 5 etc.
Let 25 be the union of all the sets En. Let (0 be the collec-
tion of all strings in 2 which contain no remaining syntactic
types but only literal words. The family QO of sequences of
literal words generated in this way>constitutes the family of
sentences of the language defined by the original finite set
of Backus definitions. ©Note that the set O will, in general,
be infinite, This indeed is part of the power of the Backus
notation; it is a method of describing an infinity of sentences
in a finite way.

'31

The illustrative definitions above may be included in a
complete, though ministure, grammar as follows:

<story> = <beginning» <middle> <ends>

<beginning> = HAMLET <first subheading> <introductory
paragraph> |MACBETH <introductory paragraph>

<introductory paragraph> = ONCE UPON A TIME | ONCE LONG AGO

<first subheading> = CHAPTER 1 l PREFACE

<middle> = BOY MET GIRL | GIRL MET BOY

<end> = AND LIVED HAPPILY EVER AFTER

The reader may review and test his understanding of the Backus
metalanguage by generating various <story>'s belonging to the
phrase structure grammar described above. It is to be noted
that even though all of the generated strings are entitled
elther HAMLET or MACBETH their structures are primitive and
quite unshakespearian. A more interesting langﬁage would of
course require a less rudimentary grammar for its definition.

While the Backus metalanguage, as described above, already
constitutes a useful device for the description of languages,
it is convenient, especially for the description of mechanical
languages, to add two more features to it. The first addition
1s motivated by the following consideration. Often, in mechani-
cal languages, repetitive lists are used, as, for example, in
the FORTRAN declaration statement

(9) INTEGER A,B,C,D,E,F

It 1s, in fact, possible to define repetitive lists of the
form occurring in (9) directly in terms of the Backus meta-

language. The required metalinguistic construction is merely
<list> = <term> <term> <cterm>

(10)
<cterm> = , <list>

Overfrequent use of such a recursive form is sometimes clumsy.
To provide a less clumsy metalinguistic expression applicable

to the definition of repetitive lists we can introduce the conven-
tion that i1f the name of a syntactic type included in pointed
brackets is suffixed with an asterisk then repetition of the
syntactic type any number of times, from zero to infinity, is
intended. With this convention we can rewrite the syntactic
definition (10) as

<list> = <term> - <cterm*>
(11)
<cterm> = ,<term>

The definitions (11) may be read informally as follows:
a list consists of a term followed by an arbitrary number, perhaps zero,
of "cterms"; a "cterm" consists of an occurrence of the literal
"comma'", followed by a "term".

A second addition to the Backus metalanguage has the
following motivation. In some cases, it is more efficient,
as well as more convenient, to treat a few of the simpler
elements of a language lexically, rather than syntactically.
The details of the lexical scan process required to accomplish
this are given in Chapter 3 below; a theoretical discussion
indicating the point at which the boundary between the lexical
and the syntactic may most appropriately be drawn will be
found in Chapter 4. When such a lexical scan has been applied,
. some of the character substrings in the source text are
conglomerated into "words" which it is appropriate to treat
in syntactic analysis as indivisible atoms. Each of these
lexical atoms will be designated by the lexical scanner as
having some particular type. E.g., in standard FORTRAN the
lexical types: integer, name, octal constant, Hollerith
constant, etc. would appear. At certain points in the syntactic
description of a sentence we would then wish to indicate that

an atom of a given type (rather than some fixed literal) is
required. For this purpose we shall merely indicate the type

~33-~

of a required atom with a prefixed asterlsk as follows:
(12) <¥name>
Adopting this convention, we are able to write syntactic

equations like

SUBRQUTINE <¥*name>
(13) (<*name> <namecx >)

<subroutine statement>

<namec> = , <¥name>

The syntactic definitions (13) are to be read as follows:

a "subroutine statement" consists of the literal word
SUBROUTINE, followed by an atomic name, followed by a

literal left parenthesis, followed by another atomic name,
followed by an arbitrary number of repetitions of the
syntactic type "namec", followed by a literal right
parenthesis. The syntactic type "namec" consists of a literal
comma followed by an atomic name.

-~ We conclude the present seétion by noting that the Backus
metalanguage, like any other reasonable metalanguage, may be
used to define itself. 1In doing so however we must avoid
confusion between the literal symbols occurring in the language
being defined and the markers used as metalinguistic separators
in the definition of this language. The only symbols having a
special meaning in the Backus metalanguage, as we have described
it, are the left-hand pointed bracket, the right-hand pointed
A bracket, the vertical bar, the asterisk, and the equal sign.
All ambiguity can be avoided merely by substituting other symbols
for these symbols., The formulae below then describe the Backus
metalanguage in terms of itself, In writing them we have

substituted round brackets for pointed brackets, and a slash
‘mark for a vertical bar. As remarked above, this enables us
to regard the conventional BNF separators as literals rather
than as syntactic separators. Since the asterisk and the equal
sign always occur in fixed locations relative to the other
separators, they can cause no confusion and we need not use
another symbol for eithef of them.

-34 -

(whofedescription)~=-(defingroup*)

(defingroup) = (definition)

(definition) = <(xname)> = (definers)

(definers) = (definer) / (definer) (xtradefs*)
(xtradefs) = |(def1ner)

(definer) = (partsx)

(parts) = (xname) /<(xname)> / <« (*xname)>/<(*¥name) >

The reader should examine this set of definitions closely and
note that in its brief compass it specifies precisely the Backus
metalanguage described informally in the preceding paragraphs.

The sequence of generative actions which lead from the
root type of a grammar to a sentence valid in the grammar
may be represented in a convenient and illuminating graphicél
form by the use of diagrammed parse trees. Such a tree is a

collection of nodes, represented by points, and of branches,
represented by lines connecting (higher) nodes to (lower)
nodes. Each application during the generation of a given
sentence of a Backus definition to replace an intermediate
symbol o by a string of symbols Bl...ﬁn is represented in the
parse tree by a node which is marked with the symbol o and
from which there depend n branches to nodes marked

with the symbol Bl,...,ﬁn respectively. Thus, for example,
the parse tree of a particular sentence belonging to the
miniature grammar described just above is shown in Figure 1.

<Qtory>
<beg1nn1ng> <m1ddle>- <end>
BOY MET GIRL

<introductory paragraph>
HAMLET

<first subheading> ONCE LONG AGO

AND LIVED HAPPIIY EVER AFTER
CHAPTER I
Figure 1. An illustrative parse tree.

-35-

A language is called ambiguous if there exists sa
sentence of it which has more than one parse tree,
languagé;.with which we shall deal are unambiguous.

The general aim of syntactic analysis is the explicit
construction of the parse tree of input sentences; this forms
a necessary part of compilation since the sequence of machine
operations corresponding to a given source-language statement
is represented explicitly in the structure of the sentencées
parse tree, but only implicitly in the sentence itself. The
parse tree of a sentence may be represented explicitly, and
related explicitly to the grammar defining it, as follows.
Let a Backus grammar with definitions

b

(14) a="> c

12... n clce ¢ e e m LRI)

be gilven. Modify each definition in the following way:

i) Introduce, for each intermediate symbol a of the
grammar, an otherwise unused terminal symbol, A.

ii) Modify each definer of the intermediate symbol a by
prefixing to it a left parenthesis and affixing to it the
symbol A. followed by a right parenthesis.

Applying the above definition to the definition (14), for
example, we obtain the modified definition

(15) a = (ByBye.. By A) I(clcg... c, A)R
The grammar (15) may well be called the explicitly tagged
version of the grammar (14)., A parse tree of a sentence
according to a grammar (14), which exhibits the use of some
particular sequence of Backus definitions, corresponds

precisely to the unique sentence produced according to the
modified grammar (15) by the use of a precisely matching
sequence of definitions. The parenthesis and node-type
marks present in the latter sentence show the node structure

-36 -

of a parse tree in an explicit way. Thus, for example,

we might by the use of the "explicit tagging" technique
indicated above represent the parse tree shown in Figure 1
by the explicitly marked sentence

(16) (('HAMLET' ('CHAPTER 1" firstsubheading)
('ONCE TONG AGO' introductory paragraph)beginning)
('"ROY MET GIRL' middle)
('AND TIVED HAPPTLY RVFR AFTRR' end)story)

From this point of view, we may regard any parser as aiming
to supnly the parenthesizing and node-type marks present in
a sentence generated according to the explicitly tagged
version of the grammar (14), but present only implicitly in
the corresponding sentence generated according to the grammar
(14) itself. This makes i1t plain that a parser is useful
bacause it enahles us to write nrograms in a relatively
brief and convenient form in which a large number of
avxiliary marks are left implicit, and to recover these
marks subseouently for explicit use in the generation or
machine instructions.

2, Anticipatory Survey of the Psrsing Algorithms to be
Discussed in What Follows.,

Tt is the intent of the present section to prepare the
reader for the discussion of parsing algorithms which is to
follow (principally in the remainder of the present chapter
and in Chapter IV) by surveying the parsing methods which
are to be studied in what follows. As we have seen, parsing
is the process of making explicit the implicilt structure of a
sentence. The methods which can be used to parse may be classi-
fied according to various of their salient properties. One
basic distinction is that separating the top-down or goal-direcfed
methods from the bottom-up or data-directed methods.

In a top-down method (methods of this class will be more
systematically and carefully described in later sections of the
present chapter), the basic strategy is to start from the root
symbol <a> and attempt to generate a sentence that matches the
input sentence. Since, as we noted above, a grammar in general
describes an infinity of sentences, we must include in this
generation process checks on the plausibility of the partially
formed string matching the input string. We accomplish this

approximately as follows.
The root symbol <a> is defined by a set of alternatives

<a> = e o 0 blb2 o0 bn |) °

We begin by choosing one of these alternatives, say blb2"‘bn’
and forming the string

b1b2 ‘e bn .
Each b.l represents either a terminal symbol or a syntactic type.
If bl is a terminal symbol, it is matched against the first
symbol on the input string. If there is a match, an input string
pointer is incremented and attention turns to b?; otherwise
another alternative 1s chosen for =<a> and the pfocess restarted.
If bl representg a syntactic type, 1t 1s replaced in the string

by one of its alternatives, say €1.eeCh resulting in a string

el e s erbguccbn .

38

The expansion and comparison process is then applied to ey etc.
In general one will be dealing with a string

C1CpeeeCyCy qeesCyp
in which C1sCpsesesC) are terminal symbols thathave been
successfully matched to the first k symbols of the input.
The elements Cyq12++sCr remain to be examined. If Cra1 is a
syntactic type, we replace it by one of its alternatives. If
Cryq is @ terminal symbol, it is checked against the (k+l)st
input symbol; if it matches, attention is turned to Crape
If not, it is clear that the altnerative of which Creal is a
part was an incorrect choice. Therefore, that whole
alternative (and possibly additional alternatives in which
it was contained) must be replaced with another and the
input pointer backed up accordingly. This procedure continues
until either a string is produced that exactly matches the
input or until the possible alternatives for generation are
exhausted, in which case the input is gramatically incorrect.

In a bottom-up method we survey the input string w and
attempt (using any one of a number of alternative algorithms,
cf. Chapter IV) to find an intermediate symbol <f> of the grammar
and a substring w' of w which forms an allowed definition for this
intermediate symbol. Whenever this 1s possible, we replace the
substring w' of w by the single intermediate symbol <f>, thereby

obtaining a condensed intermediate string w; to which the same
basic step may be iteratively reapplied. Proceeding in this way
we attempt to condense the given string into a single character
representing the root-type of I'. Whenever the condensation
process 1is blocked, we must find an alternative sequence of
condensations to try.

- 39_

A second basic distinction among parsing methods separétes
the advancing schemes from the backup-oriented schemes.
Advancing parsers aim to attain efficiency by avoiding all
conditional decisions which may arise during a parse and which
can lead after several apparently successful steps to an ultimate
failure, A well-designed advancing parser will analyze an input
sentence consisting of n'lexical atoms in a number of steps
proportional to n, the best asymptotic behavior which can be

expected in view of the evident necessity to scan every symbol
of an input string in parsing it. Such schemes pay for their
efficiency through their inability to handle the most general
grammar., Backup-oriented parsers, accepting the necessity to
reverse prior parse-guesses at a later stage, can handle more
general grammars, but may be less efficient in their treatment
of grammars permitting an advancing parse.

We may usefully distinguish between parsing methods capable
of handling only a sub-class of the class of all Backus grammars,
and parsing methods capable of handling the most general Backus
grammar, It should not, of course,be expected that every backup-
oriented parsing scheme can handle every Backus grammar; we note
in particular that the very simple top-down backup-oriented
schemes presented as an introduction to parsing techniques in
the next sections of the present chapter, while they are capable
of handling a fairly large class of grammars, will nevertheless
fail completely to handle even very simple Backus grammars if
these grammars contain any one of a number of forbidden features.
(We will first meet parsing algorithms capable of treating
arbitrafy context-free grammars in Chapter IV). A principal
effort in the present chapter will be the discussion of an easy-
to-use class of top-down parsers, basically advancing but capable
of backup when necessary, which can handle an extensive but not
completely general class of grammars.

- 40 -

Ease of use is of course an important feature according

to which parsers may be classified. Various other aspects
of a parser combine to determine its ease of use., A
parsing»algorithm capable of treating arbitrary grammars
will often be easier to use than one which can only handle

a special class of grammars. A parser capable of treating
only a special class of grammars may be particularly clumsy
to use if the class of grammars which can be treated is
defined by conditions which are not easy to state directly
in terms of those structures, visible in the terminal strings
of the grammar, for which the would-be compiler writer has

an intuitive familiarity. Frequently such conditions are imposed
on a grammar in order that it may be transformed into some set

of tables which the recognizer finds convenient to use., The
precedence oriented recognizers discussed in Chapter IV employ
techniques of this kind, This leads to another parameter deter-
mining ease of use, namely the extent to which the meta-

language in which the parse is expressed must be transformed
to obtain the code and/or tables which constitute the
running parser. Extensive metalinguistic pre-processing,
especially if only a sub-class of grammars can finally be
accepted, will normally imply a system somewhat harder to
use than one involving a metalanguage c¢loser in structure
to the parser code which it represents. The extent of
pre-transformation will also govern the degree to which a
metalanguage can incorporate features which, strictly speaking,
represent extensions of the basic Backus concept rather than
elements possibly belonging to this concept. One of the
advantages of the class of top-down schemés described in
the later sections of the present chapter is that, involving
relatively simple metalinguistic processing, they are easy
to use and adapt easily to generalization.

Parsers may appropriately be classified according to the
'§Eg§g_with which they are capable of analyzing sentences of
a given length. Advancing schemes will analyze sentences
of length n in a number of steps asymptotically proportional

47 -

to n multiplied by an efficiency factor characterizing the
particular scheme and determined by the adequacy of the
methods which it employs to avoid false starts and to proceed
directly to the performance of required steps. The best
algorithms from this point of view are undoubtedly the
deterministic bottom-up schemes described in Chapter IV.

We note in this connection that action of a strictly advancing
bottom-up parser may, in many cases, be understood in terms

of the notion of a context-dependent grammar, inverse to

a given Backus grammar I'' A context-dependent grammar oI
more preferably, a set of context-dependent re-writing rules

is, for our purposes, a set of definitions of the form (17),

(17) QpeeeOpy By oee Ba e Yy = Ope+e Op By oo Yy o

and where

(18) . 6= By e By

is an alternative of some definition belonging to I'. In
writing (17), we mean to imply that the string B, ... Bp
when it occurs in a context in which the string Oy eee Op
appears to its left and the string Y e Y, appears to its
right, may be replaced by the character 6. Intuitively
speaking, such an lnverse grammar describes a family of
syntactic condensations, which if the original grammar is
to be parsable by use of the inverse grammar, must be
capable of condensing arbitrary sentences written accordlng
to T back into the root symbol of I'. Each application of a
context-dependent rule (17) inverts some particular applica-
tion of a definition of I, and may be considered as
corresponding to a given node in the parse tree of the
sentence to which the rule is applied. The grammars which
may be parsed by bottom-up deterministic methods are those

- 4o-

for which inverse grammars of the above sort exist. Parsing
algorithms taking advantage of the existence of inverse
grammars fall into two main classes: those for which the
grammar inverse to I' is produced from I' itself by application
of a syntactic pre-transformation, and those which require
the compiler-writer to supply the inverse grammar explicitly.
In Chapter IV, we shall consider deterministic parsing
algorithms of both types.

Parsing algorithms may also be rated by the speed with
which they can analyze sentences written according to grammars
not permitting parse by an advancing scheme, or, alternatively,
sentences written according to grammars with a high degree of local ambi-
guity. Among known parsers, the best in this regard are the '"nodal
span'" parsers described in Chapter IV, which analyze arbitrary
sentences of length n written according to unambiguous grammars
in a time proportional to n2, and analyze sentences of length
n written according to arbitrary grammars in a time proportional
to n5. These speeds are very much superior to the speeds with
which other parsers will analyze sentences of like length. 1In
particular, it is to be noted that many bhack-up oriented parsers
may require a time proportional to k" to parse sentences of
length n written according to an ambiguous grammar.,

The amount of storage required by a parser is an aspect
of 1ts efficiency as important as the speed of the parser.

A parser may require large amounts of storage for one of two
different reasons. On the one hand, the parser itself may
either consist of a large amount of code or may require rather
large pre-compiled decision tables as auxiliary information
during its run. On the other hand, a parser may require
extensive storage space for the storage of information
developing dynamically during the parse of a given sentence.
Advancing parsers are generally free of the latter problem,
since they normally require an amount of space for the storage
of dynamically-developed information which is not more than

”3

proportional to the length of the sentence being parsed‘and
which in many cases will be considerably smaller than the
space required to contain the full input sentence. It is to
be noted, however, that certain of the advancing schemes
described in Chapter IV, especially those which use "look-
ahead" very extensively, may require excessively large
pre-compiled tables of look-ahead information. However, for
certain languages which can be parsed by an advancing scheme
requiring only a very few characters of contextual information,
the tables required by the best bottom-up advancing parsefs
are not large, so that a bottom-up parse scheme which is
highly efficient both in regard to time and in regard to
space can be developed. The nodal scan parsers described
in Chapter IV require even in treating the most general
grammars, an amount of intermediate storage propor-
tional only to the square of the length of the sentence
being parsed. For extensive classes of grammars these same
parsers require an amount of intermediate storage which
is only linearly proportional to the length of the sentence
being parsed. It is to be noted that, by passing from a fully
compiled parser to an interpretive version of the same parser,
thereby replacing fully expanded code by some specially
contrived dense tabular representation of the same code, we
can decrease the amount of code space required by the parser
at the cost of a certain loss in running speed.

We may describe the parse algorithms to be presented in
Chapters II and IV in the light of classifications
described above as follows. We begin by developing a very
simple top—down back-up oriented scheme. This scheme is
neither efficient nor wholly general and is in fact rather
inadequate; it 1s presented merely as an introduction to the
general principles involved in top-down parsers. Then we go
on to describe a basically advancing top-down scheme and its
associated metalanguage. This scheme is reasonably adequate,

b

is easy to use, and, since the generation of a running parser
involves relatively simple pre-transformations of the meta-
langﬁage in which the parsers of this class are described,
is easy to generalize. We shall use the "extended Backus"
metalanguage corresponding to this class of parser as a
standard means for the description of programming languages
in subsequent chapters of the present book.
In Chapter IV we begin to consider bottom-up schemes.
We start with a description of the very attractive "nodal
span" scheme due to Cocke, Younger, and Early. This algorithm
handles arbitrary Backus grammars, gives best-known asymptotic
parse speeds for general grammars whether ambiguous or
unambiguous, and is relatively moderate in its storage
requirements‘both for code and table space and for space
needed for the storage of dynamically developed information.
Next we give an account of bottom-up parsers defined by the
explicit specification of a grammar inverse to the Backus
grammar defining the langua&e to be parsed. Such schemes are
not hard to use, and are capable of producing parsing programs
quite satisfactory from the point of view of efficiency and size.
The final sections of Chapter IV are devoted to a descrip-
tion of advancing bottom-up parsing schemes which use bounded
context methods. These schemes probably define the fastest
known parsers for the class of languages which they handle.
In some cases, however, the attractiveness of these parsers
is marred by the large auxiliary tables which they require.
It may also be noted that, since parsers of this kind can treat
only a restricted class of grammars, the analysis of a given
language by these methods may involve a preliminary stage of
grammatical debugging during which, by modification of the
grammar for the language which we wish to parse, we force the
grammar to conform to the restrictions imposed by the parsing
method.

-5~

We note in coneclusion of the present introductory section
that, as is often the case with theoretical models of
nroceGuees having a pragmatic origin, the parsing algorithms
to be developed in the subsequent sectlons of this chapter
and in Chaoter TV go considerably heyond the methods
directly needed for the analvsis of the commonest proéramming
langnaces. Almost all languages that will be met in practice
can be treated either by a bottom-up precedence m=athod,

i.e., by the simplest of the methods to be discussed 1in

Chapter TV, or by some slight variant of such a method.

This parsing method is also fast; moreover; it reaulres

1ittl> space. Thus even the simplest of the parsing algorithms
to bhe described in what follows gives a good practlical

answer to the question "how to parse."

-lUg-

5. Sentence Analysis In a Phrase Structure Language.

The Backus metalanguage, as we have now defined it, is
quite a powerful tool for the description of languages.
Somewhat further on in our discussion we shall want to
supplement and to modify this metalinguistic tool in various
ways. However, before doing so, it is appropriate to take a
first look at the principal problem in the use of a metalanguage
in the construction of translators: the interpretation of
metalanguages for language analysis rather than their use to
describe sentence synthesis.

Consider a typical BNF definition, as e.g.

(1) <ifstatement> = IF<expression><relationop><expression>

THEN<line numbers> .

This statement not only describes the construction of an
<ifstatement>, but, conversely, indicates the steps of
analysis required to discover the constituent subportions
of a source language statement, assuming this source
language statement to be an <ifstatement>. These are as
follows:

1. The literal wdrd IF must be found.
If this word is not present, then our attempt to analyze
the given source language statement as an <ifstatement>
fails,

2. Next we must find a collection of atomic constituents
which together constitute an <expression>. If not all the
constituents required are present, our attempt to analyze the
given source language statement as an <ifstatement> fails.

- 47

'3, Next we must find the constituents required for a
<relationop>.

L, Next must follow a set of constituents which together form
an <expression»>,

5. Next we must find the literal word THEN.

6. Next we must find all the necessary constituents to form
a <line number>.

If all of the six steps listed above are successfully
completed, then our analytic construction of an <ifstatement>
comes to a successful end. If any of the six steps fails, then
our source statement may be a grammatical statement of some other
sort, but it is certainly not an <ifstatement>.

The six steps outlined above can be represented as a sequence
of invocations of just two procedures, RECOGNIZE and FIND SUBPART.
These procedures will work on a source string in left to right
serial order, moving a 'next word' pointer along as syntactic
analysis progresses. The RECOGNIZE procedure requires only a
single parameter, namely the literal word which the procedure
is required to RECOGNIZE. When invoked, the RECOGNIZE procedure
has only to signal whether the specified literal word is or is
not present as the next atomic word to be scanned in the source
string. The success-failure signal which the RECOGNIZE routine
provides may conveniently be transmitted through some machine
register or memory cell avallable to the remaining parts of an
over-all syntactic analysis program. The FIND SUBPART procedure
also requires a single parameter, namely an identifier defining
the particular subpart which is to be found. FIND SUBPART
therefore acts as a parametrized subroutine transfer, routing
the syntactic analysis process to the beginning of the sequence
of steps required for the analysis of whatever syntactic type
is momentarily required as a constituent in some larger structure.

In terms of these two procedures the syntactic reconstruction
of an <ifstatement> as described by the metalinguistic defini-
tion (1) above is as follows.

- 48-

(2) RECOGNIZE (IF)
FIND SUBPART(EXPRESSION)
FIND SUBPART(RELATIONOP)
FIND SUBPART(EXPRESSION)
RECOGNIZE(THEN)
FIND SUBPART(LINE NUMBER) .

The sequence of steps (2) may be considered to represent a

section of syntactic analysis in skeleton form. However, it

is incomplete in a few major regards.

a) Since the algorithmic steps (2) are to be part of a larger
algorithm which will have to invoke (2) as a subportion, a
pair of labels, which we might agree to supply in some such
conventional form as

BEGIN IFSTATEMENT
and

END
are required. The first of these labels 1s of course to be
placed at the beginning of (2), and the second is to be placed
at the end of (2).

b) In writing the algorithmic steps (2) we mean to imply that if
any of the successive recognition or subpart finding substeps
fails of successful completion then the whole sequence of
steps is considered to fail.

To complete the specification of the analysis procedure we must

therefore define the action to be taken if any of the sequence

of steps (2) fails. One of two responses will be appropriate in

the case of failure. If the <ifstatement> is a subpart of some

more inclusive syntactic type in which the <ifstatement> is a

constituent of one alternative but which allows other alternatives

as well, we merely wish, on falling to find a complete <ifstatement>,

to pass to the next alternative and to attempt analysis in
accordance with this alternative. In this case, we must also push
the pointer defining the next source word to be scanned back to

the position it had at the beginning of our attempt to construct

-)49_

an < fstatement>. If, on the other hand, no syntactic alternative
exists, then the fallure of an attempted analysis indicates that
the source sentence under examination is ungrammatical. We
then wish to emit some diagnostic remark useful to the originator
of the source language statement and to pass on at once to
analysis of the next sentence in the source string.

When the FIND SUBPART procedure 1s invoked in a semantic
analysis we must therefore arrange to store
(i) The address to which return is to be made on successful

construction of the required subpart.
(ii) The alternative address to which we wish to proceed in the
event of failure. '

(iil) The current value of the word scan pointer.
A reasonable method for storing this information as 1t is
developed dynamically, ad which has the essential property of
being fully recursive, 1is as follows: Establish a push-down
stack on which the information items (i), (i1), (iii) may be
stacked. Establish a POPUP routine which works in conjunction
with the FIND SUBPART and RECOGNIZE procedures. This POPUP routine
should transfer to one of the two stacked addresses, (1) or (ii), in
the event of successful return from an invocation of FIND SUB-
PART, and to the other in the event of an unsuccessful return.
On unsuccessful return, the POPUP routine should also restore
the word scan pointer to its stacked value. At the time of
return, POPUP should also remove the three stacked items which
it has just used from the top of the pushdown stack.

A stack of the sort that we have described forms the basic
. mechanism of recursive control in a BNF syntactic analyszer.
If the analysis process is to produce syntax trees as output
we require another data structure and some few additional
procedures. In this case the POPUP routine will also bear the
responsibility for building the syntax tree.

A very simple tree-building method which can be used 1is
as follows. On each successful return from a FIND SUBPART
call a syntactic tree subsection is

50

to be built. When such a tree section is built, a pointer
referencing it is left on the top of a so-called argument
pushdown stack. The elements to be linked into the tree
subsection to be built at any point are the top few elements

referenced by the argument pushdown stack. That is, on
successful return from a FIND SUBPART invocation (1) we conglom-
erate the tree sections referenced by the top few elements of
the argument pushdown stack into a single larger subtree,
(2) remove the reference to the conglomerated elements from
the top of the pushdown stack, and (3) place a reférence to
the new conglomerate on top of the pushdown stack. The number
of elements at the top of a pushdown stack which are to be
conglomerated at any point is precisely equal to the number
of syntactic subelements contained in the syntactic type which
has just been successfully found. If syntax trees are the
only desired output from the syntactic analysis process this
single recursive tree constructlon procedure can be used
throughout the operation of the syntactic analysis process.
lOn unsuccessful return from a FIND SUBPART invocation, all
those tree fragments which correspond to successfully found
syntactic subelements of the failed syntactic type must be
erased and references to them removed from the top of the
argument pushdown stack.

The following example will illustrate the combined action
of the syntax analysis mechanism and its auxiliary tree-building

mechanism,

Consider the simple language defined by the following small
set of descriptors.

(3) <ifstatement>

IF<expression><relatop> <expression> THEN
<¥1line number>
<expression> = <xname> + <expression> l <¥name >
- <expression> l <x¥xname>
<relatop> = > l < | =

51 -

The basic type in this little phrase structure grammar 1is,
of course, <ifstatement>. Suppose that the source statement

to be analyzed 1is

(4) IF A - B >C THEN 100 .

When syntax analysis begins the argument stack is empty, the
word scan pointer is set to the first word of the source string,
and no syntax trees or subtrees have been constructed. The
initial state is represented diagrammatically in Figure 1.

(argument stack) (tree sections)

Figure 1. IF A -B>C THEN 100

The RECOGNIZE procedure is now called to recognize the word IF,
does so successfully, and advances the word scan pointer by

one word{ Figure 2 shows the situation after the operation has
taken place., We indicate the current position of the word scan
pointer by writing all words preceding it in small letters;

all other words are written in capitals

(argument stack) (tree sections)

T1. IF

i

T1

—

Figure 2. if A - B > C THEN 100 .

FIND SUBPART is now invoked and required to find an <expression>.
It begins with the firsﬁ alternative form of the syntactic type
<expression>, which requires that the lexical element <*name>

be found. This is successfully found, and made into a miniature

52

tree section consisting of just one twig. A reference to
this tree section is placed on the top of the argument pushdown

stack. After this operation, the analyﬁic situation is as
shown in Figure 3.

(argument stack) (tree sections)
T ™ ¢ IF
T1 T2 * <*name>

Figure 3. if a - B> C THEN 100

Next, RECOGNIZE is called to find the sign +. It fails to do so.
The first alternative definer <xname> + <expression>
consequently fajils, and the syntactic analysis process reverts

to its status as of the beginning of the attempt to parse the
source statement using this definer., After this reversion,

the situation is as indicated in Figure 4.

(argument stack) (tree sections)

{ !
{ !

T1 ¢ IF

: T1

I

14

Figure 4. if A - B > C THEN 100 .

Now the second alternative version of the syntactic type
<expression> is tried. This requires that the lexical type
<xname> be found. It is found and made into a subtree,
leading to the situation show in Figure 5.

(argument stack) (tree sections)
i
B TL : IF
T2
T2 | <¥name>
[11 < L \

Figure 5. if a - B > C THEN 100 .

_53 -

Next, RECOGNIZE is required to find the sign -. It does so,

a reference to a mini-tree T3 is placed on the stack, the word
scan pointer is advanced, and FIND SUBPART is again called to
find an <expression>. After trying two false alternatives it
will succeed, whereupon the situation shown in Figure 6 will be
attained.

argument stack tree sections
(

o ‘ T1: IF
T T2 <*nape>
I

T3: -

T4: <xname>
Figure 6. if a - b > C THEN 100. |
Since the call to FIND SUBPART to find an <expression> is complete,
the components of this expression (only T4 in this case) are
removed from the argument stack and replaced by the tree for the
expressionsy this yields the situation shown in Figure 7.

(argument stack) (tree sections)
5 i T1. IF
| T3 _ T2. <¥nanme> 3¢ =
T2 A
I S T5° <exgressian>
. <*name>
Figure 7. IF a - b > C THEN 100. B

But this completes the call to FIND SUBPART for the larger
<expression>; consollidation of the nodes T2, T3, T5 representing
this expression leads to the situation shown in Figure 8.

(argument stack) (tree sections)
] T1: IF
T T6: <expression>
T6
I - <*n%pe> - <expression>

A <*n%me>

Figure 8. IF a - b > ¢ THEN 100. 3

Subsequent stages of the syntactic analysis and tree-
bullding process are shown in Figures 9 and 10.

5l -

(argument stack)

(tree sections)

T8 Tl: IF T6: <expression>
T7 3
T6 T7' <relftop> <*na?e> - <expression>
Tl
g A <¥xname >
\
B
T8 <expression>
<¥name>
|
C
Figure 9. if a - b > ¢ THEN 100
(argument stack) (tree sections)
TL0 T1: IF T6. <expression>
| T 9
T8] T7: <relatop> <¥name > - <expression>
T
T 6 > A <xname >
T1 T9.: THEN g
T8: <expression>
<¥xname >
I
C
T10: <xline number>
100
Figure 10. 1if a - b > ¢ then 100

At this point,

the call to FIND SUBPART for <ifstatement> has
been successfully completed.

TL, T6, T7, T8, T9, T10

Therefore the tree sections
representing its components are

consolidated into the single tree shown in Figure 11.

55 -

(argument stack) (tree sections)

T11.

<if statement>

<expression> <relatop> <gxpression

IF \ THEN < 1line number>
<expression> <¥name> 100
<¥name > g
’ <xname >
A B

Figure 11. if a - b >c then 100

Observe that the tree section of Figure 11 is a completely
explicit representation of the syntactic structure of the
source statement (4).

Tt is not strictly necessary to represent the terminal items
discovered by calls to RECOGNIZE (e.g., IF, THEN) as separate
elements of the parse tree. Rather, one can indicate the presence
of these items by a parameter of the syntactic type in which they
occur. For example, one could rewrite the tree of Figure 11 as:

<if statement>
<expressi§n (=)>

<relatop(>)> <expression()> <¢line number>

<xname> <expression()>

100
A <*name > <*name> ©

B C

In fact, we shall use this condensed form of the tree from here

on in.

6 -

A convenient and simple mechanism for building the tree
sections alluded to in the preceding paragraphs is as follows.
A tree section stack is established. Each item placed into

this stack is either a node descriptor or a branch indicator.

A node descriptor describes the type of a particular node, and
in particular, specifies the number of branches which the node
supports. A branch indicator will either indicate an atomic
symbol, or, alternatively, correspond to some branch emerging
from a node, and is merely a pointer to the node descriptor
belonging to the node which this branch reaches. The branch
indicators therefore merely contain those tree section stack or symbol
table addresses at which node items on the one hand or atomic
symbol items on the other are to be found. Branch descriptors
are therefore identical with argument stack entries. To build
a new node during the parse process, Wwe have only to transfer
a number of (branch.descriptor) items from the argument stack
to the tree section stack, cap off these items with an
appropriate node descriptor, and place the address of the new
node descriptor at the top of the argument stack. Note that,
if we use this procedure, we can erase nodes merely by
decrementing the "top of the stack" pointer of the tree
section stack.

The analysis process which we have just described has
previously been summarized in the algorithm (2) above. The
reader will recognize, however, that (2) gives only an
incomplete representation of the syntactic analysis process.
Note first of all that this algorithm contains no indication
of the instruction to which transfer is to be made on the
failure of any of the "RECOGNIZE" or "FIND SUBPART" invocations
of which the algorithm consists. In order to supply this
missing feature we must, of course, allow a label to be
attached any line of a syntactic analysis algorithm of the
type represented in (2) above. Moreover, we must provide
for the use of an additional basic syntax analysis subroutine
whose purpose it will be to establish a label to which transfer

57 -

is to be made on a failure return from any "FIND SUBPART"

or "RECOGNIZE" invocation. The necessary additional basic

routine may be called "STACK", and can conveniently be coded

as a subroutine with a single argument, this argument being

the label to which transfer is to be made by "RECOGNIZE" or

by "FIND SUBPART" on a failure return. It is convenient, in

coding this routine, to have it stack not only this "FAILURE"

address, but also to enter a pointer to the current top location

of the tree section stack used in the syntactic analysis process.

Of course, both of these quantities are to be placed on the

top of the syntactic analysis control stack. By saving an

indication of the current state of the tree section stack, we

make erasure of partially constructed subtrees on the occurrence

of a failure return midway through a syntactic analysis

convenient. Indeed, as indicated in the preceding paragraphs,

the syntactic analysis tree is progressively be built up on the
tree section stack during the syntactic analysis process,

and, using this technique, erasure may be accomplished simply

by returning the tree section stack pointer to its earlier

value,

A new "failure label" will be established by a call to the
STACK subroutine at the beginning of the section of recognition
code corresponding to each Backus normal form alternative.

This label will, in each case, reference the section of syntactic
analysis code corresponding to the next Backus alternative in
sequence to be tried on the failure of the Backus alternative
represented by the current algorithmic block, if any such
alternative exists. On the other hand, if no Backus alternative
exists, the failure label established by the STACK subroutine
must (explicitly or implicitly) reference a standard BACK label,
upon transfer to which the POPUP routine already described

(cf. the paragraph following i), ii), and iii) above) is to

be called, the success-failure flag being set to the "failure"
state.

58

Using the conventions introduced just above, it is easy for
us to write the detailed form of the algorithmic expansion of
the "IF" statement syntax described by the Backus formulae (3).
Such an account is glven in Table I. Each of the labels in
Table I corresponds to a Backus alternative. The separate
subroutine invocations which follow this label correspond to
the various syntactic items of which the complete Backus definer
of <ifstatement> is composed. The routines invoked in Table I
are RECOGNIZE and FIND SUBPART, whose significance has already
been explained, the routine STACK which has the significance
described immediately above, and two routines POPYES and POPNO,
which are invocations of the POPUP routine in its "successful
return" and its "unsuccessful return" alternatives.

In Table I we have also made use of a subroutine FIND LEXICAL,
whose significance may be explained as follows. In writing the
syntactic description in (3), we have explicitly indicated that
certain syntactic types (in particular, the syntactic type
"name") are to be treated lexically rather than syntactically.
This has been indicated in terms of thewbrefixed asterisk" conven-
tion established and explained in the paragraph of section 1 of
the present chapter immediately preceding formula (12). The
occurrence of such an atomic lexical type in a Backus descriptor
implies that an elementary routine permitting essentially
immediate recognition of a lexical atom, rather than a complex,
possibly recursive, procedure for the recognition of a composite
syntactic type, is to be used. It is this elementary lexical-
atom finding routine that has been called FIND LEXICAL in the
algorithm of Table I. The FIND LEXICAL procedure is assumed
to consult a table of lexical atoms, established by a preceding
lexical scan of the raw input string, which scan, in the manner
already explained, and using the techniques to be described
in more detail in Chapter 3, reduces the raw input string to
a condensed string of lexical atom pointers on the one hand,

- and to a set of symbol table entries describing the various

lexical atoms on the other.

- 59-

Table I. Complete Algorithmic Expansion of <ifstatement>
syntax.

ifstatement: stack(back)
’ recognize(if)

find subpart(expression)
find subpart(relatop)
find subpart(expression)
recognize(then)
find lexical (1line number)
popyes |

expression: stack(expressm)
find lexical(name)
recognize(plus)
find subpart (expression)
popyes

expressm; stack (expressnam)
find lexical (name)
recognize(minus)
find subpart (expression)
popyes

expressnam: stack(back)
find lexical (name)
popyes

relatop: stack(lessrel)
recognize(gtsign)
popyes

lessrel: stack(eqrel)
recognize(ltsign)
popyes

eqrel. stack(back)
recognize(eqsign)
popyes

back: popno

..60 -

The FIND LEXICAL procedure will normally be able to determine
whether its success or its failure return is to be taken by
direct examination of certain pre-established "attribute" bits
in a symbol table, and consequently has, in this regard, a
-flavor more like that of the elementary RECOGNIZE routine than
like that of the more complex FIND SUBPART routine. FIND
LEXICAL differs from RECOGNIZE however, in that instead of
merely returning a success lndicator in case of success, it
enters a pointer to the successfully found lexical atom into
the argument stack. This pointer will, in the manner explained
above, subsequently be incorporated into the complete

syntax tree which we take to be the desired output of the
syntactic analysils procedure.

Note that, in the algorithm shown in Table I, we have
assumed that <ifstatement> is a syntactic subtype forming
part of a larger Backus grammar, SO that, when and if our
input string fails to parse as an "ifstatement" we merely make
a normal failure return to the higher level grammatical from
which FIND SUBPART(IFSTATEMENT) has been invoked.

Note also the fundamental fact that the syntactic analysis
algorithm shown in Table I can be obtained by straightforward
mechanical expansion from the Backus normal form description
(shown in formula (3) above) of <ifstatement>. Of course, in
a. mechanical expanéion, meaningless rather than mnemonic labels
would be attached to the code corresponding to the two alterna-
tive versions of the syntactic type "expression"; in Table I,
we have attached the mnemonic labels "expressm" and "expressnam"
to these alternative versions of the syntactic type <expression>.
Except, however, to the human reader of such an algorithm, this
point is without significance. The detailed methods by which
Backus normal form descriptions of the type (3) are to be
expanded into algorithms of the type shown in Table I will be
discussed in more detail below, when we introduce conventions
enabling us to describe code generation in direct connection
with syntactic analysis. '

_61-

It is worth noting as an important aside that routines
of the sort shown in Table I may elther be "executed" or
"interpreted", i.e., may either be expanded intc a true
sequence of machine level subroutine calls, or, alternatively,
may be expanded into tables of some other form descriptive
of the pattern of calls to be executed, the transfers to the
corresponding subroutines then being made by a specilal
"interpreter" code. The first method, i.e., direct execution,
has the advantage of high speed; on the other hand, the
second may often require less space for the representation of
the same procedures, but involve some loss of speed. The
particuler style, execution or interpretation, which is most
advantageously employed in any particular case depends on
practical considerations, i.e., on the extent tc which compile
time on the one hand and space limitations on the other represent
critical bottlenecks for a given machine and with a given total
work load.

If the Backus normal form descriptors with which we are
concerned are to allow the repetition feature described in the
paragraphs preceding formula (11) of Chapter 1, we must have the
ability to use a corresponding routine in our syntactic analysis
algorithms. For the sake of definiteness and convenience, we
may call this routine ITERATE SUBPART. The routine in question,
which has a single argument denoting a particular composite
syntactic type, will work in the following way. On belng
invoked, it will issue the corresponding FIND SUBPART call
repeatedly and indefinitely until a first unsuccessful return
from FIND SUBPART occurs. Until this "first unsuccessful return
from below" occurs, ITERATE SUBPART merely continues to call
FIND SUBPART, always with the same argument, i.e., the argument
with which ITERATE SUBPART itself has been called. When the
first unsuccessful return from below occurs, ITERATE SUBPART
makes a successful return to the level from which it has been
called. Note therefore that ITERATE SUBPART can never return
unsuccessfully.

63~

. A tree bullding procedure, which can be employed
by ITERATE SUBPART just before 1its terminating reﬁurn is made,
is as follows. All the stacked instances of the syntactic
type found by the repeated calls to FIND SUBPART are linked
together into a tree of the structure shown in the following
figure. If this number is zero, a nominal nulltree is created.
The stacked instances are then removed from the top of the
argument stack, and replaced by a single entry at the top of
the argument stack which references the newly created subtree.

subtype
subtype
subtype-

subtype

terminating nulltree

Figure 11. Tree structure which may be generated on
return from ITERATE SUBPART(subtype) call.

Alternatively and somewhat more efficiently, a special type
of node containing an explicit "branch count" field may be
introduced, and the appropriate number of branches hung directly
on this single node.

An example of a syntactic analysis algorithm involving
an invocation of the ITERATE SUBPART routine is obtained by
considering the grammar of the FORTRAN subroutine statement,
represented by the following Backus normal form descriptors.

<gsubroutine statement>

(4) = SUBROUTINE<#name> (<¥name> <namec*>) | SUBROUTINE<*name>
<namec> = , <¥name>

The corresponding recognition procedure is shown in Table II.

%3 -

Table II. Syntactic Analysis Algorithm for SUBROUTINE
Statement in FORTRAN.

subrout: stack(noargs)
recognlize(subroutine)
find lexical(name)
recognize(leftparen)
find lexical(name)
iterate subpart(namec)
recognize (rightparen)
popyes

noargs. stack(back)
recognize(subroutine)
find lexical (name)
popyes

namec: stack(back)
recognize (comma)
find lexical (name)
popyes

back: popno

It is worth noting, from a more general point of view,
that subroutine invocations - of the FIND LEXICAL type
merely exemplify something more general, namely, calls which
lead from one style of syntactic analysis to another., In
particular FIND LEXICAL takes us from recursive syntactic
analysis to finite state lexical analysié of the type
described in Chapter 3., From the point of view of general
principle however, it is not essential that precisely this
transition be made. For example, while a general grammar may
require the use of the fully recursive mechanisms described
in the present chapter and paragraphs, the subanalysis
corresponding to some particular syntactic type and of all
the subtypes that can occur in the course of its analysis,
may correspond to a subgrammar which is sufficiently restricted
so that some simpler and more efficient grammatical analysis

-6 4+

method becomes applicable. In particular, it is possible
that a grammatical subtype within a fully recursive Backus
grammar can be analyzed by the more efficient "bounded
context" methods described in Chapter 4. In this case, one
obtains a more efficient'overall grammatical analysis if,

on beginning the analysis of the syntactic type in question,
one passes, via a subroutine call, out of the general
recursive framework which we have describedlin the preceding
paragraphs, and into a modified syntactic analysis algorithm
of a more efficient kind, possibly written in a different
metalanguage. In the simplest case, this more efficient
procedure may simply be a lexical scan procedure and, at

its #ery simplest, may be carried out as a lexical pre-scan
before syntactic analysis even begins. On the other hand,
calls to alternative syntactic analysis procedures of quite
arbitrary style may be interpolated into syntactic analysis
algorithms of the type shown in Tables I and II, provided
only that the interfaces between the different syntactic
analysis routines are established by common convention and
are respected by all the syntactic analysis subroutines
invoked.

L4, cCcode generation in the syntax analysis context.

Up to the present point in our discussion, we have evaded
all the issues pertaining to code generation, merely assuming
that our syntactic analysis process generated an explicit
syntax tree usable as input to a code generation process.
However, it is more convenient in many situations to combine
syntactic analysis with code generation, since, as we have
already observed, the individual pointers required by code
generation routines are precisely those which are developed
in the course of syntactic analysis before explicit conglomer-
ation of these pointers into a syntactic tree.

-65-

In order to do this, we require a method by which calls
to a variety of generator routines may be specified in direct
connection with syntactic descriptions of Backus form. This
is conveniently done by modifying the Backus definers described
at the beginning of section 1 of the present chapter, so that
they become what might be called "generating definers" i.e.,
symbolic strings describing both a series of syntactic elements
and the particular generative action which is to be taken on
successful detectlion of all the elements of such a syntactic
string. In line with this general intent, we define a
generating definer to consist of a Backus normal form definer
of any of the preceding types, followed by two vertical bars,
followed by the name of a generator routine, or, briefly,

generator. The generator which occurs in a generating definer
is merely the name of a subroutine which is to be invoked
immediately on the successful completion of a parse according
to the Backus normal form definer which immediately precedes
the generator. Using this convention we can write the combined
syntax and semantics of the "IF" statement, shown in (3) above,
as follows.

IF <expression> <relatop> <expression>

(5) <ifstatement>
THEN =<xline number> . genlf
<expression> = =<xname> + <expression> . gensum [
<¥name> - <expression> .gendifl < name >

<relatop> = > .gengt < , genlt \ = . geneq

Each of the syntactic formulae shown in (5) consists of one
or several separate Backus alternatives; every alternative
may call for the use of a distinct generator., The separate
alternative definers for a glven syntactic type occur to
the right of an equals sign and are separated by single
vertical bars.

66 -

The expression into an algorithm of the generating Backus
syntax description (5) is shown in the following Table III,
which, for its relation to our previous Backus algorithms
without generation, should be compared to Table I.

Table III. Algorithmic expansion of <ifstatement> syntax,

code generation included.

ifstatement: stack(back)
recognize(if)
find subpart(expression)
find subpart(relatop)
find subpart(expression)
recognize (then)
find lexical (1line number)
call genif
popyes

expression: stack(expressm)
find lexical (name)
recognize(plus)
find subpart(expression)
call gensum
popyes

expressm. stack(expressnam)
find lexical(name)
recognize(minus)
find subpart(expression)
call gendif
popyes

expressnam. stack(back)
find lexical (name)

popyes
[continued]

67

relatop: stack(lessrel)
recognize(gtsign)
call gengt
popyes

lessrel. stack(eqrel)
recognize(ltsign)
call genlt
popyes

eqrel: stack(back)
recognize(egsign)
call geneq
popyes

back. popno

The action of the generator routines which occur in the
above example may be explained as follows. The arithmetic
sum generator, GENSUM, always finds two variable names at the
top of the argument stack when it is called., Let these two
variable names be designated as A and B. Then GENSUM creates
a new variable name, which we shall call C, removes the
variable names A and B from the top of the argument stack,
places the variable name C on the argument stack, and generates
a single line of code, having the significance C = A + B, into
an output code stack. In much the same way, the subtraction
generator GENDIF, removes the names A and B from the top of the
stack, places a new variable name C at the top of the argument
stack, and generates a single line of code, C = A - B, into
the code stack. Using this procedure, the code corresponding
to an arithmetic expression of arbitrary complexity 1is
recursively built up, i.e., an arbitrarily complex arithmetic
expression is compiled into a sequence of elementary, perhaps
machine language, instructions. The other main generator
routine occurring in the syntax formulae (5) is the generator
GENIF that is invoked when an if statement has been completely
parsed. It is the responsibility of this generator to construct

-68 -

and emit the particular. conditional transfer instruction,

which, in low level or machine level terms, corresponds to

a FORTRAN IF statement. The action of the GENIF routine is

as follows. It finds three items on-the top of the argument
stack. The first two of these are the names of expressions

to be compared; the third is a reference to a code line to
which transfer is to be made, conditionally on the result of
this comparison. The particular comparison to be made will

be a comparison according to either the greater than, the less
than, or the equality relation. A flag indicating which
relational operation is desired in each particular case must

be transmitted to the GENIF routine by that one of the three
auxiliary generator routines GENGT, GENLT and GENEQ which

is invoked when, in the course of syntactic analysis, one

of the three signs >, <, = is found. Thils flag can be
transmitted in any one of a number of ways. The most consistent
manner of transmitting such a flag, though not necessarily the
most efficient, is simply to place the flag on the top of the
argument stack, where GENIF would then find it. If this style
of coding is employed, then GENIF will find not three but four
items on the argument stack, of which one is a flag indicating
the particular relational operation to be compiled. A plausible
alternative treatment of the same point is as follows.

A common core location, known both to the GENGT, GENLT, and GENEQ
routines, and to the GENIF routine, can be established. Each of
the three routines, GENGT, GENLT and GENEQ, when it is called,
can simply set this common location to some conventional value
known to GENIF. By examining this core location, GENIF can

then determine the particular comparison to be compiled in each
particular case. This technique, whlle conforming less well to
a very systematic approach aiming to use as few data structures
as possible during the compilation process is, of course,
somewhat more efficient than the technique described previously,
- in that it avoids some of the intermediate stack manipulations
required by a systematic approach. At any rate, whatever

- 69_

particular device is used for the transmission of the
comparison-signifying flag to the GENIF routine, GENIF will
find at the top of the argument stack two values to be compared,
and the number of a line of code to which transfer 1is to be
madevdepending on the outcome of this comparison. Call the
two variables in question A and B. The GENIF‘routine will
then generate two instructions into the output string. The
first of these may normally be a subtraction which forms the
difference of the two variables with which the comparison to
be performed is concerned. Suppose we call this difference C;
then the second instruction emitted will be one of three
possible conditional transfer instructions. . All of these
conditional transfer instructions will transfer to the code
referenced by the label which constitutes the final argument
of the GENIF routine; a "transfer on positive" will be used
if the conditional transfer is to be made on the > relation,
a "transfer on negative" will be used if the conditional
transfer is to be made on comparison by the relationship <,
and, finally, a "transfer on zero" will be emitted if the
relational operator occurring in the original if statement
is that of equality.

Note that each generator routine, as a normal matter,
receives as 1its arguments a rather small set of parameters
representing the condensed result of calls to prior generators
which are invoked recursively in the course of analyzing
composite syntactic subelements via the subroutine FIND SUBPART.
This circumstance corresponds, of course, to the fact that in
generating a syntax tree, only one single node is created on
the successful completion of any syntactical alternative, all
necessary subtrees representing contained syntactic subelements
having already been generated recursively via intermediate calls
to FIND SUBPART. We may summarize this basic fact in
a phrase by stating that lower syntactic levels are normally
predigested.

~70-

The Backus metalanguage, extended to include calls on
generator routines in the way indicated above, may appropriately
be called the generating Backus metalanguage. As observed at
the end of the first section of the present chapter, the Backus
metalanguage may be used to define its own syntax. Similarly,
the generating Backus metalanguage may be used to define itself,
both as to syntax and as to semantics., In doing so, we must,
as noted at the end of the first section of the present chapter,
avoid confusion between literal symbols occurring in the language
being defined and the markers used as metalinguistic separators in
the definition of this language. As previously, we attain this
end merely by substituting other symbols for the few symbols
which occur as separators in the generating Backus metalanguage,
that is, we substitute round brackets for pointed brackets

and a / for a |. With these conventions, the self-definition
of the generating Backus metalanguage appears as follows.

(wholedescription) (defingroup*) END . GENBACK

{(defingroup) = (definition)
(definition) = (nampart) = (definers)
(nampart) = <(xname)> . LABEL
(definers) = (definer) (alternatex)
(alternate) = (bar) (definer)
(bar) = | . NEWLABEL
(definer) = (part) (part*) . (*name) . CALL /
(part) (partx)
(part) = (¥name) . RECOGNIZE / <(¥*name)> .SUBPART

/ <*(*NAME)> . LEXICAL
/ <(*NAME)x*> , ITERATE

The eight generator routines which occur in the above
syntactic formulae are LABEL, NEWLABEL, CALL, RECOGNIZE,
SUBPART, LEXICAL, ITERATE and GENBACK. The reader will find
it easiest to understand the significance of these various

71~

generators if he compares the syntactic description (3) of
the <ifstatement> with the corresponding syntactic recognition
algorithm given in Table III. Each of the eight generator routines
which we have listed has tne responsibility of constructing a
part of a syntactic analysis algorithm like that shown in Teble III
from the corresponding element in the more condensed representa-
tion of the same algorithm as contained in syntactic formulae
of the type of (3) above (or (4) above, ete.).

The generator routines RECOGNIZE, SUBPART, LEXICAL, ITERATE
are quite simple. Each of these four generator routines finds
a single parameter at the very top of the argument stack; this
parameter is merely the name of some lexical or syntactic type.
Each of these generator routines merely emits a call to a
corresponding subroutine into an output code buffer. These
calls have, of course, the respective forms RECOGNIZE(name),
FIND SUBPART(name), FIND LEXICAL(name), ITERATE SUBPART(name).
Upon emitting its output, each of the above generator routines
also removes its argument from the top of the argument stack,
thereby reducing the argument stack slightly in accumulated
size. Thus, each of the four generator routines RECOGNIZE,
SUBPART, LEXICAL, ITERATE simply translates an element of a
Backus syntactic string like those of (}) into the corresponding
call seen in Table III. The generator routine
CALL is equally simple; it receives, as argument, a single name,
which it finds at the top of the argument stack. The generator
routine CALL merely transfers this name from -the top of the
argument stack into the output stack. In this way, it
introduces function invocations, i1.e., generator routine calls,
into the output string. The two generator routines LABEL and
NEWLABEL have a somewhat more complicated structure, owing to
the fact that during the expansion into algorithmic form of a
syntactic formula having multiple alternatives, and with the
understanding that only a single forward pass over the syntactic
. formula is to be made in order to secure its complete expansion,
it is never known at the beginning of the expansion of a

~72-

particular alternative whether another alternative will follow,
or whether the alternative in question is the last alternative
generating definer on the right hand side of a complete Backus
definition. We overcome this small difficulty as follows.

A counter is kept; this counter is used to generate an
indefinitely long sequence of labels of some such form as
L0000, LOOOl, LOO0O2, Each of the generator routines
LABEL and NEWLABEL is assumed to generate an instruction of
the following form.

label 1: stack(label 2)

In this labelled call, "label 1" will be found by the

generator routine LABEL as one of its arguments, while, on

the other hand, the generator routine NEWLABEL will calculate
label 1 from the current value of the label generating counter
in the manner just explained. Moreover, both of the routines
LABEL and NEWLABEL will increment the current value of the

label generating counter, and will construct the label "label 2"
in the output string shown above using this new value of the
label counter. Thoughtful examination of the code shown in
Table I will reveal the fact that, by following this procedure,
the correct output code will be generated whenever the Backus
definer momentarily being expanded is followed by an alternative.
However, in those cases in which the Backus definer being
expanded is not followed by an alternative, but constitutes

the last definer on the right hand side of:a complete Backus
definition, the code generated i1s incorrect, in that it should
have the form

label: stack(back)

instead of the form displayed above. 1In order to obtain thecorrect
output, we subsequently reach back in the generated output

string to make the necessary correction; i.e., we change

whatever label has been generated in forming the symbolic

output STACK(LABEL2) to the alternative form BACK. In order

“73

to make this process of recorrection efficient, we proceed as
follows. A core location containing the address in the output
buffer of the generated label (1abel 2 in our preceding
discussion) is saved. Call this core location LASTSTACK.
When the generator routine LABEL 1s called, i.e., when a
new definition appears in the syntactic source text, we know
that the last preceding alternative 1s not followed by any other
alternative belonging to the same definition, and hence, as
explained above, the last previously generated call STACK(label 2)
generated is in error and must be corrected. Thus, the syntactic
subroutine LABEL will, whenever 1t is called, correct the output
buffer location referenced by LASTSTACK, changing the label
appearing in the referenced location to the label BACK.

Our final generator routine GENBACK generates the labelled
line

back: popno s

thereby completing the syntax expansion process, GENBACK must
execute any necessary cleanup operations, including the final
emptying of theé generated output buffer.

The reader may test his understanding of the expansion process
just outlined by hand-expanding the above self-definition of the
generating Backus metalanguage into the corresponding syntax
expansion routine. Such hand-expansion 1s, of course, the basic
"pootstrap" step necessary in initial implementation of the
syntax expander.

The first, non-generating form of the Backus metalanguage,
as presented earlier in the present chapter, may be regarded
as a degenerate form of the generating Backus metalanguage,
in which every definition ends with an implied call to a
standard POPYES tree section generator. From this point of
view, the essential difference between the generating and the
non-generating Backus metalanguage is that the generating
Backus metalanguage allows arbitrary generator routines to be
called at the end of each section of parse, rather than forcing
a call to a single standard generator in every case.

“Th-

5. An Expanded Backus Metalanguage.

The generating Backus metalanguage described at the end
of the preceding section, while containing everything necessary
in principle for the expression of syntax and semantics, is
somewhat too slight to be truly serviceable in the formal
description of any very substantial programming language.
In the present section, we shall introduce an expanded and
very much more adequate version of the Backus metalanguage,
sufficiently rich in features as to be comfortable during
extensive use, We may motivate the features of this extended
metalanguage as follows. In the first place, the Backus
metalanguage as presented above is based on a uniform "recovery"
convention according to which we always back up to the end of
the last previously cdmplete successful section of parse on
failure to find any required element of any Backus definer.
Besides leading to unnecessarily inefficient parses, this
procedure has the decisive flaw of not allowing the convenient
generation of error diagnostics. In order to improve the power
of the metalanguage in both senses, it 1s appropriate to
supplement the Backus definer strings in terms of which
syntactic descriptors are composed by adjoining to them
strings of transfer labels, each explicitly indicating the
point to which transfer is to be made when the corresponding

syntactic element of the definer cannot successfully be
constructed., While this complicates the form of a definer,

and imposes an additional burden of decision on the syntax
writer, it more than pays for itself in flexibility and power
gained, Introducing this additional string of transfer labels,
we gain the freedom to invoke generator routines at any point
in a syntactic scan, provided always that our text takes
proper account of the prior occurrence or non-occurrence of

a generator invocation. Generator subroutine calls are most
useful and powerful if we allow them to have explicit arguments;
of course, each generator also has availlable, as a set of

_75,-

implicit arguments, the quantities which occur at the top

of the syntactic argument stack described in the preceding
section. Thus, in defining our extended metalanguage, we
allow ourselves to intersperse into a definer string not
merely simple generator routine calls but generator routine
calls with associated lists of parameters. It is also
convenient to allow syntactic strings to end not only with

an implied call to a POPYES routine, but also with an explicit
transfer to any syntactic label. Using such a feature we

mey, for example, efficiently combine the description of two
syntactic types having a common terminal part by writing

each as an initial section, both terminating in an uncondi-
tional transfer to a Backus definer representing their common
terminal part. By the same token, it is convenient to allow
conditional transfers to an arbitrary syntactic label to be
inserted into a definer string, transfers conditional, that is,
on the state of the syntactic success-fallure flag. By doing
so, we allow generator routines which set or reset this flag
to be used as conditional tests of quite an arbitrary sort.

In the extended metalanguage, we maintain the "iteration"
feature included both in the Backus and the generating Backus
metalanguages of the preceding section, and, as a matter of
convenience, extend it to allow the specification not only of
an arbitrary number of iterations, but also to allow specifica-
tion either of a minimum number of ilterations, or alternatively
of both a miniﬁum and a maximum number of ‘iterations. To
improve the readability of our syntactic text, we provide,
as a very useful feature, the ability to intersperse comments
into syntactic text. Finally, in order to specify the
occurrence in a syntax string of literal symbols even when
these symbols are identical with symbolic marks of the meta-
language, we provide the standard "quote" option. According
to this convention, any literél string which does not contain
any specilal symbol of the metalanguage, represents itself;
while any literal string beginning and ending with quote marks

but not containing any embedded quote marks, represents the
literal quantity contained between the two quote marks. In
such a scheme, of course, the quote'mark‘itself requires
special treatment, which may be provided in any one of a number
of standard ways.

We also find it cbnvenient, for the sake of readability,
to make certain modifications in the stylistic conventlons
employed in the metalanguages of the preceding section.
More specifically, we continue to let each definition begin
with

(1) <type> = s

but, when several definers occur as part of a single definition,
we separate them by successive equal signs, rather than by
single vertical bars; this convention is just as persuasive

and readable as our previous convention. Each definer of the
extended Backus metalanguage consists of two parts, a direct
part and an alternate part. The direct and the alternate parts
of a definer are separated by a slash mark. The direct part

of a definer corresponds rather closely in form to the definers
occurring in the two previous metalanguages, but includes
generator calls, etc., freely interspersed with the syntactic
elements constituting the definer. The allowed elements of

the direct part of a definer are as follows. 1In the first place,
syntactic type designators representing calls on the main
recursive FIND SUBPART routine have the same form as previously,
i.e., are represented by the occurrence of the name of the
corresponding syntactic type, enclosed in pointed brackets.

We also allow calls on the FIND LEXICAL routine, which we
write, as usual, in the form

(2) <¥lextype> 5

-77 -

similarly, our ITERATE SUBPART calls continue to be written as

(3) <type *> .

Ccalls on the generalized ITERATE SUBPART
routine in a form specifying both a minimum and a maximum
number of iterations are written as follows

(4) <type (min,max)> 5

in case we wish to specify only a minimum but not any maximum
number of iterations we write

(5) <type (min,*)> .

comments are written in the following form
(6) <-this is the form of a comment> .

The text of the comment includes everything from the first
pointed bracket and its following dash to the next following
pointed right bracket. Literal elements, répresenting calls

on the syntactic RECOGNIZE routine, are represented elther by
the direct occurrence of the corresponding literal in a definer
string, or by the occurrence of a quoted literal in the style
explained above.

The three last classes of elements which may be inserted
into the direct portion of a definer are subroutine calls,
unconditional go to indicators, and conditional go to indicators.
A generator subroutine call has the following form

(7) .neme (param 1, param 2, ..., param k) ,

and may occur anywhere in the direct portion of a definer string.
Any number of parameters, separated by commas, are allowed.
The unconditional and the conditional transfer indicators have

78

two allowed alternate forms. The simple form of an
unconditional transfer is

(8) . .label
The simple form of a conditional transfer is .
(9) ...label ,

where the transfer is tsken if the success-failure flag is set

to failure. It is als convenient for certain purposes to provide
both the unconditional and the conditional transfer in an expanded
form in which they are supplied with a single parameter. The
expanded form of the unconditional transfer is

(10) . .label(param) ,
the expanded form of the conditional transfer is

(11) ...label(param)

When a transfer, conditional or unconditional, and involving

a parameter, is actually taken, we stack the current value of
the parameter at the top of the argument stack; this value is
then available to generator routines subsequently called.

This provides, among other things, a convenient mechanism for
signalling a generator routine as to the point from which entry
into it was made, a possibility which is uséful, for example,
in the generation of error messages.

Our 1list of the items permissible as elements of the direct
portion of a definer in the extended Backus metalanguage is
now complete. The alternate portion of a definer, which, as
we have already noted, is separated from the direct portion
by the occurrence of a slash mark, consists of a sequence of
explicit or implicit conditional transfers, each of which may
be supplied with a paraméter if desired. An explicit condi-
tional transfer occurring as part of the alternate section
of a definer has the following form:

(12) .label

-T%-

in case no parameter is provided, and has the form
(13) .label(param)

in case a parameter is provided.
We also allow two useful forms of implicit transfer labels.
The form

(14) b

indicates a conditional transfer to the system BACK label;
the occurrence of a completely blank label, il.e., the form

(15) °

indicates a transfer to the next alternative definer of the
same definition if any such exists, or, if none such exists,
indicates a transfer to the system BACK label. All the
conditional transfers in the alternative part of an extended
Backus definer are intended to be conditional upon the state
of the syntactic success-failure flag, always upon return
from the syntactic subroutine corresponding to a particular
syntactic element in the direct part of the same definer.
Thus, for example, the definer |

<type 1> <xlex2> LIT% / .label 1. label 2. label 3

causes recursive construction of the syntactic type "type 1"
to be attempted; if this fails, transfer to the point "label 1"
is made. Next, the lexical type "lex 2" is sought, via an
invocation of the FIND LEXICAL subroutine; if this element is
not found, transfer to "label 2" is made. Finally, the literal
element "LIT3" is sought, via a call to the RECOGNIZE routine;
if this element is missing, transfer to the point "label 3"
is made. On the other hand, if all three syntactic elements
are successfully found, the. system popup routine is called
in its success form POFYES.

Every synhtactic element of the direct part of an extended
Backus definer which could possibly lead to a faillure veturn

80

is required to be represented in the alternate part of a Backus
definer by one and only one corresponding transfer label. Thus,
the total number of transfer labels, 1mplic1t or explicit,
forming the alternate portion of a Backus definer must correspond
to the total number of elements of the direct part of the same’
definer representing calls to FIND SUBPART to FIND LEXICAL,

to the RECOGNIZE routine, or to the ITERATE SUBPART routine
when this routine is called either with a specified minimum

or with a specified minimum and maximum number of allowed
iterations (but not when the ITERATE SUBPART routine is called
without the specification either of a minimum or of a minimum
and maximum number of iterations).

With the above explanation of the syntax and semantics of the
extended Backus metalanguage itself, the reader should be in a
position to follow the formal self-description of this language
given in Table III. We use the dash (-) to indicate the end of
all of the alternatives of a definition. We end the set of
definitions with the word END.

Table III. Self-description of the extended Backus

metalanguage.
<grammar> = <statement> <statements*>/ .er(2) -
<statements>='-' <statement> / .er(l) .er(2) -
<statement> = '<' <¥name> '>! ,check...er(6).clear(0)
.genlab=<spart(l,*)>/..er(3).er(l4).er(1)
= END .check...er(6).clear(0).exit/.er(5) -
<spart> = '=! ,clear(l)<direct*>' /! <alternate*>,check...er(6)
.oer(l) -
<direct> = t,t 1.t ,set(uncond) '.' .set(cond)..go/

.maylb..go

= <=,><*name> '(' <params> ')' ,gencall(p)/
er(7)..er(8).er(9)

= <-.,name> ,gencall(np)/ -

<go> = <xname> '(' -<#name> ')' ,gengo(p)/

.er(ll)..er(8).exr(9)

= <-name> ,gengo(np).allri/ -

[continued]

_‘83:-

<maylb>

<mays >
<ma.gq>

<glternate>
<er>
<params >

<nsmec>
<notrbkt>

<notapos>

<notdash>

The semantics

<t t.! <wname> '>' ,genfind.count/

er(3). er(l4) '

<-<> <#¥name> '¥! !>! .geniter/ er(3)..er(4)
<-<name> '(' <¢name> !,! <sname> !')' !>!
,count.genrgo(rept,fin)/Cmays.er(13).er(13)..er(9)
.er(l) |

<-<name (name,> '*1! t)t t>' _genrgo(rept,inf)
.count/.er(13).er(9).er(4) -

<-<name> !> .genrgo(norept,fin) /.exr(l4) -

<+ gpos> <notapos*> <xgpos> ,concat,count.genrec

/..er(l2)

<*name> ,count.genrec/,

1, .set(cond) tht .stack(sysbakk) genins (np) /.b.-
1.t .patch/.

<name> ! (! <name> ')' ,genins(p)
J.er(1l)..er(8).er(9)

<-.name> ,allri.genins(np)/ -
.ermes<notdashx> / -

<*name> <namecx> /. -

t,' <xname> /..er(8) -

1>' ,false,backl/.

< eof >, ,.er(12) /.

< any>.off/ .er(10) -

A<*apos> .false. back 1 / .

<xeof> ., er(12)/ .

<xany> / .er(l0) -

'-t ,false / .

<eof> .stack(1l2).ermes.exit/.
<xany> / .er(10) - |

of the extended Béckus metalanguage will be

precisely defined once we have described the action of each
of the generator toutines that appears in Table III. Let us
note, to begin with, that the generator routine ERMES, which

_82-

occurs at the label ER in Table III, is simply an error
message transmitting routine. This routine always finds a
numerical parameter at the top of the argument stack, and
merely sends out the error message corresponding to this
numerical argument., Table IV contains a 1list of all the
error messages which may appear.

Table IV. Error messages for the extended Backus
syntax expander.

1. 1illformed terminal portion of syntax statement

2, 1illformed initial portion of syntax statement

3. 1llformed name of syntactic type

L4, missing right bracket

5. missing left bracket in type name

6. number of alternatives does not match number of elements

T 1llformed function name

8. 1llformed function parameters

9. missing right parenthesis

10. system error

11, illformed transfer label

12, unmatched apostrophe or right bracket causes read
to end of input

13. illformed repetition bracket

At this point we may also note a convenient and general
auxiliary procedure which can be followed in connection with
syntactic error diagnostics. One may merely print, on the
output listing generated by a syntactic recognizer routine,
a line of asterisks underneath any line representing the
section of syntactic source text in which an error has occurred.
This line of asterisks should terminate at the point in the
input text corresponding to the last input symbol successfully
scanned by the parser, In this way, the syntax-programmer
will be made aware of the approximate point in his syntax text

83

at which the parser begins to experilence difficulty; it will
normally be quite close to this symbol that a correction is
required.

Certain of the generator routines occurring in Table III
have very simple actions., The generator routine FALSE merely
sets the syntactic success-failure flag to its failure
condition; the generator routine ALLRI sets the same flag to
the success condition. The generator subroutine SET merely
sets a special "transfer-type" flag location to indicate
elther that a conditional transfer or that an unconditional
transfer 1s subsequently to be generated. ‘This flag is used
by the GENGO generator routine to determine the type of
transfer which it is to generate.

-84-

The generator routine CHECK checks for.a match between
the number of elements constituting the alternate part of
an extended Backus definer and the number of direct parts
which require corresponding alternate parts. This correspond-
ence check 1s performed as follows. The syntactic ITERATE '
SUBPART generator always leaves, on the top of the syntactic
argument stack, a count of the total number of iterations
which 1t has performed. The generator subroutine CHECK
therefore finds the total number of Backus definer alternates
on the top of the argument stack when it is called. The
total number of elements in the preceding direct part which
require a corresponding alternate part are progressively
enumerated by the routine COUNT (besides maintaining the
current value of this quantity, COUNT also performs
several auxiliary actions, described below). The routine
CHECK has only to compare the integer which it finds at the
top of the argument stack wlth the accumulated count found
in a parser core location, and to set or reset the system
success~failure flag, depending on whether these two
quantities are identical or not.

The generator subroutine BACK1l simply backs up one
character in the syntactic input string; it is called when
this atom must, on the one hand, be scanned in order to make
the parse of a preceding string of atoms definite, but, on
the other hand, does not belong to this preceding string
and must be parsed separately. The subroutine STACK
simply places the argument with which it 1s called at the
top of the argument stack; this provides us with a convenient
way for inserting "implicit" quantities into the flow of our
parse; a procedure useful, for example, in making an implicit
label to its explicit. The generator subroutine OFF simply
removes a single element from the top of the argument stack;
it will be called when the argument stack 1is known to
contain a quantity in which we are no longer interested.

The generator subroutine CONCAT finds, at the top of the

_85-

argument stack, pointers to a sequence of symbol table
entries, together with an integer specifying the number of
these entries. It then concatenates all the referenced
symbols into a single longer symbol; enters this symbol into
the symbol table, and replaces the whole string of items on
the argument stack by a single item referencing the newly
constructed symbol. Subsequently, the whole sequence of
symbols contained between apostrophes may be treated as a
single symbol.

The action of the remaining syntactic generator subroutines
will be better understood if we first explain the style
of syntactic output code that these generators are to produce.
The occurrence of an explicit label in the syntactic text,
i.e., the beginning of a new syntactic definition, generates
an output statement of the form

label: continue

The implicit labels corresponding to alternate definers
forming part of the same definition are treated as follows.
A steadily 1ncreasing count 1s kept in a core location which
we shall call LASTLAB. The integer values contained in

this location are used to generate an indefinitely long
sequence of distinct labels. The occurrence of an implicit
label in the syntactic text, i.e., the beginning of a new
alternative for a given definition, generates an output
statement of the form

LOOOn: continue

Immediately after the generation of this label, the
location LASTLAB 1is incremented by one.

The occurrence of the syntactic type 1n a definer causes
a call of one of the forms FIND SUBPART, FIND LEXICAL, etc.,
to appear in the final output. Each of these calls must be
followed immediately by code for a conditional transfer, the
label in this transfer belng specified by the corresponding
element 1n the alternate portion of the same Backus

86

definer. This remark makes it plain that, in order to
generate the correct final code, we must intersperse frag-
ments of code corresponding to parts of the direct portion
of each definer with other fragments of code corresponding
to elements of the alternate portion of the same definer.
In order to do this, we first place all the code fragments
generated by elements in the direct portion of a definer
into an intermediate direct code buffer and the fragments
of code generated by the elements of the alternate portion
of the same definer into an alternate code buffer. When

a definer is terminated, either by the occurrence of the
next following definition or by the occurrence of an (=)
sign representing the beginning of the next alternative of
the same definition, the generator routine CLEAR will be
called. This generator routine transfers the contents of
the two above buffers into a final output code buffer,
interspersing them alternately according to the following
rule: First, code in the direct code buffer is moved 1into
the output string, down to the point at which a code line
calling for an alternate code line is encountered. At this
point, a single line of code is transferred out of the
alternate code buffer into the final generated code string.
The same process then repeats. An element of the alternate
portion of the definer always generates a conditional transfer,
which may be written in one of the following forms:

ifgo (label)

is the form generated if the corresponding alternate element
1s a label without any parameter;

ifgop (label,param)

is the form generated if the corresponding alternate
element is a label to which a parameter is attached;

ifgo (LOOOn)

87 -

Ve

is the form generated by an explicitly blank alternative
element; here the label in question is to be constructed in
the way already explained from the count maintained in the
location LASTLAB; and finally

ifgo (sysbakk)

is the form to be generated by the occurrence of the implicit
transfer element .b as an alternative element.

In order to give those labels LOOOn which should coincide
with the system "sysbakk" label SYSBACK the right significance
we proceed as follows. The CLEAR routine is given a parameter,
allowing it to be called in one of two forms, the first
corresponding to the occurrence of the beginning of a new
definition, the second corresponding to the occurrence of
the beginning of a new definer continuing an old definition.
When CLEAR is called in its first form, it places the current
value of the LASTLAB counter on a terminal arguments stack.
The clean-up routine EXIT, called when the END statement
terminating the whole body of syntactic text is encountered,
accesses the terminal arguments stack, generating a whole
body of statements of the form

LOOOm: continue

LOOOn: continue

LOOOk: continue
. ete.

and, finally, generating the terminal code lines
sysbakk: popno

One last explanation is required to complete our picture
of the target code into which we intend to expand extended
Backus metastatements. The output code generated by any
definer not ending with an unconditional GO TO indicator
should be terminated by a POPUP call. On the other hand,
if the last element of a definer is an unconditional GO TO
statement, this call 1s superfluous and may be omitted.

In order to secure this action, we make use of a "go flag";

-88-

this flag is set to an "on" condition whenever an unconditional
GO TO is generated, and is reset whenever any other type of
statement i1s generated, and also when a label occurs in the
generated code string. The CLEAR routine, when called,
consults this flag and inserts a POPUP statement when and
only when the flag is found to be in its 'set' condition.
Keeplng these facts in mind, we may explain the action
of the remaining syntactic generators appearing in Table III.
The generator subroutine GENRGO generates a CALL SUBPART
Statement. The routine GENREC generates a RECOGNIZE statement.
GENRGO also has the responsibility of generating ITERATE
SUBPART calls in the special case in which either a minimum
or a minimum and maximum number of repetitions are called
for. The particular version of the ITERATE SUBPART call
required is signalled to the GENRGO routine through its pair
of parameters. The related subroutine GENITER generates
ITERATE SUBPART calls in the most common case, that in which
neither nor a maximum number of required iterations is
specified. The genefator routine GENFIND generates g FIND
LEXICAL call. The generator GENCALL sets up subroutine
invocations, and is just a bit more complicated than the
other generators of its class in that it must be prepared
to deal with an arbitrary number of parameters. Each of
the above five generators, when called, resets the "go flag."
The subroutine GENGO generates a conditional or unconditional
GO TO statement with or without a parameter. The presence
or absence of a parameter in the code to be generated 1is
signalled to this routine by the value of i1ts own single
parameter. The GENGO routine determines whether a conditional
or unconditional transfer i1s to be generated by examining
the transfer type flag which has previously been brought to
the right value by the generator subroutine SET. If an
unconditional GO TO is generated, the "go flag' is also set
by GENGO to the value 1. The routine GENLAB finds a label

-89 -

at the top of the argument stack and attaches this label to
a CONTINUE statement. The GENLAB routine also resets the
'go flag." The GENINS subroutine generates a conditional
transfer statement, with or without a parameter, and inserts
it into the alternate code rather than into the direct
code buffer,)

The two remaining syntactic generator subroutines occurring
in Table III are CLEAR and PATCH. The CLEAR subroutine
zeroes the running count of the number of elements in the
direct portion of a definer requiring matching alternate
parts, empties both the direct and the alternate code buffers
into the final output code buffer, and renews these buffers
for subsequent use; resets the "go flag'; generates a
POPUP statement if the go flag is set; and inserts a label
elther into the output code buffer or into the deferred
label stack, depending on the parameter value with which
the CLEAR subroutine itself i1s called. The generator sub-
routine PATCH constructs a label from the count contained
in the LASTLAB location, and, using this label, makes up
a conditional transfer which it places in the alternate
code buffer.

The reader will obtain a clear idea of the combined
action of all of the above described generator subroutines
if, taking the first few lines of the syntactic text con-
tained in Table III, he hand-expands it into the corresponding
parsing algorithm; this parsing algorithm is of course the
extended Backus syntax expander itself. The "bootstrap"
Step necessary in implementing the extended Backus metalanguages
on a new computer, is of course just such a hand expansion
of the syntactic code of Table III, either into some

language already available on the computer or directly into
appropriate machine language.

—90_

6. Dartmouth BASIC -- a simple algebraic language.

In this section, we illustrate the use of the tools
developed earlier in the present chapter by applying them
to describe the syntax and some of the semantics of a small,
simple, but quite useful algebraic language, the BASIC
language, developed at Dartmouth for student use there.

As 1s commonly the case with programming languages, BASIC
exists in several slightly variant versions, some of which
incorporate features not to be found in others. The
particular version of BASIC that we will describe is essen-
tially that of the third edition of the BASIC language
manual.

The BASIC language includes an assignment statement
of standard form, written in the following manner:

LET «wvariable> = <=<expression=

The five standard arithmetic operators may be used to form
expressions, as may the members of a built-in set of a dozen
or so fundamental transcendental functions (including the
trigonometric-and exponential functions). Moreover, the
programmer is adlowed to define new functions by any single
algebraic statement and to use these functions in forming
expressions. Each statement in a BASIC program is required
to have a line number; this line number, as a standard
matter, 1s a three diglt quantity. Using these line numbers,
control of program flow is attained by the use of GO TO
statements, IF statements, FOR statements with associated
NEXT statements, and GOSUB statements with which are associated
RETURN statements. The following well-formed BASIC lines
exemplify the use of all of the statements mentioned above.

101 LET A(J) = COS(A(J-1)

102 GO TO 109

103 IF A(J)=- A(J-1) THEN 108
104 FOR J = 1 TO 100 STEP 5

0

105 LET A(J) =
B(J-1) + cos(c(J))

106 LET B(J) =
107 NEXT J
108 RETURN
109 GOSUB 108

The operation of the assignment statement, the GO TO
statement and the IF statement are ‘all rather self-evident.
The FOR statement acts as follows. Each FOR statement in-
volves iteration on a particular variable, specifically on
the variable whose name immediately follows the key word
"FOR" in the FOR statement. The scope of the iteration is
the whole body of BASIC text up to the next following NEXT
statement with a matching variable; note that a NEXT state-
ment always consists of the key word NEXT followed and
concluded by a simple variable name. "FOR loops™ of this
form may be nested within each other in the manner normal
for iterative loops. The GOSUB statement in BASIC cause
the execution of a block of code as subroutine, 1i.e.
execution terminated by return to the next following state-
ment after the particular GOSUB statement by means of which
execution of the subroutine block in question was initiated.
This "subroutine"' feature is provided in a rather rudimentary
form. 1In particular, all variables are "common" to a whole
BASIC program, no 'subroutine name isolation” is provided,
nor does a subroutine call involve any special transmission
of arguments. The subroutine call or GOSUB action in BASIC
consists merely in placing a return address on an address
stack, and transferring to the line of BASIC code referenced
in the GOSUB statement. The next subsequently executed
RETURN statement transfers to the address found topmost on
the return address stack.

Input and output in the BASIC language are invoked by the
BASIC READ and WRITE statements. The following examples
will i1llustrate the form of these statements:

_92 -

200 READ A, B(10), C(J+1)
201 WRITE A, "TWO VARIABLES MULTIPLIED TOGETHER = "A*B
202 WRITE "AN ERROR HAS OCCURRED"

Variables in BASIC may be indexed with one or two indices,
i.e., may be one or two dimensional arrays. Arrays of more
than minimal size must be explicitly dimensioned; the
BASIC dimension statement has the rather standard form shown
in the followlng example:

300 DIM A(10), B(20), C(30,40)

The definition of new functions in a BASIC statement is
accomplished by using DEFINE statements. Each such state-
ment defines a new function. The following example illustrates
the form of the BASIC DEFINE statement.

400 DEF FNA(X)
4o1 DEF FNB(Y)

COS(X * X) + SIN (X * X)
X + FNA(FNA(X))

The name of a programmer function is required to begin with the two
first letters FN. Moreover, each function must be defined
by a single arithmetic expression. |

Every BASIC program is terminated by an END statement,
consisting of the single key word END. Immediately preceding
the END statement terminating a BASIC program, any number
of DATA statements may appear. Each DATA statement consists
of the key word "DATA" followed by a 1list of signed numbers;
both integer and real numbers are allowed. A DATA state-
ment merely generates the quantities which 1t lists into a
serial 1ist of input data; this input data is then accessed
by READ statements appearing subsequently in the BASIC pro-
gram.

A formal account of the syntax of the basic language 1s
given in Table V.

_'93-

Table V.

<nxtlab>
<nxtstat>

<var>

<simpvar>
<functrm>
<factor>

<expfac>

<term>

<terms>

<expr>

<sums >

<gsign>

Synatx of a version of the DartmOuth BASIC Language.

<xinteger> .genlab ..,nxtstat /. er(8)-
<asign> /.

<readstat>/.

<pntstat>/.

<datast>/.

<gost>/.

<ifstat>/.

<forstat>/.

<nextstat>/.

<dimstat>/.

<gosub>/.

<return>/.

<define>/.

<end>/.

<comment>/.er(15)-

<xname> '(' <expr> ',' <expr> 1)t .subscr(2)/
.b. simpvar. er(l). .er(l) .er(2)
<-name (expr> ') .subscr(l)/.er(2)-
.subscr(0).allri/-

<xfname> ' (' <expr> ')' .genfun/..er(3). er(1l).er(2)-
<xnumber>/,

<var>.genfetch/.

<functrm>/.

t(t <expr> ')' /..er(l).er(2)-
<factor> '"}' <factor> .arith(expon)/ er(1l)..er(l)
<-<factor> .allri /-

<expfac> <termsx*>/.er(l)-
‘*‘_<expfac>.arith(prod)/..er(l)

v/ <expfac>.arith(quot)/..er(l)-

141 <term>.arith(unplus)<sums*>/,er(l)
-1 <term>.arith(unmin)<sumsx>/.er(1)
<term> <sums*>/.er(l)-

14! <term>.arith(plus)/..er(1)

-t <term>.arith(minus)/..er(1l)-

LET<var>.save '='<expr>;genasin..cdend
..er(4).er(5).er(1)-

-9h4.

<readstat>

<rvars>
<pntstat>
<pitems>
<pitem>

<datast>
<csigned>
<signed>

<gost >

<goend >
<relatop>

<lesfirst>

<eqlsign>
<ifstat>

<forstat>

<nextstat>
<dimstat>
<cdimelt>
<dimelt>

<gosub>
<return>

<define>

READ <var> .genread . genasin <rvarx>
..cdend/..er(6)-

's' <var> .genread. genasin/..er(6)
PRINT <pitem> <pitemsx> ..cdend/..er(7)-
',! <pitem> /..er(7)-

<expr> .genprint(value)/.

<*mesg> .genprint(mesg) <expr>.genprint(value)/.er(l).

.allri/.
DATA <signed> <csignedx> ..cdend/..er(6)-
',! <signed> /..er(6)-

'-' <¥number> .gendat(minus)/..b.

<«number> ,gendat(plus)/.- .

GOTO. .goend /.

GO TO .. goend /.~

< integer> .gengo..cdend/.er(8)-

>t 1=t _getop(ge)/.lesfirst..

.allri.setop(gt) /-

<! 1>t _setop(lgt)/.eqlsgn..

<-<> '=' ,setop(le)/.

.allri.setop(lt) /-

'=' ,setop(eql)/.er(9)-

IF<expr> <relatop> <expr> THEN <*integer>

.genif..cdend/..er(1l).er(7).er(l).er(10).er(8)-

FOR <¥name> '=' <expr> TO <expr> STEP

<expr> .genfor..cdend/.b.er(4).er(5).er(l).er(11)

er(l)..er(l)

.allri,stack(l).genfor..cdend /-

NEXT <¥name> .genext...er(12),.cdend/..er(4)

DIM <dimelt> <cdimelt*> ..cdend/..er(7)

1, <dimelt>/..er(7)

<xname> ' (! <*integer> t,! <¥integer> ')!

.gendim(2) ...er(13)/.er(6).er(3).er(6).er(6).er(2)

<-name (integer>')' gendim(l)...er(13)/.er(2)-

GOSUB<integer> .gencall..cdend/..er(8)

RETURN.genret..cdend /. -

DEF <xfname> '(' <xname> .genanam ')' '=! <expr>

.genasin.defend/..er(4).er(3).er(4).er(2).exr(5).er(1)-
_95 -

end) = END. exit/.-

< backup) = .backl/-

Cer > = {ermesy<{notend*> /-

{cdend) = {*edgey ..nxtlab/.er(14)-
{notend) = < *edge) .false/,

= (*eof) .stack(16).ermes.exit/.
= (*any) .er('?)_

The parser described by Table V will, in the course of its
actlion, generate various diagnostic messages. A complete
listing of all of these diagnostic messages is given in Table
VI.

Table VI. Error message list for the
BASIC compiler.

111formed arithmetic expression
missing right parenthesis

missing left parenthesis

illformed variable name

missing equal sign

illformed 1list element

system error

il1formed label

illformed relational operator

illformed if-statement

illformed for-statement

improper nesting of for-loops
excessively large dimensioned arrays or repeated
dimensioning .

14. 1illformed terminal portion of statement
15. 1illformed initial portion of statément

W o~ OV W v

= =
N~ O

—
w

Table VII contalns a complete listing of the generator
subroutines called by the parser described in Table V.
It also lists the lexical types with which the parser of
Table V 1s concerned.

-96 -

Table VII. Generator subroutines and lexical types for
the BASIC compiler.

Generator subroutines:

false; ailri; ermes; setop; stack;

subscr; save; defend;

genfun; genfetch; arith; genasin; genread; genprint; gendats genif
gengo; gendimy genfor; genext; gencall; genret; genanam; genlab.

ILexical types:

<*name> ; <*fname » ; ¢ *number) ; { *edgey ;<*eof) ; < *mesg> .

Certaln of the generator routines occurring in Table VII

have very simple actions. The generator routine FALSE

merely sets the syntactic success-failure flag to i1ts failure
condition; the generator routine ALLRI sets the same flag

to the success condition. The generator routine ERMES is
simply an error message transmitting routihe; this routine
always finds a numerical parameter at the top of the argument
stack and 8imply sends out the error message corresponding

to this numerical argument. The generator routine SETOP
merely sets the contents of some flag location to a value
indicating which one of an allowed set 6f relational operators
appears 1n an if statement. This location is then referenced
by the GENIF subroutine to determine the particular conditional
transfer which it 1s to generate. The generator subroutine
STACK merely places its own single argument at the top of

the system argument stack; this gives us a way of inserting
implicit arguments into the flow of our parse, in explicit
form.,

Some of the remaining generator subroutines have quite
straightforward code-emitting actions. GENLAB finds a label
referenced on the top of the argument stack and generates
a labelled continued statement

LABEL: CONTINUE

=97~

in whatever assembly language form 1s appropriate. GENGO
finds a label reference (on top of the argument stack) and
generates an unconditional transfer

JUMPTO LABEL

in appropriate assembly language form. GENCALL finds
a label reference at the top of’the argument stack and
emits two lines of assembly language code:

CALL RETSTACK
JUMPTO LABEL

In these lines of code, RETSTACK is a reserved system
label at which an assembly-written subroutine is entered;
this subroutine

a) determines the location from which it has been called;

b) wusing this address, and adding a small integer,
determines the appropriate address for eventual sub-
routine return; :

c) stacks this latter address at the top of a system
return address stack, checking for stack overflow and
giving a diagnostic in case of overflow;

d) makes a direct return to execute the JUMPTC LABEL
instruction which is the second of the two instructions
displayed above. |

Note that the code sequence beginning at the system address
RETSTACK 1s one of a number of system assembly-written sequences
which must be appended by the compiler to the code which

i1t compliles. Other such system sequences will be noted in

their turn in the following paragraphs.

The generator subroutine GENRET generates an unconditional

transfer of the following form:

JUMPTO RETBEG

RETBEG is a label which must be attached to the initial
location of a systems sequence at which
a) the top address of the system return address stack
is fetched, a diagnostic being given in case of under-

flow;

-98-

b) an unconditional transfer i1s made to the address fetched.

The remaining generators have 8lightly more complex
logical actions, in that they are more intimately involved
in reading and/br manipulation of symbol table entries, in
temporary variable accounting, etc. Before describing
these generators therefore, we must explain the general
circumstances which determine their form. In doing so, we
will have a first exposure, "in miniature" to the wider circle
of issues 1nvolved in code generation, issues whose more syste-
matic discussion 1s postponed to Chapter 8 below.

The main issues which must be faced are as follows.

1. 1Indexed quantities must be fetched and stored using
a procedure slightly different from that appropriate for
non-indexed quantities. This procedure requires information
concerning the dimensions associated with the indexed
variable which it is to treat. Inconsistent repeated dimension-
ing of a single variable must be avoided; a quantity referenced
as unindexed in any statement must not subsequently be
dimensioned. o

2. In the course of computation of a nested expression
like (A * B) + (C * D), temporary variables for the storage
of A *¥ B and of C * D are required. A suitable rule for
the generation of such temporary quantities may be stated
as follows: Maintain a temporary variables counter. Each
binary arithmetic operation advances this counter by one,
but decreases 1t by one for each argument of the operation
which is a temporary variable. Instead of appearing in the
symbol table along with programmer defined variable names,
temporary variables may conveniently be represented by special-

ly flagged "pointer items" which, in fact, merely contain a
temporary variable number. The current maximum value reached
by the temporary variables counter must be maintained during
compilation, since this information is needed when a new

-99-

temporary variable is to be generated, and is also needed
when storage for the full set of temporary variables 18 to
be generated. A slight additional complication to all of
this arises from the circumstance that, since a programmer- - -
defined function may be called at any point during the
evaluation of an expression, each programmer-defined function
requires 1ts own private temporary variable storage area.
We satisfy this additional requirement as follows. An
auxiliary counter is used during the compilation of every
BASIC DEFine statement. This counter counts temporaries as
they are generated during the compilation of such a programmer-
defined function. On terminating the compilation of a DEFine
statement, we return to the use of the standard temporary
variable counter, but set the value of the auxiliary temporary
variable counter to the current maximum value which this
auxiliary counter has attained.

If another DEFlne statement is subsequently compiled,
it will therefore generate temporary variables never used
before,

3. In a function definition like

DEF FNCUBE(X) = X * X * X + C * D,

the argument name X which appears i1s a logical dummy having
no relationship to the variable of the same name which may
appear elsewhere in the same BASIC program.. We adjust to
this fact by treating the name of a function as an ordinary
variable and, by using it during the evaiuation of the
function to represent the argument of the function. More
specifically, on calling the function FNCUBE appearing in
the DEFine statement above, say, in the form

A = FNCUBE(B)

we would
a) execute

FNCUBE = B
before entering the function evaluation code itself.

-100 -

b) treat the above definition exactly as if 1t read

FNCUBE = FNCUBE * FNCUBE * FNCUBE + C * D
JUMPTO RETBEG

c) execute
A = FNCUBE

on return from the function evaluation code. Substitution

of a function's name for the variable X appearing in the
definition of the function is accomplished by use of a function
switch, which is turned on during the compilation of a
DEFine statement, and of two auxiliary locations, in one of
which the symbol table pointer referencing the current
function name is stored, while the second contains the

Symbol table pointer to the function argument name. When,

in the course of compiling any algebraic expression, GENFETCH
is called, it examines the function switch, and, if this is
on, replaces any reference to the function argument with a
reference to the corresponding name.

4. The generation of iterative FOR-next requires a
solution to the problem of matehing the beginning with the
end of each such loop in proper fashion. The loop-beginning
GENFOR routine finds, on the argument stack, a reference
to the name of the loop's 1iteration variable, and to a set
of three temporary locations, using which we then generate
code of the following form:

TEMP = TEMP1 - TEMP3
VARIABLE = TEMP

LABEL1: CONTINUE
TEMP = VARIABLE - TEMP2
PLUSJUMP LABEL2
TEMP = VARIABLE + TEMP3
VARIABLE = TEMP

On encountering the matching NEXT statement which terminates

=101 -

the loop, we generate the end of loop code

GO TO LABEL1l
LABELZ2: CONTINUE

The pailr of labels, LABELl and LABEL2, appearing in the above-
displayed code must not conflict with any programmer defined
label. To attain this end, we maintain a label counter IC
which is incremented each time a FOR-loop 18 generated, and
which provides us with an indefinitely long string of generated
labels; and also maintain a FOR-stack, into which the routine
GENFOR, when called, places both the label counter value
it has used for the generation‘of its labels, and the iteration
variable used in the FOR-statement. The corresponding NEXT
statement removes these quantities from the top of the FOR
stack. Using the stacked value of the label counter GENEXT
can generate appropriate loop closing code. The GENEXT
subroutine will also compare the variable which 1t finds
at the top of the argument stack with the variable referenced
at the top of the FOR-stack to verify that all four loops
are properly nested.
- To proceed as explained above, we make use of the following
data locations and flelds:
1. A one bit function switch FS; a function name location
FN; and a function argument name location AN.
2. A temporary variable counter TV and a temporary variable-
maximum counter TM. An auxiliary temporary variable

counter ATV and an auxlilliary temporary variable maximum
counter ATM.

3. In each symbol table entry, a two blit dimension state
field, in which O denotes a neutral state, 1 denotes a singly
indexed variable, 2 denotes a doubly indexed variable, and
3 denotes a simple varilable.

In each symbol table entry, a dimension polnter field
which references a dimension table entry if the variable is
dimensioned; in this case the dimension table entry gives
the dimension information for the variable. Also, a total

-102 -

accumulated array atorage counter TAS.
4, A FOR-label counter IC; a FOR-stack and related stack
pointer. '

5. An indexing flag IX, used to distinguish indexed
from non-indexed fetches and stores.

We now proceed to explain the action of the remaining
generator subroutines. SUBSCR will be called with an argument
which is either O, 1 or 2, and also references the variable
pointed to by the top of the argument stack. SUBSCR(2)
finds two index quantities at the top of the argument stack.
It sets the indexing flag, checks to verify that the variable
- with which 1t is dealing represents a two-dimensional array,
and, using the dimension information for this two-dimensional
array, emits code to calculate the linear location of the
required array entry. A temporary variable containing this
quantity replaces the two separate indices at the top of the
argument stack. SUBSCR(1) merely sets the indexing flag,
and checks to verify that the variable in question represents
a one-dimensional array. SUBSCR(O) checks that the variable
with which it is dealing is non-indexed or neutral, and desig-
nates a variable as non-indexed if it is found to be neutral.
Then SUBSCR(O) drops the indexing flag; if the function
flag 18 set 1t checks the variable for identity with the
current function argument, and replaces it with the name in
the current function name location if the variable is identical
with the current function argument.

The subroutine GENFUN finds a function name and the
variable pointer at the top of the argument stack. It drops
the indexing flag and, using GENASIGN and GENCALL, generates
the machine code sequence

FNAME = VAR
CALL RETSTACK
JUMPTO FNAME

-103-

GENASIN finds a pair of variable names and possibly also
an index quantity at the top of the argument stack. The
index quantity will be present if and only if the index
switch is on.

Consulting this switch, GENASIN emits assembly language
code to perform a simple store in the nonindexed case, or
an indexed store if the index switch 1s on. If the index
switch 1s on, GENASIN drops 1t. Note that, if the variable
found at the top of the argument stack by GENASIN is a tempor-
ary varlable, GENASIN must reduce the temporary variable
counter TV by 1. GENFETCH finds elther a variable name or
a varliable name and an index quantity at the top of the argu-
ment stack. If the index switch is off, GENFETCH acts as
a null operation. If the index switch is on, GENFETCH
drops it, advances the temporaries counter and generates
the assembly code equivalent of the indexed fetch

TEMP = INDEXFETCH(VAR,INDEX).

The generator subroutine ARITH is the main generator
for all arithmetic operations. It generates the assembly
code sequences required for the various allowed binary
arithmetic operations and for the unigque monadic arithmetic
operation, arithmetic negation; the result value 1s always
assigned to a temporary varlable and a pointer to this
temporary variable is left at the top of the argument stack.
Note that ARITH always advances the temporary counter by
1, but reduces this counter by 0, 1 or 2; depending on
whether none, one or both the quantities on top of the
argument stack when ARITH is called are temporary variables.

GENIF uses ARITH as a subroutine to form the difference
of the two quantities whose comparison is to determine the
outcome of the IF statement being compiled, and replaces
these two quantities by a single temporary variable containing
thelr difference. Then the GENIF subroutine generates
appropriate transfer code, in one of the following forms:

-0k~

ZEROJUMP - LABEL

for a comparison by equality;

NONZEROJUMP LABEL

for a comparison by inequality;

for comparison by

for comparison by

OVER:

for comparison by

OVER:

for comparison by

ZEROJUMP LABEL
BLUSJUMP LABEL

the‘greater than or equal to relation;

ZEROJUMP LABEL
MINUSJUMP LABEL

less than or equal to;

ZEROJUMP OVER
PLUSJUMP LABEL
CONTINUE

the greater than relation;

ZEROJUMP OVER
MINUSJUMP LABEL
CONTINUE

the less than relationship.

The generator subroutine GENFOR finds a variable and three
expressions at the top of the argument stack. Using the

FOR-1abel counter

already described.

value of the loop
FOR stack, and IC

IC 1t generates the loop heading code

Then the loop variable and the current
counter LC are placed at the top of the
is incremented by 2. GENEXT finds a

single variable at the top of the argument stack. It
compares this variable with the variable referenced at the
top of the FOR-stack and, 1f these disagree, issues an
"improper loop nesting" diagnostic. If, on the other hand,
no loop nesting error is detected, GENEXT uses the stacked

value of the loop
described.

counter to generate the loop closing code

-.105~

The two generator routines GENANAM and DEFEND are used
in connection with the BASIC DEFine statement. GENANAM
finds a function and function argument name referenced at
the top of the argument stack; sets the function flag; places
references to the function name and argument name in the
locations FN and AN respectively; and generates an assembly
language label and associated storage location. GENANAM also
interchanges TV with ATV and TM with ATM. DEFEND drops the
function flag, sets TM = ATM, and interchanges TV with ATV
and TM with ATM. It also generates the output line

JUMPTO RETBEG

The GENDAT and READ routines work together, using a common
gystem INPUT array. GENDAT finds an integer or real number
at the top of the argument stack; 1t converts this quantity
to its internal value, takes the negative of this value 1if
called with "minus" as its own proper argument, aml puts the
calculated value into the next free space in the input
buffer array. The GENREAD routine finds a varlable name A
referenced at the top of the argument stack, emits the
lines

CALL READER

A = IOTEMP
and stacks the pointer to the system variable TOTEMP on
the top of the argument stack; the system routine READER here
invoked merely transfers the first avallable element in the
input buffer into the IOTEMP location, taking a '"data
exhausted" exit of the INPUT buffer is empty.

GENPRINT can be called in a "data print" or in a "message
print" form. In its first form, it uses GENASIN to emit
code which will transfer the value to be printed into the
system IOTEMP location, and then emits a call to a system
value-print routine which accomplishes the conversion and
exterior transfer of this value. In its second form,
GENPRINT emits code for entering, into the IOTEMP locatlon,
the two message buffer pointers defining the beginning and

-106 -

end of a message to be printed, and emits a call to a system
message print routine which accomplishes the external trans-
fer of this message. _

The generator subroutine GENDIM finds a variable name and ope
or two constants on the top of the argument stack It
checks the dimension state field of the variable to make
sure that the variable is in the neutral state, and then
sets this dimension state field to the appropriate value,

1l or 2, At the same time, a dimension table entry is built
and a pointer to this dimension table entry attached to

the variable entry in the symbol table, and the total space
required for the dimensioned array calculated and added to
the total array storage count TAS, a diagnostic being
emitted 1f this total becomes excessive. .

' EXIT attatches assembly language code for all necessary
system functions to the code compiled during the immediately
preceding parse run; generates all necessary temporary
storage locations, using the value of both the TM and the
ATM counters; generates'storage for all necessary arrays,
using the entries in the dimension table, and transfers the
accumulated contents of the input buffer and theprint message
buffer to proper location. Finally, EXIT will print out

an assembly language listing of the code that has been
compiled and/or call an assembler to produce final machine
code.,

This 1s the last of the generators required for the compilation
of the BASIC language. Programmed in a suitable higher
level language, each of the above generators should be no
more than few dozen lines long; so that the whole parser
for the BASIC language, written in a combination of our
syntax language and FORTRAN should amount to no more than
two to three hundred cards.

-1 07‘ -

7. Optimization of recursive syntax analysis.

The syntax analysis methods presented in the previous
sections of the present chapter, especially in Section 5, are
at thelr most efficient when the language to be parsed has a
high degree of local ambiguity. In this case, the parsing
algorithms of Section 5, in the form given, imply a great deal
of "saving" and'"restoring"; i.e., we must often note and save
an indication of our momentary location in the input string
in order, on a subsequent fallure, to reattempt a parse
along an alternate line, starting once more from the same
point in the input string. In some cases, of course, the
language which is to be parsed may be relatively unambiguous;
this, for example, 1is the case for both the extended Backus
metalanguage itself and for the BASIC language described in
the preceding section. This is also the case for many
other programming languages: the design of such languages
is often influenced by a desIré to avoid ambiguity. Even
in these cases, however, there are certain common situations
in which a recursiVe parser acts with‘less than optimal
efficiency. In the present section, we will describe several
methods by which the efficiency of a parser may be improved,
irrespective of whether the language to be parsed is ambilguous
or unamblguous.

We begin by considering the situation, typified
by the "keyword search" which begins the syntactic analysis
of every BASIC statement, in which a lexical atom must be
compared with every one of a large number of fixed atoms before
a decislon can be made concerning the line of action to be
taken subsequently. We shall describe a relatively simple
device for increasing the efficlency of parsing in this
common case. '

The idea 1s as follows. Instead of making comparisons
with all the members of a relatively large set of other atoms,
and taking a transfer depending on the result of all these
comparisons, we make use of a hash table of atoms containing
the corresponding transfer addresses, and of an alternative

-108.

procedure in which we.

a) hash the atom which is to be éompafed with our table
entries; ' o

b) locate this atom in our hash table by a fast look-up
procedure; ' |

c) note, and transfer to the corresponding address.

This technique speeds up the key word scan which, according
to the grammar of Section 5, begins the syntactic analysis
of every BASIC statement very effectively.

A more widely useful optimization makes use of somewhat
more sophisticated techniques resembling the "bounded
context" parsing techniques which we will discuss in more
detail in Chapter 4. This technique, which may be called
context anticipation, involves the following sequence of steps:

1. During the expansion of a grammar written in the

extended Backus metalanguage into the corresponding algorithm,
make up a complete 1ist, called a composites 1list, of all

FIND SUBPART and all ITERATE SUBPART calls, both those involving
and those not involving the specification of a minimum or

a minimum and maximum number of iterations. This may

readily be accomplished by making 8light modifications to

the GENRGO and the GENITER routines used by the syntax expander
of Section 4.

2. During the same syntax expansion, make up a list,

called the symbol types 1list, of all recognized atoms and
lexical types (this is merely a list of all the quantities
occurring as arguments to the RECOGNIZE and FIND LEXICAL calls).
This goal may be accomplished by making slight modifications

to the GENREC and GENFIND routines used by the syntax
expander.

3. Next, using the tables prepared (in steps 1 and 2),
make up a two-dimensional outcomes table for each call

appearing in the composites 1ist. Each entry in this table
corresponds to a pair S1, S2 of elements on the symbol types

list. The entries of each such outcomes table are to be

formed as follows:

=109 -

a) Begin a simulated run of the parser, starting with
the given FIND or ITERATE SUBPART call, and with a two symbol
input string consisting of S1 and S2.

b) If and when any subroutine other than POPUP, POPNO,
FIND SUBPART, ITERATE SUBPART, FIND LEXICAL, RECOGNIZE, ALLRI,
or FALSE is called during the simulation, terminate the
simulated run and enter the symbol D into the outcomes table.

¢) If the input scan pointer maintained by the parser‘
ever attains the value 3, terminate the simulated run and
enter D into the outcomes table.

d) If after a set maximum number of simulated steps, (say
100 or 1000) the simulated run has not yet returned from
the original FIND or ITERATE SUBPART call, terminate the run
and enter the symbol D into the outcomes table.

In every remaining case, return from the initial
FIND or ITERATE SUBPART calls would have occurred without
any generator call other than those listed in b) above having
been made, and withQut any character other than the two
initial;characters:Sl, S2 having been scanned.

In this case, the following material 'is entered into the
outcomes table: | : ‘

1) The state of the syntactic success-fallure flag on
return; the value, 1 or 2, of the scan polnter on return;
and, 1f this value 1s 2, so that a character has been
scanned, a flag indicating whether or not a pointer to
this character has been inserted into the argument stack.
- 1ii1) The total number of calls to any of the admissible
routines listed in b) above that have taken place between
our initial FIND or ITERATE SUBPART call and the subsequent
return from this call.

L, The next step 1s to reject any FIND or ITERATE SUBPART
call, which according to a reasonable criterion, 1s not

worth special optimization. This may be done as follows.

The entries in the outcomes table contalning a D are entries
which, because of the complex actlions which would be initiated

<110 -~

on encountering4the corresponding pair S1, S2 of input
symbols, have 1n any case to be performed; that is, for
such entries, we do not attempt any}speéial optimization.

On the other hand, entries not containing a D are entries
which can, 1if it is worth our while to do so, be specilally
optimized. Then, in order not to optimize unnecessarily,

we take, for each complete outcomes table, the maximum of
all the numbers of intermediate calls recorded in any non-D
entry in the table. If this maximum exceeds a reasonable
threshold value (say, 2 or 3) it signifies that the
corresponding FIND or ITERATE SUBPART call could lead to a
complex and lengthy serlies of actions, terminating however,
in a simple return from the call, at most one input character
having been scanned in the meanwhile. 1In such cases 1t is
worth setting up a special optimization. On the other hand,
if the cited maximum is less than 2 or 3, it is not worth
optimizing in any special way, since the procedure followed
by our unoptimized algorithm is bound to be reasonably fast
and efficient. Thus, depending on the value of the cited
maximum and on the threshhold value we choose, we decilde
either to optimlize or to neglect the optimization of a given
FIND or ITERATE SUBPART call.

5. In those cases in which we decide to optimize a
SUBPART call, we proceed to set up a packed and condensed
version of the outcomes table, proceeding as follows.

We first reduce each entry in the outcomes table to an

entry four bits 1n length. This 1s done as follows. A 1D!
entry 1s represented by four bits, all zero; an entry
different from D is represented by a certain pattern of

four blts, the first of these bits being set to 1. The
second bit of these four indicates the state of the syntactic
success-fallure flag on return from the corresponding SUBPART
call. The third bit indlicates the number, zero or one, of
input atoms scanned at the time of return from the SUBPART
call. The final bit indicates whether the scanned input
symbol, 1f any is scanned, is merely RECOGNIZED or is taken

-111-

by the FIND LEXICAL subroutine and placed on the argument
stack. Proceeding in this way, we reduce our initial out-
comes table to a packed table of four bit entries, one
entry for each possible pair of elements of the symbol
types 1list.

6. Our next aim is to condense the packed outcomes

table, arriving at a considerably smaller table containing
the same information. This we do as follows. By sorting
the rows and then sorting the columns of the packed outcomes
table, we classify all the different symbols occurring in
the symbol types 1list into equivalence classes, two symbols
being considered equivalent 1if the rows in the outcomes
table which correspond to these two symbols are identical
and the columns in the outcomes table corresponding to these
two symbols are also identical. Applying this c¢riterion,

we develop a list of equivalence classes of symbbls, the
list corresponding to the given SUBPART call, which will
normally be very considerably shorter than the full symbol
types 1list, and, in many cases, may contain some 4 to 8
entries. We next construct an equivalence class table which,
for each symbol type in our symbol types lists, gives the
number of the corresponding equivalence class. The condensed
outcomes table is now a table containing as many rows and
columns as there are equivalence classes and, for each pair
of equilvalence classes, contailning the four bit entry which
the full outcomes table would associate with a palr of characters
belonging to this pair of equivalence classes.

7. Our procedure on entering an optimized FIND or
ITERATE SUBPART call is now as follows. We pick up the two
immediately following symbols in the input string; and
determine the symbol type of each symbol.

Then, making fast access through the equivalence class
table and the condensed outcomes table, we decide either to
execute our SUBPART call in the normal way, or decide that
this 1s unnecessary since the outcome of the call can be

-112 &

predicted directly. 1In this latter case, we use the remain-
ing 1information in the condensed outcomes table to establish
the appropriate setting for the syntaétic success-failure
flag, to obtain a properly incremented value of the scan
pointer, and, if necessary, to place one additional lexical
atom pointer and/or the quantity zero (in case of an iterated
subpart call) at the top of the argument stack.

Note that the indexing operations necessary to carry
out the steps in 7 above can be carried out most efficiently
and at highest speed if the number of rows and columns of
the condensed outcomes table are both taken to be a power
of two.

The information which must be gathered in order to form
an initial version of each necessary outcomes table can
be collected easily if suitable modifications to the generator
routines occurring in the syntax expander are madé. These
modified generators can produce, from any given syntactic
text, a preliminary version of the corresponding parse
algorithm in which each of the subprocess calls invoked is
replaced by a call to a routine with a combined simulation
and information gathering function. At the end of a first
information gathering phase, a complete set of condensed
outcomes table can be prepared, one for every SUBPART call
which is to be optimized. At that point all these condensed
tables can be passed back to the syntax expander, the syntax
expander at the same time being informed as to what particular
SUBPART call each table belongs. Then, using this information,
the syntax expander can produce an optimized parser with one
single additional run. Note finally that by applying the
general optimization methods to be discussed in Chapter 8
below to the parse program thus produced, still further,
rather general improvements in efficiency may be obtained.

-113-

CHAPTER 3. THE LEXICAL SCAN

1. The basic lexical scan algorithm,

The task of the lexical scan is to divlide an input
character string into words whilch can be treated as atomic
subunits during the remainder of analysis, to carry out the
initial entry of these words into a symbol table, and to flag
each symbol table entry with the initial lexical-syntactic
type of the word. During this process the machine-internal
representation for the value of any symbol word found to
designate a constant may also be calculated and entered into
the symbol table, The original input string is thereby
replaced by a string of pointers to the newly created symbol
table,

The lexical scan process prepares in a general way for the
principal syntactic pass. It has the obvious advantage of
reducing the size of the string to be processed during the
principal pass, since many more characters will normally be
used to form a mnemonic symbol-name than are required for a
symbol table pointer. The lexical scan process is fast,
simple, and normally strictly seriél. The subsequent stages
of syntactic analysls are more complex and may often involve
repeated motion back and forth over portions of the input
string. Hence, by condensing the input via a lexical scan
the number of items of input which must be treated repeatedly
is substantially reduced.' '

It is also worth noting that certaln entirely trivial lexical
operations will have to be performed very often during the
analysis of normal input programs; the suppression of blanks in
the parsing of FORTRAN and of repeated blanks in the parsing of
many other languages are typical for this observation. By
applying a well-adapted high-speed technique in these recurring
trivial cases, a lexical scanner can effect considerable savings
in total compilation time. Morever, since most of the character-

-114 -

related operations of a compiler belong to its lexical sections,
the use of a lexical prepass serves to localize a compiler's
character-set dependencies.

In describing any given programming language we always have
the dption elther of carrying syntactic description down to the
single character level or of regarding certain simple syntactic
types as lexical atoms, The latter approach generally speeds
up the overall compilation process.

From the more general point of view of Chapters 2 and 4,
we may make the following comments concerning lexical scans.
Any general recursive parsing method mekes use of a control

stack., If the grammar according‘to which the parse is to

be conducted is sufficiently simple so that, as a matter of
fact, this control stack can assume only one of a finite number
of states during a parse, then we can develop a considerably
more efficlent realization of the parsing process as follows.
In the first place, enumerate all possible states of the
control stack; these become the states of a finite state
automaton. Next, note the transitions of control state
induced on encountering any given input character, obtaining
in this way a state transition table. Whenever a generator
subroutine would be called on encountering a given input
character in a given state, this fact should be indicated

by attaching an appropriate special entry to the state
transition table., Reformulating the parsing process in this
way whenever possible has the crucial advantage of permitting
realization of the parse by a very high speed programming

-115=-

technique; we may either encode the states of the hypothetical
finite state automaton into the instruction address of an
actual computer, and encode the state transitions as indexed
transfers, alternatiVely, we may describe the required pattern
of State-transitions by a state table and use an indexed
lookup of the form

STATE = STATE TABLE(STATE,CHARACTER)

to achieve the proper transition on digesting each new character
in the input string.

In the present chapter, we shall describe a heuristic
procedure by which the state table and high speed scan
corresponding to a sufficiently simple, "lexical" grammar
may be set up directly. Those would-be syntactic types which
may appropriately be reduced to the status of lexical types
may be determined by perusal of the syntactic definition of
the language. For a syntactic type to be reducible to the
lexical level, we requlre that its syntactic definition
is simple and iterative rather than complex and recursive.

In particular, any syntactic type in which a fundamentally
recursive structure is embedded as a subpart is not a candidate
for reduction to the status of lexical atom. Moréover, the
generator routines which need to be called in connection with
the construction of a lexical atom should be simple and involve
rudimentary initialization but not complex manipulation of the

-116-

symbol table.

We may readily perceive the practical force of these
theoretical observations by examining'tﬁe following direct
syntactic definition, which might be given for the principal
lexical typés occurring in the BASIC language of Chapter II,
Section 5. (We write these definitions in the most rudimentary
Backus language, since, for the moment, we are not interested
in the details of the corresponding generative actions.)

<ordinary> = A|B|c|p|E|c|u|1|s|k|L|M| 0| B|a|R|S|T|U|V|W|Y|2Z
<alphabetic> = <ordinary>|F|N '

<digit> = o|1|2|3|4|5|6|7|8]|9

<integer> = <digit> <integer»> | <digit>

<decimal> = <integer> . <integer> | <integer> .

<exponent> = E<integer>|E - <integer>
<number> = <decimal> <exponent> I <decimal> | <integer»>
<nonspecial>=<alphabetic> l <digit>

<nametail> = <nonspecial> <nametail> l <honspecial>

<name> = <ordinary> <nametail> l N<nametaill>
|F<ordinary><nametail>lF<digit><nametail>
| FF<nametails>

<fn> = FN<nametail>.

<fname> = SIN|cos|TAN|ATN|ExP|ABS|L0G|SQR| INT| RND| <£n>

It is plain that all these constructions, even those which
have been put recursively in the above set of definitions, are
expressible iteratively. It is for this reason that the types
<integer>, <decimal>, <numbers>, <name>, and <fname> may
appropriately be treated as lexical atoms. On the other hand,
referring to the BASIC grammar in Chapter 2, Section 5, we
may say that the syntactic type <signed> is not appropriately
treated as a lexical atom, since an expression like -3 must

be analyzed differently depending on whether it occurs in an
expression like "A-3", in which case -3 is the union of the
operator "-" with the integer "3", or in a DATA statement of
the form '

A17

DATE A = -3
in which case -3 is interpreted differently, 1l.e. as a signed
number. Of course, a suitably sophisticated lexical scan could
make this distinction lexically; however it is more convenlent
to let the required analysis walt until the syntactic analysis
process. The syntactic type <expr> of the BASIC language,
being recursive and involving complex generation, is not at all
an appropriate candidate for reduction to the status of lexical
atom. In consequence, a syntactic type such as<forstat>, which
includes <expr> as a subpart, is also to be treated syntactically
rather than lexically. A syntactic type like <var> which in the
BASIC language has a very simple construction, can be treated
lexically. On the other hand, since the generators which must
be invoked on encountering a <var>, in case this variable is
dimensioned are somewhat more complex than those normally
performed during the lexical process, the analysis of this
linguistic element would normally be handled syntactically
rather than lexically.

Three principal classes of symbols and their boundarles are
normally detected during lexlcal scan.

The first class of symbols are the 'constants'. These are
symbols which denote decimal, octal, or hexadecimal integers,
Hollerith constants, etc.

The second principal class detected during lexical scan is
the class of 'variable names'.

It is worth making a few remarks concerning the distinction
between 'constants'! and 'variables!. Some symbols in the input
string have, by convention, assigned values which are set
initially and which never change during the running of the
program, Thus, for example, the string

123
has a conventional value equal to the machine-internal represen-
tation of 1 X 100 + 2 x 10 + 3, and this value, once initially
established, will be retained throughout the running of the
program., Other of the symbols used in .a programming language

-118-

are formal names distinguished merely by identity or non-
identity with other formal names. During the running of the
program the values corresponding to these formal names or
"variables" will be changed repeatedly.

The three classes of words referred to above do not play
equally weighty roles in natural language as in mechanical
languages, and it is worth the price of a digression to comment
on the reason why this is so. In natural language the first
class of constants (also including "noun constants") exhausts
normal usage almost entirely. The second class, the blank
logical variables, normally occur only as pronbuns, never very
numerous in any natural language, and in the specialized diction
of the mathematical scientist, i.e. as the "P" in such phrases
as "Let P be a number...". The basis for this difference in
usage 1s, of course, the fact that enunciations in natural
language refer implicitly to a vast text of remembeéred sentences
and linguistic information fragments. Thus the words occurring
in natural language sentences normally are not logical blanks,
but relate to a rich context which they evoke. Natural language
sentences are in thise sense keys for the retrieval of remembered
information; the usage of words in a mechanical information
retrieval system would correspondingly have a much more natural
flavor than the usage typifying other programming languages.
Moreover, natural language is rarely used for the description
of complex algorithms within which many quantities are varied
(though, as noted, the special diction of the mathematical
scientist forms an exception to this assertion.) 1In contrast,
the sentences of a mechanical language are normally presented
to a machine whose memory is blank except for the presence in
it of a stored compiler., These sentences therefore consist of
a small number of key words (which invoke particular processes
in the compiler) and a large number of distinguishable blank
pronouns: the variable names of the programming language.

The grammatical mood of the sentences of a mechanical language
is normally imperative, and aims to describe complex process.

-119 -

These are the circumstances that glve natural language on the
one hand and programming languages on the other hand their
rather different flavors.

However, let us return to our main subject. In the lexical
scan process we aim to accomplish two results:

1) break down each input string present to us into "words"

2) determine the lexical type of every "word".

One may accomplish word definition merely by inserting a series
of explicit end of word marks into the input string. Accord-
ingly, the lexical scan process will normally maintain two
pointers: the "scan pointer" indicating the next character

to be scanned, and the "word beginning pointer" indicating the
beginning of the word currently being constructed (or,
equivalenlly the end of the word last constructed). The
lexical scan algorith, when it detects the end of a given word,
inserts a logical mark indicating this word end and moves

the word "beginning pointer" forward over the word just
constructed. A little additional discussion will put in in
position to indicate the precise manner in which these two
pointers are used.

As has been noted above, the lexical scan process is a
straightforward one; so straightforward in fact that it is
normally performed by a programmed "finite state automaton".
Such an automaton is always in one of a relatively small number
of logical states. Given the state of the automaton, its next
state is a strict function of the existing state and of the
next input character scanned. The basic heuristic for esfablish-
ing the pattern of states required for an automaton intended
to perform a lexical scan whose target word-types are known is
as follows. At any moment during lexical scan, the scan process
will either have completed the construction of a particular
word of a given type or will be in the midst of constructing
such a word. The type of the word under construction may
either be fully known or may be partially‘known. Thus, for
example, in standard FORTRAN, after the characters

-120-

123 ,

which we assume to be the initial portion of a word, have been

scanned, it known that the word under construction must be

either an integer or a decimal constant. Later in the same
scan, if the characters
123.45

have been scanned, the lexical ambiguity is removed and 1t is

definitely known that a real constant is under consrruction.

This real constant will be terminated by the next following

occurrence of a special symbol or alphabetic character. 1In

general, if any definite or ambiguous word type is under
construction, the next character scanned will either (resolve
any ambiguity and) terminate the word or will (reduce the
ambiguity of the word under construction and) continue the
construction of the word. While the construction of a word
is in process, we advance the "scan pointer", but not the

"word beginning pointer". Whenever the construction of a word

is complete the present positions of the two pointers define

its beginning and end. We use this information to establish a

symbol table entry describing the word, and then advance the

"word beginning pointer" to the present position of the scan

pointer. - '

We will describe each lexical scan process by a state
transition table and an associated short program of lexical
instructions.

We may establish a state transition table for the
finite automaton which is to perform a given lexical scan as
follows.

1) By enumerating all the lexical types provided in the language
to be scanned, and all the possible initial ambiguities
between these lexical types, arrive at a full set of both
definite lexical states and of ambiguous lexical states
which can arise during a left to right lexical scan.

2) Each one of these states, be 1t definite or ambiguous,
will correspond to one row of the state transiticn table.

-121 -

3) The columns of the state transition table then correspond

to the various possible distinct lexlcal character classes

belonging to the given lexical scan process.

Here, two distinct characters are considered to belong to the
same iexical class if they play identical roles in the construc-
tion of words of all possible lexical types. In the contrary
case, characters are considered to belong to distinct lexical
classes. Thus, for example, in normal FORTRAN all alphabetic
characters but H belong to one single lexical class; ‘the ~
character H belongs to a distinct lexical class because of

the special role which it plays in the formation of Hollerith
constants.

4) The entries in the state transition table are transfer labels
indicating particular algorithmic steps to be performed when a
character of a given lexical type is encountered in a given
lexical state. The two most common entries in a lexical table
will normally be an entry called "continue", which transfers to
an instruction in the lexical scan program that merely advances
the scan pointer; and a label called "end" which transfers to
an instruction in the lexical program that marks the end of a
word, enters the newly constructed word into the symbol table,
and flags the word as being of a lexical type determined by

the lexical state at the time that the word-end condition is
detected.

One additional remark will be helpful in understanding the
details of the particular example considered below. Any lexical
type which has the property that the words which belong to it
are always complete as soon as the type 1s definitely known
may be omitted from the state table. Thus, for example, ih many
languages, any single special character (as *, -, +, /, etc.)
will act as a delimiter. Such special characters always
constitute single character words; the type of such a word,
namely "special', is known as soon as the character is detected.
For this reason it is not necessary to include a "special character"
column in the lexical danalysis table., Instead, it is merely

-122 -

necessary to include & transfer to a "generate special character"

instruction in the "next subunit to begin" row of the lexical

state transition table. o : ‘
As a first example to be analyzed in detail we consider a
hypothetical FORTRAN whose list of allowed lexical types

is as follows,

1) Integer:. any sequence of digits, imbedded blanks allowed.
Examples: 127, 0359, 0 359 275 851

2) Real number: an integer, followed by a decimal point, and
optionally followed by a second integer.

Examples: 37., 37.0, 37.8910, 3 7.89 10

3) Name: any string of nonspeclial characters beginning with
an alphabetic; no embedded blanks allowed.
Examples: JIM, TIM23, T23IM.

4) Special character: any character other than blank or period.
Examples: *,), (, etc. '

5) Period-delimited operator: any string of nonspecial charac-
ters, beginning with an alphabetic, containing no blanks,
and delimited fore and aft by a period.

Examples: .GE., .AND,, JQIN,, ,SHIFT.

6) Hollerith constant: any number of digits, followed by the
letter H, followed by an arbitrary character string of the
length specified by these two digits.

Example: 5SHHQQHA

A finite-state process which can perform the lexical scan
for our hypothetical FORTRAN will have one state corresponding
to each of the above lexical types, and, in addition, will have
one state corresponding to each possible state of lexical
ambiguity which can arise during lexical scan of an input string.
The possible states of lexical ambiguity are
12. Integer or real number? (Since those two lexical types

can begin with strings of identical form.)

126. Integer, real number, or Hollerith constant? (This
additional ambiguity is possible until more than two digits
have been scanned.)

- 123_

NO+DFn HOOHXOH

25. End of decimal or beginning of period-delimited Operator?
Consilder e.g. the hypothetical statement IF(30.GE.31.0) 1,2,3.

In addition, we require a state, 10, indicating that ‘the
first character of the next following lexical unit has not
been scanned.

The relevant character subclasses for the lexical scan are:
alphabetic other than H, H, digit, special other than period,
period, blank, end-of-card mark. v

The following lexical transition table indicating the actions
to be taken in each lexical state on the occurrence of any given
input character may now be drawn up.'

Table I. State transitions for FORTRAN-like lexical scan.,

Character Classes

Alph. | Spec.|Period End | End
4 H H ;Digit o . Blank of of i
i . Card | File
2. Real END END CONT | END { END CONT{ END END
3. Name CONT! CONT, CONT | END | END | END | END | mND
Period- :
delimited : :
5. operator ; CONT} CONT | CONT | END . END1 EEND END END
(FDY) ;
Integer or | :

12, Real (IR) ! END END CONT { END { GODCOP CONT! END END
Integef,Real; : ;
126.?r H§llerith§ END JHOLCON CONT { END } GODCOPl GOIR| END ! END

IRH : ,
Decimal or !] E
25. PDY (DgP) % ENDX ENDXE GOR END END GOR END ::END
; } ' {
: Next subunit :] . } :
%lO. ?O b§gin GONAM GONAM’GOIRH END1; GOPDO :SKIP {NEXT z EXIT
i NXT H
4 i i
: 1

124 -

The

procedures to be taken on transfer to the Varlous points

indicated in the above lexical transition table are shown in
the following table.

Table II. Generative lexical actions for FORTRAN-like scan.

End:

Enter the immediately preceding block of characters
into the symbol table, calculating the internal
representation of its value if appropriate.

Flag the symbol as real if state = 2, name if state = 3;
operator if state = 5; integer if state = 12;

integer if state = 126 real if state = 25;

special if state = 10.

Set state = 10.

Advance the 'beginning of next lexical block! pointer to

1l less than the current position of the scan pointer, and go

to JUMP,

END1: Advance the scan pointer by 1, and go to END.

ENDX: Reduce scan pointer by 1; set state = 12; go to END.

GODCOP: Set state = 25, go to CONT.

GOIR: Set state = 12, go to CONT.

GOR: Set state = 2, go to CONT.

GONAM: Set state = 3, go to CONT.

GOIRH: Set state = 126,g0 to CONT.

GOPDO: Set state = 5, go to CONT.

SKIP: Advance 'beginning of next lexical block" pointer by 1;
go to CONT.

NEXT: Read in next card, re-initialize, go to CONT.

EXIT: Enter E of mark in lexical output string,
and terminate lexical scan.

HOLCON: . Convert the immediately preceding block of characters

to an integer value; advance the scan pointer by
this amount.

Enter the block of characters thus delimited into the hash table,

125 -

flagging it as a Hollerith constant. Set state = 10.
Advance the 'beginning of next lexical block' pointer to
1 less than scan pointer. Go to CONT. '

The reader, using any sultable algorithmic language,
will have no difficulty in converting the above algorithm
into an explicit program.

As a second example of a lexical scan, we consider the
scan belonging to the Dartmouth BASIC language described in
section 4 of Chapter 2. The lexical types in this language
are as follows. A name is any string of characters and digits,
beginning with character, and not beginning with the pair
of characters FN. A function name 1is any string of characters
and digits beginning with the two letters FN. An integer
is any string of digits. A real number is any string of
digits including a period, and possibly including an exponent
part, which has the form E, denoting exponent, followed by
a string of digits, or, alternatively, E followed by a minus
sign followed by a string of digits. A messagq is any string
of characters beginning with and ending with a quote mark.
Special characters form the final lexical type; each such
lexical element is only one character long. We include an
end-card mark and an end-file mark amoung the special charac-
ters. None of our lexlcal types, other than message, are
allowed to contain blanks. Table III below shows the pattern
of state transitions required for the recognition of the above-
described family of lexical types.

-126-

3TXH | PIXN gob | dms| Ttpum Tpu" Tpug oD} €op| €op | TOH €op IXN *4
usp| usy usp quo) U0 U0 quo) quop| juod| auon | 3uo) quo) DSH g
Edxg|cdxy | ¢dxm | caxm | €dxm i ¢dxa | guop| gdxm| Edxm € dxd] gdxg gay
edxF|zdxg | zdxm | zdxm LoD cdxyg 2dx¥ | guop| zdxy| zdxy | zdxd coxg 2aY g
pug| pug pud pud pud pud pug | juoD| ssed| puxm | pug pug T34 g
(Teoa ao
J9893UuT)
pug| pug pud pug pug Gop pug | gjuoD| pud| pug | pud pud qYI '
pug| pux pud pud pud pug Pug | 3uod| juod| 3uod | juod juop HWYN "€
(uotgoung
J0 3ureu)
pug| pug | puz | pum | puz pug pug | 3uop| jucp! guop |guon guop caHON "z
(uotzoung
JO Jureu)
pug| pudg pug pug pug pud pud €op| pudg| gzop | Eon gop TAYON T
_fe ¢ qu € J
aTTd ' - : # #
PUZ| PUF |sj3ond |jueld |SnuTW |poTaed | Tetoeds h18Tq | & N 4 hegjer
"uedos TBOTXST DISYH JOJ SUOT3ISUBI]-93€3S °III SLqBL

-127-

In the above table, state 1 is the scan state reached
after an initial F has been scanned; state 2 18 the scan
state reached after an initial F and N have both been scanned.
RE1 is the lexical state reached after an integer followed
by a period has been scanned; RE2 is the state attained
after an integer followed by a period and the letter E has
been scanned; and RE3 1s the lexical state reached after an
integer followed by a period and E and a minus sign has been
scanned.

Table IV describes the generative actlons which correspond
to each of the entries in the above transition table.

Table IV. Generative lexlcal actions for the BASIC scan.

end: Enter the immediately preceding block of characters
into the symbol table, calculating the internal
value of its representation if appropriate. Flag
the symbol as a functlion name if state=2; a name if
state = 1 or 3; an integer if state = U4; a real number
if state = 5, 6, or 7; a message if state = 8;
a special character if state = 9.
Set state = 9.
Advance the "beginning of next lexical block" pointer
to 1 less than the current position of the scan
pointer, and go to JUMP.

contb: Advance the scan pointer by 1;

Jump: Go to NORF, NORF2, NAME, IRE, REl, RE2, RE3, MSsG,
or NXT depending on the current lexical state.

go3: Set state = 3 and go to CONT.
go2: Set state = 2 and go to CONT.
go5: Set state = 5 and go to CONT.
goT: Set state = 7 and go to CONT.
gol: Set state = 4 and go to CONT.
go8: Set state = 8

and go to CONT.

128 -

base: Convert quantity to real number, save value, save
value of scan pointer, go to CONT.
exp2: Calculate integer exponent value using saved value
~ of scan pointer;
realpnt: Calculate real value using exponent and saved real.

Go to END.

exp3: Calculate negative integer exponent value using
saved value of scan pointer. Go to REALPNT.

gen: Enter the preceding block of characters into message

storage buffer. Replace this block with characters
referencing beginning and end of buffer area. Go
to END.

nxted: Read in next card, re-initialize, enter endcard
mark in lexical atom string, and go to CONT.

exit: Enter eof mark in lexical output string, and terminate
lexical scan.)

The reader will note that the two lexical scans described
above resemble each other rather closely. A language
which admits a larger variety of lexical types (e.g.,
alternate forms of Hollerith constants; quoted strings in
a variety of forms, additional constant forms including
octal, hexidecimal, etc. constants) may require a somewhat
more elaborate lexical scan algorithm; though lexical scans
rarely deviate very far from the pattern discussed in the
above examples. However, various somewhat more sophisticated
types of processing may conveniently be incorporated into
a lexical scanner. One of the most useful and interesting
of these is a substitutable parameter feature. Detailed
parameter substitution conventions may be set up in a variety
of ways; in what follows, we shall, for the sake of definiteness,
describe one particualr set of conventions.

The basic idea 1n lexical parameter substitution 1is to
allow certain lexical atoms to act as loglcal abbreviations
for larger strings. Suppose, for example, that, in the basic
lexical context described by Tables I and II above, wWe agree
that any symbolic name may be established as a parameter by

=129~

writing
//NAME = <string> // s

and that, at each subsequent occurrence of the NAME occurring
in the above formula as a lexical atom in our input text,

the string on the right of the above displayed formula

is to be substituted for the NAME. This may be accomplished
as follows. On scanning past a pair of slash marks and
encountering a name, one enters the name in the ordinary
lexical symbol table, but flags it 1n a reserved bit

position as a parameter. The string of characters immediately
subsequent to an equal-sign Bollowing the scanned name defines
the value of the parameter. Thils string is scanned in the
normal way, but the resulting lexical atom designators are
placed in a parameter values buffer rather than in the lexical
output string, as normally would be done. Whenever, in the
remainder of lexical processing, a name is scanned, the
routine which enters this name into the symbol table checks

to see if the name 1s already present and flagged as a parameter.
If this 1s the case, the correspénding gstring of lexical

atoms recorded in the value buffer, rather than the single
lexical atom designating the name, is generated into the

lexical output string.

In order to avoid an accumulation of parameter names, it
is useful to have some method for switching a given name back
from "parameter" status to "ordinary" status. This 1s
convenlently accomplished by writing a parameter definition
of the specilal form

//NRME//

Table V below gives the pattern of state transitions necessary
to implement the parameter substitution feature which we
have just described.

=130~

12.

126,

25.

78.

10.

State-transitions for lexical

Bcan with parameter feature.

Table V,

Real
Name

Period-
delimited
operator

Integer
or real
Integer

Integer,
real or
Hollerith

Decimal
or PDO

Special or
Definition
Switch

Definition
Next

sunbunit
to Begin

Alph.
H H Digit| Speciall Period| Slash Equal| Blank|{End | End
: . / Sign of |of
/5= - Card| File
End | End Cont | End End End End Cont |End | End
Cont| Cont | cont | End End | End |End |End [End | Eng
Cont|] Cont Cont | End Endl End End End End | End
End | End Cont { End Go25 End End Cont |End | End
End | Holcon| Cont | End Go25 End End Gol2 |End | End
Endx| Endx Go2 ‘End End End End Gol2 |End | End
End | End End End End Defsw|End End End | End
Cont| Cont Cont | Endz Endz OffdefEndy | End End | End
Go3 | Go3 Gol126| Endl Go5 Go78 |Endl | Skip | Next| Exit

-131-

Table VI shows the generative lexical actions which
correspond to each of ﬁhe entries in Table V. Note that,
in the algorithm of Table VI, we have deviated slightly from
the style employed in the coding of Tables II and IV, in that
we allow the principal generative action taken 1in the section
of code following the END label to depend on an internally

maintained '"generator switch."

<132 -

Table VI.

End:

Adv:

Cont:

Jump :

Endl:
Endx:

Endy:

Endz:

Offdef:

Defsw:

Generative lexical actions for scan with parameter

feature.

Enter the immediately preceding block of characters

in the symbol table if necessary.

flagged as a parameter, go to SUBSTIT.
flag the symbol as real if state = 2; name if state

operator if state = 5; integer if state = 12 or 126;
real 1f state = 25; special if state

If the symbol is

Else

10 or 78.

Place symbol table pointer in lexical output buffer
if generator switch = 0; but in parameter values
buffer if generator switeh = 1.

Advance to "beginning of next lexical block" pointer

to 1 less than the current position of the scan
pointer; go to JUMP
Advance the scan pointer by 1;
Go to 2, 3, 5, 12, 126, 25,. 78, 8, or 10, depending
on the current lexical state.
Advance the scan pointer by 1 and go to END.

Reduce the scan pointer by 1,

and go to END

set state = 12,

Enter the immediately preceding block of characters
in the symbol table, flagging it as a parameter.

Advance the "beginning of next lexical block" pointer
to the present value of the scan pointer. Set

generator switch = 1, state = 10,

and go to CONT.

Enter the immediately preceding block of characters
in the symbol table, flagging it as a parameter.

Set generator switch =

1,

state = 10,

and go to ADV.

Enter the immediately preceding quantity into the
symbol table, dropping the parameter flag attached
to this quantity if set.
Advance the "beginning of next lexical block" pointer

by 2.

(continued)

-133=-

Go to SKIP.

3;

If the generator switch is 1, set it to zero,
set state = 10, and go to CONT.
If the generator switch is O, set state = 8
and go to CONT. |

Substit: Copy the string of lexical atom pointers
referenced by the parameter symbol from the
parameter values buffer to the output buffer.

Go to ADV.
Goz25: Set state = 25; go to CONT.
Gol2: Set state = 12; go to CONT.
Go2: Set state = 2; go to CONT.
Go3: Set state = 3; go to CONT.
Gol26: Set state = 126; go to CONT.
Go5: Set state = 5; go to CONT.
GoT78: Set state = 78; go to CONT.
Skip: Advance 'beginning of next lexical block pointer!

by 1; go to CONT.

=134 -

The parameter-substituting lexical scan algorithm shown
in Table VI may be regarded as a very simple symbolic
macro expander. Of course, very much mére general and
powerful macro processor features might also be
designed into a symbolic input program; at their most general,
these would provide a fully recursive set of arithmetic and
Symbol manipulating routines executable at compile time using
an interpreter which may very conveniently be combined with
a compiler using the same lexical scan. This may be accomplished
by providing a switch which will toggle all the generator
routines comprising the compiler back and forth between a
normal "compile" mode and a direct "interpretive" mode.
In the compile mode a generator routine will, when called,
emlt a block of code; in the interpretive mode the same
generator routine when called will execute the corresponding
instructions directly. At a relatively small expense in
additional programming, this scheme can provide for a very
powerful system of compile time calculations and corresponding
conditional macro expansions, written in what is substantially
the language being compiled. A discussion of this idea
would take us rather far from the questions which we have
studied in the present chapter; consequently, we choose not
to pursue this line of thought here.

-135~

We conclude the present chapter with a number of remarks
concerning departures from the strict "state transition" style
described above which may be used to increase the power and
efficiency of lexical scan programs,

1. Internal flags or switches may be maintained, and
may be used to govern the action of the lexical scan at
particular points in its course, Table VI above has already
shown ‘the use of this feature. More generally, if the state
transition table rows corresponding to two or more lexical
states are identical except for the actions initiated by
a few characters, we may combine the two states as sub-states
of a single nominal state, and correspondingly combine two rows
of the state table into a single row, introducing a state flag
to distinguish the two sub-states within the single nominal
state into which they have been combined. Input characters
which would be treated differently in the two states which
have been combined will cause the distinguishing state flag
to be consulted and the correct action as shown by this flag
to be taken. Using such a technique we could, for example,
combine the two rows IRH and IR of Table I into a single row.
To this end we could, of course, employ a flag J whose values
1 and O distinguish what in Table I is the IRH state from what
in Table I is the IR state.

2. Various useful internal counts can be maintained and
incremented or decremented from time to time depending on the
state of the scanner and the input character to be processed.
This device enables the lexical scanner to distinguish, e.g.,
balanced-parenthesis substrings within an input string, a
possibility useful in the pre-processing of various languages.

3. A sufficiently powerful lexical scanner can, in
certain cases, be used to perform simple syntactic operations,
thereby enhancing the efficiency of the full parse which is
to follow, For example, a lexical scanner which pre-scans

-136~-

an entire "statement" in advance of syntactic analysis may be
used to determine the type of the statement, thereby simplify-
ing the subsequent syntactic analysis'ahd making it more
efficient. ,

4, special processes enhancing effiéiency can be built
into a lexical scanner where appropriate. For example,
incorporation into a lexical scanner of a trick machine-code
sequence forbypassing machine words full of blanks, or more
generally for locating the next following non-blank character
in an input string, will in many cases yield significant
reductions in total compilation time.

5. Certain syntactically irritating special conventions
featured in particular languages, as for example the continua-
tion-card convention in FORTRAN, can be handled by a lexical
pre-scanner and thus eliminated as a cause of syntactic
complication. _ ‘

Note finally that a lexical scanner will normally deal
with its input string one character at a time; thus its
"front end" can be a "next character" routine. 1In particular,

no large buffer for input string storage 1s logically
required.

-137-

CHAPTER 4. DATA DIRECTED PARSING METHODS

1. The General "Bottom-Up" Parsing Method.

The methods of syntactic analysis discussed in Chapter 2
are often called "top-down" methods. The parsing strategy
which these methods employ is essentially goal directed.

That is, starting with an initial goal, that of constructing

a sentence valid according to the BNF grammar at hand, the
parsing program builds up a stack of sub-goals. As a sub-goal
is pursued, additional sub-goals are generated and recursively
added to the stack. Before the algorithm will return to

any higher level goal, all parts of all sub-goals generated

by this higher level goal must be completely‘and successfully
accomplished.

The 'bottom-up' method is, in comparison, data directed.
The action of a bottom-up parsing algorithm is at each point
gulded by the characters constituting the input string.

This string, and more precisgsely a particular character

in the string, is taken up for analysis. Starting with

this string and character, the parsing program attempts

to find a production of the grammar by reversing which one
may combine the gilven character and a number of its

adjacent characters into an intermediate symbol of the
grammar, which, according to the glven production, might

have generated the characters in question. - When such a
substring is found, the algorithm condenses 1it, replacing

the substring by the single intermediate symbol which has
generated it, and thus replacing the given input string by

a (generally shorter) string containing both terminal and
intermediate symbols of the grammar. This process of condensation
is applied iteratively; the over-all goal of the parsing
program is of course the complete condensation of the initial
sentence into a single character representing the root type
of the grammar at hand. Note that 1n the bottom-up analysis

138

method no detalled set of intermediate goals is maintalned;
the inverse of any particular grammatical production 1s applied
when possible.

Since for a general Backus normal form grammar anj
particular application of a grammatical production in the
reverse direction may be in error, that is, may not lead
to a full parse of the input sentence, the bottom-up method,
like the top-down method, must in general be prepared to
"back up." In consequence, the parsing program must keep
track of the sequence of tentative combinations made during
its attempt to parse a string, 1n order that any step taken
may be undone if this proves necessary in the light of
string elements subsequently encountered. As a general
method, therefore, the bottom-up parsing strategy has no
real advantage over the top-down procedures developed in
Chapter II. However, for certaln particular types of unam-
biguous grammars, in which the reverse-direction applicability
of a given grammatical production may be inferred with certainty
from the local structure of the input string, the bottom-up
method can attain real advantages of speed and efficiency
as compared to the top-down method. In particularly favorable
cases the bottom-up method will permit a language to be
parsed by the iterative application of condensing transforma-
tions of the kind alluded to above without any back-up at all.
Most of our attention in the present section will be
directed toward those particular languages, the so-called
bounded-context and precedence languages, for which a bottom-
up syntactic analysis strategy leads to an efficlent, un-
ambiguous, and complete parse of every possible input
sentence. We begin, however, by discussing a form of the
bottom-up parsing algorithm which is applicable to general
Backus normal form grammars.

A bottom-up parsing algorithm is, at each of its stages,
concerned with a string. This string is given initially as
a string of terminal characters to be parsed. A parsing

-139-

algorithm attempts, as indicated above, to condense the
string with which 1t is concerned, stage by stage, through
a sequence of shorter strings lnvolving both terminal and
non-terminal symbols of the grammar, until the original
string has been condensed to a single character. We will
find it convenient in discussing our general bottom-up
parsing algorithm to assume that, at all times, the string
is divided into two parts, a front and a back, which are
kept in separate pushdown stacks which we will call stackl
and stack?. Stackl will always contain the front part of
the string being parsed, the first character of the front
part being "deepest' in the stack. Stack2 will contain the
back part of the string being parsed, the last character
of the string being deepest in stack?2.

AS the parsing algorithm scans forward past the varilous
characters in the input string, these characters will be
moved from the top of stack2 to the tbop of stackl; scanning
in the reverse direction will move characters back from
stackl to stack?. The use of two stacks in this fashion
makes the insertion of characters into a string and thelr
removal from the string quite convenient.

In searching through a string to be parsed for a point
at which a given production of the grammar may be applied
in the reverse direction, we shall assume, as a matter of
convenient standardization, that only substrings whose
final character is the top character on stack2 will be condensed.
This convention establishes an orderly left-to-right flow
of the parsing process. When a condensation is performed,
we replace the top character on stacke by that intermediate
character which, according to the Backus normal form grammar
with which we are working, expands directly into the substring
encountered. Condensation of a substring will also involve
the removal of the top few characters from stackl; these are
the characters which immediately precede the top character
on stack? in the string under analysis.. The characters

~140-

constituting the condensed substring become nodes in the
collectlion of syntax tree fragments which the parse is
developing. Management of these tree fragments is most
conveniently accomplished by the use of yet another stack,
which we will call stack3. This &onstitutes a useful basis
for the "back-up" operations, which, as we have already
noted, will occasionally be necessary. The intermediate
character generating the most recently condensed string is,
as noted above, to be placed on stack2 when a condensation
1s performed; this intermediate character may then be
associated with a pointer indicating the position of the top
of stack3 at that moment when the condensation is performed.
A second field indicating the number of characters that
have been condensed should also be assoclated with the same
intermediate character. If these two pointers are placed
on stack3 along with every character transferred to this
stack, stack3 will always contain a complete description
of the set of tree fragments constructed by the parse. When
the parse comes to a successful conclusion, stack3 will
contaln a complete representation of the parse tree for the
initial sentence.

By assocliating the pointer and block_size fields described
above with each character of a string to be parsed, we
arrive at a basic data item of the following form:

(3) character stack 3 poinfer stack3 block size

It is most convenient, in describing a bottom-up parsing
algorithm, to assume a serial enumeration of the productions
of the Backus normal form grammar, and to assume that all
the possible alternative definers of a given intermediate
grammatical type are separately enumerated. That is, instead
of writing .

~-141-

(1) <term> = <factor> | < factor» * term> | ¢ factor»**<term>

in the conventional Backus style, we shall prefer to write

(2) 1. <term> = (factor) ,
2. <term) = (factor)}* { term)
3. <(termy = (factor) ¥** (term) .

Such a 1ist, extended to all the productions of a grammar,
provides a convenient serial enumeration by which we may
refer to particular productions as necessary.

The complete working of a general bottom-up parsing
algorithm requires the addition of a fourth field to the
three fields shown in (3). This fourth field is necessary
in connection with the back-up procedure which a general
parsing algorithm must occasionally employ. If a glven
condensation turns out in the subsequent course of a parse
to have been inappropriate, it must be undone, this requlres
the return from stackl of previously stacked characters.

The returned characters are of course to be put back on
stackl and on the top of stack2. After this back-up operation
has been performed, the parsing algorithm will again attempt
to proceed; of course the algorithm is not to repeat any
condensation which has already been attempted. For this
reason, we shall associate with each character the number

of the last Backus production whose inverse has already been
applied to condense a substring ending with the given
character. Equivalently and somewhat more. conveniently,

we may associlate with each character the number of the first
production in the Backus grammar which has yet to be applied
to a substring of characters ending with the given character.
Adding this fourth field to the three fields'shown in (3),

we arrive at a basic data item of the following form:

(4) character stack3 stack3 next
pointer block site alternative
production

-I42-

This data item contains all of the necessary flelds for
the operation of the full bottom-up parsing algorithm whose
detalls are given in Table I below. A number of additional
comments will make the structure of the algorithm shown in
Table I somewhat more plain. At the beginning of a parse,
stacks 1, 2 and 3 are initialized. Stacks 1 and 3 are
empty. Stack2 contains a collection of items of the form
shown in (4), representing the atomic words of the initial
input string, in reverse order. All the "pointer" fields
for these items are set to zero; all the "block size"
fields are set to zero.

In each case the "next alternative production" field
is set to 1, that is, 18 set to reference the first porduction
of the Backus grammar defining the parse.

- 143~

initially:

advance:

areprodns:

succeed:

Table I.

Details of the General Bottom-Up Parsing Algorithm.

stack? contains input string,
first element on top

all next-alternative pointers
set to 1

all stack3 reference pointers
set to O

stackl and stack3 are empty
take top element of stacke
next production to try

if n exceeds total number of
productions, go to fail.

if n-th production matches
substring ending with given
character, go to succeed.
else set n=no.
production in grammar ending
with same character, and go
to areprodns.

set next production field of

n =

of next

top of stack2 to number of
next production ending with
same character.

move top of stack2 and
appropriate number of elements
of stackl to stack3-

insert stack3 top pointer in
appropriate field of inter-
mediate character.

place new intermediate symbol
at top of stack2.

if stackl is empty and

stack? contains only a
single character, parse

is complete .

stack2 contailns input string,
first element on top
for J = 1 t1il1l1 p2-1 do:

(next(stack2(J))=1; point(stack2(j))=0)

pl=0; p3=0
n = next(stack2(p2-1))

if (n.gt.maxprodns)go to fail

if (matches(n,pl,p2))go to succeed

n = nextry; go to areprodns

p2 = p2-1; next(stack2(p2))=nextry

stack3(p3)=stack2(p2); p3=p3+1
for k = 1 t1ll number do:
(p1=pl-1; stack3(p3)=stackl(pl);
P3=p3+1)

point(intermed) = p3

stack2(p2) = intermed; p2=p2+l

if((pl.eq.l) .and.(p2.eq.2))
return successfully

~14h.

else go to advance to go to advance
continue parse.
fail: insert n in next field of | p2=p2-1; next (stack2(p2)) = n
item at top of stack2
move item from top of stack2 stackl(pl) = stack2(p2); pl=pl+l
to top of stackl. ‘
if stack2 i1s not empty go to if (p2.gt.1l) go. to advance
advance; else enter backup
loop.
backup: if stackl is empty, parse has 1f(p1.eq,l) return unsuccessfully
failed.
if top element of stackl pl=pl-1;
is not intermediate symbol, if((point(stackl(pl)) .ne.0)go to
reinitialize its next expand
production field to 1, and next(stackl(pl))=1
move it to stack2; then go stack2(p2)=stackl(pl); p2=p2+1
to backup. Else re-expand go to backup
intermediate symbol as
follows: .
expand: return appropriate number k = numb(stackl(pl))
of elements from stack3 for Jj=1 till k do:
to stackl; and one additional (p3=p3-1; stackl(pl)=stack3(p3);
element to stack?2. pl=pl+l)
p3=p3-1; stack2(p2)=stack3(p3);
pe=p2+1
then go to advance, go to advance

-—-end---

~145 -

In advancing to the. right, the parsing algorithm takes
up the top character on stack?2 for consideration. This
character will be part of a stacked data item having the
additional fields shown in (4). In particular, the next
production in the total list of productions constituting
the Backus grammar defining the parse will be specilifled by
the last field of this data item. If the number contained
in this field exceeds the total number of productidns'in the
grammar, then it is certain that every possible way of cohdensing
a substring terminating at the particular character under
consideratli on has already been tried. When this circumstance
arises, the given character must merely be transferred |
from stack2 to stackl; the parsing algorithm must then
proceed to consider the next character which rises to the
top of stack2. If, on the other hand, the integer contained
in the final field of the data item (4) does not exceed the
total number of productions in ﬁhe grammar, then it is possible
that the production referenced by this integer 1s applicable
to that substring of the string at hand which consists of
the character on the top of stack? and it's immediately
preceding characters; these are, of course, the top few
characters on stackl. The parsing program then checks to
see if this is indeed the case, If it is the case, a ,
condensation is performed. On the other hand, if condensation
according to the specified production is impossible, the production
number contained in the final field of (4) is advanced, and
the next alternative production is tried. When an applicable
production is found, the characters condensed are removed
from the top of stackl, and the character at the top of
stack? is removed and replaced by the single intermediate
character which, according to the production that has been
used, can generate the newly condensed substring. All the
characters removed are placed in order on the top of stack3,
and the second and third fields of the items inserted at the top of
stack? are set. The parsing algorithm proceeds iteratively

~146-

in this fashion until either the 1nitial character string
has been condensed to a single character, 1n which case
the parse 1s successful, or until an end-of-string condition
not permitting any further condensations 1is encountered.
If, in this latter case, the.initlial string is not ungrammatiecal,
it follows that at a certaln stage of the attempted parse a
condensation which 1s not a part of the true parse tree of
the input sentence has been made. To dlscover the point at
which this fatal error has occurred, the parsing algorithm
must undo as many of its preceding decisions as necessary.
This is accomplished by reviewing the characters which occur
1n the condensed input string, in reverse sequence, and by
re-expanding any intermediate character which corresponds
to a substring saved on stack3 into its original form.
When such a re-expansion of or "back-up" operation has been
performed, the fourth field of the data ltem standing at
the top of stack2 references a condensing production which
has not yet been tried. The parsing algorithm then proceeds
to try this production; the iterative use of such a back-up
and re-try procedure will lead the parsing algorithm down
every possible parse path and will, 1if the inlitial sentence
is in fact grammatical, eventually bring the algorithm to
discover a full parse tree.

Table I gives all detalls of the parsing algorithm
which we have described informally in the last few paragraphs.

The following comments wlll aid the reader to understand
the algorithm given in Table I. In the first place, it is
to be noted that we have written out the algorithm twice,
in two parallel forms. The left hand column of Table I
contains a relatively informal description of the various
steps of our bottom—up parsing algorithm. The right hand
column in Table I shows the same steps represented in a
somewhat more formal way, and in a hypothetical language
close to ALGOL or FORTRAN. The algorithmic steps shown in
the left hand column may therefore be regarded as explanatory

~147-

comments pointing; out the over-all significance of the
corresponding steps found in the right hand column of Table I.
In the algorithm of Table I, stackl; stack2, and stack3 are
regarded as arrayrs. The quantities pl, p2 and p3 are integers
defining the first empty push-down entry in stackl, stack?
and stack3 respectively. Thus, the top entry in the push-
down stackl 1s always the entry referenced by pl-l. Each
stack entry is asisumed to consist of the four fields shown
in (4) above. Where necessary, the ‘"'next alternative
production field" is referred to formally by the subfield
function "next." Similarly, the *stack3 pointer field" is
referred to as ne¢cessary by the subfield function'point';
while the "stack® block size field" is referred to as
necessary by the sub-field function "numb."

The algorithm shown in Table I uses a principal subroutine
called matches wrose three arguments are, respectively,
the number n of & particular and two pointers pl and p2,
one to the top of stackl, the other to the top of»stack2.
This subroutine i1s assumed to examine the string S under
analysis, specifically the substring ending with the character
at the top of stzck2, to see 1f the n-th production can be
applied in the reverse direction to achieve a condensation
of S. If condensation is possible, the value "true" is
to be returned; if condensation is impossible the value "false"
is to be returned.

We also assume that when the subroutine matches is
called, the values of three additional quantities are set.
These three quantities are called 'nextry', ‘'number', and
'intermed' in the algorithm shown in Table I. !Nextry' is
assumed to be the number of the next production in the grammar
having the same terminal character as production number n,
or, if no such productinon exists, to be equal to the total
number of productions, plus one. The quantities 'number!'
and ‘'intermed' are required only in case the attempted
condensation succeeds. !'Number' is assumed to be set equal

148

to one less than the total number of characters involved

1n the successful condensation. 'intermed' is assumed to
be an item of the form shown in (4), in which the character
field is pre-set to show the intermediate character which
generates the sub-string which is to be condensed, in which
- the block size field is appropriately set, (i1.e. is set to
equal to the quantity 'number'), and in which the 'next
alternative production' subfield is pre-set to the value 1.
The algorithm itself then sets the 'stack3 pointer field'
appropriately, using the known value of the quantity p3.

The subroutine 'matches' used in the algorithm of
Table I can be simple and efficlent 1f each of the pro-
ductions constituting the Backus normal form grammar

defining the required parse is maintained in the form
shown below:

(5) cq PN . e ~ Cm o k m-1 1

In (5) we assume that Cys 02,;.., cﬁ are the successive
characters constituting the right hand side of a grammatical
production, that o is the intermediate character occuring
on the left hand side of the production, that k is an
integer identifying the next production in the grammar
which has the same terminal character ¢, as the production
(5), and that m-1 is one less than the number of characters
CqpseeesCpn Note then that the last four fields in the
data structure shown in (5) will constitute an item of
precisely the form (4), which the subroutine matches may
return without modification as the value of the quantity
'"intermed'. The subroutine 'matches' will function most
efficiently if it 1s also provided with a table indicating,
for each character c, the number of the first production
in the grammar possessing c¢ as right hand terminal character.
An appropriaté input routine will make the use of an
algorithm of the form shown in Table I quite convenient.
This input routine may, for example, read a set of cards
containing a grammar specified in Backus normal form and

_]_L;g_

written in any convenient notation. The input routine can
then sort the productions of the grammar into convénient
order anrd cstablish a table of productions in which each
individual production is represented by a set of fields of
the form shown 1n (5). When the input routine has
completed these initializations, the process defined by
the algorithm of Table I may be called to parse sentences
acecording to the grammar Jjust read.

2. Bounded context grammars and assoclated deterministic scans.

The back-up procedure employed by the general bottom-
np algorithm shown in Table T 1s rather ineffilcient; note
in particular that the algorithm will always fail to detect
the need to back up until it has scanned its stying all the
way through to the final character. The top-down algorithms
discussed in Chapter II will normally bhegin to correct a
developing parse error at a much earlier stage. It is
therefore important, in order to improve the efficiency
of algorithms of th:2 general type shown in Table I, to avoid
backing up as much is possible. This can be done particularly
successfully if the parsing algorithm is modified so as to
perform a condensation only when a local context in the
string being surveyed is such as to insure that such a
condensation necessarily correspohds to the true structure
of the syntax tree of the string under analysis. Of course,
not every grammar will permit a simpliflied procedure of
this kind to be employed. However, those grammars whose
languages may be parsed by such a "no back-up' procedure
can be handled particularly efficlently.

Given a grammar in Backus normal form, it may be the
case that in every possible parse of a string of the particular
form

(6) Sy Py .- %! €y +e. Cp Qy.--Qy, S, s

-1%0 -

the substring Cy.--Cp must necessarily be derived from a
particular intermediate character x. In such a cdntext,
the condensation of (6) into

(7) 8y pPy...py X q;...q, 8,
can never be in error. Thus, for example, in various standard

grammars for the ordinary arithmetic expression the sequence
of elements - '

(8) ... + <element> * <factor> + ...

can only be derived from the condensed sequence

(9) ... + ¢factory> + ... |

via the reverse of the Backus production

(10) | {factorsy = <element> * <factor>

If, in the context (6), the substring Cys...5¢, can only be

derived from the intermediate symbol X, then Pys--.sB¢,
cl,...,cn, ql,...,qr is called an (J,r)- unambiguous context.

Using the existence of such contexts, the parsing aigorithm
of Table I may be modified to eliminate back-up as follows.
First, we assume that a complete collection of all (£,r)-
unambiguous contexts for which £ ¢ some upper bound 4.,

and for which r ¢ some upper bound r , 18 available. Glven
this table of unambiguous contexts, we revise the algorithm
of Table I so that before applying any condensation, the
parsing program will verify that the context in which the
sub-string to be condensed appears is one of the avallable
list of unambiguous contexts. By restricting the attempted
set' of sub-string condensations in this manner, we insure
that the parsing algorithm need never undo any condensation
which it has performed. Unfortunately, for certain grammars,
the full set of unambiguous contexts will be 'thin' in the
sense that the bottom-up parsing algorithm, restricted in
this way, will be unable to condense every grammatical
string to a single character. However, if a grammar has the

-151 -

special property that .the restricted bottom-up parsing
algorithm which we have Jjust described will succed in
condensing every grammatical string, we call the grammar
anA%,ro bounded context grammar.

In Chapter V, we shall show that not every context- o
free grammar has this bounded context property. We shall
at that time discuss the relation between general context
free grammars and the bounded context grammars as a sub-
class in somewhat more detail. B

In the present .chapter however,~we.will’be,interested
not in fundamental theoretical discussions, which we post-
pone to Chapter V, but in relatively pragmatic matters.

In particular, we shall,; “in the following paragraphs, develop
various useful, algorithmically verifilable sufficient
conditions which guarantee that a grammar is a (x,4£) -
bounded context grammar with relatively small k and Af
We ‘begin by definlng three relations '

'“a ‘?b a—b,a(b

between symbols of a, grammar, terminal or non- terminal
These relations are. defined as follows:

i): The relation a 9 b holds if there exlsts a gram-
matical etringfin,which a and b are successive elements and in
whose ‘syntax .tree, a-1s the final element of a sub-tree.

11) The.relation a = b holds if there exists a gram-
matical string in which a and b are successive elements, and
in whose syntax tree both a and b are immediately derived
from a common node.

111) The relation a < b holds if there exists a gram-
matical string in.which a and b are successive elements and 1in
whose. parse.tree there . exists a node .44 with the following
property: a is-immediately derived from «, while b 1s
indirectly deriyed from ..

-152-

Note that, if a and b are consecutive characters in any
grammatical string, at least one of these three relétions
must necessarily hold. Indeed, let ¥ be the parse tree of
the given string. Consider the smallest sub-tree b‘to which
both of the Successive characters a and b belong, and let u
be the root node of this sub-tree. Then either both a and b
are directly derived from 4, in which'case (11) holds; or a
but not b is directly derived fromu, in which case (111)
holds, or a is derived from sub-tree & of Y which, by definition
of Y, cannot include b; so that in this case, a 1s necessarily
the terminal character of the sub-tree, and (i) holds.

We call our context-free grammar a precedence grammar
if the three relations a > b, a%b, a ¢ b are mutually
exclusive for every pair of symbols a, b of the grammar,
Suppose that the grammar in which we are interested is a
brecedence grammar, that wé are given a string S which is
grammatical according to this brecedence grammar, and that
al...an 1s the left-most sequence of characters in the
string S which is directly derived from a minimal sub-tree
of the parse tree of S. In this case, it follows immediately

from definition (ii) that we must have a; *a, = .., = a,.

Let a be the character of the string S which immediately
precedes ays and let b be the character of the string S
Which immediately follows the character a,. Then it 1is
clear from definition (1) that a, ?b. Moreover, the
relationship a = a4 is impossible, since some other relation
holds in the parse tree of S; while a 1>a1 is impossible
Since a8y...8, 18 the left-most sequence of characters in

S derived from a subtree of S.

Thus, we must have a¢- a9 * ,,, = a, >b.

Moreover, since a8 ... a, 1s the left-most sequence of
characters of the string S derived from a minimal sub-tree,

no character preceding a, can be the terminal character of

the sub-tree of the parse tree of 8. ,Thus, the relationship

¢ *2 d can never be satisfied by an adJacent pailr of characters
¢,d of the string S which preceed ay. Therefore, for the

-153-

special class of precedence grammars, the first sub-String
1+ -2 which i8 to be condensed according to the parse'

" of tho string S8 is uniquely defined as the left-most string
for which the sequence of relations a ¢- al = ... 2 an > b
holds. If we assume of our grammar, in addition to the
standing assumption that it is a precedence grammér, that

a

distinct intermediate symbols never have the same definer,
then the condensation operation ‘ ’

(11) Ay Ay oA, Ty M
affecting the sub-string a)...8, is uniquely defined in
its context. It follows at once that every precedence
grammar is a (1, 1)-bounded context srammar in the sense
of the final panagraohs of the prcceding section

The above discussion may be generallzed in a very
useful way. 1If g 1s any string of terminal or 1ntermed1ate
symbols of a grammar, we may introduce the three following
relations, corresponding to the relations (i), (11), (iti)

defined above' |
i?) We write a» db

if there exists a grammatical string in which the substring}..
oa b... occurs, and in which a is the final element of a
sub-tree of the parse tree.

11') We write a = gb -

if there exists a grammétical string in wh1oh the sub-string
..6ab. .. oecurs, and in which a and b are both immediately
derived from a common node of‘the parSe tree for the string.

1111) We write a ¢ 4b

if there exists a grammatical string in which the sub-string
...0ab... occurs, and.in which a is immediately derived

from some node A of the parse tree, while b is lndirectly
derived from the node ..

“;154‘

Let S be a grammatical string, and let a, and ai+1
be successive characters in the string S. Let di be the
substring of S consisting of a few- characters immediately

preceding ai. Then one of the three relations ai (o a

’
1 1+1

a8y =5, 84,95 OF a1-> 5 a1+1 must always hold. The
proof 8f this assertion is similar in all regards to the
proof of the corresponding assertion in the more speclal case
treated above; cf. the two paragraphs following definitions
(1), (11), (111). We call a grammar a generalized k-
precedence grammar 1f for each string o of characters of
length k, the relationships a £4b, a 7?6 b, and a = b are
mutually exclusive. (In making this definition, we intend

to allow, among the strings 6 appearing in the definition,
strings consisting actually of a smaller number of characters
than k, but nominally padded out to length k by whatever
number of prefixed "beginning of string" characters are
necessary). Suppose then that for each character a of a string
S to be parsed, we let d; be the immediately preceding k
character sub-string, supplemented as indicated with prefixed
beginning-of-string characters as necessary. We may deduvce
Just as in the special case explicityl treated above that

if aq...ay 18 the left-most sub-astring of S belonging to a
minimal sub-tree of the parse tree of S, then Ay el
together with the immedtiately preceding character a and the
immediately following character b, constitutes the first
occurrence in the string S of the set of relationships

(12) a <-g a, =0 By 2o, .. g, B D b
2, 3 a, 2 a3 a, N b

Assuming once more that no two intermediate symbols of the
grammar exist which have jdentical definers according to
productions of tﬁe grammar, it follows at once that the
condensation operation which applies to the string 8y-..2
in fhe parse tree of S is unique. It follows that every
generalized k-precedence grammar 18 a (k,1)-bounded context
grammas,

n

-155-

Table IT below.gives the detalls of an algorithm for
parsing such a grammar. ' ' |

The following commenfs will help the reader understand
the algorithm shown in Table II. Note, to begin with, that,
.as 1n Table I, we have written out the algorithm twice in
two parallel forms: a left hand column of informal descrip-
tion and a right hand column showing the same steps in a
somewhat more formal way. As 1in Table I, each step shown
in the left hand column may be regarded as an explanatory
comment defining the over-all significance of the
corresponding step in the right hand column of Table II.
The algorithm makes use of four push-down stacks, called
stackl, sbtack2, stackl, and stackl. The first three of
these stacks have essentially the same significance as
the three stacks used in the algorithm of Table I. Stackl,
nowever, is used to contain a chain of pointers to positions
- 1in stackl; the use of these pointers will be explained
shortly. The position pointers for stacks 1, 2, 3, and 4
are called pl, p2, p3, and pld4 in the right hand column of
Table II. Since the algorithm shown in Table II, like most
algorithms for parsing bounded context grammars, does not
involve any back-up process at all, the fourth field of the
data item shown in(4) is unnecessary. Thus, we may take
the data items contained in stacks 1, 2 and 3 to have the
simpler form shown in (3) of the preceeding section. As 1in
Table I, the "stack3 pointer" field in a.data item will
be referenced by the subfield-function "point.”

The over-all flow of the algorithm is as follows.
Starting with the first character of the input string, the
varsing program scans through the characters of the input
string, in turn, transferring them from stack2 to stackl.
As each character is examined, the algorithm determines
whether 1t stands in the relationship a 7¢7b’ a = db or
a ¢ gb to the preceding character a, and to the iImmediately
preceding string ¢ of characters. This basic operation is

-156.<

performed by the subroutine "compare" invoked by the algorithm
shown in Table II. This subroutine returns a flag, called

n in Table II, and having one of the four values 1, 2, 3,

4, The first three values of the flag n correspond to the
three relations a 7o,b,' a=4b, acgb. The value n = 4
indicates that b stands in none of these three relations to
the preceding character a of the input string, and hence

can only occur if the input string involves a syntax error.
Once the relationship between the character b being examined
and the immedlately preceding character has been determined,

a corresponding action 1s taken. If a) 6b holds, then a
terminates a substring of the input string, for which
condensation must be possible. In this case, the parsing
program (after checking to see whether the parse is in

fact complete) condenses an appropriate portion of the input
string terminating with the character a, and replaces it

with the intermediate symbol of the grammar which is the
unique immediate generator of this input String. The
beginning of the portion to be condensed is the last preceding
character d which stands in the relationship c <1Ai to tis
predecessor c¢. The position of d in the input string will
already have been recorded at the top of stackd4 in a manner
that we shall describe shortly. Thus the condensing procedure,
which is indicated in Table II as a call to a functional
subroutine ‘condense,' need merely remove the top element

from stackl4, and use the pointer which it contains, together
with the current value of the pointer pl to the top of stackl
to determine the portion of the input string which is to

be condensed. If such condensation is impossible, that is,

1f there exlsts no production whose right hand side is
identical with a given substring, then the input string 1is
ungrammatical. Correspondingly, 1t is assumed in the algorithm
shown in Table II that, when the subroutine "condense" is
cailed, it returns a flag "'success" which is used by the
algorithm of Table II to determine whether or not an error

157

of this type has occurred.

Successful call to "condense’ returns a data item
"intermed" representing the intermediate symbol from which
the condensed substring 1s generated. It 1s also assumed
that the subroutine 'condense' transfers the appropriate
number of elements from the top of stackl into stack3 when
a condensation is performed. Following on successful
condensation of a substring, the "stack3 pointer’' field of
the returned intermediate element "intermed" is set to the
appropriate value, the intermediate element transferred to
the top of stack2, and the parsing program, starting from
this new position, continues iteratively as before.

If comparison of a glven input string_element b with’
its immediately preceding character a reveals that the relation
a ==ob holds, a different procedure is followed. In this
case, a and b will eventually form part of a string to be
condensed into 2 single‘intermediaté symbol. For this
reason, the parsing program merely passes over the symbol
b, transferring it from the top of stack2 to the top of
stackl. Finally, 1n case the character b at the top of
stack2 is related to the preceding element a by the relation-
ship a > dk“ it follows that b initliates a new subsection
of the input string. This subsection, when complete, will
be condensed into a single intermediate character. In
order to avoid recalculating the beginning of sections of
this sort repeatedly, the parsing algorithm can stack the
location of every character b related to 1ts preceding
character a by the relationship a <o'b on stackl. When a
section to be condensed is complete, the top initial address
on stackd4 is removed, and the beginning address of the next
most inclusive section eventually to be condensed is revéaled.

~158-

Table II.

Parsing Algorithm for Generalized Precedence Grammars.

initially:stackl contains a single beginning;o

compare:

bigger:
same:

smaller:

error:

string character

stack?2 contains string to be parsed,
first character on top, terminated
by end-of-string character

all stack3 reference pointers Set
to zero

stack3 and stack4 are empty

compare top character of stackl with
top character of stacke, usihg
breceding context;

depending on result of comparison,
go- to (bigger,same,smaller,error)
stack current value of pl on stackl

move element from stack2 to stackl;
go to compare

if only 1 character besides begin-
and end-of-string characters are
left, parse is complete

attempt to condense portion of
stackl from character referenced
by stackl4 to top; if this fails,
a syntax error has occurred

insert stack3 pointer field in new
lntermediate symbol

place new intermediate symbol on
top of stack?

go to compare to continue processing
return unsuccessfully

-159-

pl=1; stackl(pl)=beginstring;
pl=pl+l

stack2 contains input string

terminated by end~of-string
character, first element on top

for j=1 t111 p2-1 do:
(point(stack2(Jj))=0)

p3=1; pi=1

n=compare(pl,p2)

go to(bigger,same,smaller,error)n

stack4(pl4) = pl; pl=pl+1

p2=p2-1; stackl(pl)=stack2(p2);
pl=pl+l; go to compare

1f((pl.eq.2).and.(p2.eq.1))
return successfully

plh=pl-1;
1ntermed=condense(stack4(p4)pﬁ;
if (not.success)go to error

point(intermed) = p3-1
stack2(p2) = intermed; p2=p2+1

go to compare
return unsuccessfully

The algorithm shown in Table II examlnes any given
symbol of an initial input string for its syntactic context
only once. The parsing program described by the algorithm
of Table TI is consequently extremely rapild.

If the handle of a parse tree 1s defined as the left-
most minimal sub-tree, then the algorithm that we have
deseribed will first discover and condense the handle of
a parse tree into a single character; and proceeding
jteratively will eventually condense the parse tree into
a single node. At any rate, the order of condensation 1s
left to right, the left-most minimal subtree always being
condensed first. Since the order of condensation is entirely
predictable, a generation procedure may readily be associated
with the parsing algorithm of Table TII. Code generation
procedures may conveniently be inserted as subroutines to
be called by the function ‘condense” of Table II. Each call
to this subroutine corresponds to the condensation of a
particular sub-tree. Tnstead of transferring condensed
symbols onto stack3, the condensation subroutine, having
decided on the particular production which is applicable,
may call a generator routine associated with this production.
A reasonable metalinguistic convention expressing the
necessary semantic specifications might consist, for example,
in the association,with each of the productions constlituting
a contexh-free grammar, of the name of a generator subroutine
to be called by the "condense' subroutine when that production
i8 applied in the reverse direction. Such generator names
can, by an evident extension of the Backus metalanguage, be
appended to the end of the definer constituting the right
hand side of a syntactic production, following some special
symbol or mark used to indicate the end of the definer.

The following simple scheme for the generation of
compiler diagnostics 1s applicable to precedence parses of
the type shown in Table II. At the point at which a
transfer to the algorithmic label "error" is made by the
parsing program, all those characters of the initial input

160 .

string which have been condensed into intermediate symbols
of the input string may be regarded as constituting a
subsection %_of'the input string whose ﬁarse is probably
correct. The parsing algorithm can then flag the characters
belonging to the string Sl‘ Flagging these characters will
show the approximate point of the initial ilnput string at
which a syntax error has occurred. The standard diagnostic
procedure thus specified is general and applies without

any speclal adaptation, to an arbitrary precedence grammar.
On the other hand, since a top-down procudure will always

be aware of a local goal, and can report the failure of this
goal as a part of the diagnostic information it provides

to the compiler user, the diagnostics obtained by the procedure
Just outlined may be cruder than the dilagnostics which can
be obtained by a top-down parsing procedure.

3. Storage of precedence information for a bounded context
parse,

We now turn to consider the form in which the tables
of precedence relations to be used by the subroutine "compare"
called in the algorithm of Table II are to be initialized
and maintalned. These tables may be taken to consist of
two basic portions, the first of which is a gimgle (character
pailr) precedence table, and the second of which is a

supplementary (extended context) precedence table. The first

of these tables may be regarded as a two-dimensional array,
which, for every pair a, b of characters, specifies a
value which is either 1, 2, 3, 4 or 5.

If the value 1 is enﬁered in the first of these tables
agalnst a pair a,b of characters, it signifies that the
relation a <+ b holds, and that neilther of the relations
a-=">o0r a 2 b holds. If the value 2 or 3 is entered
against the pailr in this same table, it signifies, in a
similar way, that the relationship a = b (resp. a 2 b) holds,

161°

and that no other of the three relations a ¢+ b, a £ b, a Db
holds. If the value 5 1s entered against the pair, it
gignifies that none of the ﬁhree preceding relations holds.
This value is equally decisive for the comparison routine,
since, if th~ comparlson routine 1s called upon to compare
two successive characters a, b durlng a varse, and if
none of tha three preceding relations holds, then a syntax
error 18 implied. Finally, if the value 4 is entered against
the pair a,b of characters in the first precedence table,
it indicates that 2% Jleast two of the relations a ¢ b,
a-*th, a-ybhold., In this case simple (pair-wise) prece-
dence is insufficient to determine the parse, the grammar
is necessarily a generalized precedence grammar rather
than a simple precedence grammar, and the supplementary
tables must be used.

In this latter case, the "compare¥ subroutine of the
parsing algorithm of Table II must nroceed as follows.
The string & is first set equal to that character 1in the
full string being parsed which immediately precedes the
character a. e triple 63 a, b of three characters is
then looked up 1in the supplementary precedence table, which,
for the sake of definiteness, we may imagine to be maintained
as a list accessed through a hash functlion. FEither
this triple will not be found at all in the hash table, or
the hash table will assign one of thz four values 1, 2, 3,
4 to the triple o65,a,b. These values have the same significance
as before; 1 indicates that the relation a >4, b holds, and
that none of the relations a =6ﬂb and a< 6kfholds, ete.
If an entry for the triple#a,b is found in the hash table,
then the 'compare' routine may return a value directly upon
finding this entry. If, on the other hand, no entry for
d,a,b is found in the hash table, then the "compare”
routine must attempt to use at least one additional character
of context. This 18 done as follows. Setting % equal to
that substring of the string being parsed which consists of

the two characters immediately preceding a, the compare

-162-

routine looks for an entry in the supplementary precedence
table (hash table) against the set of four characters Z,a,b.
If an entry exists, the hash table -will supply one of the
values 1, 2, 3, 4, and the compare routine may proceed as
indicated above. If, on the other hand, no such entry
exists, then the ”compare" routine must attempt to use the
three characters of context immedlately preceding the character
a8,... etec. An a prior ~decislon as to the maximum integer
k which 1s allowed in the consideration of the given grammar
as a generalized k-precedence grammar will limit the maximum
number of characters of context allowed. The integer k
will normally be chosgen quite small, generally equal either
to 1 (the case considered by McKeeman,to whom the notion
of generalized precedence grammar is due) or to 2. Larger
values of k would require excessively large supplementary
tables and are therefore of less interest.

For a generalized k-precedence grammar with k = 1 or 2,
the simple precedence table described above will normally
be as large as or larger than the supplementary table, for
which reason a simple device, due to Floyd, for reducing
the size of this table is of interest. This device is as
follows: For each pair a,b of terminal or intermediate
symbols, we keep a single authorizatioﬁ bit B(a,b). The
value of this bit is 1 if exactly one of the three alternatives
a & b, a="b, a'*> b holds, but is zero if either none
or more than 1 of these alternatives holds. Given the set

of mutually exclusive relationships a £ b, a = b, a -y b,
holding between those pairs a,b of characters of a given
grammar for which B(a,b)=1, we attempt to find two positive,
integer valued functions f(a), g(b), such that the relation-
ship a €+ b implies the numerical relationship f(a) ¢ g(b),
such that the relationship a = b implies the numerical
relationship f(a) = g(b), and such that the character
relationship a *> b implies the numerical relationship f(a)
f(a) 3 g(b). A pair of functions satisfying these three

conditions is said to have the precedence pvoperty.

—1637

Tf such a pair of integer valued functions f,g s
available, then if B(a,b)=1, the "compare” algorithm can
return the value 1,2, or 3 depending simply on whether
f(a) ¢ g(v), £(a) = g(b), f£(a) » g(b) which 1t finds. Of
course, if B(a,b)=0, the "compare" algorithm must consult
the supplementary precedence table described above to
complete its action. The two-dimensional simple precedence
table may be replaced by the union of a table of authorization
bits and of two linear arrays, with cdnsequent saving of

space.

Next, we shall describe Floyd's'algorithm for finding
a palr of functions f and g having the precedence property.
Define sequences of functlons fn and 8, inductively, by
putting fl(a) = gl(a) = 1 to start the induction, and b
defining fn+1 ntl in terms of fn and g, as follows:
if there exists any pair a,b such that fn(a) < gn(b) and
a 2 b, choose some such pair, put fn+l(a) =g (b)+1, and
put fn+1(a') = fn(a') for all other a', and gn+1(b),= gn(b)
for all b. Otherwise, if there exists any pair a,b such
that fn(a)12 gn(b) and a ¢ b, choose some such pair, put
gm_l(b) = fn(a)+1, put gn+l(b’) = gn(b') for all other b!',
and fn+l(a) = fn(a) for all a. Otherwise, if there exists
any palr a,b such that a = b while fn(a) # gn(b), put
f.(a) = gn+l(b) = max (fn(a), gn(b)), and let f_ ,(a') =

fn(a'), gn+1(b') = gn(b') for all other a' and b'.

and g

Ir f = f and g .4 = 8> then f = f .5 and g = g4

n+l T °n n

are evidently a pair of functions with the precedence property.
Conversely, suppose that there exists a palr of functions

f,g with the precedence property. It is plain that both
sequences {fn}, {gnl are monotone nondecreasing. Plainly,
fl(a) ¢ f(a), gl(a) £ g(a) for all a. We shall prove
inductively that f‘n(a) ¢ f(a) and gn(a) € g(a) for all n.
Suppose by inductive hypothesis that this holds for a given
value of n. Then, if a *> b while fn(a) < gn(b), then

-164 -

g, (b) ¢ g(b), while f(a)» g(b), so that r(a)> g, (v)+1
> fn+1(a) If a ¢ b while f (a) > &, (v), 1t follows
similarly that f(a) > f +1(a), g(a) > gn+1(a) A similar
observation is valid in case fn(a) # gn(b) and a = b,

It therefore follows in all cases that f(a) > f‘m_l(a),
g(b)2 g rH_l(b), completing our inductive argument. Thus,
if any pair of functions f,g with the precedence property
exists, the monotone nondecreasing sequences [f § fé f
will be bounded above, and hence for sufficiently large n
we will have fn+1 = fn’ sn+1 = fn. Consequently the con-

struction described in the preceding paragraph always leads
to a pair f,g of functions with the precedence property,
if any such pair exists. ,

Note finally that, if f,g is any pair of functions
with the precedence property, and if m is any strictly
monotone function defined on the union of the ranges of
f and g, then the transformed pair m(f(a)), m(g(b)) of
functions also has the precedence property. If N is the
total number of terminal and intermediate symbols of our
grammar, then the range of each of the functions f and g
contains at most N integers. Therefore, if there exists
any palr of functions with the precedence property, there
exists a palr whose ranges are both contained in the interval
[1,2N1. It follows, if a pair f,g of functions with the
precedence property exists, that the sequences (fn}ahd (gni
of the preceding paragraph are bounded above by 2N. Since
these sequences are monotone nondecreasing, the contrary
hypothesls that freq = fn and 81
lmplies that the pair of sequences fn P {éni must be
unbounded above. Thus, construction of the two sequences
{fn}, {gnz will reveal directly and algorithmically whether
a pair of functions f,g with the precedence property exists,
and gives the functions f,g when they do exist.

The above discussion terminates our analysis of parsing
methods for precedence grammars. In the following section,

we shall discuss initialization algorithms for precedence
grammars, that is, we shall give an account of the "read-in"

= g_ never hold together

165~

algorithm which can be used to examine an arbiltrary
context-free grammar, declde whether or not this grammar

is a generalized k-precedence grammar for given k, and, in
case the grammar is found to be a precedence grammar, seb

up the two precedence tables needed by the parsing algorithm
developed in the present section.

. Parse initialization for generalized precedence grammars.

As we shall show explicitly in the present section,
the condition that a context free grammar be a generalized
k-nrecedence grammar for a given k 1s algorithmically
verifiable. It is therefore appropriate, in applying the
parsing algorithm developed 1n the preceding sectlon, to
supplement fthis algorithm by a "pead-in"' or parse-
ipitialization algorithm. Such an initialisation procedure
will examine any glven context free grammar, verify that
the grammar is a generalized k-precedence grammar, and set
up +the precedence tables required by the subroutine "compare"
used by the parsing algorithm of the preceding section.
(c.f. Table II).

Tables ITI A,B,C below give an account of such a
syntax initlalizatlon algorithm. The algorithm, which
is somewhat lengthy, is divided in fthe various Tables III
into a main routine, described by Table IIIA, which calls
various principal subroutines. Algorithms for these
subroutines are given in Tables IIIB,C, etec. The over-all
structure of these algorithms is as follows. For each
pailr a,b of terminal or non-terminal symbols of the context
free grammar for which tables are to be set up, and for
a variety of strings forming potential left-hand contexts
of a, the algorithm aims to discover whether or not one of
the three relations a = db’ a > db and a t.db holds. If
at least one of these relations holds, then the algorithm
must discover whether more than one of these relations holds.

-166 -

try:

append:

enter:

testdone:

end:
finish:

diagnose:

Table IITIA. Main routine for verifying that a grammar
has the generalized k-precedence property.

program precgram(k)

for all character pairs a,b of grammar, do all instructions
t£i111 end:

put ¢ = null; overflow = false

m = resolve (&,a,b)

tablel(a,b) =m

if(m.ne.4) go to end

empty pushdown stack

let @ = first character of symbol set of grammar

m = resolve(o,a,b)

if (m.ne.l4) go to enter

put O on stack

let ¢ be first character of symbol set of grammar

prefix character c to 0 to get new value of &

if(length(o) .gt.k) overflow = true and go to diagnose

else go to try

if(m.eq.5) go to testdone

enter value m against 0 in hash table

if stack 1is empty go to end

else let ¢ = string at top of stack

let ¢ = first character of ¢; let © = portion of o following c

if ¢ is last character of symbol set of grammar, go to testdone

else advance c¢ to next character of symbol set of grammar,
and go to append;

continue

if(overflow) emit diagnostic "grammar violates specified
precedence depth 1limit” and call exit

else reduce newly constructed tables to standard form and
copy them onto the appropriate output medium, then call exit.

delete initlial character from @

print out diagnostic message '"@ab constitutes unresolvable
context of maximum length”

go to testdone

-167-

Table IIIB. Precedence condition resolving subroutine.

function resolve (@,a,b)

- m=20

loopl:

testgreater:

gramtest:

loop?2:

back:

if(equal(a,onb)) m =1

for 211 n = 1 %111 total number of productions, do all
instructions till loopl;

put A = intermediate symbol forming left hand side of n-th
production;

1f (not.begin(A,b)) go to loopl

if (not.equal(a,6,A)) zo to loopl’

if(m.gt.0) m = 4 and go to back

elsem = 2 and go to testgreater

continue

for all n = 1 till total number of productions, do all
instructions till loop?2 ‘ ,

put A = intermediate symbol forming left-hand side of n-th
production 4

put ¢ = last character of right-hand side of n-th production;

put p = right-hand side of n-th production, with last
character ¢ deleted;

if (c.notequal.a) go to loop?2

if ¢ 1s a terminal substring off:, put 6' = null and go
to gramtest;

if“o 1s a terminal subatring of 0, put Oi = portion ofd
preceding [and go to gramtest;

else go to loop?2

if(not.gramsub(dihb)) go to loop?2

if(m.gt.0) m = 4 and go to back

m= 3
continue
m=5

resolve = m; refurn

-168 -

Table IIIC, Subroutine to determine the validity of a =gb .-

function equal(a,d,b)
do all instructions till continuel, for all n=1 till
total number of productions:
put A = intermediate symbol forming left-hand side of
n-th production ,
1f right-hand side e of n-th production contains no
occurrence of .,..ab..., go to continuel
else for each occurrence of ab in e do all instructions
£111 continue2:
let aé be the substring offo preceding given occurrence
of ab;
if oi1s a terminal substring of dé, put di = null and go
to gramtest;
else if dé is a terminal substring of O, put GE = portion
of 0 preceding 05 and go to gramtest;
else go to continue?2
gramtest: 1f(gramsub(dlh)) go to yes
continue2: continue
continuel: continue
false; return

]

equal

yes: equal true; return.

-169-

Table ITIID. Algorithm for the gramsub_ function.

function gramsub(q) _
if o contains only a single character, put gramsub = from(Ao,aj,
where Ab is the root character of the grammar being
processed and return.
othérwise let a be the first character of ¢ ; let b be the
last character of ¢, and let 06 be the part of ¢ that
remains after the deletion of its first and last
characters.
generate all strings‘Z'which may be obtained by replacing:
a by any Z such that end (A,a),
b by any u such that begin (o)
any character ¢ of o, by any V such that all (v,c).
for each of these strings Z, do all instructions to loopend:
write T in all possible ways as 7= ’fl’l', wheré ’fl contains
at least 2 characters, and where there exists a
production a —3eC of the grammar being processed such
that'T& is identical with a terminal string oféX.
for each such production and each such decomposition
of'zr do the following instruction:
testl: if (gramsub(aZé)) go to isgram;
write Z'in all possible ways as ir:'Z;é; whe re Z; contains
at least 2 characters, and where'there exists a production
a —3y A of the grammar being processed such that'%;
is identical with an ipitial string of &. for each
such production and each such decomposition of 7; do
the following instruction:
test2: if (gramsub(?&a)) go to isgram;
write 7rin all possible ways as Z’:'?E?E??, where 2; contains
at least 2 characters, and where there exists a
production a-——?'Zé of the grammar being processed.
For each such decomposition of Z: do the following
instruction:
test3: if (gramsub(ZZazg)) go to isgram;
for each production a —3 ol of the grammar being processed
such that Z is a substring ofel do the following

tion:
instruction _170-

testh: ir (from(o,a)) go to isgram;
gramsub = no; return.
isgram: gramsub = yes; return

Any triple a,b, for which elther none or at most,

one of the three relations a - b, a<b, a - b holds,
constitutes a determinate case, in the sense

that no left-hand context of the palr a, b,

beyond the context furnished by ¢, 1is necessary fbr the
parsing algorithm shown in Table IT of the preceeding
section to proceed. On the ofther hand, a triple a,b, &

for which more than one of the three above relations held,
and for which no additional left-hand context as available,
would lead to indeterminacy in the parsing algorithm of

the preceding section, The initialization routine, on
encountering such a triple, must therefore extend the left-
hand context string & by all possible characters of the
grammar at hand, each such character to be appended to the
left end of ¢, attempting in this way to resolve the
indeterminacy.

The over-all flow of the table initialization process
1s determined by the main routine shown in Table IIIA. This
routine uses the principal subroutine 'resolve,!' an algorithm
for which is given in Table IIIB. The 'resolve! subroutine has
three arguments 0,a,b, and returns a value m. The
returned value m is equal either to 1,2,3,4 or 5. a
returned value 1 indicates that the relation a = b and
no other of the three relations a »gb, a <gb, a =4gb
holds; the values m = 2 and m = 3 have a corresponding
significance. The value m = 5 specifies that none of the
three above relations hold. The value m = 4 gpecifies that
more than one of the three possible precedence rel ations
holds; in this case, additional left-hand context for
ﬁhe character pair a,b is necessary if indeterminacy is
to be avoided. Note that the three arguments of the "resolve"

-171.-

function are respectively a string and two characters; the
string 1s of course to be regarded as a potential left-hand
context for the character pailr formed by the two final
arguments.
The main routine shown in Table TITA. initializes

two tables, referred to in its algorithmic description as
"tablel" and "the hash table”. Tablel is a two-dimensional
table, and containg an entry for every palr a,b of characters.
These entries have the values 1,2,3,4,5, which have the
significance explained above. The hash table contains
whatever supplementary information is needed to resolve
precedence ambiguities between character pairs on the basis
of left-hand context. REach entry in the hash table qorresponds
to a triple 0;a.b, and specifies one of the four values
1,2,3,4 for this triple. The "left hand context string'

is extended by the algorithm of Table IIIA. to whatever
length, up to a specified maximum limit, 18 necessary in
order that at most one of the three relations a =Jb,
a 7gb, 2 <o«b should hold. If there 1is any pair a,b for
which more than one such relation holds for a given left
hand context string @ of length k, then 1t follows that
the grammar being treated by the algorithm shown 1n Table
ITIA. is not a k-precedence grammar at all. 1In this case,
the program "precgram' sets an overflow flag, emlts a
diagnostic specifying that the string ¢sb at hand violates
the specified precedence depth limit k, .and processing
continues with the next string #ab which would normally be
considered. No entry is made in the hasbh table for a triple
0>2,b for which a unique precedence relation holds with a
shorter context string than ¢, nor 1s any entry made for
triples g a,b for which the subroutine "resolve", when called,
will return the value 5 indicating that none of the three
relations holds. This convention 1s reasonable, 1n that it
packs a maximum amount of information into a hash table
of given size,.

- 172_

The main routine of Table IIIA. begins by initializing
the two-dimensional "Tablel" using whatever value m is
returned by the "resolve" function-of the three arguments
null, a, b. If a value of m which is different from 4 is
returned, it indicates that at most one of the three relations
a > b, a=hb, a ¢ b hclds; in this case, no entry need
be made in the hash table agalinst the pair a,b, and the
algorithm goes on directly to consider another pair of
characters. On the other hand, if the "resolve" subroutine
called with a null first argument returns the value 4, '
then additional context is necessary in order to establish
definite precedence relations for the pair a,b and entries
reflecting this fact must be made in the hash table. 1In
this case, an auxiliary push-down stack is emptied, the
string is initialized to the first character of the symbol
set of the grammar, and the "resolve" function is again
called. If a value equal to 1,2, or 3 is now returned,
then an entry for the triple ¢,a,b can be made in the hash
table. After making the necessary entry, the main routine
shown in Table IIIA. will then advance the first character
of which the string ¢ consists to the next symbol of the
grammar in sequential order, and loop back to call resolve
again and to make a new entry. If, on the other hand, the
subroutine "resolve," when called, returns the value 5 for
a given triple &,a,b, the sequence .., ab... cannot occur
in a sentence, and no entry need be made in the hash table.
Finally, 1f "resolve" returns the value U4 for the triple
g,a,b, then additional context beyond the context contained
in 0 is required in order to establish a definite precedence
relation for the characters a,b. In this case, a somewhat
different procedure is followed. This procedure is motivated
as follows. On the one hand, the glven left context string
¢ must be extended by additional characters for the reason
we have mentioned. On the other hand, after this has been
done,. one will eventually want %o return to the left context
string 0, advance 1ts first character from an existing value

-173-

to the next character in order, and loop again to make any
necegsary cntry for the triple d,a,b thus obtalned, 1In ‘
order to keep track of the over-ail process flow, one stacks
the string o at the top of an auxiliary push-down stack.
After this 1is done, the first character of the grammar 1is
prefixed to the string ¢ at its left-hand end, and the
algorithm proceeds as above, using, however, the =xtended
string . When all possible first characters for a string

¢ have been run through in this way, the algorithm examines
the auxiliary push-down stack. If the stack is empty, then
every necessary case has already been treated. If, however,
a symbol is found on the auxiliary push-down stack, then
this symbol is retrieved, its first character advanced to
the next following character, and processihg continues as
before. Note that the same procedure could have been written
without explicit vse of a push-down stack in a- language
permitting recursion.

The algorithm for the principal subroutine 'resolve!
is given in Table IIIB. This subroutine 1in turn uses
three further principal subroutines, ‘'equal,' 'begin' and
'gramsub.' The function 'gramsub' has a single argument o7
and tests o to see if there is any valid grammatical string
containing 6 as an embedded substfing. The function ‘'equal'
has three arguments, a, ,b, and returns the value 'true!
or 'false,' depending on whether the precedence relation
a=g"> holds or not. An algorithm for this function is
shown in Table IIIC.

The 'begin' function has two arguments A and b, both
characters of the grammar, and tests to see whether A can
generate a string whose first character is b. This function
. need merely consult a bit-matrix of "begin bits", which has
an entry for each >\and b giving the value of the
begin function. This matrix can be calculated as follows:
Start with a matrix A(),b) equal to 1 if b is the first
character of a string derived directly from A; then repeat

=174~

the transformation A(),b) — min ((& A(A,) A(pob)), 1)
a sufficient number n of times. Here, n can be any integer such
that 2" > r, where r is the total number of symbols of the
grammar being processed. The 'resolve' algorithm shown in
Table IIIB. operates as follws. The value m to be returned
by the function is initialized to zero. The subroutine
'equal' is then called; if it returns the value 'true!,
then the quantity m is set to 1. Next follows a loop to
determine whether or not the relation a (dﬁb holds. This
loop tests all the productions of the grammar to see if the
grammar contains any character A with the following properties:
the leftmost character of the same string derived from),
must be b, and the relatidnship a =o.3~must hold. Note
that thils corresponds exactly to the definition of the
relationship a <6t)as given 1n the preceding section.
If the quantity m has not been set to 1, and it is found
that a {gb holds, then we set m to 2; on the other hand,
if the same relation is found to hold, and m has already
been set to 1, then 1t follows that two conflicting prece-
dence relations are valid. In this case, we setm = U4
and return immediately. After a first loop to test for
the validity of the relation a <6b’ there follows a second
loop, of a rather similar structure, to test for the relation-
ship a »gb. The second principal subroutine, 'gramsub’,
is called in thls second loop. The reader is directed to
Table IIIB. for a detailed account of this portion of the
'vresolve' procedure.

A recursive algorithm for the subroutine 'gramsub' is
shown in Table IITD. This routine recursively condenses
the string which it is to test until either it has been
condensed into the single root symbol of the grammar, or until
no further condensation is possible. '"gramsub" makes use
of the 'begin' function which we have already described; also of
a similar function 'end' which tests two characters A and b

“175 -

to see whether‘h can generate a string whose last character
is b; of a related function 'all', which tests two characters
Aand b to see whether A can generate a string consisting
entirely of b; and of a function 'from' which testsA and
b to see if a string containing the character b can be
derived from A. We leave it to the reader to elaborate
algorithms for the calculation of these functions.

The function "equal" is called by "resolve"; 1like "resolve"
it makes use of the subroutine "gramsub". "Equal" checks
the triple a,d,b to determine the validity of the relation-
ship a =4b. This 1s done by searching the total set of
productions to find a production with the fillowing properties:
The right hand side of the production must contain an
occurrence of ...a b...; if dé is the substring of the right
hand side of this productilon preceding the occurrence of
the symbol pair a b, then the string d'7iconsisting of what-
ever part 6 of the left hand context strinp O precedes
o,, tOUethPP with the intermediate- symbol.A must be grammatical.
Additional details are shown in Table ITIC.

5. Restrictions, Extensions and Generalizations.,

Additional Comments.

In the preceding section we have called a context free
grammar a generalized k-precedence grammar if the use of
left-hand contextual strings o of length at most k 1s sufficient
to insure that at most one of the three relations a =a—b,

a dgpb, a <¢7b can hold. We noted that every generalized

k-precedence grammar is a (k,1)-bounded context grammar.
It is worth observing that these three relations can easlly
be extended to relations involving not only a left hand
context for a palr of symbols a,b but a right hand context
as well.

The precedence relatlons whilch must be defined in
order to do this are as follows:

1) we write a =, 4b 1f there exists a grammatical
string in which the sub-string ... ga bT... occurs and in

~176~

which a and b are both.immediately derived from a cdmmon
node of the parse tree for the string.

i1) We write a %ﬁtb 1f there exists a grammatical
string in which a sub-string ... ¢ a bZ ... occurs and
in which a is the final element of the sub-tree of the
parse tree.

i11) We write a <aytb 1f there exists a grammatical
string in which the substring ...oa b7 ... occurs, and in
which a is immediately derived from some node 4 of the parse
tree, while b is indirectly derived from the nade 4.

If in setting the condition that at most one of the
three above relations hold between characters of a grammar,
we allow left hand contextual strings of length at most
k and right hand contextual strings of length at most‘l,
we speak of a generalized (k,£)-precedence grammar.

An easy adaptation of the arguments of the preceding
section will show that every generalized (x, %) -precedence
grammar is in fact a(k,f+l)—bounded context grammar.
Generalized (k,£)-precedenrce grammars may be parsed by an
algorithm adapted from the algorithm shown in Table II,
Section 2, using tables which may be initialized by adaptations
of the algorithms outlined in the various ‘tables IIT of the
preceding section. We leave all these adaptations to the
interested reader.

Since a generalized precedence grammar is defined as
. one for which the three precedence relations alluded to
above are mutually exclusive, and since the addition of
new productions to a grammar Increases the number of such
relations which are valid, 1t follows that, if a given grammar
18 a precedence grammar, every one of its sub-grammars must
also be a precedence grammar. Even if a grammar is not 3
generalized precedence grammar, it may be that an appropriately
chosen sub-grammar is 3 precedence grammar. Such sub-grammars
may be selected as follows. Starting with some intermediate
symbol A of ga grammar T other than its vroot symbol, we make

_177—

up a sub-set rb of the ftotal set of productions defining ri

as follows . First enter 1nto’1o all productions of which

Ais the left hand side. Next, form the set of all intermediate
symhols appearing on fthe right hand side of fthe productions

of rb, and enter, as additlonal members of fB, all productlions
of which one of these characters is the left hand side.

This, 1n turn, brings about an extension in the set of all
intermediate symbols occurring on the right hand side of
productions in fb. Forming this set of symbols we add to

fb 2ll productions n which one of these characters appears

as the left hand side. Proceeding inductively in this way,

we eventually arrive at a collection fb of productions having
the property that 1f an intermediate symhol c¢ appears on

the right hand side of one of *the productions in ., every
production of [* of which ¢ 18 the left hand side is also
contsined in fb. The collection /B, which we shall also
designate as M(A) when we wish to emphasize its construction,
is then a sub-grammar of [". Even if /M1is not itself a
generalized precedence grammar, the sub-grammar /KX)

may very well be one. It may also be that various other
sub-grammars, /1, [Z, ete., of fﬁ constructed in the same
way, are also precedence grammars.

If thlis 1s the situation, an efficient parsing algorithm
for the language at hand may be constructed as a combination
of the top-down and the precedence parsing algorithms
described in Chapter II and 1h the earlier sections of the
present chapter, respectively. The procedure to be employed
would have the following structure. The "main” routine of
the parser would simply be a recursive top-down algorithm
of the kind desgcribed in Chapter IT. On the other hand,
whenever this routine reached, as a subgoal, a point at
which a substring constituting an intermediate symbol x
whose associated subgrammar-f%x), was a precedence grammar,
then the top-down algorithm would switch into an alternate
mode in which an efficient precedence parse along the lines
of Tahle II would be used. If a complete precedence parse

~178-

1s obtained, so that a substring grammatical according to
N(x) is found, the parsing program will return to its "top-
down" mode and continue. On the other hand, if an error
1s discovered before return from one of the precedence sub-
parses employed, it follows that the top-down goal which
the precedence parse was employed to accomplish is in fact
not attainable, given the characters which follow in the
input string. 1In this case a negative return to the top-
down mode from the precedence mode must be and the top-
down portion of the parser must take whatever back-up or
dlagnostic action 1s necessary. 1In order to facilitate
this, 1t may be convenient to have every precedence subparse
generate all 1ts code into an auxiliary array. Successful
return from a precedznce subparse can then cause the transfer
of all this code into the main code string; unsuccessful
return from a precedence sub-parse can merely erase all the
code generated during the sub-parse.

The "lexical" analyses described in Chapter IIT can
be considered as syntactic analyses corresponding to precedence
grammars of a2 special kind. Call a string 6 of characters
a pr=fix if there exists a grammatical string r’of the form
=07

The prefix ¢ is irreducible in Xf or simply an irreducible

prefix, 1f no sub-tree of the parse tree of ¥ has all its
terminal nodes in ¢. ©Note that in a precedence parse of

the sort discussed in the preceding sections, which scans
over fthe input string, collapsing the sub-string of characters
generated by the left-most complete sub-tree of the varse
tree of z'to a single character, the set of scanned but
uncompressed characters alwavs constitutes an irreducible
prefix in the sense we have just defined. Conversely, a
precedence parse will always have to scan over the whole
of an irreducible prefix before it finds any sub-string of
characters generated by a single node. The maximum number
of scanned, uncompressed characters built up during a prece-
dence parse (which is equal to the maximum number of
characters bullt up in stackl of the algorithm of Table II,

-179 -

Section 2) is thus equal to the maximum length of an irreducible
prefix. If this maximum lenghth 1s finite, the precedence
grammar is said to be of finite depth.

A grammar which is not of finite depth 1s provided
by the following rudimentary example.

(1) cnest> = () | (<nesty)

This grammar permits the geﬁeration of arbitrary strings
consisting of a number of left parentheses, followed by

a precisely equal number of vright parentheses. Any string
of left parentheses constitutes an irreducible prefix; the
grammar (1) will generate irreducible prefixes of arbitrary
length.

If a grammar is of finite depth, it may be parsed
lexically, that is, by a Tinite state machine. We define
such a finite skate machine as follows: Since the maximum
depth which the pushdown stack 'stackl! of the algorithm
of Table II, Section 2, may reach 1is bounded, and since
each item on the stack may assume only one of finitely
many values, we may enumerate all possible states of 'stackl'.
as a collection

(2) Tl’fl ’ -

This collection of states is in fact identical with the
collection of all possible irreducible prefixes of our

finite state grammar. Suppose that the pushdown stack

is in one of its possible states 7. Receipt of an additional,
grammatically lenal, inpub character in this state of the
stack will transform the stack State, either by stacking an
additional item or by unstacking a number of items. In

view of the finlteness of the collectlon (2) we may

summarize these possibilities in a finlte set of transition
rmiles

Those particular transformations which cause elements to

-180 -

be unloaded from the push-down stack will in general

also cause other generative actions; these generative actions
may be indicated in any convenient notation. Receipt of a
grammatically illegal character when the pushdown svack is

in any given state will cause a diagnostic to be emitted

and the stack to be cleared.

It is plain from the above that a finite state machine
whose internal states are in formal correspondence with the
states of the 1ist (2), and whose transition rules are
those glven in (3), can simulate all the steps of a parse
for a finite depth grammar without actually using
pushdown stack. The simulation can be bprogrammed in the
style of Chapter ITI, Section 1, i.e., can use a table of
indexed transfers. As noted 1in Chapter III, such coding
makes good use of the hardware of the computer on which it
runs and attains high efficiency.

Note also that transformation of a finite-depth grammar
into a code written in terms of indexed transfers can be
performed mechanlcally by a suitable metacompiler,

We may define the finite depth property of a grammar
in an equivalent, but more convenlent, way as follows}
Consider the parse tree of the grammatical string 2(, and
the sequence of nodes

(L‘L) VO’\/].’VE"°"V}{

in this parse tree leading from the root nodel)o of the tree to the
particular "twig" node\/k matching the last character of the irre-
ducible prefix ¢. Call the node v, £ 2 1, primary if 1Jis reached
from \2_1 according to the left-most branch of the set of branches
proceeding downward from the node kb-l'

If the node %Zis not primary, we call it Secondary.

Since 0 is an irreducible prefix, no branch of the syntax

tree proceeding from the node 2@_1 and preceding the branch

which goes to the node thxu)be the top-most node of a

-181 -

sub-tree of the full parse tree. Thus, every such node of
the syntax tree of " must be a twig, and will correspond

to preclsely one character of fthe irreducible prefix o,

It follows that there exist irreducible prefixes of arbitrarily
great length 1f and only if there exist sequences (4)
containing indefinitely many non-primary nodes (g. Next
note that the sequence (4) of nodes completely determines

a smallest syntax tree containing the sequence of nodes (U4)
and generating a sentence § , to wift, that tree containing
the chain (4) of nodes and in which every node not belonging
to the chain (#) is a twig. Since a given grammar consists
only of finltely many distinct productions, it follows that
if a grammar is not of finite depth, there exists a sequence
(4) containing two nodes Vm’\é of the same type. Moreover,
if the subsequence Vm’¥;+l”"’y% of (4) contalns only
primary nodes, then the sequence

(5) VRNY ceesVs

0’1’ Y,

Yps12 a2t oo

of nodes determines a minimal tree of the sort describéd
just above, generating a sentence containing the same
irreducible prefix ("as the minimal tree corresponding
to the sequence (4) of nodes. Thus, if our grammar is
not of finite depth, it admits a sequence of nodes

Vs b%ﬁ""L% in which b’ and »} are of the same type,

but in which not all the nodes in the subsequence V;,...,
yn,u.. are primary. Conversely, if this condition is
satisfied, then the chain
(6) VO',V_’...,Vm’ym"l“l,.'.’ n- 1’V mFl.""’ Jn_l,jjrn’

determines, in the above sense, a minimal tree with an lndefinitely
long irreducible prefix.
We may therefore make the followlng statement: a
context free, bounded-context grammar fails to be of finlte
depth if and only if there exists a chain of productlons

(7) ay —> ... a5 ... 5 85 —» ... 8ge.e3 83 TP ..j.eez8, T
aj...

-132 -

in which not every a, is the first character of the production
(7) on whose right hand side it appears.

Note, for example, that using this condition it is
easy to verify that the following grammar, which describes
a language to which the lexical parsing methods of Section 1
of Chapter III can be applied, is of finite depth.

(8) <integer) = {digit) | <integers<cdigit)
{real> = Kinteger). I <integer). (integer)
{namey = letter) ’ <name)» <nonspecial>
<nonspecial> = Lletter> | <{digit
¢letter)> = A|BIcID|E| F|c|H 1| 3| Kl Ljm| Nfo)p|q|R| S
T| Ul VIW| X| Y| Z
<digit> = ol 1] 2l3|y 5|6|7|8|9
Loperator> = .{namey.
¢hollerith prefix) = <integer> H
{octal? = {integery B

6. Bottom-up parsing by the method of nodal spans.

The quantitative problems which any parsing method
capable of handling an arbitrary context-free grammar must
face are dramatically 111um1naped by consideration of
hizhly ambiguous grammars and, in particular, of the simple

grammar

(1) w? = a | ¢y () .

Any string w=aa...a is grammatical according to this grammar,
but each such string has a highly ambiguous parsing; the

set of all parses is equlvalent to the set of all nested
parenthegizations of w. The number of distinct parses
according to this grammar of a string of length n may easily
he seen.by induction to exceed 2”‘2. Any general parsing
method which in any exhaustive sense generates. all parses

of an arbitrary sentence must flourder in such cases, both
in regard to the computation time required to generate
all these parses, and in regard to the amount of space
required for the storage of all the results which emerge.
The exponential growth of computation time and storage
requirements with string length noted above 1s closely

bound up with the occurrence in highly ambiguous parses of
imbadded ambiguities. That 1s, 1f a subsection of a string
to he parsed has several grammatically ambiguous parses,

all originating with a single_nbde of a glven kind Y
and 1f, in the full parse tree for the string, the string
subsection in question tan be condensed into a node of type
V, the full parse tree necessarily inherits the amblgulty
of the sub-tree depending from the node

If ambiguous nodes of this kind occur frequently and
in nested fashion, the accumulation of independent ambiguities
will lead to a degree of ambiguity for the total string
which grows exponentially with the length of the string.
This difficulty may be overcome by passing to a representa-
tion for the total set of parses, the so-called nodal span
. representation, which does not involve individual enumeration

~184_

of imbedded ambiguities. Bound up with this representation
there is also an interesting and quite general bottom-up
parsing method which it is the aim-of “the present section

to describe and analyze. Suppose that I' is a context-free
grammar according to which we wish to parse a succession of
sentences, Let v be an intermediate symbol of I', and

W= a...a a string of terminal symbols which is to be
parsed. If p and q are integers, 1 <p < q < n, we call

the triple (p,v,q), which we will generally write for
simplicity as pv¥q a span of the grammar I'. We say that

the span pvq is present in w if there exists a parse tree,
representing a parse valid according to I', of the subsection
ap...aq_l of the string w, and such that the topmost node of
this parse tree is of type v. Note that w is grammatical
according to I' if and only if the span 1lv(n+l) is present

in w. We call the grammar I' standardized if it has the two
following properties:

(1) no production of I _ has a right-hand side which

is null;

(2) every production of I' is either of the form n — a,
where a 1s a terminal symbol, or n —> VYW where v and H

are nonterminal.

We shall show below that any grammar for a given language
may be replaced in a mechanical and straightforward fashion
by a standardized grammar. For the present, we merely
suppose, in order to simplify our exposition, that the
grammar I' has already been standardized.

A representation of the full set of parses of a sentence w
may be given in terms of a collection of lists as follows. Start
with the span png = 1lv(n+l) present in w; consider all the
productions of I having the form ' n-+ uv. Since (inductively)
pnqg 1is present, some palr of spans having the form pur and
rvq must be present. If the production n—+ uv and the integer r
have thils property, we add a triple consisting of the pair
of symbols uv and the integer r to a list (which we may call

185

the division list) belonging to the span pnq. We shall write
such a division list in the form ‘

(2) pna —> HVrl, uvre, cees uVrk, H'y'r!, .. .

Then, fecursively (and assuming that they have not yet been
processed) we build up the division lists for all the spans
purj and rjvq, ...y €tc., Continue processing in this way
until no unprocessed spans remain.

We regard the full set of span lists developed by the
procedure outlined above as a description of the set of all
possible parses of the original sentence. To'obtain a
particular parse, we have only to proceed as follows. Start
with the topmost span pvq = lvo(n+l). Choose any element HKvr from
the division 1list of pvq; then,recursively,choose an element from
the division 1list of pHr and rvq. This process will terminate
when spans of the form ma(m+l), which represent unlquely defined
terminal symbols of the sentence w being parsed, are
encountered, Note that the sentence w has an ambiguous construc-
tion according to the grammar I' if and only if there exists a
division 1list in the full collection of lists developed by the
above procedure which contains more than a single element.

Assuming that a list of all the spans present in w is
available, we may bound the amount of time and space needed
to produce all the division lists as follows.: the number of
distinct spans is asymptotic to ngg, where g is the number of
intermediate symbols of I'y, To produce the division 1list for
the span png we require a separate step for all r in the
range p < r < g, and this for all productions of the‘form
n — Mv. Thus the total number of distinct steps required
is bounded by a quantity asymptotic to n3P, where P is the
total number of distinct productions in I'. The space
required for the storage of all the span lists is bounded
by the product of P and the number of triples p,qg,r with
‘P < r < g, and hence also by the quantity asymptotic to nBP.

In the case of the elementary grammar (1) each r with

-186 =

P < r < q will actually appear in the division 1list belonging
to the span p<w>q; the full collection of span lists thus
includes a number of elements bounded below by a quantity
asymptotic to nBP. By this consideration we see that the
asymptotic bound n3P given above 1s precise both in regard

to time and in regard to space.

It appears clearly from what we have said above that,
once a list of all the spans present in w is availlable, the
set of all possible parses of w may be elaborated in an
entirely elementary way. Our next task is to develop an
algorithm for finding the set of all spans present in w.

We may proceed toward this goal in the following way. The
span pnq will be present in w if and only if there exists an
r with p < r < q and the production n — Kv of I such that
PHr and rvq are present in w, We may therefore proceed in
inverse order to build up all spans pngq of greater and
greater length g-p present in w as follows. Start with all
spans pa(p+l) of length 1, which necessarily represent single
terminal symbols in I Add new spans to a list of spans
present in w by the following rule:

if PKr and rvq are present, and I contains the
production,n goes to Hv, add pnq to the spans present.

This algorithm, iterated, will clearly produce the set of all
spans present in w.

An efficient arrangement of the flow of work in the
algorithm which we have just described informally is as follows.
For each k, 1 < k < n, we generate the set of all spans present
in the substring w, = 8.8y of w = 8y...a,. We keep this
information in the form of a set of initials lists, each list

consisting, for each node type n and integer q, of the integers
P < g for which the span png is present in Wi _q- To proceed
inductively from k-1 to k, we begin by adding the span ka(k+l)
to the collection of spans known to be present. Then, if a
span rv(k+l) has been added to the collection of spans known

~-187-

to be present, and has not yet been processed, we process

it by

(1) Finding all the productions m —> KV of ', the terminal
symbol of whose right-hand side is v, ‘
(2) For each such production and for each p on the initials
list of WKr, adding all the spans pn(k+l) to the collection

of spans known to be present,; that is, adding all the elements
of the initials 1list of Hr to the initials 1list of n(k+1).
Fach newly added and still unprocessed span pn(K+l) must in
turn be processed in this way; when no unprocessed spans
remain, the set of all spans of the form pn(k+1l) which are
present will have been generated. At this point, we increase
k and repeat the above procedure, terminating the entire
process when k has reached n+l.

The amount of time and space required for the above
algorithm may be bounded as follows. As we have remarked,
the total number of distinct spans is bounded above by a
quantity asymptotic to ngg, g being the total number of inter-
mediate symbols in our grammar. The same formula gives,

a fortiori, a bound for the total number of spans processed.
In processing a given span rv(k+l), we

a) check to see whether this span has already been
marked as processed, in which case, since an earlier copy of
the same span must have been found on the same initials 1list,
we merely delete the span under examination from its initials
list;

b) in the contrary case, process the span rv(k+l) by
enumerating all productions in I' of the form 0 —> ‘W and,
for each such production appending the initials 1list associlated
with Hr to the initials 1list associated with 7(k+l).

Note now that no more than ¢ copies of an element pn(k+1)
will ever appear on an initials list, where c is the product
of k+l-p and of the total number P of productions in I' of the
form n — Wv; thus the total number of elements pn(k+1) which
will ever appear on any initials list during the progress of

-188 -

our algorithm from k-lvto k has the asymptotic bound k°P.
Since, as is clear from a) and b) above, each element
appearing on such‘a list for a secénd’time is processed in
a fixed number of steps, while each element rv(k+l) appearing
on such a list for the first time 1is processed in a number
of steps proportional to the number of productions in I of
the form n — WV, the total number of steps required by our
whole parsing process has an asymptotic bound of the form nBP.
Concerning the space required for the set of initials
lists, note that each of at most ng initials lists can contain
at most n elements; thus the amount of storage required has
an upper bound asymptotic to ngg.
If the grammar I' is unambiguous, that is, if no
grammatical string of terminal symbols admits more than one

parse, the above time estimate may be significéntly improved.
In this case, the set Il of integers added to the initials
list corresponding to n(k+l) during the processing of a span
rv(k+l) must be disjoint from the set 12 of integers already
present in this 1list. If such were not the case, and assuming
the integer p to lie in the intersection of Il and I2, there
would necessarily exist some span r'v'(k+l) present in w, and
some corresponding production m — HK'v', such that pH'r' is
present in w, while r'v'(k+l) & rv(k+l). But then the sub-
string 8le 8 of w would have two structurally distinct parses
according to the grammar I', contradicting the assumption that
I' is unambiguous. This shows that for an unambiguous grammar,
the algorithm described above will place at most a single copy
of each element pn(k+l) on an initials list. Thus, for I
unambiguous, the total number of elements pn(k+l) to be
processed during the progress of our algorithm from k-1 to k
has the asymptotic bound kg, g denoting the total number of
intermediate symbols in I'. It follows at once that the time
required for the complete operation of our algorithm in the
case of an unambiguous grammar and for the parsing of a string

of length n has an asymptotic bound of the form neP.

_189..

It is interesting to consider, from the point of view of
the present algorithm, the simple unambiguous grammar

(3) <w> = <w>al a ,

which we know from the earlier sections of the present chapter
to be prototypical of a class of grammars which permit bottom-up
parsing of an arbitrary sentence of length n in a number of
steps proportional to n. Taking w = a® as a string to be parsed,
we find the Spahs present in ® to be all spans of the form

pdq , p < q; a collection of 1/2 n2 spans in all., This shows
the upper bounds derived above to be precise, and makes it

plain that our algorithm can only be expected to parse

sentences in the time linearly proportional to their length

if we sophisticate 1its action so as-to prevent the formation

of large numbers of spans (in the above example, all those spans
pwq with p > 1) not playing any role in the final parse of the

sentence to be analyzed.
To improve the algorithm in this regard, we must sophisticate

its action. The problem to be overcome 18 as follows.
Suppose that, gilven a sentence w and a span pYq present in
w, we say that pVq belongs to a parse tree of w if there

exists some parse tree for w, contalning a node of tYpe

)y from which there depends a subtree whose twigs are exactly
the terminal symbols ap...aq of w. As the example considered
just above indicates, many spans not belonging to any parse
tree of w may be present in w. In many cases, the number of
spahs present in w will be proportional to the square of

the length of w, while the number of spans belonging to a
parse tree of w will be proportional only to the first

power of w. We must therefore modify our parsing algorithm
in such a way as to cause the modified algbrithm to generate
fewer spans not belonging to a parse tree of the sentence

w being parsed. A technique accomplishing this may be
described as follows. If p and ¥ are intermediate symbols

of P, write,AFV 1if there exists some span,valid according

190‘

to N depending from a node of type)/, whose first symbol
isp . In parsing a string al...akak+1..., maintain a

set of candidate lists Lk’ one for each integer k; these
willl be 1llists of intermediate symbols defined inductively
by the following rule:

Rule a: Let Li consist of all intermediate symbols u such that
UWFw, the top node of I'. For each span pu(k+1l) in Bpeeedy and each
production' n+ uv of T such thatjr)e Lp, put v on Lk+1; if aFv,
put o on Lk+l also.

We now modify the algorithm described above by agreeing
that an integer p is to be added to the initials 1list of a
pair u(k+1l) if and only 1if

Rule b: our preceding algorithm would have added p to this
same 1initials list, and;

Rule c¢: u belongs to the candidate list Lp.

Our modified parsing algorithm has the interesting
broperty stated in the following lemma.

Lemma 1: If the modified parsing algorithm just described
places an integer p on the initials list corresponding to
a pair,a(k+l), then there exists some sentence of the form

(n) al...akbl...gl,
valid according to ', to whose parse tree the span
pu(k+l) belongs.

Proof: We proceed by induction on the integer p. If
p=1, the span 'P(k+1) is present in a;-..a, and our assertion
is evident. If p>1, pH(k+1) is present in ay...a

and,LELp,'so that, by rule a) there exists a span qyb and
an intermediate symbol 7 of " such that either

i v »Vp 1is a production of ", and 7&q, or

1i There exists an intermediate symbol J?ﬂ'f‘such
that PFJ, while 7-))/[1s a production of ', and

47€Lq. _

-191 -

R ks

In case 1, q belongs to the initials list corresponding.
to the pair 4 (k+1); thus, inductively, there exists a
.Lhe form (1) in whose parse tree qy(k+1) and
hence a fortioripu(k+l) is present. In case 11, 1f we let
b b be any grammatical string of terminal characters:

1
such that J‘a b1 .b then in the parse of a, - b1 .bm

m’

sentence of

e 1%}
according to our algorithm we would plainly find that q belonged
to the initials 1list corresponding to the pair (m+1);
thus, inductively, there exists a sentence of the form (4)
whose parse tree contains qﬂ(m+1) and hence a fortiorl contains
0"(1{+1) Q.E.D.

Following Knuth, we may readily define a class of grammars for
which an upper bound on the length of an initials list may be
deduced froﬁ the property stated in lemma 1.

Definition: A grammar [*is said to have the LR(t)
property 1f every span of the form pM(k+1) belonging to a

parse tree of any sentence of the form‘ai...ak+tb1...bn

with given iniltial substring’al...ak_l_t belongs to every parse
tree of every such sentence.

Note that 1t follows trivially from the above definition
that an IR(k) grammar is unambiguous, indeed, any span
belonging to any parse tree of such a sentence belongs to
every parse tree for such a sentence, so that the set of
‘spans of a parse tree, and hence the parse tree itself, are
uniquely defined by the sentence parsed.

The grammar of a gilven set of terminal strings may
always be written either in a "1eft-recursive" or a
"pight-recursive" style. Thus, for example, the language
whose sentences are all the strings a” may be written elther
as

(5a) (w> =<4WY ala
or as
(5b) (w> = a <unla.

-192-

In general, the style (5b), which requires that
terminal symbols be found before new "goals" are established,
i1s preferable for" top-down parses, -while the form (5a),
which leads to parse trees with handles tending to occur
early rather than late, is preferable for bottom-up parses.
Note that a grammar of the type 5a leads to a parse tree
having the general appearance shown in Figure 1 below, while
a grammar of the type 5b leads to a parse tree having the
general appearance shown in Figure 2 below.

N

Figure 1. '“Left-weighted“ parse tree

For this reason, we call a grammar of the type 5a
a left-weighted grammar, and call a grammar of the type
5b a right-weighted grammar.

Flgure 2. "Right-weighted" parse tree

More precisely, we make the following definition

Definition: A context-free grammar r'is left-welghted
if there exists no cycle of intermediate symbols

~193-

"1’?2""’Vk and of productibns such that
(6) 1 -2 Vl...)jpe
U Be ViV
P VH"'V}'"/JI

If riis a left-welghted grammar, it follows that there
exists no infinitely long sequence of intermediate symbols
Pl’P2"" such that‘13+1 18 the last symbol of a productlion
whose left-hand symbol 18 HJ' We may therefore define the
length R of the longest such chailn of intermediate symbols
as the right-chain bound for the lef?t welghted grammar f’.

The following lemma shows that, for the class of left-
weighted IR(t) grammars, the parsing algorithm defined by
Rules a,b, and ¢ will place at most nK integers on initials
lists, K being a constant depending 6n1y on t and on the
grammar r‘. This makes 1t plausible that, for such grammars,
the operation of the parsing algorithm will require a number
of steps proportional only to the first power of n, a fact
that we will in fact establish later in the present section.

Iemma 2: If riis'a left-weighted LR(t)-grammar, then
the parsing algorithm described by the rules a), b), and
c) above will, in the course of parsing a septence Ay ...,
place at most RMtn integers on initials lists, Here, M
is the number of terminal symbols of r: and R 1s the right-
chain bound for ['. '

Proof: It follows by Lemma 1 that, for each integer
p placed by our parsing algorithm on an initials list, there
exists a span pv(k+l) with k £ n belong to the parse tree of
some sentence of the form w = al"‘akbl"'btcl"'cs’ and hence
in the parse tree of every such w with gilven initial symbol sequence
wo=a;...ab ...Db. If for each such w_ and for glven k& n we
choose one sentence w, we obtaln a collectiqn‘wk.of senténces,

-194-

containing at most Mt sentences, such that the node prkﬁl)
1s present in the parse-tree of one of these sentences.
But 1f pV) (k+1), povi,(k+l),. .., pﬁb%(k+l) all belong to

the parse tree of a single sentence, while pl < Py < .,

< P <(k+1), it is easlly seen that there exists a Sequence
of productions of ! such that »3+1 1s the last symbol of the
J-th production, and such that the left-hand symbol is of
the j-th production is »,. It follows thatm % R. Thus
at most R-M° spans pY(k+l) belong to the parse tree of any
of the sentences of our collection Wk. Letting k range from
1 to n, Lemma 2 follows. Q.E.D.

Corollary: If ' is a left-weighted IR(t) grammar,
then the parsing algorithm described by the rules a), b),
and ¢) will never put more than Mt integers on any single

initials 1list.

Proof: If we assumed the contrary, it would follow
Just as above that there existed a sentence w and two nodes
of the form p¥(k+l) and qV(k+1), both belonging to. the
parse tree of this sentence, and with p<q. Then, arguing
Just as above, we find that there exists a sequence
V= Vysbh, .. "Vk =)J of productions of I such that 15_1_1

i1s the last symbol of the j-th production, and such that

the left-hand symbol of the j-th production is 13. The
cyclic character of the sequence ‘ﬁ,...,)& means that these
productions can be repeated any number of times; hence the
exlstence of such a sequence contradicts the assumption that
Mis left-weighted. Q.E.D.

Tt is now easy to show that from the assumption that
r'is TR(t) and left-weighted, it follows that the action of
the parsing algorithm described by rules a), b), and ec)
requires a number of steps proportional only to the first
power of the number n of characters in the input string.
Indeed, since we process only those spans p¥Yq for which p

~195~

is on the initials.list belonging to the pair /q, it follows
from Temma 2 that at most RMtn spans are to be processed.
The processing of a single span pVag involves the following
steps:

i. Find all productions ~9/uv’. At most P such
nroductions exist, where P 1s the total oumber of productions
in [7.

1i. PFor each such production, examine all the Iintegers
r on the initials list belonging to,»p. Ir belongs to
Lr, add r to the initials list belonglng to zcy

Assuming that the elements 7€Lr can be found by direct
addressing, process 1ii) above will, by the corollary to
Lemma 2, require at most Mt stepsa. Thus, that part of the
parsing .algorithm concerned with the calculation of initials

atn steps. The calculation

1ists will require at most RPM
of candidate lists according to Rule a) requires the following

steps.

iii. PFor each p on the initials 1list belonging to'Jq,
find all productions 7-+’JU of rt This requires at most
P steps for each pMq.

iv. PFor each such production, check whether €1p. 1If
this is the case, add V to Lq. This reaulres at most P
additional steps.

v. TFor eachV, maintain a list consisting of all those
¢ such that 7/, On adding V to Lgq, add each element of
this list to La also. This requires at most g steps for
eacn U, whose g 1is the total number of intermediate symbols
present in ['

The processes 1i11), 1v), and v) require in total not more
than P(g+2) steps for each prq; Thus the operation of the
entire parsing algorithm reauvires at most RPMt(Mt+g+2)n
steps.

Note also that all the intermediate data lists required
grow proportionally to n for LR(t) left-weighted grammars P.

-196 -

The efflciency of the parsing algorithm described above
will be enhanced 1f we note in regard to steps iv) and v)
above that no symbol V (resp.d) need be added to the
candldate list Lq unless aanl (resp. aqF&) . Taking advantage
of this fact we avoid the appearance on the lists Iq of
unnecessary candldates, thereby securing a faster parse.

It 1s illuminating in connection with the above analysis
to consider the simple left-welghted grammar

(7) <w? = al|<wva | a¢w.

(Note that, if formal agreement with the terms of our preceeding
discussion is required this grammar may be rewritten in our
standard form as

(8) (w) = al <cwdrala <Y

W) = Lw)b.
We will discuss the general question of grammatical standardi-
zation in somewhat greater detail below.) Note first of all
that the grammar (7) is unambiguous. This may readily be
proved by induction on the length of a sentence w. If

W= wlq ends in the character a, its only possible parse is
clearly

W,
(9) o (o///// \\\a
@)

where on the left-hand side of (9) we have indicated that
0y is to be parsed. If w = wlb ends 1in b, then its only
possible parse is

/“[\

-197-

where we have wrltten W = ahbb and where, in the centef

nf (9), we have indicated that(o? is to be parsed. If we
consider a sentence wW = a DM and its parse according to the
grammar (7)., we find that the following spans belong to the
narse tree of W: |

1,2,...,m

(11) pw(n+m+2-p) for p
| (m+1) wa for q = m+2,...,n+l

Note in particnlar that the prescnce or ahsence of a g
pwq with n<q £ n+l in the rarez tree of wdepends on th

sizz of m, no mattar how long the string a” of a's preived

)

to @ 1s. Tis shows that the grammar (7) does not hava the
hounded contaxt preperty. I6 45 alse clear from what has
heerr sald that no left-to-risht narsing method of the gonersl
cort deferib~d in the nregent section can aveld g@nérating
211 the zpans pln with p<g £ n4l in norsing onbm
acecordance with the grammar (7): thas the LR{%) condition
on A grammar Mic nee 230avy LT gentences of length n ave
to he parged In a number of steps proportional to n, by
a left-to-right algorithm like those we have considered,

The 2lgorithms discugsed above may readily be organized
by the use of a combination of 1list and bit technlques.
Mo Yigtc =ud b1t arvays rzquired for the dotniled
algnritihm »re

a) Tor 2ach poand 4 - and initials J1ist I
) TMw ooeh intarmediaty aymbol [4of the zrammar in quection,

2 cnndidate vector of blies containing a 1-vit in the J-th
position it and anly 1€/H nelongs o the candidate list LJ;

o) For 2acnh intermadiate symhollfaof the grammar in
qu=astion, a proceassed vector D/,oonfaﬂnﬂng a l-hit in the J-th

nosition 47 and only if, at A glven substage of our algorithm,
the snan JkaﬁJ) has already been nrocessed.

In addition to thes2 lists we require a aunher of
auxiliary tables. Some of thesc are best lept as 1ists;
ntrers may ~ither he maintained as arrvays, or since they
willl normally he sparsely populated, may more appropriately

-198 -

be kept as hash tables. The required additional data
Structures are: '

d) An arraytfvnjh one entry for each intermediate symbol
/J of [1; this entry will be non-zero of, at a gilven stage
of processing, %a(k+1) may contain elements representing
still unprocessed Spans, in which case it will reference
the first possibly unprocessed element on I (k+1)
e) An array'vrwith one entry for each int¥ermediate symbol
pMof M ; this entry will be non-zero i1f, at a given stage
of processing, some span pf(k+1) has been generated. (Note:
1t is appropriate, both in the case of the array'ITand of
the array17; to chain the non-zero elements together. If
we do so we can test for the existence of a non-zero element
of“tror.vrvery readily, and find such an element very
readily if any exists) .
) A set of lists Gy showing, for each intermediate symbol
V, all those 7and/4 for which F contains a production
-6/4V?
z) A set of lists H ,a Showing, for each intermediate
symbollu and each terminal symbol a, all those and V for
which I contains a production d MY for which aFy/
h) A set of lists cha showing, for ecach intermediate
symbol Y and each terminal symbol a, all those intermediate
sSymbols ¢¢ for which oKy and aFg.

We may exnress our parsing algorithm in terms of these
data structures in the manner shown in Table IV below.

_199 -

Mahle TV. Algorithm for parsz hy improved method of nodal spans,.

Tnitiallw: Tists ij all emnty:
Cy has 1-1it on, all other bits off;
%¥=0; bh=1'st inpvt symhol;
Advance: b-=k+1l; a=h; if a is end-of-sentence return;
Readynext: Dy=0 for all V:
U -0; V-0 H
h=k+l-st inpvt symbol;
B=hit vector with only k+l-at bit on;
add k to Elﬂk+1) far each symhol fASHCh that [Tcontains a
prodnctinn /l“) o
for each such/u, place a reference to the newly added
’ element k »of Eu(k+1) in the appropriate
. antry of U ;
Process: If U-array ras only zero enhtriss, go to candidates; eclse
' else let 1, be that element of a list Iy(k+1) referenced
by the first non-zero entry of the (T—array;

Do: Tf the j-bilt of Dy is O, go to undone;
Drop: Flse remove J from the list Iv(k+1);
If IV(k+l) contains no subsequent element J' set the v-entry

of the U-array equal to zero, add »/
to the V-list, and go to process;
arthansmio ol ame 1.

Otherwise, 1if IV(k+1) contains a subsem:ent clement j', set

J=0";
Go to do;

Undone: Set the j-bit of Dy;;

If the j-bit of Cy is off go to drop;
For cach and}/4on the 1ist G4, do all instructions until placed;
Append the list %uj to the end of Lz(k+1);

If the T—entry of the 1J-array is zero, cause 1t to reference
the first element in the 1list I

7(k+1)?

Placed: Continue;
' Go to do;

_ 200

Candidates: If V-array has only zero entries, go to advance;
else let v be some symbol represented in V-array,
remove ¥ from V—arr'ay,
for all 7and/4 on the list Hyb do all instructions until adder
for all J on the 1list Iv,k+1 do all instructions until added;
if the j-bit of C,, is on, set Cu = C/,or B;
for all & on the list J /" set C = C,(.or.BJ;
Added: Continue;
go to candidates;

-201-

The 21gorithm ghown in Table IV porses a sentence but
does not produce the division lists described earlizr in
the present chapte». It may, however, casily b2 modified

g9 as to do so. To this end, we allow =2ach entry » on a

list TVk

an 2ssociated divigion list; thls sseond 1ist 1a a list of

tr Ineclude 2 field refeorencing the first item on

item pairs, ~ach ifem of 3 palr r2ferencing a partienlar
itam q on 2 particular inltlals 14st Tem: 'Then (ef. the
asection "indone" 1in Tohle TV) the processing of 2 node

ve attaech,

Jv(k+1) eovses I, to be appended to T

3 (k42)
to the head of the appendad 1ist section, some indication
thet the asroeinted "attachment parametars" are j,V, md u .
Yhen, sihsaqguently, the elements pr(k+]) of the anp~anded
1ist section arc procesread, we attach the palr det~rmined
hy these navram2ters to th=2 division 1ist ~sgociatad with
the antrs p the list T

ntror np of th st T (141
roafevrence these lists quickly, reference tn the lasgt item

) - (In order to ha ablz to

~n the division 1list corresponding to ~ach span pp(k+1)
cnn he kent in a hash array Ap used during the k-th stage
nf the 2lcorithm and re-initia?ized when k 1s incremented
Note that the processing needed %o build up the division
1ists adds only a finite number of steps to the processing of
each span 28 shown in Table IV, Thus, all the computation-
lengt astimates mads above remain valid even 1f divislon
lists are required. It 1s easily ceen by inspection of the
procadures sugzested ahove that the following amounts of
apace are reoquired for storage of the division lists in
the thren nrineipal cases cansideraed above (asymptotie

estimates):

cenaral ambiguous grammars: Pn3
2
grneral unambigaous grammars: Pn
2t
IR(t) left-tilted grammars: P M"'n

Throughout the present sectlon, we have assumed the
grammar r1according tn which input sentences are to be
narsed to have the convenient speclal form described in (1)
and (2) of the second paragraph of the present section. If

=202 _

we begin with an arbitrary grammar, we can put it into this
Special form by the following sequence of steps.

A. Eliminate null productions. 'Determine all inter-
medlate symbols of the grammar whlch can generate a purely
null string as follows: mark every/aadmitting' a production
/M4 — null string, and then, inductively, every Madmitting
a production M—> Vl. . ‘Vk where all Vl. "Vk have already
been marked, ectec. Then given any production/u - Vl' . 'Vk
of r', add to [any production which can be obtained by
omitting any subset of symbols, all marked, from the right-
hand side of this production. Finally, drop all productions
of the .f‘orm/« —> null string from r'. '

B. Eliminate productions or single intermediate characters.

If P contains any cycle of cycl2 of single-character

productions /-41 — /142; //2 —) /03; .. .;/uk'—-) /41

the characters/ﬂl,..‘fuk may be regarded, in an evidant

SCensSe, as synonyms for each other. In this case, we may

r2place all occurrsnces in any production of a character

/“i, i21, kY an ocecurrencas of'/f',,, Rep2ating this step

i 1% ecan no lenser pe appliéd, wWe obtain a nodified

gram2r for tha sqqe Tangaze an r‘ Wwhich does not omit any

sueh ayele of single-charantaw aroductions. Supnose that

this Mas already been done, so that T‘admits no such cycles of single
character productions. If P contains any single-character production
/uw—> v ,'bﬁth/ﬁlnnd V being 1ntermndiate aymbols, choose

sueh 2 nrodueticon with the pronpeorhy that V does notg admit

ANy single-character produetion V) . Nevt, given any

nroductinn ‘7 -3 o(]‘ o p(k of [Vin which k»1, add %o l" any
arodietinn which can he obhtain~d hyr replacing hy W'g any set

of,u's feenring on bhe rishbohand-aide of this nroduction,

Oiven any nrodinetion Y — /31...42 nf r‘, Add tha nraoduetinng

/u -—~3 /51. ,ﬁ% tol1. ®inally, dpron the prmﬂnntiOh/h-—al/

M vracm ’-’.

The nracass wa haya Jugt AdAegeribed 2liminates one

tinalacchavantan produetinn Franm 1. reprating 1% as often

-203-

as nenanaary, w3 Alivdipate everv aingla-charachar production
g I .

0, 8fandapdigs thae neadnetion of ferminal nharactars,

Far ~meh germinal ehoracter Ay of the grammar, inftroduce

a nontarminal vrrmo'lexi and 2 nroduction a% —> ay. ™
\qh », ~

ch nroduction 7—-—)/11 "

characters A, hy the corrosnondineg charac °T@ ﬂ&

of P raplace 2ll terminal

D. Final steps. The grammar now includes nrodvetions

of twn ftmes: ormdwctlons/u‘~> a, ard prodrctions
v g, Whare KZ 2 ard 2l . are nonterminal .
V —2 44 A ‘ / _ y/dl, }“k re nonter

Tor overy nroduchtion of the =econd kind, introduce a seanence

Yy'ay"', ... of additionel intermediate symbols and nroductions

(12) D VA /a-!)": y' — /‘QV" cees l/"" —> /l!c'—lﬂk)

With this last sten we have brought our grammar into
Ehe roquirad standnrdiged form.

T™e parsing mathod descrihed ahove admits of A
coneraligation neeful in the ofFininnt treatment of certain
classen of larce crammars. To see how siuch grammars may
arisae, considar 2 aituation in which we are glven two
crammars f; and fg, and a rula agsoclatbing with each nrodietion

of q hgving the Form

U"“’/‘].‘/lk;

or~ or ssveral nrodinetions of r; having the form

A - /31"76k

Tn this sitration, we may form a kind of product grammar
[as follows. Tor ¥ of f‘ and K of P introduce a new
intermediate gymbol, amo]v th2 pair (ucx) for every two

asanciated nroductions as ahove introduce the nroducticn

r‘ is the grammar consisting of all the productions (13).

-204-

Note that, if f} admits g& nonterminal symbols and r;
admits g5 nonterminal symbols, then r'may admit up to

8185 nonterminal symbols, and a number of productions
equally as large. Thus I may be a very large grammar, and
1ts representation as a product grammar may be highly
advantageous,

Even 1f a large grammar is not precisely a product
grammar, but is only appnroximated by one, its most economical
description may have the following form: specify a product
arammar 1! approximatine [, and then 1list explicitly those
productions of r‘dif?ering from nroductions of '. A
reasonably general and flexible alternative scheme having
essentlally this flavor may be specified as follows.

W2 make use of a context-free grammar f: but associate

with each terminal symbol and intermedinte symbol v’of

Ma set of attributes, whnse valnes may sither be single hiks
or hit-strinsas treated as hoolean aquantities or as integers.

These same ~ttributes attach to each spén of the form o¥q;
for a narti~sular span, the aktrihutes assume particalar val-
ues. With each production vh—a/u]... of the grammar

ve assoclate a set (possibly nu1]) of tggﬁg, which are
arbltrary relations expressed in terms of %he attributes of

the set of srans P1A4P0s p?,gpg,... pkfkpk+l which

are, in aceordance with the inverse of the production
vV —9,/ﬁ"}“k > to be combined to produce 2a single span

pIUpk+1. A1l of these tests must be gatisfied for the
nse of the indicated nroduction to be legitimate, With
the same nroduction we 3lso assceiate 2 set of riles
which specifyv the manner in whinsh the attributes of p]Vpk+1
are to be calculated from the attributes of the shenars
produecing this enan, An easy Adantation, of the algorithm
shown in Table IV, which we leave it to the reader to elaborate upon,
will implement hottom-up 0Aavsing according to context-free
gramars supndlied with node attributern, tests, and vles in
the manrer indicated ahove, To‘sbow how mreh a grammar mav
he condensaed hy the n=e of such 2 scheme, we write out a
crammar for tha normal arithmetic expressior as follows.

-205 -

(24) <expry> = (1] <exnry ¢om> <expr> | [2] («<~xpra)| [? Lnamed>

aktrihites: <exory - loavel (U4)
attrihntes: ony - level (L)
1 : test - level(nartl) X lavel(nart?) > level(part3)

rmile - level = level(part?)
2+ mule - lavel = 0
3 : yle - level = 0

The canventions which have hoen used in (14) are as
fallows. Tine 1 of (14) defines a sirmle confext-free
crammnar: the inrtecers in square braclzeta merelv enumerate
the nradnctions of this grammar. The next two lines ~2re
marels denlarations. and specify that each of the three
amholn (orpp) and gon» of the grarmmar have 23 hobit
attribnte field, called 'level! in each case. 'Tevel,'!
of econrse. rafers to an order of opnerator nrecedence. The
next two lines associate 3 test ard 3 rwie with the production
[1]; the Lest mevely snneifies that, in each composite span
constriated, the normal rvles of operator nrecedence mist
ne gatisfied, while the rule specifies that the level of
the componsite node is to be calculated as the level of its
onerator part. Note that in =very fest and every ™mile
associated with a nroduction, we vefer %o the varlons
subordinate spans to he comhinad into a single span by
reverge apnlication of the nroduction as 'partl', ‘part?, '
ate. |

mha two final lires merely specify that both a parenthesised

exnression and an atomic name have dominant przcedence
in the parse of an expression. The reader should test
his vnderstandine of the forrmlae (14) by assigning levels to the
five wusual arithmefic operators +, -, ¥, /s P in such
a way as to cauvae (14) to coincide in its. final effect with
the normal arithmetic parse.

Near thna end nf the present wnvv we w111 mnof a %t111
more powerfnl and flexihle version of the a2bove mechanism
PAar the condensed expression of large grammars in an account
nf technlques of natural langvaze parsing.

206 -

' Section 4.7 < Notes and Comments

As computers came into wide use, efforts were initiated
to use computers themselves to ease some of the burden of
programming. This technique was first known as automatic
programming, The main problems which programmers faced
around 1951 52 were the small size of the high- speed inter-~
nal memories, and the 1ack of any internal floating point
operations in the machine hardware. The lack of floating
point hardware forced early efforts in automatic programming
to be directed to the development of interpretive floating
point systems; the Comprehensive System (CS) for Whirlwind
at MIT (cf. Adams and Laning [1D), the Speedcoding system
for the IBM 701 (ef, Backus and Herrick [1]), and SHORT CODE
for UNIVAC I all provided programmed interpretive floating
point arithmetic

In 1952-53, J.H. Laning and N. Zierler (cf. Laning and
Zierler [17) constructed an algebraic coding system at MIT
for use at the Instrumentation Lab This system allowed
mathematical expressions and control statements of an ele-

. gance and simplicity which has hardly been equaled since.

This system compiled a set of closed subroutines and an in-
terpretive code for calling these subroutines. Because of
the small memory size of the Whirlwind, each equation (state-
ment) was read from a drum whenever it was to be executed.

The language also included subscripted variables, computed
switches, loops with an index variable running over a list

or varled by an increment and a natural way of expressing
numerical Integration of differential equations. The system
used the CS floating point routines.

In 1952, H. Rutishauser at the Swiss Federal Institute of
. Technology (ef. Rutishauser [1,2,3]) had described methods

=207~

of compiling algebraic equatlons for the ZUSE computer, and
later for the ERMETH computer (Rutishauser also described
optimization by loop unwinding) |

These early systems we e shortly to give great Iimpetus
to the subsequent development of algebraic compilers. For a
time, work continued on interpretive systems which provided
machine 1ike pseudo-instructions for floating point and var -
ious other convenient operations, e.g. the PRINT system for
the IBM 705 (cf. Bemer [1]) and the A-2 and A-3 systems for
the UNIVAC I. .

Following this initial period work on algebraic trans-
lators began 1n several places. In l95h at IBM a group under
J. Backus began the development of FORTRAN I for the IBM 704,
a machine which was to have floating point hardware; in 1955
at Remington Rand, a group under G. Hopper and C. Katz began
to develop MATH-MATIC (AT-3) for the UNIVAC I, a machine
without floating point hardware and with only 1000 words of
memory (cf., Taylor [11]). At the Boeing Aircraft Comrany, in
1955, M. Grems and R. Porter [1] described an algebraic
system for the IBM 701, BACAIC

.FORTRAN, which was completed early in 1957 (Cf Backus et
al. [1], Sheridan [1]) was destined to become the most widely
used algebrailc coding language, in part because of the large
number of IBM 704 computers which were sold, in part because
of the excellence of this pioneering compiler The fact that
the 704 had floating point meant that FORTRAN was a "pure"
compiler interpretive operations belng performed only in the
execution of the input/output and FORMAT statements. Since
it was anticipated that programmers would object to the use
of compiled code which was highly inefficient relative to
hand tailored code, great palns were taken in the FORTRAN
compiler to generate efficient object code. As a result of
this the compiler was slower than it might have been; never-
theless, it set a standard of optimization for subsequent
high-grade compilers In 1958 the 1anguage was expanded to
include independently complled functions and subroutines.

-208-

This was a needed improvement both because of 1ts natural-
ness and because it permitted 1arger programs to be written
in parts Eventually, some version of FORTRAN was produced
for every IBM computer which was used for scientific compu -
tation and for computers of most other manufacturers as
well,

MATH-MATIC, which was in several ways a more powerful
although a less concise language than FORTRAN, might have
been a substantial FORTRAN competitor. Its limited accept-
ance was due 1n part to the unsuitability of the UNIVAC I
for scientific computation. It is noteworthy that MATH-MATIC
provided automatic segmentation and attempted to keep loops
entirely within one segment.

The IT (Internal Translator) developed for the Datatron
and for the IBM 650 in 1957 (cf. Perlis, Smith and Zoeren [17])
demonstrated that substantial algebraic compilers could be
written for a small machine and a whole series of other com-
pilers of this class then followed RUNCIBLE, GATE, CORRE-
GATE, GAT, FORTRANSIT.

Mehlan [1] and the papers which follow it in the journal
in which it appears may be consulted for an account of an
assembly language developed before the existence of true
compilers.,

The pioneering FORTRAN compiler of Backus et al. made use
of advanced optimizations; the syntactic analysis methods
which it incorporated, however were ad hoc and relatively
primitive. Some of the earliest systematic techniques were
based on precedence Schemes, particularly on the notion of
operator precedence Group [1] gives one of the earlier
accounts of the use of stacks in the translation process.
Arden and Graham [1] describe an early compiler based on a
precedence parse and anticipating, in germ, some of the
table-driven parsing methods developed later; cf. also
Kanner [1] and Hamblin [1] for accounts of the precedence
technieques as applied to algebraic expressions, and Knuth
[1] for an account of an early compiler taking a simple
algebraic 1anguage directly into machine language., Cf. also

-209--

Wegstrem [1] for an early, explicitly programmed formula
translator. Samelson-Bauer [1] 1s an early paper. intro-
ducing the bounded-context parsing method and stressing
its applicability not only to algebraic'formulae but also
to the translation of other statements occurring in pro-
.gramming language3° this paper also discusses questions

of target code style related to the compilation of multiply
Indexed expressions.

The systematic syntactic definition of ALGOL given 1n
the two famous ALGOL reports (Naur [1,2] and Perlis-Samelson
[1]), together with the work of Chomsky [1], aided greatly
in popularizing the systematic view of syntax, in particular,
the syntax of programming languages. The resulting parsing
algorithms fall into two classes: the bottom-up schemes, in-
cluding. those utilizing precedence techniques. and the top-
down schemes. .

The literature on precedence and bounded context parses
begins with the development of techniques for the parsing of
arithmetic expressions as summarized for example, in Randall
and Russell [2]; ef. also Huskey and Wattenburg [1], which
describes an elementary, explicitly programmed arithmetic ex-
pression scanner.,

Systematic theoretical development of fast bounded context
and precedence parse methods begins with Floyd [1,2]. The
first of these papers. gives a direct description of a class
of bounded-context syntax analyzers which operate by conden-
sing stacked symbols representing grammatical types in con-
texts known to be unambiguous; in the second paper, a gen-
eral definition of precedence language is given and a high
speed method for the parsing of such 1anguages is described
In Floyd [3], a more general class of bounded context lan-
~guages is introduced and the possibility of analyzing these
1anguages rapidly by the method of "inverse grammers" is
pointed out; ef. the comments at the beginning of Sec. U4.,2.
Graham [1] gives a general surveyoof bounded context trans-
lation with a discussion of problems of code production and

-210-~

of a number of problems related to optimization, together
with a bibliography of papers up to 1964, Evans [1] is a
particularly readable account of bounded-context parsing,
with a brief account of the relation of parsing to the re-
mainder of the compilation task, See also Irons [4], Paul
[1,2] and also Samelson-Bauer [1] which describes a 1-1
context parser; a similar 1-1 context parsing scheme 1s ex-
plained in Eichel, Paul,’ Bauer and Samuelson [1].

A history of the use of this compiling technique, with
some comments on target code style, is given 1n Samelson-
Bauer [2,1,3]; ef. the more general review in Samelson-Bauer
[4].

The concept of generalized precedence grammar which is
described in Seec, 4,2, together with the parsing method for
these grammars described in that section, is due to Wirth
and Weber [1]; cf. also McKeeman [1]. Ross [2, 3] describes
a precedence-like algorithm in which broader contexts can
be considered using a back—up scheme.. LeaVenworth [2] out-
lines a precedence-parse scheme for translation of FORTRAN
with special attention to the parsing of Boolean statements.
Cf. also Wegner [1], Keese and Huskey [1], Bandat and
Wilkins [1].

The general parsing technique available for precedence
grammars is Very efficient; this method, supplemented as
appropriate by special devices for the high speed determina»
tion of prefixed statement key words for languages in which
‘such keywords exist, seems to be the best general method of
syntactic analysis for application in situations where little
language variation is expected and a high speed parse 1is
desirable. The no-backup top-down parse of Chapter 2 has
advantages if compiler flexibility is more important than
barse speed,

The nodal span parse described in Sec 4.6 is due in its
full development to Earley [1, 2], this method goes back to
earlier work of Cocke and Younger, cf. Younger [1,2], and

-211-

Hayes [] and is related to work of Knuth on LR(k) grammars,
cf. Knuth [2].

Kanner [1] describes a non-backup top-down compiling
scheme, and makes some comments on target code style, sym-
bol table handling, and the general problem of ‘name resolu—
tion. Lietzke [1] describes a top-down syntax checker for
Algol. Kuno [1] describes a top-~down parser, intended for
application to natural 1anguage parsing, which works with
grammars in which the right-hand side of each production
begins wlth a terminal symbol (standard form grammars).

Kuno observes that the speed of such a parser may be in-
creased if a bit table of failed alternatives of the form
[syntactic type, initial word position] is maintained, and
1f an alternative once failed is never retried. Cf. also
Kuno and Oettinger [17.

‘Floyd [4] gives a brief survey of syntactic analysis
methods as deVeloped up to 1964, with an emphasis on top-
down methods. This article includes an excellent biblio-
graphy of papers up to its date,.

A continuing source of controversy has been the relative
efficiency of the various parsing methods. Two different
questions can be asked: how badly does the algorithm do in
the worst case, and how badly does it do on "normal" state-
ments. Although some data exists on the former question,
the latter is much harder to answer. Griffiths and Petrick
[1] discuss the number of steps required'by various straight-
forward top-down and bottom-up parsing algorithms, as well as
a simple nodal span parser, to parse languages defined by
various very elementary grammars. They point out that the
number of steps required by a top-down parser may grow ex-
ponentially with the length of the sentence to be parsed,
and that the effectiveness of a parsing method may, in cer-
tain cases, depend sensitively on the particular grammar
chosen for the language to be parsed. Modelling the various

-212-

parsing algorithms which they study in a standard way by
Turing machines (not necessarily a very. good way of measur-
ing the efficiency of these parsers) they give a certain
amount of empirical data on the lengths of simulated parses.
Unfortunately, the algorithms considered by Griffiths and
Petrick are sufficiently different from the optimal forms of
the parsing methods that they study, and the empirical data
presented sufficiently narrow, so that the only conclusion
that may reliably be drawn from their work 1s that a naive
top~down parser may be catastrophically inefficient Cf.,
however, the obJection of Brooker [1] to that conclusion.
The Griffiths and Petrick paper also includes an extensive
bibliography on parsing methods deVeloped up to its date.

Kasami [2] exhibits a simple class of languages which
cannot be recognized in less than C(n.log n) steps by a
class of parsing methods modelled by Turing machines,

For a review of the application of these and other ana-
lysis techniques to English, cf, Bobrow [1].

Compilers organized around a systematic view of syntax
analysis first emerge in the papers of Irons [1], Warehall
[l] and Brooker and Morris [1,2,3,4]. Brooker and Morris
describe an elementary top-down syntax-directed compiler
scheme like those considered in the early sections of
Chapter 2. ‘This system includes a language, somewhat stiff
i1n the view of the present author, for the description of
generative actions. A summary of the Brooker-Morris work
is contained in Rosen [2]. The compiler described by
Irons is rather similar, and, like the Brooker-Morris SysS=-
tem, includes a primitive language for the description of
generator routines, Cf. also Cheatham and Sattley [1],
McClure'[l] Metcalf [1], and Reynolds [1]. Schoore [1]
describes a similar top-down compiler—compiler incorporating
a special, somewhat 1imited language for the output of
macro-symbols during syntax analysis, Schneider and Johnson
[1] describe a slightly extended version of this system able
to accomplish certain local optimizations: Cf. also Pratt

-213-

and Lindsay [1] for an account of a similar system, some-
what specialized in the direction of interpretive execu=-
tion rather than compilation. Brooker et al, [2] summarizes
experience up to 1967 with the Brooker-Morris compiler-
compiler, they indicate that compilers written using their
system tend to be approximately twice as large and three
times as slow as carefully designed hand-coded compilers.
(Compilers emplOying lexical prescanners and faster syn-
tactic analysis algorithms can do considerably better than
this.) ' | -
Ledley and Wilson [1] descrive a bottom-up parsing method
applicable to grammars containing no recursiVe definitions,
together with a simple scheme for describing target langu-
age by expressions specifying local node transformations in
a parse-tree. Cheatham [3,4] and Dean [1] describe TGS-II,
a compller-writing system consisting of a conventional al-
gebraic languages, supplemented with a powerful pattern
matching facllity. The memory of the machine has been re-
constituted as a set of descriptors; these are the data of
TGS-II. These descriptors impose a skeletal structure on
the dictonary and other tables. The system of Domolki [1]
is particularly interesting both because the uger specifies
the grammar in inverse form and because the associated
parsing algorithm 1is elegant and efficient

The input to the compiling system is an ordered set of
inverse grammar rules. As usual, the right hand sides of
these rules may have calls to compiling routines Intersper-
sed with the elements of the reduced string. Thus

Yyt Oq0p e O T BV BoY, el By,

is a typical rule, where the di’BJ represent elements of
the vocabulary, terminal or nonterminal, and the Yy re-

present calls to the compiling routines The presence of
such a rule implies that when a1a2 ...ak is recognized

-214-

as a constituent of the input stream, it is to be replaced

cuted at the indicated places.

Generally speaking, glven a partially parsed string, the
left hand sides of several rules may appear in it. For
example, one might have

.................

where 10 20 3 represent instances of left hand sides

or rules of the grammar. Under these circumstances, the
Domo1ki scheme requires that the grammar give the "correct"
parse 1if the rule of shortest length that terminates at the
left most point 1s applied In the above example, 21

would be applied. 1In case of a tie,.the rule with smallest
index is applied. |

The elegance and efficiency of the D&mB1ki algorithm de-
pend very heavily on the ability of computers to perform bit
string operations in parallel.. Let rl,rg, ooy rn be the

rules of the grammar and let ‘lril represent the length of
the left hand side of rule ry. The basic data structure
D of the algorithm is a bit string of length -:Z§ 1'|ri|

Such a string contains a bit position for every element of
the left hand side of every rule

For convenience,_if b 1s a data structure of type D, we
shall write

-215-

b(i,k) = 1

to indicate that the bit corrésponding to thé kth

of the 4t

word
rule is on.

.
i}i=1
used in grammar rules. To each vy we correspond a data

Let "{v be the vocabulary, terminal and nonterminal,

structure Vi of typé D with thé propérty that

th

Vi(J,k) = 1+sr, is the k

1 elemént of rule Jj.

Thus the Vi structures are an encoding of the left hand

sidés of the rules.
In addition, we define two structures, F and L that
respectively mark the beginning and end of rules:
F(j,1) =1, J = 1‘,2,...,_1’1;

L(J,lrjl) =1, J =1,2,...,0.

Finally, the algorithm makés usé of a stack Q of structures
of type D. An element Qt of the stack i1s associated with

a pointer into the input stream. The significance of an
element Qt 1s defined by the following statement:

Qt(J,k) = 1l+«+the last k characters scanned
are the first k characters of rule J.

The heart of the algorithm is the following. Suppose one
has the structure Qt-l and wants to calculate Qt’ the

structuré assocliated with the néxt input character. Let the
next input character be’ vp. Then
Q(Jrk) = 1+Qq._,(J,k-1) =1 and Vo(3sk) = 1.

More éxactly, let R(Q) be the function that shifts the Q

-216-

structure'right one bit., Then
(1) Q= (R(Qy_3) v F) V.
Observe that a left'hand side has been found whenever

Using this notation, the algorithm can be described very
easily. The algorithm used two stacks, one for the @
elements and one for the input characters.

A scan cursor p is started at the beginning of the in-
put string, and @y 1is set to 0. Then calculation (1)

is made, and Ot 'and the inpnt character are placed on

their respective stacks, the scan pointer is advanced
Then test (2) is made to see if any rule is complete; if
not, the procedure 1s continued until a completed rule is
found.

When a rule is found to have been completed, a check

is made to find out which rule ri is applicable, The

vocabulary elements pJ of the right hand side of rule

ry are placed in front of the scan cursor P, which is

then set to point to the first of these. Commands are
eXecuted as discovered. Then ‘lril elements are popped

from each of the stacks and the algorithm continues.

Conway [1], using a diagrammatic notation, describes a
no-backup parser which agaln is much like those considered
in Chapter IT. Conway's parsing algorithm applies to a
slightly restricted class of no-backup languages; 1in par-
ticular the range of applicability of this compiler is
restricted by the fact that no method for providing genera-
tor routine assistance to the syntactic analyzer is incor-
porated In his system Conway s article also contains a
discussion of some of the issues involved in a strictly

=217~

"one-pass" style of compiling. A discussion of some of
the special issues involved in the treatment of COBOL
qualified names is also included

Continuing the line of development initiated by Brooker
and Morris in the series of papers cited above, a number
of other authors have described more or less complete com-
piler—compiler systems. The McKeeman system described by
McKeeman, Horning, and wOrtman and surveyed above 1s one
such; Feldman [1] describes another such system incorpora-
ting a bounded context parse and a semantic metalanguage
suitable for the description of the inverse grammars in
terms of which such a parse is specified Feldman s system
includes a reasonabley general semantic language, generator
routines written in this language may be called by the se-
mantic analyser, the whole system is rather like the
"generalized Backus" system described in Chapter II, except
that 1t uses a bottom—up rather than a top-down parser.
This system was deVeloped at Carnegie-Mellon University for
use there. Gilbert and McLellan [1] describe a compiler-
'generator system, related to the GENESIS system of the Com-
puter Sciences Corporation, in which syntax is specified by
direct listing of a family of significant contexts (inverse
or "analytic grammar" technique) Recognition of any signi-
ficant context will invoke corresponding generative actions;
these generative actlons are written using a macro language
which refers to temporary registers symbol string registers,
to symbol attributes kept in a standardized hash table, etc.
Generative output actions, specified in an output macro-
language, and diagnostic output actions, specified in an
appropriate form, may also be invoked. The system also in-
corporates a scheme for high-speed lexical analysis of an
input string. Sibley [1] describes an experimental compiler-
compiler system, with the acronym SLANG, develcoped at the
IBM Corporation. This system, intended to emphasize machine
independence, turns source code into relocatable intermedi-
ate language, which 1s then transformed into executable code

-218-

with the help of a collection of machine-dependent.code
emission'routines written in a macro-language having a weak
cOnditional macro—expansion facility useful in optimizing
the local code-selection process. The system incorporates
a "machine-features questionnaire" in which such basic
machine features as word length register number, etc., are
specified to the code generator as parameters. However, as
the optimization problem cannot be treated so simply, the
SLANG system has not proved to be practical Grau [1] des~
cribes a semi-symbolic language suitable for the description
of target code in a compiler-compiler system. Warshall and
Shapiro' [1] describe a compiler-compiler system incorporating
a macro- language for the description of code to be generated;
this article emphasizes the problems of code generation and
describes a number of simple code optimizations. Cf. also
Bolduc et al. [1] and Lin Chang and Marks [1,2]. Barnett
and Futrelle [1] describe a syntax analyzer and its input
metalanguage. Burkhardt [1] presents a brief summary of
some of the early compiler-compiler systems. ,

One of the most important tasks of a compiler is to pro-
vide error diagnostics to a programmer attempting to use a
~glven source language, Unfortunately, the important problem
of adapting the various syntax analysis.methods available to
us so that they also serve this end effectively 1s one that
is hardly discussed in the published literature' We may, in
attempting to elucidate this point, begin by observing that
diagnostic messages may be separated into two approximate
classes, according to the type of error which they record:

gram elements, the inconsistent use of declarations, etc.,
and which try to pin-point the particular statements or
statement fragments responsible for the occurrence of an

error, and semantic diagnostics, which note errors in pro-

gram flow of a sort that can most easily be detected by the
flow analysis section of a code Optimizer (see below, chapter

-219-

on code optimization). In the present paragraphs, we shall
only discuss error diagnostics of the first type.

In regard to dilagnostics, a compiler ought to aim durilng
its syntax analysls pass to produce as many valid diagnostics
as possible, this will allow a programmer to proceed at maxi-
mum rate to complete the syntactic debugging of his program.
This aim indicates the use of one or another scheme for re-
covering efficiently from the effects of a single error so
as to allow compilation and the detection of additional er-
rors to proceed (Note that the occurrence of a single error
of a degree of severity suffilclent to preclude execution can
be used to set an internal switch in the compiler maintain-
ing syntax analysis and declaration analysis but turning off
code generation to gain speed) The main feature of pro-
gramming languages which facilitates partial error recovery
is the almost universal definition of a <program> as a single
list of <sentences> separated by easily distinguished end-
of—sentence marks. This allows a compiler to continue past
an error by issulng any diagnostic relevant to a single sen-
tence and then by skipping to the next beginning-of—sentence
point where the syntax analysis process is restarted. To in-
dicate the probable approximate location of the error in any
sentence in which an error is detected the compiller may
underscore the erroneous sentence up to the last point to
which the syntax analysis process 1is successful depending on
the parsing method used, this would be the first point at
which an illegal precedence condition was detected in a
generalized precedence parse, the first point at which an
lrreducible context pattern was detected in a bounded con-
text parse, and the token marking ghe end of the longest in-
put string which could form the initial portion of a sentence
in a top-down parse. A non-backup top-down parser of the
sort described in Chapter II will normally be able to associ-
ate a necessary syntactic goal and an unattainable syntactic
subgoal wlth any error condition; printing out this infor-

-220-

mation as part of the associated dlagnostic will{generally
aid the source language programmer.

Parsers with more sophisticated idagnostic aims may at-
tempt to guess corrections for errors occurring within
sentences to be parsed correct or approximately correct
guesses willl allow other errors occurring in the same sen-
tence to be diagnosed The guessing algorithm can use
some uniform heuristic or may be designed more irregularly
to embody empirical experience of the likelihood of errors
of various classes. It is to be noted, however, that over-
insistent attempts to guess error corrections may result in
the production of voluminous and confusing spurious dia-
~gnostics accountable rather to the correction guessing
mechanism than to the programmer which it 1is attempting to
aid.

Irons [3] describes an interestingtheuristic for attempted
diagnostic error-correction. Inaa bottom-up parse, one be-
gins by 00ndensing as many syntactically unambiguous sub-
strings of the Input as possible into single syntactic ele-
ments, thereby producing a maximally condensed input string
d. It this normal parsing procedure falls to give a com-
plete parse, i.e., fails to condense an entire input sen-
tence into a single symbol, Oone examines 0, searching for
a point at which the interpolation of an appropriate syn=
tactic element will allow the condensation into a single
element of two or more symbols present in o. If none such
exists, that element of o which represents the shortest
substring of the original input string is deleted and the
process repeats, Note that since successive iterations of
this process necessarily produce successiVely shortened in-
termedlate strings a, Irons' algorithm 1is convergent

Irons' idea may be adapted for use by a top-down parser
as follows. To the longest initial substring o of a sen-
tence to be parsed we associate the most general goal T
which the parser attempts to £il1 (unsuccessfully, of course)

-221-

after scanning the last character of g¢. If the remaining
portion of the sentence contains any token A which could
form a valid first character of a syntactic element of type
T, we drop out all elements ‘of the sentence between the
end of o and the first such character A. 1In the con-
trary case, we interpolate some character valid as the
first token of a syntactic element of type ' In either
case, the operation of the parsing-error correction algor-
ithm COntinues

The very interesting paper of Freeman [l] describes a
set of pragmatic error correction techniques which haVe
been used successfully in a student-problem compiler at
Cornell. The techniques used include the following il-
legal punches are converted to a standard "error" charac-
ter, serving as a flag to a subsequent "correct mispellings"
subroutine. This subroutine incorporates a number of so-
phisticated error-correction guessing techniques based on
the comparison of a word in which a misspelling is suspected
to a list of words likely to occur in its place; basic in-
formation obtained from such comparisons is supplemented by
statistical information concerning common keypunch errors,
and statistics on the usage of particular words wlthin the
program belng compiled. Syntactical conflicts in repeated
uses of a single word are treated as misspellings by adding
a nominal "illegal punch"'character to words used in con-
flicting fashion. An attempt 1s made to break up words mis-
spelled by the omission of a blank separator into their
component parts. |

The subscript 1 or the subscript pair 1,1 is automati-
cally attached to an array name erroneously used without
subscripts; a variable not declared as an array but re-
peatedly used as an array i1s checked for near—agreement in
spelling with a declared array, and, using this information,
a decision 1is made to treat the variable as an array or not.
If the variable is not classified as an array, expressions
Juxtaposed to it in parentheses are treated as implied
multiplications. Missing operands in arithmetic expressions

=222~

- are supplied as "1", Redundancy in the statement forms of
the language is used when available, to supply missing
parts of statements. Missing or misplaced labels are sup-
plied by searching nearby statements and other relevant
context for labels; misspelling correction for labels is
guided by the occurrence of nearly matching words in syn-
tactic settings implying those words to be labels.
Similarly, misspelling correction for variable names may
be gulded by the occurrence of nearly matching pairs of
words on the right and left sides of assignment statements.

The system described by Freeman also provides a number
of execution-time debugging alds,including a cumulative
statements—executed count, an individual labeled~stat ement -
executed count arithmetic trap messages, a check on il-
legal and excessive array indices, and a check on 1llegal
repitlon and branch conditions. For other discussions of
the correction of spelling errors, see Blair [4] and
Damerau [1].

An amusing and informative discussion of various general
issues which the diagnostic section of a compiler must
face, together with a more general discussion of the prag-
matic issues arising in compiler specification, is found
in Hartman and Owens [1].

A successful counterpart to the Backus formalism for
syntax description has yet to be found for the description
of programming language semantics, consequently the work
on code generation has for the most part been ad hoc and
non-systematic

A number of papers discuss various problems connected
with target code style in FORTRAN, ALGOL, and other lan-
guages. Ingerman [3] makes some comments on target code
style applicable to subroutine linkages in ALGOL. Irons-
Feuerzeig [1] discuss the same question 1in slightly
greater.generality. _

Warshall [1] describes, in broad outline, a code gen-

-223-

erator system which accepts as 1ts input a standardized
analysis tree produced by a syntax analyzer, and which
yilelds assembly-language or machine-language code as its
output The system incorporates a language for describing
tree-traversal and conditional code-generation actions,
-code generation being controlled by a set of tables des-
cribing registers in the machine to be compiled for, the
sequences of operations available for affecting various
basic operations, and the cost in time of executing these
operation sequences. Various local Optimizations (register
selection, etc;) are incorporated in thls system on a gen-
eral basis, additional, essentially arbitrary, subroutines
may be called from within the system.

Because of the effectiveness of the Backus formalism,
there have been many attempts to find similarly effective
mechanisms for the specification of programming languages.
This effort, st1ll relatively unsuccessful and not even
fully focused, aims at two related goals,

1) To find a metalanguage in which elements of lan-
guage which are syntax related but not entirely syntactic
as, for example, conditions of consistency in the use of
definitions may be concilsely expressed

2) To find a language 1in which the meaning of programs,
i.e., the rules defining the effect of executing a valid
program, can be concisely expressed

One may interpret each of these either in a strong or
in a weak sense, l.e., either in the strong sense of pro-
cedural specification, or in a weaker non-procedural sense,
Thus, for example, gobdal 2) can be attained in its strong
sense only by providing (in some more "basic" language) a
definitive program interpreter which 1s at once concise
enough to be logically transparent and specific enough to
be mechanically transformable into an acceptably efficient
eXecutable interpreter. On the other hand, goal 2) is at-
tained in its weak sense if a program interpreter is pre-

=224~

cisely defined in a "basic" 1anguage of mathematically un-

ambiguous meaning but with the use of dictions whose trans-

formation into algorithms may be unspecified or whose al-
gorithmic representation may. be catastrophically inefficient

The value of such a specification lies in the fact that it

can provide a concise and authoritative definition of the

intended meaning of programs written in a language of in-
terest' would-be authors of compilers for the language will
then have an authoritative document against which the cor-
rectness of their detailed specifications can be checked
and one may even imagine that mechanical proof-algorithms
could be used to verify that compiler produced code neces-
sarily did have the effect required by the concise speci-
fication of program meaning for the language being compiled.

Naturally enough, the farther we retreat from the‘strong

~goal of providing specifications which are both precise and

algorithmic, the more conciseness and logical transparency
become of prime significance. Among the precise formal
languages contributed to us by mathematics, the language

of sets and functions, in its various versions, 1s dis-

tinguished for generality and power, and 1t is no surprise

to find aspects of this language incorporated in various
schemes proposed for weak-sense semantic specification.

Let us note that the set-theoretical 1anguage incorporates

elements going in various degrees beyond those belonging

to languages intended for actual compilation or interpreta-

tion: Among the facilities so provided we may note:

1) sets A to which elements may freely be added and whose
‘unlons and intersections may readily be formed;

2) functions f defined by sets of ordered pairs or n-tuples.
and the ability to form such sets as "{x|f(x)eh}, whose
specific algorithmic construction may imply very exten-
sive calculation;

3) predicates P of several variables in terms of which pro-
positions such as (3 x3)(Vx,)(3 X-‘3)P(X1,X_2,X3), pos-

sibly implying veryextensive calculations, may be formed;

225~

4y "unspecified search" or "an elmment which" constructions
such as (ix)P(x) which may imply extensive‘searches;

5) set-from-set constructions, like the power set or "set of
all subsets" construction, which imply impractically
enormous expansions of original data sets;

" 6) free use of recursion and other powerful auxiliary mathe-

matical definition methods.

The value of using a powerful albeit non-implementable
mathematical language for the definition of language seman-
tics 1s noted by McCarthy [1] who discusses with relative
clarity the issues inVOlVed in such an effort, ef, also
van Wijngaarden [l], Steel [1], Garwick [1], Strachey [1],
Landin [1] for related discussion. McCarthy proposes a
scheme incorporating recursion and structured inter-node
reference in tree- like data bodies as a mathematical basis
for semantic definition, and emphasizes the fact that the
semantic specification problem may be isolated from ir-
relevant syntactic detail by taking programs to be given in
a syntactically preanalyzed tree form. An application of
these ideas to a small subset of ALGOL is given in McCarthy
[2]. McCarthy's proposal has subsequentlybbeen developed
by workers at the'IBM Vienna Research Laboratory and applied
to define the semantics of the PL/1 programming language, cf.
lucas, Lauer, Stigleitner [1], and Bandat [1] for a brief
summary of this work. .

Many papers have been written on details of internal
compiler organization, Several of these deal with various
aspects of symbol table handling. Batson [1] describes a
linear symbol table organization for ALGOL; Sadmine and
Weinberg [1] and Kanner et al. [1] describe tree-structured
dictionaries,. Description of listing techniques are given
in Buchholz [1] and Morris [1].

The handling of procedures in ALGOL 1s discussed in

-226-

Ingerman [4]. TIrons and Feuerzeig [1] discuss the mechan-
isms required to hadle recursive procedures and block
structures.

Storage mapping algorithms and the handling of user-
defined data structures 1s another area with a large litera-
ture. Sattley [1] discusses the handing of dynamic arrays
in ALGOL 60, and introduces the notlion of dope vectors.
Arden [1] and Galler and Fisher [1] give algorithms for re-
solving equivalence declarations.

The incorporation of macro—definition features into com-
piler languages to permit the extension of such languages
as well as the more general problem of allowing language
extensibility through the definitiOn of new data types,
syntactic forms, etc. is an interesting problem which has
been the subject of a number of papers. »

Two principal issues which must be faced in designing a
scheme for macro extension of source languages-

1) To what extent shall the macro processor interact with
the source language compiler?

' 2) What range of application i1s the macro feature intended

to cover?

In regard to 1), we may note that a spectrum of possibi-
lities exlsts, Macro processing may use the tokens of the
language to be compiled (i.e., use the lexical scan routine
of the compiler with which it is associated) but otherwise
be fully independent of the syntax analysis. In this simp~
lest case, macro processing will be confined to a pass pre-
ceding the beginning of the translation process propers; the
macro processor will transform an initial token string into
an expanded string of essentially similar tokens. It 1is
possible to use a macro processor of any one of several de-
grees of complexity for this purpose, beginning with a
simple key word expander bullt directly into the lexical
analyZer ranging through a macro expander of essentially
the same type but Including a parameter-substitution feg-

_227-

ture, up to the use of a general recursiVe-macro trans-
formation scheme like that described by Strachey [1]. For
still greater generality in macro processing, a specialized
string processing 1anguage with elaborate pattern-recognition
features may be employed (SNOBOL, discussed later in the pre-
sent work, is a good example of this sort of thing). Still
greater_generality in this direction would be attained by
using a syntax pre-analyzer to transform the input string
into a tree and by coupling the syntax analyzer to a re-
cursive tree processor (1ike LISP) able to effect extremely
general recursive transformations of trees recognized. The
advantage of such schemes 1is that they are transparent and
no more difficult to use than the string and list proces-
sors which they incorporate. Their disadvantage 1s that
they cannot make use of any of the information gathered by
the compiler with which they are associated unless the pro-
grammer using them re-specifies much of the syntax analy-
sis which is to follow. For this reason, schemes allowing
more interaction between a macro expander and an associated
compiler have been proposed. In such a scheme, the course
of macro expansion may in part be determined by information
found by the compiler, as for example the syntactic role
played in a given sentence by particular input tokens, the
attributes assigned in the course of compilation to input
tokens, etc. Such schemes must, however, face difficulties
which arise from the fact that the particular set of gram-
matical definitions and the details of the particular method
of syntactic analysis which a compiler employs may be re-
1atively complex and unknown to the average language user.
Unless a special effort is made to simplify and standardize
both grammar and order of analysis in a compiler closely
associated with a ma.cro=-processor, so large a mass of special
1nformation may be involved in attempting to use the macro-
processor as to make it rather difficult to use, If a
macro expander 1s to access attribute information gathered
by a syntax analyzer with which it is associated, these

-228-

attributes must be maintained and referenced in a manner
common to the syntax analysis program, the associated macro
processor, and the user of the total system, this may in
significant ways constrain the order in which the syntax
analyzer establishes attributes, manipulates them, etc.
Moreover if the output of the syntax analyzer i1s semi-
compiled code rather than strings of tokens in a form dif-
fering only slightly 1. M the input form of these tokens,
the would-be user of a ~atro expander may be forced into
unpleasant interaction WiL‘ the details of intermediate
target-code style emp10yed by the compiler with which the
macro-expander is associated. In avoiding this while still
combining macro-processing with syntax analysis one might
be led to the use of a syntax analyzer which (at least on a
sentence by sentence basis) keeps analyzed code in standard
tree form convenient for transformation by a recursive
macro—processor incorporating conventions for the descrip-
tion of local node transformations. Alternately, a syntax
related macro processor may be designed to interact only
with certain particularly simple subparts of a total syntax
structure (as for example arithmetic expressions and assign-
ment statements) and to be aimed specifically at some such
special problem as the addition of new data types to an
existing language.

- In regard to question 2) above, we may note that, whereas
macro-processors used in connection with assemblers are often
used only to diminish the burden of repetition typically as-
sociated with assembly 1anguage coding, sophisticated macro
packages can provide far-reaching language transformations
which adapt an assembby language rather well to a particular
field of application, 1In fact, Halpern [1,2,3] argues, al-
though not entirely convincingly that a sufficiently sophis-
ticated macro processor will make compilers unnecessary.

For a more modest example of what the intelligent use of
macro facilities permits, cf. Bennett and Neumann [1]. A

-229-

well-designed source language will itself be adapted to

the application area for which it is intended and in its
typical use will therefore often be information»full and
rather un—repetitive This circumstance may tend to re-
strict the applicability of source-language associated
macro-processors. On the other hand a macro-processor
well adapted to the source 1anguage to which it is asso-
ciated and reflecting 1ike1y directions of extension, may
be very useful and 1n the best case can allow the creation
of what are almost new languages for special purposes. It
may also be noted that special language features (e.g., the
COMMON convention in FORTRAN) sometimes force the repetition
of 1nvocations and that, in such situations, even a simple
macro-processor may be quite useful, (Cf. Hopgood and Bell
[1] for-.a straightforward practical application of such an
idea.) '

McIlroy [1] is an interesting early paper on macro-expan-
sion of source languages. McIlroy describes a system in-
tended for use 1n connection with source languages and re-
sembling that customarily used wilthin assemblers; this
system is of the simplest type envisaged above, i.e., works
with the tokens of a source language but 1s syntax-indepen-
dent. It incorporates a set of conventions for the specifi-
cation of compile-time calculations, the conditional expan-
slon of macros, recursive macro—nesting, macro-definition
nesting, and other powerful features allowing flexible de-
finition of new language forms within the context of a
fixed set of data types. Cf. also Cohen [1]. Leavenworth
[1] describes a more restricted source-language macro-scheme,
essentlially providing only unconditional source language
macros.,

Cheatham [1] describes several plausible schemes for the
extension of source languages by the inclusion of macro
features. His proposals include not only a syntax indepen-
dent macro expander, but also a macro-expander, called from

-230-

within the syntax analyzer, which uses the syntactic cate-
gory to which a given token 1s assigned to decide whether
any particular expansion mechanism is to be applied and to
control the details of 1ts application.

Ler0y [1] describes a macro-expander for use in connection
with programming source languages and allowing compile-time
calculations on a particularly flexible basis. In this
scheme, normal source- -language programs are written; but
variables occurring in these programs may be declared as
symbolic, and the "execution" of a statement containing a
symboliec variable causes a copy of this statement, with all
non-symbolic variables replaced by their momentary values,
to be placed in the macro-expanded output string. Calls on
macros, in the ordinary sense, are replaced in this scheme
by calls on subroutines containing symbolic variables

Galler and Perlis [1] go beyond the schemes described by
McIlroy and Cheatham, and describe a scheme for the intro-
duction into ALGOL of new data types and of new binary and
monadic operators. Thelr shceme thus belongs to the third
general class of macro-extension methods described above.
The inherent simplicity necessary to thake such a scheme
workable 1s provided by Galler and Perlis as follows:

1. The scheme is restricted to the definition of new
declarations specifying additional data types within a
basic ALGOL, to the introduction of new monadic and binary
operations for the combination of these data types and to
the introduction of generalized assignment statemtnes by
means of which the values of structured new data types may
be established.

2. Arithmetic expressions are assumed to be analyzed
by a precedence method' thus the syntactic problem involved
in 1ntroducing a new operator reduces to that of defining
the precedence of the new operator relative to previously
defined operators. The syntax of assignment statements is,
of course, evident.

-231-

3. New data types are defined by recursive application
of the basic data—structure formation mechanism of ALGOL,
i.e., as arrays of arrays of arrays of ... to any desired
depth the relevant dimensions being specified in straight-
forward fashion as macro parameters. Thus, one may write
such definitions as complex a means array a [1:2]; matrix
a(n) means array a(l:n, 1:in). These basic definitions
would then allow the straightforward interpretation of com-
‘plex'matrix a(n) as array a(l:n, l:n, 1:2).

4, The semantics of new newly introduced operations and

of old operators in their application to newly introduced
data types 1s defined by specifying for each operator and
all its possible operand types an evaluation routine. This
evaluation routine may depend both on the operatiOn and on
the data‘type of its operands; occurrence'i- source text of
an operator with its operands will lead to the interpolation
as an open subroutine, of the corresponding evaluation pro-
cedure. If the substituted text still contains algebraic
express1ons requiring expansion, these expression will in
turn be replaced by evaluation procedures, and so on until
an open subprogram free of expressions requiring macro-
expansion is obtained. The semantics of an assignment
statement in its application to nonstandard data types,
is handled similarly, the meaning os such an assignment
statement is defined by specifying a program text to be
substituted for the assignment at each of its occurrences.

Galler and Perlis give a number of interesting examples
of the use of this scheme, together with a fairly detailed
account of the manner in which it can be implemented

The . central feature of the compiler-compiler languages
described above is the presence of a method of specifying
syntax patterns, together with a program for processing
these patterns. The semantics specification portion of
these systems is usually poorly developed; frequently all
that is present is- a mechanism for calling subroutines
written in some unspecified language~

There 1s another group of languages which are also aimed,
in whole or in part, at making compiler writing simpler.

-232-

In form, these languages resemble the.general purpose alge—
braic languages such as FORTRAN and ALGOL. Instead of
concentrating on the syntactic, pattern—matching, language
facilities, they include features intended to make the
construction and accessing of dictionaries, stacks, and
other complex information structures easier, they frequently
also include facilities for doing detailed storage manage-
ment,

Two such systems are the AED-0 and AED-1 systems dec—
cribed by Ross and Rodriques [1]. Fundamental to these
systems are the notion of the E}gﬁ_(Cf Ross [1,4] Tabory
[1]), which permits the construction of very general 1ist
structures A primitive macro facility is also included,

The CPL system described by Barrow [1] resembles ALGOL
60, but has more flexible block structuring and declaratiVe
facilities Furthermore, lists, strings, and files are
also included as data items. Richards [1] describes BCPL,
distantly related to CPL, which is specifically designed
for compiler writing. Its most interesting feature is that
its "memory" consists of fixed length bit strings, stored
contiguously. There are operators defined for treating
these strings variously (and interchangeably) as strings,
integers, and labels. The language also provides built-in
recursion and a generalized conditional statement.

A language designed for systems programmnng that takes
the opposite approach is described by Lang [1]. This lang-
uage contains data of several types: character, bit, arith-
matic, and logical. It also allows assembly code to be in-
serted at any point.

The POPS system, developed by the DIGITEK Corporation
and since used by others, 1s a language, intended for in-
terpretive execution, which embodles data structures and
manipulation procedures useful in the programming of com-
pilers. This system, which aims more at compact represen-
tation and machine independence than at high-speed compila-~

-233-

tion, has been used to write a number of successful small-
machine compilers- it attains a level of machine indepen-
dence which greatly reduces the labor of carrying an
existing compiler over to a new machine. The POPS language
enables the expression in machine independent form of the
first phases of a compiler, including parsing, diagnostic
production, and the generation of standard form intermedi-
ate 1anguage code; subsequent passage from POPS standard
intermediate code to actual machine operations must be ex-
pressed 1n some other language,

POPS provides two basic data forms, words (divided into
a few standard subfields) and push-down stacks (consisting
of sequential groups of words). A push-down stack may be
further'structured into segments, each segment being a de-
limited-sequential group of words in a stack; an entire
segment may be moved by a single POPS operation from one
stack to another POPS provides various convenient stack
manipulation operations as well as operations that move
data between slngle words and stacks; both whole words
and significant subfields can be moved., Instructions in-
serting constants at the top of stacks and into signifi-
cant fields of given words are also provided, as are var-
ious other useful stack-transforming operations such as
stack reversal The system incorporates a one-bit condi-
tion flag, and contains compare operations applying to
given locations and to the tops of stacks which allow the
setting and unsetting of this flag; the conditions flag
may then be used to control tranéfers. Various direct
conditional transfers, as well as instructions capable of
conditional execution, are also provided,

POPS includes several interesting stack search operations.
These operations search all or a designated part of a stack
for a field identical with a data pattern held in one or
several data words. The search procedes serially through
the stack by groups of words; the size of each group and

-234~

the 1ocation within it of the appropriate search key may
either be specified by the search instruction itself or
may be determined from attribute informatiOn attached to
the stack being searched Alternatively, a stack may be
divided into word groups varying in size, the size of each
- group being in this case recorded with the group; such
stacks may also be searched by the POPS search instructions.
A search instruction sets the POPS condition flag, and, if
successful, returns the location of the group of words
which has been found Note that the use of serial rather
than high search techniques imposes a certain inefficiency
on a compiler written using POPS.

Various logical entities naturally occurring in connec-
tion witn compiler writing, such as an input character
stream, an output intermediate code stream, an error mes-
sage file, etec., are recognized as system entities within
the POPS language and treated specially by certain instruc-
tions. Thus, for example, an instruction comparing a next
incoming character wilth a specified single character is
provided; another instruction comparing a group of input
characters to a specified "key word" is also provided. Tt
is also possible to associate attributes with every possible
input character, and then to check any given inéoming charac-
ter for these attributes using a single instruction., Code-
emission commands are included in POPS; these place inter-
mediate form output at the top of a code stack, using opera-
tion-argument references in standard form, producing a stan-
dard form result reference, and automatically updating a
standard intermediate-instruction "location counter."

System provision 1s also made for treatment of error diag-
nostics, andinstruction being provided which transmits a
current input character pointer and a dilagnostic message
number to an error stack. This same instruction also in-

-235-

crements a count of errors maintalned by POPS, and brings
a maximum error severity flag to its appropriate value.
The system also provides a save-and-restore feature which
allows backup and trial of alternate line of parse subse-
quent to the occurance of a parse error.

A POPS instruction may'be applied either to a given
stack, a giVen address, or a calculated stack or address-
in particular, stack or address identifier may be specified
indirectly. The POPS system provides basic algebralc, logi-
cal, and shift instructions applying to single words, as
well as a method for linking POPS-written source text to
arbitrary routines written in machine assembler language
or some other source language. POPS written subroutines may
be freely and recursively called; indeed, since stacks are
used as .a basic data type, the POPS system is systematically
recursive. ‘

As has been remarked above, POPS aims not so much at
compilation efficiency as at small size. The POPS system
provides about 100 basic macro instructions. The system-
matic use within the system of stacks significantly re-
duces the number of locations which must be addressed ex-
plicitly. Interpretable POPS code may thus be represented
conveniently by a sequence of short words (16 bits is a
quite reasonable length) divided into two halves, the first
containing an order code, the second referencing elther a
stack or a one word variable. A similarly condensed re-
presentation of transfer operations is attained by divid-
ing all unconditional and conditional POPS transfers into
two classes;‘local and global, Local transfers go from one
POPS instruction to a relatively nearby instruction and
specify theilr target relative to their own location; global
transfers may have any labeled POPS instruction as a target,
but specify their targets indirectly via a sequential 1ist
of global labels.. In either case, a short field 1s suf-
ficlent, conducing yet again to brevity. POPS allows the

-236-

cOnstruction of quite small compilers; figures concerning
the size of typiecal POPS-workerscompilers will be found
below as part of a more general description of various
small compilers,

Summary descriptions of a number of interesting compilers
have been given inthe literature. Backus et al, [11, which
we have already cilted, 1ncludes a rather brief description
of the structure of the overall sequence of passes making up
the piloneering IBM FORTRAN compiler; these begin with syntax
analysis and proceed through optimization to the production
of relocatable code, the internal structure of each pass 1s
sketched in outline. Pyle [1] outlines a palnned FORTRAN
compiler for the English ATLAS computer; this 3 or 4 pass
compiler is intended to include common subexpression and
reduction in strength optimization, together with some
machine dependent local optimizations. An ALGOL compiler
incorporating strength reduction, reordering of algebraic
expressions for optimal register use, and subroutine link-
age optimization by analysis of the pattern of subroutine
calls occurring in a complete program is described in
Huxtable [1], cf. also Huxtable and Hawkins [1]. Englund
and Clark [1] give a short description‘of an algebraic
language compiler incorporating various local optimizations
(especially avoidance of unnecessary loads and stores) and
an extension of these optimizations to regions containing
forward branches only. :

Gries, Paul and Wiehle [1,2] describe an ALGOL compiler
for the 7090, built of four passes: lexical preprocessor,
syntax analyzer, optimizing translator, and code selector.
The main optimizatlion performed is g speclal case of the
"reduction in strength" optimization described in Chapter
VIII. A special technique useful for handling the name
scoping which occurs in ALGOL is described, Huskey [1]
describes an early, complete compiler for a small algebraic
language incorporating a subroutine call feature, this com-
piler uses a precedence parse for syntactic analysis. Cf.

-237-

also Franciotti and Lietzke [1].

Considerable attention has been paid to non-optimizing
compilers which aim at short compile times; these are es-
pecially useful in university environments for use in the
student programs, Rosen et al, [1] describes a fast
FORTRAN load-and-gocompiler developed at Purdeu University,
indicating the sequence and nature of the various compiler
passes, the over-all layout of compiler code and data in
core, etc. Shantz et al., [1] describes a FORTRAN IV load -
and-go compiler (WATFOR) developed at the University of
Waterloo. This is a quite successful high speed student~
problem oriented FORTRAN compiler which incorporates a pre-
cedence parse following upon a fast statement-type deter-
mination using the FORTRAN key words. The parser calls
binary into code generator routines which produce executable
binary code directly, This compiler, running on the IBM 704,
1s capable of translating 6000 statements per minute, Arden,
Galler and Graham [1] give a brief;outline of a compiler for
the University of Michigan algorithmic language MAD, which is
an algebrailc language having much the same flavor as FORTRAN
but containing a number of interesting extensions

Although many of the early ALGOL - compilers were developed
for small machines, the problems of compiling in this envir-
onment have not been covered in depth Naur [47] describes
a multipass ALGOL Compiler for a small machline, This com-
piler uses a precedence scan; about 50% of total compilation
time is ascribed to lexical analysis, and about 14% to the
(rather straightforward) generation of code. Haines [1]
describes a FORTRAN compiler for an 8K IBM 1401, The com-
piler consists of 63 phases, each containing 150-300 in-
structions. The program 1s kept in core and continuously
modified by these phases,.

A speclal area of compiling that is receiving increasing
interest in the literature 1s that of compiling programs to
be run in an interactive environment, Here the principal
concern is not efficiency, but rather flexibility. Two

-238-

qualities considered very Important are the ability to
modify the program as it runs and the ability to monitor
its execution. The paper by Evans, Perlis, and van Zoeren
[l] describes the use of threaded lists in producing (in-
termediate) code that 1s easily modifiable. TLock [1] des-
cribes a method of structuring programs so that local
changes can be made without requiring global recompilation.
The code produced 1s not machine code, but rather a simple
interpretive code. Cf. also Ryan et al, [1] and Katzan
[1] for variations and amplifications of Lock's work.

Only a few books dealing systematically with the con-
struction of compilers have yet become avallable., The first
of these was Randell and Russell [1] (cf. also Randell 11,
which gives a general description of an ALGOL compiler-in-
terpreter system, with detailed algorithms and considerable
attention to target-code questions. This book also contains
brief descriptions of various of the arithmetic-statement
analysis methcds developed up to the time of its appearance.
Unfortunately, the explanator strategy used by Randell and
Russel (description of syntactic analysis methods in close
involvement wlth code—generation 1ssues relating to a parti-
cular machihe) makes 1t difficult for their reader to sense
the theoretical issues involved in syntactic analysis proper.

The excellent recent book of McKeeman, Horning and Wortman
[1] gives a systematic theoretical and practical account of
the well—designed XPL compiler-genrator system developed by
Them; cf. also the summary paper of McKeeman, Horning,
Nelson and Wortman [11. This system incorporates a general-
ized precedence parser making use of a (1,1) precedence
parse capable of using supplementary (2,1) context as neces-
sary; A small subset of PL/1 is provided for the expression
of generative actions. A total compiler is described to the
system by a grammar in Backus form which satlisfies the re-
strictions imposed by -the subsequent use of a precedence
parse, and by a set of generator routines, one corresponding
to each production of the grammar and invoked when the use

-239-

of this production is unambiguously recognized, A grammar
pre-processing routine included in the system converts each
input Backus grammar into a set of tables controlling the
precedence parse, and at the same time, checks that the
grammar satisfies the conditions necessary in order that
this be possible, issuing diagnostics concerning any syn-
tactic errors that may occur in thevgrammar. McKeeman,
Horning and Wortman also give an illuminating discussion of
various devices for securing high efficiency of storage of
necessary tabular information, and for increasing compille
speed by keeping tables in appropriately sorted order., For
an earlier account of these same 1deas, cf, McKeeman [1].
A compiler for a PL/1 subset produced using the XPL compiler-
generator attained a compilation rate of 3000 cards/minute
on the IBM 360/67.

A book similar in spirit to that of Randell and Russell,
but one which 1s somewhat more systematically worked out,
is that of Grau [3], which describes an ALGOL compiler, and
which contains a complete set of compiller algorithms written
in a version of ALGOL extended by the inclusion of techniques
for the description of target code. Mentlon should also be
- made of the book of Ingerman [1], which describes a top-down
parser working directly from a tabular form of a Backus
grammar and using certain additional tables for increasing
the speed of the top-down parse; cf. also Ingerman [2] for
a ALGOL program for such a parser. Cheatham [4] gives an
introduction to many of the sallent issues of syntax analy-
‘sis and compiller writing more generally. In [5] Cheatham
discusses many of the same issues; in particular, he gives
a good account of how the symbol table 1s organilized for
one style of compiling. Lee's book [1] is a brief and ele-
mentary, but well written and highly readable introduction
to the construction of compillers.

Hopgood [1] is a quite readable short survey of compiler-
writing in general, and discusses many of the major topics
belonging to this field, including lexical analysis and

various methods of syntax analysis. Hopgood also discusses

-240-

a number of interesting topics in optimization of the

sort to which Chapter VIII of this book will be devoted,
especilally those topics related to thé'optimization of
linear coda sequences or "basic blocks", and including
methods for register allocation and for the elimination

of stores in a single-register machine by the rearrangement
of operation sequences in a basic block.

Rosen [1] is a well chosen reprint collection of papers
including a number of the most noteworthy papers in the
theory of compilers. The excellent survey article of
Feldman and Gries [1] reviews the development of syntactic
analysis methods, giving a technical account of various
of the principal methods presently available, together
with an extensive bibliography. This article also
discusses questions relating to code generation. “Rosen [3]
surveys the early history of programming language and
compiler development, with emphasis on the influence of
hardware, and .gives a useful bibliography.

241~

Comments on Industrial Compllers

Compilers produced for serious commercial use must
conform to high standards in a number of regards, and careful
programming effort is often devoted to the optimization of
such compilers. A commercial compiler must not be bulky;
it must compile rapidly,; it must be well debugged and
documented. It must produce reasonabiy efficient output
code. It must produce informative diagnostic messages,
which catch most common programmer errors, and which do
not requlre many passes over the source code to detect
errors. A commercial compiier must be able to provide full
listings, including such things as sorted symbol dictionaries,
cross reference listings, allocation tables, etc. It must
implement all features of a language in precisely specified
form. It must be easily maintainable, which requires that
appropriate debugging tools be built into the compiler,
and that the coding practices used are such that changes
made subsequently will not upset ths whole compiler. It
must be well integrated with the operating system of the
machine on which it runs, make intelligent use of I/0,
careful use of storage space, and use control statements
consistent with other compilers running under the same
operating system. It must provide output files in the precise
form required by the system linking loader, and must conform
carefully and effectively to all other system conventions
regarding I/0, overlay handling, etc. (This problem of
system interfacing often becomes &a thorny = point in an
implementation of a commercial compiler, and a point to which
surprisingly large amounts of effort come to be devoted.)

Precise definition of language 1is an issue often
requiring considerable attention in commercial compiler design.
Particular decisions concerning harmless looking language
features, as, for example, rules regarding FORTRAN COMMON
variables, may have serious consequences for optimization.

=242~

An important problem, often overlooked, is what to do about
incorrect code: If an addition to the language is made

to make a commonly made error legal, then compatibility

with other past and future compilers for the same language

may be affected. In compilers intended only for local use,

all these issues may be settled in whatever manner is conven-

ient for the moment. 1In writing commercial compilers, they

often require careful attention.

Changes in machine structure may force slight variations
in language, as e.g., the addition to a language of a class
of half length integers. Calling sequences and storage
allocation rules must be designed very carefully, as these
usually affect the definition of the language itself.

In the following baragraphs, we shall outline some of
the ways in which the writers of industrial compilers for
higher level algebraic languages have attempted to solve
their substantial design problems. Various existing compilers
Will be cited as examples. Although an attempt is made to
note outstanding compilers, it is often true that a particular
technique is best illustrated by an otherwise undistinguished
compiler. ‘

(a) Prescan and Lexical Scan.

Compilation speed can often be improved by pre-
classification of statements by type; many FORTRAN compilers
include a statement pre-scan having this goal. For ASA
standard FORTRAN IV, this pre-scan can be accomplished by
a finite state machine; such a technique is implemented in
at least one existing compiler (cse). For a FORTRAN
which allows subscripted subscripts the finite state
machine must be supplemented by at least a nesting level
counter. A logically trivial issue, but one surprisingly
important for efficiency, is the suppression of blanks, a
function which can be accomplished during pre-scan. It has
been found that comparing each input string word with a word

~243.

full of blanks so as to eliminate blanks in groups can
increase the compile rate of simple compilers by up to
25 percent. This feature is found in most industrial
compilers.

.Lexical scan is normally not a separate pass in industrial
compilers but is combined with first pass syntax scan.
Typically, thzs syntax scanner calls the lexlcal scanner to
obtain a next input segment in analyzed form. In most cases,
the lexical scanner is a hand-coded routine, based on a
table look-up of characters in one or more tables (the table
dedpending on the current lexical state indicator). These
tables reflect the structure of the language being compiled.
The lexical scanner can therefore throw away comments,
recognize and convert constants and keywords, etc. 1In any
compiler, this tailoring of the lexical scan greatly increases
efficiency. 1In a few cases (e.g., the SD5 910 ALGOL compiler
produced by Programmatics, and all the CSC Genesis compilers)
thea lexical scan is based at least partly on a formal analytic
grammar. The Genesis compilers allow the lexical scanner to
interact to a certain degree with the syntax scan which
follows along behind it.

(b) Syntax Scan.

. The syntax scan accepts the source string, usually
partially pre-digested by lexical scan, and produces as
output a code string in some form -- often reverse Polish
or a variant thereof. The number of "passes" used by a
compiler will depend on the language, the space avallable
to the compiler, and the quality of code desired. ALGOL,
for example, is hard to compile in less than 2 passes,
because uses of identifiers can appear before their
definitions (and the definitions, when thesy do appear, can
even influence parsing)s a single pass ALGOL syntax scan
is possible only at the cost of restricting the language,
producing some rather bad code, or cleaning up the code later.

-244-

When a scan is done in two passes, the first essentially
processes name definitions, and the second produces code

in intermediate form. On the other hénd, FORTRAN and JOVIAL
are easily parsed in a single pass.

The syntax scan also produces almost all of the
diagnostic messages developed by a compiler (these messages
may be held in summary form for later printing, as in the
CSC Genesis compilers, the CSC Univac 1107 FORTRAN compiler,
etc.; nevertheless, the diagnostic information is developed
during syntax scan).

A simple precedence scan, perhaps supplemented by some
other method for classifying statements into types, 1is most
commonly used in production compilers. This method has
been used since before 1960; evidently the earliest production
compiler to use it was that for Burrough's 220 ALGOL, a version
of ALGOL 58 in a compiler largely designed by Joel Erdwinn.
Since then, this standard scan has been used in the Univac 1107
and 1108 FORTRAN compilers, the IBM %60 FORTRAN A and TSS 360
FORTRAN compilers, and many others.

A number of industrial compilers (the SDS 910 ALGOL
compiler written by Programmatics and the CSC Genesis
compilers for ALGOL and JOVIAL) use parses defined by formal
analytic grammars of the sort described above in connection
with the DO&molki parsing algorithm. This scan method allows
speeds comparable to that of the standard scan. The parsing
methods available for generalized precedence grammars and
based upon the use of precedence matrices have not been much
used in industrial compilers, perhaps because of the large
table sizes required; however, a JOVIAL compiler for the
IBM 7090 written by SDC did use this technique.

Top-down analysis is used in a number of FORTRAN compilers.
As noted above, this is the technique used in the DIGITEK
POPS system,

(c) Optimization..

Many industrial compilers, especially those for small
machines, omit optimization as a separate phase. In such
compilers, what little optimization is done is often local,
optimization being combined with syntax scan and /or code
generation., By paying careful attention to machine details
and using the simple technique of remembering register contents
during code generation, it is possible to produce quite
reasonable code without separate or global optimization.

This level of optimization characterizes all the early
Digitek compilers, the first crop of CSC Genesis compilers,
most of the SDC JOVIAL compilers, the CDC 1604 ALGOL compiler,
and many others.

In compilers aiming at a higher level of optimization,
the exact degree of optimization performed may vary widely.
Typically, common subexpressions will be eliminated with
varying degrees of thoroughness, loop constant expressions
removed from loops, and computations in loops will be reduced
in strength. More will be said about optimization in indus-
trial compilers following our later chapter on optimization
techniques.

(d) Code Generation.

Code generation uses the symbol table to transform the
internal form of a codz to some representation of actual '
machine instructions. Except for the symbol table, only
local information is used. Code generators typically consist
of a rather large number of individual generation routines,
corresponding to the various operators in the code generator
input string. During cods generation one typically performs
a wide and miscellaneous variety of important machine-
dependent object code optimizations. This includes various
local coding tricks: deletion of an add of a zero or a
multiply by a one; replacing a division by a constant with

-246-

a multiplication by the reciprocal; combination of constants,;
replacing by a shift a. division by a power of two; combinat-
tion of instructions as allowed by a machine order code set,;

and innumerable others desirable in virtue of. the quirks of

a particular machine.

The code generation process may be likened to conditional
macro-expansion. A technique which may be used to speed the
generation process is the preexpansion of conditional code
macros into skeleton texts from which particular lines
are subsequently selected by a system of indicator bits,

This technique is used, for example, in the IBM FORTRAN H
compiler.

In compilers not including a global register allocator,
register assignment will often be combined with code genera-
tion. For some small machines, allocation may be a relatively
simple problem, because only one or two registers are available;
the Digitek SDS 910 FORTRAN compiler, for example, deals only
with the contents of a single machine accumulator.

(e) Output Editing.

This phase produces the actual binary load modules
representing generated object code, and may also produce
an assembly language listing of the generating code. The
"assembly" process, i.e., the substitution of addresses for
symbols, is often made part of this phase, On the other
hand, some compilers produce actual assembler input card
images for submission to the system assembler, thereby
avoiding the necessity for a separate edit phase. For
production compilers, this technique is not to be recommended
because of the speed sacrifice involved. It has, however,
been used in the IBM 7094 and the BOS 360 FORTRAN compilers.

In a few compilers, storage allocation is deferred to
the output editing phase. This approach is useful for
compilers intended to produce code for more than one object

2147

machine, and has been used in various of the CSC Genesis
compilers. The edit phase of the compiler may also merge
diagnostics produced by several previous phases into a

source listing. The editor also produces any symbol tables
used by the system for debugging and assorted symbol diction-
aries and location maps used for hand debugging by the
programmer,

Output editing is a surprisingly slow process, especlally
when a full output listing is produced. Generated instructions
are likely to require quite a bit of processing to put them
in final form, and most machines on which compilers run are
somewhat ill suited to the character and bit string manipula-
tions that an output editor must perform. It may be remarked
that many industrial compilers produce either no listing of
generated code or a listing in extremely unreadable form.
Exceptions to this are the UNIVAC 1107 and 1108 FORTRAN
compilers and the CSC Genesis compilers.

(f) ZInternal Tables and Their Treatment.

‘Symbol tables in commercial compilers are generally
accessed using a hash-search technique; exceptions to this
are the IBM FORTRAN H compiler and the Digitek POPS compilers.
The POPS compilers use a tree storage method for source names.
In this technique, a basic list contains all the characters
which have occurred as ths first character in a name, and
for each such character a list containing all second charac-
ters which follow that particular first character in some
name is available, etc. Where a hashing technique is used,
the hash table is typically separate from the data storage
area, and elements having identical hashes are chained
togethar; this allows simple and efficient allocation of space
for data storage. In an optimizing compiler, the same hash
technique is often used to find formally identical sub-
expressions, and a dictionary of expressions may be combined
with the symbol table. Most of the information stored within

-248-

a symbol table entryhas a fixed length, and often a standard
block of storage is reserved at the time an entry is made.
Items often treated differently are the'symbol names them-
selves (except in languages such as FORTRAN, in which name
length is rigidly restricted) and such things as dimension
information, In cases where name length is unrestricted,
some compilers keep name tables separately,; this has the
disadvantage of splitting the available space into two parts,
An alternate technique is to store each name just before

the attribute information pertaining to it, and to keep the
number of characters in each symbol name as a field in the
corresponding attribute information area. This permits
rapid access to attributes and also allows access to the
name itself from the attribute block.

For languages which allow only a small maximum number
of dimensions for an array, some compilers will allow space
for the maximum number in every array entry. On the other
hand, dimension information is often stored remotely, and
referenced by a pointer field within the basic symbol table
attribute block representing an array. An elegant technique
used in the CSC Genesis compilers is to store the code
sequence required for reference to an element of an array
rather than array dimensions; this allows for rapid genera-
tion of code corresponding to occurrences of indexed arrays.

The symbol table techniqgue used in a compiler will
generally reflect the name-scoping rules of the language
being compiled., For languages which, like ALGOL, permit
nesting of name-scopes to arbitrary depth, all the entries
corresponding to a single name can be chained together, the
entries corresponding toinnermost scopes being kept first
in the chain and removed at scope-end, this provides the
necessary recursive action. JOVIAL and tho® few FORTRANs
which permit subroutines included within a main program
can be treated by a similar technique but will have only.

-2h49.

two scopes: main program and sub-program. Other FORTRANS,
which require a strict serial order of routine and subroutines,
can be handled simply by purging the symbol table of all but
common block and subroutine names each time a subroutine is
terminated; often some sort of entry-numbering scheme able to
distinguish the current subroutine from the last few
subroutines can be used to prevent over-frequent purging.

A technique, useful when it is inconvenient or expensive to
change list pointers in ordsr to remove names in an inner
scope from the range of reference of a given symbolic name,

is to tag each symbol table entry with ths number of the

scope to whiéh it belongs. A table of bits, each representing
a particular scope, may also be kept, and the closing of each
particular scope flagged. This makes it possible to locate
the correct referent of a name as the first element in the
chain of entries referenced by a given symbol which belongs

to a live scope. |

Most compilers use tables of fixed length except for
their symbol tables,input and output files, and intermediate
code files. A noteworthy exception to this is the storage
scheme used the POPS compilers: here every table is
always referencad through é pointer, so the tables can move
freely. Whenever the block of space available for a table
("stack" or "roll") is exhausted, storage is reallocated and
the collection of tables moved to create more contlguous
space for the table about to overflow. This has the advantage
of making maximum use of avallable core, which for the POPS
compillers is typically very small,

All commercial multi-pass compilers make serious efforts
to overlay sections of code and table areas no longer needed,
Compilers running in a '"paged" environment, i.e. in a
hardware setting in which blocks of a certain size are moved
automatically between main and secondary storage find it
important to use as few pages as possible, i.e, not to have

=250~

a number of pages part full if a smaller number of almost
full pages would suffice. This consideration will in some
cases dictate some special arrangement and sizing of tables
and blocks of code., The IBM TSS-360 Fortran compller was
planned with this in mind.

(8) Compiler Flexibility and Debugging.

Except in compilers subject to rigid space constraints,
it is reasonable to sacrifice a certain amount of space and
speed in order to make the compiler modular and improve its
debuggability. This aim will be easier to attain if a clean
interface is maintained between all the compiler phases, i.e.,
if the number of tables, especially those passed between
successive phases, 1s kept to a minimum. For example, in
the Univac 1107 Fortrah compiler and in all the CSC Genesis
compilers the only information passed from the syntax analysis
phase to the optimization phase is the symbol table, the code
string, and half a dozen parameters. This approach is also
to be noted in the IBM 7094 Fortran compller, where only
the assembly-format card file is passed between the syntax
phase and the code generation phase,

Commercial compilers of medium to large scale will
normally incorporate a few specialized tools used only for
the debugging of the compiler itself. For example, the
Univac 1107 compiler recognizes some unpublished "reserved
words" as legal statement types; these cause to be printed
a trace of the compiler analysis of the following statement.
The CSC Genesis compilers include routines which dump
compiler tables on demand in a form convenient for the compiler
writer., These routines occupy part of the space allocated
for the symbol table, so that when ths compiler 1is operating
in non-debug mode no space is required. An octal correction
facility for parts of the compiler itself is also included.

The source string, various intermediate code strings,
the final binary output string, and the listing rfile producead

=251~

by a compiler are often buffered in sections into external
files, at least for compilations too large to fit into core.
The careful buffering of external files, aiming at effective
overlap between input-output operations and simultaneous
in-core calculations can have an important effect on the
performance of a compiler., Provision of adequate buffers

may allow small compilations to proceed to completion without
any external I/0 becoming necessary.

The symbol table is normally kept in core throughout
compilation. Compilers performing global optimization often
require that much of an intermediate code string be kept in
core during optimization, and often keep intermediate code
in core while passing from syntax scan to optimization.

(n) The Choice of Language for Compiler Writing;

- Comipiler-Compilers.

Until fairly recently, all commercial compilers except
for the CSC JOVIAL compilers were written in assembly code;
the highest performance compilers still are. The IBM 360
FORTRAN H compiler is written in an extended FORTRAN. The
efficiency advantages of assembly: code ovér source code are
currently a matter of debate. Estimates of the performance
advantage for an assembly-coded over source-coded compiler
range from 50-100 percent, and estimates of the advantage
in size of assembly-written over source-written complillers
cover a similar range. Minimal space can be the most
severe. obstacle to the use of a source-written compiler
(with the exception of POPS compilers, see below). However,
the development of suitable systems programming languages
and their optimization is expected to reduce the relative
advantage of assembly-coded compilers very significantly,
and one may look forward to increasing use of source language
for the coding of compilers.,

The desirable features of a compiler-writing language are.

-252=~

(1) Efficient access to machine part words as variables in
the language., This is very important 1f the compiler is to
be able to use densely packed tables.

(ii) Data structures and allocation rules which permit
control over placement of variables in memory including
control of overlays, and which permit the combination of
heterogeneous variable types in-a single structure or entry
(as in a symbol table).

(iii) Some form of based storage permitting convenient shifting
of tables in core and allowing table structures to be extended
to newly allocated blocks of core,

(iv) Name-scoping rules permitting easy combination of
separate routines written by different people.

(v) Efficient and flexible calling sequences. In this
connection, some of the ideas on subroutine linkage optimiza-
tion discussed in a later chapter may be wvaluable,

(vi) Access to all machine instructions, hopefully in a form
which does not obstruct global optimization of the compiler
code. One way of providing this access is in terms of a
package of subroutines,

(vil) At least a rudimentary system of macros permitting
conditional compilation of the system source language should
be provided. Such a tool is useful for a variety of purposes,
including isolation of compiler parameters, avoidance of
repeated and error-prone insertion of repetitive code blocks,
and production of a number of slightly variant versions of

a compiler,

(viii) It must be possible to initialize variables, and, in
this connection, provision must be made for the convenient
treatment of character and bit string constants.

(ix) Recursive routines are useful for the expression of a
number of compiler processes,

-253-

PL/1 probably has more of the above features than any
other language, but its calling sequences are inefficient,
it does not give access in a convenient way to machine
instructions, it may involve inefficient methods for access
to data structures, and it is rathar difficult to optimize.
In general, PL/1 pays so high a price for its generality as
not to be an id=sl tool for the writing of efficient compilers,
JOVIAL, FORTRAN, and ALGOL each have some but not many of
the features listed above, The IBM BSL language and the CSC
SYMPL language have more of these features, and systems
programming languages of this sort may well become standard
tools for compiler production in the next few years.

Formal compiler-writing systems, which have been the
focus of a good deal of university research in the last few
years, have not generally been used for the production of
commercial-grade compilers. The two principal exceptions
to this generalization are the CSC Genesls compilers, which,
as noted above, use analytic grammars and an associated
bottom-up parsing algorithm, and the compilers written
using the Digitek POPS technique; the POPS compilers use
a top-down syntactic scan. The Genesis system produces
compilers of quite acceptable running efficiency which attain
a considerable degree of machine independence. Genesis has
by now been used to produce ALGOL compilers running on the
IBM 7094, the UNIVAC 490 and 494, and the General Electric
635, A JOVIAL compiler running on the IBM 360 has been
produced using the same technique. The POPS system which,
as noted in the detailed description of it given in an earlier
paragraph of the prasent section, involves interpretation of
pseudo-instructions written in a dense format, can be used
to produce very small compilers. It is also easy to move
the POPS system from one machine to another by recoding
the relatively simple POPS interpreter.

=254

(1) Speed and Size of Data for a Few Principal
Industrial Compilers,

We attempt in the following péragraphs to give an
indication of the relative efficiency of a number of signifi-
cant industrial compilers, Approximate figures are given
in number of instructions executed per nominal source card.
Where information is available, an indication of the level
of optimization attained and the Style in which the compiler

was written is given.
Language No. of Instructions

Compiler in which Executed Per Nominal Optig&gition
. written Source Card

360 Fortran H Fortran 37K Good global
7094 ALGOL Genesis 137K Local

360 JOVIAL Genesis 96K Local

6600 JOVIAL Genesis 100K Local

7090 JOVIAL JOVIAL 120K Local
1604/323§AL JOVIAL 55K Local

1107 JOVIAL JOVIAL 10K Local
llo?/%éggRAN Machine 14K | Good global
TSS /360 Machine 8K Good global

FORTRAN

The code produced for a typical arithmetic loop by a
good optimizing compiler can out-perform that produced by
a naive compiler by a factor of 4 to 1.
The following more detailed figures give a breakdown
of the TSS FORTRAN compiler by phases.
TSS_FORTRAN Compiler Breakdown by Phases. (Total Code 67K Lines.)

Time Code
Scan (including careful diagnostics) 30 % 30 °g
Optimization (including register allocation) 28 % 18 %
Code generation (including local optizmiation) 28 % 4s %
Editing | 6 % 7 %

~-255-

(3) Additional details on various particular compilers.
In the present paragraphs, we outline the struczture of

a number of compilers; comparison of these descriptions will
indicate the consequences of various possible design approaches
and the influence on design of such external factors as source
language and size constants.

We begin with an account of the IBM 0S /360
FORTRAN IV compilers. IBM has produced three FORTRAN
compilers to run under 0S/360: the E compiler, which can be
used on a machine with only 32K bytes of storage; the G
compiler, which is designed for a 128K byte machine; and
the optimizing H compiler, which requires that 256 bytes of
storage be available. The compilers themselves do not use
the entire memory, of course; several thousand bytes are
occupied by the resident operating system.

Since the amount of memory available is such an important
factor in determining the design of a compiler, it is interest-
ing to compare the design of these three compilers.

The G_compiler, whose design is most straightforward,
occupies 80K bytes of memory. It was written for IBM by
the Digitek Corporation and uses their POP technique, which
is described above. The compiler consists of five logical
phases which are, in general, always resident in core; if,
however, additional space is required during processing,
those phases not currently in use may be spilled. The
first or parse phase transforms the source program
into a roll (push-down stack) of instructions in Polish
form and builds the dictionary, which is contained on a
. number of rolls. The second phase uses the dictlonary
information developed during parse to allocate
storage for simple variables and arrays, format lists,
parameter lists, etc, The third phase is an optimization
phase. The optimization performed is not extensive;
the compiler merely attempts to optimize register usage

~256-

for subscript quantities used in DO-loops. The fourth phase

uses optimization informetion and the Polish roll to generate
relocatable machine code. The fifth and final phase produces
the actual decks and listings.

Essentially all of the storage used by the compiler
during compilation is roll storage. This storage is acquired
as necessary via. the system allocator in 4096-byte blocks.

A given roll is kept in consecutively-allocated blocks; this
requires relocation of all rolls of larger index whenever a
given roll fills up.

The G compiler produces rather cryptic, but effective,
diagnostics. Whenever a syntax error is discovered, a "$"
is printed under the character which caused the parsing
routine to stop. If the routine can continue, it then does so;
in this way 1t may happen that several positions in a statement
may be marked with "$". For each position so marked, a one
or two word diagnostie is given., For example;

ARY(J) = BRY

b b

(1) LABEL (2) SUBSCRIPT

The first diagnostic indicates, of course, that the compiler
expected to find a label on this statement (perhaps it
follows a GO TO statement). The second indicates that BRY
appears in a DIMENSION statement and therefore requires a
subscrlpt

The design of the E compiler, which operates in only 15K
bytes of core, contrasts with that of the G compiler in an
interesting way. The number of phases 1is larger, and they are
less coherently organized.‘ More explicitly, only a nuclear
interface module is resident in main memory throughout compila-
tion., This module performs compiler I/0 and controls the
loading of the other processing phases, It also contains a
total compiler communications area. Other bphases are loaded

-25T7=

singly, to be overlaid when they are no longer required.

There are 12 processing phases, plus 3 so-called "interludes".
These interludes are designed to recover space usedby I/0
processing routines and their associated buffers when certain
intermediate files are no longer required. Since this opera-
tion is necessarily time-consuming, these interludes are
executed only when the compiler must run in an absolute
minimum of core.

The five phases of the G compiler correspond almost
exactly to an obvious logical partitioning of a compiler.
Consequently, all of the functions performed there are also
performed by the E compiler., A given logical function is
divided in the E compiler amdng several phases. The following
chart relates functions to the phases that perform them.

- Function E Compiler Fhases

Parse /dictionary build |8, 10D, 10E, 14, 15, 20, 30

Storage Allocation 10D, 12
Optimization ' 20 -

Code generation 12, 14, 20, 25, 30
Assembly , .

Optimization in the E compiler is limited to optimizing
register usage for subscript quantities occurring between
referenced labels. Thus program flow structure is not
considered. |

The compiler first makes a pre-pass -over its input to
"reserve" keywords, remove embedded blanks, and insert blanks
as separators so that the parsing phase can use a lexical scan.

The parse routine is divided into two phases: one to
process declarative statements, which must appear at the
beginning of the program, and another to handle executable
statements. For the latter statements an_intermediate text
file is created. Diagnostic meésages are encoded into this

intermediate file for later processing. Expressions are only

258~

checked at this point for well-formedness, so that g
still later phase is required to modify the produced inter-
mediate text to account for operator hierarchy.

Memory allocation for the E compiler is done in a single
chunk. The amount of storage allocated is a function of
the memory size of the machine on which the compiler is
running. This storage space 1is used to tontain the dictionary.
Any main storage remaining is used to hold intermediate text;
if there is not sufficient Space in main memory to accommodate
all of the intermediate text, it is spilled onto secondary
Storage. .

The optimizing H compiler requires only 89K bytes of main
memory in which to operate, although the compiler contains
approximately 403K bytes of code. The compiler is divided into
5 logical phases, similar to those of the G compiler, which
overlay each other; some of these phases are further sub-
divided into smaller overlay segments., Allowing space for
dictionaries and intermediate text, the compiler requires a
minimum of 150K bytes of storage.

Two factors account .for the great expansion in the amount
of code in the H compiler over than contained in the G compiler,
First, the G compiler is written in the POPS language
which is particularly compact. Second, the H compiler performs
extensive global optimizations of a type not found in the
G compiler,

The first H-compiler phase recognizes statement types
and encodes the statements in an intermediate text of the
operator-operand type. Simultaneously, it builds the dictionary.
It is interesting to note that, like the E compiler, the H
compiler only checks expressions for well-formedness, postpon-
ing detailed translation to a subsequent phase.

During the second phase storage allocation of programmer-
defined variables and arrays 1s performed. In addition
arithmetic expressions are changed from the operator-operand

-259-

format developed during phase 1 to a three-address format
that properly reflects operator hierarchy. Each element in
three-address format is of the form

op abec,
which represents

a=bopec.
Of course a, b, and ¢ are references to dictionary items,
either user-defined or temporary. Also at this point basic
blocks and connectivity matrices are constructed as well as
information on the usage of variables and constants within
a block. This information is required for subsequent
optimization phase.

Still following the pattern of the G compiler, the third
phase of the H compiler is devoted to optimization. The H
compiler can produce code "optimized" to one of three
specified levels. At the lowest level minimal optimization
is performed.This yilelds a stylized form of register allocation,
with a fixed register for accumulatioﬁ, another for subscripting,
etc., and with redundant register loads and stores removed.

The two other optimization levels use related methods of
register allocation. When the most highly optimized code
desired, register allocation is done on a loop-by-loop basis,
proceeding from innermost loops out. In this case, global
subexpression elimination is also performed. The method of
- flow analysis and loop detection used by the H compiler are
well summarized in Lowetz and Medlock [1] and are similar
to the techniques explained elsewhere in this volume,
consequently, we shall not discuss them here.

Register assignment, whether for a loop or for the whole
program, proceeds in two phases, local assignment and global
assignment. Local assignment is performed independently
for each basic block. To be eligible for local assignment,

a variable must be.defined and used (in that order) within

-260-

the block. For variables that satisfy that criterion, a

private register is assigned, assuming that one is available.

If one is so assigned, it is "owned" ﬁy'the variable from

the definition point to the point of last use within the block.
Once local register assignment has been completed for

all blocks in the loop/program, some eligible registers may

remain for which no assignments have been made. These

registers are then assigned on a global basis to the

variables having the greatest number of references in the

loop or program under consideration. When the highest level

of optimization is specified, loops are processed from the

inside-out, and, if a wvariable is eligible for global

assignment in two nested loops, an attempt is made to assign it

to the same register in both, When a variable is eligible for

both global and local assignment, the global assignment takes

precedence. Status bits are set for each of the operands

of each text entry, indicating whether or not the operand

may be assumed to be in a register and whether or not it

must be retained in the register at the end of the operation.
When the highest level of optimization is specified for

a program, three other types of optimization are performed.

i) common subexpressions are eliminated;

ii) code is moved out of loops, where possible;

iii) reduction in strength is performed.

Since the general methods used to perform these optimizations are

described in a later chapter, we shall not go into detail here.

There are certain aspects of the technique used which are

of interest, however. For example, both local and global

common subexpression elimination are based on formal identity.

Thus the value-number scheme described in Chap ter VIII is

not used, even on a local basis. Moreover, no attempt is

made to do constant propagation and indeed certain decisions

concerning expansions of operators made during the first phase

-261-

make subsequent discovery of constant operands of little
value, Of ceurse, operations whose operands are seen
without propagation to be constants are performed at
compile time,

If the highest level of optimization has been spec1fied,
the user may request this phase to produce a structured
source listing of the program., In the listing statements
belonging to the same loop are so identified and nesting
of loops is indicated by text indentation.

The fourth compiler phase uses the register allocation
whiéh has been set up to generate code In code generation
a rather interesting technlque, amounting to a kind
of conditional pre-examination, 1is used; this method
combines compactness of data representation with high speed
code generation. For each basic type of 3-address inter-
mediate text entry operation a skeleton table describing
the machine code instructions to be generated for it is
specified. This table includes, in proper sequence, all
possibly necessary register loads and stores, even though
some of them may be redundant for a given text entry.

Since System /360 allows both register-register and storage-
register version of most arithmetic and logical operations,
both forms are included in the skeleton, Furthermore, if
the operation is commutative, both possible load orders

are included in the skeleton. Associated with this
skeleton text is a bit matrix containing -as many rows as
there are items of skeleton text. Using the status bits
for the operands of an intermediate text entry, which we
recall are set during the optimization phase, a column 1is
selected from this bit matrix. The rows selected by 1's in
this column define the skeleton entries which are to appear
in the text entry expansion.

A final compiler phase is called only if errors have been
detected during processing; its only function is to print these
messages.

—262-

The €ontrol Data corporation provides two very different
FORTRAN compilers with their 6000 series computers: the
FORTRAN RUN compiler, which attains a high compilation
rate and good optimization of inner DO-loops, and the
FORTRAN EXTENDED compiler, which emphasizes thorough
machine-dependent optimization.

The RUN compiler, originally developed at CDC's
Chippewa Laboratories, 1s a one-pass compiler, resident
in core throughout a compilation. The obJject code it
generates is stored immediately above the compiler code,
and expands upward., Fixed-size buffers are kept at the top
of the available core area; symbol tables start below
these buffers and expand downwards., If the object code
reglion ever overlaps the growing symbol tables, the
compilation is aborted; no provision is made for storing
intermediate data on external devices,

RUN's minimum core requirement varies between 33,0008
ang lLO,OOO8 (60-bit words), depending on the version of
the compiler used,

All RUN compilers have allowed FORTRAN and assembly
language subprograms to be intermixed Iin a source deck,

In the Chipnewa operating system, the assembler was an
integral part of the coapiler; In the more recent SCCPE
systems, a separate assembler automatically overlays the
compller when ascenhly language code 1s encountered,
ization, which played a very small role 1n
QUIT 2nwpilers. hag improved with each new
version, The compile-time optimizallion routines currently
wateh for seguenceg of statements, and in particular Tov
inner DO-lonps, whiszsh 1) coatatn no subroutine or Tunection
referances, 2) includz only assignment shatements (or,
ander come eireunstonces, I statements), and 3) can only
n

he entered at the first statement of the sequence, ‘hen

-263-

s1eh a sequence o 1s Tound, *the compiler searches Torv
operations which are performzd several times or, in the
ense of o DO-1loop, can bhe taken ontside 2 loop. A
"pre\r 112" is senerated lumedlately before the seguence

to pre-compuie expressions and array addresges and, for

-

DC-Tnons, to load DO parameters and address increnents

&

into index wesisters. Next follows the code representinga
after which is placed a "conclasion", which e.g, may
contain Tastructions storins variables held in reglsters

withing

(D
‘—l

=y

Ag the lev of optimization provided hy in the RUN
compiler has incre ased, 1ts conpile speed nas gradually
decreased from applox1mq+elj 20,00C cards/minute to a
current rate of about 15,000 cards/minute. High compilation
speed is attained largely by the use of direct, straight-
forward procedures Cor code generation, which often utilize
fixed code sequences, sometimes with fixed reglster assign-
ments, ' |

FORTRAN £XTENDED, despite its name, does not include
any significant language extensions beyond RUN FORTRAN,

This compiler was developszd by Control Data to take full
advantage of the machine architecture of the 6600, It is
a two-pass compiler which emlts symbolic assembly code.

The Tirst pass consists of two phases: Phase 1 processes
declaration statements (which must precede all executable
statements), bullding symbol tables and produclng any
necessary assembly language code., Phase 2 processes the
remainder of a subprogram, addlng to the symbol tahles
vhile generating an intermediate form of code, called
RLIST. During the first pass, all references to a varlable
in an equivalenced set of variables are changed to references
to a common "base variable"; this 1s necessary in order

that the compiler may subsequently optimize references to

-264-

these variables during the second pass. _

The symbol table used is of some interest, This table
is maintained as a series of tree structures, accessed
through a hash table, As symbols are added, each tree
is rearranged to keep it as symmetric as possible; as a
result, not more than four or five entries need be examined
to locate an element in a thousand entry table,

The second compiler converts the RLIST intermediate
code into assembly language code. During this process
two basic types of optimization are performed: DO-loop
optimization and code sequence optimization. "Well-behaved"
DO-loops (containing no function references or unconditional
Jumps, and not having extended range) are analyzed to
determine an optimal counting strategy, and to pre-load
useful data such as DO-loop parameters and array addresses
into 1index registers, In version 1 of the compiler,
however, no attempt is made to take loop-invariant calcu-
lations outside of DO-loops,

A sequence is a series of 'instructions delimited by
an unconditional jump, active label, or conditional jump
terminating a DO-loop; it is the unit within which optim-
ization is performed., Sach sequence is optimized in three
phases: Filrst, all redundant operations in the sequence
are deleted., Second, a dependency tree (similar to those
used in PHRT) is bullt and the operations comprising a
code are ordered on a priority basis (e.z., an operation
whose result is required for all other operations is
given top priority). . Finally, code is emitted. During
Lhe final phase, a careful timing analysis is made to
detevmine the avallability of registers and functional
units (the 5600 contains 10 independent functional units,
which can operate concurrently)., Proper scheduling of
functional units and registers allows reduction of the
time required to execute a sequence by twenty to fifty
percent,

~265-

Version 1 of FORTRAN.EXTENDEDcompilgd relatively
glowly about an order of magnitudec more slowly than RUN,
Avout two-thilrds of the compilation time was used by 2
standard two-pass assembler %o assemble the code generated
by the compiler. This defect was remedied in version z,
released in 1959, which includes a high-speed assembler
as part of pass 2 of the compiler; the compller pre-computes
the addresses for all symbols, so that only one pass 1s
required for final assembly, This improvement lay at
the hasis of the three-fold increase in compile speed from
version 1 to version 2,

Control Data's current plans call for development of
a third version of FORTRAN EXTENDED which is to allow a
rapld compilation option (no ontimization) and a global opti-
mization option performed by the methods used in IBM FORTRAN H.

COBOL comnilers, as a class, have a rather different
structure from that of the FORTRAN compilers described
above, This structure seems +to have been influenced both
by the history of COBOL and by the nature of the language
itself,

In order to appreciate the style of translation
employed in COBOL, it is necessary to have some idea of
the structure of a COBOL program. Such a program is
written in four sections, called Divisions, The Identif-
jication Division 1s used only to 1dentify the program and
to describe its use; we shall not be concerned with it in
our discussion of the translation process, Of the other
three Divisions, two are used to describe the nature of
the data used by the program, particularly the files; the
third contains the executable statements of the program,
More precisely, the Data Division contains the description
of files as they are seen by the user; for example, the
buffer areas for each flle are laid out and the access
method for each file is described. The Data Division

-266-

also contains descriptions of all non-file variables,

The Environment Division contains a description of the
physical aspects of a file - the kind of device on which the
file resides, its identification number and extent, etc.,
Finally, the Procedure Division contains the executable

part of the program,

From this brief description it is obvious that compiling
a COBOL program involves merging the information in the
Data and Environment Divisions to form a complete description
of the files and working storage areas of the program and
then using this description to produce code for the program
given in the Procedure Division., This the 0S/360 COBOL(F)
compiler manages to do, using six processing phases, four
intermedlate files, and a dictionary,

During the first phase the data descriptors frem the
“nvironment and Data Divisions are encoded and spilled out
onto an auxiliary file., The Procedure Division text is
reduced in a crude way, basically to the lexical level.
Identifiers are kept in this text literally; only labels
are entered into the dictionary. The procedure text is
spilled out oato a second file,

The second phase uses the Tile of data descriptions
to produce a dictionary. It also does a certain amaunt
of storage allocation, Using the dletionary nroduced,
the third phase reads the procedure text Tile and produces
arother Tile of procedure text, recemblinz the First,
except that variahle names have heen replaced by their

a7
ethrihutes Trom the dicticnary. The diciinonary is then
e

The Tourth phaca peor’orms syntax analysis on this

ne werulh 15 another texnt £1le, The 717th phase

3 Tile o proluce code in an azzendly-lite Iangnaco,
AT the game time the 1iteral table and the lahel kable are
each corised and identical eatrlec venoved, The assendly
Ianguaﬁe code 1g also spilled, The last phase azsenbles

2 prosran 2nd prodnces the oblect modnle,

267~

The I3 00/30C CCROL (i) ~ompiler is organized on a
Tmetlonal hasis: hewever, hecange 27 the mmall amount of

S P e
ghornge atradl

lahle Tor the conpfler, 2a2h of the malor
fuaetions 1o Temented nging several overiay phases thus re-
guiring fregient and repeated scanning of the (modiri

rag e
tont,
Ovennll, theve ~re throee rmaior components: o data

souponent, 2 pwocedurs component, and 2 code penervation

componnent, e date component processes the ID, Envirorment,

and Data Divislongs hullds

-2

the dictlon~rys and allecoted
toraze Tor the varioblez, Whe procedure component analyse
e aebtalements of the Proeccdura plvicion and creates an

. v

tnhemrediate test Tran them, The final corponent genevates

¢ode Turom This inbermedinte texth

~

Jach of thece ewmoenents is lieplemented by a imunber

off nhiages which overlay cach othew, Jeach of these phasec
norfomme » cwall amount of the total nrocessing for the
component, The dota component aontaing eight phases, the
procednre component six, and the codz generation component
nineteen,

The procelinre comneonent conhaing four primary processing
rhazes, ench of which is responcible Fnar the translation of
o JiVGH>SOt of C;BOL varhs, Dnring ench of these phases
the text, whiech dg lient on secondary storaze, 1c scanned
and the gshatenents corresponding to
n oiven set of verhs are converted Lo iantermediate Torm.
s four ceans of the intermediate text are required,
Ciallarly, %the code selectlon phases of the code generation
nonzonent reguire ten passes of the intemediate fex®t data

cet, This component el o containg six phases devoted to

f';

£finnl assembly of the program,

-268-

The 0S/360 PL/1 (F) compiler has an overall design that
closely resembles that of the COBOL (E) compiler. That is,
1t contains a small number of logical phases, each of which
1s subdivided into a series of physical phases. Each
physical phase performs some small part of the total
processing of the logical phase. This processing generally
results in some modification to the current text of the
program, In this way the source text is gradually trans-
formed into the object text. There are eleven logical
phases, with the functions explained below; there are
over one hundred physical phases,

Control of the phase loading resides in a separate
set of modules called the control phase. These modules are
resident throughout compilation. Not all phases need be
loaded for a given compilation; those phases concerned with
language features not used in the program will be‘bypassed.
The control phase 1s also responsible for all of the compiler
I/0 and for all internal storage management.

It 1s in the area of storage management, both primary
and secondary, that this compiler differs most from COBOL (E).
As we observed above, the COBOL (E) compiler keeps only the
dictionary in primary storage. Indeed, the dictionary 1is
never spilled. The program text, on the other hand, is
kept in auxiliary storage. Every time it 1s scanned and
modified, it is read in and written out again. Such a
scheme has two obvious disadvantages; an especially large
program requiring a large dictionary may cause the compil-
ation to abort, and the compiler cannot take good advantage
of extra primary storage that may be available for a given
compilation, '

The storage management scheme employed by the PL/1 (F)
compiler is much more flexible. It permits complilation to
take place when only limited space is available. On the
other hand, if sufficient space is available, both text

-269-

and dictionary may.be kept in primary store, with no spill
at all. This is accomplished by employing a "software
paging" scheme for both dictionary and text. In such a
scheme, an address space large enough to hold the text for
any anticipated program is used. This is sometimes referred
to as a "virtual store." This space is generally larger
than the amount of real storage space that can be devoted to
text and dictionary entries. The virtual store is therefore
subdivided in a uniform manner into blocks, called pages.
The size of a page depends on the amount of memory available
for the compilation; it is chosen so that at least two
dictionary pages and two text pages can be accommodated
in memory at the same time. Reference to an element in
the virtual store is made via a subroutine. Uslng a page
directory, this routine checks to see if the page containing
the element is in storage. If it is not, a page is moved out
to make room and the required page is brought in. The
actual address of the element requested i1s then calculated
and the element is accessed.
Such a scheme makes addressing rather uniform, but
only at the expense of making each reference expensive.
The cost can be cut down, however, by freezing a given
page in core at a critical point and making the references
indirectly.
It is interesting to look in some detail at the logical
. phases of the compiler, since their organization illustrates
the relative complexity of a PL/1 program, when compared
to either FORTRAN or COBOL.
1. Macro phase.
This phase executes the compile-time statements and
performs text replacements. The output is a PL/1
program. This phase 1s logically independent of
the rest of the compiler.

-270-

Read-in phase.

This phase performs statement recognition and puts
the statements into text pages in internal form.
This form closely resembles the external form
with keywords and redundant punctuation removed.
This recognition activity requires five passes of
the text. During this phase, all procedure and
block entry points are chained together, as are

" all declarative statements.

Dictionary phase.

Using the two chains constructed in the previous
phase, this phase first processes the explicitly
declared variables (since PI/1 is a block structured
language, one needs to know not only what variables
have been declared, but in what block or procedure
the declaration was made). Then the text is
scanned for contextual declarations of variables
(e.g., a variable used in a context where only a
file name is permitted). Finally, using a fixed-
floating convention similar to FORTRAN's, the
attributes for all other variables mentioned in the
program are filled in. Then each identifier in

the text is replaced by its dictionary reference.

This logical phase contains sixteen physical phases.

Pretranslator phase.

Still working at the text level, this phase attempts
to simplify the task of the remaining phases by
rewriting certain PL/1 constructions in terms of
other PL/1 or PL/l-like constructions. For example,
array and structure assignments are expanded into

Do-loops. Expressions used as arguments to subroutines

-271-

6o

are assigned to temporaries. The I/0 statements
are modified and simplified. Finally certain
debugging statements, 1f requested, are inserted
into the program.

Translator phase.

These phases modify the text format in a significant
way. All executable text is converted to "triple"
form: an operator followed by two operands. At

the same time, GENERIC function references are
particularized to the appropriate family member.
Also, certain string operations are marked as
optimizable (read: amenable to in-line translation).

Aggregates phase.

At this point accessing functions for the elements
of arrays and structures are computed, assuming
that the size of the aggregate is known at compile
time. For arrays and structures with bounds and
Jengths adjustable at run time, code is inserted
into the text to calculate the function at run
time. Uses of equivalencing statements are also
checked at this point to insure that language
rules are not violated.

Note that storage is not allocated during this phase,

Pseudo-code phase.

These phases make a second important change in

the text format., At this point the text is

replaced by a machine-like code that is essentially
one-for-one with machine instructions. Registers

are left in symbolic form; the last use of a register
is noted by the appearance of the instruction

DROP in the instruction stream.

-272-

10.

11.

Storage allocation phase.

Storage is allocated during this phase not only
for source program variables and compiler-.
generated temporaries, but 1is also for data
descriptors of various sorts: dope vectors, run-
time symbol tables, flags, etc. Furthermore code
1s inserted into the text to allocate space for
those objects whose allocation must be deferred
until run time. In particular, the code for
procedure and block prologues is generated.

Register allocation phase.
This proceeds in a straightforward manner with no
particular attempt at optimization.

Final assembly phase.
This produces the final object deck.

Error editor phase.

Diagnostics are handled in an interesting way in

this compiler, Every time & situation is encountered
requiring a diagnostic, an entry is made into the
dictlonary one one of four chains, corresponding

to the severity code of the diagnostic. This

entry contains the number associated with the
diagnostic as well as some skeletal information
identifying the trouble spot; e.g., the line number
in which the trouble was encountered and perhaps a
small bit of text from the area of the trouble.

When the compilation has been completed, the error
edltor phases load in the full text of the diagnostics
and expands the error dictionary entries into

readable prose. These "full" diagnostics are then
placed in the user's output file.

-273-

CHAPTER 5. RIGOROUS RESULTS CONCERNING THE PRINCIPAL
SYNTACTIC ANALYSIS METHODS. '

1. Turing Machines and Backus Grammars,

In the present chapter, we shall prove a variety of
theorems which delimit the relative power of the various
syntactic analysis methods introduced in the four preceding
chapters., We shall see that some of the methods are
substantially more general than others, e.g., that the
bounded context syntactic methods of Chapter 4 are in fact
not capable of analyzing as wide a class of languages as
can be treated by the general recursive method described
in Chapter 2. These results will be derived from the theory
of Turing machines, and specifically from the proven existence
in this theory of iterative symbolic processes for which
certalin problems are unsolvable.

Our approach will be as follows. We shall show that,
using certain lingulstic constructions, one can describe
the most general Turing machline. Then, by showing that
certain problems are solvable for context free languages,
and by noting that these problems are unsolvable for general
Turing machlnes, we:sgshall show that a class of formal construc-
tions beginning with languages describable by grammars in
Backus normal form necessarily passes out of the domain of
these languages. In this way, we will show that certain
- classes of strings are not describable by Backus normal
form grammars, and, more generally, that certain processes
describable by such grammars are not describable by grammars
that can be parsed by the restricted syntactic method
described in Chapter IV.

We begin with the theory of Turing machines. A Turing
machine is by definition an automaton which, at each moment,
exists in one of a finite collection of internal states (o}
and which iteratively reads and writes a two-sided infinite

274 -

tape divided into discrete squares. Each square of the tape

1s occupied by one of a finite collection'of print characters

1c§ . fhe tape is read and written by the automaton one

square at a time. After reading and writing a given square,

the automaton may stay in the same position on the tape

and reread or rewrite the same square;‘alternatively, it

can advance one square to the left or one square to the

right and read and/or write the new square. We require

that, after the completion of an elementary read-write

operation, the next internal state of the Turing machine,.

together with its direction of motion, be determined entirely

by 1its previous state and by the character just read.

Similarly, the character which the Turing machine writes

in a square must be a determinate function of the state

of the Turing machine and of the contents of the square

Just read. We assume throughout that all but a finite

number of the squares of a Turing machine tape initially

contain some special one of the finite vocabulary of print

characters, which we call the blank character; this assumption

will play a special role in the following discussion.
According to the above, a Turing machine is described

by three functions of two variables each:

(1) p(c, a); s(c, &); m(e, o)

In (1) ¢ denotes an arbltrary character chosen from the
finite vocabulary of print characters; denotes the state

of the machine which must be one of a finite set of possible
states. The function p, which is the print function of

the Turing machine, defines the character which the machine
will print in the square which it is scanning if the character
originally in that square is ¢ and if the machine is in

state ¢ . The function s, called the state function,

defines the state into which the machine will pass on
scanning the character ¢ while in the state € . The function
m, called the move function, has one of the three possible

=275-.

values -1, O, or +1, depending on whether the Turing machlne
on scanning the character c¢c while in the state will move
one square to the left, will not move, or will move one
square to the right.

Each step, and thus inductively the whole action of the
Turning machine, 1s defined by what may be called its
configuration, i.e. by its momentary internal state s
the set of characters present on its tape at a given moment,
and by the particular character which the Turing machine
momentarily scans. This machine configuration may be
represented in a form appropriate for our purposes as a
state word of the structure shown below:

(2) S=1¢y... € O Cpq-.-Cp

In (2), S denotes a state, ¢,...c, denotes a sequence of
print characters written on the Turing machine's tape, ¢
denotes its internal state, and Crs1t*%n are additional print
characters written on the tape. We place the state character
O immediately after the tape character Cy to Indicate that
the machine is momentarily scanning the particular character
¢,- That is, in writing the state word (2), we place the
internal state character for a Turing machine immediately
after the particular print character scanned by the automaton.
In order that a finite word of the sort shown in (2)
property describe the whole configuration of the infinite
tape attached to a Turing machine, we adopt a speclal
convention according to which leading and trailing blanks
are suppressed. More precisely, in writing the state-word
(2), we omit any blank character preceding the first non-
blank character on the Turing machine tape and any blank
character following the last non-blank character on the
Turing machine tape, with the exception that if any blank
character lies between a non-blank character and the square
currently scanned by the Turing machine, all blank squares
up to and including the scanned square must be indicated
explicitly. With these conventions, state words of the type

-276 -

shown in (2) will give a description of the state of an

arbiltrary Turing machine complese in all necessary essentials.
The iterative motion of a Turing machine from state to

state and square to square may then be represented as an

iterative evolution of the state word describing the

Turing machine. The three possible elementary evolution

steps may be shown as follows:

$!
(3) CpeeeCy Chl**Cpy —2 C1+++Cpq G O Cra1 - -Cp
t

1
——-) C1 LI] .ck"l ckck+l 0’ ck+20 L) ocn
t
"""‘—'—’ Cl.;.ck_l a" ckck""l.'.cn.

On the left hand of (3) a typical state word S (identical
to that shown in (2)) is written. On the right hand side
of (3) we indicate the three possible words into which S
might evolve in a single step of the Turing machine. The
first of the state words on the right of (3) depicts an
evolution step involving rewriting of the character x

and change of internal machine state, but not accompanied
by any motion of the Turing machine along its tape. The
second word depicts a step involving by motion one square
to the right. The third state word shown in (3) depicts a
step involving rewriting of the character Cy and change of
interval state, accompanied by motion of the automation one
square to the left.

- Given an initial state word, a Turing machine iteratively
produces a sequence of state words of the type shown in (2)
by elementary steps of the form shown in (3). This sequence
of state words may be written in the form

(4) 813 Sp3 «.5 8y .
A sequence of state words of this kind may be called an
orbit or path for the Turing machine. The evolution problem
for a Turing machine may be described as follows. Suppose
that a Turing machine is given. Suppose also that this

Turing machine possesses a finite state of print characters
¢ , a finite collection of internal states fﬁi, and that

-277-

the elementary steps of which the Turing machine is capable
is described by a finite set of elementary productions

of the form (3). Find an algorithm which, given an initial
state word S8 of the form (2), is capable of predicting by
some determinate algorithmic process whether or not the
Turing machine will ever evolve into a state (5) in which
' is required to be some fixed internal state character
of the Turing machine.

(5) S' = c....c d" c'. ...c
1 k' k'+l n'

The evolution problem that we have just stated is
recursively unsolvable. That is, no algorithm with the
specified properties exists. The non-existence of such an
algorithm is a basic statement in the theory of recursive
functions. We shall not attempt to give a detalled proof
of this principle here, but shall instead refer to the books
of Davis (Computability and Unsolvability) and Minsky
(Computation: Finite and Infinite Madhines) in which extended
and particularly lucid discussions of this point will be
found. We may, however, sketch a basis for this principle
rather briefly in the following way. I% can be seen rather
readily by explicit formal constructions that a certain
particular Turing machine of the sort which we have described
is capable of simulating an arbiltrary computer. Such an
automaton is called a universal Turing machine. Since almost
by definition a formal algorithm is a process that can be

be programmed for a computer we may reason by contradiction
roughly as follows. Suppose that an algorithm of the kind
described above did exist. Then it could be programmed

for a computer. The action of the computer under the control
of its program could in turn be simulated by a Turing machine.
But using a version of the Cantor diagonal process, we can
construct a Turing machine which devliates in its action,

at least for one initial state, from the result predicted

by any single algorithm. This contradiction establishes

the nonexistence asserted above.

278

A stop state of a Turing machine is a state 3 of the
machine with the following special property: once the machine
passes into the internal state & , 16 will remain through
all succeeding steps in the same state and will cease
to move along its tape. Moreover, once it has entered the
state d’ it will never change the contents of the square
on the tape which it is Scanning. This description may,
of course, be summarized more briefly by the single statement:
once the machine enters the state d’, it stops. For this
reason we call o’ a stop state. The basic result on the
nonexistence of an algorithm stated above may be put more
sharply as follows. There exists a Turing machine with a
finite vocabulary of print characters and of internal states,
possessing a stop state in the above sense, and for which
there exists no algorithm capable, given an arbitrary initial
state of the Turing machine and its tape, of deciding whether
or not the Turing machine will ever enter the stop state.

The unsolvable decision problem described by the preceeding
sentence 1s sometimes called the halting problem for Turing
machines. The halting problem is of course a speclal case

of the equally unsolvable state transition problem described
earlier. We will find it convenient in what follows to

make use of the fact that not only the general state transition
problem but also the halting problem is algorithmically
unsolvable. We leave it to the reader to deduce the stronger
statement from the weaker.

In order %o relate Turing machines to languages and
their grammars in the most convenient way, we shall find it
convenient to rewrite the sequence (4) of state words of
a Turing machine in a very slightly modified form. The
modification we require is described simply by the rule:
reverse the order of characters in every even numbered
state word, but not in any odd numbered state words. TIf
this elementary transformation is performed, the sequence
of state words which we obtain may be called the alternating
Sequence of state words for the Turing machine. As an
alternative term for "alternating sequence of state words"

-279-

we introduce the term track. To be more precise, we make

the following definition. If (4') is any sequence of
characters, then the sequence of characters shown on the right
of (4") is called its reverse.

(41) W =
()_'_n) wr =

al‘l.an

an.'..al .

Writing W for the sequence (4') we indicate 1ts reverse
as in (4") by the character W'. Given the sequence (4)

of state words of a Turing machine, the track of the Turing
machine 1is then represented by the sequence (6).

. ql. . al. . . qf
(6) Sl, 82, S3, Su_, * o ey Sek"l, 82k .

As (6) indicates, it is convenient in what follows to
restrict tracks to consist of even numbers of words; thus
we always assume that the last word in a track has the form
SH |

The successive words in a track are separated by semlicolons
in (6). It is convenient for us to make this a formal convention.
That 18, we assume formally that "semicolon" is a character
not present in the vocabulary of print words of our Turing
machine (and also not representing an internal state of
the Turing machine); and we assume that a Turing machine
track is always written formally as a sequence of reversed
and nonreversed state words, each separated from the next
by a semicolon. In this way, we represent an entire Turing
machine track as a composite word. We shall now show that
the class of words which can occur in this way may be
described completely by a pair of Backus Normal Form grammars,
and that these grammars may easily be written in terms of
the scheme of productions defining the Turing machine.

Indeed, a track consists of a sequence of pairs of words
(an odd numbered and even numbered word making up a pair)
successive pairs being separated by semicolons, and the:
first word of a palr being separated from the second word
of the same pair by a semicolon. Each word of such a pair
is obtained from the preceding word by an elementary

- 280~

production of the Turing machine and by a reversal. Thus,
every palr has necessarily a form of the following kind:

. !
(7) cqy.eve, o e ¢ Ciin+++C 5 C ...C '€, ,9C, Cp q...C
L ke et) St (Gt %1

In (7) the substring of characters marked f and fF represent
respectively the front substring of the first word of the
pair, which is not modified in the transition from a state
to the next suéceeding state, and the reverse of this front
substring. The section of the strings (7) marked t and &'
are respectively the group of three characters including

the internal state character for the Turing machine which

is subject to modification in elementary transition; and

the transformed form of this same group of three characters.
Finally, the section of the pair of state words (7) marked

b and b are respectively the back substring of the Turing
machine state word, which is a part the state word not subject
to transformation in an elementary Turing machine production,
and the reverse of this back substring.

The above description makes it plain that the structure
of a track may be described by a rather simple grammar of
Backus Normal Form. The necessary Backus grammar is shown
below,

(8) {track> = (pair) {. <pair) ; <track)
{palry = <m1dd1e), ¢ {middle) ¢ ' d <middle> a4]...
(middle)= t, ¢end) 1 [ty<endrt)
¢end) = 3 ' c ¢end) c , d <endy d, “e

In (8) the characters ¢, d, etec. occurring in the
definer on the right hand side of the definition of the syn-
tactic element <pair> are intended to be a listing of all
possible print characters of the Turing machine ¢. The
characters ¢, 4, etc., occurring in the definer on the
right hand side of the Backus definition for the syntactic
type <end> are, in the same way, a comprehensive list of
all the print characters for the Turing machine which the

-281 -

grammars (8) are intended to model. The doublets t,, ti;

t2, t2,... occurring on the right hand side of the definition
of the syntactic element <middle> are intended to be a
listing of all the separate elementary production triples

Cx 9 Cpi1’ that appear among the Turing machine productions

(3), each taken together with the result triple c} 4 ¢, >

etc. into which a single Turing step will transform Cye
Cr+1-

Notice now that not every sequence of palrs separated
by semicolons forms a valid Turing machine track. Indeed,
the condition that the whole sequence (6) be bullt up out
of pairs (in the sense of the grammar (8)) is precisely
equlvalent to the condition that the even element of every
pair in (6) consisting of odd and a following even element
be derived from the preceding odd element by a reversal and
an elementary production of the Turing machine. But, in
order that the sequence (6) be a valid Turing machine track,
we require in addition that every odd element but the first
in (6) be derived from the preceding even element by a reversal
and an elementary production of the Turing machine. The
structures (6) satisfying this latter condition may also
be defined by a grammar in Backus normal form. Indeed,
this latter condition amounts to nothing more than the
condition that the structure (6) consist of a valid state
word of the Turing machine followed by a semicolon, followed
by a sequence of 'reverse pairs", followed by a semicolon,
followed by a final state word. In this context, we mean
by a "reverse pair" a pair of words of which the first 1is
the reverse of a valid Turing machine state word and the
second is a valid Turing machine state word derived from
the first by reversal and by an elementary Turing trans-
formation. Such a "reverse pair" evidently has a structure
closely corresponding to the structure shown in (5); the
collection of all such reverse pairs may be defined by a
grammar in Backus normal form 1in a manner very similar to
that used above to define the colléction of all possible

-282 -

(nonreversed) pairs. It follows therefore that the collection
of all those structures (6) in which every even numbered
element and the next following odd numbered element forms

a reverse palr may be defined by a Backus normal form grammar.
A grammar accomplishing this and specifying also that the
track in question must lead to a stopped state of the Turing
machine 1s as follows,

(9) <otrack> = <¢word> ¢mtrack> <eword>
{(mtrack) = <opair)] {opalry <mtrack)
<opair» = <(omiddle) f c <omiddle) c f d <omiddle» d, cen
<omiddler= ti <end> t; | t4 <end> t, | ...
<endy = 5 | ccends c| d cendy 4| ...
{(word>» = «(printc)c<state) (printc> | ¢printe> <stateﬂ<pr1ntcxword
(ewordd = <(printcy & <printc>, <pr1ntc72?' ¢printe> <eword)
<s8tate) = 6'1| o | a3 |
<printe) = «<cy| <«dy 1 ---

In (9) 81+ 605 G3reee copstitute a comprehensive listing
of all the internal state characters for our Turing machine.
The characters ¢, d, and so forth, constitute a comprehensive
listing of all the print characters for our Turing machine.
The character 5;1is intended to be the unique -stop character
of the Turing machine. The pairs tl, ti, tg,té occuring in
the definer for the syntactic type omiddle , are the same
pairs as occur in (7) in the definition of the syntactic
type middle

The words which are grammatical according to both of the
grammars (8) and (9) are then precisely those tracks of
the Turing machine which lead to a stopped state of the
machine. Note that our two grammars are constructed in an
entirely elementary way using the print characters, internal
state characters, and elementary productions of the Turing
machine. We may therefore assert that the set of those
tracks of a Turing machine which lead the machine to a stop
state may be defined as the set of words which are grammatical
according to both of two Backus normal form grammars.

A terminal character of a Backus grammer is a character

283 _

occuring in one or several definers but not occuring as a
definition. Note that the two grammars described above
share the same set of terminal characters.

Using the above observations, the basic Turing unsolvability
theorem stated at the beginning of this chapter leads
immediately to the following unsolvability result.

Theorem 1. There exist two Backus grammars, both involving
the same set T of terminal characters, such that there
exists no mechanical algorithm which, given a string w of
terminal characters, will decide whether there exists an
additional string v of terminal characters such that w v is
a grammatical string of both languages.

The words w v occurring in Theorem 1 may be considered
to be "puns" which have the unusual property of being
grammatical in two different languages. For this reason
it is reasonable to call the problem whose unsolvability
as stated in Theorem 1 as the pun problem, and to regard
Theorem 1 as asserting the algorithmic unsolvability of the
pun problem.

=284 -

2. Problems unsolvable for Backus grammars.‘

We now aim to apply the unsolvability of the pun probiem
stated in Theorem 1 at the end of the preceding section to
obtain additional formal conclusions. It is therefore well
for us to begin by stating certain basic definitions concern-
ing Backus grammars somewhat more precisely than we have
yet done. We first define a Backus language or a context
free language as follows. The language is specified by a
grammar; a grammar is an unordered collection P of
productions of. the form

(9) C—3Cy ... Cp

A production writtén in this way specifies that a single
character (representing a syntactic type of the grammar

may be rewritten as a string of characters. We also require
that precisely one nonterminal character ¢ among all the
characters occuring in the productions of P be

specified as the base character of the grammar. A character
occurring on the right hand side of one of the productions
(9) but not occurring on the left hand side of any production
is called a terminal character of the grammar. Let a string
Cq+e-Cy consisting of characters of the grammar be given.

We say that a string obtalnable from thls string by replacing
any of the characters of the string by a set df characters
which may validly replace it according to one of the productions
(9) of the grammar is obtained from the original string by
immedlate descent. If Sl and 82 denote two strings, and 1f
S1 is. in this sense obtainable from 82 by immediate descent,
we write Sl*‘* S,. A sequence of strings Sl’ S,55.. each

of which 1s obtained from the previous string by immediate
descent is called a grammatical evolution, and may be

written in the manner shown in (10).

(10) Sl._> 82"—> ..._ask.

-285 -

In this case we say that Sk is obtained from the string
Sl by indirect descent; the relationship of indirect
descent may be written in abbreviated form in the manner
shown in (11). '

(11) 81— — Sy -

The set of all strings which are obtalned by indirect
descent from the base character of a grammar and which
consist exclusively of terminal characters of the grammar
1s known as the language, the context-free language, or the
set of grammatical sentences derived from the given grammar.
In order to apply Theorem 1 of the preceding sectlon, we
must derlve a number of set theoretical properties ‘

of the languages defined by Backus Normal Form grammars built
up out of finite collections of basic grammatical productions
of the type (9). '

The first of the results which we require may be stated
as follows. Lemma 2. The set-theoretical union of two
languages involving the same set of terminal characters 1is
a language.

The proof of Lemma 2 is easy. Let F be a grammar
generating the first language. Let Pe be a grammar
generating the second language. By renaming the nonterminal
symbols occurring in the grammar ré as necessary, we may
readily insure that all the nonterminal symbols of Fé are
~distinct from each of the nonterminal symbols of the grammar
fi. Then, by replacing the base character of f’ by the
base character of Il, we may linsure that r’ and F’ have the
same base character, but that, aside from this base character,
F} and ré have no nonterminal character in common. Given
this situation, we simply form the set theoretical union
of the collection of productions (9) which constitute
the grammar l with the corresponding set of productions
constituting the grammar F’ This "union grammar" we call .

-286-

Now we note that, in view of the manner in which [has
been defined, every derivation (10) in which the string S;
consists only of the base character common to the two grammars
f& and [, 1is in fact either a derivation according to the
grammar ri or a derivation according to the grammar f;.
Indeed, no string which contains intermixed nonterminal
characters of both fa and f; can ever be generated from
the case character by a production of /7. Given this fact,
it follows at once that evéry terminal string generated
by the grammar /’is a terminal string which would have been
generated sither by a derivation according to the grammar
f” or by a derivation according to the grammar fv Thus,
the language generated by f’consists precisely of the set
theoretical union of the languages generated by the languages
f} and f;,and our result is proved. Q.E.D.

Our next aim is to show that the analog, for a single
language, of the pun problem whose algorithmic unsolvability
is stated in Theorem 1 is in fact algorithmically solvable.
This assertion forms the content of Lemma 3.

Lemma 3. Given any Backus grammar /[’ there exists an
algorithmic procedure which, given any string w of terminal
symbols, will decide whether or not there exists an additional
string'v of terminal symbols such that wv is a valid string
of the language defined by /7.

Before giving the proof of Lemma 3, we shall derive some
of the consequences. Note 1in the first place that since
according to Lemma 3 a problem is solvable for a single
language that according to Theorem 1 is unsolvable for the
intersection of two languages it follws that the intersection
of two languages is not necessarlily a language. This result
is stated as Theorem 4.

Theorem 4. There exist two languages defined by grammars
“3, f; involving the same set of non-terminal characters
whose set-theoretical intersection is not a language definable
by a grammar of Backus normal form.

Theorem 4 tells us that the class of languages defined
by Backus grammars, which according to Lemma 2 is .closed

_287 .

under the set theoretic operation of union, is not closed.
under the set theoretic operation of intersection. But a
family of sets closed under union is also closed under
intersection if 1t is closed under complemenﬁation. There-
fore it follows that our set of languages 18 not closed
under complementation. This result is stated as Theorem 5.
Theorem 5. There exists a language, defined by a grammar
[" of Backus normal form, the set-theoretic complement of
which is not a language definable by any grammar of Backus
normal form. |
Theorem 4 and Theorem 5 are both based on Lemma 3, and

it 1s now time for us to give the proof of Lemma 3.

Proof of Lemma 3: We shall show that, given the grammar and
the string w, there exists an integer K, defihable entirely
in terms of f’and of the length of w, such that there exists
a sentence wv of the language defined by fqif and-only if
there exists a second string v' for which wv' 1is a sentence
of the same language whose parse tree consists of not more
than K nodes. Suppose for the moment that this has been
established. Then note that a) It is easy to enumerate all
parse trees with a restricted number of nodes. Indeed, each

parse tree consists of a collection of nodes which may be
arranged in some serial order, and, assoclated with each node,
either a terminal symbol (possibly null) or, a set of pointers
to certailn nodes earlier in sequence. The number of pointers
associated with each node is bounded in length, the bound
being of course the maximum number M of syntactic elements
entering into a definer of any definition. Therefore any
parse tree may be represented in some such form as

+ i+l
(12) ... Ny, J(ﬂ-..., Jr()'i) 3 NyLps J§1 D,..., Jr()ﬂ s ...
in which Ni is a node designator defining the type of the
i-th node and J(i) 3 eeey Jgi) are 1ntegers subject to the

' i
condition. Jéi) <1i and representing pointers. As noted,

we always have niéM. It is clear that, gliven a bound on the
number of nodes allowed, the total number of possible patternsr(lz)

-288 -

1s bounded, and from this assertion (a) is evident.

b) Given the full set of parse-trees enumerated as in (a),

we may plainly enumerate all the sentences consisting only

of terminal characters and parsed by one of these trees.

Then we can tell whether there exists a sentence wv' belonging
to this set by serial examination. ,

This shows that to prove Lemma 3 Wwe have only to prove
the existence of the bound K. This we do as follows. Call
a2 parse tree g minimal tree for w if it parses a sentence
of the form wv consisting entirely of terminal characters
and has no more nodes than any other parse tree with this
Same property. Call a string Nl’ N2, ey Nk:of nodes in a
parse tree a pedigree of each NJ, J>1, 18 an immediate
descendant of NJ-l' Call the depth of a parse tree the
maximum length of a pedigree in it.

Call the span of a node N in a parse tree the set of all
terminal characters belonging to tree twigs which are immediate
or indirect descendants of N. We first establish a bound
k for the depth of a minimal parse tree for w. To do this,
note that if Nl""’ Nk is a pedigree in a minimal parse
tree, and if Nl i1s a node of the same type as N, , then the
span of Nk must include at least one character of w not
included in the span of Nl’ Indeed, if this is false, we
can obviausly reduce the number of nodes of the parse tree
by replacing the whole complex of branches depending from
the node N1 by the smaller set of branches descending from
Nk’ contradicting the assumed minimality of our parse tree.
It follows at once that, if { is the number of characters
in W, no pedigree in a minimal parse tree contains more than
1 repetitions of a node-type. Hence, if d is the number of
distinet node-types allowed by the grammar f1, dlyis a bound
for the depth of a minimal parse tree for w. Since each
node in a parse tree can have at most M descendant nodes,
it follows a minimal parse tree for w can contain at most
K=Md£ nodes, establishing the required bound K and completing
the proof of our Lemma. Q.E.D.

-289~

Various additional interesting unsolvablility results
may be proved by the methods which we have used to prove
Theorems 4 and 5. To obtain a first such result, we modify
the grammar (9) so that the definer of the basic syntactic
type <otrack> appears as shown in (10) rather than as shown
in (9).

(13) <otracky = S; <etrack) ; <«ewordy .

Here, we assume that S is some arbitrarily chosen state
word for the Turing machine of Theorem 1. Then the collection
of words (5) which are grammatical according to both of the
grammars (7) and (8), as modified, are all those Turing
machine tracks which start with the state S and which lead
eventually to the stop ‘state. . Since, according to Theorem 1
there exists no algorithm capable of deciding whether there
exists a track starting with an arbitrary S and leading
to the stop state, it follows that there exists no algorithm
which, given two arbitrary languages; is capahle of deciding
whether or not these languages have a non-zero intersectilon.
This result is stated formally as Theorem 6.

Theorem 6. There exists no mechanizable algorithm
which, given two arbitrary grammars fa and fé in Backus
normal form and sharing the same finite set of terminal’
characters, will decide whether or not there exists
any word v which is grammatical according to both grammars.

A slightly modified form of Theorem 6 gives another
interesting result. We call a grammar ambiguous 1if,
according to the grammar, there exist two structurally
distinct parsing trees which generate the same string of
terminal characters. A grammar which does not admit two
such structurally distinct parsing trees is called
unambiguous. Now note that the grammar (8) is unambiguous.
Indeed, the division of a track into palrs is obviously
unique. Moreover, within each palr, the<middle? according
to the grammar of (8) is uniquely defined by the fact that
the second character of the <middle) 1s an internal state

-290.-

character for the Turing machine. Moreover, only one elementary
Turing production can apply within a pair, since, given the
state of a Turing machine and the character which it is
scanning, the character which it will print and the subse-
quent motion and new state are uniquely determined. Thus
1n the syntactic analysis of a pair, the <end» is unique
also. For the same reasons the grammar shown above as
(9) 1is unambiguous as is the modified form of the grammar
(9) shown in (13). It is of course this modified form which
has been wused to prove Theorem 6.
Suppose now that as in the proof of Lemma 2, we make
all the nonterminal characters of the grammars f& and fé
distinct by renaming the nonterminal characters of the grammar
f&, and that we then identify the base characters of fi and /g,
renaming the base character of f; if necessary. ILet /" be
the union of the grammars /} and /; as in the proof of
Lemma 2. Then, since f; and /; have been seen to be
unambilguous, there will exist a string of terminal characters
admitting two structurally distinct parsing trees if and
only if there exists a string of terminal characters which
admits both a parsing tree according to the grammar f;.
That is, the union grammar /’will be ambiguous if and only
i1f there exists a word which is grammatical according to
both of the subgrammars /I and /g. But Theorem 6 states that
there exists no algorithm which, given two arbitrary grammars
/1 and f; of the form which we are considering, will decide
whether or not there exists a word which is grammatical
according to both of them. It follows Immediately that
there exists no algorithmic procedure which, given an
arbitrary grammar<f1 will decide whether or not this grammar
is ambiguous. We state the result Just derived as Theorem 7.
Theorem 7. There exists no mechanizable algorithm which,
glven an arbitrary grammar written in Backus normal form,
will decide whether or not this grammar is ambiguous.

—291‘&

3, Generalized languages and restricted languages.

Generalizations of the Backus normal form grammars
which we have studied earlier in the present work have been
proposed. In the present section, we will consider one
such generalization and study the parsing problem for 1t.

We shall also study a class of strings, the so-called

regular strings, which constitute an interesting specilalization
of the class of languages considered in the two preceding
sections.

The generalized languages which we wish to conslder
are those defined by the so-called context dependent grammars
introduced by N. Chomsky, Such a grammar is specified by

a finite vocabulary of characters c¢c and by a finite un-
ordered collection P of productions of the following form.

(1) P: AbC —) ABC

In (1), A, B and C all denote strings of characters formed

from the avallable character vocabulary. The symbol b

denotes some single chavracter chosen from this vocabulary.

We allow any of A, B or C to be the null string. Note that

productions of the form (1) resemble the productions that

we have used to define the context free languages in the

preceding Section 2 (cf. display formula (9) of Section 2).
However, in contrast to our understanding 1n‘the preceding
sections, we intend in dealing with context-dependent grammars
that the production (1) should be applicable only when the
character b occurs in the context specified in (1), that

is, with the particular string A to its immediate right

and the particular string C to its immediate left. The

special case in which A and C both are null is the case of

the context independent productions studied earlier. As

in the preceding section, we require that there exist precisely
one character ¢ among all the characters used in the productions
P , is specified as the root or base character of the

grammar. As before, we call any character occurring on the

_292 -

right-hand side of one of the productions (1) but never
occurring on the left-hand side of any production a terminal
character of the grammar. If a character string w =
Cqp:e-Cy is given, we say that a string obtainable from

this string by replacing any of 1ts characters cJ by a set
of characters which may validly replace c, according to one
of the context dependent productions (1) 1s obtained from

w by immediate descent. We use the notation for immediate
descent introduced in Section 2 and define the notion of
grammatical evolution as in Section 2. If there exists a
grammatical evolution starting with the string S1 and
terminating with the string Sk we say, Just as for context
independent languages, that Sk is obtained from S1 by
indirect descent; we use the same notation as that introduced
in Section 2 (cf. formula (11)) for this.

Note now that the evolution of an arbitrary Turing
machine may be described by a single context dependent
language of the type that we have just defined. 1Indeed,
in the basic evolution steps shown in formula (3) of Section 1,
all the characters in the state word of the Turing machine
except the three central characters ck,d'and Cy4] are seen

to play a passive role. The transformation affecting

these three central characters is almost precisely of the

form (1) allowed for context dependent languages. The elementary

Turing transformation differs from (1) only in that it may

involve a shift of the character ¢ to the right or left of

a character substitution. To force the Turing machine

productions shown in (3) of Section 1 into the form

strictly required for the Turing machine to be described.

formally by a context dependent grammar, we proceed as follows.
For each internal state character 6 of the Turing

machine, we 1ntroduce three additlonal linguistic characters,

related to ¢ but playing slightly different roles in the

grammar whilch we wish to define. These three characters

may be called the "double" of 07, which we write 6;, the

“"inverse"of 4, which we write 4:1, and the inverse of the

-293 -

double, which we write 6'1 . For each elementary production
(21) cgc! — cldlc

of the Turing machlne (not involving any rightward or 1eft-
ward motion of the Turing machine) we introduce the linguistic
production shown as (3i):

-1
(31) co—> c 96 o .

Note that the linguistic production (31) specifies a
replacement for the character c in contexts whereind’is the
character immediately to the right of c¢. .For each Turing
machine production of the form

(211) e 6ct —r djcyc

involving a leftward motion of the Turing machine we intro-
duce a linguistic production of the following type:

(311) c o —y Opc ole

Formula (31i) 1s, 1like (31), a linguistic production
involving a substitution for the character ¢. For each
basic Turing machine production of the form

(2111) c Oct —> ¢y c'aq

involving rightward motion of the Turing automaton along
its tape we introduce the lingulstic production
(311i1) cgct —y ¢cdJ o',
which is a context dependent linguistic production, once
again.involving substitution for the character c. In
addition to the context dependent grammatical productions
shown above as (31), (311) and (3111), we add a number of
additional productions to our grammar; these are intended
to relate f‘l, J’ and 6 -1 to the character &. 1In the
first place we 1ntroduce context dependent "erasing" pro-
ductions, involving the characters ¢ and a‘l , and having
the following form: '
(La) el — 1
(4v) 6’10 —> c

-294 _

Production (4a) allows substitution of a null string
for the character ¢. As indicated in (4a), this production
i1s applicable whenever & occurs in -a context in which a’l is
the next character on its left. Similarly, (U4b) is an °
"erasing" production applicable to the character a’l,
which 1s available provided only that the charactér immediately
to the right of 5’1 i1s not the character ¢~. In addition
to (4a) and (4b), we introduce the follwoing four productions

(5a) | Croe 2 4y

(5v) o — gt e &
(5¢) 5,0t — ot

(54) c oyl — ¢

Production (5a) is an erasing production having much the
same form as, and applicable in the same conditions as,

the production (4a) described above. Formulae (5c¢) and
(5d) show similar erasing productions. The production (5¢)
specifies that a character 6; may be replaced by a null
character provided that the character immediately on its
ri%ht is the character'd:}, and (5d) specifies that

d:. may be replaced by a null character provided only that
the character immediately on its left is not 4;. Finally,
the production (5b), which involves substitution for the
character ¢, states that ¢ may be replaced by the sequence
J:lc ¢ 1f the character immediately preceding c¢ to the
left is the character 6;.

On all of the productions (31i), (3ii) and (31iii) above,
we impose the additional contextual restriction that they
are only to apply if there exlsts no character of the form
6”1,4; or J:l within two characters of the character 6,
With this restriction, the reader will easily see that the
linguistic evolution beginning with a valid Turing machine -
word of the form (6) |

(6) Cqy.++Cp O Cpiq . -Cp
-295-

is at each step completely deterministic in the sense that
at most one production in our grammar can apply, and that
aside from "intermediate steps" involving csncellation -of
symbols &, 4, 0’1,-511 temporarily generated, this

grammatical evolution exactly matches the evolution of the
Turing machine which we have used to introduce our context
dependent grammar. ‘

To relate the Turing machine stopping problem equally
directly to the parsing problem for the context dependent
grammar introduced above, it 1s appropriate for us to
introduce a simple standardization for Turing machilnes,
as follows. Suppose that M is a universal Turing machine.
We have seen the stopping problem for M is unsolvable. We
define a slightly modified second Turing machine in terms
of M' as follows. Into the vocabulary of print characters
for M' we introduce all the print characters 6f M and, in
addition, introduce two extra characters which we call
respectively left and a right end marker characters. To
any given initilal tape for M we append these two end markers,
the left end marker to the extreme left of the fileld indicated
by the state word for M, the right end marker to the extreme
right of the field indicated by the state word for M.

The step by step operation of the machine M! is obtained by
simple modification from the operation of M. 1In the first
place, we require (except in the speclal "elean up™ terminal
states, defined below) that when M' encounters the left

end marker character, it replaces the end marker by a blank,
reprints the end-marker one spabe further to the left, and
then returns to the blank square which it has just inserted.
Similarly, when the Turing machine M' encounters the right
hand end marker character, it replaces it by a blank, reprints

a right-end marker one square to the right, and returns to
the blank square which 1t has Just inserted. 1In all other
situations (except in the terminal situations to be
described below) M' behaves in exactly the same way as M.

It follows from the above that, except when manipulating the
end-mark characters, M' has a state word which

_296-

1s always the same as the state word of M, except for the
presence of a left end marker character marking the extreme
left hand of the modified section of Eabe and the right
hand character marking the extreme right hand of the modified
sections of tape. |

We also provide the modified machine M' with two internal
states, in addition to the states possessed'by M. We call
these two states a right erasing state and a left erasing state.
We agree that any configuration which would bring M into
1ts stop state brings M' into its right erasing state.
Once in the right erasing state, M' has the following action.
A square is scanned. If the square does not contain.the
right hand end marker its contents are replaced with a blank
and M' moves one square to the right and remains in the right
erasing state. In this way M' will successively erase
every square to the right of the position at which it entered
the right erasing state until it encounters the right end
marker. When M' encounters the right end marker, it erases
it and enters the left erasing state. In this state 1t
proceeds iteratively to replace every scanned character
with a blank and move one square to the left, except that
when 1t encounters the left hand end marker it replaces 1t
with a blank and stops. Thus, if starting with a given initial
configuration, M would stop, then M' will also stop if
started in the corresponding initial condition. But, before
stopping, M' will have erased its entire tape. If o denotes
the blank character in the print vocabulary of M and M' and
6 denotes the stopping state for. M and M', then the final
state word for M' in the configuration in which 1t is stopped
is

(8) e

OG’

If for any initial configuration (7) of M' we complete
the definltion of our context-dependent language by intro-
ducing a base character b which occurs in the single production

(9) b — CLCy .- Cy Fepq cr °nCR,

=297 -

we obtain a language wilth the following property: the Turing
machine M', started in the configuration (7), will stop if
and only if the state word (8) is grammatical in our language.
That is, the Turing machine M', started in the state shown
on the right of (9), will stop if and only 1f the state

word (8) can be derived according to the productions of the
context dependent grammar by indirect descent from the
character b. It follows that the parsing problem for context
dependent languages includes the stopping problem for the
universal Turing machine. Hence, the former problem 1is
algorithmically unsolvable. We state this result as

Theorem 7.

Theorem 7. " There exists no programmable algorithm
which, gilven an arbiltrary context dependent grammar r
consisting of finitely many productions of the form (1),
and given a word w cdnsisting of terminal characters of
this grammar, will declde whether w belongs to the context-
dependent language defined by I

This result indicates that unrestricted context dependent
grammars are too general to be directly useful for the
specification of programming languages.

We now turn to consider the following question: to
what extent can general context-free languages be parsed
by algorithms restricted in various ways? In particular,
can every context-free language be parsed by an advanclng
deterministic scheme of the sort considered in Chapter IV?
We begin our discussion of this question by giving a very
simple example of a context-free language -- the set of all
4symmetr1c strings on two letters, i.e., the set of all
strings on two letters which return their form under left-
right reversal. We shall now show that this set of strings
admits no determining context-free grammar which can be
parsed by a deterministic advancing scheme, essentlally
because no parsing scheme can find the middle of the string
without scanning the string to its end and then backing up.

-298_

We proceed as follows. First note that the set of
symmetric strings on two letters a,b is a context-free
language with the simple grammar o

(1) (word) = aalbbf{alb|a (wordy al b ¢word) b.

To show that this simple language cannot be parsed by any
deterministic advancing scheme, we must first give an abstract
general model of such parsing mechanisms. We model advancing
deterministic parses in terms of an abstractly defined class
of pushdown automats, as follows. A deterministic pushdown .
automaton, or simply pushdown automation, is defined by
Specifying a finite alphabet of input characters fal,
a finite alphabet of pushdown stack characterst(}, and a
finite collection {df of 1internal states, together with
various functions of those characters described in detail
below. The alphabet of input characters must include
a specially defined end-string character 4 . The alphabet
of pushdown characters must include a speclal stack bottom
character¢i;. The set of internal states of the automaton
must include a distinguished initial state 0;, and a
distinguished accepting state Q;. The automaton acts in
stepwise mode. At each moment, i1ts full state is defined
by the state of its pushdown stack, the state of its
input string, and by its internal state ¢". The pushdown
stack state is defined by a word o(on(’r ...8 formed out of
pushdown stack characters and contailning exactly one (initial)
occurrence of the character<<°. The input string state is
defined by a remaining input word al...an —4 formed out of
input string characters and containing exactly one (terminal)
occurrence of the special character —{ . Each move of the
automaton may involve both a state change and an elementary
transformation both of the pushdown stack and of the input
string; each such move is fully determined by the internal
state of the automaton, by the topmost (i.e., rightmost)
character on the pushdown stack, and by the next (i.e.,
leftmost) character of the input string. An elementary move
may either add an extra character to the top of the pushdown
stack, remove a single character from the top of the pushdown
-299~

stack, or leave the pushdown stack unchanged; such a move

may also either delete the leftmost character from the input
string, or leave the input string unchanged. Thus, the

action of the pushdown automaton is fully defined by the follow-
ing functions of dr(top character on pushdown stack), a

(next character in input string), and ¢ (internal state).

(2) s(d,a,r), value 1n{5} = next internal state function;
P(d:a,aﬁ, values -1,0,+1 = pushdown stack move function;
D(d,a,s), defined oniy if P(d/ ,a,0) = +1, value 1in

' ﬁx} = pushdown character placed on stack;
1(d,a,6) = 0,-1 = input move function.

We restrict these functions by the following conditions:

(3) P(o(o,a,d‘) 20 for all a and ¢
(stack may not be pushed past its bottom) ;
I(a,- s0) = O for allX and ¢~ .
(input scan may not pass end-string mark);

SQK,a,d;) = J;

(acceptance state is invariant).

A string al....an of input characters not containing the
end-string character — 18 sald to be accepted by the push-
down automaton if, when started in the internal state d;,
the pushdown stack being in the "empty" state 'S’ and the
"~ input string being in the state 8y ...-8, ~ , the pushdown
automaton will eventually reach the invarient internal
acceptance state d;. If A designates a pushdown automaton
we write the set of all input words which the automaton
accepts as OK(A). Note therefore that A may be regarded
as a mechanism for performing a "syntax check" on certain
classes of strings. It is clear that a language not permitting
such a syntax check by a pushdown automaton cannot, in
any reasonable sense, be parsed by any such automaton.

The theorem to which we shall devote all our efforts

in the present section 1is as follows:

- 300

Theorem 8: let L be the set of all symme®ric strings on

the two letters a and b. Then there exists nofdeterministic
pushdown automaton A such that | '

L = ok(a).

We shall build a proof.by contradiction out of a
few lemmas. Thus Ssuppose that our theorem is false, and
let A (as described above) be a pushdown automaton such
that L = ok(a). |

We first consider input strings of the special form
bna%, W being an arbitrary string on the letters g and b
(exponents indicating repetition) and examine the reaction
of the automaton (started in 1its normal initial state) to
Such a string. Note first of all, that the éutomaton will,
after a finite number of steps, delete every one of the m+n
characters bnam. Indeed, were this false, the reaction. of
the automaton to an input string b aMw would be independent
of w. But since bnamambn is accepted by the automaton,
while bnama 1s not, this is impossible. '

We now make the following auxiliary definition.

Definition 9: N(n,m) 18 the least number of symbols on

the pushdown stack of the automaton A at the beginning

of any move in the series of moves of the automaton during

which the n+m-1-th of the characters b"a™ put not the n+m-th

of these characters has been removed from the input string.
The following lemma shows that in scanning the class

of input strings described above, the automaton A must

develop an increasingly large stack.

Lemma 10: We have 1im N(n,m) =eo for all n.
m — s0
Proof: Suppose the contrary. Then there must exist
some n, and some sequence my,My, ... tending to ®® such that
N=N(no,ml) = N(no,mg) = The sequence my,My,... 1is

infinite, while the total number of possible internal states
of A and the total number of possible conditions of a push-
down stack word of length N are both finite. Tt therefore
follows that there exist two distinct integers md{ M

=301 -

guch that both the internal and the stack state of the
automaton A take on identical values at the begilnning of

two distinct moves of the automaton, namely, at the beginning
of some move of A during which the n, +m-1'th but not the

n, +m'th of the characters bPoa™ has been removed from the
‘1nput string, and at the beginning of some move of A during
which the n +m 1-th but not the n, +ii'th of the characters
bnofﬁhas been removed from the 1nput string. But then the
automaton will accept a string pPoa™w if and only if it
accepts the string b Oamw. Putting w = beambno we see that

this is impossible, a contradiction proving our ILemma. Q.E.D.
We now make a second auxiliary definition.

Definition 114: N; (n,m) is the number of the first move of
the automaton A, as 1t scans an input string of the form
b a w,with the following two properties

(a) at the beglnning of the move in question, all the
n characters b” have already been removed from
the input string;

(b) at the beginning of the move in question, the
number of characters on the pushdown stack of A
has attained a value which will increase and not recur
agailn until a character equal either to b or to — 1is
subsequently encountered in the input string.

Note that it follows at once from Lemmna 1 that Nl(n,m)
is well defined for each n and all sufficlently large m, and
that, if m is sufficiently large, Nl(n,m) is independent of
m. This allows us to make two more auxiliary definitions.

Definition 11B: For each N 2 1, let M(n) be an integer
sufficiently large so that N (n,m) is well defined for all
Z M(n), and so that Nl(n m) = Nl(n f) for all m,m = M(n).

-302 -

Definition 11C: For each n let «(n) be

the internal state of the automaton A at the beginning of

its Nh(n,M(n)) =th move, and let %(n) bé the top character
of the pushdown stack at the beginning of this same move.

We now note that since the total number of internal
states of the automaton A and the total alphabet of push-
down state characters are both finite, there exists some
infinite increasing sequence NysNns .. of integers such that
o’(nl) = o’(n2 = ... and o((nl) =at(n2) = ... '

Next we observe that the following lemma may be established
by an argument similar to that used to prove Lemma 1; we
leave 1t to the reader to make the necessary adaptation of
that argument.

Lemma 13: Let the automaton A be given an input string
of the form bnambkw to scan, and consider the sequence of
moves which it will make. Let Né(n,m,k) be the least
number of symbols on the pushdown stack of A during any move
during which the first of the latter group of k b's has
been removed from the input string, but during which the
first character of w has not yet been scanned. Then

1im Ng(nlmlk) = for all fixed n and k.
m - oe

If we combine Lemma 12 wilth the facts stated in the
paragraph preéeeding its statement, we can deduce certain
interesting facts.

Let ny be as in Lemma 12, and consider the action of
A in scanning input strings of the form bnjam'Jbk -1 . We
assume here that the integer mj, which will be. defined more
preclsely below, is at any rate sufficiently large so that

1) my exceeds M(nJ) and therefore exceeds the number
13 of characters a of the input string scanned by A at the
beginning of its Nl(nJ,M(n))=th move;

11) Ng(nj,mj,k) exceeds N(nJ,M(nJ)).

-303-

It follows from 1) and 11) that the moves of A subsequent

to its Nl(nJ,M(nJ))-th move, and up to the first move at
which the terminator —{ is scanned, depend only on the portion
a™3 13 v¥ 4 of the input string remaining after this move.
Hence, if we put my = 1J+m, where m is any sufficiently

large 1integer, 1t follows that the moves of A subsequent to
1ts Nl(nJ,M(nJ))-th and up to the first move at which the
terminator 4 1is scanned, are independent of J., It is also
plain that A will not examine any one of the first N(nJ,M(nJ))
gymbols on 1ts pushdown stack during any of these moves.

The symbols on the pushdown stack of A during any of fthese
moves wlll therefore consist of a first group depending

only on J and a second group depending only on the number

of the terminating string: ambk — of input signals which
have been scanned. The following lemma summarizes these facts.

Lemma 13: Let K be any fixed large integer. Let
inJ; be as in the paragraph immediately preceeding the state-
ment of Lemma 1. There exists a sequence of integers m
such that for all 1 € k £ K, and letting & (n,m,k) denote
the condition of the pushdown stack of the automaton A
at the beginning of the first move during its scan of the
input string b"a™¥ —} 1in which the string terminator
symbol -] 1s scanned, then

i) z.(nj,m ,k) may be written as a concatenatlon

‘Z(nJ:mJ.wk) = zl(J) Ze(k):

where the string Zl (j) of pushdown stack characters depends
only on jJ, and the string Zé(k).depends only on m and k.

i1) The internal state of A at the beginning of
this same move depends only on k.

Using Lemma 13, 1t is qulte easy to complete the proof
of Theorem 8. Let J be ohe more than the number of internal
states of the pushdown automaton A, and choose K:>nJ in

304~

Lemma 4. Present each of the strings b"Ja™Ip™ — where
i,J=1...,J to the automaton, and coné;der the resulting
sequence of moves. In particular, consider the moves made

by A after that first move, described in Lemma 13, in which

it scans the string terminator symbol — . Plainly there
exists no 1 5=J for which A passes into its accepting state
without removing all the characters ofAZé(ni) from the
pushdown stack. Indeed, if such an i existed, the response

of A to the inputs b MM — would be independent

of J» which 1s clearly impossible. Consider then the internal
state Ib of A at the beginning of the first of its moves

which follows the removal of all the characters of Zé(ni) from
the pushdown stack. Since J exceeds the number of internal
states of A, there must exist two distinct integers

1 and 1i', neither exceeding J, such that [i, = J{.
then A reacts to each of the strings b Ja™jb™ — in exactly
the same way as it reacts to b"Ja™b™'—f. 1In particular,

A accepts b 1a™b™ '] | a contradiction which completes the
proof of Theorem 8.

But

-3058-

CHAPTER 6. OPTIMIZATION METHODS FOR ALGEBRAIC LANGUAGES

1. Introduction.

We noted in Chapter I that, whereas a source language
program consists ideally of a minimal set of indications
in appropriate form defining an algorithm, the 'machine’
or 'assembly language' program into which this program 1s
translated either by a compiler or by hand may contain a
great deal of additional information. In particular, we
observed that such an assembly language program specifies
particular machine registers and reglster types to be used
in performing the individual machine operations to which a
source language is reduced; specifies the particular order
in which the necessary sequence of operations is to be
stored within the machine; the particular order in which
the sequence of operatlons is to be executed by the hard--
ware; the detailed pattern in which intermediate information
generated in the course of computation is to be stored and
reloaded, etc. The substantial purpose of all these additional
specifications 1s the transformation of the original source
language algorithm into a form which is more or less
toptimized!; that 1s, into an equivalent form which will
run as fast as possible and make minimal necessary demands
on the various forms of storage available within a given
computer. Now, the general problem of determining the
equivalence or inequivalence of a palr of programs 1s
certainly unsolvable. For this reason, it is impossible
to develop a fully systematic and wholly adequate theory of
program optimization. Any discussion of optimization will
necessarily be a semi-systematic account of a variety of
methods, each of partial applicability, each 1lntended
to optimize one more or less 1imited aspect of a program.

In splite of the difficulties which must be faced in
its attainment, a reasonable level of optimization 1s essential
if source language programs3 are regularly to replace programs

~306

written in assembly language. To the extent that compiler-
produced code is substantially slower and more voluminous

than code produced by hand, it is economically inevitable

that programs of major significance will be hand-coded.
Fortunately, however, many of the hand ¢oding technlques

most significantly enhancing the quality of code are of a
suffilciently simple logical structure as to be algorithmically'
formalizable. The resulting collection of algorithms can
recapture many of the experienced programmer's "coding tricks."
A really good optimization program can in many cases

produce code comparing very favorably with hand code. 1In

some cases, by making use of the unique ability of a computer
to examine a great many items rapidly and accurately, an
optimization program can even outdo the hand coder. A

human programmer is, after all, limited by time in the

number of optimizations which he can consider, and by

accuracy and debugging considerations 1in the number of
optimizations which, having considered, he will decide to

use. It is to be anticipated that, as our knowledge of '
optimization algorithms grows more organized and sophisticated,
and as growing computer speed and storage capacitylpermit

the use of increasingly powerful optimization procedures,

wé will be able to produce mechanically optimized code whose
quality substantially exceeds that of hand code in all but
isolated special cases.

Optimization procedures may be divided into two recog-
nisably distinct classes: machine independent optimizations
and machine dependent optimizations. Machine independent
optimizations make use of certain rather general transformations
of algorithms which, for a large class of languages and
machines, are apt to improve efficiency. Thus, for example,
the elimination of instructions, redundant because the
calculations they accomplish have already been performed,
will in almost all cases and for almost all machines accomplish
a saving both of computation time and of program size.

=307 -

Such an optimization 1s therefore machine independent.

Machine dependent optimization methods, on the other hand,

depend rather strongly on particular features of a glven

machine. Thus, for example, 1f one particular register of

a machine is, in virtue of the machine's Structure, the

locus of a particularly rich set of single-blt Boolean

operations, then a program involving any considerable amount

of Boolean manipulation will be most efficient if we can

arrange to have most of the Boolean opérations performed

in the designated register. Moreover, in this sltuation, any

preliminary operation preparing results which are needed

as Boolean operands should, for the sake of efflclency,

generate 1ts results directly in this same register. Since

in the present monograph we are not concefned with any

particular machine, we intend to discuss the machine independent

optimizations much more fully than optimizations depending

on particular machine structures. On the other hand,

since any line separating these two classes of optimizations

is artificial at least 1in part, and since a number of

important optimizations are in fact machine dependent, we

cannot avoid all discussion of machine dependent optimization.
We begin with quick survey of some of the principal

machine independent optimizations.

1. Redundant instructions may profitably be eliminated.
Thus, for example, the FORTRAN statement

(1) é‘(:i::J) = B\I,J) P)

in which A and B are understood to be two-dimensional arrays
(which for the purpose of the following illustration we
assume to have the dimension (25,25)) will be expanded by

a completely unoptimized translator into code of the form

(2)

K=1H®*25
L=K+J
'M = Address(B) + L

Ioad from (M)

-308-

N I * 25
O=N--+J

P = Address(A) + O
Store into (P)

It is apparent on inspection of the code (2) that the
quantities M and O have exactly the same values as the
quantities K and L, so that, i1f the value of L is saved and
hence avallable in the latter part of the code sequence,
statement(l) is expanded may be translated more efficiently
as

(3)
K=1 % 25
L=K+J

M = Address(B) + L
Load from (M)

P = Address(A) + L
Store into (P)

Note that our assertion that the code (3) is more efficilent

than the code (2) depends only on very mild assumptions

concerning the computer on which the codes (2) and (3)

are to run. We assume, in particular, that enough registers

or core locatlons are avallable for the gquantity L to be

saved and, if necessary, reloaded withont requiring a

reloading orocess so elaborate as to be more expensive

than the multiplication N =1 * 25 and the addition

O =N + J combined. Making this mild assumption, we regard

the process that takes us from the "raw code” (2) to the

'optimized code” (3) as a machine independent optimization.
Note that for almost all machines the code (3) will

be better than the code (2) in two valuable senses. In

the first place, (3) calls for the execution of fewer machine

operations than does (2), so that (3) will run faster.

Moreover, the code (3) is shorter than the code (2) so that

less internal storage is required to store the sequence

_309 -

(3) than is needed for (2). Many, but not all, of the
machine independent optimizations which we shall consider
will yleld both these advantages. However, we shall also
discuss optimizations (1ike the optimizations by "peduction
in strength'" described below) which make codes more efficient
in regard to thelr execution time, but at the expense of

a slight expansion in their length. Notice also that the
optimization described above is an axiomatic‘aapect of
"good handcoding procedure," and would be made, as a matter
of course, by any experienced programmer expressing the
algorithm (1) directly in assembly code.

2. A second class of optimizations aims at the optimization-
time detection of expressions with determinate constant
values, and fthe replacement of such expressions in the
optimized code sequence by their known constant valves,

“or example, it is not uncommon for a programmer to define

a quantity PI at the beginning of’ 1ts program by thé FORTRAN
statement PT = 3.14159, and then to use this quantity
symbolically in subsequent portions of his program, where

he micht, for example, write

(4)
X =2 % PI ¥ Y
ete.

On the reasonahle assumption that the quantity PI 1s never
redefined, the expression (4) may be rather trivially
rewritten as

(5) |

= 6.28318 * Y

e
which in the expanded, assembly language version of the
same code would both be shorter and save a multiplication.
The saving of time which results from this replacement
can of course be particularly important {f the instructions
(4) or (5) happen to lie in a frequently executed region
of the program.

_3107

Evidently, other .constants than 47" can be involved in
such optimlizations. A programmer striving for generality
of code will, in many cases, refer to various constants
symbolically throughout his program, intending to supply
particular constant values for all hecessary symbols in a
block of statements forming a prefixed initialization section
in his program. Any symbol used in this way may be the
subject of an optimization of the kind that takes us from
(4) above to (5). Optimizations of this sort have been
called optimizations by constant propagation; this is the
term by which we shall describe such optimizations in the
remainder of the present chapter.

Optimization by constant propagation may be particularly
important in connection with subroutines. Often, a symbolic
argument to a subroutine will in fact be assighed only one
single value every time the subroutine is called from a
glven location. The use of techniques allowing the Joint
cptimization of separately pre-compiled subroutines enables
one to take advantage of such circumstances to produce
efficient subroufine code with which folding has been
performed during a pre-run optimization pass.

3. Another useful machine independent’optimization procedure
is the elimination, within a program, of all calculations
whose results are never used, and of all calculations which
do nothing hut orepare data required for such calculations.
Of course th2 occurrence in an unontimized nrogram of such

a calenlation is normally a result of programmer 2rror or
carelessnags. However, various of the optimization procedures
discu