Computer

Organization



21

THE MACHINE REPERTOIRE

Sec. 1.7

ON
ON
SO
SO

S

ON
SO
SO

ON
ON
ON
ON
ON

ON
ON
ON
ON
ON

ON
SOX

W< U<« T
W+ ) <=
W< NI« 1
W<=1T—WN<T+1

I + I < uonedpulr ou N < uo1edIpul
Q0IADP PUIMAIT
ndinQ <« (W)

W < (induy)
I+1<=0> W W <0< (W U1 — (u
I+1<=0<Z W W < 0> () U« [+ (W
1+1<=0< W W< 0> (n)
[+1<=0=( W < 0 # (W)
I+1<=0> (W W <0< W

Dd+0 1D« 0 T+ 0
T~ 1 N> () d<— 1 W= (W) D—1NW< (W
U<~ N — (0) U'dWN u<«— W + (0)
U< N
Ny « (W VYNX u— (Ny)
WA <« (u) WNX u «— (W)

cHI<>W) THI<M =K 1+1<=0 <)
I+I<0=T W<I="1

u‘Ns(
2
usl
syl

Elle]|
aANIMIY
LM
avay

u‘Nal
U'NNL
u'NNI
u‘zZNNI
u'dNIf

U‘NdWD
u‘ddN
U‘NdX
U'NVX
U'NIWX

SYD
10!

a8vxyuy aupnoigng

oI

dum( pue

189) QUAWIRIOUT
dwn( pue aredwo)
aredwo)

JUOWIAIOU]

I
suoypndiuput xapuy

8¢
LE
9t
19

123
te
[43
1€

0¢
6<
8¢
LT
97

Y4
¥e
£
(44
1T

0T
61



PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA, PTY. LTD., Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LTD., New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo



Computer
Organization

IVAN FLORES

Computer Consultant

Professor of Statistics, Baruch School of Business
The City University of New York

PRENTICE-HALL INC., ENGLEWOOD CLIFFS, N.J.



© 1969 by
PRENTICE-HALL, INC.
Englewood Cliffs, N.J.

All rights reserved. No part of this book

may be reproduced in any form or by any

means without permission in writing from
the publisher.

Current printing (last digit):

10 9 8 7 6 5 4 3 21

13-165902-2
Library of Congress Catalog Card Number 77-76871

Printed in the United States of America



PREFACE

This book describes extant computer systems in terms of functional
block organization and relates the organization to software components
in their operating systems. The book is aimed at those with some knowl-
edge of both software and hardware. This includes several classes of
individuals who have a “need to know”:

e The computer user who wants to know more about his computer.

o The user-programmer and the system programmer who could
write better programs if they understood how their machine
functioned.

e The hardware or software student who would like to contrast
different organizations.

e The maintenance engineer who would like to have a clearer
picture of the whys and wherefores of the machine he services.

Assemblers and compilers make computers seem more similar than
they are. This text examines the organization of typical word-, field-, and
byte-oriented machines, and it emphasizes their similarities and differences.

Knowledge of the organization and function of several computers is
essential to the researcher and scholar in computer science. Its place in
the graduate curriculum is acknowledged. The computer science
“grandfather’” should be as well informed as the second or third generation
computer science graduate.

Both the system and problem programmer will learn something about
the hardware of each of the machines for which they program; the com-
puter designer will learn something about the software intended for the
machine he designs; the serious user will learn enough about the software
to get his problem running, and enough about the hardware to get the
problem stated properly. All of these groups should be able to follow
this text. The first chapter is a leaven to the readers and, so, is the
starting point for my investigation.

In conducting my research for this book, I had to wade through vast
quantities of manufacturer-supplied information. Incidently, I am
indebted to IBM, RCA, UNIVAC, and other manufacturers for making
available much of their confidential hardware information. Just one
manufacturer would have no part of my venture (guess who—I'm being
politic!) and I had to divine his techniques.

v
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Anyway, I saw the mounds of paper the field engineers had to endure.
I expect this volume to supplement (supplant ?) these mounds by providing
a survey of machine properties and techniques at a hardware level,
information which the FE-in-training should absorb at the earliest
possible moment.

Of singular importance to the development of the computer field to its
present point is the CHANNEL CONTROLLER concept. It has evolved to its
present stature in more than ten years. Although this concept is taken
for granted by many, Chapter 2 is the first presentation to treat it compre-
hensively and interrelate it to cycle stealing and interrupt.

Equally salient is the interrupt principle presented in Chapter 3. Its
effectiveness depends on its cohesion with the software provided for it.
Functional aspects of both are examined to apply to systems of both the
second and third generation. The contrast between cycle stealing and
interrupt cannot be overemphasized.

One third generation concept is level or mode control, where commands
are available or unavailable, depending on the mode in which the program
resides. The concept has been coalesced in the machine design with those
of the CHANNEL CONTROLLER. After the mode control principie is presented
in Chapter 4, it is welded to the previous work to form a massive truss,
the superstructure of present systems. This truss is, of course, the program
status word. Its functional details are fully expounded in Chapter 4.
Later, this principle is incorporated into two machine designs, IBM
System 360 and RCA Spectra 70; how the PSW is integrated into the
total system is answered in Chapters 9 and 10.

The DEC PDP-8 is thoroughly explained in Chapter 5 as being the
most typical and popular of its class. Then Chapter 6 discusses four more
smaller computers in less depth.

Chapter 7 examines the IBM 1401 in detail for several reasons:

« It is the most popular second generation machine.

o It is the first totally field-oriented machine.

o It is the first and most successful totally business-oriented
machine.

o It 1s the basis for the entire third generation Honeywell System
200 product line.

This leads us to Chapter 8 where the Honeywell 200 line is examined.

Chapter 9 covers System 360 in depth and, consequently, its length is
considerable—but after all, it is the most important machine of our time
(no, I didn’t say best!). Since the RCA Spectra 70 and the Univac 9000
are designed to be machine language compatible, it is important to see in
Chapters 10 and 11 in what respects they differ from System 360.
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At this point I want to bring out the limitations imposed upon this
book. I designed it to be most useful to the largest number of people.
To do that, I restricted my exposition to the most popular computers.
By popular 1 mean those which, by number, are most prevalent in the
field. Hence, sheer number dictated those computers which I chose to
describe in detail. Of course, I have been selfish in this. I am interested in
selling the book to the most people. With a large number of people
interested in the book, perhaps I will be encouraged to write further
books on the organization of the more obscure, more exotic, and possibly
even more interesting computers.

What happened is that the most popular computers turned out to be
of the Princeton type. Hence this is not a general book on computer
organization; it is alright that the emphasis is on the simpler type of
construction.

Although programming and software are discussed, advanced aspects
such as multiprogramming, real-time systems, and so forth, do not get
much attention.

For the record, I suppose some of you would like to know what was
omitted. In fact, maybe you would like to see if / know what was omitted.
I am not going to give you an exhaustive list, but here are a few of my
major omissions.

Stacks The Burroughs machine, the B5500, is the
most prominent machine that uses the stack principle in the hardware
design. It is a fine machine which places hardware design much closer
to the higher-level language in which the user usually programs. Its
organization is different and complex. I think, if I ever get a chance, I
could write a whole book just about this computer.

Multiperipherals The CDC 6600 is a special beast with one
large computer and many small ones; more important, it is run by one
of the small computers. This is a fascinating concept, especially when we
make the CENTRAL PROCESSOR multifunctional. That is, it can carry on
several processes at once: floating point division, editing, etc.

Virtual memory Two computers have been designed to have
hardware facilitation of virtual memory and paging so as to make multi-
access computing supposedly more feasible for these machines. We have
the IBM System 360, Model 67, and the GE 645 with Multics. Both of
these are very interesting, but we are not yet sure if they have solved the
problem which they supposed to.

vii
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Look ahead At least four computers are designed to have
look ahead. Philco made the 2000, Model 212. IBM has constructed
STRETCH, System 360, Model 91, and is in the process of releasing
System 360, Model 85. All of these process more than one command at
a time. Certainly this is an interesting concept which seems to have
succeeded ; but again, I could write half a book about this.

Multiplexor I have described SELECTOR CHANNELS in
detail and how input and output information is handled generally. I
have not given much attention to the MULTIPLEXOR CHANNEL. The
MULTIPLEXOR is a CHANNEL which deals with slower DEVICEs and can have
many such DEVICEs operating simultaneously. The details of how this is
done seemed less important to me than the other features included in this
book. Perhaps, at a later date, I can add this information to a revised
edition.

Controller I think the DISK CONTROLLER is reaching
major proportions as an important hardware item. I have discussed this
topic, devoting a whole chapter to it, in my forthcoming bock, Data
Structure and Management. Possibly, it too should be included in this
book. But at this point in time, I feel it is more important to get the
book out to the public for their criticism than to include all available
topics (which would make it a seven volume set instead of a single volume).

Programming This is not a book on programming but new
hardware certainly tries to satisfy many of the programmer’s needs. The
features which facilitate multiprogramming are present in third generation
computers and are, namely, MEMORY PROTECT and the CHANNEL CONTROL-
LER. A system of dynamic paging is helpful but this need not be done by
hardware facilitation. Again, multitasking is a software feature. Multi-
access programming requires the use of consoles and TELECOMMUNICATION
DEVICES as well as a MULTIPLEXOR CHANNEL. Again, a whole book might
be devoted to describing the interrelations of a multiprogramming and
hardware design.

Several of my friends, Andre Godefroy, Al Brooks, and Burt Walder,
read the text and helped to improve its style and clarity. My secretaries
Gladys and Helene shared their devotion in working long and patiently
with me. Arlene and Chet Abend have created another beautiful cover
and jacket design. My editors at Prentice-Hall, John Davis and Gregory
Hubit, have shown me every consideration in this creation. Finally, Chris
Nolan has done her usual fine job of editing the manuscript.

L F.
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INTRODUCTION

1 . 1 CONVENTIONS

In discussing computers in a system environment, we are concerned
with many things: '

o the hardware itself;

 problem-solving programs;

o the programming systems and parts of them;

» the language elements with which the programmer speaks to the
computer;

« signals floating about in the hardware for internal communi-
cations.

The printed book is a way for the author to talk to the reader—for me
to talk to you. This communication can be more effective if ambiguity is
removed, and one way of doing this is to use different typefaces to dis-
tinguish different kinds of objects. That is the device I use in this book—
different typefaces refer to different classes of things.

The conventions I employ follow; you should become familiar with
them to facilitate your reading of this volume.

1. Whenever definitions are made, the object being defined appears in
bold-faced type. Generally, these definitions are interspersed in
the text. The use of boldface permits the reader to find the term
more quickly when it’s needed for reference.

2. The names of all kinds of hardware units appear in SMALL CAPITALS.
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This applies to everything from subsystems through functional units
to logical units.

3. When software is discussed by name, this name appears in script.
Thus, the name for the system supervisor is SYSBGEM.. All capitals
are used for the largest systems, initial capital and lowercase are used
for routines, and lowercase only is used for subroutines.

4. The programmer deals with several kinds of programming languages.
These range from high level down to assembly language and, in
some cases, machine language. I deal here mainly with assembly
language and mnemonics. Whenever these are used, they appear in
uppercase sans serif type. For example, when the programmer
specifies addition, he uses the mnemonic ADD.

5. When parts of the hardware communicate with one another by
control signals, the names of these signals appear in lowercase sans
serif type. Thus, start is a signal to initiate some computer process.

1.2 THE COMPUTER SYSTEM

Since this is an advanced book about computers, it is assumed that the
reader has background in digital computers. However, for the sake of
uniformity, this chapter is a brief review of both hardware and software
fundamentals. Let’s begin by examining the modern computer.

The modern When I speak of a computer, 1 refer to an

computer automatic problem-solving device whose
main purpose is handling information which is represented electrically.
However, since many devices can be used for problem solving, it is
important to limit our field of interest.

The computer is digital when it handles information represented in
discrete levels. Electrical devices which have exactly two states have been
found to be most economical and accurate. Hence most digital computers
are binary; but this is not a necessity.

Electronic computers are distinguished from electric computers: the
former use only solid state and vacuum tube devices for processing,
whereas the latter use electromechanical devices.

The speed at which basic actions take place in the modern computer
can be rated in nanoseconds or microseconds, terms for billionths and
millionths of a second, respectively. That is why the modern computer is a
high speed device.

The directions by which the computer operates are stored in its MEMORY.
These directions are available to the computer not only for examination
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but also for alteration. In this sense, the modern computer can modify its
own behavior; hence, it is an internally programmed or stored program
computer.

Use In the past, computers were roughly con-
trasted by their use:

» The scientific computer solves problems involving a large amount
of calculation but generally producing only one or a few results.

o The commercial computer is applied mainly to accounting
problems where very little calculation is done but where voluble
output is produced.

Third generation computers aim at solving both types of problems
simultaneously. But, as a consequence of their versatility, they are less
effective than a single-minded system in solving either type of problem.

Another way to classify computers is according to the variety of
applications in which they can be used:

o The special purpose computer is designed for a specific class of
problems. This is exemplified by the missile computer or the
elevator traffic control computer.

« The general purpose computer is hardly limited in the number of
applications of any given type for which it can be used.

This book is devoted solely to general purpose computers.

The classical Figure 1.2.1 is a block program of first and
system second generation computers. The MEMORY
is central. It receives information from INPUT DEVICES and furnishes
information to OUTPUT DEVICES. The CONTROL SUBSYSTEM obtains the

T—> INPUT yy -» MEMORY k —» OUTPUT —a——"
l \ //
! ] \ ;
\ | \ /
\ | ~o \ /
\ | /
\ o ANAY /
\ | SO v\ /
\ | ~ >4y \
\ ~
\ \ ~
\\ \ PROCESSOR CONTROL
AN \
AN \ r g
N N _ ,,///
~ ~ -~ S —_—— /:/ -

Fig. 1.2.1 The classical computer system.
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program from MEMORY and assigns tasks, one at a time, to the other
SUBSYSTEMS. The PROCESSOR receives data from the MEMORY under the
direction of the CONTROL SUBSYSTEM; it returns processed data to the

MEMORY.
The modern The modern computer block diagram is
system presented in Fig. 1.2.2. The difference that

we note immediately is that the devices, whether for input or output, do
not report directly to the MEMORY but are reached through the CHANNEL

DEVICE D D D D

NIV

AUXILIARY CHANNEL D
MEMORY ig¢ <

N

v

CHANNEL

MEMORY

N

=4 CONTROL

h 4 7

PROCESSOR  |&

Fig. 1.2.2 Third generation computer system.

CONTROLLER. This is the main difference between the classical and modern

computer systems. Chapter 2 is devoted to the operation and implementa-
tion of the CHANNEL CONTROLLER method for 10.

1 .3 BUILDING BLOCKS

Language The form of information, both internal and
external to the computer, is dictated by the nature of the available circuits
and components. The simplest, most rapid, and most economical devices
are bistable. There are two states in which a bistable device may be found;
it will maintain a given state until a signal demands that it enter its other
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state. Relays were used in the first computers; modern computers use
ruipFLops. The first FLIPFLOPS consisted of a pair of tubes; now, they
consist of a pair of transistors or integrated circuits with dual active
elements. These elements work reciprocally. When one of them passes
current, the other refuses to pass current; when one of the pair is on, the
other is off. Other names for the FLIPFLOP circuit are BIT STORAGE, MULTI,
TOGGLE, etc.

The two states of a bistable device are arbitrarily labeled 0 and 1.
Since there are only two possibilities, they are called binary digits, con-
tracted to bits.

To represent humanly recognizable information, numeric or alphabetic,
in binary form requires translation. Each character used by a human is
represented by a set of bits. A computer dealing only with numeric
information might use a set of four bits to represent each decimal number.
Table 1.3.1 lists the decimal digits and the corresponding bit set called

Table 1.3.1 THE NATURAL BINARY
CODED DECIMAL CODE

Digit Code

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

OO WNAWN=O

forbidden

NBCD by which the computer could store the decimal information. BCD
or binary coded decimal codes use a different four-bit combination for each
decimal digit. When the combinations all correspond to the binary
counting representation, the code is called NBCD or natural BCD. For all
BCD codes, there are sixteen different combinations of four bits each, and
six of these combinations are unassigned. Thus, when decimal information
is handled in this fashion, there is a loss in efficiency.
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If six bits were used for each symbol, they could be combined in sixty-
four different ways, enough to translate both letters and numbers.
Alphanumeric, defined as combined alphabetic and numeric information,
can therefore be represented with a minimum of six bits per character.

It is often more suitable to handle larger chunks of information of a
fixed size. A specified number of combinations, each representing a
character, are assembled together into a word. This word can be rated by
the number of characters, letters, or numerals it contains, or by the number
of bits in it. Thus the Honeywell 800 has a forty-eight bit word. Informa-
tion can be stored in this word in eight alphabetic characters of six bits
each, or in twelve numeric characters of four bits each.

We use one definition for word size: the number of bits recalled or
memorized on a single, main memory cycle; the memory cell size (see p.
12). By this definition, all computers have a fixed word size, the size of
a datum in MAIN MEMORY. For some computers, since words are so small,
i.e., single characters, the command can specify multiple characters
(words) for processing. Such machines as the RCA 501, 301, and Spectra
70, the IBM 1401, 1410, and Series 360, and the Univac 1050 are character-
oriented machines. They handle single or multiple characters as specified
in the command or data punctuation. There is a relation of word size to
the character which is clarified in later chapters for specific machines.

It is possible to translate from a decimal number into a totally binary
number. When this is done, no digit in the original decimal number need
be represented in any group of bits in the binary number. The bits in the
computer word are used as they are used for counting in a binary system.
Thus, 37 is represented in binary by 00100101, but no combination of bits
corresponds to 3 or to 7 here.

Even though information is stored in the computer word in binary, and
although there is no direct translation between bit sets and characters,
our concept of data processing is not affected. Two words may be added
together, regardless of their representation in the machine, as long as they
are numerical. On retranslation into human terms, the result must be the
same no matter what the representation of numbers in the machine.

Hardware atoms Engineering
To0O— 0 p—>»00ut congsiderations have led to the con-
clusion that the most reliable, smallest,
To 1—» 1 L » 1 Out economical, and all-around best hard-
ware atom 1is the BISTABLE DEVICE or
Fig. 1.3.1 The FLIPFLOP. FLIPFLOP. The symbol for the FLIPFLOP
appears in Fig. 1.3.1. Two lines enter

the block. A signal on the line labeled to 0 sets the device to its O state
regardless of its present setting; a signal, to 1, sets the device to the 1 state




Sec. 1.3 BUILDING BLOCKS

regardless of its present reading. The output line records the present set-
ting of the device.

The FLIPFLOP holds one bit of information. It can be set in a nanosecond
or so, and it can be read instantaneously—as fast as a signal can scan the
output. However, the FLIPFLOP costs more per bit than other storage
devices. When speed is not of the essence, the preference is for less
expensive devices or even core MEMORIES. Usually, we rely on FLIPFLOPS to
act as temporary, fast-access storage devices within the PROCESSOR where
speed is important.

The REGISTER The recisTER IS a set of BIT STORAGE DEVICES
or FLIPFLOPs holding a fixed number of bits. This number of bits, the
chunk of information dealt with by the PROCESSOR and CONTROLLER, i$
often, but not necessarily, a word.

The word “Word” as it is used here refers only to the
size of the MEMORY CELL. The twenty-five bit word could represent a
twenty-five bit natural binary number. One of the bits could be reserved -
for a sign, and the twenty-five bits might then be viewed as a twenty-four
bit binary integer.

Coding schemes enable us to store decimal information where a set of
four bits can represent any one of the decimal digits. Since there are six
sets of four bits available in our twenty-five bit word, such a word can
represent a signed, six-digit decimal number.

In business applications we manipulate alphabetic as well as numeric
information. Six bits are required to represent an alphabet of characters,
numerals, and special symbols; sometimes seven or eight bits are used for
a more complete alphabet. Our twenty-five bit word can store four six-bit
alphanumeric symbols plus a sign or tag when necessary.

Some computers permit us, under control of the program, to alternate
between two or more of the character-handling capabilities just specified.
Thus, some pieces of information can be treated as alphanumeric, while
others can be treated as straight numeric.

REGISTER layout REGISTERs are set most quickly in parallel:
the bits are set at once. Figure 1.3.2 depicts the parallel REGISTER. The
double line indicates that several signal lines set information into the
REGISTER.

The serial REGISTER can receive and transmit only a single bit of
information at a time. The symbol for the serial REGISTER is in Fig.
1.3.3.
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In
Enter
v
In Out

1 | >
Out Shift

Fig. 1.3.2 The parallel entry REGISTER. Fig. 1.3.3 The serial entry REGISTER.

A compromise between these is achieved with the serial-parallel
REGISTER, where a character of information can be entered into or with-
drawn from the REGISTER during a single time interval. Since a character
consists of several bits, we say that the REGISTER is serial by character and
parallel by bit. The symbol for this appears in Fig. 1.3.4.

SWITCHES A swrrcu permits or prohibits the passage of
a signal through a line or set of lines. By this definition, the SWiTCH might
be operated remotely or automatically, incorporating a mechanical or
electromechanical device. It is then called a RELAY. The first computers
were constructed mostly of relays. Although the RELAY is inexpensive and
bistable, it does not operate fast enough to serve in a high speed computer.

In the electronic SWITCH, one electronic signal permits or prohibits the
passage of another electronic signal along a signal path. Both the actuator
and the signal are electronic in nature, and it is difficult to differentiate
between them. The symbol for an AND GATE, or simply AND, is shown in
Fig. 1.3.5. A signal appears at the output of this DEVICE only when signals
are present on both input leads. This function is identical with the logical
connective and, from which it derives its name.

In Out
_—__% A —
7 R A&B
Shift B

Fig. 1.3.4 The serial-parallel REGISTER. Fig. 1.3.5 The anp gate.
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A B&A
B—¢ ¢—D=B&AVB&C
R —
= RVS
C B&C g — |
Fig. 1.3.6 The double throw, single pole switch. Fig. 1.3.7 The or gate.

Connecting two ANDs together as in Fig. 1.3.6, we form a TWO THROW
SWITCH. Notice that an output signal appears when both 4 and B are
present or when both C and B are present. There is a little circle on AND2
in the figure. This indicates that the signal B entering that GATE is inverted;
a signal appears at the output of AND2 when the signal C is present and the
signal B is absent. In other words, the circuit of Fig. 1.3.6 produces an
output on line D identical with the input A or the input C, according to

whether signal B is present
or absent. It thus acts as a
TWO THROW SWITCH, where
the signal B throws the
switch in the up direction,
and the absence of signal B
throws it in the down di-
rection.

In Fig. 1.3.6, if the out-
puts of two ANDs are shorted
together as shown, trouble
may arise. It can be avoided
with the OR GATE or OR,
shown in Fig. 1.3.7, which

A 1\ ~
P

C

Fig. 1.3.8 An improved double throw, single pole
switch.

produces an output if either or both inputs are present. or produces the
effect of the shorting wire as far as the output is concerned, but the input

signals do not interact.

The or in Fig. 1.3.8 provides the function of the or in Fig. 1.3.6
without the interaction of the latter.

9
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Combinations of ANDs and Ors form both MULTIPOLE SWITCHES and
MULTITHROW SWITCHES. murtipoLe SWITCHES affect several information
paths; mucTiTHROW SWITCHES route signals to several places. SWITCHES
are among the most important components of the computer because they
automatically route information. They permit one COMPUTER SUBSYSTEM
to control what happens in another SUBSYSTEM. .

A large multipole SWITCH is often indicated in diagrams by an oval.
The ANDs and oRs which comprise the SWITCH may be omitted entirely and
must be assumed.

Functional units A FuncTioNaL uniT S a larger component of a
computer SUBSYSTEM. The function performed by a unit can be stated in
words. The logical designer takes this verbal statement and converts it into
symbols using logic. This results in a set of equations which is symbolic
but not mathematical and says the same thing as the original verbal
statement. The designer uses certain rules of simplification in restating the
equations so that they assume a more compact form.

Since each and or or connective in a statement corresponds with a
logical atom, AND or OR, simplification of the equation resuits in simpiifi-
cation of the hardware. When the symbolic equations are reduced to their
simplest forms, they then yield the most economical hardware. The
designer then converts the equations to a pictorial form which represents
the modular structure of the hardware. It is then simple to convert this
modular representation to the physical structure of the computer.

Presented below are the verbal descriptions of some FUNCTIONAL UNITS
used in the computer.

The heart of the ARITHMETIC UNIT is the apper. As shown in Fig. 1.3.9,
it adds a pair of quantities (4 and B) together, producing a third. The
ADDER is indicated by a rectangle with “ADDER” inside it.

The Encoper is a translator. When presented with a character, the
ENCODER produces the bit set of the user’s code corresponding to the
character. There is a separate input line for each character for which a code
is desired. The output is in the code, a bit set corresponding to the input
character, as shown in Fig. 1.3.10. For one and only one character input
signal, none, one, several, or all of the output lines may contain signals
corresponding to the proper code. If several input signals are applied,
nonsense results.
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—> —>
A A+B — —
. | ADDER =—> . E = = D M

Fig. 1.3.9 The ADDER. Fig. 1.3.10 The encoper. Fig. 1.3.11 The DECODER.

The pecoper provides the inverse function of the ENCODER. It takes a
code, a bit set, and translates it into the corresponding character, as shown
in Fig. 1.3.11. None, one, several, or all of the coded input lines may
contain signals; only one output line produces a corresponding signal. If
some bit sets are invalid, they correspond to no valid character; a single,
output signal line may convey this.

The counter counts the number of discrete signals which appear on the
line. Incoming signals appear as pulses on the count line. The COUNTER
has a limit which, when exceeded, resets the COUNTER to O. Thus, if the
maximum count for a COUNTER is 15 and we enter a 16th pulse, it sets the
COUNTER to 0; the next pulse sets it to 1; and so on. As shown in Fig.
1.3.12, another input line, the reset line, may reset the COUNTER to 0
regardless of its present state. The output lines of the COUNTER convey a
set of signals which record a binary count. To represent a count of 2% — 1
(for instance, 31) only 7 (5 in this example) lines are needed.

— 20 —— 0
—> + a T 1
—e 22
C C = D °
R e 211 R 21‘1
Fig. 1.3.12 The COUNTER. Fig. 1.3.13 A COUNTER-DECODER combination.

Frequently the COUNTER is used in conjunction with the DECODER, as
shown in Fig. 1.3.13, so that the count is automatically available as a
signal on only one of a number of output lines from the DECODER. A
scale-of-31 COUNTER having five output lines connected to a NBC DECODER
with thirty-two outputs will produce signals on these lines in sequence as
pulses are supplied to the counter line.

JHAODHA
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1 .4 THE MEMORY

Use MEMORY stores large amounts of information.
It makes a little of this information rapidly available to the other sub-
systems when the proper command is received. Under direction, MEMORY
receives information from any other sUBSYSTEM and blindly stores it in the
specified location.

The MEMORY consists of a MEMORY CONTROL UNIT, REGISTERS, and a
storage area. The storage area contains a large number of CELLS, each
specified by an address.

The crrL stores exactly one word, a fixed number of bits. As noted
earlier, our definition of word relies on this quantity, the CELL size. By this
definition the IBM 360/30 has a different word size from the 360/65, for
example.

The address is a unique label for the CELL; the address of a CELL is

distinct from the contents.

The MEMORY functions to recall information when it is supplied with the
address of the CELL containing the desired information. After being
instructed to recall, it goes to the proper CELL, brings forth the contents,
and passes them to the requesting unit. It is important to note that
recalling is nondestructive, just as it is for humans. If you bring forth a
piece of information, it is not removed from your memory. Thus, when
you tell the Motor Vehicle Bureau your birthday, you still retain the
knowledge in your memory—it is nondestructive recall.

The properties of the components used in the MEMORY are easily
confused with their actual functions. Thus magnetic cores which have a
destructive read property are used in MEMORIES that function in a non-
destructive manner. Functionally, all MEMORIES in modern computers
maintain information in a CELL, even after a datum has been recalled and
transferred elsewhere.

For the MEMORY to memorize information, two things must be supplied:
the address of the CELL into which the item is to be inserted, and the item
to be memorized. Upon receiving these and a request for memorization,
memorize, the MEMORY will perform its task and report when it is done.
Naturally, memorizing is destructive since it is impossible to both maintain
an old word in a specific CELL and also insert a new word in the same CELL.
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A MEMORY is said to be a random access memory when it requires a
fixed time, called the cycle time, regardless of whether it is memorizing or
recalling and regardless of the address of the datum in question. However,
for some MEMORIES, when a datum is recalled, it may be made available
before the end of the cycle.

MEMORY The MEMORY subsystem contains:

subsystem the CELLS

structure the MEMORY ADDRESS REGISTER

the MEMORY DATA REGISTER

the CONTROL UNIT

This is shown in the block diagram, Fig. 1.4.1, which is referred to in the
rest of this section.

MEMORY
ADDRESS
REGISTER MEMORY CELLS
Address — P

set

address
MEMORY

DATA

REGISTER

set

datum

recall/memorize |

st a rt MEMORY
—P CONTROL
done UNIT
‘f

Fig. 1.4.1 The MEMORY unit,

To summarize, each CELL:

1. contains a single word;

2. does not have its contents destroyed by recall;

3. may have new information written into it (but at the expense of
destroying existing information);

4. has a unique address (label) for reference.

w
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The MEMORY ADDRESS REGISTER (MAR) holds the address of the CELL with
which the MEMORY is currently concerned. It receives this address from
some other unit. The MEMORY ADDRESS REGISTER in Fig. 1.4.1 has parallel
lines entering from outside, indicating an address furnished by another
subsystem. Notice a line labeled set address entering the MAR from the
source subsystem. Via this line, the source subsystem notifies the MAR
when it should accept the address supplied by that source subsystem.

The mEMORY paTA REGISTER (MpR) holds a datum. During recall, the
information from the CELL pointed to by the MAR is placed temporarily in
the MEMORY DATA REGISTER by the MEMORY CONTROL UNIT. It is available
to the requesting subsystem when done appears.

During memorizing, the datum to be stored is placed by the originating
subsystem into the MDR by set datum. It is emptied into the CELL by the
MEMORY CONTROL UNIT when the location pointed to by the address in the
MAR has been found.

The mEmory contrROL UNIT (Mcuy controls the memory cycle. It is
instructed by the requesting unit either to recall or memorize. This request
is not final, for the source subsystem may change its mind without messing
up the MEMORY’s operation. The request is final when start is supplied to
the MEMORY. After start is received, the MCU keeps the two registers, MAR
and MDR, locked out from interference by other subsystems until the
MEMORY’s job is done. The McU finds the CELL and times the flow of
information between the MDR and the chosen CELL. When the job is
completed, the MCU issues a completion signal indicated in the figure as
done.

Operation An address is supplied to the MAR. It is
entered there when set address arrives. Next the McuU is told to recall.
Finally, start is supplied to the Mmcu. The McuU finds the location specified
in the MAR and places its contents in the MDR. Done is issued by the Mmcu
signalling that the datum in the MDR is available to the rest of the computer.
The computer transfers the MEMORY DATA REGISTER to its destination. A
lockout is provided so that another request does not interfere during
recall. A further lockout may be added to permit subsystem access to the
MDR while preventing activation of the MEMORY till the cycle is over.

1 .5 THE PROCESSOR

Constituents A typical PROCESSOR is illustrated in Fig.
1.5.1. It has three REGISTERs providing temporary storage of one word



Sec. 1.5 THE PROCESSOR

REGISTER A
S S
W REGISTER D W —_ ADDER
I . N -
T . 71 T
MEMORY C C MEMORY —,
:— H H L
REGISTER Q
|
| J :
L] ALGORITHM »| SUPPLEMENTARY
CONTROL INFORMATION
]
| 2
MAIN
CONTROL

Fig. 1.5.1 PROCESSOR.

each. REGISTERs hold operands, intermediate results, and final results. An
operand is a datum to be operated on. The PROCESSOR contains an ADDER
which does addition and other processes of arithmetic. It also has a
COMPLEMENTER which implements subtraction by complementation and
addition.

swiTcHES control the flow of information by guiding information from
one REGISTER to another, either through the ADDER or bypassing it.

The PROCESSER CONTROL UNIT (PCU) is usually autonomous. It
supervises the activity of the PROCESSOR. When informed of the instruction
to be done, the PCU times and monitors the process.

AUXILIARY DEVICES are also required. COUNTERs indicate how many
cycles of a process have been performed so far or how many bits of a word
have been examined. Other INDICATORs summarize the present state of
affairs and the properties of the information being handled. For instance,
when two negative numbers are multiplied, a FLIPFLOP stores the informa-
tion that the product is positive.

The arithmetic The labels applied to the REGISTERs vary from
function computer to computer. A typical set includes
the AR, or ACCUMULATOR, for holding the results of arithmetic. Two other
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REGISTERs are labeled DR and QR in deference to their function of holding
the divisor and quotient during division. They serve supplementary
purposes during other processes. Information from MEMORY can be sent
to any one of these REGISTERs by an appropriate command. Such commands
will be referred to later using mnemonics. X is the symbol for a transfer
(information copying); M is the symbol for the MEMORY location used as a
source or destination; the name of the source or destination REGISTER in
the ARITHMETIC UNIT is incorporated in a mnemonic. Thus the command
XMA brings information from a location in MEMORY to the A REGISTER.
Transfer from a REGISTER to MEMORY is indicated similarly. Thus XQM
indicates that the contents of the Q REGISTER are stored in MEMORY.

Each arithmetic command specifies a location in MEMORY and/or a
REGISTER from which an operand is to be brought. This operand goes to
one of the three REGISTERs and arithmetic is performed on it. It ends up in
one of the three REGISTERs as specified by the designer. A new command
may be required, depending upon the computer, to return the result to
MEMORY.

During the time in which the operand appears in the PROCESSOR and the
result is produced, many steps take place. These are su
PROCESSOR CONTROL UNIT. Further subcontrol units known as ALGORITHM
CONTROL UNITS may also be present. These take over control and supervise
the operation of individual arithmetic or editing commands.

Editing Editing consists of entering new information
into words or deleting information from words. For example, the result
of a business transaction might appear in MEMORY as 0001598000. Editing
1s required to get this into final form for output. Actually, the amount of
the transaction is $159.80. Thus the editing to be done requires that the
three initial zeros and two of the three terminal zeros be removed. Then
the dollar sign must be inserted to the left of the 1, and a decimal point
must be placed between the 8 and the 9.

One of the editing tasks used in this example is extracting—in which
the meaningful part of a word is skimmed off the word like cream from
milk. Using this process, we discarded the unwanted zeros. Another
editing function required shifting. This properly orients the information
within the REGISTER and moves characters with respect to the word so that
decimal points, for instance, can be inserted. Insertion of new information
requires masking—in which new characters are written over parts of a word
according to a mask, similar to the way a stencil allows us to print
characters on top of a package. Thus the dollar sign and decimal point can
be inserted without affecting the other characters in the word. Other
editing facilities to serve special purposes are provided by some computers.
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1.6 THE CONTROL SUBSYSTEM

Function The conTrOL suBsysTEM (Or contrOL) iS the
master control for the computer. It supervises all operations including
those of the MEMORY, PROCESSOR, INPUT/OUTPUT, as well as itself. De-
pending upon the design of the computer, the CONTROL SUBSYSTEM may or
may not be able to relinquish its autonomy to one of the other subsystems.
Even when it does so, the subsystem in question returns authority to the
CONTROL SUBSYSTEM when the subservient subsystem has completed its
operation.

Complete directions are supplied to the CONTROL by the program, the
sequence of instructions or commands. The instruction repertoire differs
from one machine to another, but there are certain basic similarities. I
will later note some of the differences and similarities of the commands
which are the basic atoms that make up the machine language program.
CONTROL recognizes and interprets these atoms as it encounters them. -

The instruction list  The list of instructions to the computer is
stored in locations in the MEMORY. Although each instruction is com-
prehensible to the computer but may not be directly readable by the human,
this sequence is called the machine language program.

Each of these instructions generally requests the processing of one or
more data. The data are all stored in the computer MEMORY, but not
necessarily in order of reference. There are three reasons for this:

» Some items are referred to several times.

« It may be convenient to store data in order of human generation.

 Intermediate results may also be on the data list.
A datum to be operated upon by the computer is called an operand. Some
computers can refer to more than one operand in a single machine
language command. For the moment, we confine our attention to single-
address (one operand) commands.

CONTROL CONTROL operates in two cycles, fefch and

operation execute. A fetch cycle brings the next
instruction from MEMORY to a location in CONTROL where it is examined
and interpreted. With certain exceptions, CONTROL gets its next command
from the location right after the one where it got its last command.

Next CONTROL interprets and performs the instruction it has fetched,
the execute cycle. Usually, a command requires an operand, the procure-
ment of which is delegated to the MEMORY. CONTROL sets up the destination

17
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for receipt of the new operand. When this operand is passed over to the
destination subsystem, it instructs that subsystem what to do and may
delegate full authority for the performance of the remainder of the
command.

When the destination subsystem has completed its task, it signals
CONTROL which goes over to a fetch cycle and gets its next command.

Control subsystem In Fig. 1.6.1, the msTrRUCTION COUNTER (OT IC)
structure is a REGISTER which can be counted and which
stores the address of the instruction being executed or to be executed next,
depending on the computer. The bit storage device F indicates which cycle

MEMORY
MDR MAR
A
N
To
PROCESSOR Switcﬁ Switch
|
/ !
INSTRUCTION [ I Y | STEP
REGISTER ! I COUNTEI
!
i End
Y
W : v
F [ controL
DECODER SUPERVISOR | PROCESSO

ﬂ L__Strt

INFORMATION
FLOW
ENCODER

!

Fig. 1.6.1 The cONTROL subsystem.
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of operation is in progress, fetch or execute. The INSTRUCTION REGISTER (OF
r) receives the command. This command consists of’:

e the opcode—the process to be performed;

« location—generally the address of the operand address;

o tags or supplementary information.

The INsTRUCTION DECODER examines the opcode of the command in the
iR. A number of lines emanate from it, one corresponding to each
instruction in the computer’s repertoire. For an admissible instruction
under examination, one and only one of these lines carries a signal. The
INSTRUCTION ENCODER interprets the signals produced by the DECODER,
chooses the destination subsystem, and sets up the flow of information to,
from, and within it. To provide timing and supervision for CONTROL,
there is a CONTROL UNIT contained therein. To avoid confusion, we refer
to this CONTROL UNIT as the MASTER CONTROL.

1 .7 THE MACHINE REPERTOIRE

The machine repertoire is the set of commands comprehensible to the
computer. The set of FLAP commands which constitute the repertoire of
the FLAPJAC computer discussed completely elsewheref is presented in
Table 1.7.1 as an example to the reader and to illustrate an expressive
notation for conveying the commands.

The command Consecutive MEMORY locations contain con-
secutive tasks to be performed by the computer. In one or more CELLS of
the program sequence, a computer command is stored in machine
language. It is impossible to tell whether a word in MEMORY is a datum or
an instruction word. As far as the computer is concerned, any word can
be treated as a datum. At times it is requested to process an instruction.
If, by mistake, it is requested to perform a datum, trouble may arise. If the
datum does not have a proper combination of bits to be interpreted as a
command, then the computer is unable to proceed further. It may stop
dead and signal the operator of its confusion. Or else it may turn control
to the other software (the executive system) by means of an interrupt.

Command content The command must contain one thing: an
indication of the process to be performed. The opcode field conveys this.
The least demanding of any command is NOOP. This is an abbreviation

t Ivan Flores, Computer Programming (Englewood Cliffs, N.J.: Prentice-Hall,
Inc., 1966).
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for no operation; it simply specifies that the computer do nothing but go
on to the next command. The opcode is a specification of the task to be
performed (or, as in the NOOP instance, not performed).

The next field, called location, usually found in the command contains
one or more operand addresses. Most commands require operands, and
location will generally contain the address of the one or more operands.

Scientific computers generally have space in their command for only
one location. The IBM 7090/94 and the Philco 2000 contain room for one
location field in a single operand specification. These machines are referred
to as single address machines.

When the computer word is large enough, several operand locations
can be inserted into a single command. Thus the Honeywell 800 provides
a command with locations for three operand addresses; and it is conse-
quently called a three address machine.

Supplementary information frequently incorporated in the commands
of some computers indicates the kind of addressing required by the
command, or other details.

Command Since the command is always decoded by

structure CONTROL, it is entered in a fixed position in
the INSTRUCTION REGISTER. Therefore, the location in the command of
each function field is fixed.

By the laws of combinations and permutations, n bits allow us to
specify 2" different items. If our command repertoire must contain forty-
seven different commands, five bits provide thirty-two combinations, and
six bits provide sixty-four combinations. For the forty-seven commands,
six bits are the minimum that we can reserve for the opcode.

Sometimes more bits than the minimum are provided for convenience
in coding or simpler hardware implementation. Thus, one of the bits in the
opcode may be reserved to indicate whether the result of the command is
to be returned to MEMORY; another bit may indicate whether arithmetic is
to take place; and so forth. With this procedure, ten bits may become
reserved for the opcode when irredundant coding would require only six,
for instance. It is common for the designer to allot anywhere from four to
twenty bits for the opcode.

The number of bits required to specify the operand address depends, of
course, on the number of available MEMORY CELLS. Certainly, the minimum
number of such locations depends upon the minimum machine con-
figuration; the maximum depends. upon the maximum MEMORY size option
available to the customer. Usually the maximum size is provided for.
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Operands Scientific computers, such as the IBM 7090
and the PDP 8, are called fixed word length computers. This phrase is
meaningless, per se, for we know by definition that all computers have a
fixed word size. This jargon conveys that commands can specify the
transfer or processing (with the exception of 10) of only one word at a time.
Other computers, such as the Honeywell 200 and RCA Spectra 70, operate
on chunks which may vary in size. I call these variable field length com-
puters because they handle sets of words whose size is specified in the
command. They are sometimes misnamed variable word length computers.

The definition of word size is always the size of each main MEMORY CELL.
It may be as small as seven bits for the IBM 1401 or sixty bits for the
CDC 6600, but it is fixed.

For the PDP 8, each command is word size, or twelve bits. No
variation is possible. Variable field length machines, such as the RCA 301,
may also have fixed length commands.

Valuable memory space is conserved if the command can expand or
contract to suit the amount of information required for its specification.
We see later how this is done for the IBM 1401 and System 360 which have
variable length commands.

1 . 8 ADDRESSING

Using the FLAP command repertoire, Table 1.7.1, we discuss the

following kinds of addressing:

 implied

o immediate

e direct

» indirect

* relative

» indexed
We assume that the addressing method is distinguished in the command
by a rag.

Implied addressing Every transfer of information has a source and
destination. Commands which process information usually refer to two
operands—data which are operated upon. Each of these is stored some-
where. If the command has room for only a single address, how then can
we refer to two operands or to both source and destination? The
REGISTERS provide the solution. One or both locations can be REGISTERS;
their use is implied in the command. Thus, the command XAM addresses

HIODNHT aaxid
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the AR as the source of information by implied addressing. In fact, both
source and destination may be implied; witness XQD.

Another way to imply the source or destination is through the index
specification digit. Thus the command XAM addresses by implication an
INDEX REGISTER. The particular INDEX REGISTER is specified by the digit
which follows the command code.

Immediate The computer may deal with operands of a

addressing full word length, and such operands cannot
be transmitted with the command. However, an operand of address
length may be presented in the location field of a command when
immediate addressing is used. Thus, index-associated commands often use
immediate addressing to fill or increment an index with a quantity in the
location field.

Direct addressing The normal way to specify an operand is by
direct addressing using the Jocation field in the command.

Indirect addressing  Suppose we know the address of a CELL
which contains the address of a desired operand, and we want the operand.
We go to the CELL, get the address which is there, and use it to procure the
operand. With indirect addressing, the location field in the command
contains the address at which the operand address is stored.

For direct addressing the operand is (M). For indirect addressing the
operand is ((M)), where M is specified in the address portion of the
command and (0J) means “‘the contents of.”

To indicate indirect addressing, the tag, 1, follows the command
mnemonic. Thus, if ADD indirectly addresses CELL 237, and 237 contains
the address 111, then ADD actually addresses 111. Thus we have:

ADD,I 237 =ADD 111 for (237) =111 (1.8.1)

where = means ““is equivalent to.”

The operand address in a command word may take us to a CELL which
contains an address of a CELL which contains an address and so forth and
so on. Finding the operand is like a treasure hunt: we move from one CELL
to the next looking for clues with the hope that a treasure will be found.

The treasure hunter can distinguish between a clue and the treasure
itself by its specific nature. A datum, however, does not have a specific
nature to distinguish it from a clue (address). How, then, do we know that
we are at the end of the trail? When a CELL is known to contain an address,
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it is only the address itself that is of use; other bits of the word are free to
be used as zags. Just as a command word has a tag to indicate indirect
addressing, so too the address word can contain a tag showing further
indirect addressing. The command word tag, I, used in indirect addressing
takes us to the first address. We examine the tag at this address. If it
indicates direct addressing, we know the next CELL we reach contains the
operand. Ifitis tagged as indirect, we examine the next CELL as an address.
We continue this as long as indirect tags are present. The first direct tag
indicates that the very next CELL to be examined contains an operand.

Relative For relative addressing, we determine the
addressing effective address by adding the location field
to the contents of a BASE ADDRESS REGISTER (BAR). Thus,

effective address = (BAR) + M (1.8.2)

One purpose of relative addressing is to increase the address range of a
command in a small, low cost computer where the command size is small.
If thelocation field of a command is necessarily small because the command
is small, then the number of CELLS that this set of bits addresses is small
compared with the full MEMORY. Relative addressing ameliorates this
difficulty. It is seldom used in larger machines, except for the byte-
oriented third generation computers.

The address in the command could be interpreted relative to any
REGISTER in the machine or even to any CELL. The INSTRUCTION COUNTER
is especially useful for relativizing. For jump commands it comes in handy
to be able to indicate the jump location relative to the current step, (IC).
For self-relative commands, the effective address is given by

effective address = M + (ic) (1.8.3)

The tag in the command word which indicates self-relative addressing
is . We have
017 UCJ* 4:=2I (1.8.4)

The unconditional jump on step 17 is self-relative by an amount of 4. This
is equivalent to a jump to step 21. Similarly,

071 JOL,* —3 L =1:= 68
L=0:=72 (1.8.5)

The above jump on less is self-relative by —3; for Jess, the jump takes us
three steps backward from 71, landing us on 68.

ONISSTIAAV HAILVIHY-ATHS
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Indexable An indexable command is one which may
commands specify an INDEX to modify the operand
address. An indexed command takes the form in FLAP:

mnemonic, digit, tag address (1.8.6)

Here digit is a decimal digit. Thus a nonzero digit specifies the INDEX
REGISTER corresponding to the digit; if it is zero or blank, no indexing is
done. Indexable FLAP commands are so indicated in Table 1.7.1.

The effective address of the operand for an indexed command is
given by:
effective address = address + (index digit) (1.8.7)

The contents of the INDEX REGISTER specified by digit is added to address.

ADD is indexable. ADD, specifying INDEX
t

3 a
actually adds the contents of CELL 272 if INDEX 3 contain

o

ADD,3 245 = ADD 272 for (N3)= 027 (1.8.8)

Index The power of the INDEX REGISTER can only be
manipulations exploited if we do other things with it besides
using it to modify commands. The tasks that we examine are:
« transfers
¢ increments
o tests
» combinations

A transfer into an INDEX REGISTER sets it up for future use. Transfers
out of an INDEX REGISTER save index quantities for future use in other
segments of the program.

The ability to add or subtract from an INDEX quantity permits us to
move up and down within a list being processed.

Tests upon INDEX REGISTER contents can determine when a list has been
processed.
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When one command can replace two or more, the program can be
written with less space and can be executed in a shorter time. Combination
index commands fulfill several purposes.

Transfers Transfers between MEMORY and an INDEX
REGISTER use commands on line 21 of Table 1.7.1. Digit specifies the source
or destination INDEX REGISTER. It does not indicate that the command
is being indexed. On the contrary, this command is not indexable.

The INDEX REGISTER stores only the number of digits required to specify
an address. Hence a transfer to or from a MEMORY CELL involves only the
location field of the word. For FLAP, these are the three right-hand
digits. For a transfer into MEMORY, zeros are placed in nonaddress
positions. Thus, to store the contents of INDEX 5 in CELL 345 we use

XMN,5 345 for (N5)= 123, 000000123 — 345 (1.8.9)

To fill an INDEX from the AR or to transfer the contents of an INDEX into

the AR, the nonaddress portion of the AR is preserved. This allows us to .

change only the address portion of a word (desirable for address alteration).

Since the INDEX REGISTER and the location field of a command are the
same size, it is possible to ™ L. INDEX REGISTER directly from a command
word. The location field of the command is entered into the INDEX. To
put 15 into INDEX 3 we use

XPN,3 015 15— N3 (1.8.10)

There is no command to transfer the quantity from an INDEX into the
program!

Incrementation The two commands on line 24 of Table 1.7.1
permit us to add or subtract quantities from INDEX REGISTERS. The index
to be augmented is specified by digit. The increment is in the location field.
To increase index 7 by 3, we give the command iNdex Plus Program,

NPP,7 003 (N7) 4 3— N7 (1.8.11)
Reflexive Reflexive commands relating to INDEX
REGISTERS can be single or multiple in nature:

o test
» test and act
e increment, test, and act.
With more complexity, more is implied by the command.
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The index comparison command CMPN tests the contents of digit
against the quantity in the location field. The result of the command sets
one of the three FLIPFLOPS in control, L, E, or G, and resets the other two
(as with CMP). To compare the contents of INDEX 3 with 75, we give the

command
CMPN,3 075 (N3):75 (1.8.12)

If the comparand for a test quantity is implied, action may also be
specified in the command. The most likely quantity for testing is zero.
The three commands on lines 26 through 28 of Table 1.7.1 permit us to
test an index and jump if the accompanying condition is not met. The
jump index nonzero command in CELL 41 requires us to return to step 37 if
INDEX 3 does not contain 0; we continue to step 42 if the INDEX REGISTER
contains exactly 0:

041 JNNZ3 037  (N3)7 0= 37
(N3) = 0 = 42 (1.8.13)

For incrementing by 1, a triple combination command may be used.
This is useful when we process a list contained in contiguous CELLs. The
Tally-Down iNdex command (TDN) permits us to reduce a positive index
toward 0, testing it to see if it is 0, jumping if it is not 0, and continuing to
the next command when it is 0. The Tally-Up iNdex command (TUN)
permits us to increase by 1 a negative index quantity in a similar fashion.
These commands are on lines 29 and 30 of Table 1.7.1.

Summary The kind of addressing for the command is
conveyed to CONTROL by tags in the command. It is possible to combine
two or more modes of addressing. Thus we can have indexed indirect
addressing, where the effective address of the next address is obtained by
adding the contents of the tagged INDEX REGISTER to the operand location.
Any address participating in multiple indirect addressing can be indexed.

The tag conventions and the permissible combination of tags are
presented in Table 1.7.1.

1 . 9 SOF.TWARE

I define software as those programs which do not solve the user’s
problem directly. They are generally designed not by the user, but by the
system programmer. The remainder of this chapter discusses specific
software tasks and their relation to hardware.



Sec. 1.10 TRANSLATORS

1 . 1 O TRANSLATORS

Introduction Most programming today is not done in
machine language. We say that the program is in machine language when
it can be fed directly into the computer where, after being placed in
MEMORY, it is ready to run. A source language program requires one or
more stages of translation to produce the machine language program.

Source languages We distinguish several kinds of source
languages according to their use.

Languages which convey information with a syntax and word structure
similar to that used by the programmer in expressing himself in writing out
his algebraic or business problem are procedure oriented languages,
abbreviated POLs. They include FORTRAN, ALGOL, PLI, and
COBOL. These are also called compiler languages after the programming
system which translates them, the compiler.

Problem oriented languages state a problem for which a general
solution has already been programmed. For instance, Report Generator
Language enables us to state the design of a given report; the Sort Generator
Language allows us to communicate the nature and format of records to
be sorted.

Special languages are structured for the statement of special kinds of
problems. A System Simulator Language is designed to state the proper-
ties of a system which is being simulated on the computer. IPL-V (In-
formation Processing Language Number Five) is designed to express
problems which simulate human thinking.

Assembly languages  Assembly language provides commands which
are very close to machine language commands, and it falls into the three
categories which will be discussed. The mnemonic language introduced in
Section 1.8, FLAP, is an assembly language. Other extant assembly
languages for IBM machines include BAL, FAP, and AUTOCODER;
Univac assembly languages include UTMOST and ALMOST.

The three kinds of assembly languages we distinguish are:

e absolute assembly language AAL
 symbolic assembly language SAL
» macro assembly language MAL
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An absolute assembly language differs in two ways from actual
machine language:
o A mnemonic—a set of letters—is substituted for the binary
command code.
« A letter or number code is used for the address of a MEMORY CELL
instead of the binary representation of this code.
AAL is a shorthand notation for machine language commands. These are
translated to machine language by a clerk or by a very simple assembler.
No storage allocation is done.

For a symbolic assembly language, the location of data is denoted
symbolically and need not be allocated by the programmer. The assembler
does the full allocation of storage and keeps track of all MEMORY CELLS.
To talk to the assembler about the nature and format of data, pseudo-
commands are used. The SAL can also deal with arrays and provide
address modification by addition and subtraction.

Most notably, the macro assembly language permits the programmer
to define and name an open subroutine and then to call for a copy of it to
be inserted any place in the program that he desires. This feature,
programmer defined macros, along with conditional assembly, built-in
macros, and other extensions, make up the modern MAL.

AL—POL contrast Absolute assembly language has the charac-
teristic that each source language command is represented by exactly one
machine language command. Symbolic assembly language translations
present a one-to-one structure—one machine language command for one
source language command. For MAL, a sequence of machine language
commands is substituted for a macro call right there in the program.

For the procedure oriented language, one source language statement is
usually translated into many machine language statements. More im-
portant, the sequence of statements produced is a function of the POL
compiler and the object machine; it is not at all evident in the source
language statements.

The most important differences between the AL and POL are:
« The sequence of machine language steps is nowhere implied in
the POL.
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« The one-to-many characteristic is customary in the compiler,
whereas in the assembler it is an exception.

Mixed There is no incentive to incorporate AL

characteristics characteristics in the POL. When POL
characteristics are incorporated into assembly language, categorization
becomes difficult.

Lists—sets of data—are handled in assembly language by:

« indexing

o operand address modification
Both of these features are built into the assembler. Index specification uses
the command tag. Index manipulation is done just as in machine language.
Pseudoinstructions allow a set of contiguous locations to be set aside and
attach to the first of these locations a label by which the set can be
referenced. For instance, if we call such a set DATA, elements of the array
are referenced relative to DATA ; the fourth element in the array is, hence,
DATA + 3. This feature may also be used to reference backward from a
given landmark; information can be addressed by a description such as
DATA — 6.

Some assemblers permit arithmetic expressions to be used as operand
addresses where such expressions include multiplication (*) and division
(/). They tolerate an expression such as,

3xA+ (B—3)2 (1.10.1)

A and B in (1.10.1) are values supplied to the assembler or with the data.
In the first case, the assembler must evaluate the arithmetic expression, but
in the second case, a string of machine language commands must be
substituted in the object program to evaluate the expression. In any case,
the procedure is not one which falls under our definition of an assembler;
this is definitely a POL facility.

Translator names Occasionally a company issues a translator
which does not follow our definitions. A company may produce a simple
assembler which it calls an assembler and a symbolic or macro assembler
which it calls a compiler. This may be misleading.

On the other hand, some “assemblers” provide compiler features such
as the use of arithmetic expression for operand address.
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1.11  rosess

Need There is a constant need to enter new pro-
grams into the computer and properly position them in the MEMORY.

Programs may be of several kinds: object language programs which
perform operation on problem data; translator programs to produce an
object program (results from the translator) from a source language
program (data for the translator); service routines which perform tasks on
other routines or libraries of routines (data for the service routine); or the
program to be brought in may be the loader itself.

A simple sketch of the activity of the loader (henceforth called £0AD)
is found in Fig. 1.11.1. When £LOAD is entered, it brings a set of informa-
tion from the outside into a desired position in the MEMORY.

The bootstrap A bootstrap is a loader that loads itself.

When the computer MEMORY is empty, as it would be when first
installed, then there is also no loader in the computer to start things off.
Some intermediate medium which holds a copy of the loader program is
mounted at one of the input subsystems. The operator starts the ball
rolling by entering the first load instruction into the computer at the
computer console. This causes the computer to bring in a portion of the
loader which then brings in the remainder of the loader. The loader can
then bring in other programs.

Input #2
Input #1 | Input #3 MEMORY
For inputted
_-»| program
/
} N v
~
S+.] LOADER
*

Fig. 1.11.1 The £OAD, acting on instructions, enters the
proper program into its assigned area and then
relinquishes control to it.
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Input
N MEMORY
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L for loader 'l
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!
For rest of !
program ,’
/
‘/
rd
/
-7 Read a block
J N conTROL [~ Read a bloc
~< sUBsYsTEM [¢————-—into AreaL

= ~Jump to
AreaL

Fig. 1.11.2 The bootstrap brings in a program segment and then
transfers to it so that the rest of the program is brought
in.

Bootstraps may be more or less elaborate and may be more or less
facilitated by commands peculiar to a given computer. The bootstrap
loader for the LGP30 requires only a single command to be entered at the
console. The loader is prepunched onto paper tape, which is then read in
through the paper tape reader. The console command initiates this.
Characters from the paper tape are loaded consecutively into MEMORY
until a special character is encountered. This causes the computer to
terminate loading and to start taking its next instructions from the
program just loaded. The bootstrap activity is diagrammed in Fig. 1.11.2.

Relocation As above, any program is placed into MEMORY
starting at the same location every time or at a location indicated by the
programmer. But it is difficult for the programmer to foresee what else is
in MEMORY while his program is running. Hence, the practice now is to
forget about trying to properly place the object program, which is then
written for a standard starting location and relocated during loading as
shown in Fig. 1.11.3.

Another alternative is to write references within the program relative
to the starting position, which need not be known at the time the source
program is prepared. This requires special hardware, such as the BASE
REGISTER for System/360 discussed in Chapter 9.

Since most programs must be relocated, and this relocation is the
function of LOAD, LOAD must be aware of the present allocation of
MEMORY. £OAD is part of a larger system which includes a monitor or
executive routine (called SYSTEA). It is usually the task of SYSTENM to
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Input
MEMORY
!_'—'_"—‘
| Apparent |
,v| program I_‘* Data
N . _—-T; destination A
. /
|~ Relocated |
program
»| destination
\
J AN
\\
~N~.] LOADER

Fig. 1.11.3 The £OAD is responsible for relocating pro-
grams and assuring that data reference is

proper.

know the placement of everything in the MEMORY and to convey this
information to £OAD. £LOAD then uses this information to place incoming
information properly. The responsibility for assigning locations for
incoming information may be in £OAD or in SYSBEAM.. However, this has
little effect on the operation of LOAD.

Information usually preceding the program tells LOAD which sub-
routines are used by the program so that they can be brought from the
library. £OAD allocates space for each subroutine and copies the sub-
routine from the library tape into memory. In addition, it creates or

MEMORY
Library
Programs Problem / Subroutine I"
Program /
| Subroutine |41
Links S.\ /
Y | Subroutine |
\ / Ve \
\
\ \\ ™~~~ LOADER
\ \ |
\\ N, . /1 Y
\ S - ” /
\ /
N /s
\\\ ”I

Fig. 1.11.4 The £OAD, besides entering the program into memory,
brings in subroutines from the library and may even
create links within the program to get to them.
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validates links from the program to the subroutine and from the subroutine
to the program. The activity of £OAD with respect to library programs.is
diagrammed in Fig. 1.11.4.

Conversion Some loaders transform incoming data. In
binary machines, information often enters in decimal, and conversion is
made to binary to store it. LOAD may take charge of this conversion
routine. Besides conversion, scientific numbers must be interpreted and
sometimes put into floating point format. This may also be supervised by
the loader.

Other space To supervise the distribution of space in the
allotment needs computer MEMORY, £OAD is concerned with
a number of topics which are discussed next.

LOAD constantly monitors the MEMORY to verify that new information
being brought in does not overwrite important information which is to be
saved. Whenever incoming information has used up all available space,
this condition is signaled and trouble indicated to SYSTEAM, or even to the
human operator.

The incoming program usually contains a header with the storage
requirements for the program proper. This tells LOAD how to distinguish
data and the amount of space required for typical data sets. This prediction
is produced by the assembler or compiler or sometimes by the programmer.
Sometimes space predictions can be completely accurate, but they may
have a range of variability. For instance, a subroutine used by the program
may be generated. That is, at the time of use, a special routine creates the
desired subroutine. Thelength of the generated subroutine varies according
to the parameters appearing in it; therefore, its length may not be predic-
table. Further, library routines may not be tagged for length, so that
£OAD cannot foresee the space required.

For scientific problems, a given program may be repeated on a number
of sets of data entered via the program INPUT DEVICE. The program
communicates to SYSTGEAM when it has finished with one set of data.
SYSTEM may delegate LOAD to enter the data, relocate it in the MEMORY
and, occasionally, allocate additional storage if the new data set is larger
than that previously handled.
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A program frequently needs working storage to hold intermediate
results. LOAD must provide such storage and protect from interference if
desired.

Occasionally, a program is written which is too large to fit into MEMORY
together with the data and the software. In that case it is segmented—
divided into two or more sections which are run one after the other or among
which we alternate. £0AD supervises the running of a segmented program.
It learns when one segment is completed, brings in the next segment, and
then turns over the operation of the computer to that segment. This is
called overlay. Sometimes a later segment of the program turns over
control to an earlier segment. In that case, L0 AD must have the capability
to return to this earlier portion of the program. For a tape installation,
this would require the ability to rewind tapes and restart them at the proper
position.

1 . 1 2 LINKAGE EDITOR

For the larger computers and larger programming systems, LOAD has
a very large job:

» It s responsible for loading and relocating the machine language
program.

It communicates with the segments of the main program.

o It gets the names of, brings in, locates, and links to the sub-
routines from the subroutine library.

o It brings in overlays when they are required.

It monitors the contents of MEMORY to be sure that MEMORY
bounds are not exceeded.

It is difficult to make a loader having all these responsibilities yet
occupying a sufficiently small portion of memory. This latter quality
permits more free space at load time.

To make the loader more effective, third generation systems remove
many of these functions, performing them on a different pass. This pass is
done by the linkage editor, LIN' K. Before discussing what it does and how
it operates, I will examine the operation systems containing the linkage
editor.
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The modern operating system of Fig. 1.12.1 shows all the passes which
can exist in a modern operating system. On the top horizontal line we find
hexagons containing the name of software routines. These routines are in
control when the dashed line from that hexagon enters the box labeled
COMP.

Arrows enter or leave the computer box connecting it to other symbols
representing peripheral devices. The box for the computer appears as
many times as there are routines in control. All these routines need not,
and probably do not, apply to any single job. Indications in the figure are
for a tape-oriented system, but a disk-oriented system operates similarly.

The supervisor, SYSTEAM, is always in charge in going from one job to
another. It reads in cards or card images from the CONTROL DEVICE.
These cards contain directions to SYSTGEAM telling it what to do next. In
the example, FORTRAN compilation is to be done first. SYSTEA, via
the system loader, brings in the compiler program, FORGRAN’, which
will then take over and perform translation.
The translator takes over and reads control cards, thereafter performing
the translation as required. It produces a printout for the programmer and
an assembly program for assembly. In third generation computers,
compilation often goes directly from source language into machine
language. However, in some cases, an assembly language printout is
produced. At the end of compilation, control may go to one of these three:
o BAL, the assembler language (AL) used in the system shown;
e LIBR, the librarian for the relocatable library;
o LINK, the linkage editor.

I shall take the longest path.

The assembler reads the AL program and performs a translation to
relocatable machine language. During this pass it may incorporate AL
routines from the AL subroutine library.

If this program is to be inserted on the relocatable machine language
library. LIBR intervenes, places its title in the table of contents, and stores
the program so it can be retrieved easily.

The linkage editor takes a program from the library, from BAEL, or
from some other input and converts it into absolute machine language.
At this time all subroutines which are in the relocatable library or else-
where are appended to the program and properly linked thereto. At this
stage, if a program exceeds the core limits, it is rejected.

After editing, the absolute program is given to one of two routines:

o £LIBA, librarian for the absolute ML library;
o LOADA, loader for absolute ML programs.
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Sec. 1.13 THE INPUT/OUTPUT CONTROL SYSTEM, JO C$

The directions for loading are obtained from the CONTROL DEVICE by
LOADA. A program may be loaded from the CONTROL DEVICE, another
INPUT DEVICE, or from the absolute library. The functions of LOADA are
now very simple: It places the ML program directly in MEMORY, one
location after another, until the program is loaded. It then turns control
over to the program.

Once the program is in control, it brings in its own data, acts upon it,
and produces results. The translator has replaced the command STOP by
UC], the object of which is a point in SYSGEAG. This permits SYSTEM

to take over and determine the next job from the control cards.

LINI It is clear that all linkage, relocation, and
allocation functions previously in LOAD are now incorporated in LINK.
This certainly reduces the complexity of LOADA but may increase the
total machine time since two passes are necessary. But only one pass is
required for often used programs which reside in the absolute library often
referred to as the core image library.

1 . 1 3 THE INPUT/OUTPUT CONTROL SYSTEM, JOCS

What and how  The JNTUTG/OUTIWUT CONTROL SYSTEM
1s software which does many jobs concerned with the input and output of
information.

For efficient operation, the program must have information ready
when it is needed and must get rid of results as quickly as they are produced.
JOCS helps by properly relating buffers to DEVICES, and by seeing that
buflers get filled as soon as they become free, and emptied as soon as the
computer is done using them.
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Information is stored in the intermediate medium in blocks of size
characteristic to that medium: in the punchcard, a block of eighty
characters is customary. On the other hand, the record handled by the
computer program may be larger or smaller than this block size. De-
blocking is, hence, obtaining the next record from a multirecord block.
Or it might consist of assembling several small blocks into a single multi-
block record. Blocking is the function of assembling a block of informa-
tion from multiple records or fracturing a single internal record suitably
for output medium.

A reel of magnetic tape may contain all the records pertinent to a
particular facet of a concern’s activities. The importance of protecting such
a file cannot be underestimated. Even though duplicates of such files are
customarily in fireproof vaults, all safeguards are taken to protect the
originals. JOCS makes sure that all files of information are correctly titled
and properly labeled after use. Similarly, when new sets of records are
first examined, the label on the medium containing them is verified to be
sure the proper set of records is referenced. (Label handling is usually
an optional feature.)

When trouble arises that the program cannot eliminate, one alternative
is to return to an earlier point in time when the program was known to be
functioning correctly. This is called rollback. To provide rollback, the
input and output media, the MAIN MEMORY, and machine REGISTERs are all
recorded on some intermediate medium. When difficulty arises, the whole
computer can be returned to the condition which prevailed at the most
recent rollback point.

Depending on the manufacturer, DEVICE assignment may be relegated
either to JOCS or to SYSTEAM. Sometimes, each does a portion of the job.
The task is to assign physical device numbers to the symbolic device names
used in the program. The assignment procedure takes account of previous
assignments and other requirements.

Methodology JOCS consists of subroutines and tables
properly connected together. Its use consists of two phases. In the first
phase the tables are set up. Information is supplied to JOCS regarding the
activity it is to perform. For blocking and deblocking, for instance, it
must know block size, record size, format, and so forth. During this setup
period, internal reference tables are produced. Requests (calls) for the use
of JOCS are found within the source program.



Sec. 1.13 THE INPUT/OUTPUT CONTROL SYSTEM, JOCS 4l

The second phase is the application of JOCS to the object program.
Depending upon the original design, the software may now have become
part of the object program. In other instances, it is called into play by the
object program as it is needed, and exists as a separate entity in the
computer MEMORY.

At least three choices exist for the design of JOCS:

« It can be transmitted to the object program as sets of open
subroutines.

o Links can be transmitted to the object program to closed
subroutines referred to at run time.

« It can be linked through the system monitor which calls in JOCS
at run time.

DEVICE and buffer A given program may use many inputs and

management outputs. These are usually addressed sym-
bolically instead of physically. JOCS, incooperation with the FORENAN,
relates the symbolic and physical assignments. JOCS alone is responsible
for obtaining a buffer, assigning it to an 10 DEVICE, and knowing when to
do this. Frequently multiple buffer areas are designated. JOCS monitors
both the DEVICEs and the buffer areas and properly alternates the computer
activity between buffer areas. Similarly, it alternates DEVICE activity
between the buffer areas as soon as it is determined that an area is free for
DEVICE activity. When readdressing is necessary so that the same set of
commands can be used to reference a new buffer area, JOCS is in charge of
monitoring the alteration.

Blocking and As it performs the function just discussed,

deblocking JOCS must also ascertain that proper block
and record sizes are observed. If a record for computer consumption
consists of a number of blocks, JOCS makes sure that enough small
buffers are kept full so that when the computer is ready to process the
record, all the blocks which compose it are available. For multirecord
blocks, JOCS makes available the next selected record for computer use.
Similarly, it sees that a number of small records are assembled into a large
block before that block is released for output.

Blocking is especially prominent in magnetic tape processing, where
small records are concerned. Here the larger the block recorded on tape,
the more efficient the input activity. This is because spaces of considerable
size must be interspersed between blocks on the tape. The more records
that are packed into a block, the fewer the spaces that appear on tape;
consequently, less time and less tape are consumed for each record read.
It is up to JOCS to disassemble the blocks into records as they are inputted
and to assemble the records into blocks as they are outputted.
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Errors and The INPUT DEVICE can check the parity bit

exceptions against the rest of the word or frame to
detect errors. Similarly, an oUTPUT UNIT can check information when
read-after-write facility is provided, in which case the read information
is compared with what was intended to be written. When an error is
detected, there are three ways to notify the computer:

1. The DEVICE can interrupt the computer, which means that the
computer will be notified as soon as it completes the command now
In process.

2. The DEVICE may store the error indication which it transmits to the
computer upon inquiry.

3. The DEVICE stores the error information and becomes disabled until
otherwise notified by the computer.

The inquiry method requires that the computer monitor the DEVICE and
check with it after the DEVICE has completed each 10 operation. The
disable feature is applicable when all 10 activity is delegated to the same
I0 CONTROL UNIT. In this case, the computer will be notified when it
requests the next 10 function.

In some few cases, such as the Honeywell 800, correction activity uses a
built-in, error-correcting feature. A computer routine is called in, which,
in most cases, can correct the block and proceed with the processing.

Few manufacturers have incorporated error-correcting schemes, and
it is more common to request a reread or rewrite operation. To reread
tape, we must back up a block and then read a block forward.

There is no guarantee that the reread operation will produce a correct
block. So the system must provide for a number of such operations and
then an alternative procedure if good information cannot be obtained.
One such alternative is to reject the job entirely; another is to print a
message that this record cannot be processed, and to continue to the next
record.

Exception routines may be classified by whether human intervention is
required or not. For the latter, an example is the end of tape signal which
requires that JOCS report to the operator that he must put on a new tape.
Usually JOCS will call in and reassign another INPUT DEVICE so that no lag
in computation will result.

Disabling events, such as card jams, require the temporary halt of the
computer.

FOREMAN Hardware does not talk directly to JOCS. It
can only speak to the FOREMAN, as I call it. Some manufacturers
distinguish JOCS from the FOREMAN by calling them logical and
physical JOCS, respectively; but I find this confusing.
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1 . 14 SUPERVISORS

The job The supervisor, SYSTGEAM, otherwise called
the monitor, the system monitor, and the executive routine, supervises the
other software as well as problem program sequences entered into the
computer; hence, it is indirectly responsible for data management too.

Paramount is its function of coordination. It delegates jobs to one of
the software programs; where this program has finished its task, it reports
to SYSTGEA, which determines what is to be done next. In the same way,
LOAD is called to ready an object program to be run. SYSGEAM terminates
jobs when difficulty arises; no program has STOP in it, but ends with a
jump to SYS8TEAM. The supervisor has the usual management function of
hiring, firing, and coordination.

SYSGEM may have several further functions. It does all the accounting
required so that the proper people, contract, or division in the company
will be charged for the use of the computer for the period when their job is
being run. It does the followup when errors cannot be corrected, and it
may dump a job. It talks with humans! When SYSTEAM is present, it
provides the main link among other software and the human. After all,
top management (the human) would do better to talk with the section
chief than with one of the crew (the other software).

The system Let’s face it, the larger our agglomeration of
software, the more inevitable is auxiliary storage—the TAPE, DRUM, oOr
DISK DEVICE. Here, large amounts of information are available at a
moderate transfer rate. A large portion of SYSTGEM is also on this
external medium.

The collection of software for the installation is put together on some-
thing called a system record, system file, or system tape. This includes a
portion of SYSTEAM, for we want to restrict the running program as little
as possible. The less the software clutters MEMORY, the larger the pro-
duction program it can accommodate.

In MEMORY at all times there is a portion of SYSGEA which we call the
system nucleus. It maintains crucial information about what is going on
and makes preliminary decisions; then it may call in from the system tape
or disk such help as required to finalize the decision and carry it out. The
system nucleus thus contains preliminary decision-making capability plus,
possibly, selection and loading capability.

The system tape or disk contains the rest of SYSTEA. It also contains
translators, probably at least one assembler and one compiler. It contains
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the loader and a copy of JOCS. The subroutine library may be on this tape
or on a separate tape, depending upon its length.

Typical control SYSGEM is most importantly employed in

sequence proceeding from one program to another.
We now review a typical operation (Fig. 1.12.1) as seen from the “eyes”
of S8YSBGEAM.. A group of jobs for the computer to do today is set up as the
day’s operations begin. When the program being run is finished, it
indicates this to SYSTGEAM which now gets to work. SYSGEM may now
do the accounting for the last run; it then clears the MEMORY and resets the
system. It produces a printout so that the operator knows that this
program is finished, how it was disposed of, and how long it took.

SYSTGEM next makes a new initial assignment of 10 DEVICES. It brings
in the next program or a portion of it. The program may require transla-
tion. Whether or not it does, SYSTGEM has found out enough information
about the program to make further 10 assignments.

For translation, SYSTEA has the loader bring in the translator and
locate it properly in MEMORY. The program is read and translated, and
output is produced. SYSGEA then determines if the program shouid be
run and, also, if the program is in a condition to be run. If so, it resets
MEMORY and calls in the loader.

LOAD or LOADA brings in the translated program for running and the
data associated with it. The program is then activated and running begins.
SYSBEM is relegated to the background, but it takes over should a
catastrophic error occur, when the job is completed, or when its time has
expired. It calls in the loader when segmentation is required.

The accounting For the accounting function, SYSGEM

function obtains information about program status,
program running time, and the account to be charged. If different
charges are made for problem and software time, the accounting procedure
keeps track of activities separately. SYSTEAM may also keep track of
computer time spent on each job.

A program submitted may have associated with it one or more of
several activities. It may be translated. It may be performed. The number
of times it is performed may depend upon the number of data sets sub-
mitted with it. It may be debugged. It may be interrupted. Errors may
occur which may or may not be corrected. If it is segmented, some of these
segments may be done several times, while others are not performed at all.
The program may be normally terminated or may be rejected before
completion. Status change information is obtained by SYSTEM and
printed out as soon as available.
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A cLOCK incorporated in the computer reflects the real passage of time
and, hence, is called a REALTIME CLOCK. It may use the same units of time
as we do and, in this case, no conversion is required. However, this is not
a necessity of the REALTIME CLOCK. The cLOCK reading is accessible to and
sometimes is resettable by SYSTENM to time intervals rather than running
continuously.

Some installations consider all computer time chargeable to overhead,
and its cost is not accounted for. Most companies make a direct charge
to a department or project in a department for computer time. The rate
charged for computer time and how the time is calculated varies by
installations. Cost may include

 program run time

» loading

e translation

» monitoring, and so forth.
It may even include a percentage maintenance charge. Also, the rate may
differ from one job to another. This is especially true when jobs can be
submitted not only from within the company, but also from outside
customers who pay hard cash.

Often a time estimate submitted with a program prevents excessive
looping or other program malfunctions. Such errors could produce a
nonterminating activity which is very hard on the budget. The Duration
Monitor can prevent them and can also protect against catastrophic
computer errors.

Error routines Detected errors are handled in several ways.
The program may provide its own error subroutines. Uncorrectable errors
in input and output are usually delegated to JOCS.

Some errors have uniform recovery procedures. Intrasystem data
transmission errors, arithmetic overflow errors, and other entirely com-
puter-associated errors fall into this category. They are handled by the
FOREAMAN.

Data transmission errors are eradicated by retransmission when the
source and destination are known and intervening events have not affected
the information. Otherwise, rollback may be incorporated into the
program. When error cannot be removed, the program is dumped—
removed—and the next one started. Arithmetic conditions, such as
overflow and underflow, can be coped with if a means for recalculating the
data is provided. SYSGEA usually requires some help from the pro-
grammer for this. He provides rollback points and indications of which
quantities are to be rescaled and by how much.
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DEVICE assignment  Either SYSGEAM or JOCS or both may be
responsible for allocating DEVICES. The symbolic designation furnished
with the program should correspond to an available working DEVICE. When
the monitor makes assignments, it communicates them to JOCS by
establishing tables.

The basis for assignment is mainly present availability status. Some
DEVICEs have specific system assignments, such as the system tape and the
library tape. Other DEVICEs have less sacred reservations, intermediate
storage for translation and output. Other DEVICEs have concurrent job
designations: output information from the last job ties up units which the
operator is unloading. From those DEVICEs which are free and working,
SYSGEA assigns units for tasks in the program for which the programmer
has not already made specific assignments taking into consideration buffer
needs. It may do anywhere from none to all of this task. On occasion, it
finds that there are not enough DEVICEs free to perform the job, which
must then be postponed.

Conversation with Some information flows betwee

AL Axix 593 A ax

humans and the computer in all systems.

Computers communicate by lighting one or more indicator lamps to
convey prevailing conditions to the human. Greater versatility is provided
through a written message on a CONSOLE DISPLAY. For the maximum in
speed, there is the CATHODE RAY TUBE; however, the CONSOLE PRINTER is
almost as effective.

When a program is completed, OUTPUT DEVICEs require attention.
Messages to this effect are produced by SYSTEAM on the CONSOLE. They
demand immediate service, for the DEVICEs remain unused until the
operator has freed them. Less routine difficulties are communicated to the
operator by the CONSOLE PRINTER: SYSTEAM can tell the operator when it
encounters an unsolvable error or when no more programs are available.

Such catastrophies as DEVICE or computer hangup require immediate
attention.

Information is sent directly to the computer by CONSOLE BUTTONS or
the CONSOLE TYPEWRITER, which can be utilized by SYSGEM without
interrupting the program in progress. The information entered may be in
response to a request of the SYSGEAM which is ready to receive and
interpret it.

Sometimes the operator talks directly to SYSTEM to request a new
program sequence when a different program priority situation arises. In
this vein, a new important program may appear. The operator tells
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SYSTEM about this, using the CONSOLE KEYBOARD. SYSTEAM can now
have this program run out of turn. The operator can even interrupt the
present activity to have the computer generate Christmas carols for
visiting dignitaries!

SYSTEAM usually recognizes a CONSOLE activity with an interrupt
routine in FOREMAN. It has on hand a series of canned messages. It
selects a message appropriate to the situation and transmits this to the
CONSOLE DEVICE.

Information entered into the CONSOLE KEYBOARD is obtained by
SYSBEA via an interrupt. The message is scanned by SYSTGEA and its
format compared with a number of prepared samples. A comprehension
subroutine corresponding to one of these samples is called in to “make
sense”” of the entry.

Multiprogramming, = When an operating system has to handle
multiaccess multiple programs, regardless of why, its
overhead in both time of operation and core residency, needless to say,
must increase. Further, hardware features should be furnished in the form
of:
o memory protect so one program won’t clobber another;
o interrupts to inform SYSTGEM when a violation has been found;
o dynamic relocation is a luxury which facilitates, supposedly,
quick interchange between users.

PROBLEMS

1.1 Give four pairs of adjectives that describe and distinguish computers, and
explain them.

1.2 Write the sequence that occurs during (a) recall; (b) fetch.

1.3 Distinguish among a REGISTER, MEMORY CELL, and AUXILIARY MEMORY
block.

1.4 What is the difference between arithmetic and editing?
1.5 How could the hardware do multiple indirect addressing?
1.6 Why aren’t all commands indexable?

1.7 Why are separate commands needed to manipulate the contents of indexes?

47

MOH



48 INTRODUCTION Chap. 1

1.8 What makes translators different from most other software?
1.9 Why is relocation necessary in today’s computers?

1.10 Why is there a separate £IN'K.?

1.11 What’s the difference between JOCS and the FOREMAN?

1.12 What’s a supervisor?
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2 . 1 THE CONCEPT
Need The problem which the CHANNEL CONTROLLER

is designed to alleviate is indicated schematically in Fig. 2.1.1. Information
exists on some pevice medium which is so called because its use and
availability is restricted to a single kind of (10) pEVICE. Thus punchcards
can be read only by a PUNCHCARD READER and not by a MAGNETIC TAPE
UNIT.

A DEVICE communicates with its DEVICE medium and either accepts
information from the medium or places information upon it. Present
computer systems require that information from a DEVICE be passed over
to the MAIN MEMORY, (MM), or that information destined for the device
medium be passed from the MAIN MEMORY through the DEVICE onto the

medium.

Transfers from We are not concerned with the various means
DEVICE to for transcribing information from the medium
MEMORY through the DEVICE or from the DEVICE onto

the medium, as this is a specialized study dependent upon the nature
of the PERIPHERAL DEVICE. We are concerned with how a DEVICE com-
municates with MM, (MAIN MEMORY). In the simplest and least expensive
machines which have few 10 DEVICES, it is expedient to connect each DEVICE
directly to MAIN MEMORY. However, in the medium and large scale
computer field, DEVICES proliferate.
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MEMORY
Instructions

Delegates
instruction

CONTROL

PEGSGH ERE— CHANNEL
/_ R —

/
% -
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data flow \ 4

DEVICE

Data Data

Medium

Fig. 2.1.1 The supervision of data flow between the
DEVICE and MEMORY.

We cannot permit direct communication between a DEVICE and MM for
at least five reasons:

1. The difference in information flow rate between MM (one word per
1-2 microseconds) and that of the DEVICE (a few to a few hundred
thousand characters per second).

2. The quantum of information handled by a DEVICE is different from
the MM word.

3. Instructions must be given to each DEVICE, telling it the task it is to
perform. If DEVICEs were autonomous, CONTROL would have to
communicate with each and every DEVICE.

4. Undoubtedly, occasions arise where several DEVICEs want to talk to
MEMORY at once. It is complex, if not impossible, to settle these
conflicts at the DEVICE level.

5. Synchronization problems arise between the DEVICE and MM. The
arrival of information rarely corresponds to the MM or the DEVICE

is free.
CHANNEL The CHANNEL CONTROLLER (Oor CHANNEL, Or
CONTROLLER simply cC) is a subsystem which acts auton-
functions omously by referring to a list of sub-

commands stored in MAIN MEMORY. In this respect, the CHANNEL is like a
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small computer:
e it has its own program in MEMORY;
e it has a CONTROL UNIT (CC CONTROL) and is attached to DEVICES
which it supervises.
In some systems, separate computers were used to control 10 functions;
these computers were called satellites for, although they were autonomous,
they were under the regulation of the central computer.

The CHANNEL has in its dominion a number of PERIPHERAL DEVICES.
This number can have an upper limit in the hundreds or even thousands
in the case of data lines. One task of cc is to select and talk with one or
more of these DEVICES under the direction of CONTROL.

In performing an input function, the CHANNEL collects information
from the DEVICE which the DEVICE has previously collected from the device
medium. cc formats this information and assembles it into a quantum
(word) convenient to the MM. It then causes this word to be placed in a
preassigned location in MM.

The output function of the CHANNEL is to obtain a word from a known
location in MAIN MEMORY which it then disassembles and sends to the
DEVICE. The latter records the information on its own medium.

Autonomy The CHANNEL performs a sequence of opera-
tions. The sequence is stored in coded form in a section of MM designated
by the software or sometimes by the programmer. The program tells the
cc where it is to get this sequence of instructions. Each instruction to the
CHANNEL will be designated hereafter as a subcommand. Each subcommand
describes a set of operations occurring for a given DEVICE, using a designated
area of MAIN MEMORY.

Selection The cc supervises many DEVICEs as shown in
Fig.2.1.2. How these are connected is discussed in Section2.2. A command
in the main program tells the CHANNEL which DEVICE it will work with in
the near future. No other DEVICE can be active under the jurisdiction of
this cc. All subcommands which the CHANNEL receives pertain to the
selected DEVICE until further notice from CONTROL.

Collection and The CHANNEL is responsible for assembling

assembly information into words for storage in MAIN
MEMORY or for disassembling words from MM into pieces of convenient
size for the DEVICE to handle.

Scattering and One beauty of the cc concept is the ability to
gathering scatter information from a DEVICE into
different areas of MM. This is illustrated in Fig. 2.1.3, where six segments of
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Fig. 2.1.3 The cHANNEL facilitates distributing data from a DEVICE
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information are to be scattered into different areas of MmM. With a single
command, the main program delegates this task to the cc which performs
this by using six separate subcommands stored elsewhere in MM.

Need Some functions described above are necessary
for the proper operation of all DEVICEs. If a set of DEVICEs can share hard-
ware which can perform these functions for any one of the DEVICES, then this
hardware is a less expensive solution than separate hardware for each
DEVICE. Assembly and disassembly, for instance, are incorporated into the
CHANNEL and hence need not be duplicated for each DEVICE. If autonomy
existed on the DEVICE level, each DEVICE would have to incorporate means
for assembly and disassembly.

The CHANNEL resolves conflicts among DEVICES.

An interrupt facility is a necessity to modern computing. If provided at
the cc level, its need is removed from the DEVICE level.

The gather and scatter facility takes the burden of simple clerical
matters away from the main program, placing it at the CHANNEL level.

2.2 DEVICE CONNECTION AND SELECTION

Crossbar The crossbar connection is indicated sche-

connection matically in Fig. 2.2.1. CONTROL addresses
a number of CHANNEL CONTROLLERS, each of which is connected to all the
DEVICEs available in the system. This is somewhat analogous to a telephone
center where any subscriber can talk to any other subscriber.

CoNTROL delegates the DEVICE request to any free cc, since each can
talk with every DEVICE. It chooses a cc by using a discipline incorporated
into the hardware. Generally, this is done on a rotation basis: the next
free CHANNEL picks up the request. If none is free, the request holds up
processing until a CHANNEL becomes free.

CONTROL makes a request for a DEVICE by naming that DEVICE. Of
course, the INSTRUCTION REGISTER originally gets this request from the
program. Hence the program should name a specific DEVICE for an 10
function.

Once a CHANNEL receives a request, it simply connects to the desired
DEVICE and initiates its operation. If the DEVICE is already occupied
because it is reporting to another CHANNEL, then the new request must
wait until the DEVICE is free. Hence the controller becomes tied up in
waiting for a busy DEVICE.
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DEVICE
DEVICE
Subcommands
- DEVICE
CHANNEL
CONTROLLER
Command
DEVICE
CHANNEL
CONTROLLER
DEVICE
CONTROL °
SUBSYSTEM
[ J
_ R
Delegation CHANNEL
to channels CONTROLLER r—
DEVICE
DEVICE
Fig. 2.2.1 The crossbar arrangement for the CHANNEL.
Crossbar The crossbar method of connecting the
considerations CHANNEL is particularly appealing to the user

because it permits any subset of DEVICEs to be active simultaneously (of
course, the number of active DEVICEs cannot exceed the number of
CHANNELSs!). This is a costly solution because connections must exist from
all CHANNELs to every DEVICE. Further, each CHANNEL must know the
status of every DEVICE; otherwise, a cC would be unable to reject a request
for a busy DEVICE. Interlocks must be supplied so that two requests for
the same DEVICE will not be started simultaneously.

Finally, to incorporate an interrupt technique requires that certain
DEVICE statuses inhibit reinitiation for that DEVICE so that servicing of an
interrupt for that DEVICE can proceed with immunity. Thus, if a parity
error is detected on TAPE DRIVE 28 and an interrupt routine is servicing it,
the program or other software must not be able to start DRIVE 28 from any
channel until the DRIVE has been released or reassigned by the interrupt
routine.
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Sec. 2.2
MEMORY
CHANNEL CHANNEL
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Fig. 2.2.2 Permanent DEVICE assignments to the
CHANNEL CONTROLLER,
Permanent

CHANNEL-DEVICE
assignment

riding.

Figure 2.2.2 shows a more popular arrange-
ment whereby each CHANNEL CONTROLLER has
a number of DEVICEs permanently assigned
to it. Any single DEVICE on a given channel can be activated. While this
DEVICE is active, no other DEVICE on that channel can be activated: the
CHANNEL CONTROLLER’s facilities are dedicated to the DEVICE it serves;
these facilities are limited (by cost) and cannot be shared by another
pEVICE. This limits DEVICEs which may be active simultaneously to a set
chosen, each from a different channel. This is not a severe limitation
because the programmer at assembly time or software at run time may
be able to ascertain which DEVICEs will be active at the same time and, if
there are duplicate DEVICE types on different channels, try to assign
them properly. With this method, physical limitations may be over-
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DEVICE names We should clarify, at this point, three different
references to DEVICES: symbolic, machine, and physical. The programmer
refers to a DEVICE or a device function by a symbolic name, generally of
mnemonic design: PAYROLL might be the name given to a master
payroll file; it also designates an output (or input) DEVICE which already
(hopefully) holds that file. The machine designation of a DEVICE in this
assignment discipline consists of a CHANNEL designation and a DEVICE
designation within the channel. Thus, B3 designates the third DEVICE on
channel B.

Generally, DEVICEs of one type can occupy only certain positions on a
given channel. For instance, we may have the restriction that device B3
is a MAGNETIC TAPE UNIT (MTU). This does not restrict us to a specific
machine. The physical designation of an 10 UNIT is often by its serial
number. For instance, TAPE UNIT 3D7928 may occupy position 3 on
channel B. If this DEVICE should suddenly malfunction, nothing prevents
us from disconnecting its cable, removing the physical DEVICE, and
replacing it by the UNIT with serial number 4X39, say. Better still, since
4X39 is not in use, we might simply relabel it as B3.

Put in other terms, the programmer uses a symbolic name in referring
to a DEVICE; the supervisor, monitor, or assembly language programmer
refers to a DEVICE by its machine name; the service engineer refers to

DEVICEs by their physical names (or other epithets).

DEVICE CONTROL In some computer systems it is necessary to
UNIT insert an additional CONTROL UNIT between
the DEVICE and MAIN MEMORY, as shown in Fig. 2.2.3. The CHANNEL
CONTROLLER performs functions for the DEVICEs on the channel which are
common to all DEVICES regardless of their type. There are additional
functions which need be performed for DEVICEs of one type but not of
another. If these also can be incorporated into a single CONTROL UNIT, this
reduces hardware cost. In the figure, we see a MAGNETIC TAPE CONTROL
UNIT which supervises the operation of several MTUs. Some of the control
hardware required for these MTUs has been removed and placed in a single
DEVICE CONTROL UNIT.
The control hierarchy is then as follows:
e CONTROL in the computer delegates an 10 operation to the
CHANNEL CONTROLLER.
o This operation, for a given DEVICE, requires connection of the
DEVICE CONTROLLER associated with that DEVICE.
o The CHANNEL CONTROLLER delegates an operation to the DEVICE
CONTROLLER.
Although several ccs may be active separately, only one DEVICE CON-
TROLLER and one DEVICE can be active on any given channel: the CHANNEL
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Fig. 2.2.3 The DEVICE CONTROLLER handles several DEVICES of
the same type.

CONTROLLER has only one set of registers, etc., which must be dedicated
for the use of the DEVICE CONTROLLER; similarly, the latter has but one set
of hardware, etc., for communication with the designated DEVICE.

MULTIPLEXOR Most manufacturers are furnishing a CHANNEL
CONTROLLER which can handle not only the fast DEVICEs we have described,
but also slow DEVICEs such as TELETYPE and TELEPHONE LINES. Information
is exchanged with these DEVICEs at such a slow rate that it is possible to
service tens or even hundreds with a single CHANNEL. Such a CHANNEL
CONTROLLER is termed a MULTIPLEXOR CHANNEL OT Simply a MULTIPLEXOR.

The principles of organization of the MULTIPLEXOR and its relation to
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the rest of the computer are very similar to those of the CHANNEL CON-
TROLLER. However, it is necessarily much more complex. Since the
MULTIPLEXOR is gathering and disseminating data for more DEVICES
“simultaneously,” it must have a means for keeping track of each. To
install hard REGISTERS for each DEVICE would indeed be expensive—price
the manufacturer right out of the field.

The MULTIPLEXOR instead uses MM to control information and data for
each active DEVICE. It must then have a means for associating MM CELLS
with DEVICES.

It would sidetrack us to give inordinate attention to the MULTIPLEXOR.
Instead, we plug away at the CHANNEL.

2 . 3 CHANNEL INITIATION

Program Somewhere in the program sequence 10

delegation commands arise. In many systems, these are
mediated by software of one form or another. Some systems depend on
JOCS for 10 commands. Whether JOCS is used or not, all 10 commands
are turned over to the SYSTBEAM automatically by an interrupt in third
generation machines such as the IBM 360. This is discussed in more
detail later.

Eventually, an 10 command from the program sequence (which may be
in the software) is placed into the INSTRUCTION REGISTER Of CONTROL. The
command has different symbolic forms. For our purpose, we assume the
following form:

P STARTIO channel, device,M (2.3.1)

Here, channel is a machine language identifier of the channel addressed;
device refers to the DEVICE number on the addressed channel; M is the
location in MEMORY of a sequence of subcommands to which the CHANNEL
refers.

If the cHANNEL addressed happens to be busy, this command cannot
be accepted by that CHANNEL. The alternative action taken depends upon
the hardware design. In some cases, the next main program command is
skipped ; in other cases, a jump to an error recovery routine is made—the
specific location of this routine is-a permanent location provided for the
CHANNEL CONTROLLER; a further alternative is for the entire computer to
be held up until the channel addressed becomes free. In any case, since the
CHANNEL cannot accept one command while it is busy executing another,
something must be done about the new command.
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CHANNEL The location M is the start of a sequence of

subprogram commands to be referenced by the CHANNEL
addressed in the command. Each entity in this sequence is referred to
hereafter as a subcommand. The subcommand is interpreted by the
CHANNEL in reference to the DEVICE distinguished in the original 10
command. Each subcommand has a form something like this:

function, number, location, tags (2.3.2)

Here, function may be specific to the DEVICE called upon; number specifies
the number of words, bytes, or other quanta of information to be trans-
ferred between the DEVICE and MAIN MEMORY ; Jocation is the starting point
in MM where information is to go (or come from) as it emanates from (or
goes to) the DEVICE; tags convey auxiliary information such as: data
transmission is not inhibited; this is not the last in the chain of subcom-
mands; indexing; etc.

Function conveys the operation the DEVICE is to carry out. This may be
read or write. information is transferred toward or away from MAIN
MEMORY, respectively. It may also convey a nondata function: a request to
a4 MAGNETIC TAPE UNIT to REWIND tapes; a PUNCHCARD UNIT request to
select a specified hopper; etc. Finally, there are reflexive functions: halts
or jumps. For the latter, the CHANNEL CONTROLLER finds a new sequence
of subcommands at another location in MEMORY. Subcommand jumps
may be conditional or unconditional.

Simultaneity From (2.3.1) the CHANNEL has been delegated
a subcommand sequence starting at M. Both these activities occur at the
same time:
» The CONTROLLER performs subcommands at M, M + 1, etc.
» The computer executes commands at P, P + 1, etc.
Of course, other CHANNEL CONTROLLERS may have assignments—sub-
command sequences—which they are pursuing at the same time.

DEVICE Let us examine communication with the

communication INPUT DEVICE. A DEVICE provides information
in bytes or characters. Generally, this quantum differs in size from that
generally used for entering information into MAIN MEMORY (word size).
The CHANNEL is the liaison between the DEVICE and the MEMORY having as
one of its main functions the reformatting of information to suit the
MEMORY or the DEVICE, whichever it is addressing. Thus, on input, it
receives characters of information from a DEVICE and assembles them into
words. When a word is assembled, it is passed over to MAIN MEMORY.

SNOILONNA
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For output, words are passed from MAIN MEMORY to the CHANNEL
where they are disassembled into characters suitable for the DEVICE.

CHANNEL How does the CHANNEL CONTROLLER operate

operation when requested in the program? It receives
a command from CONTROL. If and when it accepts this command, it is
ready to select and activate the DEVICE specified in the command. (Some-
times, as in the IBM 7094, two or more commands are required to get the
CHANNEL going.) When it accepts the command, the CHANNEL goes to
MAIN MEMORY and gets the first subcommand in the sequence.

The subcommand indicates the task which the DEVICE is to perform.
The CHANNEL delegates this task to the DEVICE. Generally, this will involve
the exchange of data. Let us examine input. Data begins to flow from the
DEVICE to the CHANNEL. It is accepted and aggregated by the CHANNEL.
When a word is assembled, it is passed over to MEMORY, and the subcom-
mand is checked to see if the number of words to be transmitted has been
reached. If not, we count down this number and alter the destination
location so that the next data word will go into the next sequential word in
MEMORY. We continue thus until the required number of words have been
replaced in MEMORY.

The CHANNEL has completed a subcommand. It now goes to MEMORY,
to the location right after the one where it obtained the last subcommand,
and looks for its new subcommand there. It gets this subcommand,
interprets it, and starts its execution.

Eventually, the CHANNEL obtains the last subcommand in the sequence.
This is indicated by a tag in the subcommand; or the sequence may
contain a HALT subcommand. After executing a tagged command or
arriving at a HALT, the CHANNEL CONTROLLER enters either an idle or an
interrupt condition. For computers where interrupt is not provided, it is
up to the program to determine when a DEVICE has completed its task and

- what the effect of that completion is.

In modern computers, an interrupt is provided whereby the worker
program is interrupted and a software monitor takes over to make sure
that activity on the channel is properly recorded and that new activity is
initiated if this is at all possible.

Interrupt schemes are discussed in the next chapter.

2 . 4 CYCLE STEALING

Communication between MEMORY and a CHANNEL is done by cycle
stealing. This phrase contrasts with earlier or simpler techniques for 10
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communication. Early computer control subsystems maintained control
of 10 operations: when information was transmitted between an 10 DEVICE
and MEMORY, the rest of the computer was immobilized ; no other references
to MEMORY were possible as long as an 10 DEVICE was activated.

The CHANNEL CONTROLLER principle permits information to accumulate
while “useful” work is being done by the PROCESSOR and CONTROL.
Information is transferred between the CHANNEL and MEMORY, without the
awareness of CONTROL. As it were, the CHANNEL “‘sneaks’ into MEMORY
and steals a MEMORY cycle. This may postpone, by a MEMORY cycle time or
so, the activities of CONTROL or some other subsystem. Sometimes the
computer is not held up at all while an 10 MEMORY transfer takes place.

How are conflicts  Requests for the use of MEMORY can arise from

resolved? several subsystems of the computer. Actually,

the PROCESSOR can use the MEMORY only under the jurisdiction of CONTROL.

This leaves the CHANNEL CONTROLLERS as the other main users of MEMORY.

If there are several requests to use MEMORY, these could be settled by

one of two schemes:

« one which assigns MEMORY to requesting subsystems in a fixed

order according to subsystem name, not request arrival order;

» a queue scheme which orders requests according to their arrival,
generally on a first-come, first-served basis.

A queue scheme requires extra hardware to keep track of the arrival
sequence of requests. Such hardware is not justified.

A priority scheme could use either priorities fixed within the hardware,
or these priorities could be assignable by the programmers. The pro-
grammable scheme would mean that priority for a subsystem would
change from one program to the next. Such flexibility is not required for
the operating system. It is available on computers where it may improve
the effectiveness of the computer complex. We examine here only one
fixed-priority scheme.

Protection Suppose several programs are in MEMORY and
each makes use of one or more I0 DEVICES via CHANNEL CONTROLLERS;
what’s to prevent the CHANNEL/DEVICE combo from going wild and
clobbering somebody else’s MEMORY area? System/360 solves this by
requiring the CHANNEL to access MEMORY with its own key supplied as the
channel address word (see p. 103). Each sector of MEMORY has a lock;
only those for which this key fits can be opened by the CHANNEL.

Single port Consider a single-port MEMORY SUBSYSTEM as
diagrammed in Fig. 2.4.1. Other subsystems access the port in a left-to-
right priority sequence. If there is a request pending for CHANNEL #1, this
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Fig. 2.4.1 Cycle stealing priority, single-port scheme.

request is served next, regardless of any others which may be waiting. If
there are requests on several CHANNEL CONTROLLERs, the lower numbered
CHANNEL always receives service first. Hence, we assign DEVICES of more
importance as far as servicing is concerned to the lower number channels.
For DEVICEs which have the highest rate of information flow (such as
DISKS) it is essential to pick up information before it is lost, being replaced
by new information. This restriction should be tempered by the need to
place DEVICEs which would be working simultaneously for a given program
on different CHANNELS.

DEVICE activity always receives MEMORY response before CONTROL. One
wonders if there would be time left for CONTROL activity. Fetch and
execute cycles require much less time than does a DEVICE for its activity;
so generally, there will be time free for the program. But even in the worst
case, CONTROL activity will not be held up indefinitely. 10 activity will
eventually expire and require that processing activity intervene before
more 10 activity can be dispatched.

Rate comparison Let us examine information transmission
speeds for 10 DEVICES. They fall into three categories: slow, medium, and fast.

PUNCHED PAPER TAPE DEVICEs and communication lines are rated in
operations per minute. Data words arrive in seconds or fractions thereof.
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The best example of medium speed DEVICEs is the PUNCHCARD READER,
which operates at 600-1000 cards per minute (although some DEVICEs read
up to 2500 cards per minute). Consider a rate of 15 cards per second.
The maximum number of filled columns in a card is 80, so that the
maximum transmission rate required is 1200 characters per second. This
is 300 words per second in a typical fixed-word machine, or 5 milliseconds
per word.

High speed DEVICES include MAGNETIC TAPE TRANSPORTS and DISKs and
prRuMS. These transmit information at the rate of 15,000-500,000 charac-
ters per second, or up to 125,000 words per second, from 8 microseconds
to 250 microseconds per word.

Stealing The CHANNEL CONTROLLER steals a cycle to
transmit a word from the data medium into the MEMORY (or from MEMORY
into the data medium). It must take care of a word of data before the
DEVICE produces (or requires) the next word. In the fastest DEVICE
examined above, we have 8 microseconds before another MEMORY access 1s
required. Third generation computers have MEMORIES with cycle times of
1 microsecond or even one-half of a microsecond. This means that
MEMORY would be completely loaded down only if eight high speed
DEVICES were active simultaneously. Such a situation does not generally
arise.

CHANNELSs also steal a cycle once in a while to acquire another sub-
command. The urgency of this is not as high as for servicing DEVICE needs.

A high speed DEVICE continues to produce (or consume) information
at its high rate regardless of what is happening to the CHANNEL. Hence the
CHANNEL should be prepared to accept another character as soon as the
DEVICE issues it. For characters arriving at half a million per second,
the CHANNEL must respond within 2 microseconds, as must MEMORY. How-
ever, the MEMORY will not be called upon to react that fast for another 8 mi-
croseconds. Itturns out that, for current computers with a limited number
of high speed DEVICEs attached and intermittent DEVICE operation, MEMORY
is seldom called upon to react up to its speed capacity. If it should happen
that a character of any transmission is missed, interlocks are generally
provided so that a retransmission can be requested under program control.
Even this eventually can be eliminated by a DATA BUFFER REGISTER
(discussed later).

The main program Whenever a number of CHANNELS require
servicing, the running program is inevitably held up. This is only a matter
of a delay in execution of the steps of the program. CONTROL always
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remains aware of what command is to be performed next. If the cycle
theft occurs between a fefch and the acquisition of an operand, then
CONTROL suspends its animation until MEMORY becomes free for it to
procure the desired operand.

It is emphasized that no other program or software is brought into play
as a result of cycle stealing. This is in contrast to interrupt discussed in the

next

chapter.

2.5

Figure 2.5.1 shows a functional diagram of the composition of a
typical CHANNEL CONTROLLER.

COMMAND ACQUISITION FOR CHANNELS

INSTRUCTION REGISTER

DEVICE

Fig. 2.5.1 REGISTER in the CHANNEL CONTROLLER.
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REGISTERS Several REGISTERS are provided in the CHANNEL
in the figure, the commanD REGISTER, cr, holds a command provided by
CONTROL. The suBCOMMAND REGISTER, scr, holds the subcommand that the
CHANNEL has acquired on its own from MEMORY. The paTA REGISTER, DR,
stores a word as it is assembled or disassembled. The CONTROL UNIT
coordinates and times the functions of the CHANNEL CONTROLLER.

The command An 10 command is entered into the INSTRUC-
TION REGISTER of CONTROL. It may come along as one of the commands
in a running program. Generally, though, it will appear in a sequence of
the software, probably JOCS.

After the command arrives, it is decoded and detected as an 10
command by CONTROL which broadcasts most of the command to a// the
CHANNEL CONTROLLERS. That the opcode distinguishes this command as
10 need not be broadcast. The remaining information, channel, unit, and
M, is broadcast.

Each CHANNEL CONTROLLER has a cHANNEL pEcopk unit which reacts
only to the designation of this CHANNEL; no other CHANNEL reacts. It
stores the UNIT and MEMORY /location into the COMMAND REGISTER.

A portion of the operation code is broadcast in some computer systems
when such portion contains information relevant to the command to be
delegated to the CHANNEL.

In some systems (e.g., IBM 7040/90 series) two commands are needed
to activate a CHANNEL. There are so many DEVICE/CHANNEL choices that a
full command is needed to make this selection and function unambiguous.
The second command tells the CHANNEL where it is to obtain its string of
subcommands.

Subcommand At the time the command (s) is received by the
CHANNEL, no subcommand is presently available; M is dispatched to
the MEMORY ADDRESS REGISTER and a recall requested. In the meantime,
the DEVICE specified in the command is started either directly or under the
auspices of the DEVICE CONTROLLER.

The datum procured by MEMORY is routed to the SUBCOMMAND REGISTER
of this particular CHANNEL. Upon the arrival of the subcommand the
CONTROL UNIT is advised, and a data acquisition sequence is initiated.

Data acquisition We now describe the acquisition of data
during input. The reader may revise the description to fit the ouzput
process if he desires.

The DEVICE called upon is activated on receipt of the command. The
functions to be performed by the DEVICE are specified in the subcommand.
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Here we examine data-directed commands. These require activation of the
DATA COMMUTATORS.

Once the input DEVICE has been activated, it sends information to its
CONTROLLER on a character or byte basis. Information is continually
dispatched and continuously arrives at the DEVICE. It is intercepted there
by the pata commuraTor, whose responsibility it is to insert the character
in the proper section of the DATA REGISTER.

Once a word is assembled in the DATA REGISTER, the CONTROL UNIT is
activated by the COMMUTATOR. The address where the word is to be stored,
m, is dispatched to the MAR once a cycle can be stolen. Thereafter, the
contents of the DATA REGISTER are passed over to the MDR and the informa-
tion stored in MEMORY.

This action completed, the CONTROL UNIT is notified. It advances the
address, m, so that the next data word will be stored in the next position
in MEMORY. The count, #, is decremented.

Upon checking if the count has reached zero, the subcommand has been
completed. Otherwise, we continue another data acquisition cycle.

If the subcommand being executed has been completed, the CONTROL
UNIT detects this and initiates the acquisition of another subcommand.
The contents, M, of the CR are incremented to distinguish the position of
the next subcommand. This address is sent over to the MEMORY and
another cycle is stolen for recall. The datum acquired is passed in the
SUBCOMMAND REGISTER and data acquisition continues.

Termination Eventually, one of the subcommands placed
in the SR will either be tagged to indicate that it is the last of a sequence, or
else there will be a halt subcommand. This indicates to the CONTROL UNIT
that, after data acquisition associated with the subcommand, the sub-
command sequence is terminated, and the command is considered
complete.

The action the CHANNEL takes depends upon the complete system into
which it is incorporated. In the old computers, the CHANNEL would
become idle, waiting to be interrogated. New systems have an interrupt
facility, whereby the CHANNEL interrupts the main program as described
in the next chapter.

Some systems require that, when an overwhelming obstacle arises,
DEVICE operation terminates generally via the interrupt mechanism.
Examples of such obstacles are parity errors and the reading of end of tape
or even end of file marks.
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2 . 6 DEVICE OPERATION

Selection Figure 2.6.1 is a block diagram showing
DEVICES connected to the CHANNEL CONTROLLER through the DEVICE
CONTROLLER. A set of four busses communicates between the two
CHANNELS. One of these is the data bus which carries information between
the CHANNEL CONTROLLER and the chosen DEVICE. The second is a control
bus which indicates to the chosen DEVICE CONTROLLER what activity is
required of the DEVICE. The subchannel selector bus chooses the DEVICE
CONTROLLER from information decoded at the DEVICE CONTROLLER. The
DEVICE SELECTOR switches in the DEVICE indicated. Only two sets of busses
connect the DEVICE CONTROLLER to the DEVICE: one is for information
exchange; the second carries control information to direct the DEVICE
about activity it is to perform—over this, the DEVICE also transmits its
present status to the DEVICE CONTROLLER.

When a command is received by the CHANNEL, the selection lines which
emerge from it select the DEVICE CONTROLLER which, in turn, selects the
DEVICE. A through path is then made between the DEVICE and the CHANNEL
CONTROLLER. Control signals interpreted by the DEVICE CONTROLLER
activate the DEVICE and cause it to begin the desired activity. On input,

Data bus

CONTROL bus

CHANNEL

CONTROLLER
SUBCHANNEL select

DEVICE select

DEVICE
CONTROLLER

DEVICE DEVICE
CONTROLLER CONTROLLER

DEVICE DEVICE L I DEVICE

Fig. 2.6.1 Interface between CHANNEL CONTROLLER, DEVICE CON-
TROLLER, and DEVICE.
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information emanates from the device medium as soon as that medium is
up to speed and properly located. When this information arrives, it is sent
to the CHANNEL CONTROLLER, where it is assembled. In some cases, the
time between startup of a DEVICE and the arrival of the first information is
quite lengthy—a matter of milliseconds for DISKs and PUNCHCARD DEVICES.
The DEVICE, DEVICE CONTROLLER, and CHANNEL CONTROLLER are all
waiting but unavailable for other activity, and hence, their status during
this period is busy; but PROCESSOR activity continues unabated.

Data transmission As shown in Fig. 2.6.2, information from the
DEVICE flows through the DEVICE SELECTOR and into a SWITCH at the
CHANNEL CONTROLLER. This SWITCH determines whether the information
is coming in or going out, and it sets up a path between the DEVICE and
the DATA COMMUTATOR.

For input, the swWITCH passes data from the DEVICE through the INPUT
LOGIC to the COMMUTATOR. A character at a time is sent over to the DATA
REGISTER. The COMMUTATOR determines which position the data is sent to
in the word being assembled. It moves the characters along, one at a time,
from left to right. When the COMMUTATOR reaches the end of the word, it
sends a signal to the CONTROL UNIT of the CHANNEL CONTROLLER. A
MEMORY cycle is stolen to place the word in MEMORY. This happens before
the next character comes along from the DEVICE; it will be placed at the

DEVICE

CONTROLLER
DATA REGISTER

INPUT
LOGIC

DEVICE

( >C> COMMUTATOR
—

OUTPUT
LOGIC c—

e

L L : Timing
T CONTROL UNIT

CHANNEL CONTROLLER

Fig. 2.6.2 Data transmission between DEVICE and CHANNEL CON-
TROLLER,
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left end of the word in the DATA REGISTER. If the DATA REGISTER has not
been cleared, the old word will be written over and improperly stored in
MEMORY. Hence, the reaction time of the MEMORY to the CHANNEL CON-
TROLLER must be less than the intercharacter period. This time can be
lengthened by placing a BUFFER REGISTER between the DATA REGISTER and
MEMORY, making a full word assembly time available during which cycle
stealing may come about.

Result The operation of a DEVICE terminates in one
of several conditions. Hopefully, the DEVICE delivers the data properly
to the MEMORY if that is the desired goal of its operation. There are other
alternatives though: an error within the data may be detected by the
DEVICE. Most 10 DEVICES are provided with parity circuits which check the
information by applying a checking algorithm. If the data do not pass
this check, a parity error is communicated to the CHANNEL CONTROLLER.
It causes the CHANNEL CONTROLLER to abort its operation.

There are choices of when it will abort, depending upon the machine
design. Most often it continues recording data, indicating at the com-
pletion of its cycle that a parity error has occurred; the software will take
appropriate measures. It could stop data transmission and turn control
over to the software through an interrupt, accomplishing the same
purpose; but further data have not been recorded since there is really no
saving in ignoring the data after the error is noted. It is general practice
to record them.

Occasionally, the DEVICE cannot satisfactorily complete its assignment.
For instance, the PRINTER cannot print if there is no paper available for it;
punchcards will not be fed if there are none in the hopper to feed; a
MAGNETIC TAPE DRIVE will not read if the end of tape mark has been
reached; the pISK arm will not seek if an illegal address has been provided
to it. Hence, these situations cause an interrupt.

When the CHANNEL CONTROLLER is informed of the end of DEVICE
activity, it goes into an interrupt operation as discussed in the next
chapter. It records the DEVICE status or provides control line outputs
which are available to CONTROL for appropriate posting during the
interrupt operation.

PROBLEMS

2.1 Why do modern computers have CHANNELS?
2.2 What is assembly and disassembly ? How are they done?

2.3 What is the CHANNEL program? Why isn’t it wired in?
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2.4 Why is a crossbar system used? What is the alternative? What is its
advantage?

2.5 What are and why do we have three kinds of names for DEVICES?

2.6 How does the program talk to the cHANNEL? How does the CHANNEL talk
to the DEVICE?

2.7 What is cycle stealing? How is it done? Why?
2.8 How does the CHANNEL get a subcommand ?

2.9 How is data exchanged between MEMORY and a DEVICE?
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INTERRUPT

3 .1 AIM OF THE INTERRUPT
The new The computer is working on some program
program, P’ called P. What choices are there for P? It may be

 a simple worker program;

« in the case of multiprogramming, it is one of a number of worker
programs;

- in some cases, it may be doing one of the tasks required to keep
the computer running efficiently. In any case, when an interrupt
arrives from one of the possible sources (CHANNEL, program, etc.),
a new program, designated as P’, is invoked.

P’ has complete access to all of the hardware of the computer. There
is a risk that information being processed by the old program, P, and left
in the REGISTERs of the computer will be destroyed. After operation with
program P’, the interrupt program, we should return to program P at the
point where we left off. Therefore, all information contained in the
computer hardware must be preserved so that the program can be started
properly later.

An interrupt scheme is designed to facilitate overall system operation.
Define the overall system as the combination of software and hardware
which operates a number of different programs for different users. An
interrupt scheme calls for cooperation between software and hardware.
Hardware is provided to facilitate the software and is designed with the
software in mind. A good interrupt scheme depends upon interaction of
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the user’s program with both the hardware and software systems to
accomplish the overall system tasks.

How much of the interrupt operation is done by hardware and how
much by software depends upon the overall system design provided by the
manufacturer.

Need An interrupt is necessary when the program
in process, P, becomes less important to overall system efficiency (getting
the most user’s work done per unit time) than some other program, P’, for
one of several reasons:

1. A DEVICE needs attention. If it does not get this attention, overall
system efficiency will drop.

2. A program is in trouble and cannot continue unless it is given

special attention by the software.

The program now running expires.

4. The user has something to say immediately which affects the
overall outlook of the system to user’s programs by changing some

Tmntian oc1rmlh o Ton cmwis maaldlne L T Tt
function such as the priorities of activities.

et

Further, the new activity, P’, cannot be handled entirely by the hard-
ware. If this were the case, the operation might be handled by some
expedient such as cycle stealing, rather than interrupt. Hence, the program
P’ must take over the computer completely to properly fulfill its needs, thus
requiring all the provisions available in the interrupt scheme.

To put it another way, the interrupt facility permits the problem
program to maintain control of the computer until an infrequent event
(such as 10 completion) requires its attention. Otherwise, the program
would have to periodically check for the event, a time-consuming activity.

3 . 2 ACTIVITY

Phases of interrupt ~ We distinguish several distinct phases in
interrupt activity. Depending upon system design, there are many
different sources of interrupts. These can be divided into five (or more)
source classes, enumerated as follows.

» CHANNEL CONTROLLER—IO completion or exception.

» EXTERNAL DEVICE—from DEVICES to which no task was delegated
by the program; interrupts arising from the operator’s console,
communication lines, realtime clock, or the user’s console.
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e program—errors found by CONTROL, such as incorrect command
codes or addresses; sometimes the program itself can request an
interrupt to the system.

 PROCEssOR—overflow, underflow, and other errors arising from
calculations or operations.

e MEMORY protect—when a worker or software program addresses
an area in MEMORY not available to it.

From this list it is evident that each subsystem can be the source of one or
more classes of interrupt.

Signals from sources, regardless of class, initiate interrupt activity.

B PROGRAM CESSATION. Some time after initiation of an interrupt, the
program being interrupted is brought to a halt.

B STORAGE OF OLD PROGRAM INFORMATION. Before a new program can
be placed in control, all pertinent information about the old program is
collected and stored.

M INTERRUPT PROGRAM INITIATION. The purpose of this whole thing is
to get an interrupt servicing routine started. This includes selection of
the proper subroutines for servicing the interrupt.

B TERMINATION. When the interrupt activity is complete, we de-
termine what further activity is required and transfer control to it.
Eventually, control passes to the interrupted program.

M RESTORATION. To reinitiate the interrupted program, it is necessary
to retrieve REGISTER information and so forth, restoring the status of
the computer to that which was in force at the time of the interrupt.

Hardware, An interrupt facility is possible only if
software, and provisions have been made in the hardware.
program Such provisions must be made for per-
interrelation formance of all the phases of the interrupt

activity. The initiating signal from the various subsystems is detected by
the hardware. The information is stored in a HARDWARE DEVICE, namely,
a FLIPFLOP. The setting of this FLIPFLOP is used to halt the program at just
the right spot. Hardware is necessary to supervise the storage of sufficient
information to get the software started. The means for transferring
control to the interrupt program is also implemented in hardware.
Finally, the means for restoring the old program may also be of hardware
design.

Most of the REGISTER and status information is put away in storage by
interrupt software. All interrupt servicing, including determination of the
device number, device type and kind of error is the responsibility of the
software. Choice and method of return to the old program often reside
in the software.
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One beauty of this interrupt scheme is that the problem-solving
program of the user need make no provision for interrupts. The problem
programmer may be unaware of the interrupt system as he writes his
program. However, the installation system programmer may be required
to supply routines for servicing interrupts which are peculiar to that
installation or which perform tasks for which the software manufacturer
has not made provisions.

Software Let’s take a more intensive look at interrupt
software. It’s generally aimed at handling DEVICE halts, especially those
produced by CHANNEL CONTROLLERS.

o Its first task is to get information remaining in the REGISTERS
from the interrupted program out of the way in a safe place and
prevent itself from being interrupted.

« The second phase is diagnostic: What was the reason that the
program was interrupted ?

« The third phase is selective: What is to be applied to this
difficulty ?

One consideration in d interrupt software is the diversity of
DEVICEs to be handled and the multiplicity of difficulties which can arise
for each DEVICE. Such a large number of permutations results in an
impossibly extensive software system. One way to trim this system is to
supply service routines only for those DEVICEs included in the installation.
A further way is to provide only for those exceptions which might reason-
ably arise in the installation activity. Finally, we might expect that a large
user with many system programmers might wish to tailor routines to his
own needs.

‘The logical result of the preceding software description is a requirement
for modularity. Barly interrupt schemes did not provide such modularity,
with consequent cumbersomeness—the user would often alter the system
to suit his needs with unpredictable results.

With regard to alterability, modularity provides the alternative of
removing one subroutine and replacing it according to the user’s wishes.

3 . 3 MULTIPLE INTERRUPTS

Problem For simplicity let us examine what to do when
exactly two interrupts arrive sequentially at two CHANNEL CONTROLLERS in
a system consisting of several ccs alphabetically labeled. Imagine a trap
(another name for interrupt, briefer and more appealing) occurring on
channel B. This causes us to enter the frap routine to service the channel
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B trap. Suppose further that, while doing this, a trap occurs on channel E.
What implementation is invoked as the first step in servicing any given
interrupt?

There are several answers:

1. Completely ignore further traps.
2. Record further traps, but do not let them “happen.”
3. Permit traps and make facility for traps within traps.

The first solution, ignore traps, is, of course, mostly unacceptable.
Here when channel E traps during the processing of the channel B trap, it
is ignored—nobody knows that channel E is done. The only way thereafter
to find out that channel E is done is to inquire of it. Then after every trap,
to be sure that nothing pending is left unserviced, a series of channel
inquiries must be initiated—rather unappealing.

HIONDI

The solution which permits traps within traps requires a system of
priorities and a means for going back and forth among the trap routines.
Although seemingly complicated, this scheme has actually been imple-
mented on the Sigma 7 and the GE 4020 computers. We eschew an
explanation of this approach in favor of the more popular one below.

LINIdd

We next describe techniques for implementing the second scheme of
recording traps but inhibiting them from interrupting.

a@yooad

Suspend A routine is working on the trap for channel
B. The first steps of this routine place “Do Not Disturb” signs on all
doors. A single command, SUS, when given by the software, suspends or
causes all (or selected) source lines to remain energized, but none can
interrupt the currently working trap subroutine. Hence the trap subroutine
can go to completion without interruption from other traps. After
completion, it remains to reinstate (restore) the original (unsuspended)
status. It is then possible to accept one of the waiting interrupts which has
occurred during the trap processing.

Restore When trap software has completed its task,
there should be a way to restore the status of the computer before the trap
occurred. A final set of operations places all the REGISTERs and INDICA-
TORSs in the condition in which they existed before the trap occurred then
the restore operation takes “Do Not Disturb” signs off the doors—traps
are restored. But a delay should be inserted. This delay permits us to jump
back to the original program without interference. We want the new
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interrupt to occur in the original program and not in the trap servicing
routine. Hence, restore has a built-in delay to give us this assurance.

After return to the interrupted program is made, whatever trap is
waiting takes over and initiates another interrupt. Immediately this trap
is given service; no step of the old program is actually performed. The new
trap routine stores the location of the interrupted program as the new trap
routine is initiated.

Several traps While we were servicing the trap on channel
B, a trap on channel E arrived but was suspended. Suppose another trap
arrives, this one from, say, channel 4. What happens now when the
interrupted program is restored ?

One alternative is first come, first served. Then we would have to take
the trap on channel E before channel 4. But this would require much
accounting, which would be messy to implement in hardware.

The simplest and even the most effective solution is to service the
waiting traps in a fixed order, from lowest to highest priority, regardless of
the arrival order of these traps. Examine the case where greatest priority
goes to a channel with the letter which ranks first, alphabetically. Here,
although A trapped after E, both were suspended. When traps are restored,
channel A is serviced first because “A’’ comes before “E.”

Some systems are designed to handle this problem more efficiently by
permitting traps within traps. A priority scheme again handles the most
important traps first, but recognizes the traps of lower priority. We
examine the program status word technique for implementing this in the
next chapter.

3 .4 OVERVIEW OF ONE IMPLEMENTATION

Second The function of the trap hardware in a
generation typical second generation system, the IBM
hardware 7090, is illustrated in Fig. 3.4.1. Two CELLS

in MEMORY are reserved for each CHANNEL CONTROLLER or other class of
interrupt source. This pair of CELLs participates in every trap occurring
on the channel with which they are associated. In this sense, they are
reserved ; they should not be used by the programmer. Actually, he could
refer to them if he programs at the machine language level. Naturally,
this would mess things up for the trap software. If he tries to reference
them in absolute assembly language, protection is often provided by the
assembler. Protection is not necessary during symbolic assembly since
programs are safely relocated by the loader.
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MEMORY
CELLS

O The first CELL of each pair receives the present
setting of the INSTRUCTION COUNTER as well
as DEVICE indications.

There is one pair
of cells for each

interrupt source. The second CELL of each pair contains a jump

- (UCJ) to the interrupt service subroutine.

AN

Fig. 3.4.1 CELLS in MEMORY participate in hardware function of the
interrupt.

The first CeLL of each pair will hold the contents of the INSTRUCTION
COUNTER after a trap has occurred. There is room in the CELL for other
information. The number of the DEVICE causing the interrupt is also
stored there.

The second CELL of the pair holds the starting location of the trap
routine dedicated to this channel.

When a trap occurs, these actions take place:

1. The contents of the INSTRUCTION COUNTER are placed in half of the
first CELL—this is the return point to the old program.

2. The number of the DEVICE causing the interrupt is stored in the other
half of the CELL.

3. CONTROL uses the contents of the second CELL as the location for
the next command which it then fetches.

Software A block diagram of interrupt software
functions is presented in Fig. 3.4.2.

Before anything else, a SUS command suspends all other traps. Recall
that this means that other traps remain active; they are recorded when they
occur but are not permitted to interfere. In some cases, it might not be
desirable to suspend all traps. For instance, we might not suspend the
CONSOLE entry trap—this permits the operator to enter information at the

dNddsSns
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Fig. 3.4.2 Block diagram of interrupt software functions.

CONSOLE for the computer during trap servicing. In this way, a trap could
ask questions of the operator. After answers are received, trap servicing
continues followed by eventual return to the problem program.

Second generation systems often provide many entry points for
servicing many channels. Part of this servicing is common for all channels.

OVId
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To enable routines to keep track of the original channel causing the trap,
a flag is set.

The machine still has information being processed by the old program
in some of its REGISTERs. The save routine puts this information away in
known locations of storage. This is one of the common routines mentioned
earlier.

Now that the whole machine is available to service the trap, it is ready
to investigate the cause of the trap. We process the flag, checking this
against tables to determine the type of DEVICE. This, in turn, takes us to
one of a set of DEVICE testing routines. Such routines inquire of the
DEVICE how that DEVICE has terminated its operation and its present
condition. This singles out the service routine unique to the DEVICE type
and condition.

The service required is dependent upon the conditions tested above.
These are discussed in detail in my Computer Software.

This routine serves the opposite purpose from the sqve routine:
it returns the computer to its original condition.

We now re-enable the traps, recognizing that there is a short delay
before new traps may intervene.

We have enough time to get back to the original program before the
traps react.

3 . 5 THE FOREMAN

Who is he? The FOREM AN is my name for the software
routine which carries out the clerical tasks associated with input and
output. This routine is known by other names for systems provided by
other manufacturers: Input-Output Executor (JO&X); physical JOCS;
trap supervisor. I think that none of these appellations describes the tasks
done by this routine as well as FOREMAN.

The reader might have some acquaintance with the input/output
control system (JOCS). It generally facilitates 10 commands to such an
extent that a simple call is sufficient to initiate a 500 or 1000 step routine.
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JOCS would be nearly impossible without a FOREMAN as a mediator
between the DEvVICEs and the larger overall system. In some systems,
JOCS is viewed as consisting of two parts: logical JOCS and physical JOCS.
The latter is what I refer to as the FOREM AN, and the former is my true
JOCS.

Below are listed many of the tasks which the FOREM AN carries out:
» He gives all the actual 10 commands to the CONTROLLERs. A
macrocommand (or, more properly, a call) to JOCS is interpreted
by it and converted into a series of commands which are delegated
to the FOREMAN. He, in turn, converts them into machine
language as they arrive, and they are provided to the CHANNEL.

» He receives all the traps. Each hardware-initiated trap is routed
to its own initial subroutine. Eventually, however, control is
passed to the FOREMAN .

» He posts results of 10 operations in areas available to the other
software.

» He may have to convert DEVICE information into a form readable
by the other software such as JOCS or SYSGEAN.,

« He keeps track of DEVICE activity.

o He provides error-recovery machinery. When a parity error, for
instance, is detected by hardware, it is reported to the
FOREMAN, who, in the case of magnetic tape, supervises
multiple reads of the faulty block, hopefully being able to reread
it eventually. The user is entirely unaware of the error. It is,
however, recorded for the use of the installation supervisor for
maintenance purposes.

» Hence, another task is recording and diagnosis of error activity.

o Conversion from medium language to computer language may
be done in the FOREAAN.

 Error and exception messages originate in the FOREMAN.

In a complete system, the FOREMAN is indispensable. In a partial
system, the FOREM AN is still essential; we have to have some method
of handling traps and printouts. The user might eliminate JOCS because

of the space it occupies, but rarely would a programmer wish to eliminate
the FOREANAN .
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Interrelation with The sketch in Fig. 3.5.1 shows the relation of

other software the FOREMAN to other software. Here,
CAB represents the channel activity block. There is one such area in
MEMORY for posting the activity of each channel. It is available for
inspection by the other portions of the system software for which it is a
communications “channel.”

The FOREMAN is responsible for initiating a DEVICE by commufni-
cating with the CHANNEL CONTROLLER to which the DEVICE is connected.
He must give machine language commands when he is in control of the
computer. When DEVICE operation is complete, the CHANNEL CONTROLLER
interrupts the computer. When the FOREAMAN gets control again, he
handles the trap.

The FOREMAN handles command delegation to the DEVICEs by
talking to the CHANNEL CONTROLLER ; he handles DEVICE requests by talking
to the initiating software: JOCS or SYSTGEM.

SYSTGEAM manages the rest of the software under the directions that it

/ / /

CHANNEL CHANNEL 1] CHAN.{EL
] CONTROL 4| CONTROL ¢ o o CONTROL
H 1 H
4 , 4 4
CHANNEL CHANNEL CHANNEL
activity activity ° activity
block - block block
~ [ ]
~
N R
\‘ ®
Ottrer
Soflusar W FOREMAN

Fig. 3.5.1 Interrelation of FOREMAN with other software.
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receives from the user in the form of control cards or control messages.
We may speak to SYSTEM directly through the CONSOLE, but it is best to
speak with it through a CONTROL DEVICE.

Discontinue and Two routines which have frequent conversa-
initiate tion with the FOREMAN are called
Discontinue and Initiate, which are now examined.

Discontinue receives the trap analysis furnished by Grap, a part of
FOREMAN . Trap does the preliminary processing required to absorb
descriptive information about the completion of the task delegated to the
10 DEVICE, performing any translation required before posting the informa-
tion. Discontinue examines the results of Grap to determine what should
be done next. If necessary, Discontinue posts information; otherwise, it
delegates another task to 10. In other words, Discontinue determines what

is going to happen next and provides communication between the
FOREMAN and other software. '

Jnitiate takes over when the FOREMAN receives an 10 request; it
analyzes the request and determines that an 10 command should be given.
Jnitiate creates the machine language command for that DEVICE and
furnishes it to the FOREMAN who actually issues the command to the
CHANNEL CONTROLLER.

Discontinue and JInitiate are known by other names in some manufac-
turer’s software. For instance, the IBM 7090 package designates these as
Select — and Select +. The two routines should be available in JOCS;
however, JOCS is not a compulsory item. When it is not provided, the
FOREMAN must have available Discontinue and Jnitiate in one of these
forms:

o as part of the object program;
» inanother portion of the software—possibly provided by the user;
e in the FOREMAN,

Normal trap The most important use of the FOREMAN

events is for servicing traps; this activity is presented
in Fig. 3.5.2 and is discussed below.

After the small source routine has been performed, control passes to
the routines contained in the FOREAMNAN. The first routine, Grap, analyzes
the cause of the interrupts. Errors may have occurred which require
further handling by Grap. Normally, however, it completes its analysis and
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Fig. 3.5.2 Normal chain of routines used in FOREMNAN in a trap
activity. Jnitiate and Disconfinue may be in JOCS.

posting activities and turns over control to Discontinue. Discontinue makes
a further analysis of the interrupt with respect to the program in progress.
Some activities may require special handling, such as the occurrence of
end of file while reading. This is not an error; it is a major exception, and
JOCS is immediately informed to take further action.

When there are no exceptions, the Dispatcher is called upon to investi-
gate what new tasks are waiting for service on this channel. The
Dispatcher assigns a new task to the trapped channel. Before returning to
the program, we want to activate either the trapped DEVICE or some other
DEVICE on the trapped channel so that useful 10 work can be done while the
main program functions.

The Dispatcher turns over control to Freinitiate in the FOREMAN
which checks the request and, if it is valid, calls Jnitiate to construct the
command.

Jnitiate fabricates the next command for the trapped channel, presenting
it to the FOREMAN. Fostinitiate in the FOREMAN gives the command
to the 10 DEVICE via the CHANNEL CONTROLLER. If the FOREMAN has no
other chores to do, it returns control to the program.

3 .6 HARDWARE FOR INTERRUPT

Problems We discuss here some of the problems
encountered in implementing an interrupt system and how they were
solved in second generation systems. The next chapter discussed third
generation approaches using the program status word.

First, when do we interrupt? The interrupt should be recorded
immediately; however, it cannot become effective until a convenient
breakoff point is reached. If operand acquisition is necessary, the MEMORY
is used and the command finished before the trap takes effect. In newer
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systems, commands can be interrupted during execution. But we do not
discuss this technique here.

What if a fetch cycle is in progress and CONTROL is getting its next
command? In some systems, we can interrupt now without fouling
things up.

As for other problems, these are itemized directly below and then
discussed.

How is the trap recorded ?

How is the place in MEMORY for storing information obtained ?
How is the new subroutine initiated ?

How is suspend applied ?

How is restore done?

S W=

Recording A single FLIPFLOP is sufficient to record the
presence of an interrupt regardless of the channel on which it occurs. As
shown in Fig. 3.6.1, all sources of interrupt signals can be entered into one
large OR. This prevails regardless of whether the source is a CHANNEL
CONTROLLER, PROCESSOR, CONTROL, Or MEMORY, or something externai.
Then any source signal sets FLIPFLOP FI which is examined only by CONTROL
and only after a command has completed execution. Right after the

INSTRUCTION COUNTER is tallied, we would like to jump to the interrupt
subroutine.

Cutting out Before we leave the main program, the
contents of the INSTRUCTION COUNTER should go to the interrupt location.
The next command is obtained from the CELL just affer the interrupt
location. Let’s see one way that this might be done.

The interrupt logic takes over just after INSTRUCTION COUNTER tally.
The contents of the INSTRUCTION COUNTER are sent to the MEMORY DATA
REGISTER. Also, interrupt information from the CHANNEL CONTROLLER Or
other source is entered into the MDR. The interrupt location obtained as
described below is placed in both the MAR and the IC.

Memorize is furnished to the MEMORY. From here on, this is handled as
though it were a memorize command. At the end of the memorize cycle,
the 1C is advanced to point to the CELL after the interrupt location. We
fetch the next command from that CELL which should contain an un-
conditional jump to the trap subroutine.

Interrupt source There is one line for each source, the same
line used to record the interrupt. It gates the source identification. The
signal is applied to an ENCODER. There is one ENCODER for each possible
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source. Itisactivated only when there is a signal on that source line. When
activated, it produces the code for the interrupt location corresponding to
that source. Only one source signal appears, the one with highest priority.

The ENCODER outputs are passed to a multiple input OR. Since only one
ENCODER is active, the output of this OR is the identification of the interrupt
location; it is passed to the MAR and the 1c.

Cause Each source, besides having interrupt lines,

identification has other lines which tell the reason for the
interrupt. These pass through gating arrangements similar to the identifi-
cation ENCODERs just described. The information will eventually be fed
to the MDR as shown in Fig. 3.6.1.

Sequencing FLIPFLOP FI indicates that an interrupt
procedure is ready to start or is in progress. It turns off normal sequencing
in CONTROL and causes CONTROL to enter interrupt sequencing.

The interrupt sequence consists of the following steps:

Load the MAR, MDR, IC as above.

Memorize.

Tally the 1c.

Continue to the next cycle.

Initiate a one cycle delay after which FLIPFLOP FI resets.

M e

Suspend/restore One suspend FLIPFLOP is provided for each
source. It inhibits the transmission of information on the source trap
lines. Thus, if a SUSPEND FF is set, a trap from that source cannot cause an
interrupt sequence to take place. The source in most cases will maintain
the signal interrupt even though SUSPEND FF is set.

A command which we call SUS sets the SUSPEND FFs which it designates.
In the operand address position of rhis command is a series of zeros and
ones which is a suspend mask. Where there are ones in the mask, the
corresponding sources are inhibited; when there are zeros in the mask, the
corresponding sources are enabled.

SUS appears early in the trap servicing sequence—almost immediately.
This way other traps are prevented from intervening.

SUS serves also as a restore command. If the mask contains nothing
but zeros, all traps on all channels are restored.

It is important that SUS is delayed for one execution cycle. The need
for this when suspending is apparent. When using SUS for restoring, it is
necessary to have a chance to return to the problem program before the
suspended traps call in.
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Once back to the problem program, we might find several traps
pending. The order of acceptance of these traps is generally on a fixed
priority basis: regardless of arrival order, the highest priority trap is
accepted first. The others are suspended by the software when it takes over.

3 . 7 SOFTWARE-HARDWARE INTEGRATION
FOR TRAP PROCESSING

Immediate role Grap takes us immediately to the second CELL

of software of the interrupt location pair which contains
a jump to a distinctive subroutine for processing this source. If this
UC] were lacking, we might take commands from interrupt locations,
probably clobbering the whole system.

The first command in the service subroutine is SUS. This masks out
other sources from interrupting, but it may not mask out all of them.
Further, the subroutine sets a FLAG CELL to store information from the
interrupt location about the trap source. The FLAG CELL serves two
functions: it provides the common subroutine with a means for returning
to the problem program; it is referenced when making DEVICE tests
appropriate to the source. Some saving of information may be required
within the “source” subroutine to clear a REGISTER used in preparing the
flag, for instance.

Common The first task of the command subroutine is

subroutine to save REGISTERs and INDICATORS. Next,
through a source-specific subroutine, it makes tests to determine the
DEVICE causing the trap. Then, through device-specific subroutines, tests
determine the cause of the interrupt. Finally, a service routine is chosen
and entered according to the DEVICE and cause of the trap. Other parts of
the FOREM AN are called in as required.

Interrupt After interrupt service, we wish to return to

completion the problem program; we use the flag set up
in an earlier step with the INSTRUCTION COUNTER information stored
in the interrupt location. We return to the original program with a jump,
indirectly through the interrupt location or to another jump found at the
interrupt location.

But we should not do this immediately. First we reinstall the computer
to its former condition; we wunsave. The FOREMAN knows where
REGISTERs and INDICATORs were stored. He takes the contents of these
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locations and returns them to the REGISTERs and INDICATORs. Now we are
ready to restore the status of the computer by issuing SUS. Since this
command sets the interrupt mask it can also be used to restore the mask.
Again this gives us just one cycle respite in which we make the indirect
jump to the problem program for SUS.

PROBLEMS

3.1 Why is interrupt necessary? How does it differ from cycle stealing?
3.2 What are interrupt causes?

3.3 When and how is an interrupt initiated ?

3.4 What is the relation of interrupt to software?

3.5 How are several interrupts handled?

3.6 List the functions FOREMAN and JOCS to clearly distinguish between

ther.

3.7 What are suspend and restore and why are they needed ?
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360
INTERRUPTS
4. 1 THE PROGRAM STATUS WORD
What is it? The program status word is so very important

because it is an integral part of IBM System 360. Further, this concept
has been adopted by both RCA and UNIVAC for their series of computers
which are almost identical in command structure to their IBM counterpart.

Purpose The program status word (or simply PSW)
holds all information pertinent to the program presently in control. It is
automatically stored when control is changed to another program. The
program status word for the program in control is stored in the psw
REGISTER (PSWR). To change control to another program, we merely swap
PSW’s. This is under hardware supervision; it is a result of an interrupt.

The interrupt causes an interchange of PSW’s—but when is this done ?
As with all interrupts, the command being executed is permitted to
continue to completion. After execution, the next fetch cycle is inhibited.
We withdraw a new PSW from a location automatically determined, and
we place the old PSW in another (predetermined) location to save it.

The new PSW, placed in the PSWR, governs the interrupt service
routine which is immediately on its own. Generally, this routine saves
the contents of REGISTERs which it will be using before it begins its job; it
will unsave these REGISTERs when it completes the job.

When the interrupt service is finished, control returns to the problem
program by placing ths problem PSW in the PSw REGISTER. At this point,

89
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the problem program does not know that it was interrupted and continues
as though nothing had happened.

PSW contents We mention here some of the items contained
in the PSW without going into detail.

The INSTRUCTION COUNTER, which indicates the location of the next
command to be executed, is in the PSW. After an interrupt is noted, the
command continues to completion but does not use the INSTRUCTION
COUNTER in the PSW now in the PSWR.

Inhibit masks are contained in the PSW. There are several masks for
different kinds of interrupts. But we could look at them as a single mask
which allows or disallows given conditions to cause interruption. The
problem program generally permits a wide range of interrupts; the
software restricts interrupts which may occur while it is in control;
different pieces of software allow many or few kinds of interrupts, de-
pending on the nature of the piece of software.

Later, we describe how the protect key incorporated in the PSW can
protect some areas of MEMORY from use or abuse by a problem program.

Mode describes the extensiveness of the command repertoire available
to the program in control.

The source of the interrupt is also stored in a portion of the PSW as
it’s being put away. This area can also be used to hold information
regarding the condition of the program in progress.

Two bits in the PSW are devoted to the condition code (CC), information
about what has happened during the command just executed. For
instance, in comparison operations it indicates the outcome as /ess,
greater, or equal; for arithmetic, it may indicate a positive, negative, or
zero result. The program manual describes condition code settings after
command completion for those commands which alter the CC (not all do).

Mode Several alternative modes are available
according to the settings of the PSW mode bits. The mode determines the
scope of commands available to the program. All commands are generally
available to SYSTEM. Problem programs have a limited range. For
instance, they are not permitted to play around with the PSW’s. They are
not even permitted to give 10 commands; for 10 it must resort to a program-
initiated interrupt such as the SUC described later.

Keeping harmful commands away from problem programs assures the
safety of both software and other problem programs. In uniprogramming,
software could be clobbered by a problem program if the command
repertoire were not restricted. In multiprogramming, problem programs
are protected from each other by the same feature. The feature can be
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extended if several levels are provided so that subroutines have more or
less autonomy.

Sources of There are five alternatives for classes of
interrupts interrupt sources for IBM System 360:

1. External—from the console or communication lines—undelegated.

2. Supervisor call—the program itself requests the interrupt.

3. Program—error arises in the command or incorrect specification of
data.

4. Machine—errors arising from parity checks or other detected
machine failures.

5. IO—CHANNEL CONTROL interruptions.

For each class of interrupts, there are two reserved locations in
MEMORY. The first is the old PSW location, where the PSW from the
current program is stored. The second, the new PSW location, follows
directly in MEMORY and contains the PSW to be placed into the Psw
REGISTER to initiate the interrupt servicing program.

The source of the interrupt signals the class to which it belongs. This
determines the two locations to be used for the next steps which are:

o The cause of the interrupt is placed in the PSWR.

e The PSW now in the PSW REGISTER is stored in the old PSW
location.

e The PSW is withdrawn from the new PSW location and stored in
the PSW REGISTER.

This method for implementing interrupts may reduce the amount of
hardware required.

Miscellaneous Other information provided in the PSW
includes an indication of the character code by which the 10 DEVICEs are
addressed. It also includes wait/run status. Another piece of information
in the PSW is the instruction length of the last executed instruction.

Source of PSW’s We have been tossing PSW’s around as though
they came from out of the blue. Actually, the source of all PSW’s is in the
software.

First note that PSW’s for all interrupts are stored at the new PSW
location. They are loaded into those locations when the software is
initiated at an installation. They can be changed when the software itself
is altered. Notice also that the only convenient way to get to the software
1s through interrupts, generally.

Then how do programs get their PSW’s? When the program is
terminated, control passes to SYSTEA through a supervisor call placed
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by the COMPILER in the problem program. At this point, SYSTBEM
determines the next job to be done and then turns control over to the
loader (EOAD). MEMORY areas to be used by the program are assigned by
SYSTEM, which also assigns a protect key and sets up the key in these
areas for the use of the problem program. It then sets up a program status
word which it relays to £OAD.

When £OAD takes over, it brings in the new program and turns
control over to that new program by placing the assigned program status
word in the PSW REGISTER.

4 . 2 INTERRUPT AGAIN

Interrupt a la The discussion of interrupt is oriented
mode towards the IBM System 360. There are two
modes of operation: problem and supervisor. For supervisor mode, there
is no restriction on the commands which may be executed. In problem
mode, certain commands are disallowed. When an interrupt occurs, the

software which takes over is obviously in a supervisory mode.

Technique Figure 4.2.1 illustrates the IBM System 360
hardware technique for handling interrupts. Hardware causes one of five
software packages to take over to service the interrupt. Each of the
software packages consists of at least four kinds of routines:

1. Setup saves information from REGISTERs which may be used in later
routines.

2. Gest determines the DEVICE and cause involved and assigns further
operations to Service.

3. Service is tailored to the cause and DEVICE interrupting, and it
performs activities geared to posting, servicing, and removing the
Interrupt cause.

4. Return contains tests to see if further servicing is to be done by the
software. If so, the proper routine is called upon, and service
continues. Should service be complete, Return checks if another
piece of software must be called in (such as SYSTEAM). If not, it is
also responsible for unsaving and for making a return to the
problem program.

Hardware a la As usual, a trap does not initiate action until

mode the command in progress has been executed.
In Fig. 4.2.2, the steps taken thereafter are according to the circled numbers
in that figure.
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Fig. 4.2.1 A cause-specific routine is initiated by a cause-specific
trap.

After the trap arrives and the command in progress is completed, the
interrupt source determines where the word in the Psw REGISTER will be
stored:

1.

2.
. CONTROL goes to Trap for the source class. The PSWR now permits

The contents of the PSW REGISTER are placed in the source-specific
old Psw CELL.
The contents of the new pSw CELL are placed in the PSW REGISTER.

activity to proceed in the supervisory mode. The next command
placed in the INSTRUCTION REGISTER, therefore, is from Setup.
The interrupt routines proceed.
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Fig. 4.2.2 Hardware-software interaction during a trap.

5. The last command executed in supervisory mode is the last command

in Return,
LOAD PSW, cause 4.2.1)

6. This command (performed only in supervisor mode) places the
contents of the old Psw CELL associated with the trap source in the
PSWR.

7. The next command to be executed is the one in the problem
program just following the occurrence of the trap. Since the
problem PSW was restored from the old psw CELL for the source,
the problem mode pertains to commands which occur thereafter.

The foregoing discussion applies when no other interrupts are pending.
An interrupt pending on return to the problem will not take effect until the
problem PSW is returned. At that moment, fetch will be inhibited; no
problem command ever gets into the INSTRUCTION REGISTER. Instead,

another trap is initiated 9y the exchange of PSW’s, etc.

I0 For 10 interrupts, the source is one of four
CHANNEL CONTROLLERs (four is the maximum present in System 360).
Regardless of which CHANNEL is responsible, all interrupts of this class go
to the same service routine. The identity of the CHANNEL and the DEVICE
causing the trap is stored in the interrupt code of the old PSW. Generally,
the new PSW masks all interrupts. Since alteration of PSW’s is under the
control of the software, a service routine may unmask interrupts if it

desires.
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CONTROL Traps arising in CONTROL are called program
subsystem interrupts. Here are examples:

1. Instruction—an opcode is not recognized by the machine because
(a) it is an illegal combination of bits, or
(b) this command is absent from the repertoire for this model of
the system.
2. Mode—a command permissible only in supervisory mode is given
in the problem mode.
3. Command sequence—the only example of this for Spstem 360 is that
an execute command cannot address another execute command.
4. Address—an area of MEMORY is addressed which lies outside the
bounds of the MEMORY for this configuration.
5. Specification—many kinds of errors arise in this category such as
(a) byte boundary errors,
(b) improper REGISTER specification,
(c) improperly specified data, and so forth.
6. Data—the data to be manipulated by the command are not in the
proper form.
7. Arithmetic—errors include underflow, overflow, etc.
8. MEMORY protect—see below.

The interrupt code in the old PSW ascribes the cause of a control
interrupt to one of the factors above.

MEMORY MEMORY is divided into many recognizable

protection segments (4096 bytes for System 360). The
number of segments depends upon the size of the MEMORY provided in the
installation. Each segment has a protect key (or, more unequivocally, I call
it a protect lock) associated with it consisting of exactly four bits. There is
a SEGMENT REGISTER for each segment which holds its protect lock. The
segment is protected according to the setting of this lock. A SEGMENT
REGISTER can be set only by SYSTEAL; it cannot be affected by the program.

In the PSW for each program, there is also a four bit (properly named)
protect key. Whenever MEMORY is accessed by a program, the lock in the
MEMORY SEGMENT REGISTER is checked against the key in the Pswr. If the
two are identical, the program may “open’ this segment—may use words
in this segment; otherwise, a protection interrupt is invoked.

Several segments may be identified with the same lock to hold large
programs which need a lot of MEMORY space. Thus only one key is needed
by any program, even a large one.

SYSTEAM must be able to access all of MEMORY. If SYSTBEM became
locked out by an incorrect MEMORY Jock, we would be in trouble! A
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program containing zeros in the key of its PSW has permission to access
any MEMORY area. Thus, SYSGEA has a pass key: all MEMORY is accessible
to it.

Similarly, there may be unprotected or unlocked work areas in MEMORY
unassigned to any program. A program is free to use this area, noting, of
course, the risk of having this area altered by other programs.

External External interrupts are, by their nature,
spontaneous. That is, DEVICEs are not assigned a task; they interrupt
whenever the need arises.

Examples clarify this:

1. The TIMER addresses a fixed CELL in MEMORY. This TIMER is
synchronized to the line frequency. Every sixteen milliseconds or so,
the TIMER updates its assigned CELL in MEMORY by cycle stealing.
This ceLL is monitored by the interrupt hardware. When the TIMER
cELL is decremented to zero, an interrupt occurs. Control is turned
over to &xternal after the source is posted in the old PSW as being
due to the TIMER interrupt.

2. The operator may interrupt the computer via the INTERRUPT
CONSOLE BUTTON. In so doing, he initiates &xternal. The old PSW
records the cause of interrupt as the operator.

3. Six other external interrupt lines are provided.

4.3 THE SUPERVISOR CALL

What is it? The supervisor call has the mnemonic SVC in
assembly language. It is a programmable interrupt. The programmer uses
the supervisor call to request software intervention. The program asks
that it be interrupted! SVC is treated like any other trap.

One would expect that there would be few occasions where the
programmer wants to talk to the software. Ostensibly, this is true. How-
ever, when he writes 10 requests (e.g., 10 macros), which seem to him like
ordinary commands, they are reinterpreted by the assembler as communi-
cation with the software. To elucidate this, consider the 10 request, OPEN.
The programmer is given a number of mnemonics like this which elicit
10 operations. However, none of them is translated directly into single
machine language commands. Instead, each is converted into either a
BAL (branch and link) or an SVC. A code which indicates the function to
be performed is inserted by the assembler in the address portion of the
SVC command. SVC makes the computer trap and the code is transmitted
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to SYSTEAL. It turns over control to the proper software routine (OPEN
here) by interpreting the code associated with the SVC.

In Basic Assembly Language, BAL, there are three fields in an
assembler-defined macro. The first indicates the call; the second indicates
the type of call; the third gives the details of where information pertaining
to this call type is found.

Other examples No 10 command can be requested directly by
the programmer—all are re-interpreted by the assembler as SVC or BAL.

There are other reasons for which the programmer writes SVC to the
assembler. Some of these are discussed below.

When the programmer wants a message printed out, such as in an
exception routine, he writes a macro for this. The macro name and its
fields indicate a message request and the nature of the message. For
instance, PPROUT might be the name of the message which, when printed
out, says “Printer out of paper.”

The macro is translated by the assembler which inserts in the program
stream the SVC command code. When encountered, this causes a trap.
SYSTEAM picks it up and determines that it should be handled by
FOREMAN. The latter interprets the code and goes to the selected
service routine. In the example, this routine goes to an area which con-
tains the message and prints it out. The computer then enters a wait
condition since this program requires operator intervention. Control is
returned to the computer when the operator indicates he has performed
the function requested of him. When SYSTEA sees that the job is done,
return is made to the problem program.

The end of job call EO] is used to communicate to SYSGEA that the
program has solved its problem. SYSTEA then selects the next job for
performance and passes control to LOAD. Control proceeds as in normal
software after STOP has been detected.

The use of EXIT for user-supplied software is explained in the next
section.

This call, FETCH, is used to get a subroutine from the library. After
trapping, SYSTGEAM recognizes the need for a subroutine, the name of
which is found in the third field. It turns over control to the library loader.
It loads up the SR name in the library directory and then gets the SR from
the library after space in core has been allocated by SYSTGEA for the SR.
When the subroutine is available, return is made to the user program.
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Action It should be clear that the action for SVC is
similar to that for any other trap. An exchange of PSW’s is performed.
This places SYSBEM in control. It analyzes the cause of the call and
delegates the task to whatever software is required. Control passes to this
piece of software. After this job is done, the supervisor itself gives the
command, LOAD PSW, and then returns control to the problem program.

4.4 TRAPS WITH
INSTALLATION-SUPPLIED SOFTWARE

In this section we discuss software supplied by the sophisticated user.
“User™ is the term which requires clarification.

There is a whole range of “users” from the job-shop user with a simple
program to the maker of very large program application like insurance or
bank accounting. The former has no truck with software; the latter must
include his own within his program. In between, there is the installation
system programmer who writes special software which is hidden from the
casual user.

In this section, “user” refers to anyone who has recourse to some
b
software design.

Need Third generation hardware and software are
provided with some software modularity: some pieces of the software may
be removed and replaced if you dare. Certainly the user should take
advantage of this. If new software is to reside within the main software
package, it must be placed there by the Cibrary 8bitor. The latter has access
to SYSTEM and may insert the package so that it operates in supervisor
mode. Such a package must be completely debugged before it is entered
into the system.

Installation-supplied software can provide for differences in:

» number and type of devices
device configuration
installation procedures
special services

In the last category, we find Gime and many other accounting routines
unique to a given installation. The installation needs these services to
account for computer usage. Initiation of such routines is trap-dependent.
The routines themselves may, however, reside in the software or in the
user’s program.
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Privileged software =~ An example of a user software-resident
routine is Jnitiate. Although generally incorporated in JOCS, the installa-
tion may create its own. Jnitiate fabricates a command for the device used
on the file presently addressed. Figure 4.4.1 shows how Jnitiate comes into
use. The steps are numbered below to correspond to the numbers in
circles in the figure.

As an example of its use, Jnitiate may be called in when an interrupt
occurs on a DEVICE specific to this Jnitiate. There are several Jnitiates
provided, one for each DEVICE type. However, the trapped DEVICE may not
necessarily be dispatched this time. We examine the case of an input file
when it is initially opened. Here, generally, Jnitiate is employed provided
the DEVICE and CHANNEL are free. Now look at the sequence.

1. The problem program is interrupted by SVC which requests
opening a file. This causes a trap to SYSTEA.

2, 3. SYSGEA recognizes that this trap should be serviced by JOCS
and turns control over to it. After performing file management
procedures which are necessary to open the file, JOCS delegates
command initiation to FORENAN.

4. FOREMAN checks the various activity blocks associated with
the CHANNEL, DEVICE, and file to see whether it is possible to give
a command to the associated DEVICE. It may either
(a) place the request in a queue and quit, or
(b) ask Jnitiate to fabricate a command to be given to the
DEVICE. Jnitiate fabricates the required subcommands and
returns the control to FOREMAN’.
5. For step 4(b) Jnitiate fabricates the subcommands and returns
control to FOREMAN.
6. FOREMAN gives the SIO command which uses the newly
fabricated subcommands and returns the control to JOCS.
7. JOCS posts information about the command just given on the
activity blocks; then it returns control to SYSGEAC.
8. 8YSTBEM returns control to the problem program.

Program- Sometimes it is beneficial to incorporate a
incorporated service routine into the user’s program. Yet
routines it is desirable to have this routine triggered off

by a trap of some sort. Some mechanism should then permit return to the
problem program after the routine has been employed.

An example of this in the case of a TIMER routine is presented in Fig.
4.4.1. The lines are numbered within squares to correspond to the steps
below which we use to explain the diagram.
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Fig. 4.4.1 Privileged installation-supplied software (numbered
circles) and unprivileged user software (numbered
squares).
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TRAPS WITH INSTALLATION-SUPPLIED SOFTWARE

Let us first examine the purpose of the user’s routine, Gime. It is to be
brought into play specifically when an external trap is caused by a TIMER
interrupt. The user has previously asked SYSGEM to set up the TIMER
which runs for a fixed length of time and then traps. At this point, the user
wants to perform the functions incorporated into his routine, Gime. Then
he wishes to return to his own program at the point where he was inter-
rupted. The procedure outlined below permits him to do this.

1.

6, 7.

In the figure, we see that a TIMER trap occurs in the user’s program
between segments P, and P,. This takes us to the external trap
routine, 6 LGERN AL,

ELGERN AL notes that the interrupt was due the TIMER and turns
control over to the Gimer &xec.

. One job of the Gimer &xec is to put away the old PSW into a

MEMORY position which we call SAVPSW. Control of this is
indicated by the dashed line in the figure; the transfer is indicated
by the solid line.

The Gimer &xec now turns control over to Gime somewhere in the
user’s program. This is done with the command:

LPSW TIME (4.4.1)

to load the pswRr. This sets up the PSW in problem mode, which
includes a setting of the INSTRUCTION COUNTER referring to the
start of Gime.

. At the end of the subroutine Gime, we wish to return to the

beginning of the main program segment P;. To do this, we return
to SYSTGEAM by giving the supervisor call:

SVvC EXIT TIME (4.4.2)

SYSTEAM recognizes from EXIT that an exit to the user’s program
is required. The PSW for doing this was placed in SAVPSW.
SYSTEM may be aware of this; if not, it may ask ELTERN AL
to find the address, or it may get the address from a communi-
cation table.

SYSTEM makes a return to the segment P, using:

LPSW SAVPSW (4.4.3)

(Actually, the absolute address of SAVPSW may be installed in a
BASE REGISTER referenced by SYSTGEM for this return.)

Installation of A control message is needed to notify
user’s routine SYSTEM where Gime resides in the program.
One way is to have the loader talk to SYSGEA. It can do this only

101

F80d¥dNd

HONANOHIS



102

ANVININOD

SNLVIS

SYSTEM 360 INTERRUPTS Chap. 4

through the linkage editor. Hence control information for the SYSTEN
should be entered by control cards to LJN'J at linkage edit time.

LINK passes the information to LOADA who gives it to SYSTEM.
Finally, SYSGEM passes the location of Gime over to EXLTERN AL, also
furnishing a table position such as SAYPSW for ELGERN AL to use.

As far as the programmer is concerned, he contends only with £IN'F

and simply supplies a couple of control cards which are the communication
link.

4.5 MACHINE LEVEL IO

10 commands There are only four 10 commands, SIO,
HIO, TIO, and TCH, which mean, respectively, Start 10, Halt 10, Test 10,
and Test CHannel. None of these commands can be given by the problem
program; all are given in the supervisor mode. The way the user gets to an
10 DEVICE is through the JOCS. The 10 macro is translated into a BAL to
the JOCS with operands designating the file to be accessed and processing
required for it. If the CHANNEL needed is busy, and it probably is, the
request is turned over to FOREMAN’. He queues it up. An 10 command
is not generally given, and a frap occurs. Then FOREMAN receives
the trap and gives an S1O referencing the proper subcommand list. More
about this in the next section.

An 10 command consists of three fields: an opcode for one of the four
commands designated above; the CHANNEL and DEVICE fields indicate the
CHANNEL and DEVICE to be used.

In dealing with 10, we recognize three levels:

1. The CHANNEL CONTROLLER reports directly to the CONTROL SuB-
SYSTEM.

2. The SUBCHANNEL reports to the CHANNEL CONTROLLER.

3. The DEVICE reports to the SUBCHANNEL.

Four statuses may prevail at any of these levels.

1. The level may be available.

2. The level may have an interrupt pending.
3. The level may be working.

4. The level may be nonoperative.

Thus a DEVICE, SUBCHANNEL, Oor CHANNEL ecach has one of these
statuses. An 10 task may be assigned only if the DEVICE, SUBCHANNEL, and
CHANNEL are all available.
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The purpose of SIO is to start the DEVICE on the CHANNEL specified in
the command. This is done only if the DEVICE, CHANNEL, and SUBCHANNEL
are available. The overall prevailing status is recorded in the condition
code of the PSW whether the command is accepted or rejected. If the
DEVICE cannot be started, there is a hierarchy of rules for disposing of the
command. These rules are complicated and would add little to this
presentation—the reader is referred to the IBM publication “Principles of
Operation.”

Other commands have been tailored to serve the software, especially
JOCS. The details are also quite complicated and so only the general
purpose of these commands is examined:

1. TIO—test 10—restores the status of some interrupt conditions and,
in general, helps process traps.

2. HIO—halt 10—halts the activity when certain conditions prevail.

3. TCH—test CHANNEL—reports the status of a CHANNEL and generally
does nothing else.

Channel address The channel address word, hereafter abbrevi-

word . ated CAW, is always found in the same
location; in System 360, this is location 72.

The CAW has two fields:

1. A protect key provides access to prescribed blocks of MEMORY.
2. An address points to the start of a subcommand list. This is a list of
channel control words discussed below.

All the subcommands being given to the addressed DEVICE are in a list.
The address of the start of this list is in the CAW. If the wrong CAW is at
the CAW location, then the DEVICE will do the wrong activities if the
CHANNEL can interpret the subcommands in the list at all. Therefore, it is
very important that the proper CAW be installed before SIO is given.
That is one reason why the user is kept away from SIO commands.
JOCS and FOREMNAN make many preparations and tests before SIO is
given.

The CAW is only a pointer to the subcommand list. The list of sub-
commands relative to a given 10 operation reflects the needs of JOCS in
reference to this latest macro.

Before SIO is given, JOCS and/or FOREMAN do these things:

Determine what tasks are required of the DEVICE after it is started.
Fabricate or have fabricated subcommands for each of these tasks.
Set up the subcommands in a list.

Insert the start of this subcommand list in the CAW.

Determine and insert the protect key in the CAW.

SNk Lb-
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Channel control The channel control word (hereafter CCW) is
word ~actually the subcommand. The CAW points

to a list of CCW’s.

After SIO is accepted by a CHANNEL CONTROLLER, it places the CAW in
the COMMAND REGISTER. Thereafter, the COMMAND REGISTER always points
to the next CCW.

Now the CHANNEL CONTROLLER goes to the address in the COMMAND
REGISTER to get the first CCW. This is placed in the SUBCOMMAND
REGISTER. We find in that REGISTER the four items described in Chapter 2:

1. A subcommand code specifying the subcommand to be executed.
2. A data address.

3. Flags.

4. A count.

Data chaining is described in Chapter 2. For instance, during read,
we may scatter portions of a block from a MAGNETIC TAPE DRIVE into
several different MEMORY areas. Similarly, during writing we can gather
data from several MEMORY areas, forming them into a single block on the
OUTPUT DEVICE.

A feature, new with System 360, is the ability to chain unrelated
subcommands. For instance, a scatter read might be followed by a block
skip operation which, in turn, is followed by another scatter read. These
subcommands will be performed in sequence provided that an exception
condition does not arise on any one of them. When an exception arises in
the middle of a subcommand sequence, that sequence is terminated and a
trap initiated. The status of the CHANNEL is posted in the channel status
word as the trap takes effect, as described next.

Channel status A location in MEMORY is reserved and assigned

word to store the channel status word (hereafter
CSW). Information about a task is posted here. This happens whenever
a SIO, TIO, or HIO is issued whether accepted or not. It is also done
whenever a trap occurs.

The information in the CSW is not altered until the next 10 command
is given or an interrupt occurs. The CSW contains the following:

1. The protect key. (The same one as in the CAW.)

2. The subcommand address. In general, this is the address of the next
CCW to be executed. When a CCW string has been fully executed,
it is the location of the last CCW which appears here.
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3.

A status field specifies subcommand terminated. As an example,
the CCW might terminate because of a unit check, a unit exception,
a proper end, etc. '

The present count. Thus, if the subcommand has requested that
twenty-two words be read from a block, but the end of file was
encountered on the eighth word, the count would read fourteen
(8 + 14 = 22).

4 . 6 I0 SOFTWARE

Translator We look first at the translator because the
programmer produces all 10 commands in source language. The pro-
grammer writes in a higher language such as FORTRAN, COBOL or

PL/1,

or assembly language. Today, most higher language translators go

immediately into machine language. Nevertheless our discussion is
directed to assembly language for three reasons.

1.

2.

3.

Although the original 10 statements may be in high level language,
they generally take an intermediate form equivalent to AL 10 macros.
It is easier to explain what happens to 10 at the assembly language
level.

The macro translates into AL equivalents.

System 360 10 macros are assembly-incorporated macros. The assembly
language programmer gives a macrocommand which the assembler
interprets. When a macro is encountered, a sequence of machine language
commands is substituted for it. Some of these commands are tailored to
fit the parameters contained in the macro call.

For the 360 JOCS, there are two kinds of macros:

1.

The file definition macro, DTF (for “define the file”) for DOS
and DCB (for “data control block™) for 98360, is a description of
a file which is supplied to JOCS at assembly time. The JOCS
described in Computer Software was able to accept file definitions
at run time. 98360 also provides this facility with the DD state-
ment. But both 98360 and DOS require file descriptions from
the programmer at assembly time using DTFs or DCBs. Many
kinds of DTFs permit different kinds of file processing as well as
different DEVICE sources.

Imperative macros such as OPEN and GET permit the programmer
to “demand” that actions he requires take place when he wants
them to.
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Most imperative commands given at a high level require a complete
software system and are directed to JOCS. Imperatives can be directed to
the FOREMAN in a truncated software system specified by the user,
usually only at the assembly language level. In 98360 this is done with the
macro EXCP.

To examine 10 properly, we should understand not only what 10
macros do but also what happens to them from the time they are written
to the time they are executed. We examine, therefore, what happens in the
software system.

Assembly program The reader should review the relation of the
assembler to other software, especially as presented in Fig. 4.6.1.

IO macros What happens to a program written in an
assembly language using DOS with 10 macros is shown in Fig. 4.6.1. At
the beginning of this program, DTF commands present a complete file
definition to the assembler. These are translated by the assembler into one
or more SVCs. These specify that an 10 operation is required, namely, an
initialization of the system. SYSTGEA or JOCS later places this informa-
tion into a communication area contained within SYSTEM..

10 imperatives written by the programmer are preserved by the
assembler, which converts them into a call sequence. It also places a
subroutine of some size at the end of the program which is linked to the
calling sequence.

LINI edits the program and £OADA loads the program together with
subroutines produced by the assembler into MEMORY. On the right of
Fig. 4.6.1, we see how the SVC causes parameters associated with the file
to be placed within the communication area. We also see how calls to
JOCS are handled similar to subroutine calls.

IO calls at run Figure 4.6.2 shows what happens at run time

time to a call such as OPEN whose machine
language equivalent appears in the program. When the call appears,
control turns over to the JOCS routine OFEN which was brought in with
the program. OFEN refers to the file, CHANNEL, and DEVICE blocks
associated with the file name. From the file block it determines what data
are to be posted and where. It transmits this information to FOREMAN
by performing an SVC call. Of course, SYSTEM mediates this call, but
it’s actually performed by the FOREMAN.

The FOREM AN examines the CHANNEL and DEVICE blocks to de-
termine if the command can be executed. If not, it may have to be posted
on queues for the CHANNEL and/or for the DEVICE. If an SIO is to be
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Fig. 4.6.2 Operation of the 10 call to open a file as shown in routine
MEMORY.

executed, FOREMAN turns control over to Jnitiate. Here a CAW is
fabricated and a sequence of CCW’s selected, and control returns to the
FOREMAN. The FOREM AN gives the SIO which causes the CHANNEL
to bring in data and place them in the proper area in MEMORY. After the
S10, control returns to OFEN from the FOREMAN via SYSGEM using
a load pswr command, LPSW. OFEN may have further processing to do,
after which it returns control to the main program by a simple return jump.

4 . 7 INTERRUPT HIERARCHY

Multiple interrupts  During the execution of a single instruction,
several interrupts may arise—any of the following five classes:

1. Machine
2. 10
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3. External
4. Program
5. Supervisor call

In what order are the interrupts treated? We have several choices:
» arrival order
e by priority
 nested according to one or the other schemes
» a combination

If we assign a processing order, what should it be? The order in which
the interrupts are listed above is our preference. Let us see why.

A machine interrupt occurs when a machine malfunction is detected.
We don’t want to do anything else until this trouble is corrected.

Neglected 10 operations decrease the efficiency of the computer:

» ignored data may be lost

o unassigned CHANNELS lie idle
It is important to get DEVICES serviced and CHANNELS reassigned as soon as
possible. External interrupts are similar in their urgency to 10 operations,
except that the information exchange rate for these DEVICEs is slower.
Hence they have a lower priority.

A program interrupt and supervisor call cannot both occur at the
same time. If a command is recognized as a supervisor call, then it cannot
cause a program interrupt, and vice versa. Either operation requires the
immediate attention of the computer: it is more important than the
program; it is less important than any other interrupt.

Alondd

The combined We now describe the reasoning in the hierarchy

hierarchy scheme scheme provided for System 360.

Machine interrupts are given top priority. When one arises, all other
interrupts are left hanging. If other interrupts are pending, nothing is done
with them. This gets the machine out of difficulty if possible or else
terminates service before irreparable damage is done.

Excluding machine traps, should other interrupts occur belonging to
one of four other classes, they are treated in order of reverse priority. But
when an interrupt PSW gains control, the remaining interrupts are allowed
to take effect: traps are permitted and the higher priority one then takes
place. This is best explained with reference to Fig. 4.7.1.

In the figure, it is assumed that all possible classes of interrupts except
machine become pending during the execution of the present command.
This means that three classes may be pending at the termination of the

AHHLO
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Old program Program or
status word supervisor External I0
CELLS in MEMORY

New program Program or
status word supervisor External 10
CELLS in MEMORY

i !
‘\ @ l e
\s

PSWR (hardware)

Fig. 4.7.1 How the hardware implements the interrupt hierarchy.

command. The activities proceed as indicated in solid lines and then in
dash-dotted lines. The sequence of operations is indicated in the figure
with circied numbers corresponding to the following steps:

L.

W

First the present program status word is removed from the PSWR
and placed in the location provided for the old program PSW (or
supervisor call) trap (depending on the cause of this trap)—
remember, only one or the other is permitted, not both.

The new program status word for the program (or supervisor call)
interrupt handling routine is installed in the pswr. However, it
permits either external or 10 interrupts.

Hence the pending external interrupt causes the contents of PSWR
to be stored away in the CELL provided for the old external PSW.
The new external PSW is placed in the PSWR. It permitsIo interrupts.
Hence a pending 10 frap causes the present contents of the PSWR
(the external interrupt PSW) to be stored in the old 10 PSW CELL.
The new 10 PSW is installed in the psWR. It masks off all interrupts
except machine failures. Hence, without further interruption, it
may now begin servicing the 10 trap.

Upon completion of 10 trap service, the old 10 PSW is installed in
the pswr. It contains the location of ELGERNAL. The external
interrupt service routine takes over.

When service is completed, the old external PSW is installed in the
pswR. This is the location of the program (or SVC) trap service
routine. It keeps control until trap service is done.

Thereupon, the PSW from the old program (or SVC) PSW is
installed in the PSWR. This is the problem program PSW, and hence
we are back in business.



PROBLEMS

If an 10 trap occurs during the servicing of an external interrupt, it may
or may not stop external trap service and initiates 10 service immediately,
depending upon how ELGERN AL is masked at that time. If so, when
I0 service is done, we return to ELGERNAL at the place where service
was left off.

Similarly, during a supervisor call (or program) trap, both external and
I0 traps may be permitted at certain times during the routines. The
service of the SVC (or program) interrupt is kept in abeyance while the
other trap is serviced. The SVC (or program) trap is then reinstated and
continued.

This combined priority scheme provides better trap service. There is
very little likelihood that service of an important trap will be postponed
until it is foo late and human intervention becomes necessary. The slight
price is that service for some of the less important traps is postponed.

PROBLEMS

4.1 What is the program status word? Distinguish among _
(a) Pswr (b) Old PSW (©) New PSW
(d) Old PSW location (e) New PSW location

4.2 (a) What is the condition code?
(b) What are all the places where it is found?
(c) What does it have to do with interrupt?

4.3 What is mode? Why is there more than one mode for third generation
computers ?

4.4 (a) Name the five classes of interrupfs.
(b) Why are there five?
(c) List them in order of importance.

4.5 (a) How do we leave an interrupted program?
(b) How do we return to an interrupted program?

4.6 Can software be interrupted? Can we interrupt in the Supervisor? Why
(or why not)?

4.7 Why would the program be able to interrupt itself? Give details.

4.8 How can the user supply his own pieces of software? How does he get back
and forth? How does he provide for this ?

4.9 How is status applied to 10? Name the four statuses. What is their meaning
at the channel, subchannel, and device level ?

4.10 Define, describe, give the need for and tell where we find:
(a) CCW (b) CAW () CCW

4,11 What is a macro? What is the difference between OPEN and OF&N?

4.12 What happens when several interrupts arrive at the same time? In what
order are they serviced? May the service of an interrupt be interrupted ?
How?
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D .l THE SMALL-WORD PROBLEM
The market With the formalities out of the way, we are

now ready to give an intensive look at modern computers. It is our aim
to examine typical computers in each general category to see the problems
faced by the designer, especially with regard to hardware but without
neglecting its relation to software.
The small computer is a particular design challenge for:
o keeping cost low
« making ability high
« selling the product by demonstrating its overall usefulness
« providing satisfactory software
Smaller word size in the MEMORY offers the best potential for cost
cutting. But it brings along many auxiliary problems discussed below.

Small memory The PDP-8 uses a twelve-bit MEMORY word.

word This is sufficient for many applications of the
computer where the precision of calculations can be kept low. It is
particularly appropriate for measurement and control applications.

The data word is defined as a simple twelve-bit datum. Operations
upon it are performed either by bit picking (editing and masking) or by
considering it as a natural binary number (counting number) and per-
forming arithmetic operations on it.

2



Sec. 5.1 THE SMALL-WORD PROBLEM

As a binary number, the quantity is manipulated as an unsigned
integer. The programmer must then use subroutines which provide
signed representations of his numbers. One way is to convert signed
numbers into two’s complement notation. The computer, of course, is
unaware of the sign and manipulates such representations like binary
integers. Two’s complement notation assures a properly signed result.
The OVERFLOW FLIPFLOP, the rLink, is provided for checking overflow.

The command Since MEMORY words contain exactly twelve

problem bits, one problem is to fit command informa-
tion into such a small word. The MAIN MEMORY supplied with the computer
is generally 4K or 4096 words, the twelfth power of two. Hence, to
address even this small MEMORY with the most common addressing base
number, 2, it is necessary to use twelve bits. All small-word machines have
this problem. It may be alleviated for all by a paging system similar to that
described in Section 5.3.

Even paging requires some compromise between address size and the
number of command bits available to specify the command.

Command structure In Fig. 5.1.1, the command word is examined.
Three bits are provided for opcode; hence, eight basic commands are
available. The command repertoire is expanded by providing an operate
code. Operate is really the opcode of an entire class of additional com-
mands—those which do not require operand addresses. Thus the entire
address field is free to distinguish a number of nonoperand commands. A
second of the eight opcode combinations distinguishes the class of 10
operations using an expanded format discussed later. This leaves six actual
combinations for use as command codes. These are discussed in
Section 5.5.

Seven bits allocated for address can address 128 words of MEMORY using
the paging scheme described later. The two remaining bits convey
addressing mode: The first may request single indirect addressing; the
second conveys whether the current or a base page is being accessed.

Bits 3 1 1 7
f—);——\ - —_—
Use opcode 1B PB address

Fig. 5.1.1 The PDP-8 command.

I3
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5 . 2 ORGANIZATION

Aim The aim of the PDP-8 design is to implement
a small, effective, inexpensive, high speed, scientific computer with as
little hardware as possible. The computer should interface with con-
ventional 10 DEVICEs. It should also be able to talk to analog equipment
and measuring devices which function on-line for measurement and
control application. And when it’s free, it can act as a normal, small,
general purpose calculator.

The plan The plan of the computer is presented in
Fig. 5.2.1.

The MEMORY of the basic unit contains 4096 locations. To address them
all uniquely, the MEMORY ADDRESS REGISTER must contain twelve bits.

All words brought from MEMORY are placed in the MDR and are twelve
bits long. The MDR is a versatile REGISTER since it is also used as part of
the CONTROL SUBSYSTEM. Further, it holds one of the operands used in
addition or subtraction. Finally, it is incrementable for use with the
autoindexing feature described later. ’

The INSTRUCTION COUNTER is called the PROGRAM ADDRESS REGISTER
by the manufacturer. It holds twelve bits and hence addresses all of
MEMORY. The IC is incrementable.

A three-bit INSTRUCTION REGISTER holds the command opcode during
execution. Three bits can convey all commands except operate and 10,
which get special treatment.

The A REGISTER, AR, Or ACCUMULATOR, accumulates numbers during
addition and subtraction. It has an OVERFLOW REGISTER called the LINK
associated with it.

A parallel binary ADDER provides fast two’s complement addition of
binary numbers. The AR and MDR are added together and the result
placed in the AR.

CONTROL monitors all the activity which is taking place.



Sec. 5.2 ORGANIZATION |15
MDR
MEMORY | BUFFER REGISTER
7
e
s
L
MAR | MEMORY | ADDRESS REGISTER MEMORY
A 1'\
ADDER
>
//’ A
e y
w /
o yd AV 4 IR
\\\
N cENTRAL INSTRUCTION
T CONTROL, REGISTER
IC |PROGRAM| ADDRESS REGISTER
]
ICP ICW S~ T
L ACCUMULATOR
I |
N
K AR
BUFFER REGISTER
CONTROL ] SWITCH -———q
|
i DATA A A\ !
________ J 1
N
CONTROL
LOCATION
\ 4
DEVICE :
COUNT :
i
\'4 y
Programmed Interrupt Data Break CONTROL RE I
or Programmed Data Transfer GISTER
Transfer Device Device 1
|
DEVICE [¢===——=— -

Fig. 5.2.1 PDP-8 block diagram.

10

Two kinds of 10 interfacing are provided.

For slow DEVICES, an interrupt causes the problem program to go to
a service routine whenever the DEVICE needs servicing. This is less
sophisticated than the CHANNEL CONTROLLER principle, but it is especially
useful in this small machine.
For fast DEVICES, cycle stealing is provided and called data break; it is
described later.
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5 . 3 PAGING
Current page The INSTRUCTION COUNTER consists of two

parts: the leftmost part (the most significant five bits) contains a page
number; this SUBREGISTER is indicated here as icp. The seven right-hand
bits comprise a word number on the page in ICP; this SUBREGISTER is
referred to as icw. Hence, the total Ic points to one word in MEMORY using
its absolute address.

At the end of a command, the INSTRUCTION COUNTER is incremented by
adding one to its contents. Generally, Icw is increased by one, and ICP is
unaffected: we advance from one word to the next on the same page.
Eventually we get to the last word on the page; this word is numbered
1775. Now when we add one to the 1c, (Icw) becomes 0005, and the page
number is increased by one. Thus, program sequencing flows from page
to page without interruption.

The contents of Icp distinguish the current page, one of thirty-two
possible pages.

Data address Data can be accessed in one of four possible
ways using the indirect bit, IB, and the page bit, PB, both in the command
word.

To get data from the present page the indirect bit, IB, is set to 0, and
PB is set to 1 to indicate that we are accessing the present page directly.

To obtain information from the base page, page 0, PB is set to 0 and
IB is set to 0, indicating direct access to page 0.

Data may be accessed indirectly from either the present page or the
base page according to the setting of PB. IB is set to 1. Only single
indirect addressing is allowed. The address of the datum in twelve-bit
absolute form is obtained from the present or base page, as determined
by PB. This address, which can refer to any page in the computer MEMORY,
is then accessed for the actual datum.
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5 .4 FETCH AND OPERAND
ACQUISITION

Fetch Operations for fetch are presented in Fig.
5.4.1 and are discussed below according to the numbers in that figure:

0. Before fetch occurs, the signal end provided to CONTROL causes the
INSTRUCTION COUNTER to be incremented.

1. (INSTRUCTION COUNTER) is passed over to the MAR and a MEMORY
recall is initiated.

2. The MEMORY produces a datum in the MDR.

The opcode extracted from the MDR is inserted in the IR.

4. (1R) determines if this is an instruction operand. If so, the operand
is acquired; see below. Otherwise, execution begins immediately;
see Section 5.6.

hat

Direct access, The acquisition of a directly accessed operand
present page in Fig. 5.4.2 is discussed below according to
the numbers which appear in that figure:

1. The present page indicator, ICP, is transferred to the page portion
of the MAR, MARP.

2. The word portion of the MDR, MDRW, is transferred to the word
portion of the MAR, MARW.

r ——————— »  MEMORY
|
| ! )
I
MAR | MDR
re?all
AN i :
*-—=—-—" I
O | e
L4
Ic ¢ C“(%_ CONTROL  |q—— IR

Fig. 5.4.1 PDP-8 fetch.
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CONTROL  |q |

Fig. 5.4.2 Direct access, present page.

3. Recall is requested.

4. The contents of the address presently in the MAR are placed in the
MDR, replacing this instruction which was just there. Whatever was
needed is now in IR.

Direct access of This is shown in Fig. 5.4.3.
page 0

1. MARP is set to 0 because the page bit is 0.
2. The contents of the MDRW are placed in MARW.
3. Recall is requested; the datum is placed in the MDR.

Indirection This is illustrated in Fig. 5.4.4.

1. Depending on the setting of the page bit, either MARP is set to 0 or
the contents of ICP are placed there.

2. Recall is requested.

The pointer addressed by the MAR is placed in the MDR.

4. The entire contents of the MDR, the pointer, are placed in the MAR.

This is our indirection cycle.

Recall is initiated.

6. The datum pointed to is placed in the MDR.

(7]

hd

Autoindexing The PDP-8 computer has no indexing or
other form of automatic address modification. This is generally a severe
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®

r————— MEMORY
00000 i
|
O 1
! MARW : \
1 11
MAR | { ” {0 E Oi
reca L
MARP 1 ; MDRW
i
| @
|
1
 ———
CONTROL

Fig. 5.4.3 Direct access, page 0.

limitation of all small computers in doing loops. One way around this is
the autoindexing feature. It permits certain CELLs of MEMORY to be
incremented automatically when they are used indirectly.

The autoindexing feature is invoked only under the following con-

ditions:

1. ceLLs 10; through 17, are referenced.
2. They are referenced indirectly.

r —————— MEMORY @ @
00000 } ’
|
O | f 5
T I HE
MAR i :@@ 111X MDR
1 1 1 |
A recall
AN AN MARW 1 || MDRW
|
® : : )
i MDR
e |1
1
1
IC CONTROL ;

Fig. 5.4.4 Indirect addressing.
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When these CELLs are referenced directly, they are not autoindexed; when
these CELLs are addressed indirectly, we cannot avoid autoindexing; no
other CELLs can be autoindexed.

The autoindexing feature causes the incrementation of the contents
of the directly addressed CELL before it is used' as an address. The new
quantity is returned to MEMORY at its former position. It is also a pointer
to the data.

Consider the command
ADD [0 012 (5.4.1)

It references MEMORY indirectly through CELL 12, page 0, requesting
autoindexing. Suppose that CELL 12 contains octal 5432; thus

(12) = 54324 (5.4.2)

The contents of CELL 12 are incremented before being used as a pointer to
the desired data. Hence the octal command executed is

ADD 5433 (5.43)

At the end of the execution of this command, CELL 12 contains the new
address quantity 5433.

A command using autoindexing is performed as illustrated in Fig.
5.4.5.

1. The instruction is placed in the MDR.
2. The mnemonic is ADD. The three-bit command code is placed in
the IR.
3. The INDIRECT FLIPFLOP is set to 1, indicating that indirection is
required.
4. 0’s are placed in the MAR.
5. 124 is placed in the MAR.
6. The autoindexing detector determines that this is an autoindexing
instruction. (Address is 10g through 17, indirect, page 0.)
7. The MEMORY CELL on page 0 is accessed and its contents brought
to the MDR.
8. These contents are incremented by 1.
9. The incremented quantity is returned to MEMORY.
10. The contents of the MDR are placed in the MAR.
11. The datum is placed in the MDR.
12. The rest of the command proceeds in the execufe phase in the
normal fashion.
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QIOI®) © = with datim
) P 7| 7 % 2 8/ for ADD
I MEMORY < | /
| / ||/ MDR /
I @/> / / ith
w1
: — @ / /4/// '/incremented
| / effective
I hn s 4 3 3 address
| /L /
00000 1 MDR
| Ol ||/ . il
@\U/ 1 / with effective
: | / address less 1
MAR /s a4 3 2, !/
A
A
AN AN /|l /MDR
/ /
/
/\ y /
, @
©) ADD [1|0]| 0124}/
MDR \T
)
I with original Y \'4
@| command
v ADDER
©
CONTROL  [¢—==——|17
"
© +1
\ 12
ADD IR
Fig. 5.4.5 Autoindexing in the PDP-8.
5 .5 COMMANDS
Main commands The main commands, with one exception,

fall into the pattern established for FLAPJAC. The mnemonics the
Digital Equipment Corporation uses for these commands are different and
are presented in Table 5.5.1. The operation codes are designated by the
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Table 5.5.1 pDP-8 COMMANDS

Mnemonic
Octal Flap PDP-8 Arrow Notation

0 ANDTA AND A &M)—a

1 ADD TAD M)+ ()M

2 ISZ M+1->M; M#0=1+1
M=0=>I+2

3 XMA DCA M) — a

4 ucl JMP =M

5 JAS JMS I4+1->-M; =M +1

6 IO

7 Operate

first octal digit in the command word and range from 0 to 6 for operand
address.

The one different command is called Increment and Skip if Zero. 1t
brings the contents of the selected MEMORY location into the MEMORY DATA
REGISTER. There this quantity is incremented by 1 and stored in the CELL
indicated by (MAR). Next we test to see if the MDR contains 0. If not, we
continue the program by getting the next instruction from the next CELL in
sequence. If the MDR contains 0, a skip is requested. To do this, we doubly
increment the INSTRUCTION COUNTER before the next fetch.

10 10 operations are requested with the command
with code 64 and the mnemonic |OT for INPUT and OUTPUT transfer:

IOT: 64, device, event (5.5.1)

Here device is a six-bit designator for one of the possible peripheral
DEVICEs which might be attached to the computer. Event permits or
inhibits pulses at different times to be transmitted to the selected DEVICE.
These pulses inform the DEVICE of its task or test the DEVICE to see how it
has completed its operation. More detail is provided about this later.

Operate Since we have only a small command
repertoire so far, we need a way to enlarge it. We do this with a special set
of operate commands—they do not require explicit reference to an operand.

All operate commands have the same first digit, 7,. The meaning of
the rest of the bits in the command word is somewhat specific. To increase
the number of such meanings, we divide operate commands into two groups
according to the fourth bit in the command word.
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Clear Clear Complement Increment
ACCUMULATOR \ LIN{( L[INK ACCUMULATOR
0 1 2 3 4 5 6 7 8 9 10 11
T S N
Tg Double
Complement Right Left (single)
0 for group one ACCUMULATOR rotation rotation rotation

Fig. 5.5.1 Group one operate instructions.

Group one operate instructions are diagrammed in Fig. 5.5.1. Bit 3,
the fourth bit in the command word, is 0 for group one operate commands.
The meanings of the other bits are presented in the figure. Several of the
bits require clearing or complementing either the ACCUMULATOR or the
LINKS (overflow bits). Bits 8, 9, and 10 are used for single or double left
or right rotation. The last bit, bit 11, designates incrementation of the
ACCUMULATOR.

Several of these bits may be 1 at once. For instance, to get 000000000001
ACCUMULATOR, we can clear and increment the ACCUMULATOR.

A most useful command requests that the ACCUMULATOR be com-
plemented and incremented. Since negative numbers are represented with
two’s complement notation, this command is used for making a positive
number negative. Complementation means the one’s complement. This
makes subtraction possible where no explicit subtract command exists in
our repertoire, and it is illustrated in Table 5.5.2. The subtrahend is

Table 5.5.2 PDP-8 SUBTRACTION

XMA Y Y — AR
CIA —Y — AR
ADD X X —Y - AR

placed in the AccUMULATOR with the command XMA. The two’s com-
plement of the subtrahend is found using CIA. Now the minuend is added
into the ACCUMULATOR with the command ADD. The difference is hence
found in the ACCUMULATOR.

The group two commands illustrated in Fig. 5.5.2 request skips of various
sorts. The conditions for skipping are found in bits 5, 6, and 7. If all these
conditions are present (logical and), a skip is requested. Otherwise we do
the next command in sequence.

HNO dN0o¥O

OMLdNOoYoD
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nonzero LINK

Skip conditions { zero ACCUMULATOR
minus ACCUMULATOR\\&

0 1 2 3 4 5 6 7 8 9 i0 11 1&
7 / VAN
Clear Reverse skip with SWITCH Halt
For group two ACCUMULATOR conditions REGISTER

Fig. 5.5.2 Group two operate instructions.

To request that the conditions be reversed, 1 is placed in bit 8. Now if
the condition called for is absent, a skip is required. This is best demon-
strated in Table 5.5.3, where some operate commands are presented.

Table 5.5.3 Operate COMMANDS

Octal

Mnemonic Code Arrow Notation Meaning
NOOP 7000 =141 No operation
RTL 7006 A <—2 (a) Rotate two left
CMA 7040 Ca) — A Complement AR
CIA 7040 Ca)+1—a Complement and increment AR

or —(A) > A

STOP 7402 $ Halt
SKIP 7410 =1+2 Unconditional skip
SZA 7440 W=0:=>1+2 Skip on zero AR
SNA 7450 (A) #0:=>1+2 Skip nonzero AR

Consider these examples. To skip on zero ACCUMULATOR, we use the
mnemonic SZA having a 1 in bit 6, but 0 in bit 8. To request a skip on
nonzero ACCUMULATOR, we again place 1 in bit 6 and also 1 in bit 8.

3.6 1

Types There are three kinds of 10 operations possible:

1. Dedicated, called a program data transfer.
2. Interrupt, called the program interrupt.
3. Cycle steal, called data break transfer.
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A dedicated 10 operation is one where no processing or control
operation takes place. There is no simultaneity. All processing operations
are held up until the 10 operation is completed.

For an inferrupt 10 operation in the PDP-8, a single word transfer
between 10 and MEMORY is delegated to an 10 DEVICE; when this single
operation is complete, an interrupt of the problem program occurs. This
is most suitable for very slow DEVICEs where processing may then proceed
as we wait for a delegated 10 operation to take place.

Only certain 10 DEVICEs and CONTROLLERs operate with cycle stealing,
similar to the CHANNEL described in Chapter 2 except that no subcommands
are involved. A single command delegates an 10 interchange of several
words to a DEVICE CONTROLLER. As each new access 1s required, a MEMORY
cycle is stolen for the transfer of information between MEMORY and the
DEVICE.

The remainder of this section is devoted to dedicated 10; interrupt and
cycle stealing are discussed in Section 5.7.

Dedicated 10 Control for a DEVICE is unidirectional; but
some DEVICEs are bidirectional! Then separate control is required for each
data transfer direction for the DEVICE. For instance, when the TELETYPE-
WRITER enters information into computer MEMORY, it’s addressed differently
from when the computer prints out information from MEMORY on the
TELETYPEWRITER.

The first digit of all 10 commands is 63 to indicate 10. The next two
digits provide a choice of 64 coNTROL UNITs. The fourth octal digit
designates one or more pulses supplied to the DEVICE.

Figure 5.6.1 indicates control information going to the CONTROLLER.
The last three octal digits are broadcast to all CONTROLLERs over the 10
CONTROL bus when the command code 64 is decoded. The two middle
digits appear on the DEVICE selection bus. Each DEVICE CONTROLLER has a
unique DECODE which responds only to the code for this DEVICE. When
that code is received, the output of DECODE permits the iot pulses to
activate the DEVICE. They direct the DEVICE to perform one of several
tasks. We continue the explanation by providing an example.

TELETYPEWRITER The TELETYPEWRITER is bidirectional and
contains an eight-bit DEVICE BUFFER. We now examine commands which
apply to the TELETYPEWRITER when used as a TELEPRINTER.

125
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iot DEVICE
Pulses select bus
DECODE
00 Active ~
L / Timing pulses
DECODE
01 >
™\,
—1 \ -
L/ ~
®
L ]
o
DECODE
)
_x -
Y, >
v L 13

Fig. 5.6.1 DEVICE selection.

The 10 command begins with 65. 04, is the address of the TELEPRINTER—
the TELETYPEWRITER when it is being used for printing. 14 is a query to
determine if the DEVICE FLAG is set. We skip if it is set; otherwise, we do
the next sequenced command.

Figure 5.6.2 shows how the select pulses are supplied to the DECODE.
Since we address unit 04, that DECODE produces an enabling signal to the

1$09
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Interrupt line
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Skip line

T iot pulse bus

Select bus

Data bus

\ 14

04

P Enable
\ GATES € DECODE

/
A
iot 1
A 14

iot 4 DEVICE
BUFFER

o
v

»

ot 2

CONTROL

DEVICE

DEVICE
Interrupt status for

control inquiry NY To DEVICE

Fig. 5.6.2 Output interface as found in the TELETYPEWRITER.

GATEs. Next the iot pulses arrive. Only iot1 is sent out; it tests the FLAG
FLIPFLOP: if set to 1, a signal appears on the skip bus; none appears if it is
reset to 0. That bus returns a skip signal to the computer. A skip is done
only when there is a signal on the bus.

This request to clear the TELEPRINTER FLAG is portrayed in Fig. 5.6.2
where the reader can follow its execution.

This requesf loads the DEVICE BUFFER, the TELEPRINTER CHARACTER
BUFFER. The information source is the ACCUMULATOR. A character must
have been placed in the AR by an earlier command. The command 6044
permits iot4 to transfer the character from the AR into the DEVICE BUFFER.
After the character code is received in the DEVICE BUFFER, the DEVICE types
this character on the TELEPRINTER.

09

709
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FREE TSF | (6041) Skip when free
ucl FREE
TLS | (6046) Load teleprinter

Fig. 5.6.3 Sequence to print character only after TELE-
PRINTER is found free.

This performs both 6042 and 6044 by permitting iot2 and iot4 to
activate the TELEPRINTER. Hence, this command does a data transfer and
then clears the FLAG.

Figure 5.6.3 is a three-step program which permits us to dispatch a
character for printing, making sure that the printer has accepted the
character before continuing the program.

Read Let us see the commands applicable to the

PAPER TAPE READER, an INPUT DEVICE. It too contains an eight-character
BUFFER.

This is a skip-on-flag command. Since the FLAG is set after a character
is put in the BUFFER, this is a “don’t skip if bus”” command. When the
BUFFER 1is full, it permits us to continue the program.

This transfers the character in the DEVICE BUFFER into the ACCUMULATOR.

This requests that the DEVICE CHARACTER BUFFER be filled from the
PAPER TAPE READER. It activates the READER to get a new character.

Figure 5.6.4 is a dedicated program to read from the PAPER TAPE
READER. First we request that the BUFFER be filled. Then we see if a
character is available. If none is available, we do not skip; instead, we
return to the command which does the checking. When the CHARACTER

FIRST RFC  (6014) Fill BUFFER from tape
RSF  (6011) Skip if BUFFER filled
ucl = —2
CLA Clear AR
RRB (6012) BUFFER to AR

Fig. 5.6.4 Sequence to get next character from HIGH SPEED
PAPER TAPE READER, waiting for completion.
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BUFFER is loaded, we clear the ACCUMULATOR and place the character from
the BUFFER therein.

Processing during Dedication is not mandatory! It would be

I0 folly to waste time in an 10 unless:

« 10 data are required before more processing can be done.
 There is nothing else to do.

With an inquiry scheme, it is up to the programmer to make the best
use of his time. From the manufacturer’s timing charts he can determine
the length of 10 and of intervening commands. He can place enough
commands between delegation and inquiry so as to keep the DEVICE going
at almost its maximum rate and yet make use of processing time.

5 .7 INTERRUPT; CYCLE STEALING

Interrupt procedure There is an INTERRUPT FLIPFLOP, IFF, in each
DEVICE CONTROLLER for which an interrupt can take place. This is illus-
trated in Fig. 5.7.1. IFF can be set by the DEVICE CONTROLLER when the

Interrupt suspend

k
Interrupt restore
>—
Interrupt signal
A
Interrupt clear
——
A A / r
0]1 01
AN y
\ Data
Y Control

Fig. 5.7.1 Interrupt control.
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interrupt-causing condition arises in the DEVICE; IFF can be reset by
programmed computer signal.

The SUSPEND FLIPFLOP, designated SFF, in the PROCESSOR is used to
inhibit the interrupt signal. A single signal from the computer is used to
suspend interrupts for all the DEVICE CONTROLLERs; a similar signal is used
to restore interrupts for all DEVICEs.

When a condition calling for an interrupt occurs for a DEVICE and no
other interrupt has prevailed, this condition sets the IFF on. If the SFF is also
set, this enables the interrupt signal from IFF to appear on the interrupt
line. An interrupt is initiated when the PROCESSOR next becomes free to
accept it.

The interrupt An interrupt for the PDP-8 operates exactly
as though the following command were given
JAS 000 (3.7.1)

As with any other command in the instruction sequence, it can take place
only after the current command has completed execution. Whenever a
signal appears on the interrupt line, it sets a FLIPFLOP, IPFF, indicating that
an interrupt is pending. At execution completion 1PFF forces (5.7.1) into
the INSTRUCTION REGISTER. This causes the INSTRUCTION COUNTER to be
stored at CELL 0, page 0, and the address for the next command comes
from cELL 1, page 0.

Software . There is only one kind of interrupt—
interrupts from all DEVICEs are handled in the same fashion. It is up to the
software to distinguish the interrupt source and cause.

An lnterrupt forces a jump to CELL 1, page 0, which contains an uncon-
ditional jump to the first step in the service routine. PDP-8 interrupt
service is similar in concept to the earlier description:

1. Suspend all interrupts.

. Save REGISTERs as required.

. Make tests. The order in which the tests are made establishes

priority in servicing DEVICES.

4. Each test looks for a CONDITION FLAG. When the FLAG is present,
it causes a skip to the service routine.

5. The service routine places a DEVICE in operation again where
possible and provides 10 services to the program.

6. Unsave REGISTERS.

7. Restore interrupts. A delay is provided here to let us get back to
the main program.

w NI
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8. Return to the problem program.

UcCJ 1 000 (5.7.2)

Priority interrupt With the system just outlined, can we permit
an interrupt while servicing a previous interrupt?

The system does permit multiple interrupts. However, the software
must be designed to cope with this. Suppose that we have a low speed
DEVICE for which service is less important. Its priority, then, is low. The
interrupt routine, when initially entered, shuts off all interrupts. It then
checks to find the interrupting DEVICE. It checks the highest priority
DEVICEs first. Upon reaching a certain priority level, it can permit interrupts
in testing and servicing.

This must be preceded by an operation which saves the contents of
cELL 0 in some safe location and also sets a FLAG to indicate that this is the
case. Now we can proceed to check and service the low priority interrupt
which has occurred.

In the meantime, another interrupt may occur, presumably one of
higher priority. When it does, we make tests regarding it. Eventually,
we find the source and cause of the second interrupt and service it. During
this process, other interrupts have been suspended.

At the end of servicing the second interrupt, we check to see if a FLAG
has been set (indicating the presence of a former interrupt). If not, we
return to the main program by an indirect jump through ceLL 0.

If we were servicing a low priority interrupt at the time of the high
priority interrupt, then the FLAG was set before interrupts were restored.
Before continuing to service the first interrupt, we return its former
contents to ceLL 0. This was stored safely somewhere before second
interrupt servicing began. Now we have required the return mechanism
for problem program after servicing the low priority interrupt.

Data break The DATA BREAK FACILITY (DBF) is a stripped
down CHANNEL CONTROLLER. Unlike the CHANNEL CONTROLLER, there is
no subcommand string which indicates a sequence of operations to be
performed.

The DBF can perform as single command the transfer of a number of
words of information between an 10 DEVICE and MAIN MEMORY. This
command is delegated from the program by the computer to the DBF
which is available for high speed DEVICEs.

The command issued to the DBF is generally in two or three parts.

1. An address indicates the place in CORE where the transfer is to begin.
2. A location for the intermediate medium indicates the other source
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or destination of the information for the 10 DEVICE. This location
may be implied. For instance, in the case of magnetic tape, it is
assumed that the next block is to be read or written.

3. The quantity of information to be transferred is supplied. Again,

where information is dealt with in chunks of fixed quantity, this
information may be omitted.

To convey the command to the DBF, we store control words at known

locations in MEMORY. The program delivers these portions of the command
to the ACCUMULATOR using XMA; the information is then imparted to the
DEVICE using a command whose mnemonic might be XAl. After the
control information is delivered to the DEVICE, it is started by one more
command.

MEMORY is a single port subsystem. We should have a TRAFFIC

CONTROLLER to determine which facility next has access to the MEMORY.
We may consider entry to the TRAFFIC CONTROLLER as consisting of a
number of channels with a priority associated

5.1
5.2

5.3
5.4
5.5
5.6

Ao -

n

The DBF is identical to a channel stealing operation.

A break takes place after the execution of the present command.
The MDR and the MAR are now free.

A location is supplied the MAR by the DATA BREAK FACILITY.

Data is sent to or received from the MDR by the DATA BREAK
FACILITY BUFFER.

. The DATA BREAK FACILITY increments the core location number and
decrements the count.

PROBLEMS

What is the small word problem? What are some solutions to it ?

What components belong to or are shared by the five subsystems of the
PDP-8?

Why is paging so-called? How is it done?
Why are the MaR and MDR divided into two parts?
How is autoindexing done? Why is it needed?

Assuming a symbolic assembler which includes lateral facility, write a
PDP-8 program to 12 numbers at LIST, placing the result after the list
and using the autoindexing feature. Assume the list is on a different page
from the program.
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5.7 Explain how the command repertoire of the PDP-8 is expanded with
operate commands. Why are there two groups? How are operate com-
mands combined within a group?

5.8 How is simultaneity achieved?
5.9 How is interrupt done? How can multiple interrupt requests be handled?

5.10 What is data break?
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The market for very small computers is extremely large. A stripped
down model in this category ranges in price from $8,000 to $25,000 or so.
Hence the user can afford to purchase a computer and have it dedicated
to a single application. It can be part of a control system for a manu-
facturing process or simply be a stand-alone general purpose computer
for a design group. The small computer provides tough competition to
the multiaccess computer concept where a large main computer services
many consoles, making each console look to its user as though he has a
small computer.

Since the field is wide open, there is competition among the manufac-
turers to provide an inexpensive computer which is easy to use and
program. To do this, they have conceived changes in the concept presented
in the last chapter as embodied in the PDP-8. Let us look at some of the
features.

Longer word Every bit that we add to the word size of a
computer increases the cost of the computer. The cost per bit must be
multiplied by the number of words of MEMORY that the basic model comes
with. The more demanding user may buy extra modules of MEMORY.
These, too, cost more because he must pay for each little bit more of word
size.
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When increasing word length, we should consider the convenience of
the word size with respect to arithmetic and editing operations. Twelve
is a very convenient size because it is divisible by 2, 3, 4, and 6. Thirteen,
of course, is a prime number and does not contain any factors. Thirteen
bits would be usable, but the additional bit might not hold extra data—it
could be used for parity. In this case, the programmer sees the useful
word as being only'12 bits long anyway.

In the small size range, we find computers with word length of 16 and
18. A 24-bit word is already twice as large as the 12-bit word of the PDP-8.
I consider this word size to be in the medium computer class; this study
is postponed to another volume. The 18-bit word size is not common.
Therefore, the only other size that we consider is the 16-bit word.

INDEX REGISTER To me, an INDEX REGISTER is indispensable for
adequate programming. However, it is costly in two respects:

1. The cost of the REGISTER itself. _
2. A bit in the command wotd to indicate that indexing is required.

It is interesting to see how some manufacturers have gotten around the
second difficulty, anyway.

Another It is nice to have another REGISTER when doing
ARITHMETIC arithmetic. It is almost indispensable in
REGISTER doing multiplication and division. However,

the small computers generally do these latter processes with a subroutine
package. Still, the computer can also use this extra REGISTER for indexing.

Double length We have seen the difficulty facing the PDP-8

instruction word in addressing all of its MEMORY from the
command word and, at the same time, conveying sufficient information
about the command and the addressing method. A single 12-bit word is
really inadequate to do all this. Some manufacturers have, therefore, gone
to double word command. This double word naturally requires two
accesses of MAIN MEMORY. Also, when obtained, command information
requires space.

Variable command Variable size commands such as provided in
length the IBM 1401 would really complicate the
design for a small computer. However, if we are providing double word
commands, it is a simple matter to permit some commands to be double
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word size while others are single word size. For instance, operate com-
mands might be single length, whereas operand commands might be
double length.

Double precision It is easy to see that a 12-bit word provides
accuracy of only 1 part in 4096. Often, this would not be satisfactory, and
we have to go to double precision processing to achieve the accuracy
required in some scientific calculations. It is simple to do this by pro-
gramming, but this is always time consuming during writing and running,
and the routine uses up valuable MEMORY. When the programmer and
designer are on speaking terms, the designer can provide some few extra
commands which will greatly facilitate programming double precision
arithmetic. In fact, why not have some double word commands as in the
IBM 1130?

Separate data We have seen how a program is written in

pages page size sections. Reference to information
within the page is simple using the paging system provided by the manu-
facturer. It is also simple to refer to information on page 0. But page 0
has a limited amount of space. To refer to information on other pages
requires indirection which consumes both time and space. With small page
size, a working program travels over several pages. This means that to
reference data in a fixed location will generally require indirection. A
remedy for this is to provide a PAGE REGISTER for data referencing separate
from the PAGE REGISTER for commands. Then, regardless of which page
the program is operating on, reference to the data can be made directly via
the DATA PAGE REFERENCE REGISTER.

Priority interrupt It is valuable to have a hierarchy of interrupts
whereby some servicing will get done for an important DEVICE even though
other DEVICE servicing is going on. This is not expensive to implement, and
it is quite useful for on-line processing systems.

Commands If there is space in the command word for
additional command codes (hah!), why not create new commands which
might help the programmer. These should always be evaluated for trade-
off between usefulness and cost.

The main As we look at the different machines in this
difficulty chapter, the emphasis seems to be on the
command word and what it conveys. This is actually the case because the
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main difference among these machines is how the command word is set
up and how it is interpreted by the hardware.

The programmer’s view of a new machine is through the command
repertoire available with the hardware.

The different types of addressing which the manufacturer makes
available and the tags in the command word he uses for requesting these
_addressing types are most apparent to the programmer. It’s surprising
what variations we find from one machine to the next. Ingenuity in
handling addressing is so important for the small machine because this is
its main problem: although its MEMORY is small, the number of locations it
contains may require most or all the command word for specification.

With the small computer, the user can often afford to have processing
stop while 10 takes place. But as the user wants to do more and more
advanced programming, he looks for simultaneity. This can be done most
efficiently only by incorporating the CHANNEL CONTROLLER principle or a
variation thereof as described in Chapter 2. This involves cycle stealing
and/or interrupt.

6 .2 SDS 92

Scientific Data Systems makes a number of computers. But the only
one which concerns us is their Model 92, a small, general purpose computer.

Instruction form The interesting thing about the SDS 92 is its
use of a double word command. Furthermore, according to the command
code, either a single or a double command may be called for.

The command format is shown in Fig. 6.2.1. The first word is divided
into five fields:

o The first (leftmost) six bits designate the operation to be per-
formed.

o The seventh bit, call it S, is a page 0 bit. The manufacturer calls
page 0 the scratch pad because it is directly addressable from a
single command word.

» The eight bit, call it I, is used for indirection.

 The ninth bit, call it N, designates indexing.

» The remaining three bits, call them M1, constitute the higher-
order portion of an address when a full address 1s used.

The second word of the two word command constitutes twelve bits,
all of which we call M2 and which make up the low-order portion of the
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0 1 2 3 4 5 6 7 8 9 10 11
First word Opcode S 1| N M1

[— High-order address
Index

Indirect

— Page

o 1 2 3 4 5 6 7 8 9 10 11

Second word |=— M2 >

Fig. 6.2.1 SDS 92 command format.

operand address. Then the operand address M consists of the con-
catenation of M1 with M2.

Addressing Several forms of addressing are available for
this double word command.

For direct addressing, SIN=000. The operand addressed is at
location M.

LOoHd1d

For indexing, SIN=001; it is done by subtracting the contents of the
A REGISTER from M. We should note that M is a fifteen-bit quantity,
whereas (AR) is a twelve-bit quantity. This is taken care of by the ADDER.

DNIXHANI

To address page 0, SIN=1XX. Here XX comprises two higher-order
bits which are concatenated with M1 to form a five-bit address which
designates some location in MAIN MEMORY ranging from 1 to 375. Notice
that Oy is not an admissible address on page 0. Further, addressing the
scratch pad uses single word commands.

avd HDLIVYIDS

When SINM1=100000, immediate addressing is called for. It requests
that we use the contents of the next location following this command as
the operand. For example, a command located at CELL 123 with opcode
for ADD containing indicia for immediate addressing finds its operand at
124; that is, (124) will be added to the ACCUMULATOR.

HLVIAIWINI
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SIN=010 requests indirect addressing using M (described for direct
addressing) as the pointer address.

Fetch and operand It is interesting to see what hardware is

acquisition required to implement a double word com-
mand. REGISTER configuration for the SDS 92 is shown in Fig. 6.2.2;
only the names of the REGISTERs have been changed (but not to keep their
identities secret).

To fetch the first word of a command, the contents of the INSTRUCTION
COUNTER are passed over to the MAR, and the ic is incremented. The

——_ | MEMORY
r CELLS
|
|
|
|
|
|
|
i v
MAR MDR
A A A
\ 4 v v v
1C CR AR BR OR
A A A A
_._’ ‘.___
h 4 v
o— ® ADDER

Fig. 6.2.2 SDS 92 hardware arrangement.
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MEMORY brings forth the word and places it in the MDR. From there, the
full word is sent to the CONTROL REGISTER, designated as CR. The upper
half of the word is duplicated in the operation register, oR. What happens
hereafter is determined by the contents of the CR—whether another cycle
of fetch is required.

For double word commands, another fetch cycle is initiated when the
need for it is determined by the cR. The only reservation is that, when the
word gets to the MDR, it is not copied into either the CR or the OR as this
would clobber the first half of the instruction.

When an operand is to be acquired directly as indicated by SIN=000,
the contents of the MDR are passed over to the right-hand portion of the
MAR. At the same time, M, which is in CR, is passed over to the higher
portion of the MAR. A word is procured by the MEMORY and placed in the
MDR.

Now it is the contents of OrR which determine where the contents of the
MDR are routed.

Indirect addressing for a double word command is done similarly to
the direct addressing as described above, except for a few things:

1. We are getting an address which necessarily consists of fifteen bits.

2. Two REGISTERs are required to hold the address: part of the cRr; the
MDR.

3. The first word that is brought from MEMORY is broken up, and the
lower half is placed in the CRr.

4. The MAR is incremented before we use MEMORY again.

5. The incremented address in the MAR points to the next portion of
the address that we desire.

6. That word is placed in the MDR.

8. Further indexing or indirection may be required as indicated by
SIN now in the CRr.

For indexing, from M we subtract (a) to get the effective address. Note
that subtraction is used for indexing. For the hardware man, it makes little
difference whether indexing is adding or subtracting. The programmer
does different things for each—but not that different!

M is spread out over the MDR and a portion of the cr. To index, this
information is gated into one input of the ADDER; the contents of the AR
are gated into the other input, and subtraction is called for. The result, the
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effective address, is routed to the MAR. The MEMORY procures the word and
places it in the MDR from whence it is routed to a DESTINATION REGISTER.

Other features As is evident from Fig. 6.2.2, the SDS 92 has
two ARITHMETIC REGISTERs. Both of these are available to the programmer.
The first bit of the command code indicates whether AR or BR participates
where arithmetic or editing is specified. As noted earlier, when indexing is
called for, it is the AR which participates. Hence, for looping which
involves adding or subtraction, it is desirable to maintain a sum or
difference in the BR.

The manufacturer speaks about the 10 CONTROLLER as though it were a
CHANNEL CONTROLLER. But all communication between MEMORY and the
PERIPHERAL DEVICES takes place using the ACCUMULATOR. No other
processing can take place during 10 since no cycle stealing is provided. A
single word of information is brought into the ACCUMULATOR by a word
input command, WIN; a word of information is provided to an OUTPUT
DEVICE from the ACCUMULATOR by WOT.

It is possible to request a sequence of words to be brought in or written
out with the “record” commands, RIN and ROT. The “CONTROLLER”
keeps track of the number of words which comprise the record and
determines when transfer is complete. However, the PROCESSOR is im-
mobilized during this period, since 10 transfers takes place through the Ar.

Interrupt is provided which permits a DEVICE to cause a jump to a
specific location in MEMORY when it’s completed a task. Though cycle
stealing 1s absent, interrupt is desirable. On output, for instance, WOT
delivers a datum to a DEVICE after which the computer is free while the
DEVICE is busy. If the computer does not know when the DEVICE is done,
it has to keep asking the DEVICE (the programmer must space requests).
This is where the interrupt helps.

Further, there is a hierarchy of priorities so that, when one DEVICE is
being serviced, another may interrupt that service routine to call servicing
of the second (interrupting) DEVICE.

6 . 3 SCC 650

Scientific Control Corporation makes several computers, the smallest
of which 1s the model 650 having a twelve-bit word.
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Indirect

Mode

l—— Displacement

Opcode 1] Mo D

| | I ] A 1 1

Fig. 6.3.1 The SCC 650 command format.

Command The command format for the SCC 650 is

shown in Fig. 6.3.1. We immediately notice two differences between it and
the PDP-8.

1. The opcode uses four bits (instead of three).
2. The operand address, D, uses six bits (instead of seven).

There are two more bits included:
o The indirection bit, I, is set to 1 when indirection is called for,
and it is 0 otherwise.
 The mode bit, P, serves a double purpose:
* When it is 0, it indicates addressing on page 0.
* When it is 1, it indicates reference to current page.
Current page reference, P=1, is either indexed or self-relative, according
to the setting of the INDEX STATE FLIPFLOP, ISF, discussed later. With a
six-bit operand address, we reference 64 words. This, then, is the page
size. Hence page 0 contains 64 words. The operand address quantity, D,
is an offset for relativizing or is a displacement during indexing when
P=1.
There is no simple direct addressing for the current page; it must be
either indexed or self-relative.

Hardware Figure 6.3.2 shows the hardware configuration
of the SCC 650. Notice that there is a separate INSTRUCTION REGISTER, IR,
an ACCUMULATOR, AR, and the normal two REGISTERs associated with the
MEMORY, the MAR, and the MDR.

There are three additional registers:

1. XR serves as a second ACCUMULATOR or an INDEX REGISTER, de-

pending on the command in progress.

2. ZRis an AUXILIARY REGISTER which holds the second operand taking

part in arithmetic as it’s being entered into the ADDER.

3. SR is a STATUS REGISTER consisting of several SUBREGISTERs used for

control operations. It contains the following:
* ISF is the INDEX STATE FLIPFLOP.
* CYR is a set of FLIPFLOPS storing carry information.
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* PpBR is the PROGRAM BANK REGISTER used when indirection is not
indicated.

* 1BR is the BANK SETTING REGISTER when indirection is called for.

* Other FLIPFLOPS.

In Fig. 6.3.2, the MAR has fifteen bits; the first three bits are bank bits.
This part of the MEMORY address is set either from the PBR or the IBR
according to information conveyed by the command and the setting of
1sF. A different bank (set of 64 pages) of MEMORY is used as determined by
the setting in PBR or IBR according to the type of addressing called for.

Addressing The several different forms of addressing are
now discussed.

When both the indirect bit (I) and the mode bit (P) are 0 (IP=00),
reference is to page O regardless of the INDEX STATE FLIPFLOP (ISF). In this
case, operand address on page 0 (0) is the effective address of the operand.
(pBR and 1BR are disregarded.) If we call the setting of 1sF S, then we have
for IPS=00X, EA=D.

CELLS
MAR _12— MDR
mmp— 3 S ]
three -I ‘
bank bits l
v v v
IC IR AR XR 7R
ﬂn A l 3
- — ADDER

Fig. 6.3.2 SCC 650 hardware.
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For IPS=010 self-relative addressing is called for. D is added to (i1c)
to obtain the effective page address; (PBR) is the bank address.

A novel feature with respect to this kind of addressing is brought into
play when P=1. Here the datum is in the CELL following this command.
Normally, this would mess up the command sequence. However, the 650
automatically increments the Ic so that for the command

207 ADD* 1 (6.3.1)

The next command automatically is drawn from 209.

When IPS=11X, indirection is called for. A pointer address is de-
termined as described before for the effective address in the case of
self-relative or indexed addressing. The contents are obtained from the
MDR. This is a twelve-bit word. It is placed in the MAR on the right side.
The contents of the 1BR are placed in the left side of the MAR. We are now
ready to obtain a datum (from a bank different from the program bank).

Fetch A fetch procures the next instruction as
indicated by the INSTRUCTION COUNTER and from the program bank. This
is indicated in arrow notation:

(PBR) — (IC) — MAR — (MDR) — IR (6.3.2)

Addressing The reader may work out how addressing is
done using Fig. 6.3.2 and the equations given in arrow notations below:

0« M — MAR (6.3.3)
Self-relative This mode of addressing uses a program bank
and is relevant to the INSTRUCTION COUNTER:
(PBR) — (IC) + M — MAR (6.3.9)
For the case where M=1, we have
M=1: (c)+ 2—1Ic (6.3.5)
otherwise,
M=0: (c)+ 1—1c (6.3.6)
(PBR) — (XR) + M — MAR (6.3.7)
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The pointer address is obtained by one of the foregoing methods. Call
it PA. Indirection uses the INDIRECT BANK REGISTER, IBR, and hence is given
by these two equations:

(PA) — MAR (6.3.8)
(1BR) — (MDR) — MAR (6.3.9)

6.4 IBM 1130
Characteristics The IBM 1130 is a small machine like the

others we have discussed, except that it has a larger word size, namely
sixteen bits. The extra four bits almost put it into another category. There
are a number of other machines of sixteen rather than twelve bits. They
have attractive characteristics but their cost is necessarily high.

The IBM 1130 MEMORY has a basic size of 4K and can be expanded to
a size of 8K, but no more.

The machine is said to have indexing. 1 prefer to restrict this term to
machines which have hard REGISTERs immediately accessible for holding
index quantities. However, the IBM 1130 does have access to three index
quantities which are held in reserved positions in core. The three indexes
numbered 1, 2, and 3, respectively, occupy MEMORY locations 1, 2, and 3.

The 10 method does not have the sophistication of some of the smaller
machines: it is not CHANNEL CONTROLLER oriented. Each DEVICE is
controlled and activated separately. However, an interrupt system is
supplied which permits a DEVICE to cause the cP to jump to fixed locations
in CORE, one for each DEVICE (or sometimes a set of DEVICES). A novel
feature of the IBM 1130 is its ability to use both data and commands which
are either in single or double word format. A single word datum contains
a left-hand sign bit and is sixteen bits long. The double word is thirty-two
bits, again with the sign in the left-hand position. In both cases, words are
in two’s complements integer binary format where double or single data
words are addressed as determined by the command code. Whether a
command is single or double word is determined by the command con-
figuration itself, that is, a command field signified as F distinguishes single
from double word commands.

Command The two kinds of commands are presented in
Fig. 6.4.1. The fields which comprise the command are discussed in detail
below.
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01 2 oeo 15
op FI T D Short
1 1 1 I
01 2 eoo 1516 ooo 31
OP F| T |I D A »| Long
1 1 1 1

Fig. 6.4.1 Long and short command formats.

The first five bits in both short and long commands are reserved for
the opcode, and the field is called OP. This allows for thirty-two separate
commands.

The F field, which consists of a single bit, distinguishes short from long
commands. Most commands can take either long or short form as
distinguished by this bit.

The two-bit tag field, T, determines the kind of addressing to be done.
00 indicates generally direct addressing. When the tagis 01, 10, or 11, this
designates, respectively, the use of INDEX REGISTERS 1, 2, and 3 from
MEMORY locations 1, 2, or 3. The content of the designated INDEX
REGISTER is added to the displacement. Note that the INDEX REGISTER is
neither a REGISTER (it is in MM) nor is its use reserved for indexing (it is often
used for relocation like a BASE REGISTER).

There are eight bits left in the command word. This field is called the
displacement by IBM and is designated D. For short commands only,
either it is added to an INDEX REGISTER, or the INSTRUCTION COUNTER (when
T=00) to form the operand address. It is not large enough when used
alone to address all of MEMORY.

For the long command, all of the second word is the address field
designated A. The D field is ignored. The address, A, is manipulated as
described later to form an effective address. Although sixteen bits are
available, only up to fourteen are useful because of the limitation in CORE
MEMORY size.

For the long command, the bit after the tag field, N, is designated I;
instead of being part of displacement, it indicates if indirection is required.
Then, for the long commands, the displacement field, D, consists of only
seven bits.
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Addressing There are a variety of ways in which the
effective address, which we call M, can be fabricated according to the
contents of the various fields described before.

For short commands where F = 0, the tag field N indicates the index
quantity to which the displacement is added. Then we have

N#£0: M=MN+D (6.4.1)

Here N also indicates the INDEX REGISTER indicated by the tag. When the

tag is 0, we have
N=0: M==x+D (6.4.2)

The asterisk indicates the present contents of the INSTRUCTION COUNTER.

For F = 1 and I = 0, we request direct addressing of a long command.
For this we have

N#0: M=(N)+A (6.4.3)

N=0: M=A (6.4.4)

where N is the index number. Here A is the address field, the entire
second word; the displacement, D, is completely ignored.

For long commands with indirect addressing, we have F =1, I = 1.
The address is prepared as before, but it is only a pointer. We go to that
address to get the address for the operand desired. In this mode we have

N=£0: M=(N)+ A) (6.4.5)
N=0: M=(A) (6.4.6)

Hardware Figure 6.4.2 is a block diagram of the IBM
1130 hardware. Let us examine the REGISTERS and their functions in the
equipment.

W memory address. The location in CORE which is being addressed is
in a STORAGE ADDRESS REGISTER, SAR, equivalent to our MAR.

The datum from MEMORY or to be stored is temporarily held after
retrieval or before storage in the STORAGE BUFFER REGISTER, SBR, equivalent
to our MDR.

W opcode. The opcode for the command to be executed is placed in
the OPERATION REGISTER, OPR.

W fags. The F bit, the two tag bits, N, and the indirection bit, I, are all
stored in the TAG REGISTER, TAG.
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B INSTRUCTION COUNTER. The address of the next instruction is held
in the next ADDRESS REGISTER, IAR, for all but branch instructions.

B ACCUMULATOR. The ACCUMULATOR, ACC, receives the results of all
arithmetic operations. It can be loaded from or stored in CORE storage.
Shifts and logical instructions are directed to the Acc.

W extension. The ACCUMULATOR extension, EXT, holds the less
significant word in double precision arithmetic. It also takes part in
multiplication, division, and double word shifts.

B operand. In arithmetic or editing, the address of the second operand
is generally contained in the second command word. When the operand is
obtained, it is placed in the ARITHMETIC FACTOR REGISTER, AFR.

B TEMPORARY ACCUMULATOR. During the calculation of the effective
address, the ACCUMULATOR is required. Its contents are moved from acc
temporarily. TAR is the REGISTER which holds the contents of Acc during
address calculation.

W cycle contents. For multiplication and division, it is necessary to
count the number of cycles of arithmetic. ccc does this; it also counts up
and down for shifting.

Fetch; address Fetch can be followed in Fig. 6.4.2. It is

accumulation initiated at the end of an execute cycle. The
IAR contains the address of the next instruction. (IAR) is passed over to the
SAR. The datum arrives at the sBR; the first part of this word is sent over
to the OoPR, and the TAG is to control the next set of activities. What
happens next depends on the F bit which tells us whether we have a short
or long command. With only a few exceptions where an address need not
be calculated, the contents of the Acc are temporarily stored in the TAR,
so that the Acc will be free for the calculation.

For short commands, the displacement D is sent over from the SBR to
the Acc which is filled with 0’s as needed. Now the two bits, T, determine
how the calculations proceed. Immediately, if T = 00 the 1AR contents
are sent over to the AFR.

When T is not 00, T determines the INDEX REGISTER to be used. The
INDEX REGISTER contents must be procured from MEMORY. To do this, the
T bits are jammed into the least significant bits of the SAR, and 0’s fill it up.
When the INDEX contents arrive at the SBR, they are routed to the AFR.

Whatever the tag bits were, we are now ready to do addition. The
contents of Acc and AFR are sent to the ADDER. The results of addition are
entered in the SAR, for this is the address to be used next. The contents of
the Acc are restored from their temporary location, the TAR. Generally,
MEMORY will be called upon next to recall, but there are some cases, such
as store commands, where a memorize is done next.
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When a long command is observed because F = 1, address calculation
cannot proceed until we obtain the next word from MEMORY. One or two
of the reflexive commands may be an exception to this, as the reader may
determine. To obtain the next word, the IAR contents are sent over to the
SAR. Whenever (1AR) goes to the SAR, it is automatically incremented there
and then returned to the 1AR. In this way we are sure that the IAR always
points to the next command word.

The A field is sent to the sBRr and from there, directly to the AccUM-
ULATOR. If T = 0, the ACCUMULATOR now has the operand address. If T
is not 0, we obtain the INDEX REGISTER contents and place them in the AFR
as described before. Addition of the contents of the Acc and the AFR
produce the effective address which is then sent to the SAR.

When indirect addressing is called for because I =11, the long
command address calculation operation proceeds as described directly
above. However, when the datum indicated by the SAR arrives at the SBR,
it is routed to the sAR, and another recall cycle is initiated. At this point,
the I bit in the IAR is reset to 0 so that only one cycle of indirection may
occur.

Load and store Table 6.4.1 displays the entire command

commands repertoire for the IBM 1130. The first column
designates a class of commands. The second column describes the
commands in each class verbally. The third column gives the assembly
language mnemonic. The last column gives the opcode in octal.

The first set of commands is described as load and store. Generally, it
is the ACCUMULATOR which is loaded or stored. Load means entering
information from MEMORY ; store means entering information into MEMORY.

The double word commands load (or store) information at M and
M + 1 into (from) Acc and ExT. Thus we have, in arrow notation,

LDD: (M) — Acc; M+ 1) - ExT (6.4.7)

STD: (acc) > M; (EXT) > M + 1 (6.4.8)

The command LDX loads the index, N, with D for F = 0; for F = 1,

it loads N with A, for I = 0 or with (A) for I = I. STX stores (N) in the
effective address calculated as described earlier, leaving (N) unchanged.

Carry status is stored in a pair of FLIPFLOPS—one for carry and one for
overflow.

Arithmetic The action of the add command is given in
arrow notation as
A: (M) — AER (6.4.9)

(Acc) + (AFR) — ACC (6.4.10)
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Table 6.4.1 1BM 1130 INSTRUCTION SET

Octal
Class Command Mnemonic Opcode

Load and store  Load accumulator LD 30
Load double LDD 31

Store accumulator STO 32

Store double STD 33

Load index LDX 14

Store index STX 15

Load status{ LDS 04

Store status STS 05

Arithmetic Add A 20
Add double AD 21

Subtract S 22

Subtract double SD 23

Multiply M 24

Divide D 25

And AND 34

Or OR 35

Exclusive or EOR 36

Shifti (left) Shift left accumulatort SLA 02
Shift left accumulator and EXTt SLT 02

Shift left and count accumulator SLC 02

and EXTT

Shift left and count accumulatort SLCA 02

(right) Shift right accumulatorf SRA 03

Shift right accumulator and EXTT SRT 03

Rotate rightt RTE 03

Branch Branch and store IAR BSI 10
Branch and skip on condition BSC 11

Modify index and skip MDX 16

Wait T WAIT 00

10 Execute 10 XIO 01

+ Valid in short format only.
1 Modified by bits 8 and 9.

Double add performs the same task on the high-order word; additionally,
it acts on the low-order word as follows:

AD: (M + 1) - AFR (6.4.11)
(AFR) + (EXT) — EXT (6.4.12)

The other arithmetic and editing commands are single word commands;
they are fairly clear cut so that we need not dwell upon them.
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Reflexive commands  The set of reflexive commands is interesting
because it produces some techniques not seen in other machines we have
examined.

The WAIT command is simply a NOOP.

BSC, branch and skip on condition, has interesting ramifications.
In this command, the field, D, contains a mask for conditions which may
prevail in the ACCUMULATOR. For short commands this mask is checked
against prevailing conditions, and if all the conditions in the mask are true,
a skip occurs to * +- 2. If one or more of the conditions is false, we take the
next command, the one at * 4 1.

For the long BSC, again we check the mask against prevailing con-
ditions. If any one of them is true (not all this time), we take the next
command in sequence * + 1. If none of them is true, we jump to the
address, A. By proper management of the mask and the F bit, we can
produce a NOOP or a UCJ from BSC.

A branch and store 1AR, BS, is just like the branch and link instruction
for many other computers and JAS for FLAP. Its action is given as:

BSI: (1AR) +1—>M; =M+ 1 (6.4.13)

The double arrow indicates a jump. BSI| becomes much more complicated
in the long instruction format; we will skip this option.

Figure 6.4.3 shows how BSI and BSC are used for subroutine linkage.
The first step in the diagram is the jump to the subroutine entitled SR.
However, the location of SR is empty. Into it we place (1AR) + 1 using
BSI. We actually jump to the step after SR. At the end of the subroutine
we find BSC which is tagged as indirect (I = 1). It addresses the location
SR. The mask in this command is set to give us an unconditional jump,
(UC)). Since this jump is indirect through the location SR which contains
(1AR) + 1, we return to the next step in the problem program.

The modify index and skip command, MDX, is powerful because of the
many variations which are possible in its specification. In the cases
described here, whatever is modified is also always checked. If there is a
sign change or if a REGISTER quantity becomes zero, a skip occurs, * + 2;
otherwise, the next command is taken in sequence, * + 1.

For the short command, the tag determines which REGISTER is incre-
mented. When the tag is zero, it is the INSTRUCTION ADDRESS REGISTER t0
which the displacement is added

T=20: (1AR) + D —I1AR (6.4.14)
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For a nonzero tag, the INDEX REG- s SR Jump to
ISTER indicated is incremented o it s ot o] SUDTOULIRE
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In the long format, the action B
performed depends on both the SR WAIT ] Start
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tag and the indirection bits.

wedor ol aducdbie oloney olledle

When the tag is zero, the dis- v, [ SUbroutine
placement is added to the con- e v e

tents of the address pointed to L Bsc,| ‘ i SR .

by A.

Fig. 6.4.3 Using BSI for subroutine linkage
T=0: (A)+D—>A (64.16) and BSC for return.

When the tag is nonzero, an
INDEX REGISTER is indicated. For a zero indirection bit, the A quantity
itself is added to this INDEX.

T # 0, I1=0: ~N) 4+ (A)—N (6.4.17)

To see how the MDX command is used in facilitating loop action,
examine Fig. 6.4.4. At the end of the loop at the position entitled TEST,
MDX adds the quantity Q to INDEX REGISTER 3. As long as N3 remains
nonzero, we go to the next command at ACT. Here we find BSC which
acts like UC] to the location, LOOP. However, when processing is
finished, we jump out of the loop by finding the index zero or changing
sign. This causes a skip to MORE.

10 All 10 operations are initiated with command
mnemonic X|O. It contains an address which is a pointer to an 10 control
command (IOCC). This IOCC occupies two words in a location in
MEMORY assigned by the program. The format of the IOCC is displayed
in Fig. 6.4.5. Here address is a location in MEMORY with which information
is transferred. Device identifies a DEVICE to be activated and follows the

assignment shown in Table
6.4.2. Function conveys to the

—— LOOP et altous > sllubes olts . e DEVICE a task which the latter
o ol adadlin ol sllollo odid . .
g ool ollons 3 wlolls sl 1 is to perform. Function codes
sbnolles Ahonrgy atlollo ol kel wed .
i e et lomnen sltollr el are presented in Table 6.4.3.
ol od-wln dlonry ulfolls ol Finally, modgﬁer communicates
TEST MDX 3,Q additional operations or opera-
—ACT BSC LOOP tion modifications unique to
MORE “—  DEVICE.
Fig. 6.4.4 Using MDX for testing and BSC Most 10 DEVICES operate on

for looping. a word basis. A single word is
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address device function/ modifier

Fig. 6.4.5 The IOCC.

interchanged between MEMORY and the DEVICE. Into this word may be
packed one or more characters according to the DEVICE specification.

Only the DISK and the LINE PRINTER operate in a multiple-word mode.
While information is interchanged with the DISK, computation cannot
proceed. However, the PRINTER operates by cycle stealing.

The IBM 1130 provides an interrupt facility whereby, upon completion
of an assignment, the DEVICE causes the computer to jump to a MEMORY
location reserved for interrupt servicing. This jump is indirect. By forcing

Table 6.4.2 DEVICE DESIGNATIONS
Device Code

(Octal) Device
02 Card reader-punch
05 Printer or plotter
04 Disk
03 PT Reader, punch
01 Console keyboard, printer
07 Console entry switches

the BS| command, using the address of the interrupt location, we go
through the interrupt location to the service routine. Because indirect
addressing is available, we have a powerful tool for performing interrupts
which occur during interrupts. These are set up on a priority basis. When
a low priority interrupt is handled, a high priority interrupt takes prec-
edence and causes initiation of a service routine for the high priority
device. Upon completion, we return to continue service on the low
priority device, and when done, we return to the problem program.

Table 6.4.3 FUNCTION DESIGNATIONS

Function Code
(Octal) Function

Write from address to DEVICE

Read from DEVICE to address

Load interrupt status word into Acc
Control DEVICE from modifier

Write by cycle steal

Read by cycle steal

Load DEVICE status word into Acc

~1 N VR
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PROBLEMS

PROBLEMS

Make a list of small computer features which one might encounter.
What is scratch pad addressing?

How are the arithmetic registers in the SDS 92 handled by (a) program;
(b) hardware?

Comment on hardware self-relative addressing. Contrast it with paging.
Describe the problems of each.

For the SCC 650, how are the pBR and 18B used? How might this affect
the design of an assembler?

Describe all the ways MEMORY can be addressed in the IBM 1130 and
when one might use each.

What is the effect of two command lengths on
(a) assembler design;

(b) AL programming;

(c) the paging problem?

Describe a fetch for both short and long commands.

State how double length arithmetic commands might be used.

6.10 How might the variations of the MDX command be used?

6.11 What provisions are there for simultaneity and interrupt for the IBM 1130?

Explain and contrast with other alternatives.
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7 . 1 FORMAT

The word Earlier we defined word as the unit of in-
formation obtained from MEMORY during one access. For the IBM 1401,
exactly one character is obtained on each MEMORY access. Further, data
manipulation in the PROCESSOR is one character at a time. Therefore, this
machine has a word length of one character.

Character content is presented in Table 7.1.1. Each character (or word)
in MEMORY contains exactly eight bits. The eighth or higher-order bit is
called a word mark (WM) bit by IBM. 1 prefer to call it a field mark. It
marks the beginning or end of fields of several characters, as described
later. The parity bit is next (bit 7): it is made O or 1 so that the number of
I’s in the succeeding bits which comprise the word is always odd. It is also
called a check bit and designated as “C”” by IBM. |

Bits 6 and 5 are zone bits. They are 00 for numerals and have one of
three remaining combinations to designate letters or special characters.
The bits are labeled B and A, respectively.

The remaining four bits are used to convey numeric information, using
a BCD code. In collaboration with the zone bits, letters are represented.
They are labeled, in order, 8, 4, 2, 1 to reflect their weights.

Character The IBM 1401 was designed to replace
representation electronic accounting machines (EAM) of the
totally punchcard variety—‘“tab equipment.” The character code was
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Table 7.1.1 USE OF EACH POSITIONAL BIT IN EACH
WORD—A CHARACTER—IN MEMORY OR
DURING PROCESSING

Position Function

Designation

=N W R LN N 0o

Field
Parity
Zone
Zone
Numeric
Numeric
Numeric
Numeric

W (or underscore)

'—‘N-hoo;}wo

designed to appear at least somewhat familiar to the EAM user. This
similarity is emphasized in Table 7.1.2. The twelve hole sites and their
values are portrayed in the center column of the table. The two zone bits
encode the three top card hole sites, which convey zone information. The
four numeric bits represent the numeric hole sites according to the weights
assigned to these bits. For instance, in the table a hole in row five is
represented by numeric code 0101 to get weights 4 and 1 as in NBCD code.
Notice that, generally, only one zone and one numeric hole may occur,
determining the zone and numeric bits. Multiple holes get special handling.

Table 7.1.2 THE ZONE BITS RESEMBLE
THE ZONE HOLES AND THE
NUMERIC CODE RESEMBLES
THE NUMERIC HOLES ON
THE PUNCHCARD

Zone Code  Hole Numeric Code
BA 8421
11 12 XXXX
10 11 XXXX
01 0 1010
XX 1 0001
XX 2 0010
XX 3 0011
XX 4 0100
XX 5 0101
XX 6 0110
XX 7 0111
XX 8 1000
XX 9 1001
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Two complications arise with the zero hole site. When a hole is present
at this site, its coding is determined by its use in the card: If it is the only
punch in that column, it should be coded as numeric; if there are other
punches, it should be coded as a zone. The input and output circuitry
takes care of this problem.

The second problem involves the numeric code for the single zero
punch. In the NBCD code, the representation of zero is 0000. However,
this code is reserved for a blank. The IBM code for zero is hence 001010,
the hexadecimal “A”” worth ten.

Since all other numerics are represented as NBCD characters, we might
call this the modified NBCD code or simply MNBCD.

HLIS HTOH 0O39dZ

Use of the field Both data and instructions are accessed in

mark MEMORY using a three character address. This
determines the character which starts the field; termination of a field is
determined by the word mark. A complication arises because the machine
accesses data in one direction and instructions in another direction. This
is illustrated in Fig. 7.1.1.

Data are referenced by giving the address of the right-hand terminal
character of the field (the character with highest address). Data are used
or examined until a character accessed contains a word mark. Figure

vVivd

Location 340 341 342 343 344 345
Code 11000000 00111000 0011001 00101001 00101001 01011000 10—
Character b H A R R Y —
(a) The address of bHARRY is 345
Location 95 96 97 98
Code 11100100 0011001 00101001 01011000
Character M A R Y —
(b) The address of MARY is 98
Location 701 702 703 704 705 706 707 708 709 710 711 712
Character K 2 1 A 0 7 2 4 2 3 2 A

(c) location of instruction “K2” is 701
location of instruction *“1” is 703
location of instruction “A072423” is 704
location of instruction “2” is 711

Note: WM is leftmost bit in character,
Parity is the next character bit.
Two zone bits come next.
The four right bits in the character are the numeric.

Fig. 7.1.1 Format of data and instructions.
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7.1.1a shows how the field bHARRY 1is stored in MEMORY and accessed.
The character Y, coded 01011000, is at location 345; it is the right-hand
character of the field. To obtain this field, characters are accessed from
right to left until we arrive at the character bf (a blank). Notice that the
six data bits of this character are all 0, since this is a representation for a
blank. The parity bit is 1, so that the character contains an odd number
of 1’s. Finally, there is a word mark present which halts the accessing
process.

Figure 7.1.1b shows how the field MARY is stored at the address 98.
Data fields are stored from right to left for a most practical reason. Often,
arithmetic is done on data fields. Addition generates carries from a less
significant digit to the digit of next higher significance. Subtraction
generates borrows in the same fashion. Since higher significance digits
are accessed after lower significance digits and after addition has been
performed on them, then a carry can be taken into account in manipulating
these digits. Carry handling would be very difficult if data were referenced
in the other direction.

Instructions are stored in MEMORY from left to right. The lowest
address contains the most significant character of an instruction field. The
instruction consists of an opcode character and a number of address digits
and/or designator characters. One character is sufficient to convey the
entire command code of the IBM 1401. This opcode character is always
obtained first. Other characters which follow are modifier or address
characters.

The order of storage, left to right, is dictated by the ease of handling
program information by the programmer this time. He is accustomed to
writing commands from left to right, opcodes first, then address. Of
course, he could write them that way and have the /ssembler, Autocoder,
produce them in reverse order. This would permit a consistent word mark
position. However, in debugging a program, code appears backwards and
patching would be very difficult. Hence this compromise is handled effec-
tively by hardware:

o Data are read right to left.
o Commands are read left to right. _

Figure 7.1.1c shows several instructions in MEMORY. Each instruction
begins with a word mark character, and access continues until the next
word mark character is encountered—it is discarded. Foregoing informa-
tion is kept and recognized as the instruction to be executed.

In Figure 7.1.1c we note four instructions stored as described in the
legend.

t An underlined character represents one for which a word mark is present.

159

SNOILDTELSNI



160

THE 1BM 1401 Chap. 7

Addresses MEeMORY size for the IBM 1401 varies from
1200 characters to 16,000 characters (not 16K). It is impossible to address
this much MEMORY with three digits alone. However, we have three
characters available, not three decimal digits. The zone bits in these three
characters distinguish the thousands decade in which the characters lie.
The numeric bits give the location in terms of hundreds, tens, and units.
Table 7.1.3 shows the numeric addressing value of each bit in the three
characters.

Table 7.1.3 THE USE OF NUMERIC AND ZONE BITS IN
FORMING ADDRESSES

Character Hundreds Tens Units
Value B 2000 X 8000
A 1000 X 4000

8 800 80 8

4 400 40 4

2 200 20 2

1 100 10 1

By combining the numeric values of the numeric position of the three
addressing characters in hundreds, tens, and units with the zone bit values
in thousands, the exact operand address in MEMORY is fixed. Figure 7.1.2
shows several examples of how addresses are represented in the IBM 1401.

Code Address
01000011 00000100 01000101 345
00010011 00000100 01000101 1,345
01110011 00000100 01000101 3,345
01000011 00000100 00100101 8,345
01110011 00000100 01110101 15,345

Fig. 7.1.2 Several addresses and their codes.

7.2 REGISTERS AND SUBSYSTEMS

Functional units The REGISTERS and FUNCTIONAL UNITS of the
IBM 1401 computer are presented in Fig. 7.2.1. The dash-dot line
separates the UNITS into the SUBSYSTEMS, but it should be clear that
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Fig. 7.2.1 Functional units of the IBM 1401 (except 10).
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REGISTERS and other equipment are shared among the SUBSYSTEMS. Sharing
makes for improved efficiency of REGISTER use and hence lowers the total
cost of the computer. This does slow down the computer, since simul-
taneous activities do not occur.

Memory The MEMORY SUBSYSTEM contains two im-
portant REGISTERS: the STORAGE ADDRESS REGISTER, STAR, and the B
REGISTER, BR. The former holds the address of an operand being accessed
and corresponds to our MEMORY ADDRESS REGISTER. The B REGISTER holds
the datum during recall and memorization and corresponds to our MEMORY
DATA REGISTER. Notice that, contrary to classical design, the DATA
REGISTER is much smaller than the ADDRESs REGISTER. This fits in with the
previous description: Each data word is exactly one character; three
characters are required to specify each MEMORY address.

Processor The PROCESSOR consists of two registers, BR
and AR, which store the operands being manipulated. All operations are
performed on a character at a time; hence, the AR and BR store one
character each.

The PROCESSOR consists of a single digit ADDER, a COMPARISON UNIT, and
EDIT LOGIC.

CONTROL Three addresses are of importance to the

activity of this computer:

o the instruction address

o the addresses of each of the two operands
These three REGISTERs are called, respectively, the INSTRUCTION ADDRESS
REGISTER, IAR, the A ADDRESS REGISTER, AAR, and the B ADDRESS REGISTER,
BAR.

The OPERATION REGISTER, OR, holds the code for the operation to be
performed. A definition character, when required for some commands,
is placed in the A REGISTER, AR. MEMORY can be addressed from any of the
three ADDRESS REGISTERS, IAR, AAR, or BAR. To create a path between one
of these REGISTERs and the STAR, an ADDRESS COMMUTATOR is used. After
use, the address is generally incremented or decremented. This operation
could be done at the respective ADDRESS REGISTER or at the STAR. Hardware
is saved by passing the address from the STAR through an INCREMENTOR
under the direction of CONTROL on its way to the ADDRESS COMMUTATOR.

An INSTRUCTION COMMUTATOR during ferch distributes characters
which comprise the instruction. The DECODE takes part in this operation
in detecting the word mark.
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Input and output The logic for controlling input and output
operations is not displayed in Fig. 7.2.1; its description is postponed to
Section 7.8.

7 . 3 FETCH

Variable length A command is placed in MEMORY starting at a

commands lower numbered CELL and proceeding to a
higher numbered CELL. It lies between two word marks: it includes the
lower WM character but not the upper WM character. The number of
characters in a command varies from one to eight as described below.
Fetch obtains characters from MEMORY starting at the command address
in 1AR and continuing until a character with the word mark is found. This
is discarded. (It remains in MM.) The desired command is then found in
the IR.

A command can consist of 1, 2, 4, 7, or 8 characters. An example of
each is given below. First the Autocoder mnemonic is given, followed by
the machine language character underlined in parentheses. The underline
is the written representation of character with 1 in its word mark.

WANP) (7.3.1)

This is a request to print from the output area, a fixed MEMORY region,
onto the HIGH SPEED PRINTER. Only one command character is required
since addressing is implicit; the area in MEMORY addressed and the DEVICE
desired are both implied. ‘

S (K) d (7.3.2)

This request selects one hopper of CARD READER. K conveys the
command; the second character, d, designates the hopper.

B (B) AAA (7.3.3)

This unconditional jump includes an address of three characters
specifying the destination.

A (A) AAA BBB (7.3.4)

This command adds the operand specified by AAA to the operand
specified by the BBB and places the result at BBB. One set of three
characters is required for each of the two address fields.

BCE (B) AAA BBB d (7.3.5)

The branch character equal is a jump to the address AAA if the char-
acter at BBB is the same as that specified by d.
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The INSTRUCTION REGISTER, IR, in Fig. 7.3.1 can contain the maximum
of eight characters required for the largest command. It consists of four
SUBREGISTERS :

OR, the OPERATION REGISTER, contains one character for the command.

AAR, the A ADDRESS REGISTER, holds three characters.

BAR, the B ADDRESS REGISTER, holds three characters.

AR stores the d-character.

YALSIOHE NOILDMYLSNI

Fetch cycle Fetch in Fig. 7.3.1 shows only those parts of
the computer which participate. It can consist of one to eight phases, all
identical. A typical phase is described. The circled numbers in the figure
indicate the ordinal number of a step of this typical phase.

1. The contents of the INSTRUCTION ADDRESS REGISTER, (IAR), are passed
over to the STAR through the ADDRESS COMMUTATOR.

MEMORY CELLS

7'y
< 1
4
LI ©
// /
/
/4©,
STAR // / 4
-7
> V.
Mcu [ BR
@l 1
INCREMENTOR @
) 4 \ 4
ADDRESS INSTRUCTION
COMMUTATOR COMMUTATOR

@ T@

A 4

IAR OR AAR BAR AR

Fig. 7.3.1 Fetch cycle for the IBM 1401.
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2. MEMORY obtains the character (stored at the address in the STAR)
and places it in the BR.

. It is passed over to the INSTRUCTION COMMUTATOR.

4. The INSTRUCTION COMMUTATOR routes it to the proper position in the

IR.

The character in the BR is restored to MEMORY.

6. The address in the STAR is passed to the INCREMENTOR where 1 is

added to it.
7. This address is returned to the IAR.

w

hd

The numbers contained in the squares in Fig. 7.3.1 indicate where a
character is routed during a phase corresponding to that number in the
Jetch cycle.

It is emphasized that one more phase takes place than there are char-
acters in an instruction. Therefore, a fetch cycle can consist of 2, 3, 5, 8,
or 9 phases. When the DETECT examining the BR notes a word mark, this
is the last cycle. The word mark is in the first character of the command
which follows the one scheduled for execution. That character is discarded.
This initiates execution of this command.

Example Figure 7.3.2 gives an example of fetch for an
eight-character instruction. Shorter instructions are terminated earlier, as
should be evident after examination of this cycle.

The example is a fetch of the instruction B567123Q, residing at 345.
This is a request to jump to location 567 if the character at location 123
18 “Q.”

The first column of the figure indicates the ordinal number of the phase
being performed. Succeeding columns indicate the contents of REGISTERS

Memory
Location 345 346 347 348 349 350 351 352 353
Contents B 5 6 7 1 2 3 Q S
Phase STAR  IAR OR BR AR AAR BAR
Previous XXX 345 X X X XXX XXX
First 345 346 B B X XXX XXX
Second 346 347 B 5 5 5bb 5bb
Third 347 348 B (3 6 56b 56b
Fourth 348 349 B 7 7 567 567
Fifth 349 350 B 1 1 567 1bb
Sixth 350 351 B 2 2 567 12b
Seventh 351 352 B 3 3 567 123
Eighth 352 353 B Q Q 567 123
Ninth 353 353 B S Q 567 123

Fig. 7.3.2 Fetch of the command B567123Q stored at 345.
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which participate in the fetch. These are listed after the phase specified in
the first column has terminated.

The previous instruction fetch was terminated because B was brought
into the B REGISTER and a word mark detected. The IAR contains 345 after
the last execution cycle of the previous command. The contents of other
REGISTERS are unknown.

On the first ferch cycle we get the opcode, B, from 345 in MEMORY and
install it in the OR. The address 345 is returned from the STAR through
the INCREMENTOR to place 346 in the IAR.

On the second cycle, 5, which is the next character in the command, is
distributed to four different places: BR, AR, the first character of AAR, and
the first character of BAR. The other positions in AAR and BAR are cleared
by setting in blanks (b).

At the end of the fourth cycle, AAR and BAR both contain the A address,
567. We next get characters for the BAR, which occupies us for phases 5,
6, and 7. On the eighth cycle, the character, Q, is brought and deposited in
the AR. Finally, the ninth cycle brings S to the BR. The word mark is
detected and fetch terminated.

Large addresses The IBM 1401 can have MEMORIES which
range in size from 1,200 words to 16,000. The addressing scheme for the
machine was discussed earlier. These addresses are stored as three
characters. Hence, the AAR and BAR are both three characters long, each
character consisting of seven bits. Since the display for the operator
converts this information into straight decimal form, some manuals
portray these REGISTERs as four or five position REGISTERS. The extra
addressing information is transmitted between the IAR, AAR and BAR, and
STAR. The “thousands” information is decoded in the STAR.

7 . 4 REFLEXIVE COMMANDS

We examine reflexive commands first, because they are the simplest
and they illustrate the use of the ADDRESS COMMUTATOR. These commands
include jumps, halts, and noop.

Unconditional This is a four character command, BAAA.
jump From Fig. 7.4.1 we see that as the fetch cycle
ends, the command is contained in the OPERATION REGISTER and the address
in the AAR. All that is necessary to execute this command is to request that
the ADDRESS COMMUTATOR access the AAR instead of the IAR for the next
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Fig. 7.4.1 Logic for reflexive commands.
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fetch. This is done by CONTROL by activating the set line. CONTROL
recognized the jump; it has kept count of the number of characters

obtained during the fetch. This jump is distinguished from others by
containing exactly four characters.

Conditional jumps

This five character command is BAAAd. It

requests a jump if the condition conveyed by d has been set previously. If
the condition is not met, the next sequential instruction is fetched.

The setting of d determines the INDICATOR examined. A list of d
character interpretations is in Table 7.4.1. Each condition is stored as a
FLIPFLOP setting, switch setting, or other bistable DEVICE setting.

Table 7.4.1 MEANING OF d CHARACTER FOR B COMMANDS

Autocoder
Mnemonir d Character Branich On
B Unconditional
BC9 9 Carriage channel #9
BCV @ Carriage channel #12
BLC A ““Last card” switch (sense switch A)
BSSt B Sense switch B*
BSSt C Sense switch C*
BSS§ D Sense switch D*
BSSi E Sense switch E*
BSSt F Sense switch F*
BSSi G Sense switch G*
BEF K End of reel*}
BER L Tape transmission error*
BINE N Access inoperable*
BIN} ? Reader error if 10 check stop switch is off{
BINZ ! Punch error if IO check stop switch is off
BPB P Printer busy (print storage feature)*
BINE =+ Printer error if 10 check stop switch is off{
BU / Unequal compare (B # A)
BINZ * Inquiry clear* ‘
BINE Q Inquiry request*
BPCB R Printer carriage busy (print storage feature)*
BE S Equal compare (B = A)*
BL T Low compare (B < A)*
BH u High compare (B > A)*
BINZ \' Read-write parity check or read-back check error*
BINZ w Wrong-length record*
BINZ X Unequal-address compare™*
BIN] Y Any disk-unit error condition*
BAV Z. Overflow ¥
BINE % Processing check with process check switch offf

* Special feature.

+ d-modifier character must be coded in the operand portion of the instruction.
I Conditions tested are reset by a branch if indicator on instruction.



Sec. 7.4 REFLEXIVE COMMANDS

At the beginning of executiorn B is in OR; the jump address AAA is in
AAR, and the d character is in the AR. CONTROL recognizes a five character
command. The d character is interpreted by DECODE. CHECK is a unit
which takes information from DECODE and from the INDICATOR and
determines whether the condition described has been met. If so, CHECK
issues set aa signal; otherwise, CHECK transmits set ia. This causes the next
command address to be drawn from the AAR or IAR, respectively.

- Character jump This eight character command requests a
jump to address AAA if the character stored at BBB is the same as the d
character. CONTROL is aware that this is an eight character jump from the
fetch count. The first task, to get the addressed character from MEMORY,
is directed by sending set ba to the ADDRESS COMMUTATOR. This causes the
contents of the BAR to be sent to the STAR. The character is brought to BR
from MEMORY.

The COMPARE 1s now attached to examine the AR and the BR. The
result of this comparison sets the ADDRESS COMMUTATOR for the next
fetch: equal produces set aa; unequal produces set ia.

Word mark jump This command, similar to the character jump,
is an eight character command, VAAABBBd. It checks the character at
address BBB for word mark and zone and jumps to AAA only if the
combination of conditions specified is met. These combinations are listed
in Table 7.4.2. The command is executed similarly to the B command.

Table 7.4.2 MEANING OF d CHARACTER FOR VYV COMMANDS
d Character Condition

Word mark

No zone (No-A, No-B-bit)
12-zone (AB-bits)

11-zone (B, No-A-bit)

Zero-zone (A, No-B-bit)

Either a word mark, or no zone
Either a word mark, or 12-zone
Either a word mark, or 11-zone
Either a word mark, or zero-zone

HrAwoRxEN =

CONTROL knows that a word mark jump (not a character jump) is per-
formed. Hence, the contents of BR only are checked to form set aa or
set ia; (AR) 1s disregarded.
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Others NOOP, N, does nothing. It starts another
fetch.

HALT, ., causes the machine to stop. If an address follows the
command character so that we have .AAA, then the next command to be
executed after the restart button is pressed is obtained from AAA.

7 . 5 COMPARE, MOVE

Compare This is the simplest double data movement
command:
C (C) AAA BBB (7.5.1)

The field stored at AAA is compared with the field at BBB. The result
of comparison is stored in INDICATORS. Thus, the INDICATORS will store
whether the first quantity is greater than, equal to, less than, or unequal to
the second quantity. The INDICATORS can be interrogated with the jump
command, B.

CONTROL places an A character in the AR and then a B character in the
BR. The two are compared and, if equal, we continue without setting any
INDICATORS (the equal INDICATOR was set initially). When the two characters
are unequal, we set the INDICATORS according to the direction of the
inequality.

The circled numbers in Fig. 7.5.1 show the steps that take place in a
cycle of the compare operation. These are described in similarly numbered
steps below.

The A address is sent from AAR to the ADDRESS COMMUTATOR.
It is passed over to the STAR.
The A character goes to BR.
It is passed over to the INSTRUCTION COMMUTATOR.
It is placed in AR.
It is also returned to MEMORY at the address now held by the sTAR.
This address is passed over to the INCREMENTOR, where 1 is sub-
tracted from it.
8. It leaves there through the ADDRESS COMMUTATOR.
9. The address returns to AAR.
10. The B address is passed to the ADDRESS COMMUTATOR.
11. Then it is passed to the STAR.
12. The B character goes to BR.
13. The COMPARE sets COMPARE INDICATOR if this is required.
14. The B character 1s returned to MEMORY.

N s L=
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MEMORY
®®

A 4

STAR BR

INC @ COMPARE p—————p CI
@

A 4 N @
C COMMUTATORS
' ®
O |® @

IAR OR AAR BAR AR

Fig. 7.5.1 Action of the IBM 1401 for COMPARE.

15. Its address is passed to the INCREMENTOR, where 1 is subtracted
from it.

16. It goes to the ADDRESS COMMUTATOR.

17. The B address is returned to the BAR.

COMPARE is terminated where a word mark is detected in either the A
or B character. This is signaled to coNTROL (13), and no more characters
are brought thereafter.

Move The move command is:

MLC (M) AAA BBB (7.5.2)

It reproduces information from A field into the B field. The operation is
halted by the first word mark encountered in either field. One cycle is
performed for each character to be transferred. The details of a single
cycle are presented in Fig. 7.5.1 by numbers enclosed in squares alongside

171



172 THE 1BM 1401 Chap. 7

the arrows indicating the flow of information. The steps of a typical cycle
are presented below with numbers corresponding to those enclosed in
squares.

1-9. The A character is brought from MEMORY and placed into AR.
The address of the next character address is made in STAR by
subtracting 1—this is placed in the AAR.

10-12. The B address from the BAR is placed in the sTAR. The B
character is placed in BR.

13. The seven lowest bits of the A character are taken from the AR
and placed in BR. We now check to see if either AR or BR
contains a word mark. If so, a signal is returned to CONTROL to
end execution.

14-17. The new character for the B field is now in the BR. It is returned
to MEMORY at the B address now in the STAR. B address is
altered when it is passed through the INCREMENTOR. It is
returned to the BAR through the ADDRESS COMMUTATOR.

Other moves A number of other move commands are

Ularwa AXENS Y i1

provided for the user. These include the following.

MCS (2) move and zero suppress (7.5.3)
MLNS (D) move numerics (7.5.4)
MLZS (Y) move Zeros (7.5.5)
MLCWA (L) load characters to WM in A (7.5.6)
SW (,); CW (O) set or clear WM (7.5.7)

Only (7.5.3) requires special activity, called a rescan, to do zero
suppression. A similar operation is described in connection with EDIT in
Section 7.7.

7 . 6 ARITHMETIC

Two commands do addition and subtraction:
A (A) AAA BBB (7.6.1)
S (S AAA BBB (7.6.2)

They add (or subtract) the contents of the A field to (from) those of the
B field, placing the result at BBB. The operation is terminated when a
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word mark is encountered in the B field. This suggests that the B field is
equal to or longer than the A field. If the two fields are unequal in length
and the B field should be longer, then the process continues, using zeros
instead of referring to the A field after a word mark is encountered in the
A field. If there is no A field word mark, or if that field is larger than the B
field, the B field word mark ends the operation.

Operand The sign of an operand is in the zone of the
least significant digit. Numbers are positive except when AB=01 for the
LSD. The zone in the intermediate characters is stripped during addition
and subtraction. The zone bits of the most significant digit are set when
overflows occur. For a single overflow, AB=01; for a double overflow,
AB=10; for a triple overflow, AB=11. If a fourth overflow should occur,
the zone bits are restored to 00. Therefore, it is encumbent upon the
programmer to check these bits in case overflows occur.

Arithmetic The very first thing to be done is to determine
what arithmetic is done. Signed addition or subtraction was requested.
Whether addition or subtraction is actually done is determined from a
hardware-contained table such as Table 7.6.1. At the same time, we find
the sign of the result, assuming that no recomplementation is required.

Table 7.6.1 TYPES OF ADD CYCLES AND SIGN OF RESULT FOR ADD AND SUBTRACT

OPERATIONS
Type of A Field B Field Type of Add Sign of
Operation Sign Sign Cycle on o
+ True n
_+_
A - 1
D+ Complement g1 of field with
b + Complement larger magnitude
- True _
> - True _
u +
B , c 1 ‘
T - - omprement Sign of field with
A\ - Complement larger magnitude
A —
C
T + True .
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Next we set about to do the process. Finally, when subtraction is done,
it may be necessary to recomplement the result and change its sign.

A discussion using flow charts suffices to explain the general principles
of the operation.

Sign cycle The cycle required to determine the sign of
the result is shown in the flow chart in Fig. 7.6.1. This is a nonmove cycle:
an A and a B character are obtained from MEMORY, but neither the A nor B
address is altered as it is returned from the STAR to the AAR or BAR,
respectively. The least significant character of both augend and the addend
contains the sign of the number in that field. This cycle uses only the sign
to determine which process is performed as in Table 7.6.1.

Should complement add be performed, the sign returned to the B field
1s in standard form: +=01, —=11. Since B=1 in both cases, it is a FLAG
during recomplementation.

Add cycle To add, an A character is placed in the AR,
the B character in the BR, and the two added together using the ADDER.
The A character is obtained using the simple A cycle presented in Fig.
7.6.2. The A character address is obtained from the AAR for the STAR. The
contents of the STAR are decremented before being returned to the AAR.
At the end of a simple A cycle, AAR points to the next digit (to the left) for
addition.

B cycle A B cycle for both frue and complement add
1s presented in Fig. 7.6.3. The A character is in AR. We now bring the B
character to the BR. If this is the first cycle of addition (i.e., the rightmost
pair of digits are being added), check to see if this is true or complement
addition. Complement addition requires not only the complementation of
the A character but an extra precarry.

For other cycles we enter an additional 1 for previously recorded carry
whether true and complement addition is performed. Where a carry was
previously recorded, it is cleared after addition. Then the sum digit is
returned to the BR from the ADDER, and thence to MEMORY.

The ADDER remains energized, producing a carry for this digit if one
is called for until the carry can be recorded on a CARRY-IN FLIPFLOP after
it has been cleared of the previous carry in.

Now the new B address is obtained by decrementing the contents of the
STAR as they are returned to the BAR.

We look for a word mark in the B character which is still in the B
REGISTER. Should there be one, we determine the overflow condition. For
true add, we record this in the B zone bits. Where no carry has occurred
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(AAR)—>—STAR
((STAR))—>»B » (B) ————>M
A
STAR—> AAR (B) > A
v
(BAR)—STAR »| ((STAR))— B
v
(B) Parity >M (B)Digit M
) 4
(STAR)—=BAR

ARITHMETIC
v~ = Yes
X = No
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(AAR)——>STAR

v

(B)y—>M — ((STAR))———>B
(B)—» A $»| (STAR)—1 —— 3 AAR
v
Check

l
\_

Fig. 7.6.2 A simple A cycle.

for the word mark character during complement addition, a recomplement
cycle is requested.

When a B character does not have a word mark, do further addition
cycles. Itis possible that the A character may have contained a word mark.
If a word mark was encountered presently or previously in the A character,
A cycles are suppressed. Zero is placed in the AR immediately and before
each new B cycle thereafter.

Recomplement The recomplement cycle is sketchily presented
in Fig. 7.6.4. To recomplement the result, we reset the BAR to the address
of the least significant digit by bringing successive B characters from left
to right to the B REGISTER for examination. We look for a 1 in the B bit
of the zone of the character. Recall that the sign of the character was
placed in standard form. If there is a zero in the B bit, we continue the
search. Since we examine characters from left to right, we add 1 to the B
address as it goes from STAR to BAR.

When we find the least significant digit, we change to a forward scan,
complementing characters as we do: We pass the character from BR to
AR; we clear the BR; we perform a complement addition. The resulting
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Fig. 7.6.3 B cycle for both frue and complement addition.
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Bring B character
v’ Change to
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X
v
Change B address
by +1 Complement B
character and
put back into
MEMORY
- 1
v’
X
Change B address
by —1

G

character in BR is returned to MEMORY. We continue thus with forward
complementing scans: We get characters from right to left, recomplement
them, and return them to storage. When the character obtained contains
a word mark, the recomplement cycle is over and so is addition.

7 . 7 EDIT

Command The edit command is
MCE (E) AAA BBB (7.7.1)

It moves information from AAA to BBB, carrying out editing as requested

Fig. 7.6.4 Recomplement cycles.
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in the mask contained at BBB. The data to be edited are at AAA. Instruc-
tions on how to edit them are at BBB.

The B field contains characters which describe what is to happen as
information is moved there. Some characters in the B field give directions
to CONTROL. Others replace characters in the first field. Still others direct
alteration of characters as they pass from the A to the B field.

Example First examine the example presented in Fig.
7.7.1. Tt contains representations of MEMORY before and after edit. The
least significant digit in the destination field is at 300; the most significant
character in the destination field is at 284 and is §. The source field begins
with character 789 and continues to 782 which contains a word mark.
E is at location 901. The command extends to location 907. It requests
that information from 789 be edited and placed at location 300.

Edit tasks are determined by characters in the destination field.

This example demonstrates the use of mask symbols. The two right-
hand asterisks are copied as is. The ampersand is replaced by a blank.
The credit symbol is kept only if the source datum is negative; otherwise,
itis to be replaced by a blank. The ampersand at 295 is replaced by a blank.

The blanks (indicated as “b”) are replaced by data characters. Thus
the blanks at 293 and 294 are replaced respectively by 2 and 6. Proceeding
to the left, the period and dollar sign are kept. Zeros and blanks in the
destination field are replaced by corresponding digits in the source field.

The zero in the destination field at 291 requests suppression of zeros
to the left of the most significant digit should it appear at or to the left
of the mask zero. This requires a rescan of the field. The result of the
editing, you notice, has replaced the two left-hand zeros by blanks as
requested by the zero suppression symbol.

Mask symbols Table 7.7.1 shows which characters are used
_ in the mask to control the editing. The decimal point, asterisk, and dollar
sign are retained in the destination field regardless of the contents of the
source field. The credit and minus sign are retained if the source field is
negative; they are replaced by blanks otherwise. The blank is always
replaced by a source character unless preceded on the right by 0 for zero
suppression. Zero 1s replaced by the source character or a blank, according
to the zero suppression function described later. The comma is kept
except when the zero on its left has been suppressed.

Operation Edit, although complicated in function, is
simple to implement. Processing for our example is explained in tabular
form in Fig. 7.7.2.
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Sec. 7.7 EDIT
Table 7.7.1 CONTROL CHARACTERS FOR EDITING
Character Name Purpose

b blank A field character replaces B field blank.

0 Zero Indicates the rightmost beginning of zero
suppression. All nonsignificant zeros at or to the
left of this position are suppressed.

decimal point Retained in B field.

, comma Retained in B field. Removed during zero
suppression if it is at left of most significant
nonzero digit.

CR credit Retained for negative datum; removed for
positive datum.

— minus As for CR

& ampersand Replaced by blank, b.

* asterisk Retained.

$ dollar Retained.

Edit starts by placing the first A character in the AR. Then the first B
character is placed in the BR; it controls what is returned to storage next:

1.

2.

If the character in the BR is a comma, period, dollar sign, or asterisk,
it is returned to the B address.

If the BR contains a credit symbol or minus sign, the contents of the
A REGISTER are checked for sign. If negative, the symbol in the BR is
returned to MEMORY; otherwise a blank is returned.

. If the BR contains a blank, the contents of the AR are placed in the

BR which is then memorized. A word mark in AR is removed.

. If the BR contains zero, the contents of the AR are placed in the BR

and memorized; a word mark is added to facilitate rescan. This is
then memorized.

These four rules suffice to provide the complete editing facility. Notice
that some cycles obtain and store a B character and do not refer to the AR.
Other cycles store the A character and hence require a pair of character
acquisitions to fill both the AR and BR for the next character to be placed
in the destination field.

Zero suppression requires rescan, as illustrated in Fig. 7.7.2; it is not
done otherwise. Characters from the B field are placed in the BR and
examined. When zeros are encountered, they are replaced by blanks until
a nonzero character is encountered. Thereafter, characters are transcribed
as encountered. Rescan continues until the word mark character is
encountered. The word mark is removed and the character returned. We
rescan up fo the word mark and remove it, stopping editing at this point. A
word mark present in the destination field might interfere with printout.

18l
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Line  Cycle AAR  BAR B A Store B Field
0O Start 789 300 X 0 X $bbb,bb0.bb&CR&**$
1 A 78 300 6 6 6 $bbb,bb0.bb&CR&**$
2 B 788 299  * 6 * $bbb,bb0.bb&CR&**$
3 B 788 298  * 6 * $bbb,bb0.bb&CR&**$
4 B 788 297 & 6 b $bbb,bb0.bb&CR b**$
5 B 788 296 R 6 b $bbb,bb0.bb&Cb b**$
6 B 788 295 C 6 b $bbb,bb0.bb&b b b**$
7 B 788 294 & 6 b $bbb,bb0.bb bbb b**$
8 B 788 293 b 6 6 $bbb,bb0.b6 bbb b**$
9 A 787 293 2 2 2 $bbb,bb0.b6 bbb b**$
10 B 787 292 b 2 2 $bbb,bb0.26 bbb b**$
11 A 78 292 4 4 4 $bbb,bb0.26 bbb b**$
12 B 786 291 4 $bbb,bb0.26 bbb b**$
13 B 785 290 0 4 4 $bbb,bb4.26 bbb b**$
14 A 78 20 7 7 7 $bbb,bb4.26 bbb b**$
i5 B 785 289 b 7 7 $bbb,b74.26 bbb b**$
16 A 784 289 5 5 5 $bbb,b74.26 bbb b**$
17 B 784 288 b 5 5 $bbb,574.26 bbb b**$
18 A 783 288 2 2 2 $bbb,574.26 bbb b**$
19 B 783 287 2 : $bbb,574.26 bbb b**$
20 B 783 286 b 2 2 $bb2,574.26 bbb b**$
21 A 782 286 O 0 0 $bb2,574.26 bbb b**$
2 B 782 285 b 0 0 $b02,574.26 bbb b**$
23 A 781 285 O 0 0 $b02,574.26 bbb b**$
24 B 781 284 b 0 0 $002,574.26 bbb b**$
25 B 781 284 $ 0 $ $002,574.26 bbb b**$
26 B 781 285 § 0 $ $002,574.26 bbb b**$
27 B 781 286 O 0 b $b02,574.26 bbb b**$
28 B 781 287 0 0 b $bb2,574.26 bbb b**$
29 B 781 288 2 0 2 $bb2,574.26 bbb b**$
30 B 781 289 0 : $bb2,574.26 bbb b**$
31 B 781 290 5 0 5 $bb2,574.26 bbb b**$
32 B 781 291 7 0 7 $bb2,574.26 bbb b**$
33 B 781 292 4 0 4 $bb2,574.26 bbb b**$

Fig. 7.7.2 Edit example.
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1.8 10

Concept The IBM 1401 is priced low; there is no
attempt to provide simultaneity between 10 and processing. PROCESSOR
and CONTROL are dedicated to 10 when it occurs. 10 operations have access
to the computer REGISTERs and MEMORY. There is a small portion of the
10 cycle which leaves the PROCESSOR and MEMORY free so that some proc-
essing can proceed even during a dense sequence of 10 commands.

All (nonoptional) 10 requires corner turning: operations upon a set of
characters are performed on a portion of each character, and the effect is
recorded. This is repeated many times for the entire set. The details
become clear later as corner turning is discussed with respect to the three
important 10 processes.

Fixed areas in MEMORY are assigned to each 10 DEVICE: CARD READER,
CARD PUNCH and PRINTER. Each character in each of these areas must be
reviewed a number of times before successful 10 transfer is achieved. These
multiple accesses of MEMORY require much time and the complete dedication
of the computer.

We now explore in some detail 10 for the three important DEVICE.

Card reader A card is read a row at a time as in Fig. 7.8.1.
The ninth row enters the READ STATION first. The task of the computer is
to enter into MEMORY a proper image of information stored on the
card. Assume for the moment that only one hole exists in any given
column.

The MEMORY area assigned to the CARD READER includes CELLS 0 through
80. The card image occupies CELLS 1 through 80. CELL 0 contains a code
(the BCD value) corresponding to the row presently being scanned.

The first task of the LOGIC, when it detects that a row has been posi-
tioned, is to create the code for that row and place it in ceLL 0. In Fig. 7.8.1,
- the code for row 9 which is being examined has been placed in CELL 0.

Next the HARDWARE scans each column at the READING STATION. The
example shows a hole present in columns 9, 28, and 63.

A flow chart of the activity appears as in Fig. 7.8.2. Each of the eighty
CELLS in MEMORY is accessed and brought out to the B REGISTER. As this is
done, the number of the column is available in the STAR, and the input from
the READ STATION is checked. If a hole is present, the code in CELL 0 (and
also in the AR) is placed into the BR and stored in MEMORY. If no hole is
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SHHONN4AILTINNW

y

Reading
/ mechanism
| | N |
9 row = = —
7 28 SS 63 (
(a) Card being read
0 0 0 0 WM
1 1 1 1 parity
0 0 0 0 } zone
Contents {|0 0 0 0
1 1 1 1
0 0 0 0 numeric
0 0 0 0
1 1 1 1
Location: 0 7 28 63

(b) CELL contents

Fig. 7.8.1 How a code is entered into corresponding CELLS of
MEMORY for each column of a card being read which
contains a 9 punch.

detected in a column, the B character is returned unaffected. The first time
this is done (row nine), either all 0’s or a 9 code (10001001) is placed in a
CELL.

After the entire row is scanned, there is plenty of time for the card to
move so that the next row comes into position. The new code corre-
sponding to that row is prepared and made available in the AR and CELL 0
for entry as each column is scanned.

During later row scans, it is possible to encounter a double punch. A
double punch is permissible only if one of the punches is in row 8. If this is
encountered, the two codes are combined by addition to record the double
punch. Should an illegal double punch occur, an error is recorded, and the
card image may be rejected.
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CARD
READER

v/ = Yes
X = No

Position card

IO

Next row
ready?

Enter row code
into AR

v

.| Get character from

next read area CELL

Place character code
contained in BR in

for this column.

MEMORY at address |

(A)+(B)—>B
v Last X
row

Fig. 7.8.2 Flowchart; CARD READER.
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A punch in row 0 is converted to a 1 in the A bit; a punch in row 11 is
a 1 in the B bit; a punch in row 12 produces a 1 for both the A and B bits.
Only one zone punch is permitted; this is checked as the information is
entered.

HONNd aANOZ

If no numerical punch has been recorded for a character, a 0 punch is
converted into its numerical equivalent, 1010, with no zone code supplied.

Conversely, if a numerical punch has been recorded, 1 is entered in the
A bit.

HONNd OYdZ

When the CARD READER is started, 21 milliseconds elapse during which
no work is done and the PROCESSOR is locked out from computation.
Reading and recording are performed in the next 44 milliseconds. If
another card is to be read, a new command must be given within the next
10 milliseconds. These 10 milliseconds are free for computation.

DNINIL

PUNCH PUNCH operation is the reverse of read. As
before, the code of the row being scanned is set up in the CELL just preceding
the punch MEMORY area. As a row comes beneath the punch magnets, the
characters in the MEMORY area are scanned and compared to the code in the
A REGISTER. If the two are equal, the PUNCH MAGNET is energized; if
unequal, the PUNCH MAGNET is not energized. Equality is checked on
numerics and zones separately. Again 0 is a special case. After the scan,
this row POSITION MAGNETSs are set up. The PUNCH MECHANISM is energized,
and holes are punched in that row. This continues until all rows in the
card are punched.

PRINTER The IBM 1401 system uses a CHAIN PRINTER
which is similar to the DRUM PRINTER, the operating details of which are
described elsewhere.t In Fig. 7.8.3, we see a CHAIN containing a string of
dissimilar characters which is presently positioned beneath the paper so
that the “A” occupies the first print position. At that moment, we scan
the CHAIN and the message to see if there are letters on the chain in the
same position in which they belong in the message. When this is the case,
a HAMMER in that position is struck so as to cause an imprint of the char-
acter to appear on the paper.

In the example, we are printing out a part number which has an “A”
as the first character and “G” as the seventh character. The other
characters in the first part of the CHAIN do not correspond to those in the

T Ivan Flores, Computer Design. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1967.
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A B C D E F G 2 chain
hammer
? * action
A - A 1 8 B G message

201 202 203 204 205 206 207 location

Fig. 7.8.3 Correspondence between print chain and print message
at one moment in time.

message. Hence, the message scan energizes HAMMERS at positions 1 and 7
corresponding to the A and G in the message.

At this point, we have examined each character of the message with
respect to only one character in the alphabet. We wait until the CHAIN has
positioned one character to the right, and then we perform another scan.
This time “A” is sitting above the hyphen, “B” is above the 4, and so
forth. We use as many scans of the entire message as there are characters
in the vocabulary. Of course, the characters are put out on the CHAIN in a
nonduplicating sequence.

The computer hardware coordinates with the PRINTER as illustrated in
the flow chart in Fig. 7.8.4. The print message is located in a fixed area of
MEMORY, positions 201 through 320. The print command synchronizes the
operation of the PRINTER with the review of the message. A PRINTER
signal tells when the CHAIN is aligned. Another PRINTER signal indicates
the code for the character in the first position of the CHAIN.

Message review compares each character code in MEMORY with the
print code for the character at the corresponding print position in the
message. Since the positions along the CHAIN have different characters
and, consequently, different codes, a new code is fabricated by CONTROL
for each position. IBM examines every third character in the message,
repeating this three times so that the entire message gets scanned. This
detail should not confuse the issue. It is the complete scan which we refer
to hereafter. ' :

In the flow chart, after receiving the print character in the first position,
we get a message character from MEMORY and compare the two codes. If
the two are equal, we set up the HAMMER in this print position; otherwise,
we check if this is the last character in the line. If not, we advance the
MEMORY location. Scanning the line three times at every third character
requires an incrementation of the message character address by 3 and a
return to the beginning of the line when we reach the end. This con-
sideration does not appear in the flow chart.
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Chain in
position

Set up code of first
character on chain in AR

l Make code for Advance
<+ next print  |¢ MEMORY location for
position next message character
'y
Get next message character
from MEMORY to BR S N
»< (AR) : (RR)

Last
character
in line?

Set up
HAMMER

Print line
segment

Every
character
examined in every
print position?

v' = Yes
X = No

Fig. 7.8.4 Flowchart of print activity.
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At the end of a scan, as we change the message character location, we
also advance the print character code corresponding by augmenting the
A REGISTER. -

During comparison, the BR contains the message character and the
AR contains the print position code. COMPARE determines if the two are
equal and, if so, sends a message to energize the HAMMER position.

After a complete scan, we check to see if enough scans have been
performed to print every character in every position. If not, we wait until
the cHAIN has moved over one character position and then begin a new
scan. There should be one complete scan for each character in the symbol
alphabet of the PRINTER. However, a message scan can start with any
character since the CHAIN position is transmitted to the computer at the
beginning of the scan.

When all positions have been scanned through all characters, the print
cycle is complete and the computer is released for other duties.

7 . 9 | CHAINING

What is it? The IBM 1401 programs frequently use two-
address commands for movement and arithmetic. These commands require
seven characters of storage for specification. More efficient use of MEMORY
is made by chaining.

Tt is fortunate that the ADDRESS REGISTERS, AAR and BAR, hold the
starting address of the next adjacent field after a command is executed.
Three residual addresses are available to process fields which are adjacent
in MEMORY. To do this, to chain, just the command mnemonic appears in
the program. Fetch obtains only the command character—the next
character has a WM. The new command in the OR uses the residual
address in the AAR and BAR.

Example In Fig. 7.9.1, we see a posting problem where
activity information is to be entered onto a master record. For this payroll
case, the gross weekly earnings, federal tax, and bond deductions are to be
added to the year-to-date total in the master record for the employee for
these same fields. Fields in the master record are larger than those in the
activity record, for the totals they hold are similarly larger. This does not
interfere with the chaining.
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Fig. 7.9.1 Three commands amenable to chaining with before and after for the computer MEMORY with respect to their execution.
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To do the posting without chaining, three commands are given as
shown at the bottom of Fig. 7.9.1. Each command specifies an A field and
a B field which, respectively, contain the active and the master record
information location. After each command is performed, the B field
contains the updated total; the A field still contains the activity quantity.

Chaining Figure 7.9.2 shows the contents of various
requirements REGISTERS after execution of the three posting
commands. It is apparent that the residual addresses from one command
correspond to the actual addresses specified in the next command in the
sequence of commands. The command sequence at the bottom of Fig.

Location Command Before After
OR AAR BAR OR AAR BAR
350 A 580 920 X XXX XXX A 574 912
357 A 574 912 A 574 912 A 569 906
364 A 569 1919 A 567 906 A 565 899
371 X
(a) without chaining
Location
350 A 580 920
357 A
358 A
359 X
(b) with chaining
Location a h 3 &
on o [a2] o
Contents A 580 920 A A X

(¢) in MEMORY

Fig. 7.9.2 Chaining commands to do the job of Fig. 7.9.1.

7.9.2 chains these commands. When the A at location 350 is completed,
the next fetch brings in A from location 357 to the or. The next character
obtained in the fetch comes from location 358 and is also A. When this
character enters the BR, the word mark is detected, indicating it is part of
the next command. (Thatnewcommand consists of only the one character.)
Therefore, at the end of this fetch, the IAR contains 359, the OR contains 357,
and the residual addresses remain in the AAR and BAR.

Chaining occurs for the next add command at 358. The word mark in
the fourth command, A, at 359 tells the fetch hardware that the residual
information is properly oriented.

Although the foregoing sequence uses three add commands, any
chainable commands may be chained.
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Fig. 7.9.3 An example of single-address chaining.

To process information into two adjacent fields from two nonadjacent
fields, single-address chaining can be used, as illustrated in Fig. 7.9.3. As
before, residual addresses are in the AAR and BAR. We want the residual
destination address in the BAR but need a new source address for the AAR.

Using the example, after executing the subtract $713246, we find,

(orR)=S; (AAR)=708; (BAR)=238 (7.9.1)

CONTROL reads in the next command, M801, and is halted by the WM in
A. Mis read into the Or and 801 is read into the AAR but not into the BAR.
Hence we have,

(or)=M; (AAR)=801; (BAR)=1238 (7.9.2)

which is equivalent to having given the command M801238.

PROBLEMS

7.1 What is the similarity between the 1401 and EAM equipment concerning
(a) data; (b) commands?

7.2 Why is there no provision for indicating word marks on data entering
the 1401 via punchcards?

7.3 How do WMs get into data?

7.4 When a program is brought in via punchcards, the segment in the read
area contains no word marks. How can control be given to it?

7.5 Explain the scheme by which 16K of memory can be addressed with three
characters.

7.6 What is a variable size command? Why is it used? Is this an advantage?



PROBLEMS

7.7 How does a fetch cycle distinguish variable length commands?
7.8 Why is a datum read from right to left?

7.9 Why is a command read from left to right? Is there any other alternative?
Describe how you might design a coNTROL for a right-to-left command
scan. How would this affect programming? What could the assembly do
about it? Would other problems arise for the programmer (patching?)
that you might foresee?

7.10 How is it possible for commands with the same opcode to have different
lengths? Give examples. How are they used? How does cONTROL dis-
tinguish them?

7.11 Explain why there is only one conditioned branch.
7.12 How is the result of a cOMPARE recorded? Used?
7.13 How is a move done? Why are there several kinds of moves?

7.14 How many memory accesses are required to move seven characters,
including those for acquiring the command (without chaining)?

7.15 How does coNTROL affect the accessing of upper MEMORY ?
7.16 How is arithmetic requested? Recorded? What about overflow? Sign?
7.17 How is actual arithmetic determined ?

7.18 Why is recomplementation needed? Explain how its need is determined.
How is it done (explain cycles)?

7.19 Why is the edit command so complicated? Explain the use of each control
character. Why is & needed if a blank is called for?

7.20 Why are several scans required for edit? Explain each.
7.21 What is corner turning? How is it used?

7.22 Why can there be no simultaneity with the 1401 for the conventional
devices?

7.23 Explain how a punchcard character gets into its MEMORY cell.
7.24 Why is 10 limited to fixed areas of MEMORY?

7.25 Why do you think every fourth character on the print chain is scanned and
a triple scan cycle is used? Examine the turning carefully.

7.26 Explain how a message gets printed.

7.27 What is chaining? What are its advantages? How does CONTROL fetch
chained commands? Can al// commands be chained? Why (not)?
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HONEYWELL
200
SERIES
8.1 MEMORY AND ADDRESSING
Expansion The Honeywell 200 Series is very similar to

the IBM 1401, but the series includes computers which are much larger
and more versatile. One way to increase the usefulness of a computer is to
expand its MEMORY. This was done with the 200 Series so that the largest
computers provide half a million characters of MEMORY. As with the IBM
1401, the word is one character. The problem is to make this much
MEMORY addressable without using up many characters for calling out an
address whenever MEMORY is accessed. To do this, Series 200 provides
relative addressing which is automatically implemented but under the
control of the program or software.

Indexing and indirection are two features which aid programming
immeasurably. Although true hardware indexing is not provided in the
200 Series, this is unknown to the programmer. MEMORY indexing is
effective but not as quick as with hardware REGISTERs.

Commands The command for the H200 Series may
contain up to four fields similar in use to those in the IBM 1401 command.
This is a variable length command. The end of one command is dis-
tinguished by the field mark in the next command character.

In discussing the format, we refer to the four possible fields it might
contain as F, A, B, and V. These fields must follow in the order they are

named above, or
F<A<B<YV (8.1.1)

where < means “precedes.”
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Alternative formats for a command are presented by naming the fields
and separating them by slashes. Thus the maximum format is F/A/B/V
and the minimum is F.

The fields are

 F is a function code of one character.

e A is the A address field of two, three, or four characters.

e B is the B address field of two, three, or four characters.

e V is the variant character field; its nature is specified in the

command description.

The lengths of A and B depend on the present addressing mode of the
computer as described next. A and B are always the same length in a single
command.

Addresses To address half a million characters with the
most efficient method—using straight binary addresses—requires nineteen
bits. Using NBCD and four-bit numerics would require twenty-three bits.
A mixed alphanumeric system as described for the IBM 1401 might
require one or two more bits. Binary addressing is the best way to address
MEMORY with the least number of bits, as in the 200 Series. The machine
language programmer has to be familiar with binary and octal numbers.
However, most coding is done at a higher level. Easycode is the assembly
language for the 200. The responsibility to translate addresses from
decimal to binary is on the assembler where it belongs.

In the largest 200 Series MEMORY, a nineteen-bit binary address is
provided. If the user chooses a smaller MEMORY, the MEMORY ADDRESS
REGISTER and all REGISTERS which handle addresses are trimmed to work
for the chosen MEMORY size but no larger.

Addresses of operands are supplied in a command. As with the IBM
1401, an A address and a B address are specified in such commands as
ADD or MOVE. Since commands address information in the same general
area as the command itself, relative addressing is an expedient for
shortening the operand address. This reduces the amount of space
required for storing program information.

Addressing operates in three modes: four character, three character,
and two character. Only in the four-character mode is total MEMORY
addressable from the command; in the other modes, the base address
provided by the most recent four-character mode command is retained and
applied to the two- or three-character commands which follow.

Address The relation of the address stored in the
recording command to the address actually accessed in
MEMORY is best explained by reference to Fig. 8.1.1.
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Two-character * Address
address
ADDRESS
REGISTER Bank |
|« 7 bits—— | 12 bits———— ]
Modifier
Three-character | Address
address
|<.3 bits-><—————15 bits >}
|
ADDRESS
REGISTER Sector |
|« 4 bits ->-l-<7 15 bits >!
< < 24 bits -
Four-character Modifier I Address
address
|<—— 7 bits—»-!
|
ADDRESS
REGISTER
— 19 bits >J|

Fig. 8.1.1 Partition of address for different character modes.

A two-character address provides twelve bits of address information.
For straight binary addressing, we can access 4K of MEMORY. If 500K of
MEMORY is actually available, this leaves seven address bits unspecified.
These bank bits have been set by a previous four-character command.

The effective address is composed by concatenating, stringing together,
the two-character address in the command, as illustrated in Fig. 8.1.1.

HILOVIVHD OML

Three six-bit characters provide eighteen bits; only fifteen of these are
used to address one sector of 32K. Four bits, called the sector bits, are
specified by the last four-character address. The effective address for
direct addressing is composed by concatenating the four sector bits in a
REGISTER with the fifteen address bits from the three characters in the
command.

The three remaining bits from the command address are modifier bits;
they indicate whether indirect addressing or indexing is requested.

YHLOVIVHD AHdYHL
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The four address characters provide twenty-four bits—more than
enough to address 500K. The least significant nineteen bits are the
effective address for direct addressing. The remaining five modifier bits
may request indexing or indirect addressing.

Changing mode A command with mnemonic CAM and opcode
42, changes the address mode from whatever it is to two-, three-, or
four-character mode. The desired mode is indicated by the V character
(Honeywell refers to this as a variant character and designates it as V
instead of d). Thus, when we are in two-character mode and want to
change to four-character mode, we give CAM with a variant character for
four-character mode.

Indexing In the three- and four-character modes, the
modifier portion of the address may carry index or indirection information.
We restrict ourselves to three-character addresses. Modification of
four-character addresses is similar and adequately described in the
programmer’s manual.

Of the eighteen bits in the three-character command, fifteen are the
address portion; the most significant three bits indicate modification.

000 is for direct addressing.

« 111 is for indirect addressing.

o NNN is for index addressing where just one or two of the N’s
is 1 and NNN is the binary number for the INDEX REGISTER. For
example, modifier bits 011 request indexing using REGISTER
THREE.

Hardware INDEX REGISTERS are absent. The index tag is reinterpreted
as a MEMORY location. If the same MEMORY CELLS were used as indexes
regardless of the sector or bank being accessed, a complicated index access
scheme would ensue. To simplify matters, INDEX REGISTERS are in a
different location for each bank or sector in which the program might
operate.

Thus, the first few CELLS of a bank are set aside for indexes. When
indexing is specified and we are operating in bank three, one of the first few
CELLS in bank three is accessed. If we change to bank two, one of the CELLS
in the beginning of bank two is called for.
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S g 3
o .
S g 3 g
Vo) g O
8 < Aaddress m B address 8
@3 0012300045 6@0 . A portion of MEMORY with the program
. (addresses are octal).
4 bits—»] |15 bits——
0 2!X X X X X|MEMORY ADDRESS REGISTER
i
]
\
N e e e -
N
Sector 0 Sector 1 Sector 2
00012
(index #3)
X02000
@789 00456
D534 “—02123

Fig. 8.1.2 An example of indexing.

Example An example of indexing is presented in Fig.
8.1.2. Addresses that appear in the figure are (must be) octal; on the other
hand, data are alpha and/or decimal.

The MEMORY ADDRESS REGISTER holds seven octal digits. Actually, the
first digit can be only O or 1 since the REGISTER contains only nineteen bits.
For the three-character address command, SP‘ ctor information remains
constant. In the figure we are addressmg the sdcond sector.

The command fezched next is located (as shown in the figure) at address
0266262. Again the 02 designates the second sector. The opcode for add
is encircled thus: @. A command begins with a word mark. Honeywell
indicates their word mark by encircling the character.

Twelve digits follow the opcode; these are octal digits—six per address.
We are now functioning in the three-character mode; each address
consists of three six-bit characters; each character is represented by two
octal digits.

The first octal digit (the leftmost) is the modifier digit. In the example,
the A modifier is 3, indicating a request for index 3.

Index 3 occupies the six octal digits in CELL locations which end at
000128 in MEMORY in the current sector. This is shown in the MEMORY map
at the bottom of Fig. 8.1.2. cELLs 00010, through 000124 in sector 2
contain X02000. X shows that the first three bits of the first character are
ignored. The remaining fifteen bits modify the A address portion of the
command being interpreted.

The five-character A address is 000123. To this we add the index
quantity, 02000, to form the effective address, 02123.



Sec. 8.2 CONTROL MEMORY

Although address fields are viewed as binary information, operand
fields always contain alphanumeric information. Thus, the A field is
alpha information which ends at location 02123. Its beginning is dis-
tinguished by word mark. If a field contains numeric information and is
addressed by an arithmetic command, it is interpreted as a decimal number.

For instance, in the figure the effective A address is 02123: the datum
lies between 02120 and 02123 inclusively; it is the decimal number 1534.
Each decimal digit is coded into a six-bit character which, in turn, has a
digit octal representation. For this example we have 1534, = 01050304,
since 4, is represented by 04, etc. Similarly, we find at locations 00453
through 00456 the field which is 0789, represented by 00071011s.

Indirect addressing In three-character address mode, the modifier

character is 74 for indirect addressing. Multiple indirect addressing is’

permitted. Indirect addressing may terminate with an indexed address.
Both direct and indexed addressing are terminal.

For indirect addressing, the address in the command is used to acquire
the next address. The number of characters obtained during the chaining
is determined by the mode. Indirect addresses are acquired starting with
the designated address and proceeding from left to right (upward toward
higher CORE).

Figure 8.1.3 shows an example of indirect addressing which terminates
with index addressing.

The A field uses direct addressing as specified by the 0z of M, the first
position of the 4 address. _

The 75 in the B address indicates indirection. We are now operating in
sector five and hence go to CORE location 0503456 to obtain the next three
characters. These will be used for the B address of this command. Starting
at that location, we obtain 200345.

The initial 24 indicates indexing using REGISTER 2. Its location is the
three CELLS, the last of which is at 0500008. The six octal characters
contained there are 010234. The first octal digit is ignored, and 10234 is
added to 00345 to get 10601. This is prefixed by 05 (for operation in the
fifth sector). Then 0510601 is the address of the B field operand.

8 . 2 CONTROL MEMORY

Need The CONTROL MEMORY, CM, was chosen as a
component to replace REGISTERS because it is less expensive than FLIPFLOP
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Fig. 8.1.3 An example of indirect and indexed addressing.

REGISTERS but faster than CORE MEMORY. It is really fast enough (half-
microsecond access time) so that its use can be interspersed with cycles of
MAIN MEMORY (two-microsecond access time) without losing any time
between accesses. Further, as the versatility of the computer expands,
more REGISTERS are required to hold intermediate results and/or addresses
while processing is in progress. Adding new hardware REGISTERS increases
the cost much more than if CONTROL MEMORY were simply expanded.

CONTROL MEMORY consists of somewhat more than sixteen CELLS of
address size. Any CELL is available on demand from CONTROL for recall or
memorization. Many REGISTERS previously incorporated in CONTROL for
storing addresses are now in cM. Other REGISTERS associated with TRAFFIC
CONTROL for PERIPHERAL DEVICES are also stored there. Finally, if the
computer is to be expanded to new arithmetic functions which manipulate
floating point numbers, these can also be stored in CONTROL MEMORY.

CONTROL MEMORY is a standard feature of all the Series 200 computers.
However, more cM is provided in the larger models since additional
functions are required there.

Content The functions of some of the CELLS of
CONTROL MEMORY are presented in Fig. 8.2.1. cM operates similarly to
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CONTROL D CONTROL
MEMORY J MEMORY

DATA INCREMENT
REGISTER ’ﬂ‘ U = REGISTER
Address F urzcﬁon
77 INSTRUCTION ADDRESS REGISTER
67 A ADDRESS REGISTER
70 B ADDRESS REGISTER
11 START LOCATION COUNTER, CHANNEL 1
12 START LOCATION COUNTER, CHANNEL 2
13 START LOCATION COUNTER, CHANNEL 3
01 PRESENT LOCATION COUNTER, CHANNEL 1
02 PRESENT LOCATION COUNTER, CHANNEL 2
13 PRESENT LOCATION COUNTER, CHANNEL 3
41 WORK REGISTER 1
42 WORK REGISTER 2
43 WORK REGISTER 3
64 CHANGE SEQUENCE REGISTER
66 EXTERNAL INTERRUPT REGISTER
76 INTERNAL INTERRUPT REGISTER

AN
CONTROL
MEMORY
ADDRESS
REGISTER / A Y

Fig. 8.2.1 The CONTROL MEMORY.

MAIN MEMORY. A CONTROL MEMORY ADDRESS REGISTER (CMAR) stores the
address of a cM CELL. For recall, the content of this CELL is placed in
the CONTROL MEMORY DATA REGISTER (CMDR). Often this datum is an
address which is supplied to MAIN MEMORY, and thereafter, the address
is altered (incremented or decremented) before it is returned to
CONTROL MEMORY. Incrementation is performed in the CONTROL MEMORY



202 HONEYWELL 200 SERIES Chap. 8

INCREMENTATION REGISTER (CMIR). An address may be sent there from
CMDR; after incrementation, the address is returned to the cMDR and
thence to cMm.

“ Each CELL in the CONTROL MEMORY is of the same size—address size.

m  Its length, in bits, is determined by the size of MM. For the largest MAIN
MEMORY—half a million characters—the cMm word is nineteen bits; smaller
MM requires smaller words in CM.

Command fetch The operation of the CONTROL MEMORY, during
fetch, is presented in Fig. 8.2.2. Fetch obtains characters from MM and
places them either in hardware or CONTROL MEMORY REGISTERS so that
the command is ready for execution after fetch is completed. Fetch
requires two cycles for each character in the command:

o Acquisition—the next character in the command is acquired and
placed in the MDR.
 Distribution—the character in the MDR is transferred to a
REGISTER position or in part of a cM word.
MEMORY
ADDRESS
REGISTER
CONTROL
MEMORY MEMORY
b
/ -
! \
I CONTROL

MEMORY

ADDRESS
I\ REGISTER

\ CONTROL
- MEMORY
< DATA
CONTROL Y A REGISTER
MEMORY
INCREMENT i)
REGISTER
MEMORY
=> COMMUTATOR |&= DATA
REGISTER
! mopiFiEr Y V VNN
REGISTER
/" —— -
CONTROL (’/’ - OR VR AR BR
’/
SUBSYSTEM P
ADDER

Fig. 8.2.2 Organization of the 200 system,



Sec. 8.2 CONTROL MEMORY 203

To acquire a character, furnish its address to the MAR as follows.
CONTROL supplies [IAR] to CMAR. (IAR) goes to CMDR. From there it goes
to the MAR and cMIR, and MM recall is initiated.

In the meantime, the cMIR adds 1 to the instruction address, since
instruction character acquisition goes from lower numbered to higher
numbered MAIN MEMORY locations. This incremented address is returned
to the cMDR. The CMAR still contains the address of IAR. A CM memorize
cycle is initiated.

In the meantime, the MM has acquired the next instruction character
and has placed it in the MDR. It is distributed to a REGISTER Or CM.

Table 8.2.1 ASSEMBLY OF A TWO-CHARACTER ADDRESS INSTRUCTION

Character Type of Instruction

Number A dup B chain FlAlV FlvV
1 OR OR OR OR
2 AR, BR, VR AR, VR AR, VR VR
3 AR, BR AR AR VR
4 BR BR VR VR
5 BR BR VR VR
6 VR VR VR VR

Table 8.2.1 shows where each character goes for four possible instruc-
tion types for a two-address instruction with two characters per address.
In all cases, the first character is passed over to the OPERATION REGISTER,
OR, a FLIPFLOP REGISTER. The VARIANT CHARACTER REGISTER, VR, 1s also a
hardware REGISTER.

Address assembly Words in cM are large enough to address the
MEMORY size option that the user has chosen—f{rom twelve to nineteen bits.
The number of bits changed in cM in two-character mode is less than the
word size—not all the bits are changed. In general, the number of bits
changed depends on the mode.

The technique of getting information into a CONTROL MEMORY word is
presented in Fig. 8.2.2. The first character is inserted into the or. Further
characters from cM to the MDR by CONTROL are obtained as described
before.

As the first 4 address character is entered into the MDR; the CONTROL
MEMORY address of the AAR is passed over to the CMAR. cM brings the 4
address to the CMDR. The character now in the MDR is passed through the
COMMUTATOR to the second character position from the right in the
CMDR. A cM memorize cycle returns this to the AAR in cM.

If this character is also entered into the BAR, another complete CM CYCLE

NOILLISINOOY
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brings the B address into the CMDR, places the A character in the second
position from the right, and returns it to the B address in cMm.

The second A character is obtained and placed in the MDR by a fetch
cycle. The A4 address is placed in the CMDR by a cM recall cycle as described
just previously. Now the A character is passed from the MDR through the
COMMUTATOR and is placed in the rightmost position. For a two-character
address command, the A4 address is now complete. Twelve new bits have
been furnished to the right-hand portion of the A address; the seven bank
bits in the old 4 address are retained. The new A address refers to the same
bank.

The same procedure is used to obtain the B address. The difference is
that CONTROL places the [BAR] in the CMAR.

After the 4 address and B address are entered in cM, the remaining
characters in the command are variant characters. As each one appears,
it is passed over to the VARIANT REGISTER. The reader should note carefully
that some commands require several variant characters, a difference from
the IBM 1401.

Three-character For the three-character address, the first

address character contains three modifier bits and the
three most significant bits of the fifteen-bit address. As this character
appears in the MDR it is presented to the COMMUTATOR which separates
these three bits, placing them in the MODIFIER REGISTER, MR. The other
three bits go to bit positions fifteen, fourteen, and thirteen of the address
word currently in the cMDR. The higher-order bits, the bank or sector bits,
have been placed in the CMDR by a former CONTROL MEMORY cycle when the
computer was in four-character mode.

The next two characters brought from MM are commutated in the
second and first positions of the address word as described for the two-
character address.

Four-character For the four-character address, the first

address character brought to the MDR contains a five-
bit modifier and the most significant bit of the nineteen-bit address. This
modifier information is siphoned off by the cOMMUTATOR. The first five
bits are placed in the MR. The remaining bit goes to the CMDR in the most
significant bit position.

The next three characters that enter the MDR are passed through the
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COMMUTATOR and are placed, respectively, in the third, second, and first
positions of the address in the CMDR at the time.

8 .3 INDEXING AND INDIRECTION

Preconditions Indexing or indirection can occur only in
three- or four-character mode. As an address is procured in the fetch
cycle, modifier information is entered in the MODIFIER REGISTER.

Let us examine the case of the three-character address. The four-
character address is handled using the same principles.

The discussion in the previous section made clear how the eighteen bits
which make up an address are handled:

o The first three bits are the modifier. They are entered into the
MODIFIER REGISTER, MR.

« The remaining fifteen bits are placed on the right-hand end of the
ADDRESS REGISTER. Since the address can contain up to nineteen
bits, the most significant bits remaining in the AR are designated
as sector bits and are left over from the previous address.

« This applies to both 4 addresses and B addresses.

The descriptions which follow discuss how the 4 address is handled but
apply equally to the B address.

Indirection When the A4 address is acquired, a copy is
placed into a WORKING REGISTER, WR1, in CM.

CONTROL uses the address in WR1 to make a new A4 address. Addresses
are always obtained in the forward direction. Hence, we go through a
sequence of obtaining characters designated by the contents of wr1. The
number of characters we obtain is determined by the setting of the mode
control and not by a word mark.

CONTROL sends [WRI] to CMAR. cM brings the latest 4 address from
wr1 and places it in the cMDR. From there it goes to the MAR. MM gets a
character which is placed in the MDR. Meanwhile, the contents of CMDR
are passed over to the cMIR, where 1 is added to its contents. This is
because we are looking forward in MEMORY to get A address characters.
The contents of CMIR are returned to CMDR, and from there they are
memorized in cM at [WR1].

The address character in the MDR is passed to the COMMUTATOR where
it is separated into two parts. The first part goes to the MODIFIER REGISTER,
MR ; the second part is entered into the A address which was brought to the
CcMDR. To obtain the A address, [AAR] is entered into the CMAR; CONTROL
MEMORY brings the 44 to the CMDR for entty of the new A address character.

At the end of three MM accesses, a new A4 address should be secured in

SYALOVIVHD SSTIAAV LOTIIANI
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the AAR contained in CONTROL MEMORY. The MR contains three bits which
indicate if further indirection, indexing, or direct addressing is to be done.

Figure 8.3.1 contains an example of indirect address acquisition.
Notice that this is single indirect addressing for the 4 address and simple
direct addressing for the B address. The cycles which obtain the second
A address are designated in the figure as All, AI2, and AI3.

Indexing For indexing the A address, procure the 4
address and place it in the AAR in the CONTROL MEMORY as before. The
modifier bits in the MR tell which INDEX REGISTER to use for modifying the
A address. This set of bits, shifted two positions to the left, is inserted in a
WORKING REGISTER, WR2. WR2 contains the sector bits presently applicable
plus four times the binary number conveyed by the modifier bits. This is
obtained by a shift left of two places in the index designation. It is the
location of the terminal character of the INDEX REGISTER in MM.

We place the location of the last or right-hand A4 address in WORKING
REGISTER WR1. This should be the same as the IAR setting when the last
A address character was retrieved.

Indexing adds the contents of the designated REGISTER to the A address.
To do addition, we obtain characters from right to left. An example is
nresented in Fig. 8.3.2.

In cycle ANAI, the right-hand A4 address character is obtained and
placed in both the BR and AR. In the figure, these six-bit characters are
represented in octal. In cycle ANBI, the index character is placed in the
BR. In cycle ANCI, the contents of the AR and BR are added and the result
placed in the BR. Also during this cycle, the contents of the AAR are placed
in the cMDR. The COMMUTATOR is set so that the character in the B
REGISTER is entered into the rightmost position of the CMDR. (We are going
from right to left now.)

Cycles ANA2, ANB2, and ANC2, respectively, bring the next A
address character and the next index character, add them, and place the
result in the next position of the AAR in CONTROL MEMORY.

The same thing is done in cycles ANA3, ANB3, and ANC3. However,
for this last character, the three least significant bits are the only ones of
importance. These are entered into bits fifteen, fourteen, and thirteen of
the AAR in CONTROL MEMORY. The remaining three bits would normally
be the modifier bits, but indexing is terminal. Hence these bits are dis-
carded, and we go on to pick up the B address.

Multiple indirect Itis possible to do multiple indirect addressing.
addressing; Intermediate indirect addresses are tagged
indexing 111, indicating that further indirect addressing

is required. The technique for doing multiple indirect addressing is the
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Character MDR IAR OR AAR BAR WR1 MR IFF
. XXXXXXX 1100123 X 1 1 XXXXX 1 1 XXXXX XXXXXXX X 0
Op 1100123 1100124 A 1 1 XXXXX 1 1 XXXXX 1 1 XXXXX X 0
Al 1100124 1100125 A 11 OXXXX 11 0XXXX 11 0XXXX 7 0
A2 1100125 1100126 A 1101 2XX 1101 2XX 1101 2XX 7 0
A3 1100126 1100127 A 1101234 1101234 1101234 7 0
All 1101234 1100127 A 1101234 1101234 1101235 0 1
Al2 1101235 1100127 A 1102334 1101234 1101236 0 1
AI3 1101236 1100127 A 1102345 1101234 1101237 0 1
B1 1100127 1100128 A 1102345 1131234 1101237 0 0
B2 1100128 1100129 A 1102345 1134534 1101237 0 0
B3 1100128 1100130 A 1102345 1134567 1101237 0 0

Fig. 8.3.1 Example of indirect address fetch.
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A 304000 00 5000 221723

Character MAR IAR OR AAR wR1 WR2 MR AR BR

X XX XXXXX 0500321 X XXAHKXAKXX XXXXXXX XXAKXXXX X XX XX
Op 0500321 0500322 A 0 5XX XXX XXXXXXX XXAXXXXX X XX XX
Al 0500322 0500323 A 0 5 0XXXX XXAXXXXX AXXXXXXX 3 XX XX
A2 0500323 0500324 A 05040XX XXXX XXX XXXXXXX 3 XX XX
A3 0500324 0500325 A 0504000 XXXXXXX XXXXXXX 3 XX XX
Set 0500324 0500325 A 0504000 0500324 0500012 3 XX XX
ANA1 0500324 0500325 A 0504000 0500323 0500012 X 00 00
ANBI1 0500012 0500325 A 0504000 0500323 0500011 X 00 23
ANC1 0500012 0500325 A 0504023 0500323 0500011 X 00 23
ANA2 0500323 0500325 A 0504023 0500322 0500011 X 40 40
ANB2 0500011 0500325 A 0504023 0500322 0500010 X 40 17
ANC2 0500011 0500325 A 0505723 0500322 0500010 X 40 57
ANA3 0500322 0500325 A 0505723 0500321 0500010 X 30 30
ANB3 0500010 0500325 A 0505723 0500321 0500009 X 30 62
ANC3 0500010 0500325 A 0525723 0500321 0500009 X 30 22
B1 0500325 0500326 A 0525723 0500321 0500009 X 30 22
etc.

Fig. 8.3.2 Example of indexing.
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same as that presented in Fig. 8.3.1. If the modifier bits picked up are 111,
another set of cycles is initiated to obtain the next indirect address. A
WORKING REGISTER 1s used to store the present 4 address while a new A
address is entered into the AAR in CONTROL MEMORY.

The last address obtained by indirection may be direct or indexed as
described in Fig. 8.2.2.

34 1o

The Honeywell Series 200 performs 10 by cycle stealing, permitting
simultaneity of 10 and processing. At least three CHANNELS are normally
provided. For the lower numbered models, a fourth (alternate) CHANNEL
1s available as an option. The fourth CHANNEL coordination is not
described here to avoid needless complication.

In the higher numbered models, more CHANNELS may be provided when
large MEMORY options are furnished. Then multiple sectors are available
which are autonomous. Hence 10 operation and information exchange
can proceed in one sector independently of what is going on in another
sector. Again, because of the complications which this adds to the
explanation, these considerations are omitted.

Read write For a system with three READ WRITE CHANNELS

channel (RWCs), up to eight PERIPHERAL DEVICES may
be provided. A READ WRITE CHANNEL is a crossbar-connected CHANNEL
CONTROLLER. Each RWC can be connected to any one of the DEVICES, like
the arrangement in Fig. 2.2.1.

Connected to the MAIN MEMORY is the TRAFFIC CONTROL, a MEMORY
SCAN COMMUTATOR. In Fig. 8.4.1, each Rwc is connected to the TRAFFIC
CONTROL; also connected thereto is CONTROL and the PROCESSOR. Of
course, the MEMORY is of major importance. TRAFFIC CONTROL determines
who accesses the MEMORY and when.

TOYLNOD DIddViL

The Honeywell 200 Series MEMORY operates with a two-microsecond-
or-less cycle. Each rRwc is entitled to one out of three MEMORY cycles.
TRAFFIC CONTROL offers one MEMORY cycle, in turn, to each READ WRITE
CHANNEL. Hence a MEMORY cycle is offered to each Rwc every six micro-
seconds. If an Rwc does not require a cycle, the cycle is available to
CONTROL or the PROCESSOR SUBSYSTEM—but the Rwc has first priority.

NVOS
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CONTROL TRAFFIC PROCESSOR
SUBSYSTEM  |¢ CONTROL |¢——]  SUBSYSTEM

IDEVICE”DEVICE”DEVICE DEVICE || DEVICE || DEVICE || DEVICE

Fig. 8.4.1 TRAFFIC CONTROL can talk with any or all of the rRw
CHANNELS.

If coNTROL is in the midst of a fetch (which may require several MM
cycles), fetch will be held up as long as RWCs request MM cycles. But it is
rare that there is activity on all cycles. Further, activity on Rwc eventually
terminates so that its MEMORY cycles become available to CONTROL or the

. PROCESSOR.

ASnd

Similarly, when characters are being brought from MEMORY for
processing, their acquisition will be held up as long as there are RwcCs
requesting cycles.

Peripheral data Request for 10 activity is made (by the

transfer programmer) using a peripheral data transfer,
PDT. Its A address field contains the source (destination) starting MEMORY
location of the data for 10 transmission. Information is read (written)
from (to) MEMORY starting at the left (lower numbered location) and pro-
ceeding to the right (higher numbered location).

The first variant character, V1, distinguishes the Rwc activated. The
second variant character, V2, distinguishes the DEVICE and may also carry
information about the sector.

If either RWC or DEVICE is busy, the transfer cannot begin. More
important, the computer is immobilized if the RwWC and DEVICE cannot
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accept the command. Therefore, tests should be incorporated in the
program to verify that the RwcC and DEVICE are free before a PDT is given,
unless the programmer really wants the computer to be held up until they
become free.

If both the DEVICE and RwC are available and no extraordinary con-
ditions prevail, the DEVICE is activated. Data transmission begins after
mechanical medium movement and positioning have occurred, and the
DEVICE signals that it is ready to receive (or produce) information.

Data are transmitted to (or from) MEMORY, a character at a time or,
occasionally, a fraction of a character at a time. Characters or fractions
thereof can be transmitted between MEMORY and the DEVICE every six
microseconds. If slower rates are appropriate to the DEVICE, then requests
will be made at longer intervals (which is no problem).

The total number of characters transmitted between a DEVICE and
MEMORY is generally determined by the DEVICE. Thus, in reading a card,
eighty characters (columns) are transmitted from the card to MEMORY, and
the programmer should allocate eighty free CELLS in MEMORY starting at
the CELL designated in the command. For reading from an MTU, an end of
block character noted by the MTU halts transmission. Here the programmer
should leave sufficient space for the maximum size block.

The programmer can halt transmission on input by a record mark in
MEMORY where the last character to be stored will be placed. Though
characters may continue to emanate from the medium until an EoB is
reached, they will not be stored.

Information is transferred serially by character. However, for corner
turning, fractions of a character are transmitted, as typified by the
IBM 1401, CARD READER, CARD PUNCH, and PRINTER. Their operations are
similar in the Honeywell 200.

A complete character is transferred to (or from) MEMORY for the PAPER
TAPE READER, PT PUNCH, MAGNETIC TAPE, MAGNETIC DISK, and MAGNETIC
DRUM. For them, no corner turning is required.

Action of PDT During fetch, the first character obtained

command (conveying PDT) is placed in the OR.

Depending on the character mode, the next two, three, or four
characters comprising the 4 address are inserted in the AAR in CONTROL
MEMORY. Indexing or indirection, when requested, modifies the 4 address
before variant characters are obtained.

NOISSINSNVYL
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The first variant character, when placed in the VARIANT REGISTER, VR,
initiates two actions:

e The desired RWC is set to receive DEVICE information.

e The (AAR) is duplicated in cM at the rwc starting location,
rwes (of data in MEMORY for transfer). One RWcsL is provided
for each rwc.

The second variant character chooses an 10 DEVICE. Activity is then
initiated for that DEVICE by attaching it to the chosen Rwc. Other variant

characters which follow supply supplementary information about the
DEVICE activity.

Single scan We now describe 10 activity for DEVICES such

characters as the MAGNETIC TAPE UNIT, where only one
MEMORY access per character is required.

For the MrU, the medium must be accelerated to speed before data
transmission can begin. When up to speed in the case of reading, the
DEVICE obtains the first legitimate character from the medium and notifies
the RwWC. The RWC reports to TRAFFIC CONTROL that it will need the next
MEMORY cycle which becomes available to it within less than six micro-
seconds.

For each Rwc there are two CELLS in CONTROL MEMORY. Besides the
RWCSL, there is also an rwc present location cell, rwceL, which points to the
present character.

Before the single character transfer operation begins, the A address
which was stored in the RwcsL is duplicated in the RwcpPL. The RWCPL is
incremented whenever a character is transmitted.

We now look at 10 somewhere in the middle of data transmission.
The RWCPL is passed over to the CMAR. (RWCPL) is placed in the cMDR and
is then passed to the mMaR. Regardless of whether we are reading or
writing, this character is brought from MEMORY to the MDR to check for a
word or record mark (to determine whether the 10 operation is to
terminate). For writing, this character is passed over to the Rwc; for
reading, the character in the RWc is passed over to the MDR. Memorization
is done, and the MM is free.

Meanwhile, the contents of cMDR are passed over to cMIR for incre-
mentation. Thus 1 is added to the (RwcPL) so that the next time MAIN
MEMORY is accessed, it gets a character in the CELL with the next higher
address. The incremented address is returned to the cMDR and a cM
memorize places it at [RWCPL]. RWCPL is now updated in cm.

If TRAFFIC CONTROL finds that the next RCw needs a MEMORY cycle, it is
treated as above.
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Multiscan CARD READER, CARD PUNCH, and PRINTER each

characters require corner turning. Information is trans-
mitted only after a ready period. For read, the first scan not only enters
information but also clears the addressed MEMORY CELLS.

We examine CARD INPUT. Since its operation is the most complicated,
the operation of the other two DEVICES can be deduced from this ex-
planation.

The 9 row is read first. First the CARD READER delivers the code for 9
via the RwC; it is entered into a WR in ¢M where it is available all during a
9 scan. Other rows report to CONTROL MEMORY similarly.

The CARD READER requires two cycles for each hole site in each row.
The first cycle gets the column read thus far from MEMORY and places it in
BR. The second cycle adds the code of the row scanned to that in the BR,
checks for legality, and returns the code to MEMORY.

At the beginning of each row scan, cM is cycled so that the RWCSL is
installed into the RWCPL. The row code 1s placed in a WORKING REGISTER,
WR3. Now character cycles begin. The [RWCPL] goes to the CMAR;
(RwcpL) 1s entered into the CMDR. From there it is passed over to the MAR.
The character is entered into the MDR. This character goes to a WORKING
REGISTER (say, WR4) in the CONTROL MEMORY to be available for the next
RWC cycle for this DEVICE.

On the next RwWc cycle, the character from MEMORY is brought from
WR4 in cM and stored in the BR. If there is a punch in this card in the
column and row scanned, the code corresponding to that row is brought
from WR3 to the AR. If there is no punch, 0 is put in the AR. The contents
of the AR and BR are added in the ADDER and returned to the BR. The
result is checked for validity and, if invalid, reading hangs up.

Meanwhile, the (RwcPL) is withdrawn from cM and placed in the MAR.
The valid character code is transferred from the BR to the MDR. A MAIN
MEMORY cycle then places the character code in MEMORY. Before the
present location is returned to CONTROL MEMORY, it passes through the
INCREMENTOR s0 as to call for the next character when the next Rwc cycle
comes around.

Inquiry For an Rwc to accept a PDT command, both
the Rwc and DEVICE must be available; otherwise, the computer hangs up
until the two are free. For the programmer to avoid this hang up, we give
him a check on DEVICES and RwC.
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The peripheral control and branch command, PCB, has the format
F/A/V. There is no B address. The first variant character distinguishes
the Rwc and DEVICE tested; the second variant character indicates a
condition—generally we check for busy. If the condition being checked
applies—if the DEVICE and CHANNEL are busy, for instance—then the next
command is taken from the A4 address. If the condition is absent, we
continue to the next command.

The PCB may contain additional variant characters to request other
operations. These must be nondata operations, such as seeks for DISC and
rewinds for TAPE. Also, they may precondition a DEVICE for errors. For
instance, the CARD READER CONTROL can be conditioned to reject illegally
punched cards, to generate a busy signal for illegally punched cards, or
both, depending upon variant characters in PCB. Finally, variant charac-
ters may be used to condition interrupt operation.

The inquiry command PCB checks if an Rwc and DEVICE are busy. If
the system has received an interrupt, PCB determines whether a DEVICE and
RWC have become free and whether a noted condition has arisen. The
interrupt discussed in Section 8.5 initiates interrupt service for the Rwc
and DEVICE. After this service routine has taken effect, the programmer
is sure that the Rwc and DEVICE are no longer busy. He can then give a
PDT command without fear that the computer will become immobilized.
Hence a PCB command can be eliminated in this case.

10 without Interrupt is an optional feature on some
interrupt Honeywell 200 systems. Without it, how does
10 function smoothly? Recall that the RwcC is connected by a crossbar
so that any DEVICE may function on any RWC. In dispatching a DEVICE,
then, any RwC can be called for as an intermediary between the DEVICE
and MEMORY. But we don’t wish to give a PDT to an Rwc which is busy
or for a DEVICE presently attached to another CHANNEL, for this will hold
up the computer until the pair are free.
To ascertain:
» which RwC is free
« if the DEVICE is free
a series of PCBs is incorporated by the programmer in his program. He
may give a simple DEVICE check first so that, if the DEVICE is presently
operating, he may skip the Rwc check and just go on with the rest of his
program (if he can). If he finds the DEVICE free, he may give PCBs which
test Rwcs and, when he finds a free one, he may then give the PDT
appropriate to the task. If he finds no Rwc free, he may pause or go to a
different part of the program.
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8 . 5 SEQUENCE CHANGE

Operation A sequence change requests the cM to inter-
~ change the contents of the INSTRUCTION ADDRESS REGISTER, IAR, with
another REGISTER. The other REGISTER can be:

L4 the CHANGE SEQUENCE REGISTER, CSR;

0- the EXTERNAL INTERRUPT REGISTER, EIR;

L4 the INTERNAL INTERRUPT REGISTER, IIR.

Interchanges can be initiated by
 arequest from the programmer;
 a trap by the hardware.

In all cases, the purpose of the sequence change is to stop the problem
program and to go to routine elsewhere in MEMORY to

1. service the interrupt.
2. do some other job.

When we do this, we must save our place in the program because, when
interrupt service is completed, we pick up the problem program where we
left off. Some saving of other REGISTERS and INDICATORS may be necessary
to provide properly for the sequence change.

Change sequence - CSM causes the computer to operate in
change sequence mode (another name for subroutine operation). It simply
interchanges the 1AR with the CSR. It is useful to subroutine linkage.

If the CsR contains the starting point of a subroutine, SRSTART, then
CSM can link with the SR. CSM interchanges the contents of 1AR and CSR.
Sequencing of the computer continues from here using the present contents
of the 1AR. Therefore, steps performed after CSM are those of the SR.

At the end of the subroutine, another CSM command is given which
interchanges the CSR and IAR. But the CSR contains the o/d 1AR contents—
the address of the next instruction in the main program. After the switch,
the old program continues as though nothing had happened (except
execution of the subroutine).

How does SRSTART get into the cSR? Two commands make this
possible:
o Load Control Memory, LCM, loads the location in CONTROL
MEMORY specified by the variant character, with the contents of
the 4 address field specified in the command.
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o Store Control Memory, SCM, places the contents of the location
in CONTROL MEMORY specified by the variant character in the
location in MAIN MEMORY specified by the 4 address field of the
command. :

To get the starting location of the subroutine SRSTART into the
CHANGE SEQUENCE REGISTER, the programmer sets aside a location in MM
which contains SRSTART. Then, before he issues CSM, he gives an LCM
command specifying the CELL containing SRSTART in the A address as the
source; the CsR is specified as the destination by a variant character.

For one subroutine to call upon another, save is required. Suppose
that, in an outer subroutine, I wish to switch to an inner subroutine. The
CHANGE SEQUENCE REGISTER contains the place of the main program where
I am to return. This must be stored in some CELL such as MBLOC by
SCM before another CSM is given. Of course, CSM is also preceded by an
LCM command installing the starting location of the inner SR in the CSR.

The inner SR, upon completion, gives CSM which takes us back to the
outer subroutine. Immediately thereafter, we wish to do an LCM addressing
MBLOC and restoring it to the CSR for our return jump.

ONILLSAN

Interrupt by The 200 Series provides (in some models

sequence change optionally) two levels of interrupt called
external interrupt and internal interrupt. There is an INTERRUPT REGISTER
provided for each type of interrupt. These are called, respectively, the
EXTERNAL INTERRUPT REGISTER (EIR) and the INTERNAL INTERRUPT REGISTER (IIR).

When an interrupt occurs, its type is determined and an exchange is
made between that INTERRUPT REGISTER and the INSTRUCTION ADDRESS
REGISTER. This exchange is made only when permitting conditions prevail
so that program information can be maintained. Sequencing continues;
but now, commands from the interrupt service routine are executed rather
than those in the problem program. However, our place in the main
program is preserved in the INTERRUPT REGISTER and is available when we
have finished our servicing.

Information about the type of interrupt and its cause is stored in
FLIPFLOPS called mpicators and made available to the interrupt service
routine by commands discussed in Section 8.6. During the course of the
interrupt, information may be stored in INDICATORS normally used by the
problem program. But what about the information previously held in
these INDICATORS (before interrupt)? For the external interrupt, this
information is placed in an AUXILIARY INDICATOR REGISTER (AIR) SO as to be
preserved during the interrupt.
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Interrupt hierarchy  There are several statuses in which the
machine may operate:

Single cycle status is under the control of the operator who
presses a manual advance button to advance from ferch to
execute for each command.

In normal status, the machine has not been interrupted.

In internal interrupt status, the machine has been interrupted by
one of the causes classified as internal.

For external interrupt status, the machine has been interrupted
by a cause classified as external.

Let us now examine the hierarchy of interrupts. That is, we examine
which interrupts may occur in each status.

In normal status, both classes of interrupts are permissible.

In internal interrupt, the machine can be interrupted by an
external interrupt; when the internal interrupt has been serviced,
we return to the main program.

In external interrupt, the machine is no longer interruptable.
Return is made to the previous status. Hence, if the external
interrupt occurred in run or in internal interrupt mode, return
is made, respectively, to run or internal interrupt mode.

In single cycle mode, the machine is not interruptable. Interrupt
information is saved, however, and when the machine is returned
to normal status, prevailing interrupt information causes a
sequence change if this is in order.

External interrupt An external interrupt can be caused by:

a report on any one of the READ WRITE CHANNELS;

a monitor call instruction, MC;

the operator can indicate his desire for an interrupt on the
CONSOLE CHANNEL.

The interrupt is registered on the EXTERNAL INTERRUPT FLIPFLOP, after
which the interrupt becomes effective when these conditions prevail:

1. The computer is not in single cycle operation.
2. The computer is not in external interrupt status.
3. Command execution is completed.

4. A MEMORY cycle is available to CONTROL.

When the foregoing conditions prevail, the EXTERNAL INTERRUPT
FLIPFLOP causes certain INDICATORs to be placed in the AUXILIARY
INDICATOR REGISTER, AIR : ARITHMETIC INDICATORS, COMPARISON INDICATORS,
ADDRESS MODE INDICATORS, etc. These INDICATORS are then cleared for use
by the interrupt routine. Automatically, we enter the three-character mode
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and set the computer into external interrupt status. Finally, the contents
of the EXTERNAL INTERRUPT REGISTER are exchanged with those of the
INSTRUCTION ADDRESS REGISTER.

The interrupt condition is maintained until one of these situations
arises:

1. A PDT command is given to an RWC.

2. A PCB command is given which contains a request to turn off the
interrupt.

3. The computer is initialized.

8 . 6 INTERRUPT ASSIST

Save and unsave When an interrupt is established, the com-
puter becomes dedicated to servicing it. All REGISTERs of importance to a
user program must be stored in MEMORY. These REGISTERs occupy
addresses in the CONTROL MEMORY. The interrupt routine can store
REGISTERs using the SCM command. We must also store the contents of
the ADDRESS REGISTERS, AAR and BAR, because the user program may be
chaining commands at the time of interrupt. The next command might be
an add referencing the updated A and B addresses stored in AAR and BAR.

But even when chaining is not done, the contents of the AAR and BAR
contain the bank or sector bits required while operating in two- or three-
character mode, respectively, to which we adjoin address characters
contained in the command. If the AIR and BAR are not preserved and bank
or sector bits are altered by the interrupt routine, then the main program
will reference areas of MEMORY different from those intended by the
programmer.

When interrupt service is completed, REGISTERS in CONTROL MEMORY
must be restored. This is the obligation of the interrupt service routine;
the problem program finds REGISTERs intact upon return. Hence, at the
end of the service routine, we find a number of LCM commands.

Save INDICATORS There are a number of INDICATORs associated
with a running program. Some of these are stored automatically, but
many are not. The command, store variant and indicators, SV, is provided
to store the character remaining in the VARIANT REGISTER and/or various
INDICATORS. The format of the command is F/V.
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CONTROL knows which INDICATORs are stored from the bits in the
variant character for SVI. Each of the six positions in V indicates a unique
set of INDICATORS to be stored.

Here is a list of the set of INDICATORs stored by SVI, going from least
to most significant bit in its variant:

1. The variant now in the VARIANT CHARACTER REGISTER.

2. PROGRAM INDICATORS including ARITHMETIC, COMPARISON,
and ADDRESS MODE.

3. The contents of the AIR which are the same as in (2), but
which are placed in the AIR on an external interrupt. (8.6.1)

4, Information associated with the scientific (floating point) o
option.

5. INDICATORs associated with the protect, proceed, and
relocation options (see Section 8.7).

6. INDICATORs associated with interrupt source and status. )

For each set of INDICATORs, one character of storage is required—
as many characters of storage as there are 1’s in the variant of the SVI. The
characters which now hold INDICATOR information are placed in locations
immediately following the variant for the SVI. It is up to the programmer
to leave space following this instruction.

To save three sets of INDICATORs, give the instruction:
SAVE SvI 45 (8.6.2)

Octal 45 contains three 1’s corresponding to (1), (3), and (6) of (8.6.1);
hence, three sets of INDICATORs are saved. They will be placed at the
character positions SAVE+2, SAVE 3, and SAVE-+4. (What happened
to SAVE+-17?)

RESTORE We now need a means to get INDICATOR

INDICATORS information from where it was stored, and
to reset the INDICATORs. Restore variant and indicators with the format
F/A/V; RVI does this. V indicates which sets of INDICATORs are restored.
The exception is that the interrupt source and status cannot be restored by
this command, or else we would be in trouble!

The command provides an A4 address, where the INDICATORS were
stored. The variant tells in which INDICATORs the information is installed
once retrieved from the A field. This is conveyed by the setting of the bits
in the variant character as presented in (8.6.1).
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parts, one of which is protected while the other isn’t. A running program
is found in the unprotected area. It cannot reach into the protected area
to harm either the software or other programs which may be there.
Further, the (problem) program operating in the unprotected area cannot
give any of a set of privileged commands. If this were not the case, it
would be possible for the problem program to remove all protection from
MEMORY and then clobber the previously protected software or programs.

Setup of protected areas and other important activities is restricted to
the software residing in the protected areas since only privileged commands
are available. This software in protected MEMORY can be entered only by
an interrupt; the privileged commands can be given only while an interrupt
is in effect. During interrupt, a program formerly running in the open
area can be retired, and a new one may take its place at the discretion of
the SYSTEM. SYSTEM changes protection boundaries to exclude the
former problem program and include the new program.

Function With the protect feature, the MEMORY is
divided into one protected and one unprotected area. If the relocation
feature is not incorporated, then only a single division line is provided.
With it, the top area of MEMORY is protected, and the bottom is un-
protected.

We confine our discussion to when the relocation feature is included.
This provides an upper and lower dividing line. The unprotected area
lies between, and the areas above and below the dividing lines are pro-
tected. Of course, the dividing lines can be placed anywhere. If placed at
the top and bottom of MEMORY, then all MEMORY is unprotected.

When operating in normal status with protection and relocation
features enabled by SVI, the problem program can address only the middle,
unprotected area. If it tries to address a protected area, a protection
violation occurs, causing an internal interrupt. Further, programs in the
protected area may not address locations in the protected area in normal
status. This does not cause a problem because, to get to the protected area,
we have to enter interrupt status. Therefore, we never expect to be in
normal status while operating in the protected area.

Boundaries The lower boundary to the unprotected area
is contained in the BASE RELOCATION REGISTER (BRR. Its setting indicates the
upper bound of the lower protected area. This is just below the lower
bound of the unprotected area. It also provides automatic relocation:
A program which tries to access a lower area will have its operand re-
located into the open or unprotected area.
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The upper extremity of the unprotected area is contained in the
INDEX-BARRICADE REGISTER (BR) Which is also the lower bound for the upper
protected region. Commands in the unprotected program which try to
access the upper protected area or, after relocation, which are found to
address the upper protected area are declared to be in protection violation
and cause an internal interrupt.

Boundary setup To set up the boundaries, we require additional
commands. These are described below in the case where both the protect
and relocate features are supplied.

The privileged command, Load Index-Barricade register, LIB, has the
format F/A/V. Its purpose is to load both of the REGISTERs which divide
the MEMORY. It takes the contents of the 4 address and places them in the
IBR; it takes the contents of the B address and places them in the BRR.

The privileged command, Store Index-Barricade register, SIB, reverses
the steps taken by the LIB. The contents of the IBR are stored in the 4

mand - y
address of the command; the contents of BrRR are stored at the B qddress

of the command.

Wraparound The Honeywell 200 Series has a wraparound

MEMORY MEMORY. If locations past the upper limit of
MEMORY are addressed, these locations are accessed as though they still lie
in MAIN MEMORY—this is a modulo M system, where M is the size of
MEMORY. To find the location addressed, we subtract a multiple of the
MAIN MEMORY size such that the number remaining is positive and smaller
than M.

For instance, suppose we have 4K of MEMORY. The actual number of
locations contained in MEMORY is 4096, and they are numbered from 0 to
4095. A request for CELL 4096 addresses CELL 0. A request for CELL 4097
addresses CELL 1. A request for CELL 8194 addresses CELL 2, and so forth.

Round binary This wraparound scheme works only when M
number is a power of 2 so that we get a well-behaved
binary number. It works for 1K, 2K, ..., 65K, etc. But suppose the user

has a multiple of MEMORY which Honeywell furnishes but which is not a
round binary number such as 48K. If I call for a location just a little bit
higher than 65K, I will end up in a legal CELL in lower CORE. But if I call
for locations between 48K and 65K where wraparound does not exist and
CELLs have not been provided, I am making a request for CELLs which are
nonexistent and hence not protected. This situation is handled as an
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internal interrupt with addressing of the nonexistent core being noted as
the reason for the interrupt.

Internal interrupt

There are three causes of an internal interrupt:

SHSNVD

1. Addressing a protected area of MEMORY while in the normal mode.
2. Addressing nonexisting MEMORY (as explained earlier).
3. Giving a privileged opcode while in normal status.

The need for privileged opcodes was explicated at the beginning of the
section. Other opcodes are classified as privileged because they cause an
internal interrupt. An interrupt due to an opcode occurs because:

1. The opcode is a combination of bits for which no operation has been
defined.

2. A proper opcode for a feature not in the user’s system.

3. Opcodes for the following mnemonics:

SHAO0D dIDATIATAL

H Svi
LCR RVI
PDT RNM
PCB LIB

8 . 8 SOFTWARE INTEGRATION

General scheme The steps to be taken in servicing an interrupt
are, in essence, those described in Chapter 4:

1. The interrupt sets the associated INDICATORS.

2. A jump is made to the interrupt routine by exchanging the contents
of the INTERRUPT REGISTER with those in the INSTRUCTION ADDRESS
REGISTER.

3. A save frees the CONTROL MEMORY and REGISTERs from the original
program by placing pertinent information in storage location.

4. Tests find the cause of the interrupt.

5. The appropriate service routine is chosen and entered.

6. An unsave operation is performed to return the computer to its
original condition.

7. Return is made to the original program.
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We shall now examine how the hardware mediates between the
program and the software.

Interrupt is During interrupt, all MEMORY is accessible to

privileged the interrupt routine and all commands are
available to it. Finally, note that an external interrupt cannot be inter-
rupted. However, an internal interrupt may be interrupted by an external
one.

Example A typical initial and final portion of an
interrupt service routine is illustrated in Fig. 8.8.1. It starts in the middle
of the page at START, the SVI instruction. The symbolic address which
follows, INDS, is actually a variant character. This character is defined in
line 3 above, by the pseudo CEQU. Its operand is #1C73. Here #1C
conveys a literal consisting of exactly one character; 73 is the octal
representation of the character: 111011, This variant character tells
which INDICATORS to store.

A space of five characters is required to store all the INDICATORs since
735 contains five ones. This information is stored directly after the instruc-
tion SVI, which, with its variant, takes up two characters. At START+2,
the pseudo DCW with operand #5 sets aside five characters of storage
following SVI.

The next command, CAM, places the computer in four-character
addressing mode.

The two commands which follow are SCR commands. Each has in its
first operand field the symbolic address of a save area for the AAR and the
BAR, namely, SAVEA and SAVEB. Space for these areas is provided by the
DCWs on lines 5 and 6. This completes the save.

At the end of the interrupt routine, we unsave the information we have
put away. Beginning on line 8 at location RESTOR (we jump there from
the end of the interrupt routine, line 17), two LCRs restore the A and B
ADDRESS REGISTERS. Next we restore the INDICATORs with the command
RVI. It uses the four characters starting at location START 2. Although
we placed five characters in this area, we only withdraw four. The fifth of
these characters contains the old interrupt status.

Since we are only restoring four sets of INDICATORs, the variant
character of RVI is different from that for SVI. It’s symbolically called
INDR and is defined on line 4 by the CEQU.

On line 11, RNM exits to the problem program by interchanging the
present setting of the INSTRUCTION ADDRESS REGISTER with the contents of
the INTERRUPT REGISTER. The INTERRUPT REGISTER to be used is determined
by the interrupt state (internal or external).
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Location

AAR
BAR
INDS
INDR
SAVEA
SAVEB

RESTOR

START
START 4 2

Fig. 8.8.1 An example of coding for the internal interrupt routine prologue and epilogue in Easycoder.

Command

CEQU
CEQU
CEQU
CEQU
DCW
DCw
ADMODE
LCR
LCR
RVI
RNM
Svi
DCW
CAM
SCR
SCR

B

Operand

#1C67

#1C70

#1C73

#1C33

#4C

#4C

4

SAVEA, AAR
SAVEB, BAR
START -+ 2, INDR

INDS

#5

MAX
SAVEA, AAR
SAVEB, BAR

RESTOR

Comments

AAR variant code

BAR variant code

Variant to store INDICATORS

Variant to restore INDICATORS
Storage for AAR

Storage for BAR

Set maximum addressing mode
Unsave starts here; this restores the AAR
Unsave the BAR

Restore requested INDICATORS

Exit

Save required INDICATORS

Storage for the INDICATORS

Enter four-character addressing mode
Save AAR

Save BAR

Interrupt routine
Jump to the unsave point

Type of Command

Pseudo
Pseudo
Pseudo
Pseudo
Pseudo
Pseudo
Macro
Mnemonic
Mnemonic
Mnemonic
Mnemonic
Mnemonic
Pseudo
Mnemonic
Mnemonic
Mnemonic

Mnemonic
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Notice how RNM just precedes START. We have planned things this
way so that we go a full circle. Upon completion of the interrupt routine,
we find START, the location of the interrupt routine, in the 1AR. Now,
after RNM, the return to the normal mode, the proper starting place of the
interrupt routine is in the INTERRUPT REGISTER.

8.1

8.2

8.3

8.4

8.5
8.6
8.7
8.8
8.9
8.10

8.11
8.12

PROBLEMS

Explain how, for a given Model of H200, a program can include two, three,

or four character addresses?
(a) What is the form in each mode?

(b) What limitations are there in the amount of MEMORY addressable in each

mode?

(c) How does the three character address differ from that of the IBM 14012

(d) How does one change modes?

How is indexing done?

(a) How is the index specified ?

{b) Where is the INDEX REGISTER iocated ?
(c) What happens in each mode?

How about indirect addressing?

(a) Specification?

(b) Method?

fc) Can it be combined with indexing?

What is the CONTROL MEMORY ?

(a) What does it contain?

(b) How is it used?

(c) Explain a three character ferch.

How are the work registers in cm used ?

What is the Rwc? How is it like a cHANNEL? How does it differ?
What is TRAFFIC CONTROL? Describe how it works.

What is a scan?

What is PDT? What do the letters mean? What does it do?

PDT uses two variants, V1 and V2.

(a) What does each convey?

(b) How?

(c) How can two variants be obtained in the ferch?

What happens for a PDT if RwC or DEVICE is busy?

How is data transmitted on a PDT?
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8.13 What and where is the RwcsL, and what is its purpose?
8.14 How about the RwcpPL?
8.15 Explain corner turning in the H200.

8.16 What is the PCB?
(a) Explain F/A/B/V for PCB.
(b) What does it do?
(c) When should it occur in the program?

8.17 Since INTERRUPT is optional, how does the program request and schedule
10 without it?

8.18 What is a sequence change? What happens? Explain Csg, EIR, and IIR.
8.19 Explain CSM. How is it used? What happens for CSM?

8.20 What is LCM and SCM?
(a) How are they used for linkage?
(b) What REGISTER(s) do they affect?
(c) Where do they appear in the program?

8.21 How does the computer interrupt?
(a) Explain the interrupt hierarchy.
(b) What happens during the interrupt of a subroutine?
(c) Is this a problem?

8.22 Explain MC thoroughly.

8.23 Explain the need for SVI. What does it do? How does it specify what is to
be done?

8.24 Explain the complementary effect of RVl. How does it differ from SVI?
8.25 Explain the alternative operations done by RNM according to present mode.

8.26 What are the BRR and IBR?
(a) How do they afford protection?
(b) What do they have to do with relocation?
(c) With indexing?
(d) What happens when protection is violated? Explain.

8.27 What are LIB and SIB? How are they used? What do they do?
8.28 What is wraparound MEMORY ? How is it helpful? Harmful?
8.29 What are privileged opcodes? Enumerate.

8.30 In Fig. 8.8.1, explain what each of these does and how: (a) CEQU; (b)
DCW:; (c) ADMODE; (d) SCR.
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SYSTEM
360
O 1
7.1 INTRODUCTION
Aim IBM developed System 360 to suit all possible

users. To expect a single computer system to satisfy everybody, from
small users to large, would be imprudent. A number of models were
developed, each for a different price field. Except for the IBM Model 20,
the same machine language was kept throughout all the models. Further,
each machine should, to at least some degree, suit both the business and
scientific community. To be universally acceptable, a small data quantum
was chosen and named the byte. As originally defined by IBM, a byte
referred to a group of contiguous bits appropriate to a given application.
IBM has chosen to redefine the byte as exactly eight bits.

A common machine language made possible product line com-
patibility in the basic programming sense. The software was also supposed
to be compatible at all the levels.

Difficulties In trying to suit every user in all disciplines,
many problems arise:
 One must have a plethora of commands.
« All data formats must be provided for.
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For series compatibility, the small computer is straddled with a number
of handicaps.
e It uses a large command format.
o The CHANNEL CONTROLLER approach is applied where it may be
too sophisticated.
o Multiprogramming provisions are made, consuming time and
space:
* memory protect
* interrupt
* program status word
e For compatible software, much MEMORY (so valuable to the
small computer) is consumed.
« A MEMORY hierarchy is expensive at the low end of the spectrum.

In the attempt to make the series compatible, the large computer
models have disadvantages foisted upon them:
« Compatibility downward must be maintained.
« More commands than necessary appear in the repertoire.
« A universal software could work at higher efficiency in a larger
machine.

Although the computers seem identical and compatible on a superficial
level, they have quite different hardware. Further, it has been impossible
to create universal software to work equally well in all models. A large
array of different packages had to be constructed to meet the user needs
at each level.

Design center It is impossible to look at all the models of
the series for lack of space. The Model 50 is the design center of the series.
It has all the features of interest to the small- to medium-sized computer
user. Time sharing for Model 67, interleaved instruction handling for
Model 91, and large, fast buffer MEMORIES for Model 85 are indeed
interesting topics, but they must be left for a different volume.

9 . 2 PROGRAMMER’S VIEW OF
SYSTEM 360

System Figure 9.2.1 shows the bare essentials of
System 360. Central to the system is MAIN MEMORY. The PROCESSOR
communicates with it. CONTROL gets its directions from MEMORY. At our
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Fig. 9.2.1 Programmer’s view of System 360.

initial examination of the computer system, information was never sent
JSrom the CONTROL SUBSYSTEM fo the MEMORY. If we consider the cENERAL
PURPOSE REGISTERS part of CONTROL, this would be an exception to that rule.
Hence, to keep a consistent view of computers, we might regard the cers
as part of MEMORY.

All 10 functions are performed by CHANNEL CONTROLLERS as described
in Chapter 2.
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MAIN MEMORY is a single port system which operates as described in
Chapter 1. CHANNEL CONTROLLERs have the highest priority for use of the
MEMORY; CONTROL and the PROCESSOR have the least priority. A main
(MULTIPLEXOR) CHANNEL is furnished with the system; additional regular
CHANNELS (up to three) may be obtained as options.

The PswR is supplied for the program status word (described in
Chapter 4). The m recister, mr, generally holds part or all of the in-
struction during fefch and analysis. The I1AR stores the instruction address.
All command decoding, function allocation and signal gating is done via
the READ-ONLY MEMORY described in Section 9.4. There are no hard
REGISTERs set aside specifically for indexing. Indexing is done using the
GPRs as below. Some command arithmetic is required for CONTROL. This
is done by sharing the PROCESSOR hardware; hence, it is indeed hard to see
where CONTROL leaves off and the PROCESSOR begins. No indirect addressing
is possible via the hardware.

GENERAL PURPOSE The programmer is aware of sixteen

REGISTERS Jixed point Gprs. Each stores a four-byte (thirty-
two bit) quantity. Also available to him, if he has the floating point
option, are four floating point GPRs, each storing sixty-four bits.

All Gprs are addressable when they participate in a command. Fixed
point GPRs are numbered consecutively from O to 15. . Floating point GPRs
are numbered 0, 2, 4, and 6 (they are eight-byte REGISTERs). Fixed point
commands refer to fixed point GPRs; floating point commands refer to the
floating point GPRs. Variable length decimal and character commands
do not use GPRs. Hence, there is no ambiguity in labeling GPrRs. When
a GENERAL PURPOSE REGISTER is called for, the one named in the command
is used.

The GpRs are implemented by a LoCAL MEMORY. This is high speed
(half a microsecond access time) CORE MEMORY. It has sixty-four
REGISTERs ; the additional ones, other than the GPRs, are used for other
purposes. These are not available to the programmer and are discussed in
Section 9.4.

GPRs are used by most commands. They are the heart of the machine
and serve the following needs:

1. They hold operands for fixed and floating point arithmetic and
logical operations.

2. They hold index quantities and are referenced by commands which
permit indexing.
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3. They hold base or relocation quantities. It is important for both the
programmer and the hardware man to distinguish between re-
location and indexing. One of the main limitations of this particular
system is the comparatively few GPRs available for these separate
but equal functions.

Byte orientation The various models of System 360 have
different word sizes (as originally defined by me in Chapter 1)—the
quantum of information obtained during the MEMORY cycle. The designers
wished to give all models of the series functions which were independent
of their word sizes. Hence, the byte was chosen as a quantum to fill this

need and suit the spectrum of uses. It is defined as eight bits by IBM and
other manufacturers of similar series.

The byte can be considered as:

» a single eight-bit alphanumeric character code;
e two four-bit NBCD digits;
* a portion of a binary number.

As is usual, most commands (which process data) are data dependent:
Decimal commands expect to find two decimal digits per byte; fixed point
commands manipulate binary numbers; floating point commands expect
fractions and exponents in a specific form; etc.

IBM, RCA, and others use particular names to apply to a collection
of bits. In particular, they use “Word.” Word, here, has a particular
meaning: thirty-two bits or four bytes of information. To distinguish the
manufacturer’s use of Word from my use of word, I use an initial capital
to set off the former (particular) one. Manufacturers also talk about
halfWords (two bytes) and doubleWords (eight bytes). Their use is clear
from the original definition of Word. Among the programmer’s slang,
nibble is applied to a halfbyte. I will nibble when needed.

By my definition, the word size of System 360 varies from one byte

for the Model 20 to eight bytes (double Word) for the Model 65, and
higher.

Bytes A byte is simply eight bits. When speaking
of the value of such a byte, it is inconvenient to use the straight binary
notation consisting of only 0’s and 1’s. We might use three-digit octal
notation, but the manufacturers did not favor this because:

1. Three digits are required;

2. It does not represent decimal numbers well;

3. It is not amenable to shift operations;

4. It is wasteful of punchcard columns or media space.

Instead, they have gone to a base sixteen system called hexadecimal.
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To use a base of sixteen, we need zero and fifteen other digits. However,
the decimal system provides us with only ten usable digit symbols. Hence,
as auxiliary symbols, the first six capital letters of the alphabet are used.
Each symbol has a four-bit code corresponding to it. These codes change
in natural succession in the same way that the binary numbers do. Further,
the order of the codes assigned is the same as the order of the letters. This
code should be called natural binary coded hexadecimal or NBCH.
Sometimes it is simply called NBCD. A table of NBCH codes appears as
Table 9.2.1.

Table 9.2.1 THE DECIMAL AND HEXADECIMAL DIGITS AND THE FOUR-BIT NBCH
CODE FOR THEM

Hexadecimal Hexadecimal
Decimal Digit NBCH Code  Decimal Digit NBCH Code
0 0 0000 8 8 1000
1 1 0001 -9 9 1001
2 2 0010 + A 1010
3 3 0011 — B 1011
4 4 0100 + C 1100
5 5 0101 —_ D 1101
6 6 0110 + E 1110
7 7 0111 — F 1111
To illustrate how NBCH is used, two examples follow:
11001000 11110101 = C8F5 (9.2.1)
00111010 = 3A (9.2.2)

A byte can hold two decimal digits in NBCD form. The digits may
be placed into a designated byte by the command, PACK, described later.
Decimal arithmetic commands expect to find two decimal digits per byte.
This format is called packed decimal. Each digit is coded in NBCD using
the first ten codes in Table 9.2.1. Thus, each byte is considered as two
nibbles, each’ of which is a four-bit code. Only ten combinations are
admissible NBCD symbols. The other six are admissible as plus or minus
signs, as noted from the table, only when they appear in the rightmost
nibble of a decimal field. In any other position, a sign is recognized as
invalid data.

When a byte carries alphanumeric information, all eight bits participate.
This presents 28 or 256 combinations per byte. Two standard eight-bit
codes are available. They are called ASCHII-8 and EBCDIC. The
meanings of the initials and the codes themselves are found in System 360
manuals.
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With so many combinations available, we find many unassigned
combinations in each code. Even so, there are codes for the following:

Digits.

Uppercase alphabetic.

Lowercase alphabetic.

Special characters such as asterisk, question mark, etc.

Special symbols such as carriage return, line advances, and so forth.

Rt il & e

Packing Originally transcribed data are always trans-
mitted to the computer from input in unpacked form with one digit,
character, or symbol per byte. Numerals are a subset of the eight-bit input
code. There is no reasonable way to have the INPUT DEVICE handle
numerical and alphabetic information differently. Thus, information from
punchcards, paper tape, consoles, and so forth 1s unpacked in alphanumeric
form even if it is numeric. Numerals which will ot be processed can be
left unpacked and then transferred directly as any other alpha byte to an
area for output without intermediate conversion.

Numeric data which are subjected to arithmetic must be packed. The
command, PACK, takes numerals coded in eight-bit form, changes them
to four-bit NBCD form by stripping the left four bits, and then packs them
two digits per byte. This takes time and also requires MEMORY for storing
both forms of the same number.

Unpacked decimal bytes contain 1111 in the left nibble and the NBCD
equivalent of the digit in the right nibble. The exception is the least
significant digit which may have another combination in the left nibble
for sign. Packed data always contain the sign in the rightmost nibble.
Then packing preserves the sign nibble, positioned as in Fig. 9.2.2.

Other decimal nibbles are prepared by stripping the left nibble from
the alpha byte. These are assembled to produce the proper NBCD image
as shown in Fig. 9.2.2.

6 2 9
{ 11110110} 111100104 11111001 7}

1 X

1|I | -_]lf
0110{0010f1001¢1111 g

6 2 9 +

Fig. 9.2.2 Operation of the PACK command.
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Consider that, if alpha rather than numeric data are used inadvertently
for packing, stripping is performed automatically. If arithmetic is later
performed on these packed data, an error may be detected since invalid
codes may appear in nonsign positions—only nonsign combinations
should appear there.

To unpack numeric data (N), using the unpack command, UNPK, the
reverse operations are done (see Fig. 9.2.2) to produce an unpacked
field (U):

1. The N rightmost (sign) nibble is placed in the left nibble of the U
rightmost byte.

2. The next (going leftward) N nibble is placed in the right U nibble.

3. Succeeding N nibbles (going leftward) are placed in right nibbles of
succeeding (going leftward) U bytes.

4. 1’s are placed in the left nibbles of all U bytes.

Conversion When fixed point binary arithmetic is used,
packed (decimal) information must next be converted into binary form
using the ConVert to Binary command, CVB, before binary arithmetic can
be requested. We do binary arithmetic with thirty-two bit, fixed length
Words.

When binary information is ready for output, it must go through both
reconversion and unpacking procedures. Using the ConVert to Decimal
command, CVD, we go from binary to packed decimal; we go from packed
decimal to input alphanumeric using UNPK.

Only when information is for later computer consumption and is not to
be used by the humans can we really take advantage of packed decimal or
fixed word binary format. In this case, a CORE image can be dumped onto
MAGNETIC TAPE, DISC, or DRUM without conversion and later returned to
CORE MEMORY in its original state.

9 . 3 COMMANDS

Multiple length The advantages of multiple length commands
became apparent before the inception of the IBM 1401 and have been
carried over to System 360. This philosophy provides:

o Two-address commands for requesting processing in a single
command and providing reference to all three operands involved.
e One-address commands where direct addressing suffices:
Although zero-address commands are useful for the IBM 1401,
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implied addressing is not required in System 360 since GPRs are
always named in the command. /
« Effective use of MEMORY which is not wasted for fixed formats of
extra length when smaller commands will suffice.
In the case of System 360, we find byte orientation instead of the field
mark orientation. There must be some way to distinguish the size of
commands. Actually, there are only three sizes: two-, four-, and six-byte
commands. Command size is conveyed by the first two bits in the opcode.
We now examine the various fields which comprise the command.

REGISTERS Of the sixteen GPRrs, one to three of them may
be called for in a command. When a REGISTER is referenced directly, as an
OPERAND REGISTER, it is referred to symbolically as R. The number of the
REGISTER is noted in binary; one nibble per REGISTER indicates REGISTER 0
through 15 (0 through F, hexadecimal). When GPRs are used as DESTINA-
TION Or SOURCE REGISTERS, they are designated by labels R1 or R2,
respectively, depending on whether they are used for the first (both source
and result destinations) or second (source only) operand.

When a Ger hoids an index quantity (acts as an INDEX REGISTER) it is
symbolically referenced as X. Again, a nibble suffices to label the REGISTER.

When a GPR is used as a BASE REGISTER for relative addressing, it is

symbolically referred to as B, and a nibble suffices to call it out.

Addresses When CORE MEMORY is referenced, a specific
location is called for by a binary number. This number occupies twenty-
four bits, enabling us to address about sixteen million bytes of MEMORY.

The effective address of an operand is formed by adding as many as
three quantities together:

1. D is a displacement of twelve bits (one and a half bytes) contained
in the command.

2. B is a BASE REGISTER. The GPRs contain thirty-two bits, but the
address portion consists of only the rightmost twenty-four bits.

3. X is a GPR when used for indexing. Again, only the rightmost
twenty-four bits are used for addresses.

M, the effective MEMORY location, is defined as:

M =D + By + X)u (9.3.1)

where (B)y; and (X)y are the rightmost twenty-four bits of the Gpr. (These
subscripts are omitted later when no confusion will arise.) Al MEMORY
references include both a displacement and a BASE REGISTER specification;
only certain specific commands permit indexing.
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When a command contains an operand byte (immediate addressing),
this byte is designated as I. Only one command byte can be immediately
addressed.

Variable field length (VFL) commands operate upon fields, where the
length of a field is specified in the command. When both source and
destination fields are required to be the same length, the single byte
specifier, L, indicates these lengths as 1 (L. = 0) to 256 (L = 256 , = FF )
bytes. When two fields of different lengths are used for decimal arithmetic,
the nibble designators L1 and L2 are used to show fields of one (L. = 0g)
to sixteen (L = Fy) bytes each.

Format There are five formats for System 360
commands, and they are illustrated in Fig. 9.3.1. We discuss each.

The RR or REGISTER to REGISTER command references two GPrs. Each
GPR specification requires one nibble; one byte specifies opcode. An
example of such is LR or Load Register. 1t requests that the contents of R2
be duplicated into R1:

LR:  (R2)—RI (9.3.2)

For RX commands, a REGISTER and an indexed MEMORY location are
operands for the command. An example is Load, L, which requests that
the contents of a MEMORY location be copied into a specified GPR thus:

L:  (M2)—Rl (9.3.3)
Type Format Distinction by opcode
bits 0 and 1
RR op R1 R2 : ' 00
RX op R1 X2 | B2 —— D2 —> ! 01or10
RS op R1 R3| B2 [=— D2 —> | 0lor10
SI op 1 Bl j<— D1 —> . Olor 10
SS op L Bl |<—D1 —— B2 =—D2 — 11
SS op |L1 L2|Bl{<«—D]l—>| B2 <—D2—> 11
bytes: -<—1—>—-<—1—>—1/2-|-<——11/2—>——1/2~-<—1 15—t

Fig. 9.3.1 Command formats.
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TYPE RR

TYPE RX

Table 9.3.1 OPCODES AND MNEMONICS FOR IBM SYSTEM 360

Branching and Fixed Point, FullWord, Floating Point Floating Point
Status Switching and Logical Long Short
XXXX 0000X XXX 0001 X XXX 0010XXXX 0011 XXXX
0000 LPR  Load Positive LPDR Load Positive LPER Load Positive
0001 LNR - Load Negative LNDR Load Negative ~ LNER Load Negative
0010 LTR Load and Test LTDR Load and Test LTER Load and Test
0011 LCR Load Complement LCDR Load LCER Load
Complement Complement
0100 SPM Set Program Mask NR  And HDR  Halve HER  Halve
0101 BALR Branchand Link CLR Compare Logical
0110 BCTR Branch on Count OR Or
0111 BCR Branch/Condition XR  Exclusive Or
1000 SSK Set Key LR Load LDR Load LER Load
1001 ISK Insert Key CR  Compare CDR  Compare CER  Compare
1010 SvC Supervisor Call AR Add ADR Add N ALR AddN
1011 SR Subtract SDR Subtract N SER Subtract N
1100 MR Multiply MDR  Multiply MER  Multiply
1101 DR Divide DDR  Divide DER  Divide
1110 ALR Add Logical AWR Add U AUR Add U
1111 SLR  Subtract Logical SWR  Subtract U SUR  Subtract U
Fixed Point, HalfWord, Fixed Point, FullWord, Floating Point Floating Point
and Branching and Logical Long Short
XXXX 0100X XXX 0101 X XXX 01 10XXXX 011EXXXX
0000 STH Store ST Store STD Store STE Store
0001 LA Load Address
0010 STC Store Character
0011 IC Insert Character
0100 EX Execute N And
0101 BAL  Branch and Link CL  Compare Logical
0110 BCT BranchonCount O or
0111 B8C Branch Condition X Exclusive Or
1000 LH Load L Load LD Load LE Load
1001 CH Compare C Compare CcD Compare CE Compare
1010 AH Add A Add AD Add N AE Add N
1011 SH Subtract S Subtract sD Subtract N SE Subtract N
1100 MH Multiply M Multiply MD Multiply ME Multiply
1101 D Divide DD Divide DE Divide
1110 CVD Convert-Decimal AL Add Logical AW  Add U AU Add U
1111 CVB  Convert-Binary SL Subtract Logical SwW Subtract U SU Subtract U
Here, as in the remainder of the chapter, M2 is the effective address of the
second operand and is defined by:
M2 = (X2) + (B2) + D2 (9.3.4)
where the subscript, M, has been elided.
= In this command, two REGISTERs and an immediate operand are called

for. An example of this is Load Multiple, LM:
(M2) -R1,R1+1,R1 +2,...,R3 (9.3.5)

LM:

Here the contents of the MEMORY CELL, M2, given by
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Table 9.3.1 (CONT.)

Branching Status, Switching,

Fixed Point, Logical, and

and Shifting Input[Output
X 1000X XXX 1001 XXXX 1010XXXX 1011XXXX
0 SSM Set System Mask STM  Store Multiple
1 TM  Test Under Mask
0 LPSW Load PSW MVl Move
1 Diagnose TS  Test and Set
0 WRD Write Direct NI And
1 RDD Read Direct CLI  Compare Logical None None
0 BXH Branch/High Ol Or
1 BXLE Branch/Low-Equal XI Exclusive Or
0 SRL  Shift Right SL LM Load Multiple
1 SLL Shift Left SL
0 SRA  Shift Right S
1 SLA  Shift Left S
0 SRDL Shift Right DL SIO  Start IO
1 SLDL Shift Left DL TIO Test 10
0 SRDA Shift Right D HIO Halt 10
1 SLDA Shift Left D TCH Test Channel
D F

Logical Decimal
X 1100XXXX 1101XXXX 1110XXXX 1111XXXX
0
1 MVN  Move Numeric MVO  Move with Offset
0 MVC  Move PACK Pack
1 MVZ  Move Zone UNPK  Unpack
0 NC And
1 None CLC  Compare Logical None
0 oC Or
1 XC Exclusive Or
0 ZAP Zero and Add
1 cp Compare
0 AP Add
1 SP Subtract
] TR Translate MP Multiply
1 TRT Translate and Test DP Divide
0 ED Edit
1 EDMK Edit and Mark

N = Normalized DL = Double Logical S = Single
SL = Single Logical U = Unnormalized D = Double
M2 = D2 + (B2) (9.3.6)

are copied into REGISTERs numbered from R1 through R3, inclusively.

The SI command conveys an immediate operand and a MEMORY
address. The immediate operand in the command is a single byte labeled I.
An example of this MoVe Immediate, MVI, places a character into a
specified location in MEMORY :

MVI: I— D1+ (Bl)
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Table 9.3.2 ALPHABETIC LIST OF STANDARD SYSTEM 360 INSTRUCTIONS

Standard Instruction Set

Name Mnemonic Type Code Name Mnemonic Type Code
Add AR RR C 1A Load Positive LPR RR C 10
Add A RX C 5A Load PSW LPSW SI L 82
Add Halfword AH RX C 4A Move MVI SI 92
Add Logical ALR RR C 1E Move MVC SS D2
All Logical AL RX C 5E Move Numerics MVN SS D1
And NR RR C 14 Move with Offset MVO SS F1
And N RX C 54 Move Zones MVZ SS D3
And NI SI C 94 Multiply MR RR 1C
And NC SS C D4 Multiply M RX 5C
Branch and Link BALR RR 05 Multiply Halfword MH RX 4C
Branch and Link BAL RX 45 Or OR RR C 16
Branch on Condition BCR RR 07 Or o RX C 56
Branch on Condition BC RX 47 Or Ol Si C 96
Branch on Count BCTR RR 06 Or OocC SS C D6
Branch on Count BCT RX 46 Pack PACK SS F2
Branch on Index High BXH RS 86 - Set Program Mask SPM RR L 04
Branch on Index Low or Equal BXLE RS 87 Set System Mask SSM SI 80
Compare CR RR C 19 Shift Left Double SLDA RS C 8F
Compare C RX C 59 Shift Left Single SLA RS C 8B
Compare Halfword CH RX C 49 Shift Left Double Logical SLDL RS 8D
Compare Logical CLR RR C 15 Shift Left Single Logical SLL RS 89
Compare Logical CL RX C 55 Shift Right Double SRDA RS C SE
Compare Logical CLC SS C D5 Shift Right Single SRA RS C 8A
Compare Logical CLI SI C 95 Shift Right Double Logical SRDL RS 8C
Convert to Binary CcvB RX 4F Shift Right Single Logical SRL RS 88
Convert to Decimal CcvD RX 4E Start 10 SIO SIi C 9C
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Diagnose SI 83 Store ST RX 50
Divide DR RR 1D Store Character STC RX 42
Divide D RX 5D Store Halfword STH RX 40
Exclusive Or XR RR C 17 Store Multiple STM RS 90
Exclusive Or X RX C 57 Subtract SR RR C 1B
Exclusive Or Xl SI C 97 Subtract S RX C 5B
Exclusive Or XC SS C D7 Subtract Halfword SH RX C 4B
Halt IO HIO SI C 9E Subtract Logical SLR RR C 1F
Insert Character iC RX 43 Subtract Logical SL RX C SF
Load LR RR 18 Supervisor Call SvC RR 0A
Load L RX 58 Test and Set TS SI. C 93
Load Address LA RX 41 Test Channel TCH SI C 9F
Load and Test LTR RR C 12 Test 10 TIO SI C 9D
lL.oad Complement LCR RR C 13 Test Under Mask ™ SI C 91
Load Halfword LH RX 48 Translate TR SS DC
Load Multiple LM RS 98 Translate and Test TRT SS C DD
Load Negative LNR RR C 11 Unpack UNPK SS F3
Decimal Feature Instructions Protection Feature Instructions Direct Control Feature Instructions
Name Mnemonic Type Code Name Mnemonic  Type Code Name Mnemonic Type Code
Add Decimal AP SS T,C FA |Insert Storage Key ISK RR Z 09 | ReadDirect RDD SI Y 85
Compare Decimal CP SS T, C F9 | Set Storage Key SSK RR Z 08 Write Direct WRD SI Y 84
Divide Decimal DP SS T FD
Edit ED SS T,C DE
Edit and Mark EDMK SS T,C DF
Multiply Decimal MP SS T FC
Subtract Decimal SP SS T,C FB
Zero and Add ZAP SS T,C F8

-
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A These commands involve two operands, each of which is drawn from
a MEMORY location. In all cases, we deal with VFL data; hence, a length
specifier is required. Where the strings are of different lengths, the speci-
fiers, L1 and L2, are both nibbles. Where the fields are of the same size,
a single-byte length specifier, L, suffices. An example of the latter is
MoVe Character, MVC, described thus:

MVC:  (M2) > Ml
(M2 + 1) > M1 + 1

M2+L—1)—>Ml+L—1 (9.3.8)

where
M2 =D2 4 (B2); Ml = D1 + (Bl) (9.3.9)
Repertoire The entire repertoire of System 360 is

tabulated according to machine language code in Table 9.3.1. The first
opcode nibble in Aex partitions the repertoire into sixteen groups of up to
sixteen opcodes each. Actually, only twelve groups of commands are used,
each group has distinctive properties, some of which are discussed later.

The standard set and some features of interest are presented by
mnemonics alphabetically in Table 9.3.2.

9 . 4 HARDWARE-INCORPORATED

MEMORIES
Altered system Figure 9.4.1 is a system block diagram showing
concept a revised view of System 360. MAIN MEMORY

is central. However, when we speak of MEMORY, there are two other
possibilities for our referent. MAIN MEMORY (MM) contains data and
programs. It operates at two microseconds per access (less for some
higher numbered models) and contains hundreds of thousands of bytes.
The program found here in the machine language program is usually
produced by the assembler or compiler.

There are other larger MEMORIEs with which the computer communi-
cates such as DISC or DRUM and which I prefer to consider AUXILIARY
STORAGE DEVICES.

Within the computer proper, System 360 provides two additional
MEMORIES :

» The rEaD-OoNLY MEMORY, RM, provides a sequence of operations for

each command in the form of microprogramming.
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Fig. 9.4.1 System 360 block diagram.

e The rocar memory, v, holds the GPrRs and other working
REGISTERS.

CONTROL obtains instructions from the MAIN MEMORY and interprets
them. An instruction may refer to operands stored in MAIN MEMORY oOr
LOCAL MEMORY. In the latter case, only the GPRs are available to the
programmer, but they are available more quickly than from MM.

LOCAL MEMORY contains not only GPRs, but other CELLs which are
used as REGISTERs. To facilitate discussion, I will call these LM cells
“REGISTERS.” Although LM REGISTERs are slower than electronic REGISTERS,
the saving in cost over the latter is considerable. To make effective use of
LM, increased complexity in timing provides overlap during reference to
other MEMORIES. Additional complexity is compensated for by lower total
cost.

The purpose of the READ-ONLY MEMORY is to reduce decoding and
analyzer hardware. The cost of this MEMORY is low because the computer
never writes into it. |

Hence, these two additional MEMORIES reduce hardware cost without
reducing hardware function.

MEMORY function The general MEMORY structure presented in
Chapter 1 prevails for MEMORIES encountered here. In Fig. 9.4.2, we see
this structure as it applies to the three MEMORIES of System 360.
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CELLS
&
//
/ /)'
//
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~< -~ //
S~ pd
MAR-24 bits MDR- 32 bits
. ADDRESS MEMORY DATA .
LAR- 6bits| ¢ GisTER CONTROL REGISTER | LDR- 32 bits
RAR- 12 bits RDR- 90 bits
T start
recall done
memorize

Fig. 9.4.2 General MEMORY structure.

There are three MEMORY functions: _
* Siore—ihe MEMORY hoids information without permitting it to
€vaporate.
* recall—a word whose address appears in the ADDRESS REGISTER
is placed in the DATA REGISTER.
* memorize—the word in the DATA REGISTER is placed at the
address contained in the ADDRESS REGISTER.
The four functional units of the MEMORY are shown in Fig. 9.4.2:
CELLS; DATA REGISTER, DR ; ADDRESS REGISTER, AR ; CONTROL UNIT, CU. When

one of these units is discussed, it is prefixed by a letter indicating the type
of MEMORY to which it belongs.

» M for the MAIN MEMORY

L for the LOCAL MEMORY

* R for the READ-ONLY MEMORY
Thus MAR is the MAIN MEMORY ADDRESS REGISTER, LR IS the LOCAL MEMORY
DATA REGISTER, and RCU is the READ-ONLY CONTROL UNIT. The complete
MEMORIES are called MM, LM, and RM.

Figure 9.4.2 shows the size of REGISTERs associated with each MEMORY.

MAIN MEMORY Model 50 MM may contain up to 256K bytes
or more. Since these are accessed as Words, the MEMORY consists of up to
64K or more thirty-two bit Words.

Information in MAIN MEMORY is byte addressable: a byte or group of
bytes may be addressed by an instruction. To make the MEMORY compatible
with MEMORIES of the larger models of the series, 24 bits are reserved for
this byte address. The size of the MAR in theory is 24 bits. In actuality,
16 bits suffice to address 64K Words for the Model 50.
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A MM access cycle takes two microseconds or four subcycles of a half
microsecond each. The first two subcycles are designated R/ and R2; the
second two are W1 and W2. The first two cycles read a word for recall or
clear a CELL for memorize.

R1 can only follow the W2 cycle. A request to use the MDR causes a
read holdoff. During R2, the MDR is available for use. This is the only
subcycle during which the MDR is available: a MEMORY recall or memorize
request is accepted then. If no request occurs, succeeding cycles are also
designated as W2.

The MEMORY, the entire processing, and the control of the computer
have been designed around these subcycles. A PROCESSOR cycle identically
corresponds to the MAIN MEMORY subcycle and is so timed. It lasts for a half
microsecond (500 nanoseconds).

Alignment Fixed length fields, such as halfWords and
doubleWords, must be located in MM on an integral boundary for that unit
of information. A boundary is called integral when its address is a
multiple of the length of the unit in bytes. Words must be located in MM
so that their addresses are a multiple of 4. A halfWord must have an
address that is a multiple of 2, and doubleWords must have an address
that is a multiple of 8.

For MM addresses in binary, we find that integral boundaries for
halfWords, Words, and doubleWords end with one, two, or three zeros,
respectively. For example, the integral boundary for a Word is a binary
number which ends in two zeros.

Variable fields are not limited to integral boundaries and so may start
at any MM byte.

LOCAL MEMORY The Model 50 LocAL MEMORY contains sixty-
four Word-size CELLs. To address them, the LAR is six bits long. To hold
a Word, the LDR is thirty-two bits long.

The LM has a cycle time of half a microsecond. This is overlapped with
MM cycles so as to increase the hardware efficiency.

The LOCAL MEMORY contains the following items:
 The fixed point GPRs labeled O through 15.
 The floating point GpRs labeled 0, 2, 4, and 6. Each double Word,
floating point GPR requires two LM Words. The first Word is an
even-numbered LM address; the second is at the next successive
odd address.
e For each channel, there are four CHANNEL words (the MULTI-
PLEXOR CHANNEL uses more):
* the SUBCOMMAND LOCATION REGISTER
* the CHANNEL CONTROLLER DATA ADDRESS REGISTER

SINAINOD
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* the CHANNEL CONTROLLER COUNT REGISTER
* the ASSEMBLY BUFFER REGISTER, AR
Working storage—a number of REGISTERs hold intermediate
results during a microprogrammed command sequence.
Backup for some electronic REGISTERs including
* the PSWR
* the R
* An INSTRUCTION BUFFER, IB.
¢ Spares.

LM is addressed during command execution by information in the word

provided by the rRM.

READ-ONLY RM consists of over 2800 words of 90 bits each.

MEMORY RM is 2 500-nanosecond MEMORY coordinated
with the other two to increase hardware efficiency. RM replaces coding and
analysis equipment in CONTROL.

It is possible but not customary to change RM mechanically before

installation. A different MEMORY can provide a completely different
command repertoire for the machine

PR 2L aAlliiN.

RM is often referred to as microprogram memory because it controls all
computer activities. Sequences stored in RM, besides controlling individual

- commands, also control fefch, CHANNEL CONTROL operations, and

interrupts. There are microsequences for each command and/or for groups
of commands in the System 360. The more complicated commands
actually use loops set up in RM; SS commands, where a number of bytes
of information are processed identically, exemplify this. Such a processing
loop is performed once for each byte of data, as specified in the length
field of the instruction.

Figure 9.4.3 shows how the rRM is integrated with the rest of CONTROL.
After an instruction is fetched completely, it generally resides in the MR
where it is interpreted. The first byte contains the opcode. A portion of
this code is entered into the RAR to access the RM. The word produced
appears in the RDR. Here it is applied to the GATES in CONTROL and in the
PROCESSOR to open or close appropriate GATEs. This controls the flow of
information for the next PROCESSOR cycle.

Part of the RDR contains all or part of the address of the next micro-
command to be executed. This information is passed through the switcH
to the RAR along with control signals from the IR. This SWITCH is controlled
by another part of the RDR word so that the next word from RM for control
of the forthcoming PROCESSOR cycle may be obtained and entered into
the RDR.

When execution is complete, the next address to be entered in the RAR
from the RDR is that of the fetch sequence so that the next command can be
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Fig. 9.4.3 READ-ONLY MEMORY—CONTROL subsystem inter-
relation.

procured. This may be overriden by interrupt or service request from a
CHANNEL which initiates an interrupt or a stolen cycle instead.

9 . 5 HARDWARE

Subsystems The subsystem arrangement discussed in
- Section 9.2 and presented in Fig. 9.2.1 is what the programmer sees. The
interrelation of the MEMORIES was just discussed. We look next at the
functional blocks contained in the PROCESSOR and CONTROL. These
subsystems are contained in a single main frame so that it is hard to
distinguish one from the other.
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CHANNELs communicate directly with the MAIN MEMORY. However, as
we shall see, they use CONTROL to facilitate this communication without
much additional cost: they call forth their own microprogram sequences.

The interrelation of the three levels of MEMORY is important when
examining the functional layout, Fig. 9.5.1:

e MAIN MEMORY contains programming information and data to be
processed:
* commands pass from MEMORY via the MDR, the ADDER output
bus and the input SWITCHEs, and thence they pass to the MR
* data are routed according to the command in execution by
the microprogram
» LOCAL MEMORY contains GPRs and other working REGISTERS
* READ-ONLY MEMORY is the source of all microprogram commands:
* the RDR is the mechanism for controlling all the rest of the
main frame
* 1t also controls RM sequencing

REGISTERS and Figure 9.5.1 shows the hardware REGISTERs of

functions System 360 and their interrelation to the
MEMORIES and SWITCHES. Although sketchy and imprecise, this is the
“big picture”—it’s not intended for the field service engineer. First
examine main REGISTERS which, unless stated, are Word size; then find
what each usually holds.

The INSTRUCTION ADDRESS REGISTER generally contains the address of
the first byte of the next instruction to be executed; however, for long
instructions, it may contain the address of bytes of the current instruction
which has not yet been procured. The IAR is part of the PSWR and, when
an interrupt occurs, the IAR is stored in MM with the rest of the contents of
the PSWR in the old PSW location associated with the interrupt cause.

qvi

The PROGRAM STATUS WORD REGISTER contains information about the
running program which is not stored elsewhere in the hardware. For
instance, it contains:

o instruction address (in IAR)

e activity masks

» condition code (in CCR)

« instruction length code (in ILCR)

« protect key (in PKR)
All these are HARD REGISTERs and are immediately available to guide the pro-
gram together with the microprogrammed commands contained in the
RDR. We sometimes refer to these SUBREGISTERs individually, such as the

UMSd
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IAR and the condition code register, ccR. This PSW information is also
contained in a backup location in the Lm.

During the fetch cycle, the INSTRUCTION ADDRESS COUNTER increments
by two (or sometimes by four) the address contained in the IAR.

oVl

The LEFT REGISTER and RIGHT REGISTER can communicate directly
through switcHes with the LDR. They generally receive GPR or working
storage information. They can hold operands of fixed length or bytes of
VFL data during processing. These REGISTERs also hold operand addresses.

dH 3d9 dNV ¥1

Since the H REGISTER is not connected to the MOVER, it does not usually
hold operands, but rather addresses. During interrupt, it receives the
contents of the IAC to note our place in the program.

5 The M REGISTER serves at least two functions. It is the INSTRUCTION
REGISTER when the instruction is being fetched. But the instruction need
not be maintained statically. After fetch and effective address calculation,
it is no longer needed except to get the »M started on the proper micro-
program sequence. This is discussed in Section 9.6. When the micro-
program for a specific command is in control (replacing the fetch
microprogram), there is no need for the MR to keep the instruction. Hence
it is free for other tasks such as to hold VFL destination information during
formation and assembly of words for storage with VFL commands.

There are two byte COUNTERs to keep track of the most recent byte
obtained or operated upon within a word in a REGISTER. The LEFT
REGISTER COUNTER, LRC, generally keeps track of bytes in the LR, and the M
REGISTER COUNTER, MRC, keeps track of bytes in the MR; but they may
count bytes in other REGISTERs.

To keep track of bytes remaining during processing, the two length
REGISTERS, Gl and G2, are the repository for the length descriptors L1 and
L2. When there is only one length descriptor, L, these two REGISTERS
operate together and are referred to as G1G2 or sometimes simply GR.

SYALNNOD dLAY

STATS are FLIPFLOPs which hold the transient states as they are observed
in the main frame. They can be referenced by the microprogram, and
decisions are made according to their settings. STATs are probably
so called because they are single-bit static REGISTERs and store “‘states.”
For simplicity, no STATs are shown in the figure.

SLVILS
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There are at least two 4-bit REGISTERs which store various quantities and
counts during processing. Two of these are called the FR and the M/DR.
They are used during arithmetic and function storage. They are also used
to extend the SHIFTER as described later.

ADDER The ADDER for the Model 50 is fullWord, thirty-two
bit, parallel ADDER with carry lookahead. Each state provides two func-
tions:

o What I call the carry propagate function is termed transmit.

e What I call carry generate is so named here.
The carry lookahead ADDER is described in detail in The Logic of Computer
Arithmetic.t This ADDER has seven zero-level lookahead units and one
first-level auxiliary lookahead.

Subtraction is performed by the ADDER using complementation and
addition. A premature end-around carry is supplied by the microprogram.
Multiplication and division require special microprograms which are
supplied as an option for Model 50 users.

Decimal addition and subtraction are described in Section 9.10. Two
or three cycles are required for each Word of decimal digits, depending
upon the magnitude of the result. The parallel binary ADDER is used with
an extra correction cycle.

SHIFTER The output of the ADDER is entered into a
SHIFTER which can be controlled for:
o direction of shift—right or left
 quantity of shift—zero, one, or four places
These functions are under the control of the microprogram.

Shifting may move information out of the direct line output of the
ADDER or enter new information into the direct line of the ADDER. To hold
appended and/or deleted information, EXTENDERs are required: FR and
M/DR generally serve. Further, STATs may store the states of different
areas within the ADDER after its function is performed, e.g., interdigit
carries and overflows.

After ADDER information passes out of the SHIFTER, it is staticized onto
FLIPFLOPS. The FLIPFLOPs present the sum of the ADDER onto the ADDER
output bus which is routed to the entry GATEs of most of the REGISTERSs.

MOVER The MOVER performs logic on a pair of bytes
furnished at its inputs which are referred to as the U and V inputs. Most

T Ivan Flores, The Logic of Computer Arithmetic. Englewood Cliffs, N.J.:
Prentice-Hall, Inc., 1963. See Chapter 5.

25|
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bytes of most REGISTERS are available to one or another input of the MOVER.
In particular, LR, RR, and MR can be thus manipulated. To gate out the
desired byte, the LBC and MBC are used.

The logical function to be performed upon the pair of bytes by the
MOVER function is stored in the MVF, the MOVER FUNCTION REGISTER.
Function information is placed there by the microprogram or from the
auxiliary REGISTERS, FR Or M/DR.

The result of the various functions which the MOVER can perform,
described in Section 9.9, is always a single byte. This is staticized by the
MOVER On its OUTPUT LATCHES and furnished to the MOVER output bus.
From there it is entered into the required byte of the desired REGISTER by
the microcommand. The MOVER is the only means for performing logical
operations on information—no bit-picking facility is provided. All such
operations are done by user-provided masks.

SWITCHES SWITCHES are found at the input and output
of most REGISTERS and the FUNCTIONAL UNITs. There are a large number of
SWITCHES required; for clarity, they are indicated in Fig. 5.9.1 simply by
an oval. Ail SWITCHES and FUNCTIONAL UNITs are controlied by the
microprogram. They are driven by the information in the static data
REGISTER of the READ-ONLY MEMORY, the RDR.

9 . 6 FETCH

Completed Activity performed during fetch depends on
instruction the completeness of the last command Word.
Information is accessed in MEMORY in terms of Words. If the last Word
brought from MM for instructions is all used up, if all of its four bytes
have been interpreted during the last execution, we say that the previous
instruction was completed. If there remains command information (bytes)
from the last instruction Word, then the command is said to be
uncompleted.
Figure 9.6.1 illustrates three alternatives for completed instructions:
e The last instruction was RR, with the command occupying the
right-hand halfWord.
 The last instruction was RX, RI, or SI, beginning on a Word
boundary.
o The last instruction was SS, ending on a Word boundary.
Uncompleted instructions end on a half Word boundary as shown in the
figure.
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Fig. 9.6.1 Completed and uncompleted commands.
Action The action for a completed instruction is

shown in Fig. 9.6.2. The IAR contains the address of the next instruction
(which begins on a Word boundary). This is sent to the MAR and recall is
initiated. The contents of the MDR are placed in the MR and entered into
LM in the INSTRUCTION BUFFER, IB.

The left-hand portion of MR determines the instruction type. For RR
instructions, the contents of the IAR are passed over to the IAC where they
are incremented by 2. In all other cases, including SS instructions, the
IAR is incremented by 4 using the 1ac. For the SS instruction, another
MEMORY access is required to enter to obtain full operand information.

Uncompleted The action for an uncompleted instruction

instruction is shown in Fig. 9.6.3. An MM recall is
started; but what if CONTROL INDICATORs show that the last instruction
ended at a halfWord boundary? The last instruction may be obtained
from the 1B in LM rather than using MM. Since LM recall requires only half a
microsecond, it is preferable.

Obtain the datum from the 1B, shift it left, and enter it into the MR. Then
increment the IAR by 2 using the 1AC, thereafter initiating an MM recall.
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Fig. 9.6.2 Fetch for completed command.

Check the opcode in MR. For an RR instruction, execute it without
further MM reference. Meanwhile, the next instruction is being obtained.

If the instruction in MR is not of type RR, then the rest of the instruction
is placed by the MM recall in the MDR and then in the MR. From there, this
word is passed over to the 1B for future use. It may contain the last
halfWord of an SS command or the first halfWord of a new command.

The left half Word in the MDR is passed over to the right halfWord of
the MR. We now have a fullWord in MR and can start execution. For an SS
instruction, the remaining halfWord is in the 1B.

Again we check the left side of the MR for instruction type. If thisis a -
fullWord instruction, the first half Word of the next instruction is in the
IB. We set a STAT to indicate this and then increment the 1AR by 2. For the
SS instruction, we increment the IAR by 4, also indicating that the re-
mainder of the instruction is in the 1B.

Fetch; completed With the end of execution, the fetch micro-
command command sequence start address is placed in
the RAR. The first fetch microcommand is brought to the RDR to commence
fetch, Fig. 9.6.2. If the REFETCH STAT is set, a completed command is now
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in the MR. New command bytes are not in the LM and hence must be
brought from MMm.

The microcommand in the RDR causes the IAR contents to go to the
MAR. The new command goes to the MR and also to LM at the 1B (INSTRUC-
TION BUFFER) location.

Fetch; incomplete The fetch microcommand procures the 1B

command contents from LM since the REFETCH STAT is
reset; it generally is in this case, unless an interrupt, or something, has
happened. This causes the contents of the IAR to be incremented by 2 in
the 1AC and sent over to the MAR. Thus the recall of the next four instruc-
tion bytes from MM is initiated regardless of the opcode of this instruction,
which is now being brought from the 1B. The classification cycle which
follows will determine that.

~ (T Ty M
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Fig. 9.6.3 Fetch for incomplete command.
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Byte, MR
Command
Type 1L IR 2L 2R 3L 3R 4L 4R
RR opcode R1 R2 X X X X
RX opcode R1 X2 B2 D2
RS opcode R1 R3 B2 D2
SI opcode 12 B1 D1
SS opcode 11 1.2 B1 D1
L

Fig. 9.6.4 The contents of the MR after the ferch activity for various
types of commands.

Preclass

ification

After fetch, the command (or semicommand)
is oriented in the MR as displayed in Fig. 9.6.4. It is evident that the MR
serves as the INSTRUCTION REGISTER during fetch, classification, and part of

the execute cycles of System 360.
The salient advantage of the asynchronous MEMORIES is that we get

RAR R2 (R2)
LAR LDR
‘ \
—A— —A—
2 WS } ZP | ZP i RDR
4 -0
RM DECODE GPS1 (R2)
,_4;_\ ,_H
R1 R2 BI D1
L1 X2 ——
opcode R3 B2 D2 MR
L2
=0
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v
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Fig. 9.6.5 GPr identification routing and acquisition during classi-
fication.
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hardware command processing started before command acquisition is
complete. From one to three GPR contents (Fig. 9.6.4) may be required for
calculation of the effective address. GPR contents can be procured as soon
as GPR identification is available in the MR. One way GPR identification is
routed is shown in Fig. 9.6.5. The two half bytes of the second byte are
stored in the REGISTERS called the M/DR and the JR. The JR is actually the
least significant four bits of the LAR; the other two bits of the LAR are set
by the field called WS (working storage) in the microcommand found in
the RDR. This way we address the GPRs and not other LM CELLs. Recall
is started; the destination of the datum (the GPR contents) after receipt by
the LDR is the LR.

The left half of the third byte in MR is a GPR identifier. When the MR
has been filled, this identifier is stored in the counter, MDC. Status
REGISTERs, GPsl and Gps2, are set if the last two half bytes are empty.

Classification The first two bits of the opcode distinguish
four classes of commands. A different microroutine is entered for each
class. The RM address of the routine is formed from these two bits and the
ZD and ZF fields of the current microcommand. A finer classification is
done on the first few steps of each group microroutine.

9 . 7 REGISTER COMMANDS

Types Table 9.3.1 classifies System 360 commands
by opcode and type. Fixed Word REGISTER commands have opcodes for
which the left nibble is between 0 and 7. Let us look at these on the chart:

0—Branch and status switching commands are discussed in Section
9.8.
1—Fixed point fullWord logical commands are discussed later.
2, 3—Load and arithmetic floating point commands are not discussed
in this book.
4—Some are fixed point half Word commands for which execution is
very similar to fixed point Word commands. Wherever “Word”
appears in the discussion, substitute ‘“halfWord.” Branch
commands of this group are discussed in Section 9.8.
5—These fixed Word commands specify one operand from MEMORY
rather than from a REGISTER.
6, 7—Indexed floating point commands are not discussed here.

Data Data for all arithmetic commands in group 0
through 7 must be formatted according to the data group of the command.
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Thus, when fixed point fullWord arithmetic is called for, a fullWord is
operated upon, assuming that it is a thirty-two bit signed binary number.
Similarly, floating point information should be Word or double Word of
the form described in the manual. HalfWord commands manipulate
sixteen bits of binary information using the right-hand two bytes of a
REGISTER. The sign bit in the result is duplicated in the remaining sixteen
bits to the left.

System 360 uses two’s complement notation for fixed point arithmetic.
This is thoroughly described in Chapter 2 of The Logic of Computer
Arithmetic.t The first bit of such numbers is zero for positive numbers,
and the remaining bits are a straight binary representation of the number.
Negative numbers are the two’s complement of the positive number to
which this number corresponds; their left-hand bit is always 1.

NOILVLION

Format RR commands specify two GPRs, one in each
of the two nibbles of the second command byte. During fetch, these
nibbles locate the operands in the LOCAL MEMORY ; microcommands bring
them to the Rk and Lk where they may be operated on by the adder.

For RX commands, one field, R1, of one nibble specifies a GPR. The
three other fields determine an operand address, M2, which is formed by
the ADDER. The operand at M2 may then be obtained. We examine
operand acquisition next.

RR operand An RR command does the following task:
acquisition :

(R1) 6 (R2) — R1 (9.7.1)

The operands are contained in two of the GPRrs, and the operation
performed is indicated as §. Before we acquire the operands and at the end
of the classification cycle, the REGISTER situation is as shown in Fig. 9.6.5.
The contents of R2 have been obtained by the following typical chain of
events:

The R2 field is extracted from the command in MR.

It is sent to the JR portion of LAR.

The remaining two bits of the LAR are supplied from the WS
field in the RDR.

The proper GPR contents are obtained from LM and entered into

the LDR.
These contents are sent from the LDR to the LR.

T Ivan Flores, op. cit.
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It remains to obtain the other operand. This is in R1, and it is obtained
by the following typical set of operations:
 The R1 field is extracted from the MR and sent to the LAR.
« The WS bits in RDR supplement the other four bits in the LAR.
e The contents of the indicated REGISTER are sent to the LDR.
o They are passed over to the RR.

Note that this is a typical sequence because of the crash manner in
which the Model 50 was designed, where different microprograms were
written by different engineering groups. Hence we find little consistency
from one command to another as to how the addresses are prepared and
REGISTER contents held.

RX command A glance at Table 9.3.1 reveals that there are
many commands in group 5 which have the same title as those in group 1
except that the suffix R is missing from the mnemonic. These truncated
mnemonics apply to commands which are similar to commands with
untruncated mnemonics except for the method of operand acquisition:
group 5 commands get one operand from MEMORY; group 1 commands
find both operands stored in a GPR.

For group 5 (RX), to obtain the operand, we first calculate its address,
M2, given by

M2 = (X2) 4+ (B2) + D2 (9.7.2)

The calculation requires the contents of INDEX REGISTER, X2, and BASE
REGISTER, B2. Both of these are actually GPR designations but are in
different fields in the command.

In Fig. 9.6.5, the same method used to obtain (R2) for RR commands
has obtained (X2) for the RX commands.

Since the second operand is in MAIN MEMORY, whereas the first operand
is in LOCAL MEMORY, it is expedient to calculate the second operand address,
M2, before we obtain R1. Then this latter operation can be overlapped
with a MAIN MEMORY acquisition cycle.

We might obtain the base modifier with this typical series of operations:

e Route B2 to the LAR from its field in the MR.
 Route the prefix bits from WS in the RDR to the LAR.
o Obtain (B2) from the LM and place it in the LDR.

« Route it over to the RR.

During this time, an addition may be taking place:

o Enter the displacement, D2, from the MR, into one input of the
adder.

o Take the contents of the LR, (X2), and add it to the former.

e The result, (X2) + D2, is routed to the LR.
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After these two operations are completed—getting (B2) and calculating
(X2) + D—we add (B2) to the latter quantity in the LR, placing the result
in RR. Meanwhile, we do another LM acquisition obtaining the first
operand, (R1), from LOCAL MEMORY.

When the calculation of M2 is complete, it is sent over to the MAR to
recall the operand, (M2), placing it in the LR via the MDR.

Microprogramming  All operations of the computer are controlled
by the microprogram, a sequence of microcommands contained in the RM.
Whenever an execution phase is completed, the ferch microprogram is
initiated and its first microcommand brought to the RDR. It is interpreted
there, and the fetch cycle proceeds.

After the first two or four bytes of the command have been established
in the MR, the type of command is distinguished by the first two bits of the
first byte. This causes a microprogram branch to the proper operand
acquisition routine. Thus RR and RX commands are distinguished, and
the computer can proceed to obtain (R2) or (M2). During these micro-
routines, there is a close coordination between the computer LM and RM.
The MM is called upon only to get the contents of M2.

The microprogram controls all the FUNCTIONAL UNITs in the PROCESSOR,
including the ADDER, the MOVER, and all GATEs involved. For instance, for
the ADDER, the microprogram determines which two of all the REGISTERs
are connected to the ADDER inputs and whether either of these inputs is
complemented. Masks may be set up at the ADDER inputs so that selected
bytes may be added instead of a complete Word. The microprogram also
controls what is done with the ADDER overflow, how many places are
shifted, etc.

Transfers; logic We now examine four types of commands:
o load—a Word or portion thereof is entered into a REGISTER.
 store—the contents of the GPR are placed in MEMORY.

e logical—the logical function is performed on two operands and
the result placed in a GPR.

e compare—two operands are compared and the condition code is
stored in the CONDITION CODE REGISTER, CCR.

Load enters a Word into a GPR. The operand is obtained from either
LM or MM. For the former, an RR command, LR, suffices to specify that
the contents of one GPR are copied into another GPR. For the RX com-
mand, the contents of the MEMORY CELL, M2, are copied into the GPR, R1,
using L. The operand address, M2, is prepared as described, and the

avol
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operand is procured and placed in the LR. From there, it is sent to the
LDR. Meanwhile, R1, from its position in the MR, is sent over to the LAR.
A memorize cycle is requested and the LM loaded.

Store enters a Word from a GPR into a MEMORY CELL, four bytes
starting at M2; an RX command, ST, is required. While the address, M2,
is being prepared, (R1) is obtained and placed in the LR. This is passed
over to the MDR while M2 is passed over to the MAR and placed in MM with
a memorize cycle.

The contents of the GPR, R1, are passed over to the LR. The second
operand may come from R2 or M2. In any case, it is passed over to MR.
The logical operation is performed on a byte basis. Respective bytes of
the LR and MR are passed over to the MOVER. The MBC keeps track of the
byte being worked on. The MVF contains a pair of bits which are set by the
microprogram to the function performed by the MOVER during the logical
command, and, or, or exclusive or. We keep track of what goes on in
the MOVER and set the CCR accordingly. As the MOVER performs the
function on its byte, the new byte is passed to the MOVER output bus. This
is returned to the source position in the MR.

When all four bytes are processed, the result in MR is passed over to
the LM using the R1 address stored in one of the other REGISTERs.

Compare starts like a logical command. The operands are placed, re-
spectively, in the MR and LR. They are then operated upon by the MOVER.
However, the result of the MOVER operation is not returned to the MR,
which is hence unaffected. The MOVER output is examined, and the CCR
is set according to this output. No memorize cycle is required at the end
of the compare since only the setting of the CCR is important in this
command.

Arithmetic Fixed word arithmetic is performed upon
binary numbers in two’s complement form. Both addition and subtraction
are done using only true add or complement add. No recomplementation
cycle is required because the numbers are in two’s complement form.

An algebraic function is performed; the actual arithmetic done is
determined by the signs of the two operands and whether addition or
subtraction is requested.

Fixed word multiplication uses binary numbers in two’s complement
form. The operands are obtained as described, one going to the RR and
another to the LR. The sign of the numbers determines the sign of the
product which is then stored. The numbers are converted into magnitude
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MR Multiplicand

Ve

LR Partial product, most
/signiﬁcant half Word

FR
last bit
=07

v
MR and LR LR only to
to ADDER inputs ADDER input
ADDER | Addand " L east significant bit
and shift right |« from most significant
SHIFTER once -~ half Wordof partial
/ PrOdUCt
LR \ FR
Used multiplier
. bit is lost
New partial product,— |

most significant half Word
now shifted right once

Unused multiplier
/ bits (so far)
A

Every four cycles, product RR
bits in FR swapped for
multiplier bits in RR

(i

Less significant
bits of product

Fig. 9.7.1 Multiply flowchart.

form and switched, if necessary, so that, at the beginning of multiplication
proper, the larger is always in the MR and the smaller in the RR.

Fixed positive multiplication takes place as shown in Fig. 9.7.1. Clear
the LR which will contain the most significant partial product Word. The
RR contains the multiplier; it will contain part of the multiplier and part of
the partial product, the least significant part during intermediate cycles;
on completion, the RR contains the less significant product Word.

Take a nibble from the RR and put it in the FR, a NIBBLE REGISTER. The
least significant bit in the FR determines the next multiplier cycle: if it is 1,
add the multiplicand to the partial product; if it is 0, add nothing (all 0’s).
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In both cases, the output of the ADDER is shifted right once as it is entered
in the LR. The bit shifted out of the ADDER to the right is inserted at the left
of the FR; the right-hand bit of the FR is shifted out and lost.

The foregoing operations continue for three more cycles to develop a
less significant partial product nibble in the FR. On a separate cycle, this
nibble is shifted from the FR into the RR upper end ; then the least significant
nibble from the RR is shifted into the FR. This new multiplier nibble is used
for four more cycles. COUNTERs keep track of how many multiplication
cycles are performed.

Upon the completion of thirty-two cycles, the product is contained in
the concatenation of the LR and RR. It is then stored in LM at Rl and
R1 + 1. Multiplication produces two Words; also, each of the operands
is of Word size. Hence, to store the product, we require two GPRs. It is
up to the programmer to set aside two GPRs starting at R1 in LM to store
the product. System 360 requires that the R1 specification be an even
number so that the microprogram for multiply can access LM most
easily.

Fixed division of binary numbers in two’s complement form is non-

restoring. The process is reciprocal to multiplication described above:
« The sign of the quotient is determined from the signs of the
operands.
o Numbers are placed in magnitude form:
* the divisor goes to the LR
* the more significant dividend Word goes to the RR
* the less significant Word goes to the MR
* the leftmost nibble of the MR goes to the FR

The situation is shown in Fig. 9.7.2. As long as the remainder is
positive, we subtract the RR from the LR; otherwise, we add the RR and the
LR. The FR may be considered a left extension of the RR for each set of four
cycles. A subtraction (addition) is performed. A quotient bit is deter-
mined: 0 for a negative partial remainder; 1 for a positive remainder.
The ADDER output most significant bit is placed into the right bit position
of the Fr. Simultaneously, we shift the RR and the FR one position to the
left, entering the leftmost bit of the FR into the rightmost bit position of
the RR. Since the FR was filled with the most significant bits of the low-
order portion of the dividend, this process provides significant bits of the
partial remainder to the RR.

Note that as dividend bits in the FR are used up, quotient bits are placed
there. At the end of four cycles, the FR contains a quotient nibble and no
more dividend bits. Place the quotient nibble into the right nibble position
of the MR, and shift off a new dividend nibble from the left of the MR into
the FR.
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RR Present most significant
/ portion of remainder
Divisor l
FR v’
last bit
=0?
RR and LR 'RR and € LR
to ADDER inputs to ADDER inputs
‘s ) A 4
Remaining upused Quotient
(so far) portion of so far
least significant Addand
dividend Word shift left
once
RR New remainder, most
/ significant portion

Old quotient bits
shifted out each cycle

Left-shifted bit is new
right-hand quotient bit

Fig. 9.7.2 Divide Howchart.

Sets of four cycles continue thus until the entire quotient is made.
The quotient then sits in the MR, with the remainder in the RR. These two
Words are entered into LM to complete division. As noted for multiplica-
tion, a double REGISTER is specified for the dividend both to call for a
double Word dividend and to provide room for the quotient and re-
mainder. Again, it starts on an even number to facilitate LM accessing.

Convert to There is a single command to convert a binary
decimal number to decimal, CVD. The computer does
this with the double-dabble system, shown in Fig. 9.7.3, which we now

explain.
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Start with a sum of 0, and examine from left to right the number to be
converted. Take what we have so far, double it, and add the next digit.
The first time, we double 0 and add 1 to get 1. Next we double 1 and add
1 to it to get 3; and so on. As you can see, the eight-bit number in the
figure converts to 229 in decimal. The name, double-dabble, arose since,
in converting, we either double or double and add 1 (dabble).

We apply the same principle to NBCD numbers, except that, instead of
storing decimal numbers in arabic numerals, we store them in their NBCD
code. To double any small digit, we simply shift the code leftward one
position. Thus, the code for number 3 is 0011; the code for 6 is 0110—the
code for 3 shifted leftward one position.

This works well until we come to digits which number 5 or greater.
When larger NBCD codes are shifted, we get a hexadecimal representation
which means something, but which is an incorrect NBCD code for the
doubled digit. The correction is to add the code for 6 (0110) whenever we
encounter a Jarge digit to be doubled.

To convert from binary to decimal we:

1. shift the new number leftward one place, adding corrections
detected on a previous cycle;

]

X2 +1 &

’

X2 +1 &«

/

~
Il

X2 +1«

X2 +0«

"/

X2 +0 <

Y/

W
Q
I

X2 +1 &

X2 +0«

,_.
—_
»
IA/

X2 +14«

N
N
O
IA/

Fig. 9.7.3 Conversion of binary to decimal by the double-dabble
method.
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2. append the next left-hand bit to the right-hand position of the
number we are forming;

check to see if any digits should be corrected;

4. set up the correction term for addition on the nexz cycle.

(98]

REGISTERS The PROCESSOR REGISTERs which take part in
conversion contain the following: _

» The RrR—initially set to 0. Eventually, it contains the result from
conversion, the code for the corresponding decimal number.

e The LR—which temporarily stores correction factors.

» The FR—which holds four bits at a time of the binary number
being converted.

o The MR—which initially contains the entire binary number
being converted.

Figure 9.7.4 is a sample conversion as done by the computer. On line
1 the RR is cleared and the FR is filled with the first four bits of the number
for conversion. The LR is also set to 0 since no correction is used on the
first cycie. On line 2 we add the correction to form a sum, line 3. At the
same time, a bit from the Fr is spilled off and placed into the FRr as the sum
is shifted left and placed in the RR. The output of the ADDER is examined.
If a digit position registers 8 or greater, a correction factor is inserted in the
LR for that digit.

Onlines 4, 5, and 6; and 7, 8, and 9; and 10, 11, and 12 the same three
cycles are repeated:

» add in the correction factor
» shift left one position
» append the next digit
In all these cycles, the correction factor is 0.

On line 12, the output of the ADDER is Eg, which is a code combination
greater than 8. It calls for a correction factor to be inserted into the LR,
namely, 0110, line 13. This is added in line 14, and the sum produced is
now 8 bits long, line 15.

Notice that, as we proceed, we make correction factors for two or
more digits. Actually, the PROCESSOR always examines a fullWord to make
up the correction factors; we have been examining only the significant
portion of the word. Notice that, on line 22, both codes are greater than
&, and two correction factors are set into the LRr.

HTdWNVXH

Decimal to binary To convert a decimal to binary using CVB,
we do just the opposite operations:

1. Halve the decimal number.



Sec. 9.7

R : R——  —L—

Line Decimal

1

2

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

0 0000 0000 0000 0000 0000

0000 ¢——
i

1 00001 <
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1110

|

0000 —

3 00011 «

1100

L a0

0000 &——-

7 00111 &«

1000

L om

0000 &—

(14) 00001110 <

0000

L > 0110

0110 «&—m

28 0010 1000 «

0101 &

11100101

I —
J E— Booo

0000 0000 ——

(57) 0101 0001 <

1010

--— 3
—[_———-—P 0000 0110

00000110 ———

0100

(114) 000010101110 €—
L oo
01100110

01100110

229 00100010 1001 <

1000

Fig. 9.7.4 Machine conversion from binary to-decimal.
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2. The remainder is the next bit developed, and it goes to the left of the
previously developed bits.
3. A correction term is necessary because of XS6 (excess six) notation.

To halve a number coded in NBCD, each digit is shifted rightward.
However, this will produce some digits incorrectly coded. We detect this
when a 1 is about to pass from one digit rightward to the next. At this
point, a correction 1s necessary.

The correction consists of subtracting 6 from the position to the right.

The necessity for correction is noted when we examine the output of
the ADDER. Whenever a 1 appears in the second bit of a digit, the correction
must be made upon the next digit to the right, after that digit has been
shifted right one position.

The correction term is entered into the LR. An NBCD 6, 0110, is
entered into that portion of the LR. On the next halving operation, this
quantity is subtracted. Recall that, to subtract, we add the one’s com-
plement of the number in the LR. A precarry is necessary to give the two’s
complement ; this is jammed into the carry-in position of the ADDER by the
microcommand in the RDR.

The RR contains the decimal number to be converted, and the LR
contains correction terms as they are generated during processing. The FR
receives the bits as they are shifted out during addition. The MR receives
the quantity placed in the FR every four cycles to expedite the conversion
process.

Figure 9.7.5 is an example of conversion from decimal to binary. To
make it simpler to follow, we convert decimal 229 into binary to observe
that the process is just the reverse of that portrayed in Fig. 9.7.4.

Correction is done by sensing the output of the ADDER. A special
initial cycle is required to shift the original quantity to the left and then
again right. This forces a quantity out of the ADDER from which to derive
the correction term for the first actual conversion cycle.

When 1 is sensed on the ADDER output in the second bit position of a
digit, 0110 1s entered in the next rightward digit position in the LR. In the
figure, the double initial cycle is omitted since it is easy to see that correc-
tion terms are required in both positions of the LR, line 1. This correction
applies to the halved output which is a halved number, line 2. The
correction is performed by adding the one’s complement of the LR and a
precarry to get an end-around carry. The output of the ADDER generates
the next correction term. The output of the ADDER is shifted to the right
and entered into the RR. As the shift is performed, the right-hand bit from
the ADDER is entered into the Fr.



Sec. 9.7 REGISTER COMMANDS

Line —«—RR—> <L R—> FR

1 0010 00101001 /0000
» 0110

2 x \ » 0110

3 0001 00010100 » 1/000
I Complement

4 1111 1001 1001 and add

5 0000 10%0 1110

6 x \ » 0110
+» 0000

7 0000 01010111 \

» (01/00
8 1111 1111 1001 ::l
9 0000 0101 0001
10 x I » 0000
11 0010 1000 — 101/0———»
12 11111111 4——’_1
13 0010 1000
14 x » 0110
15 0001 0100 \ » 0101/
16 1111 1001 4—:]_J /0000
17 00001110

» 0/000

—_— 10/00
——> 110/0

_— 1110/——»

Fig. 9.7.5 Decimal to binary conversion

Cycles continue thus until four bits are accumulated in the FR. These
are then sent off to the proper position in the MR.

Sets of four cycles continue until the entire thirty-two bit number is
prepared.

At the beginning of a cycle, the present version of the number to be
converted is in the RR. The correction term for it is in the LR. The correc-
tion is subtracted from the halved number by the ADDER by complement
addition. The result coming out of the ADDER is stored, and the new
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correction factor is inserted in the LR. The right-hand bit from the ADDER
is pushed into the FR, and the remaining bits are entered into the RR.

9 . 8 REFLEXIVE COMMANDS

Reflexive commands cause the computer to deviate from its normal
sequence. We review normal sequencing first.

Normal operation During execution proper, the INSTRUCTION
ADDRESS REGISTER, IAR, contains the first byte address of the next instruc-
tion. When a command execution is complete, the ferch microprogram is
called. If the assigned STAT shows that a completed instruction was just
finished, bytes for the next instruction are obtained from MM using the
IAR address. For an uncompleted instruction, the two bytes of the new
command available in LM are obtained and placed in the MR for instruction
interpretation. |

As each pair of instruction bytes is obtained, either from LM or MM,
the 1AR is advanced by 2 to reflect the address of the next byte pair,
regardless of whether all the bytes in the instruction have been procured.

The MR cannot hold an entire six-byte instruction. Hence, fetch is
broken into two stages. The M1 address is calculated and stored before
the third pair of bytes, when needed, is placed in the MR.

A common deviation from normal operation is a jump or, in IBM’s
terminology, a branch. The branch replaces the contents of the 1AR by an
address calculated from the branch command.

3 Branch on This command can be either RR or RX and

z condition is formatted thus:

>

= RR-BCR: 07 RI R2 (9.8.1)
RX-BC: 47 Rl X2 B2 D2 (9.8.2)

where the fields have these meanings:
¢ Rlisamaskindicating the conditions for which a branch is taken.
e R2 contains the address of the branch—(R2) is the address of the
branch.
e M2 is the branch address: M2 = (X2) + (B2) + D2.
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Table 9.8.1 MaAsK BITS, BC AND BCR COMMANDS

RI CccC
B8 B9 B0 Bl Octal Binary
1 X X X 0 00
X 1 X X 1 01
X X 1 X 2 10
X X X 1 3 11

The CCR, part of the PSWR, holds two bits. This permits four combina-
tions, reflecting four conditions which may arise. R1in BC or BCR conveys
to CONTROL the branch requirement by stating a unique set of these four
conditions. There are four condition codes which ccr might hold. There
are sixteen combinations for which codes will or will not be tested. Hence,
there are actually sixteen possibilities to be designated; when present, only
a condition code belonging to the designated set will cause a branch.

Four bits can distinguish sixteen specific combinations, the sets of
conditions, any one of which may cause a jump. These combinations of
conditions are conveyed by R1 with bits designated B8, B9, B10, and Bl11.
If one of these positions contains 1, a corresponding code in the CCR
causes a branch. These mask codes are shown in Table 9.8.1.

When R1 is 64, condition codes 01 and 10 apply. Thus, a branch is
taken for the less or greater conditions and no others. In other words, the
branch occurs only for unequal.

The condition code in the CCR is set by many commands, including
arithmetic. These are listed in the IBM System 360 manual. The most
important use for the condition codes occurs after a compare.

Table 9.8.2 shows examples of masks used to cause jumps for various
condition combinations.

Table 9.8.2 EXAMPLE OF MASKS AND THEIR CONDITIONS FOR BC AND BCR
COMMANDS AFTER A compare

cC '
R1, hexadecimal RI, binary = None | Meaning

B8 B9 BI0 Bl 0 1 2 3

2 0 0 1 0 0 0 1 0 >
6 1 1 1 0 0 1 1 0 #
C 1 1 0 0 1 1 0 0 &
0 0 0 0 0 0 0 0 0 NOOP
F 1 1 1 1 1 1 1 1 uci
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When R1 is 2 in Table 9.8.2, when BIO only is set to 1, the jump
occurs only when the condition code is 10: the last previous comparison
must produce greater for the jump to occur.

When R1 = Cyg, condition codes 00 and 02 are called for and a branch
is taken on less than or equal conditions.

When R1 is Og, no condition code causes a branch; this is equivalent
to a NOOP.

When R1 is Fyg, any condition code will cause a branch. Since one of
the four possible condition codes must be present, this mask causes an
unconditional branch or UC].

When a branch is next taken, the address of the first byte of the next
command 1s found in the 1AR. If the branch is taken, (R2) is placed in
the IAR for BCR; M2 is formed and placed in the 1R for BC. A fetch is then

instituted.
Branch and link These commands have the format:
RR-BALR: 05 R1I R2 (9.8.3)
RX-BAL: 45 RI X2 B2 D2 (9.8.4)

Both provide links with subroutines. This branch is unconditional. The
place where we left the main program is left in GpPr R1. The contents of
the 1AR, the command length code, the condition code, and a program
mask are all put in R1. In other words, the left Word of the doubleWord
PSW is transferred into R1, and we jump to the operand address:

e the contents of R2 for BALR
e M2 for BAL

To perform this command, the left PSW Word is prepared and placed
in the LR. Its destination, R1, is obtained from MR and placed in the LAR.
LM memorize places this information into Lm. The branch address is
obtained (BALR) or prepared (BAL) and placed in the 1AR, and fetch is

initiated.
Branch on count These commands have the format:
RR-BCTR: 06 R1I R2 (9.8.5)
RX-BCT: 46 R1 X2 B2 D2 (9.8.6)

They decrement GPR R1 by one and then test it. The branch is taken
when (R1) is nonzero. Otherwise, we continue in sequence. This command
is especially useful for loops performed a number of times, determined by
a count stored in R1. Remember, though, that sequencing through a list
cannot be done with this command alone. When an INDEX REGISTER is used
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to monitor a list, the length of each datum must be kept in mind. For
fixed data size, the INDEX REGISTER must be incremented or decremented by
the number of bytes required for each datum. For instance, in sequencing
through a list of items each of Word size, the increment or decrement is 4.

For both BCTR and BCT, (R1) is brought from LM and placed in the
LR; then 1 is subtracted from it by passing it through the ADDER. On
leaving the ADDER to go to the LDR, (R1) is tested against zero. If unequal,
the branch address is prepared and entered into the 1AR. If (R1) is zero,
command execution is terminated ; the IAR is unaffected. The decremented
contents of R1 is always returned to R1.

Execute The execute command format 1s:
RX-EX: 44 R1 X2 B2 D2 (9.8.7)

It allows us to go outside the program stream and execute exactly one
command, thereafter automatically returning to the program stream. We
might call this indirect command addressing. The command to be
executed is at M2.

This leaves the field R1 to be explained. IBM System 360 execute is
distinctive because the last byte of the instruction at M2 is or’ed with the
second byte of the contents of the specified GPR. This permits modification
of the executed instruction in various ways not described here. The
MEMORY image of the executed command (at M2) is unaffected by this.

The benefits of being able to execute one command outside the program
string are not described here. However, it should be recognized that there
is a limitation imposed by not permitting execute commands within the
range of execute commands. This is similar to contrasting single in-
direction with multiple indirection in addressing systems.

To fulfill an execute command, we first form M2. We then get the
command situated at M2, simultaneously getting the contents of R1. The
new command is installed in the MR, and the or procedure is performed by
using the MOVER and reinstating the new byte into its proper position in the
MR. The new command is executed as though it had been obtained
originally from the address previously in the IAR.

When an SS command is the executed command, six bytes must be
obtained somewhere along the line. The bytes used so far are kept track of
in backup CELLs in LM. The new bytes are procured after the M2 address
of the executed command has been formed and stored in the hardware
REGISTERs of the PROCESSOR.

The command in the MR is treated as any other command. Upon its
completion, the microprogram is switched to a fetch cycle. The IAR still
contains the address of the next command (after the execute).
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Supervisor call With the format:
RR-SVC: 0A R1 R2 (9.8.8)

this command causes an interrupt, transmitting the pair RIR2 (not their
contents) to the pswR and therefrom to the old PSW location. The
resulting interrupt is handled as described in Section 9.12.

Other There are a few more reflexive commands.
Their purpose is status switching or augmenting. They are:
 SPM-—set program mask. This permits alteration of the interrupt
code in the PSW.
» SSK—set storage key. This permits the software to assign a key
to blocks of MEMORY. Actually, it sets a Jock rather than a key.
* ISK—insert storage key. This command permits the same key
to be set up in a REGISTER for eventual insertion into a PSW so
that PSW will have a key to the blocks of MEMORY for which a
similar lock has been assigned.

9.9 VARIABLE FIELD LENGTH

COMMANDS

Format Variable field length (VFL) commands have
an opcode DH, where H is a hexadecimal digit. Each contains a length
specifier tag, L, and two addresses, M1 and M2. Each effective address is
formed by adding the displacement, D, contained in the command to the
contents of the GPR, B, designated in the command.

M2 is the address of the first (leftmost) byte of the source datum of
length given by L. L is one less than the desired length in bytes: M1 is the
address of the leftmost byte of the destination field whose length, again, is
given by L. Then M1 and M2 specify two fields; the opcode describes an
operation to be performed on the operands. The result is placed in the
destination field starting at M1.

A VFL field can begin at any byte in MEMORY—there are no boundary
limitations.

There are three commands which move VFL operands. As would be
expected, M2 is the starting address of the source, and M1 is the starting
address of the destination.

MVC, with opcode D2, moves characters without alteration.
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MVN, with opcode D1, moves the right (numeric) nibble of each source

byte into the right nibble of its corresponding destination byte. -

The destination field is altered only in the right nibble positions.
MVZ, with opcode D3, moves the zone or left nibble similarly to the
numeric for MVN described before.

The three commands, NC, OC, and XC, with opcodes D4, Dé, and
D7, respectively, perform the logical functions and, or, and exclusive or,
respectively. These are performed on a bit basis: Corresponding bits of
each field have the logical function performed on them, and the resulting
bit is placed in that position in the destination field.

CLC, with opcode D5, compares the two fields logically on a bit-for-
bit basis, viewing the fields as binary numbers of length 8L and deter-
mining the larger number of the two. The result of the comparison is
recorded in the condition code:

0 for (Ml) = (M2)
for (Ml1) < (M2)
2 for (Ml) > (M2)

3 for none

There are four other commands in this group which are used to
translate and edit information. Translate commands perform a table
lookup function which is quite valuable; edit commands check sign and
append and delete information similarly to those of the IBM 1401. These
are not described here.

Address During the first phase of the fetch operation,

preparation the M REGISTER receives the first four bytes of
this six-byte command. The opcode distinguishes it as a VFL command.
I is obtained from the second byte and entered into the concatenated
counter called G1G2. The next nibble contains a GPR indication, Bl; the
next three nibbles are the displacement, DI.

To prepare M1, we get the contents of Bl. Bl is sent to JR, the four
least significant bits of the LAR. The microprogram sets the two leading
bits to point to the GPRs. The quantity from LM is placed in the LDR and
then routed to the LR. Now the contents of the L REGISTER, (B1), are added
to the displacement field, D1. The result is returned to the H REGISTER as
M1 and also recorded in LM at the working STORAGE CELL, Wsl: The
microprogram sets the LM address of wsl into the LAR; the ADDER output
bus is connected to the LDR and the LM memorizes.
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During this period, we start acquisition of the last two bytes of the
SS command. If the previous command was uncompleted, these two bytes
are in LOCAL MEMORY. We initiate a LM recall cycle with the microprogram
furnishing the address of the INSTRUCTION BUFEER to the LAR. If the pre-
vious command was completed, the MM has the remaining two bytes.

The last two bytes are found either in the LDR or the MDR. For the
LDR, the two right bytes are set to the right-hand position of the Mr. For
the MDR, the left-hand halfWord is routed to the right-hand halfWord of
the MR. Also, it is advantageous to store this new instruction datum;
hence, the Word in the MDR is also routed to the LDR. The microprogram
starts the storing of this word in the 1B in LM.

Now, in Fig. 9.9.1:
» HR contains M1;
e MR contains the opcode, L, B2, and D2;
e LR contains the contents of BI left over from the last cycle;
« the contents of RR are unspecified.
The microprogram sets up the LAR for the GPR, and the B2 nibble is sent
over to the JR. LM recall brings (B2) to the LR.

HR MR LR RR

M1 op L B2 D2 (B1) ?

Fig. 9.9.1 The REGISTERS after preparing first operand address.

Next, (LR) and the D2 nibbles pass from the MR, through the ADDER, to
form the address, M2, placed in the RR.

The ADDER output is also passed over to the LDR to keep a record of
this address. The microprogram inserts the address of the ws2 into the
LAR, and we memorize M2 at ws2, Fig. 9.9.2.

The new state of affairs is reflected in Fig. 9.9.3:

e The FrR and the M/DR hold the function information which
operates the MOVER—this was obtained from the first byte of the
MR.
e Lisin GlG2.
 The HR contains the first operand address, M1.
o The two least significant bits of M1 are stored in the MB COUNTER,
MBC.
e The second operand address, M2, is stored in RR.
» Its least two significant bits are stored in the L-BYTE COUNTER,
LBC.
HR controls the acquisition of M1 words into the MR; RR controls the
acquisition of M2 words into LR.
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HR MR RR
M1 op L B2 D2 (B2)
T /k—(_l |
ADDER
RDR
l M2 = (B2) + D2

LAR WS2 LDR

M

Fig. 9.9.2 Second address preparation and LM storage.

Overlap System 360 DH-type commands permit over-
lap of fields M1 and M2. Operations are described to the programmer in
terms of bytes. Thus, if the M2 field is one byte to the left of the M1 field,
the first character of the M2 field will be moved into the first character of
the M1 field. This is also the second character position in the M2 field.
Subsequent moves will put this byte into the rest of the M1 field. When
fields overlap, the microprogram logic performs operations as though done
on a byte basis. Actually, they are done on a Word basis as shown below.
It would serve little purpose to describe the interlocks necessary for proper

(M1) (M2)
HR MR LR RR
M1 op L (B2) M2
—— " T ——
¢ v v v
MBC F M/D LBC
Gl G2

Fig. 9.9.3 After M2 is made, MR will store the first operand, LR will
store the second operand.
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overlap of byte operation. Consequently, we simply describe nonover-
lapping VFL operations as represented by the equation

M2 6 M1 — M1 (9.9.1)

Here, 0 indicates an operation to be performed as specified by one of the
opcodes above.

Types of cycles VFL data need not be aligned on boundaries.
But, since Model 50 is Word oriented, it is advantageous to arrange to have
at least the destination field aligned on a Word boundary as soon as possible
during execution. Then we need only one M cycle to get a Word and one
MM cycle to return a Word. We then distinguish three types of cycles:

 The initial cycle handles enough bytes to get the M1 field onto a
Word boundary.

 Intermediate cycles handle fullWords of information from each
field as long as they are still available.

» A final cycle, when necessary, handles the remaining fraction of
the Word.

Intermediate cycle The intermediate cycle finds M1 aligned on a
Word boundary. If M2 is also aligned on a boundary as shown in Fig.
9.9.4, both MBC and LBC contain 00. MM recall cycles alternate as follows
for the both-on-boundary case:

(HR) is entered into the MAR.

recall is instituted.

The datum is passed to the MDR and then to the MR.
(RR) is sent to the MAR.

A recall is instituted.

The datum passes to the MDR and then to LR.

The two operands are operated upon.

NN

]
[
T I[Ini] ¢

i

|
|

NI

Fig. 9.9.4 M2 Word boundary aligned for
intermediate cycles.
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8. The result is returned to the MR.

9. The contents of the HR are sent to the MAR.
10. The contents of the MR are sent to the MDR.
11. A memorize cycle is performed.

12. Both the HR and RR are incremented by 4.

When the M2 operand is not aligned on a Word boundary, as shown in
Fig. 9.9.5, (MBc) =0 but (LBC) # 0. We go through phases which
prepare one source Word in a REGISTER by taking parts of it from two
successive MEMORY Words. We save time in this operation since the last
M2 MEMORY word received is in LM.

To see this more clearly and also to clarify the terminology, notice in
Fig. 9.9.5 that we have typically,

MEMORY Words: FFFOF1F2; C3C4Cé6C8; etc.
source Words: F1F2C3C4; C6C8F3F4; etc.

Figure 9.9.5 shows an unaligned M2 field after an initial cycle. The
old source Word (which crosses a Word boundary) is the one that we have
just finished working upon. The new source Word is the one which we
shall prepare next.

Figure 9.9.6 shows how we prepare the new source Word. In the
figure, LM at [ws3] stores the most recent MEMORY Word. Its right portion,
C6C8, will be placed in the left portion of the LR. This is the first part of
the source Word. We also need another portion which is from MAIN
MEMORY. The next MEMORY Word is F3F4F5F8. We initiate MM recall as
well as LM recall.

To get the left data part, the microprogram places the location of
ws3 in the LAR and requests a recall. The LDR receives this word. The
desired portion, C6CS8, is determined by the LBC and is routed to the left
portion of the LR. Meanwhile, the contents of RR are sent over to the MR.

M1 MY

f
INIIE;

M2 M2’

A |

% F1 FE |[FFFOF1 F2|C3C4C6C8| F3F4F5F8 | F6 F7FO 2

Fig. 9.9.5 M2 NonWord boundary aligned for intermediate cycles.
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~ MM

X
F3 F4F5 F8 Ny

MDR MAR

MR LR /N RR

Destination New destination F1F2C3C4 Source address
address Word

NOILVYIHdO

WS3

LAR f LDR
/
\, C3 C4C6C8 /

LM

Fig. 9.9.6 Acquisition and assembly of a Word in an intermediate
cycle in the M2 off boundary case.

A recall is requested. The left portion of the MEMORY Word, F3F4, goes to
the right part of LR. The entire MEMORY Word, F3F4F5F8, is also routed
to the LDR. The LAR still contains the address of ws3. A memorize puts
the new Word away. The contents of RR are incremented by 4 to point to
the next data byte.

VFL functions are performed entirely by the MOVER. After situating
both a source and destination Word as in Fig. 9.9.7, the MOVER function
is set up in the MVF, and one of the move operations shown in Table 9.9.1
1s called for.

Initial cycle Figure 9.9.8 shows two fields, neither of
which is aligned on a Word boundary. The number of bytes handled by
the initial cycle is determined only by the number of bytes in the first
(incomplete) MEMORY Word of the destination field. In the figure, the first
MEMORY Word destination bytes in hexadecimal are A1B2C3. The source
bytes corresponding to these three bytes are 112233 in hexadecimal.
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HR MR LR RR
Destination Destination
address Word Source Word Source address
AN
\NY \
MOVER 4—-- Function

Fig. 9.9.7 The MovER performs a function (6) on (MRr) and (LRr),
placing the result in MR.

Notice that they overlap two source Words. After the initial cycle, the
destination operand is aligned on a Word boundary, namely M1’. Yet
the source MEMORY Word is not aligned on a Word boundary; it starts at
M2’ in the figure.

In the first phase, Fig. 9.9.9, we bring in the incomplete destination
Word; it is known to be incomplete since MBC contains a nonzero quantity.
M1 is sent from HR to the MAR. Since the final bits are truncated in
addressing MAIN MEMORY, the entire Word, including the initial byte, FF,
is brought into the MDR. From there, it is transferred to the Mz.

In Fig. 9.9.10, we acquire the first MEMORY source Word containing
the first portion of the source field. We send the address, M2, from RR to
MAR and bring that Word to the MDR. In passing the Word over to the LR,
the LBC determines the skew to which it is subjected: Only one byte
of the source is used, determined by counting up LBC until it hits zero. The
MBC is also counted this number of times (once), as is the RR and the HR.
The other bytes of the LR are filled with 0’s.

Table 9.9.1 FUNCTIONS OF VEL COMMANDS

REGISTER

Mnemonic Code Description Function None

MvVC D2 (M2) - M1 (LR) > MR  move character

MVN D1 (M2)x — M17 (LR)y = MR moOve numeric

MVZ D3 M2), - M17 (LR); — MR  move zone

NC D4 M1) A (M2) - M1 (LR) A (MR) > MR  and character

OocC D6 M1) v (M2) - M1 (Lr) v (MR) > MR  or character

XC D7 M1) x (M2) - M1 R) - (MR) > M  exclusive or

character

T Subscript N is used for right halfbytes and Z is for left halfbytes.
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MAR MDR
M2 =M2+1 22334455
L - y
HR MR LR % RR
M1 FFA1B2C3 11000000 M2'=M2+41
MBC BS LBC
00 2 00
LAR LDR v
WS3

Fig. 9.9.11 Then, for the initial cycle, the second part of the source
Word is obtained for the Lr. It is duplicated in ws3.

Now the REGISTERS appear as in Fig. 9.9.11. For next source Word,
(RR) is sent over to the MAR. The datum appearing in the MDR is sent to the
LDR for the next intermediate cycle. The address of ws2 is placed in
the LAR, and a memorize cycle also places this Word in LM.

To form the remaining portion of the Word in the LR, count up the
MBC to 00 to find the number of bytes needed. The number of places to
shift right depends on the number of significant bytes in the LR, as recorded
in the byte by STATs. In the example, we enter two bytes, shifting them
right one position as shown in the figure. So doing, we count up the two
REGISTERS RR and LBC. The count in LBC is the number of bytes out of step
between the two fields. After this, the REGISTERs are as in Fig. 9.9.12. The

HR MR LR RR
M1’ FFA1B2C3 11223300 M2 =M2 +3
— |
M2 field M1 field
MBC BS LBC
00 0 10

WwS3

21334455 1M

Fig. 9.9.12 The initial cycle and the operation are ready to be done.
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M 1 »
Y
[
} FF FE| F 1'F2F3F4 é
—<— M1 field > M2

t
; C1C2C3|C4 J

—~—M2 field—>

Fig. 9.9.13 Addressing on a final cycle.

MOVER then operates on the indicated fields according to the opcode in
the Fr. The size and position of the fields used are noted on STATs, not
shown. The next cycle is an intermediate cycle (except when L gets very

small).

Final cycle We determine that this is a final cycle by
examining the content of G1G2 and finding it less than 045. An example
of this is shown in Fig. 9.9.13. As expected, the M1 address, M1”, points
to a Word boundary. The M2 address, M2", need not point to a Word
boundary.

The operations performed in procuring the operands are portrayed in
Fig. 9.9.14. All of the source Word is resident in LM. No MEMORY word is
needed. The microprogram sends the location of ws2 over to the LAR to
procure the last MEMORY Word. In being passed to the LR, this last Word is

e ~
MAR 7~ MDR X
HR / MR / LR RR
Mm1” FEFF M2
MBC BS G1G2 LBC
00 00 01 10
LAR LDR
wS3
~_ >

N — e e

Fig. 9.9.14 Getting the operands for the final cycle.
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shifted as many positions as indicated in the STATs. Meantime, we obtain
the destination operand by sending the contents of HR, M1”, over to the
MAR. The datum is returned to the MDR and thence placed in the MR. No
further information is required to compile the source operand since G1G2
tells us (in the example) we need only one byte of information.

The operands are properly positioned in the MR and LR as shown in
Fig. 9.9.15. But only one byte of each is needed. Hence the MOVER imput
is so gated. The function performed has been recorded and affects only
those bytes of the receiving field in the MR which are to be altered. G1G2
is reduced to zero (showing execution is complete), and the quantity in MR
is stored at the address found in the HR.

Compare Compare, CLC, is similar to other commands
examined except that we may stop at some point before all L bytes have
been examined. As long as comparable bytes are equal, the comparands
appear to be equal, and the condition code in the CCR remains zero. As
soon as an unequality is found, the condition code is changed and operation
terminates. Bytes are examined from most to least significant position.
Once an inequality is found, this inequality is the result for CLC.

Two fields of equal length are to be compared in Fig. 9.9.16: the source
field starts at M2; the destination field starts at M1. Corresponding bytes z
of each are compared, bit for bit, only until an inequality is found. E

Figure 9.9.17 shows in tabular form what happens during compare. 3
Again, three kinds of cycles are used: initial, intermediate and final. Since §
the details of operand acquisition were discussed, we look only at the &
processing required. Z

HR MR LR RR
M1” +1 F1F2F3F4 C3C40000 M2" + 1
(N (-
MBC BS G1G2 LBC
01 01 00 11
MOVER

Fig. 9.9.15 Last operation on the final cycle for an MVC using the
fields shown in Fig. 9.9.13.
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M1 M1’

Y Y

§ F8F1F2F3 F4F5F6F7 F87

2 F8F8F8F1 | F2F3F4F5 | FFFOFFF1 FA—E

! ]

M2 M2’
Fig. 9.9.16 Two fields to help us examine CLC operation.

Comparison is done by complementing one of the comparands and
adding it to the other through the ADDER:

o If the result is zero, the comparands are equal.
o If the result is nonzero, the comparands are unequal.
A carryout from the ADDER indicates which comparand is greater.

The operations required are numbered in Fig. 9.9.17 to correspond to
the sequence of their occurrence.

1.

N

Bring the source comparand to the L REGISTER and set all the bits
of the MR to 1 (hexadccimal F’s). The M/DR is set to the complement
of LBC—the number of bytes in the initial Word.
There 1s only one byte of significance in the example as determined
by LBC. It goes to the second position in the M REGISTER as de-
termined by the MBC. If there were two bytes of significance in the
LR, their destination in the MR would still be determined by the
MBC. Then the second byte in the MR becomes OE, the com-
plement of the last byte in the LR; other bytes in MR are unaffected.
Complementation is done by the MOVER by an exclusive or of:

(a) the LR bytes;

(b) a set of all-zero bytes.
Obtain the second portion of the M2 Word, placing it in the LR.
This Word is placed in location ws3 of LOCAL MEMORY because all
of it is not used for this comparison cycle. The M/DR indicates that
two bytes in the LR are of importance. These two bytes are
positioned at the right end of the Word in MR. They are com-
plemented as they are passed over. The left byte in the MR is not
touched. The source comparand is now completely assembled.
Obtain the destination comparand, placing it in the LR without
alteration.
The comparison operation is performed by the ADDER. However,
we gate into the ADDER only those bytes which are to be compared,
namely, the three right-hand bytes. Since the total of the two
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Note: The table only indicates when a REGISTER changes.

Operation

First M2 Recall
First M2 Position
Second M2 Recall
Second M2 Position
First M1 Recall
Add and Set

Third M2 Recall
Third M2 Position
Fourth M2 Recall
Fourth M2 Position
Second M1 Recall
Add and Set

L
F8F8F8F1

F2F3F4F5

F8F1F2F3

F2F3F4F5

F1FOFFF1

FAF5F6F7

LBL

01

00

M

FFFFFFFF
FFOEFFFF

FFOEODOC

FFFFFFFF

OBOAFFFF

0BOAOOOE

MBC

11
00

10

00

10

ADDER

XX000000

FFFFF705

ws3

F2F3F4F5

F1FOFFF1

Fig. 9.9.17 Operation of compare for the fields shown in Fig. 9.9.16.
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comparands is zero, without a carry, this portion of the comparands
is equal; continue the comparison. The condition code remains
unchanged.
7. Retrieve the source comparand from LOCAL MEMORY ; gate the next
two bytes for comparison.
8. These are complemented as they are entered into position in
the MR.
9. Without enough bytes, go to MAIN MEMORY and gate the next Word,
placing it in the LR.
10. The two left bytes in the LR remain to be entered in the MR. They
are complemented as they are put in the right side of the MR.
11. The source comparand is obtained from MAIN MEMORY and placed
in the LR.
12. Addition is performed as shown in Fig. 9.9.18. Since a nonzero
result is produced without a carry, the condition code is set to 10.

(MR): 0000 1011 0000 1010 0000 0000 0000 1110
(Lr): 1111 0100 1111 0101 1333 0110 1111 0111

1111 1111 1111 1111 1111 0111 0000 0101
ADDER output: F F F F F 7 0 5

Fig. 9.9.18 Addition for compafison, Fig. 9.9.17.

We need no longer make comparisons since a complete result is
available. This is the end of the command.

9 . 1 O DECIMAL COMMANDS

Nature All decimal commands are SS format and
have the opcode FH—all begin with hexadecimal F and have another
hexadecimal digit in the second halfbyte.

Decimal commands handle information from right to left—contrary
to field specification: a decimal field is specified by the address of its
left-hand byte and the number of bytes it contains. However, for arith-
metic, we examine the sign first; furthermore, as the digits of each number
are operated upon, carries may be propagated leftward. Examination
should therefore proceed leftward.

 Arithmetic commands require two operands.
o There are three single operand commands:

* MVC move with offset

* PACK

* UNPK
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Address formation All commands, even those using a single
operand, require two operand addresses. In the case of single operand
commands, we specify a source and a destination address: a field is moved,
packed, or unpacked from a source field into a destination field.

An operand address, designated M1 or M2, is formed using the base
and displacement specified in the command. But M1 and M2 are left-hand
byte addresses, while decimal commands require the right-hand operand
addresses; call them M1” and M2”. They are given by

M1”=M1+1Ll; M2 =M2+12 (9.10.1)

Although the length specifiers, L1 and L2, run from 0 to 15, they
specify fields of length 1 through 16. This works out very well: If a
specifier is 0, the right-hand address is also the left-hand address. This
choice of L’s turns out properly for all values of M1 and M2.

To determine the right-hand operand addresses, M1” and M2", first
form M1 and M2 as described for the variable field length commands and
store them in LOCAL MEMORY. To each of these add, respectively, L1 and
L2 to form M1” and M2”, and store them in different ceLLs in LM. All this
1s part of fetch, classification, and initiation.

Figure 9.10.1 shows the main frame REGISTERS when the individual
decimal command microsequence takes over.

MVO Examine the operation of the single operand
command, MVO, move with offset. Suppose the computer is left in the
state shown in Fig. 9.10.2 which also portrays the objective of MVO. The
M2 field is to be moved to the M1 field so that the right-hand digit of
the M2 field is placed in the right-hand digit position of the M1 field. Notice
that the M2 field is unsigned, whereas the M1 field is signed, and that sign
1s preserved.

Here’s how REGISTERs are used during this command:
e MR is for assembly of the destination Word.
e HR holds the address of the Word assembled in the MR.
e LR is for disassembly—it holds the source Word from which
pieces are being transferred to the MR.
 RR holds addresses for the source Word being disassembled.
* BS (BYTE STATs) keep track of bytes being worked upon.
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CDAI GPRO F
CCTI .
ARI . Fleat point

. GPRO F

. GPRO
wsl: M1~ GPR1
ws2: M2”

ws7: PSW
ws9: Ml
wsa: M2

WSE: 1B GPR15

Fig. 9.10.1 The contents of LM duri

Figure 9.10.3 shows how the information manipulated in the fields
presented in Fig. 9.10.2 are operated upon. The MR actually holds portions
of two Words. It is simpler to fill it up completely before doing any

storage operations. Numbered as in the figure, the operations are:

1. The destination Word is brought to the MR because we need its
sign. We also have a source Word sitting in the LR.

2. 6 from the LR is placed in the left-hand position of the MR,
completing the first destination byte. The MBC is hence stepped

down to 11.
h¢2 M2Il
f 12134156{---}-—-f—-—-( M2 field, before and after
+M1 *Ml"
41771881990+ JMlﬁeld,before
+M1 +M1"
}———- 011234516+ M1 field, after

Fig. 9.10.2 Example of the job done by MVO command.
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Line HR MBC MR LR LBC BS RR
1 M1” 00 0 + XXXXXX 345 6XXXX 0000 M2
2 6 + XXXXXX 1000
3 11 6 + XXXXX5 0000
4 6 + XXXX 45 0001
5 10 6 + XXX 345 00
6 XXXXXX12 11 M2 — 4
7 6 + XX2345 0011
8 01 6+ X12345
9 6+ 012345 0111

Fig. 9.10.3 REGISTER changes for MVO for fields shown in Fig. 9.10.2.

3, 4. Two more halfbytes are assembled. They go into the right-hand
byte of the MR.

We use up the last digit from the LR.

To continue, we procure another word from MEMORY.

The two remaining useful digits are taken from the LR, aligned,
and placed in the MR.

9. The one digit of the MR which is undetermined is set to 0.

RN

7,

This occurs because the L2 count sitting in G2 has been reduced to 0.
We now have all the information for the M1 field, and we place it in MM
using two memorize cycles.

Pack and unpack We have discussed PACK, presented in Fig.
9.2.2. UNPK is just the reverse of this. Both of them are done from right
to left and similarly to MVO as far as assembly and disassembly are
concerned.

For PACK, the source field, (M2), is brought, a word at a time, to the
LR. The first byte has its two halfbytes reversed as it is entered into the Mr.
For the remaining nibbles, the numeric nibble from each source byte is
obtained from the LR and packed into the MR. The zone fields are stripped
at this time.

For UNPK, again nibbles of the right-hand byte are reversed. There-
after we take a nibble at a time, from right to left, from the LR. We place
it in the right half of a byte in the MR and place a hexadecimal F to the left
of it. Thus each nibble in the LR becomes a byte in the MR.

Decimal add and First, let us examine the principles of XS6
subtract arithmetic discussed in detail in connection
with the design of an NBCD ADDER in Computer Design.}

t Ivan Flores, Computer Design. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1967.
See Section 12.6.
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00765400
66666666
6 6DCBA66
00765401
67530E67
99FFF999

1

01540801

w2

Fig. 9.10.4 An example of decimal addition.

Addition is performed as in Fig. 9.10.4 by first converting one of tie
operands, call it X, into XS6 form, calling the result H. This is done by
adding 6 to each digit. The computer adds the code for 6 to the code for
the digit. No overflow occurs since no decimal digit is larger than 9.

To the result, H, we add the other operand, Y. Call this sum 7. T'is in
XS6 form for some digits, but not for others. Those for which a carry has
occurred are not in XS6 form—they are in their proper form; those for
which no carry has occurred are still in XS6 form.

To correct T, subtract 6 from all digits where no carry occurred. How
ever, instead of subtracting, the computer adds and complements. We add
9 (complement of 6 with respect to F in hexadecimal) wherever no carry has
occurred in forming T; we add an F (complement of 0 with respect to F)
where a carry has occurred (to make things uniform). Positions where a
carry occurs in forming 7 are underlined in the figure. The correction
factor in the figure is called E. When E is added to Y, an end-around carry
may be produced; it is added in to produce the final sum, S.

Figure 9.10.5 shows a decimal subtraction of X from Y to find a
difference, D. Find the complement of each digit of X, with respect to Fy.
Call this W. Add Wto Y with a precarry to get G. Some of the digits of G
are in true form; others are in XS6 form. They are in true form whenever
an interdigit carry has occurred; they are in X86 form where no carry has
occurred. The latter need to be corrected.

Y: 00321000 Y: 00321000

X: 00297600 W: FFD689FF

Y —X: 00023400 1
G: 00089A00

K: FFF999FF

1

D: 00023400

Fig. 9.10.5 An example of decimal subtraction.
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A correction is subtracted where necessary by complement addition.
Hence the correction factor, K, has F’s where a digit is in true form and
9’s where it’s in XS6 form. We correct G by adding K and an end-around
carry to get the difference, D.

Operation Operation of the hardware during addition
is divided into several phases:

(a) Determine the actual arithmetic performed; algebraic addition (or
subtraction) can call for either addition or subtraction. The
desired process is stored in STATs along with the sign of both
operands.

(b) Acquire and properly align the operands.

(c) Add, using XS6 arithmetic, and store the intermediate result. If a
carryout is present, it is noted.

(d) The intermediate result is stored in the M1 field.

(e) Steps (b), (c), and (d) may be repeated up to four times more; for
L, up to 16 times.

(f) Recomplementation may be required.

The right-hand byte addresses, M1” and M2”, lead us immediately to
Words containing sign bytes for each field. These are stored separately
in STATs. Actual arithmetic is determined from the sign bytes stored in the
STATs and from the command opcode and requests the proper micro-
program, add or subtract.

Actual arithmetic Actual arithmetic determination is made
first because, as M2 digits are obtained, we should know if they should be
stored in true or complement form.

The number of digits operated upon in the first cycleis determined by the
boundary position of the M1 field (if L1 is large enough). This may be
2, 4, 6, or 8 digits. That many M2 digits are obtained and aligned with the
M1 Word. During acquisition, we may find that:

 one or two Words from the M2 field are required;
o digits may or may not be left over from the M2 fields.

The first instance is determined by watching the condition of the BYTE
COUNTER for the M2 field during assembly and alignment of that field. If
we run out of digits, the BYTE COUNTER will so indicate, and we will have to
acquire a new M2 Word. If digits are left over during assembly and
alignment, these are stored in LM so that another MM reference is not
required during the next phase.
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Example An example of how addition is performed is
shown in Fig. 9.10.6. The M1 contains 0765331C; here, Cy, represents a
plus sign. M2 contains 44222C. To add these fields, first find the address
of the last byte of the M1 and M2 fields: M1” and M2", respectively.
Neither M1” nor M2” lie on a Word boundary in the example; so fractions
of a Word are added in the first cycle. There is only one byte addressed in
the first M1 MEMORY Word. Therefore, we take only one byte from the M2
MEMORY Word although the M2 field addresses two bytes in that Word.

Ml M1”

§ FF|07}165(33}1C|[34]|56(78 {Mlﬁeld,before

+ M2 + M2"

M2ﬁeld§ oo|88|66l44]22]{2ClAaB|CD §
+M1 +M1"

FF|08{69|55|3C|34|56|78 iMlﬁeld,after

L

Fig. 9.10.6 Example of the job done by decimal add com-
mand AP,

The first cycle is shown in Fig. 9.10.7. On line 1 we obtain the M2
MEMORY Word. From it we take one byte to match up with the first and
only byte addressed in the M1 MEMORY Word. This source byte, 2C, is
taken from the LR and placed in the MR in the left-hand position. The Cy
is replaced by a 0, as are all the other nibbles to the right of this one. Since
there 1s at least one more useful (left-hand) byte left in the Word in the MR,
it is placed in LM for later.

The quantity in the MR is coded in NBCD; we want it in XS6. A series
of 6’s are placed in the LR. The contents of the MR and LR are added
together and the result placed in the MR on line 4.

One more correction constant enters the sign into this M2 quantity.
This adjustment figure is placed in the LR, line 5, and the contents of the LR
and MR are added together to produce the sign-adjusted, XS6, M2 field
quantity in the LR.

Next we get the M1 Word and place it in the MR. Zeroes are entered
in the right-hand four nibbles of the Word since they do not belong to the
M1 field being added. The next two nibbles to the left are set to FF for sign
adjustment, line 8. Finally, the addition is performed, using the quantities
in the MR and LR; the result is placed in the MR, line 9. As this is done,
the ADDER notes those digits for which overflow occurs and F’s are

HTOAD L1S¥IA
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Line MR LR
1 ? 222CABCD
T
4
2 20000000
3 + t—— 66666666
{.
4 86666666
5 F8FFFFFF
— +
6 TF666666
7 1C345678
8 1CFF0000 —
._I__
9  9C656666 T
fry
10 9FFF9999
0
11 3C650000
To MDR

entered into the LR in these positions. 9’s are placed in the other positions
to obtain the overflow correction quantity. Another addition is performed.
The output of the ADDER is now correct, at least for the two digits with
which we were working. These are sent to the MDR, where they may be

DECIMAL COMMANDS

Explanation

Get right-hand M2 Word.

Orient desired M2 byte(s) to left side of MR
to correspond to M1 Word. 0’s to rest
of MR.

Enter 6’s into LR.

Convert (MR) to XS6.

Create sign adjustment according to M1
field boundary.

Sign Adjust.
Get M1 Word.

Adjust nonfield bytes.

Add.

Digit overflow correction factor.

ADDER output proper byte(s) go to MDR
for M1.

Fig. 9.10.7 First phase of decimal addition example.

entered into MAIN MEMORY for storage.

For larger fields, intermediate cycles of addition would add full Words,
eight digits each. We now look at a final cycle of addition where again a
partial word is being added in Fig. 9.10.8. First we assemble an M2 Word.
Generally, there is a part of a Word left over in LM. On line 1 we obtain
this word and place it in the Lr. The left byte is usable. It is placed to the

right of the MR, which is cleared, line 2.
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Line MR LR Explanation
1 9C656666 222CABCD Recall M2 Word from M.
2 00000022 Obtain remaining useful byte(s).
3 008866&:_1_' Get another M2 Word from mMM.
| .
4 00004422 Assemble these byte(s).
5 66666666 Enter 6’s into LR.
_l_
6 l——— 6666AA88 XS6 M2 field to MR.
7 FF076533 Get M1 Word.
8 00076533 ———— Clear unused bytes.

9 666EOFBB «———— —

] ]

10 1-+| + 99991:999 Set correction factor for overflow digits.
11 (}0080955 Correct output to MDR.
To MDR

Fig. 9.10.8 Last phase of decimal addition example.

More bytes are required; so we go to MM and get a new Word, line 3.
Only the right-hand byte is needed because the length specified is now used
up. This byte is placed to the left of the last byte that was put in the MR,
line 4. To convert the number in the MR to XS6 form, the LR is loaded with
6’s, line 5. After adding (LR) to (MR), the LR gets the M2 number in XS6
form, line 6.

We get the next M1 field from MEMORY. The last three bytes will be used
for addition; the first byte is cleared to zero, line 8. Notice that the M1
field is larger than the M2 field. We add, placing the result in the MR, line
9. Digits for which an overflow occurs are detected by the ADDER, and the
correction factor is set into the LR, line 10. A correction addition cycle is
performed, and the result appears on the ADDER output bus, line 11. This
is gated to the proper positions of the MDR to complete addition.

Multiplication The decimal multiply command, MP, for
multiply packed, uses the M2 field as the multiplicand and the M1 field as
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the multiplier, placing the product in the M1 field. In multiplication, the
product is generally larger than either the multiplicand or the multiplier,
and sufficient space must be provided for it. We restrict the multiplicand to
eight or less bytes (fifteen digits plus sign, or less). The multiplier is then
assumed to consist of a field whose length is the difference, L1 — L2. This
assures there will be sufficient room in M1 for the product.

Decimal numbers are stored in sign and magnitude form. For multi-
plication, the absolute value of the product is the same regardless of the
signs of the operands. Hence, the product sign is determined only by the
signs of the multiplicand and multiplier on an initial cycle, and it is stored
in the M1 field in LM.

Consider multiplication of a single Word of four bytes or less. The
reader may extrapolate to a multiplicand which is larger, but the com-
plications do not justify the explanation.

(M2) is obtained and aligned at the right with 0’s entered on the left.
The sign digit is removed so that the rightmost digit is numerical. From
the multiplicand, call it X1, we calculate its double, X2. X1 and X2 are
stored in LM cELLs wsA and ws8. To start multiplication proper, obtain
a digit at a time of the multiplier. From a Word of multiplier digits,
extract the rightmost digit and store the rest in LOCAL MEMORY. As new
multiplier digits are needed, they are obtained from LM. When LM
multiplier digits are exhausted, get the next M1 multiplier Word and
disassemble it similarly.

The partial product is in one REGISTER. Obtain a multiplicand multiple,

X1 or X2, and place it in another REGISTER. Perform addition, reducing:

the multiplier digit in M/DR by one or two accordingly. This continues until
the M/DR reaches zero. The partial product now contains the correct
rightmost digit. This is entered into a PRODUCT REGISTER in LOCAL
MEMORY and the partial product is shifted within its REGISTER.

Now obtain the next multiplier digit, place it in the M/DR, and perform
another set of multiple additions of the multiplicand (multiple) to the
shifted partial product. '

Gl initially contains L1. It is decremented each time a new multiplier
digit is used. When it reaches zero, it indicates when multiplication is
complete. The product Words now in LM should be returned to the Ml
field. To do this, we must reinstate M1” as well as L1. These have also
been kept in LM and are now made available. With as many cycles of MM
as required, the product now in LM is transferred to the M1 field in MM.

Division The decimal division command references the
M1 field as the dividend and the M2 field as the divisor. Division 1is
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reciprocal to multiplication; hence, the length of the quantities involved
are similar. Using a divisor of length L2 and a dividend of length L1, we
develop a quotient of length L1 — L2. The rest of the M1 field, L2 bytes
(the same as the divisor length), is free to hold the remainder. The quotient
and the remainder occupy the left and right portions, respectively, of the
M1 field at the end of division.

Each quotient digit is developed in the PROCESSOR REGISTERS using
restoring division. This is explained in Computer Design, Sections 14.4-
14.6. Repeated subtractions of the quotient from the partial remainder
are performed, each one being recorded by incrementing the M/DR. When
the partial remainder becomes negative, it is restored by a cycle addition.
The M/DR is decremented, and this is the next quotient digit to be recorded
in the QUOTIENT REGISTER in MAIN MEMORY.

Sign preparation is similar to that for multiplication.

OILLHWHLIYY

N )

Commands There are four 10 commands with the
following mnemonics:

 S|O—start input/output
» TIO—test input/output
» HIO—halt input/output
» TCH—test channel

(9.11.1)

These commands may be given only in supervisory state and have the
same format:
I0: 9H X Bl DI (9.11.2)

where H 1s one of four hexadecimal digits, X is undefined and one byte
long, and Bl and D1 are base and displacement, respectively. The address
M1 is the sum of the contents of the GPR designated by Bl and the dis-
placement D1. But for an 10 command, we address a DEVICE on a CHANNEL
rather than MAIN MEMORY. Hence, the Word, M1, is viewed as three
components:

Ml: Y C D (9.11.3)
where:

Y is the left twenty-one bits which are ignored;
C is a three-bit CHANNEL designator;
D is an eight-bit DEVICE designator.
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To reiterate, from the base and displacement in the command, the
PROCESSOR forms M1 which, in turn, designates a CHANNEL and DEVICE.

You may wonder why eight bits are required to designate a DEVICE.
Both the multiplexor channel (which we do not discuss here) and the
SELECTOR CHANNEL consist of SUBCHANNELs. One use of the SUBCHANNEL
is to accommodate the DEVICE CONTROLLER which, in turn, communicates
with several DEVICEs. The four bits of D designate a SUBCHANNEL
designator; the other four bits designate a DEVICE on this SUBCHANNEL.

TIO and TCH test to determine the status of the DEVICE and CHANNEL ;
HIO may Aalt an 10 operation before it would otherwise terminate. How-
ever, TIO, HIO, and TCH have so many ramifications regarding con-
ditions and alternatives that it does not pay to examine them in detail.

S10 is the most useful and most used command. It initiates 10 activity
in most situations:

e during traps under JOCS
* for errors
* normal completions
* exception
» starting from scratch
Most of our attention in what follows goes to SIO.

DNINVHN

10 operations We review SIO activities on data transfer.

1. SIO is encountered in program in supervisor mode.

B1DI is converted into M1.

M1 is broadcast to ccs as C D.

The status of the CHANNEL, SUBCHANNEL, and DEVICE is examined.
The SIO is accepted or rejected; the condition code records this:

0—SI10O accepted.

1—CSW notes disposition.

2—CHANNEL or SUBCHANNEL is busy.

3—CHANNEL, SUBCHANNEL, or DEVICE is not operational.

SN

6. Assuming acceptance, the channel address word CAW is obtained
from MM for the cc and placed in the CR (actually stored in LM).
The CAW contains the protect key and the subcommand (CCW)
starting location.

7. The first channel control word (CCW) is brought to the sus-
COMMAND REGISTER, SCR (actually in LM). Each CCW contains:

(a) a subcommand code describing the desired DEVICE activity;
(b) an MM address to or from which data are moved;

(c) a count of bytes to be moved;

(d) fiags for chaining, skipping, interrupting, etc.
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8. The 10 task is delegated to the DEVICE and the program allowed to
proceed simultaneously.

Information may flow either way: we examine inbound data.

9. Character codes are:

(a) read from the input medium;
(b) transmitted from the DEVICE to the cc;
(c) sent to the commutator;
(d) positioned in the ASSEMBLY REGISTER, AR.

10. When the AR is full, a cycle is stolen:
(a) For the IBM 360, an MM cycle can be stolen at specified steps

in a microprogram during either fetch or execution.

(b) cc to MM uses the PROCESSOR for cycle stealing.
(c) The microprogram is reinstated thereafter.
(d) The scr is updated.

11. When a subcommand is completed, the activities which follow

depend on which is specified:

(a) data chaining;
(b) subcommand chaining;
(c) neither.

12. A command is completed when:
(a) the DEVICE reports an exception or error;
(b) the DEVICE reports normal completion and there is no sub-
command chaining.
13. Completion causes an interrupt.

Fetch operations Fetch for 10 commands is the same as for other

four-byte commands. A command is obtained and placed in the Mr. Bl
is extracted from its position in the MR and sent over to the LAR. The
BASE REGISTER contents are brought from LM and placed in the LR. The
displacement field is added to the contents of the LR to form the MI
address which is returned to the LR. Then the 10 microprogram is called

Setup The 10 microprogram gets the channel address

word (CAW) from its fixed location (byte 72 in MM) and places it in the RR.
The CAW contains three fields:

1. The protect key indicates which banks in MEMORY are available to
the 10 command.
2. An intermediate field contains four zeros.
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3. The last field of three bytes, the address at which commands to the
CHANNEL begin, is called the channel control address and abbreviated
CCA.

Subcommands via the CHANNEL to the DEVICE are contained in a
doubleWord called the channel control word and abbreviated CCW. The
first Word of the pair is CCW1; the second is CCW2. The next micro-
program task obtains CCW1. The CAW is obtained from the RR and sent
over to the MDR. Recall is initiated and the Word which is recovered is sent
to the MR. Notice now that the MR no longer contains useful information:

o The M1 address fabricated from (B1) and D1 now resides in the
LR.

o The opcode contained in the MR has caused a transfer to the
microprogram specific to this command.

The CCWI1 contained in the MR has two main fields:

1. The first field, £, indicates function.
2. The second field, loc, is the source or destination address in MEMORY
for 10 data.

The microprogram has momentarily completed its tasks. To transmit
information to the desired CHANNEL requires the attention of logic called
the COMMON CHANNEL. The COMMON CHANNEL communicates between the
CHANNEL CONTROLLERs and the cpu. During this period, the CPU enters
what is called the countdown state: it remains inactive until the disposition
of the CHANNEL in question is known.

COMMON In communicating between the CHANNELs and

CHANNEL the cpU, the COMMON CHANNEL responds to
the command at the cPU by determining the present states of the CHANNEL
and DEVICE addressed. There are four states which the CHANNEL may
occupy:

A—it is available for use.
I—it has terminated its activity and has an interrupt pending.
W—it has an assignment and is working.
N—it is not operational; it is either disconnected or there is no DEVICE
attached to this DEVICE CONTROLLER.

(9.11.4)

The first thing the COMMON CHANNEL does in handling an SIO is to
determine if the command presented is legal. If not, it sets up a FOUL.
This is an unlikely event and requires special handling for recovery.

For no FOUL, the COMMON CHANNEL checks the CHANNEL addressed.
This CHANNEL may be in any of the four states just noted, or it may have a
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terminating activity or lower priority activity, in which case the commoN
CHANNEL waits or pushes aside the lower priority activity.

If the CHANNEL addressed is idle, the COMMON CHANNEL causes the
CHANNEL addressed to pick up the Words from LR, MR, and RR by initiating
the SIO transfer microprogram. While this is in progress, the cOMMON
CHANNEL requests another microprogram to procure CCW2 as soon as the
first microprogram is done. The address for CCW2 is CAW--4.

The CHANNEL CONTROLLER checks CCWI1, when received, for sub-
command validity. The process is aborted and an interrupted state
entered for an invalid subcommand.

DEVICE select If the subcommand is accepted, then the
CHANNEL determines the state of the DEVICE addressed. A DEVICE may
occupy one of four states described in (9.11.4): A, I, W or N. The DEVICE
may accept a subcommand only in the available state, A. The CHANNEL
broadcasts the DEVICE address. If the DEVICE address is illegal, a “not
operational” signal is returned to the CHANNEL and relayed to the micro-
program, thus aborting the subcommand.

If available, the DEVICE so indicates. The CHANNEL then sends the
subcommand to the DEVICE which prepares to execute it and transmits a
status signal when it has determined whether the subcommand is
acceptable.

The DEVICE and CHANNEL talk back and forth, and eventually a status
signal is sent from the DEVICE to the CHANNEL CONTROLLER. Similarly, the
CHANNEL CONTROLLER transmits a status report to the COMMON CHANNEL.
Finally, the COMMON CHANNEL transmits a status signal to CONTROL which
is then recorded and takes CONTROL out of countdown state.

When CONTROL pops out of countdown, it is free to enter a fetch state
for the next command. Meanwhile, the CHANNEL CONTROLLER and DEVICE
are busy executing the first subcommand in the sequence indicated in the
CAW for the SIO.

CHANNEL Some of the hardware of the CHANNEL

REGISTER CONTROLLER 1is shown in Fig. 9.11.1. The
main REGISTER used for communication between CONTROL and CHANNEL
1s designated by me as the CHANNEL REGISTER, CHR. IBM calls this the
““GENERAL PURPOSE REGISTER.” However, if we call it this, it can be easily
confused with the GPRs in LM.

The cHR receives information from the cpU which it promptly staticizes
to other REGISTERS. To send information to the cpu, information from
these other REGISTERs is placed into the CHR and dispatched from there.
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Let us see the use of some of the REGISTERS in the CHANNEL CONTROLLER :

The BYTE COUNTER, BCR, points to the byte being assembled or
disassembled.
The END REGISTER, ER, notes termination conditions.
The OPERATION REGISTER, OR, holds information about the
function the DEVICE is to perform.
The FLAG REGISTER, FLR, describes the data flow during the
subcommand and how we continue to the next subcommand.
The CHANNEL STATUS REGISTER, CSR, tells the present status of the
CHANNEL; it tells whether errors or exceptions have arisen and
their cause.
The LAST WORD REGISTER, LWR, gives information about the three
DATA REGISTERS. Data for transmittal between the CHANNEL
CONTROLLER and MAIN MEMORY may be found in one or more of
the following:
* the C REGISTER, CR, used for assembly and disassembly;
* the BUFFER REGISTER, BR, for local hardware buffering of the
C REGISTER;
* the LOCAL MEMORY BUFFER REGISTER, AR, which stores a datum
just before it is placed into MMm.

CONTROL Initiation of activity within CONTROL (starting
a new microprogram) by the CHANNEL CONTROLLER uses three registers
contained in the CHANNEL and falling to the COMMON CHANNEL:

The REQUEST REGISTER, RQR, holds indication of the type of
microprogram which the CHANNEL would like the cpU to perform
next.

The PRIORITY REGISTER, PRR, indicates the priority of the request
in the RQR.

The POSITION REGISTER, POR, indicates the microprogram now
in execution.

Requests for activities are made automatically by examination of the
states of REGISTERs in the CHANNEL and in the DEVICE. If the request sent to
the RQR has a priority higher than that noted in the PRR, it is placed in the
RQR, evicting the previous occupant and setting up the higher priority in

the PRR.

When the POSITION REGISTER indicates that no microprogram is

presently being requested, the information, RQR and PRR, is entered into

the POR.

The por talks to CONTROL via the COMMON CHANNEL. The coMMON
CHANNEL monitors the CPU activity, and before a new fetch is initiated,
CHANNEL requests are made for microprograms to service the CHANNEL.
Such CHANNEL requests permit cycle stealing and enable the microprogram
to service the CHANNEL without substantially slowing down cpU activity.
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Assembly and The cr is the assembly (or disassembly)
disassembly REGISTER for the CHANNEL. Information ex-

changed between a DEVICE and the CHANNEL uses only the CR.

All DEVICEs transmit information a byte at a time. However, MM and
the CHANNEL handle information on a Word basis. The CR assembles
bytes into Words or disassembles Words into bytes.

Reading information from a DEVICE requires the assembly of a Word in
the cr. After a Word is assembled, we clear out the CR as soon as possible
so that the next byte from the DEVICE can be placed into the cr without
clobbering information before it gets into MM.

The BR is a buffer for the CRr; it enables us to free the CR immediately.
When the BR is full, we empty it as soon as possible so that when the CR
becomes full, we will have a place for its datum. This requires the inter-
vention of a microprogram.

A microprogram can store the Word from the BR directly into MM
provided it can break into CONTROL operations presently under way
without harming them. To save time, another REGISTER in LM, called the
AR, is used for backup for the BR. There is one such REGISTER for each
CHANNEL. This permits us to service a CHANNEL immediately and put away
the Word in AR at our leisure.

Let us now reverse the process and see what happens on writing from
MEMORY to a DEVICE:

» A MEMORY Word is stored in the AR.

o Words from the AR are sent to the BR if the CR is full, or to the CrR
directly if it is empty.

o The cRr is loaded from the BR by the CONTROLLER when it is ready
to disassemble a new Word.

» Bytes are sent from the CR to the DEVICE as they are needed by

the DEVICE.
Read and write Figure 9.11.2 shows the microprograms called
operations during a read. Each microprogram is in a

“rectangle” whose left side is a semicircle. Boxes are numbered to corre-
spond to the text. The SIO operation immediately initiates the STARTIO
microprogram (1). It also calls for the CCW2 (2). After the CCW is
checked (3), the UNIT SELECT microprogram is called in (4). If all is
well (5, 6), the 10 UNIT transmits information to the CR for assembly (7).
When information is to be stored in MM, a storage chain is entered (8-10).
If more is done for this CCW, CONTROL returns to the DEVICE (11-13, 7).
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Mode CR
10 Command AR(LM) BR 0123
S | cru CAW
3 CCW1
§ 10 Start 10
CCW2
CPU  Select DEVICE
0 Get Word 1 W1 »W1
Get W2 -W2 ‘—|::1 }
Get W3 » W3 2
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S Q | ceu  Get W4 » W4 6
S 2 L7 3
a L ~w3 Leg S
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8 CCW1 TIC ——»9-12
S § CCwW2 W4
S LM recall W5
O v CCwW1 L—»13-16
cpUM—»CCW2 W5
1(6) Get W1 of second block W1(BIk2)
Get W2 W2 L »17-20
~ Y
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:2: 3 g first block, new DEVICE W1 W1
‘;) ] £ DEVICE/CHANNEL end received
& § 10 End Update DEVICE #2
&~ Interrupt
‘ cpu Store CSW

First CCW—write, DEVICE #1

First block—20 bytes

Second block—12 bytes

Second CCW TIC (transfer in channel)
Third CCW wrifte, DEVICE #2

Blocks for DEVICE #2 unspecified

Fig. 9.11.3 Write operation.
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For the end of a CCW operation (12), we check for data chaining (14) and
command chaining (21). When chaining occurs, we get new CCWs
(15, 16) and make checks on them (17-20). There are several ways to
terminate the operation (6, 13,20, 22). Upon termination, the micro-
programs for end and interrupt are called upon (24, 25). The interrupt
“takes us from the microprogram into the software.

Operations which take place for write commands are presented in Fig.
9.11.3. This is shown in a different format. It indicates at which point
the microprogram is operating in CPU mode or 10 mode. It also indicates
what is going on at each moment. The next two columns to the right show
what is contained in each of the BUFFER REGISTERs. Finally, on the extreme
right, the information being presented for output is detailed.

Breakin and breakout constitute the initiation and termination of
stealing, as discussed in Chapter 2. How these are done for System 360 is
described next.

HLTIM

9 . 1 2 CYCLE STEALING

AND BREAKIN

Breakin and System 360 is organized around the CENTRAL
breakout PROCESSOR cycle. Recall that there are four
half-microsecond CPU cycles in one MAIN MEMORY reference cycle of two
microseconds. Each cPu cycle is under the control of a single micro-
program step. This relieves the limitations upon cycle stealing which were
present in second generation computer systems:
e There, we could break in only after the completion of instruction.
 In the third generation system, we can break in at the end of
almost any cpU cycle.
The only precautions which must be observed after the breakin occurs
within an instruction are the following:
e Mark the place within the broken-into microprogram.
» Preserve REGISTERS used by the breakin microprogram.
» Provide a means to return to the broken-into microprogram.
o Prohibit breakin during breakin.
All servicing of CHANNEL traps is done by CPU cycle stealing as described
below.
Traps require return to the software and therefore are subject to more
limitations than simple CHANNEL servicing regarding when they may occur.
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Example An example of cycle stealing is presented in
Fig. 9.12.1. We see there the normal sequence of events occurring in CPU
mode. The first microactivity is the fetch operation. This is followed by a
classify operation. Then come activities in the operation of the command,
labeled here CM1, CM2, etc.

During the ith microactivity of the command, CM(i), the coMMON
CHANNEL receives a request from the CHANNEL CONTROLLER communicating
that cycle stealing is necessary. The COMMON CHANNEL sets up so that, at
the end of CM(i), the breakin occurs. Of course, this happens only if the
proper priority and availability prevail.

The control goes over to the breakin hardware. This is hardwired logic.
It places the computer in 10 mode and then begins the microprogram |
requested by the COMMON CHANNEL. During each of these microoperations
in 10 mode, further breakin is impossible—it is suspended.

After the last CHANNEL service microoperation, a breakout is entered.
This causes the computer to re-enter CPU mode and to return to the next
microoperation required to fulfill the main program command being
executed, CM(i+1).

Breakin initiation Figure 9.12.2 is a block diagram of hardware
which participates in cycle stealing. The COMMON CHANNEL has several
inputs: one from each SELECTOR CHANNEL, and one from the MULTIPLEXOR.
Each of these inputs may or may not have a request for an 10 microprogram.
When a request is present, a priority indication appears also. When a
request appears on one or more of these lines, the COMMON CHANNEL
raises the request line. This signal is routed through the RM ADDRESS
DETERMINATION LOGIC (RMADL). The purpose of this LOGIC is to take
information from the RDR and other signals from the cpuU to determine
what the next read address will be. Normally this address would be sent
over to the RAR to request the next microoperation Word to be placed in
the RDR.

Since a request is present, we do not wish the next normal microopera-
tion to be obtained. Instead, its address is entered into the READ ADDRESS
BUFFER REGISTER, RABR—this will be kept to return us to the main micro-
sequence after breakout is completed.

The address of the CHANNEL service routine is supplied by the commoN
CHANNEL. It is routed by the determination of the RMADL to the RAR. One
more thing that the RMADL does: it places the computer in 10 mode by
setting the MODE FLIPFLOP. All this is done only after the RMADL receives a
signal indicating the end of a cpuU cycle.

As long as the cpu is in 10 mode, further breakins are prevented by
suppressing COMMON CHANNEL signals.
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SELECTOR
CHANNEL #1 ~
SC #2 4
> COMMON
CHANNEL \ A 4
MODE
; FE RDR
MULTIPLEXOR
CHANNEL Name of
request request
A4 v A4
. e-rld—(Of—_- RM, ADDRESS DETERMINATION LOGIC (RMADL) O‘.hir 1?
microoperation signa
cycle) )
Address of next CP To Microoperation
microoperation name requested by
\J after break-out V% cc
RAR
RM, ADDRESS
BUFFER REGISTER
(RMADI)
Fig. 9.12.2 Hardware used in breakin and breakout.
Breakout A breakout occurs after the last micro-

operation of the 10 service routine has been done and provided that no
request is pending on the COMMON CHANNEL.
The tasks of breakout are opposite to those of breakin:

1. The next micro address for the broken-into microprogram is
obtained from the RABR and is placed in the RAR.

2. Further addresses from the RMADL are routed directly to the RAR.

3. We now enter the CPU mode.

Chaining If, during 10 servicing, another CHANNEL
comes up with requests for a microroutine, then we do not wish to enter
breakout; it would only be followed by breakin. A service mechanism is
provided so that, if a breakin is to occur—if any CHANNEL request is
pending—we can suppress breakout. Then, instead of returning to the
broken-into microprogram, we permit the request pending on the COMMON
CHANNEL to pass through the RMADL and into the RAR. When the last 10
microroutine is completed and there are no COMMON CHANNEL requests
pending, a breakout is performed.

IO microroutine An 10 microroutine is always entered on the
initiation of the COMMON CHANNEL. It, in turn, receives a signal from one
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of the CHANNEL CONTROLLERs. Only the request with the highest priority
is applicable to the next cycle steal. Since only one request can occur from
a given CHANNEL, it is clear that the CHANNEL with the highest priority
request will dominate.

This CHANNEL transmits its number. The 10 microroutine needs this
number to service properly the CHANNEL by communicating with the area
assigned to that CHANNEL in LOCAL MEMORY. For each sc, we find in LM
an area of four Words allocated for these functions:

the subcommand address;
the data address;

the data count;

the AR.

bl e

Four areas times four Words each takes up sixteen words of LOCAL
MEMORY. Knowing the number of the requesting CHANNEL permits the
microroutine to address the four Words allocated to the requesting
CHANNEL. Besides 10 microroutine initiation by CHANNEL requests, other
10 microroutines are initiated by commands in the program sequence.
Thus, the command SiO shouid start an 10 microroutine. Actually, the
computer remains in CP mode during the fetch and classify phase of the
S10 command. Normally, a microroutine checks the SELECTOR CHANNEL
and the reply comes back through the COMMON CHANNEL. It is this reply
which acts like any other CHANNEL request and causes the cP to enter 10
mode in the manner described above.

Interrupt The interrupt microroutine, INT, is initiated
through a CHANNEL request as are all other 10 microroutines. It is routed
through the COMMON CHANNEL ; however, it has the lowest priority because
it requires the use of all the hard REGISTERs of the cp. For that reason,
INT can take control only after all the micros for a command have been
completed and just before fetch for the new command takes place.

The properties of INT are:

o It has the lowest priority.
e It can take place only after execution.
o It uses the CP REGISTERS.
The REGISTERs are filled with information required to build the channel

status word, CSW, and with data for the interrupt software. CP REGISTERS
contain:

MR: UNIT status
RR: key, command address
LR: UNIT address, CHANNEL address
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The microroutine INT may be chained with other microroutines; but
it may not be chained with another INT microroutine. Obviously, if this
were permitted, the contents of the REGISTERs would be destroyed before
the CSW Word could be prepared and put away.

Trap The events preceding, during, and following
interrupt are presented in Fig. 9.12.3. After the interrupt has occurred,

cp mode 10 mode
Microoperation
for command 10 request
—————— —b
CC
- — ——— — —————— |
10
microroutine
v INT request
————— —>
Command = cc
microoperation :
|
More command :
{ microoperations 1
|
|
Last command {
microoperations :
|
e — — 4
]
{  INT
10 request
CC
-
v [ ————
v —» 10
LOAD 64 < J, microroutine
v
10 request
IOTRAP Supervisory e
mode (also 7 cC
CP mede) i
l " o
» IO
FETCH < (, microroutine

"

Fig. 9.12.3 Operation of microroutine during interrupt.
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we do not wish the computer to continue with commands in the problem
program. Instead, we wish it to enter an interrupted state and begin trap
processing routine. But even before this is done, we must put away the
channel status word with the microroutine called LOAD64 (so named
because byte 64 is loaded with the CSW). LOAD64 is done in CPU mode
because we want it to be interruptable for 10 servicing by breakin. This
ensures proper storage for continuing operation of the PERIPHERAL
DEVICEs. Figure 9.12.3 shows a cycle steal operation during LOAD64.

The CSW, whose loading is the objective of LOAD64, contains the
following fields:

e CCW +38
e UNIT status
e count
When LOAD64 is completed, it automatically goes to the next micro-

routine, IOTRAP. It gets us into supervisory mode and lets the software
take over. To do that:

» IOTRAP puts the old PSW, formed from data now existing, into
REGISTERS;
« this is stored in the old PSW location for the 10 trap;
e the new PSW is brought from its location and installed in the
PSWR;
e finally, control is turned over to SFETCH, the fetch micro-
routine in supervisory mode.
During IOTRAP, 10 microroutines may interrupt for servicing. Of course,
this is also true for all microroutines operating in supervisory mode.

PROBLEMS

9.1 Explain hexadecimal for number, bytes, signs.

9.2 Explain byte, Word, halfWord, nibble, doubleWord.
9.3 What do PACK and UNPK do?

9.4 Explain the various command formats and their uses.
9.5 How is an effective address calculated?

9.6 For the three MEMORY subsystems, explain
(a) the need for three;
(b) the names of the components of each;
(c) each.
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9,7 Describe one use for each of the following:

e JAR e IR e IAC

®* PSWR ®» PKR e CCR

e JLCR e IR e RR

e HR e MR ® BYTE CNTRS
e STATS ¢ MOVER e SHIFTER

9.8 For three command lengths it may not be possible to acquire the entire
command in one MEMORY recall.
(a) Explain.
(b) Examine ferch for three sizes, two kinds of completion.
(c) How is LM used?
(d) What is the REFETCH STAT for?

9.9 How are command types distinguished? How does classification use this
information ?

9.10 Describe what the typical RR command does. What is done by the
corresponding RX command ?

9.11 Describe a typical calculation for M2 in terms of REGISTER and LM transfers.
Use arrow notation, completely detailed.

9.12 What uniformity is there about all RR and RX commands except store, ST ?
9.13 How are A and S done?

9.14 Describe what happens to the operands and Gprs for M and D.

9.15 Work out another CVD example as shown in Fig. 9.7.4.
(a) Convert (by yourself) 185 to binary.
(b) Show the setup of RR, LR and Fr as CVD begins.
(¢) Go through all the conversion steps from binary to decimal.

9.16 Now do 9.15 in reverse, as would be done by CVB, again using decimal 185.

9.17 In assembly language, the mask for BC and BCR is decimal. Make a table
of decimal numbers versus MEMORY for all sixteen masks.

9.18 Describe BAL, BALR, BCT, BCTR in arrow notation. Then explain how
cach is done, assuming M2 already available.

9.19 When R2 = 0 for BALR, it acts as a NOOP as far as the branch is con-
cerned, but R1 still keeps the present program position.
(a) Put in arrow notation.
(b) How might Model 50 do this?

9.20 From the Principles of Operation manual find the description of BXLE
and BXH.
(a) Put in arrow notation.
(b) Explain how Model 50 might do them.

9.21 Describe address preparation for VFL commands.

315
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9.22 (a) Describe the three kinds of VFL cycles.
(b) Why are there three kinds of cycles?
(c) Why are there several intermediate cycles?

9.23 Compare uses the ADDER.
(a) How?
(b) When does it terminate?
(c) Create another example such as that in Fig. 9.9.17 to show compare
activity.

9.24 (a) Why is the final character required for decimal commands?
(b) Why are two length fields, L1 and L2, used?
(c) Why might L1 and L2 be different?
(d) What is L1 for a four digit packed number?

9.25 Describe PACK and UNPK in arrow notation.
(a) For either, can M1 = M2?
(b) Can L1 = L2 for either? With what constraints?

9.26 Create two new examples similar to Figs. 9.10.4 and 9.10.5.

9.27 How do the cycles of addition differ? What happens on overflow? How

can the program test for overflow? With what command?

9.28 (a) Draw a flowchart of decimal multiplication, MP.
(b) Give an example.

9.29 Repeat 9.28 for DP.

9.30 In SIO, how are DEVICE and CHANNEL specified? Explain. What do you
think the programmer usually uses for B1?

9.31 How does the address of the CHANNEL program get into the CAW ?
9.32 Where do the CCWs come from?
9.33 Where is the COMMON CHANNEL? What does it do? How many are needed ?

9.34 For Model 50, cycle stealing requires that processing be held up for a few
CPU cycles.
(a) Why?
(b) What happens?
(c) Is processing really interfered with?
(d) Is this like interrupt? How (not)?

9.35 Describe multiple breakin and breakout.
9.36 When and how does interrupt occur?

9.37 Explain the microprogram of Fig. 9.12.3.
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SPECTRA
70

1 O. 1 INTRODUCTION
Contrast with Spectra 70 and System 360 are comparable

System 360 on a machine language basis:
o The two systems use the same set of opcodes.
« They are both byte-oriented computers.
Both are a series of computers which cover a very large range of size,
speed, and MEMORY capacity. This book is not meant to cover either series
completely but rather to direct attention to a single model within each
series.

For good contrast and comparison, I have chosen the Spectra 70,
Model 45, because it is comparable in speed for sample problems to the
Model 50, though it is somewhat lower in cost. It is the Spectra 70 model
most similar to the Model 50, even though the word size of the former is
half that of the latter. Some of the other differences are discussed below.

Word size Sticking to our definition of word size, the
System 360 model is a Word computer, whereas Spectra 70, Model 45, is
a halfWord computer—two bytes. Smaller word size means lower MEMORY
cost. Smaller words require more references and more processing transfers
for the same program. Apparently speed is picked up elsewhere, for the
speed cost-contrast between the two systems is favorable to the Spectra 70.

317
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LOCAL MEMORY Model 45 provides 128 Words of high speed
MEMORY. This enables many important control words to be stored in a
more accessible place, saving MAIN MEMORY cycles. It also permits GPRS
for all the states to be stored in LM so that software saving and unsaving
operations are reduced.

Four states Four different operating states are provided
in the Model 45. This may help software transition and modularization.

Processing by byte Another way to reduce cost is to reduce the
amount of hardware. Model 45 has a small ADDER LOGIC UNIT. This
ALU, as RCA calls it, does both arithmetic and logic by the byte. Cost is
lower, but so is the speed; however some speed difference may be masked.

1 O . 2 OPERATIONAL STATES

AND TRANSITION

The states Recall that System 360 has exactly two states:
the program state and the supervisor state. In the supervisor state the full
command repertoire prevails, whereas the program state had a restricted
repertoire. There is a separate set of GPRs for each of the four CPU states.

For the Spectra 70, there are four machine states, described in Table
10.2.1.

In examining the Spectra 70 and observing four states, the question
immediately arises: Why are four states necessary when IBM gets away
with two? Here are just a few reasons why four states might be preferable
if the implementation cost is comparable:

o There is isolation of function.

* Software modules may be constructed to be fairly independent.

e If LOCAL MEMORY REGISTERS are provided separately for each
state, as they are in the Spectra 70, the interrupt procedure in the
software program may be considerably reduced.

» Four states provide for easier fault isolation within and between
the hardware and the software.

* An interrupt priority system can be provided without using the
program status word concept.

» The interrupt class concept is no longer required.

» Interrupt transition can use LM instead of MM and, hence, may
initiate traps with greater speed.

{SHLVIS 4004 XHM
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Table 10.2.1 SPECTRA 70 MACHINE STATES.

State RCA Description Description, State
w P1 Worker—User programs operate only in P1. None are
permitted elsewhere.
X P2 Executive—Most software runs in this state.
1 P3 Interrupt—All interrupts except machine errors are
taken to the state.
M P4 Machine—All machine errors are interrupted to this

state where they are resolved.

Transition An interesting way to present states and the
transitions among them is found in Fig. 10.2.1, the state transition diagram.
o Heavy arrows indicate transitions which take place because of
interrupt. _
 Light arrows indicate program-initiated transitions.

P3,
Interrupt
Analysis
state

M

P4,
P1, Machine
Program Error
state state

X

P2,
Executive
state

é Interrupt
——— Program
————— = Unimplemented

—eo—o—o—P» Most frequent

Fig. 10.2.1 PROCESSOR state transitions.
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o Dotted arrows show most frequently used transitions.

o Dashed arrows indicate transitions which might have been
incorporated into the equipment but which are absent and are no
loss to smooth operation.

Before examining the states carefully, let us make a few observations.

» The only way to get out of state W is by interrupt.

e The only way to get into state M is through an interrupt.

» The only way to get into state | is through the interrupt.

» The only way to get back to state W is by a program controlled
jump from state X.

All user programs operate in state W, where they have a limited
repertoire as contrasted to the full repertoire available in the other three
states. A program cannot get to another state except by an interrupt. But,
as in System 360, we have the artifact SVC, the supervisor call, which is a
program-initiated interrupt to state l. This was discussed in detail in
Chapter 9.

Interrupts may arise from various sources. System 360 classifies them
into five different classes. Here there is no class structure. Most interrupts

take us to state I, with the exception of machine-error interrupts. These
take us to state M.

Most interrupts take us to state . It would be more correct to call this
an analysis (inalysis?) state rather than an interrupt state, since here
interrupts are analyzed to find:

» their sources;
» the cause specific to that source.

The analysis routine then determines the proper routine in state X and
turns control over to it.

Most software routines run in state X. We get into one of these
routines from state 1. When this service required of the software is
performed in state X, we return, under program control, to state W.

When machine errors are discovered, an interrupt takes us to state M
where the error 1s analyzed and remedied if possible. Otherwise, we make
use of software routines which operate in state X to which we turn over
control.

If the error is catastrophic, a routine in state X prints out a message
to the operator and then causes the machine to idle while the operator
performs a corrective action, if he can. Upon completion, he presses the
restart button. This gives controlto a routine in state X and, if the machine
is fully operative, thence to the worker program in state W.
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1 O . 3 MEMORIES

As in System 360, Spectra 70 has three entirely different MEMORIES.
The characteristics of the MAIN MEMORY differ among the models.

Characteristics
e word size—two bytes
* MEMORY size—16K to 131K
* cycle—1.44 microseconds

o word size—four bytes
* MEMORY size—16K to 545K
* cycle—840 nanoseconds

Hereafter, we look at Model 45 only.

Each word in a READ-ONLY MEMORY is 53-bits wide. 2K of MEMORY is
provided to hold the main microprograms without the emulation feature.
RM operates at 960 nanoseconds per cycle. This is slow compared to the
desired speed. To make RM seem faster, it is split into two banks. The
operation of the banks are overlapped with each other. The words are
separated into banks by the least significant bit. This enables them to

overlap operations and generally to achieve an effective speed of 480 nano-
seconds per cycle.

RCA calls their LOCAL MEMORY a scratch pad MEMORY, but we maintain
the title LM as before. Each word in LM contains four bytes, a Word. There
are 128 Words in the MEMORY which operates at a speed of 300 nano-
seconds per Word. Thus, LM, for the Model 45, is larger and faster than
that of the System 360, Model 50.

LM has many functions which we discuss later but pause to summarize
here. It contains:

» one set of GPRs for each of the four program states;

e INTERRUPT REGISTERS for all states;

e CHANNEL CONTROL REGISTERS for all CHANNELS;

e UTILITY REGISTERS for the PROCESSOR, regardless of the states.

LOCAL MEMORY In succeeding sections we discuss the role of
map LM in the computer as a whole. It is wise to

examine the LM map presented in Fig. 10.3.1, which shows the function of
each Word in Lm.
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Fig. 10.3.1 LM map.

In areas where the letter U appears, the Words in LM act as UTILITY
REGISTERS. Their areas are reserved for different modes and contain a mode
designator as follows:

e W for worker or program worker;

» X for executive or supervisor mode;
o | for interrupt or analysis mode;

o M for machine-error mode.

We now examine the contents of LM, but not necessarily in a particular
order.

The sixteen GPRs for state W are found in row 6. The four FLOATING
POINT GPRS are in row 7.
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Row 4 contains all the state X GPRs, a full complement of sixteen.
Notice that LM contains only one set of FLOATING POINT REGISTERs (4) for
state W, since they are generally only used in the program state.

Row 2 contains five GPRs used for interrupt analysis. We also find in
this row three sets of INTERRUPT REGISTER groups which are discussed in
Section 10.4. They post interrupt activity for three modes. Since software
in state | analyzes interrupt source and cause, it can most easily use this
information in a form where it can be addressed by GPR notation. Row 2
also contains the INTERRUPT FLAG REGISTER, IFR.

Row 0 contains five GPRs available in state M. It also contains the IR
group for state M. This is all that is needed in state M for error analysis.

Fach CHANNEL has associated with it six REGISTERs which facilitate its
activities. These six REGISTERS comprise a CHANNEL REGISTER group. Seven
such groups are scattered through LM. Although Model 45 can have only
five CHANNELs attached to it, the other groups are provided for com-
patibility. The cr group is discussed in more detail in Section 10.6.

1 O . 4 INTERRUPTS

Sources Thirty-two sources of interrupts are shown
in Table 10.4.1.

. The first column gives interrupt source by name.
. The second column gives state initiated upon the interrupt.

3. The third column shows the hexadecimal weight assigned to this
source. This weight is entered into GPR1S5 for the interrupted state,
where 1t can be picked up by the interrupt routine to determine what
the interrupt source was.

4. The last column shows the priority number of the interrupt, the
lowest being the most important. This is also the bit position of the
flag and mask bits.

The first two entries in the table are the only ones which take us into

a state M. They are due respectively to power failure or parity error in one

[N I
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Table 10.4.1 INTERRUPT CONDITIONS
Hexa- Mask Bit

State  decimal and

Source Initiated Weight  Priority
Power failure (1 millisecond warning) M 00 0
Machine check (MAIN MEMORY Or SCRATCH PAD €ITOT) M 04 1
External signal No. 1 I 08 2
External signal No. 2 (Used with optional I GC 3
External signal No. 3 “direct control” feature I 10 4
External signal No. 4 for MULTIPROCESSOR I 14 5
External signal No. 5 complex.) 1 18 6
External signal No. 6 | 1C 7
Not specified (Used in special purpose PROCESSORS.) 1 20 8
SELECTOR CHANNEL NO. 1 | 24 9
SELECTOR CHANNEL NO. 2 (10 termination i 28 10
SELECTOR CHANNEL NO. 3 interrupt or program- i 2C 11
SELECTOR CHANNEL NO. 4 controlled 10 interrupt.) I 30 12
SELECTOR CHANNEL NO. 5 (SELECTOR CHANNELS On 1 34 13
SELECTOR CHANNEL NO. 6 optional features.) ! 38 14
MULTIPLEXOR CHANNEL 1 3C 15
ELAPSED-TIME CLOCK (Time-out) (Optional feature) 1 40 16
Console interrupt request (COTN button) I 44 17
Not specified (Used in special purpose PROCESSORS.) I 48 18
Not specified l 4C 19
Supervisor call instruction | 50 20
Privileged operation (in nonprivileged state) 1 54 21
Opcode trap (Unassigned operation codes) I 58 22
Addressing error (Improper MEMORY Or REGISTER

address) I 5C 23
Data error (Packed decimal format check) | 60 24
Exponent overflow (Floating point exponent 127) 1 64 25
Divide error (Result too large) | 68 26
Significance error (Floating point result fraction = 0) | 6C 27
Exponent underflow (Floating point exponent 0) I 70 28
Decimal overflow (Result too large) | 74 29
Fixed point overflow (Result too large) I 78 30
Test mode (Automatic interrupt after each instruction) i 7C 31

of the MEMORIES. The next higher priorities go to external signals. These
are available only as a special option for users. They permit communi-
cation lines to get immediate attention.

The next set of priorities go to SELECTOR CHANNELS. The lowest
number CHANNELs have highest priority and should get the fastest DEVICEs.
The MULTIPLEXOR CHANNEL, being the last, has the lowest CHANNEL
priority.

The next two interrupts are for an ELAPSED-TIME CLOCK and CONSOLE,
discussed in Chapter 3. SVC (program-initiated interrupt) is next and gets
service before program-originating errors, the remaining interrupt sources.
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REGISTERS Several REGISTERs are associated with inter-
rupt. The INTERRUPT FLAG REGISTER, IFR, and a group of registers called the
1F growp, one for each mode, serve the needs of interrupt.

There is only one IFR. Providing several would require that each be
updated during an interrupt. But only one is necessary. It contains one
bit for each possible interrupt source, as indicated in Table 10.4.1. There
is a zero in this bit position if no interrupt has occurred for that source or
if an interrupt has occurred and has been detected and acknowledged by
the software. There is a one in a bit position if the source has signaled an
interrupt, but that interrupt has not yet been acknowledged by the
software. ~

There is one 1R group for each of the four program states. Each group
contains three REGISTERS, Fig. 10.4.1:
e PCR is the PROGRAM COUNTER REGISTER:
e IMR is the INTERRUPT MASK REGISTER; it determines which
interrupts to respond to;
e ISR is the INTERRUPT STATUS REGISTER which records other
information important to the activity.

The MR contains thirty-two bits which are identically labeled for
sources, as is the IFR. A zero in a bit position suspends interrupts for this
source which are recorded but not otherwise responded to; 1 permits a
trap to occur when sensed for that source.

The PCR records information about a state when we leave it. For
instance, when an interrupt occurs in state W, the next W instruction is
recorded in PCR. The four items recorded in PCR are:

» next instruction Jocation
« condition code

» instruction length

e program mask

We have not discussed the program mask, a set of four bits in the PCR
which permits or inhibits certain PROCESSOR interrupts. The four bits
correspond to the following four processing difficulties:

» significance error
 exponent underflow
e decimal overflow
« fixed point overflow

The program mask is settable in any mode. Thus, the program has
control in state W as to whether any of the foregoing errors will cause an
interrupt.
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INTERRUPT MASK REGISTER, IMR

one bit for each possible interrupt cause

R1,R2 for SVC

—

|Ulzl
|
% I ” l:‘IQI%
$s1gs| 1@lElq ISR
TE 88 Key}§|§|§ 00000000| ~ Call
INTERRUPT | 8 S| & & |EI§|E
STATUS | & | |°<4|mlm
REGISTER I (<17
[
-4
I 178
Hel 2 _
Licl £ Next Instruction Address PCR
PROGRAM |CI™I &
COUNTER| | | &
RFG 1 1|

Fig. 10.4.1 Interrupt REGISTER (IR) group.

The INTERRUPT STATUS REGISTER stores another set of data important
to the program just interrupted:
» the protect key;
» whether we are using EBCDIC or ASCII characters;
o if emulation is in progress;
« if privileged mode prevails;
e R1, R2 for the first SVC.

k)

Interrupt An interrupt can occur when the computer is

microroutine in any one of the four states W, I, X, M
(generally all interrupts are suspended in state M). The interrupt micro-
routine responds in the same way regardless of the state of the computer
at the time. It performs these tasks in order:

1. Receives the interrupt.

2. Identifies the source of the interrupt, giving it a number between 0
and 31, corresponding to its position in Table 10.4.1.

3. Obtains the contents of IFr.
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Places 1 in the position corresponding to the interrupt source.
Returns this word to the IFR.

Gets the contents of the MR for this state.

Compares the contents of the IMR with those of the IFR. The
criterion used is the presence of 1 in the same bit position of both
words. Should this condition arise, initiate an interrupt procedure.
Otherwise, continue with the program.

NS

For Interrupt Completion Only

8. Assuming that an interrupt is under way, its weight is placed in
GPR15 for the state to be entered.
9. The pc word for the state that we leave is prepared and placed in
that Pcr.
10. The 1s word is also made up and placed in its proper ISR location.
11. The pcr for the state being entered is obtained from LM and
entered in the hardware REGISTERs.
12. Now fefch the new command in the new state.

Interrupt state When we enter | state, the IMR will probably

jobs be set so that only machine errors cam

interrupt during this activity. If not, it is up to the interrupt state of the
machine to so set IMR. Next, the interrupt routine goes to GPr15 and takes
out the weight constant. The systems programmer determines how much
analysis is done in state |1 and how much in state X. The weight in GPR15
distinguishes the source of the interrupt. We may now go to a source table
and find the location in state X where the service routine for that source is
found.

Suppose, however, that not only source but also the cause of interrupt
is desired. Then the aforementioned table will lead us to a specific source/
cause analysis routine. For instance, for a CHANNEL, this routine finds
which DEVICE has caused the interrupt and for what reason. This can be
determined by inquiry commands.

To reiterate, cause determination routines may be found in either state
I or state X; the next routine called in is a cause-specific service routine.

Again, suppose that source and cause have been determined in state 1.
To enter state X, the PC command automatically does two things. It:

o resets the PCR for this state to a quantity incorporated in the
command. This enables a new interrupt to take over, not from
the last instruction, but at the beginning of the analysis routine.

e goes into state X using the PC of the pcr for state X as the
beginning of the executive routine.

PC has the format:

PC: 8 12 Bl DI (10.4.1)

327
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where M1 = (B1) + D1, and MI is the address to be stored in the PCR
of this state. Furthermore, 12 has the form:

12 = BS, B9, B10, Bl11, B12, B13, B14, B15

Unused\

Program test bit (10.4.2)

Direct state initiation

Indirect control flag

If we disregard the test bit which has esoteric uses, the direct state bits
specify states as follows:

B12 B13 B14

0 0 0 =M
0 0 1 =1 (10.4.3)
0 1 0 =X
0 1 1 =W

If B15 = 1, we use the state bits in the ISR to determine the next state
entered, disregarding the direct state bits.

Executive state All servicing is done in the executive state.
The amount of analysis conducted in this state, as mentioned earlier,
depends on system design. 10 required by JOCS is also done here. Further,
job and task sequencing go on in this state.

When the executive routine is complete we return to the main program
by the PC command. This time the beginning of the executive program is
set into the X pcr and the place to return to the main program is taken
from the W state PCR.

Program errors in Should a program fault or arithmetic error

state X arise in state X, return is made to state l.
Such errors should not occur with properly debugged software. Emergency
routines must be called in to handle them.

State M errors We go to state M because of power failure or
MEMORY error. When power is failing, we have about one millisecond to
rescue the computer. Any information which is hurt by power failure can
be placed in CORE MEMORY where it is safe. It is set up so that it can be
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reinstated when the restart button is pressed. After this, the machine goes
to state X where, if there is time, a message is printed to inform the
operator.

When power resumes, the operator can press the restart button. The
computer goes to state X to reinitialize the problem. It then returns to the
place the program left off and returns to state W.

For MEMORY parity errors we can only retry to interrogate MEMORY. If
this fails, the equipment must be shut down and the service engineer called.

Multiple interrupts Again, the problem arises: What do we do if
an interrupt develops while an earlier interrupt is being serviced? The
interrupt mask will suspend some interrupts. Servicing proceeds to
completion in state X. Then we return to state W, but before doing
anything there, we check the interrupt state flag against the IMR in the W
state. If there are one or more interrupts pending, a microprogram selects
the one with the lowest number and places its weight in GPRI1S, state L
Then it takes off to service that new interrupt.

1 0 . 5 HARDWARE

A basic hardware block diagram is presented in Fig. 10.5.1.

Bus system A large data bus, DB, is divided into three
lines labeled DBO, DBI, and DBA. DBO is a byte line which carries the
less significant of two bytes when information is being transferred; DBI
carries the more significant byte. DBA is a two-bit bus which supplements
the other sixteen bits when the MAR is addressed. This is required because
addresses can be eighteen bits long for the largest MEMORY option for
Model 45.

The data bus is simply a set of lines which connect to and from most
of the REGISTERs in the computer. The SOURCE REGISTER for the DB is
determined by the S field in the RDR; the destination is set by the RDR D
field. If the data bus is not used by an EO (elementary operation—
microop), the S and D fields are free for other uses. This is the case for
EO’s whose purpose is a test operation.

The diagram would become much more complicated if we tried to show
how the S and D fields affect the data bus; this is left to the reader’s
imagination.

LOCAL MEMORY The LOCAL MEMORY ADDRESS REGISTER, LAR,
receives addresses for any word to be memorized in LM. Addresses for the
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Fig. 10.5.1 Spectra 70, Model 45 hardware.
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LAR may be produced in several ways:

1. During both the fetch and execute phases of a command, locations
in LM are addressed by the EO by transferring all or part of the M
field in the RDR to the LAR.

2. During RR and RX instructions, GPR designators are stored in the
R REGISTER, abbreviated RR (for REGISTER REGISTER). To form the
GPR address, the EO provides: part of the RR; the PROGRAM STATE
REGISTER, PSR; one or two bits on its own. The PSR is a two-bit
REGISTER indicating in which of the four program states the CPU now
resides.

3. For RR, RS, and SS commands, a GPR is specified as a base. This
designation is generally kept in the BASE REGISTER, BR. Its location in
LM is formed using PSR, the PROGRAM STATE REGISTER, and part of the
M field.

The LOCAL MEMORY DATA REGISTER, LDR (called the prR by RCA),
receives the thirty-two bit data word from the LM. To be distributed, this
word passes through the LD swircH. Only one byte at a time may be
absorbed by the ADDER LOGIC BOX, discussed below. This byte is chosen by
the C field of the EO. It also may be controlled by the FLIPFLOP, BAA.

The LDR is loaded from the data buses. To position the two-byte
information into the four-byte REGISTER, SWITCH DBSW is used. This is
controlled by the wpB REGISTER or from the EO itself.

ADDER LOGIC The ADDER LOGIC BOX, ALB, has two inputs,

BOX each providing a single byte. The first input
comes from the LD swiTcH which is controlled by EO field C and BA. The
other input comes from the UTILITY REGISTER, UR, a two-byte REGISTER.
The byte used is selected by the UR SWITCH, set by REGISTER BAB, which, in
turn, is controlled by the C field of a previous EO.

The ALB does all processing for the computer, a byte at a time. What
it does during any EO is determined by the F and V fields of that EO.

The output of the ALB is always routed to the two-byte INTERMEDIATE
REGISTER, IR. The ADDER LOGIC BOX produces a single output byte,
divisible into two nibbles, each of which may be routed to any nibble
position in the IR through the SWITCH, IRSW. IRSW is controlled by two
small REGISTERS, BAA and BAD, set previously by the C field of an EO.

COMMAND Command information from MAIN MEMORY

REGISTERS appears in the MDR; from there it is placed on
the data buses. The first pair of command bytes is routed to the OPERATION
REGISTER, OR, and the REGISTER REGISTER, RR. The OR stores the opcode
throughout execution.
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When the next two command bytes appear, they are routed to the BR
and UR, UTILITY REGISTER. The BR gets the first nibble; the UR gets the next
three nibbles. The top nibble position of the UR is set to Oy so that the
displacement is a proper halfWord. For SS commands, the BR and UR are
used in the same fashion. For MEMORY operand instructions, two operand
addresses are prepared in operations described in Section 10.7. They are
stored in LM in two positions, designated AAD for M1 and BAD for M2.
Figure 10.5.2 is a summary of REGISTER contents for command information.

REGISTER Holds
OR 0]
RR R1R2, 1112, R1X2, or L
BR B1 or B2
UR D1 or D2
AAD M1
BAD M2

Fig. 10.5.2 ReGISTER contents relative to

commands.
Other REGISTERS The two high-order biis of the Or

store the length code duplicated in the ILR. The cCr holds the two-bit
condition code at the end of an instruction. The s REGISTER is used for
various purposes, one being the assembly of part of the pc word. Hence
it has inputs from the ILR, CCR, and DBG.

A single-byte register, GR, occasionally takes part in address calcula-
tion. There is a group of miscellaneous REGISTERs which I have called
MSCR. Their uses are labeled in the diagram.

The fullWord INTERRUPT REGISTER, INTR, receives interrupt information
from 10 CHANNELs, the CPU, and EXTERNAL DEVICEs. There is one bit for
each source. When this source wishes to interrupt, it sets this bit to 1.
This REGISTER is used for posting to the IFR and for comparing with the
IMR.

1 O . 6 MICROPROGRAMMING

AND COMMAND EXECUTION

This section examines Spectra 70 microprogramming.

The microprogram The data word from the READ-ONLY MEMORY
word is placed in the RDR where it controls the
computer just as in System 360. A microcommand is called by RCA an
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elementary operation and is abbreviated as EO. An EO word in Fig.
10.6.1 contains these fields:

F—the function to be performed by the ADDER LOGIC BOX, ALB.
V—variations upon the function F.
C—a COUNTER and address constant.
M—contro! bits to tell LM what to do.
S, D—source and destination for data buses, Fig. 10.5.1.
T—test conditions.
N, A—normal and alternate RM address for true and false tests.
E—exception check.
I—10 breakin inhibit.

How these fields are specified and used would be an irksome task to
describe. It would make service engineers out of all of us.

Address for RAR Of special interest is how the next RM address
is prepared and controlled by an EO. This is demonstrated in Fig. 10.6.1.
The T field of the EO in the RDR contains bits which specify REGISTERS in
the cpU and states which should prevail on them. If these states do
prevail, the EO chooses the normal address specified by N for the RAR;
otherwise the alternate address A goes to the RAR.

COMMON
CHANNEL
MREGAD /"
RAR l PIS—
< A
) 5
A S
D REGAD W
— < S 1
RM <+ S le <
2 \—/
\Y

RDR

— ADDRESS
— GENERATOR

Fig. 10.6.1 Address generation.



334 seectrA 70 Chap. 10

This provides a binary choice. To make an address dependent on
multiple conditions, the D and S fields supply further REGISTER conditions
to be checked. The D and S fields can be used for this purpose only when
the data bus is not called for. The C and V fields of the EO then furnish
additional addresses for these branches. The TESTER is furnished with the
T, D, and S fields and decides, by examining CPU REGISTERs, which of
the four addresses goes to the RAR. These addresses are forwarded to the
ADDRESS GENERATOR which produces an address routed to the ADDRESS
SWITCHES.

Normally, an address, when fabricated, is sent to the RAR to procure
the next EO. Further, as we recall from the System 360, a breakin from a
SELECTOR CHANNEL may be in progress. This is communicated through the
COMMON CHANNEL which causes an alternate address to be placed in the
RAR. To keep our place in the RAR, the address of the next command for
normal execution is put in a BACKUP REGISTER. For Spectra 70 there are
fwo BACKUP REGISTERS: MREGAD is the MULTIPLEXOR REGENERATING
ADDRESS REGISTER used only for MULTIPLEXOR breakin; RAGAD is the other
REGENERATING REGISTER used for all other breakins.

Then the address for the RAR is controlled by the two switches, ADsw1
and ADSW2, which provide an address:

» Normally, the RAR is furnished an address from the ADDRESS
GENERATOR.

o In breakin, the address from the ADDRESS GENERATOR goes to
the BACKUP REGISTER: the address for the RAR is obtained from
the COMMON CHANNEL.

o For breakout, the address comes from a BACKUP REGISTER.

RR commands We now examine the fefch, classify, and execute
for a typical RR command. Each command does several functions; each
function has an EO associated with it. Each EO may provide a number of
data paths and transfers outlined in arrow notation below.

Several EO’s are required to perform an RRr ferch. The first gets the
PROGRAM COUNTER from LM. The PROGRAM COUNTER accessed depends
upon the state of operation. The first EO procures the pC address.

HOLa4d

[pC] — LAR (10.6.1)
The pc is then sent to the MEMORY ADDRESS REGISTER:
(LDR) — MAR (10.6.2)

In the meantime, after incrementing the LOCAL MEMORY DATA REGISTER
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which contains the PCR, we return its contents to that PROGRAM COUNTER

location:
(LDR) + 2 — PCR , (10.6.3)

Before the next EO, we wait for MEMORY to complete a recall, bringing
the next datum, the first two bytes of this command, into the MDR. The
next EO places the command in CPU REGISTERS:

(MDR) — OR, RR (10.6.4)

The next EO classifies the command in the or by checking the first two
bits. They are 00 for the RR command. The last classify EO brings the less
significant halfWord of the contents of R2 to the UTILITY REGISTER.

(RR2) — LAR (10.6.5)
(LDR2) — UR (10.6.6)

Here, “RR2” means the right half of RR; etc.

The reader should bear in mind the important differences in the size of
the REGISTERs between the Model 45 and the System 360, Model 50:
o MM words are halfWords for Model 45.
« Most of the CPU REGISTERS are consequently two bytes long.
o Addition and logic done in the ADDER LOGIC BOX, ALB, are
performed upon only one byte.
e All LM words are four bytes long for both models.

As a typical RR instruction we examine the logical and, NR with hexa-
decimal code 14. It ands the two Words contained in the GPRs designated
by R1 and R2.

After the fetch and classify, the opcode causes a branch to the first
EO for NR. It sets the ALB for and. '

The second EO gets the lesser half Word of R1. A4nd is then done upon
the (LDR) and the (UR), which contains the lesser halfWord of R2. The
result is put in the intermediate register, IR.

R1 —> LAR (10.6.7)
(LDR2) & (UR) — IR (10.6.8)

HZIS HLSIDdd

We have only half of the result. We must now get the more significant
halfWord of R2.
R2 — LAR (10.6.9)

(LDR1) — UR (10.6.10)
Next we set the address of R1 into the LAR.

[R1] — LAR (10.6.11)
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Now we do two things at once. We put away the result half Word that

1s in the IR, placing it in the second half of the LDR.
(IR) — LDR2 (10.6.12)

We also perform and on the contents of the UR and the first half of the
Word in the LDR, placing the results in the Ir.

(LpRr1) & (UR) — IR (10.6.13)
The last EO places this half of the result in the first half of the LDR,
(IR) — LDR1 (10.6.14)
and then returns the complete result to Lm.
(LbrR) — [R1] (10.6.15)
RX fetch The RX command has the format:
OP Rl X2 B2 D2 (10.6.16)

Fetch for RX commands is the same as for RR commands, so that at its
end, we have OP in the or and R1 in RR.

The first EO gets the second command half Word. First put the address
of the PROGRAM COUNTER into the LAR:

[PCR] — LAR (10.6.17)

XAISSVTIO

The LM quantity is sent to the MAR:
(LDR) — MAR (10.6.18)

Before returning the PCR quantity, we add 2 to it so that it points to the
next pair of instruction bytes.

(LDR) + 2 — PC (10.6.19)

The two bytes obtained from MM are placed in REGISTERs so that they
may be operated on as the base and displacement. The first nibble, the
base specifier, is put into the BR; the remaining three nibbles are placed in
the UR. Since the UR is a half Word REGISTER, the first four bits are set to 0.
We have:

(MDR) — BR, UR; (BR) = B2; (ur) =D2  (10.6.20)
The next task is to make the MEMORY operand address, M2. We access

the Ggpr in LM. This EO takes the four bits in the BR and constructs the LM
address of B2, placing it in the LAR.

B2 — LAR (10.6.21)
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As the base quantity is brought from LM, it is added to the displacement
and placed in the IR.

(LDR) 4 (UR) — IR; (IrR) = (B2) + D2 (10.6.22)

The next EO distributes the partial MEMORY address to the UTILITY

REGISTER.
(IR) — UR (10.6.23)

To make M2, we need the index quantity, (X2). Its address is in the
second half of the RR, and this is sent to the LAR.

(RR2) — LAR (10.6.24)

. The partial address in UR is added to the quantity obtained from LM and
the result returned to the IR.

(LDR) + (UR) — IR (10.6.25)

We now have the operand address. A CELL in the LM, called the BAD
for B address, is set aside for this address. Recall that MM is organized by
halfWord. To obtain the operand requires two MM accesses. This EO puts
away the operand address.

[BAD] — LAR (10.6.26)
(IR) — LDR (10.6.27)
(LDR) + 2 — 1M (10.6.28)

Notice that 2 is added to the operand address as it is stored in LM.
Instead of pointing to the frue operand address, it points two bytes ahead.
There is a good reason for this. In doing fullWord arithmetic, we wish the
less significant two bytes of an operand to be obtained first. By moving
the operand address ahead two bytes, MEMORY reference, which is done in
half Words, now procures this less significant pair of bytes first.

RX execute We examine the fullWord RX subtract
command with mnemonic, S, and hexadecimal opcode 5B. It does this job:

S: (R1) — (M2) — Rl (10.6.29)

The first EO sets the ALB to perform subtraction and also to obtain the
operand address:
[BAD] — LAR; (LDR) — MAR (10.6.30)

Notice that the address was sent over to the MAR to start a MEMORY recall
cycle.
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As the operand address is put away, it is decremented by 2 so that it will
point next to the more significant pair of bytes in the operand.

(LDR) — 2 — BAD (10.6.31)

When the operand arrives at the MDR, it is sent over to the UTILITY

REGISTER.
(MDR) — UR (10.6.32)

To save time we start the MEMORY retrieving the first pair of bytes
while we operate with the second.

[BAD] — LAR; (LDR) — MAR (10.6.33)

Now we get the other operand for subtraction. The minuend is
contained in the GPR named R1. The less significant halfWord is obtained
from LM and the contents of UR are subtracted from it. The result goes to

the IR:
[R2] — LAR (10.6.34)

(LDR2) — (UR) — IR (10.6.35)

We wait for the first pair of bytes to arrive from MEMORY and then send
them to the UTILITY REGISTER.

(MDR) — UR (10.6.36)

The result half Word is withdrawn from the IR and placed in the right
half Word of the LDR. Meanwhile the rest of the subtraction takes place.

(IR) — LDR2 (10.6.37)
(Lbr1) — (UR) - IR (10.6.38)

The difference word is assembled in the LDR and the result is now
returned to LOCAL MEMORY.

(IR) — LDRI (10.6.39)
(LDR) — LM; (R1) = (R1) — (M1) (10.6.40)

10.7 SS COMMANDS

Fetch The fetch and the first part of classify look
like those used for the RX command. At the end of this we have:
(aAAD) = M1; (Rr) =L or LI1L2; (or) = OP (10.7.1)

The PROGRAM COUNTER stored in the PCR in LM points to the third byte pair
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in the instruction. To get this half Word, we send the PROGRAM COUNTER to

the MAR.
[PCR] — LAR (10.7.2)

(LDR) — MAR (10.7.3)
The PROGRAM COUNTER is incremented as it is returned to LM.
(LDR) + 2 — PCR (10.7.4)

The last command halfWord is now in the MDR. It is distributed to BR

and UR.
(MDR) — BR, UR; (BR) = B2; (UrR) = D2 (10.7.5)

We obtain the contents of the BASE REGISTER.
[B2] — LAR (10.7.6)

When the contents appear at the LDR, the ADDER is activated and they are
added to (UR). The result is passed over to the IR.

(LDR) + (UR) — IR; (IR) = M2 (10.7.7)
This is the second operand address, and it is placed at BAD in LM.

[BAD] — LAR; (IR) — LDR (10.7.8)

VFL commands As described, AAD and BAD contain the first
and second operand starting addresses. This is proper for transfer and
logical commands such as MVC.

For decimal arithmetic we operate on data fields from right to left
instead of from left to right. We need the address of the last data byte
pair for each operand: AAD and BAD should point to this last byte pair.
It is prepared by adding the length specifier to the operand address so that
we have:

(AAD) = M1’ = M1 + L1 (10.7.9)

(BAD) = M2’ = M2 + L2 (10.7.10)

During fetch, RR contains L1L2. Each nibble is a length specifier for one
of the operands. After M1 is prepared, it is simple for M1’ to be prepared
in a few EO’s. M2’ is similarly prepared.

Types of cycles We look at MoVe Character, MVC, and
distinguish the kinds of cycles which are required. For Model 45 with
half Word access, instead of being concerned with Word boundaries, it is a
halfWord boundary which is important.
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As in Section 9.9, we distinguish three kinds of cycles:
o An initial cycle gets M1 to a halfWord boundary.
o Intermediate cycles fill half Words in the M1 field.
e A final cycle is necessary if there is one byte left over in com-
pleting the operation.
Actually, the only four cases in dealing with transfers are presented in
Fig. 10.7.1.

1. Both source and destination fields are on halfWord boundaries.
2. Both fields are off a halfWord boundary.

3. Only the M1 field is on a halfWord boundary.

4. Only the M2 field is on a halfWord boundary.

M2§ 112131415 |X {
¥-—V—JH—/
Case I l
Ml} 11213415 1Y g

) 5X123456Wé

Case 11

{ X|{1123}141}5
Case IlII F /////

Case IV \%ila\_\J \

$Y123456Zé

Fig. 10.7.1 Four cases in decimal character commands.
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Case | For this case we immediately start inter-
mediate cycles. Everything is properly aligned. We first get the M2 field.
[BAD] — LAR; (LDR) — MAR (10.7.11)

(MDR) — IR; (LDR) 4+ 2 — LDR (10.7.12)

The source halfWord is now in the IR. It is now put away in the destination
field.
[AAD] — LAR; (LDR) — MAR (10.7.13)

(IR) — MDR; (LDR) + 2 — LDR (10.7.14)
We decrement the length and return it to its REGISTER.
(RR) — 2 —RR (10.7.15)
We check the length remaining:
(RR) > 1: continue; (RR) < 0: stop;
(RR) = 0: final cycle (10.7.16)

For the first condition, we continue intermediate cycles as described by
(10.7.11) through (10.7.16). If a final cycle is required, instead of replacing
the entire MDR, only the more significant byte from IR is inserted in the
MDR before memorization.

Case Il Here we require an initial cycle to transfer one
byte from source to destination. We simplify the arrow notation, indi-
cating in one equation that we get the first source halfWord and place it in
the IR.

((BAR)) — IR (10.7.17)
We then bring the destination halfWord to the MDR.
((AAR)) — MDR (10.7.18)

Now only the second byte from IR is placed in the second byte position of
the MDR; the first byte in the MDR is unchanged.

(IR2) — MDR2 (10.7.19)

The remaining source and destination fields are now aligned on
halfWord boundaries, and we revert to case I described above.

Case IlI Here the source field is not aligned with the
destination field. Only the second byte of the source halfWord is to be
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transferred to the destination field. We get this halfWord:

[BAB] — LAR; (LDR) — MAR (10.7.20)

We take the second byte and place it in the first byte position of the IR:
(MDR2) — IR1 (10.7.21)

We increment the byte address.
(LDR) + 2 — LDR (10.7.22)

Now we get the next source half Word. The first byte of this half Word goes
into the destination half Word we are forming; the remaining byte is for the
next destination halfWord. We have:

[BAB] — LAR; (LDR) — MAR (10.7.23)

The source halfWord is placed in the UTILITY REGISTER and the source
address is incremented.

(MDR) — UR; (LDR) + 2 — LDR (10.7.24)

The first byte in UR is passed over to the second byte of the Ir through
the ADDER, so that we now have assembled the destination word in IR.

(UR1) —> 1R2 (10.7.25)
It is placed in the MDR..

(IR) — MDR (10.7.26)

Now the second half byte in UR is passed over to the first byte position in
IR to get ready for the next destination word.

(UR2) - 1r1 (10.7.27)
We get the destination address,

[AAD] — LAR; (LDR) — MAR (10.7.28)
and store the destination word. Aftér this, we increment the destination
address.

(LDR) + 2 — LDR (10.7.29)
The length specifier is now decremented.
(RR) — 2 —>RR (10.7.30)

Tests are performed as in (10.7.16) to determine if more halfWords are to
be processed.

Case 1V For this case, the first destination halfWord
will receive a source byte only in its second position. The first byte of the



Sec. 10.8 o 343

destination halfWord remains unchanged. An initial cycle is required to
take care of this first halfWord ; thereafter, processing of future half Words
proceeds as described for Case 1L

Other commands The move command that we have examined
here does not use information in the destination field. Other decimal
commands such as AP and SP add and subtract, respectively. Using the
information in the source field for the arithmetic requested, it is simple to
see how these operations are done using the REGISTERs as described above
and using the procedures examined while pursuing the logic of System 360.

10.8 10

IO control To expedite 10 activity, all 10 control is in LM.
We do have to reference MM to obtain subcommands (CCW’s) and for data
transfer.

The 10 CONTROLLER is delegated a task with the start device command,
SDV. This is equivalent in all respects with the System 360 command,
SIO. Other commands which are parallel to those of System 360 are
HDV, IDV, and CKC.

SDV has this format:

SDV: OP 1=0 Bl DI (10.8.1)

Here M1 distinguishes the CHANNEL and DEVICE desired. The CHANNEL
address word, CAW, is stored at the decimal address 72. It contains a key
and an address. The key is the protect key to be used by the CHANNEL in
addressing MEMORY. The address is that of the first subcommand.

LM for each One CRr group in LM is set aside for each

CHANNEL CHANNEL. Its contents are displayed in Fig.
10.8.1. Notice the CAW REGISTER, CAR, the two CCW REGISTERS, CCRI
and ccr2, and a new designation, the CHANNEL assembly and status word,
CASW. Only one REGISTER is used for assembly and status posting, the
cAsR. This is because MM word size is two bytes. Of the remaining two
LM bytes of the CASR, one is wasted and the other is used to hold status

g CAR | CCR2 | CCR1 | CASR | CUR1 | CUR2 §

Fig. 10.8.1 The CHANNEL REGISTER (CR) group.
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information. Finally, two CHANNEL UTILITY REGISTERs, CUR] and CUR2,
are provided which are unique to a given CHANNEL. These enable the
CHANNEL microprogram to leave messages for itself.

CHANNEL service Whenever a word—two bytes—is assembled

input in a CONTROL BUFFER REGISTER, the CON-
TROLLER Issues a request for service. Since several requests may appear at
once from different sources, some CENTRAL LOGIC is required to de-
termine which request is serviced first. RCA calls this the CONTROL ELEC-
TRONICS, but we maintain our previous teim, COMMON CHANNEL.

When one or more requests for service arrive at the COMMON CHANNEL,
it selects the one with the highest priority. It then sets a FLIPFLOP in the
CPU which is checked by certain EQ’s. If the I field in an EO is set to 1,
COMMON CHANNEL requests are ignored; if it is set to 0, a breakin may be
initiated. Breakin is similar to that described for System 360. RAGAD is the
BACKUP REGISTER for the next RM microroutine address for the command
being executed. The address provided by the COMMON CHANNEL is loaded
into the RAR to start the 10 microroutine.

Data transfer A data transfer microroutine transfers half-
Words between MAIN MEMORY and a SELECTOR CHANNEL or other source in
a manner similar to that described for System 360.

Interrupt Interrupt procedure for the Spectra 70 is
different from that for System 360 and hence is described here.

Whenever a source has an interrupt pending, it immediately transfers
this information to the interrupt register, INTR. This REGISTER is ignored
until the end of either a fetch or execute cycle. Generally both cycles must
be completed; but there are some exceptions.

The interrupt microprogram takes over and inserts the address of the
IFR into the LAR, obtains the interrupt flag, and posts the INTERRUPT
REGISTER’s contents onto it.

Now we wish to see if the pending interrupt is permitted. To do this we
must get the contents of the IMR. We have:

[IMR] — LAR; (IMR) — LDR (10.8.2)

The mask in the LDR is compared with the pending requests in the INTR,
and if we cannot find corresponding 1 bits, we go on with the main
program.

(LDR) & (INTR) = 0 fetch

40  CHST (10.8.3)



PROBLEMS

When an interrupt is required, we enter the microprogram which I have
labeled CHST (for change state) and which does the following:

determines the next state from the bit setting in INTR;
assembles PCR information from CPU REGISTERS;

. sets the PC in the PCR for this state;

. creates a weight from information in the INTR;

places this weight in GPR15 for the new state;

forms the address of the Pcr for the new state;

. gets the new state PCR,

. installs PcR information in the CPU REGISTERS;

. goes on to the fetch microprogram.

000N O s W N

PROBLEMS

10.1 (a) Explain the advantages of four modes.
(b) How is each mode used?

102 Explain Fig. 10.2.1.

10.3 What difference have you observed in command mnemonics? Comment.

10.4 Explain how machine interrupt on power failure can work.
10.5 What and why is the CHANNEL REGISTER group ?

10.6 Explain
o [FR e JRG e PCR
s IMR e ISR

10.7 Describe how the interrupt is handled.

10.8 How are interrupts enabled or disabled?

10.9 How are multiple interrupts to different states handled?

10.10 Why is the two bit bus DBA required? Why isn’t it larger?
10.11 How does the ALB work ? Explain its size.

10.12 Design one bit of the ALB.

10.13 Explain the general use of
¢ OR ®* RR ® BR
* AAD e BAD ¢ UR

10.14 What is an EO? Explain the fields.
10.15 How is the next RM address required calculated ?

10.16 Explain conditional EOs.
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10.17 Explain RR and RX ferch. How is M2 calculated? Stored?
10.18 Explain completely the execute phase of A in arrow notation.

10,19 Describe how VFL fetch works.

10.20 Why another four cases for Model 45 VFL character commands? Explain
what’s done with each.

10.21 Explain AP in arrow notation. Discuss L1 and L2.
10.22 How does SIO differ from SDV?

10.23 What is RAGAD, and how is it used?
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UNIVAC
9000
SERIES

1 1 . 1 INTRODUCTION
The small The smaller business user wants a small
byte-oriented computer which is inexpensive and for which
computer he is willing to accept a small MEMORY and

make a sacrifice in speed. At the low end of the small computer spectrum,
we find the UNIVAC 9200 and 9300 systems. Other similar computers are
the IBM System 360, Model 20, and the Spectra 70, Models 15 and 25.
The other 9000 Series member is the UNIVAC 9400; passing mention is
given to it, when pertinent, and Section 11.7 covers other features.

In designing a series of computers, the aim is to make as much com-
patibility from one model in the series to the next. Then, when the user
finds his application has become too big for his present model, it is easy
for him to replace it with a larger model in the same series and have his old
programs run identically on the new model, except at a higher speed. This
has been the policy for all these systems, at least on the high end. Making
very small computers places constraints which don’t lend to compatibility.

Small MEMORY The user of a small machine does not require
much in the way of MEMORY. If he had to pay for more MEMORY, it would
be advisable for him to go to a larger machine and get all the other
advantages which would accrue to him.

Then, expecting the small computer user to have modest MEMORY
requirements, we can make it easier for him to access all of his MEMORY
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directly, without the use of BASE REGISTERS, although the machines in use
have GPRs for other uses. In so doing, we consequently alter the command
structure. The advantage of making all MEMORY accessible directly to the
command becomes a disadvantage when upward compatibility becomes
important.

Hardware To keep the cost of the computer low, it is
important to reduce the number of hardware REGISTERS to a bare minimum
and to keep their lengths small. Further, the functional units, such as the
ADDER, are restricted to byte length, if not smaller.

Microprogram Microprogramming has the advantage of
reducing the amount of instruction decoding but the cost disadvantage of
adding another complete MEMORY UNIT. At the low price level, the dis-
advantage outweighs the advantage. This is especially true when we pare
the instruction repertoire to a minimum, thereby reducing significantly the
decoding requirements.

At the low end of the price scale, microprogramming is absent and
control is hardwired into the computer.

LOCAL MEMORY Again, austerity requires that we trim off
the fat—this time, by eliminating LOCAL MEMORY and without adding hard
REGISTERS. Since the REGISTERs in LM are required in one form or another,
they are replaced by fixed locations in MAIN MEMORY. “Registers” in MM
are not truly REGISTERs. But to maintain our shorthand form, we symbolize
MM REGISTERs in small capitals hereafter anyway.

10 Again, to keep the cost down, the number and
types of 10 DEVICEs are kept to a minimum. The interface between the
DEVICE and the PROCESSOR is necessarily simple:

« It does provide for cycle stealing or a simultaneity.
« It does provide for an interrupt for software monitoring of user
programs.

Salient features The points to keep in mind when examining
the small byte-oriented computers are:
« microprogramming and RM have been eliminated;
» hardware CONTROL takes its place;
e LOCAL MEMORY is eliminated and replaced by restricted areas in
MM;
e MAIN MEMORY is kept small—there is only one MEMORY;



Sec. 11.2 9300 COMMANDS AND DATA

» the command repertoire has been trimmed;

» the command structure is altered to make MAIN MEMORY totally
addressable;

» peripheral equipment, while having interrupt and cycle stealing
capabilities, does not use our previous concept of the CHANNEL
CONTROLLER in its entirety.

Except for the first and last, these statements are also true at the bottom
of competitive series: IBM System 360, Model 20; RCA Spectra 70,
Model 15.

1 1.2 9300 COMMANDS AND DATA

The UNIVAC 9200 and 9300 are the same except for speed charac-
teristics. Hereafter, we refer only to the UNIVAC 9300.

Word size All MM references procure or store a single
byte. Therefore, word size for this computer is one byte—eight bits. An
interesting feature is the great speed of MAIN MEMORY (or simply MEMORY),
which performs a complete cycle in 600 nanoseconds.

GPRs There are only eight GPRs in this small
machine. There are several reasons for reducing the number of GPRs;
among them are:

e The command structure cannot provide reference for more than
eight REGISTERS.

 Neither relative addressing nor relocation is required, so that
fewer REGISTERs suffice.

GPR size is smaller. They are only two bytes or one halfWord long.
GPRs are used for most of the same reasons as in larger machines: indexing,
storing data, other programmer needs.

Data - There are several kinds of data, even for the
smaller byte machines.
Unpacked alphabetic information is coded in one of the two
standard forms.
Packed decimal format uses two digits per byte.
It is the binary information that is different: it is a halfWord,
with the sign in the left-hand position.
Hardware floating point is not supplied even as an option.
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Commands The command repertoire for the 9300 pro-
vides no RR commands. None are really required, since substitution of
other commands, namely RX type, can be made. Since such RX com-
mands did not exist in the System 360 repertoire, new ones were created.
System 360, Model 20, does provide RR commands, but only three of them.

The three types of 9300 commands are RX, SI, and SS, presented in
Fig. 11.2.1. They are similar to those discussed earlier, except for the
following conditions:

o The operand address is formed by referencing no more than one
GPR.

o The combined B and D field in the command is interpreted
differently than in the other machines.

The use of the base and displacement fields is presented at the top of
Fig. 11.2.1 and is radically different. The left bit of these combined fields
determines whether absolute direct addressing or indexing is done. When
it is 0, the remaining fifteen bits are an absolute address in MEMORY. This
permits addressing of 32K of MEMORY. This machine does not permit a
larger MEMORY option; so this suffices.

When the left bit is 1, indexing is requested. The REGISTER to be used,
called B, is designated by the next three bits. The remaining twelve bits are
the ““displacement” to be added to the contents of B.

Byte
3 4
11 il |

0000 B2 je——D2—>

PDDD DDDD DDDD DDDIB

,_
————T

opcode R1

direct address
1RRR DDDD DDDD DDDD

Q_J — v J RX
index displacement
Byte
1 2 3 4
I 1 T 11 1 [ | SI
opcode immediate B2 D2
operand
1 2 3 4 5 6

— ; 1 17 l

LR 11 IR
0 opeode l«—L—>| Bl j«—DI—>{ B2 |~—D2—>]
L1 | L2

1
1

Fig. 11.2.1 Commands for the Univac 9300 (and Univac 9200 and
IBM System 360, Model 20).



Sec. 11.2

9300 COMMANDS AND DATA 35l

Other than this, the format of the commands are similar to those of
System 360 with one further exception: RX commands require all 0’s in
the X field to provide upward consistency to the UNIVAC 9400.

Repertoire

Table 11.2.1 is the command repertoire for

the 9300. The three commands with opcode A6, AA, and AB are

Table 11.2.1 sUMMARY OF 9300 SYSTEM INSTRUCTION REPERTOIRE

Operation Op code Instruction Mnemonic Format
40 Store halfWord STH
: 48 Load halfWord LH RX
Binary 49 Compare halfWord CH
A6 Add immediate Al SI
AA Add halfWord AH
AB Subtract halfWord SH RX
91 Test under mask ™
92 Move immediate MVI SI
94 And NI
95 Compare immediate CLlI
96 Or 0l
Logical A9 Halt and proceed HPR
DIl Move numeric MVN
D2 Move character MVC
D4 And NC
D5 Compare logical CLC SS
D6 Or OoC
DC Translate TR
DE Edit ED
F1 Move with offset MVO
F2 Pack PACK
F3 Unpack UNPK
F8 Zero and add ZAP
Decimal F9 Compare decimal CP SS
FA Add decimal AP
FB Subtract decimal SP
FC Multiply decimal MP
FD Divide decimal DP
45 Branch and link BAL
Branch 4‘ 7 Branch on condition BC RX
State A0 Store state SPSC
Control A8 Load state LPSC SI
Special Al Supervisor call SRC SI
10 A4 Execute 10 XIOF SI
AS Test 10 TI0
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necessarily different from those in System 360 (since these opcodes are
illegal in System 360). The distinction is that arithmetic overflow for these
commands does not cause the machine to stop (as in the Model 20);
instead, it sets an OVERFLOW FLIPFLOP which can be tested by the pro-
grammer or ignored, if he so chooses.

1 1.3 MEMORY MAP, CONTROL

STATES

Map MEMORY serves the purposes of both LM and
MM for the larger machines. Since there are so few hard REGISTERS in the
computer, MEMORY is used to hold just about everything while a command
is in progress. However, INDEX REGISTER designations for the programmer
use all four bits. Thus the lowest-numbered available REGISTER is 85 for
1000,; Cg designates GPR 1100,, the fifth GPR, for instance.

Figure 11.3.1 demonstrates just how much is stored in MEMORY. The

first four bytes of MEMORY store the PSC described below, which is similar
to the PSW discussed earlier for System 360—it contains the 1c. The next

IR for IO mode — 16 = 1B IR for PROCESSOR mode — 06 = OB
(hexadecimal) (hexadecimal)
0 1 2 3 4 5 6 7 8 9 A B C D E F
Display .
0 |PROCESSOR PSC opening \ Initial Lock and Start
AY . 1
1 IO PSC General Clear and Start Stasti:cl;i't es
21 GPRS GPRY GPRA GPRB GPRC GPRD GPRE GPRF PROn(l,’éig:OR

3| GPR8 GPR9 GPRA GPRB GPRC GPRD GPRE GPRF |10 mode

4 10 control words

5 10 control words

etc.

Fig. 11.3.1 MeMoRY map, Univac 9300.
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condition
code ASCIC vs EBCDIC Ic
—A— - - ~

Problem state| CC A Q 0000 0000 0000

Supervisor

request cell IC

10 state] CC A0 0000

Fig. 11.3.2 The program state control to word (PSC) containing the
INSTRUCTION COUNTER.

two bytes are console control bytes. Next we have six bytes which hold the
complete instruction register. This includes the opcode and the effective
operand addresses calculated during fetch.

The next sixteen bytes of MM serve a duplicate function to the first
sixteen, except that they apply to 10 mode. UNIVAC distinguishes modes
of operation as problem and 10. The two console control bytes are missing
for 10 mode, but the final set of status bytes is present. The next set of
thirty-two bytes is provided for the GPRs, a separate set for each mode.
This duplicate set of GPRs is a convenience which RCA provided with
their Spectra System.

The first sixteen bytes of MEMORY are restricted and protected. Another
big chunk of low MEMORY is reserved for use by 10 but is also available to
the program.

Figure 11.3.2 displays PSCs for the two states. At the left of the PSC
is the two-bit condition code, the same as for the other machines. The A
bit distinguishes the kind of codes we are using for symbols ASCIC,
EBCDIC. Only sixteen bits are required for the INSTRUCTION COUNTER
(at the right) because of the MEMORY size restrictions. Notice the SRC
position in the 10 PSC. When the command SRC is given, the [ field of that
command is placed in this position of the 10 PSC. The SRC command is:

SRC | Bt D1 (11.3.1)

Since SRC “should” be an RR command, and there are none in the 9300,
the address portion of this command is ignored.

1 1 .4 HARDWARE

MEMORY MEMORY is somewhat unconventional. It is
made of wire plated with thin magnetizable film. It is very fast: 600
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l MDR 2

MX S > KOK1
MM — BR *
>o—> ADDER |¢— |
C > i |
4 » NET Y [
' C C 11
1 : |
MAR t |
CF N
4 b
L : |
w | e ] {
ADDRESS r |
AR FUNCTION I pm——————-
3 TABLE 11
ﬂ FUNCTION
and
CONTROL |
(FC) <
4 DECODE
A
DECODE
F SB Y
4 <
FR 4 SA
4

Fig. 11.4.1 Functional block diagram of Univac 9300.

nanosecongls per cycle. A further speed advantage is optional non-
destructive readout which permits a read cycle without write back when
the computer designer chooses to use it thus.

As shown in Fig. 11.4.1, the MEMORY ADDRESS REGISTER points to the
location to be referenced in MEMORY. Information is placed in the MAR
from the AR or from the ADDRESS FUNCTION TABLE. Address entry is
controlled by the FUNCTION and CONTROL UNIT (FC).

Readout from MAIN MEMORY is always into the MDR; but unlike other
MEMORIES, writing is not done from this REGISTER, but rather from the
output of the ADDER. Hence, any REGISTER output to be written must pass
through the ADDER. The ADDER may be doing a function upon different
source bytes, and then the result word is placed in MEMORY.

REGISTERS The MDR is not only the MEMORY DESTINATION
REGISTER for MM, but it also stores operands used by the ADDER. Any word
destined for another REGISTER must be temporarily stored in the MDR.
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The BR holds a second operand during arithmetic. This byte originally
came from the MDR. Its byte may be blocked, complemented, or otherwise
operated on by the C NET.

The FUNCTION REGISTER, FR, holds the operation being performed after
extraction from the command word. RR holds a GPR designation.

Functional units The ¢ NET operates on a second operand
before it is entered into the ADDER.

The ADDER is a single-byte device with inputs from the MDR and the ¢
NET. Its output is a/ways returned to MEMORY at the CELL designated by the
MAR. When a carry is produced, it is stored in the CARRY FLIPFLOP, CF.
The function which the ADDER performs is determined by the FUNCTION and
CONTROL UNIT, FCU.

The timing of all operations is done by cLock which produces four
pulses: TP1, TP2, TP3, and TP4. These activate two COUNTERs, SAC and
sBC. Signals are gated to these and the address table by rcu. Other
hardware included in the computer is discussed in Section 11.7.

11.5  wercn

For the 9300, fetch means placing the next command with one or two
effective operand addresses into a low-order MEMORY position assigned to
act as the INSTRUCTION REGISTER. Thus, although the INSTRUCTION
REGISTER 1S a set of MEMORY CELLS, for ease of reference, we talk about it as
though it were a hard REGISTER in the computer and call it IR.

Example An example of fetch is shown in Fig. 11.5.1.
The 1c points to 0770, the starting byte of a command. The command is
AA, the add halfWord command. The second pair of bytes in the instruc-
tion word is DO, calling for REGISTER 13 as the destination GPR. The
operand address is C454, indicating indexing by GPR12 and a displacement
of 454. The opcode is transferred during fetch to the OR (a position of the
IR in MEMORY). Also the address portion of the IR is filled with the effective
operand address. Then 454 is indexed by REGISTER 12 which contains
1666. After fetch, the command sits in MEMORY in IR as shown at the
bottom of the figure.

Opcode The entire fetch is outlined in Fig. 11.5.2 in
arrow notation. We examine, first, how the opcode is obtained. Re-
member everything is done by manipulating single bytes. The numbers in
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IC IR
0770 X
@
— - A)
AADOC 454
s
Add RI=13 B2=12 D=0454 (C)=1666

(a) MM before

IC
0774 | AADO 1ABA

S’
M2in
hexadecima!

W

(b) MM after

Fig. 11.5.1 An example of a ferch for the 9300.

the text refer to the lines of arrow notation in the figure. The address of
the second byte of the INSTRUCTION COMPUTER is passed to MAR (1). That
byte is obtained (2) and passed to the second half of AR (3). We add 2 to
the COUNTER in the MDR so that it points to the next pair of instruction
bytes. However, this is the Jess significant byte of the ic byte pair. If a
carry is created, it is stored in CF (4).

We get the next byte of the INSTRUCTION COUNTER (5, 6, 7). If thereisa
carry from the previous addition, it is added to the contents of the MDR
and this is put away as the new Ic, first byte (8).

Now the AR contains the INSTRUCTION COUNTER. It is passed over to
the MAR (9) and the first byte of the instruction is put in the MpR (10). The
address of the first IR byte is placed in the MAR and the first opcode byte is
put away (12).

To get the next instruction byte, we advance the AR address and place
it in the MAR (14); the next instruction byte is brought out from MEMORY
(15) and then returned in its IR position (16, 17).

Other instruction After obtaining the first two bytes of the
bytes instruction and putting them in the IR we get
the next two bytes. The address of the first of these two bytes (the third
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1. {1c2} — MAR
2. (1c2) — MDR get (10), byte 2
3. -> AR2
4. (MDR) + 2 — {1C2}; Cy — CF increment IC
5. {rc1} — MAR
6. 1cl — MDR : get (10) byte 1
7. — AR1
8. (MDR) + (cF) — {1C1} restore IC recognizing the carry
9. (AR) — MAR
10. CMI1 — MDR get opcode
11. —> FR
12. {IR1} — MAR .
13 (Mmi) . } place in IR
1‘51 EﬁzilM;RMAR ; get R1 for RX or L for SS
16. {IR2} — MAR 1 .
17 (MDR) — MM place in 1P
18. Repeat 1-8 so that (aR) = (IC) again
19. (AR) — MAR
*
i(l) CM3 : :RDR establish R2 or Bl and part of D2 or D1
22. — BR
23.  {IR3}¥ —~MAR ; and place in IR
24, (MDR) — MM
25. (AR) + 1 — MAR
26. CM4* — MDR get rest of D2 or D1
27. — BR
28. {1r4}* —> MAR and put in IR
29. {MDR} — MM
30. Continue if relativizing or indexing requested
g; . ?;Rz) - 21)*—> _TI;RDR } get index quantity, least bit
*
gi gl:;};) :E‘;S‘_) MAR; cy —» CE } place effective address in IR
35. (RR) — MAR
36. (R2 — 1)* —> MDR get rest of index quantity
37. — BR
gg gRi} r_l:dﬁ;R and rest of displacement
40. (MDR) + (BR) + (CF) > MM place rest of effective address in IR
41.  Repeat 18-40 for SS only so that M2 — IRS — IR6

* For the SS instruction for (41), these operations are relabeled appropriately.

Fig. 11.5.2 Fetch in arrow notation for the Univac 9300.

instruction byte) is pointed to by the Ic; it is obtained and installed in the
AR (18). We then go to MEMORY and procure the instruction byte itself.
The left nibble of this byte is a REGISTER designation; the second nibble
is part of the displacement. We place this byte into the RR and the BR
(19-20) and return it to the IR (23-24).
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The fourth instruction byte is obtained from MEMORY (25-27) and put
into the IR and the BR (28-29).

When relativizing or indexing is requested, as determined by RR, we
calculate the effective address. If the first bit of RR is 0, no address calcula-
tion is made. Obtain the least significant byte of the indicated GPR from
MEMORY (31-32). The address of the fourth IR byte is given to MEMORY (33),
and an addition is performed to fabricate the last byte of the effective
address carry from the addition; it is recorded by cF (34). The next byte
of the effective address is calculated and put away by a similar sequence of
operations (35-40).

When an SS instruction has been determined by the contents of the g,
we go through the same sequence (9-40) to determine the fifth and sixth
bytes of the instruction and to place the effective address therein.

HalfWord The word size of the UNIVAC 9300 is one

acquisition byte. Fetch, described above, is oriented
toward a command which consists of two or three half Words. Frequently,
a byte address is increased or decreased by 1. This is not done by the
ADDER. It is a simple hardware feature stemming from a convention
imposed on the programmer: instructions and binary data are always
found on halfWord boundaries. Hence, the first byte in every instruction is
at an address which ends in O; the second byte address ends in 1. The
addition indicated in Fig. 11.5.2 consists of jamming 1 into the least
significant of the addresses.

Whether we want the first or the second byte of half Word depends on
the action at the moment: for instruction procurement, we generally go
from left to right; operations for arithmetic are examined from right to
left, as we might suppose.

1 1 .6 EXECUTION

Analysis Fetch has left us with an opcode in the Fr
which the attached DECODE can classify. Further, the opcode and its
effective address are now situated in a CELL of MM referred to as the IR.

There is only one MEMORY in the 9300—there is no microprogramming
to sequence hardware operations. Sequencing is hardwired into the
computer. Let us examine examples for two types of commands.

RX As with the System 360, RX commands
reference one GPR and one MEMORY location. For the 9300, both are
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actually in MM. One effective address and one GPR designator are now in
the 1r. It is a simple matter to place one operand in the MDR and the other
in the BR. Let us see what happens in the case of halfWord addition.

We get the MEMORY operand address first. We procure its address from
the third and fourth bytes of the IR. Then we get the least significant byte
of the MEMORY operand, placing it into the BR. GPR identification is in the
RR. This actuates the MAR and therewith obtains the GPR contents which
are brought to the MDR. The ADDER operates on (MDR) and (BR) to produce
a result which is returned to the GPR using the address now in the MAR.
A carry may be recorded in cF. This completes one byte of addition.

The second half of addition is the same as the first, with the simple
exception that the carry in CF is now entered into the ADDER as addition is
performed.

SS commands For SS commands, the IR contains a length
and two addresses. Since MEMORY has a word length of one byte, the word
boundary problem encountered in the two previous chapters no longer
exists here.

Four operations are necessary for each byte.

o Get the address of the first operand from the IR.

« Place the byte in the BR.

e Get the address of the second operand byte from the IR.

 Place that byte in the MDR. _

Of course, the destination byte is obtained last because memorizing and
processing occur simultaneously. The ADDER is activated to process the
two bytes according to the opcode in FR: a source byte is in the BR; a
destination byte is in the MDR. The result from the ADDER is returned to
the destination position in MEMORY. As these operations go on, we have
to do some accounting.

 Carries are kept track of.

e Byte addresses have to be incremented or decremented (de-
pending on whether we are moving or doing arithmetic).

e Length has to be decremented.

A complication occurs with subtraction when recomplementation is
necessary. A working storage location is needed to keep track of the
actual length of the result for recomplementation.

1 1 .7 UNIVAC 9400

HalfWord The UNIVAC 9400 is most like the IBM
MEMORY Spectra 70, Model 45, or System 360, Model
30: MEMORY has a word size of a halfWord of two bytes. This, together
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with additional hardware, made this computer much more like the other
byte-oriented computers. The command repertoire is much the same.
RX commands permit modification by two GPRs. RR commands are
present. There are one or two different SUPERVISER mode commands.

Characters An enumeration of the characteristics of the
UNIVAC 9400 follows; emphasized are the similarities and differences
among it, the other UNIVAC 9000 series, and its competitors.

1. There is only one MEMORY; the MAIN MEMORY, consisting of 24K
to 131K bytes of MEMORY.

2. Since there is only one MEMORY, no microprogramming is provided.

3. LOCAL MEMORY functions are furnished by the MAIN MEMORY;
hence, GPRs and such are found in restricted areas of MM.

4. The 10 subsystem is more similar to System 360 and less similar to
the other 9000 series members (which we have not really discussed).

5. There is a larger instruction repertoire:

* All RR instructions are present.
* No floating point instructions are included.
* Only a few new opcodes were added.

6. The MEMORY protect feature, the key and lock system described in
the IBM 360, is absent. We have in its place the LIMIT REGISTER
system described below.

7. The GPrs are full size.

8. A PSW instead of PSC is used for interrupt. Further, each
SELECTOR CHANNEL has its own PSW location in MM.

9. There is a separate set of GPRs for user and supervisory mode.

10. The user GPRs are available to the supervisor.

LIMIT REGISTERS A LIMIT REGISTER is provided in the 9400; it
determines the upper and lower bounds to the area which may be accessed
by the command now in control. This REGISTER can be set only by a
special privileged instruction. Thus, once the user’s program has been set
up and the LIMIT REGISTER established, the user’s program cannot harm
other programs residing in MEMORY. If it tries to do this, MEMORY protect
violation occurs which takes us into supervisor mode.

The LIMIT REGISTER is sufficient with the other paraphernalia to make
multiprogramming possible. When a program is finished or gets into
trouble, it reports to the supervisor. The supervisor resets the LMIT
REGISTER and the PSW and starts another program presently residing in
MEMORY.

A program must occupy contiguous storage locations. The LIMIT
REGISTER establishes bounds using the most significant bits in the MEMORY



PROBLEMS

address in units of 516 bytes. This allows us to ignore the last nine bits in
an address, checking only the upper, more significant bits.

Implementation The 9400 MEMORY has a halfWord word and is
fast—600 nanoseconds per cycle. To service a wider MEMORY requires
wider REGISTERS. The 9400 has more and larger REGISTERs than its smaller
brothers. More REGISTERs are required because of the expanded functions
such as the LIMIT REGISTER and the expanded command repertoire.

To make halfWord REGISTERs operate faster, a halfWord ADDER is
supplied.

Control functions are more complicated because of the increased
repertoire and the larger number of REGISTERs to be contended with.

PROBLEMS

11.1 Describe LM and rM for UNIVAC 9000.

11.2 (a) Explain the GPRs in both states.
(b) Explain the states.

11.3 (a) Explain the RX format.
(b) How is indexing requested ?
(c) What does this have to do with the number of GPRs?
(d) How is the base register specified in RX?
(e) How does this effect relocation?

11.4 (a) What about RR commands?
(b) What provisions are made for RR commands?
(c) Explain SRC.

11.5 Describe “9300” registers. What are their names, and how are they used?
11.6 How is a fetch done? Explain Fig. 11.5.2.
11.7 Describe A in arrow notation.

11.8 Describe MVC in arrow notation.
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ADDER 10
address 12

address arithmetic 31

addressing 23
direct 24
immediate 24
implied 23
indexed 26
indirect 24
relative 25
self-relative 25

AL 29

AL convention 2

alphanumeric 6

and 8

arithmetic 15

BAL 37

BCD 5

binary 2
BISTABLE DEVICE 4
bits 5

blocking 40, 41
building blocks 4
byte 232

CAM 197
CAW 103
CCW 104

INDEX

CELL 12
chaining, command 188
CHANNEL :
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abortion 49
assembly 66
autonomy 351
command 51
acquisition 65
REGISTER 64
command to 65
concept 58
controller 65
CONTROL UNIT 49
data acquisition 49
data transfer 66
DECODE UNIT 49
DEVICE connection 65
crossbar 53
considerations 83
permanent 55
DEVICE control 56
DEVICE names 56
functions 56
initiation 58
need 50
operation 50
scatter/gather 51
selection 51
subcommand 65
new 66
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CHANNEL (cont.): DEVICE assignment 40, 41
subcommand (cont.): DEVICE COMMUTATOR 39
subprogram 59 DEVICE CONTROLLER 56

termination 66 relation to CHANNEL 56
channel address word 103 relation to DEVICE 56
channel control word 104 DEVICE operation 67
channel status word 104 with device controller 67
character 6 interface 67
character oriented 6 selection 67
COBOL 29 digital 2
command 19 Digital Equipment Corp. (see PDP-8)

controls 19 Disconttinue 82
fixed length 23 double 265
reflexive 27 DTF 105
variable length 23
COMMON CHANNEL 301 editing 16
COMMUTATOR, DATA 68 electronic 2
computer 2 ENCODER 10
channel system 3 INSTRUCTION 19
commercial 3 errors and exceptions 40, 42
general purpose 3 execute 17
modern system 4 Executive routine 33
scientific 3 extracting 16

special purpose 3
third generation 4

condition code (CC) 90 fetch 17
CONTROL 17 FLIPFLOP 6
master 19 Foreman 79

components 82

subsystem 18 0
definition 79

conventions 1

CSW 104 interrelation 81
COUNTER 11 normal trap events 82
cycle stealing 60 tasks 80
conflicts 61 who uses 80
Fortran 29

DEVICE speed 62
pee Fortran 37

high 63
medium 63
slow 62 GET 105
main program 63
protection 61 HALT 60
single port MEMORY 61 hardware 1
cycle time 13 hexadecimal 232
alpha 233
data: decimal 233
COMMUTATOR 68 example 233
transmission 68 straight 233
DCB 105 highspeed 2
deblocking 40 HIO 102
DECODER 11 Honeywell 200 Series 194
INSTRUCTION 19 address 195
definitions 1 four character 197

destructive recall 12 indirect 199
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address (cont.):
recording 195
three character 196
two character 196
bank bits 196
command 194
fields 194
format 195
Easycode 195
fetch 202
index 197
code 197
example 198, 208
operation 206
REGISTERS 197
tag 197
indirection 205
indexed 206
method 205
example 207
multiple 206
preconditions 205
interrupt (see sequence change)
assist 218
restore 219
save 218
unsave 218
10 209
inquiry 213
interrupt 214
PCB 214
tasks 214
peripheral data transfer (PDT) 210
busy 210
data 211
getting to MEMORY 212
inquiry 213
multiscan characters 213
single scan characters 212
transmission 211
variants 210
READ WRITE CHANNEL (RWC) 209
MEMORY SCAN COMMUTATOR 209
scan 209
TRAFFIC CONTROL 209
without interrupt 214
MEMORY 199
content 200
CONTROL 199
need 199
size 202

INDEX

Honeywell 200 Series (cont.):

mode 196

CAM 197

changing 197
modifier bits 196
monitor call 220

MC 220

resave normal operation 220
operand address 203

four character 204

three character 204

two character 203
organization 202
protect 220

boundaries 221

function 221

wrap around 221
relation to IBM 1401 194
sequence change 215

command 215

interrupt 217

linkage 215

nesting 216

operation 215

REGISTERS 215

loading 215
storing 216

software 223

example 224

interrupt 224

IBM System 360 (see System 360)
IBM 1130 145
address calculation 149
indirect 150
addressing 147
indirect 147
long 147
short 147
characteristics 145
command 145
displacement 146
format 146
tags 146
commands 150
authentic 150
10 153
DEVICE designation 154
function designation 154
load and store 150
reflexive 152
table of 151
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INDEX

IBM 1130 (cont.):
fetch 149
long 150
short 149
hardware 147
IBM 1401 156
arithmetic 172
actual 173
add cycle 174
add/subtract 172
B cycle 174
operand 172
recomplement 176
sign cycle 174
chaining 189
definition 189
example 189
figure 190
requirements 191
single address 192
character representation 156
numeric 157
position 157
zone 157
compare 170
cycle 170
edit 178
command 178
example 179
mask 179
operation 179
rescan 181
fetch 163
cycle 164
example 165
IR 164
large address 166
field mark 156
address 160
instruction 159
use of 158
10 183
CARD READER 183
flow chart 185
multiple punches 184
timing 186
zero punch 186
zone punch 186
concept 183
corner turning 183

IBM 1401 (cont.):
o (cont.):
PRINTER 186
chain 187
flow chart 188
operation 187
PUNCH 186
move 171
reflexive commands 166
branch 166
character 169
conditional 168
unconditional 166
word mark 169
subsystems 161
CONTROL 162
10 162
MEMORY 162
PROCESSOR 162
word 156
wordmark 156
index 26
addressing 26
manipulations 26
transfers 27
indicators 15
Initiate 82

gnput/Output Control System (30¢S)

INSTRUCTION COUNTER 90
interrupt 71
activity 72
aim 71
FOREMAN 79
hardware for 83
cause identification 86
changing programs 84
problems 83
recording 84
sequencing 86
source indication 84
suspend/restore 86
hierarchy 108
implementation 76
hardware 76
software 77
restore 79
return 79
save 19
service 79
tests 79
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installation-supplied software 98
in program 99
establishing 101
purpose 101
sequence 101
need 98
privileged 99
multiple 74
other traps 76
problem 74
restore 75
suspend 78
need 72
new program 71
priority 109
software integration 87
common subroutine 87
interrupt completion 87
trap 87
source 94
control 95
external 96
10 94
memory protect 95
supervisor call 96
10 102
CAW 103
CCW 104
commands 102
CSW 104
software 105
DOS 105
language 105
macros 106
08 360 105
run time calls 106
status 102
JOCes 39

Language 29
assembly 29
absolute 30
macro 30
symbolic 30
computer 29
machine 29
problem oriented 29
procedure oriented 29
source 29
LIBR 37

INDEX

LINK 36

Cinfage Editor 36

lists 31

£LOAD 32

LOADA 37

loading 32
anticipated requirements 35
data 35
MEMORY bounds 35
segmentation 35

MAR 13
McuU 13
MDR 13
memorize 12
MEMORY 12

wrap around 222
microprogramming 260
mode 90

addressing 113

hardware 92

interrupt 92

trap routines 92
MULTIPLEXER 57
multiprogramming 47

NBCD 5
nondestructive readout 12

OPEN 105

operand 15

operate command 113, 122
group 1 122
group 2 123

operating system 38

or 8

packing 234
paging 116
base 116
current 116
indirect 116
pcu 15
PDP-8 112
access 117
autoindexed 118
base direct 118
indirect 118
present, direct 117
ADDER 114
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PDP-8 (cont.):
commands 121
10 122
main 121
operate 122
group 1 123
group 2 123
CONTROL 114
execution 120
fetch 117
0 124
data break 131
pBF 131
procedure 132
interrupt 129
action 130
priority 131
procedure 129
software 130
paging 116
programmed data transfer 124
dedication 125
PAPER TAPE READER 128
processing during 10 129
TELETYPE 125
POL 29
PROCESSOR 14
program, machine language 17
program status word (PSW) 89
contents 90
miscellaneous 91
mode 90
source 91
purpose 89
what is it? 89

RCA Spectra 70 317
contrast with System 360 317
execute 337
RX 337
VFL 339
fetch 334
RR 334
RX 336
SS 338
hardware 329
ADDER LOGIC BOX, ALB 331
bus system 329
diagram 330
LOCAL MEMORY 329
REGISTERS 331

RCA Spectra 70 (cont.):
hardware (cont.):
command 331
other 332
interrupt 323
conditions 324
executive state 328
jobs 327
microroutine 326
multiple 329
program 328
REGISTERS 325
sources 323
introduction 317
0 343
CHST 345
control 343
.CR group 343
data transfer 344
interrupt 344
service 344
MEMORIES 321
characteristics 32i
LocaL 321
map 322
microprogram 332
address for 333
word 332
states 318
executive, X 319
interrupt, ¥ 319
machine, M 319
reason for 318
transitions 319
worker, W 319
word size 317
READ WRITE CHANNEL (RwC) 209
recall 12
REGISTER 7
COMMAND 65
DATA 65
SUBCOMMAND 65
relocation 33
rollback 40, 41

SCC 650 141
addresses 143, 144
command 142
Jfetch 144
hardware 142
self-relative 144



SDS 92 137

addressing 138
direct 138
indexed 138
scratch pad 138

fetch 139
second word 140

instruction 137

operand 139
direct 140
indexed 140
indirect 140

other features 141
10 141
interrupt 141

INDEX 369

supervisor call (cont.):
examples (cont.):
EOCJ 97
EXIT 97
FETCH 97
MSG 97
what is it? 96
system 33, 37
System 360 228
aim 228
arithmetic, binary 261
add 261
divide 263
multiply 261
subtract 261
branch 270

segmentation 35

sequence change 215

signals 2

single address 22

SIO 38, 102

small computer departures 134
another AR 135
commands 136
double length instruction 135
double precision 136
INDEX REGISTERS 135
longer word 134
priority interrupt 136
separate data pages 136
variable command length 135

small word problem 112
addressing mode 113
command 113
command structure 113
MEMORY word size 112
operate 113

software 2, 28

stats 250

supervisor 43
accounting 44

and link, BAL 272

on condition, BC 270
example 271
format 271
mark 271

on count, BCT 272

classification, command 257
command 235

addresses 236
format 237
length 236
normal 270
reflexive 238
REGISTER 236
repertoire 238
RI 237
RR 257
data 257
operand acquisition 258
types 257
RX 259
description 260
SI 238
SS 238

communication with operator 46
console 46

control sequence 44
DEVICE assignment 46
error routines 45
multiprogramming 47
nucleus 43

system 43

supervisor call 96
action 98

examples 97

table of 238

conversion 238

convert to binary, CVB 267
correction 268
cycle 269
example 268
halving 267
register 268

convert to decimal, CYD 264
double-dabble 264
example 266
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System 360 (cont.): System 360 (cont.):
procedure 265 preclassification 256
REGISTERS 267 programmer’s view 229

cycle stealing 308 byte orientation 232
breakin and breakout 308 diagram 230
breakout 311 GPR 231
chaining 311 hexadecimal 232
example 309 system 229
initiation 309 word 232
microroutine 311 SIO 298
decimal commands 288 assembly 305
add, AP 292 CAW 300
addresses 289 CCW 300
divide, DP 297 CHANNEL REGISTER 302
move with offset, MVO 289 COMMON CHANNEL 301
multiply, MP 296 CONTROL 304
nature 288 DEVICE select 302
pack, PACK 291 disassembly 305
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unpack, UNPK 291 operations 299
design center 229 read 305
difficulties 228 setup 300
execuie, EX 273 write 305
fetch 252 supervisor call, SVC 273
completed instruction 252 transfers 260
action 254 compare 261
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hardware 247 store 261
ADDER 251 variable field iength, VFL 274

COUNTERS 250

address preparation 275

diagram 249 command format 274
MOVER 251 compare, CL 285
REGISTER 248 cycles 278
SHIFTER 251 final 284
sTaTs 250 initial 280
subsystems 247 intermediate 278
SWITCH 252 logical 275
interrupt 312 move 274
events 313 MVC 274
properties 312 MVN 275
10 command 298 MVZ 275

MEMORY 243
alignment 245

overlap 277
unpacking 234

function 243 SYC 96

LOCAL 245 switch 8

MAIN 244

READ ONLY 246

structure 244 TCH 102
microprogramming 260 three address 22
packing 234 TIO 102
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