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PREFACE

This book is written as an introduction to programming and operating
systems. It may be used for self-study or as a text on computing and pro-
gramming. A large number of worked examples are included to facilitate
both of these objectives. Rather than develop a treatment of a hypothetical
computer, we have selected a widely representative system, the IBM 360.
In this way, in addition to learning the major concepts of computing and pro-
gramming, the reader acquires a skill with direct, practical relevance.

Our guidelines in treating the important subject of operating systems
were twofold. First, we show the reader why a particular facility is needed.
Second, we introduce the reader to the programming techniques needed by
this operating system facility, often by coding a representative sample of the
system. After setting the stage in this way, we then describe, by means of
simple control cards, how the facility is used. In this way, we hope to build
a broader and deeper perspective for the reader. By treating an operating
system as something more than just a ""black box" with certain properties,
we believe that the reader can begin to develop a sophistication in his own
programming. We have selected the 360 Disk Operating System as the ex-
ample operating system because of its widespread usage. The concepts
developed here are directly transferable to Operating System/360. The
reader who has an understanding of the material in Chaps. 9-12 should be
able to learn OS/360 from its reference manuals on a self-study basis.

The reader who is familiar with another computing system should skim
over Chaps. 1 and 2 and begin in Chap. 3. For a minimum introduction to
the 360, we suggest Chaps. 1, 2, 3, Sec. 4.2, Chaps. 8, 9, 10 and 1i. The
worked examples are an integral part of the text and should be studied
carefully. In addition, we recommend strongly that as many as possible of
the problems which follow most chapters be worked out.

We wish to thank the International Business Machines Corporation for
permission to include copyrighted material in this book.

J.T. Golden
R.M. Leichus
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Chapter 1

INTRODUCTION TO COMPUTING

1.1 Introduction

As a general statement, the material advance of man has come about
because he has discovered ways of doing things with less effort, or for the
same effort, getting more done. This is true whether we speak of human
energy or animal or machine energy. The more important among these dis-
coveries have caused immense changes. The invention of agriculture by
paleolithic food gatherers made it possible for the first time for the tribe to
produce more food than it could consume. With the surplus of labor this
freed, the rise of civilization began. Much later, the steam engines of
Newcomen and Watt, which perhaps more than any other invention made the
Industrial Revolution fruitful or even possible, were in their earliest stages
able to deliver only about 100 times the power of a single man, that is, two
orders of magnitude more. They produced about 10 horsepower whereas a
man working a winch or a hand pump, can deliver about one-tenth of a horse-
power. There are many other examples where an advance of an order of
magnitude or two have brought along great change. The automobile is ap-
proximately 10 times faster than a man walking, a jet plane, about 100 times
faster. It is hardly necessary to comment on the extent of change since 1900
caused by these two innovations alone. Today, the electronic computer
offers a far greater range of amplification of human abilities, for it is not
10 or 100 or even 1000 times faster than a human being. Present day com-
puters and their extensions which are within the grasp of today's technology
are able to do arithmetic 1, 000, 000 to 1, 000, 000, 000 times faster than a
human being. Now this is not to say that computers are this much faster
than people in every area of intellectual endeavor. What the human brain
lacks in speed of operation, it more than makes up for in complexity of
organization and information holding, or storage capacity. As a result,
there are many everyday human activities which are beyond the capabilities
of a computer. However, there are still a large number of human activities
which can be handled by a computer provided we can describe them to the
computer in a suitable fashion. Given the speed ratios above, and continuing
progress in understanding how to solve problems on computers, it is clear
that we have a tool which offers significant potential, for amplifying man's
intellectual resources as well as extending his control over his environment--
a potential which may offer far more than those innovations of the past which
multiplied mechanical energy only.

In the brief span of less than 20 years since their introduction in the
late 1940's and early 1950's, digital computers have progressed greatly. In



speed, they have increased by a factor of over 10, 000, 000 when compared to
the relay operated Mark I; in storage size, they have grown to almost 100, 000
times larger than their earlier counterparts. Today, well over a million
people are engaged in operating computers, programming and preparing in-
put to them, manufacturing, selling and servicing them. In ways ranging
from calculating golf handicaps to auditing income tax returns, computers
have entered the lives of all of us. In this context, it is interesting to note
that the electronic digital computer is probably the most complicated device
ever to come into such widespread usage. Yet this complexity is largely
illusory. From the point of view of someone preparing a problem for a com-
puter, most of the computer's intricacies are hidden from view. They are
covered up, so to speak, by advances that have been made in communicating
with computers--by advances in their programming. This book will describe
the overall functioning of a widely representative computer--the IBM 360--
and will introduce the reader to the general subject of programming as well
as developing his ability to write programs for the 360.

Let us begin by discussing the functional organization of an electronic
digital computer as shown in Fig. 1-1. The four principal parts of a com-
puter are its control, input, output and working storage.

—— CONTROL -
| 0
N T
P P
v U
T T
I STORAGE -

Fig. 1-1 Functional Components of a Digital Computer

We can better understand their functions and interrelationships by comparison
with a human analogy--a highly trained and precise, but totally unimaginative,
clerk. Our hypothetical clerk will have an in-basket where documents will be
piled up awaiting processing by him. This is analogous to the computer's
input device, usually a punched-card reader or a magnetic tape-drive. He
will also have an out-basket where his results will be distributed to the people
who will use them. This is analogous to the printer attached to a computer
which prints its output. The control of the process, in the sense of deciding
what to do next and how to do it resides in the clerk's memory and he is
probably backed up by books or tables as an aid to his memory. The analogy
here is to the working storage of the computer which we will describe later.
(Indeed, because of this close analogy, computer storage is often termed
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Fig. 1-2 Human Analogue of a Digital Computer

""memory''.) We can think of our clerk as being programmed, or instructed,
to do a certain set of tasks repeatedly according to certain rules. Let us
assume that this clerk has been trained to handle only one type of transaction,
pricing. He will have a pricing worksheet which we can think of as ""working
storage'' since it contains the numbers he will work on. Figure 1-2 shows
our clerk at work. Figure 1-3 shows a schematic of his instructions, or
program, in the form of a flow chart. As we shall see, flow charting is an
important aid in describing how a problem is to be solved by a computer.

Note the almost extreme degree to which the clerk's tasks are spelled out
explicitly. If there are no orders in the in-basket, the clerk is programmed
to sit there and wait for an order. When one does reach his in-basket, his
next instruction is to fetch it and check to see that the order is valid. That
is, it should be legible and properly filled out. If anything is wrong, he is
instructed to stop and ask for help. Next, he checks to see if the part number
on the order sheet is a valid one, that is, it must appear in the price book.

If it does not, he stops again to ask for help and so on. Note that this job
definition in Fig. 1-3 is one which we expect our clerk to adhere to rigorously
and never make any changes to. Now this inflexible approach would be an
unrealistic way to train a clerk. We have allowed no room for imagination

or individual initiative. Our clerk would price an order for 100-gross of
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Fig. 1-3 Pricing Flow Chart

4




Carriage Bolts as readily as he would another order for 100-gross of Double
Overhead Garage Doors, without suspecting that the latter one probably con-
tains a typographical error since this quantity may represent several years'
production. Again, our clerk would be stopped in his tracks if he had an
order, say for 10-24 x 3/4 screws, which was missing the catalog part number.
A real-world clerk might conclude that he still had a valid order since the

only 10-24 x 3/4 screws in the catalog have part number 5816.

when applied to their activities, that characterizes the way a computer operates.
It will do precisely what it is told, tirelessly and without error, but not one

iota more. If there are exceptions in a given problem, they must be recog-
nized and programmed for explicitly, if the computer is to produce meaningful
results.

The job description chart, or flow-chart, in Fig. 1-3 describes the
logic of pricing in a way that is satisfactory as a description of a computer
program. Minor changes, only, have to be made to take into account the
different equipment available to the computer. The new flow-chart is shown
in Fig. 1-4. The symbols used there are commonly accepted and will be used
throughout this book.

)

READ ORDER
FROM TU 1

WRITE ERROR
RECORD ON
TU3

COMPUTE
COST = PRICE % QTY — DISC

I

WRITE INVOICE
ONTU 2

Fig. 1-4 Flow Chart for Pricing by Computer
(TU1 is Tape Unit 1, etc.)



The trapezoid is used to indicate input-

output operations--card reading and ‘
punching, printing, reading and writing
magnetic tapes, for instance.

READ EMPLOYEE
RECORD FROM
TAPE UNIT 1

A rectangle is used to indicate calcula-

tions and a diamond-shaped box shows l
the decision points in the flow-chart.
The results of a test, or decision, are
indicated on the exits of the test.

COMPUTE
DISCOUNT

The direction of flow is from top to
bottom.and_ fr9m left to right unless ERROR RECORDS
otherwise indicated by arrows. If -{  ARE ON TAPE
comments are in order about a UNIT 6
particular section of the flow-chart,
they can be placed in a box attached
by a dashed line to one of the flow
lines. The beginning and end of the C BEGIN )
flow chart can be indicated by

appropriately labeled ovals; distant : l ,
points which must be connected can [ |
be indicated by placing identifying

numbers in circles as shown. As

a practical point, we recommend @*
that flow charts be drawn by putting

down the descriptive information first 1

and then enclosing it in the appro-
priate figure.

1-2 Computer Components

In this section, we will describe the major components of a computer and
their functions. Let us begin with the most common computer input medium,
the punched card. Figure 1-5 shows a card punched with the digits 0-9, the
letters A-Z and a sampling of what are called special characters (+, -. %, etc.).
Each symbol, or alpha-numeric character, has a unique set of punches
associated with it and takes one column of an 80-column card. If a number,
such as an account number or employee identification number, requires six
digits, it will be punched into six successive card columns (cc). A group of
related columns such as this is termed a field. Note that the card in Fig.1-5
is punched in 12 rows. Ten of these rows are marked 0 through 9 and cor-
respond to the digit positions for punching. The topmost row on the card is
termed the 12-row and the next lower one, the 11-row. These rows are used
in combination with the 0-9 rows for letters and special characters. In




addition, a single 11-punch in the units column of a field indicates that the
number in that field is negative. As an illustration, if the number -12345 is

to be punched into cc 1-5, column five, the units position of the field, will
contain an 11-punch as well as a 5-punch. The punches are created by a
typewriter-like device called a card punch or keypunch. A keypunch has a
keyboard similar to a typewriter's and card-feeding and punching mechanisms.
The data punched in a deck of cards can be verified for correctness in
several ways. Flrst if the volume of cards is small, they may be sight

- ~T1. Paal
& VOiuimes

P | o
5% TS UL

ni\nn A Ther manA - i
CilieCKed Oy .l.ca,\u.us e pr .uu,;us on [0? of the card. F

ped

O iarl

Special
Digits Letters Characters
0123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZ &.n=$2/ %#ke
& & JI 12 Punching
] I k Position
E 11 Punching
“ & j ! i ] ! Position
60000000 00000000 H!ﬁl|yonouunooou ode000s400000000
123458789 1920212223242526 BPNRPAY PPRHE B B P 5354 5556 57 58 59 60 62 62 6 o} SSGFG oMM RI37475767778 73 80
IERRERNRY IREERERE l REREERERERRE IRERRRRE!
Ezzzzzzzzzzﬁ 222222222 2 ] 2222222222392112 22222222
3333333333309 3444432339332330334334330 304433443333333333043043040833333333
da4440480084] YYYTerrILLl| Leaapd cefdddddannnanaanndgadpe{finessancas
5555555555555 555555555555049445555094495550999455555555559459945994955555555
6666666666666604qdssecec66666660qqdssesci{qddscccDgqeccc6666666§46qq644d466666666
mmmnnnnng{iiinng 171711u"77771ﬂ1'11771717111 337 l 171111111
aaassaassascssaad suaasssaasaaaaau(asaanaautaaaaaaﬂtasassaaass UsO0epO00sesss8ss

999959995!999999Sﬁs99999!999999999[!99999993”9899999[]999999938999999999 99999999983
12

34567890 NNNUBEY 1920 212223 24 25 26 27 28 20 30 31 323334 35,36 37 30 3940 41 424344 4546474843 50 51 5253 54 5556 57 58 5360 61626354 656667686970 71727374 7576 171813 80

Fig. 1-5 Punched Card

a card verifier is used. This is identical to a keypunch except that instead of
punching holes in a card, it senses the holes that have been punched previously.
The verifier operator uses the same source documents used by the keypunch
operator and if there is a mismatch between what the verifier operator keys
and what has been punched, the verifier will signal the operator, usually by
locking the keyboard and turning on a red light. In this way, punching error
can be detected and corrected.

At this point, the card deck is ready for input to the computer. The
data on the cards are read into the computer through its card-reader at
speeds of up to 1, 000 cards per minute. The holes in the “card are detected
either by a wire brush located over each column making electrical contact
through a hole in the card to a metal plate below, or photoelectrically with
an "electric-eye"' positioned over each column. The control circuitry in the



card reader translates the punches into an internal code and places the results
in the working storage of the computer. When the results of a computation are
ready to be printed, the control circuitry of the printer can be activated to
fetch them from storage. The internal code is decoded by the printer control
unit into the appropriate alpha-numeric symbols. Printing speeds range to
over 1,200 lines per minute with line widths of up to 132 characters. The
printer control allows single and double spacing and skipping to the top of

the next page to be printed. The paper itself is available in essentially con-
tinuous lengths with perforations at the top and bottom of each sheet to allow
it to be separated from the others. Much of the data which is processed by a
computer need not be read by human eyes. Consider an insurance policy file
which is processed monthly. A printed record needs to be created only for
that fraction of the policies which require some exceptional treatment,
expired policies, delinquent policies and so forth. As a result, the file

can be maintained on magnetic tape. This allows reading or writing speeds

of up to several hundred thousand characters per second. Magnetic tape and
other magnetic recording media will be discussed in Chap. 9. In the interim,
we will rely on the conceptual picture of a continuous medium which is pro-
cessed sequentially in much the same fashion as the tape in an ordinary tape
recorder except that recording is not continuous. Between individual records,
which may be any convenient length as opposed to the fixed record size of
punched cards, there is a blank section of tape, usually less than 1/2 inch

in length. When tape is read or written, an entire record is either read into
the computer's internal storage or written onto tape.

The computer's working storage is made up of doughnut-shaped magnetic
cores which may be as small as . 01" in diameter. Typical storage sizes
range from about 100, 000 cores to over 10, 000, 000. These cores may be
magnetized in either a clockwise or a counter-clockwise direction. I we
arbitrarily assign the value ""1" to the clockwise direction and the value "0"
to the other, we then have the basis for developing an internal code. We may
regard the cores with value 1 as being in an ""on"' condition and those with
value 0 in an "off" condition. The computer is equipped with circuitry which
allows cores to be read, that is to determine what values they represent. The
cores may also be changed, or written, by the computer. Reading and writing
magnetic core storage can be done in times of the order of one-millionth of a
second which is also termed a microsecond (. 000001 sec).

Now a single core does not give us very much representational capability
since the largest digit it can handle is 1. However, if we combine a number
of cores and let the group represent a single number, or character, we have
for practical purposes an essentially unlimited code capacity. As an illustra-
tion, suppose that the entire working storage, or core storage, is allocated
in units of four cores each. Also, let the topmost core in the stack of four
have the value 8, the next one 4, the next 2 and the bottom one the value 1.
Referring to each group of four as a core position, the digit value of a core
position is determined by adding the values of each core which is "on'". As




an example, the digits 0 through 4 are shown below

Core value
8 o0j0|0]0]O0
4 ojo0|j0f0]1
2 o1o0}11]11}0
1 0{1]1]0}111}10
Digit value = ¢:1:2 .34

Exercise 1-1  Extend the table above through digit value 9.

If we wanted to, each core position could represent numbers as high as 15.
However, in this code scheme, which is known as Binary Coded Decimal
(BCD), each core position is used for a single digit from 0 to 9. In addition
to the core position we have discussed above, it is convenient to group core
positions into larger units called words. For the moment, we will assume
that 10 core positions make up a word. A word will be used to store a single
number as opposed to the purpose of a core position which can hold only a
single digit. Recall our analogy between the clerk's worksheet and the
computer's core storage. Very often, the clerk's worksheet is divided into
lines and columns which are numbered for convenience. The clerk's instruc-
tions can then be stated in terms of manipulating various sections of his work-
sheet such as: ""Add line 9, column a, to line 2, column a, and write the
sum in line 3, column b." The computer's instructions also are given in
terms of operations on the contents of its storage. To allow each location in
storage to be referenced, a unique numerical address is assigned to every
word. Our analogy between the clerk and the computer cannot be drawn any
further. While we may depend on the clerk to remember some of his instruc-
tions, and so avoid having to write down everything for him, this is not the
case with the computer. Each and every step of the calculation must be
provided for by computer instructions which are also placed in core storage
along with the data of the problem. We may assume that each instruction
will occupy a single word. The computer's instruction processing unit, or
control unit, will fetch each instruction from storage and execute it. An
instruction has a fixed format. The type of operation to be performed may
be indicated by the first two digits of the word and the next eight digits may
represent storage addresses, four digits per address. (Incidentally, this
implies an addressing limitation of 9999 and therefore a maximum storage
size of 9999 words.) If we wished to add the contents of word 1019 to the
contents of word 1020, assuming an operation code of 21 for addition, the
correct instruction is 2110201018. The instruction processing unit will
fetch this instruction and decipher the first two digits to determine that an
addition is to be performed. It will next fetch the contents of word 1019 and
add 18 to the contents of word 1020 and store the 10-digit result in word 1020.




Note that we are not asking the computer to compute 1019 + 1020! After this
instruction has been executed, the instruction in the next higher address word is
fetched and executed and so on. If the add instruction were located in 512, then
the next instruction will be taken from location 513. It is interesting to note
that the time required to execute an instruction can range from a few hundred
microseconds on slower computers to less than a microsecond on the fastest
ones.

Since most people are inclined to impute an oracular-like prowess to
computer generated output, the premises on which this rests should be
examined. As we have pointed out, the computer supplies no insights of its
own. If by some human error, an employee's hourly pay rate is coded as
$25, 000. 00 rather than $2.50, then the computer, or more accurately, the
payroll program will create a check for $1, 000, 000 for 40 hours' work. The
only way to avoid the consequences of such input errors are better validation
of source documents, over-all accounting controls and self-consistency checks
on each calculation. As an example, we may know that no hourly employee can
ever be paid more than some maximum amount based on the present wage scale
and the number of hours in a week. Before each check is written, the check
amount can be compared with this upper limit. If a given check exceeds this
maximum, the computer will not print the check but will instead print an
appropriate error message. There is an apt expression in common use in
data-processing: "GIGO, Garbage In, Garbage Out', which summarizes the
consequences of bad data. Let us now consider the effect of random computer
errors. These can be caused by physical and chemical changes in its electronic
components or by mechanical failure in their interconnections. When the
effect is permanent, it is easily diagnosed and fixed. However, there is the
possibility of temporary or intermittent changes which may cause some com-
ponent to malfunction for only a short interval. There are two issues here.
First, we must detect the error. The validity checks and accounting controls
we discussed previously can be used for this purpose. As an illustration, we
may be running an inventory update program. For each item we calculate the
amount in inventory according to

New Amount = Old Amount - Issues + Receipts

As a check, we can sum each of the four quantities above for every inventory
item. At the end of the program, the sum of all New Amounts should equal
the total of Old Amounts minus the total of Issues plus the total of Receipts.

If it does not, then either an error was made in calculating one of the New
Amounts or an error was made in calculating one of the control totals. In
either event, the job will have to be rerun. The second issue is devising a
means for the computer to detect failures. It turns out that this is fairly easy -
we will describe it subsequently. At this point, you may question the need for
accounting controls. If the computer can detect its errors, why bother to
check its results? The reason that we must is simply that if a component of
the computer can fail, we may also have a simultaneous failure in the error
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detection circuitry. While this is unlikely, it is still wise to take precautions.
As an illustration of how unlikely an undetected error is, assume that a given
component will fail once per million operations. (Actual component reliabili-
ties are much higher. The figure used here is strictly for illustrative pur-
poses.) Assuming that the corresponding component in the error detection
circuit has the same failure rate, the chance that they will both fail at the
same time and give an undetected error is 1/1, 000, 000, 000, 000. Assuming
this component is used 100, 000 times a second, 24 hours a day, this means
that one undetected failure will occur once every four months, on the average.
If the programmer has built adequate control checks into his program, the
undetected failure will be caught. With this as background, we will describe
the technique used for error detection. The essence of this technique is re-
dundancy -- that is, providing extra coding which is related to the data in
core storage. A parity bit is added to each group of bits comprising the
basic storage element. The parity bit is then either set on or off to make the
total number of on-bits in the storage element an odd number or an even num-
bet according to the choice of the system designer. For System/360, an
odd-parity code is used. Since the basic data element for the 360 is eight
bits, a ninth bit is added as a parity bit. In all data manipulations, parity
checking circuitry verifies that if the parity bit is on, an even number of data
bits are on; if the parity bit is off, there should be an odd number of data bits
turned on. Any exception to this, either because a data bit has been dropped
or because the parity bit has been dropped, will cause an automatic interrup-
tion to occur. The same coding technique is used for data stored on magnetic
disks and tapes.

At this point, the reader should not concern himseilf with the details of
the storage organization of the 360 -- it will be covered in Chapters 2 and 3.
Here, only the basic concepts of core storage data representation and parity
checking are important.

1.3 Programming

The flexibility and power of the electronic computer is derived from
essentially one aspect of its architecture -- its stored program. In essence,
the instructions for a calculation are stored in the computer as coded digits
in the same way as the numerical data of the problem itself. This gives the
computer the capability of operating on its instructions as if they were data.
Before the development of the stored program computer, the instructions for
a computation were set up on wired plug boards. Their ability to make sim-
ple tests at intermediate points of the calculation, and to take alternate
courses depending on the outcome, was derived from testing the status of
switches, or relays. This type of logic is inherently limited by the number of
relays in the computer and by the availability of sockets on the plug boards.
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The stored-program computer is not faced with these difficulties. Since its
instructions are numbers, the computer can be directed to modify its own
program and take an almost endlessly varied series of actions.

Before we describe how programs are written, it will be helpful to
understand how the computer manages its storage. We will work with the
storage model introduced in Sec. 1.2. While the actual storage implementa-
tion on the 360 differs from our conceptual model, the differences are not
important at this point. We will assume that the magnetic core storage of
our hypothetical computer comprises 10, 000 words, each with the capacity to
store 10 digits. So that the computer can identify individual storage locations,
each word will have an address, a four-digit number from 0 to 9999. Compu-
ter instructions reference a location via its address so that the contents of
that location may be operated on. As an example, in a payroll program, the stor-
age location which will contain gross pay may be in the word whose address is
4056 and its contents may be 0000012398. It is important to distinguish be-
tween a given storage location, the address used to reference that location
and the contents of the location. As an analogy, we may have in mind a par-
ticular location on Manhattan Island which contains the tallest building in the
world. We may use a number of addresses to identify this location such as
34th Street between Fifth and Sixth Avenues, or Longitude W 73°58'53",
Latitude N40°43'30". The contents of this location is of course, the Empire
State Building. Note that its address is not unique -~ there is more than one
way to to identify its location. We have a similar situation with 360 storage
addresses which are somewhat more complex than the hypothetical computer
we are describing. System/360 storage addresses are made up of a base and
a displacement whose values are added together to produce an address. As
examples, a given location, say word 10000 in storage, may have an address
whose base is 7500 and displacement is 2500, or the base may be 9500 and
the displacement 500. We may then use several addresses to identify a given
location.

Each storage word of our hypothetical computer may contain 10 decimal
digits or it may contain an instruction. We will assume that instructions have
a two digit Operation Code followed by two four-digit addresses, which we
will refer to as operand addresses. The first operand will be called Operand
1, or Op 1, and the second, Op 2. We will assume that the results of an op~
eration will be placed in the location of Op 1. As an example, if the opera-
tion code for addition is 21, and we wish to add the contents of locations 1020
and 1021 and place the result in 1020, the proper instruction is

21 1020 1021
If 1020 contained 0000000045 prior to the execution of the instruction above,
and 1021 contained 0000000015, the contents of 1021 would be unchanged after

the operation was performed but the contents of 1020 would become
0000000060. So that we can describe some simple examples, we will assume
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that our hypothetical computer has the instruction set given in Fig. 1-6; we
will discuss each of these as they are used. We have omitted input-output
instructions as these are complicated even on hypothetical computers. As an
illustration of programming with this instruction set, suppose that we wish to
calculate an employee's net pay from the formula

NET PAY = HRS * RATE - DEDUCTION

where the symbol * denotes multiplication. In addition, it is known from this
particular payroll that no employee earns more than $300. 00, a test against
this upper limit can be made. In this way, we avoid catastrophic errors
caused by human errors in the input data. The complete logic of a typical
payroll program would involve reading an employee work record, say a time
card, calculating his pay, taxes, deductions and so forth, creating a check,
and then repeating the process for the next employee. In addition, a variety

Instruction Op Code M nemonic Explanation
Add 21 A OP1 OP1+0P2
Subtract 22 S OP1 OP1-OP2
Multiply 23 MPY OP1 OP1*QP2
Compare 31 C Compare OP1 with OP2
Move 32 MV OP1 OP2

Branch High 41 BH If OP1 OP2, branch
Branch Equal 42 BE If OP1=0OP2, branch
Branch Low 43 BL If OP1 OP2, branch
Branch 44 B Branch

Halt 51 H Halt

Fig. 1-6 Instruction Set for Hypothetical Computer

of payroll records would be updated such as the employee year-to-date jour-
nal. We will ignore these complications and assume that each time card con-
tains the employee's rate and the single deduction which is to be made. We
will not discuss input-output except to indicate where they will take place.

The first step is to lay out a storage map, that is, a table showing the storage
locations of the various data items: NET PAY, HRS, RATE, DEDUCTION.

In addition to these, there are several other items which we would have to re-
serve storage for. They include such information as employee name, man
number, department number and so on, which will be needed when the check
is to be printed. For the sake of simplicity, we will ignore these and concen-
trate on the four items above. We will reserve one word for each starting
with NET PAY on location 1000, HRS in 1001, RATE in 1002, DEDUCTION in
1003, and the constant value, 300, in location 1004. The flow chart for the
program is shown in Fig. 1-7.
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C BEGIN )
READ
TIME CARD

NET PAY = HRS* RATE-—
DEDUCTION

IS
NET PAY >
3007

HALT

Fig. 1-7 Payroll Program

If the comparison of NET PAY with the upper limit of $300. 00 fails, the pro-
gram will halt. In practice, this would not be done since the ideal is non-stop
operation of the computer. Invalid records would be written on a separate

tape and then a hstlng of this tapc would he created for cnhenﬁnnnf correction

after the program has processed all other payroll records. The program is
given in Fig. 1-8. To the right of each statement, explanatory comments are
given. We are assuming that the first arithmetic instruction begins in loca-
tion 1500 and that reading and writing data each take 20 instructions. ,

Location Instruction/Data Comments
1480 W == eeem —o- Instructions for reading time
~mmm == emee —e—- Cards begin at location 1480
1500 23 2001 2002 Multiply HRS*RATE
1501 32 2002 2001 Move HRS*RATE to NET PAY
1502 22 2002 2003 Subtract DED. from HRS*RATE
1503 31 2000 2004 Compare NET with 300
1504 41 1526 0000 Branch to 1526 if NET > 300
1505 = == ==ee mee- Instructions for check writing
mmmm == memes mme- Begin at 1505 and go to 1524
1525 44 1480 0000 Branch to 1480 for next employee
1526 51 0000 0000 Input error has occured
2000 XXXXXXXXXX NET PAY is stored here
2001 XXXXXXXXXX HRS worked is stored here
2002 XXX XXXXXXX RATE of pay is stored here
2003 XXXXXXXXXX DEDUCTION is stored here
2004 00 0003 0000 Upper limit is $300. 00

Fig. 1-8 Payroll Program in Machine Language
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At this stage, the starting location, or origin, of the program is arbitrary,
We chose to begin this one at location 1480. The first arithmetic operation
occurs after the instructions (20) for card reading. It causes HRS in location
2001 to be multiplied by RATE in 2002. The product will be placed in 2001.
The next instruction, MOVE, moves the product from 2001 to 2000, the loca-
tion for what will eventually be NET PAY. At this point, DEDUCTION in
2003 will be subtracted from the product giving NET PAY. We could just as

well have omitted the MOVE and done the subtraction directly in 2001 provi-

ded we kept in mind that location 2001, which used to contain HRS now con-
tains NET PAY. The next instruction at location 1503 will compare the
contents of 2000 (NET PAY) with the contents of 2004 ($300. 00). This com-
parison will set what we can think of as a three position switch in the compu-
ter, one setting if the first operand (NET) is high, another if it is low, and a
third if both are equal. These settings can be tested subsequently and will
remain unchanged by testing until another arithmetic instruction is executed.
The next instruction at 1504 is interesting in several respects. First, up to
this point, the program has been executing instructions sequentially, that is,
the next instruction to be executed is taken from the storage location imme-
diately following the previous instruction. Here, we have an opportunity to
continue with this sequence or to take alternate action if NET is greater than
$300. 00. This instruction will test the three-position compare switch and if
it finds it set too high, it will branch to the instruction whose location is given
by the address of OP1, 1526. That is, the next instruction to be executed, if
NET is greater than $300. 00, will be at location 1526. If this conditional
branch is not taken, program execution will continue in sequence through the
20 instructions for check writing after which an unconditional branch will be
met at 1525. This is an unconditional branch in the sense that it will always
be taken. Its effect is to cause the entire sequence of operations to be re-
peated for the next employee time-card. After this program had been written
and checked for errors, it would be punched into cards, say five instructions
per card with the starting address of each group of five also on the card. An-
other program, called a loader, would be used to load the program into the
proper locations in storage. Lest the reader be concerned that we need an-
other program to load the loader into storage, and so on ad infinitum, most
computers have in effect a "'load button’ which causes a card to be read from
the card reader into a specific storage area and the first instruction in that
area to be then executed. The card in question is the first card of the loader
deck and the first instruction on that card is one which starts the loading pro-
cess. The loader thereby brings itself into storage by its own bootstraps.

In addition to loading the instructions, any constant data such as the 30000 in
location 2004 would also have to be put into the load deck with appropriate ad-
dress information so they can be properly stored. The loader does not have
to take any action with respect to locations 2000 through 2003 which have been
reserved for data, except that it should not load anything into those locations.
The input routine would be arranged to store the relevant information in those
four locations after having read a data card. Once the program has been
loaded, the data deck would be placed in the card reader, the proper paper
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would be inserted in the printer and the computer is then ready to produce
results. With even this brief perspective on computer programming, there
are several issues which may occur to the reader. First, there is the
"atomic"” level at which computer instructions operate. A single instruction
will handle only a small segment of the problem and every step of the calcu-
lation must be provided for explicitly -- there is no room for implications
here. Second, as an outgrowth of our first observation it is clear that a re-
spectable number of instructions will usually be required for even fairly sim-
ple problems. As a result, the coding exercise we have just gone through
could become very tedious and error prone for a longer program. The heart
of this problem is that the programmer is burdened with much extraneous de-
tail. He has to remember machine operation codes as well as the addresses
of data and significant instruction locations in the program so that branches
can be programmed. In our short example, there is nothing particularly pro-
vocative about location 2002 so that we would associate it with RATE; the
bare fact of location 1526 does not tell us that this is the point where a branch
is to be taken when a check is written for larger than the maximum amount.
What is needed is a shorthand way of writing programs which is easier to re-
member than the series of digits we have been working with. Suppose we
could write the program as

MPY HRS, RATE
MV NET, HRS
S NET, DEDUCT
C NET, C300
BM ERROR
B START
ERROR M

Here we substitute a short mnemonic for the operation code and the symbols
for the data addresses. Also, we label those portions of the program to
which reference will have to be made, such as ERROR or START which in-
dicate the error handling part and the beginning of the program. We can also
extend this shorthand to the part of storage which is reserved for data and
constants. As an illustration

NET DS 1
HRS DS 1
RATE DS 1
DEDUCT DS 1
C300 DC '30000'

The abbreviation DS means that we are defining a symbol at that point. That is
we are defining the address of that symbol and indicating that one storage
word should be reserved for it. The DC statement indicates that we are
defining a constant with the value 30000 ($300. 00) which will be referred to by
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the name C300. This is a much easier way to write a program. Whenever
we want to write an instruction involving net pay, we may write NET and not
be concerned about the fact that NET is found at location 2000. When we have
finished the program we can then concentrate on translating our shorthand
notation into machine language. We can develop a systematic method for do-
ing this. First we define the program origin, or load point, which is the ini-
tial location in storage which the program will occupy._FEr compatibility,
with the program in Fig. 1-8 we select location 1480 as the load point. The

first step in converting to machine language is to create a symbol table or dic-
tionary showing each symbol and its address. This can be done by scanning
the label column and noting, for instance, that ERROR is the label for the

46th word in the program. As a result, it has address 1480 + 46 = 1526. The
other labels can be handled in the same way. After we have built up the sym-
bol table as shown in Fig. 1-9 we can translate the operand portions of each
instruction by simply looking up each symbol in the dictionary and replacing it
by its address value from the dictionary or symbol table. The operation
codes can also be translated using the table of mnemonics in Fig. 1-6. At the
conclusion of this translation, we will have assembled the shorthand version

of our program into machine language.

Symbol Table

Symbol Value (Address)
START 1480
ERROR 1526
NET 2000
HRS 2001
RATE 2002
DEDUCT 2003
C300 2004

Fig. 1-9 Symbol Table for Payroll Program

Since the assembly operation is so straight forward, we can relegate it
to the computer. A program which performs this function is called an
Assembly Program or Assembler, for short. The abbreviated notation we
have been using is termed, appropriately enough, Assembly Language and it
has some very definite, although simple, grammatical rules and a well defined
vocabulary which we will present throughout the remainder of this book. At
this point, we will introduce the coding form in Fig. 2-6 on which 360 As-
sembly Language programs are to be written. One statement is written per
line with each position on the form punched into a card column. The label or
name begins in column 1 and may be from one to eight characters long. The
operation code begins in column 10 and the operands begin in columns 16
through 71 with commas separating the operands. If explanatory remarks are
required, they may be added after the operands provided they are separated
by at least one blank from the operands. If more than one line is required for
a statement, a continuation character, which may be any non-blank character,
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is written in column 72. 'The continued part of the statement may be resumed
starting in column 16 of the next line. If more space is required for com-
ments, an entire line can be used by placing an * in columnone. The entire
line will then be ignored by the assembler.

A number of useful programming features can be added to an Assem-
bler. One of these is address arithmetic. Operands can be written as arith-
metic expressions such as ERROR+2. This has the effect of increasing the
value of the symbol by two. If this operand appeared in an instruction such as

B ERROR+2

it would be assembled as a branch to ERROR+2, or 1526 + 2 = 1528. Very
often, this type of operand is more convenient than defining another label two
words from ERROR. The assembler's location counter can also be used by
the programmer. The location counter is initialized to the program's origin
and then after each instruction is assembled, it is advanced by 1 so that it al-
ways contains the location of the instruction being assembled. The location
counter is referenced by the symbol *. To branch to a point three locatlons
away from the present instruction, the programmer would write

B *+3
If this instruction was at location 2000, the branch would be to location 2003.

After the program has been written, it is punched into cards. This deck
of cards is known as the assembly language source deck or source program.
The next step is to load the assembler into the computer. The assembler
reads the source deck as input and performs a translation from assembly lan-
guage to machine language which is punched into cards. The machine langu-
age deck is known as the object deck. After it has been punched, the pro-
grammer is then able to execute his program. Notice that the assembler does
not do this, it only translates the program. The program is executed by load-
ing the object deck into the computer. The input to the computer at this stage
is the problem data. It will be helpful to the reader to keep the details of this
process in mind. Figure 1-10 summarizes the operation.

Each of these steps can be handled by an operator who loads the required
programs into the computer in the proper sequence. However, in the
interest of using the computer more efficiently, most of the operators
functions can be handled by a program which is appropriately termed

an Operating System. It resides continually in core storage. Each job
to be run is preceded by a control card which indicates what actions the
Operating System should take for that particular job. We will comment
on several functions of the operating system in the following chapter and
will discuss the subject in greater detail in Chaps. 11 and 12.
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Fig. 1-10 Executing an Assembly Program
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1-1 As an exercise in flow charting, prepare a flow chart for some every-
day activity such as starting a car and driving it out of its garage. Consider
what should be done if some expected action does not occur such as a failure
of the engine to start. Also, be sure to include so-called "obvious' details
such as verifying that the garage door is open before backing out.

1-2  Consider a hypothetical "black-box" which faithfully transcribes spoken
Enghsh language syllables into computer decipherable codes. Suppose that
the code for the syllables in "spoken' was *$, for instance. A program could
be written which would look up *$ in a table and retrieve the word, "spoken’'

In this way, we have at least the rudiments of an electronic stenographer.
Neglecting problems of individual pronounciation differences and assuming
that the '"black box' will faithfully transcribe into code whatever it hears,
what additional difficulties must be overcome for it to be completely
effective?
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Chapter 2

DECIMAL PROGRAMMING

2.1 Data Representation and Addressing

Let us expand on the discussion of core storage given in Sec. 1.2. We
will start with the requirement that each unit of core storage will be able to
store letters, special characters such as $, =, +, as well as digits. Let us
now count the number of different code combinations required: For upper
and lower case letters, we require 52 and the digits 0 through 9 bring this to
62; there are a number of special characters such as #,%,$ extending through
23 other relatively high frequency symbols for a total of 26 special charac-
ters, or 88 total characters, so far; in addition, certain functions of input-
output units can be activated and controlled by simple codes which can be
considered as additional ""characters'; this adds 24 more to the total bring-
ing us to 112 characters in all.

In Chap. 1, we tentatively introduced the notion that each word, or
position, in core storage would be made up of 10 four-bit magnetic cores,
or bits, with each four-bit unit containing a single digit. With four bits, we
have 16 possible different codes ranging from 0000 to 1111. This can be
verified directly by counting them or by noting that for each bit position we
have two possible codes, 1 or 0. With two bits, the number of different
codes is 2 x 2 = 4, namely 00, 10, 01, 11 That is, for each possibility in
the first bit, there are two different possible conditions for the second bit.
Since there are two possibilities for the first bit, the total is four. By
extension to four bits, the number of possible codes is 2 x2 x2 x 2 = 16.
As a result, it is clear that we cannot handle even alphabetic characters
within a single group of four bits. If we expand to seven bits, the total
number of codes is 2 x2 x2x2 x2 x2 x 2, or 128. This will handle the
requirements we have developed so far with some room for expansion of
the character set. However, by going to eight bits per unit of storage we
gain two important advantages. First, we have the possibility of express-
ing any one of up to 256 (2 x 128) different characters in a single storage
unit. This allows significant growth for additional character sets and new
input-output devices. In addition, we can store two decimal digits of four-
bits each in a single unit. For these reasons, eight bits per storage unit
was adopted as the standard for the 360. Since we will have occasion to
refer to this basic storage unit of eight bits frequently, we will define it as
a byte.

The next point to be considered is defining which bit pattern, of the
total of 256 different ones available, will be used to represent each
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character. Apart from the conventions used for numbers, the precise bit
definitions of the other characters is not particularly important to the pro-
grammer. When information is being read from, or written to, disks,
drums or magnetic tape, the data is treated as a string of bits and merely
stored or retrieved in units of eight consecutive bits. The bit definitions
are important only when information is being transmitted to or from char-
acter sensitive devices such as card reader/punches, printers and graphical
displays. For these devices, the translation between the external and in-
ternal representation is handled by the device control unit. As an example,
if a punched card containing an N in column 12 (11-5 punch) is read into an
area in storage, the 12th byte of that area will contain 11010101 which is

the preferred code for N. The translation from the 11-5 punch to 11010101
is done by the card reader control unit. Similarly, if that area of storage is
then printed, the 12th character in the printed line will be an N. The printer
control unit will decipher the bit code, determine that it represents an N and
then activate the print mechanism to print an N in the 12th position.

While the central processing unit of a 360 can use any eight-bit char-
acter code, there are certain restrictions in decimal arithmetic and editing
operations which we will discuss in Secs. 2.4 and 2.7. Character sensitive
devices require either the extended binary-coded-decimal interchange code
(EBCDIC) or the American Standard Code for Information Interchange for
use in an eight-bit environment (ASCII-8). The choice between the two can
be set by a mode switch as discussed in Chap. 9. The EBCDI code is the
more common one for 360 operation and so our discussion of character codes
will concentrate on it. Figures 2-1and 2-2 show the conventions for each of
these codes and Fig. 2-3 shows the translation between Hollerith coding in a
punched card and EBCDIC. Note that the numbering conventions for the bit
positions within a character are different for EBCDIC and ASCII-8. The
conventions are

EBCDIC 01234567
ASCII-8 76X54321

If we visualize the cores within a single byte as being laid out left to right,
the leftmost bit in EBCDIC convention is referred to as bit 0 and the right-
most one as bit 7. In ASCII-8, the convention is reversed.

The coding for decimal digits is of primary interest here. In EBCDIC,
the digits 0 through 9 are represented by the codes 11110000 through
11111001. The only difference between these and the convention we estab-
lished in Chap. 1 is that bit positions 0 through 3, called the zone bits or
high-order bits, are all 1. The remaining four bits, the digit or low-order
bits, follow the convention of Chap. 1. When an arithmetic sign is asso-
ciated with a number, the sign is usually punched over the units position of
the number. A + sign is represented by a 12-punch and a - sign by an
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23
4567 o1 10 1 00 o1 10 " 00 o1 10 1" 00 o1 10 1
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0010 b k s B K s 2
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0101 | HT | NL | LF | RS e n v E N v 5
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Fig. 2-1 Extended Binary-Coded-Decimal Interchange
Code (EBCDIC)
Bit Positions ———-——‘¥78
L 00 01 10 1
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4321 01 10 11 00 0 10 1 00 0 10 1Al 00 0 10 11
0000 | NULL | DC, R @ | P P
0001 | SOM | DC, ] 1 A Q a a
0010 | EOA | DC, " 2 B R b v
0011 | EOM DC3 # 3 C S c s
0100 | EOT SD%P 4 4 D T d t
0101 | WRU | ERR % 5 E U e v
0110 | RU SYNC & 6 F v f v
0111 | BELL | LEM ’ 7 G | w g w
1000 | BKSP | Sq ( 8 H X h x
1001 | HT $ ) 9 1 % i y
1010 | LF Sp * J z i z
1011 | VT S3 + ; K | C k
1100 | FF Sq , < L N 1
1101 | CR S5 - = Y =] m
1110 | SO S6 . > N[ ! n ESC
nny| s S7 / ? o | «— ° DEL
Fig. 2-2 American Standard Code for Information Exchange

For Use in Eight-Bit Environment (ASCII-8)
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Card Printer Internal

Code Graphics Representation
blank 01000000
12,8,3 « {period) 01001011
12,8,4 < 01001100
12,8,5 { 01001101
12,8,6 + 01001110
12 3 01010000
11,8,3 $ 01011011
11,8,4 * 01011100
11,8,5 ) 01011101
11 - 01100000
0,1 / 01100001
0.8.3 . 01101011
0,8,4 % 01101100
8,3 # 01111011
8,4 @ 01111100
8,5 ' {quote) 01111101
8,6 = 01111110
12,1 A 11000001
12,2 B 11000010
12,3 C 11000011
12,4 D 11000100
12,5 E 11000101
12,6 F 11000110
12,7 G 11000111
12,8 H 11001000
12,9 I 11001001

Fig. 2-3 Hollerith Card Codes and EBCDIC

Card

(2}
[o]
[N
)

Printer
Graphics

Internal
Representation

WLV EWN -

LI T TR T TR R T T i S S Gt gy

CAENNUNEWNS $ % 0 & v v a8 w

WRONONFWNNOOQOQODOOO = = wd o od ek md b b

MONANNFEFCN=ONRKXECCHONIOUWCZIPRG

11010001
11010010
11010011
11010100
110101901
11010110
11010111
11011000
11011001
11100010
11100011
11100100
11100101
11100110
11100111
11101000
11101001
11110000
11110001
11110010
11110011
11110100
11110101
11110110
11110111
11111000
11111001

11-punch. (As a practical matter, the + sign is almost never used in this
manner. The universal custom is to consider unsigned fields positive.)
The zone codes for +and - are, respectively, 1100 and 1101, with the zone
code for unsigned numbers, 1111, being acceptable as a positive sign.
When decimal digits are involved in arithmetic operations the signs gener-
ated in the EBCDIC mode are 1100 and 1101 for + and - respectively,
whereas in the ASCII-8 mode, they are 1010 and 1011 respectively. In
addition, the zone code 1110 will be treated as positive. Any other zone
codes are invalid. Fig. 2-4 summarizes the digit and sign codes. These
details are points the reader should be aware of, not necessarily intimately

acquainted with.

Exercise 1~1 The number -1 would be punched as an 11-1 which is also
the code for a J. Referring to Fig. 2-1, compare the zone code for J with

the zone code for -.

The format in which each digit appears with its zone code and requires
one byte per digit is called the zoned decimal format. When the zones are
stripped away and the decimal digits are stored two to a byte, we have the
packed decimal format. The packed decimal format is important because
it saves storage and because the decimal arithmetic instructions require
As examples, 123 would

it. Fig. 2-5 gives a schematic of these formats.

appear in storage in the zoned format as

11110001 11110010

11110011

-123 would be punched in a card as 123 and would appear in storage as
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Digit Codes Sign (Zone) Codes
0 0000 1100 + EBCDIC
1 0001 1101 - EBCDIC
2 0010 1010 + ASCII-8
3 0011 1011 - ASCII-8
4 0100 1111 * EBCDIC
5 0101 1110 +
6 0110
i 0111 * implied + sign
for unsigned fields
8 1000
9 1001
Fig. 2-4 Digit and Sign Codes
byte byte byte byte byte
0 70 70 70 70
zone | digit | zone | digit | zone | digit | zone|digit |sign |digit

digit | digit

digit | digit

digit | digit

digit | digit | digit| sign

Fig. 2-5 Storage Organization: Bytes; Zoned Digits;
Packed Digits
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11110001 11110010 11010011

In the packed format, we have

123 0001 0010 0011 1111
-123 0001 0010 0011 1101

Where the low-order four bits give the sign.

Core storage in the 380 is divided into discrete units of bytes. Each
byte in storage has a unique address ranging from 0 to whatever is the
maximum storage available on a particular machine. Typical storage sizes
are 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, and 1048576
bytes. Larger sizes are also available. Because the addressing circuitry
of the 360 works on binary numbers for addresses rather than decimal
numbers, the size of storage modules are multiples of two, rather than
multiples of 10. To make it more convenient to refer to these module
sizes, they are abbreviated 4k, 8k, 16k, 64k, 128k, 256k, 512k, 1 million,
where 1k = 1024. In conversational usage, one speaks of a 32k-machine, or
a 32k-byte machine, for instance. In Chap. 1. we tentatively introduced the
concept of a core storage addressable in units of words where each word
contained 10 digits with the advice that this picture is an oversimplification.
In some applications, it is an advantage to deal with a machine whose storage
is organized in words. These applications are categorized by data with
limited precision, usually well under ten digits so that a word size which
will accommodate 10 digits or so, is satisfactory. Engineering and mathe-
matical calculations are in this category. If an engineer is designing a
structural member, it may not make much difference if one of his results
turns out to be, say 320916.51, as opposed to 320917. 32. Chances are, he
looks upon the result as "around 321000." There is a great advantage to a
fixed-word size machine since its data paths and arithemetic circuits can be
designed arcund the fixed length. As an example, a single core access on a
word machine fetches an entire word. In effect, the construction of the
machine is optimized around the word size with considerable advantages in
performance. However, there are applications which cannot tolerate being
restricted to fixed size numbers. These applications are characterized by
requiring exact results. To a comptroller or a banker, the difference be-
tween 320916. 51 and 320917. 32 is . 81 and the difference is important. One
solution would be to build a computer with a word size large enough to hold
the reasonably largest number which could occur. However this has the dis-
advantage that much smaller numbers would also require a full word, thereby
wasting a good deal of storage. A better solution is to recognize the variable-
length requirements of these applications and design the computer accordingly.
In effect, we want to be able to address to within a single digit as closely as
possible. Since we also want to address single characters, a compromise is
in order--the 360 is designed to address each byte or pair of digits. This
allows us to define data fields of whatever length is appropriate for each ap-
Plication. Within this architecture, the requirements for fixed-length data
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can be satisfied by designing a set of instructions to handle data organized
into consecutive groups of four or eight bytes--four bytes being a word and
eight bytes, a double-word. Each data field, whether it falls into the fixed-
length category, or is variable-length is addressed by its leftmost byte. As
an example, if we have two eight-byte fixed length fields, followed by an
11-byte field, a 13-byte field and a nine-byte field, starting at byte location
16000, following are the addresses of each field:

16000 -- 8 bytes
16008 -- 8 bytes
16016 -- 11 bytes
16027 -- 13 bytes
16040 -- 9 bytes

To address the 11-byte field, we would use the address 16016. In addition
to being the location of the high-order byte of the field, 16016 is also the
address of the entire field and can be used to fetch it. We will show how this
is done in the next two sections.

Let us consider how boundaries are established between variable-length
data. Suppose we have in storage the following consecutive fields of packed
decimal digits and characters:

+0012345 -0017 ABC 0367

With two packed decimals per byte, these fields would require 13 consecutive
bytes of storages which we assume begin at byte address 600.

00 12 34 5+0‘0 01 7- A B C 00 36 T+
600 604 610 612

On paper, it would seem that we can easily distinguish field boundaries by
looking for + or - signs or characters. .However, it is not as simple as that.
In core storage, we have only a string of 1 and 0 bits within each byte, and as
a result, field boundaries cannot be identified. As an illustration, how can
you tell the difference between -1 and J? Their codes are identical, it is only
their usage by the programmer which distinguishes between them. One way
out of this dilemma would be to define a special character as a field separator.
This would waste one byte per field in addition to requiring circuitry to iden-
tify the boundary character. The approach which has been selected for the
360 is to specify the length of each field as well as its starting address when-
ever arithmetic operations are required. As an example, if we wished to add
the - 17 field above to the + 367 field, we note that the former begins at loca-
tion 604 and is three bytes long and the latter begins at location 610 and is
also three bytes long. The add instruction will tell the computer, in essence,
to add the three-byte field which begins at 610 to the three-byte field which
begins at 604. This is done by including the length of each field, as well as
their addresses, in the add instruction.
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2.2 Storage Allocation

In Chap. 1, we mentioned that one of the functions of an assembler is to
allocate storage for constants, data, and work areas. In this section, we will
discuss how this is done for decimal and character data. In Sec. 3.4, storage
allocation for binary data will be presented. Here, we will be concerned with
decimal data in the packed and zoned formats. The packed constants are used
in arithmetic operations and the zoned constants are used where numerical
information is to be printed. Let us first consider how to define constants.
Recall that in the zoned format, each digit occupies one byte with the rightmost
byte containing the number's sign as well as the low order digit, whereas in
the packed format, each byte contains two digits with the rightmost byte again
containing the sign and low order digit. As a result, the length of a zoned
constant is one byte for each digit and for a packed constant, half the number
of digits including sign rounded up, if necessary, to the nearest whole byte.
That is, in the packed format, the constant +217 requires two bytes but the
constant +21 also requires two bytes. The general form of the assembler
instruction to define zoned (Z) or packed (P) constants is

label DC P or Z 'constant'

The label is the name of the constant and is used to make reference to it
throughout the program. The constant is written between single quotation
marks. The letter P or Z denotes packed or zoned, respectively, and to-
gether with the constant constitute the operand portion of this assembier
instruction. The largest packed constant which may be specified is 31 digits
and the largest zoned constant is 16 digits.

As examples,

CONA DC p'-1'
CONB DC P'315'
CONC DC Z'216. 26’

Decimal points may be written to clarify the usage of a constant but they are
ignored by the assembler. Also, no blank spaces may appear in the operand.
The constants above require one, two, and five bytes, respectively. We stress
that the DC is an assembler instruction since it causes the assembler to set
up the constant in the proper form and include it in the object deck of the
program which is being assembled. In this sense, it can be considered to be
executed at assembly time. When properly placed in the program, it does
not have any effect on instruction processing at execute time. Since the
computer cannot distinguish between instructions and data, it is the res-
ponsibility of the programmer to make sure that constant data is not located
within the instruction stream of the program. We will illustrate this point

in several examples in this chapter.
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Variations on the definition above are permitted. To get repetitions of
a constant, we write, for example

CONST DC 5p'2'

which will give five bytes, in storage, each containing a +2. In addition,
multiple constants may be defined in a single DC instruction such as

RATETBL DC P'1.0475', P'1. 0575', P'1. 0675'

The individual constants are separated from each other by commas. However,
the label RATETBL can only be used to retrieve the first constant in the list,
10475. Since each constant in the list is three bytes in length (sign plus five
digits), the addresses of the second and third constants are RATETBL +3 and
RATETBL +6. The assembler will interpret these expressions correctly by
adding three and six to the address assigned to RATEBL.

In the examples we have seen so far, the length of the constant is given
implicitly by the size of the constant. In some cases, it is useful to specify
the length explicitly. This is done as follows

o~ - o o~

ONST  DC PL6'25'

which will give a constant of +25, six bytes in length which is padded to the
left with zeros. As another example, to define 10 zoned fields each of length
12 bytes with each field being equal to zero, we write

CZERO DC 10ZzL12'0

This shows the utility of the zero padding feature which occurs when the
explicit length is greater than the implicit length. This saves us from having
to repeat all 12 zeros. Constants should not be written whose implicit length
is greater than their explicit length. Note that the length indicator is in bytes
for both packed and zoned data.

Character constants are useful for page and column headings and for
explanatory remarks in a print-out.  Character constants up to 256 bytes in
length may be defined in a similar manner to zoned constants. As examples,

TBLHD1 DC C'NET PAY'
BLANKS DC cLi3s2"'
BASELN DC 12CL10".’

The only difference occurs when the explicit length is greater than the implicit
length and the constant is then padded to the right. Thus, the constant BASELN
consists of a period followed by nine blanks. Again, note that when multiple
repeated constants are defined, the label references only the {irst constant in
the list. To retrieve all 12 constants a simple technique can be used which
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we will illustrate in several of the worked examples to follow. Two other
precautions must be observed when writing character constants. Multiple
constants (as opposed to a repeated constant) cannot be defined within one DC
since the separating commas would be treated like ordinary character data.
Also, when the single quote mark character, ', is required within a character
field, it must be preceded by another quote mark. The added quote mark
has no effect on the length of the character. As examples, to define the
character field 'X', we write C'"'X""!, which results in three bytes; again, to
define 2 single quote mark, we write C'""'. The ampersand character &)
must be treated similarly by preceding it with a single ampersand when it
appears in a character constant field.

In addition to defined constants, a program requires storage for input
data, working storage for intermediate results and storage for output. This
storage may be reserved using the Define Storage instruction. Its operands
are similar to the ones we have seen so far in this section except that, of
course, the constant in quotes is omitted. As examples,

IOWORK DS CL132
GRPAY DS PL6
RECPTS DS ZL6
RATETBL DS 100PL3
BLOCK DS CL300

Note that when a series of DS or DC statements is written, the assembler
assigns space continuously. The statements above will reserve 744 bytes of
storage. The first 132 are reserved for IOWORK, the next six for GRPAY,
the next six for RECPTS and so forth.

The use of C, P. or Z is immaterial since the length indicator for all
three types is in bytes. If no length indicator is given, a length of 1 will be
assumed. However, the reader is advised to use whichever type modifier
(C, P, or Z) best indicates how the particular field will be used. Note that
the DS will only reserve storage, it does not set it to zero. When a program is
loaded, the contents of a given location depends on what was put there by the
previous program. As a result, if the programmer requires an area to be
clear, he must arrange for this himself; we will return to this point again.
Another way of looking at the DS is to note that it does not cause any data to
be put into the object program, it does cause open spaces to be set aside in
core storage.

The conventions used in writing DC and DS statements are summarized
in Table 2-1. Before leaving the subject of storage reservation, we will re-
view what the assembler does when it encounters a label, irrespective of
whether the label is the name of a constant, a work area or an instruction in
the program. As we mentioned in Chap. 1, the assembler creates a label
table and makes entires in it whenever a label is encountered. The entries
comprise the label itself, as well as the storage address, or location, of that
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label. When a name is encountered as an operand in an instruction, the
assembler than searches for that label in the label table and comes up with
its core storage address which is then substituted in the instruction in place
of the symbolic name. In addition, to the storage address, an additional
entry must be made for each label -- the length, in bytes, of the data field
the label refers to. This is necessary, because, as we discussed in Sec. 2.1,
the 360 has the ability to process variable length data. Since there are no
explicit boundaries in storage between adjacent fields, each instruction which
references variable length data must contain the length of the particular data
field as well as its address. The length is a number from one to 16 for
numerical data and one to 256 for alphanumeric data and is taken from the
explicit length modifier in the DS or DC if one is present, otherwise the
implicit length of the field is used. The length entry is often termed the
length attribute and the address entry, the address value or attribute. As an
example, the label RATEBL which is defined as 100PL3, has a length attribute
of three. For instructions, even though they are not usually processed as
variable length data, the length of the labeled instruction is stored in the
label table: Two, four or six bytes depending on the particular instruction.
The reader need not concern himself about instruction lengths at this point;
they will be treated in Sec. 3.7.

Duplication Type Length | Max. length .
Type Factor Modifier Modifier in bytes Padding
DC and DS | optional P optional 16(31 digits) to left
optional Z optional 16 to left
optional C optional 256 to right
Examples: CONA DC Z'-5'
CONB DC 12P'100'
CONC DC PL16'0'

WORKA DS 10PL5

Table 2-1 DC and DS statement conventions

Exercise 2-2  Write out constant definitions for the following numbers as
zoned digits, packed digits and characters: -101.5, 167, 2.14159, -3, +2.
How many bytes does each require. Write out constant definitions for the
following character fields: X =, '"NET', NET & GROSS (The , is used to
separate fields, all other characters must appear in the constant definitions).
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2.3 Data Movement

The most direct way to bring data into the computer is by reading a
punched card. The instructions for operating the card reader, which will be
covered in Chap. 9, direct the card reader, in effect, to store the information
contained in an 80-column card in 80 consecutive bytes of storage. While this
is being done, the card reader control unit translates the card punches into
the proper internal code as illustrated in Fig. 2-3. The programmer reserves
an 80-byte area for this data by using a DS statement. The next step is
usually moving the data from the input area to various processing areas.

This allows another card to be read into the input area. The instruction used

is the Move Character which has the format

label MVC A, B

The use of a label or name is optional; B is the address of the source field
which will be moved to the destination field at address A. As we have men-
tioned before, all data in the 360 is addressed at its leftmost point. As an
example, if the string of zoned numbers 00017 00513 starts at location 1000
and comprises two five byte fields, the address of the second field would be
1005. That is the storage layout would be

ZO 7O 7O Z1 S71 ZO ZO 75 71 §3
10@0* 1005

where the zone bits are indicated by Z and the signs by S, each zone (or sign)
and digit occupying a byte. The number of characters moved, that is, the
length of the field moved, is determined by the length attribute of the first
operand. As an example, suppose A is the field located at 1000 and B is at
1005, in the illustration above. The instructions

MVC B, A
A DS ZL5
B DS ZL5
would give
ZO ZO ZO Z1 ST 70 ZO ZO Zl1 §I1
1000* 1005
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(The dashes above indicate the unspecified remainder of the program) Since
the length of the A field is 5, the assembler will incorporate this fact into the
MVC instruction so that when it is executed, only five characters will be
moved. Also, the movement of characters within a field is from left to right.
That is the character at 1000 is moved first, then the character at 1001 is
moved, and so forth. The source field is unchanged by the move. The fields
may overlap as we illustrate below.

Consider an eight-byte field at location AMT, which contains
Z0 Z0 ZO Zl1 Z2 Z3 74 75

Suppose that AMT must be shifted left two bytes, perhaps to align it correctly
with other numbers in a tabulation. What we have to do is move that portion
of the field beginning at AMT +3 over to AMT+1 as we have noted before.
The assembler does allow this type of expression to be used as an address.
The instruction to do the job would then seem to be

MVC AMT+1, AMT +3

However, we must also indicate that only five characters are involved, other-
wise the assembler will use the length attribute of the first operand, AMT,
which is eight. This is accomplished by enclosing the desired length in
parentheses as follows

MVC AMT +1(5), AMT +3

This overrides the length attribute stored in the assembler's symbol table.
After execution of this instruction, we will have in storage

ZO 21 Z2 Z3 74 75 Z4 Z5

The last twobytes can be set to zero by moving a two-byte zoned zero field
into those locations. However, if we attempted to use this approach in
shifting AMT one position to the right using

MVC AMT +4(4), AMT +3
the Z1 byte would be propagated through the last four bytes of the field.
Exercis 2-3 Describe the effect of the following coding

MVC  AREA(1), ZERO
MVC  AREA +1(255), AREA

AREA DS CL256
ZERO DC B'00000000'
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(The B operand defines a binary constant of eight zero bits; it will be dis-
cussed further in Sec. 3.5)

Ouce the numerical data of a program is available in storage, it will
have to be rearranged into packed format, if it is to be used in arithmetic
operations. The Pack instruction is provided for this purpose its format* is

where Z is the address of a zoned field which will be packed and stored in P.
The length attributes of P and Z will be used unless they are overridden by the
programmer. The first operand should contain enough bytes so that it has
room to receive all the digits plus sign in the second operand. If the packed
field is not completely filled, the left-over high order positions are set to
zero. Processing begins at the rightmost byte of each field and continues to
the left. All zones are ignored except the zone over the low-order digit which
is assumed to represent a sign. The sign and low order four bits are inter-
changed and stored in the low order byte of the destination field. The sign
and digits are not checked for validity. In particular, converting a blank
field from zoned to packed format will generate an invalid sign which will
cause processing to terminate when arithmetic operations are performed on
the field - more on this point later. Overlapping fields may occur and are
handled by storing each packed byte only after the necessary operand bytes
are fetched. Following are examples of packing. The comments portion show
the result of packing after the instruction is executed.

PACK PACK1, ZONE1 01 5-
PACK PACK2, ZONE2 00 12 3+

ZONE1 DC ZL3'-15' ZO Z1 -5
PACK1 DS PL2
ZONE2 DC ZL3'123' Z1 722 Z3

PACK2 DS PL3

The Unpack instruction is provided to perform the reverse operation. Its
format is

UNPK Z,P

where P is a packed field which will be zone and stored in Z. The digits and

*We will omit an explicit reference to labels in instruction definitions from this
point forward with the understanding that all instructions may be labeled.
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signs of the packed operand are stored unchanged in the zoned operand loca-
tion. The zone 1111 is added to all digits except the low-order one if the
system is operating in the EBCDIC mode, the zone 0101 is supplied for
ASCII-8 mode; the low order byte receives the sign of the packed operand.
Again, the sign and digits are not checked for valid codes. UNPK and PACK
are alike in their handling of overlapping fields and zero fill of the first
operand.

Exercise 2-4 a) If the contents of location A are Z1 Z2 Z3 Z4 Z5 +6,
show the contents of the destination field after each of the following instructions
are executed; consider them independently.

PACK  B(4),A
PACK  B(2),A
PACK  B(6),A
PACK  A(3),A
PACK  A+2(3),A

b) If A contains 00 01 23 45 6+, show the contents of the destination field
after each of the following, independent instructions.

UNPK  B(8),A
UNPK  B(3),A
UNPK  A(4),A+3(2)
UNPK A, A+2(2)

Two instructions are provided for moving the zones of each position of the
second operand into the zone positions of the first operand and for moving the
numeric portions of each position of operand to the second operand. The
formats for Move Numeric and Move Zones are

MVN A,B

MVZ A, B

Processing occurs from the second operand to the first operand left to right*.
No validity checks are made and the overlap situation is similar MVC. These
instructions both use the length attribute of the first operand. They are ofteng

*As an aid to the reader, MVC, MVN and MVZ are the only decimal instruc-
tions which operate on data in left to right sequence; all other instructions
including the arithmetic ones operate in a right to left sequence as we should
expect by analogy with hand calculation.
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useful in moving single zones or numeric portions as we shall see in
successive examples.

When moving a field intc a larger field, we often have to first set the
larger field to zeros. This is particularly important when a total will be
accumulated in the larger field. The Zero and Add Packed allows us to do
this. Its format is

ZAP  A,B

The B field is moved to the A field, one byte at a time, from right to left;

any unfilled high-order positions in A will be set to zero. The B field must
not be larger than the A field, otherwise, an error will occur and processing
will be interrupted. Only the B field is checked for valid sign and digit codes.
The A and B field may overlap. When the rightmost byte of the A field is
coincident with, or to the right of the rightmost byte of the B field. As
illustrations, the following instructions show the destination field after in-
struction execution.

ZAP A,B 00 00 00 43 2+
MVN  C+2(1),C+4 00 01 2+ 45 6+
ZAP  C,C+2(3) 00 00 00 01 2+
*  ORIGINAL LAYOUT OF C 00 01 23 45 6+

*

C HAS BEEN SHIFTED RIGHT FOUR PLACES
* MVN USED TO CREATE VALID SIGN FOR 2ND OPERAND OF ZAP

DC PL5'-123456789'

A
B DC PL.2'432'
C DC PL5'123456'

An instruction which is particularly useful in shifting packed decimal
data is the Move with Offset. Its format is

MVO A, B

The entire second operand is offset to the left four bits and then placed
adjacent to the low order four bits of the first operand. Processing occurs
from right to left; overlapping may occur as we have described previously.
As examples, with A=00 12 3+and B=45 67 89 0+, the comments
fields of the following instructions show the first operand after instruction
execution. Each instruction should be considered independently of the others.

MVO B, A(2) 00 00 01 2+
MVO A, B(3) 56 78 9+
MVO A, A(2) 00 01 2+
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Worked Examples

2-1 Shifting

There are many occasions when the programmer must shift decimal
data. A field may have to be shifted to align it with other numbers which will
be added to it, or a dividend may have to be shifted to introduce enough
additional places to develop a quotient of the proper size, or the quotient may
have to be shifted after rounding, and so forth.

While there is no explicit shift instruction which will take care of all
decimal shift requirements, we can perform shifts using the move instructions
in this section. It will help the reader to keep in mind that MVC instructions
cannot be used for right shifts since it processes from left to right; the MVO
instruction cannot be used for left shifts since it processes from right to left.
It is also important to keep in mind that all data is addressed at the leftmost
byte. In summary:

MVC MVO
left shifts right shifts

MhAwa awna Lomrsan v e 2laT o SLL meamcnad e~ —miolhd A3 T
11€'€ are 10Ul PoSSini€ Snul gperaiions, rigiut and i

s‘l.-
odd number of places. We will consider each.

Right Shift, Odd To shift a field, A=01 23 45 68, three places to the
right, we write

MVO A, A(2) 00 00 12 3s

If we need to preserve the original field, then A must be moved to another
field B which is four bytes long and filled with arbitrary digits, say all 9's,
to show the effect of the MVO.

MVO B, A(2) 00 00 12 39
MVN  B+3(1),A+300 00 12 3S

The MVN is required to move the sign of A which is in the numeric portion

of byte A+3. Note that each operand in MVO carries a length attribute. Since
we want only the first two bytes of A to participate in the move, we override
its length attribute of four as shown. For the MVN, the length attribute of
the first operand determines the number of numerics to be moved. Since only
one byte is involved, we again override the length attribute.

Right Shift, Even To shift the A field, above, two places to the right
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MVN A+2(1),A+3 01 23 48 68
ZAP A, A(3) 00 01 23 4S

The ZAP, which operates from right to left, fetches the first byte of A(3)
which is 4S and stores it into the first byte of A, 6S; the second byte of A(3)
to be operated on is 23 which is stored in the second byte from the right of A
wiping out its previous contents of 4S, and so forth. The MVN is necessary
to supply the second operand with a valid sign code which is required by the

ZAP. When the original A field must be preserved, the shifted version of A
will be developed in another four-byte field, B, by

ZAP B,A 01 23 45 68
MVN B+2(1),B+3 01 23 4S 68
ZAP B, B(3) 00 01 23 4S

Left Shift, Even To shift a field, C = 00 00 01 23 45 6S four
places to the left, we write the instructions

MVC C(4), C+2 01 23 45 6S 45 6S

MVC C+4(2), ZEROS 01 23 45 6S 00 00

MVN C+5(1),C+3 01 23 45 6S 00 O0S

MVN C+3(1), ZEROS 01 23 45 60 00 OS
ZEROS DC BL2'0'

If the original C field must be preserved, the same logic can be used to
develop the shifted version of C in another sixbyte field, D, by first moving
C into D using MVC D(4), C+2. The constant, ZEROS, has two bytes of
Zero bits.

Left Shift, Odd The most direct method here is to shift one extra position
to the left so that we have an even number of places--the method above can be
used for this--and then shift back one position to the right using the MVO
instruction. We will leave it to the reader to work out the details for a left
shift of three on the C field of the previous example.

Worked Example

2-2  As an illustration of some of the considerations which go into setting up
input and work areas, we will discuss a hypothetical payroll program whose
input data is arranged, one card per employee, in the following card column
format
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cc 1-8 Man Number
cc 9-12 Department Number
cc 13-32 Last Name
cc 33-34 Initials

cc 35-36 Day

cc 37-38 Month

cc 39-40 Year

cc 41-170 Unused

cc 71-175 Hours

cc 76-79 Rate

cc 80 Code

A card with an 11-punch in cc80 will be used to signal that the last card has
been processed. The card with the 11-punch will not be processed but will
initiate an end of job routine which may print out department totals, number
of checks written and other control information. The overall logic will be to
signal the control program to read a card into an 80-character area, INPUT.
An immediate check will be made to see if ¢cc80 contains an 11-punch, if it
does, branch to the end of job routine, otherwise, move the contents of INPUT
to another 80-character area, WORK, where payroll processing will be done.
We adopt the approach of clearing out the input area as soon as possible to
allow the control program to read another record while the previous record’
is being processed. At this point, we will limit the discussion to the storage
reservation statements which follow

INPUT DS OCL80
DS CL79
CC80 DS CL1
WORK DS OCL80
MANNO DS CL8
DEPNO DS CL4
NAME DS CL20
INIT DS CL2
DATE DS OCL6
DAY DS CL2
MONTH DS CL2
YEAR DS CL2

DS CL30
HRS DS CL5
RATE DS CL4

DS CL1

The first statement gives INPUT a length attribute of 80 but does not reserve
any storage because of the duplication factor of zero. The next two statements
reserve the next 80 characters in storage, which can be referenced by INPUT.
In particular, the third DS allows the 80th input character to be referenced by
the name CC80 with length attribute 1. An alternate approach is
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INPUT DS CL80
CcCs0 EQU INPUT+T79

The EQU statement is interpreted by the assembler only, has no effect on the
sequencing of data or instructions in the object program, but is used to make
two symbols equivalent to each other, both address value and length attribute.
Whenever CC80 is referenced, its address will be the 80th character in INPUT
but it will also have a length attribute of 80. To avoid this problem, the

symbol CC80(1) would be used signifying explicitly that the length is 1, over-
riding the implied length of 80. The reason for defining DATE with a six
character length attribute but reserving no space is that we may want to handle
all six characters as a unit, for example, to transmit them to an output area
for printing. Having a name which references them collectively facilitates
this. Or, we may want to process individual components--we can do this
using the individual names which address the right characters and possess the
proper length attributes. An alternative approach is to equivalence DAY,
MONTH, and YEAR to DATE, DATE +2 and DATE +4 respectively with DATE
defined as CL6. However, the length attributes of these symbols will not be
correct and explicit lengths will have to be used--DAY(2), for instance. To
avoid this added complication, we recommend the approach illustrated above.
The DS after YEAR skips over the 30 unused columns and the final DS is
necessary to fill up 80 positions. If we omitted this and followed RATE with
another field, the first byte of that field would be wiped out when 80 bytes are
transferred into WORK which would then be only 79 bytes long.

2.4 Decimal Arithmetic Instructions

The decimal arithmetic instruction set is an optional feature in some
models of the System/360. However, because of the great utility of decimal
arithmetic, many installations will have this feature and so, we will discuss
its operation here. The decimal arithmetic instructions operate on data in
the packed decimal form in a right to left sequence. Since all digits and signs
are checked for validity, care must be taken to ensure that operand fields
either do not overlap at all, or that they have coincident rightmost bytes. The
latter occurs when a number is subtracted from itself to give a zero field, or
added to itself to give an effective multiplication by two.

The format for the Add Packed Decimal instruction is

AP A, B

The operand at B is added to the operand at A. The sum replaces the previous
contents of A. The addition is algebraic taking into account the signs and all
digits of both operands. An overflow occurs when result digits are lost due to
either a carry out of the high order position of A, or if the B field is larger
than the A field causing result digits to be lost. The length attributes of A and
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B determine the number of bytes to be added. When a zero sum results, it
will always have a + sign. As examples (the results are shown as comments):

A DC PL3'-185'

B DC PL3'+185'

C DC PL6'495'

D DC PL6'99999999999'

X DS CL3

Y DS CL6
ZAP Y,B Y=00 00 00 00 18 5+
AP Y,C Y=00 00 00 00 68 O+
AP Y,A Y=00 00 00 00 49 5+
MVC Y,D Y=99 99 99 99 99 9+
AP Y,C Y=00 00 00 00 49 4+

*  OVERFLOW WILL OCCUR ABOVE
MVC X, A X=00 18 5-
AP X, B X=00 00 O+

When an overflow occurs, the programmer can detect it by testing the over-
flow indicator after every addition or subtraction or by arranging for the com-
puter to detect overflows automatically. These options will be covered at
greater length in Sec. 2. 5.

The format for the Subtract Packed Decimal instruction is

SP A,B

The field at B is subtracted from the field at A and the difference replaces the
contents of A. Subtraction is identical to addition except that the sign of the
B operand is changed after fetching it from storage and before the subtraction
begins. The overflow situation is the same here as for addition.

As examples,

A DC PL2'150'
. B DC  PL2'-150'

X DS PL2
ZAP X, A X=15 0+
SpP X,B X =30 0+
SP X, X X =00 0+
AP X,B X=15 O0-
sSp X A X-30 0O-

~
»
¥
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The format for the Multiply Packed Decimal instruction is

: Multiplicant MCAN
MP MCAN, MPLY X Multiplier MPLY
Product

The product of MCAN and MPLY replaces the contents of MCAN. MPLY is
limited to 15 digits plus sign and must be smaller in length than MCAN.
Since the number of digits in the product equals the number of digits in the
multiplier plus the number of digits in the multiplicant, the multiplicand
field must have enough high order zeros for a field equal in length to the
multiplier field size. If this condition is not met, processing will terminate.
The maximum product size is 31 digits; its sign is determined by the rules
of algebra from the signs of both factors. If both factors have the same sign,
either + or -, the sign of the product will be +, if the factors have different

signs, the sign of the product will be -.

Before getting into examples of the MP instruction, let us examine
the operation of multiplication itself and extract the rules determining
decimal point placement and product size. Consider the following
calculations

85 13.25

X 42 x 1.03

170 39 75
340 1325 0

3570 13. 6475

First, note that the number of digits in the product is not larger than the
sum of the number of digits in both factors and may be one less--this will

be important when we discuss division. Second, the number of decimal
places in the product--digits to the right of the decimal point--equals the
sum of the number of places in each factor. We will now discuss the in-
structions for both of these calculations above with the requirement of round-
ing off the second one to two decimal places. This will be done by adding a

5 to the third decimal place and then discarding or truncating the last two
places; the result will be 13. 65. The rounded quantity is then to be stored
in AMT, a four byte field.
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ZAP  PROD,A 00 00 08 5+

MP PROD, B 00 03 57 0+
ZAP WORK, PRINC 00 03 01 32 5+
MP WORK, RATE 00 01 36 47 5+
AP WORK, ROUND 00 01 36 52 5+
MVN WORK + 3(1), WORK +4 00 01 36 5+ 5+
MVC AMT, WORK 00 01 36 5+

A DC PL2'85'

B DC PL2'42'

PROD DS P14

PRINC DC PL3'13. 25'

RATE DC PL2'1. 03’

WORK DS PL5

AMT DS PL4

ROUND DC PL2'50'

The first ZAP clears the PROD area where the product of A and B will be
formed by the next instruction. Note that PROD, although equal to the sum
of the field sizes of A and B, is one byte too large in this particular example.
ilowever, A and B being two bytes each, could be as large as three digits
each giving a six digit product. In that case a four byte product field would
be necessary. While it may occasionally require an extra byte, the safest
approach is to define the product field equal in size to the sum of the lengths
of each factor field. In the second multiplication, the rounding is of interest.

We need to perform the sum

136475
0
136525

However, this cannot be done by defining ROUND as a 5 because this
will not give the correct alignment. Note also that, while decimal points may
appear in a packed decimal constant, they are ignored by the assembler.
Their only function is to improve readability for the programmer. The MVC
instruction will move only the required first four bytes from WORK because
the length of the field to be moved is controlled by the length attribute of the
first operand, AMT, which is four bytes.

The operation of division is somewhat more complicated than the pre-
ceding instructions. Before we introduce the divide instruction, we will
review some of the basics of division. Consider the following division where
it is required to develop three decimal places in the quotient 12.56/11. 3:
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1.1115 +  .00005 quotient + remainder
11. 3/12.5600 11.3 divisor/dividend quotient
113

To develop a three decimal place quotient, four places must be computed and
then rounded to three giving 1.112. This is the usual form in which division
problems are stated for a computer: Given the number of decimal places in
the divisor and the desired number of decimal places in the quotient, find the
number of zeros which must be shifted into the dividend. Since the dividend
equals the quotient times the divisor, we can use the rule we developed for
decimal points in multiplication:

Dividend places =Quotient places + Divisor places

This indicates for example, that two places (zeros) must be added to the
dividend to get a three place quotient since the dividend above (12.56) has
two places and the divisor (11.3) has one.

Again, referring to the rule that the number of digits in a product is
equal to, or one less than, the sum of the number of digits in both factors,
we can devise a rule for determining the maximum number of digits, including
decimal places, in a quotient. For a maximum size quotient we have

Dividend digits = Quotient digits + Divisor digits -1
or,

Quotient digits = Dividend digits - Divisor digits +1

The remainder is that portion of the dividend which is left over after the
required number of quotient places have been calculated. The remainder’'s
decimal point is located in the same position as the dividend's point as can
be seen from the sample calculation. However, since the remainder will
always be smaller than the dividend, so that a field equal in size to the re-
mainder field will hold it. The remainder will have the same sign as the
dividend. While the sign of the quotient is determined algebraically from the
signs of the divisor and dividend. If their signs are alike, either + or -, the
sign of the quotient will be +; if their signs are different, the sign of the
quotient will be -. We suggest that the reader consider a few sample divi-
sions, such as 231/11, to reinforce his understanding of the rules above.
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With these preliminaries behind us, the Divide Packed Decimal in-
struction format is

DP DVDND, DVSOR

The dividend (DVDND) is divided by the divisor (DVSOR) and the quotient and
remainder replaces the dividend. The remainder is placed rightmost in the
DVDND field and has a size equal to the divisor size. The quotient is placed
leftmost in the DVDND field and together with the remainder occupies the
entire DVDND field. An interruption will occur if the divisor field is larger
than 8 bytes or if the quotient is too large for its field. When this happens,
the operation is suppressed and the dividend remains unchanged. Since the
minimum divisor is one digit and sign, and the maximum decimal field is

31 digits and sign, this leaves 29 digits and sign as the maximum quotient.
To aid the reader in programming division, we will devise a simple rule
which will ensure correct divisions. It will simplify matters to use a simple
notation, rather than writing everything out. Let D be the number of digits
(not counting high order zeros but including low order zeros) in the dividend,
S, in the divisor and Q in the quotient; we will use s to indicate a single sign
piace. Our first ruie is

Q=D-S+1

which was developed above. We note that Q+s+S+s, which replaces the
dividend field after division, can be at maximum 32 digit places since this
is the largest allowed decimal field. From our formula above, Q+S=D+1
so the maximum D is given by

Q+s+S+s = 32
or

D+l+s+s = 32

Since the signs take one digit place each,
D =29 (maximum)

we will next develop a rule which will show that a successful division will
occur if two more high-digit places are added to the dividend. From the
argument above, we know that we will have room for them even in the case
of the maximum dividend. Let us ask the question, ""How many digit places
must be added to the dividend plus sign to accommodate the quotient and
remainder plus signs?" with x as the unknown number of places, we are
asking what value of x will solve the equation
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D+s+x=Q+s+R+s
Since, Q=D-S+1 and the remainder, R, equals S, we have
D+s+x=D-S+1+s+S+s

or

]
Il
0
-f-
ey

It
Do

For the reader who doesn't possess a taste for this line of algebraic reason-
ing, our rule nets out to: ''Always add two high order zeros to the dividend
field before dividing." Now for some examples.

Worked Examples

_2_:?_: Find the quotient of 12.56/11. 3 to three decimal places. Note that

for a three decimal place quotient, we must calculate four places and then
round off to three. We must therefore plan for a four decimal place quotient.
Since the quotient decimal places (4) plus the divisor decimal places (1) must
equal the dividend decimal places, three more decimal places must be added
to the dividend. In addition, according to the division rule above, two high
order zeros must be added to the dividend field. In all, the dividend field
will be five bytes including the three low order places which have to be
added. The quotient will be five digits, at most, since Q=D-S+1=7 - 3 +5,
so the quotient field must be three bytes. Following is the coding. The
remarks section of each instruction shows the destination field after in-
struction completion.

ZAP DVDND, C1256 00 00 01 25 6+
MVC DVDND(3), DVDND+2 01 25 6+ 25 6+
MVO DVDND, DVDND(4) 00 12 56 +2 5+
MVC DVDND+3(1), ZERO 00 12 56 00 5+
MVZ DVDND+(1), ZERO 00 12 56 00 O+

*LEFT SHIFT OF THREE PLACES HAS BEEN COMPLETED
DP DVDND,C113 11 11 5+ 00 5+
AP DVDND, ROUND 11 12 0+ 00 5+
MVO QUOT, DVDND(2) 01 11 2+
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C1256 DC P'12.56

C113 DC PL2'11.3'

DVDND DS PL5 00 XX .XX 00 0S

ZERO DC BL'O GIVES ONE BYTE OF 00000000
QUOT DS PL3

ROUND DC PL1'5

The first five instructions are a slightly modified version of the technique
developed in Example 2-2 for left shifting. In this division, the quotient
reached the maximum size, five digits. The remainder, occupying a field
equal to the divisor in length, is +5. The constant C113 is shown with an
explicit length of two bytes as a reminder that the remainder will occupy
two bytes in DVDND. Of course, one does not write a program to compute
the quotient of 12.56/11.3. We use a specific example to show the results
of each step of the calculation.

2-4 Given a dividend of the form XXXXXXX. XX where X is any digit and a
divisor which can range from XXX. XX to X. XX, it is desired to compute
the quotient to three decimal places and round off to two. All numbers will
be positive.

For a three place quotient and a two place divisor, five places are
required in the dividend so that the dividend must be shifted left an extra
three places giving D = 9+3 = 12. We have an additional complication here,
the range in size of the divisor, which is typical of many real life division
problems for a computer. The problem might be to compute output produced
per man-hour in a number of production departments where it is known from
experience that the number of man hours worked can be as low as 1. 00 but
not higher than 999. 99. To plan the correct size dividend, we must take both
sizes into account. The remainder field can be as large as XXXXXS and the
maximum quotient field is D-S+1 where we use the minimum S value. There-
fore Q maximum = 12-3+1 = 10, or including sign, 11 digits. Adding the
remainder which is six digits we have 17 digits or a nine byte dividend field.

In this case, merely adding two high order zeros to the dividend would not be
enough but only because we are dealing with a range of sizes of the divisor.
The coding is
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*SHIFT LEFT 4, RIGHT 1 TO GET LEFT SHIFT OF 3

ZAP DVDND(7),D 00 00 XX XX XX XX XS XX XX
MVC DVDND+7(2), ZEROS 00 00 XX XX XX XX XS 00 00
MVN DVDND+8(i), DVDND+6 00 00 XX XX XX XX XS 00 0S
MVN DVDND+6(1), ZEROS 00 00 XX XX XX XX X0 00 O0S
MVO DVDND, DVDND(8) 00 00 0X XX XX XX XX 00 0S
DP DVDND, DVSOR 0X XX XX XX XX XS XX XX XS
AP  DVDND(6), ROUND 0X XX XX XX XX XS XX XX XS
MVO DVDND(8), DVDND(5) 00 XX XX XX XX XS

MVC AVG, DVDND+1 XX XX XX XX XS

DVDND DS  PL9

ZEROS DC BL2'0' GIVES TWO BYTES OF ZEROS

D DS PL5 XXXXXXX. XX

DVSOR DS  PL3 XXX. XX TO X.XX

ROUND DC PL1'5'

AVG DS PL5 XXXXXXX. XX

The first five instructions set up D in DVDND properly shifted. The ZAP
instruction applies only to the first seven bytes of DVDND, therefore, the
next MVC is used to clear the low order two bytes. The DP creates a three
decimal place quotient which is rounded by adding five into the third decimal
place. The following MVO truncates the now unwanted third digit by shifting
right one place. After the truncation, the maximum quotient size, including
sign, is 10 digits, or five bytes, the field AVG is set up to handle this size
and therefore, the final MVC references DVDND+1.

Our simple rule of "Add two zeros to the dividend"' can be extended to
handle the case where the length of the devisor (S) may vary from a maxi-
mum value (Spax) to a minimum value (Spin). Without going through the
details, which we leave to the reader as Prob. 2-16 at the end of this chap-
ter, the amount to be added to the dividend (which is assumed to contain
space for its own sign) is

2+ SmaX'Smin
As an example, the maximum divisor in the example above has five digits
and the minimum has three digits. The dividend has 12 places plus one more
for the sign; since 2 +5 - 3 = 4 places have to be added, we have a total of

17 places, or nine bytes.
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2.5 Branching and Testing

Stored program computers derive their versatility from their ability to
test what is going on in a calculation, and depending on the outcome of that
test, to take an almost endless variety of alternative actions. At the heart of
this ability are the branching and testing instructions. These instructions
allow comparisons to be made between data, whether the data is interpreted
as numbers, characters or as a string of 1's and 0's. In addition, they allow
alternative actions to be taken depending on the outcome of arithmetic opera-
tions: Positive, negative, zero or overflow. As we shall see in the examples
which follow throughout this book, these capabilities and their extensions are
very powerful programming tools. Fundamental to these instructions is a
register in the 360 which is called the condition code indicator. This register
can be regarded as a switch with four settings. This switch is set after every
add or subtract instruction as well as after compare instructions. The setting
of this switch may be determined by the branching and testing instructions.
The meanings of the switch settings for arithmetic operations are: Less than
zero result, zero result, greater than zero result and overflow. For com-
pare instructions, only three of the settings are used, low comparison, equal
comparison, and high comparison. These three correspond exactly with the
first three settings discussed above for arithmetic operations, only their
interpretations are different. Testing the condition code will not alter its
setting. In general, the condition code is changed only by an add/subtract
instruction, a compare instruction or an edit instruction. There are a few
exceptions to this statement which we will discuss as they come up. Let us
first examine the Compare Packed Decimal instruction. Its format is

CP AB

A right to left algebraic comparison is made between both operands taking
into account signs and all digits.

If one operand is shorter than the other, it will be effectively padded
out with zeros for the purpose of comparison. However, neither operand is
changed by this instruction. The condition code is set according to whether
the first operand compares equal to, higher, or lower than the second operand.
These possibilities can be tested by inserting a conditional branch instruction
after the compare. There are several varieties of this instruction depending
on the condition being tested. Their formats are

BH LABEL
BL LABEL
BE LABEL
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These are, respectively, branch to LABEL only if first operand is high (BH),
low (BL), or equal (BE). If the given condition is not met, instruction
processing continues sequentially with the next instruction immediately fol-

i i = = + IO N X P
lowing the branch, As an example, with A = 25 and B = 10, the instructions

CP A,B
BL TEST
ENTRY AP C,D

will cause the instruction at ENTRY to be executed, rather than the one at
TEST because A is greater than B and, therefore, the BL condition cannot be
met. If A were less than B, then the branch would be taken and the next in-
struction to be executed would be the one at TEST rather than the one at
ENTRY. In addition to the three possibilities above, additional combinations
of results can be tested for by the following instructions.

BNH LABEL
BNL LABEL
BNE LABEL

The instruction mnemonics mean branch to LABEL if the first operand is not
high (BNH) (the branch will be taken if the first operand is equal to or lower
than the second operand), not low (BNL) or not equal (BNE).

The results of arithmetic operations can be tested by the foliowing
conditional branch instructions

BP LABEL
BM LABEL
BZ LABEL
BO LABEL

The branch to LABEL will be taken if the result of an addition (including ZAP)
or subtraction is positive (BP), minus (BM) or zero (BZ). A zero resuit,
irrespective of its algebraic sign, which will normally be +, will set the con-
dition code indicator to zero, only. The condition code will also be set for
overflow results (BO). Using the BO instruction, the programmer can
determine if an overflow has occurred. However, as we have stated pre-
viously, it is possible to put the computer into an automatic overflow detection
mode in which it will take automatic action whenever an overflow occurs. The
action usually consists of aborting the program after printing out an indication
of where and how the offense took place. By a suitable modification to the
control program, the user can substitute for the abort procedure a routine of

49



his own. This will be discussed further in Sec. 3.8. At this point, assume
that the computer is in the automatic overflow detection mode and that the BO
instruction will not be necessary. The programmer should also take particu-
lar caution to set up adequately sized fields so that overflows will not occur.
To do this, it is essential that he know what size numbers his program will
have to deal with.

In addition to the conditional branches, which will be taken only when
the condition they are testing is met, there is also an unconditional branch
which is always taken whenever it is executed. Its format is

B LABEL

As anexample of an instance where this branch would be used, consider a
payroll program which reads in a time card, processes it and then returns to
start the operation over again. If the initial point is labeled FIRST, the re-
turn can be accomplished by a B FIRST instruction.

Exercise 2-b With A =20, B =15, C =5, D = -20, indicate the sequence in
which the following instructions will be executed

a) START CP B,C
BNE ADD
BE OUT
ADD AP C,A
BP START
ouT  --
b) TEST CP C,D
BH ADD
SP C,B
B OUT
ADD AP D,B
B  TEST
ouT  --

Also, what are the final values of all variables, A, B, C and D. Consider
a) and b) separately.
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Worked Examples

2-5 Self-Checking Number

When certain numbers are frequently transcribed manually and it is
essential that they be transcribed correctly, savings account numbers for
instance, a common practice is to include additional coding in the number
which is related by some formula to the values of the other digits. If adjacent
digits are transposed, a frequent clerical error, the coding scheme can be
designed to detect this. There is also protection against fraudulent use of made-
up numbers in that it is statistically unlikely that a made-up number will match
the coding supplied by the formula. As an example of a typical coding scheme,
consider a six digit number with a seventh self-checking digit appended to the
right. Let the seventh digit be computed by taking the second fourth and sixth
numbers, adding them and then multiplying the sum by two, and finally, adding
the product to the sum of the other three digits. The low order digit of the
sum is the self checking digit. As an example, the check digit for 201635 is
8 since

2 +1+3+2(0+6+5) = 28

So that the entire account number is 2016358. If the third and fourth digits
were transposed as 201635, we would calculate a check digit of 3 since

2+6+4+2(0+1+5) = 23

which would not match. Let a seven digit number be in location ACNO in zoned
format. The seventh digit is the check digit; write a routine which will verify
that the number agrees with its check digit using the logic above for calculating
the check digit.

Our approach will be to sum the odd-place digits in ODD, the even place digits
in EVEN, then compute the check digit and compare it with the one supplied as
input. If it is not valid, go to ERROR, otherwise go to CONTINUE.

PACK HOLD, ACNO(1)
AP ODD, HOLD
PACK HOLD, ACNO+1)
AP EVEN, HOLD
PACK HOLD, ACNO+2(1)
AP ODD, HOLD
PACK HOLD, ACNO+3(1)
AP EVEN, HOLD
PACK HOLD, ACNO+4(1)
AP ODD, HOLD
PACK HOLD, ACNO+5(1)
AP EVEN, HOLD

MP EVEN, TWO
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AP EVEN, ODD

PACK HOLD, ACNO+6(1) INPUT CHECK DIGIT
CP HOLD, EVEN+2(1)
BE CONTINUE
B ERROR
ACNO DS ZL7
HOLD DS PL1
EVEN DS PL3
ODD DS PL2
TWO DC PLI1'2'

CONTINUE --

The EVEN field is three bytes because it must have room for the multiplier
and multiplicand which requires one byte plus two digits and sign. The
computed check digit with sign will be in the low-order byte of EVEN which
has address EVEN+2. Because EVEN has a length attribute of three, an
explicit length of one is stated in the CP instruction since the first operand,
HOLD, has a length attribute of one.

1f the computed and the input check digits are equal, the BE instruction
when executed will cause a transfer to the instruction at CONTINUE at which
point execution will continue sequentially until another branch is taken. If the
two are not equal the branch to CONTINUE will not be taken and execution will
proceed sequentially to the next instruction which is an unconditional branch
to ERROR where appropriate action can be taken such as printing the invalid
account number. When several branches are coded in sequence, the best
programming strategy is to put at the top of the list the branch which is most
likely to occur, then the next most likely one and so forth. This will speed up
program execution since fewer unsuccessful conditional branches will have to
be tested. One other point should be noted--we have included working storage,
ACNO, ..., TWO, within a sequence of instructions. In this case, no harm
will come since the data area is preceded by an unconditional branch. How-
ever, if we did not take this precaution, the computer would attempt to
execute the contents of ACNO, as if it were an instruction, with unpredictable
but undoubtedly terminal results for the program. Specifically, if the first
eight bits of ACNO did not constitute a valid operation code, an interrupt
would occur.

2-6  Round-off
So far, we have been rounding -off by adding a round-off constant as we
have been dealing with positive quantities only. However, if the number which

is being rounded-off is negative, the round-off constant should be subtracted.
As an illustration -117. 647 when rounded-oif to two digits should be -117. 65.
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To get this result, . 005 should be subtracted, not added. As an example of
how this can be coded, assume the number to be rounded-off is in AMOUNT
and has three decimal places and may be either positive or negative. The
following coding will round-off AMOUNT to two decimal places and store the
result in FINAL.

ZAP AMOUNT, AMOUNT SET CONDITION CODE

BM MINUS
AP AMOUNT, ROUND
B MOVE
MINUS SP AMOUNT, ROUND
MOVE MVN FINAL +3(1), AMOUNT +4 MOVE SIGN

MVO  FINAL, AMOUNT(4)

AMOUNT DS PL5 OX XX XX. XX XS

FINAL DS PL4 XX XX XX X8
ROUND DS PL1'5’

To test the sign of AMOUNT, the first instruction will ZAP AMOUNT onto
itself. This does not change AMOUNT but does set the condition code which
is then tested by BP. If this branch is not taken, AMOUNT is then either
positive or zero and will be rounded-off in the plus direction. If AMOUNT is
zero, the round off constant will be truncated by the MVO and the quantity
stored in FINAL will be zero.

2-7 The "Indian" Problem

An important programming technique is looping, or executing a particular
sequence of instructions a given number of times. As an illustration of this
technique consider the "Indian" Problem, a classic programming exercise.

We will develop a routine to compute the 1967 value of a $24 deposit made in
1627 by the Indians who sold Manhattan Island. Assume that the bank rate in
1624 -- when money was not as tight in the land -- was 3%, to be compounded
annually. Three percent interest can be added by multiplying the current
principal by 1. 03. This has to be done 1967-1627 = 340 times. We will set
up 340 in a counter and decrement once for each time interest is taken. When
the counter reaches zero, we have finished. The other point of interest is
how large will the final number be. Reference to compound interest tables
indicates that the amount will be around $500, 000. 00 which will require five
bytes. Since the multiplier, 1.03, requires two bytes, the product field should
be seven bytes long. After each multiplication, the product will be rounded
from four decimal places to two. The final value will be set up in zoned for-
mat in PRINC. The coding is
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MVC  COUNT, C340
MVC  PROD, DEPOSIT

LOOP MP PROD, RATE 00 OX XX XX X.X XX XS
AP PROD, ROUND
MVN  PROD+5(1), PROD+6 OO OX XX XX X.X XS XS
ZAP  PROD, PROD(6) 00 00 OX XX XX X.X XS
SP COUNT, ONE DECREMENT COUNTER
BP LOOP LOOP NOT FINISHED
UNPK PRINC, PROD+2 ZX ZX ZX ZX ZX ZX.ZX SX
COUNT DS PL2
C340 DC PL2'340"
PROD DS PLT
DEPOSIT DC PL3'24. 00
RATE DC PL2'1. 03'
ROUND DC PL2'50" .0050 SINCE PROD HAS 4 PLACES
ONE DC PL1'1'
PRINC DS ZL8

The number of years, C340, is moved to a separate location, COUNT, where
it will be decremented rather than in C340 itself which would destroy the con-
stant. This is good programming practice since a given constant may be
required again in a program, or it may be used in a different section at which
point the programmer may not remember that he had previously changed its
value. In light of these possibilities, it is sound programming strategy not

to do arithmetic in constant locations. The multiplication and rounding with
subsequent right shift of two places illustrates nothing new. However, it is
important to note that since the computer hardware doesn't know anything
about our intentions in regard to decimal points -- it deals with whole numbers
only -- we must arrange to take care of decimal point placement. We note
that PROD and RATE are understood to have two decimal places; as a result
their product will have four places and, since we wish to round it to two places,
50 is added. In terms of our assumptions about decimal point placement, this
round-off constant is . 0050. The SP COUNT, ONE instruction decrements the
loop count. As long as this quantity is greater than zero, that is, one or more,
the loop has not been completed and so we follow with a BP LOOP. On the
final pass through the loop, COUNT=1; when it is decremented, its value will
be zero and the conditional branch will not be taken. Execution will proceed
sequentially with the UNPK instruction. The second operand, PROD +2, of
UNPK could be written PROD. In that case, since PRINC is not large enough
to contain all 13 zoned digits which would result when PROD is unpacked,

the extra high order digits (in this case, zeros) would be ignored. While the
result is the same for either operand address, we recommend the usage in

the coding above as this makes clearer the intent of the instruction.
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The ability to make comparisons between characters is an important
. part of a computer's instruction repertoire. The format for the Compare
Logical* Character instruction is

CLC A,B

3
[
1]
|....|
“i
-
h
e

P R
J r i e e B~ =
ids to be compared is governed fy e I.Uusl..l.l attribute of

f1e1d A If deswed an explicit length may be given with A. The comparison
proceeds left to right, comparing a character at a time, and terminates as
Soon as an inequality is found. The condition code is set to distinguish between
equality (BE) and inequality (BNE) as well as high, low and the other combina-
tions discussed with the CP instruction. It is important to be able to dis-
tinguish between high and low alphabetic (and zoned numberical) comparisons.
One of the most important applications of computers is the sorting of data
flles which combine alphabetic and numberical information. Catalog part
"numbers"” are a good example since they often have mixed alphabetic and
numberical formats. If you refer to Fig. 2-1, you will notice that the codes
assigned to the letters and numbers are not randomly assigned. There is a
definite progression from low to high in the codes assigned A through Z and
O through 9. Infact, the codes can be considered as binary numbers with A
having the value 11000001 B, 11000010 which is greater than A, down through
the digits which have h1gher code values than the letters. In thlS way, through
the CLC instruction, we are able to arrange alphabetic data in the proper
sequence. As an additional note, when the character set is sequenced by code
number from low to high, we have what is called the coilating sequence. It is
an important consideration when identification codes are being established for
data files.

As an example of the use of CLC, if field A contains ABCDEFG and B
contains ABCDEF*, the instruction

CLC  A(6),B

will set the condition code to equal, whereas the instruction

CLC A,B

will result in an unequal setting because of the mismatch between G in field A
and * in field B.

*"'Logical" is used to distinguish CLC from algebraic comparisons which take
into account signs. This will be explored at length in Chap. 5; the distinction
is not important at this point.
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Worked Example

2-8 One of the potential pitfalls for the unwary will occur when a field of
blanks is packed and then arithmetic performed on it. A blank appears in
storage as 0100 0000 in EBCDIC. When it is packed, the result is a digit zero
with a sign code of 0100 which is invalid. This will be detected as soon as
arithmetic is attempted on the field and an interruption will occur.

We will describe here a routine to check for the presence of a blank in
the low order position of a field and substitute a zero. In another version, the
entire field will be set to zero if a blank occurs in the low order position. The
zoned field in question is 10 bytes long at location FIELD

CLC  FIELD+9(1), BLANK

BNE PACK
MvVC FIELD+9(1), ZERO REPLACE BLANK WITH ZERO
PACK PACK NUMBER, FIELD
FIELD DS ZL10
NUMBER DS PL6
BLANK DC cL1''
ZERO DC ZL1'0’

To set the entire field to zero, we write

CLC  FIELD+9(1), BLANK
BNE PACK

MVC  FIELID(1), ZERO THESE TWO INSTRUCTIONS
MVC  FIELD+1(9), FIELD PUT ZEROS THROUGH FIELD
PACK PACK NUMBER, FIELD

Since the length attribute of the first operand (10 bytes) of CLC controls the
length of the compare, and since BLANK is only one byte in length, an explicit
length of one must be stated. The technique of setting the entire field to zero
has been discussed in Exercise 2-3.

2.6 Introduction to Input-Output

In this section we will present a few simple ""prescriptions’ for input-
output, so that the reader may write programs which permit the computer to
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communicate with the outside world. A more detailed explanation of the sub-
ject will be given in Chaps. 9 and 10, at this point, we will limit the back-
ground discussion to a brief sketch.

The Operating System allows the programmer to define the data files he
is working with. A data file may be a deck of cards containing related informa-
tion, or it may be a series of printed pages containing the results of a calcula-
tion. The file definitions consist of describing the size of each record in the
file, which I/0 device the file will reside on, and which area in storage will
be used to service the device, just to mention a few of the more important
file parameters. As the reader will see in Chap. 10, more complex file
definitions are possible, particularly those relating to disk files and tape.

Here, we will consider only card input and printer output.

Figure 2-6 shows the file definition statements to allow input from the
card reader (CARDRDR) and output on the printer (PRINTR). The areas which
service them are IN, for the card reader, and OUT for the printer. This
means that whenever a card is read, all 80 columns of information will be
found in the 80-byte area, IN. Similarly, when a line of information is to be
printed, it will first be assembled in OUT. The comment cards in Fig. 2-6
remind the reader that DS statements must be written reserving 80 bytes for
IN and 121 for OUT. The first byte of OUT will be used by the Operating
System to control printer spacing and will not be printed. See Fig. 2-7 for
a list of printer control characters. The following 120 bytes will be printed in
print positions 1-120. The statements for card reading or printing are very
simple. They are

GET CARDRDR

PUT PRINTR

These statements may be labeled, if required. When GET is executed, a card
is read and its contents placed in area IN destroying whatever was there pre-
viously. When PUT is executed, bytes 2 through 121 of area OUT are printed
and the printer is spaced according to byte 1. This does not change the con-
tents of OUT. These two statements are quite different in their effect on the
assembler than the statements we have encountered previously. As the reader
might suspect, GET or PUT is assembled, not into just one machine instruc-
tion, but into a number of instructions. (For this reason they are called
macro instructions) While the file definition statements and the Operating
System functions they represent in Fig. 2-6 may seem at first complicated,
they spare the programmer from much coding which would otherwise be re-
quired to deal with input-output. Before GET or PUT may be used, the devices
they reference must be readied for use with the statement

OPEN CARDRDR, PRINTR




8¢

IBM System. 380 Assembler Coding Form

]

ADDR-SYSIPT, R TR AR R
0|EOFADDR-EOF,IDAREAL4IN, | | {1 -~ X

XUNB, TYPEFLE-INPUT

*  THIS|DEFINES 'CARDRDR'| AS THE 2540 CARD READER UNIT AND SPECIFIES | | |

*  THAT 80-CHARACTER RECORDS WILL BE READ FROM IT INTO'IN' !

'x " A DS MUST BE USED TO RESERVE 80 CHARACTERS FOR 'N' il RN

‘PRINTR ~ = | IDTFSR BLKSIZE-121, DEVADDR=SYSLST, : i . I R
DEVICE=PRINTER, CTLCHR=YES, IOAREAL=DUT, . [ FERUURU UL SR, »-.

REC FORM=FXUNBL, RECSIZE=121, TYPEFLE-QUTPUT

~ THIS DEFINES 'PRINTR' AS THE SYSTEM PRINTER AND SPECIFIES L ‘ _ ‘
THAT 120-CHARACTER RECORDS WILL BE PRINTED FROM 'OUT', THE FIRST| S T R e S S C N

*
*
%~ CHARACTER OF A 121-CHARACTER RECORD IS USED TO CONTROL SPACING
* _ AND BKIPPING, |A DS MUST BE USED TO RESERVE 121 CHAR. FOR 'OUT'
* THE U$SER'S PROGRAM BEGINS HERE WITH BALR, USING, ETC., LABELED BEGIN

-

-

*  THE p$ER'S PRDGRAM ENDS HERE, WITH THE FOLLOWING STATEMENTS | - | | R
_ REQUIRED TO TERMINATE THE vP&OGRAM v ) [ T R A R

EOF | CLOSE | |CARDEDR, PRINTR
’ EOJ

| END | BEGIN
|

Fig, 2-6 File definition statement for printer and card reader. User
program statements are inserted where indicated.




Character Function

X'09' Single space after printing
X'11' Double space after printing
X'89’ Skip to top of page after printing

Fig. 2-7 Printer Control Characters

The Statements shown in Fig. 2-6 allow a user's program to be sand-
wiched between the necessary file definition statements. The user's program
is inserted in the space indicated by dashes. The complete deck of cards,
file definition statements plus user statements, can then be assembled and
executed. Control cards must be added to the file definition statements to
guide the Operating System. In Chap. 12, these are discussed. However,
the contents of the control cards depend on the configuration of equipment
being used. We suggest the details be discussed with your local install-
ation management prior to submitting programs.

First, some remarks are in order about the closing statements in Fig. 2-6.
Consider the statement labeled EOF. This is referenced in the file definition
statement for CARDRDR as an end of file address (EOFADDR). An end of file
condition occurs when all the data in the input file has been read. It can be
indicated in one of two ways. First, the card reader's hopper can run out of
cards. When this happens, the Operating System will signal the computer
operator that an error condition exists and will wait until additional cards are
placed in the hopper before continuing. This is recognized as an error con-
dition because a trailer card, puached /* in cc 1-2, is required to terminate
a file. When the Operating System encounters this signal, it knows that it has
reached the end of a given file and usually the end of that job. In this way, the
system will not attempt to read the Job Control cards of the next job as data
cards for the previous job. The second, and correct way to indicate an end of
file condition is, therefore, a trailer card which follows the last data card.
When the GET statement reads a trailer card, a branch will be taken to EOF
which "closes'"" or deactivates the reader and printer. The EQJ statement
causes the job to be terminated and control transferred to the Operating System
which will then process the next job on the input tape or card reader.

With these preliminaries behind us, we will next consider a complete, if
rather simple program.

Worked Example

2-9 A card file has two numbers, A and B, punched in cc 1-5 and cc 6-10
respectively. For each card, compute their sum and print it together with the
two numbers. The output should have column headings A, B, and A+B. The
code is
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START BALR 11,0 THESE STATEMENTS WILL BE
USING *, 11 COVERED IN CHAP. 3
OPEN CARDRDR, PRINTR
MVC  OUT+1(1), BLANK
MVC  OUT+2(119),0UT+1 CLEAR PRINT AREA
MVC  OUT(1), CTOP

PUT  PRINTR ADVANCE TO TOP OF PAGE

MVC  OUT+3(1),CA SET

MVC  OUT+12(1),CB UP

MVC  OUT +22(3), CAB HEADINGS

MVC  OUT(1), DOUBLESP PRINT CONTROL FOR DOUBLE SPACE

PUT  PRINTR PRINT HEADINGS AT TOP OF PAGE
READ GET CARDRDR READ A CARD INTO 'IN'

PACK A, IN(5) PACK CC 1-5 = A

PACK B, IN+5(5) PACK CC 6-10 = B

AP A B A CONTAINS A+B

UNPK SUM, A SUM = A +B ZONED

MVC  OUT+1(1), BLANK
MVC  OUT+2(119),0UT+1 CLEAR PRINT AREA

MVC OUT +1(5), IN MOVE A TO PRINT AREA
MVC OUT +10(5), N +5 MOVE B TO PRINT AREA
MVC OUT +20(6), SUM MOVE A+B TO PRINT AREA
PUT PRINTR PRINT A LINE FROM 'OUR'
B READ GET NEXT CARD

BLANK DC c''

DOUBLESP DC X'1ir 2 SPACES AFTER PRINTING

A DS P14 4 BYTES FOR A+B

B DS PL3

SUM DS ZL6

IN DS 80C INPUT CARD

ouT DS 121C OUTPUT PRINT LINE

CA DC C'A'

CB DC C'B'

CAB DC C'A+B'

CTOP DC X'89'

The first two statements, BALR and USING will be explained in Sec. 3-4. They
must be included as the first two statements in every program. Let us now
consider the layout of the print line and its headings. It is good practice to
leave some space between columns of data so the A-column will be printed in
print positions (pp) 1-5, the B column in pp 10-14 and the sum column in pp
20-25. (Since A and B are each five digits, we have allowed six digits for

their sum,) The column headings will be centered if the letter A is printed in
pp 3, Bin pp 12 and A+B in pp 22-24. Our first step, after opening CARDRDR
and PRINTR, is to clear the print area, OUT. This is done by propagating
blanks (not zeros!) throughout the area. Sincc the printer controls operate
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after printing a line, it is necessary to "print' a line of blanks to advance the
paper to the top of a page. This is done by the first PUT statement. Next,

the column headings are put into place, the control character which causes

the printer to double space after printing is inserted into the first position of
OUT and finally, the line is printed. The next statement, at READ, reads a
card into IN. The data is packed, summed, and set up to be printed. Note
that the print area is cleared prior to data being moved in. Strictly speaking,
this would not have to be done since the first line of data would overlay what
was in the print area from the previous PUT, the column headings, and suc-
cessive lines would have their data in the same positions. However, this may
not always be the case and so, it is good practice to clear the print area between
line format changes. When these statements are inserted at the proper place
into the statement in Fig. 2-6, the assembly program is complete. To execute
this program, the assembly statement cards and the data cards should be com-
bined with the proper job control cards as indicated in Fig. 2-8. We do add
one note of caution,or perhaps qualification. The statements in Figs. 2-6 and
2-8 are intended for a fairly standard 360 hardware and programming systems
configuration. However, it is possible that differences will exist at a given
installation and slight modifications may be required. We suggest the reader
consult on these points with operating personnel at this installation.

When the program is run, the output is surprising. Input data such as
11111 and 22222 when summed will be printed as 3333C! The reason for this
is not hard te find. The original input will have 1111 as zone bits which is
interpreted as a + sign. However, the arithmetic sum of the input quantities
will have the preferred + sign, 1100, as the zone bits of the low order digit.
From Fig. 2-1, the zoned digit 1100 0011, which we understand as a +3 in the
context of this problem will be printed as a C. There is a way around this
difficulty --it will be discussed in Sec. 2-7. When the last input card is read,
the trailer card punched /* in cc 1-2, the GET routine will transfer to EOF

which will terminate the job.

The requirement for control checks provides an interesting extension to
this problem. To insure against the undetected loss of data cards, very often
the number of input items will be counted after they have been keypunched.
(This can be done easily using a mechanical sorter equipped with a card
counter.) The card count and perhaps the total of some key item from each
card, will be punched into a card which follow the data file. This card may
be identified with a punch which is unique for that data file, say a - in cc 80.
The program is then modified to perform a card count and key item total while
it is carrying out its primary operation. At the conclusion, the program
count and total are compared with the data on the last card. If a mismatch
occurs, the data file can be audited to find the missing or extra items. This
will be left to the reader in Prob. 2-21.
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2.7 Editing

Most output data requires editing which may involve converting a result
such as 00123456 into 1,234.56 or $1,234.56 or $**1,234.56, to mention a
few possibilities. This can be done by setting up what is termed an edit mask
in that part of the output area from which the edited result will be printed. The
edit mask is made up of a variety of characters which define the format of the
edited result; the EDIT command matches the data or source field with the
edit mask. The edited result replaces the edit mask and printing can then
take place. Since the edit mask is destroyed by this operation, a new copy
will have to be moved to the output area for the next print line. The format of
the edit instruction is

ED  MASK, DATA

The length indicator pertains to the first operand which gives the address of
the edit mask; the second operand is the address of the data to be edited. The
data field, which must be in packed format, is processed one character at a
time from left to right. The mask characters and the data digits determine if
a data digit will be stored in the print area or not. The condition code is also
set to plus, minus or zero according to the sign of the source field.

The first character in the edit mask is termed the fill character, which
is always left unchanged in the edit mask after the data field has been edited.
There are a number of possibilities for the successive mask characters. We
will start by considering the simplest one, the digit selector. The basic idea
here is that for each digit selector character in the edit mask, one digit (four
bits) will be taken from the data field. If the digit is non-zero, it will be
expanded to zoned format and stored in the edit mask replacing the digit select
character. If the source digit is zero, and no non-zero character has been
encountered so far, the fill character will be stored. If non-zero source
digits precede a zero, the zero will be stored. This feature permits sup-
pression of high order zeros by effectively propagating the fill character
throughout the edit mask area until a non-zero or significant digit is found.
Using B for the blank mask character, * for the asterisk character, and D for
the digit select character, consider the following examples. The addresses
of each field are shown in parentheses. In the interests of readibility of the
illustrations, b will be used to indicate a blank print position.

Data Field Edit Mask Edited Result
(11000) (12000) (12000)

00 23 45 6+ *DDDDDDD **%23456

01 23 05 6- BDDDDDDD bb123056

00 00 00 O+ BDDDDDDD bbbbbbbb
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Note that the edit masks are at least one character longer than the maximum
number of digits in the data field and that data digits start one byte to the right
of the first character in the edit mask. Note also that the signs are not
printed. In general, for positive data, it is not necessary to print a + gign.
However, negative data is usually required to be identified, often by printing
either a - sign or the symbol, CR for credit. The edit instruction allows for
characters to be included to the right of the data digits. The algebraic sign
of the data field is examined, if it is +, the fill character replaces whatever
characters are to the right of the data digits. If the sign is -, the characters
to the right are printed. Commas and decimal points may also be printed by
placing them in the desired places in the edit mask. As examples, consider
the following.

Data Field Edit Mask Edited Result
(11000) (12000) (12000)

00 12 34 5+ BDD, DDD. DD bbbb123. 45

00 12 34 5+ *DD, DDD. DDBCR ~ **¥%123, 45%+*

12 34 56 T+ BDD,DDD.DDB-  b12, 345. 6Tbb

01 23 45 6- BDD,DDD.DDBCR  bbl, 234. 56bCR

00 00 00 O+ BDD, DDD. DD* bbbbbbbbbb

00 00 00 1- BDD, DDD. DD* bbbbbbbbb1*

The output in the last two examples above is often not satisfactory. Better
practice would be to print them as . 00 and . 01*, respectively. To accomplish
this, the significance start character which we will indicate as (, is used.
When it is encountered in an edit mask and a significant digit has been en-
countered previously, the source field digit replaces it. When only zeros have
occurred previously, and a zero digit also occurs in the significance start
position, the fill character is used but on subsequent data digits, the instruc-
tion behaves as though a significant digit had been found in the ( position. As
examples:

Data Field Edit Mask Edited Result
(110000) (12000) (12000)

00 00 1+ BDD(. DD* .01

01 23 4- BDD(. DD* 12. 34%

00 00 O+ BDD(. DD* .00

In the event that we wanted to blank out entirely zero fields, a BZ instruction
could be placed after the edit instruction to move blanks into the last three
positions of the edited field. One other edit character is of interest, the field
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separation character which we will indicate as ). As its name indicates, it
is used to separate fields when multiple fields are to be edited by a single
edit instruction. When this is done, the setting of the condition code refers
only to the sign of the last field. The field separator is replaced by the fill
character and causes each field to be edited separately. As an example:

Data Fields Edit Field FEdited Result
(10000) (11000) (11000)

01 23 4+ 56 78 9- BDD(. DDB*)DD(. DDB* bb12. 34bbb567. 89b*

As a final note on editing, the reader is cautioned that the characters we have
used to identify edit masks -- BD,.()CR¥- -- are a symbolic notation, only.
In an assembly program, the actual bit configurations must be given in a DC
statement with an X, for hexadecimal, operand. Hexadecimal constants will
be explained in Chap. 3. At this point, Table 2-2 can be used to develop the
edit masks in recipie fashion. As an example, the edit mask for BDD, DD(.
DDB*)DDD is

MASK DC X'4020206B2020214B2020405C22202020'
B 40 ) 22
D 20 C C3
4B R D9
, 6B * 5C
( 21 -- 60

Table 2-2 Hexadecimal equivalents
of edit characters

Worked Example

2-10 Two columns of data are to be printed, single spaced, as

bbbbbxx. x - b$bxx, xxx. xXbCR

Where - and CR are to be printed only when the corresponding fields are
negative. If the first field is zero, blanks are to be printed. The output area
is labeled OUT the two data fields are A and B, respectively. The code
follows.
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START BALR 11,0
USING *,11
OPEN PRINTER READY PRINTER
MVC  OUT(i), BLANK CLEAR
MVC  OUT+I1(120), OUT 'OUT' AREA
MVI  OUT,X'09' SET UP SPACE CONTROL
MVI  OUT+12,C'$' SET UP $
LOOP  --
MVC  OUT +5, MASKA MOVE A-MASK
ED MASKA, A EDIT A=FIELD
BNZ  NEXT
MVC  OUT +8(2), BLANK A=0, SET TO BLANKS
NEXT MVC OUT+13, MASKB MOVE B-MASK
ED MASKB, B EDIT B-FIELD
PUT  PRINTER PRINT LINE
B LOOP DO NEXT LINE
MASKA DC X'4020214B2060' BD(. D-
MASKB DC X'4020206B2020214B202040C3D9'  BDD, DD(. XXBCR
BLANK DC c' !
A DC PL2 XX. X
B DC PL4 XXXXX. XX
OUT DS CL121
END  START

The remainder of this section may be skimmed over in a first reading --
its full understanding requiress Chap. 3. The instruction we will next discuss
facilitates the insertion of floating currency symbols as a check protection

devise.

$1, 015, 617. 35
$2. 67
$1,117.40

$ .01

As an illustration, this would allow the printing of results such as

In addition, if it is desired to identify negative results by placing a minus sign
immediately before the number, this instruction -- the Edit and Mark -- can

also be used. Its format is

EDMK  MASK, DATA
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Its operation is identical to Edit except that the address of the first significant
result digit will be stored in GPR1. A BCT 1, 0 can be used to subtract one
from GPR1. The result is the address where the $ or - will be stored. When
multiple fields are edited by a single EDMK, GPRI1 will contain only the
address of the first significant digit in the last field. The address will not be
stored if significance is forced by the significance start character. Therefore,
the address of the character following the significance start should be stored
in GPR1 prior to issuing the EDMK. As an example of floating $ insertion,
AMT contains a seven digit number which is to be edited in the form XX, XXX, XX
with § immediately to the left of the first significant digit. The number is to
be printed starting in pp 45. The coding is

LA 1,0UT +51 LOAD ( ADDRESS PLUS 1
MVC  OUT +44(10), MSK MOVE EDIT MASK
EDMK OUT +44(10), AMT
BCT 1,0 SUBTRACT 1 FROM GPR1
MVI  0(1),C'$' MOVE $ TO PRINT ADDRESS
PUT  PRINTER PRINT LINE

MSK DC X'4020206B202021682020' BDD, DD(. DD

AMT DS PL4

OUT DS CL121

Since AMT is to be printed starting in pp 45, the edit mask must start in pp 44.
Since ( is the seventh characterin MSK, its address is OUT +50. The first
instruction will put the address of the next character in GPR1. The MVI
specifies a base of 1 and a displacement of 0. Since the EDMK stores the
address of the first significant digit and the BCT subtracts one, GPR1 then
contains the address where $ is to be put and the MVI accomplishes that.

Answers to Exercises

2-1 In EBCDIC, they are equal, namely 1101.

2-2 PL3'-101.5'; PL2'167'; PL4'2. 14159'; PL1'-3';PL1'2'. The lengths
are shown as the minimum field size which will accommodate the constant.

It is not necessary to show the explicit lengths, however, since the assembler
will determine them at assembly time. We will do this with the character
fields and indicate the implied size in parenthesis C'X ='"(3); C"""NET""'(5);

C 'NET && GROSS' (11).
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2-3 This coding will propagate the first byte of AREA, namely zero, through
the remaining 255 bytes. Normally this kind of overlap would produce un-

wanted results.

In this case however, it is a useful technique to clear an area

of storage.
2-4
a) A=2Z1 72 Z3 74 Z5 +6
PACK BI(4), A 01 23 45 6+
PACK B(2),A 45 6+
PACK B(6), A 00 00 01 23 45 6+
PACK A(3),A 5+ 45 6+ Z4 Z5 +6
PACK A+2(3),A Z1 Z2 23 4+ 6+ +6
b) A=00 01 23 45 6+
UNPK B(8), A Z0 Z0 Z1 Z2 Z3 Z4 Z5 +6
UNPK B(3),A Z4 75 +6
UNPK A(4),A+3(2) Z0 Z+ Z6 +6 6+
UNPK A, A+2(3) Z7 724 74 75 +6
2-5

a) The sequence in which the instructions will be executed is

CPp
BNE
AP
BP
Cp
BNE
BE

B,C
ADD
C,A
START
B,C
ADD
ouUT

B GREATER THAN C

BRANCH TAKEN

C=+15

CONDITION CODE + BRANCH TAKEN

B=C

BRANCH NOT TAKEN

CONDITION CODE SET TO =, BRANCH TAKEN

* NEXT INSTRUCTION TAKEN FROM OUT
* FINAL VALUES

A=20, B=15, C=15, D= -20

b) Note that in an algebraic comparison -5 is greater than -20. The
sequence in which the instructions will be executed is

CP
BH
AP
CP
BH
SP
B
* FINAL

C,D
ADD
D,B
C,D
ADD
C,B
ouUT
VALUES

C GREATER THAN D

BRANCH TAKEN

D=-5

C=D

BR. NOT TAKEN

C = -20

NEXT INSTRUCTION EXECUTED AT OUT
A=20, B=15, C=-20, D= -5

67



Problems
2-1 What is the difference in storage requirement between the constants
Z'-216.26' and Z'21626'; between the constants Z'215' and P'215'; Z'5'and P'5'?
2-2 How many bytes will the following constants require?

5P'-1' C'ABC' 6CL4'A'
5PL3'215' CL6'ABC' ZL6'5'

What will the storage layout be for each constant?

2-3 What are the storage requirements in bytes for the following areas
DS PL50 DS CL50 DS ZL50

What determines the choice between each form?

2-4 What are the length attributes of the following symbols:

A DS 5PL3

B DS 0ZL15

C DS 256CL1
D EQU A+611

2-5 Referring to Prob. 2-4, if A is located at 10000, what are the addresses
Cc
M 2

of B and D ?

2-6  With A containing ABCDEFG and B containing VWXYZ show the con-
tents of the destination field after each of the following instructions are
executed. Consider each instruction independently.

MVC A(5),B MVC A+2(3), B+1

MVC A(2),B MVC B,A

2-7 Show the contents of the destination fields after the following instruc-
tion sequence is executed
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MVC A,B
MVC B+4(4), B+3
MVC A,B+3

A DC CL6'ABCDEF'
B DC CL4'KLMN'
C DC CL5" ##kxx!

2-8 If A contains 01 23 45 67 8+, show the effect of the followmg
instructions which should be considered 1ndependently

MVO A, A(4) MVO A, A(3)

MVO A+1,A+3(2) MVO A+1, A+2(2)

2-9 Complete the instructions, begun in Ex. 2-1, to shift left an odd number
of G digits.

2-10 Referring to Ex. 2-2, write an instruction to move a four-byte field into
DATE; write an instruction to move the low order character in work to a one-
byte field, CHAR.

2-11 Which of the move instructions use the explicit or implicit length of the
first operand, to determine the length of the field to be operated on. The
remaining move instructions allow an explicit length to be given for the second

2-12 Write the program steps to add the packed decimal numbers A=XXX.
XXXXS, B=XX.XXS and C=X.XXXS.

2-13

a) Write the program steps to compute average monthly net sales from
(Yearly Gross Sales - Total Cancellations)/12. Gross sales has the
form XXXXXXXXX, XX and cancellations, XXXXXXX. XX.

b) Round the average to the nearest 1000 and show the result in the form
XXXXX000.
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2-14 Write the program steps to compute the following percentage, rounded
toth

o three decimal places

1967 INDEX - 1966 INDEX

1966 INDEX 100%

where the indices have the form XX, XXXX. Note that the differences between
indices may be negative.

2-15 Consider the following program steps. Can you find any instructions

which will cause interrupts when executed? Why?

ZAP TOTAL, SUBT(5)
SP TOTAL, CANC
BM EDIT

TOTAL, SUBT and CANC are each defined by DS PL6 and contain respectively
9720167558, 201653216S, and 315428S.

2-16 Verify the rule given in Ex. 2-4 for handling division problems with
varying size divisors. Hint: Remember that the maximum divisor size must
be used to reserve space for the remainder but the minimum divisor must be
used to find the maximum dividend. From this point, essentially the same
approach can be taken as was done for the simple ""Add two" rule.

2-17 Given three six-byte packed decimal numbers, A, B, and C, write the
program steps to find the algebraically largest and smallest numbers of the
three and store them in BIG and SMALL, respectively.

2-18 For the same three numbers as in Prob. 2-17, sort them and put the
largest in location A, the next largest in location B, and the smallest in
location C.

2-19 For the same three numbers as in Prob. 2-17, test for equality among
the three and branch to a routine labeled EQUALS3 if all three are equal,
EQUAL2 if two are equal and EQUALO if none are equal.

2-20 Modify the code of Example 2-9 so that the print area is cleared only
once after the column headings are printed.
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2-21 Refer to the extension mentioned in the last paragraph of Example 2-9.
Modify that program to count the data cards, total all the A-items and verify
these against the control amounts punched in cc 1-10 and 10-30, respectively,
of a card with a - punch in cc 80 which follows the last data card.

2-22 Referring to Example 2-8, what will be the effect on the program if
the definition of ZERO is changed to DC PL1'0'?

2-23 A deck of cards contains a 10-digit number in cc 1-10. The last card
contains only an 11-punch in cc 80. Write a program to add these 10-digit
numbers and print the total, together with a card count, when the last card has
been read. This can be done by using the ZAP to put the first number into the
total field and adding the following numbers to the total field. However, the
logic is more straightforward if the total field is cleared first, or initialized
to zero by ZAP TOTAL, TOTAL or moving a field of zeros into it. If this is
done, each number can then be added to TOTAL without having separate logic
for the first card. This approach to initialization is extremely important
since the programmer cannot assume that an area of storage reserved by a
DS will contain zeros at execute time.

Write the program and test it using your own sample test data. Allow
for a 20-digit total.

2-24 The end-of-job cards we have been using, with an 11-punch in cc 80,
are really not necessary to initiate end-of-job operations. We could place card
count information, and so forth, at the head of an input deck and use the

trailer card, punched /* in cc 1-2, to initiate the necessary action. This

could be done at location EOF (See Fig. 2-6) by placing the appropriate instruc-
tions before the CLOSE. Incorporate this approach into your program for
Prob. 2-23 and test it.

2-25 The input to a payroll program is a card with the following layout

Department Number cc 1-3

Employee Number cc 4-10
Employee Last Name cc 11-30
Employee Initials cc 31-32

Hourly Rate cc 33-35 X.XX
Hours Worked cc 36-39 XX.XX

The input deck will be sorted by employee name within Department Number.
For each employee card, print the following information, single spaced:
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Employee Number
Employee Name
‘Employee Initials
Total Pay

pp 6-12

pp 14-33

pp 35-36

pp 40-44 XXX. XX

Total pay is to be computed to the nearest cent by paying time-and-a-half

(1 1/2 times hourly rate) for all time over 40 hours but under 70 hours and
by paying double time for all hours over 70. Each department number should
be printed once, at the top of a page in pp 2-4. When all cards in a depart-
ment have been processed print the total hours, total pay, and average pay
per hour (total pay + total hours) for that department in the format.

DEPARTMENT XXX

TOTAL HOURS XX, XXX
TOTAL PAY =  $ XXX, XXX.XX
AVERAGE PAY/HOUR= § X.XXX

(The fact that all cards in a department have been processed can be detected
when the Department Number of the next card is high when compared with the
previous one. As a limit, define PREDPNO as th_é—previous department num-
ber and start it off with a negative value. In this way, the first card read
will force a high compare and the department number can then be printed.
However, on the first Department number break, the TOTAL HOURS, PAY,
etc. should not be printed. As an additional note, the programmer must
initialize to zero the areas where department totals will be developed by set-
ting them to zero.) The last card contains a card count in cc 1-10, and an
11-punch in cc 80. When it is read, verify the card count with the number of
cards processed and also print out at the top of a new page the following

informatinon:
PLANT TOTALS

HOURS = XXX, XXX
PAY = § XX,XXX,XXX.XX
AVERAGE PAY/HOUR= § X.XXX

These totals can be developed by adding the department totals to plant totals
at every Department Number change. The average pay/hour is still com-
puted by dividing total plant pay by total plant hours worked.

Write a flow chart to do the operations outlined above, develop a pro-
gram, devise sample test data and run your program on the test data.

2-26  Redo the "Indian Problem", Example 2-7, including complete input-
output statements and allow for a number of cases to be run with the number
of years, principal and interest rates as input items with each case on a
single card.

_2_:2_7 What is the effect on the condition code setting of the following
instruction:

CLC = C'AB%',=C'AB*'
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In Chapter 2, we discussed the 360 instructions and data formats for
decimal arithmetic operations -- that is, for operations on numbers in the
decimal system. We are so familiar with these numbers that we almost never
think to apply the qualification decimal to them. It is almost as if decimal
numbers were the numbers -- the ten fingers of man have indeed left a very
deep imprint on his method of counting. But in fact, other number systems
have come into use in the past. The Mayans and Aztecs used a numbering
system based on 20 while some primitive tribes in Australia use a system
based on the number two, the binary system. The system of numbers used by
the ancient Romans is strongly influenced by the number five, while much of
the English monetary system and English weights and measures depend on the
number 12 and its multiples. Well established conventions, and to a lesser
degree, convenience, are the main influences that determine a society's
enumeration system. Now it is true that computers in their direct communica-
tion with the outside world must deal in symbols and numbers that are directly
intelligible to people and so the importance of convention in determining the
choice of a computer numbering system cannot be overiooked. However, com-
puters also do a great many operations on numbers and symbols which do not
relate immediately to the job of communicating with their users. These are
the so called "machinehood' operations: Rearrangement of data into formats
more suitable for computer processing, moving data from place to place in
storage, calculations with storage addresses, testing the status of various
registers and condition indicators, and so forth. For this class of operations,
efficiency is the sole criterion determining which number base is to be used.
Considerations of efficiency also enter when number bases are being considered
for arithmetic operations. As we shall see, it happens that computer arithmetic
on binary numbers is more efficient than on decimal numbers. This efficiency
is usually reflected in speed -- the computer does binary arithmetic faster than
decimal arithmetic for a given cost of circuitry. However, if a computer is to
operate on binary numbers, since the computer's input and output are decimal
quantities, translations between the two systems are necessary. The time re-
quired to do this must be balanced against the greater speed of binary arithmetic.

As we discussed in Chap. 1, computer storage is made up of small
washer-like cores which may be magnetized in two directions, clockwise or
counterclockwise. As a result, the most natural coding scheme is binary,
that is, one which is based on two symbols, one symbol for clockwise mag-
netized cores and another symbol for counterclockwise magnetized cores.
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The restriction to two basic symbols is not as limiting as it may seem at first
sight. The status of machine indicators which are either "on'" or "off'" and
logic tests which essentially reduce to a "'yes" or "no'" result fit naturally into
such a scheme and it also turns out that for a given number of cores, signifi-
cantly more digits can be represented by the binary number system than by
the (binary coded) decimal numbers discussed in Chapter 2. Because of the
importance in computing of number systems, we will develop the more
important concepts here.

The most convenient starting point is the system most familiar to us --
the decimal system. Consider what is meant by a number such as 2132. This
notation represents, of course, the number two thousand one hundred and
thirty two. The basic idea here is that the position of a digit indicates its
value. For example, the first digit 2 in the number has the value 2000, the
last one the value two. We can indicate this property by writing the number

as 2000 + 100 + 30 + 2

or,
1 2x10°

2x10° + 1x10% + 3x10
since 101 =10 and 10O =1. This is the mathematical representation of the
positional notation concept. In this system the base, or radix, is ten and
there are ten digits, 0,1, 2,3,4,5,6,7,8, and 9. In the binary system, the
base is two and there are two digits, 0 and 1. The concept of number re-
presentation is the same. That is, the binary number 1101 represents

1x25 + 1x22 + 0x2 + 1

Since, 23 =8 and 22 =4, 1101 is the binary equivalent of

1x8 + 1x4 + 0 + 1

or 13. A table of binary integers is built up in much the same fashion as a
table of decimal integers. Since the techniques of decimal counting are so
ingrained in our thinking that we count almost without conscious control, we
will pause to state these techniques. Consider how we would develop a table
of integers, that is, whole numbers. We start with 0 and build up the table
by adding 1 to each entry. It will be convenient to depict the process of
building the table in positional notation. For simplicity, we will assume that
the table will not go beyond 9999. The first entry, zero, is then

0 0x103 + 0x102 + 0x10 + 0

As we proceed by adding 1's, we note that at every multiple of 10, that is, at

every multiple of the base, an''overflow" occurs from the units position into
the tens position. That is, as we proceed from 9 to 10, we have
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9 0x103+0x102+0x10+9 + 1
10 0x103 + 0x102 + 1x10 + 0

where the overflow is indicated by the arrow. As another illustration, as we
go from 10 to 20, we have

3 2

19 0x10° + 0x10° + 1x10 + 9+

(2

20 0x103 + 0x102 +2x10 + 0

the overflow from the units to the tens position can propagate other overflows.
For example, from 99 to 100, we have

99 0x10° + 0x10% + 9x10 + 9  + 1
100 0x10° + 1x10° + 0x10 + 0

To summarize, for every multiple of the base which is counted in the v
units position, there is an overflow of one into the next higher order position
(tens position for decimal numbers) and for every multiple of the base counted
in the tens position there is an overflow of one into the next higher order
position (hundreds position for decimal numbers), and so forth. To apply these
rules to the binary number system, we note that corresponding to the units,
tens, hundreds, thousands, etc., of the decimal system, we have for binary
numbers, the units, twos, fours, eights, and so on. As we had overflows in
going from 9 to 10, for instance, in decimal system, we will have an overflow
in counting from 1 to 2. That is, 1+ 1 =10 (=2 in binary). Building up a
table of binary numbers is a straightforward process since there are only two
rules of addition in that system: 1+ 0=1and 1+ 1 = 10 (of course, 0 + 0 = 0).
The first nine binary numbers are then

Decimal Number Binary Equivalent

0

1

10
11
100
101
110
111
1000

TP WDN RO

Exercise 3 - 1 Write the next eight entries in the table above. Answers are
given at the end of this chapter.




An important question with any number system is how large a number
can be represented in a given number of positions. With decimal numbers,
in two positions, the largest number representable is 992 for three positions,
the largest is 999. These numbers are respectively, 10° - 1 and 103- 1 so
that for an arbitrary number of positions, n, the largest number which can be
represented is 10™ - 1. For binary numbers, this is 2% - 1. As an example,
the largest binary number which can be represented by 3 binary digits is
23 - 1 or 7 which in binary is 111. Since the term binary digit occurs so
frequently, we will use from now on a shorter, equivalent term, bit. In 12
bits, the largest binary number is 2*“ - 1 or 4095. Or, if we count zero, the
total of all numbers given by 12 bits is, 4096 which explains why the displace-
ment field (12 bits) in a 360 instruction (See Sec. 3.4) can be used to address
a span of 4096 bytes of storage. Let us now compare the storage efficiencies
of the binary coded decimal numbers introduced in Chapter 1. Recall that
each decimal digit required four bits in the binary coded decimal format.
This allows any digit from 0 to 9 to be represented. Note that if we were
dealing with binary numbers, in four bits any number from 0 to 15 could be
represented so that binary numbers are fundamentally more efficiently
represented in magnetic core storage than decimal numbers. In fact, for 12
bits, the largest decimal number is three digits long (12/4 = 3) whereas the
largest binary number is 4095. In binary, using 12 bits, we have 3 digits and
a part of the fourth digit -~ we can think of this as approximately 3.4 digits in
a sense. As a result for 12 bits binary numbers are approximately 13% more
efficient than decimal numbers (. 4/3 x 100% = 13%). For larger bit fields
(20 bits and up), the binary representation will give approximately 20% more
digits than the BCD notation.

In addition to binary and decimal numbers, one other number system is
important for the 360 -- the hexadecimal or base 16 system. There are two
reasons why the hexadecimal . system is important. The 360 allows calcula-
tions on so called "floating point'' numbers which are important in engineering
and scientific calculations. Floating point numbers are represented in hexa-
decimal notation by the 360 -- we will study them in detail in Chapter 6. The
second reason hexadecimal notation is important is because it gives a con-
venient shorthand for binary notation. For instance, the fields in 360 instruc-
tions are either four bits long, or multiples of four bits in length. In the
hexadecimal notation since the base is 16, there are 16 digits. That is, one
digit (symbol) for every possible combmatlon of 1's and 0's in each four b1ts
of storage. As a result, hexadecimal symbols can represent the contents of
the 360's storage in an assembly language listing more compactly than its
binary equivalent. The hexadecimal digits -- or hex digits, for short -- with
their decimal and binary equivalents are shown in Table 3 - 1 below. Note
that, since 16 symbols are needed -- one for each hex digit, six additional
symbols are needed to supplement the digits 0 through 9. Any six symbols
could be used suchas @, $, *, !, &, ?, for example. However, the first
six letters of the alphabet are used because their sequence is easier to
remember than six arbitrary symbols. As an illustration of using hex nota-
tion to represent binary, consider the instruction BALR 13,12. Since the

'
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Decimal Hexadecimal Binary
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001

10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111

Table 3 - 1 Hexadecimal numbers with decimal
and binary equivalents

operation code for BALR is 00000101 and 13 and 12 are, in binary, respec-
tively, 1101 and 1100. The instruction would appear in storage as
0000010111011100. If this instruction appeared in an assembly listing, the
string of 1's and 0's above would be tedious to read and so the hex equivalent
is shown. This is 05DEC As a final point on number systems, we will use a
subscript notation to distinguish between the various number systems; Base
ten numbers will be shown unsubscripted unless the base is not obvious from
context. As illustrations,

1x10%2 + 0x10 + 1 (= 101)

101, -
1012 =1x22 +0x2 + 1 (= 5)
101, - 1x16%2 + 0x16 + 1 (= 257)

3.2 Number Conversion.

While almost all of the conversions between the various number systems
which may be required in a program can be performed by special circuitry in
the computer, or else by programmed routines supplied by the computer
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manufacturer, it will aid the readers understanding of the limitations of the
various number systems if he has a grasp of the conversion methods which
will be presented in this section.

In our discussion of the positional notation concept, we have given the
essence of converting from a given number base to the decimal base. As an
example, consider the binary number 110101. That is,

1x2° + 1x2% v+ 0x2® + 1x2%2 r0x2 + 1

or
1x32 +1x16 + 0 + 1x4 + 0 + 1

which is the decimal number 53. As another example, consider the hex
number A5F which is

Ax162 + 5x16 + F

or, since A =10, F = 15, and 162 = 256, we have

10x256 + 5x16 + 15

which is the decimal number 2655. On the strength of these examples, we can
concoct a rule for converting from other bases to decimal:

Express the binary or hex number in its positional notation equivalent. For
hex numbers, replace the alphabetic symbols (A through F) by their decimal
equivalents (10 through 15). Carrying out the indicated multiplications and
additions gives the decimal result.

We can distill this idea further into a simple computing recipe which
will be shown by example below for the binary number 110101 and the hex
number A5F.
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A5F 110101

10 (=A) 1
x 16 _}ﬁ
160 2
+ 5(=b) +1
165 3
x 16 x_Z_
+ 15(=F) +0
2655 = A5F 6
X2
12
+1
13
X2
26
+ 0
26
X 2
52
+1

53 = 110101

Note how relatively ""long winded' the process of converting from binary
to decimal is. The operation would be a lot shorter, if we could first convert
the binary number to a hex number. Fortunately, this can be done almost by
inspection by grouping each four bits of the binary number, from right to left,
and then replacing each group by its hex equivalent from Table 3-1:

1110101 binary

3 5 hex

The conversion is then

+ lx
N [
U OO W

()]
w

Exercise 3-2 For practice in number conversion, calculate the decimal
equivalents of the following hex numbers: ABC, 5E2F, 10101 and AOA; find
the decimal equivalents of the following binary numbers: 111111, 10101 and
101010111100.
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For the mathematically inclined reader, the justification for the con-
version recipie given above lies in factoring the positional representation into
a nested polynomial. As an example, ASF which is

Ax162 +5x16 + F
can be represented as the nested polynomial

(Ax16 + 5) 16 + F
from which the recipie above follows.

The reverse operation, of converting from decimal to hex or binary, is
accomplished by successively dividing by 16 or 2 and using the remainder to
develop the digits of the converted numbers. Again, rather than describe the
process in words, we will use the examples cited above: converting 2655 into
hex and 53 into binary. The remainder will be shown following the quotient by
a slash mark (/).

165/ 15 (= F) 26 /1
16/2655 2/ 53
15 13/ 0
96 2 /26
~ 95
80 6/1
15 2 /13
10/ 5 (=5) 3/0
16 /165 2 /6
/ 10 (=A) 1/1
16/10 2 /3
/1
2 /1

Or 265519 = A5F;¢ and 5310 = 110101,. Again, the conversion from decimal
to binary takes longer than a decimal to hex conversion. As a result, the
usual practice is to convert from decimal to hex and then go to binary by using
Table 3-1. As an example

3/5
16 / 53

/3
16 /3
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Or, 5310 = 3516 = 0011 01012

Exercise 3-3 As a check on your answers to Exercise 3 - 2, convert yvour
results back to binary or hex as required using the successive division method
above.

So far, we have only considered conversion of whole numbers. The

o o rhat Alernd
process of converting numbers with fractional parts is somewhat more involved.

In the interest of brev1ty, we will illustrate the technique for decimal/binary
conversions. Decimal/hex conversions are similar.

Consider a decimal fraction such as 123.456. In positional notation this
represents

100 + 20 + 3 + .4 + .05 + .006
or 2 2 3
1x10° + 2x10 + 3 + 4/10 + 5/10° + 6/10°.

Therefore, the binary number 110. 111 represents in positional notation

1x22 + 1x2 + 0 + 1/2 + 1/2% + 1/2°
Or, since *

1/2 = .5, 1/2% = 1/4 = .25and1/2% - 1/8 -.125,
we have

110. 111 4 +2 + 0+ .5+ .26 + .125 = 6.875

2" 10°

To calculate the binary equivalent of a decimal number such as 37. 613,
we first determine the binary equivaient of 37. Using the successive division
technique, this is 100101. To convert the fractional part, we proceed as
follows:

.613
_x2

1 .226
X 2

0 ~ .452
X 2

0 .904
_ X 2

1 . 808
x 2

1 .616
X 2

.232

ete.

* The Appendix contains a table of powers of two and their decimal equivalents.
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So 317. 61310 = 100101. 100111 +, the plus sign indicative that the binary fraction
is non terminating. That is, we could continue adding 1's and 0's indefinitely
and still not be able to represent . 613 exactly as a binary fraction. If we
terminate the binary fraction at six places and then reconvert to decimal, we
have

.100111 = 1/2 + 1/2% &+ 1/2% + 1/28

.5 + .0625 + .03125 + .015625

. 609375

Carrying the result to 10 binary places give a fraction of . 10011100111 =
.61279296875. This problem of inexact representation between decimal and
binary or hex can cause severe problems if it is ignored. Fortunately, there
are techniques for coping with these difficulties which will be presented in
Example 3 - 12.

3.3 Binary and Hexadecimal Arithmetic.
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and hex numbers. The 360 performs arithmetic on binary numbers in 32 bit
registers called General Purpose registers. There are 16 of these registers
in all System/360 models except for the 360/20 which has 8 GP registers.
The GP registers can be considered as analogous to the accumulator(s) in an
electric calculating machine. They contain the numbers the computer is
currently working on and can be used to develop sums, differences, quotients
and products. A GP register is shown below in Fig. 3-1.

0 1 29 30 31

Fig 3-1. 32 bit General Purpose Register (GPR)

Bit 0 is used for the sign position, a 1 bit indicating a negative number and a

0 bit, a positive number. To add binary numbers, it is only necessary to

apply the basic rules of binary addition(0 + 0 = 0, 1 + 0 = 1, 1 + 1 =10)
consistently and correctly (and tirelessly). As examples

6 110 5 101 3 011 11 1011
+1 001 +1 001 +1 001 13 1101

7w {11 6 110 4 100 24 11000
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Exercise 3 - 4 Do the following additions in binary: 6 +2, 6 +4, 7T+5, 7 + 17,
10110k + 1001019

However, the methods used by the 360 for operating on negative numbers are
sufficiently different that they should be understood by the programmer so that
results may be interpreted correctly. We will present this method by way of
examples. In the interest of brevity, we will assume a 4-bit accumulator, the
4th bit being used for the sign position. The principles we will deduce apply
directly to the 32-bit case. Positive numbers will be represented by their
binary equivalents with bit 4 zero. Negative numbers will be represented in
their two's complement form. The two's complement representation of a
given number is obtained by reversing all bits (1's become 0's and vice versa)
and then adding 1. As examples,

5 = 0101
-5 = 1010 + 0001
= 1011 (two's complement)
1 = 0001
-1 = 1110 + 0001
= 1111 (two's complement)
0 = 0000
-0 = 1111 + 0001
= 0000 (two's complement)
7 = 0111
-7 = 1000 + 0001
= 1001 (two's complement)

Exercise 3-5 Assuming a 4-bit register, write out in two's complement form
all negative numbers which will fit into that register. The answers are given
below.

There are several interesting points about two's complement numbers.
First, zero has a unique representation. That is, there is no -0. Second,
the range of negative numbers is one greater than the range of positive num-
bers. That is, for our 4-bit example, the largest positive number is 7(0111)
whereas the largest negative number is -8(1000). Following are all binary
numbers which can be accommodated by a 4-bit register.
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7 0111 -8 1000
6 0110 -7 1001
5 0101 -6 1010
4 0100 -5 1011
3 0011 -4 1100
2 0010 -3 1101
1 0001 -2 1110
0 0000 -1 1111

Whenever numbers are generated which lie outside the range of a GP register
(here 7 to -8) an overflow condition exists. The overflow indicator in the 360
is turned on and the programmer can test this indicator after those arithmetic
operations which are likely to overflow. If the indicator is on (an overflow has
occurred) the programmer can write a branch to a routine which takes appro-
priate action*. As an example, the sum 5 + 6 exceeds the capacity of a 4-
bit register:

5 0101

;F___(_i_ 1110

1 1011
overflow

Notice that the sum in this example is represented as a negative number. If
the overflow went undetected, the sum of 5 + 6 would be carried as -5.

Consider the addition of a positive and a negative number.

6 0110
+(-5) 1011
1 0 001

no overflow

Notice that a carry into the sign position and a carry out of the sign position
does not give an overflow condition. A carry out of the sign position, without
a corresponding carry into the sign position, does give an overflow. As an
example

-5 1011

i_(:_6_) 1010

-11 0101
overflow

Again, an overflow has resulted in an incorrect sign as well as an incorrect
sum.

* This is an oversimplification. A more complete description of overflow
operation will be postponed to Sec. 3.8.
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Subtraction is essentially the same as addition except that the sub-
trahend is complemented first, and then added to the minuend. As examples

6 0110 (minuend) 6 0110

-3 - 0011 (subtrahend) H-3) 1101

3 3 0011
no overflow

4 §$iGe 4 0100

-(-3) -1101 +3 0011

T 7 0111

Notice that the complement of a negative number is a positive number. The
discussion on overflows in addition applies equally to subtraction.

Multiplication of binary numbers is straightforward. The basic rules
are: 0x0=0, 0x1=0, 1x1=1. As examples

5 101 7 111
x3 x11 x5 x101
5 101 5 111
101 1110

1111 100011

When either or both factors are negative, that is, when they are in complement
form, the 360's operation can be understood as multiplying two positive numbers,
and then complementing the product if the signs of the factors are unlike. If one
factor is positive and the other negative, their product is negative and will be
complemented. If both signs are alike, either both positive or both negative,
the product is positive and will remain uncomplemented. From the program-
mer's point of view, multiplication has an effect which becomes significant
much more rapidly than with addition -- the size of the result. If two 10-bit
numbers are added, the result is at most an 11-bit number. However, if the
same numbers are multiplied, the result can be a 20-bit number. The rule is:
The number of significant bits in the product is at most the sum of the number
of significant bits in each factor, it may be one less. (Leading zeros do not

count as significant digits). As an illustration, 00110 and 01011 have three and
four significant bits, respectively. Their product will have seven bits, 1000010.
As another example, the product of 101 and 1000 has six bits, 101000.

Division is essentially the reverse of multiplication and the same logic
that is used in decimal long division can be employed here except, of course,
that we must use the binary subtraction rules: 10-1=1,1-0=1, 0-1=1
with a carry of 1 into the next position of the subtrahend. As an example
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1010 / 11 Quotient/Remainder
101,/110101 divisor / Dividend
101
110
101
11

The meaning of the remainder term is that

D R
Q=35 * ¥
10/3

In our example above, we have 5/ 53 , or 10 +3/5 = 10.6. The usual
practice in division is to discard the remainder. As a result, if the quotient
is to be computed to an acceptable accuracy, the dividend must contain enough
places. In this example, the dividend would be 10 and fractional places will
be lost. The binary arithmetic hardware on the 360 handles whole numbers
only, so that any '""understanding'' about where the decimal (or binary) point
goes is between the programmer and his program. As an example, to get
three fractional places in the division above, we add three zeros to the

dividend (i. e. shift it left three places) and then proceed

1010.100/100
101 /110101000
101
110
101
110
101
100

Here the quotient is 10.5 plus a remainder term of 100/101000 in binary.
(Since the dividend has been extended left by three zeros, the same must be
done to the divisor.) In decimal this is 1/10 so that the quotient is low by . 1.
This is not necessarily a disaster; in some engineering and statistical work,
answers are usually required to some preset number of places. In fact, this
is troublesome only in programs which involve financial calculations. Even
here, there are definite lower limits placed on accuracy, such as to the
nearest 1/2 cent. For such calculations, there are straightforward methods
for computing results to the desired accuracy. These will be presented in
Example 3-12.

Once the reader has an understanding of binary arithmetic, hex arithme-
tic can be readily grasped. We will not go into the details here, save for
addition and subtraction, since these are usually the only operations the pro-
grammer will do directly. The typical need arises when the programmer is
reading an assembly language listing, and wishes to compute the storage

86



space required for a section of code starting at some location and ending at
another specified location; assume starting and ending locations AFIA and
C625. We could convert both of these numbers to decimal by either using the
recipie of Sec. 3.2 or locking them up in a table. Unfortunately, the table
may not contain the numbers we want. Given a little practice, it is easier to
compute the difference directly in hex and then convert the result to decimal.
To do this, we recallthat A=10, B=11, C=12, D=13, E=14, F- 15
and 1016 = 1610 Then, usmg the famlhar borrowing techmque 5-Ais

o - _ s
= H T v' cl'nr“ "oy
L-lo - .“‘. = 4}."‘ - 10 il‘ 0~ ‘Vlﬁﬂ a L"l‘"}’ OI one 111-,0 »ﬂe next supiranend

position, and s0 fort)h We then have
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O
-t DN
> o
e

oy
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(o]
|
w
(=2
<o

This section of code therefore requires 5899 positions of storage.

3.4 Storage Addressing

Before we consider the binary instruction set, let us examine in greater
detail the decimal arithmetic instructions of Chap. 2. In particular, we will
see how the 360 uses the information supplied by the assembler to address its
storage. For an instruction such as

AP SUM, AMOUNT

The assembler substitutes into its operand portions the storage addresses of
SUM and AMOUNT. To better understand what is involved here, we shall
dissect this instruction. Since the decimal add instruction requires eight
bytes of storage, 48 binary bits of information must be supplied by the
assembler. The format of the AP instruction is

11111010 L L B D B D
1 2 1 1 2 2
0 78 11 12 15 16 19 20 31 32 35 36 47
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where the numbers below the figure are the bit locations of the different
segments of the instruction. These segments will be referred to as fields.

For example, the first field (bits 0 through 7) is used for the AP operation

code which happens to be the string of binary bits, 11111010. It is for the

sake of the example only that the actual bits of this operation code are shown,
the precise detail is of no particular consequence and need not be remembered --
we shall continue to refer to instructions by their mnemonic codes. The
letters L, B and D refer to the length, base and displacement fields of operands
one (SUM) and two (AMOUNT) which are indicated by subscripts 1 and 2. The
length fields contain number of bytes of each operand to the right of the operand
address, or one less than the length of the operand. The assembler takes care
of this difference by subtracting one from all lengths prior to assembling a
decimal instruction.

The base and displacement fields, which together constitute the operand
address, are used to generate the location in storage of the operand. This
happens in the following way: The base field contains a (binary) number from
0 to 15 which references one of the 16 General Purpose Registers. The GPR
are part of the addressable storage of the 360. The programmer may place
information in these registers, manipulate it and retrieve it in much the same
way as the magnetic core storage we have been discussing so far. In fact, in

adel tha 280 +2s ida ot
some models of the 360, the GPR actually reside in core storage, in other

models, they are implemented in high speed solid state circuits. For opera-
tions on binary numbers, the GPR also serve as registers for doing arithmetic.
Figure 3-2 shows schematically the 16 GPR and core storage.

System/360 storage addressing works this way: The contents of the
register specified in an instruction base field are added to the (binary) number

GENERAL
PURPOSE
REGISTERS

[ E N VETe)

—

CORE STORAGE
BY BYTE ADDRESS

Fig. 3-2 Schematic of general purpose registers and core storage
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in the displacement field, the sum gives the location in storage of the operand.
The addition is done by the computer's addressing circuitry for each operand
in the instruction. As an example, suppose that the locations of SUM and
AMOUNT are in a data peol which contains all the data and working storage
for the program. Assume that the data pool begins in location 12400 and that
SUM is in location 12460 and AMOUNT is in location 12512. In order that our
program may access these locations one of the general purpose registers, say,
register number 10, would contain the location of the beginning of the data
pool, the number 12400, Since the locations of SUM and AMOUNT are 8§ and
112 storage positions, respectively, from the beginning of the data pool, the
displacements Dy and Dy will contain these numbers. The same instruction
is now

L L B D B D
1 2 1 1 2 2
AP XX | YY | 10 60 |10 (112

The actual bases and displacements are binary numbers but for simplicity
their decimal equivalents are shown. When this instruction is executed by
the computer, the address of the first operand, SUM, is

C (10) + 60 = 12400 + 60 = 12460
and the address of the second operand, AMOUNT, is
C(10) +112 = 12400 + 112 = 12512

Here C(10) refers to the contents of general purpose register 10. Figure 3-3
shows the process schematically for one of the operands, AMOUNT.

Let us review System/360 storage addressing. The address of a given
location in storage consists of a base field and a displacement field. The base
field contains a number from 0 to 15 referencing one of the 16 GPR in the
System/360. (The System/360 Model 20 contains 8 GPR, numbered 0 through
7. Programs written for the Model 20 should not contain references to
registers higher than 7.) Also, on the other Models of 360, registers 0, 1
and 12 through 15 are used for various purposes by the operating systems.

To avoid error, it is suggested that the programmer restrict himself to

registers 2 through 11. However, if additional registers are required, it is
possible to use the other registers provided the programmer is aware of the
restrictions on their usage. (These will be covered in Chaps. 7, 9, and 10).
Let us call the general purpose register which is referenced by the base

field in an address, a base register. The base register can be thought of as
containing a pointer to a location in storage, the base location, which is near
the location we wish to access. The displacement field contains the distance
in bytes between the base location and the desired location. Figure 3-4

gives a picture of this concept. There is an important limitation on the size
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GENERAL PURPOSE

REGISTERS
0
1
[ ]
L ]
BEGINNING OF PROGRAM
_— 10 12400
h— 3
T y
AP L; Lp 10 60 T0 12} = 112 + 12400
END OF PROGRAM 12512
12400 BEGINNING OF DATA POOL
- LOCATION OF 'AMOUNT'

12512

Fig 3-2 Tllustration of the storage addressing technique of System/360
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of the displacement. The displacement field is 12 bits wide. As we have
discussed in Sec. 3.1, the largest number that can be represented in 12 bits
is +4095. This means that no location can be more than 4095 storage posi-
tions from its base location. Or, to put the matter in a different light, each
base register spans 4096 locations, the base position plus the next 4095
higher address locations. Note that since the displacement field must contain
a positive quantity, displacements can only be counted from the base location
to higher addressed storage. One other point should be noted: When GPR

- amde A m o e Lt
n 1° "“e"‘*'"-“"‘ as a 1"&56 thc Qddif;\iil uf bQQF a,nd Ui‘cign_ru " SIEent L_ill—'\ nnx !.d.'.‘.e

place and the contents of the displacement field alone gives the address. This
technique can be used to address the lowest 4096 positions of storage without
using up a base register. -

BASE REGISTER

J

BASE
LOCATION

> DISPLACEMENT

(.

ADDRESSED
LOCATION

RN RN AR RN RER RN

Fig. 3-4 Base addressing

Worked Example

3 -1 Assume that registers 5, 6 and 7 contain the values 8000, 9000 and
13096 respectively. Write base and displacement addresses for the following
locations: 8000, 9000, 9100, 13200 and 17191.

Solution
Base Register/Contents Location Base/Displacement
5 8000 8000 5/0000
6 9000 9000 6/000 or 5/1000
7 13096 9100 6/0100 or 5/1100
13200 7/0104
17191 7/4095
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Note that when the coverage of two base registers overlaps, such as registers
5 and 6 here, a given location can be addressed in more than one way as is
illustrated for locations 9000 and 9100.

Worked Example

3 -2 If registers 0, 13, 14, 15 contain 4096, 10000, 0 and 15000 respectively,
the following base and displacement fields address the indicated storage
locations:

Base Register/Contents Base/Displacement Fields Location

0 4096 0/3000 3000
13 10000 14/3000 3000
14 0 13/0500 10500
15 15000 0/0000 0

15/4095 19045

Note that the use of register 14 to address locations below 4096 is unnecessary
and wasteful of a base register. These locations can be addressed by speci-
fying 0 as the base register. Note also that when GPR 0 is used for this
purpose, its contents are not used. Can location 4, 096 be addressed by the
base registers above with their indicated contents?

We have now progressed far enough in our study of base register
addressing to look more deeply into the recipie presented in Chapter 2 for
starting 360 programs. In Chapter 2, each program was prefaced by the
instructions

BALR 11,0
USING *, 11

BALR is the mnemonic for the Branch and Link Register instruction which has
the following format:

BALR RI,R2

This will cause the address of the next location in storage after the BALR to
be placed in register R1 and a branch to the location specified by the contents
of R2. The BALR instruction is one of the RR class of instructions, so called
because its execution involves Register to Register operations. RR instruc-
tions occupy two bytes of storage. As an example of BALR usage, if the
instruction

BALR 10,11

begins in position 10,000, and register 11 coniains the value 19756 then its
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execution will cause the value 10000 + 2 = 10002 to be stored in register 10,
replacing whatever was there previously. The next instruction to be executed
will be the one which starts at location 19756. If the R2 operand is 0, then no
BALR. As an illustration, if the previous example were BALR 11,0, then its
execution would cause the value 10002 to be stored in register 11. The next
instruction executed will be the one starting at 10002, that is, the instruction
immediately after the BALR.

The general format of the USING instruction is

USING  A,R1,R2,R3,R4,R5

where A is an address (an address symbol or an absolute address) and the R's
specify base registers. Their values must be between 0 and 15 and from one
to five base registers may be specified in a single USING instruction. The
base register R1 is assumed by the assembler to contain at execute time the
base address represented by A, R2 through R5 are assumed to contain A +
4096, A + 8192, A + 12288, A + 16384, respectively. There is a major and
important difference between the BALR instruction and the USING instruction.
The BALR can be executed by the computer, the USING supplies information
only to the assembler; it does not appear in the object code produced by the
assembler. In a sense, it is "executed’ by the assembler only. This is
another example where it is important to distinguish between what happens at
assembly time and what happens at execute time. In the light of this distinction,
it may be helpful to the reader to think of the USING as a pseudo instruction, or
as an assembler instruction.

Let us return to the question of the contents of the registers R1 through
R5. Note that the Assembler assumes that these registers will contain certain
addresses at execute time, it will not introduce instructions into the program
to load these values into the base registers; it is up to the programmer to do
this. For the moment, we will discuss a program whose entire length can be
spanned by a single base register. Figre 3-5 shows such a program. We are
assuming that the address of AMOUNT is less than 4096 bytes from BEGIN

START 4096
BEGIN BALR 11,0
USING * 11
ADD AP SUM, AMOUNT
SUM DS P5
AMOUNT DS P5
END BEGIN

Fig. 3-5 Sample program which can be spanned by a single base
register. AMOUNT is less than 4096 bytes from BEGIN.
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The START instruction tells the assembler to locate the first instruction,
BALR, at location 4096. This also initializes the assembler's location counter
to 4096. At execute time, the BALR instruction will load register 11 with the
location of the instruction immediately following, that is, 4098. After the
assembler has processed this instruction, its location counter will read 4098.
The USING instruction, which is not assembled into the object program, tells
the assembler to assume that register 11 will contain the current value (*) of
the location counter, 4098, at execute time. Note that it does not in any way
cause the assembler to load 4096 into register 11. That will be done by the
BALR at execute time. Assume that SUM begins at 8000 and AMOUNT at
8005. When the assembler encounters these names in the program, it will
compute their distances (displacements) from the next lower base position,
here 4098. These displacements are SUM (3002) and AMOUNT (3007). When
the instruction at ADD is assembled, for instance, the assembler will use
GPR 11 as the base register for each operand and displacements of 3002 and
3007 for SUM and AMOUNT, respectively.

Let us now consider a program, such as the one in Fig. 3-6 which
requires more than one base register to span its length. The determination
of how many base registers will be required to span a program is up to the
programmer. He does this on the basis of an estimate of the total storage
requirement of his program (instructions plus data). If he estimates that
between 9000 and 12000 bytes will be needed for a particular program, then
he must allocate three base registers, for example. One might suspect that
this places a heavy burden on the programmer for large programs or even
that the 360 is incapable of addressing more than 15 x 4096 positions. This
is not so because, first, large programs are written as a number of small,
more or less independent, modules and second, if for some reason a program
cannot be segmented conveniently, the contents of base registers may be
stored and reloaded with new or the previous values as needed.* To handle
the multiple base register program, we will need an additional instruction
and a new type of defined constant. The new instruction is the Load Multiple.
Its format is

LM  Rl,R2,ADD

This will cause all the general purpose registers between R1 and R2, in-
clusive, to be loaded starting from storage location ADD and continuing for

as many locations as needed to load the specified registers. If R2 is less
than R1, the registers are loaded from R1 to 15 and then from 0 to R2. Since
each register is 32 bits long, they will be loaded from ADD in multiples of
four bytes. We will also need to define address constants. This is done using

*As additional perspective, note that the coding required to fill the span of a
single base register, approximately 1000 instructions, fills an entire pad of
assembly coding paper.
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START 4096
BALR  *,10 GPR10=4098 WHEN THIS INSTRUCTION IS EXECUTED
USING  *,10,11,12 THIS STATEMENT INFORMS THE ASSEMBLER
THAT GPR10 WILL CONTAIN AT EXECUTIVE TIME * (=4098), AND THAT
GPR11 AND GPR12 WILL CONTAIN * + 4096 AND * +8192--THE
ASSEMBLER WILL NOT LOAD ANY OF THESE VALUES INTO THE GPRS
IT IS UP TO THE PROGRAMMER TO PLACE INSTRUCTIONS IN THE
PROGRAM TO LOAD THESE VALUES
RST  ZAP SUM, CZERO THE COVERAGE OF GPR10 EXTENDS

FROM LOCATION FIRST TO LOCATION FIRST+4095

B BRANCH AROUND ADDRESS DATA
ADD DC A(FIRST +4096), (FIRST + 8192)
*
*
*
*

w
B
2
2

*E*****.

INSTRUCTION IS EXECUTED--THE PRECISE PLACEMENT

OF THIS INSTRUCTION IS ARBITRARY, HOWEVER IT MUST BE
EXECUTED BEFORE ANY OPERAND BEYOND THE COVERAGE
OF GPR10 IS REFERENCED

SUM DS PL5

CZERO DC PL5'0'

* (END OF COVERAGE OF GPR10--THIS LOCATION NEED

* NOT BE NOTED BY THE PROGRAMMER PROVIDED GPR11 AND
* GPR12 HAVE BEEN LOADED BEFORE ANY OPERANDS BEYOND
* THIS POINT ARE REFERENCED)

AREA1 DS PL5

* END OF COVERAGE OF GPR11
AREA 2 DS PL5

AP SUM, AREA1  GPR11 IS BASED FOR AREA 1, GPRI10 IS

AP SUM, AREA2 BASE FOR SUM, GPR12 IS BASE FOR AREA 2
* THE ASSIGNMENT OF BASE REGISTERS ABOVE WILL BE DONE
AUTOMATICALLY BY THE ASSEMBLER WITH THE INFORMATION
* SUPPLIED BY THE USING STATEMENT

¥*

* THIS POINT IS LESS THAN 3x4096 LOCATIONS FROM FIRST
END BEGIN

Fig, 3-6 Program requiring three base registers,
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the A operand for the DC instruction. This is necessary because we wish the
assembler to store in the program, at assembly time, those addresses which

will be loaded at execute time into general purpose registers R1 through R2.
As an example

ADD DC A (FIRST + 4096)
DC A (FIRST + 8192)

will cause the address of FIRST + 4096 to be stored in the four storage loca-
tions (32 bits) starting at location ADD and the address of LOCA + 8192 to be
stored at ADD + 4 through ADD+T.

The major point of interest in the example program in Fig. 3-6 is the
method of loading multiple registers with their base locations. The first
register can be loaded by using a BALR instruction just prior to the origin of
that base register's coverage, location FIRST. However, for the additional
base registers (we are assuming a total of three), instructions must be in-
cluded to load them with addresses equal to FIRST + 4096 and FIRST + 8192.
These addresses can be stored as constants by using DC instructions with A
type operands, A (FIRST + 4096) and A (FIRST + 8192). The two words con-
taining these addresses will be located from ADD through ADD+% in Fig. 3-6.
The Load Multiple instruction at location FIRST will load these addresses
into registers 10 and 11. The branch to GO instruction is included to allow the
program to branch around the address data. This data need not be stored in
such close proximity to the USING statement. However, it must be included
somewhere within the span of the first base register since, when the LM
instruction which references it is executed, only the first base register con-
tains a base location. For the sake of convenience and clarity, we have
located the additional base address data close to the beginning of the program
and we recommend this approach to the reader for the same reasons.

During the assembly of the program in Fig. 3-6, the assembler will
indicate next to each symbol in its symbol table which base register covers
that symbol as well as calculating the displacement of the symbols' location
from the origin point. As examples, AREA 1 would be covered by base
register 11 and AREA 2 by base register 12. As a result, when a symbol
appears as an operand, the assembler has sufficient information about the
symbol to generate its address.

Exercise 3-6 In the following program consider how the B BEGIN instruction
could be handled by the assembler. Specifically, consider the base and dis-
placement assignment
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START 256
BEGIN BALR 11,0
USING  *, 11

B BEGIN

END BEGIN

3.5 Storage Allocation

In Chap. 2 we discussed storage allocation and constant definition for
decimal and character fields. The techniques are similar for binary fields
but with the added requirement that binary fields must be aligned on their
proper storage boundaries. In Chapter 2, the 360 was represented as a com-
puter whose storage is organized by byte. That is, grouped into individually
addressable units of eight bits (and a parity bit) each. In addition to the byte
which is the basic building block of information, the 360 can operate on data
formats grouped in consecutive two-byte units (half-words), consecutive four-
byte units (words) and consecutive eight-byte units (double-words). Fig. 3-7
shows these data formats schematically. Byte fields are used for character
and hexadecimal information, half and full-words for binary numbers and
double-words for control information on input-output operations. Both full
and double-words can also be used for floating-point numbers which are re-
quired by many mathematical computations. The subject of floating-point
will be covered in Chapter 6.

The location of each of these units is given by the address of its left-
most byte. Each must be located on an integral boundary for that unit of in-
formation. An integral boundary is defined as an address which is an integral
multiple of the unit's length. As examples, the addresses 0, 8, 16, ... are
valid locations for double-words (8 bytes), 0, 4, 8, 12, 16, ... are valid for
full-words (4 bytes), whereas 0, 2, 4, 6, 8, 10, 12, 14, 16, ... are valid
for half-words (2 bytes). Byte oriented information, such as a field of alpha-
betic characters, may of course be located at any address, even or odd.

The necessity for alignment on integral boundaries is imposed by the
hardware requirements of the higher performance models of the 360. As an
illustration, consider binary arithmetic which is performed on fixed length
quantities, usually full-words. The 360 Model 50 accesses its core storage
32 bits at a time, from integral full-word boundaries. As a result, in one
storage cycle, a full-word can be brought to the arithmetic unit. If binary
data were not located on integral boundaries, two storage cycles would be
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Byte Byte Byte Byte Byte Byte Byte Byte

0 T0 TO0 7T0 70 70 70 70 7
Half-word Half-word Half-word Half-word
0 15 0 15 0 15 0 15
(Full) Word (Full) Word
0 31 0 31

Double-word

Fig. 3- 7 360 Data Formats. Bit numbers are
shown below each format. Parity bits,
one for each group of eight bits, are
not shown.

required thereby slowing down the operation by up to a factor of two. As a
result of requiring alignment, compatibility between the various models of
the 360 is preserved as well as giving the user the full performance inherent
in a given model. Further, no model of the 360 will execute an instruction
which references improperly aligned data.

We will next discuss how to reserve storage and define constants for the
various information formats. To reserve storage in units of half-words,
words or double-words, the DS statement is used with operands of H, F and
D. As examples, the stateménts

TABL1 DS 13D
TABL2 DS 15F
TABL3 DS 200H

will reserve 13 double-words with TABL1 as the address of the first double
word, 15 words starting at TABL2 and 200 half-words starting at TABL3.
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The assembler will automatically align half-word, full-word and double-word
fields on their proper boundaries.

Exercise 3-7 In the above example, what would be the total storage require-
ments if the DS statements were written in the order TABL2, TABLI1, TABL3?

In addition to the DS statement, s
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ORG r

where r is a relocatable expression whose value is assumed by the location
counter. The ORG instruction should not be labeled. As an example, the
statements

DS 50D

DS 200H
can be replaced by

DS 0D

ORG *+800

since the two storage areas occupy 800 bytes and their defining statements
cause the location counter to be advanced 800 positions after it is moved to a
double word boundary, if necessary. The zero operand in the DS reserves no
storage but does move the assembier's iocation counter to a double-word
boundary if it is not at a location whose address is a multiple of eight. If it is
required to label the storage reserved by the ORG, the DS 0D statement can be
labeled.

Binary constants are written as follows

CONA DC H-157
CONB DC F 209572

The decimal number following the DC is converted into a binary half-word (H)
or full-word(F). If the number is unsigned or has a plus sign, it will be treated
as a positive number. Numbers preceded by a minus sign will be converted to
their two's complement representation. The range of numbers which can be
accommodated by a half-word is 32, 767 to -32, 768 whereas for a full word,

the range is 2, 147, 483, 647 to -2, 147,483, 648. All constants are stored
right-justified and padded out with zeros to the left. Multiple constants can be
defined in a single statement such as

CONTBL DC F -3,612,-711,4051

which will give four constants, each of four bytes, with the symbol CONTBL
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as the address of the leftmost byte of the constant -3. Since commas are
used as separators, a constant may not be written with commas. Fractional
binary data introduces a new problem. As we discussed in Sec. 3.2, a deci-
mal fraction often cannot be represented in a finite number of bits. As an
example, 37.613 becomes in binary, 100101.100111000111..., the sequence
000111 repeating indefinitely. The more places to the right of the decimal
point which are retained, the more accurate is the decimal to binary conver-
sion. However, compromises have to be made since the total storage of the
computer poses a limitation on conversion accuracy, if not the more immedi-
ate restriction of a 32-bit word size. Since the binary arithmetic instruction
set deals with whole number data only, fractions must be converted to whole
numbers by shifting them to the left. The number of places shifted left equals
the number of fractional positions we desire to retain. As an example, to
retain 12 binary places of the fraction 37. 613, we write FS12 37. 613 where
S12 is the scale factor. This will generate the constant 100101100111000111
which will be right justified and padded to the left with zeros. It is understood
that the decimal point lies between the 12th and the 13th bit positions. If
scaling is not specified for fractional constants, the fractional part will be
truncated and the remainder of the constant treated as a whole number. If
bits are lost because of scaling, rounding will occur in the leftmost bit of the
lost position where a 1 will be added. The carry, if any, will be added to the

SR R, P uyd <

rightmost bit of the saved portion. As an example, FS11'37.613' would give
100101. 10011100011 plus a carry of 1 into the low order position since the
12th bit, which is lost, is 1. The result is then 100101.10011100100. A dupli-
cation factor may be used to repeat a given constant the number of times
specified. As an example

TBLZER DC 100 F'0'
will generate a 100-word field of zeros starting at word TBLZER.
Hexadecimal constants are written as follows
HEXCON DC X'123FA4C'
The constant may comprise up to 32 hex-digits chosen from the hex-digits,
0123456789 ABCDE F. Since each hex-digit requires four bits,
every pair of hex-digits requires one byte. If the number of digits are odd,
the field will be padded with a zero in the leftmost byte. The constant above
would give 01 2 3 F A 4 C, for example. Boundary alignment is not per-
formed but may be forced, if required, by the following device. The statements
DS OF
BITPAT DC X'OOFFOOFF'

will cause BITPAT (o be aligned al a full-word boundary and the second and
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fourth bytes of the word at BITPAT set to ones. The alignment is forced by
the storage definition statement which calls for zero duplication of a full word.
The assembler interprets this by advancing the location counter from zero to
up to three bytes, as required, to the next full-word boundary. Hali-word or
double-word alignment may also be forced in this manner. A duplication
factor and explicit length may be used for hexadecimal constants as in the
following example

The length code specifies explicitly the length of the field in bytes. When the
explicit length is greater than the implicit length specified by the constant
itself, the constant is padded to the left with zeros. As a result, CONHEX
will consist of five repetitions of the three-byte field, 000FFF. It is not man-
datory that the duplication factor and explicit length accompany each other in
a hexadecimal constant definition.

In addition to hexadecimal constants, there is another way of specifying
bit oriented data by using the bit constant, B. As examples

BITCON DC B'10101010'
B1 DC BL1'101'
B2 DC BL2'101'

Here, BITCON will occupy one byte of storage in the bit configuration shown;
B1 will also occupy one byte and will be padded to the left with five zero bits;
B2 will occupy two bytes, the first byte will contain eight zero bits and the
second, the bit pattern 00000101.

3-4 Given a section of a program, labeled PROG1 which consists of instruc-
tions and data areas, reserve an equal amount of storage immediately adjacent
and label it PROG2.

Solution The obvious (and hardest) way is to count the number of instructions,
taking into account their varying lengths, and add their storage requirements
to the storage reserved for data and then write a DS reserving this many

bytes. An easier way is

PROGI --

PROG2 EQU *
ORG * + PROG2 - PROG 1
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To veryify this, assume PROGI has the address value 10000 and requires
1016 bytes. Therefore, after the last statement in the PROGI section has
been processed, the location counter (*) will read 11016 which also becomes
the address value of PROG2. The ORG instruction will then advance the
location counter another 1016 positions thereby reserving that amount of
storage for PROG2.

In Sec. 3.4, we introduced address constants, or more specifically,
the A-type address constant. Its general format is

s DC A(r)

Where s is the symbolic name of the constant r is the relocatable expression
whose address value is stored in the four bytes beginning at s. The Y-type
address constant is similar to the A-type except that only two bytes are used.
If it is known that the address constants used in a program are always less
than 65535, then the Y-type address constant can be used to save storage.

In addition to these two address constant types, there is also the S-type. It
is similar in every respect to the Y-type except that its two bytes are used to
store an address in base and displacement form: the first four bits are used
for the base and the remaining 12 for the displacement. As examples, if
LOCA has the address vaiue 16252 and is spanned by base register 10 with a
base point of 16002, the statement

STYPE DC S(LOCA)

will create a two-byte constant at location STYPE the first four bits of which
are 1010 (= 10) and the last 12, 000011111010 (=250).

3.6 Address Symbols

In Chapter 2, when the START statement was introduced, there was the
tacit assumption that its operand gave the precise location in storage where
the program would be loaded into. That is,

PROGA START 4096

would seem to indicate that the program named PROGA will be assembled
relative to 4096, and loaded into storage beginning at location 4096. That is,
an instruction 50 bytes from the beginning of the program would be assigned
address 4096 + 50 = 4146 by the assembler, and will be loaded into storage
starting at 4146. This is an over-simplification. It is a rare circumstance
when a programmer wants to control the load point of his program. This is
so because he rarely has the entire core storage to himself. As we discussed
in Sec. 1.3, a number of functions which are required frequently by the pro-
graminer are provided by the computer's operating system. These inciude
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routines to control the operation of input-output devices, transmit messages
to the computer operator, load the program and process error conditions
such as arithmetic overflows. The programs which handle these functions
usually reside in the lower positions of core storage. As a-result, problem
programs can be loaded only above these system functions. We still do not
have a definite fixed point at which to load programs, however. The boundary
between system programs and problem programs is not rigidly fixed. As
systems functions are added or deleted, the boundary will change. As an

example, the operator's console may be changed from a typewriter to a
graphic display device which will require a larger service program than the
typewriter. The boundary would then move up and all programs which were
assembled relative to the old boundary would have to be modified in some
fashion to take this into account. This could be done by reassembling all user
programs relative to the new origin which may take a respectable amount of
computer time. This is not a good solution, however, because the boundary
can and does undergo slight but frequent fluctuations as errors and ineffi-
ciencies in the systems programs are fixed and patched. The alternative is
to arrange the load program so that it can locate, or relocate, a program at
an arbitrary point in core storage; this load program is termed a relocatable
loader. Any relocatable loader is essentially a program which does simple
arithmetic on all instruction addresses in the programs it loads. Figure 3-8
shows a branch instruction in a program assembled relative to location 4096.
If the program is loaded starting at location 4896, 800 positions from the
starting location assumed by the assembler,

4096 —
— 4896 —
B 6000 _
— "B 6800
6000 “'
6800 —
PROGRAM A
ASSEMBLED PROGRAM A
RELATIVE TO 4096 ~ RELOCATED TO 4896

Fig. 3-8 Program Relocation
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every location in the program including the one referenced by the illustrated
branch will also be 800 positions removed from its original location. As a
result, to ensure correct operation of the relocated program, all operand
addresses must be increased by 800. Specifically, the B 6000 instruction
mustbe changed by the relocatable loader to B 6800. Given the architecture

of the 360, these operand relocations are easily accomplished. In the previous
example, if GPR 11 contained 4096, then address 6000 would be generated as
base register 11 with a displacement of 6000-4096, or 1904. The displace-
ment gives the difference between the location of an operand and the nearest
base point below the operand. This difference is the same for any choice of
starting location since moving a contiguous program around in core storage
does not change the distance between any two locations in the program. As a
result, the displacement does not have to be modified. Further, if the pro-
gram requires less than 4096 contiguous bytes for its instructions and data,

and if GPR 11 is loaded by an instruction such as BALR 11,0, no change at

all needs to be made to the program to relocate it. In the more likely case of
programs larger than 4096 bytes, which then require more than one base
register, only the address constants defining the base points for those registers
defined in a USING statement need to be modified. These relocatable addresses

or relative addresses are identified by special coding punches in the binary
object deck for the particular program. The modification is nothing more than
addition of a reiocation constant to each relocatabie address; the relocation
constant is defined as the difference between the starting location specified by
a program's START statement and the actual load point. In the previous
example, the relocation constant is 4896 -4096 = 800.

Not all addresses in a program require relocation. The ones which do
‘not are termed absolute addresses. An absolute address is one which does not
change when the program is relocated. The operand of the instruction B 7004
is an absolute address, for instance. It is also possible to have absolute
symbols. Consider the following coding

B CKPT

CKPT EQU 7004

Here CKPT is an absolute symbol because it has been assigned an absolute
value in the EQU statement. Symbols which are not absolute are termed
relative symbols. Their address values will change with program relocation.
In Chapter 2, we discussed relative addressing involving address symbols such
as ENTRY + 8, LOCA - 2. These symbols can be referred to an expressions,
since they comprise symbols (relative and absolute) and operators, +, -, and
* respectively. The rules for constructing address expressions are: No more
than three symbols may appear in an expression and each symbol must be
separated by only one operator. The expression, ENTRY + 2 - FIELD + TEST
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is invalid (more than three symbols) and the expression ** 2+A is also invalid
(two operators in sequence, **).

AT~ + c " +
Because relocation removes the direct correspondence between the

address assigned to a symbol and its location in core storage at execute time,

it is more appropriate to speak of the address value of a symbol, rather than
its address. The address value will be defined as the relative address assigned
to a symbol by the assembler.

In addition to the address symbols we have been using so far, hexadeci-
mal and character self-defining values may be used. A hexadecimal self-
defining value comprises from one to six hex digits enclosed in single quota-
tion marks and preceded by an X. Following are examples: X 'A15',

X '123456', X '"ABCDEF'. A character seli-defining value is a smgle charac- -
ter, enclosed in single quotation marks and preceded by the letter C; as
examples: C'A', C '+'. In addition, the decimal numbers we have been
using as absolute symbols can be considered as decimal self-defining values.
The self-defining values in an expression are first converted to their binary
equivalents and the indicated operations are then carried out. As an example,
LOCA + 196, LOCA + X 'C4' and LOCA + C 'D' are all equivalent, since 196
is, in binary, 11000100, X 'C 4' is 11000100 (C = 11Q0 and 4 = 0100), and

C 'D' has the bit pattern 11000100. The use of hexadecimal and character
self-defining values in address arithmetic is rather bizarre since the same
result can be had by using decimal values. However, they are useful with the
immediate instructions which will be discussed in Chapter 5.

Just as symbols are either absolute or relocatable, expressions are
absolute if they contain only absolute symbols or self-defining values or if they
contain the difference of relative symbols. All other expressions are reloca-
table. As examples, with LOCA an absolute symbol and TEST, BETA and

AREA relative, following are absolute and relocatable expressions:
ABSOLUTE RELOCATABLE
X'C4A'+5+C '+ TEST-BETA + AREA
TEST-AREA +5 BETA + LOCA
LOCA + 4096 TEST + 4000

Literals In Sec. 3.5, we discussed how data constants can be defined and
referenced by use of the DC statement. Constants may also be defined and re-
ferenced by literally using the constant itself as an operand. Literal operands
are prefaced by an = sign and are defined in the same way as DC operands ex-
cept that S-type address constants may not be specified. As an example, the
following code
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AP SUM, =P '635'
gives the same result as
AP SUM, CON635

CON635 DC P '635'

When the assembler encounters a literal, it sets up the equivalent con-
stant in an area of storage called the literal pool which it will add to the pro-
blem program at the end of assembly. The address of the constant in the
literal pool is then used as an operand. Multiple usage of the small literal
in a program will not cause more than one entry for the constant in the
literal pool. Following are additional examples of literals

MVC  OUTPUT(18), =3CL6'TOTAL"
AH REGI, =HS8'11. 62"

A 10, =F'69785'

LH 2, =X"4F"

3.7 Instruction Formats

The 360's instructions are classified into five formats

RR Format: Register-to-register

. RS Format: Register-to-storage

RX Format: Register-to-storage, indexed
SS Format: Storage-to-storage

SI Format: Storage and immediate-operand

o1 0o 1o

The format codes indicate the operation to be performed. RR denotes re-
gister to register operations such as comparing the contents of two GPR; RS,
a register to storage, or storage to register operation such as Load Multiple;
RX, register-to-storage, indexed such as adding four bytes in storage to a
GPR where the indexing feature (Chapter 4) allows easy modification of the
address of the data word; SS, storage-to-storage operations such as the
decimal instructions of Chapter 2; and SI, storage and immediate-operand
operations in which the data is contained within the instruction itself (im
(immediate-operand). Figure 3-9 illustrates the bit organization of these
instruction types. Note that RR instructions require two bytes, SS instruc-
tions require six bytes, and all others require four bytes. A knowledge of
instruction lengths is important and the reader should keep the above facts in
mind as additional instructions are introduced in this book.
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FIRST HALF WORD 1 SECOND HALF WORD 2 THIRD HALF WORD 3
BYTE1 , BYTE3
1
| i . i
| REGISTER  REGISTER 1 I
OPERAND! OPERAND 2 1 |
A A
OF CCOE | Ry | Rp | RR FORMAT : !
5 [ ETIERNE 1 !
1
REGISTER i ADDRESS I }
OPERAND 1 ! OPERAND 2 | \
OP CODE LR, [ X B, ] D, RX FORMAT |
6 715 112 15,16 1320 3 |
1 1
! REGISTER  REGISTER ADDRESS [ :
| OPERAND! OPERAND3 OPERAND 2
e i
opcobE | Ry [ Ry | By | D, RS FORMAT |
3 78 11z 1516 1920 31 |
| IMMEDIATE ! ADDRESS !
! oPERAND ! OPERAND 1 |
oP CODE | [ 8, D, S| FORMAT :
o 78 15,16 1920 3 |
1 |
i [ |
i
i | LENGTH ADDRESS ADDRESS |
OPERAND1 OPERAND 2 OPERAND 1 OPERAND 2 |
A CERAL |
opcopE | L Ly B, D, B, | D, | ss FORMAT
0 78 112 1516 1920 31 37

Fig. 3-9 Bit organization of the five instruction formats of the 360

Only occasionally does the programmer need to concern himself with
the details of the bit organization of an instruction. Of much greater signi-
ficance are the options allowed by the assembler in writing instructions. To
describe these options, we will use the following designations: ’

R1, R2, R3, X2, Bl, B2 -- An absolute symbol or number
denoting one of the 16 GPR being used as a binary register
(R), a base register (B) or an index register (X).

S1, S2 -- A relocatable symbol or expression whose base
register and displacement are implied by virtue of a USING
statement.

D1, D2 -- An absolute symbol, number, or expression denoting
an operand's displacement field.

L, L1, L2 -- An absolute symbol or number denoting the explicit
length of an operand.

I2 -- Immediate data, an absolute symbol or number giving eight
bits of data to be used in an immediate instruction.

These designations can be used to relate the assembler formats to the actual
bit configuration of an instruction, if required by referring to Fig. 3-9.
These symbols will be used when instruction definitions are introduced sub-
sequently. Following are the assembly language formats with examples for
the indicated class of instruction (OP indicates the operation mnemonic).
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An asterisk indicates the most frequently used option:

Register-to-register

*OP  RI, R2 BALR 5, 11

Register-to-storage

*OP  RI, R3, S2 LM 1, 5, AREA
OP  RI1, R3, D2(B2) LM 2, 12, 3094(14)

Register-to-storage, indexed

no indexing *OP RI, S2
indexing *OP RI1, S2(X2)
indexing OP RI, D2(X2, B2)

no indexing OP RI1, D2 (0,B2)
indexing OP RI1, D2(X2)

15, WORD

15, WORD(4)
15, 2048(4, 12)
15, 2048(0, 12)
15, 2048(4)

g

Notice that if an explicit base is specified with no indexing, the index register

muct ha writfon ng a zann
UiwSe W Wil as a 4T8TC.

Storage-to-storage

*OP  S1,S2 AP TOTAL,AMT
OP  si(L1),S2(L2) AP T(10), A(7)
OP Di(L1,B1),D2(L2,B2) AP  2012(10,4), 1046(17,4)
OP Di(L, B1), D2(B2) MVC A(14), AREA

Storage and immediate-operand

*OP 8,12 MVI CHAR, C'*'
OP D2(B2), I2 MVI 402(12), ASTRK

While there are some minor departures from the above illustrations (e. g.,
shift instructions, which are RS, do not use an R3 operand), they serve to
convey the various assembler options for the majority of 360 instructions.

The EQU statement which was introduced in Chapter 2 has wider
possibilities which we illustrate below:

ASTRK EQU C'*'
REGI1 EQU 1
ADDR EQU 4036
XREG EQU 13
REG10 EQU 10
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these absolute symbols may appear in instructions such as:

MVI CHAR, ASTRK
A REGI, ARRAY(XREG

LM REGI,REGIO, ADDR

Note that the information supplied by the EQU operands is used by the assem-
bler only and does not generate any data into the object program. The usage

£ THANTT 1 . IR 1 . O 11 ivipYand A CIPTVTINEF Y % I RV Y. )
NY RIGii 7N OONNTOS TN ANSTYaoTOYy & N Fing SUMTINGG O I'Kl& HaS NilITe 9 mMITraranyt
Vi AV LU MTLIVLT LT Liliil aaLuTa MYy LT SYiiivUL L3 L aAl LGS uilT 4 KuaTa T

effect from the statement
ASTRK1 DC CL1'¥

Whenever the symbol ASTRKI1 appears in an instruction, the assembler will
substitute the address of the character * whereas when ASTRK appears, the
actual character itself will be substituted into the instruction. The latter is
desired result in the Move Immediate instruction which moves the 8-bit
character stored in its I-field to the address specified by its first operand.

3.8 Branching

In the discussion on conditional branch instructions in Chapter 2,
several different mnemonic codes were introduced: BH, BL, BE, BZ, and so
forth. These mnemonics are conveniences for the programmer: In fact,
there are only two conditional branch instructions in the 360; the various
possible results of the comparison or arithmetic operation are accommodated
by different bit configurations in a given field within these two branch instruc-
tions. Their assembly language formatsl are

BC Mi,D2(X2,B2) (RX)

BCR MI, R2 (RR)

For these two instructions, M1 is a four-bit field in what would normally be
termed the R1 field. M1 is compared, as will be explained shortly, with the

1prom this point forward, when instructions are defined, we will show the
full operand so that the instruction can be completely specified. This is done
with the tacit assumption that the programmer will usually prefer to let the
assembler assign bases and displacements. The instruction class will also
be shown in parentheses to the left of the instruction.
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condition code. If a match is made, a branch is made to either the second
operand (RX) or to the contents of the second operand (RR). Let us first dis-
cuss the condition code. It is set by compare instructions, certain register
load and shift instructions, addition or subtraction type instructions and input-
output operations and remains set until an instruction is executed which
changes it. Testing the condition code does not change it. The condition
code comprises bits 34-35 of a very important 64-bit register called the
Program Status Word. This register has a great many uses which will be
described in successive chapters. Since the condition code has two bits,
there are four possible settings 00, 01, 10 and 11 or 0, 1, 2, and 3, respec-
tively. These settings are matched with the four bits of M1 (bits 8-11 of
either instruction) as follows

CC Setting M Bit

Binary Decimal
00 0 8

01 1 9
10 2 10
11 3 11

As an illustration, if the M field was 0100 (bit 9 = 1) and the condition code
was 01, a match would be made and the branch taken. In fact, M could be
0111 and the branch would still be taken since this implies branch on condition
code setting 1 or 2 or 3. As a specific illustration of how this applied, refer
to Fig. 3-10 which illustrates the various settings of the condition code for
the Compare instruction.

both operands equal

first operand low

first operand high

- I_ not used
3

Condition code 0 1 2
Corresponding
bits of M field 8 9 10 11

<

Fig. 3-10 Condition Code for Compare Instruction
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To branch to GO on first opérand high, we would write

BC 2, GO

since the match we are seeking requires a 1 in bit position 10, that is,

M = 0010 or 2. To spare the programmer the inconvenience of remembering
the different M values, the assembler will decode the instruction

™

BH GO

into its equivalent above. Since BH is not a part of the 360 instruction set, it
is termed an extended mnemonic code. Figure 3-11 shows a complete table
of extended mnemonic codes. As a further illustration, if we wished to detect
the condition not equal, M would be 0111, or 7. The instruction for this is

BC 7, NOTEQL

or in its extended mnemonic equivalent

BNE NOTEQL
EXTENDED CODE | OPERAND MEANING MACHINE INSTRUCTION
B D2 (X2, B2) Branch Unconditional BC 15, D2 (X2, B2)
BR R2 Branch Unconditional (RR Format) BCR 15, R2
NOP D2 (X2, B2) No Operation BC 0, D2 (X2, B2)
NOPR R2 No Operation (RR Format) BCR O, R2
USED AFTER COMPARE |NSTRUCT|ONS
BH D2 (X2, B2) Branch on High BC 2, D2 (X2, B2)
BL D2 (X2, B2) Branch on Low BC 4, D2 (X2, B2)
BE D2 (X2, B2) Branch on Equal BC 8, D2 (X2, B2)
BNH D2 (X2, B2) Branch on Not High BC 13, D2 (X2, B2)
BNL D2 (X2, B2) Branch on Not Low BC 11, D2 (X2, B2)
BNE D2 (X2, B2) Branch on Not Equal BC 7, D2 (X2, B2)
USED AFTER ARITHMETIC INSTRUCTIONS
BO D2 (X2, B2) Branch on Overflow BC 1, D2 (X2, B2)
BP D2 (X2, B2) Branch on Plus BC 2, D2 (X2, B2)
BM D2 (X2, B2) Branch on Minus BC 4, D2 (X2, B2)
BZ D2 (X2, B2) Branch on Zero BC 8, D2 (X2, B2)
USED AFTER TEST UNDER MASK INSTRUCTION
BO D2 (X2, B2) Branch if.Ones BC 1, D2 (X2, B2)
BM D2 (X2, B2) Branch if Mixed BC 4, D2 (X2, B2)
BZ D2 (X2, B2) Branch if Zeros BC 8, D2 (X2, B2)

Fig. 3-11 Extended Mnemonic Codes
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The Branch Conditional instruction can be used to generate an uncon-
ditional branch, that is, a branch which will always be taken by using an M of
1111 so that a match will be made for any setting of the condition code. The
unconditional branch instruction we have been using in the form B UNCON is
actually the extended nmemonic code for BC 15, UNCON. In a similar fashion,
a No Operation can be generated by using an M of 0000. Execution of this
instruction will have no effect on the sequential execution of the program; when
it is encountered, the branch cannot be taken and the computer proceeds to the
following instruction. There are occasions when it is required to leave two or
four byte units of space in the instruction stream; the extended instructions

NOP  D2(B2,X2) (RSX)

NOPR R2 (RR)

accomplish this. They are equivalent to BC 0, D2(B2, X2) and BCR 0, R2,
respectively. Before leaving the subject of branch instructions, it is of
interest to note how the 360 actually performs branches and normal sequential
processing. One of the functions of the Program Status Word (PSW) is to
indicate the location of the current instruction as well as its length (i. e. 2, 4,
or 6 bytes). When the current instruction is completed, if it is not a branch,
its length is added to the instruction location to give the location of the next
instruction in sequence. If the current instruction is a branch, and the branch
condition is met, the branch address will be entered into the PSW. In this way,
the next instruction to be processed will be taken from the storage location
specified by the branch address.

In the discussion of decimal arithmetic, we mentioned overflows which
occur when a sum or difference is too large for the storage space allotted to
it. Overflow will set the condition code and can be detected by inserting the
extended instruction BO after each arithmetic instruction which may cause an
overflow. However, since arithmetic instructions occur so frequently, this
technique will require a significant number of additional instructions in the
program. The situation could almost be handled automatically since similar
action would be taken on every overflow. The 360 does provide for automatic
handling of overflows through its interrupt system. There are a number of
conditions which can give rise to an interrupt but at this point, we will restrict
ourselves to the class of interrupts called program interruptions. These in-
clude incorrect operation codes, incorrectly aligned operands as well as over-
flows. When an interrupt occurs, the program status word (PSW) is auto-
matically stored in a specific location in lower storage. For a program inter-
ruption, the location is bytes 48 through 55. Immediately after the current
PSW is stored in which is called the old PSW location another double word is
automatically loaded into the PSW register from a location which depends on
the interrupt class. For program interruptions, this location is bytes 104
through 111. Figure 3-12 gives a schematic of the process. The PSW contains
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an Interruption code in bits 16-31 which identifies the interruption cause.

T . PSW

e 1

48 | '/ | owpesw/ (3)

CORE

el

104 | A(OFLO ROUTINE)| NEW PSW

STORAGE
/ OVERFLOW ROUTINE

@ USER PROGRAM

\ :<-OVERFLOW @

Fig. 3-12 Overflow Interruption. (The
encircled numbers indicate the
sequence of events. )

Note that since the PSW contains the address of the current instruction, if the
new PSW location contains the address of the interrupt handling routine, when it
loaded the effect will be a branch to the interrupt handling routine. Usually
three possible ways of handling interrupts are provided to the user of one of the
360 operating systems. These are: Abort -- the job is terminated and the
operator is informed of the reason via console type-out; Dump and Abort --
The contents of all GPR, the old PSW, various tables used by the operating
system, and the entire program are printed and the job is then terminated;
User Option -- The user may supply the address of a subroutine which will be
used whenever program interruptions occur. The choice between the three is
determined by a control card which is interrogated at load time -- more about
this in Chap 12.
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3.9 Binary Arithmetic Instructions

As we have mentioned previously, the 360 has instructions for con-
verting numbers from binary to decimal and from decimal to binary. The
formats of these instructions are

CVB  RI,D2(X2,B2) (RX)

CVD  R1,D2(X2,B2) (RX)

for converting to binary (CVB) and for converting to decimal (CVD), res-
pectively. The CVB operation converts to binary a packed decimal number
occupying a double-word in storage. The result is placed in register RI.
Notice that, whereas a double-word used for packed decimal data allows 15
decimal digits plus a sign, a 32-bit register can accommodate only numbers
in the range 2, 147,483, 647 to -2, 147,483, 648 so that onlynine plus digits can
be converted to binary by a single CVB instruction. Negative decimal num-
bers are converted to their two's complement binary equivalents. The CVD
operation performs the reverse operation by converting the (binary) number
in R2 to a decimal number and storing the results in a double word in storage.
These two instructions give us the capability of converting decimal input into
binary values for computer processing and then converting the results back to
decimal for subsequent printing.

As we have mentioned previously, one of the major advantages of binary
computation is the time saved over decimal computation. Of course, this must
be balanced against the binary/decimal conversions required. Table 3-2 shows
comparative times for the 360 models 30,40, and 50 in microseconds (mil-
lionths of a second abbreviated as us. )

Qgeration @ g_O _5_9
CVB 250 60 28
CVD 220 64 30
AP (9 digits) 100 61 35
A (binary word) 40 12 4

Table 3-2 Approximate, Average Operation Times
for 360 Models 30, 40, 50 in Microseconds (us.)

As an illustration, suppose a particular calculation on the 360 Model 30
involves ten additions followed by printing of two numbers. If the data file is
in binary, the additions will take 10 x 40 = 400 us plus two conversions to
decimal, or 400 + 2 X 220 = 840us. If the file is in decimal format, no
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conversions are required and so the time is 10 x 100 = 1000 us, so that in this
instance, binary arithmetic is faster by 160 us = . 00016 sec. Naturally, it
will take a good many repetitions of this calculation for the time saving to be
noticeable; but then, this is what computers are for.

Once the data is converted to binary, arithmetic operations will be per-
formed in the 16 GPR. A variety of instructions are provided for loading
these registers. The basic ones are Load (L), Load Register (LR) and Load

Half-word {LH). Their formats are

L R1, D2(X2, B2) (RX)
LR  RI,R2 (RR)
LH  RI,D2(X2,B2) (RX)

The Load instructions loads the full word at its second operand address into
R1, Load Half-word loads a half-word into the low order 16 bits of R1 and pro-
pagates the sign through the high order 16 bits. Load Register loads R1 with
the contents of R2. As examples

L RA 32-BIT WORD
L 10, =A(CON+4096) 32-BIT ADDRESS CONSTANT
LH 2,B 16-BIT HALF-WORD
LR 11, R2 32-BIT WORD
A DS 1F
B DS 1H
R EQU 8
R2 EQU 2

Additional load instructions are provided for testing and changing the signs of
data in registers. Load Complement Register (LCR, Load Positive Register
(LPR) Load Negative Register (LNR), and Load and Test Register (LTR).
Their formats are

LCR  RI,R2 (RR)
LPR  RI,R2 (RR)
LNR  RI,R2 (RR)

LTR R1,R2 (RR)
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LCR moves into R1 the complement of the number is in R2, that is, effec-
tively changes the sign; LPR takes the number in R2, makes it positive and
stores the result in RI; LTR moves the number in R2 into R1 and sets the
condition code according to the sign (plus, zero, negative) of the number. In
all of these instructions, R1 and R2 may reference the same GPR.

Worked Example

3-4
L  2,=F'10' R2 CONTAINS + 10
LH 4, MFIVE R4 CONTAINS -5
LCR 3,2 R3  CONTAINS -10
LPR 5,4 R5  CONTAINS +5
LNR 6,5 R6  CONTAINS -5
LNR 7,6 R7  CONTAINS -5
TEST LTR 17,7 CONDITION CODE SET NEGATIVE
BP TESTI
BM TEST2 THIS BRANCH WILL BE TAKEN
BZ TEST3
MFIVE DC H'-5' COULD BE DEFINED AS LITERAL

Note that the 16 high order bits of GPR4 will be filled with 1's since MFIVE is
negative. Note also the use of LTR at TEST to set the condition code based
on the contents of GPRT.

Storing the contents of registers in core storage is the reverse opera-
tion of loading. The following store instructions are provided:

ST R1, D2(X2, B2) (RX)

STH R1, D2(X2, B2) (RX)

The Store instruction (ST) stores all 32 bits of register R1 at the word speci-
fied by the second operand; the Store Half-word instruction stores the low
order 16 bits of R1 into the half-word at the second operand location. Both of
these operations leave the contents of R1 unchanged.

For completeness, we will review the Load Multiple (LM) instruction
introduced in Sec. 3.4 and describe its reverse operation, Store Multiple
(STM™).

LM R1, R2, D2(B2) (RS)

STM R1, R2, D2(B2) (RS)
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The set of registers started with R1 and ending with R2 are either loaded
from (LM) or Stored at (STM) the location specified by the second operand.
The registers are operated on in ascending order, starting with R1 and ending
with R2, wrapping around 0 if R2 is less than R1. As examples:

LM 8,11, ACON
STM 12,1, SAVER

ACON DC A(GO-4096), A(60+8192), A(GO+12288), A(GO+16384)
SAVER DS 6F

The STM will store GPR 12, 13, 14, 15, 0, 1, in that order, at locations
SAVER through SAVER +23.

The operations of addition and subtraction are similar enough to treat
them together. In addition, the second operand is added to the first and the
sum replaces the first operand. Half-word operands are effectively expanded
to full-words prior to being added to a register. Subtraction operations sub-
tract the second operand from the first by complementing the first operand;
the difference, replaces the first addition.

The condition code is set to distinguish positive, negative, zero or an
overflow result. Positive overflows give a negative result and negative over-
flows give a positive result as we discussed in the section on binary arithmetic.
For both classes of operations, the second operand is unchanged. The various
instructions follow with half-word operations indicated by an H in the program
code mnemonic, A indicates addition, S, subtraction and R, a register-to-
register operation.

A R1, D2(X2, B2) S R1,D2(X2, B2) (RX)
AR  Ri1,R2 SR R1,R2 (RR)
RH  Ri1,D2(X2, B2) SH  RI1,D2(X2,B2) (RX)
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Worked Example

3-5

TEN DC  F'10'

FIVE DC H'S'

START L 2, TEN R2 = 10
LH 3,FIVE R3=5
LNR 3,3 R3 = -5
AR 2,3 R2 =10-5 =5, R3 = -5
LR 4,2 R4 = 10,R2 = 10
SR 4,3 R4 = 10-(-5) = 15, R3 = -5
AH 4,FIVE R4=15+5=20
S 4, TEN R4 =20 - 10 = 10
BP  PLUS THIS BRANCH WILL BE TAKEN
BM  MINUS
BZ  ZERO
BO  OFLO

Multiplication and division are more complicated than addition or sub-
traction and so, they will be treated separately. Both require a pair of adja-
cent registers, termed an even-ofi pair which comprises an even-numbered
register and the adjacent higher odd-numbered register such as 4-5, or 8-9.

The instruction formats for full-word operand multiplication are

M R1, D2(X2, B2) (RX)

MR R1, R2 (RR)

The multiplier is the second operand; the multiplicand is in the odd register of
the even-odd pair specified by R1 which must always be even; the initial con-
tents of the even register are ignored, unless it contains the multiplier. The
double word product replaces the multiplicand in the even-odd register pair.
The sign of the product is determined by the signs of both operands: If both
operands are of the same sign, the product will be positive; if the operands
have different signs, the product will be negative. The significant part of the
product will usually occupy 62 or fewer bits and only when both operands are
the maximum negative number will 63 bits be required. The number of signi-
ficant bits in the product cannot be larger than the sum of the number of signi-
ficant bits in the multiplier and the multiplicand. For instance, two 15-bit
numbers when multiplied together will give a product which is not larger than
30 bits. When the product is negative, the sign bit will be extended right until
the first significant product digit is encountered. The condition code is un-
changed and overflow cannot occur.
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Worked Example

3-6 A quantity, HRS, is muitiplied by RATE to determine GRPAY. It is
A

an be contained in a full-word,

g
o

L 5, HRS MULTIPLICAND
M 4, RATE MULTIPLIER
ST 5, GRPAY PRODUCT

HRS DS 1F

RATE DS 1F

GRPAY DS 1F

If GRPAY were greater than 31 bits, we would have to store both GPR4 and 5.
A 32-bit product implies that bit position 0 (the sign position) of GPR 5 is a 1
and hence the product will show up as negative even though both operands are
positive. For an illustration, see Example 3-7, below. This is one of the
pitfalls of working with complement numbers. To overcome these potential
difficulties, the programmer must be well informed about the ranges of his
data and wherever necessary, make validity tests.

For half-word multiplications, we have

MH R1, D2(X2, B2) (RX)

Here, the multiplier is the half-word second operand. The multiplicant is in
R1 and the low order 32 bits of the product replaces R1 which may be even or
odd. If the product is greater than 32 bits, the high order bits will be lost.
The condition code is unchanged.

Worked Example

3-7 The following example gives an illustration of how a 32-bit or larger
product can give an incorrect sign. The sequence of instructions:

LR  5,=F'87654'
M 4, =F'87654'
ST 5, PROD

will give a result of 5858830849 which is too large to fit into GPR5. When

GPR 5 is stored into PROD, PROD will contain -6710876. The reason for this
strange state of affairs can be found if we examine the contents of GPR 4 and 5
in hexadecimal. This is 1IC9F4B0A4, nine hex digits. As a result the leading
digit in GPR5 is C, or 1100. Therefore, GPR5 is negative since its sign bit is
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one. The solution to this difficulty is to know in advance that PROD will re-
quire, in general, two registers and then store them with the instructions

STM 4,5, PROD

where PROD will be defined as a double-word. In Worked Example 3-14 we
will present a technique for converting a double word to decimal. This
example should make clear the importance of the programmer's knowing the
size of the numbers that his program will have to handle.

Before we discuss division, we will present the Shift instructions. These
allow the contents of registers to be shifted right or left as desired and are
particularly important when dealing with fractional numbers. The Shift in-
struction formats follow. The letter A is appended to the mnemonics to dis-
tinguish these arithmetic shifts from logical shifts which will be discussed
in Sec. 5.2.

SLA R1, D2(B2) (RS)
SLDA R1, D2(B2) (RS)
SRA R1, D2(B2) (RS)
SRDA R1, D2(B2) (RS)

The low-order six bits of the second operand address, D2 plus the contents of
GPR B2, gives the amount of right (R) or left (L) shift for R1. The double
register shifts, SLDA and SRDA reference even-odd register pairs and treat
them as 64-bit words with one sign in position 0 of the even register; position
0 of the odd register is treated as an ordinary data bit. Any bits right-shifted
out of the register or register pair are lost; the sign bit is propagated through
the vacated positions at the high order end on right shifts. On left shifts,
when a bit different from the sign bit is shifted our of bit position 1 of the even
register an overflow occurs, the sign bit, itself, is not shifted. All shift
instructions set the condition code; this property can be used to test the sign
of a double-word result by specifying a zero length shift. Also, it will be use-
ful for the reader to keep in mind that left shifting is equivalent to multiplying
the contents of a register by two for each position shifted. Similarly, right
shifting is equivalent to dividing by two for each position shifted. As a final
point on shifting, the specification of a base register allows the amount of
shift to be varied in a program without modifying the shift instruction itself.
The amount by which the shift is to be changed is simply added to the base
register specified in the shift instruction. If no base register is specified,
the displacement field gives the shift amount directly.
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Worked Example

3-8
LR 4,=3
LOADB LR 6,=B'1010101" GPR6 = 1010101
SRA  6,2(4) GPRG =10
SLA 6,5 GPR5 = 1000000
LM 8,9, CON
SRDA 8,0 SET CONDITION CODE
BP PLUSCON
BZ ZEROCON
BM MINCON THIS BRANCH WILL BE TAKEN
CON DC D'-816543216798502

The instruction at LOADB loads 1010101 into GPR6. When this register is
shifted right as indicated by the address 2(4), which is 2 plus the contents of
GPR4, or 5 places, the result if 10; the bits 10101 are lost.

The instruction formats for division are

DR  RI,R2 (RR)
D R1,D2(X2,B2) (RX)

The dividend is a 64-bit signed integer in an even-odd register pair specified
by R1 which must be even. The divisor is a 32-bit signed integer specified by
the second operand. The remainder and quotient, both 32-bit signed integers,
replace the dividend in the even and odd registers, respectively. The re-
mainder and dividend have the same signs and the sign of the quotient will be
positive if both dividend and divisor have the same sign, otherwise the sign of
the quotient is negative. Note that the even register of the dividend pair is not
ignored during division as it is for multiplication. As a result, if the dividend
can be contained by the 32 bits of the odd register, the even register must be
set to zero or to ones depending on the sign of the dividend. The condition
code is unchanged by division. However, if the divisor and dividend are of
such a relative magnitude that the quotient cannot be contained in 31 bits plus
sign, a divide exception or error occurs which gives an interruption; the
division will not be attempted. In the following paragraphs, we will establish
a rule which will allow the programmer to determine when divide exceptions
can happen.

Let us now establish rules for scaling, that is, for treating decimal
points in binary operations. The important thing to keep in mind is that
binary operations are performed by the 360 hardware on integer numbers.
Therefore any understanding about decimal points or more properly, binary
points, must be a ""behind the scenes" one. It is up to the programmer to

121



arrange his data to provide for the proper number of binary points and to
interpret the results in the correct way. The hardware will know nothing of
his plans; it is capable of handling integers, only. In the discussion which
follows, it will be helpful to set up a simple notation for fractional numbers.
We will use capital letters to indicate the number of binary places to the left
of the binary point in a given quantity and small letters for the number of
places to the right; the letters will be separated by a period. Multiplication
is the key operation to consider. If the operands in a multiply operation are
A.a and B.b, then the number of bits to the left and right of the binary point
in the product is given by the Multiplication Scaling Rule.

(A.2) x(B.b) = (A+B). (a+b)

This is just a restating in our adopted notation of the familiar technique for
placing the decimal point in multiplication of fractional quantities. Consider
the following examples (the decimal quantities in parentheses are not equiva-
lent to the binary numbers; they are examples of the above notation).

11.01  (2.2) 11.01  (2.2)

10.01  (2.2) 11.01  (2.2)

1101 1101
110100 11010
1110101  (3.4) 1101

70101001  (4.4)

The first example brings out an exception to the rule. That is, it is possible
to have one less position to the left of the decimal point than the sum of both
operand places to the left. However, it is safer to assume that the number of
places to the left will be given by our multiplication scaling rule above. In
particular, we will make this assumption in the discussion below on the number
of positions to be allowed for the quotient.

For division, we have a slightly different situation in the matter of
scaling. We are given a dividend (D. d) and a divisor (S. s) and we require a
certain number of fractional places in the quotient (Q. q). This will usually
require that the dividend be shifted. The rule for determining the amount of
shift is

SHIFT=q+s-d

Since the dividend equals divisor multiplied by quotient, the number of places
after the dividend point is q + s which must equal d plus any amount the divi-
dend is shifted. This rule applies irrespective of the relative magnitudes of
the dividend and divisor. If SHIFT is positive, we shift the dividend this
number of places to the left; if SHIFT is negative, the direction of shift is to

122



the right. As an example, suppose we wish to do the calculation, AVG =
UNITS/PRICE. If UNITS has the binary place form (10. 10), PRICE, (8. 10)
and we require 12 places after the binary point in AVG, then

SHIFT = q+s-d
12 + 10 - 10
= 12 places to the left

The following instructions will carry out this calculation:

LR 4, UNITS DIVIDEND(10. 10)

SRDA 4,32 SHIFT + PROPAGATE SIGN
SLDA 4,12 SHIFT LEFT 12 PLACES

D 4, PRICE DIVISOR (8. 10)

ST 5, AVG QUOTIENT (2. 12) or (3. 12)

Both shifts above are not always necessary. A double right shift of 20 would
suffice provided the remaining bits in GPR5 were set to zero. If this could
not be guaranteed, our method would then be safest. Note that the SRDA
propagates the sign bit, if any, through GPR4. This is a necessary pre-
caution for negative dividends. If the divisor is less than the dividend, the
number of places to the left of the binary point in the quotient is D-S or

D -S +1, at most. The total number of bits required by the quotient is then

Quotient bits = D-S+1+q

If the number of bits required by the quotient is greater than 31, a divide
exception will occur. In the above example, the quotient will occupy 10 - 8
+1+ 12, or 15 bits. The binary point will be between the 12th and 13th
positions from the low order end of the full word AVG. If a quantity BASE in
the binary place form (5. 6) were to be added to AVG to give TOTAL, it would
have to be shifted left six places prior to being added to align its binary point
with that of AVG. The coding for this is:

LR 7, TOTAL  BINARY PLACE FORM (5. 6)
SLA 1,6 ALIGN POINT TO (5. 12)

AR 7,4 ADD TO (3. 12)

ST 7, TOTAL

Table 3-3 below summarizes the scaling rules.

Exercise 3-8 Compute the amount and direction of shift for each of the
following and also indicate if a divide exception will occur. Answers are
given at the end of this chapter.
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Multiplication Scaling Rule

(A.a) x(B.b) =(A + B).(a +Db)

Division Scaling Rules

Q.q + R.r
S.s ‘D.d S.s

The binary form of the remainder is the same as the divisor.

1. Quotient Scaling Rule (Divisor(S) less than dividend(D) )

SHIFT =q + s - d,
Places occupied by quotient =D -S+1+q

Binary form of quotient (D-S+1. q)

2. Quotient Scaling Rule (Divisor greater than dividend)

SHIFT=q+s-d
Places occupied by quotient = q
Binary form of quotient (0. q)

Note that the first S-D places of q will be zero.

3. Division Exception Rule

A division exception and interrupt will occur if the number of
bits required for the quotient is greater than 31.

Table 3-3 Scaling Rules
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Dividend form Divisor form Quotient Binary Places
(to left of binary point)

(12. 15) (8.6) 13

(30.12) (2.5) 8

(2.15) (3.5) 4
Worked Example

3-9 As an example of integer division consider the following coding

SR 4,4 ZERO GPR4
LR 5, DIVIDND DIVIDND = 1052
D 4 DVSOR DVSOR = -17
ST  5,QUOT QUOT = -61
ST  4,REM REM = 15

DIVDND DC  F'1052'

DVSOR DC  F' -17

Worked Example

3-10 This example will introduce the important topic of rounding. Suppose
the dividend in a particular calculation has the binary place form (10.20), the
divisor, (9.4) and 12 places are required after the point in the quotient. The
shift amount isq+ s -d =12 +4 - 20 = -4, or four places to the right. This
means that four places of the dividend will be lost. Rather than lose this in-
formation completely, we will round the dividend. If the dividend was a deci-
mal number, say 10716345, with the last four digits to be dropped, it would be
rounded to 1072. In effect, what we have done was add 5000; since the amount
to be truncated is 5 or greater (actually 6) in the fourth place, the addition
carries a one into what will be the low-order position of the remaining number.
We can generalize a rounding rule from this: For decimal numbers, add a 5
into the high order position of the part to be truncated; for binary numbers,
add a 1. I the number to be rounded is negative, then the roundoff quantity
should be subtracted. As an example of binary rounding, suppose the dividend
is 11001101 and we wish to round and truncate the last four bits. We add 1000
to the dividend and then shift right four places. The result is

11001101
1000
11010101

ot
DN
(%]



Rather than round and shift before division, we will leave the dividend un-
shifted and will operate instead on the quotient after the division. In this way,
we are guaranteed maximum accuracy. Instead of 12 binary places in the
quotient, we will have 16. The coding for this is

LR 4, DIVDND BINARY PLACE FORM (10.20)

SRDA 4,32 CLEAR GPR4 + PROPAGATE SIGN
D 4, DVSOR BINARY PLACE FORM (9. 4)
SLDA 4,0 SET CONDITION CODE FOR QUOTIENT

BM SUBTR
AH 5, ROUNDB

B SHIFT
ROUNDB DC BL2'1000'
SUBTR SH 5, ROUNDB FOR NEGATIVE QUOTIENTS
SHIFT SRA 5,4 TRUNCATE QUOTIENT

ST 5,QUOT BINARY PLACE FORM (2. 12)

As a check, note that the total number of places required for the quotient,
D-S+1+qg=10-9+1+ 16 = 18 and therefore, no divide exception will
occur. Halfword operations are used for rounding because they allow a two-
byte constant to be used, thereby saving two bytes over a full word constant.
The constant ROUNDB could be defined as H'8' or XL2'8'; the binary constant
seemed more natural in this example, however.

Worked Example

3-11 Assume that the divisor in a calculation has the binary place form
(14. 16), the dividend, (10.15) and 12 significant bits are required in the quo-
tient. To get 12 places in the quotient, the dividend must be shifted right

12 + 16 - 15 = 13 places. However the first 14 - 10 = 4 places of the quotient
will be zero so that only eight significant bits will result for a shift of 13
places. To get four more significant bits, the dividend must be shifted right
another four places. The quotient will then have 12 + 4 places, the first four
being zero.

Worked Example

3-12 This example will present a technique for performing operations on
fractional numbers expressed as binary integers. The calculation, compound-
ing interest at 4%, is AMT=PRINCXRATE rounded to two decimal points. As
a specific example, PRINC = $11.38 and RATE = 1. 04. We could also mul-
tiply PRINC by 4% and then add the product to PRINC. However, multiplying
by 1. 04 saves an addition. The coding is
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LR 5, PRINC

M 4, RATE
AH  5,=H'50'
D 4, =F'100'

ST 5, AMT

RINC DC F'1138'

A rmm haVal THINAY
£ iF% £ ilue

i ;
L 3 &) I8

ey Bv)

The product of PRINC and RATE is 118352, adding 50 brings this to 119402.
Note that the multiplication clears the even register of the pair. The next
step after the rounding is truncating the low-order two digits. However, we
cannot just shift right two places or any number of places, for that matter.
The problem with shifting is that two decimal places is not equal to a whole
number of binary places. The only remaining approach is to divide by 100.
This will give AMT, rounded to the nearest cent. This technique of using
integer quantities where exact amounts are required, such as payroll or
interest calculations, is strongly recommended. It has the disadvantage of
an added division operation to obtain the equivalent of a truncation but is much
safer than the approach to be described in the following example. Incidentally
in a real program, PRINC, and probably RATE also, would be supplied as
input items and not as constants. We took the present approach for the sake
of illustration only.

Worked Example

3-13 We will present the previous example using a binary fraction for RATE
carried out to 14 binary places. We have

RATE DC FS14'1. 04
PRINC DC F 1138
HALF DC FS14'.5'

LR 5, PRINC

M 4, RATE
A 5, HALF
SPA 5,14

ST 5, AMT

RATE is defined as a binary constant with 10 places after the binary point. It
will be multiplied by PRINC expressed in cents so that the rounding quantity
must be . 5 cents expressed in the same binary scaling as RATE. A right
shift of 14 places after the rounding should give AMT to the nearest cent. But
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it does not! The result is 1183, not 1184. How has this happened? The
difficulty can be traced to the fact that 1. 04 cannot be expressed exactly in
any number of binary places. In fact, to 14 bit accuracy 1. 04 is in binary
approximately 1.0399783 so that multiplication by 1134 gives 11. 83494949.
We could get this calculation to work properly by extending RATE to more
binary digits but it would fail for sufficiently large PRINC amounts. The
moral of the story is when amounts must be calculated exactly, use integer
forms for the numbers and then divide at the end.

Again, we do not mean to suggest that binary operations are so com-
plex and error prone as to be not worth bothing about. Binary operations
have limitations as suggested above and in the discussion on complementing
in Example 3-7. The programmer who is aware of these limitations can best
make the judgment on when to use the decimal instruction set and when to take
advantage of the time saving inherent in binary operations.

Worked Example

3-14 In this example we present a technique for converting double-word
binary numbers to decimal using the CVD operation. Let us start by con-
sidering some of the properties of double-word numbers. First, they use
only one sign bit, namely bit position 0 of the high-order word. Second, the
low-order word can always be considered as positive and added to the first.
To see that this is true, we will examine 8-bit ''double'’-words. Consider
the double-word 1111/1011. The low-order word, considered as positive is
equal to 11. When the high-order word is complemented, we have -1. How-
ever, since the high-order word is left-shifted four places from the low-order
word, it is 16 times greater (24) so that the double word has the value
-1x16+11, or -5. As a check, if we do a double-"word' complement of 5,
00000101, we have 11111011 which is identical with what we began with above.
Since the CVD will handle only 31 binary bits of data we will break the 63
bit-number into two 31-bit numbers and a 1-bit number in bit position 63.
The high-order part, HO, will be converted and multiplied by 232, the low-
order part, LO, by 2 and finally, the last bit, B, with value of 1 or 0 will be
added to the sum of the other two parts. The formula for this is then

232 xHO + 2xLO+ B

LO and B will be treated as positive (unsigned) numbers and HO will be treated
as a signed number. In this way, we are assured of having the correct sign
for the result. Following is the coding. The double word to be converted is
in the GPR 2 and 3.
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CVD 2,DEC+8 CONVERT HO, STORE IN DEC+8
SR 2,2 CLEAR GPR2 TO AVOID OVERFLOW
SLDA 2,31 LO TO GPR2, B TO SIGN BIT OF GPR3
CvD 2, TEMP CONVERT LO, STORE IN TEMP
MP TEMP, TWO
LTR 3,3 SET CONDITION CODE FOR B
BP  MULT IS B=O, IF YES GO TO MULT
AP  TEMP, ONE B=1, ADD ONE TO TEMP
MULT MVC DEC(8), ZERC CLEAR HI-ORDER HALF OF DEC

MP  DEC, TWO32
AP  DEC,TEMP

TWO32 DC  PL6'4294967296"
TWO DC  PL1'2'

ONE DC PLI'T
TEMP DS 1D
DEC DS 2D

ZERO DC 8x'00'

As starting point, note that the maximum size for a 63-Dbit integer is
20 decimal digits so that DEC could have been defined as an 11 byte field.
However, the CVD requires a double-word address for its second operand
and defining DEC as two double-words is an easy way to ensure that DEC will
contain a double word address within its field. When HO is converted, it is
stored in DEC+8 (through DEC+15) to put it in the low order half of DEC. This
is necessary for proper alignment with LO and B after HO has been multiplied
by 232, The logic in separating LO and B is to shift LO into bits 1-31 of
GPR2. However, GPR2 must be cleared prior to the shift, otherwise bit of
GPR2 would still remain in the sign position after a double register left shift
of 31. (In addition, if a bit different from the sign bit of GPR2 was shifted out,
an overflow would occur.) This double shift will store B in the sign position
of GPR3. As a result, if B=1, GPR3 will be negative. The LTR 3,3 sets the
condition code prior to being tested by the BM MULT instruction. The high
order part of DEC is cleared by the MVC. This is a necessary precaution
prior to the multiplication because the DS only reserves storage for DEC, it
does not set it to zero. Notice that the implicit length of DEC, 16 bytes,
must be overridden if we are to avoid wiping out HO which is stored in the
eight low order bytes of DEC. This is done by specifying an explicit length of
8 bytes; since the symbol DEC refers to the leftmost byte, this allows only
the leftmost eight bytes to participate in the move.

3-15 Fraction Conversion. Conversions between binary and decimal frac-
tional numbers present interesting problems. Since the conversion hardware
can handle integers, only, additional logic must be added to conversion routines
to handle fractional numbers. Let us first consider conversion of a packed
decimal number to a binary number. The integer portion of the decimal number
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can be converted directly using the CVB instruction. We will concentrate on
the remaining N fractional digits. For the moment we will assume that N is
nine or less, the number of digits which can be converted to binary in one
application of the CVB instruction. We may consider these N fractional
digits as N integer digits divided by 10N, The integer digits can then be
converted to binary and the result is then divided by the binary equivalent of
10N, Asa specific example, consider five fractional digits in the double
word FRAC. They will be converted to a 31-bit binary fraction by the coding
below. Note that 10Y requires 16 bits and that any five digits will convert to
not more than 16 bits which will be less than 10°. To get a 31-digit quotient,
the 16-bit dividend must be shifted to include 31 additional low order positions.
To verify that a divide check will not occur, we note that the number of places
in the quotient = Q+q = D-S+q =31. (q=d-s =31-0=31). We do not use the
formula Q=D-S+1 since the extra bit will occur only when the first S+s
digits (16 here) of the dividend are larger than the divisor. This is not the
case here. The coding is

CVB 2, FRAC 16 BITS + SIGN IN GPRS
SRDA 2,1 DIVIDEND NOW CONTAINS 31
* ~ BINARY PLACES (IN GPR3)
D 2, TEN5
ST 3, BFRAC
TEN5 DC F'10000'
BFRAC DS F
FRAC DS D

To convert more than nine digits, the first nine can be handled as
above but dividing by 109, The remaining digits (N-9) are converted and then
divided by 10N,

To convert a binary number containing a fraction to decimal, the
integer portion can be handled with a straightforward CVD. The binary por-
tion can then be converted by deciding first, how many decimal digits are
required. A good rule of thumb is one decimal digit for every 3. 3 binary bits.
With N as the number of decimal digits, the fraction is then aligned in an odd
GPR so that its point is at the extreme left. When it is multiplied by 10N, the
even register, left shifted by one, contains the N fractional digits in binary
form. When these are converted to decimal, we have the desired N decimal
fractional digits.

As an example, suppose we have the binary fraction . 11100001 = . 875.
This is worth approximately 2 decimal digits. Assuming a hypothetical com-
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puter with eight data bits pius sign per word, multiplication by 10 =11001002
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gives the following result, stored in an even-odd register pair:

0i00101011:1110000000

s Evenr s Oddr

Cin +ha hi
Since the binary point of the multiplicand was originally immediately after the

sign bit of the Odd register, the product will contain eight places after the
point. A double left shift of one place will put the integer part of the product
entirely in the Even register which becomes

0/01010111{1j00000000

s Evenr s Oddr

This is the binary equivalent of 87, the desired result. If rounding is re-
quired, we should examine the high order bit of the Odd register. (Ina
double word, this is a data bit, not a sign bit.) If this bit is one, add or sub-
tract a one into the even register according to its sign. The coding below will
convert a 23-bit binary fraction left justified in GPR3 into a seven digit deci-
mal fraction. We will ignore rounding.

M 2, TENT
CVD 2, DFRAC

TENT DC F'1000000'
DFRAC DS D

The low order five digits of DFRAC contain the fraction with the decimal point
assumed to the left of the first digit.

Answer to Exercise

31 9 1001 13 1101
10 1010 14 1110
11 1011 15 1111
12 1100 16 10000
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Problems

3-1 What is the largest decimal number which can be represented in

16 bits and in 24 bits?

3-2 If the symbol X has the address value, 12462, and is covered by base
register 11 with a base point of 9000, how much storage will be required
for TABL defined as

TABL DC A(X)
DC Y(X)
DC S(X)

i—_3_ What are the values of the constants defined in Prob. 3-2?

3-4 A table consists of seven 1-word entries. It is required to push down
all entries in the table and move the seventh one to the first entry loca-
tion. That is, the second entry will be in words three, and so forth.
Write code to accomplish this.

_§_-_§ Write code to evaluate the expression
A+ (A - B)/2

where A and B are half-word numbers. The fractional result from the
division should be discarded.

3-6 Modify the code for Prob. 3-5 so that the difference between A and B
will always be treated asa positive number.

3-T Modify the code for Prob. 3-5 so that the result is rounded to the
nearest integer according to the rule that if A - B is odd, the result
would be rounded up, if it is even, no rounding should be done.

3-8 Devise the technique to determine how many high-order and low-
order zero bits a given binary attains. Write code to perform the
appropriate counts on full-word and test your program.

3-9 A dividend has a binany place form (7.21), its divisor (5. 6), and the
quotiant is required to be rounded to 11 binary points. Write coding to
do this.

3-10 Write a program to convert an 18-digit packed decimal number to a
64-bit signed binary number,
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Chapter 4

INDEXING
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One of the most important techniques in programming is looping, or
iteration as it is sometimes called, which is the repetition of a given sequence
of instructions a specified number of times. We have encountered this type of
logic previously in the ''Indian Problem" in Chap. 2. The problem consists of
calculating the present value of a $24 deposit 340 years ago, at 3% interest,
compounded annually. The basic calculation is multiplying the principal by
1. 03 to compute the year end principal and then, repeating the process 339
more times. (Multiplication by 1. 03 is the same as multiplying the principal
by . 03 to compute the interest, and then adding to the principal. Our approach
saves a multiplication.) As an illustration of looping using registers, we will
code the Indian Problem using binary fixed-word size numbers in contrast to
the decimal approach in Chap. 2. We will keep count of the number of itera-
tions through the loop by loading 340 into a register and then subtracting one
for each iteration. At the bottom of the loop, this register will be tested for
zero. If it is not zero, the program will branch to the top of the loop for an
additional iteration and test; if it is zero, the loop is finished, or satisfied
and the remainder of the problem can then be started. The principal will
always be stored as a two decimal place number which is rounded after each
multiplication. The coding follows.

LM 2,3, YEARS
L. 5, PRINC

AGAIN M 4, RATE PRODUCT HAS 4 DEC. PLACES
A 5, =F'50' ROUND TO 2 DEC. PLACES
D 4,=F'100' "SHIFT" RIGHT 2 DEC. PLACES
SR 2,3 SUBTRACT 1 FROM GPR 2

TEST BP AGAIN IF GPR2 POSITIVE, GO TO AGAIN

STORE ST 5, PRINC

YEARS DC  F'340'

DC F'1
PRINC DC  F'2400' 24. 00
RATE DC F'103' 1.03

The coding will cause the instructions between TEST and AGAIN inclusive, to
be executed 340 times in succession. On the last iteration through the loop,
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GPR2 will be one, the instruction SR 2, 3 will reduce it to zero. At this point,
the Branch on Positive at TEST will not occur. Sequential instruction execu-
tion will then proceed starting from STORE. The subtract-test sequence for
this type of problem occurs so frequently that a single instruction is provided
to deal with it, Branch on Count. Its formats are

BCT R1,D2(X2,B2) (RX)

BCTR  RI1,R2 (RR)

The contents of the first operand are algebraically reduced by one. When the
result is not zero, a branch is taken to the second operand address (RX) or to
the contents of the second operand (RR). The branch address is set up prior
to the subtraction; when GPR2 is zero, counting is performed but no branch

is taken. Also, this instruction cannot cause an overflow nor does it change
the condition code. The loop coding for the Indian Problem can now be written

AGAIN M 4, RATE START OF LOOP
A 5, =F'50"
D 4, =F'100'

TEST BCT 2, AGAIN END OF LOOP

The LM 2, 3, YEARS can be replaced by L 2, YEARS. Are any other changes
in order?

As an aid to the discussion of looping throughout the remainder of this
chapter, we will define the basic terms here. The index of a loop is the
quantity which either counts the number of iterations directly, or is directly
related to the count; the increment is the amount added to the index after each
iteration; the initial value is the value of the index before or during the first
iteration; the final value is the index value during the last iteration. The
initial value, increment, and final value comprise the loop parameters. When
the last iteration is completed, the loop is said to be satisfied. In the Indian
Problem above, the loop index can be found in GPR2; the initial value is 340;
the increment is -1 and the final value is 1. The general programming tech-
nique for handling loops is straightforward. To repeat a section of code N
times starting with an instruction labeled GO, for instance, load a register
with N immediately before GO, and place a BCT REG, GO immediately after
the last instruction in the sequence.

Exercise 4-1 Referring to the following program segment, how many times
will the code between GO and LASTA be executed? How many times will the
instruction at LASTB be executed? When the instruction at FIRST is executed,
what are the contents of GPRI and 2?
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L 1,=F3'
L

GOGO 2, =F'2'
GO --

LASTA BCT 2, GO
LASTB BCT 1,GOGO
FIRST g

The code above illustrates a loop within a loop; we will have several occasions
to use this type of logic again.

4.2 Indexing

Up to this point, we have considered operand addresses as remaining
unchanged during the execution of a program. However, there are many
instances where a program can be written more compactly and easily if some
of the operand addresses can be changed while the program is being run. As
an example, suppose an employee's weekly payroll record consists of eight
words of data; the first word contains the gross pay and the other seven have
various deductions. To calculate the net pay, each of the seven deductions
must be subtracted from the gross pay. This could be done by the brute force
approach of writing a subtract instruction for each of the seven deductions.
Rather than write seven subtract instructions such as

L 2, GRPAY
S 2,DED
S 2, DED+4
S 2, DED+8
S 2, DED+12
S 2, DED+16
S 2, DED+20
S 2, DED+24
ST 2, NETPAY
GRPAY DS F
DED DS F
NETPAY DS F

the coding could be shortened if we could write one subtract instruction and in
some fashion loop through it seven times, each time adding four bytes to its
operand. The 360 does indeed have this capability and it is obtained through the
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indexing feature of the RX class of instructions. To understand how this
feature works, recall that in Sec. 3.4, we described storage addresses as
being generated by adding the displacement field of an instruction to the
contents of the GPR specified in its base field. When indexing is used, an
extra addition comes into play: The contents of the GPR specified in the index
field are added to the sum of base plus displacement. As an illustration, con-
sider a general RX-instruction in the form

OP Ri,D2(X2, B2)

where X2 specifies the GPR to be used as an index register. The operand
address is D2 + C(X2) + C(B2) where C( ) refers to the contents of a particular
register. Suppose D2 = 4000, X2 =2 and B2 = 3 where GPR2 contains 16 and
GPR3 contains 8096. The instruction would have the form

OP  RI1,4000(2, 3)

with an operand address of 4000 + 16 + 8096 = 12112. Figure 4-1 gives a
schematic of the process. To modify this address, say to increase it to 12116,
we would add four to the index register, GPR2. We could obtain the same
result by adding four to GPR3 but this would change the base value for all other
instructions which used GPR3 as a base register. Or, we could arrange to add
four to the displacement field but this would be going about it the hard way;

the easiest approach is to do the addition in the index register. In the case of

the payroll example above, the subtract instruction would be written
S 2, DED(XREG)

where XREG would be any one of the GPR excluding 0 and any other register
used as a base. The use of GPRO implies no indexing; similarly, when the
programmer specifies no index register, the assembler will incorporate GPRO
into the instruction. (To write the subtract instruction without indexing, we
have S 2, DED.) With this background, we can write the following code to
handle the seven subtractions of the payroll program:
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INDE X ~———>6 8 p—
. i Y
———er—e—— BASE —————3=11 10000 -
7727
8
—_ + 10000
_ Yy Y
A 1,112 (6,11) 10008
- DISPLACEMEN T + 112
- Y
_ 10120
—_— LOCATION 10120
Fig. 4-1 Indexing -- The word at 10120 will be stored in GPR1
SR 3,3 GPR3 IS XREG, CLEAR IT
L 4, =F'T INITIALIZE GPR4 AS COUNTER
L 2, GRPAY
SUBTR S 2, DED(3)
A 3, =F'4' ADD 4 TO XREG
BCT 4, SUBTR TEST FOR 7 ITERATIONS
ST 2, NETPAY
GRPAY DS F »
DED DS TF !
NETPAY DS F

On the first pass through the loop, GPR3 = 0 so the first entry in DED will be
subtracted; on the second iteration, GPR3=4 and we subtract the contents of
DED +4; on the last iteration, GPR3=24 and the last entry, DED+24, is sub-
tracted. While GPR3 is being incremented from 0 through 24, GPR2 is being
stepped down from 7 to 0. The indexing logic here is different from the
Indian problem in that we are counting by fours from 0 to 24. Since the BCT
will only count down by 1's, an additional add statement is necessary. The
programmer will encounter this type of problem frequently where a count is
required to terminate on some value other than zero and is incremented or
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decremented, by a value other than one. The 360 has two instructions which
do this, Branch on Index High and Branch on Index less than or Equal. Their
formats are

BXH RI,R3,D2(B2) (RS)

BXLE RI,R3, D2(B2) (RS)

where R3 will usually reference an even-odd pair of registers. R3 contains
the increment and the next higher odd register contains the final value, or
comparand. RI contains the current value of the index. Prior to starting the
loop, RI1 contains the starting value. When either instruction is executed, the
contents of R3 are added algebraically to the contents of the odd register. The
branch is taken if the index is higher than the odd register (BXH), or it is
taken if the index is less than or equal to the odd register (BXLE). If the con-
dition is not met, instruction processing proceeds sequentially after the BXH
or BXLE. If the R3 register is odd, its contents will be used for the incre-
ment and the compare value. Overflow cannot occur with either of these in-
structions, the condition code is unchanged, and the branch address is deter-
mined prior to the incrementing and comparing. Following are some examples

PN Tl L ey | P S

which show the successive values of the index, given the initial register con-
tents shown below. As you can see from the successive index values, BXH is
used for counting down and BXLE for counting up.

Initial
Contents
BXH 1,2,AGAIN GPRI1: 12 9 6 3 0
GPR2: -3
GPR3: -3
BXH 1,2, AGAIN GPR1: 11 8 5 2 -1
GPR2: -3
GPR3: -3
Ed
BXLE 1,2, FIRST GPRI: 0 2 4 6 8
GPR2: 2
GPR3: 8
BXLE 1,2, FIRST GPRI1: -2 0 2 4 6
GPR2: 2
GPR3: 7

In the first example GPR1 has the initial value 12 and will be stepped down to
0 in increments of -3. Note that if we wanted to go down to -3, GPR3 would
have to contain a-4, -5 or -6, since the branch is taken only when the index
is higher than the contents of 6PR3. A loop ending with the first instruction
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would be repeated five times. During the last cycle, the index would be zero
and when the BXH is executed for the last time after the last iteration it would

go to -3, register an equal compare with GPR3 and the branch would not be
taken Nfoh:- that the contents of GPRI would be -2 after the loop was satis-
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fied. In the other three examples, GPRI1 will contain -4 10 and 8, respec-
tively, after each loop is satisfied.

Note that in the first two examples, a register could be saved since
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grammer should always look for ways to save registers as it is possible to
run out of registers in problems which require extensive indexing. When this
happens, it is not necessarily disastrous as a single register can be put to
multiple uses by loading it with the proper value for each usage and then
storing this value prior to the next usage. These extra load and store instruc-
tions will increase the running time of a program, perhaps significantly, and
should be avoided where possible. We will now apply the BXLE and BXH to
the payroll problem. Using BXLE,

LM 3,5, NDXCON
L 2, GRPAY
SUBT S 2. DED(3)
BXLE  3,4,SUBT
ST 2, NETPAY
NDXCON  DC F'0' STARTING VALUE
DC F'4' INCREMENT
DC F'24' FINAL OR COMPARAND VALUE
GRPAY DS F
DED DS 1F
NETPAY DS F

On the first loop iteration, C(GPR3) = 0 so DED+0 will be subtracted; on the
second iteration, C(GPR3) =4 so DED+4 will be subtracted; on the final itera-
tion, C(GPR3)=24 so DED+24 will be subtracted. At that point, the BXLE

will increase GPR3 to 28, the index is no longer less than or equal to the com-
parand and the branch will not be taken. Instruction execution will continue
sequentially below the BXLE. Note that the indexing approach will require
about twice as much computer time as simply coding seven successive sub-
tractions. The extra time is taken by the BXLE and the use of indexing in the
subtraction. However, the latter is much the smaller of the two. This
approach does save storage. This little example portrays the programmer's
dilemma: Striking a balance between "tight” code -- code which economizes
on storage but takes additional run time or fast code which often requires a
good deal of additional storage. It is an unusual occasion when a programming
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strategem which reduces storage requirements significantly will also allow a
significant reduction of running time. Improvements in one of the two para-
meters -- storage space or running time -- is usually at the expense of the
other. Alternate approaches to this problem are possible. A BXH could be
used although, in this example, it is not as natural as BXLE. To use BXH,
NDXCON would have to be changed to 24, 4, -1, respectively. The -1 is re-
quired for the last value, 0, to be processed. This must be done since the
branch will only be taken when the index is higher than the comparand.

We can develop a simple notation for the loop or indexing parameters,
first value, increment and final or comparand value. In the context of the
example above, we can write the parameters as 0(4)24 where the quantity in
parentheses is the increment and the initial and final values precede and
follow it, respectively. For BXLE, these parameters can then be set up in
that order by a DC and can be loaded by an LM instruction into three adjacent
registers beginning with an odd one. For BXH, the final value would have to
be reduced by one.

Exercise 4-2 a) For a BXLE terminating a loop with parameters 3(7)25
how many times will the loop be executed and what will be the successive index
values? b) The same conditions as a) except the parameters are -4(3)11.

c) For a BXH, with parameters 100(4)0, how many times will the loop be
executed? What are the first two and last two values of the index? What will
be the value of the index after the loop has been satisfied. d) Can you devise
a simple formula to calculate how many times a loop will be repeated? Con-
sider BXH and BXLE loops.

Worked Examples

4-1 A block of 10,000 words has been reserved for a data file with one entry
per word. The number of items which are read in at any one time may be any
number from 0 to 10, 000. A word of all 1's marks the end of the data file and
is placed after the last word. The entries may be positive, negative, or zero,
except that no entry will be -1 which is a full word of 1's in two's complement
form. The following instructions count the number of entries and stores it in

COUNT.
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LM 1,3, NDXCON

L 0, ONES LOAD WORD OF 1's
TEST C 0, BLOCK(1)
BE STORE
BXL 1,2, TEST
STORE SRA 1,2 'DIVIDE' BY 4
ST 1, COUNT
NDXCON  DC F'0' INITIAL VALUE
DC F'4' INCREMENT
DC F'39996' FINAL VALUE
ONES DC X'FFFFFFFF
BLOCK DS F10000
DS F
COUNT DS F

Let us first discuss NDXCON. The first word is at BLOCK, the
10, 000th word is at BLOCK + 39996; since we are incrementing by four, the
loop parameters are then 0(4)39996. The initial value of GPR1, the index, is
0 so that if the file contained no entries, the word at BLOCK would contain all
1's and the BE would cause a branch out of the loop. The number of entries
would then be found in GPR1. If the second word contained all 1's, then the
number of entries would be one. However GPR1 would contain four at that
point since it would have been incremented once by four. The right shift of
two places has the effect of dividing by four. The reader should extend this
line of reasoning for a few more iterations to verify that GPR1, after having
been shifted, will contain the number of entries in the file. Note that if the
file contains all 10000 entries, the last interation of the loop will be testing the
10, 000th word with an unequal result. The BXLE will then increment GPR1
from 39, 996 to 40, 000. Since the index will then be higher than the comparand,
the branch will not be taken and the next instruction to be executed will be at
STORE. After the effective division by four, GPR1 will show a count of
10, 000, the correct value. Note that an extra word has been reserved at the
end of the 10, 000 words of BLOCK. This allows for the possibility that a data
file may contain all 10, 000 words with a word of 1's in the 10001st word. Note
that the program segment we have written makes the assumption that if a match
with ONES is not made in the first 10, 000 words, then it will be made in word
10, 001 but no explicit check is made. This is not the best programming prac-
tice since records which contained more than 10,000 entries, and therefore
are in error, would go undetected. In cases such as this, the programmer
should proceed cautiously keeping in mind the First Law of Programming:
"If something can possibly go wrong, it probably will, eventually''. We leave
it to the reader in Prob. 4-7 to make the necessary additions to our code to
guard against records of more than 10, 000 words.
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While loops are fairly easy to set up, it is also easy for programming
errors to be made particularly in reference to the starting and final index
values. To guard against these errors, which can be difficult to catch when
the program is running in a production environment, a thorough desk check
is a must. The programmer should trace through the logic for the first and
last points as well as several intermediate points. When the program is
tested, the test cases should include tests of the end point conditions.

4-2 Re-code the payroll loop using only registers 3,4, and 5. Our problem
is to select one of these registers to replace GPR2 which was used to compute
NETPAY. GPR3 cannot be used because it is needed for the index, so our
choice can be either of GPR4 or 5 -- we will select GPR5. Our strategy here
is to alternate the usage of GPR5 as a loop control register and a register for
calculating NETPAY. For each type of usage, the proper data will be loaded
into GPR5 after storing its previous contents. The coding for the loop is

SUBT ST 5 SAVEREG SAVE LOOP DATA
L 5, NETPAY  LOAD PAYROLL DATA
S 5, DED(3)
ST 5, NETPAY  STORE PAYROLL DATA
L 5, SAVEREG  LOAD LOOP DATA
BXLE 3,4, SUBT

The ST 2,NETPAY which followed the loop in the previous code, will not be
necessary here since the data will be stored in NETPAY in the loop. We seem
to have saved an instruction outside the loop at the cost of four additional ones
inside the loop, or a net gain of three instructions. However, the picture is
much worse than this. The loop will be repeated seven times so that the
extra four instructions will give 28 additional instruction executions, or a net
gain 27 instruction executions which will just about triple the running time of
this segment. The moral of this tale should be clear -- loops should be pro-
grammed as efficiently as possible and register allocation should be done
economically to avoid reallocation within a loop.

The programmer will have to deal with blocks of data very frequently.
We will next describe a simple notation for describing operations on the ele-
ments of a data block which is often termed an array. That is, an ordered
table of data. In mathematics, the individual elements of an array are indica-
ted by a subscript notation, Bj, for the ith entry in the B array. Since the
360 character set has no subscripts, we will write it as B(I). To fetch the
Ith element of an array, we note that if B gives the starting address, then the
address of the Ith entry is B - 1 + I. As a check, if I =1, the address of
B(1) =B -1+1=B. The address of the 10th elementis B-1+10=B +9,
or nine locations away from the initial location. In addition, the index, I,
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must be multiplied by a storage factor, f, depending on whether the entries
in B are bytes (f = 1), half-words (f=2), words (f = 4), double-words (f = 8),
or some other size. Our addressing formula is then

address of B(I) = B + f*(I-1)

where B is the starting address (label address) for the block. A more natural

o b Tl b thic £ [
way IOr a programimer 1o iO0K at Uils 1ormuia is

(B - f) + £*I

where B-f appears in the operand and f*I is the index. This has the advantage
that for a loop with parameters 1(1)100, for instance, the loop registers can
be set up with £(f)100f which is more straightforward than 0(f) 99f.

Using this notation, we will flowchart Ex. 4-1 and discuss its translation
into assembly language.

BLOCK(I):
ONES

le—1 +1

1110000

COUNT-—1I-1

Y

o)

Fig. 4-2 Flow Chart for Worked Example 4-1
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As can be seen from Fig. 4-2, the major change to be made when this
version is coded is the starting point for the index. If the entries in BLOCK
are single words, then the addressing formula is

(BLOCK-4) + 41

and since the loop parameters are 1(1)10000, NDXCON will contain 4(4)40000.
The code follows

LM 1,3, NDXCON PARAMETERS OF I ARE 4(4)40000
L 0, ONES
TEST C 0, BLOCK-4(I) COMPARE B(I)WITH ONES
BE STORE
BXLE 1,2, TEST
STORE SRA L2 DIVIDE BY 4
BCTR L0 SUBTRACT 1 FROM I
ST I, COUNT
NDXCON DC F'4'
DC F'4'
DC F'40000'
ONES DC 4X'FF'
I EQU 1
COUNT DS F
BLOCK DS 10000F
DS F

The address of BLOCK-4 will be computed only once, at assembly time, when
four will be subtracted from the displacement of BLOCK from its base point.
With this correction, when I = 1, the first word in BLOCK will be fetched,
when I = 2, the second and so forth. The subtraction of one from I is accom-
plished using a BCTR with zero for the branch register which nullifies
branching and results in one being subtracted from I. (What would happen if
the subtraction occurred at STORE, before the division by four?) While this
logic is not significantly different from our previous approach in Example 4-1,
we recommend this technique because it corresponds more closely with the
way an indexing problem would be described on a flow chart or as a problem
statement for a higher-level language such as PL/I, FORTRAN or COBOL.
Note that subtracting one from the index is not a necessary feature of this
approach. It just so happens that when a loop exist is made, we have the
index of the end of record character which is one higher than the last word in
the record.
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An interesting point to consider is the number of base registers re-
quired for this program. To simplify matters, assume that the program, up
to and including the label, BLOCK, requires less than 4096 bytes. Even
though BLLOCK is larger than 4096 bytes, extra base registers are not re-
quired. The point is that if BLOCK is within 4095 bytes of the start of a base
register's span, the displacement field of any operand which references
BLOCK will be able address it. The fact that indexing subsequently increases
the address to beyond the span of a base register is not relevant since the
indexing is carried out in 32-bit registers where the restriction of displace-
ment size to 4095 does not apply. However, if we were careless enough to
place either constants or individual data words (NDXCON, COUNT) beyond
BLOCK, another base register would be required to access them. Our pro-
gram would then read

START 0
FIRST BALR 10, 0

USING * 10

USING COUNT, 11

L 11, ACOUNT

B GO
ACOUNT DC A(COUNT)
GO --
BLOCK DS 10000F
COUNT DS F
ONES DC 4X'FF'

END FIRST

This wastes what the programmer should regard as a valuable commodity, one
base register. To avoid this it is recommended that data storage be assigned
in order of increasing length, with the shortest fields defined first and the
largest field defined last. Note too, that if ACOUNT were placed after BLOCK,
the displacement field in L. 11, ACOUNT would not be able to address ACOUNT
since it is more than 4095 bytes away from the base point of the only base
register loaded at that point, GPR10. The only way out of this bind is to place
ACOUNT somewhere within the span of GPR10 since it is the only one loaded

at that point.

This example illustrates one of the few occasions when the programmer

must keep the addressing characteristics of the computer very clearly in mind.
Example 4-5 will show another instance of this.

Worked Example

4-3 Assume that a particular inventory consists of 1000 items, numbered 1
t01000. There are three 1000-word arrays in storage, INSTOCK, RECPTS,
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ISSUES which give the in-stock position as of the last reporting period and the
receipts and issues since the last reporting period, respectively. Write code
which will update the in-stock table by adding receipts and subtracting issues.
Assume each entry requires two bytes and is a binary number. The flow

chart is
{ START )

] +—1

I

INSTOCK(T }+— RECPTS(1)—
ISSUES (1) + INSTOCK(I)

I

Ie—1 + 1

( FINISH

The coding is

LM I, 3, NDXCON
LOAD LH 0, INSTOCK-2(1)
AH 0, RECPTS-2(1)
SH 0, ISSUES-2(1)
STH 0, INSTOCK-2(I)
BXLE 1,2, LOAD
NDXCON DC F'2'
DC F12'
DC F'2000'
INSTOCK DS 1000H
RECPTS DS 1000H
ISSUES DS 1000H
I EQU 1

Since all entries are half-words (which can accommodate a data range of

-36768 to 36767), half-word arithmetic operations are used and the operand
corrections are -2, not -4 as in the previous example. Also since the loop
parameters are 1(1)1000, NDXCON is 2(2)2000. Note that this program will
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require more than one base register because of the large data fields of more
than 95 bytes of instructions and constants precede INSTOCK.

4-4 A 600-word array, TABLE is to be summed and stored in SUM. The

) C=)

flow chart is

SUM<—0

]+—1

SUM<—SUM + TABLE(D)]

C FINISH

The coding is

LM I,3,NDXCON IEQU1

SR 0,0 CLEAR GPRO
ADD A 0, TABLE-4(I)
BXLE I, 2,ADD
ST 0, SUM
SUM DS F
NDXCON DC F'4'
DC F'4'
DC F'2400'
I EQU 1
TABLE DS 600F

Since the loop parameters are 1(1)600 and we are dealing with full-word
entries, NDXCON is 4(4)2400. Note that when a sum is being accumulated in
a register, and the first item will be added rather than loaded, the register
must be cleared before use. This is essential for correct operation -- it is
analogous to clearing an adding machine before using it.
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4-5 The indexing techniques we have seen in the last few examples seem
very useful for binary data. The question naturally arises, '"How can decimal-
data fields be indexed?'" As a specific example, suppose the data of Ex. 4-3
is in the packed decimal format, three bytes per entry, with 100 entires per
array. ( The original length of 1000 each would cause additional base register
complications which we want to avoid for the moment.) Since SS instructions
do not have index-register fields, a direct approach is ruled out. However,
SS address are in base register plus displacement form so that the base re-
gister can be used as an index register provided we find a way to do this with~
out invalidating other operand addresses. The approach we will take is to
specify one register (here GPR8) as a base register for data only and to
arrange that it will be used only in the section of the program which does the
indexing. As an aid to the reader in tracing through the following code, note
that the USING statement is nothing more than a statement of intent by the
programmer. He is advising the assembler every time he writes a statement
such as USING *, 11 or USING INSTOCK,7 that he will arrange to load
GPR11 and 7 with the addresses, * and INSTOCK. The assembler then arran-
ges to assign every label which falls within the span of coverage of GPR11 or
GPRT to one or the other of these base registers. Usually, base register
coverage is arranged so that the span of each register is 4096 bytes and each
one takes up where the previous one terminates. In the case where the spans
of two base registers overiap, the base register which gives the smallest dis-
placement is assigned. The coding follows; IOIN and IOOUT are the assumed
input and output sections. We are also assuming that the entire program re-
quires less than 4096 bytes.

START 0
GO BALR 11,0
USING * 11
IOIN --
USING INSTOCK, 7
LM 7,9, BASECON
ADD AP INSTOCK, RECPTS
SP INSTOCK, ISSUES
BXLE 7,8, ADD
DROP 7
B IOOUT
BASECON  DC A(INSTOCK) GPRT
DC F'3' GPRS
DC A(INSTOCK+297) GPR9
INSTOCK DS 100PL3
RECPTS DS 100PL3
ISSUES DS 100PL3
IOOUT --
END GO
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The second USING instruction informs the assembler that it may assume

that GPR7 will be loaded at execute time with A(INSTOCK) and that every
label within INSTOCK and INSTOCK+4095 can be assigned GPR7 as base
register. This will overlap with the span of GPR11 but GPR7 will be assigned
to those labels at INSTOCK and below (including IOOUT) since it gives a
smaller displacement. The loop parameters are 1(1)100 but since we are
dealing with three-byte fields and since the AP and SP instructions reference
the starting points of INSTOCK, ISSUES, RECEPTS, the parameters become

iat 111 T A5 fxri ADDY PP N
Y IIrTO 11r1 Falil o2 Wa" XTIV Y .
3(3)297. Because the base register we will be modifying, GPR7, contains

A(INSTOCK), the loop parameters are A(INSTOCK) (3) A(INSTOCK+297). The
BXLE instruction will cause the base register to be incremented by three at
every iteration until all 300 items have been processed. The "indexing” for
all three arrays can be done by one base register since the displacement
fields of ISSUES and RECPTS take care of the spacing between them. That
is, on the first iteration, the three operand addresses are INSTOCK, INSTOCK
+300, and INSTOCK+600; on the second iteration, they become INSTOCK+3,
INSTOCK+303, and INSTOCK+603, or RECPTS+3 and ISSUES+3, respectively.
(What objection could be made to writing INSTOCK-3, RECEPTS-3 and
ISSUES-3 in the AP and SP instructions as opposed to the way they are written
in the sample program? What displacements will be assigned in either case?)

Note the DROP 7 assembler instruction immediately after the BXLE.
This informs the assembler that GPR7 is no longer available as a base from
that point on. As a result, only those operand addresses between the USING
INSTOCK, 7 and the DROP7, which refer to operands between INSTOCK and
INSTOCK+4095, will be assigned GPRT as a base register. If we did not take
this precaution, the B IOOUT would be assembled as

BC 15,600 (0,7)

which would be correct at assembly time but when executed, GPR7 would con-
tain A(INSTOCK+300) and so the actual branch address would be 300 bytes
further down the program than intended. With the DROP statement included
before the B IOOUT, GPRI11 will be used, instead of GPR7. Again, this is
one of the infrequent occasions when the programmer must take into account
the addressing characteristics of the machine.

4,3 Tabular Data

Previously, we have considered only simple arrays consisting of a
sequence of entries -- the first entry is in word one, the second in word two
and so forth. We can visualize such an array as a column of data. For this
reason, these arrays are often called one-dimensional arrays. We can also
talk about a two-dimensional array and, in fact, two-dimensional arrays have
great utility in programming. As an example of a two-dimensional array,
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consider a compound interest table. Going down the left hand side of the page,
we have the number of years of investment, say one to 50. Across the top,
we have the interest rates from, say 1% to 6% in steps of 1%. To find the
value in 30 years of $1. 00 invested today at 4%, we read across the 30 year
row until we come to the 4% column, the entry there gives us the answer,
$3.2434. Since programs very often use tablular data in a two-dimensional
form, we will develop a simple technique for addressing these arrays. First,
some notation. Figure 4-3 shows part of the compound interest table and the
acrostic to the right indicates that the rows are read from left to right and

the columns from top to bottom. We will use the same modified subscript

%o 1 2 3 4 5 6

n

1 XXX XXX XXX X XX XXX XXX

| c

2 XXX XXX XXX XXX XXX XXX ROW
L
U

3 XXX XXX XXX XXX XXX XXX M
N

4 XXX XXX XXX XXX XXX XXX

L——-""“—-—\_’—-‘W\_’\—A‘M

Fig. 4-3 Part of a Compound Interest Table

notation here which we introduced previously for one-dimensional arrays. To
refer to an item in the Rth row and Cth column of a two-dimensional array, A,
we write A(R, C) indicating that the first subscript gives the row number and
the second, the column number. (We offer the reader the mnemonic arc as
an aid to remembering this convention.) The interest table in Fig. 4-3 has
50 rows and six columns. While we can depict it on paper as a two-dimen-
sional array, in core storage, it must be arranged in what amounts to a one-
dimensional layout since core addresses are sequential. We will form the
array by columns. The first column will start at TABL, the second TABL +
50(words), the third at TABL+100, and so forth. Figure 4-4 gives a sche-
matic.

We must now develop a technique for addressing an arbitrary element
in the table, TABL(L, J), that is, the Ith entry (row) in the Jth column.
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L
= 1
The addresses TABL+50--: 9\
of the first word - l:
of each column E 5
entry are shown. -
The address units
(50, 100, . . ., 250) TABL+100-- €
are in words. - L
-3
TABL+250>: 8
- L
- 6

Fig. 4-4 Two dimensional Array in Core Storage

Looking at Fig. 4-4, we note that each column has 50 entries and since
there are J-1 columns before the Jth column, the number of entries
preceding the Jth column are 50 (J-1). That is, this number of entries
brings us to the last entry in the J-1st column. To reach the Ith entry,
or row, of the Jth column, we add I to 50 (J-1). With TABL as the
label, or beginning address of the array, and f the number of bytes per
entry, the address of TABL (I,J) is then TABL + f (50 (J-1)+I-1).

Since TABL is the address of the first entry in the table, TABL (1, 1),
we must subtract 1 from I. To verify this formula, substitute sample
values of I and J including I=J=1 and compare your result with a direct
count. For convenience the addressing formulas for one and two-dimen-
sional arrays are given below.

Address of TABL(I, J)=TABL+{(N(J-1) + I-1)*
Address of A(I) = A + f(I-1)

* N is the number of rows in the array.

In a typical application of a two-dimensional table, the array indices
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are supplied as input items. As an example, in an interest problem

a particular case may require the value of an investment at 6% interest
in 18 years. The column number is then 6 and the row number is 18.
Assuming full-word entries (f=4), the desired address is

TABL + 4 (50(6-1) + 18-1)

or TABL + 4*267 = TABL + 1068. We will show sample coding which
will calculate the address of an element in a 50 row array whose row
number (I) is in location ROW and whose column number (J) is in
location COL. The result will be stored in ANS.

L 3, COL J

BCTR 3, 0 SUBTRACT 1, GPR3 =J-1
M 2, =F'50' GPR3 = 50(J-1)

A 3, ROW GPR3 = 50(J-1) +I

BCTR 3, 0 BPR3 = 50(J-1) +I-1

SLA 3,2 MULTIPLY BY 4

L 2, TABL(3) TABL+4 (50(J-1) + I-1)
ST 2, ANS

The use of GPR3 as an index register performs the address modification.
We could define the address of TABL and add it to GPR3, then use a

L 2, 0(3)instruction which would give the same result. Our method saves
the addition because the indexing hardware will do it for us anyway.

In some cases, the indices will not be given directly but must be cal-
culated. As an illustration, suppose we have a separate column for each
interest rate from 1% to 6% in steps of 1/2%. The column indices are
related to the rates by

Column 1 2 3 4 5 6

Rate 1% 1.5% 2% 2.5% 3% 3.5%...

The programmer would then have to develop a formula to connect the
two. If he is not mathematically minded, and wants to make up for it
with a little extra computer time, he could arrange a rate table in
storage and program a routine which searches the table to find the

right column for each rate which occurs. We will discuss table look-up
subsequently. However, a formula can be developed easily and we will
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pause to do so since this example is representative of a general technique!
Note that if the rate is doubled and then one subtracted the result is the
column number. The reader is urged to try this a few times to verify

it. If the rates are defined as F'10', ¥'15' for 1%, 1.5% and so on,

the coding for our formula is

L 3, RATE RATE=X.X

SLA 3,1 DOUBLE RATE

s 3,=F 10" SUB. ONE:X. X-1. 0

SR 2,2 CLEAR GPR2

D 2, =F'10' 'DECIMAL SHIFT' RIGHT 1

* GPR3 NOW CONTAINS COLUMN NUMBER

The tabular arrangements we have discussed so far have been
relatively clean. To retrieve a particular value, we had its indices
available as input, or lacking this, we had something from which an
index could be readily computed. However, not all tabular data can be
arranged in this fashion. As an example, consider the symbol table
constructed by the assembler. When the assembler processes an operand,
to find its address, a search must be made through the symbol table
comparing the given operand name with every entry in the table. When
a match is found, its address is then available, usually in some adjacent
locations. This table is typical of the argument-value table as opposed
to an indexed table which we have discussed previously. The argument
can be considered the table input and the value, the table output. The
reader may envision an argument-value table as comprising two separate,
adjacent columns, one containing arguments, the other, the corresponding
values. A dictionary is an excellent example of an argument-value table.
The word to be looked up is the argument and the definition is the value
of the table corresponding to that argument. Note that with this type
of table, an access will involve some form of search, or look-up. If
we wished to find the dictionary definition of ""'mnemonic", for instance,
we would first turn to the M's, then skim back and forth until we found
a page which bracketed "mnemonic', such as "mitered-mode", and
finally after searching that page, find "mnemonic". If the dictionary
was organized instead as an indexed table, we would go immediately
to the 19th entry on page 506, for instance. Even this would only be
possible by a search through another list, one which gives page and
entry numbers for each word. At the heart of our difficulty with a
dictionary or any true argument-value table is this: While we can arrange
the arguments in some order, alphabetic order in the case of a dictionary,
we have no way of making an immediate correspondence between the
argument and an integer, or integers, which would comprise its index.
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From our study of the interest table, we can immediately assign to the
argument '3.5% 15 years', the integers " 15, 6" for row 15, column 6.
However, we do not have a formula for assigning page 506, entry 19
to ""mnemonic', we can only do so by a search.

Worked Example

é_-_@ As an example of a table search program, suppose we have an
employee file on disk arranged in alphabetical order and we have a
table in core showing the range of disk addresses for a particular range
of names. Assume we have divided the employee name file into 20
equally sized groups. The core table, NAME, gives the names which
constitute the upper boundaries for each namegroup. These names are
15-character fields, left justified and padded to the right with blanks.
To retrieve the data from disk corresponding to a particular name,
DANIELS for instance, a search is made in the NAME table and it is
found that this name is in the fourth group. Using this as an index to
the address table, ADDRS, we find that the fourth group of names begin
at disk address 2075168, A search can be made through all names in the
group starting at this point, or a dictionary for the fourth group can be
stored on disk at this address and the process repeated until we are
close enough to DANIELS for a name by name search to be made. The
final dictionary might show all the names within a given range of the
alphabet and the disk address of each one. Figure 4-5 shows the NAME
table. The coding follows with the search name left justified in a 15-
character field, INPUT. The program finds the group index which is.a
number from 1 to 20 and stores it in a full word, NDX. The coding
follows with the flow chart in Fig. 4-6.

LH I,=H'1l' I EQU GPRO
LM 1,3, ADCON GPR1-3 FOR LOOP CONTROL
USING NAME, 1

LOOP CLC  INPUT, NAME
BNH STORE INPUT LESS THAN OR EQUAL
AH I =H'1l' INPUT GREATER,ADD 1to 1,
BXLE 1,2, LOOP INCREASE BASE REG BY 15
DROP 1

STORE ST I, NDX

INPUT DS CL15

I EQU O

ADCON  DC A(NAME) LOAD INTO BASE REG1

154



DC F'15'

DC A(NAME+19%15)
NAME  DC CL15'BEVINS' = EMPLOYEE NAME TABLE
c CL15'BURNS'
DC CL15'COLUMBO'
NAME GROUP

BEVINS 1
BURNS 2
COLUMBO 3
DEERING 4
EWELL 5
GAYNOR 6
SPRAGUE 17
TILTON 18
WATKINS 19
ZZZZ22222222227. 20

Fig. 4-5 NAME Table for Example 4-6
Each name is the upper boundary for
1/20 of the employee name file

Our strategy is to compare the INPUT name with the group boundaries
in ascending sequence. Since the collating sequence allows a corres-
pondence to be made between alphabetic data and binary numbers, the
compare circuitry can detect when a given alphabetic field is less than
or equal to another field (note that blanks are lower in the collating
sequence than any letters). As soon as a less than or equal condition
is detected, the group in which NAME belongs is the group whose upper
boundary has just been compared.

The index of this group is the table argument in this foreshortened
version--actually, the index would be used to retrieve the appropriate
disk address from another one-dimensional table; it is this disk address
which is the ultimate table value. The logic of indexing in an SS-instruc-
tion such as CLC has been discussed in Ex. 4-5 so we will not comment
further here. Note that it is possible that an INPUT will be higher than
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NDX<+—1

! INPUT IS NAME

TABLE ARGUMENT

C FINISH ) 1 IS NAME TABLE
VALUE

Fig. 4-6 Flow Chart for Example 4-6

all entries in name including ZZZ...ZZZ. This will happen if a digit is
inadvertently substituted for the high-order character, 4ANIELS, for
example. The data should be validity checked earlier in the program to
preclude this possibility or else, a branch to an error routine should be
inserted after the BXLE. If the loop is satisfied, no match has been

found and INPUT then contains an invalid high order character.

Worked Example

4-7 Binary Search The previous example shows how a sequential
search can be made. A sequential search, of course, is one which
begins at the first entry in the table and scans through it, entry by
entry, in sequence until the desired entry is found. It has the advantage
of being easy to program but many comparisons may be required. In

a table of length 2, 000, on the average 1000 comparisons are required
to find the desired entry. There are search techniques which reduce
significantly the number of comparisons. One of them, the binary
search, will be discussed here. It is necessary for this technique that
the arguments be arranged in some order, say low to high. The binary
search is based on dividing the table in half, determining which half
contains the argument, dividing that part in half and so on until a match
is made. The first division must be made to the smallest power of two
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greater than half the table size. This is necessary to ensure that any
entry in the table can be reached. As an example, a 2000 entry table
would be examined in position 1024 since this is the smallest power of

two greater than 1000. Assume the arguments are four-character part
numbers coded as alphabetic fields, sorted from lowest to high in a
2000-word table. We have another 2000 word price table whose entries
correspond in sequence with the part number table. We are given PARTNO

and desire the corresponding PRICE. The two tables are PARTBL and

Fry3minad aacawmai A mi

PRCETBL. Asan exampie of a typical search, assume the desired value’
is actually located in entry 1997; at each step, PARTNO will be compared
with the table entry until entry 1.997 is reached. After each compare,the
remainder of the table will be divided in half and the next compare made
at that point. If we exceed the table size, we will drop back to the next
lower half-way point. QOur first try is 1024 (PARTNO compares high);
the second, 1024 + 512 = 1536 (high); the third, 1536 + 256 = 1792 (high);
the fourth, 1792 + 128 = 1920 (high); the fifth, 1920 + 64 = 1984 (high);

the sixth, 1984 + 32 = 2016 (invalid, PARTNO compares low); the seventh,
2016 - 16 = 2000 (low); the eight, 2000 - 8 = 1992 (high); the ninth, 1992
+4 = 1996 (high); the 10th, 1996 + 2 = 1998 (low); the 11th, 1998 - 1 = 1997
(match). The maximum number of seeks for this size table is 11. The
minimum could be as low as one with the average around 10. This is

100 times less than a sequential search. The extra programming effort
will be worth it if we can code the binary search so that it can be com-
pleted in less than 100 times as many instruction executions as a sequen-
tial search.

The flowchart appears in Fig. 4-7. As our example above indicates,
the binary search generates a series of test tries by adding or subtracting
a series of successively lower powers of two to a starting value, 1024. We
add, if PARTNO compares higher than the test entry, subtract if it is lower.
Tue index of the current fest entry is in a register, NDX; the current power
of two is in a register, HALF, which is divided by two on each iteration.
Note that a check must be made to ensure that NDX does not go above 2000.
If it does, we wish to prevent the actual comparation, since the table does
not extend that high, and treat it as though PARTNO compared low, (that is,
our next attempt will have to be lower in the table). Note that we have not
taken precautions against a PARTNO which might be lower or higher than
the ends of the table. If this happened, the program would go into an end-
less loop because it would be trying for a comparison at entry 1 or 2000
which could not be met, HALF would be shifted to zero and a compare
attempted at the same point as the last compare. To avoid this, PARTNO
should be given a range check immediately prior to the binary search. The
coding follows.
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L PARTR, PARTNO PARTR EQU GPR1

L NDX, =F'4096' NDX = 4*1024 IN GPR2
L HALF, =F'2048' HALF = 4*512 IN GPR3
L MAX, = F'8000' MAX = 4*2000 IN GPRO
BSEARCH CR  NDX,MAX COMPARE NDX WITH 2000
BNH TEST NDX EQ OR LT 2000
B LOW NDX GT THAN 2000
TEST C PARTR, PARTBL-4(NDX) PARTNO:PARTBL(NDX)
BH  HIGH
BE OUT
LOW SR  NDX,HALF NDX = NDX - HALF
B SHIFT
HIGH AR  NDX,HALF NDX = NDX+HALF
SHIFT SRA HALF,1 HALF = HALF/2
B BSEARCH
ouT A NDX, = F'8000' ADDRESS OF PRCETBL
L 0, PARTBL(NDX) LOAD PRCETBL(NDX)
ST 0, PRICE
PARTNO DS F
MAX EQU 0
PARTR EQU 1
NDX EQU 2
HALF EQU 3
PRICE DS F

PARTBL DS 2000F
PRCETBL DS 2000F

Note also that the branches after the compare instructions have been sequenced
to minimize execution time. The branch condition which will be taken most
often is placed immediately after the compare. For example, at BSEARCH

we should expect that probably 95% of the time, NDX will be less than 2000.

As a result, for every 100 times the comparison is made, the BNH will be
executed successfully 95 times. The remaining five times, it will merely pass
control to the next branch which will then be executed. The total number of
instructions executed is 105. If the BNH and B were interchanged, and the B
replaced by BH, the BH would be taken five times every 100 tries, the re-
maining 95 times, instruction processing will proceed to the next branch which
will be executed successfully 95 times. The total instruction executions this
time amounts to 195, almost a 100% difference. (For a first approximation,
the execution times of a branch instruction is the same, whether it is taken or
not.) The comparison between PARTNO and PARTBL involves an interesting
question: Can it be done using the RX compare instruction? The only advan-
tage to the RX Compare is that it is faster than the SS compare. However,
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Fig. 4-7 Flow Chart for Example 4-17

0

the RX compare is algebraic, that is, the presence of a sign bit in one of the
comparands will cause it to be interpreted as a two's complement number.
We must ensure that the collating sequence is unchanged in this representa-
tion. An A is represented internally as 11000001 and Z is 1101001. When
these are interpreted as two's complement numbers, we have A = -00111111
and Z = -00010111, or A = -63 and Z = -23 so that Z will still compare higher
than A. The collating sequence is therefore unchanged. If there was a
shortage of registers, the CLC could be used. However, this would require
slightly different treatment of the contents of the registers, NDX and MAX.
We leave this for the reader to work out as a problem at the end of this
chapter. Base register usage offers a number of interesting considerations
also. Assuming that the label PARTBL is 4095 bytes, or less, from the
beginning of the program so that one base register will suffice to address all
labels up to that point, then it would seem that an additional base register is
needed for PRCETBL since it is 8000 bytes removed from PARTBL. How-
ever, the price table is only referred to once in the program at OUT+.
Rather than use an extra base register for it, we can reference the desired
price as PARTBL+8000(NDX). However, this operand is not valid because
8000 exceeds the size of the displacement field. We obtain the same effect
by adding 8000 to NDX. However, we are not out of the woods yet. The
literals, =F'4096', =F'2048' and =F'8000' will be assigned to locations at the
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end of the program, that is, after PRCETBL. As a result, with only one
register, they cannot be addressed. The assembler will not rectify this since
base register allocation and loading are the responsibility of the programmer.
The way out is to have the assembler place all literals at a more convenient
point such as before PARTNO. This can be done with the LTORG statement
whose format is

label LTORG

This is a mnemonic for Literal Pool Origin, it may be labeled but should have
no operands. It causes the assembler to place all literals, which have
occurred prior to the LTORG, starting at the first double-word boundary after
the LTORG.

Worked Example

4-8 Array Interleaving An important technique for conserving on base
registers is array interleaving. Rather than set aside separate contiguous
blocks for each array, we interleave them in a sequence such as A(1), B(1),
C(1), A(2), B(2), ... A(N), B(N), C(N). As an illustration, assume we have
to add together two 2000-words arrays, A and B, element by element, and
store the results in C. The operation is A(I) + B(I) = C(I), I = 1(1)2000. Using
conventional storage allocation techniques, we would write the code as follows

START O
GO BALR 11,0
USING *, 11
USING B-4, 10
USING C-4,9
LM 9, 10, BSCON
B INPUT
BSCON DC A(B), A(C)
INPUT ==
LM 1, 3, NDXCON
LOOP L 0, A-4(I)
A 0, B-4(I)
ST 0, C-4(I)
BXLE 1,2, LOOP
OUTPUT  --
NDXCON  DC F'4'
DC F'4'
DC F'8000"
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A DS 2000F

B DS 2000F

o DS 2000F
END GO

We are assuming GPR11 will suffice to address the program up to and in-
cluding A. If the arrays are interleaved by storing them in the order: A(1),
B(1), C(1), A(2), B(2), C(2), ..., GPR9 and 10 will no longer be needed. The
storage area for the arrays will be defined as

A DS 6000F
B EQU A+
C EQU A+8

The loop instructions should be changed as though the program was being
written for 12-byte fields. That is,

L 0, A-12(1)
A 0, B-12(1)
A 0, C-12(1)

Provided the index constants are changed appropriately, this will work since
only four bytes will be taken from storage each time and the displacements
will separate the arrays from each other. The assembler will assign a dis-
placement to A which is 8 bytes less than the previous one, B's displacement
will be four more than A's and C's, eight more. Let us now consider the
index constants. If we consider A for the moment, each element is 12 bytes
removed from the previous one, and since there are 2000 entries in the array,
the last entry is 24000 bytes from the first. The first index constant must be
changed to 12 to allow the first word of each array to be addressed correctly.
We then have

NDXCON DC F'12'
DC F'12'
DC F'24000'

Figure 4-8 shows the addresses generated by this technique on the first,
second and last iteration. Array interleaving is an important technique for
conserving base registers, and where possible, it should be used. One of the
requirements for its efficient usage is that the interleaved arrays be of
approximately equal length, otherwise significant amounts of storage will be
wasted. The possibilities for array interleaving are greatest in mathematical
work. Where arrays are either generated in storage, or they are read in
and relatively large amounts of calculations are done (significantly larger
than the input or output time) so that time can be afforded to manipulate the
individual arrays into an interleaved set of arrays. In commercial data pro-
cessing the relative proportion of calculation is usually lower than in
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I=12 I=24 I = 24, 000

A-12() A =A(1) A=12=A(2) A+23,988 = A(2000)
B-12() A+ =B(1) A+16=B(2) A+23,992 = B(2000)
C-12()  A+8 =C(1) A+20=C(2) A+23,996 = C(2000

Fig. 4-8  Array Interleaving

mathematical work so that the arrays should be in interleaved form on the
input medium, if possible.

4-9 Sorting

Sorting is perhaps the single most significant application, in terms of
time consumed, of data processing equipment. While it is beyond the scope
of this book to describe the various techniques for manipulating I/0 devices
to produce an efficient sort, we will discuss several techniques for perform-
ing so called internal sorts. That is, a sort on records which are contained
in core storage. An internal sort, of course, is an essential part of a sorting
program. While it is unusual for the average programmer to write his own
sort program -- this is usually supplied by the computer manufacturer -- it
is important to understand the basic principles.

While all sorts have the ultimate goal of sorting a file of complete
records, the internal sort phases usually do not deal with the entire record.
Each record has a key, or identifier, usually much smaller than the full re-
cord. For instance, an insurance policy number may be only eight digits
long whereas the entire record for that policy may contain 100 to 200 or more
characters. The key contains the information which determines a record's
position in the file, it may be an account number, policy number, part num-
ber, or an alphabetic name. Along with each key, there will be a storage
address which gives the location of the full record. We will sort only the
keys with their accompanying storage addresses. Assume that the keys are
32-bit binary numbers and the storage addresses are three-byte fields. The
input routine brings in N records into contiguous storage locations and con-
structs an array of N seven byte entries, the first four give the record key,
the next three, its address. We will develop a program which will sort this
array, from low to high keys in ascending storage locations. One of the
simplest methods of doing this is the exchange sort which scans through the
array to find the lowest key which is then stored in the first entry, the pro-
cess is repeated with the next lowest key which is stored in the second entry
and so on, for a total of N-1 scans. (On the N-1st scan, the next to largest
item will be stored in the N-1st entry; the largest one will then be automati-
cally in the last entry.) The flow chart appears in Fig. 4-9, the coding
follows.
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L 1, SEVEN
ST 1, PN INITIALIZE PN TO 7
M 0,N UPPER LIMIT FOR
ST 1, SEVEN+4 A-ARRAY = T*N
S 1, SEVEN
ST 1, SEVNMT PN UPPER LIM=T*N-7
USING Al 1 EQU 1
LM 2,3, SEVEN LOAD LOOP PARAMETERS
3, =ALA-T) GPR2 = A-T+T*N
NEWPASS L I, =A(A-1)
A I, PN I=PN
MVC LOW(7), A LOW = A(PN)
A 1, SEVEN I=PN+7
COMPARE CLC LOW(4), A LOW: A(l)
BNH INDEX
MVC TEMP(T), A STORE A(I)IN TEMP
MVC A(T), LOW STORE LOW IN A(T)
MVC LOW(7), TEMP  NEW LOW = A(J)
INDEX BXLE 1,2, COMPARE  I=I+T; L:T*N
S I, SEVEN+ I=A-T+TN+T - TN
S I, SEVEN I=A-T+7-1
A I, PN I=A-T+PN
MVC A(7), LOW STORE LOW IN A(PN)
L 0, PN
A 0, SEVEN
ST 0, PN PN=PN+7
c 0, SEVNMT PN:7*N-17
BNH NEWPASS
DROP 1
B OUTPUT SORT FINISHED
LTORG
PN DS F
SEVEN DC '
DS F =7*N IN EXECUTION
LOW DS PL7
TEMP DS PL7
SEVNMT DS F =7*N-7 IN EXECUTION
N DS F

FIRST FOUR BYTES CONTAIN KEY, LAST THREE, ADDRESS -- SORT

*  ON KEY ALL LOOP PARAMETERS IN FIG. 4-7 MUST BE MULTIPLIED
* BY 7 TO ACCOUNT FOR 7-BYTE LENGTH OF EACH ENTRY IN A

I EQU 1

A DS 1000PL7 MAX LENGTH 1000 ENTRIES

163



The flowchart describes the logic in a machine independent form.
Indices are incremented by one rather than by seven, as an example. We
suggest that this approach to flowcharting is to be preferred because it allows
the programmer to focus on the essential logic of the problem first, rather
than enmesh himself what thus-and-such base register should contain, or
whether the BLXE should have an upper limit of 7N, 7TN-7, and so forth.

o)

i

BN PN IS PASS NUMBER

+—1 F==<IRANGE: 1(1)N—f
it

LOW-—A(PN)

INITIALIZE I TO
I+—PN + 1-=== pASSNUMBER + 1

7

< >
;@

TEMP=<—A(I) INTERCHANGE
- A(1)*—LOW === | (W AND A(1)
LOW<—TEMP
Je—T71+1

IA
\Y

| ___ STORE LOWEST REMAINING
A(PN)=—LOW ELEMENT IN A(PN)

PN<+—PN + 1

OUTPUT )

Fig.4-9  Flow Chart for Example 4-7, SORTING

These considerations, while vital, are nonetheless secondary to the primary
one of first coming up with a solution. After this has been done, and its logic
captured in a flowchart, the programmer then can begin coding. The comments
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portion of each assembly statement should be used liberally to forge a con-
nection between the program steps and the flow chart. There is also the
advantage to a machine independent flow-chart that if some machine oriented
item should be changed, such as changing from a seven-byte entry to a four-
byte entry, the flowchart is still good so that the programmer has less re-
work to do.

4-1 The code between GO and LASTA will be executed six times. The BCT
at LASTB will be executed three times. When the instruction at FIRST is
executed, GPR1 = 0 and GPR2 = 0.

4-2 a) The index values are 3, 10, 17, 24, and 31. The loop will be exe-
cuted four times. After the last execution, the index will be incremented to

31 at which point the BXLE will not be taken.
b) -4, -1, 2, 5, 8, 11, 14; six iterations.

c) 25 times; 100, 96, 8, 4. The index value after the loop has been
satisfied is 0.

d) for BXLE with parameters I(J)K, the number of iterations is (K-I)/J+1

where means "integer part of’; 3.9 =3, for example. For BXH
the formula is the same (exchange K and I to get a positive result) except for
the +1 being omitted only when the division gives no remainder. As examples,
12(4)0 gives three iterations whereas 12(4)-1 gives four iterations

Problems

4-1 Show how to use the BCT to subtract one from a register and continue
sequentially.

4-2 Suppose a section of code is to be repeated until some test is satisfied
and it is desired to count the number of iterations (and show the result as a
positive number). Show the result as a positive number. Show how this can
be done using BCT.

4-3 Suppose GPR2 is loaded with 100 prior to the start of a loop and a BCT2
is placed at the end of the loop with an appropriate branch address. If the only
operation performed on GPR2 during the loop is A 2,=F'I', can you determine

how many times the loop will be executed? What if the instruction is
A2, =F-1?
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4-4 Determine the number of iterations, the first and last values of the
index and its value after the loop has been satisfied for the following BXLE
loop parameters: 1(1) 10, 0(2)512, -3(3) 27, 17(3) 191; BXH loop parameters
27 (3) 0, 400 (4) -3, 512(2)-2.

4-5 Referring to the payroll examples in Sec. 4.1, if the operand at SUBT
were changed to DED-4(3), what changes would be necessary for NDXCON?

4-6 Referring to Example 4-1, if the operand at TEST were changed to
BLOCK-4(1) , what changes would be required for NDXCON? Are any other
changes in order?

4-7 Referring to Example 4-1, add the necessary coding to check the pre-
sence of a word of 1's in word 10, 001 after the loop has been satisfied. If
this condition is not met, branch to ERROR.

4-8 Modify the coding of Example 4-1 so that the total number of positive,
zero and negative entries will be tabulated and stored in PLUS, ZERO and
MINUS, respectively.

4-9 Write a program to read into storage a deck of N+1 cards. The first
card contains the number N in cc 1-2 (N=99). The next N cards each contain
a part number which ranges from 1 to N in cc 1-2 and the inventory position
for that part number in cc 3-6. Set up an inventory array large enough to
contain the maximum number of items. Assuming that the input is not sorted
by part number, the program should use the part number punched in the card
as an index to generate the address in the inventory table where the inventory
position will be stored as a binary number. When all cards have been pro-
cessed, terminate the job. Also, if a part number is greater than N, print
the message, THE FOLLOWING ERROR DATA HAS BEEN READ: followed by
cc 1-6 of the error card, and then continue with the input. Should the entries
in the inventory array be half-words or full-words?

1.9

-10 Refer to the technique for computing a self-checking digit in Example
-5. Using indexing, apply this technique to a 13 digit number, whose first
2 digits are the account number, with the 13th being the check digit.

D

4-11 Assume that we have a deck of cards containing census data for each
of the inhabitants of a town. If cc. 20-21 contain the age at last birthday of a
given inhabitant (00 indicates a child less than one year old, 99 indicates an
age of 99 or greater), write a program which will read the census data and
develop an age tabulation in a one-dimensional array in storage. The first
entry should contain a count of all cards with 00 age; the second, 01 age, and
S0 on up to the fifth entry which tabulates 04 age; the sixth tabulates ages
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05-09; the seventh tabulates ages 10-14 and so on with the last entry tabulating
ages 95 99. The last card contains a - in cc 80 and a card count in cc 70-79
which should be cross checked with the count developed by the program. When
the last card is read, the tabulation should be printed in a column with the age
or age range shown next to each entry in the column.

If the card count does not cross check, a message should be printed on
the top of the page following the tabulation listing which indicates the number
of extra or missing cards. Note: The DS statement which reserves storage
for the age tabulation array will not set its locations to zero. This must be
arranged for by the programmer prior to reading in the first card. Binary or
decimal arithmetic should be used wherever either one is most convenient.
Construct a small deck of census cards to test your program. Each of the

error possibilities should be tested.

4-12 Assume that the census deck of Prob. 4-11 contains annual income
rounded to the nearest dollar in cc 40-45 and number of years of schooling in
cc 38-39. Write a program which will use the census deck to create a cross
tabulation of years of schooling vs. annual income. The rows of the table
should be years of school from 0 to 25. (row 25 indicates 25 or more years of
schooling); the columns should be annual income in increments of 2000. That
is, column one indicates annual incomes from $0 to $1, 999; column two, from
$2, 000 to $3, 999, and so on with the last column indicating annual incomes
from $98, 000 and higher.

4-13 Assume N variable length records are stored beginning at location
DATA. Their lengths, which may range from four to 256 bytes, are indicated
in binary by the first byte of each record. The next three bytes are the re-
cord key in binary. Write a sequential search routine to locate a given key.
Note that if the length of the first record is known, the address of the second
record can be found by adding the length of the first record to the location of
the first record. This can be extended to address any field. The search
should be programmed to search within N records and print an error message
if the desired record is not found within the N records in storage.

4-14 The search in Prob. 4- 13 can also be done by binary search. However,
an argument- value table is required for a binary search of variable length
records. The argument column would contain the keys for all records, sorted
in ascending sequence. The value column would contain the storage locations
corresponding to the record keys in the argument column. The binary search
would be made in the argument column; when a match is made, the record
address can then be taken directly from the value column. The desired re-
cord can then be fetched and processed. Write coding to create this argument-
value table assuming a), that the records are already in ascending sequence,
and b), they are not sorted.
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Chapter 5

LOGICAL OPERATIONS

5.1 Bit Manipulation

Up to this point, we have been concerned with operating on data in units
usually larger than a single byte. In the programs we have discussed so far,
the data was organized either as individual words, or if variable length, as a
group of consecutive bytes. However, it is often useful to employ single bits
to contain discrete items of information. This is feasible when each piece of
information has only two possible values. For one of these values, we may
use a bit code of 0, for the other, a bit code of 1. Consider some of the items
that would be part of an automobile insurance policy record. The record
would have to show if options such as collision or theft are covered, or if the
driver is under 25 years of age or if multiple autos are covered. Since these
may be coded as yes or no responses, a single bit may be used to indicate the
status of each. The programmer should always be on the alert for such situa-
tions which allow bit coding for they permit substantial saving of core storage
and tape or disk storage. Since bit coding results in shorter physical records,
the reading and writing times for these records will also be shorter so that
processing time savings can also result from bit coding techniques. However,
their principal justification lies in storage savings and in fact, bit coding may
require additional programming beyond what would be required if full bytes
were used instead.

So far, we have mainly been concerned with arithmetic operations. On
bit-oriented data, additional operations are useful. They are the And, Or and
Exclusive Or operations. The subject of bit operations is often referred to as
Togical operations because of the antecedents in symbolic logic of these three
instructions. Another name for this topic is Boolean Operations after George
Boole, the originator of the algebra of symbolic logic. We will introduce the
use of these operations with an example. Suppose we have a tape file of per-
sonnel records. Each record contains an experience summary indicating
whether the individual in question has had experience in finance (F), manufac-
turing (M), research (R) or sales (S). The experience summary is a Join-bit
field which contains a 1 or 0 in each position in the order FMRS as a yes or no
indicator. This file can be used for personnel searches. Typical searches
may require individuals with backgrounds in finance or manufacturing (either
or both backgrounds qualify); a search may be for people with backgrounds in
manufacturing and sales (both are required to qualify); a search for a training
program may require a background in finance or sales, but not both (this is
the Exclusive Or) To determine if a partlcular experlence summary -- let us
call’it a test f1e1d -- matched the desired profile, it would be operated on by
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the three logical instructions in conjunction with a mask whose bit pattern is
related to the desired profile. Figure 5-1 shows the results of these opera-
tions on individual bits. It will be helpful in reading this figure, if the reader
thinks of a 1 bit as a "yes and a 0 bit as a ""no" (the designations True or
False are equally satisfactory).

AND 0 | OR 0 I EXOR] © |
0 0o 0 0 o | o 0 |
| 0] | | | 1 | | o

Fig. 5-1 Bit definitions of And, Or, and Exclusive Or.
For fields larger than one bit, these rules are
applied to each bit position in sequence.

As an example, Fig. 5-1 shows that the AND function of a 0-bit and a
1-bit is 0. 1In the context of our example, if the search criterion is manufac-
turing and sales backgrounds, an individual with M =0, S =1 will not pass.

As another example, the Exclusive Or of a 1-bit and a 1-bit is 0. That is, for
a search of sales or finance but not both (Exclusive Or), a candidate with F =1
and S = 1 would be rejected.

The reader should read through the balance of Fig. 5-1 making up
similar examples as he proceeds.

The general approach to such problems as the personnel search is to set
up a function which expresses the search criterion. Various masks will then
be set up to determine if each test field matches the search criterion. To
simplify the discussion, we will use the symbol + for Or, * for And, and x for
Exclusive Or. To indicate a negative condition, we will place an overscore
above the letter for that condition. For instance, to indicate a search criterion
of no financial background,we write F. To indicate a financial or a manufac-
turing background, the function is F + M; for financial and sales, we have FS;
manufacturing or sales but not both, MxS; either manufacturing or sales and
finance is M + S* F but finance and either sales or manufacturing is F- (S + M).
As an illustration, if M=1, S=0, F=1, R =0 for a given test field, the
indicated functions have the following values:

Function Value
F+M
F-8

MxS
M+SF
F-(S + M)
Mx(S + R)

e = O
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Test Field Format: FMR S

F + S (1xx0, 1xx1, or Oxxl, only, will satisfy the search criterion)

Operation Mask Result Comment
And 1001 x00x X's maybe lor 0
Test for non-zero Non-zero indicates match

Fx8 (1xx0 or 0xx1, only)

Operation Mask Result Comment
And 1001 x00x x's may be 1 or 0
Ex-Or 1000 000x Match if zero, if not, go to

next operation

Ex-Or 0001 0000 Match if zero

F-R (1x0x only)

Operation Mask Result Comment
And 1010 x0x0 x's may be 1 or 0
Ex-Or 1000 0000 Match only if zero

F- (R + M) (110x or 101x or 111x)

Operation Mask Result Comment
And 1110 xxx0 x's may be 1 or 0
Ex-Or 1100 0000 Match if zero, if not go to
next operation
Ex-Or 1010 0000 (ditto)
Ex-Or 1110 0000 (ditto)

A better approach is to test for F = 1 using a mask of 1000 and if a match
is made, test for R + M with a mask of 0110 as in the first example above.

Fig. 5-2 Search examples. Note that each Ex-Or
is applied to the result of the first And, not
to the result of the previous Ex-Or.
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Functions containing parenthesized expressions should be evaluated starting
with the expression in parentheses. As an example, consider the function
Mx(S+R), S+R=0+0=0, Mx0 =1x0 = 1.

Exercise 5-1 a) Write the functions corresponding to manufacturing or
finance or sales, manufacturing and either research or sales, finance or

sales but not both, either sales or manufacturing and finance but not both.

b) WithS=F=0and M = R =1, evaluate the following functions: M + F + S,
M-S + F, MxF + SxR, Fx(S + M), M-S + FxR. c¢) Express in words the mean-
ing of the functions in b).

We will next discuss how masks are developed and used. Suppose we
are searching for candidates with financial and sales backgrounds; the function
is then F-S. Since we are not concerned about the other two possibilities,
research and manufacturing we can limit the test to the first and fourth bits in
the test field which is in the form F M R S. We can isolate these bits by And-
ing the test field with a mask of 1001. This gives a result of x00x where x
indicates either a 0 or a 1. Since the only result we are interested in is, 1001,
if we Ex~-Or the result with the same mask, a zero result will be obtained
only for a test field with F - S = 1. As an example, if F= 1 and S = 0, that is
1000, an Ex-Or with a mask of 1001 gives a result of 0001. The zero or non-
zero state of the final result can be determined by placing a Branch on zero
instruction after the Ex-Or.

As further examples, Fig. 5-2 shows the masks and operation sequence
for the functions, or search criteria, F + 8, FxS, F + R, and F-(R + M). The
Ex-Or operations in Fig. 5-2 are applied to the result of the first And opera-
tion, not to the result of the previous Ex-Or.

-

5-2 Logical Operations

Figure 5-3 describes the And, Or and Exclusive-Or instructions. The
result of each operation is placed in the first operand location. The operation
is performed bit by bit with each operand treated as an unsigned logical quan~
tity. As examples, the comments field of the following statements shows the
results of each operation. The first operand is 11011101 before each opera-
tion. Each instruction is considered to be independent of the others.

NI OP1, B11110000' OP1 = 11010000
oC OP1(1), =B'00000010' OP1 = 11011111
XI OP1, B'10101010' OP1 = 01110111

For the immediate instructions (NI, XI) above, the second operand is not a
storage address but is the data itself.
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Operation Codes Operand pe
And Or Ex-Or

NR OR XR R1, R2 (RR)
N o) X R1, D2(X2, B2) (RX)
NI O XI D1(B1), I2 (D)
NC OC XC D1(L1, B1), D2(B2) (SS)

Fig. 5-3 Logical Instructions

Logical quantities may be compared using the compare instructions:

CLR R1, R2 (RR)
CL R1, D2(X2, B2) (RX)
CLI D1(B1, I2 (D)
CLC D1(L1, B1), D2(B2) (SS)

The CLC was introduced in Chap. 2 and is included here for completeness.
The comparison is binary with each operand treated as an unsigned binary
quantity. We will discuss the condition code settings shortly.

Logical quantities can also be added or subtracted by the following
instructions

ALR R1, R2 (RR)
AL R1, D2(X2, B2) (RX)
SLR R1, R2 (RR)
SL R1, D2(X2, B2) (RX)

Both operands are 32-bit unsigned quantities and all 32 bits participate in the
operation. The result is stored in the first operand location. Subtraction is
performed by adding the two's complement of the second operand to the first
operand. The second operand is unchanged. The condition code setting is
indicated in Fig. 5-4. The logical arithmetic instructions are useful when
32-bit numbers have to be added or subtracted such as in double-precision
operations which we will illustrate in Problem 5-5. When logical quantities
have to be shifted in the GPR, the following instructions may be used:

left-single SLL R1, D2(B2) (RS)
left-double SLDL R1, D2(B2) (RS)
right-single SRL R1, D2(B2) (RS)
right-double = SRDL R1, D2(B2) (RS)
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The logical shifts differ from the arithmetic shifts of Sec. 3.9 in three
important respects. First, the condition code is unchanged; second, all 32
or 64 bits participate in single or double shifts (for the arithmetic shifts, the
sign bit is not shifted); third, zero bits are used when fill bits are required
at either end of a GPR (the arithmetic shift instructions filled from the left
according to the sign bit).

A useful instruction is the Test under Mask. Iits format is

T™M D1(B1),12 (81)

The 12 field contains a byte of immediate data. The bytes of this mask are
made to correspond one for one with the bits of the storage character speci-
fied by the first operand address. A mask bit of one causes the correspond-
ing storage bit to be selected, a zero-bit causes the corresponding storage
bit to be ignored. When all selected storage bits are zero, the condition code
is set to 0; when all selected bits are one, the condition code is set to 3; if
some of the selected bits are zero and some are one, the condition code is set

CONDITION CODE 0 1 2 3

BC INSTR. MASK BIT 8 9 10 11
MNEMONIC BZ BM BP BO
Add/Subtract (Arith. ) Z€ero minus plus overflow
Add/Subtract (Logical) Zero not zero zero* not zero*
And/Or/Exclusive Or zero not zero - --
Compare Logical equal low high --
Test Under Mask Zero mixed - one
Translate and Test zero incomplete complete -

* indicates carry out of sign position

Fig. 5-4 Condition Code Settings

to 1. Figure 5-4 shows the condition code settings for a variety of logical and
arithmetic instructions. In Chap. 3 we introduced mnemonics for some of the
more frequent condition code settings, B2, BM, BP and BO. These nmemonies
are principally useful for testing the results of arithmetic operations. The
mnemonic value of BM, for instance, to test for mixed ones and zeros after a
TM instruction is somewhat dubious. We recommend instead that the pro-
grammer use the conditional branch instructions covered in Sec. 3-8. For
convenience their formats are repeated below.

BC
BCR

M1, D2(X2, B2)
M1, R2

(RX)
(RR)
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The M1 field isfour bits long and comprises bits 8-11 of the branch instruction
as indicated in Fig. 5-4. If any of the bits of the M1 field are matched by the
condition code, the branch will be taken. As an example, if the following
instruction is executed after a TM

BC B'1001', LOCA

the branch will be taken, if the test field is either all zeros or all ones.

Worked Example

5-1 Use the TM instruction for the personnel search criteria in Fig. 5-2.
The test field is located in the four low order bits of a one-byte field, SEARCH.
If a give test field meets the search criterion, branch to location OK, other-
wise, branch to NEXTCASE. The coding follows:

* SEARCH CRITERION F+8

™™ SEARCH, B'00001001" SELECT F AND S
BC B'0101', OK

* BRANCH IF SELECTED BITS ARE MIXED OR ALL ONES
B NEXTCASE

* SEARCH CRITERION FxS
T™ SEARCH, B'00001001'
BC B'0100', OK

* BRANCH IF SELECTED BITS ARE MIXED
B NEXTCASE

* SEARCH CRITERION F'R
T™ SEARCH, B'00001000"' SELECT F
BC B'0001', TESTR BRIFF=1
B NEXTCASE

TESTR TM SEARCH, B'00000010’ SELECT R

BC B'10001, OK BRIFR=0
B NEXTCASE

SEARCH CRITERION F- (R + M)
*  TEST FOR F = 1 FIRST, THENR + M

*

T™ SEARCH, B'00001000' SELECT F
BC B'0001', TESTRM BRIFF=1
B NEXTCASE
TESTRM TM B'0101',0K
* BRANCH IF SELECTED BITS ARE MIXED OR ALL ONES
B NEXTCASE
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5.2 Data Packing

Very often the length of a data field is not a multiple of eight bits. When
this occurs, the programmer has the option of either rounding the field leagth
up to the next multiple of eight bits, or packing adjacent fields within a single
byte. The first option wastes storage and input-output time, the second re-
quires additional instructions for repacking the fields prior to processing
them and then repacking for output. While a decision between the two depends

nn tho ﬂﬂeni#{na Nt a Nivren Si!"nar"inn it ig not nnugnsi far 'nw'i'e nacizing Tn be
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favored because of the storage savings it allows.

As an example of the technique, assume that a 32-bit field is packed
as follows in a word labeled DATA:

Bits Label

0-11 NUMBER
12-14 DEPT
15-21 CLOCK
22-31 RATE

Unpack each field and store them in half-words. Each field contains a posi-
tive number. The code follows:

LR 2, DATA
SRDL 2,10
SRSL 3,22
STH 3, RATE
SRDL 2.7
SRSL 3,25
STH 3, CLOCK
SRDL 2,3
SRSL 3,29
STH 3, DEPT
SRDL 2,12
SRSL 3,20
STH 3, NUMBER
CLOCK DS H
RATE DS H
DEPT DS H
NUMBER DS H
DATA DS F

Logical shifts are used to avoid propagating sign bits through GPR3.
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5.3 Byte Manipulation

The following two instructions are provided to load and store charac-
ters from the GPR to main storage:

STC R1, D2(X2, B2) (RX)

IC R1,D2(X2,B2)  (RX)

The Store Character instruction (STC) stores the low order eight bits of R1
(bits 24-31) into the character located at the second operand address. The
Insert Character instruction ( IC) loads a character from the second operand
address into the low order eight bits of R1. Instructions are also provided to
allow for translation between byte codes. We may regard a given byte code
as comprising a set of binary numbers from 0 to 255 (00000000 to 11111111).
If we wish to translate from one code to another, we must set up a dictionary
of 256 entries with each entry in the table giving the translated code corres-
ponding to its position in the sequence. That is, the bytes of the source code
(translate from) are used as indices to retrieve the corresponding byte from
the target code (translate to).

INDEX FUNCTION
REERRRE XXXXXXXX| A+255
11111110 XXXXXXXX| A+254
SOURCE TARGET
CODE CODE
OR  __ oR
rre—————
TABLE .
INPUT TABLE
OUTPUT
00000100 XXXXXXXX| A+a
00000011 XXXXXXXX| A+3
00000010 XXXXXXXX| A+2
0000000 XXXXXXXX| A+1
00000000 XXXXXXXX| A _  TABLE
ORIGIN

Fig. 5-5 Translate Table

As an example, for a code translation in which the code for %, 11001001,
would be translated to the code for (, 11010001, the 78th entry (78 = 11001001)
in the translation table would contain 11010001. There are two 360 instruc-
tions which do this table look-up automatically. The formats of these instruc-
tions are:
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TR SOURCE(L), TARGET (sS)

TRT SOURCE(L), TARGET (sS)

The Translate (TR) instruction uses each byte in the SOURCE field to index a
byte from the TARGET table. The selected byte from the TARGET table
replaces the index from SOURCE. The operation proceeds from left to right,
one byte at a time, until all L bytes of SOURCE have been translated. The
translate table, TARGET, is addressed by adding each SOURCE byte to the
address of the second operand, that is, to the initial address of the transla-
tion table. Since all 256 source codes are valid, a 256-byte target table is
recommended. In the event that a particular source code contains less than
256 valid characters, we have two options if verification is necessary. Each
source record may be scanned, a character at a time, to detect any invalid

- characters. However, this can be a lengthy operation if the invalid codes are
scattered throughout all 256 possible combinations. The other alternative is
to translate all invalid codes to a single target character and then scan the
translated record using a Test Under Mask or Compare Logical Immediate
instruction. The Translate and Test (TRT) instruction differs from the
Translate instruction in that source bytes are not replaced. Instead, the
target byte is examined after each source byte has been processed. If the
target byte is zero, the process continues. If it is non-zero, the address of
the source byte is loaded into bits 8-31 of GPR 1 and the target byte is loaded
into bits 24-31 of GPR2. The instruction is then terminated. After the in-
struction is executed, the condition code is set as follows:

Condition Code Meaning
0 All target bytes are zero
1 Non-zero target byte encountered

before end of source field
2 Last target byte is non-zero

3 --

As an example, the TRT can be used to detect invalid characters in a data re-
cord or it can be used to detect delimiters between variable length records.
For these two applications, the translation table would be filled with zeros
except for the entries corresponding to invalid characters or delimiter char-
acters. It should be clear that it is only the context of a particular application
that determines if a character is invalid. As an illustration, if we knew that
a data record contained only EBCDIC numbers and possibly blanks, then any
other characters would be invalid.
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Worked Example

5-3 A 10000-byte field is reserved for a variable length tape record. The
last character in the record is 11111111, In addition, each tape record can
contain up to 10 variable length fields separated by the delimiter 01010101;
this delimiter also follows the last field. It is assumed that these two charac-
ters occur only as delimiters and not as data characters. Create a table of
full-word entries which contains the number of variable length fields in the
entire record (NUMBER), the size of the entire record (SIZE), and the length
of each field in L(1) through as many entries as necessary up to L(10).

One of the interesting aspects of this problem is finding a way to use the
Translate and Test instruction on a 10000-byte field - remember that the
length field in the instruction is only 8 bits wide. One way is to use an operand
of 0(256, 1) in the TRT to address the record with GPR1 initialized with its
beginning location. This will then allow a scan of 256 bytes at a time. If a
delimiter is found, its address will be stored in GPRI. We will store this in
the appropriate entry in the L table since these addresses can be used to com-
pute individual field lengths. We can get ready for the next scan by adding 1 to
GPR 1 and branching back to the TRT instruction. (If we omitted the "add 1"
step, the next scan would start on the previous delimiter which will give a bit
immediately and cause the program to go into an endless loop.) The translate
table will have 0's for its first 85 entries and 01010101 for its 86th since
01010101 = 85. The next 169 entries will be zero and the last entry, the 256th,
will be 11111111. Actually, we need not use these specific characters, any
two different, non-zero characters would do as well.

The coding follows:

MVI LAST,X'FF' STORE 11111111 AT END OF VRECORD

LA 1, VRECORD GPR1 IS BASE REGISTER
SR 3,3 CLEAR GRP3
SCAN "TRT 0(256,1), TABLE TEST FOR 01010101 OR 11111111

* IF CONDITION CODE IS NON-ZERO, DELIMITER(01010101) OR

* END OF RECORD (11111111) HAS BEEN FOUND, OTHERWISE

*  SCAN NEXT 256 CHAR OF VRECORD, NOTE THAT END

*  OF RECORD CHARACTER IS STORED AFTER VRECORD FIELD

* A SAFEGUARD AGAINST MISSING END OF RECORD CHARACTER
BC B'1000; NXT256 IS CC = O
CLI 0(2), B'11111111' CHECK FOR END OF REC
BE ENDREC

ST 1, L(3) STORE DELIM LOC IN L
LA 3,4(3) ADD 4 TO GPR3 FOR NEXT STORE
LA 1, 1(1) ADD 1 TO GPR1 FOR NEXT TEST
B SCAN SCAN NEXT 256 BYTES
*  STARTING LOCATION FOR SCAN IS ADDR OF DELIMITER + 1
NXT256 LA 1, 256(1) ADD 256 TO GPR1 FOR NEXT SCAN
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B SCAN

ENDREC S 1,=A(VRECORD) GPR1 CONTAINS LOC OF '11111111"
ST 1,SIZE SIZE = GPR1 - A(VRECORD)
SRA 3,2 GPR3 CONTAINS 4*NO. OF RECS

ST  3,NUMRECS

At this point, we will leave it to the reader to develop code to calculate
the individual record lengths. Note that L(1) through L(NUMBREC) contain
the location of the delimiter character which follows the last character of the
record.

TABLE DC 85 x '00'
DC B'01010101' 01010101 = 85
DC 169 x '00*
DC B'11111111" 11111111 = 255
VRECORD DS 10000CL1
LAST DS CL1
SIZE DS F
NUMRECS DS F
L DS 10F

5.4 Instruction Modification

Very often, a programmer will have occasion to modify an instruction,
that is, to operate on the instruction as if it were data. Suppose, for instance,
that we are dealing with variable length fields which have to be moved from an
input area to a work area. This can be done by setting up a "dummy'' move
instruction such as MVC WORK(0), INPUT. Prior to each move, an instruc-
tion will be executed which stores the length (minus one) of the field in the
length segment of the MVC instruction, bits 8-15. In this section, we will
discuss two approaches to instruction modification: The direct approach above
and an indirect approach which does not require the contents of storage to be
changed.

Before getting into the details, let us pause to consider some of the im-
plications of instruction modification. First, since direct instruction modifi-
cation involves bit-level operations particularly if operation codes are being
changed, the likelihood of programming errors is increased. Second, in-
struction modification usually complicates a program which makes it more
difficult to test the program -- a point not to be treated lightly, since testing
a program often takes more time than coding it. In addition, the documenta-
tion for such a program is more complex and hence difficult to read so that
subsequent changes may be very troublesome to implement. As a final point,
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when a program contains instruction modification, it will be more difficult

to translate that program for a different computer. It is possible to design

a program which will translate an assembly language program for one com-
puter to the assembly language of a different computer. In general, a high
percentage of the code can be translated. However, the instruction modifica-
tion portions in particular are usually impossible to translate by an automatic
procedure. It is our conclusion that a programmer should avoid instruction
modification, if at all possible. The result may be a less sophisticated pro-
gram but more likely one that stands a better chance of being completed on
time and in working order.

When instruction modification is unavoidable, the Execute instructions
allows it to be done more cleanly than by bit manipulation and often, at a sav-
ing in instructions. The format of the Execute instruction is

EX R1, D2(X2, B2) (RX)

This instruction causes the instruction located at the second operand address
to be executed. Unless the referenced instruction is a branch, control will be
returned to the instruction immediately following the Execute. Branches will
be executed properly. The referenced instruction will be modified by or’ing
bits 24-31 of R1 with bits 8-15 of the referenced instruction. The or'ing is
effective only during instruction execute time. The contents of storage are
not changed by the or'ing nor are the contents of R1. The underlined portions
of the instructions in Fig. 5-6 can be modified by Execute.

OP B_ ,R2 (RR)
opP D1(B1), I2 (81)
oP R1, R3, D2(B2) (RS)
oP Ri, D2 (X2, B2) (RX)
oP D1(L1 B—T D2(L2, B2) (S8)
oP DI(L, B1), D2(B2) (SS)

Fig. 5-6 Instruction Modification by Execute

In each case, the sequence of the instruction bits through 8-15 are indicated
properly. For instance, in the first SS instruction in Fig. 5-6, L1 occupies
bits 8-11 and L2 bits 12-15. If only one element is underlined, then it occupies
all eight bits, 8-15, of the modifiable portion of the instruction. Any instruc-
tion, except another Execute, may be the subject of an Execute. Note also

that the lengths in SS-type instructions are one less than the field lengths of
their operands. Up to this point, we did not { have to be concerned with this
since the assembler subtracted one from all implied or explicit lengths prior
to assembling SS instructions. If the programmer modifies SS instructions,

he must keep this in mind.
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In the succeeding Worked Examples, we will show several illustrations
of instruction modification, both by direct and by indirect methods.

Worked Example

5-4 A section of coding labeled INIT which is located in the middle of a pro-
gram should be executed only once. On successive passes through that sec-
tion, a branch should be executed to the instruction immediately following the
INIT section which will be labeled NEXT. The following coding shows how
this can be done by direct instruction modification.

START --
BRANCH BC B'0000', NEXT

NI BRANCH-+1, B'1111"
INIT --
NEXT --

B START

On the first pass, the instruction at BRANCH will be treated as a NOP.
Immediately after, it will be modified by the And Immediate (NI) to an uncon-
ditional branch. On the next pass, the INIT section will be branched over.

Replacing this logic with Execute instructions has no particular advantage.
However, the same effect can be obtained with a compare instruction where
one of the operands is modified during the first pass. In the interest of keep-
ing program logic as straightforward as possible, this approach is to be pre-
ferred. As an illustration, assume that a one-byte field, CHAR, is set to
zero by an instruction which is located above START and therefore, is execu-
ted only once. The coding follows:

CLI CHAR, X'00'
BNE NEXT
INIT oI CHAR, X'FF'
NEXT -
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Worked Example

5-5 Assume that a program contains a generalized routine to add together
two variable length packed decimal fields, A and B, and then move the result
at A to an output area, OUTPUT. Add the necessary coding to modify the AP
and MVC instructions to allow different lengths of A and B to be inserted
prior to each usage of the routine. The lengths (minus one) of A and B, LA
and LB, are found, respectively, in bits 0-3 and 4-7 of a one-byte field, LGT.
The coding follows

MVC ADD+1(1), LGT MOVE LENGTHS

ADD AP A(0), B(0) LA AND LB ARE BITS 8-11, 12-15
IC 1, LGT GPR1 CONTAINS LA AND LB
SRA 1,4 SHIFT OUT LB
STC 1, MOVE+l STORE LA IN MOVE+1

MOVE MVC OUTPUT (0), A

The shift instruction is required to delete LB from GPRI1 and put LA in the
low-order four bits of the eight-bit length field of the MVC immediately
foliowing.

Worked Example

5-6  Redo the coding of Example 5-5 using Execute instructions wherever
possible. The coding follows

IC 1, LGT LA AND LB IN GPR1
EX 1, ADD MODIFY ADD INSTRUC TION
SRA 1,4 SHIFT OUT LB
EX 1, MOVE MODIFY MOVE INSTRUCTION
A DS 16CL1
B DS 16CL1
ADD AP A(0), B(0)
MOVE MVC  OUTPUT(0), A
OUTPUT DS 132CL1

These instructions will be executed in the sequence IC, EX, AP, SRA, EX,
MVC followed by whatever instruction occurs immediately after the second
Execute.
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Answers to Exercise

5-1 a) M+ F +8S; M'(R + 8); FxS; Sx(M: F).
BY §=F=0 M=R=1:

~r

M+F+S=1 (True)
M:S+F=0 (False)
MxF + SxR =1 (True)
Fx(S+M)=1 sTruez
AL Q Ther T 1 Mg

MTS +F FXR =4 Lirug)
¢) Manufacturing or finance or sales; either manufacturing and sales or
finance; either manufacturing or finance, but not both or either sales or re-
search, but not both; either finance or sales or manufacturing, but not both;
manufacturing and sales or either finance or research but not both.

Problems

5-1 Using the bit numbering convention 01234567 for the eight bits in a byte,
write instructions to perform the following operations on the one-byte field
located at DATA: a) Set bits 0 and 6 to 1 without changing the other bits:

b) Set bits 3 and 4 to 0 without changing the other bits. ¢) Reverse bits 0 - 3
and leave bits 4 - 7 unchanged.

5-2 K F=0, S=1, M=1andR =0, what is the value of the following
functions

a) F-R+S d) S*M+S'R
b) SxM- R e) S-(M + R)
c) R- (SxM) f) MxR

5-3 With 1 and 0 replaced by True and False, respectively, express verbally
the meanings of 5-2 a) through f). Specifically, what is the difference be-
tween b) and c).

5-4 With the bits corresponding to FMRS in bits 4-7 of the byte located at
SEARCH, write instructions to branch to TRUE or FALSE according to the
value of functions 5-2 b) and 5-2 c) above. Treat each as a separate case.

5-5 As we discussed in Chap. 3, double precision quantities(64-bit integers)
can be considered as being made up of a positive 32-bit quantity in the low-
order word and a signed 31-bit quantity in the high order word. Write a pro-
gram to add together two 64-bit integers located in A,A+4, Band B + 4.
Store the result in C and C + 4 where A, B and C are full words. (Hint: Use
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the AL instruction to add the low-order 32-bit quantities. If an overflow
occurs, add a 1 to the high order part. Should an arithmetic or logical add be
used on the high-order quantities?) Also, if the sum is greater than 63 bits,
branch to OFLO and print the message, OVERFLOW. If the addition can be
handled successfully, print the result together with A and B. Make up enough
test cases to try the various possibilities in your program and then run your
program with this data.

5-6 Using the translate instructions, write code to translate from digits from
ASCII to EBCDIC. If the input contains any characters other than digits or a
blank, branch to ERROR.

5-7T The design and coding of a simulator presents some interesting pro-
E?Emming challenges. A simulator is a program which will take a program
written for one computer -- the source computer -- and allow it to be run on a
different computer -- the target computer. The simulator is written in the
language of the target computer. Essentially, the simulator and the source
program to be simulated both reside in the core storage of the target machine
(in their object code formats, not assembly language formats). The simula-
tor performs the functions of the control circuitry of the source computer.

it reirieves source instructions one at a time, deciphers them and carries

out the intended operation. A key part of the simulation is operation code
analysis. A typical way of doing this is to create a table of operation codes
for the source machine and a corresponding table of locations of the simula-
tion routines to carry out the indicated operation. Given a source instruction
operation code, a table look-up can be performed and then a branch can be
taken to the location of the simulation routine which will execute the operation.
The translate instruction allows this to be done at a considerable saving in
time, assuming that the source machine has an 8-bit operation code, design a
routine using the Translate instruction to do the operation code analysis. Show
how the output from the translate table can be used to set up a branch to an
operation simulation routine.

5-8 Another challenging programming problem is a program which simulates
programs written for the same machine. This is not as circular an exercise
as you may think. Such a program can be very useful as a testing device for
routines which prove difficult to debug by other means. Since the simulator
program is, in effect, tracing its way through the source program an instruc-
tion at a time, it can display some very useful debugging information on the
computer's Cathode Ray Tube or the printer, if a CRT is not available. It can
output the location of the instruction being executed, the location and contents
of its operands before and after execution. This gives the programmer de-
tailed information about the flow of his program and the state of the machine
at every step. He can then trace through the (voluminous) output and find the
bugs. Very often, this type of simulator is called a trace program. Write a
trace for 360 source programs which include only the instructions covered in
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Chap. 2. Use the Translate instruction to produce assembly language
mnemonics in the trace listing for the Operation codes (assume that all
mnemonics are 32-bit words, padded with blanks, as necessary, for those

3 Therd n )

which require less than four bytes).

Test your program on one of the worked examples in Chap. 2. If you
are still in the mood for further intellectual challenge, add enough capability
to your trace program's repertoire to allow it to trace itself.

5-9 Which logical instruction can be used to replace the second MVN (Move
Numeric) in Worked Example 2-4?

5-10 Suppose that a particular data file contains only packed decimal data.
How can the Translate instructions be used to detect invalid data, i.e. other
than packed decimal? Describe the contents of the translation table. Remem-
ber that a byte of packed decimal data contains any of 10 decimal digits in its
high-order part and the 10 decimal digits and possibly the + and - signs in

the low-order part. As a result, there are 10 x 12 = 120 possible valid bytes.

5-11 In (partly) Worked Example 5-3, we put off calculating the field lengths
until after the entire record had been scanned. However, it is somewhat
simpler to calculate the lengths after each delimiter is encountered. Add the
necessary coding to do this.

5-12 Example 5-4 gives the coding for a one-pass switch, that is, a branch
which falls through on the first pass but transfers each subsequent time. Write
the coding using direct instruction modification or an alternating switch which
passes through or branches on alternate executions. (Hint: Consider exclu-
Sive or operations. )

5-13 Recode your solution to Prob. 5-12 using an approach other than direct
instruction modification.

5-14 Can the shift operation in Example 5-5 be replaced by an appropriate
Unpack instruction or by a Move with Offset?

5-15 In general, the Execute instruction is useful whenever a group of instruc-
tions require an identical modification such as an index register or a length.
The desired modification can be stored in one of the GPR and then referred to
as often as required by Execute instructions. This often produces a savings

of instructions such as in Example 5-6. Make up an example where the Exe-
cute instruction can be used to save storage and then code it.
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Chapter 6
FLOATING-POINT OPERATIONS

6.1 Floating-Point Numbers

In the examples we have considered so far, scaling or decimal point
placement has presented no exceptional problems. The range of numbers in a
calculation was known in advance and was usually fairly small. That is, ina
typical division problem, the divisor might range from say, 0.XX to XXX. XX
so that the quotient would require up to three additional digits. However, there
is a large class of calculations where scaling is very difficult. The sequence
of these calculations is usually long when compared to the kinds of problems
we have discussed so far and the range of numbers involved is often very
large. Sacling these calculations can be extremely difficult. With enough per-
sistence and core storage and machine time, these problems could be pro-
grammed by using multiple precision techniques. That is, at every step of the
calculation the largest possible result could be anticipated and enough words of
storage set aside for it. An alternative solution is to let the computer manage
all scaling. This can be done by storing each number in two parts: The digits
making up the number itself and a quantity indicating how many decimal places
the number contains. The result is called a floating-point number. The storage
architecture of the computer will impose a limitation on the number of digits
per floating point word. As we shall see, for the 360 this is about 7 or 16
decimal digits depending on which form of floating point number is used -
single-precision or double-precision. If numbers larger than this maximum
size are developed, say in multiplication, enough low order digits are dropped
or truncated to bring the result within allowable size. This limitation on the
number of significant digits restricts the use of floating point numbers princi-
pally to scientific computations. In addition, floating point operations take
longer to execute than their equivalent fixed point operations - that is, opera-
tions on integers as in Chap. 3. This difference is more pronounced on the
smaller models of the 360.

In the interests of readibility, we will introduce floating-point operations
with decimal examples. Subsequently, the hexadecimal representation used by
the 360 will be covered. Reverting to our hypothetical computer with a 10-
digit word size, we will use the first two digits of a word to indicate the place-
ment of the decimal point and the low order eight digits for the number itself.
All numbers will be represented with their decimal point at the extreme left
and multiplied by the appropriate power of 10 to reset the decimal point to its
original location.

With the decimal point at the extreme left, floating-point numbers are in
the normalized format. As examples,

186



21.75 = .2175x100 =.2175 x 10°
21234.5 .212345x100000 = . 212345x10
-.2122 -.2122x1 = -, 2122x100

.0123 = .123+ 10 =.123x10-1

-.0012 -.12 = 100 = -, 12x10-2

5

1l

These numbers will be represented in storage as a two digit exponent (the
power of ten) and an eight digit fraction (the number itself). For the moment,
assume that both the exponent and the number may have their own sign. While
this is not the case in most computers -- specifically the 360 -- because there
is only one algebraic sign per word, this limitation can be easily sidestepped
as we will soon illustrate. The numbers above are then (an overscore indi-
cates a negative quantity)

Number Exponent Fraction
21.75 02 21750000
21234.5 05 21234500
-.2122 00 21220000
. 0123 o1 12300000
-. 0012 02 12000000

Addition or subtraction is performed by first comparing the exponents of both
operands and then right-shifting the fraction with smaller exponent until it is
properly aligned. The fractions are then added. As an example, consider the
addition of A = 123456.75 and B = 23.456. In floating point we have

A 06 12345675
B 02 23456000
B shifted 06 00002345
A& B 06 12348020

Note that the low order digit of B has been shifted out of the sum. In fact, if

B were small enough compared to A, the entire number would be shifted out

of the sum. This circumstance is due to the fixed word size of floating point
numbers. While the limitation to a fixed number of digits may not be objec-
tionable in most scientific or engineering computations, the blind usage of
floating point operations can create problems. Some of these will be discussed
in this chapter. Additional references are given in the Bibliography. Floating
point hardware on a computer will relieve the programmer from a lot of
tedious work. However, his responsibility to know the sizes of numbers his
program will treat is still unchanged.
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Additional shifts will be used to normalize the result if a high order
zero occurs or on an overflow out of the high order digit. As examples,
consider the floating-point calculations

02 61000000 ( = 61.0) 03 62500000 ( = 625.0)
+ 02 73000000 ( ="73.0) - 03 61300000 ( =-613.0)
02734000000 + overflow 03 01200000 (= 12. )
03 13400000 ( = 134.0) 02 12000000 (= 12. )

In the first example, an overflow causes the fraction to be right shifted one
place which increases the exponent by one. In the second, high order zeros
have occurred and are eliminated by shifting the fraction to the left one place
thereby reducing the exponent by one. This normalization after a calculation
is termed post-normalization. It is interesting to consider what would happen
if both operands in the second example were equal in their first five or six
digits. The result would be a number which contains only two or three signi-
ficant digits although the numbers which gave rise to it contained up to eight
significant digits. This is a serious matter with very practical implications.
If both terms represented physical measurements obtained with great diffi-
culty to eight significant digits, we would have a result which contained only
three significant digits. It is clear that the subtraction of nearly equal floating-
point quantities should be avoided, if at all possible. Very often, alternative
mathematical formulations can be developed. As an example, the expression

y=1-cosx
is mathematically equivalent to

y=2sin2(x/2)

The second expression will take slightly more machine time but avoids the
difficulties of the first one when x is very small since cos x is then very nearly
equal to one.

Multiplication and division with floating point numbers proceeds by add-
ing or subtracting the exponents and then performing the desired operation on
the fractions. As an example, consider the product of 123. 0 x 22. 0. Express-
ing these numbers in normalized form, we have

.123 x .22 X103X102

.123 x .22 x 103+2
. 02706 x 105
= .2706 x 104

(.123 x 10°) x (.22 x 10%)

1l

I

The floating point result is
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03 12300000 (
x 0222000000 (= 22.0)
05 02706000 (

{
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To divide 2706. 0 by 22. 0, we have

(.2706 x 10%) / (.22 x 10%) -

i

Let us return to the issue of how to handle floating point numbers when
the computer has only one sign bit per word. The most straight forward solu-
tion is to use the sign bit for the algebraic sign of the number and then arrange
to have all exponents represented as positive numbers. This can be done by
restricting the range of exponents from -99 to +99 down to -50 to +49 and then
adding 50 to the exponent. That is, numbers with exponents larger than +49 or
smaller than -50 cannot be handled. If a calculation arises with numbers out-
side this range, it will have to be scaled. As examples of the excess-50
notation,

21.75 = 52 21750000
21234.5 = 55 21345000
-.2122 = 50 21220000

.0123 = 49 12300000

.0012 = 48 12000000

What we have said about addition and subtraction remains unchanged in excess
-50 representation. There is a slight difference, however, with multiplication
and division. In multiplication, the exponents of both factors are added and
then 50 is subtracted from the sum. In division, the exponents are subtracted
and 50 is added to the sum.

Exercise 6-1 Using the excess 50 notation, how would you represent the num-
ber zero? Justify your choice.

The 360 floating point instruction set operates in principle like the
floating point feature of our hypothetical machine. The 360 allows two floating
point forms, the short or single-precision form and the long or double-
precision form. Their storage requirements are respectively 32 and 64 bits.
For both, bit 0 is used as the sign bit for the fraction which is stored in its
true form for negative numbers; two's complements are not used. The next
seven bits are used for the exponent and the remaining 24 or 56 bits are used
for the fraction. Figure 6-1 shows a schematic of these formats. The frac-
tion is organized into 6 or 14 hexadecimal digits. All shifts are therefore done
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in increments of four bits. As a result, each bit in the exponent represents
a power of 16. If the fraction were given as a binary number, each exponent
bit would represent only a power of two. As we shall see, this would signifi-
cantly reduce the exponent range

S EXPONENT FRACTION

o1 7 8 31

S EXPONENT FRACTION

o 1 7 8 63

Fig. 6-1 Floating-Point Data Formats
Single and Double-Precision

With seven bits for the exponent, the mid range is 1000000, = 64 so that an
excess -64 representation will be used. This allows an exponent range of
+63 to -64 which is 1663 to 16-64. The largest number which can be repre-
sented in the normalized single precision form is

01111111 1111 1111 1111 1111 1111 1111

.111111111111111111111111x1663
."7237006 x 1076

The smallest is

-.000111111111111111111111x16-54
-.5397605 x 10" '8

10000000 0001 1111 1111 1111 1111 1111

In double-precision, these numbers are essentially unchanged -- they will
have 32 bits of either ones or zeros appended to the right. Their decimal
equivalents would contain about 16 or 17 significant digits whereas in single-
precision, we have seven to eight significant digits. If each fraction bit were
used for a single binary digit, the exponent range would be reduced to 263 and
2'64, or approximately .8 x 1019 and .5 x 1020, Zero is represented as a
single or double word of all zero bits.

Conversions between decimal and floating-point are done using the same

techniques for binary and decimal conversions we discussed in Chap. 3. The
following worked examples illustrate the method.
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Worked Example

6-1 Convert the number 1356.726 to single precision floating point.

We will first express the integer and fractional parts of the number in
their hexadecimal equivalents.

_84/12=C
16 /1356 . 726
128 x16
76 4356
64 _126_
12 11.616 =.B
5/4 =4 __x16
16 / 84 3696
80 _616_
4 9.856 =.09
/5 =5 __x16
16 /5 . 5136
856
1356, ) = 54C ¢ 13. 696 = . 00D
.26, = .BID ¢

The fraction is carried out to only three hex digits because the single precision
form allows only six hex digits per word and in this example, three have
already been used for the integer portion. We now have

1356. 72610 = 54C. B9D16
3

.54CB9D x 16

The floating point exponent is then 64 + 3, and since the number is positive,
the sign bit is zero. The complete floating point word is therefore

Sign Exponent Fraction
0 43 54CB9D
0 1000011 0101 0100 1100 1011 1001 1101

To convert this back to decimal, we subtract 64 from the exponent giving a
result of 3. This indicates that the point is between the third and fourth hex
digits. That is, the integer part lies in the first three hex digits and the
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remainder, the three low order hex digits, constitutes the fractional part.
Converting these hex digits to decimal, we have

5 B/16 = 11 x.0625

x16 o = 6875
80 9/16“ = 9 x.00390625

+4 3 . 03515625

84 D/16° = 13 x.000244140625
_x16 = .003173828125
1344

12 (= Q) .B9D = .725830078125
1356 = 54C

The final result is

54C.B9D = 1356.725830078125

We have a deceptively large number of digits in the result. This is not due
to the intrinsic precision of the number we started out with, but simply that
we carried out the conversion to as many digits as possible. Note that the
fourth fractional hex digit could be anything between O and F (if we didn't know
in advance the initial decimal number). As a result, the decimal fraction
could be off by as much as F/ 164 = .0002. In light of this, we are justified
in regarding the result as valid to only three decimal places and rounding off
accordingly which gives a result of . 726, the decimal fraction we started out
with. However, there is no guarantee that things will always work out this
nicely. Because of the difficulties inherent in converting fractional numbers
from one base to another, the reconversion will often give a result which is
not exactly equal to the initial number.

Incidentally, note that the normalized form of a hexadecimal number
may contain high order zeros. In the example above, one high order zero is
present. This comes about because the fraction is normalized, not to the
first non-zero bit, but to the first non-zero hex digit which may range from 1
to F. As a result, up to three high order zeros may occur. This is the slight
tradeoff paid for hexadecimal normalization; for most applications it is more
than offset by the much greater exponent range permitted by hexadecimal
normalization when compared to the alternative of binary normalization.

6.2 Normalized Floating-Point Operations

Floating point operations on the 360 are performed in any one of four
64-bit floating-point registers (FPR) which have addresses 0, 2, 4 and 6.
The formats of these registers are shown in Fig. 6-1. Double-precision
operations use all 64 bits of a FPR. Single-precision operations, with the
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exception of multiplication use only the high order 32 bits of each FPR and
do not change the contents of the low order 32 bits. Single-precision multi-
phcatlon gives a 56-bit fraction. To allow for greater accuracy, single and
double-precision addition and subtraction, which give a final result of six or
14 hex digits, will include an extra digit called a guard digit. The guard digit
does not occupy space in the FPR's. If one of the operands is shifted right
during the operation, a guard digit will be formed. If the subsequent result
requires post-normalization, the guard digit will be left-shifted into the sixth

An TA+Lh hav Aioit rest ‘+ +haw an t+h ™m
Or izin neX \.{Azii. IS, UL& 1 Wlnc the "‘ua“d dlg1+ IS ﬂ"" nanr] AS an °’€m“91‘3,

consider the subtraction of F.111111¢g from 10.222216. The floating point
representations of these numbers are

42 10222 — .10222 x 162)
41 Fl111 (= .F11111 x 16)

P
|

Subtraction will cause the second number to be right shifted one hex digit
creating a guard digit of 1. The result is

42 102222
=42 OF1111 1 guard digit
42 011111 1

With post normalization this becomes
42 111111

where the guard digit has been shifted into the final result.

Four kinds of program interrupts can be generated by floating-point
operations. They are exponent underflow, significance loss, exponent over-
flow and floating-point divide. These interrupts have the following causes:

Exponent Underflow: An arithmetic operation gives an exponent less
than -64 (0 in excess -64 notation). The operation is completed by replacing
the result with a true zero -- that is, 32 or 64 zero bits.

Significance Loss: The result fraction after an addition or subtraction
is zero.

Exponent Overflow: An arithmetic operation gives an exponent greater
than +63 (127 in excess -64 notation) and a non-zero fraction. This causes
the operation to be terminated with the result data being unpredictable and
therefore unsuitable for further calculation.
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Floating-Point Divide: A division by a number with zero fraction is
attempted. The operation is suppressed and the data in registers are
unchanged.

Two of these interrupts, significance loss and exponent underflow, may
be masked out by setting the appropriate bits of the Program Status word to
zero. Depending on the problem, at hand, these conditions may not indicate
difficulties in the calculation and so, interrupts need not be taken. However,
when the significance mask bit in the PSW is zero (interrupt not taken), the
result is set to true zero, otherwise the exponent and sign are unchanged.

The other two conditions, exponent overflow and floating-point divide interrupt
are much more likely to indicate serious program malfunctions when they
occur. As a result, it is reasonable to have an interrupt when they occur.
Depending on the operating systems option selected by the installation, when
an interrupt occurs, the offending job may be terminated or an exit can be
made to a user written routine to process the interrupt. The condition code

is set by addition or subtraction, by compare instructions and by sign-control
operations. Multiplication, division, loading and storing leave the condition
code unchanged. The various condition code settings are summarized in

Fig. 6-2 following the discussion of the floating-point instruction set.

The floating-point instruction set provides 44 different operations. As
an assist to the reader's memory, we offer the following clues to deciphering
floating point operation mnemonics. The first letter indicates the type of
operations: A, S, M, D for addition, subtraction, multiplication and division,
L for load, C for compare. Some mnemonics require two letters for the type
such as store (ST) load and test (LT), load complement (LC), load positive
and load negative (LP and LN). Apart from these exceptions, the second
letter distinguishes between normalized double and single precision operands
by a D or an E, respectively. The third letter, again with the exception of the
two-letter mnemonics above, indicates the instruction class, an R signifies
register-to-register (RR) operations and a blank indicates register-to-storage
indexed operation. As examples, AER is the operation mnemonic for nor-
malized single-precision register-to-register floating-point addition, and DD
is an RX double-precision divide. Results replace the first operand, except
for storing operations, where the second operand is replaced by the first. Also
all storage locations of single-precision operands must be multiples of four
and locations of double-precision operands must be multiples of eight, that is,
they must be aligned on single or double word boundaries.

The following instructions load the first operand location with the con-
tents of the second operand location. FPRI and FPR2 are the addresses of
floating-point registers and may have any value from 0, 2, 4, 6.

LE FPRI, D2(X2, B2) (RX)
LD FPRI1, D2(X2, B2) (RX)
LER FPRI1, FPR2 (RR)
LDR FPRI1, FPR2 (RR)
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These two instructions are used to store, the high order 32 bits (STE) or all
64 bits (STD) of 2 FPR into a storage location.

STE FPRI, D2(X2, B2) (RX)
STD FPRI1, D2(X2, B2) (RX)

The following RR instructions allow sign control. Load and Test (LT) loads
the first operand register and sets the condition code according to the sign of
its contents. Load complement (LC) loads FPR1 and reverses the sign bit.
Load Position (LP) loads FPR1 and sets the sign bit to zero and Load Negative
performs the reverse operation, setting the sign bit to one.

LTER FPRI, FPR2 (RR)
LTDR FPR1, FPR2 (RR)
LCER FPRI, FPR2 (RR)
LCDR FPR1, FPR2 (RR)
LPER FPR1, FPR2 (RR)
LPDR FPR1, FPR2 (RR)
LNER FPR1, FPR2 (RR)
LNDR FPRI, FPR2 (RR)

Addition and subtraction are performed by the following instructions. The
single-precision instructions operate only on the high order 32 bits of each
FPR. The low-order 32 bits of each FPR are unchanged and do not enter into
the operation. The result, which is placed in FPR1, is normalized.

AE FPR1, D2(X2, B2) (RX)
AER FPR1, FPR2 (RR)
AD FPR1, D2(X2, B2) (RX)
ADR FPR1, FPR2 (RR)
SE FPR1, D2(X2, B2) (RX)
SER FPRI1, FPR2 (RR)
SD FPRI, D2(X2, B2) (RX)
SDR FPR1, FPR2 (RR)

Multiplication is provided for with the foliowing instructions. Note that both
single and double-precision products occupy all 14 fraction hex digits of a
FPR. For single-precision products, the two low-order hex digits are always
zero since no more than a 12-digit product can be developed from two six-
digit operands. The result, which is stored in FPRI, is normalized. Also
both operands are normalized, if necessary, prior to the multiplication. This

ME FPRI1, D2(X2, B2) (RX)
MER FPR1, FPR2 (RR)
MD FPR1, D2(X2, B2) (RX)
MDR FPRI1, FPR2 (RR)
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is in effect only for the purposes of multiplication, it does not alter the
storage representation of an operand. Division is accomplished by the follow-
ing instructions. The single-precision operations yield a six hex digit quo-
tient while double-precision gives a 14 hex digit quotient. In neither case is

a remainder preserved. Note that single-precision operations use only the
high order 32 bits of a FPR and ignore the remaining bits. For both types,
the quotient will be normalized and both operands are treated as though they

DE FPRI1, D2(X2, B2) (RX)
DER FPRI1, FPR2 (RR)
DD FPRI, D2(X2, B2) (RX)
DDR FPRI1, FPR2 (RR)

were pre-normalized, as with multiplication.

An operation analogous to division is provided for by the Halve operation.
The second operand is moved to the first operand location and its fraction
shifted right one bit. No postnormalization takes place. The formats for the
Halve operation are

MER FPRI, FPR2 (RR)
MDR FPRI1, FPR2 (RR)

Floating-point comparisons can be made through the following instructions

CE FPRI1, D2(X2, B2)
CER FPRI1, FPR2
CD FPRI1, D2(X2, B2)
CDR FPR1, FPR2

The comparison is algebraic, taking into account the sign, exponent and frac-
tion of each number. In effect, a floating-point subtraction is performed and
the condition code is set according to the first operand being equal, lower than
or greater than the second operand. A compare does not change either operand.

Figure 6-2 below gives a summary of condition code settings for floating
point operations. The condition code may be tested using the BC instruction
with appropriate mask field or by the equivalent mnemonics, BE, BH, BL,
BP, BM, BZ, BO, BNH, BNL and BNE. Testing the condition code does not
change it.
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Condition Code

0 1 2 3
BC Mask Bit 8 9 10 11
Operation
Add/Subtract Zero minus plus overflow
Compare equal low high -
Load and Test ZErs minus plus --
Load Complement| zero minus plus --
Load Negative zero minus -- --
Load Positive Zero -- plus --

Fig. 6-2 Condition Code Setting for Floating-Point Arithmetic.
The condition code is set according to the sign of the
result, which is in the first operand, or for Compare,
if the first operand is equal, low or high relative to the
second operand. Note that a true zero has a plus sign.

As an aid to reading the following examples, floating point constants
may be defined using a DC with an operand E for single-precision and D for
double precision. The constant is written in quote marks. If a decimal point
is present, it is used to establish the exponent, if not, the number is assumed
to be an integer. If necessary, the number may be written with an exponent
in the form En which indicates the power of 10 the number is to be multiplied
by prior to converting to the internal representation. As examples, consider
the following (the comments field indicates the number being defined)

FLOAT DC  E'-315.65' = -315. 65 SINGLE
CONA DC  D'268' = 268.0 DOUBLE
CONTBL DC  E'2, 3, .5' = 2.0, 3.0, 0.5 SINGLE
A DC  E'-2.5E5' = -250000 SINGLE

AE  2,=E'1.75E-3' = .00175 SINGLE

Storage may be reserved by a DS statement using the operands E and D for
single and double~precision data, respectively.

Worked Examples

6-2 Compute
Y = A + B*C/D

The coding for single precision operands is
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LE 0,B FPRO = B

ME 0,C FPRO = B*C

DE 0,D FPRO = B*C/D
AE 0,A FPRO = A+B*C/D
STE 0,Y

If there was a possibility that the product of B and C could produce an exponent
overflow, the division should be placed before the multiplication.

6-3 Compute the expression in Example 6-2 above where Y is now a double
precision number.

It will not suffice to replace the STE instruction with an STD. While the
latter will store all 64 bits of FPRO in Y, the low order 32 bits are absolutely
irrelevant as the preceding single precision instructions ignore these 32 bits.
Instead, we must perform the division and addition in double precision. The
multiplication can be done in single-precision because this will save some
machine time, and more important, double-precision cannot improve on the
accuracy of the product which is limited to 12 hex digits. In problems such as
this, which involve mixing single and double-precision numbers, we can con-
vert from the short to the long form in one of two ways. We can load the
single-precision number into a FPR whose low-order 32 bits are zero and
treat it thereafter as a double precision number. Or, if a FPR is not available,
the single-precision number may be moved to the high-order part of a double-
word in core storage whose low order 32 bits are zero and thereafter, it may
be treated as a double-precision word. The disadvantage of the latter tech-
nique is the storage to storage move it requires. The coding is then

LE 0,B
ME 0,C B*C TO 12 HEX DIGITS

CLEAR LD 2,=D'0' CLEAR FPR2
LE 2,D LOW ORDER 32 BITS OF D = 0
DDR 0,2 FPRO = B*C/D IN DOUBLE-P
LE 2,A LOW ORDER 32 BITS OF A = 0
ADR 0,1 FPRO = A+B*C/D IN DOUBLE -P
STD 0,Y

-

The instruction at CLEAR could be replaced by SDR 2, 2 which would also set
all 64 bits of FPR2 to zero. In some problems, it may be desirable to perform
the calculations in double-precision to gain additional accuracy even though the
final result is a single precision number. As an example, suppose the num-
bers 115, 11.5 and 1.5 were added in that order on a computer with three
fractional digits per single-precision word. The result would be 127. Using
double-precision addition, we get the correct sum, 128, which can then be
stored as a single precision number. This illustration is an extreme one and
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we do not recommend that all floating-point operations be done in double-
precision. However, where circumstances warrant, the use of double pre-
cision will give increased accuracy.
6-3 Compute

Y = A+ B-C /E

Where means "absolute value', that is, set the sign of the quantity in
brackets to plus. All factors are double-precision.

The coding is

LD 4,B FPR4 = B

SD 4,C FPR4 = B-C
LPDR 4,4 FPR4 = B-C
DD 4,E FPR4 = B-C /E
AD 4,A FPR4 = Y

STD 4,Y

6-4 Compute

Y = (A+B)/ (A+C) + (A+D)/ (A-B)

where all factors are single precision.

The coding is

LE 6,A

E 6,B FPR6 = A+B

LE 4,A

AE 4,C FPR4 = A+C

DER 6,4 FPR6 = (A+B)/ (A+C)
LE 4, A

SE 4,B FPR4 = A-B

LE 2,A

AE 2,D FPR2 = A+D

DER 2,4 FPR2 = (A+D)/ (A-B)
AER 2,6 FPR2 = Y

STE 2,Y

6-5 FPR4 contains a double precision product. Round it to six hex digits
and store in location PROD.
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The rounding will be done by adding eight to the seventh hex digit of the
product. If the seventh digit is eight or greater, the sixth digit will be
rounded up by one. The exponent and sign will be loaded into the low-order
eight bits of the roundoff constant and then added to the product. The coding
is

STD 4, PROD
MVC  RCON(1), PROD MOVE EXP, SIGN
AD 4, RCON

STE 4, PROD

RCON DS oD BOUNDARY ALIGNMENT
DC 4X'00'
DC X'80 8 IN 7TH HEX DIGIT
DC 3X'00'
PROD DS E
DS E

Note that PROD is aligned on a double-word boundary and that the sign of the
round-off constant will be the same as the product.

6-6 A binary integer less than 224 js stored in FIX. Convert it to a single -
precision floating point number and store the result in FLOAT.

There are three elements to be either converted or calculated: the sign,
exponent and fraction. The sign can be picked up easily, the fraction may
have to be complemented and will require normalization. The exponent will
not be greater than six (46 in excess -64) since the point is to be moved six
hex places (24 bits) from the extreme right to the extreme left of the single-
precision fraction. Subsequent normalization may reduce this exponent by
one or more.

The coding is

L 0, FIX LOAD FIX IN GPRO
LPR 1,0 GPR1 HAS ABSOLUTE VALUE
N 0, MASK GPRO CONTAINS SIGN
o) 0, EXP ADD EXPONENT OF X'46'
ALR 0,1 GPRO HAS UN-NORM NUMBER
ST 0, TEMP
LE 2, EXP
ADD AE 2, TEMP NORMALIZE NUMBER
ST 2, FLOAT
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FIX DS E
MASK DC X'80000000 1-BIT IN SIGN POSITION

EXP DC X'46000000"
TEMP DS E
FLOAT EQU TEMP SAVES ONE WORD

The addition of a floating-point zero and the unnormalized number at ADD
will give a normalized result since the AE instruction post-normalizes, if

necessary.

6.3 Unnormalized Floating-Point Operations

The addition and subtraction instructions discussed in Sec. 6.2 have the
property that their results are always in normalized form even though their
operands may not be normalized. This is accomplished by post-normalization
of the results. In this respect, they differ from multiplication and division
which pre-normalize both operands and post-normalize the results, if necessary.
Often, unnormalized addition and subtraction is a very useful facility. Per-
haps the primary application of unnormalized operations is to non-arithmetic
manipulation of floating-point numbers such as conversions between floating-
point numbers and decimal and binary number bases. In addition, unnormal-
ized operations do not force exponent underflow. As a result, the range of
numbers which can be handled goes down from . 116 x 16-64 to . 00000116 x16-64
in single-precision and to . 000000000000011¢ x 1654 in double-precision. This
is significant only when numbers of this magnitude are being operated on. As
an illustration of unnormalized addition, consider the sum of the following
unnormalized hexadecimal numbers:

42 024689 (A)

A1 001234 (B)

42 000123 (B shifted)
~42 0248BC (A+B)

In normalized floating addition, the operation would be the same except that the
sum would be normalized as 41 248BC4. As can be seen from this example,
one of the disadvantages of unnormalized addition/subtraction is that it pro-
vides for less precision than normalized operations. With unnormalized
operands, which are likely to contain high order zeros, there is a greater
chance that significant digits will be shifted out of a FPR when exponent align-
ment occurs as in the example above. The worked examples following this
section will discuss several applications of unnormalized floating-point
operations.

The mnemonic scheme introduced in Sec. 6.2 needs slight modification

to accommodate unnormalized operations. Single and double-precision
operands are indicated by U and W respectively. Below are the unnormalized
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addition and subtraction mnemonics and their corresponding normalized
operation mnemonics

Normalized Unnormalized
AE AU (RX)
AER AUR (RR)
AD AW (RX)
ADR AWR (RR)
SE SU (RX)
SER SUR (RR)
SD SW (RX)
SDR SWR (RR)

Their operation is similar to normalized addition and subtraction except that
the result is not normalized, exponent underflow does not occur and the guard
digit is not used. The condition code settings remain the same. Multiplication
and division can be performed on unnormalized operands. However, the
results are in normalized form.

Unnormalized constants may be defined by using a scale factor from
0-13 to cause right shifting. As examples

CONA DC ES4'13. 75"
CONB DC DST7'216. 364'

The scale factor for CONA, SA, causes the normalized equivalent of 13.75 to
be right shifted four hex digits; CONB will be right shifted seven hex digits.
When significant digits are shifted out of a word by the scale factor specifica-
tion, the assembler will round-off prior to truncating the lost digits.

Worked Examples

6-7 A double-precision word is stored in FLOAT. Create two double-
precision words containing the integer portion (INT) and the fractional portion
(INT), both in unnormalized form, INT with its point at the extreme right and
FRAC with its point at the extreme right of a double-precision word.

The coding is straightforward once we have the integer portion. This
can then be subtracted from FLOAT giving as a result, the fractional part.
Perhaps the easiest way to get at the integer part is to cause the fractional
digits to be shifted out. This can be done by adding FLOAT and a floating-
point zero with its points at the extreme right, that is, with an exponent of
64 + 14 =78 =4E. The coding is
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LD 0, FLOAT FLOAT IN FPRO
LDR 2,0 AND FPR2

ADD AD  0,X14 INT IN FPRO, NORMALIZED
SDR 2,0 FRAC IN FPR2, NORMALIZED
AW  0,X14 INT IN FPRO, UN-NORM.
AW 2,X0 FRAC IN FPR2, UN-NORM.
STD O0,INT
STD 2, FRAC

DS OD

X0 DC  X'0000000000000000'

X14 DC  X'4E00000000000000'

FLOAT DS D

FRAC DS D

INT DS D

Note the normalized addition at ADD. This is necessary since a normalized
result is required at this stage. If the result was not normalized, subtraction
from FLOAT would cause FLOAT to be right shifted precisely the amount
necessary to truncate its fractional digits which would then give a zero result.
As an example, suppose float had nine integer digits and five fractional digits;
FLOAT would then have an exponent of 64+9. An unnormalized addition would
give INT with an exponent of 64+14. When this was subtracted, in turn, from
FLOAT which has a smaller exponent, FLOAT would be right shifted five
places causing the subtraction to yeild zero, not FRAC. Using a normalized
add, FLOAT will still be right shifted five places to align it properly with X14.
However, after the addition, the result, which is INT, will be postnormalized
with an exponent of nine.

6-8 Discuss how both parts of the floating point number in Example 6-7 can
be converted to decimal.

Since INT is in the form of an integer, that is, its point is at the extreme
right, it can be treated as a 54-bit binary integer and converted to decimal
using a technique similar to the one in Example 3-14. As to the fractional
part, let us assume that only a few significant digits are required so that we
can consider it to be a single-precision number. This assumption does not
restrict the method particularly, it does allow us to avoid certain complica-
tions as we shall see shortly. Treating FRAC as a short-form floating-point
number, we have a 24-bit binary fraction with its point between bits seven and
eight and its sign in bit zero. For our present purposes, bits 1-7 contain
extraneous data and will have to be removed. For the moment, if we consider
FRAC as an integer, its largest value is 224 _ 1, or 16,777,215. If FRAC is
converted to decimal and then divided by 16, 777,215, we will have the decimal
fractional equivalent of FRAC. Since FRAC contains six hex digits, the
seventh hex digit would be at most F/167 = 1/166 = .000000060. This
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implies that the decimal equivalent of FRAC should not be carried out to more
than seven places. That is, when a seven place number such as . 1234567 is
given, as far as the eight place is concerned, any number in the range of

. 12345665 to . 12345674 could satisfy the original seven-place number. While
we could convert the six hex digit number FRAC to any number of places, we
know that the effect of dropping its low order half (digits seven through 14)
could be an error of as much as . 6 in the seventh decimal place. As a result,
only seven decimal places will be calculated. To avoid this detailed analysis,
a useful rule of thumb is 1.2 decimal digits per hex digit. The final point to
be considered is the sign of FRAC. If it is negative, then FRAC should be
complemented. The code follows

L 3, FRAC
N 3, MASK CLEAR OUT EXPONENT, SIGN
LT 0, FRAC TEST SIGN
BP  0,CONTINUE
LCR 3,3 COMPLEMENT FRAC
CONTINUE SLA 3,7 ALIGN POINT AT LEFT
M 2, TENT MULTIPLY BY 10000000
SHIFT SLDA 2,1 SHIFT SIGN OF GPR3 TO
BIT 31 OF GPR2
FRAC DS E
MASK DC  X'00'
DC TX'FF'
TENT DC  F'10000000'
DFRAC DS D 00000000. XXXXXXXS

In order to decipher this coding more readily, the reader should review
Example 3-15, whicn introduces the conversion method used above.

Answer to Exercise

6-1 The most sensible representation for zero in excess 50 notation for our
hypothetical computer is 00 00000000. If we used 50 00000000, then zero in
this representation when added to a number such as . 0000000001, which is

41 10000000, would give a result of zero because prenormalization would
shift the digit one out of range. In addition, using the latter representation
for zero, we have zero comparing larger than . 0000000001, again because of
prenormalization which is necessary for exponent alignment. To avoid these
anomalies, a full word of zeros is used.

groblems

6-1 Following are several floating point numbers in excess -50 notation.
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Perform the indicated operations and show all results in normalized form.

A = 52 12340012 A-B
B = 52 12160011 C-A
C = 53 01234321 C+D
D = 50 00012121 C-E
E = 55 - 01234321 E+D
F = 53 00000000 F+D

6-2 a) Using the numbers in Prob. 6-1, perform the indicated operations
with unnormalized results.

b) With the same numbers, perform the following calculations with
unnormalized results: (C+B) + F; (C+F) + B. Repeat, normalizing the result
after each step.

6-3 Convert the following numbers to floating-point using hexadecimal and
excess -64 representation. Show your results to 6 hexadecimal digits: .5, 16,
2.4071, 1.1, .999, 53'5.31".

6-4 Verify your results by converting your results in 6-3 back to decimal.

6-5 Are there any advantages to using SWR over SDR to clear a floating-
point register?

6-6 Two single precision factors are multiplied to produce a double-precision
product. If the result is stored using STE, the low order eight hex digits will
be ignored. Construct a routine which will round this product to six hex digits
prior to being stored by STE. Test your program on a 360 using positive and
negative factors.

6-7 In Example 6-6, what would be the effect of replacing the ALR by an AR
instruction? Will any other instruction perform the desired function?

6-8 Code the Indian problem using floating-point arithmetic. Convert the
result to decimal and round-off to two places. Compare the code in the loop
part of your program with the code in the loop of the fixed-point version of

Sec. 4.1. While this is too small a sample to prove the point, it usually turns
out that a given section of fixed-point code can be done in about half the number
of instructions when floating-point arithmetic is used. The difference in the
number of instructions required help to offset, to a degree, the extra time
taken by floating point instructions.
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6-9 Develop a technique for rounding off floating-point numbers to a fixed
number of decimal places. Remember that the excess digits must be trun-
cated after the roundoff constant is added.

6-10 Modify the code in Example 6-8 to round the high order part of the pro-
duct to the nearest bit. Remember that the sign position of the odd register
of an even-odd pair, here GPR3, contains data when both registers contain a
double binary word. The sign bit for the double word is in the sign position
of the even register. Remember, too, that the low-order word of a double
word is considered positive, irrespective of the sign of the high-order word.
See Example 3-14 for additional information on double~word binary data.

6-11 In general, floating-point arithmetic does not satisfy the fundamental
axioms of arithmetic -- the Associative and Distributive axioms. Develop
numerical examples to verify this statement. For reference, the Associative
axioms for multiplication and addition are A(BC) = (AB) C and A H{B+C) =
(A+B) + C; the Distributive axiom is A(B+C) = AB + AC. Floating-point
arithmetic on the 360 does satisfy the Commutative axioms -- A+B = B+A and
AB = BA -- that is, interchanging operands does not change the result of addi-
tion or multiplication.

6-12 Polynomial evaluation is frequently encountered in scientific computing.
A polynormal is shown below using the notation * to multiply, A(N) for ap and
X**N for x™:

A(0) + A(IPFX + A(2)*¥X**2 + ... + A(N)*X**N
For the purposes of machine computation, this may be "nested’ as
(CCCCAMN*X + A(N-1) )*X +A(N-2) )*X + ... + A(1) )*X + A(0)

In the nested, or telescoped form, polynomial evaluation can be programmed
more efficiently. Write a routine to evaluate a nested polynomial for N = 8.
Concentrate on reducing execute speed as much as possible. Assume that X
and the A's are single-precision numbers. Their sums should be carried out
in double precision with the final result rounded and stored in single precision.

6- 13 Square roots can be computed by using an algorithm such as the one
below. If the number, X, whose square root is to be computed has exponent
E and fraction F, then a first approximation to its square root, Yo, is given
by

Yo = ((8F +2)/9)*16** E/2 (E is even)

Yo = ((32F + 8)/9)*16** E/2 (E is odd)
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where E/2 indicates the integer part of E/2. This approximation is then
refined by four iterations of the form

. SN / v/
Yo+l = (Yu + /Yn;/z

to better than 56-bit accuracy. To start the iteration, substitute Yo for Yn in
the formula, thencompute Y, and substitute it, in turn, for Yn and compute
Y2 and so forth. The final approximation will be Y4. As a test on your pro-
gram, include the calculation of X - Y4*Y4 and run it on a 360. If your pro-
gram is correct, the difference should be very nearly equal to zero. To
avoid the complications of writing a general-purpose decimal/floating-point
conversion program, for output, convert to decimal only the exponents; use
hexadecimal notation for fractional values -- that is, convert each hex digit
to one of the EBCDIC symbols: 0,1,2,....,A,B,C,D,E, F. For each test
case, show the original number, its square root and the difference above. Use
DC statements to provide six different test cases.

6-14 Give a conceptual description of a generalized routine for conversions
between double-precision floating-point and decimal numbers in the form
EE. XXXXXXXXXX where EE is a two digit signed number representing the
exponent of ten and the X's are a sequence of 10 decimal digits representing
the fractional part of the number in normalized form. The decimal input and
output should be in this form.

Take as operating assumptions, first, the case where core storage for
this routine is extremely tight so that the emphasis is on minimum storage
requirements; second, assume that several thousand bytes of storage are
available for the routine and any tables it may require -- in this case, em-
phasis is on minimum conversion time.

It is interesting to note that improvement in one or the other parameter,

core storage or running time, is detrimental to the other. This is notan
unusual circumstance in programming.
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Chapter 7
MACROS

7.1 Introduction

In many programs there are functions, represented by a sequence of
instructions, which are used over and over again without change or perhaps
only slightly modified. If these instruction sequences could be represented by
one assembly language statement, the programmer could save time by writing
one statement instead of many everytime that set of instructions is used. This
substitution of one statement for many is the essence of a macro instruction.

A macro instruction, as the prefix "macro” implies, is a collection of
assembly language statements which when executed in a particular sequence
perform a desired function. The function is specified by the programmer in
one macro instruction even though a number of instructions may be necessary
to accomplish it.

The macro instruction offers the programmer greater flexibility and ease
in writing and maintaining his program. Once a macro instruction is defined it
can be used in a program wherever the function is needed. The assembler will
generate the appropriate sequence of instructions to perform the function. If
the function is of general use it may be put in a library and used in any assembly
language program that needs that function. If the function performs incorrectly
or must subsequently be changed to incorporate additional facilities, then only
the macro instruction definition must be changed and the program reassembled.
This is considerably easier than correcting or modifying the sequence of instruc-
tions at every place they appear in a single program or in a series of programs.

In the Disk Operating System, a macro must be in the macro library before
it can be used in a program. The catalogue function of the operating system's
library program will allow a macro definition to be placed in the macro library.
The larger operating systems allow a macro definition to be assembled with a
program which requires it in addition to being included in the system's macro
library.

Macro instructions provide the first step in allowing the assembly lan-
guage programmer to call upon a function without coding all the necessary
machine instructions everytime he requires it. In the next chapter, we will
discuss an extension of this capability, subroutines.
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7.2 Macro Definition and Expansion - Positional Macros

The heart of the macro instruction technique is the definition of the
macro instruction. Ounce the definition of the macro is communicated to the
assembler, the assembler will generate the necessary instructions according
to the definition everytime the macro instruction is encountered in the user's
program.

Up to this point, we have seen that the assembler recognizes two types
of statements: The machine instruction statement which causes the assembler
to generate the appropriate machine instruction and the assembler instruction
statement which informs the assembler of a condition but does not cause a
machine instruction to be generated. The macro definition is composed of
both types of statements. The macro definition will contain both a macro
header and a macro trailer statement. In between these two statements will
- be the macro prototype statement and the model statements. There are two
types of macro prototype statements, positional and keyword. Macros using
the positional prototype statement will be discussed first.

To define a macro the first statement used is the macro header state-
ment whose format is

blank MACRO blank

This statement informs the assembler that a macro definition follows. As
the blanks indicate, this statement is not iabeled nor does it have operands.

The last statement in a macro definition is the trailer statement whose
format is

blank MEND blank

The trailer statement informs the assembler that the macro definition
finished.

The statements which are included between the macro header and trailer
statements define the macro to the assembler. They do not cause the assem-
bler to generate any machine instructions.

The macro positional prototype statement follows the header statement.
Its format is
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symbolic a symbol up to 49 symbolic

parameter parameters separated
or by commas
blank

The symbol in the operation field may be any unique name. It cannot be the
name of any instruction mnemonic which is already known to the assembler.
This symbol is the name of the macro whose definition follows.

The symbolic parameters which may be used in the name and operand
fields are symbols whose first character is an ampersand followed by one to
seven alpha-numeric characters the first of which must be alphabetic. The
symbolic parameters are used in the model statements which follow the proto-
type statement. When the macro is used in the program, the parameters
which follow in the operand field are then substituted for the symbolic para-
meters when the code is generated. The generation of code by the assembler
for a macro is termed a macro expansion. An example of a positional macro
prototype statement is

&NAME NET &GROSS,&RATE

Net is the name of the macro and &NAME, &GROSS, &RATE are symbolic
parameters. Following the prototype statement are the model statements
which define the macro expansion. A model statement can be any machine

or assembly language statement with the exception of END, ICTL, ISEQ, PRINT,
and START. The model statement can have a symbolic parameter in any

field except the operation field. That is, symbolic parameters can be used in
the name, operand and comments fields of the model language statement.

The following example gives the macro definition for the macro NET
which calculates net salary from gross income and a tax deduction rate.
NETSAL and TEMP are assumed to be 5 and 6 byte fields, respectively.

MACRO MACRO HEADER

&NAME NET &GROSS, &RATE PROTOTYPE
&NAME MVC NETSAL, &GROSS MODEL STATEMENTS

MVC TEMP, NETSAL

MP TEMP, &RATE

NI TEMP+3, X' F0'

o1 TEMP+3, X'0A'

SP NETSAL, TEMP(4)

MEND MACRO TRAILER
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The model statements define the macro NET. These statements do not cause
any code to be generated but merely serve to define the macro NET to the
assembler.

If a programmer wished to use the macro NET in his program, he may
write the macro statement as follows

INCOME NET SALGROSS, TAXRATE

When the assembler encounters this statement, and NET has been defined as
above, the assembler would generate the following instructions in place of the
macro instruction NET

INCOME MVC NETSAL, SALGROSS
MVC TEMP, NETSAL
MP TEMP, TAXRATE

NI TEMP+3, X' FO'
oI TEMP+3, X'OA'
SP NETSAL, TEMP(4)

The parameters INCOM, SALGROSS, and TAXRATE replace the symbolic
parameters which were used in the macro definition. The reader can see why
this prototype statement is positional since the replacement occurs by match-
ing up corresponding symbols in the prototype and the macro statements. The
assumptions made in the exampie are that NETSAL and TEMP are defined
elsewhere in the program as 5 and 6 byte fields respectively. SALGROSS is a
6 digit packed field plus sign and TAXRATE is a four digit packed field plus
sign. SALGROSS has two digits to the right of the implied decimal point.
TAXRATE has four digits to right of its decimal point. The NI and OI instruc-
tions truncate the result of the multiplication to two digits to the right of the
decimal point by putting a plus sign in the third digit.

Exercise 7-1  Using the following macro definition

MACRO
&NAME SUM & TOTAL, & FLD1, & FLD2
PACK WORKI1, & FLDI
PACK WORK2, & FLD2
&NAME AP WORK1, WORK2
UNPK &TOTAL, WORK1
MEND

show the expansion of this macro statement:
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ADDER SUM GROSS, SALARY, COMM

It is possible to combine symbolic parameters with other characters to
form names in the macro definition and hence, in the macro expansion. To
combine any characters with a symbolic parameter the two fields are sepa-
rated by a period. For example, suppose the symbolic parameter & MATRIX
had the value A during a macro expansion the following terms in the definition
would have the indicated generated names.

definitions g@gr_ag_gci
&MATRIX. (1) A1)
MATR. & MATRIX MATRA
&MATRIX. & MATRIX AA

This combination of characters and symbolic parameters can be used in
macro definitions to obtain more unique symbols in the expansion. For

instance,

MACRO

&NAME NET &SUF, &KIND, & AREA

&NAME MVC NET. &SUF, GROS, &SUF
MVC &AREA,NET.&SUF
MP &AREA,&KIND. RATE
NI &AREA. +3, X' F0'
Ol &AREA. +3, X'0A'
SP NET.&SUF, &AREA. (4)
MEND

The expansion for the macro statement
SALES NET SAL, DIS, HOLD
would be

SALES MVC N ETSAL, GROSSAL
MVC HOLD, NETSAL
MP HOLD, DISRATE
NI HOLD+3, X' F0'
0] 1 HOLD+3, X'0A'
SP NETSAL, HOLD(4)

This technique enables the user of the macro to supply only the unique letters
for this expansion which allows the expansion to be readable each time it
appears.
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A macro definition can contain a previously defined macro statement.
This combination is generally called a pair of nested macros or an outer and
inner macros where the inner macro is the previously defined one. The inner
macro can have another innermacro. The maximum nesting level is three so
that the second inner macro could not have another macro imbedded in its
definition.

To illustrate this let the macro SUM be defined as it appears i

rroica 71 Mhao Aafinitinn Af tha manra NTE'T i1l 11an +thAa maann~ QTTAL 3
A LST i T 4. 4210 GTLi:0aUl Ut wai® diall0 N i Widi use Ui Halll Sud

its definition as follows

Fva
] K2 Vo

MACRO

&NAME NET &TOTAL, & FLDI, & FLD2, & RATE
SUM &TOTAL, & FLD1, & FLD2
MVC NETSLS, WORK1
MVC TEMP, NETSLS
MP TEMP, & RATE
NI TEMP+3, X' F0'
oI TEMP+3, X' 0A'
SP NETSLS, TEMP(4)
MEND

The expansion for the macro statement

NETSAL NET GROSS, SALARY, COMM, FIT
would be

NETSAL PACK WORKI1, SALARY
PACK WORK2, COMM
AP WORK1, WORK2
UNPK GROSS, WORK1
MVC NETSLS, WORK1
MVC TEMP, NETSLS
MP TEMP, FIT
NI TEMP+3, X' FQ'
0] TEMP+3, X'0A'
SP NETSLS, TEMP(4)

The previous macro definitions and expansions were straight forward.
Except for the parameter substitution, the same expansion was generated
everytime the macro statement was used. However, there are programs
which may require a variable expansion depending on the parameters used in
the macro statement. This capability can be used to tailor the expansion to
the needs of the user. In this way, a general macro definition can be written
and many users who required either part or all of the function could use the
same macro but supply only the parameters necessary for the particular
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function needed. In this way the macro expansion can be parameter sensitive,
The variable macro expansion technique is used extensively in the systems
generation process for operating systems which is discussed in Chapter 11.
This is the process of generating an operating system for a particular instal-
lation from a generalized package.

In order to define variable expansion macros two types of assembler
instructions are necessary. Remember that assembler instructions do not
cause machine instructions to be generated but instruct and inform the assem-
bler during assembly. The first of these assembly language statements are
the SET statements. These statements enable the programmer to assign a
value to a symbol which will be used by the assembler during the assembly.
The variables which can have their value assigned by a SET statement are
called set variables. There are three types of set variables and within each
type there are two classifications, global and local. If a set variable is global,
then whatever value was last assigned to it is used anywhere in the assembly
when it is encountered. If the set variable is local, then the value it was last
assigned is only valid within the macro in which it was defined. The three
types of set variables are SETA for set arithmetic, SETB for set binary, and
SETC for set character.

The SETA s

language statement

m
1

a SETA vari- SETA an arithmetic
able symbol expression

The SETA set variable can either be local or global. If it is local the symbol
is one of the sixteen possible names of the form &ALn where n = 0-15. If the
variable is global the name is of the form &AGn where n ranges from 0 to 15.
These variables can be set to an integer value between 0 and 16, 777, 215
(224-1) by the arithmetic expression in the operand field.

Some examples:

Results
&ALS SETA 12 &ALS =12
&AG3 SETA &ALS+H &AG3 =16

&ALT SETA &AG3-&ALS+&ALT &ALT =4

(The assumption made above is that the SETA variable keep the values assigned
to them previously.) If a variable has not been assigned a value, then a zero
value is assumed. A macro definition using SETA variables follows
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MACRO

&NAME NET &GROSS, & LGTH1, &RATE, & LGTH2
&AL1 SETA &LGTH1
&AL SETA &LGTH2
&NAME MVC NETSAL, &GROSS. (&AL1)
MVC TEMP, NESAL. (%AL1)
&AL4 SETA 10-&AL1
MP TEMP+. &AL4. (&ALI), & RATA. (&AL2)
NI TEMP+1, X' F0'
oI TEMP-+7, X' 0A'
SP NETSAL, TEMP+. &AL3. (& AL1)
MEND

The expansion for the macro statement

SALCALC NET SALARY, 6, FIT, 3
would be

SALCALC MVC NETSAL, SALARY(6)
MVC TEMP, NETSAL(6)
MP TEMP+4(6), FIT(3)
NI TEMP+17, X' F0'
o)} TEMP+T7, X'0A'
Sp NETSAL, TEMP+2(6)

Using the SETA variables, and having TEMP and NETSAL defined as 10 bytes
in length, this macro can handle parameters of varying length.

The second type of set variable is a SETC variable. SETC variables
are always global and may have symbols of the form &CGn where n ranges
from 0 to 15. They can be assigned a character string value of up to eight
characters by the SETC statement.

SETC vari- SETC a character string of up to
able symbol 8 characters enclosed by
' marks

For example,

Results
&CG3 SETC 'BP101' &CG3 = BP101
&CGH SETC 'A.&CG3' &CGS = ABP101
&CG15 SETC 'A. &CG5' &CG15 = AABP101
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When a SETC variable is not defined by a character string in its operand
field it is considered a null string of zero bytes.

The third type of set variable is the SETB variable which is used to
assign the value true or false to a SETB symbol. This variable can be either
global or local. The symbol takes the form of &BLn or &BGn where n ranges
from 0 to 127. The SETB variable is assigned a value of 0 for false or 1 for
true by the SETB statement.

a SETB vari- SETB a logical or relational
able symbol expression enclosed
in parenthesis

The following logical and relational operators may be used in the operand's
logical expression:

AND

OR LOGICAL operators

NOT

EQ equal

NE not equal

LT less than RELATIONAL
GT greater than operators
LE less than or equal

GE greater than or equal

The logical operators have the same meaning here as in Chap. 5. The logical
operators may connect SETB symbols. The relational operators may compare
either SETA variables or SETC variables. Following are some examples; the
comments field gives the value of each symbol.

&BG110 SETB (1) &BG110 = 1(TRUE)
&BL3 SETB (NOT&BG110) &BL3=0 (FALSE)
&BL5 SETB (&BG110 AND NOT &BL3) &BL5 = I(TRUE)
&AL2 SETA 15

&AL3 SETA 10

&BG30 SETB (&AL3 GT &AL2) &BG30 = 0 (FALSE)
&BL20 SETB (&BL20) &BL20 = 0 (FALSE)

When a SETB variable has not been assigned the value of zero (FALSE) is
assumed.

With positional macros there are certain conventions which must be
observed when a parameter in a macro statement is omitted. If the omitted
parameter is to be followed by another parameter the commas which show the
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missing parameters must be included. If the omitted parameter is not
followed by a parameter the remaining commas are not necessary. To illus-
trate, suppose the following macro prototype was part of a macro definition:

& NAME MOVE &P1,&P2,&P3,& P4
and the macro statement required omission of the parameter corresponding
to & P2 and &P3 it would be written

HERE MOVE A, F

If the macro statement required omission of the last two parameters then it
would be written

HERE MOVE A,B

If a macro definition required a test for null parameter it can do so by the
following SET statement, assuming that the missing parameter corresponds
to & P2 in the prototype statement:

&BL10 SETB (&P2EQ'"')

If the parameter in the macro statement is omitted a null string will be sub-
stituted for it. The double quote marks indicate a null string. If the para-
meter corresponding to & P2 is present, & BL10 will equal zero (FALSE); if it
not &BL10 will equal one (TRUE). The set variables alone do not give the
variable macro expansion capability; they must be combined with the assembly
conditional statements to do this. There are four conditional assembler in-
structions which can be used within a macro definition. They are provided to
alter the sequence in which the assembler's macro generator processes state-
ments in the macro definition. Again, these instructions do not produce object
code; they are "executed” by the assembler, only.

The assembler conditional branch has the format

a sequence AIF a logical or relational
symbol or expression followed a
blank sequence symbol

The sequence symbol is a label in the name field of one of the model state-
ments. Its first character must be a period (.) followed by an alphabetic
character followed by up to six alphanumeric characters. For example



.A

.B43B

.LABELI1

are sequence symbols.

The AIF statement will cause the assembler to branch

forward to the statement labeled with the sequence symbol if the expression is
true (1) or take the next statement following the AIF if the expression is
false (0). As an illustration, consider the following macro definition

MACRO
NET
MVC
MvVC
MP

NI

Ol

SP
AIF
MVC
MP

NI

0] 1
MEND

&NAME
&NAME

. END

&GROSS, &RATE1, &RATE2
NETSALS, &GROSS
TEMP, NETSALS
TEMP, & RATE1
TEMP+3, X' F0'
TEMP+3, X' AQ'
NETSALS, TEMP(4)
(4RATE2 EQ ' '). END
TEMP, NETSALS
TEMP, & RATE2
TEMP+3, X' F0'
TEMP+3, X'0A'

If a macro statement was given which omitted the third parameter such as

HERE NET

The following expansion would result

HERE MVC
MVC
MP
NI
OI

SP

GRINCOM, TAXRATE

NETSALE, GRINCOM
TEMP, NETSALS
TEMP, TAXRATE
TEMP+3, X' FO'
TEMP+3, X' 0A'
NETSALS, TEMP(4)

At expansion time the assembler would have evaluated the logical expression

in the AIF statement as being true and encounter the statement at . END which
is MEND. The AIF instruction, in effect, directs the assembler to branch to
.END if the third parameter (& RATE2) is missing, that is, blank (" '). If

the third parameter was present and named DISRATE, the expansion would be
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MVC NETSALS, GRINCOM

MVC TEMP, NETSALS
MP TEMP, TAXRAT

NI TEMP+3, X' F('

oI TEMP+3, X' 0A'

SP NETSALS, TEMP(4)
MVC TEMP, NETSALS
MP TEMP, DISRATE

NI TEMP+3, X' F¢'

oI TEMP+3, X' 0A'

SP NETSALS, TEMP(4)

There are three other conditional statements, AIFB, AGO and AGOB. The
AIFB statement operates analogously to the AIF statement except that the
sequence symbol used in the branch appears in the name field of a model
statement preceding the AIFB statement. When used with a SETA statement
to modify a parameter, AIFB can be used to provide a looping capability so
that a given section of code can be repeated a number of times. This could
be applied in a character move macro where fields larger than 256 bytes may
be encountered.

The AGO and AGOB conditional statements are used by the assembler
in a similar manner as the AIF and AIFB statements. These statements,
however, give an unconditional branch forward or backward, respectively, to
the sequence symbol in the operand field. Their formats are

a sequence AGO a sequence symbol

symbol or
blank

a sequence AGOB a sequence symbol
symbol or
blank

The MEXIT statement can be used in addition to the MEND statement to
terminate an expansion. Its format is

sequence symbol MEXIT blank
or blank

A MEXIT is used when the conditional logic of the expansion will not take the
assembler to the MEND statement without an unconditional branch. The
MEXIT can be used instead of the branch.
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There is a systems symbol, &SYSLIST(n), which can be used to refer
to any parameter in a positional macro. The parameter desired is indicated
by the integer n which may be a SETA variable. A macro definition which
utilizes the condition statements, MEXIT, and &SYSLIST(n) follows

MACRO
&NAME  NET &INPUT, &LI &PI, & RESULT, & LR, & UPR,&RATE1, X
&RATE2, & RATES, & RATE4

&AL1 SETA  &LI
&AL2 SETA  &LR
&AL4 SETA 6
AIF (&PI EQ ' '). PACKED
&AL3 SETA  &AL1/2+1
PACK  &RESULT(&ALS3),&INPUT(UALI)
&AL1 SETA  &AL3
AGO . PACK1

.PACKED MVC 1 &RESULT, &INPUT(&AL1)
.PACK1 ANOP

&AL3 SETA = &ALI1-1
.LOOP  MVC TEMP+2, & RESULT(&ALS3)
&NAME MP TEMP, &SYSLIST{& AL4)
NI TEMP4&AL3, X' FO'
oI TEMP+&AL3, X'0A"
SP &RESULT, TEMP(&AL1)
&AL4 SETA  &AL4+1
AIFB  (&SYSLIST(SAL4)NE'). LOOP
AIF (&UPR NE'). UNPACK
MEXIT

. UNPACK UNPK TEMP(& AL2), &RESULT(&ALI)
MVC &RESULT, TEMP(& AL2)

MEND
&INPUT Represents initial input field
&LI Represents the length of the initial input field in bytes
&PI If the parameter is present the input field is unpacked.

If parameter is omitted, the input field is packed.

1 . o
ANOP is a conditional no operation statement and allows the sequence

symbol . PACKI1 to be located such that the succeeding SETA statement
will be executed when . PACKI is referenced. It has a similar effect to
a no-operation.
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&RESULT Represents the resultant field

&LR Represents the length of the resultant field in bytes

&UPR If parameter is present the resultant field will be
unpacked; if it is omitted the resultant field is packed.

&RATE]L, &RATE2,

&RATE3,&RATE4 Represent up to four parameters for which deductions

from the input field will be made. If any are to be
omitted they should be left off the end.

Exercise 7-2  Using the preceding macro definition, show the macro ex-
pansion for the following macro statements

a) INCOME NET GROSALS, 7, P, NINCOM, 7, u,
FIT, FICA, INSUR, DISAB

b) INCOME NET GROSALS, 7, P, NINCOM, 7, ,
FIT, FICA, , DISAP

¢) INCOME NET GROSALS, 5, , NINCOM, 7, u, FIT

7.3 Keyword Macros

When macro prototypes have a number of symbolic parameters and
several of these are optional it becomes difficult to write the desired para-
meters in the proper corresponding positions. For macros of this type,
where the number of possible parameters is large but are often not all used,
the KEYWORD prototype statement may be used to advantage. The features
discussed in the previous section on positional macros apply to the keyword
macro except that the prototype statements are different.

A keyword prototype statement is written with the symbolic parameters
equoted to either a parameter or a null field. As an illustration

&NAME NET &GROSS=, & RATE1=, & RATE2=,
&RESULT=NETSAL, & TEMP=WORK1

The symbolic parameters & GROSS, &RATE1, & RATEZ2, & RESULT, & TEMP
are used in the definition of this keyword macro in much the same way as in
the definition of a positional macro. However, the keyword macro state-
ment does not have to specify the parameters in a particular order and if a
parameter is omitted, the name on the right side of the equals side in the
prototype is used in its place. As an illustration, consider the following
keyword macro
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MACRO
&NAME NET
MVC
MVC
MP
NI
OI
SP
AIF
MVC
MP
NI
Ol
SP

.END MEND

&GROSS=, &RATE1=, & RATE2= X
&RESULT=NETSALS, & TEMP=WORK1
&RESULT, &GROSS

& TEMP, & RESULT

&TEMP, & RATE]

&TEMP. +3, X' F0'

&TEMP. +3, X'0A’

&RESULT, & TEMP. (4)

(4RATE2 EQ '"). END

& TEMP, & RESULT

& TEMP, & RATE2

&TEMP. +3 X' FO'

& TEMP. +3, X' 0A'

&RESULT, & TEMP. (4)

and the expansion resulting from

INCOME NET

which is

MVC
MVC
MP
NI
Ol
SP

RATE1=FIT, TEMP=HOLD, GROSS=SALES

NETSALS, SALES
HOLD, NETSALS
HOLD, FIT
HOLD+3, X' F0'
HOLD+3, X' 0A"
NETSALS, HOLD

Note that the position of the parameters relative to each other is not important.
Also if a parameter is not supplied (RESULT) the symbol in the prototype is
used; if it is supplied it overrides the one given by the prototype.

7.4 Problems

1. Given the macro definition
MACRO
&SYMBOL TALOKUP &TABLE, &NO ENTRY, &ENTADDR, &ARG,
&FLD,&FLDILGT, & FLD2LGT, & FLD3, LGT,
& FLD3GT
&ALl SETA & FLD1ILGT
AIF (& FLD2LGT EQ '""). LOOKUP
&ALZ SETA & FLD2LGT
AIF (& FLD3LGT EQ ''). LOOKUP
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&AL3 SETA & FLD3LGT

AIF (& FLD4ALGT EQ ''). LOOKUP
&AL4 SETA &FLDALGT
. LOOKUD ANQP
&AG1 SET &ALI+&AL2, +& AL3+&AL4
AIF (&FLD EQ ''). FIRST
&AG4 SETA &AL1
&AG2 SETA &FLD
LA TS SR LA AL~ 1
AIF (&AG2 EQ 0).CONTIN
&AG3 SETA &ALl
&AG2 SETA &AG2-1
&AG4 SETA &AL2
AIF (&AG2 EQ 0 ). CONTIN
&AG3 SETA &AL2+&AG3
&AG2 SETA &AG2-1
&AG4A SETA &AL3
AIF (&AG2 EO 0). CONTIN
&AG3 SETA &AG3+&AL3
&AG4 SETA &AL4
AGO . CONTIN
. FIRST ANOP
&AG3 SETA 0
&AG4 SETA &AL1
. CONTIN ANOP
&AL5 SETA &NO ENTRY
&ALS SET &AL5*AG1-1
LA 5,& TABLE+&AG3
LA 6,&AG1 (0, 0)
LA 7,&TABLE+&ALG
L.&SYMBOL CLC &ARG, 0{&AG4, 5)
BC 8, E.&SYMBOL
BXL 5,6, L.&SYMBOL
LA 1, 0(0, 0)
BC 15, &SYMBOL
E.&SYMBOL LR 1,5
LA 5,&AG3(0, 0)
SR 1,5
&SYMBOL ST 1,&ENTADDR
MEND

and the macro statement

THERE TALOKUP INVENTY, 2000, ENTRY, PARTNO,
3,6, 4,6, 4



What is the value of L.&SYMBOL and &A63? Also, describe the operation

of the generated macro.

2. Using the macro definition in problem 1, what are the two macro
statements that correspond to the following expansion

LA 5, SALES+0
LA 6, 15(0, 0)
LA 7, SALES+1499
LORDER CLC CUSTNO, 0 (8, 5)
BC 8, EORDER
BXL 5,6, LORDER
LA 1, 0(0, 0)
BC 15, ORDER
EORDER LR 1,5
LA 5, 0(0, 0)
SR 1,5
ST 1,ACCTST

3. Using the macro definition in problem 1, give the expansion for the

following macro statement

PAY TALOKUP

PAYROL, 9000, ENTRY, MANNO
2,12,86,,10

4, Write the macro definition in problem 1 as a keyword macro.

5. When the macro statement in problem 3 has been expanded using the
definition in problem 1, what is the value assigned to: &AG2,&AG4, & AL3.

6. Write a keyword macro that performs a table look up on a variable num-~
ber of tables which have the same format; allow also for the number of
entries and the length of their individual fields to be specified. The address of
each entry found should be stored in a standard location for each table unless

a particular location is specified.
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Chapter 8
SUBROUTINES

8.1 Introduction

in Chapter 7, macro instructions were discussed. They provided the
programmer with the capability of incorporating a predefined set of instruc-
tion in his program where needed by writing a macro statement. This saves
programming time and once the macro is tested, the instructions that the ma-

cro statement causes to be generated are tested, thereby saving testing time.

However, even though the macro technique can reduce both coding and
testing time, the instructions which are generated are in line. This means
that each time a macro statement is written, the instructions generated take
up CPU storage. If the same macro statement is used three times in a pro-
gram, the same amount of storageis used three times. When the expansion
(number of instructions generated) is small, this is acceptable, but whenmany
instructions are generated per macro statement, it usually is not.

To enable the programmer to gain the advantages of the macro but not
pay the penalty of duplicating the storage needed everytime the function is re-
quired, the subroutine may be employed. A subroutine is a set of instructions
which perform a function when envoked by the user. The subroutine is actual-
ly a program which is branched to from another program and when completed
branches back to the original program. The subroutine resides in storage
once no matter how many times it is used. Therefore, it does not duplicate
storage as a macro does.

The decision whether a function should be coded as a macro or a subrou-
tine is dependent upon the performance vs. storage trade-off, the number of
instructions in the function, and the variability of the function at the time it is
involved. The mechanics involved in making the decision will be clearer after
a discussion of the subroutine.

8.2 Linkages

Since a subroutine is essentially a program which is used by other pro-
grams there must be a way for both programs to communicate with each other.
The program that wants to invoke a subroutine is usually referred to as the
'caller' or 'calling routine'. The subroutine which is being invoked is refer-
red to as the 'called routine'. The execution of a program which invokes a
subroutine is pictured below.
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Start A Start B

Branch to B
End A Return A
Program A Subroutine B

Routine A starts to execute, then it needs the function provided by subroutine
B. Routine A, the caller, branches to Routine B, the called routine. Routine
B executes and when it is finished, it branches back to the caller, Route A.
Therefore, Routine B is a program which is coded such that it can be branched
to and will branch back to the caller. As an example

START BALR 2,0
USING * 2
LA 15,SUBR LOAD GPR 15 WITH
A BALR 14, 15 ADDRESS OF
. SUBROUTINE
L 15, A(SUBR)
B BALR 14,15
EOJ
SUBR MVC NAME, INPUT(15)
BCR 15, 14
END

The instructions which start at the label SUBR and end with the branch on
condition 15constitute a subroutine, SUBR. The routine SUBR is called twice
from within the same program that contains SUBR. Register 15 is loaded with
the entry point (SUBR) of the subroutine and the branch and link register in-
struction following the BALR and branches to SUBR. Since register 14 has
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the proper address to which the subroutine should return, an unconditional
branch to the address in GPR 14 occurs as the last instruction in the subrou-
tine. In the example above, the first time the subroutine is called by the
BALR at A it will return to the address A+2, the second time it igs called by
the BALR at B it will return to the address B+2.

The LA and BALR instruction which were used to call the subroutine are
lmkage 1nstruct10ns They are used solely to set up the entry to and the re-

8.3 Parameters

Subroutines, like macros, require parameters. In the macro definition
symbolic parameters are used which are replaced by the actual parameters
when the macro is expanded at assembly time. Since a subroutine, unlike the
macro, uses the same code to process multiple request at execution time the
parameters are passed at that time. Expressed in another way, the macro,
using one definition generates a separate set of instructions for each macro
statement which reference the parameter supplied in that statement at assem-
bly time. The instructions which make up the subroutine must be capable of
referencing parameters which may be supplied with each request for its use at
execution time. To illustrate how parameters can be passed between the cal-
ler and the called routine, consider the following program

BEGIN BALR 2,0
USING * 2
LA 15, SQUROOT
LA 14, RET1
BALR 1,15
DC A(X)
DC A(XROOT)
RET1 L 5, XROOT
LA 15, SQUROOT
LA 14, RET2
BALR 1,15
DC A®Y)
DC A(YROOT)
RET2 L 5, YROOT
END
USING * 3
SQUROOT LR, 3,15
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L 4,0(0, 1) ADDRESS OF INPUT
. LOADED INTO REG. 4
DEVELOP SQUARE ROOT

L 4,4(0, 1) ADDRESS OF RESULT
MVC 0(0, 4/ ROOT(4) LOADED INTO REG 4
BCR 15, 14

ROOT DC CL4
END

The calling program invokes the square root subroutine (SQUROOT)
twice. It uses a parameter list to pass two parameters to the subroutine. A
parameter list is a string of constants which are the address of the parameters
to be passed or the actual parameters themselves. In the above example the par
parameter list follows the BALR instruction and contains two address con-
stants. The address of the parameter list is loaded into register one by the
BALR instruction. The return register 14 must be set up by an LA instruction
since register 1 is set up by the BALR.

The subroutine sets up its addressability by moving its entry point ad-
dress to register 3 from register 15 which was set up by the calling program.
The subroutine can obtain the address of the variable of which it is to take the
square root by using register 1 to access the parameter list in the calling rou-
tine. In the same manner it can obtain the address of where the result is to be
stored. Once the format of the parameter list and what register will contain
its address is decided, the subroutine can handle multiple requests as in the ex-
ample above for the square root of X and Y to be returned in XROOT and
YROOT respectively.

Parameters which are passed to a subroutine can be handled in two ways.
If the subroutine uses the address of the parameters to reference it in its ori-
ginal location, the subroutine call is a call by name. If the subroutine uses the
address of the parameters, to move the data to its own work areas and proces-
ses it there and later restores the data to its original location, this is a call by
value. Examples of both types of subroutine calls are given below.

Worked Example

8.1 As an example of a call by value, consider a subroutine to calculate
A(X+1)2+X=Y where the original value of X is changed to X+1 after the calcula-
tion of Y. The parameter list is in the calling routine, with its address in
GPR1. The sequence of the parameter list is:

DC A(S)
DC A(T)
DC A(C)
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USING * 2
ENTPNT LR 2.15 PROLOGUE START
L 3,4(0, 1)
L 4, 0(0, 3)
ST 4
L 3, 8(0, 1)
ST 4,A
BC 15, START
CNOP 0,4
A DS CL4
X DS CL4
Y DS CL4 PROLOGUE END
START LE 2, X
LE 4,X
AE 4,=E'1.0'
STE 4,X
ME 4,X
ME 4,A
AER 2,4
STE 2,Y
L 4,0(0,4) EPILOGUE START
MVC 0(4), Y(4)
L 4, 4(0, 4)
MVC 0(4), X(4)
BCR 15, 14 EPILOGUE END
END

The parameter list in the calling program specifies the address of three
parameters S, T, and C. The subroutine is to calculate S which equals
C(T+1)2+T. When the subroutine returns, the value of T will have been
changed to T+1. Since this is a call by value the subroutine moves the values
of S, T and C to locations in the subroutine Y, S and A using register 1 which
has the address of the parameter list. This initialization of the subroutine is
called the prologue. All calculations are done with the variables X, A and Y.

If they are changed from their original values, the data in the calling program
is not changed immediately to reflect it. When the subroutine has finished its
calculations, it will then store the current values of those quantities which have
changes in their original locations. This was done for S and T. This restoring
and housekeeping is called the epilogue.

The subroutine to handle the same parameter list and function with a call
by name follows

USING * 2
ENTPNT LR 2.15
L 3,4(0,1) ADDRESS OF T IN 3
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L 4,8(0,1) ADDRESS OF C IN 4

LE 2, 0(0, 3)
LE 4,0(0, 3)
AE 4,=E'10'
STE 4, 0(0, 3)
ME 4, 0(0, 3)
ME 4, 0(0, 4)
AER 2, 4

L 4,0(0, 1)
STE 4,0(0, 4)
BCR 15, 14
END

The trade off in a call by name versus a call by value is a trade off in
register usage versus core storage usage. Call by name requires a register
to address a parameter, whereas a call by value requires duplicate storage
for the parameters. In practice, for subroutines with a large number of para-
meters, a call by value and a call by name require the same storage for data
if the parameters are 4 bytes or less in length. Since the routine handles a
large number of parameters it would store the address of the parameters in
its own work area rather than picking them out of the parameter list everytime
or hoiding each address in a register when handiing a cail by name.

In most cases a call by value will be used except when a parameter occu-
pies considerable storage and duplicating the storage in the subroutine would be
wasteful. When parameters are arrays or character strings they should be
passed by name to save space. Parameters in one list may be passed by name,
by value or by both.

8.4 Register Usage

If all routines are to be capable of communicating with each other and
with the control program in an operating system, standard linkage conventions
should be established. Once a standard linkage is established all programmers
could use the standard and use of common or general subroutines becomes
practical. The programming systems for the 360 have set up a linkage conven-
tion which is used by the components of the individual systems. If the pro-
grammer abides by this convention his programs will have no trouble in com-
municating with other programs.

A standard linkage convention consists of defining the function each regis-

ter will serve and the responsibility of the caller and calling program. The
following register conventions are used by 360 programming systems.
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Register

15

(Y
W

Function

Entry point register--the address of the routine being branched to
is loaded into 15 by the calling program.

Return code register--the called routine may place a code in 15
before it returns to the caller to indicate the condition of the result.

Parameter register--if the actual parameter(s) are to be passed,
the first one is loaded into O by the caller.

Parameter register--if two actual parameters are passed the sec-
ond one may be loaded into GPR1 by the caller.

Parameter list register--if more than two parameters are to be
passed, the actual parameters and/or their addresses may be ar-
ranged in a list and the address of the list is loaded into 1 by the
calling program.

In general the called program has the responsibility to save and restore
any registers it uses, usually 2-13. It may have to save 14-1 if it in turn
calls another routine before it returns to the caller. In other words, the caller
should not expect to find the contents of registers 2 - 13 different after the
subroutine than before the call. The called routine is also responsible for
maintaining the integrity of the return register 14.

Worked Example

8.2 An example to illustrate the register conventions, register saving and
nested calls follows:

LEVEL1

BALR 2,0

USING  *,2

L 15, =A(LEVEL2)

LA 14, RETURN1

BALR 1,15 LEVEL2  USING *,15

DC A(L1P1) STM  1,14,SAVE2
DC A(L1P2) USING *,2

H
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DC A(L1P3) LR 2,15

RETURN1 L 7, CL4'0000" DROP 15
CR 15,7 .
BC 8, CONTIN
ERRRTN .
CONTIN . L 15, =A(LEVELS3)
END LA 14, RETURN2
LEVEL3  USING *,15 | BALR 1.15
STM  2,13,SAVES3 DC A(L2PI)
USING *,5 DC A(L2P2)
LR 5, 15 DC A(L2P3)
DROP 15 RETURN2 L 3, =CL4'0005'
CR 15,3
BC 8, ERROR
L 15, =CL4'0000'
L 15, =CL4'0005' LM 1,14, SAVE2
LM 2,13, SAVE3 RETURNI BCR 15,14
BCR 15,14 SAVE?2 DS CL60
SAVE3 DS CL60 ERROR
END :

END

The example shows that a subroutine when it is called should only plan on
using the entry point register (15) for addressing until it can save the contents
of the registers it requires. Notice also that if each called routine saves the
registers it will use at the beginning and restores them before it returns, each
called routine can call another routine, and so on, indefinitely. Such a se-
quence is termed a set of nested subroutine calls.

Since register 15 is not needed once the branch to the subroutine has tak-
en place and that routine has established its addressing, it can be used to re-
turn a code to indicate how the routine ended. These codes can indicate how
the routine ended. These codes can indicate normal completion or if an error
developed, the kind of error that occurred. The calling program can then test
the completion code on return and if necessary take corrective action.

8.5 Types of Subroutines

So far, the discussions of subroutines has centered on communication
between two or more routines. Now that the techniques have been laid out, we
will consider how and where subroutines can be used profitably. There are
five ways subroutines can be incorporated into a program. The subroutines
are written in the same way regardless of the manner in which they are finally
used with one exception which we will discuss.
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The first and simplest way is to assemble the main routine and the sub-
routines as one program and one control section. A control section will be
discussed in the second method of subroutines usage. When the main routine
and subroutines are assembled as one program, the subroutine is coded just
as another part of the program which is branched to when needed. For exam-
ple

BEGIN BALR 2,0

USING * 2

STE 6, X

LA 15, SUBRTN

BALR 14, 15

STE 4,X

LA 15, SUBRTN

BALR 14, 15
SUBRTN LE 2, X

ME 2,A

AE 2,B

ME 2, X

AE 2,D

STE 2,Y

BCR 15, 14

END

The subroutine when written and assembled with the main program has no prob-
lem in addressing the data directly. There is no need for a parameter list.

The second method a subroutine can be incorporated into a program is to
write it as a separate control section in the same assembly. A control section
is an independently relocatable section of code. In other words, control sec-
tions of a program can be loaded in any order and the program will run proper-
ly. In addition, control sections can be deleted or replaced by the Linkage Ed-
itor (discussed in chapter 11) without reassembly of the entire program. A
control section can be independently relocated because all references to it from
outside it and all references from it to outside are accomplished through the
use of address constants. Since all address constants are relocated by the
loader the position of a control section relative to other control sections is ir-
relevant. If the CSECT (control section) assembler statement is not used in an
assembly, the program constitutes one control section. Each CSECT with a
different name defines a new control section. The assembly program below has
two control sections.
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MAINPG CSECT
BEGIN  BALR 2,0
*,2

USING ,
STE 8, X
L 15, =A(SUBRTN)
BALR 14,15
STE 4, X
L 15, =A(SUBRTN)
BALR 14,15
EOJ

SUBRTN CSECT
BALR 4,0
USING x4
L 3, =A(X)
L 4, =A(A)
LE 2, 0(0, 3)
ME 2, 0(0, 4)
L 4, =A(B)
AE 2, 0(0, 4)
ME 2, 00, 3)
L 4, =A(D)
AE 2, 0(0, 4)
L 4, =A(Y)
STE 2, 0(0, 4)
BCR 15, 14
END

The control section SUBRTN can be independently relocated relative to con-
trol section MAINPG since any references made in SUBRTN to symbols de-
fined in MAINPG are by address constants.

The third method of incorporating subroutines into a program is to
assemble the main program and the subroutine separately and have them
joined together by the Linkage Editor. This method allows subroutines which
were written and tested separately to be used in any program. The differences
between two control sections assembled at once or individually and combined
by Linkage Editor lie in the way the address constants are set up. The exam-
ple below uses the same routines as previously except that the control sections
are assembled separately.



MAINPG CSECT

BEGIN  BALR 2,0
USING * .2
STE 6, X
L 15, VADRSUB
BALR 14,15
STE 4,X
L 15, VADRSUB
BALR 14,15
EOJ

VADRSUB DC V(SUBRTN)
ENTRY A,B,D,X
END

SUBRTN CSECT
BALR 5,0
USING x5
EXTERN A,B,D,X
L 3, ADDRX
L 4, ADDRA
LE 2, 0(0, 3)
ME 2, 0(0, 4)
L 4, ADDRB
AE 2, 0(0, 4)
ME 2, 0(0, 3)
L 4, ADDRD
AE 2, 0(0, 4)
L 4, ADDRY
STE 4, 0(0, 4)
BCR 15, 4

ADDRX DC A(X)

ADDRA  DC A(A)

ADDRB  DC A(B)

ADDRD DC A(D)
END

Since the control sections were assembled separately, references to symbols
which are not defined in an assembly must be indicated to the assembler. This
is done either by a EXTERN statement as in SUBRTN or by a virtual address
constant (VADRSUB) as in MAINPG. Also symbols which will be referenced
from outside this assembly must also be indicated to the assembler. This is
done by the ENTRY statement as in MAINPG. The virtual address constant,
EXTERN statement and the ENTRY statement enable the assembler to generate
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the appropriate information for the linkage editor so it can match up the
symbols between the separately compiled control sections.

The last three examples did not pass parameters to the subroutine. If
a routine and subroutines were written for a specific purpose and are assem-
bled or link edited together, the parameters may be passed implicitly as was
done in the last three examples. This can be done if both the calling and the
called programs know the name of the parameters and the assembler or
linkage editor match up the symbols. The implicit passing of parameters is
not used when a generalized subroutine is written.

The remaining two methods to incorporate subroutines are used where
there is not enough storage to hold the entire program in storage at the same
time. Both techniques are program segmentation processes. Overlay is
used to set up segments of a program in a predefined structure by using the
linkage editor. Each segment is composed of one or more control sections.
Each control section and therefore, the segment, is written as a subroutine
using the methods described previously. For example, let's take 12 control
sections A through L and arrange a structure where the program can execute
even though there is not enough storage to hold all twelve control sections in
storage at one time.

Control section A and C are needed at all times. Therefore A and C
will be made a segment or "phase''. When B is used, E,H, and L are also
required; when D is used, G and I are required; and when F is used, J and K
are needed.

We have four segments or phases

Segment 1 consists of A, C
Segment2 consists of B, E,H, L
Segment 3 consists of D, G, I

Segment 4 consists of F,J,K

By use of the PHASE control card (discussed in Chapter 11) the linkage
editor will combine the control sections into the proper segments. The amount
of storage necessary to run the program is the total required by Segment 1 plus
the largest of the three remaining segments. The execution of the program
starts with Segment 1 and proceeds to any segment called by Segment 1. Seg-
ments 2 through 4 are loaded when called and overlay any segment (except 1)
which was called previously.

The dynamic call involves the calling of a subroutine which has been
neither assembled or link edited with the calling program. This call is made
during the execution of the calling program. Unlike all the previous methods
there is no way that symbols can be matched up between routines in the
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dynamic call. Therefore, any parameters which are to be passed must be
passed in registers or in a parameter list. The dynamic call makes use of
the FETCH macro which is described in Chapter 11. When using the dynamic
call, the routine is locaded at the time the call takes place. In the gverlay
example, instead of using the linkage editor to build the segments and the
overlay structure, each control section could call any other control section at
execution time without them having been assembled or link edited together.

S/ 11 WV VYN O3 MET
Ve V 2y

The concept of the subroutine was discussed using the macro as a foun-
dation. The key in writing subroutines is understanding the linkage techniques
involved. The parameters, which are the data the subroutine uses, may be
passed either implicitly or explicitly depending on the use of the subroutine
and its relationship to the calling program. A standard convention for register
usage makes the use of generalized routines more practical. How subroutines
are incorporated into a program is very flexible and depends on the application.
Finally, the macro and the subroutine provide similar capabilities. However,
when the function required is lengthy and will be used several times the sub-
routine is more efficient. Remember that subroutine calls require in-line link-
age instructions and prologue and epilogue instructions which take space and
time. Therefore, the decision on macro or subroutine should consider the
number of times the function is used, its length, and the set up linkage time
and space for a subroutine. Also, the programmer should keep in mind that a
macro can only be incorporated at assembly time whereas a subroutine can be
incorporated at assembly time, link editor time and execution time.

8.7 Problems

1. Given the following linkage instructions and parameter list develop a
prologue for a subroutine which processes the parameters by name

LA 15, SUBRTN

LA 14, RETURNI1
BALR 1,15

DC A(APARAM)

DC A(BPARAM)

DC A(CPARAM)

DC A(DPARAM)

DC A(EPARAM)

RETURNI1
2. Given the linkage instructions and parameter list in problem 1, develop a

prologue for a subroutine which processes the parameters by value.

3. Develop a prologue and epilogue for a subroutine which processes the par-
ameter list in problem 1 by name and uses registers 5, 6, 2, 4, and 8 for
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processing and register 3 for addressing.

4. Develop an epilogue for a subroutine which processes the parameter list
in problem 1 by value and changes the values of BPARAM and DPARAM.

5. A main program and a subroutine are to be assembled separately and
link edited together. The parameters A, B, VELOC, TIME and DIST are to be
passed implicitedly. Show the linkage instructions in the main program, the
prologue in the subroutine (named ACCEL) and the use of the EXTERN and
ENTRY statements.

6. Write the linkage, parameter list and subroutine which accepts as par-
ameters a customer name which is 12 characters in length with the symbol
CUSNAME, a discount rate table with a thousand entries each entry of which is
16 bytes, the first 12 bytes of each entry are the customer name and the last
four bytes are the discount rate for this customer in packed decimal. The first
entry is called DISCTBLE, a price which is in packed decimal four bytes in
length called GRCOST; and a resultant field 4 bytes in length called NETCOST.
The subroutine should look the customer name up in the discount table and
compute GRCOST -- GRCOST x discount rate = NETCOST. Each parameter
should be processed by the subroutine in the most efficient manner.
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Chapter 9

SYSTEM/360 INPUT/OUTPUT OPERATION
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In previous chapters most of our attention was focused on the central
processing unit (CPU) and the techniques used in making it perform particular
functions. When these functions are viewed collectively, the result is that a
set of data has been manipulated in some manner to produce a desired result.

In this chapter we will discuss how a program and the data it manipulates
are brought into computer storage and how the results the program generates
are transmitted from storage so that they may be displayed in a useable form.

An input-output (I/O) device consists of two parts -- the unit which
records (writes) data to and retrieves (reads) data from a recording medium
and the recording medium itself.

The system/360 is capable of accepting from and transmitting to many
different input/output devices. Each unit and its recording medium evolved to
suit particular needs. The most familiar recording medium is the punched
card which was in wide use when the first computers came into existance. The
punched card was the primary recording medium for electronic accounting
equipment and therefore, it was natural that it should become one of the
primary recording mediums for computers. Today, data destined for a com-
puting system is still initially punched into cards in most instances. For data
that is to be interpreted by human eyes the punched card alone was obviously
not satisfactory. Printers were developed so the data could be recorded on
the printed page.

Sometimes computer generated data does not necessarily have to be
displayed for human viewing. It may be data which is to be read back into the
computer either immediately or at some time in the future. In this situation,
cards are not the most satisfactory recording media. The speed of card
punching and reading is very slow relative to computing speed. Cards are
bulky, they require manual handling and cannot be reused for different data.

To overcome these problems magnetic tape (Fig. 9-1a) can be used.
The tape is faster, the recorded data is more compact, it is reusable, and
the same tape can be written and then read during a single execution of a
program without manual intervention. Data is written on magnetic tape in a
linear sequence, typically at a density of 800 bytes per inch (bpi). The data
is arranged in units called records with each record separated from its
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successor by an inter-record gap of blank tape. A full 2400 ft. reel of tape
can hold up to 24, 000, 000 characters depending on the number of inter-record
gaps.

Magnetic tape, however, is a sequential recording media. After a com-
plete file of data is written, the program may only need a particular data item.
With tape, all the data recorded before that particular item would have to be
skipped over to reach the desired item. Elimination of tape skipping time
leads to the use of random access input/output devices, such as disks and
drums (Fig. 9-1b, ¢). These devices enable a program to access a particular
item of data directly, without the necessity of skipping over all preceding
records.

This capability of being able to access directly a particular piece of data
has significantly influenced the design of many application programs and made
many new applications feasible. There are several types of direct access
devices available with the 360. The two that will be discussed here are the
magnetic disk and drum. Magnetic drums are usually faster and have less
storage capacity than disks. The drum can be thought of as a cylinder which
rotates at high speed. On the surface of the drum there are distinct circular
tracks upon which data is recorded. These tracks can be considered as
analogous to magnetic strips which encircle the cylinder and lie adjacent to
each other. Above each track there is a read/write head which is capable of
recording data on that track or reading data from it as the cylinder revolves
under the head (Fig. 9-1c).

The disk input/output devices are designed for larger storage capacities
than drums. To achieve this the access time - the time it takes to position the
read/write to the desired record - is longer than that of drum devices. A disk
resembles a stack of phonograph records which are fixed to a rotating spindle
with a space between each disk. A comb like mechanism is arranged with one
""tooth'" of the comb in each space between the disks. At the end of each tooth
there are two read/write heads. One services the disk surface immediately
above it and the other services the disk surface below it. The comb-like
mechanism can move in and out so that the read/write heads on the teeth can
be positioned anywhere on the surface of the disks from the outer edge to the
middle. The comb-like mechanism is called a disk arm (Fig. 9-1b).

Each disk surface has a set of concentric circular tracks upon which
data can be recorded and retrived. Even though the outer tracks are physically
longer than the inner ones they all hold the same amount of data. Whenever
the disk arm is positioned to read or write data for a particular track on a
specific disk surface all other read/write heads are positioned at the same
track on the disks' surfaces above and below. Once the disk arm is positioned,
the same track on each surface has a read/write head to service it, these
vertically aligned tracks, one per disk surface, are called a cylinder. For
example, suppose each disk surface had 200 concentric tracks and there are
six disks in the stack. Further, the top and bottom disks use only their inside
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recording surfaces. This means there are ten recording surfaces with two
hundred tracks per surface or two thousand tracks. The disk arm has ten
read/write heads (one per surface) on five arms and can be positioned at any
one of the two hundred tracks. When the arm is positioned there are ten
tracks that can be accessed without moving the arm. Therefore there are ten
tracks per cylinder and two hundred cylinders per disk drive. Now assume
that the cylinders are numbered from 000 to 199 and the read/write heads are
0 through 9. In order to access a particular track, say the fiftieth track on
the third surface (the bottom side of the second disk from the top), the arm
would be positioned at cylinder 049 and head number 2 would be selected. The
positioning of the disk arm is called seeking. Once the read/write head is
selected for either device there is a rotational delay until the particular price
of data on that track is brought under the read/write head. This rotational
delay is called latency time and can vary from the time it takes the drum or
disk to make one full revolution to zero. On the average, latency time equals
half the time for a full revolution. Therefore the access time for a drum is
just the latency time and for a disk it is seek time plus latency time. The
data storage capacities of a drum are in the range of several million characters
while some disk devices can hold up to several hundred million characters.

The quantity and types of I/O devices attached to the computing system
depend on the applications which the system wili process. Magnetic tape and
random access devices, particularly magnetic disks, are in widespread use
today. In addition, many specialized I/O devices have been developed to ease
man/computer communication. Typewriter-like terminals and graphic display
devices fall in this category.

9.2 Input-Output Channels

After the brief discussion of input-output devices in Sec. 9.1, we will
now examine the transmission of the data between an I/0 device and the com-
puter storage.

In the first computers, the transmission of data between I/O devices and
storage was accomplished in a sequential fashion in relation to processing.
That is, when a program needed to read or write data, processing would stop
and the data transmission (Input-Output) would take place. At the end of the
transmission the program would continue operation at the instruction following
the one which requested the input-output operation (Fig. 9-2a).

This synchronous type of input-output was sufficient when the processing
speed of the CPU for a single transaction was comparable to or greater than
the I/0 time for that transaction. However, as processing speeds increased,
input-output operations could not keep up. More and more of the time to
accomplish a task became I/O time. The central processing unit, almost
irrespective of its speed, only required a small percentage of total program
time. Therefore, increasing the speed of the CPU only reduced total program
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time by a small fraction (Fig. 9-2b). There were exceptions to this, espe-
cially for those scientific and engineering calculations which were charac-
terized by a relatively small amount of input-output operations and a large
amount of computing,

To decrease total execution time there are two alternatives - either increase
the speed of input-output devices to be comparable to CPU process time, or
have the data transmission occur in parallel with processing in the CPU.
Although input-ocutput devices have increased in speed considerably, they are
still orders of magnitude slower than the CPU. This is because input-output
devices are electromechanical whereas central processing units are electronic.
The second alternative lead to the development of the data channel or I/O
channel.

The I/0 channel provides a path for input-output data transmissions between
the I/0 device and computer storage. This path permits data transmission
operations to proceed concurrently with normal processing in the CPU. The
maximum amount of concurrency or overlap of the two operations depends on
the hardware implementation of the I/O channel.

Also, since a channel is designed as a general purpose unit, and since a wide
variety of I/O units may be attached to it, an additional unit is required to
interface each device type to a channel: a device control unit. Typical control
units include the Tape Control Unit, Disk Control Unit, Drum Control Unit and
Transmission Control Unit to permit computer I/O on communications equip-
ment. Figure 9-2 gives a configuration schematic of a typical system.

N .
CH TRANS-
360/50 o MISSION
(P U
CH 1 CH 2 TERMINALS
I 1 CARD PRINTER
8
TAPE DISK PRINTER
C.U. Cc.u. c.u. CARD
R/ PCH

D OO e

Fig. 9-2 System Configuration

Once the channel, the control unit and the device have been successfully
started by the CPU, the channel and the CPU operate concurrently. The
channel is able to fetch commands from storage, decode them and then execu-
te them without the aid of the CPU. It is also able to store and access data
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from storage independently. However, in many systems there is only one
path to storage which must be shared by the CPU and the channel. Since once
an I/O device is started data must be accepted from it or supplied to it at a
constant rate, the channel has priority for the shared path to storage. For
example, suppose the channel is receiving data from a tape. The channel
receives the data byte by byte from the control unit and stores it in a buffer
in the channel. This buffer is just like the CPU core storage only it is used
exclusively by the channel. When the channel has received enough bytes to
fill this buffer it signals the CPU that it wants to store the data in the buffer
into storage. I the CPU was about to access storage it would wait until the
channel stores the data. If the CPU didn't require a storage access, it would
continue processing while the channel stores data. The time taken by the
channel to store its buffer must be smaller than the time required to enter a
single byte into the channel buffer by the fastest I/O device connected to the
system. This is so because the I/O recording medium is in motion and data
is taken from it "on the fly''. As a result, the channel buffer must be ready to
accept the next data byte when it is presented.

In the situation where an I/O operation may occur in parallel with pro-
cessing, it takes some planning to make effective use of this capability. The
request for data to be read should be given prior to the actual need for the data.
In this way the program can continue processing while data transmission from
the I/0 device to storage takes place for the next transaction. Then when the
need for the data arises, it can be accessed from storage rather than waiting
for the complete input-output operation to finish (see Fig. 9-3b). However,
for output operations no "look ahead"' is necessary. The program starts the
write operation when desired and continues processing. The I/O operation
proceeds in parallel and will terminate at some point thereafter (Fig. 9-3c).
For both input and output operations, care must be taken not to start another
1/0 operation on a channel until the previous one is completed since most
channels can handle only one transmission between an I/O device and storage
at a time. As programmers and programming systems have become more
sophisticated in their input-output programming, the I/O channel's capabilities
were increased. Today, one can think of the input-output channel as a small
computer with a set of commands which are completely oriented to I/O pro-
cessing.

9.3 Input-Output Hardware Relationships

The central processing unit controls all operations in the computing sys-
tem. In the case of concurrent or overlapped input-output operations the CPU
initiates the I/O operation. At this point the I/0O channel goes into operation.
The channel and the CPU are then operating concurrently. When the channel
finishes, it signals the CPU. This signal is called an interrupt because it
causes the central processing unit to stop its normal processing and take
notice of the fact that the channel has ended its operation. If another 1/O opera-
tion can be started on that channel, the CPU can then start it with 2 minimum
of delay.
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Attached to a system/360 channel are up to eight control units. By
using different control units varicus types of devices with different charac-
teristics may be attached to the same S/360 channel. The control units
themselves may have a maximum of eight I/0 devices of similar operating
characteristics attached to them. The path of control for I/O operation is
then from the central processing unit to the channel, the channel to the con-
trol unit, and the control unit to the device. The data path between the device
and storage also includes the control unit and the channel. Figure 9-4 gives

9.4 Type of I/0 Channels

The system/360 has two types of input/output channels - the multiplexor
and selector channels. The reason for two different channels stems from the
wide variance in speed of the I/0 devices that are availavle and the need to
maximize data handling capacity of each channel.
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Fig. 9-4 1/0 Data and Control Flow
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The selector channel was designed to handle data transmissions of
medium to high speed devices such as tape, disk and drum which have data
transmission rates that range from 30 KB (30, 000 bytes/sec. ) through 1200
KB respectively. The selector channel is designed to service one I/O device
at a time. That is, once a data transmission to or from the device is started,
the channel cannot transfer data for another device until the operation is com-
pleted. Since the devices serviced by a selector channel have a medium to
high data rate, the channel is not tied up for an extended period of time on any
single I/O operation. Therefore, its ability to service all the devices attached
to it via their control units is not impaired. However, if this type of I/O
channel were used to service the low speed devices such as card readers,
punches, printers, and telecommunication lines which have data rates in the
range of 15 bytes/sec to 5 KB; the elapsed time to service one device would
be considerable and only a small fraction of the channels data rate capacity
would be utilized.

To cope with this problem the multiplexor channel was developed. Since
the capacity of the multiplexor channel is several orders of magnitude greater
than the data rate of any of the slow speed I/O devices it was designed to
service, it interleaves data transfers from several devices which operate
concurrently so that the aggregate data rate approaches the capacity of the
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sources, transfers them over a common path and then separates them and
stores them as though each source had transferred them separately. In fact,
the multiplexor interrogates each device to find out if it has indicated that it
needs service. If the device has something to send, it transfers one or more
bytes across the channel. Then it continues to interrogate the other devices.
The multiplexor can interrogate and service all the devices faster than the
individual I/O devices can either generate the next byte to send or receive the
next byte sent. Therefore, because the time between bytes transferred to or
from a low speed I/O device is long compared to the time it takes the multi-
plexor to make a complete cycle of interrogation and service, and because the
data rate of the device is low compared to aggregate rate of the multiplexor
channel, this type of channel can service many low speed devices concurrently.
The multiplexor channel can also service higher speed devices, but when doing
so, it only services that one device. This is called operating in the burst mode.

Although there are two different channels on the 360, the programmer is
not concerned with the complexities of each. This is handled by the hardware,
so that the programmer is able to handle all devices in a similar manner using
the same basic instructions.

9.5 Input-Qutput Operations

IT ~Avermvr ~ e H 3
However, the chaunnel is started info ope“atmn by the centra
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The CPU has as part of its instruction repertoire four instructions of the
storage immediate (SI) format for controlling the channels. The channels
execute commands in the same manner as the CPU executes instructions.

To get an I/0 operation started a program issues a Start I/O instruction
(SIO) which has the following format:

The operand device-ADDR is the address of the specific I/O device the pro-
grammer wishes to start into operation. It takes the form of an eleven bit
binary number: CCC DDDD DDDD. Where CCC is the channel address which
may range from 000 to 110. 000 is the multiplex channel address and 001 to
110 are the addresses of the one to six selector channels which may be
attached to a 360. DDDD DDDD is the address of the device on the channel
addressed. This can range from 0 to 255 depending on the number of devices
attached to the channel.

When this instruction is executed by the CPU it causes the addressed channel
to fetch from location 72 the channel address word (CAW). This word has the
following bit structure:

KEY | 0000 | COMMAND ADDRESS

0 34 78 31

Here, KEY is related to the storage protection feature which will be discussed
later in this section. The COMMAND ADDRESS is the location of the first
I/0 command (CCW) the channel is to execute. The CCW{channel command

word)has the following format:

COMMAND
CODE

0 - 718 31 | 32- 36|37 39|40 47| 48 63

DATA ADDRESS | FLAGS| 000 COUNT

COMMAND CODE is the operation to be performed such as read or write.
DATA ADDRESS is the location in storage from which the first byte of data is
to be written or into which the first byte of data is to be read. FLATS will
be discussed later and COUNT is the number of bytes to be read or written.

A channel command word can be defined in the assembler language by
the CCW statement which has the format:

CCw operandl, operand2, operand3, operand4
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Fig. 9 -5 S/360 Channel Operation

Here, operandl is an absolute expression which defines the command code -
read has a command code of 2, write a code of 1, additional codes will be
introduced as needed; operand2 is a symbol which defines the data area;
operand3 is an absolute expression which defines the flag bits and makes bits
37 through 39 zero; operand4 is an absolute expression which defines the count
field.

Figure 9 - 6 gives a schematic overview of the steps necessary to start
a channel in operation.
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First, the channel is activated by the start I/O instruction (see 1 in
Fig. 9 - 6) given by the CPU. From this point, the CPU may continue to
process instructions. Then, the channel fetches the CAW(2) and using the
address in the CAW then fetches, inturn, the CCW from storage (3) and
carries out the operation specified by it. At this point, the channel begins
its I/O operation which goes on concurrently with whatever processing the
CPU or other channels are engaged in.

Worked Example

9-1 To summarize the steps required to start an I/O operation, we will
take as an example reading a card into storage. The card reader is on the
multiplexor channel and has a device address of eight. The data on the 80-
column card will require eighty bytes of storage. The program to accom-
plish this operation follows:
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BEGIN

ALPHAI
ALPHA2
BETA
STARTIO

CAW
IOCOM
RDAREA

CARDRDR

READ A CARD

BALR
USING
L

ST

LA
SIO

DC
CCw
DS
DS
DC
END

W * N
QNo

2
2
, CAW

3,72

3, CARDRDR
0(3)

X'00', A(IOCOM)

2, RDAREA, X'00', 80
CL80

OF

X'00000008'

BEGIN

The instructions at ALPHA1 and ALPHA2 load a channel address word (CAW)
into location 72. BETA loads the device address of the card reader into
register 3. The start I/O with a zero displacement uses the address in
register 3. The channel fetches the word (CAW) from location 72; the address
in the CAW then causes the CCW to be fetched from IOCOM. This CCW has

an operation code of 2 which is a read. The CCW will cause the channel to
transfer eighty bytes (80 is in the count field of the CCW) from the card reader
to the location, RDAREA, in core storage.
executing whatever instructions follow the SIO instruction.

At the same time the CPU is

Although the program in Example 9 - 1 would accomplish the transfer of
data desired, it is not the normal way a program would accomplish input-
output operations on the S/360. In addition, nothing has been said about what
happens when the channel completes the operation. In order to describe these
processes it is necessary to examine the machine organization of the S/360 in

greater detail.

The S/360 was designed to run under the control of a supervisory pro-
gram. For this reason the system differentiates between two classes of
programs. A program may execute in either of two states; the problem
program state or the supervisor state. Most programs which a user will
write will operate in the problem program state. However, problem pro-
grams will make use of programs in the supervisor state to perform certain
services for them. This is because certain CPU instructions are privileged
instructions and can only be executed by a program in the supervisor state.
This was done to protect the supervisory program or monitor, which controls
the system operation, from destruction by erroneous problem programs.
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The S/360 also has an interrupt system incorporated into the system
organization. An interrupt, as the name implies, causes whatever processing
is in progress when the interrupt occurs to be stopped, the status of the sys-
tem tc be saved and another program, usually in the supervisory state, to be

given control. There are 5 classes of interrupts that can occur. They are:

Program Check (PC)
Machine Check (MC)
External/Timer (E/T)
Input/Output (1/0)
Supervisor Call (SveC)

The purpose of these interrupts is to bring to the immediate attention of the
supervisory program the fact that one or more of these five conditions has
occurred. A description of each interrupt type follows.

Program Check - A program has attempted to execute an invalid or privileged
instruction, or has encounted a condition such as floating point overflow or
divide by zero, or attempts to execute an instruction with an invalid operation
code or invalid operand address.

Machine Check - A hardware maifunction has been detected.

External/Timer - The interval timer has expired or a device attached to the
external interrupt needs service or the interruption key on the system control
panel has been depressed.

I/0 - An I/O operation which was previously initiated has ended. This inter-
Tupt signals the supervisor program that an I/O operation which had been
proceeding concurrently with CPU processing has terminated. If another I/0
operation requires the channel or device from which the interrupt was received
the supervisor may then start the new I/O operation.

SVC - This interrupt is caused by a program executing an SVC instruction.
This is the means that a program uses to request a service of a supervisory
program such as an I/O operation.

The heart of the S/360 interrupt system is the Program Status Word
(PSW). The format of this 8 byte double word is

SYSTEM| KEY | AMWP |INTERCEPT| ILC | CC |PROGRAM |INSTRUCTION
MASK CODE MASK ADDRESS
0 718 11(12 15|16 31132 3334 35|36 39140 63
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System Mask - A 0 bitin bit positions 0-7 is used to mask out (prevent inter-
rupts from happening) the interrupts from the multiplexor channel, each of
the possible six selector channels and the External/Timer interrupt, res-
pectively.

Key - The storage protect key that is assigned to a particular program.

A - Determines whether ASCII or extended binary code decimal (EBCDIC)
character codes are used.

M - A 0 used to mask out the machine check interrupt.
W - Bit indicates if the CPU is idle(Wait state) or running.

P - Bit indicates if the program which is executing is in the problem state or
the supervisor state.

Interruption Code - Indicates what caused the interrupt within one of the five
categories of interrupts.

ILC - Indicates instruction length of the last instruction interpreted before an
interrupt occurred.

CC - is the condition code setting before the interrupt occurred.

Program Mask - This field allows a program to mask out the following program
interrupts:

Fixed-point overflow
Decimal overflow
Exponent underflow
Significance

Instruction Address - This is the location of the next instruction to be executed
within the interrupted program.

When any program is executing it is under control of a PSW. When an
interrupt occurs the program's PSW is stored and a new PSW is loaded which
gives control to the new program. By saving the stored or old PSW all the
information necessary to save the status of the interrupted program and con-
tinue it later is available.

The 360 has 10 double-word locations where PSW's are kept. Five of
these are called old PSW locations and the other five are called new PSW
locations. For each of the five classes of interrupt there is a new and old
PSW location. When an interrupt occurs the PSW of the interrupted program
is stored in the old location for that interrupt class and the PSW from the new

254



location is used to start execution of the program (usually supervisory) which
handles that class of interrupt. By this means, the supervisory program gains
control and has the necessary information to let the interrupted program
continue once the condition which caused the interrupt has been handled

(Fig. 9 - 7). The supervisory program would move the old PSW from the old
location and save it. When it is finished it will execute a load PSW instruction
which loads the PSW it saved and thereby returns control to the problem
program.

The 360 also has an optional memory protection feature as part of the
hardware structure. This allows programs to be protected from each other.
A program can only write in a storage location which has the same key (4
bits) that is in the key field of its PSW. Even I/ O operations cannot transfer
data into a storage location that has a key different from the key in the CAW.
The storage key is assigned to storage in units of 2048 bytes.

Worked Example

9-2 With this perspective on S/360 machine organization behind us, let's
Teturn to the problem of reading a data card into storage. Since the program
which needs the data is usually in the problem program state, and cannot
execute the start I/0O (SIO) instruction itself because SIO is a priviledged in-
struction, it will have to request the supervisor program to do so. This is
done by execution of a supervisor call instruction.

SVC  ‘'code'’

v

The operand, 'code', is a hexidecimal digit from 0 to 255 which is stored in
the interrupt code of the old PSW which in turn is stored because the SVC
instruction causes an interrupt.

Using the subroutine linkages discussed in Chapter 8 and the SVC instruc-
tion let's proceed with the problem.

BEGIN BALR 2,0

USING * 2
CAW DC X'00', A(IOCOM)
IOCOM CCW 2, RDAREA, X'00', 80
RDAREA DS CL80

DS OF
CARDRD DC X'00000008'

END BEGIN
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In the code above, the channel address word (CAW) and the channel command
word (CCW) are set up at CAW and IOCOM respectively also the address of
the card reader and the storage to accept the data have been set up at
CARDRDR and RDAREA respectively. What remains is to communicate to
the supervisory program the channel address word, the I/O device (card
reader) address, and the SVC code so it can determine what service is being
requested. For a request to start I/O, assume a code of zero. This means
that the supervisor code is constructed to recognize that a zero code means

that tha nrn~hla atino tha o ev-tnanm tn gtart an /N onars-=
tnat uxc jo Sdiem ud. uz; am is Acuuccu;u- e .:s.. L ViISOT 10 Salt &il a./ w Opcd

tion. The supervisor parameter registers are 0 and 1 and we will assume a
standard such that the channel address word goes in 0 and the device address
in I. The problem program might be

BEGIN BALR 2,0
USING * 2
L 0, CAW
L 1, CARDRDR
SVC X' 00"
CAW DC X'00', A(IOCOM)
I0COM CCW 2, RDAREA, X'00', 80
RDAREA DS CL80
DS OF
CARDRDR DC X'00000008'
END BEGIN

The SVC instruction will cause an interrupt and the supervisor program will
gain control. The location of its first instruction is in the instruction address
portion of the new PSW for an SVC interrupt. The program will first have to
save the old PSW and then interrogate the code in the interruption code portion
of the old PSW to find the service requested and branch to the appropriate
routine to do the start I/O (SIO). The supervisory program can be written.

BEGIN BALR 3,0
USING * 3
MVC SAVEPSW, 32
CL1 SAVEPSW+3, X'00'
BC X'00', SIORTN
SIORTN ST 0, 72(0)
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SIO 0(1)

LPSW SAVEPSW
SAVEPSW DS CL8
END BEGIN

The supervisory program has started the input-output operation requested and
returns control back to the problem program at the instruction following the
supervisor call (SVC). At this point the I/O operation is proceeding concur-
rently with the execution of the problem program.

At some time later the input-output operation will complete and will
cause an I/O interrupt. This will interrupt the problem program processing
and control will be given to the supervisory program whose initial location is
specified in the instruction address portion of the new I/O interrupt PSW.
This routine will record the fact that the I/O operation is complete and return
control to the problem program. This is

BEGIN BALR 3,0
USING * 3
MVC SVIOPSW, 56
MVC IOCMPLT, SVIOPSW+2
LPSW SVIOPSW LOAD PSW
IOCMPLT DS CL2
SVIOPSW DS CL8
END

This program saves the address of the 1/0 device which gave the interrupt in
location IOCMPLT and then returns control back to the problem program via
the load PSW instruction (LPSW). Since the problem program and the trans-
mission of the data from the card were operating asynchronously, the prob-
lem program must check to see if the I/O operation is complete before it
attempts to use the data. It does this by using another SVC instruction with a
different code. The change of control to the supervisory program occurs as
before by switching the PSW. The code in Fig. 9 - 8 is a composite of the
entire operation of requesting and completing the input-output operation.

Let us review the complete operation. The problem program needs to
read a card at some point. It loads register 0 with the channel address word
and register 1 with the address of the card reader. Then it executes a super-
visor call instruction with a code of, say, zero. This causes an interrupt
and control is passed to the instruction at location BEGINS as indicated by
arrow 1 in Fig. 9 - 8. The supervisor program saves the old PSW, checks
the SVC code and branches to SIORTN. Here the start I/O instruction is
issued and control is returned to the problem program as shown by arrow 1'.
The program continues to execute until an I/O interrupt occurs. This causes
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PROBLEM PROGRAM SUPERVISORY PROGRAM

BEGIN BALR 2,0 - (®Q@ BEGINS BALR 3,0
USING * 3 USING *,3
. MVC SAVEPSW, 32
CL1 SAVEPSW+3, X' 00’
. BC 8, SIORTN
L 0, CAW cL1 SAVEPSW+3, X'01'
L 1, CARDRDR BC 8, CKIORTN
IOREQ svc X'00' % .
* % .
. SIORTN ST 0, 72(0)
L 1, CARDRDR SIO 0(1)
IOCHK sve X'01' % .
. @) @) RETURN LPSW SAVEPSW
CAW DC X'00' A(IOCOM)
IOCOM CCW 2, RDAREA, X'00', 80 CKIORTN CL 1, IOCMPLT
RDAREA DS CL80 BC 8, RETURN
DS OF MVC SWITCH, SWTCONT
CARDRD DC X'00000008' LPSW WAIT
END BEGIN @ IOINRPT MVC SUIOPSW, 56
MVC IOCMPLT, SVIOPSW+2
CcL1 SWITCH, X'FF'
BC X'00', CKJORTN
@ LPSW  SVIOPSW
IOCMPLT DS CL2
SVIOPSW DS CLS8
SAVEPSW DS CL8
SWTCONT DC X'FF
WAIT DC X'0002000000000000'
SWITCH DS CL1
END BEGINS

TFig. 9 - 8 Input-Output Example



control to go to IOINRPT (arrow 2). This routine saves the address of the
device which caused the interrupt at IOCMPLT and returns control to the
problem program (arrow 2'). When the problem program needs the data that
it requested with the SVC instruction at IOREQ, in order to make sure the
data is at the location RDAREA, it requests the supervisor program to check
if the operation is complete. The problem program loads into register 1 the
address of the card reader and executes and SVC instruction with a code of
one. Control passes to the supervisory program as indicated by arrow 3. It
interrogates the code and branches to CKIORIN. Here it checks the device
address stored by the previous I/O interrupt against that which the problem
program loaded into register one. If it is equal, then the I/O operation is com-
plete and control is returned to the problem program and the data is at
RDAREA. However, if its not equal then the I/0 operation is not complete and
it loads a special PSW which puts the CPU into the wait state (idle) until the
I/0 interrupt does occur. Therefore, the problem program will continue pro-
cessing if the I/O operation is complete when it makes the request at IOCHK,
otherwise it waits at that point until it is complete.

The code in Fig. 9 - 8 is for illustrative purposes only. It is extremely
elementary and does not take into account the fact that it may have to handle
many interrupts and may not be able to service each request completely before
handling the next one. The problem of both the supervisory and problem pro-
grams using the same registers is not considered. That is, the supervisory
program would have to save and restore any registers it may use so that the
problem programmer need not worry about the contents of the registers
changing without positive action on his part. There are many more factors
which also must be given consideration. However, for the remainder of the
chapter let us assume that there is a program which operates in the supervisor
state which will perform an I/O operation if we execute an SVC with a code of
zero and give it the channel address word (CAW) and the device address. Also,
we will assume that if an SVC with a code of one is executed, the supervisor
will check for the completion of an I/O operation. If the operation is not com-
plete, the supervisor will enter the wait state and remain there until an inter-
ruption occurs.

Worked Example

9-3 Consider a program which reads fifteen cards, processes the data and
then writes the results on tape in card image form, that is, in records which
are 80 bytes in length. Our object will be to overlap the input-output opera-
tions with the processing of the data. The program follows: '

BEGIN BALR 2,0
USING *,2
L 0, CAWIN
L 1, CARDER
READI svC  X'00' REQUEST FIRST CARD TO BE

READ USING CCW AT IOCOM
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L 3, =14
L 5,=13 INITIALIZE PROGRAM
L 4,=0
L 1, CARDRDR
IOCHKIN svCc  Xx'o1 CHECK READ OPERATION TO
MAKE SURE IT'S COMPLETE
MOVEIN MVC WORKARA, RDAREA MOVE DATA FROM INPUT
* AREA TO WORK AREA
L §, CAWIN
RDNEXT L 1, CARDRDR
IOCHKOU  SVC  X'00' READ NEXT CARD INTO
. RDAREA PROCESS DATA
. IN WORKARA AND LEAVE
. RESULTS IN TEMP
BXH 3,4, MOVEOU IF FIRST TIME, SKIP
CHECK ON WRITE
L 1, TAPE
svc  Xx'of1 CHECK PREVIOUS WRITE
MOVEOU MVC WRITARA, TEMP MOVE DATA TO WRITARA
L 0, CAWOUT
L 1, TAPE
WRITE sVC  X'00' REQUEST TO WRITE DATA
IN WRITARA TO TAPE
BCT 3,I0CHK IF NOT FINISHED BRANCH
TO IOCHK TO PROCESS
CAWIN DC  X'00', A(IOCOMIN) NEXT CARD
CAWOUT DC  X'00', A(IOCOMOU)
DS OF
CARDRDR DC  X'00000008' CARD READER ADDRESS
' ON MULTIPLEX CHANNEL
TAPE DC  X'00000108' TAPE UNIT ADDRESS ON
* SELECTOR CHANNEL 1
WORKARA DS  CL80 80 BYTE STORAGE AREA
TEMP DS  CL80 80 BYTE STORAGE AREA
RDAREA DS  CL80 80 BYTE INPUT STORAGE AREA
WRITARA DS  CL80 80 BYTE OUTPUT STORAGE AREA

IOCOMIN DC 2, RDAREA, X'00',80 CCW TO READ CARD
IOCOMOU DC 1, WRITARA, X'00',80 CCW TO WRITE TAPE
END BEGIN

The program reads the first card at READ1 and while that operation is in
progress it initializes registers 3, 4, and 5 for counting and a later test. Then
it checks, at IOCHKIN, to determine if the first card has been read. If it has,
it proceeds; if it hasn't, the program waits until input is completed and then
proceeds. At MOVEIN, the data just read is moved to WORKARA. The pro-
gram then reads the next card at RDNEXT. While this operation is in progress
the program processes the data in WORKARA and leaves the results in TEMP.
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The first time through the code, the branch to MOVEOU will be taken. At
MOVEOU the data is moved from TEMP to WRITARA and is written on tape
at WRITE. Then the count is checked to see if 15 cards have been read. If
not, the branch to IOCHKIN is executed and the previous read operation is
checked. The data is moved from RDAREA and the next card read. Anytime
after the first time through the program, the branch to MOVEOU will not be
taken and the previous write will be checked to make sure that the data in
WRITARA has been written before the new data is moved in from TEMP.

As mentioned previously, the channel executes I/O commands as the
central processing unit executes instructions. On the S/360, several CCW's
can be connected together in three ways. The first two methods are called
chaining and are accomplished by having a one bit set in the appropriate field
of the flags portion of the CCW (positions 32-36). Bit positions 32 and 33 are
used to indicate data chaining and command chaining, respectively. Bit
position 34 is used to suppress the error indication that occurs when the data
actually transmitted does not agree with the count that was given in the CCW.
Bit position 35 is used to suppress transmission of data on an input operation.
The operation is carried out at the device as a read operation but the data is
not transmitted by the channel. This is called the skip flag because it enables
data to be skipped over. Bit position 36 is used to cause an interrupt when the
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operation specified by this CCW is completed. It is used when several CCW
will be executed for one SIO instruction. Normally the channel doesn't inter -
rupt the CPU until it has finished the entire sequence of operations. The
Program Controlled Interrupt flag (CCW bit 36) allows the channel to interrupt
the CPU before the channel has completed the entire operation. It can be used

to keep the CPU informed as the channel completes each CCW in a sequence.

Each time the channel completes an operation specified in a CCW, it checks
the flag settings in that CCW to determine what to do next. Therefore, by use
of the flags, the action of the channel at the completion of a CCW can be varied.
The use of two of these flags, 32 and 33, will be discussed next.

A 1 bit in CCW position 32 indicates data chaining. That is, when the num-
ber of bytes in the count field of the present CCW is processed, the I/O opera-
tion will not be terminated; the next CCW in storage will be used to continue it.
The type of operation,READ, WRITE,etc., remains the same. Data chaining
can be used to read data into non-contiguous storage locations even though the
bytes are contiguous on the external storage medium. The reverse is true
when data chaining is used for writing. Data from several non-contiguous
storage locations can be written into one contiguous stream of bytes on external
storage.

Worked Example

9-4 For example, if the 80 byte data record from the card reader is to be
stored with the first 30 bytes at location NAME, the next 20 bytes at location
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DEPT, and the last 30 bytes at location TITLE. A program to do this can be
written as follows:

BEGIN BALR 2.0
USING * 2
L 0, CAWIN
L 1, CARDRDR
SvC X'00'
L 1, CARDRDR
SvC X'00!
MVC NAME, RDAREA(30)
MVC DEPT, RDAREA+30(20)
MVC TITLE, RDAREA+50(30)
TITLE DS CL80
CAWIN DC X'00', A(IOCOMIN)
DS OF
CARDRDR DC X'00000008'
DEPT DS CL380
IOCOMIN DC 2, RDAREA, X'00', 80
NAME DS CL80
END BEGIN
As an alternative,
BEGD BALR 2,0
USING * 2
L 0, CAWIN
L 1, CARDRDR
SvC X'00'
L 1, CARDRDR
SvC X'01'
TITLE DS CL80
CAWIN DC X'00', A(IOCOMIN)
DS OF
CARDRDR DC X'00000008"'
DEPT DS CL80
IOCOMIN CCw 2, NAME, X'80', 30
CCW , DEPT, X'80', 20
CcCCw , TITLE, X'00', 30
NAME DS CL30
END BEGIN
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The first program reads the data into 80 contiguous bytes and then uses CPU
instructions to move it to the three separate locations. The second program
reads data directly into the three separate locations by data chaining the
three CCW's (bit 32 on). The process could be reversed on a write by chang-
ing the operation code in the first CCW from a 2 to a 1.

Command chaining allows several CCW's to be executed by the channel
before terminating the I/O operation. However, unlike data chaining the
operation code in the second CCW is interpreted and that operation is per-
formed next. While in data chaining the chained CCW's applied to one record
(a set of contiguous bytes on external storage), the CCW's which are command
chained apply to separate records. Combinations of data and command chain-
ing allow fairly intricate channel programs to be set up.

Worked Example

&_5_ As an example of command chaining consider reading three records from
tape. A program to do this follows:

BEGIN BALR 2,0
USING * 2
L 0, CAWIN
L 1, TAPE
sveC X'00"
L 1, TAPE
svc X'00'
L 0, CAWIN1
L 1, TAPE
sve X'00"
L 1, TAPE
SvVC X'01"
L 0, CAWIN2
L 1, TAPE
sVC X'00"
L 1, TAPE3
SVC X'01'
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CAWIN1 DC X'00', A(IOCOMIN)

CAWIN2 DC X'00', A(TOCOMIN+8)
CAWIN3 DC X'00', A(IOCOMIN+16)
DS OF
TAPE DC X'00000108"
IOCOMIN CCW 2, RDAREA, X'00', 80
CCwW 2, RDAREA+80, X'00', 80
CCwW 2, RDAREA+160, X'00'80
RDAREA DS CL240
END BEGIN
As an alternative,
BEGIN BALR 2,0
USING * 2
L 0, CAWIN
L 1, TAPE
svc X'00’
L 1, TAPE
SvC X'01'
CAWIN DC X'00', A(IOCOMIN)
DS OF
TAPE DC X'00000108'
IOCOMIN CcCw 2, RDAREA, X'40', 80
CCW 2, RDAREA+80, X'40', 80
CCW 2, RDAREA+160, X'00', 80
RDAREA DS CL240
END BEGIN

In the first program, the supervisor must issue three start I/0 instruction to
read the three records and check for the completion of each with the program
possibly waiting at each check. In addition, the tape unit is started and stopped
three times.

The second program which was command chained CCW's (bit 33 on)
causes only one start I/0 operation and one check to occur. It can run uninter-
rupted while the three records are brought into storage and the tape is only
started once thereby saving time in comparison to the previous approach.

Worked Example

9-6 Data chaining and command chaining can be mixed. As an example of
this, we will combine the previous examples. Suppose that it was necessary
to read three records without stopping the tape and separate each of the 80 byte
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records into a 30 byte NAME location, 20 byte DEPT location and a 30 byte
TITLE location. The channel program (CCW's) at IOCOMIN are:

IOCOMIN CCW 2, NAME], X'80", 30
ccw ,DEPT1,X'80', 20
CCW , TITLEI, X'40', 30
CCW 2, NAME2, X'80', 30
CCW ,DEPT2, X'80, 20
CCW , TITLE2, X'40', 30
CCW 2, NAMES3, X'80', 30
CCW ,DEPT3, X'80', 20

The third facility for connecting CCW's to form a channel program is a
channel command, Transfer In Channel (operation code 8). When the channel
encounters a CCW with an operation code of 8, it fetches another CCW from
the location specified in the data address field (bits 8 - 31) of the Transfer In
Channel CCW and continues with the operation specified in the fetched CCW.

It can be used to combine separately written CCW lists which are at different
locations in storage into one channel program. This allows loops in a channel
program much the same as the branch instructions allow the CPU to process
instructions in sequence even though they do not occupy consecutive storage
locations.

9.6 Problems

1. Using the conventions described in Chap. 9 to request an I/O operation,
write a program which reads 80 byte cards from a card reader attached
to the multiplex channel through a control unit with an address of OOC;
and writes them on a tape attached to a selector channel through a control
unit with an address of 184.

2. Use command chaining to read five cards from the card reader in problem
1 with one I/0 request and write the 400 bytes to the tape with an CCW.

3. Use a combination of data chaining and command chaining to read five
cards from the card reader with one I/O request and write one record
of 80 bytes on tape which consists of the first 8 bytes from the first card,
the second eight bytes of the second card, etc.
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Chapter 10
I/0 SOFTWARE

10. 1 Introduction

In the offort to achieve faster and more efficient innu /nn nut onera-
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tions, the complexity of the I/O hardware and the associated programming
to make it operate has increased significantly. This becomes evident when
we compare the execution of one CPU instruction to read a card in a system
without overlapped 1/0O capability and what is necessary with the /360 and
similar systems as shown in Chap. 9. Even when the programmer wrote
the channel program himself, a supervisory program was assumed to start
the channel in operation and to handle the interrupts when they occurred.

The need for a supervisory program for input/output operations is a
widespread one. Most programmers are not interested in how the input/
output functions of a system work, but merely in getting data in and out of
storage. Therefore, a generalized Input/Output Control Supervisor (IOCS)
is usually provided by the computer manufacture as part of the programming
support for the computer system. This type of program in its basic form
would schedule all input/output requests on the appropriate channels; handle
input/output interrupts as they occur; keep track of which I/O requests have
been completed; and when errors occur, take corrective action.

Given a basic IOCS the programmer does not have to concern himself
with the actual execution of the input/output operations. He will be able to
deal with the most advanced input/output hardware in a straightforward
manner.

10. 2 Data Formats

Since the purpose of an input/output system is to transfer data to and
from storage, a discussion of the characteristics of that data and how it
physically exists on external storage and in core storage is essential. The
amount of data which each I/0O device processes per I/O command is called
a physical record. ‘For a tape unit a physical record is the number of bytes
which lie between two successive inter-record gaps on the tape (Fig. 10-1a).
A tape unit has a very flexible physical record size. The maximum physical
record could theoretically be the entire reel of tape. Devices like disk or
drum on the S/360 have their physical data record defined in the same man-
ner as tape, that is, the bytes contained between two consecutive inter-
record gaps. However, the maximum physical record size is usually
limited to the track size of the particular disk or drum device. For card
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equipment the physical record is defined as the card itself and for printers
the physical record is the print line.

It is useful to think of a program processing a series of logically re-
lated data items, or a data set, related. For example, a payroll program
deals with one employee at a time. All the data concerning each employee,
such as, social security number, salary, number of exemptions, and so
forth, are logically grouped. Therefore, the payroll program should have
all this data at hand when processing each employee's payroll record. When
related information is grouped together in a string of bytes, it is called a
logical record. When most programs request an input/output operation
they are either reading or writing a logical record.

The logical record and physical record may be the same entity. But
in many cases the logical records are small compared to the physical
record size which is efficient for a particular I/O device. Most I/O devices
require a specific amount of start up time before they are ready to transfer
data. This time is fixed and therefore, is the same regardless of the size
of the physical record. Hence, it is more efficient to transfer large blocks
of information once the device is in operation than small ones.

H i ing th cvnanla d+
developed which satisfies the program's need to

operate upon logical record and have the device transmit a physical record
in a size which is efficient for that device. The technique is called blocking
(Fig. 10-1b). A number of logical records are combined or blocked into one
physical record. When this physical record is read into storage each logi-
cal record is separated from the physical record and used by the program
as though only one logical record had been read into storage. The separa-
tion of the logical records from the physical record is called de-blocking.
When a program is writing out logical records they are collected together
and written as one physical record. The logical record is the collection of
data the program deals with and the physical record is the data the I/O
device transfers with one I/O command.

Logical records can have two formats. Fixed length logical records
all have the same length in bytes. Variable length logical records vary in
length from record to record. Some applications have data records where
the amount of information in the record depends on the record type. The
length of these records can vary by a considerable amount. If all records
had to be the same length, they all would have to be the length of the max-~
imum record possible for the application. Depending on the number of
records and their distribution from the minimum to the maximum length,
much external storage can be wasted if all records must be the same length.

For fixed length logical records it is simple to determine the number

of logical records per physical record which is called the blocking factor.
The physical record length is then an integral number of logical record
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lengths. All physical records that contain fixed length logical records are
the same size. Therefore, once the blocking factor is known the blocking
and deblocking of logical records into and from physical records is the same
for each physical record or block.

Blocking and deblocking variable length logical records is more diffi-
cult than fixed length records. Since the length of each record can be
different, there must be a way for the blocking/deblocking program to know
the length of the record it is about to process. This is accomplished on the
360 by using the first four bytes of the logical record as a control word. The
first two bytes contain the length of the record and the next two bytes contain
blanks (See Fig. 10-2a).

The physical record which contains logical variable length records
must itself be variable in length. The technique used to block variable
length logical records is to specify the maximum physical length recorded
desired and then place as many variable length logical records in a physical
block of this size. When there is not sufficient room to place another logi-
cal record into the physical record it is then written with the unused space
left off (See Fig. 10-2b). Since the physical record varies in size, there is
a control word of four bytes in front which is in the same format as the
control word for each logical record. As a result, the blocking factor for
variable length records, unlike fixed length records, varies from physical
record to physical record.

Worked Example

10-1 The idea of blocking and deblocking of logical records can be made
clearer by two examples. We will first consider fixed length records. We
wish to read from TAPE 1 logical records, each 80 bytes long, blocked
three per physical record and write them on TAPE 2 blocked five per
physical record. We will use the same conventions as in Chap. 9.

BEGIN BALR 2,0

USING  *,2

L 4,0=F'80'

L 5, = A(RDAREA+160)

L 8, = F'80'

L 9, = A(WTAREA+320)

L 7, = A(WTAREA) 7 IS BLOCKING REGISTER
READ L 0, CAWIN

L 1, TAPE1

svC  X'00'

L 1, TAPE 1

svc  X'o1

L 3, = A(RDAREA) 3 IS DEBLOCKING REGISTEF
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MOVE MVC  0(80,3), 0(7) SEE NOTE (*) BELOW
M BXLE 3,4, READ 3 LOGICAL RECORDS DE-
* BLOCKED?

BXLE 7,8, WRITE 5 LOGICAL RECORDS DE-
* BLOCKED?

BC 15, MOVEIN NO
WRITE L 0, CAWOUT

L 1, TAPE2

L 1, TAPE2

svC  X'01'

L 7, A(IWTAREA)

BC MOVE
CAWIN DC X'00', A(IOCOMIN)
CAWOUT DC X'00', A(TOCOMOU)

DS OF
TAPE1 DC X'00000108' TAPE ON CHANNEL 1
TAPE2 DC X'00000208' TAPE ON CHANNEL 2
IOCOMIN CCW  2,RDAREA, X'00',240  PHYSICAL RECORD=3
* LOGICAL RECORDS
IOCOMOU CCW 1, WTAREA,X'00',400 PHYSICAL RECORD=5
* LOGICAL RECORDS
RDAREA DS CL240
WTAREA DS CL400

END BEGIN

(*) If processing is needed code could be inserted
between L and MVC. The address of a logical record
in RDAREA is in register 3, the address of the next
position in WTAREA is in register 7.

This program reads a physical record into RDAREA and using regis-
ter 3 separates each 80 byte logical record from the 240 byte physical
record. At MOVE, each logical record is moved from its location in
RDAREA (GPR3) to the next available area in WTAREA. This location is
maintained in GPR7. When three logical records have been moved from
RDAREA, a new physical record is read. When five logical record have
been moved into WTAREA that physical record is written and a new one
begun.

The second example is for variable length records. The program

function is the same as before. Here the maximum physical record is 500
bytes on input and 1000 bytes on output.
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Variable Length Logical Record

BLOCK CONTROL WORD RECORD CONTROL WORD DATA
e e N e N
r Y h
T T T T ! T ; 1 : T
: | : l | ! ! byte | byte | | byte
| | . o
OO'FC:OO'OO OO:F8|OO|OO|5|6: i :120
| ] ! I I I | I I I
I 1 L i ! I I I 1 I
;\/—J L__-\/—_-}
BLOCK RECORD
LENGTH LENGTH

OOFC ( hex) =124 (DEC) QOF8(hex)=120(DEC)
Unblocked: Physical Record =1 Logical Record

a)
LOGICAL RECORD

LOGICAL RECORD LENGTH
T T i
| ! |

4 |
174 50 : 100 : 20 :
| 1 |
| | |

R/__J
PHYSICAL RECORD
LENGTH

Blocked: 1 Physical Record = 3 Logical Records +
Physical Record Control Word

b)
Fign 10 - 2

272




BEGIN

READ

NEXT

COMP
*

MOVE

MOVE 1

WRITE

CR

BC
STH
MVC
MVC

AH

SR
BC
BC
MVC
SR

AR
BC
L
SR
STH

SVC

SvC

,0
,2

0, =M'255'

7,= A(WTAREA+4)
0, CAWIN

1, TAPE1

X'00'

1, TAPE1

Finti
N UL

5, = A(RDAREA-4)
5, RDAREA

2
*
1

3, = A(RDAREA+4)
4,0(3)

11, = A(WTAREA+10000)
11,7

11,4

4, WRITE

4,10

2, MOVE 1

4, LENGTH
MOVE+1(1), LENGTH+1
0(255, 7), 0(3)

7, LENGTH

3, LENGTH

5,3
8, READ

15, NEXT
0(255,7 , 0(3)
4,10

7,10

3,10

15, COMP

6, = A(WTAREA)
6,17

5, WTAREA
0, CAWOUT

1, TAPE2
X'00"
1, TAPE2
X' 01'
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IS THERE ENOUGH SPACE
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IS RECORD BEING MOVED
255 BYTES LONG?

YES, GO TO MOVE 1
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REGISTER
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YES

UPDATE: LENGTH
BLOCKING REGISTER
DEBLOCKING REGISTER

DEVELOP ACTUAL LENGTH
OF PHYS. REC. IN WTAREA
AND STORE IT IN PHYSICAL
CONTROL WORD AND CCW

WRITE RECORD



L 7,=A(WTAREAH) INITIALIZE BLOCKING

REGISTER
BC 15, COMP

LENGTH DS CL2
DS OF

CAWIN DC X'00', A(IOCOMIN)

CAWOUT DC X'00', A(IOCOMOU)

TAPE1 DC X'00000108'

TAPE2 DC X'00000208' -

IOCOMIN CCW 2, RDAREA,X'20',500  COUNT 500 FOR MAXIMUM
PHYSICAL RECORD. IF

IOCOMOU CCW 1, WTAREA, X'00', 0 SHORTER NO ERROR BE-
RDAREA DS - CL500 CAUSE 34 ON COUNT TO
RTAREA DS CL1000 BE INITIALIZED

END BEGIN

Unlike the program for deblocking fixed length records all the data
concerning the actual physical record length and logical record length must
be determined from the records themselves. The only sure thing is that the
physical records on input will not exceed 500 bytes in length. The CCW used
to read TAPE1 uses a count of 500, the maximum size expected. However,
when a shorter physical record is encountered, the wrong length record
error indication is suppressed by having bit 34 as one. On output, the actual
size of the physical record to be written is placed into the count field of
IOCOMOU and also into the control word of the physical record itself.

Notice that although the maximum physical record length is 1000 bytes, the
actual length depends on the length of the logical records that can be totally
contained within the 1000 bytes.

10. 3 Buffering

As we discussed in Chap. 9, efficient use of the hardware facility of
overlapped input/output operations within a program requires advance plan-
ning. The program must anticipate what data it will need next and request
this data to be read into storage prior to the time the data is needed. This
enables the I/0O operation to begin while the program continues execution on
previous input data. When a record is needed in a program, it will already
be in core storage if the need for it was anticipated far enough in advance.

There is a large class of applications which process records one
after another. For example, a program may need all or almost all of the
records on a reel of tape. In a payroll program, the employee master file
will require processing of every record — either to pay an employee or to
terminate him. If all records in a data set are to be read into storage in
the order they exist on the external storage medium, we have sequential or
consecutive processing. Since data records are processed in a sequential
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manner, there is no difficulty in anticipating what data record will be needed
next. A technique has been developed which allows efficient use of over-
lapped I/0 operations when a data set is being processed sequentially -
buffering. Since each physical record in the data set will be read into
storage, the 1/0 operation to read the next physical record can be given as
soon as enough storage in the I/O area is available to hold that record. The
idea is to set aside multiple I/O areas or buffers to hold physical records
from the data set. As the program is processing the data from one I/O
buffer it has requested I/0 operations to fill the other areas with the suc-
ceeding physical records from the data set. When the program is finished
using the data in one I/O buffer it initiates an input operation for it and
starts work on the next buffer alternating through the set of buffers.

Worked Example

10-2 An example of a program to illustrate the buffering technique is a card
to tape routine. The program will read cards and then write them on tape.
Three buffers will be used for the data set being read from the card reader
and two buffer areas will be set aside for the data set being written on tape.

BEGIN BALR 2,0

USING * 2

MVI  SWITCH+1,X'F0' INITIALIZE SWITCH TO BRANCH
* FIRST TIME THROUGH

L 6,=F'0'

L 3,=F8
START L 0, CAWIN(3) LOAD CAWIN INDEXED IN REVERSE

BY GPR3

L 1, CARDRDR

sVC  X'00'

S 3,4 HAVE 3 BUFFERS BEEN
* SCHEDULED FOR READS

BC 8, START

BC 2, START YES, INITIALIZE REGISTER 3

L 3,=F'g'
READCHK L 1, CARDRRR CHECK READ ASSOCIATED WITH

CAWIN (3)

svC  x'o1

L 4, CAWIN(3) LOAD ADDRESS OF CCW ASSOCIA-
* TED WITH CAWIN(3) IN REG. 4

L 5, 0(4) FIRST 4 BYTES OF CCW ASSOCIA-
* TED WITH CAWIN(3) IN 5

L 4, 0(5) ADDRESS OF INPUT BUFFER ASSO-
* CIATED WITH CAWIN(3) IS IN 4

MVC 0(80,4), TEMP PHYSICAL RECORD IN TEMP
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SvC

BC
BC
BC
FORIN3 L
BC
EHTIN3 L
SWITCH BC

SvC
HERE L

LA

MVC
L

L
SvC
A
BC
MVI
L
BC
CAWIN DC
DC
DC
CAWOU DC
DC
IOCOIN1 CCW
IOCOIN2 CCW
IOCOIN3 CCW
IOCOOU1 CCW
I0COOU1 CCW
TEMP DS
BUFFIN1 DS

0, CAWIN(3)

1, CARDRDR
X'00'
3,=F4'

2, FORIN3

4, EHTIN3
15, SWITCH
3, =F'4'

15, SWITCH
3,=F'8

15, HERE

0, TAPE

X'or'
4, CAWOU(6)

5, 0(4)

4, 0(5)

0(4), TEMP
0, CAWOU(6)

1, TAPE
X'00'

6, = F'4'

8, READCHK
SWITCH+1, X'00'

6, = F'4'

15, READCHK

X'00', A(IOCOIN1)
X'00', A(TOCOIN2)
X'00', A(IOCOIN3)
X'00', A(IOCOOU1)
X'00', A(IOCOOU2)

2, BUFFIN1, X'00',80
2, BUFFIN2, X'00',80
2, BUFFIN2, X'00',80
1, BUFFOU1, X'00',80
1, BUFFOU2, X'00',80
CL80

CL80
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SCHEDULE BUFFER ASSOCIATED
WITH CAWIN(3) FOR READ

UPDATE GPR3 TO
POINT TO NEXT
CAWIN

BRANCH AROUND WRITE CHECK
UNTIL 2 WRITES HAVE BEEN
GIVEN

CHECK WRITE ASSOCIATED
WITH CAWOU(6)

LOAD ADDRESS OF CCW ASSO-
CIATED WITH CAWOU(6) GPR4

LOAD FIRST 4 BYTES OF CCW
INTO GPR5

LOAD ADDRESS OF BUFFOU
ASSOC. WITH CAWOU(6) IN TO
GPR4

PHYSICAL RECORD IN OUT BUF-
FER ASSOC. WITH CAWOU(6)

ISSUE WRITE FOR BUFFOU
ASSOCIATED WITH

CAWOU(6)

UPDATE GPR6

TO POINT TO NEXT BUFFOU

SET SWITCH TO NOP
SECOND TIME THROUGH



BUFFIN2 DS CL80
BUFFIN3 DS CLS80
BUFFOU1 DS CL80

END BEGIN

The program starts by issuing three read request to fill the three in-
put buffers (BUFFIN1, BUFFIN2, BUFFIN3). When the BUFFINS is filled
the code moves it to TEMP and schedules BUFFIN3 for another read. Then
the record is moved from TEMP to BUFFQUI and BUFFQU1 is scheduled
for write. The next read is then checked (BUFFIN2, etc.). The read por-
tion cycles through the 3 input buffers and the write code cyles through the

2 output buffers.

10.4 Input/OQutput Control System Functions

The input/output control system or data management section of sys-
tem/360 operating systems usually provides functions at three levels. The
fundamental ievel provides channel scheduling and error and interrupt
handling. The programmer writes the channel program (CCW list) and must
synchronize his program with the completion of the input/output operation.
This level is very similar to what the previous examples have used. The
intermediate level, in addition to the services performed at the fundamental
level, relieves the programmer of writing the channel programs but he still
must provide the synchronization between the I/O operations and the pro-
gram execution. The third level of input/output capability provides in
addition to the previous two, the synchronization capability automatically.
Also, where the first two deal solely with a physical record and the program
must anticipate the need for data in advance, this level provides both block-
ing and deblocking of logical records and automatic buffering. When choosing
which level to use, the general rule is the higher the level the easier it is to
use but it gives less flexibility. To describe each level and its capabilities,
the macros of the 8K Basic Operating System will be used.

Since many of the examples presented previously assumed the function
of the fundamental level, this level would be an appropriate place to start.
In the /360 terminology this level is called Execute Channel Program
(EXCP). There are three macros associated with the EXCP level. The
first is the command control block macro

blockname CCB SYSnnn, command-list name

Here, blockname is the symbolic names associated with this command
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control block. There must be one command control block for each I/0 de-
vice used in the program.

SYSnnn is the system symbolic name of the I/O device. The possible names
are SYSRDR, SYSLIST, SYSIPT, SYSOPT, SYSLOG, SYS000-SYS254. The
significance of these names will be discussed in the next chapter.

Command-list name is the symbolic name of the channel command or of the
first channel command of a channel program that the program desires to
have executed. This macro expands into a control block and takes the place
of loading GPRO with a CAW and GPR1 with the device address and having to
construct those constants in the program as done in Chap. 9.

The next macro is Execute Channel Program

EXCP block-name

EXCP is the macro operation which request the I/O supervisor to issue a
start I/0O operation and block-name is the symbolic name of the CCB macro

s e = . . - L o ——n— - < - RN - ie
which 1s associated with the I/ O device involved. '1'his macro replaces tne
supervisor call with a code of zero used in the previous examples.

The third macro at this level is the wait macro.

WAIT block-name

Here, WAIT is macro used to synchronize the program execution with the
completion of an I/O operation and blockname the name of the CCB macro
associated with the I/O device involved. The use of this macro replaces the
supervisor call instruction with a code of one.

Worked Example

10-3 Let's compare the example from Chap. 9 which read a punched card
with a program using the EXCP level to do the same function. The coding
using EXCP functions is shown in Fig. 10-3 alongside its assembly language
equivalent. :
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BEGIN

CAW
IOCOM
RDAREA

CARDRDR

Chapter 9 EXCP

BALR
USING

DC
CcCw
DS
DS
DC
END

2,0 BALR
* 2 USING
0, CAW EXCP
1, CARDRDR .

X' 00"

1, CARDRDR WAIT
X'o1' :

X' 00' A(IOCOM) CARDBLK CCB
2, RDAREA, X'00', 80 IOCOM  CCW
CL80 RDAREA DS

OF END
X'00000008"

BEGIN

Fig. 10-3 Comparison of I/O Programs

* DO

- .

N o

CARDBLK

CARDBLK

SYS001, IOCOM

2, RDAREA, X'00', 80
CL80

BEGIN



Even though the registers which are used to pass the parameters are
not explicitly stated when using macros, it should be remembered that regis-
ters 12, 13, 14, 15, 0, 1 are used by the supervisor and other programs for
interrupt handling, linkage and parameter passing. These registers should
not be used by the problem program for purposes other than mentioned above
when communicating with the supervisor or when interrupts are expected.
The CCB macro expands into a control block eight bytes in length. Two
bytes hold the device address and 2 bytes for the address of the CCW(s). The
remaining four bytes are used by the supervisor to communicate error and
status information to the program and vice versa.

The intermediate level of input/output support, like EXCP, presents
the programmer with a physical record in an area of storage specified by the
program. This level usually called the READ/WRITE level and the highest
level called the GET/PUT level enable the programmer to accomplish I/O
without writing CCWs in his program. There are subroutines which are part
of the I/O system which will do this for him. These routines are called
access methods.

In order for the access method to construct a channel command or

commands it needs certain information about the properties of the data set to
bhe preﬂnccoﬂ MThia ig apcnmnlichad hv o YT'WYY anrn Mho NTE ctoanda

™
O E T e A LIAD A0 UL UVLLINILIDIITU V)Y QA 4s 4 L L34 LhiadUd Ve ALIC A7 A L Staliue

for Define the File (file is equivalent to data set). The XX indicates the
manner in which the records are accessed on external storage. The possible
values for XX are:

SR for serial or sequentially accessed data. Each
record is accessed in a consecutive manner. This
type of processing can be used with any type of
1/0 device.

DA for direct access of records from disk or drum type
1/0 devices. Each record is accessed in a random
manner. The records preceding the desired one in
the data set do not have to be accessed previously
in order to access the desired record.

IS for indexed sequential files. Each record is
identified by a key (tag). The records are accessed
either sequentially by ascending key value or directly
by a particular key value.

PH for EXCP level. Applicable to all I/O devices when

labels are employed. Labels will be discussed in
the next section.
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A DTFDA macro for a file where the records will be read on a random basis
has the following format

name DTFDA operandl, operand2, etc.

Here name is symbolic name of the DTFDA; the operands can be the following:

tw

LKSIZE=n o is the size of the maximum physical
record transferred. This is used to
construct the count field in the CCW.

DEVICE=DISK11 DISK11 indicates that the file resides
on a 2311 disk device.
ERRBYTE= ERRFLD is the name of a two byte field
ERRFLD where the supervisor can store status

and error information.

IOAREA1= RDAREA is name of storage the location
RDAREA where the physical record is read into.
It must be big enough to hold the largest
record. It can be defined in the program
by use of the DS operation.

READID= The record is to be read will be located
YES by an ID.
RECFORM= The records are physical records of
FIXONE fixed lengths. One logical record/
physical record is all that's allowed.
SEEKADR= Name is the location which contains the
NAME track address of the record to be accessed.

This address is as follows:

M (1 byte) symbolic unit number
BB (2 bytes) 00
CC (2 bytes) 0X X=0, 199
HH (2 bytes) OX X=0, 9
R (1 byte) record number
TYPEFLE= the file will be read from but not written
INPUT to.
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There is one DTF macro in the program for each data set to be used. The
DTF macros must occur immediately after the START statement in a user's
program. If the program is to be executed on a disk system, the DTF macros
must be preceded by a DTFBG (begin) macro statement. In any case, a
DTFEN (end) statement must follow the last DTF macro.

Once the file or data set has been defined by a DTF a READ or WRITE
macro may be issued any number of times to transfer a physical record from
or to that file. The READ macro for a file with a DTFDA has the following
format:

READ filename, KEY
READ filename, ID
filename is the symbolic name of the DTFDA

which defines this file.

KEY/ID indicates whether the record is to be
retrieved by a symbolic key or its
iocation on the disk.

The WRITE macro has the following formats:

WRITE filename, KEY
WRITE filename, ID
WRITE filename, AFTERID
WRITE filename, AFTER

Here, filename is the symbolic name of DTFDA;

KEY/ID is the same as for READ macro;

AFTERID indicates that this record is to be written
after the record whose ID is supplied;

AFTER indicates that this record is to be written
following the last record written on this file.

Since the actual input/output operation is accomplished in parallel
with processing, the wait macro is used for synchronization. This macro
has the following format:

WAITF filename

RS RNEAETAL 8 SN EAEITA FEEAR B F FIAS MINFNEAERSAE RS A TNEAS KR K ANEa € N A WV Nan
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Worked Example

10-4 To illustrate the use of the READ/WRITE level of I/O control let's
take as an example a routine to update a direct access file. The routine will
read a card, using EXCP, and will use the key in the card to locate the
record on the file. Then read the record into core, update it with other in-
formation from the card and then write it back to the file.

The key is in positions 1 to 8 of ihe card and is a part number. Position
9 contains the transaction code, a plus or minus, which indicates if the data
in positions 10 through 14 should be added to or subtracted from the inventory
field of the record for this part number. The record in the direct access
file has the following format:

Position Item
1-8 part number
4-5 actual part number
6-8 TRACK ADDRESS (MCH)
M Drive number
C Cylinder number
H Head number
9-14 inventory field
14-60 fields not pertinent to this routine

Although the record on the direct access file is 60 bytes, the key is 8
bytes and not transferred with the READ or WRITE therefore, an I/O area
of 52 bytes is all that is needed. The program attempts to overlap the
reading of the next card with the processing of the present record. Also the
writing of the updated record is overlapped with the set up to read the next
record. The complete program is shown in Fig. 10-4.

The use of the READ/WRITE level allows the user to perform I/O
operations without the knowledge of how CCW's are written for a particular
type of device such as a 2311 disk drive. He accomplishes this be defining
his file in terms he knows in the DTF.

The highest level of IOCS is the GET/PUT level. The file is defined
in a DTF just as in the READ/WRITE level. In addition the user doesn't
have to plan ahead in order to achieve I/O overlap. To increase the I/O
overlap efficiency, buffering if provided at this level. Blocking and de-
blocking are also provided.

The two macros used at this level in addition to the DTF are GET and
PUT. The format of these macros are
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DTFBG
INVNTRY DTFDA BLKSIZE=52, DEVICE-DISK11,

¥8¢

* ERRBYTE=ERRLOC, IDAREA=INVBUF
* KEYARG=PARTNO, KEYLEN=8,
* READKEY=YES, RECFORM=FIXUNB,
* SEEKADR=TRACKNO, SRCHM=YES
* TYPEFILE=INPUT
DTFEN
BEGIN BALR 2,0
USING  *,2
EXCP  CARDBLK READ 1ST CARD
OPEN  INVNTRY DISCUSSED IN 10-5
CARD WAIT  CARDBLK WAIT FOR DATA TO BE IN RDAREA
MVC TEMP, RDAREA SAVE DATA IN TEMP
EXCP  CARDBLK READ NEXT CARD
MVC PARTNO, TEMP(7) MOVE KEY TO PARTNO
MVC TRACKNO, TEMP+5(1) MOVE M TO TRACK ADDRESS
MVC TRACKNO+4, TEMP-+6(1) MOVE C TO TRACK ADDRESS
MVC TRACKNO-+6(1), TEMP+17(1) MOVE H TO TRACK ADDRESS
SWITCH BC 15, READD IF NOT 1ST TIME
WAITF INVNTRY THROUGH DON'T CHECK PREVIOUS WRITE
READD READ  INVNTRY,KEY READ RECORD
PACK  WORK+2(3), TEMP+13(5) PACK INPUT DATA
oc WORK+2(1), TEMP+8 OR IN TRANS ACTION CODE
WAITF  INVNTRY CHECK READ
AP INVBUF+13(6), WORK+2(3) UPDATE
WRITE INVNTRY,KEY WRITE
BC 15, CARD
TRACKNO DC X'0000000000000000"
PARTNO DS CL8
INVBUF DS CL52
WORK DS CL3
CARDBLK CCB SYS001, IOCOM
I0COM CcCcwW 2, RDAREA, X'00', 80
ERRLDC DS CL2
RDAREA DS CL80

Fig. 10-4 Program for Worked Example 10-4



GET filename

GET filename, workname

Here, GET presents the user with the next logical record; filename is the
name of the DTF which describes this file; workname is the name of a storage
area and indicates that if this parameter is supplied the next logical record

is placed in that iocation. If it is not present the iocation of the next iogical
record in the buffer is placed in the IOREG.

PUT filename

PUT filename, workname

Here, PUT places the logical record in the output buffer; filename is the name
of DTF which describes this file; workname, if present, gives the location of
the logical record which is to be moved into the output buffer, if not present,
the address of the next free byte in an output buffer is placed in IOREG.

Worked Example

10-5 To illustrate the GET/PUT level let's use a similar example as that
used to illustrate blocking/deblocking and buffering in Sec. 10.2 and 10. 3.
The problem is to read from TAPE 1 blocked variable length records and
write them on TAPE 2. The maximum physical input record is 1000 bytes
long and 2500 bytes for output and there are two buffers for each tape. The
OPEN and CLOSE macros in the following program will be discussed in
Sec. 10.5.

TAPE1 DTFSR BLKSIZE=1000, DEVADDR=SYS001
* DEVICE=TAPE, EOFADDR=CLOSEM
* ERROPT=IGNORE, FILABLE=STD,
* IOAREA1-BUFIN1, [OAREA2=BUFIN2,
* RECFORM~VARBLK, TYPEFILE=INPUT,
* WORKA=YES
TAPE2 DTFSR  BLKSIZE=2500, DEVADDR=SYS002
* DEVICE=TAPE, FILABLE=STD, IOAREA1-BUFOUT]1,
* IOAREA2=BUFOUT2, RECFORM=VARBLK,
* TYPEFILE=OUTPUT, WORKA=YES
DTFEN
BEGIN BALR 2,0
USING  *,2
OPEN  TAPE1, TAPE2
START GET TAPE1, TEMP
PUT TAPE2, TEMP
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BC 15, START

TEMP DS CL2500

BUFIN1 DS CL1000

BUFIN2 DS CL1000

BUFOUT1 DS CL2500

BUFOUT2 DS CL2500

CLOSEM CLOSE TAPE1l, TAPE2
END

If the program above is compared with those in Sec. 10.2 and 10. 3,
the ease of using the GET/PUT level with programming at the basic level is
obvious. The system automatically schedule$ the input buffer for I/O as soon
as the last logical record in the physical record is moved to TEMP by the
GET. The system also automatically writes the output buffer when another
logical record added would cause the physical record to exceed 2500 bytes.
If the next logical record is not yet in storage when the GET is executed the
program will wait until it is. If space is not available when the PUT is issued
the program will also wait until space in an output buffer is available. Also,
the system is placing one logical record at a time into TEMP (deblocking the
physical input record) and placing the logical record in TEMP into the output
buffer (blocking to create the output physical record).

The new parameters in the DTFSR are

EOFADDR=CLOSEM when a tape mark is read on the
input tape, this indicates the end
of the records and the system will
branch to CLOSEM

ERROPT=IGNORE when an error occurs on the
input tape ignore it.

FILABLE=STD standard labels are used
(discussed in 10-5)

BUFIN1, BUFIN2 are the two input buffers

BUFOUT1, BUFOUT2 are the two output buffers

RECFORM=VARBLK the logical records are

variable length and blocked

The GET/PUT level provides the user with the following functions
automatically

1. buffering

2. blocking/deblocking

286



3. synchronization
4. channel command words

Depending on the flexibility desired, an appropriate level of IOCS can
be chosen to ease the input/output programming.

>

7Y
[
N
(%3}

To insure that the proper tape reel or disk pack has been mounted so
that the program doesn't read the wrong data or destroy valid data, a system
of labels is used. Labels are usually written at the beginning and end of the
data file. The label at the beginning is called a header and the one at the end
a trailer. Tapes or disks may be unlabled, or use standard or non-standard
label conventions. If the tapes are labeled according to the standards of the
system, the system checks the labels. I the labels are of a non-standard
format, it becomes the user's responsibility to check them.

For standard labels using the Disk Operating System there must be one
volume label, 80 characters in length, and one data set header and trailer
label also 80 characters in length. There may be additional volume labels
and data set labels but they are not checked by IOCS. Fig. 10-5 illustrates.

There are two macros where appeared in Sec. 10-4, which are used to
initialize IOCS for processing a particular file and to signal that all proces-
sing of the file is completed. These macros also cause the system to check
the appropriate labels verifying that the proper disk pack or tape reels are
mounted. These macros are OPEN and CLOSE. They have the following
format

OPEN filename, filename, etc.

This macro initializes the appropriate parts of the input/output routine so
that the programs using either the Read/Write or Get/Put level of IOCS can
process the filename(s) listed. It also causes the volume and data set
header label to be verified at all three levels if labels are used.

The operand filename is the symbolic name of one or more DTF
statements which will be processed by a READ, WRITE, GET, or PUT macro
or when using EXCP and label checking is desired.

CLOSE filename, filename, etc.

The CLOSE macro causes IOCS to restore any code affected by the OPEN
for this filename or filenames to its condition prior to the OPEN. It also
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causes the system to check standard data set trailer labels when used and
filename is one or more symbolic names of DTF statements.

When using READ/WRITE or GET/PUT an OPEN for the filenames
must be executed before the first READ, WRITE, GET, or PUT is issued,
whether label checking is desired or not. An OPEN is only necessary with
EXCP when label checking is desired.

A CLOSE should be issued for every filename for which an OPEN was
issued. This should be done when the processing of the file is complete.

GAP GAP GAP GAP
VOLUME DATA SET HEADER DATA
LABEL LABEL RECORD
R J \ ~ / N~ %/__J
80 BYTES 80 BYTES X X BYTES
P
E
M
A
R
K
GAP
rﬁ
DATA DATA SET TRAILER
RECORD LABEL
- Y
T T
A A
P P
E E
M M
A A
R R
K K

Fig. 10-5 Standard Header and Trailer Labels

Worked Example

10-6 Write an update program which reads presorted transaction cards

in ascending order by customer number (cc 1-10) and adds the quantity in
columns 11-15 to the corresponding record on the old master file and write
the updated record on the new master file. If a record on the old master
file does not have a corresponding transaction it should be written to the new
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master file unchanged. The records on the new and old master files are 120

bytes long, with a blocking factor of three.
position 31 of the 120 byte record. The field to be updated starts at byte 61
and is five bytes long and is packed decimal.
have a corresponding entry in the old master file the transaction should be

printed. The old master and new master are on tape.

The coding is

START
BTFBGN
NEWMSTR DTFSR

OLDMSTR DTFSR

TRANACT DTFSR

ERRFILE DTFSR

DTFEN
BALR
USING
OPEN
START GET
NEXT GET
COMP CLC
BC
BC
PUT
BC
ERROR PUT
GET
BC
RECUDTE PACK
AP

BLKSIZE=600, DEVADDR=SYS001,
DEVICE=TAPE, IOAREAI=-NEW]1,
IOAREA2-NEW2, REC FORM=FIXBLK,
RECSIZE=120, REWIND=UNLOAD,
TYPEFLE=OUTPUT, WORKA=YES
BLKSIZE=600, DEVADDR=SYS001,
DEVICE=TAPE, IOAREA1=OLD1,
IOAREA2-OLD2, EOFADDR=OLDEND,
RECFORM=FIXBLK, RECSIZE=120,
REWIND=UNLOAD, TYPE FLE=INPUT,
WORKA=YES

BLKSIZE=80, DEVADDR=SYSIPT,
DEVICE=READO04, IOAREA1=TRAN1,
IOAREA2=TRAN2, EOFADDR=TRANEND,
RECFORM=FIXUNB, TYPEFLE=INPUT,
WORKA=YES

BLKSIZE=80, DEVADDR=SYSOPT,
DEVICE=PRINTER, IOAREA1=ERR1,
IOAREA2=ERR2, RECFORM=FIXUNB,
TYPEFLE=OUTPUT, WORKA=YES

2,0
*’2

TRANACT, OLDMSTR, NEWMSTR, ERRFILE

TRANACT, UPDATE
OLDMSTR, TEMP
TEMP-+30, UPDATE(10)

8, RECUDTE EQUAL?

2, ERROR NO.MSTR HIGH?
NEWMSTR, TEMP NO.

15, NEXT

ERRFILE, UPDATE YES

TRANACT, UPDATE

15, COMP

WORK, UPDATE+10(5)

TEMP+60(5), WORK
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TEMP
UPDATE
WORK
NEW1
NEW2
OLD1
OLD2
ERR1
ERR2
TRAN1
TRAN2
OLDEND

TRANEND

PUT
BC
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
GET
PUT
BC
CLOSE
EQJ
END

NEWMSTR, TEMP
15, START

CL120

CL80

CL3

CL600

CL600

CL600

CL600

CL80

CL80

CL80

CL80

TRANACT, UPDATE
ERRFILE, UPDATE
15, OLDEND
OLDMSTR, NEWMSTR, TRANACT, ERRFILE
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Chapter 11
OPERATING SYSTEMS

11.1 Introduction

In Chapt. 10 an input/output control program (IOCS) was discussed. It
was a generalized program which assisted the user to utilize the S/360 more
efficiently for input/output operations. The idea of using a generalized pro-
gram to increase the efficiency of a computing system was expanded and an
operating system environment emerged. The areas in which an operating
system attempts to improve the performance of the system are many. The
one that stands out the most is the reduction of manual intervention on the
part of the computer operation.

In most installations before the use of an operating system each job
was set up by an operator. When a job was finished the operator cleaned up
the system and set up the next job. This mode of operation was sufficient
when computers were slower. However, as the speed of the computing
system increased the speed of the operator did not. More and more time
was spent waiting for the operator to complete his functions. During this
time, the system was idle. I a good portion of the operator's tasks could
be carried out by the system itself, a considerable amount of time could be
saved and used for computing thereby increasing the capacity of the system.

What tasks did the operator have to perform for each program to be
run? Depending on the program he had to:

Mount and dismount tapes
Mount and dismount disk packs
Reset the system

Set up the program to be loaded

In order to reduce manual intervention in these areas as much as possible
and have these functions and other services available to the programmer,
operating systems came into being.

The goal of operating systems is to provide non-stop operation of the
system. To do this a certain program remains resident in core storage at
all times. This means that part of the storage of the central processing
unit is not available to the programmer. The resident program is called
the nucleus. However, the nucleus does not contain all the code that is
necessary to perform the functions desired. Many routines are brought
into core storage on an as needed basis. Since these routines are needed
on a dynamic basis they must reside on external storage which is always
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available — that is, on-line. This is usually tape, disk, or drum. There-
fore, a portion of the on-line external storage of the system is also reserved
for the non-resident operating system routines. This external storage is
usually called system's residence. One can see that there is a trade-off
involved. The installation gives up some of the external storage and CPU
storage of its computing system in order to gain the greater capacity which
an operating system affords.

Operating systems have several components. The major two cate-
gories are Control Programs and Processing Programs. Control Programs
comprise two major functions: scheduling and supervision. Processing
Programs include the assembler, utilities, Sort/Merge programs and other
language translators such as FORTRAN, COBOL and P/L1.

To describe the operation system functions the facilities of the Disk
Operating System for System /360 will be used.

11.2 Scheduling

The purpose of the scheduler is to provide automatic job to job transi-
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tion. That is, when one job which may be one or more programs finishes,

the scheduler will get the next job going with a minimum of manual interven-
tion. If the scheduling routines are to accomplish this they must receive
instructions on what is to be done by the next job. This is accomplished by
control cards which usually precede the job. The I/O device from which the
cards and programs are read is the source of the job stream. The job
stream is usually a combination of control cards, programs and data. Since
the transition from job to job is automatic the jobs to be run are stacked one
behind the other, separated by control cards. The Job Control (the sched-
uler) reads the control cards and performs the functions indicated by them.
The program which follows the control cards is loaded into storage and
executed. The program may even reside in an on-line storage device. In
this case, through the use of certain control cards, the system will locate
the program and bring it into core storage. When the program has finished,
job control then reads the next set of control cards and continues. In 8K
Basic Operating System the control cards are read from one I/O device, a
card reader, and programs and data are read from another I/O device which
may be a card reader, tape, or disk. The job control is not a resident
routine. It is loaded from system residence between each job. When a
program is loaded for execution it overlays the job control program. The
core storage picture looks as follows:
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PROBLEM PROGRAM
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The nucleus is always resident. The remaining storage is used alternately
by job control and each program which represents a job.

Before we get into more detail concerning the scheduling function some
terminology and certain concepts must be defined. In non-operating system
environments most programs are assembled and then executed. The assem-
bler assigns absolute storage locations and the program always executes
from these locations. The procedure in an operating system environment is
depicted in Fig. 11-1.

LANGUAGE LINKAGE
SOURCE —.{TRANSLATORS | OBJECT - { EDITOR } —
DECK DESK
CORE IMAGE
LIBRARY

Fig. 11-1 Program Flow in an Operating System

The source deck is assembled or compiled in the usual manner. However,
the resultant object deck is in relocatable form. That is, the program does
not have absolute core address assigned to it. Another step has been added
to the process of obtaining an executeable program. This step is called
link editing and requires the services of the Linkage Editor program. Since
all decks which come out of the language translators are relocatable, the
Linkage Editor is used to assign absolute addresses to the programs and
store them on the disk in core image form.

With this intermediate step of the linkage editor, several separately
compiled or assembled routines can be combined together and executed as
one program. Thus subroutines can be written (even in a different language
than the main program), tested independently and then joined together by the
linkage editor and executed as though they had been written as one program.
The modular approach to programming allows the programming of different
parts of an application to be written and tested in parallel thereby shortening
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the total time it takes to get the application running. Also, the maintenance
of the entire program is easier since only the routine which is in error need
be recompiled or reassembled instead of the whole program.

Many programs do not need special data sets when they are executing.
They may use some tapes or disk during execution but the data is temporary
and not needed once the program is finished. Programs in this category can
be run under an operating system with the least operator intervention. The
system has standard units set up from which the data is read, printed or
punched; and scratch tapes and/or disk areas which are used for temporary
storage. Therefore, these programs don't require the operator to mount
or dismount tapes and disks and thus usage of the CPU is more productive.

As mentioned previously the scheduler is informed of what functions
are to be performed by control cards. The control cards all have the same
general format. All control cards are identified by two slashes (//) in
columns 1 and 2 followed immediately by one or more blanks. Next is the
operation which this control card performs. Following the operation but
separated from it by at least one blank are the operands that belong with
this operation. The individual operands are separated from each other by
commas. This format is illustrated in the discussion of the particular con-
trol cards which follows. The first control card the scheduler usually
encounters is the job card.

// JOB program name, program name

The job card defines the start of a new set of programs to perform a par-
ticular function. The scheduler reads all the control cards between a job
card and the next job card. When it has sufficient information concerning
this job it has the program whose name is specified as the first operand
loaded. For example

// JOB PAYROLL

would tell job control program that the payroll program should be loaded
and executed.

In some cases more than one program may be necessary to accomplish
a function. For example, suppose it was necessary to assemble a program
and then execute it immediately. This is usually called "assemble and go'
since the assembly and execution of the program appear as one operation to
the user.
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The job card for such an operation would be
// JOB ASSEMBLER, PAYROLL

This card tells job control that a source deck is to be assembled and the
output of the assembler is to be link edited and executed.

Following the job card are the Assign cards which have the following

fanrate
AL ALIGE ¢

// ASSGN SYSxxx, X'cuu', dd

The Assign card is used to link the symbolic name used in the program
named in the job card to a physical input/output device. In Chap. 10 there
was a symbolic unit name in the DTFXX's and CCB's. The ASSGN card
links that symbolic name (SYSxxx) to a physical device whose address is cuu

¢ = 0 multiplex channel
1 selector channel 1

2 selector channel 2

uu = 00-FF in hexidecimal which is the units
address on the channel.

o)
o)
|

= is a two digit code is to indicate the type
of device (see Fig. 11-2)

XXX = is a three digit integer from 0 to 254

There should be one Assign card for each symbolic input/output device
name used by the program named in the job card. If two programs are
named in the job card the same symbolic names in each must use the same
device.

An example of assign cards follows

// JOB PAYROLL,

// ASSGN SYSIPT, X'004', R1
// ASSGN SYSOPT, X'007', L1
// ASSGN SYS001, X'101', T2
// ASSGN SYS002, X'201', T2

Anytime PAYROLL references SYSIPT it will be reading from a 2540 card

reader on the multiplexor channel at device address 04. Similarly SYSOPT
is assigned to a 1403 printer on the MPX channel at 07, SYS001 is assigned
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to a 2400 tape on the selector channel 1 at 01, and §YS002 is assigned to a
2400 tape on the selector channel 2 at 01. The symbolic assignment gives
the programmer flexibility in the device assignment since actual devices are
not assigned until the program is about to be run. This flexibility in I/O
device assignment can be used in several ways to an installation's advantage.
Since the actual address of the I/O units are not written into the program the
program is I/O device independent. This means that if a program needs
three tapes, it can use any three tapes which are available. They do not
have to be the same three units that were used the last time the program was
run. Therefore, if one tape drive is removed for maintenance, the config-
uration is changed, or the program is to be run on another 360 with a
different configuration — as long as there are three tapes — only the ASSGN
cards must be changed, the program remains unaltered. This gives the
program greater useability and the installation more flexibility.

The card that is always the last control card is the Execute card

// EXEC LOADER, R
dd DEVICE TYPE

C1 1052 Printer-Keyboard
D1 2311 Disk Storage Drive
L1 1403 or 1404 Printer

L2 1443 or 1445 Printer

P1 2540 Card Punch

P2 1442 Card Punch

P3 2520 Card Punch

RO 2671 Paper Tape Reader
R1 2540 Card Reader

R2 2540 Punch Teed Read
R3 1442 Card Reader/Punch
R4 2501 Card Reader

R5 2520 Card Reader/Punch
RR 1285 Optical Reader

T1 2400 Tape Drive T track
T2 2400 Tape Drive 9 track

Fig. 11-2 Device Type Codes

The execute card informs job control of two items. First, that this is the
last control card for this job and secondly, the source where the program
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that is named in the first operand of the preceding job card is to be loaded
from. If both operands in the EXEC card are left blank the program is stored
in the core image library on disk and is to be loaded directly into core from
there. If only LOADER is present, then the program is to be read from the
device assigned to SYSIPT, link edited into the core image library and then
loaded into storage for execution. In this case the program is in object
module (relocatable) form on the device assigned to SYSIPT. If both operands
are present then the linkage editor is to read the entire program from the

1 atnlhla Tilan 3 i 3 i
relocatable library (object module form) on the disk and edit it into the core

image library and then the system will load it into storage for execution.

There are additional control cards which are required but are not shown
here because they do not have counterparts in other operating systems.

As mentioned previously in this chapter the aim of an operating system
is to use the computing system more efficiently. One way to accomplish this
is by reducing manual intervention, by replacing as many as possible of the
functions performed by an operator on the job stream. This enabled the
system to process one job after another with a minimum amount of operator
intervention. Let's explore this concept using 8K Basic Operating System and
the control cards just discussed.

Worked Example

11-1 The system is required to assemble two separate programs, execute
a program in the core image library, assemble and execute a program,
execute a program which is in the job stream in relocatable form and finally,
to execute a program that is in relocatable form in the relocatable library.

The job stream, with control cards, is:

1 /7 JOB ASSEMBLER
// ASSGN
2 )
// ASSGN
3 // EXEC
4 SOURCE PROGRAM 1
5 // JOB ASSEMBLER
// ASSGN
6 .
// ASSGN



10

11

12

13
14

18

19
20

21

22

23

24

25

26

-\

//
//

//
//

//
//

/ *
//
//

//
//

//
//

//
//

/ *

EXEC
SOURCE PROGRAM 2

JOB PROGRAM 3
ASSGN

ASSGN
EXEC

DATA CARDS FOR PROGRAM 3

JOB ASSEMBLER PROGRAM 4
ASSGN

ASSGN

EXEC
SOURCE CARDS FOR PROGRAM 4
DATA FOR PROGRAM 4

JOB PROGRAM 5
ASSGN

ASSGN
EXECUTE LOADER

OBJECT DECK FOR PROGRAM 5

JOB PROGRAM 6
ASSGN

ASSGN
EXEC LOADER, R

data for PROGRAM

. ————

ravwon
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Card number 1 is the job card which tells job control that the assembler
is to be executed. The ASSGN cards (2) link the symbolic names the assembler
uses to the physical I/0 devices for this job. The execute card (3) tells job

assembler is to be loaded from the core image library on disk. Following

the execute card are the source cards (4) which make up the program to be
assembled. These source cards and the other non-control cards that appear
later on could have been on any device assigned to SYSIPT. The control cards
are on the device assigned to SYSRDR. In the example shown both SYSIPT
and SYSRDR are assigned to the same device. Now the operating system will
be able to process all the jobs mentioned in a continuous stream without
manual intervention. Any temporary external storage and libraries can be
assigned to disk storage which is on-line and doesn't need manual intervention

to make it available.

Let's continue with the job stream. When the first assembly is com-
pleted, job control is automatically loaded to process the next set of control
cards (5-7). These are similar to the first job and another assembly takes
place. The next job which is automatically scheduled is PROGRAM 3. This
program is also loaded from the core image library for execution. During
its execution it will read the data cards (12) from the job stream. When the
slash asterisk card (13) is read it tells PROGRAM 3 that all the data cards
have been read. When PROGRAM 3 finishes, job control is loaded and con-
tinues to read the job stream. The next job card (14) indicates the assembler
is to assemble the source cards (17) for PROGRAM 4, store the resultant
object module temporarily in the relocatable library and call the linkage
editor to process it, which leaves it in the core image library. Then the
system loads the core image module of PROGRAM 4 for execution. During
its execution it will read the data cards (18) in the input stream. Thus the
operating system not only can pass control from one job to the next auto-
matically, but it gives the programmer the capability to assemble and execute
his program in one operation without manual intervention.

The next set of control cards (20-22) tell job control to call linkage
editor to have the object deck for PROG5(23) edited into the core image
library and then loaded into storage for execution. The last set of control
cards cause the system to have the object module for PROG6 in the reloca-
table library to be link edited in to the core image library, loaded and exe-
cuted using the data cards (26) in the input stream.

The system will pause after PROG6 finishes waiting for more control
cards to be stacked on the device assigned to SYSRDR. Remember that the
stack of six jobs, each defined by an appropriate set of control cards were
executed one after another automatically without manual intervention.

There are many jobs which require large amounts of data in and out of

the system. For jobs of this type the operator is usually required to mount
tapes and disk packs before the job can begin execution. When this is
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necessary the system waits for him to perform this task and checks the
labels on the disks and tapes, if present, to verify that the proper ones are
mounted.

The system will process one job after another once it is in operation.
To get the system started, the operator goes through an Initial Program Load
(IPL) procedure which by a hardware generated input operation loads a pro-
gram which initializes the system and loads the job control for the first time.
After that, job control is brought into storage at the termination of each job
to get the next job going.

11.3 Supervisor

Unlike job control, which was discussed in the preceding section, the
supervisor program remains resident in the central processing unit storage
as long as the operating system is being used. The programs which are
resident constitute the nucleus. The nucleus resides in lower address
storage. All the programs which are part of the supervisor do not remain in
storage at all times. The programs which are used less frequently are
stored on external storage called the systems residence device. When one
of these programs is needed, it is loaded into an area within the nucleus.
This area is used by all non-resident supervisory programs and is called the
transient area. By using the concept of a transient area the amount of

storage needed at all times by the nucleus can be reduced.

An example of transient routines would be the open and close routines
which were discussed in Chap. 10 when describing the OPEN and CLOSE 1/0
macros. Whenever a file is opened for processing the open routines are
loaded into the transient area in the nucleus. They perform their function
and then the transient area is free to be used for other non-residence super-
visor programs.

All supervisors contain at a minimum an Input/Output Supervisor which
performs the functions described in Chaps. 9 and 10. As the nucleus size
grows, additional services for the problem program are provided. In
general as the size of the nucleus grows the more services it provides the
user. These services usually satisfy a general need. Therefore, the user
does not have to provide these functions in his own program and they ease
the programming load. However, since these functions must serve a large
number of users, they are generalized and usually take more storage than
if the function were coded for a specific application. Here the trade-offs are
between storage requirements and programming ease and time.

In the 8K Basic Operating System there are certain services available
to the user when programming his application in addition to the I/O macros
discussed in Chap. 10. These services are made available through macros
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call (SVC) instructions. When the SVC instruction is executed the supervisor
will perform the appropriate service by using a resident routine or calling a
non-resident one. Some of the specific services provided by the 8K system

are described below by a discussion of each of the macros available.

The fetch macro has the following format.

FETCH name

When this macro is used in the problem program, control is given to
the systems loader which is resident in the nucleus to load either the program
or the phase of a program whose six character name appears in the operand
field from the core image library. This enables the programmer to have
routines loaded on an as needed basis rather than have all the routines in
storage at the same time. Routines are entered into the core image library
by use of the Linkage Editor. Further details on the use of the Linkage
Editor will be covered in the next section. Since programs in the core image
library are not relocated when loaded, the origin of the program, that is, the
location of the first storage location used, must be decided before it is stored
in the core image library.

The message macro has the following format

MSG code, REPLY

The macro allows the problem program to communicate with the opera-
tor. When this macro is used the one to four character code is displayed on
the operator's console. If the second operand, REPLY, is used then the
operator may type in a one character code to communicate back to the pro-
gram that used the message macro. The reply if one was requested is stored
in location name + 7.

For example, suppose the program wanted to tell the operator that the
cards that had been read were incorrect. The program may use the message
macro

CRDERR MSG CDER

The message CDER would appear on his console. However, in addition to
informing him that there was an error, the programmer may want to know
what the operator wants to do about it. Therefore, the message macro may
be coded as

CRDERR MSG CDER,REPLY
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Now the message on the console becomes CDERA. The A informs the opera-
tor that a one character reply is expected. The one character code he now
types in is stored at CRDERR + 7 and the program may interrogate it to
determine what action can be taken. This capability enables a program to be
more flexible in handling unusual conditions and operator oriented functions.

There are certain conditions which arise in which it is more appropriate
for a program to handle by itself instead of accepting the standard system
action. This capability is given by the Set Exit macro which has the following
format:

STXIT n, pc~-name, it-name, oc-name

Here, n is the number of a general purpose register the supervisor routine
can use to refer to a communication region. The other three operands are
optional and one or more can be included: pc-name is the symbolic name of
the user's routine that he wants entered when a program check interrupt
occurs; it-name is the symbolic name of the user's routine that gains con-
trol when an interval timer interrupt occurs; oc-name is the symbolic name
of the user's routine that is given control when the operator wants to initiate
communication with the system.

If an operand is omitted this must be indicated by the use of successive
comas. For example, a program wants to gain control at location OPRTOR
when the operator initiates communication and at TIMER when the interval
timer interrupts. Register 6 can be used by the supervisor. The macro
would look like

STXIT  6,, TIMER, OPRTOR

The program can issue the macro several times in the program. The last
one issued is the one that's in effect at that time. The last two operands can
be reset to the system standard by issuing the macro with the word CLOSE
in those operands instead of the symbolic name.

When a user writes either an interval timer or operator communication
routine he needs a way to return to his main program. This is provided by
the exit macro which has the following format

EXIT TR
EXIT CR

Here, TR indicates a return from a timer routine and CR indicates a return
from an operator routine.
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There is a need in some programs to communicate with other parts of
the program or another phase of the program which is not in storage at the
time. In order to have this facility it is necessary to have an area of storage
reserved for this purpose whose location is known to all programs. Most
operating systems have such an area in the nucleus and therefore it is always
available. This area is called a communications region or vector. It usually
contains information concerning different parts of the supervisor and space
for problem programs to leave a small amount of data to be referenced later.

. Since the location of the communication region should be available to all
programs, there is a macro which will give the requesting program the start-
ing address of the communication region. The format of the macro is

COMRG

When this macro is issued the address of the communication region is re-
turned in register 1. By using this address plus the appropriate displacement
the program can obtain certain information which is stored in the communica-
tions region.

The COMRG macro enables the program to obtain data from the com-
munications vector. There is also a macro which enables the program to
store data in the region. This macro has the following format

MVCOM byte, n, location

the MVCOM macro allows the user to modify bytes 12 to 23 in the communica-
tion region. The operand byte specifies the starting location in the com-
munication region, from the 12th to the 24th byte, n is the number of bytes to
be moved and location specifies the location in the user's program where the
n bytes will be moved from.

Worked Example

11-2 To illustrate the use of these macros let's take the following example.
There are two programs which are not in storage at the same time. PROG1
will build a table of data which PROG2 will use in its processing. PROG1
must tell PROG2 where the table it has created is located in storage. Con-
sider the following coding:
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PROG1 PROG2

———————

BEGIN BALR 2,0 BEGIN BALR 2,0
USING  *,2 USING  *,2
MVCOM 12,4, TABLE1 COMRG
. L 3,12(0, 1)
FETCH PROG2 END BEGIN
TABLE1 DC A(TABLE)

END BEGIN

PROG1 moves the 4 bytes at location TABLE1 which is the address of TABLE
into the communication region starting at the twelfth byte of the region. Later
PROGI1 causes PROG2 to be loaded by using the FETCH macro. PROG2 uses
the COMRG macro to get the starting address of the communications region
into register 1. Then by using a displacement of it, 12 has the address of
TABLE in register 3.

There are times when a program encounters an error condition which
prevents it from proceeding. However before the program terminates it is
useful to produce a picture of how core storage looks so that the programmer
can determine what caused the error or unusual condition. To do this the
program can issue a dump macro which has the following format

DUMP

This macro prints a picture of storage as it exists at that moment and then
terminates the program.

A program is terminated when it tells the supervisor that it is finished.
This can be done by the end of job macro with the format

EOJ

This macro informs the supervisor that the job is finished and to load job
control to schedule the next job.
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11.4 Service Programs

In addition to the control programs and language translators, operating
systems usually provide a class of processing programs call service programs.
These programs help the user operate and maintain the system. The Linkage
Editor which was mentioned previously is one of these programs. Others
include the utility programs and the Sort/Merge program. The latter provide
functions which a large number of users would otherwise write programs for
if a generalized program were not provided. The service programs run undez

the control programs in much the same manner that application programs do.

The Linkage Editor, discussed briefly in Section 11-2, is used to take
the output of the language translators which is in relocatable format and edit
it into the core image library. With the addition of this intermediate step
there are some additional capabilities available to the user, particularly in
the way he organizes, writes, tests and maintains his application programs.

Since the output of the language translators is a relocatable deck or
object module, the Linkage Editor can combine separately compiled or assem-
bled object modules into one executable program called a phase. This means
that an application can be broken down into its basic parts and each part coded
as a subroutine. The subroutines can be coded and tested separately. As a
result, more than one person can work on coding and testing an application
in a fairly independent manner once the ground rules are decided upon. Then,
when each of the routines have been completed they can be combined, tested
as a whole and run as though it had been written as one routine. The overlap
obtained by several people working simuitaneously on an application enables
the job to be done in a shorter period of time. In addition maintenance time
is reduced since when an error is found only the offending routine need be
recompiled or reassembled and then link edited with the other routines.

To explore the functions of the Linkage Editor let's examine some
examples of combining separate object modules into one executable program.

Worked Example

11-3 Our first example shows separate object modules link edited into a
single executable module or phase.

The input to the Linkage Editor looks as follows
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INPUT OUTPUT

PHASE P1,S,1 PHASE
P1
OBJECT WITH
MODULE STARTING
A POINT AT
LOCATION
OBJECT A
MODULE
B
OBJECT
MODULE
ENTRY A

The PHASE control card gives the name of the resultant phase, in this
case PI, and also where P1 is to be loaded. S, 1 indicates that P1 is to be
loaded at the first available location after the nucleus. The output from
Linkage Editor is one module referred to as P1 in the core image library.
The ENTRY card indicates the end of the object modules to be included in
this phase and the entry point or starting address for execution for this phase.

Worked Example

11-4 In some cases the resultant phase is composed of object modules in
the input stream and some from the relocatable library. The following
example combines object modules A and C from the job stream with module '

B from the relocatable library into phase P1.
PHASE P1,S,1
INCLUDE B

OBJECT MODULE
A

OBJECT MODULE
C

ENTRY A
The include card tells Linkage Editor to find object module B in the relocat-

able library and incorporate it in this edit at the point where the include card
appears. The order of the programs in the resultant phase P1 is different.

306



However, the staring location is still A in the module in which that label
appears.

11-5 The Linkage Editor can also process several object modules into
several phases as the example below depicts.

PHASE P1,S
OBJECT MODULE
A
OBJECT MODULE
B
ENTRY A
PHASE P2,L,,END B
OBJECT MODULE
C
ENTRY C
PHASE P3, L, , ENDB
INCLUDE D
ENTRY D1

In the example the program needs object modules A, B, C, D but does not have
enough storage to hold the four of them at the same time: as a result, the
program is divided into three phases. Phase P3 is made up of module D
called from the relocateable library. Phase P1 would be loaded and remain
in storage. When P2 is needed it would be loaded from the core image
library at the time P1 issues a fetch macro. P2 would be loaded at the loca-
tion which is equivalent to the label ENDB which must be defined in P1.
Assume ENDB defines the next location following the end of P1. Since P3
has the same load point, phases P2 and P3 would not be in storage at the
same time. Only the one needed at that particular time would be present.

P1 would determine which one is requested by the name used in the fetch
macro. The L in the phase cards for P2 and P2 informs Linkage Editor that
the starting location to be assigned for loading is represented by the following
Symbol ENDB which is defined in a preceding phase.



As we have shown in the preceding examples, the linkage editor function
in an operating system gives the programmer flexibility in structuring his
program. Another service program which is a necessary part of an operating
system is the librarian program. This is usually one or more routines that
enable the user to maintain the system libraries. In the 8K BOS system there
are three basic libraries:

Core Image Library
Relocatable Library

Macro Library

The librarian routines enable the user to selectively print or punch the con-
tents of these libraries. In addition, routines are provided to add, delete and
update members of the libraries. These routines play 2 major part in keep-
ing the whole system running efficiently.

11.5 System Generation

Since operating systems are composed of many programs which must
satisfy a wide variety of users and equipment, they are generalized programs.
This generalization requires core storage and processing time. However,
each user is interested in his own requirements and not particularly in those
of all other users of the system.

The first operating systems were designed for a small number of users
and as new systems and input/output devices became available the size of a
standard system grew to include all the desired functions and configurations
and as a result, the size of these programs approached a size that was un-
desirably large in some instances.

To relieve each user from giving up storage for functions someone else
needed, operating systems were designed to be adapted to a particular users
needs. At first, this adaptation was in the input/output configuration area
only. In other words, if an installation didn't have a particular type of device
the code in the system for that device was dropped out. As operating sys-
tems provided more functions in other areas, these were provided in a
selectable manner.

The process of taking a standard operating system and adapting it to a
particular installation's needs is known as system generation. It is usually
accomplished by using a starter system which is an operating system with an
Assembler, Linkage Editor, and library routines. The installation then
specifies its requirements via a set of parameters which are given to the
starter system. Guided by these parameters the starter system assembles
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certain modules and link edits these with other object modules. The librarian
then arranges the resultant modules into the appropriate libraries and the
installations own version of the operating system is formed.

The technique of system generation enables one general system to be
adapted to the needs of many different installations.
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Summary

We have briefly discussed the evolvement of operating systems. The
functions and facilities of the system such as scheduling, supervision and
program structure were reviewed for an elementary system, 8K BOS. In the
next chapter some of the more advanced concepts in operating systems will
be surveyed.

As the computing system increases in speed and sophistication so will
the programming systems that are employed to utilize this increased comput-
ing power. The evolution of operating systems was a major step in that
direction.
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Chapter 12

DISK OPERATING SYSTEM

st s e

In Chapter 11 the concept of an operating system was introduced using
the 8K Basic Operating System for illustration purposes. The 360 has several
levels and types of operating systems which will control it. As the computing
system increases in size and complexity, higher levels of operating system
may be used to control its operation. As the level of the operating system
increases, more function are provided and more resident core storage is
required to operate it. The Basic Operating System is the first level of
operating system provided. The Disk Operating System is an intermediate
system and contains additional facilities not in the first level system.

12. 2 Programming Languages

The Basic Operating system enabled the programmer to program in
either assembly language or the Report Program Generator language. The
Report Program Generator (RPG) language, unlike assembly language, is not
tied to the instructions of the computing system. It is designed for use by a
person who does not have to know the machine instructions of the computing
system. It is primarily intended for writing programs which generate reports
from input data. The program is written using statements from the RPG
language and the Report Program Generator processor translates them into a
machine language program. Since the source language does not resemble the
machine instructions it is called a 'higher level language'. The higher level
language also allows greater flexibility in the use of the program. Since the
source program is not machine instruction dependent, it can be run on any
computer that has a translator for that source language.

The Disk Operating System, in addition to assembly language and the
Report Program Generator language, offers the user COBOL, FORTRAN, and
PL/L This gives the user a wider variety of languages from which to choose
when programming an application. Each programmer or group which uses
the computing system can use the language or languages which best suit the
application yet the same operating system can run all the programs even
though they were all written in different languages.

COBOL is a higher level language which is used in many commercial
applications. The source statements for a program written in COBOL look
very much like sentences in the English language. The COBOL processor
reads the source statements and translates them into machine instructions
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which can be executed by the computing system. The COBOL language was
developed jointly by the U. S. government and the computer manufactures in
an effort to ease the conversion of applications from one computer to another
and have a source language which is self documenting.

FORTRAN is also a higher level language and one of the oldest in use.
The source statements of the FORTRAN language closely resemble mathe-

matical notation. For this reason it has been widely used for scientific and
en

gineering computing,

PL/1 is another higher level language. It was designed to give the pro-
grammer a general purpose language which combines features of both
FORTRAN and COBOL and adds new features which are in neither COBOL or
- FORTRAN. These new features enable the programmer to use a higher level
language to program certain applications which previously required assembly
language.

Using the subroutine technique discussed in Chap. 8, and the linkage
editor concept covered in Chap. 11, parts of an application can be written in
the language most appropriate and link edited into one executable program.
Under the Disk Operating System the choice of languages is greater which
gives the programmer more flexibility and the use of higher level languages
makes programming easier.

12.3 Job Steps

In Chap. 11, the concept of a job and a job step were discussed but in
the 8K Basic Operating System there is no way to define a job step formally.
Whether a job required the use of several programs in a consecutive order
or not was determined from the number of names in the job card. The

example of a three step job of assemble-load-go used a job card with two
names.

// JOB ASSEMBLER, program name

The presence of the program name as the second operand informed the
scheduler that the linkage editor had to be called after the assembler before
the program whose name appeared as the second operand could be called for
execution. The Basic Operating System provided a form of job step capa-
bility but for a specific function (compile a go) and limited to not more than
three steps.

The Disk Operating System provides a more general job step capability
by expanded use of the EXEC control card. As in the basic system all
assignments of input/output devices by the use of ASSG must follow the job
card. These I/O assignments must be sufficient for all steps which will be
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executed as part of this job. However, there can be as many // EXEC cards
as desired for each job and they can name any program needed. For example,
suppose a job consisted of reading data and selecting certain records for
output. These records are first sorted and from the sorted output a report
will be written. The computation could be organized into a three step job.
Assume that the first program which selects the data to be sorted has been
previously tested and is stored in the core image library with the name of
DATASEL. The report writing program was also previously tested and stored
in the core image library with the name of REPORTB. The sorting of the
data will be done by the Sort/Merge program which is one of the processors
provided with the operating system. The job stream is shown in Fig. 12-1.
The following operations will be performed:

Job Stream

@ /IIJOB RUNS
/s
ﬂlEXEc REPORTB

@ /IIEXEC DSORT
@ /l*

@ /DATA FOD DATASEL

@ ﬂlexsc DATASEL
/IIASSGN SYS000,X'190"

/ 1IASSGN SYS002,X'181'
@ /IIA '

SSGN SYS001,X'180!

//1IASSGN” SYSRDR, X'00C’ '

/uAsseN SYSLISF,X'00E'

ﬂASSGN SYSLOG,X'OIF"
/IIASSGN SYsIPT, X'ooc!

@ 11J0B PROREPT

Fig. 12-1
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1. The // JOB card defines the start of a new job with the name PROREPT.
PROREPT is the name of the job and not the name of the program to be called
as in the basic system.

2. The // ASSGN cards relate the symbolic names used in the program to
the physical I/0 devices. X'CUU' is the address of the physical input/output
unit which is assigned to the symbolic name. SYSIPT is assigned to the card
reader, the source of input for DATASEL. SYSLOG is assigned to the

operator's console, the I/C device where operator
SYSLIST is assigned to the printer where error messages for the sort and the
report produced by REPORTB will be printed. SVSRDR is also assigned to

the card reader where the system reads the control cards. SYS001 is assigned
to a tape where DATASEL will write its output data and DSORT will read that
data as input to the sort. SYS002 is assigned to a tape also which is the out-
put of sort and the input to REPORTB. SYS000 is assigned to a disk which

will be used as a work area by the sort.
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3.  The // EXEC card tells the scheduler to call the program DATASEL for
the first job step.

4, This is the data that DATASEL will read as input. It is in the input
stream because SYSIPT and SYSRDR are assigned to the same device.

5. The /* indicates to DATASEL the end of data in the input stream. This
card prevents DATASEL from reading as input data the control cards which
follow and thereby destroying the next job.

6. // EXEC DSORT tells the scheduler to call the disk sort as the program
to be executed as the second job-step.

7. // EXEC REPORTB informs the scheduler that the third job-step pro-
gram REPORTB, is to be executed.

8. The /& card indicates the end of the job, that is, no more job-steps
follow, and causes all I/0 device assignment to be reset so that the 1I/0
devices can be assigned for the next job.

9. The // JOB RUNbS indicates the start of the next job called RUN5.

Suppose now that both DATASEL and REPORTB had been written in
COBOL and Report Program Generator, respectively and had to be compiled
before they could be executed. The job stream would now look as shown in
Fig. 12-2.

This job is a seven step job. The first four job steps perform a
COBOL compilation of DATASEL and link edit it into the core image library
follow by a Report Program Generator compilation of REPORTB and link
edit it into the core image library. The next three steps are the same as in
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Fig. 12-1. The input/output device assignments include one more tape unit
assigned to SYS003. COBOL uses three work tapes which are assigned to

/!l JOB RUNS5
/&
{ Il EXEC REPORTB
/!l __EXEC DSORT

/1%

/ DATA FOR DATA SEL
/!l EXEC DATASEL
/11 EXEC LNKEDIT
(1%
/
¢/ SOURCE FOR REPORTB
(Il EXEC RPG
/!l EXEC LNKEDIT
/1%
/
(/SOURCE FOR DATASEL
/Il EXEC COBOL , I |
/11 ASSGN SYS003, X'182' |
/1l ASSGN SYS002, X'i81'
/11 ASSGN SYS00t1, X' 180"
/1l ASSGN SYS000,X'190'
/1l ASSGN SYSRDR, X'00C'
/11 ASSGN SYSLIST, X' OOE"
/1l ASSGN SYSLOB, X'0IF'
/11 ASSGN SYSIPT, X'00C'
r/ JOB PROREPT

Fig. 12-2 Job Stream Illustration-2

SYS001, SYS002, and SYS003. It also outputs the compiled object deck to
SYS000 which is assigned to disk. Linkage Editor reads its input, the
object module, from SYS000 and use SYS001 as a work unit. The output of
linkage editor goes into the core image library which doesn't need an assign
card. The Report Program Generator use SYS001 as a work file and also
puts its object module on SYS000. The I/O device usage for the last three
job-steps is the same as the example shown in Fig. 12-1.

The more flexible job-step capability provided in the Disk Operating
System allows the programmer to combine any number of programs that
were previously separate runs into one job and have it run as though it were
one program. This job-step capability also enables the application to be
written in a modular manner and make use of existing programs.
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12.4 Multiprogramming

In Chap. 9 the input/output channel was discussed. Its purpose is
overlapping the processing and data transfer times in a program so that the
central processing unit would not be idle while data transmission is taking
place. The input/output channel reduced the total time that a program took
to execute by overlapping the central processing unit time and input/output

time when possible. In other words, the total execution time of a program

before the use of the channel was the total of input/cutput time and processing
time (Fig. 12-3a). After the use of the input/output channel the total pro-
gram execution time is int sum of the total I/O time and processing time
minus the overlapped time (Fig. 12-3b). There are certain cases where
either the processing time or the I/0 time is the most dominant factor in
computing the total execution time. These programs are called process bound
or I/0 bound programs respectively. For instance, a program may have so
much input/output time relative to processing time that if the overlap between
1/0 time and processing time were a hundred percent the total job time would
be the input/output time and the processing unit would be idle for the time
difference between I/O time and processing time. The converse is also true
where processing time is much greater than I/0 time. (Fig. 12-3a and Fig.
12-3d)

From Fig. 12-3 it can be seen that the most efficient use of the central
processing unit is for case d), the processes bound job, and the worst case
is a) where the CPU is idle whenever an I/O operation is required. In
general, there are few programs which balance their I/O time and CPU time
s0 that neither component is idle for a significant amount of time. Let

Cidle = jdle CPU time

T
“idle = idle I/O time

18] = Overlapped time
P = total program time
Then
P -Cidle+lidle+0
or ;e ige 0
P P P

For many programs, the average percentage of overlap is about 20 to
30% which means that the combination of CPU and I/0O idle time is 70% of the
total program execution time. Even in cases where the program is I/0
bound or process bound one of the resources is idle part of the total program
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Fig. 12-3 Program Run Times
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time. If this idle time could be used to process more programs, then the
computing system whose cost is fixed could be better utilized. The result is

increased thruput for approximately the same total cost which reduces the
cost of getting a single iob done.

Many computing systems have a number of input/output devices which
are rarely used at the same time except by a few applications. The same is
true for the storage of the central processing unit. It is generally a few

2
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ments of a computing system. However, when other applications are run
they tie up all these resources even though they do not use them. This is
because a program is run from start to finish before the next program is run.
If the device and storage that are not being used for the program being run
could be brought into service for other programs, the total system could be
used more efficiently.
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There are some applications which do not utilize the system extensively
but must be capable of supplying results on demand. Their demands for
service are usually unpredictable and therefore cannot be scheduled. This
usually requires the program to be run on the system on a continuous basis
over a period of time. Other work cannot be done on that system because
that program must supply its service on demand. This usually means either
two systems, one for the continuous application and one for the other pro-
grams or running the other programs during the hours the continuous applica-
tion is not needed. If the special program and other programs could utilize
the same system concurrently, cost could be reduced and service to other
users improved.

Because of the idle time of some of the computing systems components
when it is running many applications, the problem of only a few applications
using all the systems resources simultaneously and the need of a single sys-
tem to perform multiple functions, the concept of multiprogramming evolved.
The general concept is simple. Give a computing system under control of an
operating system, multiprogramming is the ability to run multiple programs
in an interleaved manner. The principle takes advantage of the fact that most
programs have processing interspersed with input/output operations. If the
program cannot compute during the data transfer, then the processing unit
is idle. The idle time can be used by another program while the first one is
waiting. In this way control of the central processing unit is given to another
program whenever the first program requests an operation which would
cause the CPU to be idle. The switching of control of the CPU between pro-
grams in this manner can happen so fast that it appears to the observer that
the system is running both programs simultaneously. Remember this is not
so. Each program is executed in a sequential manner but it may not go from
start to finish before control of the CPU is given temporarily to another
program.




To illustrate the multiprogramming concept, let's take an example
where three individual programs have been loaded into storage. The fact
that a program is in storage and ready to be executed is indicated by adding
an entry in a list called a queue. The queue is a list of programs which are
ready to execute but need control of the central processing unit. In our
example, the queue has three entries, one for each of the three programs,

A, B, C. The control program gives control of the CPU to the first program
in the list, A, by a load PSW (program status word) instruction. The PSW
has the starting address of program A, and therefore, program A has control
of the CPU. Program A will continue to execute until it can no longer use
the CPU for a continuous period of time. This situation can occur if program
A issued an unconditional request for an input/output operation which means
it does not want to continue until the I/O operation is complete. The CPU
would then be idle while the I/O operation took place. The control program
recognizes this fact and 1) flags program A's entry in the queue as waiting
for I/0, 2) saves A's PSW in its entry in the queue, and 3) loads the PSW
for program B because the entry for B is the highest in the queue that is not
flagged as waiting. This gives control of the CPU to program B. The status
of the three programs at this point is:

A is in storage, has partially executed and is waiting

for an I/O operation to complete;
B is in storage, is in control of the CPU and is executing;

C is in storage but has not started execution.

Now while B was executing, assume that an interrupt occurred which
signaled the completion of the I/O operation for which A was waiting. The
control program gains control because of the interrupt and 1) identifies it as
the completion of A's I/O request, 2) removes the wait flag from A's entry
in the queue, 3) saves B's PSW in its entry in the queue and 4) loads A's
PSW because it is the highest entry in the queue that is not waiting. The
status of the three programs at this point is:

A is in storage and has resumed control of the CPU;

B is in storage, partially executed and waiting to
regain control of the CPU;

C is in storage and waiting to gain control of the CPU

After a while A may request another input/output operation which cannot
be satisfied immediately and its entry in the queue is flagged as waiting. B
then is given control because it is the highest entry in the queue which is not
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flagged as waiting. B executes for a time and then requests a program to be
loaded. Since this takes a finite time to be done the CPU can be used by
another program for that interval of time. Program A is still waiting for the
completion of the input/output operation, B is waiting for a program to be
loaded, and so, C is given control of the central processing unit.

It can be seen from this example that multiprogramming a single central
processing unit requires an algorithm to be developed which determines which
one of a number of individual programs should get use of the CPU when the
program which had control relinquishes it for a finite time period. The pro-
cedure used in the example and depicted in the flowchart in Fig. 12-4 takes
advantage of the fact that most programs, if executed alone, have natural
points throughout their run when the CPU is idle. The algorithm uses this
idle time in one program to give control of the CPU to another program. If
more than one program can use the CPU it gives control to the one whose
entry in the queue is nearest the top. Therefore, the order of the entries in
the queue affects the ability of the program to get CPU time. The program
with the first entry in the queue will get the CPU whenever it can use it,
whereas the program whose entry is last in the queue will only get the CPU
when all programs whose entries are above its entry are flagged as waiting.
The ordering of the queue, if all programs are considered equal, would be
first in first out. In other words, the entries would be ordered by time of
arrival at the system.

However, in many cases some programs are more important than
others. If each program is assigned an 'importance factor' called a priority,
then the queue can be ordered by priority with the more important programs
towards the top and less important programs at the bottom. If programs have
the same priority they are ordered first in first out within the same priority.
As each program terminates, its entry is removed from the queue.

Our discussion of multiprogramming above does not treat other
algorithms which are used to enable a CPU to work on multiple programs
before any particular one is complete. This algorithm was used because it
is similar to that used by the Disk Operating System and will be discussed in
the context of that system in Sec. 12.7.

12.5 Teleprocessing

There is a large category of applications which are grouped under the
name teleprocessing. Some of these applications are also called 'real-time'.
This area of computing is of great interest and growing very rapidly today.
The common thread in all teleprocessing applications is that the computing
system receives and transmits data to a terminal device of some type over
a communication line. In general, a teleprocessing application must run on
the system for long periods of time. Many run for 8, 12, or 24 hours a day.
This does not mean that they are executing instructions continuously for that
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period of time. The purpose of most teleprocessing programs is to be res-
ponsive. When a request is made the program must be there to receive that
request and service it with a minimum delay. The terminal device which is
connected to the computing system through a communication line can be of
several types. Many are of the keyboard variety and operate much like a
typewriter. They may be a visual display terminal using cathode ray tube,
or another computer system. Many applications have been developed using
the keyboard type terminal. This terminal allows a person to type informa-
tion directly into the computer. In a sense, the person at the terminal is on-
line or directly connected to the computing system. Some of the applications
which utilizes this on-line capability follow are discussed below.

Inquiry: A person at a terminal enters a coded message from the terminal.
The computer program receives the data, analyses it, usually retrieves
information from a master file, and sends it to the terminal that requested it.
Notice that the request was initiated from outside the computing system. The
program responds when queried and therefore must be available whenever a
request is possible. Since the requests for service are not scheduled by the
program, most teleprocessing programs remain resident in storage for the
period the service is being provided.

Message Switching: A computer is used to route messages from one terminal
to another. Messages can also be routed by electro-mechanical switching
systems. However since it is done in a computer by a program, the func-
tions performed can be changed easily. The computer switching system is
more flexible. In many cases it is also faster, thus being able to handle
more messages. Messages are entered from a terminal with part of the
message containing an identification of the destination terminals for this
message. The program analyses this portion of the message, usually called
the header, and then sends it to the appropriate terminals.

On-Line: In many applications there are master files of information which
are updated on a periodic basis. This is usually accomplished by saving
transactions which will change information in the master file until there is a
sufficient number to justify on update run on the system. This process is
called batching. This means that other programs that use the master file
only have information which is current as of the last update. If the master
file were always available to the update program and the transactions were
entered through a terminal as they took place, the update program could pro-
cess the transaction against the master file as they are received so that the
file will always be current. This type of processing is called on line because
the information in the master file is always accessable to the computing sys-
tem and therefore to the person at the terminal.

The types of teleprocessing applications mentioned above often have
real time constraints placed upon them. That is, the time that elapses
between the point at which the message is entered and the answer is received
is fixed or has a fixed lower limit. The interval that is considered reasonable
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depends on the application. In many applications the requirement is that the
person at the terminal should feel that the system is working only for him
even though it is servicing many terminals at the same time. That is, it is
desirable that he perceive no delay in the computer's response to his inquiry.
A satisfactory response time in this case may be of the order of several
seconds. In other applications the system may be controlling a physical pro-
cess via electronic equipment. In these cases the response time is often much
more critical, ranging down to the order of thousandths of a second.

There are several ways terminals and the computer interract. These
are:

Contention
Polling

Dial up

Contention occurs when the person at the terminal presses a button and an
interrupt is caused in the CPU. The program then issues a read I/O instruc-
tion to read the data from the terminal. In many cases one communication
line is shared by many terminals. This is called a multidrop line. If con-
tention is being used on a multidrop line, the terminal that gets the line keeps
it until it finishes and the other terminals wait in much the same fashion as
party-line telephone service.

Polling is used in many cases for multidrop lines. Polling allows the
computer program to control which terminal will be allowed to send data. If
a terminal has something to send a button is depressed which sets a latch.
The program sends a signal to a terminal on a line. If the latch has been set
a circle Y signal ( Y ) is returned; if it has not a circle N( N ) is returned.
If the response is a Y the program the issues a read I/O command for the
terminal and the data is transmitted. If a N is the response, the next ter-
minal is polled. Polling is done by the program and therefore it controls the
transmission of messages into the CPU.

Some terminals are connected to the computing system through a
switching network, the same network that telephones use. In this case the
person at the terminal dials the computing system phone number. The com-
puter has instructions which enable it, in effect, to answer the phone and
have the data sent. Also the computer can signal the terminal to disconnect
the phone when it is finished sending data back to the terminal.

In the Disk Operating System there are input/output macros that enable
the programmer to write programs that use terminals. These input/output
macros are used in the same way as those for tape, cards, printing, and disk
were used in Chap. 10 for input/output programming. The input/output
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support for teleprocessing is another access method which interfaces between
the program and the I/O supervisor. There are two levels of I/O support for
communication devices. They are the READ/WRITE, or intermediate level,
and the GET/PUT, or highest level. These macros are functionally the same
as those discussed in Chap. 10. Remember that with the READ/WRITE level
macro it's the programmer's responsibility to synchronize the program with
the I/O operation and to provide buffering, whereas at the GET/PUT level,
these are provided automatically.

In a program using the READ/WRITE level, each communication line is
defined with a DTF (Define the File) as each file was for tape or disk. In
addition to the DTF a polling list for each line must be established. A polling
list is a table that contains the addresses of all the terminals on the commun-
ication line in the order they should be polled. When the program issues a
read request with the name of the DTF for the communication line it wants,
the I/O system polls each terminal using the polling list for the line. If
every terminal responds with a N (nothing to send) the read operation is
complete and when the program sychronizes itself with the completion of the
operation, a code which signifies nothing received will be returned to the
problem program. If when polling a line the I/O system receives a X (some-
thing to send), it will read the data into a buffer completing the read operation.
It is still the program's responsibility to synchronize the completion of the
1/0 operation with itself before using the data. Since in teleprocessing appli-
cations the main goal is responsiveness, it is necessary to read each line
frequently. At the READ/WRITE level the scheduling of line reading is the
responsibility of the user's program.

When sending a message to a terminal using the READ/WRITE level the
program issues a write request and the I/0 system will transmit the message
when the line is free.

When using the GET/PUT level access method for teleprocessing appli-
cations, the operation of the access method and the user's program differ con-
siderably from the READ/WRITE level. Since the GET/PUT level is re-
sponsible for line scheduling and sychronization in addition to the other func-
tions there is more information that must be given the access method. This
is done by using a set of macros which define: the line and terminal configu-
ration, the format of the header label of the messages, the type of polling to
be performed and other optional service desired. This collection of macros
is then assembled by the assembler into a line control program. This pro-
gram is responsible for all the functions associated with sending and receiv-
ing messages in the system. By polling the lines in a predetermined pattern
it receives messages and stores them in an input queue or an output queue.
Which queue is used is determined from the information in the header of the
message. If there are arfy messages in the output queue it sends them to the
appropriate destination when the desired line is free. Once the line control
program is assembled, these functions are performed without the intervention
of the application program.
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The messages that are placed in the input queue need further processing.
Those that were placed in the output queue by the line control program and
will be sent by it are being switched as in the message switching application,
by the line control program alone. When an application program wants to
process a message in the input queue, it issues a GET macro which presents
it with the next message in the queue. If the queue is empty the program waits
until 2 message is placed there by the line control program. When the pro-
gram wants to send a message it issues a PUT macro which will cause the
message to be moved into the output queue. It will be transmitted by the line
control program at a later time. The GET/PUT level handles most of the
difficult functions in a teleprocessing application but is less flexible than the
READ/WRITE level.

12. 6 Spooling

As computers grew in size and speed the associated input/output devices,
especially card readers, card punches, and printers could not keep pace as
was discussed in Chap. 9. It became uneconomical to have large computing
systems read data from a card reader and write output to a printer or punched
card. The CPU was idle too much of the time while these operations where in
process. It is economical to have the system read and write magnetic tape
at speeds more nearly equal to the task than mechanical card readers and
printers. However, the data comes in on punched card and the output must
be printed or punched to be usable so the information must get to and from
tape. Many installations use small computers to do the card to tape, tape to
printer and tape to card operations. It is not unusual to have several such
small systems supporting a large processing system. The operations per-
formed by the small systems are called peripheral operations because they
handled the data at both ends of the operation. These peripheral operations
have the characteristics of being input/output bound. In fact in most cases
they only use the CPU to issue the I/O commands. With the input/output
channel being able to overlap I/O operations with CPU processing, a program
with the characteristics of these peripheral programs would use very little
CPU processing time and leave it free to work other programs. The tech-
nique of performing peripheral operations on the same system concurrently
with running the major programs is called spooling. The acronym SPOOL
stands for Simultaneous Peripheral Operatlons On Line. Spooling is a form
of simple multlprogrammmg In its early 1mp1ementat10n, it was a res-
tricted form in that it allowed the spool program to operate with only one
other program rather than a number of programs. Usually the peripheral
programs are given the CPU when they need it since they only require it to
start an input/output operation and relinquish control immediately thereafter.
The spool program was usually written as part of the control program and
was designed to gain control when any of the I/O devices it was using com-
pleted an operation and interrupted processing. It would then determine if
another I/0 operation could be started and control would subsequentliy be
returned to the interrupted program.
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Spooling enables an installation to have a large self contained system.
It usually employs unused I/O devices and idle CPU time and permits a re-
duction in total system cost by not requiring as many peripheral computing
systems. The spool operation usually degrades slightly the execution time of
any particular job but permits an increase in total system performance.

12.7 Multiprogramming with the Disk Operating System

The Disk Operating System provides a multiprogramming capability
which can be used with intermediate systems. The system allows up to three
individual programs to be run concurrently. The storage of the CPU is parti-
tioned into three areas, one for each program to be run concurrently. Each
area is assigned a priority and the program that uses a given area has the
priority associated with it. The three areas are designated as foreground
one (F1), foreground two (F2) and background (B). F1 is the highest priority
area and the program running in it has first claim on the CPU, followed by
F2 and B, in that order.

The jobs that are run in the background region are scheduled by job con-
trol based on the information in the job stream. This sequential succession
of jobs is accomplished just as in a non-multiprogramming system. As one
job step completes the next step is scheduled. When a job is complete, the
first step of the next job is scheduled. The concept of scheduling the back-
ground area does not differ from the previous sequential systems we have
discussed. At some point in time the operator may interrupt the system from
his console and request a program to be loaded from the core image library
into either F1 or F2 if no program is running in that area. The program that
is loaded has the CPU priority of the area into which it is loaded. When a
program in either foreground area terminates the operator may initiate
another program immediately, wait until later, or leave the area unused.
Let's summarize the scheduling procedure. The background area is scheduled
by job control in conjunction with the job stream. The two foreground areas
are scheduled by the operator. Therefore, each area is scheduled indepen-
dently.

While programs are executing in the three areas, the CPU usage is
determined by the priority of the respective programs which in turn is related
to the area in which they are running. For instance the program in F1 gets
control of the CPU whenever it needs it. If the program in F1 cannot use the
CPU at that moment, the program in F2 is given control. When the programs
in F1 and F2 cannot make use of the CPU, the program in the background area
is given control. However, whenever a program in a higher priority area
needs the CPU it will be given control. The programs coexist in storage
together and are protected from each other and the control program is pro-
tected from all three by the storage protect feature.
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The programs which run in the foreground areas are usually the type
that must be present in core when needed such as teleprocessing and spooling
programs. The programs processed in the background are the usual com-
piling, testing and production runs. An installation could use the Disk
Operating System in a multiprogramming environment in the following manner:
In F1, the teleprocessing application could be running. Since the teleproces-
sing application is usually critical in response time but not a major continuous
CPU user, it could gain control of the CPU whenever it needs it and release

[ Ty 3

it when it doesn‘t. In F2 the operator could schedule a program which does
card to tape, tape to card, or tape to printer when those functions are needed.
Since these peripheral programs are usually I/O bound they still leave suf-
ficient CPU time to do the normal installation jobs in the background area.

By using multiprogramming an installation can accomplish teleproces-
sing, spooling and their other jobs on a single system instead of several
systems. It must be kept in mind, however, that there must be enough com-
puting power and I/O devices for all three applications. This usually costs
less than three separate systems and eases scheduling problems of data inter-
change between applications, and permits ready use of common subroutines.
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Appendix A
MACHINE-INSTRUCTION MNEMONIC OPERATION CODES

This appendix contains a table of the mnemonic operation codes for all machine instruc-

L E oo debrad s bva maes o Y. B aas i b < 1A in Ros s vy 3 -
tions that can be represenced in assemolisr ianguage, indliuding extended mnemonic cpera

tion codes. It is in alphabetic order by instruction. 1Indicated for each instruction
are both the mnemonic and machine operation codes, explicit and implicit operand for-
mats, program interruptions possible, and condition code set.

The column headings in this appendix and the information each column provides follow.
Instruction: This column contains the name of the instruction associated with the mne-

monic operation code.

Mnemonic Operation Code: This column gives the mnemonic operation code for the machine
instruction. This is written in the operation field when coding the instruction.

Machine Operation Code: This column contains the hexadecimal equivalent of the actual
machine operation code. The operation code will appear in this form in most storage
dumps and when displayed on the system control panel. For extended mnemonics, this
column also contains the mnemonic code of the instruction from which the extended mne-
monic is derived.

Operand Format: This column shows the symbolic format of the operand field in both
explicit and implicit form. For both forms, R1, R2, and R3 indicate general registers
in operands one, two, and three, respectively. X2 indicates a general register used as
an index register in the second operand. Instructions which require an index register
(X2) but are not to be indexed are shown with a 0 replacing X2. L, L1, and L2 indicate
lengths for either operand, operand one, and operand two, respectively.

For the explicit format, D1 and D2 indicate a displacement and Bl and B2 indicate a
base register for operands one and two.

For the implicit format, D1,Bl1 and D2,B2 are replaced by S1 and S2 which indicate a
storage address in operands one and two.

Type of Instruction: This column gives the basic machine format of the instruction (RR,
RX, SI, or SS). If an instruction is included in a special feature or is an extended
mnemonic, this is also indicated.

Program Interruptions Possible: This column indicates the possible program interrup-
tions for this instruction. The abbreviations used are: A - Addressing, S - Specifi-
cation, Ov - Overflow, P - Protection, Op - Operation (if feature is not installed) and
Other - other interruptions which are listed. The type of overflow is indicated by: D
- Decimal, E - Exponent, or F - Floating Point.

Condition Code Set: The condition codes set as a result of this instruction are indi-
cated in this column. (See legend following the table).
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Instruction g‘::;:';: O"::[::':ﬂ Operand Format
Code Code Explicit Implicit

Add A 5A R1,D2(X2, B2) or R1, D2(,B2) | R1,S2(X2) or RI,S2
Add AR 1A RI1,R2
Add Decimal AP FA DI(L1,B1), D2{12,82) S1(L1),S2(L2)or S1,52
Add Holfword AH 4A R1,D2(X2, B2)or R1, D2{(, B2) R1,52(X2)or RI, S2
Add Logical AL SE R1,D2(X2, B2)or R1, D2(,B2) R1, S2(X2)or R1, 2
Add Logical ALR 1E R1,R2
Add Normalized, Long AD A R1,D2(X2, B2)or R1, D2(,B2) R1, S2(X2)or R1, S2
Add Normalized, Long ADR 2A R1,R2
Add Normalized, Short AE 7A R1,D2(X2, B2)or R1, D2(, B2) R1, S2(X2)or R1, S2
Add Normalized, Short AER 3A R1,R2
Add Unnormalized, Long AW 13 R1,D2(X2, BZ)or R1, D2(,B2) R1,52(X2)or RT, S2
Add Unnormalized, Long AWR 2E R1,R2
Add Unnormalized, Short AU 7E R1,D2(X2, B2)or R1, D2(, B2) R1,S2(X2)or RI, S2
Add Unnormalized, Short AUR 3E R1,R2
And Logical N 54 R1,D2(X2, B2)or R1, D2(, B2) R1,52(X2)or R1, S2
And Logical NC D4 DI{L, B1), D2(B2) SI{L),S2 or S1,82
And Logical . NR 14 R1,R2
And Logical Immediate NI 94 D1(B1),12 s1,12
Branch and Link BAL 45 R1,D2(X2,B2)or R1,D2(,82) | R1,S52(X2)or R1, S2
Branch and Link BALR 05 R1,R2
Branch on Conditi 8C 47 R1,D02(X2, 82)or R1, D2{,82) R1, 32(X2)or Ri, 32
Branch on Condition BCR 07 R1,R2
Branch on Count 8CT 46 R1,D2(X2, B2)or R1, D2(, B2) RT,S2(X2)or RI, S2
Branch on Count BCTR 06 R1,R2
Branch on Equal 8E 47(8C 8) |D2(X2, B2)or D2(, B2) S2(X2) or 52
Branch on High BH 47(BC 2) |D2(X2, B2)or D2(, B2) S2(X2) or 2
Branch on Index High BXH 86 R1,R3, D2(B2) R1,R3,52
Branch on Index Low or Equal | BXLE 87 R1,R3, D2(82) RI,R3,S2
Branch on Low BL 47(BC 4) |D2(X2, B2)or D2(, B2) S2(X2) or 82
Branch if Mixed BM 47(BC 4) |D2(X2,B2)or D2(,82) S2(X2) or 82
Branch on Minus BM 47(BC 4) |D2(X2, B2)or D2(, B2) S2(X2) or
Branch on Not Equal BNE 47(8C 7) |D2(X2, B2)or D2(, B2) $2(X2) 2
Branch on Not High BNH 47(8C 13)|D2(X2, B2)or D2(, 82) $2(X2) 2
Branch on Not Low BNL 47(8C 11)|D2(X2, B2)or D2(,B2) S2(X2) or 2
Branch if Ones 8O 47(BC 1) |D2(X2,B2)or D2(, B2) S2(X2) or S2
Branch on Overflow B8O 47(BC 1) |D2(X2, B2)or D2(, B2) $2(X2) or 2
Branch on Plus BP 47(BC 2) {D2(X2,B2)or D2(, B2) S2(X2) or 82
Branch if Zeros BZ 47(BC 8) {D2(X2,B2)or D2(,B2) $2(X2) or 82
Branch on Zero BZ 47(BC 8) |D2(X2, B2)or D2(, B2) $2(X2) r S2
Branch Unconditional B 47(BC 15)|D2(X2, B2)or D2(, B2) $2(X2) r 2
Branch Unconditional BR 07(BCR 15§R2
Compare Algebraic C 59 R1,D2(X2, B2)or R1, D2{(,B2) R1,52(X2 or R1,S2
Compare Algebraic CR 19 R1,R2
Compore Decimal CcpP F9 D1(L1,81), D2(L2, B2) SHL1), S2(L2)or S1,52
Compare Halfword CH 49 R1, D2(X2,B2)or R1, D2(, B2) R1,52(X2)or R1,S2
Compare Logicol CL 55 R1,D2(X2, B2)or R1,D2(,B2) | R1,S2(X2)or R1,S2
Compare Logical CLC D5 DI(L, B1), D2(B2) SUL),S2 or S1,52
Compare Logical CLR 15 R1,R2
Compare Logical Immediate CLI 95 DI1(B1),12 $1,12
Compare, Long cD 69 R1,D2(X2, B2)or R1, D2(,B2) R1,S2(X2)or R1,S2
Compare, Long CDR 29 R1,R2
Compare, Short CE 79 * [R1,D2(X2, B2)or R1,D2(,B2) | R1,52(X2)or R1,52
Compare,, Short CER 39 R1,R2
Convert to Binary CVB 4F R1,D2(X2,B2)or R1,D2(,B2) | RI,S2(X2)or R1,S2
Convert to Decimal CvD 4E R1,D2(X2, B2)or R1, D2(,B2) R1,S2(X2)or R1,S2
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Program Interruption

Instruction Typeof  |possible Condition Code Set
Instruction  BTTo [P [Op [ Other| 00 o1 10 1

Add RX x | x| F Sum=0 Sum<0 Sum >0 Overflow
Add RR F Sum=0 Sum<0 Sum >0 Overflow
Add Decimat 33, Decimai X Ojx | x | Data {Sum=C Sum<$ Sem >0 Oveiflow
Add Halfword RX x x| F Sum=0 Sum <0 Sum >0 Overflow
Add Logical RX x| x sum=0@| Sum O@)| Sum= Sum 0 Q-
Add Logical RR sum=0@| Sum= 0@ Sum= o®D| smo@®
Add Normalized, Long RX,Floating Pt. x| x| E x| B,C IR L M 4
Add Normalized, Long RR, Floating Pt. x| E x| B,C R L M P
Add Normalized, Short RX,Flouting Pt. |x{x}E x | B,C R L M P
Add Normalized, Short RR,Floating Pt. x| E x| 8,C iR L M P
Add Unnormalized, Long RX,Floating Pt. Ix [x|E x{C R L M P
Add Unnormalized, Long RR, Floating Pt. x| E x| C R L M P
Add Unnormalized, Short RX,Floating Pt. jx {x|E x| C R L M P
Add Unnormalized, Short RR,Floating Pt. x}E x| C R L M P
Add Logical RX X | X J K
And Logical SS X x J K
And Logical RR J K
And Logical Immediate Si X X J K
8ranch and Link RX N N N N
Branch and Link RR N N N N
Bronch on Condition RX N N N N
Branch on Condition RR N N N N
Branch on Count RX N N N N
Branch on Count RR N N N N
Branch on Equal RX, Ext.Mnemonic N N N N
Branch on High RX, Ext. Mnemonicj N N N N
Branch on Index High RX, Ext. Mnemonic N N N N
Branch on Index Low or Equal| RX, Ext. Mnemonic| N N N N
Branch on Low RX; Ext Mnemonic N N N N
Branch if Mixed RX, Ext.Mnemonic| N N N N
Branch on Minus RX, Ext. Mnemonic N N N N
Branch on Not Equal RX, Ext. Mnemonic N N N N
Branch on Not High RX, Ext. Mnemonicj N N N N
Branch on Not Low RX, Ext. Mnemonic] N N N N
Branch  if Ones RX, Ext, Mnemonic N N N N
Branch on Overflow RX, Ext, Mnemonid} N N N N
Branch on Plus RX, Ext. Mnemonic N N N N
Branch if Zeros RX Ext.Mnemonic N N N N
Branch on Zero RX, Ext. Mnemonid] N N N N
Branch Unconditional RX, Ext. Mnemonid N N N N
Branch Unconditional RR, Ext. Mnemonic N N N N
Compare Algebraic RX x| x z AA BB
Compare Algebraic RR z AA BB
Compare Decimal $S, Decimal x x| DatafZ AA BB
Compare Halfword RX x| % FA AA 88
Compare Logical RX x| x Y4 AA BB
Compare Logical RX x| x z AA BB
Compare Logical SS x b4 AA B8
Compore Logical Immediat St x z AA BB
Compare, Long RX,Floating Pt. |x x r4 AA BB
Compare, Long RR,Floating Pt. |x| x| x z AA BB
Compare, Short RX,Floating Pt. | x| x| x z AA BB
Compare, Short RR,Floating Pt. x| x z AA B8
Convert io Binary RX x| x| Data, F| N N N N
Convert to Decimal RX x| x x N N N N
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Instruction g::::;:: OA:::;{; Operand Format
Code Code Explicit Implicit

Divide D 5D R1,D2(X2,B2) or R1,D2(,B2) | R1, S2(X2) orR1,S2
Divide DR 1D R1,R2
Divide Decimal DP FD D1,(L1,B1),D2(L2,82) S1(LT), S2(L2)or S1,S2
Divide, Long DD 6D R1,D2(X2,B2),0r R1,D2(,B2) | R1,52(X2) or R1,52
Divide, Long DDR 2D R1,R2
Divide, Short DE 7D R1,D2(X2,B2)or R1,D2(,B2) R1,52(X2) orRIl,S2
Divide, Short DER 3D R1,R2
Edit ED DE D1(L, B1), D2(B2) Si(L), s2 or 51,82
Edit and Mark EDMK DF D1{t, B1),D2(B2) SHL),S2 or §1,52
Exclusive Or X 57 R1,D2(X2,8B2) or R1,D2(,B2) | R1,S2(X2) orR1,S2
Exclusive Or XC D7 DI{L,BI),D2(B2) S1(L), S2 or S1,52
Exclusive Or XR 17 R1,R2
Exclusive Or Immediate X1 97 D1(81),12 S1,12
Execute EX 44 R1,D2(X2,B2) or R1,D2(,B2) | R1,52(X2) R1,S2
Halve, Long HDR 24 R1,R2
Halve, Short HER 34 R1,R2
Halt 1/0 HIO 9E D1{81)
Insert Character IC 43 R1,D2(X2,B2) or R1,D2(,B2) | R1,52(X2) orR1,52
Insert Storage Key 15K 09 R1,R2
Load L 58 R1,D2(X2,B2) or R1,D2(,B2) [ R1,52(X2) orRI,S2
Load LR 18 R1,R2
Load Address LA 41 R1,D2(X2,B2) or R1,D2(,B2) | R1,S2(X2) orRI,S2
Load and Tesi LR 12 Ri,R2
Load and Test, Long LTDR 22 R1,R2
Load and Test, Short LTER 32 R1,R2
Load Complement LCR 13 R1,R2
Load Complement, Long LCOR 23 R1,R2
Load Complement, Short LCER 33 R1,R2
Load Halfword LH 48 R1,D2(X2,B2) or R1,D2(,B2) | R1,52(X2) orRI,S2
Load, Long LD 68 R1,D2(X2,B2) or R1,D2(,B2) | R1,52(X2) orRI,S2
Load, Long LDR 28 R1,R2
Load Multiple LM 98 R1,R3,D2(B2) R1,R3, 82
Load Negative LNR 1 R1,R2
Load Negative, Long LNDR 21 R1,R2
Load Negative, Short LNER 31 R1,R2
Load Positive LPR 10 R1,R2
Load Positive, Long LPDR 20 R1,R2
Load Positive, Short LPER 30 R1,R2
Load PSW LPSW 82 D1(B1)
Load, Short LE 78 R1,D2(X2,8B2) or R1,D2(,B2) | RI,S2(X2) orRI,S2
Load, Short LER 38 R1,R2
Move Characters MVC D2 D1(L,B1), D2(B2) S1{L), S2 or S1,S2
Move Immediate MVI 92 D1(B1), 12 S1,12
Move Numerics MVN D1 D1(L,B1),D2(B2) SH(L), S2 or S1,S2
Move with Offset MVO Fi D1(L1,B1),D2(L2,B2) S1(L1), S2(L2)or S1,S2
Move Zones MVZ D3 D1(L,B1), D2(B2) Si(L), S2 or 51,52
Multiply M 5C R1,D2(X2, B2)or R1, D2(,B2) R1,52(X2) orR1,S2
Multiply MR 1C R1,R2
Multiply Decimal MP FC D1(L1,B1), D2(L2, B2) S1(L1), S2(L2) or 51,52
Mulitply Halfword MH 4C R1,D2(X2,B2) or R1,D2(,B2) | R1,S2(X2) orRI,S2
Multiply, Long MD 6C R1,D2(X2,82) or R1,D2(,B2) | R1,52(X2) orR1,52
Multiply, Long MDR 2C R1,R2
Multiply, Short ME 7C R1,D2(X2,B2) or R1,D2(,B2) R1,52(X2) orRI1,S2
Multiply, Short MER 3C R1,R2
No Operation NOP 47(BC 0)|D2(X2,B2) or D2(,B2) S2(X2) or S2
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Program Interruptions
{nstruction i MI:;;::‘ Possible Condition Code Set

AlS P |Op| Other 00 01 10 n
Divide RX x| x F N N N N
Divide RR x F N N N N
Divide Decimal $S, Decimal x| x xt x| D,Deta| N N N N
Divide, Long RX,Floating Pt. | xix|E x{ B,E N N N N
Divide, Long RR, Floating Pt. x{E x| B,E N N N N
Divide, Shorf RX, Floating Pt. { xjxjE x{ B,E N N N N
Divide, Short RR, Floating Pt. x|E x| B,E N N N N
Edit SS, Decimal x x| x| Data S T U
Edit and Mark SS, Decimal x x{ x| Data S T U
Exclusive Or RX x| x J K
Exclusive Or SS x x J K
Exclusive Or RR J K
Exclusive Or Immediate St x x J K
Execute RX x|x G (May be set by this instruction)
Halve, Long RR, Floating Pt. x x N N N N
Halve, Short RR, Floating Pt. x x N N N N
Halt 1/O NI A DD cC GG KK
Insert Character RX x N N N N
Insert Storage Key RR x| x x| A N N N N
Load RX x|x N N N N
Load RR N N N N
Load Address RX N N N N
Load ond Test RR J L M
Load and Test, Long RR, Floating Pt. x x R L M
Load and Test, Short RR, Floating Pt. x x R L M
Load Complement RR F P L M [e]
Load Complement, Long RR, Floating Pt. x x R L M
Load Complement, Short RR, Floating Pt. x x R L M
Load Halfword RX x| x N N N N
Load, Long RX, Floating Pt. fx |x x N N N N
Load, Long RK, Fioating Pt. x x N N N N
Lood Multiple RS x| x N N N N
Load Negative RR J L
Load Negative, Long RR, Floating Pt. x x R L
Lood Negative, Short RR, Floating Pt. x x R L
Load Positive RR F J M (o]
Load Positive, Long RR, Floating Pi. x x R L M
Load Positive, Short RR, Floating Pt. x x R L M
Load PSW Si x| x A QQ QQ QQ QQ
Load, Short RX, Floating Pt. |x [x x N N N N
Load, Short RR, Floating Pt. x x N N N N
Move Characters SS x x N N N N
Move Immediate S x x N N N N
Move Numerics SS x x N N N N
Move with Offset SS x X N N N N
Move Zones SS x x N N N N
Multipiy RX X | X N N N N
Multiply RR x N N N N
Multiply Decimal SS, Decimal x|x x| x| Data [N N N N
Multiply Halfword RX x N N N N
Multiply, Long RX, Floating Pt. | x |x |E x| B N N N N
Multiply, Long RR, Floating Pt. x |E x| 8 N N N N
Multiply, Short RX, Floating Pt. I x|x |E x| B N N N N
Multiply, Short RR, Floating Pt. x |E x| B N N N N
No Operation RX, ExtMnemonic N N N N
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Instruction e | Onarion Operand Format
Code Code Explicit Implicit

No Operation NOPR | 07(BCR 0) | R2
Or Logical [e] 56 R1,D2(X2,B2) or R1,D2(,B2) | R1,52(X2) orRI1,S2
Or Logical ocC D6, D1{L, B1), D2(B2) S1(L), 2 or S1,82
Or Logical OR 16 R1,R2
Or Logical Immediate Ol 96 D1(B1),12 S1,12
Pack PACK | F2 Di(L1,B1),D2(L2, B2) SI(L1), S2(L2) or S1,52
Read Direct RDD 85 D1(B1),12 s1,12
Set Program Mask SPM 04 R1
Set System Key SSK 08 R1,R2
Set System Mask SSM 80 D1(B1) S1
Shift Left Double Algebraic SLDA | 8F R1,D2(B2) R1, 82
Shift Left Double Logical SLDL | 8D R1,D2(B2) R1,S82
Shift Left Single Algebraic SLA 8B R1,D2(B2) R1,S2
Shift Left Single Logical SLL 89 R1,D2(B2) RI1, 2
Shift Right Double Algebraic SRDA | 8E R1,D2(B2) R1, 82
Shift Right Double Logical SRDL | 8C R1,D2(B2) R1,S2
Shift Right Single Algebraic SRA 8A R1,D2(B2) R1,S2
Shift Right Single Logical SRL 88 R1,D2(B2) R1,82
Start |/O SIO 9C D1(B1) S1
Store ST 50 R1,D2(X2,B2) or R1, D2(,B2) | R1,S2(X2) orR1,S2
Store Character STC 42 R1,D2(X2,B2) or RI, DZ(,BZ’ R1,D2(X2) orRI1,S2
Store Halfword STH 40 R1,D2(X2,B2) or R1,D2(,B2) | RI,S2(X2) orRIl,S2
Store Long STD 60 R1,D2(X2,B2) R1,52(X2) orR1,S2
Store Multiple ST™M 90 R1,R2, D2(B2) RI1,R2,S2
Store Short STE 70 R1,D2(X2, B2) or R1, D2(,B2) R1,82(X2) orR1,S2
Subtract S 58 R1,D2(X2 R1,52(X2) orR1,S2
Subtract SR 18 R1,R2
Subtract Decimal sp FB Di(L1,B1), D2(L2, B2) S1(L1), S2{L2) or S1,52
Subtract Halfword SH 48 R1,D2(X2,B2) or R1,D2(,B2) | R1,52(X2) orRI1,S2
Subtract Logical SL 5F R1,D2(X2,B2) or R1,D2(,B2) | R1,52(X2) orRIl,S2
Subtract Logical SLR 1F R1,R2
Subtract Nomnalized, Long SD 68 R1,D2(X2,B82) or R1,D2(,B2) | R1,S2(X2) orRI1,S2
Subtract Normalized, Long SDR 28 R1,R2
Subtract Nomalized, Short SE 7B R1,D2(X2,B2) or R1, D2(,B2) | R1,S52(X2) orR!,S2
Subtract Normalized, SER 38 R1,R2
Subtract Unnormalized, Long sw 6F R1,D2(X2,B2) or R1,D2(,B2) | R1,S2(X2) orRl,S2
Subtract Unnormalized, Long SWR 2F R1,R2
Subtract Unnormalized, Short SU 7F R1,D2(X2,B2) or R1, D2(,B2) | RI,S2(X2) orR}i,S2
Subtract Unnormalized, Short|  SUR 3F R1,R2
Supervisor Call svC 0A |
Test and Set TS 93 D1(B1) S1
Test Channel TCH 9F DI(B1) S
Test 1/0 TIO 9D D1(B1) S1
Test Under Mask ™ 91 D1(B1),12 s1,12
Translate TR DC D1(L,B1),D2(B2) S1(L), S2 orSl, 2
Translate and Test TRT DD Di{L,Bl), D2(B2) S1(L), S2 orS1, 82
Unpack UNPK | F3 DI(L1,81), D2(L2, B2) SI(L1), S2(L2)or S1,S2
Write Direct WRD 84 D1(B1),12 S1,12
Zero and Add Decimal ZAP F8 DI1{L1,B1), D2{L2, B2) S1(L1), S2(L2)or S1,52
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Type of Program Interruptions
Instruction Instruction Possible Condition Code Set
) A 1S {Ov|P {Op | Other 00 01 10 it
No Operation RR, Ext.Mnemonic] N N N N
Or Logical RX x |x J K
Or Logicai 55 x x 3 K
Or Logical RR J K
Or Logical Immediate M| x x J K
Pack SS x x N N N N
Read Direct St x x| x| A N N N N
Set Program Mask RR RR RR RR RR
Set Storage Key RR X 1x x| A N N N N
Set System Mask N x A N N N N
Shift Left Double Algebraic |RS x| F J L M o}
Shift Left Double Logical RS x N N N N
Shift Left Single Algebraic  |RS F J L M [e]
Shift Left Single Logical RS N N N N
Shift Right Double Algebraic |RS x 4 L M
Shift Right Double Logical RS x N N N N
Shift Right Single Algebraic | RS J L M
Shift Right Single Logical RS N N N N
Start 1/0 N A MM ccC EE AA
Store RX x |x x N N N N
Store Character RX x x N N N N
Store Halfword RX x | x X N N N N
Store Long RX, Floating Pt. | x [ x x | x N N N N
Store Multiple RS x {x x N N N N
Store Short RX, Floating Pt. | x |x x| x N N N N
Subtract RX x |x|F \ X Y o]
Subtract RR F \Y X Y O
Subtract Decimal $S, Decimal x Dix | x | Data v X Y o]
Subtract Halfword RX x|x|F \ X Y (o]
Subtract Logical RX x | x W,H v, i W, 1
Subtract Logical RR W,H v, W, 1
Subtract Normalized, Long RX, Floating Pt. | x x| E x | B,C R L M Q
Subtract Normalized, tong | RR, Floating Pt. x| E x | B,C R L M Q
Subtract Normalized, Short | RX, Floating Pt. | x [x| E x | 8,C R L M Q
Subtract Normalized, Short | RR, Floating Pt. x| E x | 8,C R L M Q
Subtract Unnormalized, Long | RX, Floating Pt. | x [ x| E x| C R L M Q
Subtract Unnormalized, Long | RR, Floating Pt. x| E x| C R L M Q
Subtract Unnormatized, Short|RX, Floating Pt. | x | x| E x | C R L M Q
Subtract Unnormalized, Short|RR, Floating Pt. x| E x| C R L M Q
Supervisor Call RR N N N N
Test and Set M| x x SS 17
Test Channe! St A 4 1 FF HH
Test 1/0O St A LL ccC EE KK
Test Under Mask Sl x uu 'A% WwW
Transiate SS x x N N N N
Translate and Test SS x PP NN (o]e]
Unpack SS x x N N N N
Write Direct Sl x x | A N N N N
Zero and Add Decimal S, Decimal x D|x | x| Data J L M O
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Program interruptions Possible

Under Ov: D = Decimal
E = Exponent
F = Fixed Point

Under Other:

Privileged Operation
Exponent Underflow
Significance

Decimal Divide
Floating Point Divide
Fixed Point Divide
Execute

QMmO ®>

Condition Code Set

No Carry
Carry
Result =0

Result is Not Equal to Zero

Result is Less Than Zero

Result is Greater Than Zero

Not Changed

Qverflow

Result Exponent Underflows

Result Exponent Overflows

Result Fraction = 0

Result Field Equals Zero

Result Field is Less Than Zero

Result Field is Greater Than Zero
Difference = 0

Difference is Not Equal to Zero
Difference is Less Than Zero
Difference is Greater Than Zero

First Operand Equals Second Operand
First Operand is Less Than Second Operand
BB First Operand is Greater Than Second Operand
cc CSW Stored

DD Channel and Subchannel not Working
EE Channel or Subchannel Busy

FF Channel Operating in Burst Mode
GG  Burst Operation Terminated

HH Channel Not Operational

H Interruption Pending in Channel

P Channel Available

KK Not Operational

LL Available

;N<xs<Cﬂw=o1ozZ"*=“I

MM 1/O Operation Initiated and Channel Proceeding With its Execution
NN Nonzero Function Byte Found Before the First Operand Field is Exh

4

OO  Lost Function Byte is Nonzero

PP All Function Bytes Are Zero

QQ  Set According to Bits 34 and 35 of the New PSW Loaded

RR Set According to Bits 2 and 3 of the Register Specified by R1
Ss Leftmost Bit of Byte Specified =0

T Leftmost Bit of Byte Specified =1

uu Selected Bits Are All Zeros; Mask is All Zeros

v Selected Bits Are Mixed (zeros and ones)

WW  Selected Bits Are All Ones
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Appendix B
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16
32
64
128

256
512
1 024
2 048

4 096
8 192
16 384
32 768

65 536
131 072
262 144
524 288

1048 576
2 097 152
4 194 304
8 388 608

16 777 216
33 554 432
67 108 864
134 217 728

268 435 456
536 870 912
1073 741 824
2 147 483 648

4 294 967 296
8 589 934 592
17 179 869 184
34 359 738 368

Appendix C

POWERS OF TWO TABLE

WO B

= OWCO ¢«=-10 U i

[Wraywy

2—n

- NO

.
.
.

5
25

o coor

.062 5
0.031 25
0.015 625
0.007 812 5

0.003 906 25
0.001 953 125
0.000 976 562 5
0.000 488 281 25

0.000 244 140 625
0.000 122 070 312 5
0.000 061 035 156 25
0.000 030 517 578 125

0.000 015 258 789 062 5
0.000 007 629 394 531 25
0.000 003 814 697 265 625
0.000 001 907 348 632 812 5

0.000 000 953 674 316 406 25
0.000 000 476 837 158 203 125
0.000 000 238 418 579 101 562 5
0.000 000 119 209 289 550 781 25

0.000 000 059 604 644 775 390 625
0.000 000 029 802 322 387 695 312 5
0.000 000 014 901 161 193 847 656 25
0.000 000 007 450 580 596 923 828 125

0.000 000 003 725 290 298 461 914 062 5
0.000 000 001 862 645 149 230 957 031 25
0.000 000 000 931 322 574 615 478 515 625
0.000 000 000 465 661 287 307 739 257 812 5

0.000 000 000 232 830 643 653 869 628 906 25
0.000 000 000 116 415 321 826 934 814 453 125
0.000 000 000 058 207 660 913 467 407 226 562 5
0.000 000 000 029 103 830 456 733 703 613 281 25
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AD, 195

Address Arithmetic, 18
Symbols, 103-107

ADR, 195

AE, 195

AER, 195

AGO, 219

AGOB, 219

ATF, 217

ATFB, 219

AL, 172

Alpha-numeric character, 6

ALR, 172

AND, 168

Array
Interleaving, 160
Two-dimensional, 151

Assembler, 17
Instructions, 103

Assembly program, 17

ASCII-8, 21

AP, 39

ASSGN, 295

AU, 202

AUR, 202

AW, 202

AWR, 202

B, 50

Background program, 326

BALR, 92

Base, 88-92
Addressing, 90-91
Location, 89
Register, 89

BC, 109

BCD, 9

BCR, 109, 173

BE, 48

BH, 48

Binary
Arithmetic, 82-87, 114-131
Numbers, 7

Binary Coded Decimal (BCD), 9
Binary search, 156

Bit manipulation, 168-171

BL, 21

Blocking, 268

BM, 49

BNE, 49

BNH, 49

INDEX
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BNL, 49
BO, 49
Buffering, 273-277
Byte, 20
Manipulation, 176-179
BZ, 49

Call

b TR aAnn
By name, 228

By value, 228

Card

Codes, 33
Reader, 7
Verifier, 7

CAW, 249
CceC, 6
CCB, 277
CCW, 249
CD, 195
CDR, 195
CE, 195
CER, 195

Character
Alpha-numeric, 6
Special, 6

CL, 174

CLC, 55

CLI, 172

CLOSE, 286

CLR, 174

COBOL, 310

Coding form, 17

Collating sequence, 55

COMRG, 293

Condition code, 111, 173, 177, 197

Contention, 322

Continuation character, 17

Control section, 233

Control unit, 243

Core
Position, 8
Storage, 8

CP, 48

CVB, 115

CVD, 115

Cylinder, 242

D, 74

Data
Alignment, 43-45
formats, 98
Movement, 31-32



Record Formats, 267-273 FORTRAN, 311

Representation, 20-26 Fraction conversion, 129
Data Set, 268 General Purpose Registers, 82-88
DC, 27
GPR, 82
DD, 196
GET, 57, 284
DDR, 196
GIGO, 10
DE, 196 Guard digit, 193
Deblocking, 268 glt
Decimal Hex, 202
Arithmetic, 20-58 Hexadecimal
Packed format, 23 Arithmetic, 82-87
Zoned format, 23 Numbers, 76
DER, 196 Hollerith Code, 43
Digit
Bits, 21 IC, 176
Significant, 62 Indian problem, 96, 133
Disk, 240 Index
Double precision, 189 Field, 136
DP, 44 Register, 136
DR, 121 Indexing, 135-139
Drum, 240 Input-Output, 110, 239, 267
DS, 29 1/0 (see Input-Output)
DTF, 280 1/0 Channels, 242, 244
Dump, 304 1/0 Control System, 277-287
Inquiry, 321
EBCDIC, 21 Interrupts, 113, 255
ED, 62 Instruction modification, 179-183
Editing, 62-66 Inter-record gap, 246
EDMK, 65 JOB card, 294
ENTRY, 235

JOB step, 311

ENTRY Card, 316 JOB stream, 292

Entry point, 226

EOJ, 304 k (=1024), 78
Epilogue, 229 L. 115
EQU, 39 Labels, 16, 286-288
EX, 180 LCDR, 195
Exchange sort, 162 LCER, 195
Exclusive Or, 168-170 LCR, 116
EXCP, 278 LD, 194
EXEC Card, 296 LDR, 194
EXIT, 302
Extended Memonics, 112 LE, 194
EXTERN, 235 LER, 154
LH, 116

FETCH, 301 Linkage Editor, 234, 293, 305
Field, 6 Linkages, 225-227
Fixed format records, 268 Literal pool, 107
Floating-point Literals, 106-107

Numbers, 186-192 LM, 94

Registers, 192 LNDR, 195
Flow Charting, 5-6 LNER, 195
Foreground program, 326 LNR, 116
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Loader, 15
Load point, 17
Location counter, 18
Logical
Operations, 171-175
Operators, 216
Records, 268
Long Precision, 189
Loop parameters, 134
Looping, 53, 13 :
LPDR, 195
LPER, 195
LPR, 116
LR, 116
LTORG, 166
LTDR, 195
LTER, 195
LTR, 115

M, 116

MACRO, 208-209
Expansion, 210
Header, 209
Inner, 213
Outer, 213
Keyword, 221-222
Nested, 213
Positional, 209-221
Trailer, 209

Magnetic core, 8

Mask, 169

MD, 195

MDR, 195,196

ME, 195

Memory, 3

MEND, 209

MER, 195-196

Message switching, 321

MEXIT, 219

MH, 120

Microsecond, 8

Model statement, 210-211

MP, 41

MR, 116

MSG, 301

Multiplex channel, 247

Muitiprogramming, 315-320

MVC, 84

MVCOM, 303

MVN, 87

MVO, 88

MVZ, 87

N, 172

NC, 172

NI, 172

Normalized, 186, 188, 192-201
NR, 172

Nucleus, 291

Number conversion, 77, 82

0, 172

OC, 172

Odd-parity code, 11

oI, 172

On-line, 321

OPEN, 57, 286

Operand fields, 88
Base, 88
Displacement, 88
Index, 136
Length, 88

OR, 172

Or, 168-170

ORG, 99

Origin, 15

Overflow, 84, 188, 193

Overlay, 236

PACK, 33
Parameter list, 228
Parameters, 227-230
Parity, 11

Bit, 11
Phase, 236
PHASE Card, 236, 306
PL/1, 311
Polling, 322
Positional Macros, 209
Problem program state, 254
Program Status Word, 111
Prologue, 229
Prototype statement, 209-210, 221
Pseudo-instruction, 93
PSW, 255
PUT, 111, 285

Radix, 74

READ, 282

Register usage conventions, 230-232
Relational operators, 218
Relocatable loader, 104

Relocate, 104

Report Program Generator, 310
Round-off, 74

RR, 107



RS, 107
RX, 107

Scaling rules, 124
Scheduling, 292-300
SD, 195
SDR, 195
SE, 195
Seeking, 242
Segment, 235-236
Selector channel, 249
Self-checking numbers, 51
Self-defining values, 106
SER, 195
SET
Statements, 214
Variables, 214

SETA, 214
SETB, 216

SETC, 215
Short precision, 189
SI, 107
Significance loss, 193
Single-precision, 189
S10, 249
SL, 172
SLA, 120
SLDA, 120
SLDL, 172
SLL, 172
SLR, 172
Sorting, 162
Source
Deck, 8
Program, 8
SP, 40
Special character, 6
Spooling, 324-326
SRDL, 172
SRA, 121,
SRDA, 121
SRL, 176
SS, 107
ST, 117
STC, 176
STD, 195
STE, 195
STH, 176
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STM, 176
Storage
Address, 9, 12, 87-97
Contents, 12
Location, 12
Word, 9
STXIT, 302
SU, 202
Subroutine, 232-237
Supervisor, 300-304
Supervisor state, 252
SUR, 202
SVC, 255
SW, 202
SWR, 202
Symbolic parameter, 210
SYSLIST, 220
System generation, 308-309
SYSXXX, 295

Table
Argument-value, 153
Indexed, 153
Teleprocessing, 320-323
T™, 173
Tracks, 242
TR, 177
TRT, 177

Underflow, 193
UNPK, 33
USING, 92, 93

Variable expansion, 213
Variable format records, 268

WAIT, 278
WAITF, 276
Word
Double, 26
Single, 26
WRITE, 282

X, 172
XC, 172
X1, 172
XR, 172

ZAP, 35
Zone bits, 21
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