TP 2 e
e A

ai
-

S,

ki
%4;‘””?

A . »
0 AD i
Director. Advanced Co
orpora
N ~ 5 -
able O e FORTRA
PDTOgCra
Oroug daectaiied A
A DO 9 : .:‘
0 de C €4 depende
(9 d . : -
DOO esnecia seared
O € pra g comp
er. b also) ol
- . ORTR ang
‘ O
“d g to progra
does not re]]
O at and es o of e
c e progra o
'.. C cl e ra
X cssential boo 4
O atio ead and 5
o ble
en by an expe .
CHLAHO e boo 0 .
: © € C .
at10 of ea e G
s be ; . A 5
o . , 1 .
DO Dle . 5 ;
a be aused b
D O deratio o]
ded O
ed on Da q

-
D
e 0
e g de 3
and ORTR
O 90 ¢
— o
A " 5
c cl
and to
O e ced
DIrOera
a o 100
&
o I ala
e proble
aneuace
& o
O o
O
A be
a
d
a0
and
2 d
of dO
PO
alio
09
&

(continued from front flap)

The core of the book is FORTRAN II.
ForTRAN IV information is provided
and labeled as such when it extends or

limits the scope of a particular FORTRAN
IT concept . . . or changes the concept

significantly. Thus FORTRAN II material
may be considered FORTRAN IV ma-
terial except when otherwise indicated.

The clear, easy-to-read format and un-
usual accuracy of detail make this book
ideally suited for use as a reference. As
an added aid, words requiring definition
are marked with an asterisk and are
defined in a glossary at the end of the
book.

‘,t-» - :aPhot by Richard C. Robey
CHaRLES Puirip LEcHT, founder, Presi-
dent, and Technical Director of ADVANCED
COMPUTER TECHNIQUES CORPORATION,
received his start in the computer field in
1955 as a programmer for IBM. From
there he joined M.LT.’s Lincoln Labora-
tory as a technical Staff Member, where he
worked on the systems design, analysis,
and programming of the SAGE data re-
duction effort. Subsequently he held the
positions of technical Staff Member, The
Mitre Corporation; Chief, Programming
Division, and Chief, Mobilization Appli-
cation Division, Ordnance Industrial Data
Agency; Executive Vice President, ACT.
Among his many professional achieve-
ments have been an election prediction
program, two ballistic missile and satellite
simulation models, systems analysis and
programming of the Particle-In-Cell hy-
drodynamics model operating on the
UNIVAC LARc, and supervision and design
of various operating systems.

OTHER COMPUTER

PROGRAMMING AND CODING FOR A

By G. W. Evans I, Stanford Researc
and C. L. PERRY, University of Califc
262 pages. 6 x 9, 104 illustrations anc

Techniques, methods, and facts essential to .
this practical book. It hightights systematic
the computer’s basic design so you can use i
computers . . . flow diagramming . . . progr
. . . and many other subjects are fully covere
ories and automatic coding techniques, and

COMPUTER HANDBOOK

Edited by Harry D. Huskey, Unive:
and GRANINO A. KoOrN, University
1251 pages, 6 x 9, 1099 illustrations ¢

In one dependable source, this handbook bri
signing and using analog and digital compu
range of design practices, circuits, compone
installation—complete with actual circuit d
results in programming and coding . . . prc
65 widely recognized authorities have cont

material you will find in this handbook.

COMPUTER CONTROL OF INDUSTRIA

By EMANUEL S. Savas, Internationa
414 pages, 6 x 9, 76 illustrations

Here is the practical information you neec
ward-looking book discusses computer co
troduces basic terminology and discusses tir
Most important, it describes the applicatio
variety of examples from industry. The boo
statistical methods for model development,
cesses.

DIGITAL COMPUTATION AND NUMER

By RaymonD W. SOUTHWORTH, Ya
and SaMUEL L. DELEEUW, Univers
508 pages, 6 x 9, 181 illustrations

This important book presents computer p1
grams in a very short time. It emphasizes
information on digital computation and mt
supply of illustrative problems and engines
The presentation of programming includes
most flexible of FORTRAN languages now in

McGRAW-H

330 West 42n

THE PROGRAMMER'S
FORTRAN Il AND IV

THE PROGRAMMER'S
FORTRAN Il AND IV:
A Complete Reference

CHARLES P. LECHT
Director, Advanced Computer Techniques Corporation

With a foreword by
ROBERT BEMER, General Electric Company

New York
San Francisco
Toronto

London McGRAW-HILL BOOK COMPANYé
Sydney

THE PROGRAMMER'S FORTRAN II AND IV

Copyright @ 1966 by McGraw-Hill, Inc. All Rights Reserved.
Printed in the United States of America. This book, or parts
thereof, may not be reproduced in any form without permission of
the publishers. Library of Congress Catalog Card Number 66-15182

36965

123456789HD721069876

To Eric and the Colonel

FOREWORD

I would hope that most readers of this book are already famil-
ifar with FORTRAN, more familiar than just knowing that it is
an acronym for FORmula TRANslation. This is for a reason op-
posite to that which may come first to mind. It is not fhat
this book is so difficult that only someone already grounded
in its usage can comprehend it easily. No, my reason is that
FCRTRAN is widely used and but narrowly understood.

| recal! that nagging worry with which | surveyed certain fel-
fow students in my undergraduate mathematics courses. They
seemed to assimilate each new concept without effort, while |
was struggling to relate to numerical and spatial examples.

As a working mathematician, however, | discovered that | had
been subconsciously synthesizing and integrating, whereas

they had been merely adding iayer after layer.

We see this superficiality when the beginning computer user is
first exposed to the power of both FORTRAN and the machine.

The language is relatively easy to learn, for much of it is a
simple mapping from common mathematical terminology and usage.
The beginner becomes drunk with the power at his fingertips,
but itet him not forget that it is expensive power, easily
squandered unwittingly. Should Parkinson need additional proof
for his theories, the FORTRAN community exists.

One of the best things about this book is that it was written
by an expert in computer documentation. This is a significant
statement, for less than 1 per cent of the world's programmers
document carefully and correctly. Those of us that do may be
motivated by the mileage to be gotten cut cf what we conceive;
the programmer who documents poorly is soon discarded in dis-
gust, and so are his achievements. A main principle of pro-
gramming documentation is what we call "positive negation.”
The computer forces us to this. |t isn't enough to say what

a certain action will do; one must also state precisely what
it won't do, and positively (i.e. to point out possible con-
textual misusesof the information, the occurrence of which may
be caused by inference, plausibility considerations, or even
logical deduction). This may well be the essence of this book.
It is not a text to teach you to program in FORTRAN--you may
learn this as a byproduct. The intent is to show clearly and
concisely the full extent, meaning and |imitations of each
type of statement in the FORTRAN language, so that you may
synthesize rather than add layer after layer.

There are many programmed processors for the various computers,

each of which translates a certain variant of FORTRAN to machine

Vi

VI

language with varying efficiency in the running program created.
But in each variant there are many ways of expressing the pro-
blem solution, from efficient fo inefficient, much as one can

get to a point ftwo blocks away by walking twelve, or stutter

and be circumlocutive rather than concise. It is the responsi-
bility of the fabricators of these processors to explain such
idiosyncrasies to the user in texts companion to this volume.

The purpose here is rather fto prepare the user in the most gen-
eral way to understand the effect of fthese variations, as applied
to specific computers.

There exists but one brief history of FORTRAN, given by W. P,
Heisling in the 1963 March issue of The Communications of ACM,
pages 85 and 86. As one familiar with the intimate history,

| should like to set it down here in a less formal way.

The computer gradually impressed upon its early users something
they should have realized all along--that it was indeed a device
of unlimited applicability, and that one very important appli-
cation might be to operate upon the expression of an algorithm
(or problem solufion) in a language convenient to humans and
render it intfo a language convenient to machines. Remember
that the natural language of humans is imprecise. |1t gains
understandability from many other devices, such as.inflection,
hand-waving, redundancy, relation fo previous conditions, al-
ternate phrasing and the like. A compromise language between
humans and machines, of which FORTRAN is one, must have certain
artificial characteristics which make it deterministic without
needing such devices.

It is typical of the computer age that very few innovations

are the product of a single person. |t is rather as if the
very nature of computers led us all along an inevitable path
of understanding. There are few developments in computer lan-

guages or processors that cannot be found in embryonic form

in the earlier programs of a dozen people. Some first glim-
merings came when Dr. Grace Murray Hopper and her associates
produced the AO compiler (1952 May) for the UNIVAC®!, further
extending it to A2 (1953 August) and then fo AT3 (or Math-
Matic, 1956 June), which had a limited form of algebraic state-
ment. Perhaps an even earlier worker was Dr. Heinz Rutishauser
of Switzerland who, unknown to U.S. workers, developed a FORTRAN-
like compiler for the Zuse 4 computer in 1951, although it did
not receive any extensive usage. R. A. Brooker's Autocode for
the Manchester (Ferranti) Mercury handied statements of a
limited arithmetic type. Laning and Zierler developed an alge-
braic system for the M.I.T. Whirlwind somewhere around 1953

or '54, although | have not been able fo place an operative date
for it. Also setting the stage were many interpretive mathe-
matical systems for the IBM 650, 701 and the Datatron 205.

Dr. Charies DeCarlo, then Director of Applied Science for
IBM, was impressed enough to set up a development group

under John Backus, who had done the Speedcoding system for
the 701. This group was organized in the summer of 1954 and
brought its work to a usable condition in 1957 January.

Other members were Dr. David Sayre, Robert Beeber, Sheldon
Best, Dr. Richard Goldberg, Lois Haibt, Harlar Herrick, R. A.
Nelson, Peter Sheridan, Harold Stern and lrving Ziller,
together with Roy Nutt of United Aircraft and Robert Hughes
of the Livermore Radiation Laboratories.

This group was charged not only with building an algebraic
compiler, but also with proving that a compiler could produce
optimized object code (running programs) comparable in effi-
ciency to those of the best hand coders. As a result, the
original effort took 25 man years of effort over a two and
one haif year period, at an initial cost of a half million
dollars. Today we can do better at an eighth of the cost,
but the 707 fljes faster than the Wright airplane, too. One
cannot say enough for Dr. DeCarlo's vision, for he insulated
and protected the FORTRAN group for this long period when
the use of computers was expanding so rapidly that any good

programmer was desperately in demand. |1t was good judgment,
too, for today IBM has a yearly income from FORTRAN alone in
excess of 300 million dollars, which was almost their entire

income in 1957 when FORTRAN was introduced without fanfare
or too much confidence.

| did not have the opportunity to participate in the develop-
ment of 704 FORTRAN, as the project was halfway along when |
joined IBM in 1955 December. However | did see the develop-
ment, being on another project the same room. During this
time John Backus was appointed Manager of Programming Research
for IBM, under the grand repository of computer wisdom -- John

McPherson.

.
Y
i

Only a month or so after the introduction of FORTRAN, Dr. Alan
Perlis completed an algebraic compiler for the 650, called IT
(Internal Translator). |IT was originally conceived for the
Datatron 205, but that processor suffered a delay when Dr.
Perlis left Purdue for Carnegie Tech, not becoming operational
until the summer of 1957. Although the names of the variables
were very limited in form, the method of translation for such

a lesser machine was most ingenious, and | was by this time
enthusiastic enough about the possibility of machine-independent
languages to ask Dr. Perlis for permission to use his system
imbedded in a FORTRAN system. He agreed, and a preprocessor

was constfructed to ftranslate from slightly limited FORTRAN
statements to IT statements (which produced SOAP statements,
which were then compiled). This project was led by Dave Hemmes,

who qualifies as a real documentor, with Florence Pessin, Otto
Alexander, and Leroy May. Mrs. Pessin, a double-crostic addict, -
named the system FORTRANSIT, having a three-way meaning for

1) FOR TRANSITion, 2) FORTRAN, Soap, and IT, and 3) it FORTRANS
IT. Although later replaced by a real FORTRAN processor for

the 650, this jury-rig device did add visibly to the proof for
machine-independence, particularly since one machine was binary,
the other decimal.

At the time 704 FORTRAN was to be put into the field, IBM formed
the Applied Programming Department under Jack Ahlin. As Manager
of Programming Systems, the actual field operation of FORTRAN
became my worry, while the Backus group continued in Research

to develop what was to become FORTRAN Il, which is pretty much
what this present book describes. And worries | had, for at
around 25,000 instructions this was a very complex program for
that period. The complexity is best indicated by the departure
of Sheldon Best for a position at M.l.T. before the processor
was quite completed. |t took Drs. Sayre and Goldberg three
months of day and night work fto figure out just what he had

done in his section 5.

The 704 tape units presented major difficulties. It seemed
impossible to run FORTRAN on more than the ftest machine. Final-
ly a squad was sent to the West Coast to work with the customer
engineers. When FORTRAN finally would run on a different machine,
the C.E.s took careful note of just what they did and prepared

a special writeup on how to ftune the computer so it would run
FORTRAN. This marked the end of an era for engineering diagnos-
tic programs, for they said the machine was OK when FORTRAN

said it wasn't. Besides, who cared if a component was faulty

if the programming system didn't use it? Armed with this argu-
ment, Hemmes and | marched on Poughkeepsie Product Test, where
Mr. G. A. Hemmer was quife willing to use FORTRAN as a major
component of the factory test and acceptance program.

It then became time to produce a FORTRAN for the new 709. In
the meantime we had learned many things about the operational
requirements for such a processor. One installation, for

example, figured that they ftranslated and tested FORTRAN pro-

grams on the average of 50 times before they became correct,

operational, and complete. Compiling time was outstripping
production time and 80 percent of that was for optimizing index
register usage for incorrect programs. Obviously the capability

of switching off the opTimization was necessary.

Since the new version of FORTRAN (FORTRAN IIl) became available
for the 704 in 1958 June, this was the version built for the
709, becoming operational in 1959 June. The major difference

from the original language was the ability to compiie inde-
pendent subroutines written in either FORTRAN or the assembly
language, and have these utilized by main FORTRAN programs
compiled at a different time. This would not only save machine
time, it was logically far sounder. | have always Thought it

a development equivalent in importance fto the original FORTRAN.

The follow-on to FORTRAN Il was to be XTRAN, mainly to remove
certain restrictions in the language rather than inftroduce
radical concepts. However, XTRAN was more or less swallowed
up by ALGOL 58 in the first cooperative international efforft
on programming languages. My frustrations on losing the ini-
tiative on XTRAN were compensated by being able to edit ALGOL
58 intfo a reasonably clean form.

The first non-1BM FORTRAN processor was done for the Philco
2000, becoming operational in 1960 Aprii; however, they called
it ALTAC. The first processors to actually use the name FOR-
TRAN were those for the UNIVAC Solid-State 80 and the CDC 1604
in 1961. As of 1965 between 60 and 100 FORTRAN processors
have been implemented for very many machines. The FORTRAN
Committee of SHARE has been a stabilizing influence, at least
throughout the [BM line. The assembly language now commonly
associated with FORTRAN (called FAP) was introduced through
this committee in 1960 September. |t was the product of tThe
Western Data Processing Center at UCLA.

The latest production stage in FORTRAN is the FORTRAN IV lan-
guage. This is a further loosening of the restrictions and

an addition of new features along the lines of XTRAN and ALGOL.
The SHARE FORTRAN Committee accepted this for the 7094, real-
izing that it was in several ways incompatible with FORTRAN

Il. However, the differences were mechanically convertible.
This time there was no pussy-footing; UNIVAC sef out to build
FORTRAN |V for the 1107 and actually managed to get it into
operation before that for the 7094. At present there are some
10 to 12 new changes proposed by the SHARE Committee for an
improved FORTRAN 1V. However, in the face of NPL (new program-
ming language) for the IBM 360 these may not be implemented.

The worldwide effect and sway of FORTRAN is amazing. In his
short history Heising said that over 228,000 manuals have been
distributed. It is my hope that Mr. Lecht's book will be
recognized as one of the most important of these contributions.

It certainly fills a void to which | have been acufely sensitive.

ROBERT BEMER

Xl

PREFACE

The contents of This book have found their way to print
through many vears of FORTRAN programming by its author
and a group of computer programmers who, if they did noft
take part in FORTRAN's original design, did spend signifi-
cant portions of their lives "in residence"™ with it.

Thus, as stated within its INTRODUCTION, this book
"reflects more of what the language is than what it may
have been intended to be."

The wide variety of computing machines for which at least
one version of the FORTRAN compiler has been written pre-
vents the material within this book from being all and
always applicable on every specific computer. However,
this lack of total applicability should cause significantly
more concern within international committees on programming
standards within the computer industry, than to the reader
concerned with utilizing FORTRAN as a day to day working
tool.

It is recognized that total FORTRAN compatibility between
computing machines is not a realitfy, yet there is suffi-
cient compatibility so that it may be stated that for
equivalent classes of computers, the majority of the in-
formation presented within this book is common.

it may be further stated That wifh minor or non-sftandard

FORTRAN statement exceptions, there is no "living" FORTRAN
the statement repertory of which is not, at least, imbedded
within this book's contents. The minor exceptions include

the author's purposeful intent to bid adieu to the FREQUENCY

statement which was mostiy ignored in the past and is no
longer implemented. Other exceptions include statements
which are usually considered special features of some
FORTRAN compilers.

The compilation of the various levels of symbols, combina-
tions of symbols, sets of combinations of symbols, etc.
which exist on the pages of This book and the process of

arranging these "marks" in such a way as to have meaning
to a wide variety of FORTRAN users was far beyond the
single-handed capabilities of the author, It is tThen

important that others who helped support the author in his
attempt to overcome the idolization of a single symbol or
arrangement of symbols to fthe exclusion of all others be
mentioned.

Xil

XV

Maximum recognition must be given to Mrs. Winnie Schare
(of ACT) for collection of much of *the material and
editorial comment. The author is equally indebted to

Mrs. Elizabeth Holberton, whose encouragement and edi-
torial consul proved invaluable, as well as fto her associ-
ate Mrs. Nora Taylor (both of whom are top technical
experts at the U. S. Navy, David Taylor Model Basin).

Miss Joan Gildea and Miss Carol Oft sharing technical
fyping duties were both tireless and first-rate.

Finally, the encouragement of Mr. Robert Bemer, while he
was Director of Systems Programming at UNIVAC proved the
"straw that broke the camel's back™ and perhaps the
raison d'etre for it all.

CHARLES P, LECHT

AUTHOR'S NOTE
Guide to the Efficient Use of This Book

This book contains a complete description of the FORTRAN
il and iV languages, where ‘compiete’ is defined within
the fourth paragraph of the INTRODUCTION

Due to the manner in which the descriptive material has
been organized, the differences between FORTRAN || and
IV are easily seen.

The general organization of the book is made clear by a
review of its TABLE OF CONTENTS except for the following
protocoi.

The kernel of the book is FORTRAN [I. FORTRAN IV
information is provided and labeled as such only
when it
i. extends the scope of a particular FORTRAN
It concept,
ii. l'imits the scope of a particular FORTRAN

ii concept, or

iii. changes the concept, where limitations or
extensions are academic.

Thus, the FORTRAN || material may be considered FOR-
TRAN IV material except when modified as above. Modi-
fications to instructions immediately follow the de-
scription of each instruction. Other FORTRAN |V ma-
terial is clearly labeled as such.

When not followed by a Il or IV, the word FORTRAN means
FORTRAN I andFORTRAN 1V,

In presenting the material contained within this book,
strict formatting rules were followed. These rules were
developed with two purposes in mind.

The first and foremost was to effect a presentation of the
material with great precision and completeness of informa-
tion content.

The second, and not unimportant reason, was to overcome
the usual equivocation to which past authors have been

XV

XVI

party in presenting a well defined language description

in a not so well defined form. Thus, this book does not
suffer the problem of being part learner's text and part
reference guide, but rather it is specifically intended

to be the latter.

The motivation for presenting the material in the form
contained within this book is then suggested above. The
FORTRAN language is frivial to learn by the average pro-
grammer. However, in actual use, he must constantly con-
firm his knowledge through reference to the language de-
scription. This comes about through both his desire to
perform properly and the high cost of making a mistake in
the writing of a computer program.

The usual text which has been used as a reference guide
in writing computer programs has suffered from containing
much irrelevant and too much inftfroductory material. Be-
cause of the appearance of this material the meaningful
descriptions of the language statements themselves have
not been presented either in sufficient detail or clarity
That problem has been overcome in this book.

Users of this book will find it valuable to read its
INTRODUCTION at least once in order to gain a feel for

the declarative writing style which has been used through-
out. It would also be of value to study the manner in
which the TABLE OF CONTENTS has been organized.

The contextual use of the material is self-evident except,
perhaps, for the following.

Definitions of all words in the book which are marked by
an asterisk (*) appear within the GLOSSARY. |In the case
of hyphenated words which are asterisked, their definition
wiii appear in The GLOSSARY aiphabetized by The firsi word.
The GLOSSARY contains words which are themselves aster-
isked and which, in turn, follow the rules described above.

IT.

CONTENTS

Foreword by Robert Bemer

Preface
Introduction
A. Definition of FORTRAN
B. Symbols of Basic FORTRAN
C. Types of FORTRAN Statements
D. Form of a FORTRAN Program
E. Writing a FORTRAN Program
FORTRAN Statements
A. Alphabetic Listing:

arithmetic

arithmetic statement function
ASS I GN

BACKSPACE

NAL
it Ll

COMMON

CONTINUE
DIMENSION

DO

DO, implied

END

END FILE
EQUIVALENCE
FORMAT

FUNCTION

GO TO, assigned
GO TO, computed
GO T0O, unconditional

F ACCUMULATOR OVERFLOW
F DIVIDE CHECK

F QUOTIENT OVERFLOW

F SENSE LIGHT

F SENSE SWITCH

PAUSE

PRINT

14
18
21
22

2 Z
L0

25
29
30
33
37
42
44
45
49
61
64
66
68
69
71

13
75
77
79
81

82

XVl

XVill

II.

FORTRAN Statements (contd.)

A.

Alphabetic Listing: (contd.)

PUNCH 83
READ 84
READ DRUM 85
READ INPUT TAPE 86
READ TAPE 88
RETURN 90
REWIND 9
SENSE LIGHT 92
STOP 94
SUBROUTINE 95
WRITE DRUM 98
WRITE OUTPUT TAPE 99
WRITE TAPE 101

Listing by Statement Classification:

1. Control -

ASSIGN 21
CONTINUE 29
DO 33
DO, implied 37
GO TO, assigned 64
GO TO, computed 65
GO TO, unconditional 68
{F 69
IF ACCUMULATOR OVERFLOW 71
IF DIVIDE CHECK 73
I|F QUOTIENT OVERFLOW 75
|F SENSE LIGHT 77
|F SENSE SWITCH 79
PAUSE 81
SENSE LIGHT 92
STOP 94

2. Arithmetic -

arithmetic 4

arithmetic statement function 18
3. Input/Output -

BACKSPACE 22

END FILE 44

PRINT 87

IT.

IvV.

FORTRAN Statements (contd.)

B. Listing by Statement Classification:
8. Input/Output - (contd.)

PUNCH

READ

READ DRUM

READ INPUT TAPE
READ TAPE

REWIND

WRITE DRUM

WRITE OUTPUT TAPE
WRITE TAPE

4. Subprogram -

CALL
FUNCTION
RETURN
SUBROUTINE

5. Specification -

COMMON
DIMENSION
END
EQUIVALENCE
FORMAT

FORTRAN IV Statements

P AN A Y,

BLOCK DATA

DATA

IF, logical

NAMELIST

READ, with conversion
READ, without conversion
WRITE, with conversion
WRITE, without conversion

type

Related Topics

A. FORTRAN functions:

1. General Description
2. C(Classes of FORTRAN functions

Built-in functions
Library functions

Q.0 ' Q

Subprogram functions

Arithmetic statement functions

(contd.)

83
84
85
86
88
9!
g8
99
101

23
61
90
95

25
30
42
45
49

105
106
108
1o
14
F15
16
118
M9

123

123
124

124
124
125
125

XIX

XX

IV. Related Topics (contd.)

B. Subprograms

1. General Description
2. Types of Subprograms

a. Function Subprogram
b. Subroutine Subprogram

V. Aggendices

Appendixz 1 - Glossary

Appendix 2 - FORTRAN Built-In Functions and
Library Functions

Appendix 3 - FORTRAN Symbols with Equivalent
Codes.

126

26
126

126
128

133

157

161

THE PROGRAMMER'S
FORTRAN Il AND IV

L. Introduction

INTRODUCTION:
This book is intended for programmers.
It is intended to be self-contained.

It is a detailed description of the FORTRAN lan-
guages which may be appropriately termed,
FORTRAN II and FORTRAN IV. The word 'termed'
18 used because the details of the languages
presented in this book have been derived
through the study and use of various versions
of the languages as implemented on a variety
of widely used computing machines.

This description of FORTRAN reflects more of what
the language is than what it may have been
intended to be. In that regard, users of this
book will not suffer from language usage which
reflects unimplemented intentions nor seemingly
logical deductions which are inadmissible.

This book is to be used for reference purposes. It
is not a "self-teaching”" device.

A. Definition of FORTRAN:
FORTRAN is a set of symbole* and a set of rules.
FORTRAN is a language.

FORTRAN is intended for (although not Limited to)
use in scientific problems involving a signi-
ficant amount of numerical caleculation. In
this regard, it is called a "scientific lan-
guage.

FORTRAN is a language in which computer programs may
be written.

There is a compiler associated with the FORTRAN II
language and with the FORTRAN IV language. It
is called the FORTRAN II or FORTRAN IV COMPILER
respectively. The FORTRAN COMPILER translates
eomputer programs written im the FORTRAN lan-
guage tnto the basic language (machine code) of
a computer.

B.

The symbols* of FORTRAN:
Symbols Used to Write the Language

Alphabetic Characters?*: ABCDEFGHIJKLM
NOPQRSTUVWXYZ

Digit* Characters: 0123456789

slash
plus
minus
asterisk
point
comma
equal
blank

Special Characters:

* 1+

Il

(left parenthesis
) right parenthestis

(NOTE: Throughout this book the character
'blank' will be specified by a 'b')

By following certain rules, the symbols of
FORTRAN may be put together to form state-
ments*.

Symbols Which a FORTRAN Compiler can Recognize
This includes all the symbols listed above,
plus additional special characters which may
vary for each computer.

Types of FORTRAN Statements
Control:

used to alter the normal sequential execu-

tion of statements;

used to make logical decisions.
Arithmetic:

used to perform numerical calculations.

Input/Output:

used to cause transfer of data between
I/0 units and internal storage locations.

Types of FORTRAN Statements (contd.)
Subprogram*:

used to permit the writing of subroutines*
or of logical sections of instructions as
separate programs to be joined with a main-
program* when the problem is run.

Specification:

used to give information to the FORTRAN
compiler.

Form of a FORTRAN Program

The FORTRAN language has many statement usage rules
which are either dependent upon or independent
of a problem for which the language is being
written.

The rules which are dependent upon specific problems
for which the language can be used are not the
subject matter of this book.

The rules which are independent of any specific
problem for which the language can be used but
must be followed for all problems where usage is
attempted can be broken down into two categories:

Rules for f

~ +
it A Urveileri o

Rules of relationship between FORTRAN
statements

The rules for forming FORTRAN statements comprise the
main text of this book; Sections II and III.

]
sl
®©

rules of relationship between FORTRAN statements
are presented below.

D.

Form of a FORTRAN Program (contd,)

These statement relationships arise through the design
and development of the FORTRAN language itself as
a problem solving tool.

There are three such relationships some or all of which
govern all FORTRAN statements

ORDER -

REFERENCE -

POSITION -

a strict precedence relation-
ship which demands that <if

a certain statement has been
used, an associated statement
must preceed it either physi-
cally or logically.

a dependence relationship
which demands that <if a
certain statement is used,
another one exists.

a physical relationship which
demands that 1f a certain
statement i1s used, the location
of another statement or group
of statements is determined.

There are no other such relationships.

Thus each program written is a sequential list of state-
ments, where the statements are related to one
another as defined above.

An example of a program written in the FORTRAN lan-
guage is included here to present a visual and
conceptual model of the use of the language.
Thus, this model establishes a pattern of state-
ment use which suggests the form of all FORTRAN

programs.

Form of a FORTRAN Program (contd.)

State- FORTRAN Statement
ment
Number*

THIS IS A SAMPLE PRO

OO0

OF A QUADRATIC

CALL HEAD(TITLE,DATE
DISCR=B*%¥2-4 *A%C
IF(DISCR)3,2,2
AROOT=(-B+SQRTF(DISC
BROOT=(-B-SQRTF(DISC
10 PRINT5,A,B,C,AR00T,B
60 TO 12

FORMAT (3E14.5,A6,A6)
FORMAT(3E14,5,2E18.6
PRINT7,A,B,C
FORMAT(3E14,5,5X, 15H
STOP

END

N Co

N ~NWwWwu —

In the above program,
control statements are -

arithmetic statements are -
input/output statements are -
specification statements are -
subprogram statement is -

comments are -

WILL DETERMINE THE REAL ROOTS

4 READ 1,A,B,C,TITLE,DATE

GRAM WHICH

)

R/ (2.%A)
RY)/(2.%A)
ROOT

)

IMAGINARY ROOTS)

8, 12, and one state-
ment after 10 (i.e.,
10+1)

4+1

the first three lines
of the program.

Writing a FORTRAN Program

A program is composed of a series of statements* and

comments.

A statement may be translated by the compiler into

many computer operations or into no operations
at all.

Those statements which result in specific computer

operations are termed executable and the sequence
in which they are given is important. Control,
Arithmetic, Input/Output, and Subprogram statements
are executable. Specification statements are not
executable and in general may be placed anywhere

in the source-program*.

Program execution begins with the first executable

The

statement written and continues through each
executable statement in order of appearance
unless a control type statement directs the
program away from the next sequential statement.

statements of a program are written on FORTRAN
coding forms, each line corresponding to a
memory record.

Positions 1-72 may be used.

Positions 73-80 are not interpreted by FORTRAN but

may be used by the programmer.

Positions 1-5 are used for statement-numbers*. A

statement only needs a number if reference is

made to 1t. Statement numbers need not be in
any order. The statement number igs purely a

device for referencing statements, and has no
other significance. Integers* from 1 to 82767

may be used for statement numbers.

The statement begins in position 7.

Position 6 is normally blank.

Writing a FORTRAN Program (contd)
g g

Statements may be continued on up to 9 additional
records in FORTRAN II and 19 additional
records in FORTRAN IV. In either case, these
are called continuation records. Position 8
of all continuation records must contain a
character other than 0 or b.

Ezplanatory comments within a program are designated
by a 'C' in position 1 of each comment record.
These comments play no part in the execution of
the program.

With the exception of one FORTRAN II statement and
two FORTRAN IV statements, blank positions are
ignored and may be used freely to improve the
readability of a FORTRAN program.

The exceptions indicated above are the FORMAT state-
ment in FORTRAN and the DATA statement in FORTRAN IV.

[I. FORTRAN Statements

FORTRAN Statements

The description of each statement in the FORTRAN language
is presented in the following sections. FEach state-
ment starts on a new page with the format of its
descriptive material given as shown below:

Instruction Name Instruction Name
(for left-hand page) (for right-hand page)

USE: (a brief statement of the purpose of the
instruction)

(Form of the Instruction)
(Definition of Symbols
used in the Form line)
RULES :
(A list of rules governing the correct usage
of the instruction; includes restrictions,
suggestions, etc.)
EXAMPLES :
(A list of examples illustrating the use of

the instructions; includes examples of in-
correct usage.)

As many pages as needed describe an instruction.

If there are any differences between the FORTRAN IV use
of an instruction and its FORTRAN II counter-part,

an extra page(s) labeled FORTRAN IV is included which
only presents those attributes of the instruction which
differ.

arithmetic

USE: To perform a numerical calculation.

a=e
a: simple variable*; single
value of a subscripted-
variable*.
e: an expression*.

RULES:

1. The equal sign (=) means "is replaced by"
(t.e., 'a' 1s replaced by 'e'.)

2. The value of the expression on the right
of the equal sign is computed and this
value replaces the previous value of 'a'.

3. The quantity stored will be an integer*
if 'a' is defined as an integer variable.

4. The quantity stored will be floating-point*
if 'a' is defined as a floating point
variable.

5. Calculations will be performed in the inte-
ger mode* if the expression on the right side
of the equal sign contains all integer quan-
tities. (NOTE: Exzception: In an integer
expression a floating point quantity may
appear as the argument* of a function.)

6. Calculations will be performed in floating
point mode if the expression contains all
floating point quantities. (NOTE: Excep-

L e Tow e LT ok Lo man L ;
Lo 147 G jeCaving poinT expression an inte-

ger quantity may appear as an exponent, a sub-
script*, and as an argument of a function.)

.
A an A DDA Aan

EXAMPLES:

1. X=Y®Z product of Y and Z replaces
variable X.

2. A=I/J calculation is in integer

mode ;if I=8 and J=2, re-
sult 2s¢ 1; (fractional

part is truncated) stored
in A as a floating 1(1.).

EXAMPLES: (contd.)

3.

I=A%B

J=d+1

X=T+(U*VI®¥2-EXPF(R-C(3))
/(3. 1416%P(UIRTHRS)

arithmetic

caleulation is in floating
point mode; if A=1.2 and
B=2.4, result is 2.88;
stored in I as the integer
2. (factional part trun-
o A1

ateu/.

illustrates meaning of =
sign. J 18 incremented

by 1 and the new value re-
places the old.

converts I to a floating
point number and stores it
in 4,

truncates B to an integer
and stores <1t in K.

shows the ability to make
many calculations using a
single statement.

arithmetic
FORTRAN IV

RULES:

1. The statement is also used to perform logical
operations.

2. The words "floating point" as used in FORTRAN II
have been replaced by the word "real*" in FORTRAN IV.

3. The quantity stored will be integer, real, double-
precision*, complex* or logical* (.TRUE. or .FALSE.)
depending on the type of variable 'a'.

4. If 'a' is a logical variable*, then 'e' must be a
logical-expression*.

5. If 'a' is a complex variable, 'e' must be a complex
expression.

6. If 'a' is a real variable, 'e' may be a real, integer,
or double precision expression.

7. If 'a' is an integer variable, 'e' may be a real, in-
teger, or double precision expression.

8. If 'a' is a double precision variable, 'e' may be a
real, integer or double precision expression.

EXAMPLES :

1. X = Y¥*Z If X and Y are real and 7 is
double precision, Y*Z uses
double precision arithmetic.
The most significant part of
the result is stored in X.

[\\)
O
H

D.AND..NOT.E ¢, D and E must be logical
quantities. C will be .TRUE.
only when D is .TRUE. and E
is .FALSE.. In all other cases
C will be .FALSE.,.

(VN
=
1}

V.LE.17.2 W is a logical variable.
V is either real or double
precision.
W will be .TRUE. if V =17.2;
otherwise W is .FALSE..

4.

arithmetic
FORTRAN IV

COMPLEX P,0Q(10),R Integer J appears in a
P =0Q(J)-(4.2,51.7)-CSIN(R) complex expression as
a subsecript.

17

arithmetic statement function

USE:

RULES:

EXAMPLES:

1.

[\V]
.

SOMEF (X, Y) = X®¥2-2, Y

To define a function* in a single arithmetic
statement*; to make a subroutine* out of a
series of calculations which recur in a single
program.

nameF(aZ,ag,.......,an)=e

name: a function name?*
followed by a
terminal F.

A sBgseeslyd non-subseripted-
variables* which
are dummy-arguments*.

e: an arithmetic ex-
pression* not in-
volving subscripted
variables.

Arithmetic statement functions must precede
the first executable statement im a source-
program#*,

The function is compiled as a closed-subrou-
tine*.

The function may be used any number of times.

'e! may contain other functions that are
available to the program. (i.e., built-in,
library, or previously defined arithmetic
statement functions.)

'e' may contain variables not stated as
arguments. These are treated as parameters
and at the time the function is called their
current values will be used.

defines a simple cal-
culation.

F(F) BQRT is a library
function.

EXAMPLES: (contd.)

3.

ONEF(CAD

-
i
i

FIRSTF(P(ID,Q)

D

(alt)
FIRSTF(P,Q)

D

BIGF(G,H)

R = AXB+C

—
1

= BIGF(X,Y)-S+5.3

ONEF(S5-U
ONEF(R-5. program

arithmetic statement function

L XA-SINFCA®¥®2)
definition of ONEF.
(dashes represent
other coding.)

-U¥%3)/ use of ONEF in the

Q¥P(I1)/(Q-1.) Zllegal! P(I), a sub-

seripted-variable*, is
not valid as a dummy-
argument*.

S-FIRSTF(C(4),R)

Q*¥P/(Q-1.D a dummy argument is

always a simple vari-
able* whereas an
actual argument may
S-FIRSTF(C be a constant*, a
4),RD simple variable, a
subscripted variable,
or an expression?*.

G/2.¥R-HXX3

current value of R
will be used.

19

20

arithmetic statement function
FORTRAN IV

The form of the statement is as follows:
name(al,aZ,...,an) = e
There is no terminal F following the function name.

RULES :

1. Type statements (if any) for the dummy arguments
must precede the arithmetic statement function.

ASSIGN

USE: To give a statement-number* value to an integer
variable*; to set up the path which a subse-
quent assigned GO TO will take.

ASSIGN n TO ¢
n: statement number
J: integer variable
RULES:

1. An ASSIGN statement* must be executed in the
object-program* prior to the assigned GO TO
statement to which it refers.

2. An asstigned-variable* (j) may be used as an
ordinary variable only i1f it is redefined.

EXAMPLES:
1. ASSIGN 33 TO N for the next assigned
GO TO, N will refer to

statement number 33.

2. ASSIGN 6 TO NKLMN

21

22

BACKSPACE

USE: To cause a tape unit to backspace one tape

record.

BACKSPACE <

1: unsigned integer con-
stant* or an integer
variable* which is a
logical-tape-unit* de-
signation.

RULES:

1. Any number of tape records may be backspaced
by giving successive BACKSPACE statements.

2. If the BACKSPACE statement is given for tapes
written with the WRITE TAPE statement, one
logical-tape-record* is backspaced.

EXAMPLES:

1. BACKSPACE 5
BACKSPACE 5
BACKSPACE 5 will position logical

tape unit 5 three re-
cords back

USE:
RULES:

1.

2.

SO
EXAMPLES:
1 CALL
2. CALL
3. CALL
4, CALL

CALL

To transfer control to a subroutine subprogram*;
to give arguments* to the subroutine subprogram.

CALL name (al,ag,...,an)

name: a subprogram name*
Agslgsessly! actual arguments

An argument in the CALL statement may be

a. constant*, b. variable, c¢. subscripted-
variable*, d. name of an array* without sub-
scripts, e. arithmetic expression?,

f. Hollerith-string?*.

The arguments in the CALL statement must
agree in number, order, and mode* with the
arguments in the SUBROUTINE statement.

There need not be any arguments in the CALL
statement 1f all the pertinent data are
assigned locations im common* and thereby
transmitted implicitly.

-
<
v
-<
)
>
\un
e
<«
-<
~
N
\/

(arguments 11lue-
?

g ts <
rating a,b)

N

QDRTIC (P®9.732,Q/4.536,R-5%%2.0,X(1),Y,2)
(a,b,c,e)

SAM (1,2.14,L,K(C2),Z,YC1,2,3),ARRAY,A%B, 3HABC)
(71llustrates all)

CALC (no arguments)

23

24

CALL

FORTRAN IV

RULES :

I. 4n argument may also be a logical-expression*, or
the name of a function, or a subroutine subprogram.

EXAMPLES :

1. CALL SUBR (SIN,A.GT.B)

USE:

RULES:

COMMON

To cause designated data items to be allo-
cated storage in a fixed portion of storage
called common*; to permit these items to be
shared between programs.

COMMON v, v, .., v

v: each ‘v’ is a vari-
able* or non-sub-
seripted array* name

The items are allocated storage in the se-
quence in which they appear in the COMMON
statement?,

There may be any number of COMMON statements
in a program. (Each starts assignment where
the previous one left off.)

Ordering in common may be altered by an EQUIVA-

LENCE statement. (See EQUIVALENCE example 3.)

A COMMON statement may be placed anywhere in
the source-program* except as the first state-
ment in the range of a DO.

If COMMON statements appear in two or more
programe (i.e., in a main-program* and a sub-
program*, or in several subprograms) which are
to be run jointly, the exact common statements
must be used to assure proper correspondence

between variables in each program. These pro-

grams will share the designated area of common.

This permits the transfer of arguments* be-
tween a main program and subprogram without
having them appear explicitly in the argument
list following the subprogram name*. ALl that
18 necessary ts to have the dummy-argument?
and the actual argument ocecupy corresponding
positions in common.

All the arguments of a subroutine subprogram
may be transmitted through common. However,
there must be at least one explicit argument
for a function subprogram.

25

COMMON

RULES: (contd.)

8. If the name of an array appears in a COMMON
statement, it must also appear im a DIMENSION
statement in the same program.

EXAMPLES:
1. COMMON X, Y, Z In common storage
DIMENSION X(1), Y(1,2), z(1,2,3) X(1)
¥(1,1)
Y(1,2)
Z(1,1,1)
Z2(1,2,1)
72(1,1,2)
72(1,2,2)
2(1,1,3)
2(1,2,3)
2. COMMON A,B,C
COMMON J,K, L A
COMMON P,Q B
c
J
K
L
P
Q
3. Main Program Subprogram
COMMON A,B,C COMMON S,T,U,V,W
DIMENSION B(3) DIMENSION V(2)

In common storage

4, 8

B(1),T

B(2),U

B(3),V(1)

c, v(2)
W

COMMON

FORTRAN IV

A more general form of the COMMON stiatement is permitted.

COMMON/az/v,v,...,v/az/v,v,...,v/.../an/v,v,... v

RULES :

@
.

v each 'v' is a unique
variable* which may be
subseripted* with dimen-
sion information

AgsGgyere @ ! variables which are common
block names*, or blanks

FORTRAN II Rule 3 does not apply. EQUIVALENCE will

not reorder common. However, the length of a common,

block may be increased by an EQUIVALENCE statement
(see EQUIVALENCE).

FORTRAN II Rule 8 does not apply. An array may
appear in a COMMON statement with its dimension
information. Therefore it must not appear in a
CIMENSICON statement in the same program or in a
type statement with its dimension information.

Elements may be placed in separate areas of common
called blocks. These blocks are given names which
appear enclosed in slashes (//) in a COMMON state-
ment.

A common block name may appear in several COMMON
statements of a program. Assignment of variables
will be in the order of the COMMON statements.

Ordinary common or blank common is indicated by
two consecutive slashes or by omitting the block
name. See example 1.

Blocks in different programs which have the same
names will share storage space. All blocks of the
same name must have the same length.

If a double word variable is placed in common, its
high order part must be located an even number of

storage locations away from the first common element.

27

COMMON

FORTRAN 1V
EXAMPLES:
1. COMMON /ABC/BOB,J, R(3),W(2)//X,Y,Z(2,2)/M/P,Q,S

In common storage

M blank ABC

P X BOB
Q Y J

S 2(1,1) R(1)

z2(2,1) R(2)

72(1,2) R(38)

z(2,2) W(1)

w(a)

2. COMMON F,G,H(2)/CAT/A,C,D,1//BOY,DOG
COMMON /CAT/T,U,V//M,N

In common storage

blank

Q
Y
M3

F

G
H(1)
H(2)
BOY
DOG
M

N

S B I \

3. DOUBLE PRECISION ANS
COMMON A,B,C,D,ANS,E

In common storage

QW

D

ANS (high order)
ANS (low order)
FE

USE:

RULES:

EXAMPLES:

1.

CONTINUE

To be the last statement* in the range of a
DO, when the last statement would otherwise
have been a GO TO or an IF; to furnish a
reference point which may be given a state-
ment-number*.

7 CONTINUE

n: statement-number*

The statement number n of the CONTINUE state-
ment provides a transfer point for an IF or a
GO TO that is intended to begin another re-
petition of the DO range.

CONTINUE <s a dummy statement and creates no
object-program* instructions.

When not used as part of a DO, any transfer
to this statement causes the statement
following to be executed next.

10 DO 12 1=1,10
IF (ARG-VALUE(CI)) 12,13,12
CONTINUE

—t
N

DO 98 J=1,15,2

IF CACJ)-TEST) 96,97,96
97 K=K+1

GO TO 98
96 L=L+1
98 CONTINUE

If a statement* has been
deleted but it 18 not de-
sirable to change all

GO TO 25 statements which refer-
_ enced 1t, CONTINUE may
be used.

IF (A¥B-C) 1,25,1 (dashes represent other
coding)

25 CONTINUE
C=D¥X(4)

29

30

DIMENSION

USE:

RULES:

To tell the FORTRAN compiler how much storage
to set aside for arrays*; to specify a maximum
stze for each array used in the program.

DIMENSION v,v,v,..... , 0
v: each 'v' is a subscrip-

ted-variable* with 1,
2, or 8 unsigned inte-

ger constant* subscripts*

Each array must appear in a DIMENSION state-
ment.

The DIMENSION statement must precede the first
appearance of the subscripted variable in the
source-program* and may not be the first state-
ment in the range of a DO.

The subscripts represent the maximum number of
elements possible in the array. No reference
to the array should be made in which the value
of a subscript exceeds this maximum.

Arrays may not be more than 3-dimensional.

Any number.of arrays separated by commas may be
listed in a single DIMENSION statement.

There may be any number of DIMENSION statements
in a program.

'v! may not be the name of the program itself,
or of any program which it calls.

Each 'v' im all the DIMENSION statements of a
single program must be unique.

Arrays are stored in descending storage loca-
-{;ions 1.’4‘+h tke fﬂ"ncwl- ou'lﬁon-vvf-n-l- ﬂn-va-un'ng mno+

Wl v vi'lo v o volilvp v vikidyge

rapidly, and the last varying least rapidly.

v o v

EXAMPLES:

I.

2.

3.

DIMENSION A(50)

DIMENSION X(5),Y(2,10),1(30)

DIMENSION C(12),D(10),
SQRT(H40),c(12)

DIMENSION

sets aside 50 posi-
tions of storage for
a one-dimensional
floating-point* array
named A.

several arrays in one
DIMENSION statement.

illegal! See RULES
7. and 8. SQRT is a
lLibrary routine.

31

32

DIMENSION

FORTRAN IV

RULES :

1.

The p's may have variable subscripts if the DIMEN-
SION statement appears in a subprogram?*.

If a subprogram array has variable dimensions the
array name and its dimensions must be arguments of
the subprogram.

The actual dimensions must appear in the calling
program DIMENSION statement and these are the dimen-
sions which must be passed to the subprogram.

If an array name appears in a COMMON or a type state-
ment with <1ts dimension information, the array name
must not appear in a DIMENSION statement.

FORTRAN II Rule 9 does mot apply. Arrays are stored
in ascending storage locations with the first sub-
seript varying most rapidly and the last varying
least rapidly.

EXAMPLES :

1.

Main Program Subprogram
DIMENSION X(5,10),Y(7,7) SUBROUTINE MAT (A,N,M)

(dashes represent
_ other coding)
CALL MAT(X,5,10)

DIMENSION A(N,M)

CALL MATC(Y,7,7)

USE:

RULES:

1.

DO

To execute repeatedly a series of statements*;
to cause looping* having initializing, incre-
menting and testing of the loop all done by a
single statement.

DO »n 1 = my,Mg,mgz

n: a statement-number?*
i: a non-subscripted
integer variable#*
MmisMesmz: unsigned integer con-
stants* or non-sub-
scripted integer
variables

The DO statement ig a command to execute re-
peatedly the statements which follow, up to and
including statement number n. This sequence of
statements is called the range of the DO.

1 18 called the index of the DO; m; is the ini-
tial value for i, mg is the maximum value for
1, and mz is the increment for <.

1 18 set equal to mi for the first execution of
e

the statements in t range of the DO. For each

succeeding time through the rang

ereased by Mg

A
ge, 1 1s in-

After the statements in the range of the DO have
been executed with the index of the DO, (i), equal
to the highest number which does not exceed Moy
control passes to the statement following the

last statement in the range of the DO, i.e., the
statement after statement number n. The DO is
then said to be 'satisfied’.

mo, must be greater than or equal to my.
If mz ts not specified, it is assumed to be one.

The range of the DO can consist of any number of
statements*, including only one statement.

The index of the DO need not be used in the range
of the DO, but it is usually used in computations
or as a subscript*.

33

34

DO

RULES:

9.

10.

11.

12.

18.

14.

15.

16.

(contd.)

If DOs are within DOs (this is called a nest of
DOs), the range of the imner DO must be within
the range of the outer DO. (Note: More than
one DO of the nest may end at the same state-
ment.)

Transfer of control from within a DO to outside
its range is permitted.

Transfer of control from outside the range of

a DO to within its range is not permitted,
except when returning from a temporary exit

(see RULE 10).

NOTE: Statements executed during this temporary
exit are considered to be logically within the
DO range and therefore RULE 12. applies.

No statement is permitted within the range of
a DO which re-defines the index <, the initial
value mys the terminal value mg, or the incre-
mental value mg.

The first or last statement in the range of a
DO must not be a non-executable FORTRAN state-
ment; i.e., DIMENSION, FORMAT, COMMON, etc.

The last statement in the range of a DO, (state-
ment number n), must not be another DO, a trans-
fer (i.e., IF or GO TO), or a non-executable
statement. See CONTINUE.

The value of i, the index of the DO, is avail-
able upon leaving the range of a DO only if
executing a CALL or transferring out by lF or

a GO TO; and not when passing to the statement
after statement-number* n (i.e., when the DO has
been satisfied).

If an assigned GO TO statement is in the range
of a DO, all the statements to which it may
transfer must either be in the range or all
must be outside the range.

EXAMPLES:

1.

31
35

130

76

111

11

26

17

8
6

DO 5 1=1,3
ACID)=ACID+B(I)

DO 89 J=2,12,3

DO 35
DO 31 1I=1,5
SCID=TCI)-UCI)
A =K¥J+L

DO 130 L=1,100,3
IFCX(LD-50.)
CONTINUE

DO 76 L=1,N,1
JCLD=u(L)*3

GO TO 111

DO 11 1=1,500,50
A=B¥*C

Z(1)=37.0

DO 26 M=3,9,3

DIMENSION T(C12)
T(M)=A(MD/3.28

CONTINUE

DO 17 L=1,15,2
ACL)=B(L)-CCLD
DO 17 K=3,10,2
JCK)=K*L

DO 6 1=1,3
IFCCCI)) 6,6,8
DO 6 J=1,6
ACI,Jd)=B(JI*C(I)
CONTINUE

K=70,100,10

77,130,130

DO

index used as subscript*;
mz=1 is assumed; range of
DO s only one statement

this DO 18 executed 4
times with j=2,5,8,11

a nest of DOs; index used
as a subseript and in
computation

possible transfer out of
range of DO; use of CON-
TINUE since IF cannot be
the last statement in
range of DO

(dashes represent other
coding)

this DO 18 executed once
see RULFE 11.

illegal!

illegal! see RULE 13.

nest of DOs ending at state-

ment 17

statements repeat from the
inner DO until it is fin-
ished. Then they repeat
from the outer DO, with in-
ner DO index, K, starting
again at its initial value

the CONTINUE <s needed to
end the nest of DOs in case
the IF condition requires
that the inner DO be by-
passed

index of inmner DO uses
current value of outer DO
index for starting point

356

36

DO

FORTRAN IV
RULES:
1. FORTRAN
of a DO
See |F,
in this

II Rule 4 has one exception. The range
may be ended with a logical |F statement.

logical for an explanation of what occurs
case.

DO, implied

USE: To provide a shorthand notation to be used in the
list* of an input/output operation for manipulation
of data arrays.

j=m1,m2,ms),v,v,...,v,k=n1,n2,n3)

v: each '"v'! is a subscrip-
ted-variable* with 1, 2,
or 3 subscripts*, or a
non-subscripted variable

1305 K: non-subscripted integer
variables*

Lyslg,ls,

misMme,Mz,
N1sNgsNigl unsigned integer constants#*

or non-subscripted integer
variables

RULES :

1. In the format shown above, a left parenthesis
represents the beginning of an implied DO
statement. The corresponding right parenthesis
represents the end of that implied DO.

Implied DQ's may be nested. i, J, k are indexes

of the implied DO. 17 is the initial value of

the index, 1, the maximum, lz (if stated) the

. 2 . ..
inerement, as explained under DO; m and n are similar.

2. An implied DO can only be used in the list of an I/0
statement,

3. An implied DO may appear anywhere in a list.

4. Any number of implied DO's may appear in a single
list.

37

38

DO, implied

RULES:

10.

11.

12.

(contd.)

The implied DO must be separated by commas from
the other list elements.

There may be any number of 'v's in an implied DO
including only one 'v'.

There need not be any 'v's at all in the two
outer sets of parentheses.

If a '"v' is a non-subscripted variable, the
subscripts i, j, and k will have no effect
on its transmission, but it will be repeated
according to the rules for the DO.

'¢!, 'g', and 'k' represent the variable sub-
scripts* of the 'v's which have not been
previously defined.

There may be one, two, or three sets of
parentheses, depending on whether there are
one, two, or three undefined variable sub-
scripts.

If any 'Zl ’, IZZ I-’ 'Zgl-’ ,ml I’ Im2 I, Imgl, or

'nl', mg', 'n3’, 18 variable, it must have

a) been previously defined, or

b) appeared in the current list prior
to the implied DO
(Note: This is only wvalid for
an input list.)

Implied DO's covering the entire array are
assumed if an array name, unsubscripted,
(for which a DIMENSION statement appeared
previously) is given in an I/0 list.

DO, implied

RULES : (contd.)

13. Execution is that of a nest of DO's with the
nnermost parentheses representing the inner-
most DO; Zi.e., referring to the general form
of the instruction, page 37.

98 ; DT
D J=mo,my,m
DO 3 i=z§,22,13

» 3
v
(variables in innermost
. parentheses)
3 v
v
v
(variables in middle
parentheses)
2 v
v
v
(variables in outermost
parentheses)
i v
EXAMPLES :
Order of transmission
1. READ 5, (A(1),1=1,10) A(1), A(2) A(10)

2. PUNCH 1, ((B(I,J),1=1,5), B(1,1),B(2,1),...,B(5,1),
J=1,7) B(1,2),...,B(5,2),...,
B(1,7),...,B(5,7)

3. WRITE OUTPUT TAPE 3,7, c(1,1),D(1,1),C(1,2),
((CC1,d),D01,4),d=1,5), D(1,2),...,C(1,5),D(1,5),
=1,4) C(2,1),D(2,1),...,C(4,1),

D(4,1),...,C(4,56),D(4,5)

4. PRINT 3,A(3),D,1,((X(K,L), A(3),D,I,X(1,1),%X(2,1),
K=1,5),Y(L),L=1,6), e, X(5,1),7(1),%(1,2),
Z(1),2(2) e X(5,2),7(2) 4.,
X(5,6),Y(6),2(1),2(2)

39

40

DO, implied

EXAMPLES:

9. READ

(contd.)

INPUT TAPE 1,4,(((T
(1,d,K),1=1,6),U(J,K),

Order of transmission

T(1,3,1),7(2,3,1),...,
T(6,3,1),U(3,1),T(1,4,1),

J=3,7),V(K),K=1,4) e T(6,4,1),U(2,1),...,
T(6,7,1),U(7,1),V(1),
T(1,3,2),...,7(6,7,2),
U(7,8),v(2),...,7(1,3,4),
e T(6,7,4),U0(7,4),V(4)
6. READ 2,K, (A(]),B(I,K), K,A(1),B(1,K),A(2),
=1,10),CCCC1,J),1=1,10, B(2,K),...,A(10),B(10,K),
2),D(J,3),4=1,K) C(1,1),0(3,1),...,C(9,1),
D(1,3),C0(1,2),C(3,2),...,
€(9,2),D(2,3),...,0(1,K),
...,C(9,K),D(K,3)
Note: There are 2 im-
plied DO's; value of K
read in will be used for
B and D arrays.
7. The list in Example 6 with expliecit DO statements:
K
DO 4 | =1, 10
ACT)
4 B(I,K)
DO 6 J = 1, K
DO 5 | =1, 10, 2
5 c(l, J)
6 D(J, 3)

8. DIMENSION A(10)
READ 5, A, X, Y

A(1), A(2),
Illustration of Rule 12.

., A(10), X,

Y

DO, implied

FORTRAN IV

1. FORTRAN II Rule 2 does not apply.
An implied DO may be used in the 1list of q DATA
statement as well as im an I/0 statement

41

42

END

USE:

RULES:

3.

EXAMPLES:
1.

2.

To specify the physical end of a source-pro-
gram* during a FORTRAN compilation; to specify
an action to be takenm by the FORTRAN compiler
at the end of compilation with regard to the
setting of the individual Sense-Switches*.

END (11,12,...,15)

I,5TgsueesIgs 0, 1, 2

5.'

Sense Switech options are specified by the
installation.

The END statement* must be physically the last
statement of every program.

END creates no object-program* instructions.

END (2,2,2,2,2)

END (0,1,2,0,1D

RULES :

1.

Sense Switch optionsg do not apply.
simply

END

END

FORTRAN 1V

The form is

43

44

END FILE

USE: To write an end of file indication on a
tape unit.

END FILE <

1: unsigned integer con-
stant* or an integer
variable* which is a
logical-tape-unit?
designation

RULES:

1. All output tapes should have end-of-file
indications.

EXAMPLES:

1. END FILE & writes end of file mark
on logical tape 4

USE:

RULES:

(S
.

EQUIVALENCE

To comnserve storage by having several vari-
ables* use the same location when the logic of
the program permits.

EQUIVALENCE (a,b,c,...),(d,e,f,...D
D

P v ey “ e e 0

a,by,e,d,e,f: variables* which
may be followed
by a single inte-
ger constant* in
parentheses

An EQUIVALENCE statement* may be placed any-
where in the source-program*, except as the
first statement in the range of a DO.

This statement causes all of the variables in
each parenthetical expression to be assigned
the same storage location in the object-
program*.

Any number of equivalences (i.e., sets of
parentheses) may be given.

Locations in storage can be shared only among
variables, not among constants.

7
b

N

Variables brought into common* through an
EQUIVALENCE statement may reorder common as
set up by the COMMON statement, because the
order of the variables in the EQUIVALENCE
statement takes precedence. (See Example 3.)

If an unsubscripted variable which is an array?
18 given in an EQUIVALENCE statement, the
implied subscript* is one.

The integer constant* im parentheses spectifies
how many locations after the beginning of an
array* the equivalence is to be made. (i.e.,
c(p) is the (p-1) location after c(1), or
e(1,1), or e(1,1,1))

45

EQUIVALENCE

EXAMPLES:
1. EQUIVALENCE (A,B,C) these are simple variables?*
all assigned to the same
In storage A,B,C storage location

2. EQUIVALENCE (A,dJ),(B(3),D)
DIMENSION A(L), B(2,2), D(6D

In storage
A(1), J subscript* assumed one;
A(2) floating-point* quantities
A(3) can be equivalenced to in-
A(4) teger* quantities
B(1,1)
B(2,1)

B(1,2), D(1)
B(2,2), D(a)
D(3)
D(4)
D(5)
D(6)

3. COMMON A,B,C,D
‘ EQUIVALENCE (C,G),(E,BD variables in EQUIVALENCE
statement take precedence
In common storage in common*

3

G
5B

O Q

RULES:

EXAMPLES :

-

L.

2.

1.

EQUIVALENCE

FORTRAN IV

FORTRAN II Rule 5 does nmot apply. Variables brought
into common through an EQUIVALENCE statement will
not reorder common. They may, however, increase the
size of the common block as set up by the COMMON
statement (see example 2).

Arrays may not be brought into common via anm EQUI-
VALENCE statement in such a way as to cause common
to extend backward.

FORTRAN II Rule 7 does not apply. Subscripted vari-
ables must be listed imn EQUIVALENCE statements with
the correct number of subscripts as specified by the
DIMENSION statement.

When using a double word quantity im an EQUIVALENCE
statement, care must be taken to assure that the
high order part is an even number of locations away
from the start of all other two word quantities
which may be linked via EQUIVALENCES.

COMMON A,B,C,D
EQUIVALENCE (C,G),(E,B)

A
B
c
D

In common storage

no reordering
of common

COMMON X(2),Y,Z

EQUIVALENCE (Y,R(1))
DIMENSION R(3)

In common storage

X(1) the length of common
x(a) was extended due to
Y,R(1) the EQUIVALENCE
Z,R(2) statement

R(3)

47

EQUIVALENCE

FORTRAN IV

EXAMPLES: (contd.)

3. COMMON J(2,2)
COMPLEX P,0
EQUIVALENCE (P,J(2,1),0,J(2,2))

In FORTRAN II the EQUIVALENCE
would have been (P,J(2)),
(Q,d(4))

In common storage

J(1,1)

J(2,1), P (high order)

J(1,2), P (low order)

J(2,2), @ (high order)
Q@ (low order)

4. DIMENSION T(6)
COMMON U,V(2),W
EQUIVALENCE (V,T(4))

In common storage

U s T(3) Invalid! See Rule 2
v(i1), T(4)
via), T(5)
174 , T(6)

USE:

RULES:

General

1.

FORMAT

To specify the arrangement of data on the in-
put or output medium; to specify the type of
conversion to be made between the internal
and the external format.

n FORMAT (Specification)

n: a statement-number*
Specification: a series of codes
separated by commas
to determine how nu-
meric and alphanumeric
fields* should appear
externally

The input statements*: READ, and READ INPUT
TAPE, and the output statements: PUNCH, PRINT,
and WRITE OUTPUT TAPE must reference a FORMAT
statement-number*.

FORMAT statements are not executed; their func-
tion is to supply information to the object-
program*. They may be placed anywhere in the
source-program* except as the first or last
statement in the range of a DO.

The entire specification must be enclosed in
parentheses.

Numeric Fields

4.

For numeric fields, the following codes must
be used:

a. the letter E, F, or I, specifying
the type of conversion to be per-
formed;

b. a number (w) specifying the width
of the field on the external medium;

¢. a number (d) specifying the number
of digits* to the right of the deci-
mal point externally. (Only for
floating-point-numbers*.)

49

FORMAT

RULES: (contd.)

5. Numeric specifications are writtenm Ew.d, Fw.d,
cr lw.

6. Ew.d

a. E is used in the FORMAT specification
when a floating-point-number* is/or
will be represented externally as a
decimal fraction followed by the letter
E and a 2-digit decimal exponent.

(e.g., 0.538E-12)

b. w in this case must allow for a sign,
a leading 0, a decimal point, the
fraction, and four positions for the
exponent.

e. d represents the precision desired.
(e.g., .00325 using E10.3 will appear
as b0.325E-02)

a. F is used in the FORMAT specification
when a floating-point-number* is/or
will be represented externally as a
true decimal number.

(e.g., -75.324)

b. w in this case must allow for a sign,
a deeimal point, and all the digits
desired.

e. d represents the fractional digits.
(e.g., 62.75818 using F9.h will appear
as bb52.7532)

a. 1 is used in the FORMAT specification
when an integer quantity is/or will
be represented externally as a decimal
integer*.
(e.g., 4327)

RULES:

8.

FORMAT

{contd.)
(contd.)

b. w in this case must allow for a sign,
and all the integral digits.
(e.g., -325 using 15 will appear as

D=0 4o

 —

For output, w may be larger than the actual
field* to provide blanks to the left of the
number. If the sign is +, a blank will be in-
serted in the space reserved for the sign.

Data Preparation for Numeric Fields

10.

E, F, and 1 formats apply to both input and out-
put; however, some restrictions are eased for
preparation of input.

a. Plus signs may be omitted and no
blank need be provided.

b. E notation exponent need not have

four positions. (i.e., exponent of 102
may be written E2, E02, E 2, E 02, +02,
+2)

e. If a decimal point is not punched, the
specification will indicate where it
should be placed. If it is punched,
its position overrides the specification.

Scale Factors

11.

It is permissible to attach a scale factor to
a number which is output with E or F conversion.

The form is nPEw.d or nPFw.d.
P is the letter P.

n is an integer specifying the power of 10 by
which the number is to be multiplied. In the
case of F conversion, the value is actually
changed. For E converison, the scale factor
merely moves the decimal point and corrects
the exponent.
(e.g., 375.417 will appear with specification
of 2PF8.1 as b37541.7

with specification
of 2PE1L.5 gqs bb37.54170Eb01)

51

FORMAT

RULES: (contd.)
11. (contd.)
n may be + or - for F conversion.

n may only be + for g conversion.

12.
a. Scale factors are assumed to be zero.
however, once a scale factor appears,
it holds for all subsequent E and F
conversions within the same FORMAT
statement.

b. To reset the scale factor to zero, 0P
must be written.

Alphanumeric Fields

18. For alphanumeric fields*, there are two possible
specifications. Both result in storing the al-
phanumeric information internally.

a. Aw for Hollerith-strings* addressable
by the object-program*. These are
given names* and may be referred to
for processing and/or modification.

b. wH for Hollerith strings which are used
only for input and/or output. They may
not be referred to or manipulated in
storage in any way.

14. Aw
a. A is the letter A.

b. w is the field width externally. It
is normally 6 since each Hollerith
string variable* represents sixz charac-
ters*,

e. If w> 6, only the rightmost siz charac-
ters will be transmitted. If w<<;6,
blanks are appended to the right to
make six characters.

RULES: (contd.)

FORMAT

w is an integer specifying the num-
ber of characters inm the Hollerith
string which appears immediately
following the H.

H 18 the letter H.

For output, the next w characters of
the Hollerith string are transmitted
to the output medium.

For input, the next w characters on
the input medium replace the Hollerith
string. Subsequent use of the FORMAT
statement for output will use the new
characters.

There need not be a comma between the
Hollerith string and the next specifi-
cation.

16. Blank is a valid character in a Hollerith string
and must be included in the count for Aw and wH.

Blank Fields

17. To specify the number of positions to be skipped

for input, or of blanks to be created for out
the specification is wX.

put,
a.

b.

o o

w is the field width.

X 1s the letter X.

The next w characters are skipped on
input, or the next w characters will

be blank for output.

The X specification need not be
followed by a comma.

53

54

FORMAT

RULES:

(contd.)

Correspondence to List Elements

18.

a. Correspondence between E, F, 1, and A
specifications and variables in the list
of the I/0 statement is simply by order of
appearance.

b. Each numeric specification must correspond
to a variable* in the list* of the related
I/0 statement. E and F specifications must
apply only to the floating-point-numbers*;
I specification must apply only to integers.

e¢. Each A specification must correspond to a
variable* which represents alphanumeric
information.

d. The H specification
variable in the I/0

e. The X specification
variable in the I/0

corresponds to no
list.

corresponds to no
list.

Field Repetition

19.

[N\
()
.

Ending a

If a partiecular E, F, 1, or A specification is
to be repeated for successive fields?*, the spe-
etfication need be written only once preceded
by a number indicating how many successive
fields are involved (i.e., 3E10.3 is the same
as E10.3, E10.3, E10.3).
RULE 19. carn
cifications.
what is to be repeated (1.e.,
I3) is the same as F10.5,
El4.4, 13).
NOTE: Only one level of parentheses 1s per-
missible.

Tan bo ~wmedlod Lo o manmaian AL ame o
o v e ULHHI/I/GQL (v [¥A g.l(/btt/ UJ Dt}&"
Parentheses are used to show
2(F10.5, Elb.b4,

El4.4, 13, F10.5,

FORMAT Statement

21.

When a FORMAT statement is used and the end of
the specification is reached before the list*
18 terminated, the FORMAT statement is used
again. It repeats from the last open paren-
thesis.

RULES:

22.

28.

24.

FORMAT

(contd.)

Each time the end of the FORMAT statement is
reached, an input or output record is termin-
ated.
NOTE: Maximum record sizes:
for card - 80 characters
for line of print - 120 characters
for tape record - 120 characters.

a. A record may be terminated within the
FORMAT statement by the appearance of a
slash (/) instead of a comma between two
specifications.

b. Consecutive slashes will cause skipping
of records. (n+l slashes will bypass n
records.)

If the FORMAT statement has more specifications
than the list* requires, the unneeded specifi-
cations will be ignored.

Printer Carriage Control

25.

When a FORMAT statement is used to set up a
line of print, (i.e., with PRINT and WRITE
OUTPUT TAPE statements), the first character
18 for carriage control, and is not printed.
NOTE: This character must be included in the
character count for the record.

b causes a single space.

0 causes a double space.

1 skips to a new page.

These are usually written 1H , 1HO, 1H1

55

586

FORMAT

EXAMPLES:
1. READ 4,A,B,K
4 FORMAT (E10.3,F7.1,15)
2. READ 1,A,B,C,D,E See RULE 21.
1 FORMAT (F7.1,E13.2,A6)
3. WRITE OUTPUT TAPE 2,7,Y,Z,T
7 FORMAT (E1l4.4,F7.1,15)
Specification for T is
incorrect; should be E or F.
q. PUNCH 5,P,Q,R(3)
5 FORMAT (2E14.5,F10.5) See RULE 19.
5. PRINT 10,V,W,ANS
10 FORMAT (20X,2HV=F10.3,2HW=F9.3,7HANSWER=F12.3)
Mixzing alphabetic and nu-
meric information; also
see RULE 17.
6. PUNCH 5,(CACID,B(I),I=1,10)
5 FORMAT (E17.2,E19.3) See RULE 21.
7. READ INPUT TAPE 9,12,(JOB(K),K=1,50)
12 FORMAT (517) This assumeg 5 values per
record; also see RULE 19.
8. PRINT 3
3 FORMAT (40X, 18HLIST OF QUANTITIES)
Printing of alphabetic in-
formation only, do not
need a list.
9. PRINT 6,AC1),BC1),A(2),8B(2),C,D
6 FORMAT (30X,2(F10.3,10X,E14.5)/26X,E1L4.4,F8.2)
See RULES 20. and 23.
10. WRITE OUTPUT TAPE 2,7,1,J,K,(T(N),Q(N),N=1,20)
7 FORMAT (15,13,17/(CE13.6,E15.6))
See RULES 21. and 23a.
11. PRINT 4,W,X,Y,Z,IND

FORMAT (F10.3,3PF9.2,E15.2,F11.3,16)
W has no scale factor; X,
Y, and Z Qave a scale fac-
tor of 10°; IND has no
scale factor.
See RULFE 12.

RULES :

Numeric Fields

FORMAT

FORTRAN IV

I. An additional code is provided.

Dw.d

a.

D Ze used in the FORMAT specification when

a double-precision-number* is/or will be
represented externally as a decimal fraction
followed by the letter D and a 2-digit decimal
exponent (e.g. 0.75123482179D-03).

w in this case must allow for a sign, a lead-
ing 0, a decimal point, the fraction and four
positions for the exponent.

d represents the precision desired (e.g.
-000095145728561 using D18.11 will appear
as b0.95143728561D-04).

2. Complex-numbers* will be treated as 2 separate real-
numbers* and should be transmitted with 2 successive
specifications (either E or F), (e.g. 12.71 + 3.8521%
using F6.2, F8.2 will appear as b12.71bbbb3.85).

Data Preparation For Numeric Fields

8. FORTRAN II Rule 10 also includes D format.

a.

Scale Factors

D notation exponent need not have four posi-
tions (same rules as for E).

4. Scale factors may be used for both input and output.

a.

For input they apply only to F conversion
(e.g. if the number 32.751 is read in with
specification -2PF6.3, it will be used inter-
nally as .32751).

For output scale factors apply to E, F and D
conversion. The rules which apply to E
format also apply to D format.

5. FORTRAN II Rule 12a also includes D conversion.

57

FORMAT

FORTRAN IV

Logical Fields

6. The specification lw is used for data which is
being transmitted to or from logical variables?.

a. L is the letter L.
b. w is the field width externally.

e. Input - a value of .TRUE. is stored if the
first non-blank character in the data field
is a T. A value of .FALSE. is stored if
the first character is F or if all the
characters are blank.

d. Output - a value of .TRUE. or .FALSE. in
storage causes a T or F, respectively, to
be written in the rightmost position of
the field. The rest of the field is filled
with blanks.

Correspondence To List Elements

7. a. FORTRAN II Rule 18a includes the D and L
specifications.

b. Rule 18b should read "E, F and D specifica-
tions must apply only to real-numbers*.”

e. The L specification must correspond to a
variable which represents a logical value
(i.e. .TRUE. or .FALSE.).

Field Repetition

8. FORTRAN II Rule 19 includes the D and L specifica-
tions.

Ending a FORMAT Statement

9. FORTRAN II Rule 22 "maximum record sizes" does not
apply. In FORTRAN IV they are as follows:
for card-on line - 72 characters
for card-off Lline - 80 characters
for line of print-on Line - 120 characters
for tape record - size of the printed line

of the off-line printer

58

FORMAT

FORTRAN IV

Printer (Carriage Control

10. FORTRAN II Rule 25 should refer to the WRITE
(i,n) list statement which replaces the WRITE
OUTPUT TAPE statement of FORTRAN II.

Object Time FORMAT Statements

11. A FORMAT statement may be read in when the object
program 18 run.

a. The FORMAT statement is read into an array.
The I/0 statement which references that
FORMAT statement uses the array name.

(e.g. READ (2,FORM) A,B,C)
FORM is the name of the array which contains
the FORMAT statement describing A, B and C.

b. Prior to executing the above READ statement
the FORMAT statement must be read in.
(e.g.
READ(2, 1) (FORM(1),1=1,3)

1 FORMAT (3A6))
NOTE: The entire statement excluding the
word FORMAT must be read into the array.
Thus storage might appear as follows:

FORM [(TF]I]0] .7 3]
+1 L. E]2]4].[5]
+2 L. lrl7z[.] 1])]

e. The array containing the FORMAT information
must be dimensioned even i1f its word size
is one. (e.g. DIMENSION FORM (3))

EXAMPLES :

7
Lo

LOG!ICAL Y
DOUBLE PRECISION DOUBLE
COMPLEX X
READ (5,7) ANGLE, X, Y, DOUBLE
7 FORMAT (F10.3,2£9.2,L5,020.11)

X 18 read in with two specifica-
tions, E9.2, £9.2; DOUBLE

18 read in with a D specifica-
tion. Y is read in with an L
specification.

59

60

FORMAT

FORTRAN IV

EXAMPLES: (contd.)

2

L/

DIMENSION WORD (2)
READ (1,6) WORD
6 FORMAT (2A6)

- (dashes represent other coding)

READ (1,WORD) (X(1),Y(1),1=1,50)

In storage after executing the first READ statement

WORD [(T6TETIT27].]
+1 EAPREEIARANEA

FUNCTION

USE: To define a function-type subprogram*; to de-
fine its name*; to define its arguments#*.

FUNCTION name(al,a2,a3,...,an)

name: a subprogram name
A75Q09sQzsees,a, ! an argument; a non-
n . .
subscripted variable*;
an array* name

RULES:

I. FUNCTION must be the first statement* of a
function subprogram.

2. The arguments may be considered dummy-argu-
ments* which are replaced at the time the
object-program* is executed by the actual
arguments from the calling progranm.

3. Data may be passed through common*; however,
there must be at least one argument explicitly
stated in the argument list.

4. A function-type subprogram is referenced by
using its name as an operand* in an arithmetic
expression*. (See EXAMPLE 2.)

A function-type subprogram returns a single
value result to the FORTRAN calling program.
This result in the function subprogram is
identified by the subprogram name used in the
FUNCTION statement.

6. If an argument is an array name, it must appear
in a DIMENSION statement in the subprogram. It
must have the same maximum size as the actual
argument in the calling program.

EXAMPLES:

1. FUNCTION DEV(X)

(dashes denote other
coding)

DEV=X¥X2/PREV+3.714

62

FUNCTION

EXAMPLES: (contd.)

2. Subprogram
FUNCTION CALCC(A,B,I)

Calling Program

S=T-CALC(R(3),Q, 4)¥pPxx2

FUNCTION

FORTRAN IV

Additional forms of the FUNCTION statement are:

REAL FUNCTION name (az,az,...,an)

INTEGER FUNCTION name {(a-,a_s-+sa)

DOUBLE PRECISION FUNCTION néme (al?az,...,a)
COMPLEX FUNCTION name (a,,@gs...,a,) "
LOGICAL FUNCTION name (al,az,...,an)

RULES :

1. The above forms of the statement define the function
to be of the type specified. These forms override
the naming convention of I-N for integer functions
and A-H and 0-7Z for real functions.

2. An argument may also be the dummy name of a
FUNCTION or SUBROUTINE subprogram. In this case,
the actual argument, which is the subprogram name,
must appear in an EXTERNAL statement in the calling
program. See type statement.

5. In FORTRAN II Rule 6, sentence two does not apply
if the DIMENSION statement in the subprogram has
vartable dimensions. See DIMENSION statement.
However, i1f a dummy argument is dimensioned, the
actual argument must also be dimensioned.

4. A dummy argument may not appear in an EQUIVALENCE
statement in the subprogram.

63

64

GO TO,

USE:

RULES:

EXAMPLES:

1.

20

assigned

To indicate which of several statements* is
the next one to be executed by using a pre-
set path.

GO TO n,(nl) 722, 713, s 00, T’Zm)

n: assigned-variable*
MgsNgsNzseee, Ny Statement-numbers*

In a previously executed ASSIGN statement, the
integer variable* 'n' must have been assigned
the value of one of the statement numbers in
the parentheses.

The next statement to be executed will be the
one whose statement number in the parentheses
has the same value as the integer variable 'n'.

Any number of statement numbers may appear in
the parentheses. (The limit exceeds all prac-
tical requirements.)

Assuming RULE 1., an assigned GO TO may appear
anywhere in the program, except as the terminal
statement of a DO.

The assigned GO TO statement has limited uses
within a DO loop. (See DO, RULE 16.)

ASSIGN 17 T0 J

GO TO J,(4,17,1,3D statement 17 1s executed
next

ASSIGN 20 TO K a statement-number* with-

GO TO K, (20,21) in the parentheses may
STOP be the next sequential
statement

EXAMPLES :

3.

10

30

4o

50

{contd.)

ASSIGN 30 TO N

GO TO N, (30,40,50)
A=B

ASSIGN 40 TO N

GO TO 10

c=B

ASSIGN 50 TO N

GO TO 10

D=B

GO TO, assigned

coding example

(dashes denote other
coding)

65

66

GO TO, computed

USE:

RULES:

EXAMPLES:

To indicate which one of several statements?*
18 the next one to be executed; this 1s de-
termined by using a previously computed value.

GO TO (nl,nz,ng,...,nm),i

NysNgsN3seesNyl statement-num-
bers*
1: a non-subscrip-
ted integer
variable#*

The value of "i" can be changed throughout the
program from integer* value one to integer
value m.

If the value of "i" is two, the next statement
to be executed will be n,; if the value o f "i"
18 four, the next statement to be executed is
Nys ete.

The value of "i" must be known to the object-
program*when the computed GO TO statement <is
encountered.

Assuming RULE 3., a computed GO TO statement
may appear anywhere in the program, except as
the terminal statement of a DO.

Any number of statement numbers may appear in
a computed GO TO.

"{" should never attain a value greater than "m".

There i1s no restriction on other uses for the
variable "1,

1. Go TO (30,45,50,9),K If K=3, transfer to 50

2. Go 170 (14,14,14,76,86,96),MIN

If MIN=1,2, or 3, go
to 14

EXAMPLES:

3.

11

22

33

100

10

GO TO
STOP

(contd.)

(11,22,33),K

100

(10,20,3,76),d

GO TO, computed

Sample Use

first time will transfer
to 11; second time will
transfer to 22; third
time will transfer to 33.

(dashes represent other
coding)

Any of the statement-
numbers* can be the next
sequential statement.

67

68

GO TO, unconditional

USE: To indicate the next statement?® to be executed.

GO TO n

n: statement-number?*

RULES:

1. An unconditional GO TO statement may appear
anywhere in the source-program*, except as the
terminal statement of a DO.

EXAMPLES :
1. GO TO 16
2. GO TO 1999
3. 5 ACID=ACID+C(ID A coding example.
IF (1-100) 3,2,2
3 I=I+1
GO TO 5
4. GO TO 35 The statement number can
35 STOP be the next sequential

statement.

USE: To change the sequence of statement* ex-
ecution, depending upon the value of an
arithmetic expression*; to make a logical
decision.

n

IF (a)nz, s Mg

a: an expression*
MisfgsNgt statement-numbers?*

RULES:

If a<0, control is transferred to n

A

7°

-

2. If a = 0, control is transferred to e

3. If a >0, control is transferred to ng.

4. This statement may not appear as the terminal
statement of a DO.

EXAMPLES:

1. IF CA)5, 10, 15 A valid expression.

2. IF (X*Y+Z-W(2,3))5,5,10 The "n's" need not be
all difFfovrent
all different.

3. IF (SAM)5,6,6 One or more of the state-
ment numbers can be the

5 A=A+1 next sequential statement

6 B=A-CXX2

70

IF

FORTRAN IV

In FORTRAN IV this statement is referred to as the arithmetic
[F.

USE:

RULES:

EXAMPLES:

IF ACCUMULATOR OVERFLOW

To change the sequence of statement* execu-
tion, depending upon whether or not an
overflow condition has occurred; to make a
logical deciston.

IF ACCUMULATOR OVERFLOW n,,ng

Mysngt statement-numbers*

If an overflow condition has occurred since

last tested, a transfer of control is made to
7.
1

If an overflow condition has mot occurred, a
transfer of control is made to ng.

1. IF ACCUMULATOR OVERFLOW 17,10

If an overflow condition
has occurred, transfer to
17, if an overflow condi-
tion has not occurred,

dnn mian o L man
transfer to 10.

2. IF ACCUMULATOR OVERFLOW 36,37
36 STOP
37 K=K+1

One of the statement num-
bers can be the next se-
quential statement.

71

72

IF ACCUMULATOR OVERFLOW

FORTRAN 1V

This statement is not part of the FORTRAN IV language.
However, the overflow indicator may be tested by using the

subroutine subprogram* OVERFL (provided by FORTRAN) as
follows:

CALL OVERFL(g)

Jj: integer variable*

RULES :

1. If an overflow condition has occurred since the
last CALL OVERFL, j is set equal to 1.

2. If an overflow condition has not occurred, j
is set equal to 2.

EXAMPLES :

I. CALL OVERFLCIND) IND is set to 1 or 2,
according to whether an
overflow condition has or
has not occurred.

2. CALL OVERFL(K) If overflow, transfers to

GO T0 (3,17),K 3; i1f no overflow transfers

to 17.

USE:

RULES:

EXAMPLES:

1. IF

2. IF

IF DIVIDE CHECK

To change the sequence of statement* execution,
depending upon whether or not a divide check
condition has occurred; to make a logical de-
eision.

IF DIVIDE CHECK ngs Mg

Mishgl statement-numbers*

If a divide check condition has occurred since
last tested, a transfer of control is made to
M.

1

If a divide check condition has not occurred,
a transfer of control is made to nge

DIVIDE CHECK 12,47 If a divide check condition

has occurred, transfer to
12; <1f a divide check con-
dition has not occurred,
transfer to 47.

DIVIDE CHECK 38,55 One of the statement num-

38 STOP bers can be the next
55 K=K+1 sequential statement.

73

74

IF DIVIDE CHECK

FORTRAN 1V

This statement is not part of the FORTRAN IV language.
However, a divide check condition may be tested by using
the subroutine subprogram* DVCHK (provided by FORTRAN)
as follows:

CALL DVCHK(g)

RULES:

1. If a divide check condition has occurred since the

Jg:

integer variable?*

last CALL DVCHK, J is set equal to 1.

2. If a divide check condition has mot occurred, j

is set equal to 2.

EXAMPLES :

1.

2.

CALL DVCHK(NAME)

CALL DVCHK(LET)
GO TO (4,12),LET

NAME is set to 1 or 2
according to whether a
divide check condition has
or has mot occurred.

If divide check, transfer
to 4; 1f no divide check
transfer to 12.

IF QUOTIENT OVERFLOW

USE: To change the sequence of statement* execu-
tion, depending upon whether or not a quotient
overflow condition has occurred; to make a
logical decision.

IF QUOTIENT OVERFLOW Ny, Mg

nisng: statement-numbers?

RULES:

1. If a quotient overflow condition has occurred,
a transfer of control is made to .

2. If a quotient overflow condition has not
occurred, a transfer of control is made to n._.

2
EXAMPLES :
1. IF QUOTIENT OVERFLOW 333,1
If a quotient overflow con-
dition has occurred, trans-
fer to 333; if a quotient
overflow condition has not
oceurred, transfer to 1.
2. IF QUOTIENT OVERFLOW 101,102
101 PAUSE
102 K=K+1 One of the statement numbers

can be the next sequential
statement.

76

IF QUOTIENT OVERFLOW

FORTRAN 1V

This statement is not part of the FORTRAN IV language.
However, the overflow indicator may be tested by using
the subroutine subprogram* OVERFL (provided by FORTRAN)
as follows:

CALL OVERFL (4)

Jj: integer variable*

RULES :

1. If an overflow condition has occurred since the
last CALL OVERFL, J <s set equal to 1.

2. If an overflow condition has not occurred, J is
set equal to 2.

EXAMPLES :

7. CALL OVERFL{KAT) KAT is set to 1 or 2
depending on whether an
overflow condition has or
has not occurred.

2. CALL OVERFL(M)

I'F (7,5),M If overflow, transfer to 7;
if no overflow transfer to
o,

IF SENSE LIGHT

USE: To change the sequence of statement* execution,
depending upon the condition of a Sense-Light#*;
to make a logical decision.

IF (SENSE LIGHT <) nisng
i: the number of a Sense

Light
Ryshgl statement-numbers?*

RULES:
1. The Sense Lights are numbered 1 - 4.
2. If the Sense Light tested is on, a transfer
of control is made to n and the light is

turned off. r

3. If the Sense Light tested is off, a transfer
of control is made to n..

2
EXAMPLES:
1. IF (SENSE LIGHT 3) 31,32 If Sense Light 3 is
on, transfer to 31l; if
Sense Light 3 is off,
transfer to 32.
2. IF (SENSE LIGHT 1) 84,3 One of the statement
84 PAUSE numbers can be the next
K=K+1 sequential statement.

77

78

IF SENSE LIGHT

FORTRAN 1V

This statement is not part of the FORTRAN IV language.
However, the sense lights may be tested by using the sub-
routine subprogram* SLITET (provided by FORTRAN) as follows:

CALL SLITET(Z,4)

1: 1integer expression*
Jj: integer variable?*

RULES :

1. If the Sense Light specified by the value of i is
on, j is set equal to 1, and the light is turned

off.
2. If the Sense Light tested is off, j is set equal
to 2.
EXAMPLES :
I. CALL SLITET(3,LITE) LITE is set equal to 1 or

2 depending on whether Sense
Light 3 is on or off.

2. CALL SLITET(K-1,N)

GO TO (3,8),N If Light K-1 is on, transfer
to 3; if it is off transfer
to 8.

IF SENSE SWITCH

USE: To change the sequence of statement* execution,
depending upon the setting of a Sense-Switch*;
to make a logical decision.

IF (SENSE SWITCH i)nz,nz
i: the number of a Sense
Switeh
NisNy: statement-numbers?*
RULES:
1. The Sense Switches are numbered 1 - 6.
2. If the Sense Switch tested is on, a transfer
of ceontrol is made to no-
3. If the Sense Switch tested is off, a transfer
of control is made to M-
EXAMPLES:
1. IF (SENSE SWITCH 4> 13,15

If Sense Switch 4 1s on,
transfer to 13; if Sense
Switeh 4 is off, transfer
to 16.

2. IF (SENSE SWITCH 1) 2,3
2 PAUSE One of the statement numbers

can be the next sequential
statement.

79

80

IF SENSE SWITCH

FORTRAN IV

This statement is not part of the FORTRAN IV language.
However, the settings of the Sense Switches may be tested

by using the subroutine subprogram#* SSWTCH(provided by
FORTRAN) as follows:

CALL SSWTCH(Z,4)

1: 1integer expression*
J: integer variable*

RULES :
I. If the Sense Switch specified by the value of 1 is
on, Jg is set equal to 1.
2. If the Sense Switch tested is off, J is set equal
to 2.
EXAMPLES :

1. CALL SSWTCH(N=-M+3,NSWT) NSWT is set equal to 1 or

2, depending on whether
Sense Switch N-M+3 is on

or off.
2. CALL SSWTCH(4,)
GO TO (17,24),: If Switeh 4 is on transfer

c
to 17; if it is off transfer
to 24.

USE:

RULES:

EXAMPLES:

I.

2.

PAUSE

To cause a temporary halt; to cause the object-
program* to halt in such a way that depressing
the START key causes the program to continue
execution with the next sequential statement*.

PAUSE =n

n: an unsigned integer
constant* or blanks.

If 'm'" is a constant, it will appear in a dis-
play register on the computer console.

PAUSE 1234

PAUSE

81

82

PRINT

USE: To cause data to be transmitted from internal
storage to the on-line printer.

PRINT n, list
n: statement-number* of the
associated FORMAT state-
. ment.
list*: 1list of variables* whose
values are to be trans-
mitted.
RULES:

1. Line after line is printed until all the items
on the list have been printed.

2. The number of characters per line and lines
printed is determined by the FORMAT statement.

3. A minimum of omne line is printed.

EXAMPLES:
1. PRINT 2,((X(1,d),I=1,4),d=1,7),(Y(K),K=1,20)
2-dimensional array X and 1-dimensional array Y
are printed according to FORMAT statement 2.
The order is:
xX(1,1), x(2,1), X(3,1), X(4,1),
X(1,2), X(2,2), veueuey X(4,2), vuunn. , X(1,7)

...... s X(4,7), ¥Y(1),, Y(20)

PUNCH

USE: To cause data to be transmitted from internal
storage to punched cards.

PUNCH #n, Izst

n: statement-number* of
the associated FORMAT
statement

list of variables*
whose values are to
be transmitted

o~
3}
[Va)
<k
'y

RULES :

1. Cards will be punched until all the items on
the list have been punched out.

2. The number of cards punched depends on the
FORMAT statement.

3. A minimum of one card is punched.

EXAMPLES:
1. PUNCH 8, CACI),B(I),I=1,100)

The order is A(1),B(1),A(2),B(2),..... R
A(100),B(100)

100 elements of arrays A and B aqre
punched according to FORMAT statement 8.
2. PUNCH 8,(A(I),I=1,100), (B(CI),I=1,100)
In this case, the order is A(1),4(2),
e, A(100),

B(1),B(2),
«..,B(100)

83

84

READ

USE: To cause data to be transmitted from the card
reader to the intermnal storage.

READ n, list

n: statement-number* of
the associated FORMAT
statement.

list*: list of variables?
whose values are to
be transmitted.

RULES:

1. Cards will be read until all the elements in
the list have been read in.

2. The number of cards read is determined by the
FORMAT statement.

8. A minimum of one card will be read.

4. When the supply of cards is exhausted, the
object-program* will halt.

EXAMPLES:

I. READ 5,A,B,C(3),D(J) four floating-point-num-
bers* will be read in
according to FORMAT state-
ment o.

NOTE: J must have been
assigned a value
previously.

USE:

RULES:

EXAMPLES :

1.

READ DRUM

To cause data which is stored on a magnetic
drum in internal machine notation to be read
into storage.

READ DRUM <, j, list

integer constant?*,
or integer variable#*
J: integer constant, or
integer variable
list*: list of variables
whose values are to
be transmitted

[l
*e

No FORMAT statement is referenced.
1 designates a logical drum.
J designates a location on the drum.

Values will be read starting from location J
until the entire list has been read in.

The list may include only simple variables ,

subscripted-variables* with constant sub-
seripts*, and array* names.

READ DRUM 3,152,A,B(3),1,X

85

READ INPUT TAPE

USE: To cause data to be transmitted from a magnetic
tape unit to the internal storage.

READ INPUT TAPE <, n, list

1: unsigned integer con-
stant* or an integer
variable* which is a
logical-tape-unit?
ksignation

n: statement-number* of
the associated FORMAT
statement

list*: list of variables
whose values are to
be transmitted

RULES:

1. Information is read from tape until all ele-
ments in the list have been read in.

2. The number of records read is determined by
the FORMAT statement.

3. A minimum of one tape record will be read.

EXAMPLES :
1. READ INPUT TAPE 17,6,K,(BC(K)),J,(CCI),I=1,d)

Reads from logical tape
17 according to FORMAT
statement 6. The newly
read in values for K and
J will be used.

[0
[0)]

READ INPUT TAPE

FORTRAN IV

This statement is not part of the FORTRAN IV language.
However, a more general input statement is provided. (See
section on FORTRAN IV statements - READ, with conversion)

87

READ TAPE

USE:

RULES:

EXAMPLES:

To cause data which is already in machine no-
tation to be transmitted from a magnetic tape
unit to the internal storage.

READ TAPE ¢, list

1: unsigned integer constant?*
or an integer variable?*
which is the logical-tape-
unit* designation.

list*: list of variables whose
values are to be trans-
mitted.

No FORMAT statement is referenced.

Information is read sequentially from tape
into locations corresponding to the variables
in the list.

This statement will read at most one logical-
tape-record.*

Reading continues until either the list is
exhausted or the end of the logical record is
encountered.

If the end of the logical record comes first,
no values will be entered for the remaining
variables in the list.

If the list is exhausted first, the remainder
of the logical record is by-passed, and the
tape moves to the beginning of the next record.
Data written using the WRITE TAPE statement

must be subsequently read in using the READ
TAPE statement.

1. READ TAPE 17,ALPHA,BETA, INTER(CID, INTER(2)

Values are read in for listed
variables . No conversion 1s
perfermed.

READ TAPE

FORTRAN 1V

This statement is not part of the FORTRAN IV language.
However, a more general statement is provided. (See
section on FORTRAN IV statements - READ, without con-
version).

89

90

RETURN

USE: To redirect control from a subprogram* to the
program which called it.

RETURN

RULES:

I. The RETURN statement must be the logical end
of a subprogram.

2. There may be any number of RETURN statements
in a subprogram.

EXAMPLES :

1. RETURN There are no other forms
of the RETURN statement.

REWIND

USE: To cause a tape unit to move backwards to the
beginning of the tape.

REWIND <

1: unsigned integer constant?*
or an integer variable*
which is a logical-tape-
unit* designation.

RULES:

I. A tape may be rewound by this statement and
then read from or written upon.

2. If the tape has already been rewound, no
operation is performed.

EXAMPLES :

I. REWIND 5 logical tape unit 5 will
be rewound.

91

92

SENSE

USE:

RULES:

EXAMPLES :

1.

2.

LIGHT

To turn the Sense-Lights* on or off so that
they may be used as internal switches.

SENSE LIGHT <

1: 0 or the number of
a Sense Light

If ©=0, all the Sense Lights are turned off.

If i = the number (integer constant*) of a
Sense Light, that light <is turned on.

The Sense Lights are numbered from 1 - 4.

The purpose of turning a Sense Light on or

off is to test it by means of IF (SENSE

LIGHT Z) nq,ny at times during the program and
to take certain actions (transferring to state-

ment-number* n, or ngo) depending upon its con-
dition.

SENSE LIGHT 0 All lights are turned off.
SENSE LIGHT 3 Sense Light 3 is turned
on.

SENSE LIGHT

FORTRAN IV

This statement is not part of the FORTRAN IV language.
However, the Sense Lights may be turned on or off by using
the subroutine subprogram* SLITE (provided by FORTRAN) as
follows:

CALL SLITE(Z)

i: integer expression*

RULES :

1. If the value of i is 0, all the Sense Lights are
turned off.

2. If i =1, 2, 3 or 4, the corresponding Sensc
Light will be turned on.

8. The purpose of turning a Sense Light on or off
is to set a condition which may be tested by
meang of a CALL SLITET (<,j) statement at times
during the program.

EXAMPLES :
1. CALL SLITE(3*J-5) Sense Light 3J-5 is turned

on.

93

94

STOP

USE :

RULES:

EXAMPLES:

To cause the object-program* to halt in such
a way that depressing the START key has no
effect; to cause a permanent halt.

STOP n

n: an unsigned integer con-
stant* or blanks

If 'm' is a constant, it will appear in a dis-
play register on the computer console.

If the object program is being run under a

monitor* system, this statement* causes control
to be given to the monitor.

STOP 55

STOP

SUBROUTINE

USE: To define a subroutine-type subprogram*; to
define its nmame*; to define its arguments*.

SUBROUTINE name(al,a2,a3,..,an)

name: a subprogram name
A, 5Q650z5++5a,: an argument; a non-
1272278 n . T
subscripted variable*,
an array* name

RULES :

I. SUBROUTINE must be the first statement? of a
subroutine subprogram.

2. The arguments may be considered dummy-arguments?
which are replaced at the time the object-pro-
gram* is executed by the actual arguments from
the calling program.

3. A subroutine-type subprogram is referenced
by means of a CALL statement.

4. A subroutine-type subprogram may return more
than one value to the FORTRAN calling program,
by means of its arguments. These arguments
must be given values in the subprogram.

5. If an argument is an array name, it must appear
in a DIMENSION statement in the subprogram. It
must have the same maximum size as the actual
argument in the calling program.

6. If data is passed through common*, a subroutine
subprogram need not have any arguments.

EXAMPLES:

1. SUBROUTINE OMEGACA,B) The answer may be returned
to the calling program by

the actual argument which
corresponds to variable B.

B=AXR2/4, 713

96

SUBROUTINE

EXAMPLES: (contd.)

2. SUBROUTINE POLY No arguments.

3. Subprogram Calling Program

SUBROUTINE MATMPY(A,N,M,B,L,C)

CALL MATMPY(X, 4,3,
Y,7,2)

SUBROUTINE

FORTRAN IV
RULES

1. An argument may also be a dummy name for a function
or subroutine subprogram. In this case, the actual
argument, which is the subprogram name, must appear
in an EXTERNAL statement in the calling program.
See type statement.

2. FORTRAN II Rule 6, sentence two does not apply if
the DIMENSION statement in the subprogram has vari-
able dimemsions. See DIMENSION statement.

3. A dummy argument may not appear in an EQUIVALENCE
statement in the subprogram.

EXAMPLES :
1. Main Program Subprogram
EXTERNAL MATADD, MATMPY SUBROUTINE MATRIX(X,A,B,N)

CALL MATRIX(MATADD,P,Q,5) CALL X(A,B,N)

- (dashes represent -
- other coding) -

CALL MATRIX(MATMPY,R,S,7)

97

WRITE DRUM

USE: To cause data to be written from storage onto
a magnetic drum in internal machine notation.

WRITE DRUM %2, j, list

1: integer constant* or
integer variable*
Jj: integer constant or
integer variable
list*: list of variables whose
values are to be trans-
mitted

RULES:

I. ©No FORMAT statement is referenced.

2. 1 designates a logical drum.

8. J designates a location on the drum.

4. Values will be written starting at drum loca-
tion § until the entire list has been trans-
mitted.

5. The list may include only simple variables,

subscripted-variables* with constant sub-
seripts*, and array* names.

EXAMPLES:

I. DIMENSION T(C100),R(C10,10)
WRITE DRUM 5,200,1,J,T,R(7,5)

WRITE OUTPUT TAPE

USE: To transmit data from internal storage to a
magnetic tape unit.

WRITE OUTPUT TAPE <Z,n,list

i: unsigned integer con-
stant* or an integer
variable* which 18 a
logical-tape-unit*
designation

n: statement-number* of
the associated FORMAT
statement

list*: 1list of variables
whose values are to
be transmitted

1. Information is writtem on the tape until all
the items on the list have been transmitted.

2. The number of records written is determined
by the FORMAT statement.

3. A minimum of one tape record is written.

1. DIMENSION ALIST (10,20)

WRITE OUTPUT TAPE 14, 6, ALIST
Writes on logical tape
14 according to FORMAT
statement 6 on the en-
tire array*, ALIST
column by column.

WRITE OUTPUT TAPE

FORTRAN IV

This statement is not part of the FORTRAN IV language.
However, a more general statement is provided. (See
section on FORTRAN IV statements - WRITE, with conversion)

100

USE:

RULES:

[\G)

EXAMPLES :

7
L e

WRITE TAPE

To write data onto magnetic tape without con-
verting it from internal machine notation.

WRITE TAPE <, list

i: unsigned integer constant*

or an integer variable* which

18 the logical-tape-unit#
designation
list*: list of variables whose

values are to be transmitted.

No FORMAT statement is referenced.

4 single logical-tape-record* is written con-
sisting of all the elements in the list.

Values which are written using this statement
must then be read in with the READ TAPE state-
ment.

(]
C
——

1 v r
PUSR L
All values are written in
machine notation as one

logical record.

101

WRITE TAPE

FORTRAN IV

This statement is not part of the FORTRAN IV language.
However, a more general statement is provided. (See
FORTRAN IV statements - WRITE, without conversion).

102

III. FORTRAN 1V Statements

USE:

RULES:

EXAMPLES:

BLOCK DATA

FORTRAN IV

To define a block data subprogram*; to permit data
to be entered into a labeled common* block during
compilation.

BLOCK DATA

This statement must be the first statement of a
block data subprogram.

No executable statements are permitted in this sub-
program. The only allowable statements are DIMEN-
SION, COMMON, DATA and the type statements describ-
ing the variables?*.

Data may be entered into any number of common blocks
with a single bloeck data subprogram.

Data may not be entered into blank common.

If a common block name appears in the COMMON state-
ment of a block data subprogram, all the variables

in the common block must be listed even if they are
not being assigned data by the DATA statement.

1. BLOCK DATA)
COMMON/BLK1/X,Y,Z This subprogram enters data

DATA X,Y,Z/4.37,25.,32.2/ 1into the common block named

END

BLK1.

2. BLOCK DATA
DIMENSION T(50)
LOGICAL M ,
COMMON/ABC/K,ROB,M,WT/DEF/T,SUB
DATA ROB,M/12.3875,T/,(T(1),1=1,10)/

END

10%0.0/ L _ s eiin
See Rule 6; K, Wi, and SUB
do not appear in the DATA
statement.

105

106

DATA

FORTRAN IV

USE: To cause data to be compiled into the object-
program?*; to eliminate the necessity of reading
in data every time the object program is run.

k*d

DATA Zist/k*dl,k*dg,...,k*dm/,list/k*d

m+1° m+82 "2

k*dn/,.../,Zist/k*dp,...,k*dr/

list* : 1list of variables?*
dl,dg,...,dr: constants*
kK : wunsigned integer* constant

RULES:

1. The d; represent the actual data to be associated
with the respective variable on the list. There
must be a data item for each list element.

2. If a data field is to be repeated, it may be pre-
ceded by 'k*' to indicate the number of times it
should appear (i.e., 4%*5.3 is the same as 5.3,
5.8, 6.3, 5.3).

8. If the data field is to appear only once, the 'k*'
18 omitted.

4. If a d; is a logical constant, it may be written
as T, F, .TRUE., or .FALSE..

5. If the list contains subseripted-variablec*, the
subscript* must either be an integer constant, or

must be a variable which is under control of an -
implied DO(see DO, implied) with a constant incre-
ment and constant limits.

6. Variables which are given values by a DATA state-
ment may be redefined im the program.

7. Data may be entered into labeled common* by using
a DATA statement in a block data subprogram. (For
details see the BLOCK DATA statement).

8. Data may not be entered into blank common via a
DATA statement.

DATA

FORTRAN IV

EXAMPLES :

1.

oo
.

DATA A,B,1,D/3.495,.00593,
5142,-7.2E4/
The value 3.495 is associated
with A, .00593 with B, ete.

TON H(5),X(2),Y(2)
(1)/15HDETAILEDbOUTPUT/,

(1) ,Y(1),x(2),Y(2)/

2%10.,100.,1000./

The Hollerith characters will
be in H(1), H(2), and H(3)
(with H(3) containing 3 added
blanks). X(1) and Y(1) will
both contain the real number
10. X(2) and Y(2) will contain
100 and 1000 respectively.

LOGICAL L,M(5),SWTCH
DATA (TABLE(I),1=1,20)/10%1000.,
6%*500.,4%10000./,SWTCH,M, L/
T,2%.FALSE.,3*.TRUE.,F/
20 values are entered into the
array TABLE; SWTCH gets a
value of true; M(1), M(2) are
false, M(3), M(4), M(5) are
true, L is false.

COMPLEX R(3)
DOUBLE PRECISION CURR, IND

DATA R/(2.1,3.459),2%(5.0,1.0)/,
CURR, IND/7.5D1,238926.5871/

107

108

\F, logical

FORTRAN 1V

USFE:

To conditionally execute a certain statement*
depending on whether a logical-expression* is
true or false; to make a logical decision.

RULES :

IF(l) s
l: a logical expression
8: an executable statement
I. 's' may not be a DO statement or a logical I|F
statement.

2. If the value of 'l' is .TRUE., statement s will be
executed.

a. If s is a control type statement, it indi-
cates the next statement to be executed.

b. If s is nmot a control statement, the state-
ment following the |F will be executed next.

8. If thevalue of 'l' is .FALSE., control is transferred
to the next sequential statement.

4. If statement 's' 4s a CALL statement, the statement
following the |F will be executed upon returning
from the subprogram*.

EXAMPLES :

I.

2.

IF (A.GT.B.OR.K) GO TO 35

D=A-B¥*X If eitther A>B or K has the
value .TRUE., statement 35
will be executed next.
Otherwise the following
statement is executed.

JF (.NOT.SWTCH) I=1+1

J=J+1 If SWTCH is .FALSE., both
I=I+1 and J=J+1 are executed.
If SWTCH is .TRUE., OnZy
J=J+1 18 executed.

\F, logical
FORTRAN IV

EXAMPLES: (contd.)

3. IF (X.AND.Y.AND.Z)CALL SUBR1(X,Y,Z)
CALL SUBR2(Z,W)

If CALL SUBR1 Zis executed
the subprogram returns
control to CALL SUBR2.

109

110

NAMELIST

FORTRAN IV

USE:
RULES:

To make possible the transmission and conversion
of data without the use of an I/0 list and a FORMAT
statement; to permit greater flexibility in the
formatting of object-program* data.

NAMELIST/namel/v,v,...,v/nameg/v,v,...,v/

.../namen/v,v,...,v

name _,name

7 . name,: a NAMELIST name*

PYRR
v: each v is a non-
subscripted-
variable* or
array* name

Each list of variables has a name associated with it.

To reference a list in an I/0 statement, only the
NAMELIST name need be given.

Each name in the NAMELIST statement must be enclosed
in slashes.

The name may be used only in READ or WRITE state-
ments and i1t must not be the same as any other name
in the program.

The NAMELIST statement must precede the READ and/or
WRITE slalement(s) which use a NAMELIST name.

A variable may appear in any number of lists in a
NAMELIST statement.

If a variable appears im a NAMELIST statement it
cannot be used as a subroutine argument.

If a DIMENSION statement is needed for a NAMELIST
variable, it must precede the NAMELIST statement.

NAMELIST

FORTRAN IV
RULES: (contd.)
Data Input
9. The input record must contain

a) § as the second character (Note: the first
eharacter is always ignored)

b) A NAMELIST name following the $

e¢) one or more blank characters

d) the data items to be converted and stored
separated by commas (Note: the data may be
contained in any number of records provided
each record but the last is terminated by a
data item followed by a comma.)

e) § to indicate the end of the data for a
single list. (Note: a $ may not appear as
the first character of a record.)

(e.g.bg NAMEBDD ..« .- data items...... $)
10. The input data items may take on several forms.

al) v = ¢
v is a simple variable or a subscripted variable
which appears in the list of the specified
NAMELIST name.
¢ 18 a constant*.
The value of the constant will be converted and
stored in the variable
ex: A = 2.5,X(I) = §283.9,I=10

b) v = CrsCgsesesc

v 18 the name of an array which appears in the
list of the specified NAMELIST name.

c; is a constant.

The first constant is stored in v,, the second
in v,, ete. A constant may be preceded by a
posi%ive integer* k (i.e. k*c.) to indicate re-
petition of the constant k times. A constant
must be provided for each element of the array.

m

12

NAMELIST

FORTRAN IV

RULES :

10.

11.

12.

13.

(contd.)
(contd.)
b) (contd.)

ex: DIMENSION P(10)
P = 5.3,2%7,10.352,6%3.1

c) v, = C1sCgsve-sC
v.is a subscripted variable which appears in
the 1ist of the specified NAMELIST name.

18 a constant.
T%e first constant is stored in v;, the second
in v;+1, ete. until all the speczfted constants
are stored in consecutive array elements. As
in 10b a constant may be preceded by 'k*' if
it 18 to be stored in k successive array ele-
ments. There may not be more constants than
there are array elements between v; and the
end of the array.

The type* of the variable need not be the same as
that of the corresponding data item. Integer*,

real* gnd double-precision* comstants may be associ-
ated with any varigble except logical* or complex*.
Conversion is done according to the type of the
variable.

There may be no blanks embedded in a constant
(i.e. Q(2)=5%*b485.7 is not permitted).

Data items need not appear in the input record in
the same order as the variables in the list of the
NAMELIST name. Also, it is not necessary for all
the list elements to receive data.

Data Output

14,

15,

The form of the output record(s) are essentially

~ - Y am s - ~an AL)
the same as the input record(s).

Data is written out such that it may be subsequently
read in simply by referencing the NAMELI|IST name.

NAMELIST

FORTRAN IV

RULES: (contd.)

16. The names of all the variables and arrays in the
list are written along with their values.

17. Arrays are writtem columnwise.

EXAMPLES :

I. NAMELIST/LIST1/1,X,A A data record might appear as
READ (3,LI1ST1)
bSLISTIbbX=53.2,1=3,4=72.

2. DIMENSION R(5),5(20) A data record might appear as
NAMELIST/CAL/P,Q,R,S,T
READ (1,CAL) bSCALbQ=327.1,R=3%2.5,2%7.5,

S(8)=2.4,9.1,7%33.3,T=5.28

NOTE: Data will be read into
5(8)-5(16). However nothing
will be read into S(17)-5(20)
or into P.

3. COMPLEX K The output record might appear
DIMENSION C(2) as
NAMELIST/INIT/B,C,K
WRITE (5,INIT) bSINITbB=0.54381279E4,C(1)=

0.85074312E-3,C(2)=0.14817289E2,K=
(0.40145792E10,0.44128567E9) %

13

READ, with conversion

FORTRAN IV

USE: To cause data to be transmitted from a symbolic-
input-device* to the internal storage.

form 1 READ(Z,n) list

i: unsigned integer constant?
or integer variable?*

n: statement-number* of the
associated FORMAT statement

list*: 1list of variables whose
values are to be trans-
mitted
form 2 READ(Z,v)
i: same as in form 1

v: a NAMELIST name#*

RULES:
1. Information is read from the symbolic input device
designated by 't'. (This must not be the card
reader) .

2. In form 1;

a) information is read until all items on the
list have been transmitted

b) the number of records read is determined by
the FORMAT statement.

3. In form 2 the information read pertains to NAMELIST
name 'v',

4. 4 minimum of 1 record is read.

EXAMPLES:
1. READ (3,7)K,(B(K)),J,(CCl),I=1,J)
Reads from input device 3
according to FORMAT statement 7.
2. READ (2,ANY) When a record is found on input

device 3 which contains the
name ANY, the subsequent data

items are converted and stored.
114

USE:

RULES:

EXAMPLES:

READ, without conversion
FORTRAN IV

To cause data which is already in machine notation
to be transmitted from a symbolic-input-device?* to
the internal storage

READ(Z) list

i: unsigned integer constant*
or integer variable*
list*: 1list of the variables
whose values are to be
transmitted

No FORMAT statement or NAMELIST name is referenced.

Information is read sequentially from the symbolic
input device designated by 'i' into locations
corresponding to the variables in the list.

This statement will read at most one logical-
record*.

Reading continues until either the list is exhausted
or the end of the logical record is encountered.

If the end of the logical record comes first, no
values will be entered for the remaining variables
in the list.

If the list is exhausted first, the remainder of
the logical record is bypassed and the input device
is positioned to read the next sequential record.

Data written using the WRITE(Z) list statement must
be subsequently read in using the READ(Zi) list
statement.

1. READ (3), ALPHA,BETA,GAMMA(3) Values are read in for

the listed variables. No
conversion 18 performed.

15

WRITE, with conversion

FORTRAN IV

USE: To transmit data from internal storage to a sym-~
bolic-output-device*

form 1 WRITE(Z,n) list

1: unsigned integer constant?
or integer variable*

n: statement-number* of the
associated FORMAT state-
ment

list*: list of variables whose
values are to be transmitted.

form 2 WRITE(Z,v)
1: same as form 1
v: a NAMELIST name*

RULES :

1. Information is written on the symbolic output device
designated by 7.

2. In form 1,

a) information is written until all the items
on the list have been transmitted,

b) the number of records written is determined
by the FORMAT statement.

5. In form 2,

al) the information
NAMELIST name 'v',

b) the values of the variables and arrays in
'v'! are written with their names such that
each output field contains all the signifi-
cant digits,

c) complete arrays are written columnwise,

d) information output with a WRITE (i,v) statement
can be read in with READ(Zi,v) as long as the
> J

ACH cT a4 2 Lomanmns o
came NAMELIST name is referenced.

116

EXAMPLES :

1.

2.

WRITE (3,5)A,B,ALIST

WRITECT, INP)

WRITE, with conversion

FORTRAN IV

Writes on output device 3
according to FORMAT state-
ment &5,

Writes on output device 1
all the variables and arrays
listed with the name INP in

the NAMELIST statement.

n7

WRITE, without conversion
FORTRAN 1V

USE: To write data onto a symbolic-output-device* without
converting it from internal machine notation

WRITE(Z) list
1: unsigned integer constant?
or integer variable?*

list*: 1list of variables whose
values are to be transmitted.

RULES :

1. No FORMAT statement or NAMELIST name is referenced.

2. A single logical-record* is written on the symbolic
output device designated by 'i' consisting of all
the elements in the list.

3. Data written with this statement must be read in
using the READ(Z) list statement.

EXAMPLES :
1. WRITE (5)X,Y,(Z(1),1=1,10),0(7),TABLE
All values are written in

machine notation as one logical
record.

18

USE:
RULES :

type
FORTRAN 1V

To specify the type* of value which is to be
agsociated with a variable* or a function*; also,
to tell the FORTRAN processor the names of sub-
programs which are arguments of other subprograms.

INTEGER v,v,...,v

REAL v,v,...,v

DOUBLE PRECISION v,v,...,»
COMPLEX v,v,...,7

LOGICAL v,v,...,v

EXTERNAL namel,name shame

PERRR "

v: each v is a variable or
function name?*
name;: is a subprogram name*

If a "v' is the name of an array*, it may be followed
by parentheses enclosing 1,2, or 3 unsigned integer
constant* subscripts?* specifying the dimensions of
the array. If this is done, the array may not appear
in a DIMENSION or a COMMON (with dimension informa-
tion) statement.

If a variable or function name appears in a type
statement (except EXTERNAL) it overrides the naming
convention of I-N for integer quantities and 4-§
and 0-%, for real quantities. The type may not be
changed in the program.

The names of all subprograms which are used as argu-
ments of other subprograms must appear in an EXTERNAL
statement in the calling program.

A name may not appear in two type statements unless
one of them is EXTERNAL.

A name must appear in its type statement before it is

used in any executable statement or any DATA state-
ment.,

119

type

FORTRAN IV

EXAMPLES:

1. REAL KAT,JOB,BOB The variable BOB need not appear
since its name correctly describes
its type via the maming conven-
tion.

2. DOUBLE PRECISION ABLE,BAKER,

NOTE
This is the only means for de-
fining double-precision values.

3. EXTERNAL BOY,SIN,COS These are subprogram names.

120

IV. Related Topics

A. FORTRAN functions
1. Gemeral Description:

A function* is a procedure to be followed,
usually involving some calculation,
which produces a single result.

In FORTRAN, one or more arguments* may be
used in defining the procedure; how-
ever, the result must be a single value.

To use a function it must be defined and it
must be called. There are several means
within the language for defining func-
tions, and each will be discussed in
detatil.

As part of the function definition, a name?
and the number and mode of the arguments
are established.

A function name consists of 3-6 alphabetic or
numeric characters*. The first must be
alphabetic. A terminal F must be ap-
pended to the name. The arguments listed
in the function definition are called
dummy -arguments*,

Any arithmetic expression* is valid as an
actual argument.

To use an established function, one may call
the function simply by writing the name
of the function with a terminal F,
followed by parentheses enclosing the
actual arguments. t.e., A=B-CX*¥SQRTF(D).
(NOTE: There must be at least one argu-
ment.)

The actual arguments must correspond to the

dummy arguments in number, order, and
mode .

FORTRAN IV Differences, Extensions, Exceptions

A function name consists of 1-6 alphabetic or
numeric characters. The first must be alphabetic.

4 terminal F is not appended to a function name
when the function ie used, i.e. A=B-C*SQRT(D).

123

A. FORTRAN functions (contd.)
2. Classes of FORTRAN functions:
a. Butilt-in functions:
These functions exist within the compiler.

They will be inserted into the object-pro-
gram* as open-subroutines* whenever
they are called.

The function name?* determines the mode* of
the answer. If the first character*
is 'X', the answer is an integer*; if
not 'X', the answer is a floating-
point-number*,

Examples:

1) ABSF(B-6.3*%A) The answer will
be floating point.

2) XMINOF(P,Q0-4.2,Z) The answer will
be an integer.

See Appendix 2 for a list of Built-in functions.

FORTRAN IV Differences, Extensions, Exceptions

The type of the function is determined by the
FORTRAN processor. It may not be altered by a
type statement.

ex. ABS(B-6.3%A) the answer will be a real
number
MIN1(P,Q-4.2,Z) the answer will be an
integer
DABS(C-D) the answer will be a double-~

precision-number*,
b. Library functions:

These functions exist in a library file
and are aqvailable to the compiler.

These routines are compiled as closed-sub-
routines* and will appear in the ob-
ject program only once if called.

Each reference simply produces a link-
age to the routine.

The arguments* and the answers are in the
floating point mode.

124

A,

FORTRAN functions (contd.)

2

Classes of FORTRAN functions: (contd.)

Examples:

1) SINF(ALPHA)
2) EXPF(D-E**2)
See Appendix 2 for a list of Llibrary functions.

FORTRAN IV Differences, Extensions, Exceptions

The library functions of FORTRAN II are classified
in FORTRAN IV as Function subprograms which are
avatlable within the FORTRAN system.

See the section on Subprograms.
Arithmetic Statement Functions:

These functions are defined by single ari-
thmetic statements at the beginning
of the program.

They are incorporated into the object-pro-
gram* as closed-subroutines* - only
once regardless of the number of re-
ferences. The function name* deter-
mines the mode* of the answer. If
the first character is 'X', the an-
swer is an integer*; if not 'X', the
answer is a floating-point-number*,

To define an arithmetic statement function,
see description page 18.

FORTRAN IV Differences, Extensions, Exceptions

The type of the function may be specified by
having its name appear in a type statement.

If it is not so specified it will be considered
an integer function if the name begins with I,
J, K, Ly, M or N and a real function i1f the name
begins with A-H or 0-2.

Subprogram* functions:
These functions are defined in a separate

FORTRAN program and details appear in
the section on Subprograms.

125

B. Subprograms*
1. General Description:

Subprograms are programs written to perform a
specific job which is part of a larger
problem.

Subprograms may be written either in FORTRAN
or machine language.

A subprogram is compiled independently from
its associated main-program*. A main pro-
gram and all associated subprograms are
brought together when the problem is run.

Subprograms are compiled as closed-subroutines*
and will appear in storage only once.

There are two types of subprograms; Function
Subprogram and Subroutine Subprogram.

2. Types of Subprograms:
a. Function Subprogram:

Defines a FORTRAN function as deseribed
in the section on FORTRAN functions.

The first statement of a function subpro-
gram must be

FUNCTION name(al,ag,..,an)
(see description page 61)

The value of the function is transmitted
to the calling program by the sub-
program name#*,

The name may be 1-6 characters* long. The
first character must be alphabetic.
If the name begins with I, J. K. L,
M, or N, the value returned will be
an integer*. If the name begins with
any other letter, the answer will be
a floating-point-number#*,

At some point in the subprogram the name

126

B.

Subprograms* (contd.)

2.

Types of Subprograms: (contd.)

a.

Function Subprogram: (contd.)

of the function must be given a value.

ex. FUNCTION CALC(X,Y,Z)
_ (dashes represent other
_ coding)
CALC=X*Y-3.5
ex. FUNCTION ALPHA (D,E)

READ 4, ALPHA

Function subprograms are called just like
other FORTRAN functions, i.e., by
using the function name* followed by
the actual arguments?* enclosed in
parentheses.

If an argument is an array* name, 1t must
appear in a DIMENSION statement in
the subprogram. It must have the same
maximum size as the actual argument
in the calling progranm.

FORTRAN IV Differences, Extensions, Exceptions

If the FUNCTION statement does not specify the type,
then the first character of the function name deter-
mines the type, as in FORTRAN II.

ex. REAL FUNCTION MODC(A,B,)

MOD = A*B

If a dummy argument is an array name, it must be
dimensioned in the subprogram; the actual argument
in the calling program must also be dimensioned.

However, only the dummy argument may have variable 127

B. Subprograms* (contd.)
2. Types of Subprograms: (contd.)
a. Function Subprogram: (contd.)
dimensions (see the DIMENSION statement).

FORTRAN IV provides a set of mathematical routines
which are coded as function subprograms. The type
of the arguments and the answers ig predetermined.

b. Subroutine Subprogram:

Used instead of a function subprogram when
there is no value or more than one
value to be returned to the calling
program.

The first statement of a subroutine subpro-
gram must be

SUBROUTINE name(al,ag,...,an)

(see description page 95)

The name may be 1-6 characters* long. The
first character must be alphabetic.

One or more of the arguments may be uti-
lized to return values to the calling
program.

Thus, at some point in the subprogram, values
must be assigned to the designated
arguments*.

SUBROUTINE AREA(A,B,K,S

©
8

S=A+B**K

Subroutine subprograms are called by execu-
ting a CALL statement (see description
page 23)

If an argument is an array* name, it must
appear in a DIMENSION statement in
the subprogram. It muct have the ¢
maximum size as the actual argument
in the calling program.

ame

128

bprograms* (contd.)
Types of Subprograms: (contd.)
b. Subroutine Subprogram: (contd.)

FORTRAN IV Differences, Extensions, Exceptions

If a dummy argument is an array name, it must be
dimensioned in the subprogram; the actual argument
in the calling program must also be dimensioned.
However, only the dummy argument may have variable
dimensions (see the DIMENSION statement).

129

V. Appendices

Apperndix 1

Glossary

1. Argument:

2. Array

3. Assigned
Variable:

4, Character:

Closed

(Mo}
.

Subroutine:

A variable element of a subroutine?
which may be changed for each sub-
routine reference.
examples:
X Zs the angle whose SINF(X)
sine 18 to be calcu-
lated; X is an argu-
ment.

A, I, and C are FUNCTION BOB(A,1,C)
arguments.

An ordered group of quantities (which
may appear in a multi-dimensional
form) ; integer*array; floating-point?*
array.

FORTRAN IV: Arrays may be integer*, real?*,
double-precision*, complex* or logical?.

An integer variable* which is given a
statement-number* value by an ASSIGN
statement
examples:
K is an assigned ASSIGN 7 TO K
variable.

alphabetic, digit, spectal

alphabetic example: A,B,C,.eiveunn. ,Z
digit example: 0,1,2,0cenien. ,9
special example: +,=-/,%,=,0,),.

A subroutine so designed that ti can be
called or referenced from more than one
location in a program, can return con-
trol to the place from which it was
called, and is réusable in memory.
examples:

library functions, arithmetic state-

ment functions, subprograms

(i.e., SIN, COS, MATMPY)

6. Common: 4 designated internal storage area avail-
able to more than one program.

FORTRAN IV: There are two kinds of

common: labeled common and blank (or unlabeled)
common. Labeled common is divided into

named blocks. Blocks having the same name

in different programs share storage. Blank
common is the same as FORTRAN II common.

7. Complex A number having a real and an imaginary
Number: part; it is expressed as two real-numbers?

separated by commas and enclosed in par-
entheses.
examples:

the first number is the

real part, the second is

the imaginary part (this

18 14.3+7.2%) (14.3,7.2)

either part of or both may

be 0 (20.1€-2,0.0)
8. Clomnstant: An integer*, a floating-point-number*

example of integer constants:

valid integer 0
may have + sign +6
1f negative, must have -19683

minus sign

1f positive, may be un- 26
signed

must not have a decimal 3249
point

135

8. Constant: example of floating point constants:

(contd.)
must have decimal point 0.0
point may be at the .328
beginning
point may be at the end -53,
point may be between two +4.159
digits*

negative numbers must have -512,356
minus sign

positive numbers may be .002512
unsigned
any of the above may be 4.7E3

followed by letter E and
a decimal exponent (this
means 4.7 X 103 or 4700)

exponent may have a sign 33.1E=-2

exponent has a maximum 41.33E15
of two digits

FORTRAN IV: An integer*, a real-number?,
a double-precision-number*, a complex-
number*, a logical?* value.
example of integer constants:
same as FORTRAN II
example of real constants:

same as FORTRAN II floating point constants

also: may have up to 9

digits 8327.58147E4
example of double precision constants

must have decimal point 31.5894751

point may be anywhere 2375892146,

136

8.

9.

10.

Constant:
{contd.)

Digit:

Double
Precision
Number:

1f fewer than 10 digits

must be written with the

letter D and a decimal

exponent (this is

29.4x10° or 2,940,000) 29.4D5

1f 10 or more digits
letter D is optional 94385.17629D-3

exponent 18 a maximum
of 2 digits and may be
signed .375D-12

example of complex constants:
must consist of 2 real
numbers separated by
commas and enclosed in
parentheses (4.983,72.5)

first number is real

part of constant;

second number is co-

efficient of imaginary

part (this is 2.5+9.1%) (2.5,9.1)

both parts of constant
may be signed (=3.8,+1.2E4)

example of logical constant:
may be either true or
false . TRUE.

the decimal points must
always precede and
follow the constant .FALSE.

positive integer* less than 10
example:
0, 1, 2, weueuunnnn , 9

A number written with a decimal point which
18 expressed internally as a decimal frac-
tion with 10 or more significant digits
times a power of 10.
examples:

must have a decimal

point and at least

10 digits 1.493217658

137

10. Double may have fewer than 10

Precision digits if the letter D
Number: followed by a decimal
exponent appears
(contd.) (this is 3.5x10% or 350) 3.5D2
11. Dummy A variable* such as the one which appears
Argument: in the argument* list of a function*

definition but which <is replaced by the
actual argument when the function is used.

12. Expression: A sequence of constants*, variables?*,
functions?*, operators*, and parentheses
indicating that a calculation is to be
performed; also a single constant, vari-
able, or function.

Rules of Calculation:
The hierarchy of operations is as

follows:
1. exponentiation * %
2. multiplication, X/
division
3. addition, sub- +, -
traction

For operations on the same level, the
order of calculation is from left to

right.
examples:
single variable T
single constant 5
single function COSF(T)
specifies one calcu- B-9.3
lation
gpecifying many cal- X*¥Y-Z*%¥2+3,82
culations
exponentiation is 4 ,3%¥X¥**%3

performed first
(this 1s 4.3z3)

138

12. Expression:
(contd.)

multiplications and
divisions are per-

formed before additions
and subtractions (this is
a+be)

examples:

additions and subtrac-
tions are domne lqgst
(this is x+y - w9)

z

caleculations in paren-

theses have priority

(this is (x+y))
(z-w) 3

same level calculations
(i.e., multiplication
and division, or addi-
tion and subtraction)
are done from left to
right (this is ac)

b

This is _a
be

illegal! The mode* of
an expression must be

either integer* or
floating-point*

integer quantities in
floating point expres-
sions are permitted as
arguments of functions,
subscripts*, and expon-
ents

A+B*C

X+Y/Z-W¥**3

(X+Y)/(Z-W)**3

A/B*C

A/ (B*C)

ANYF(Z,2)%X(3) -
y*%4

139

12. Expression: FORTRAN IV: The FORTRAN IV language
(contd.) contains 2 kinds of expressions:
arithmetic and logical. Arithmetic
expressions are the same as they were
in FORTRAN II with some extensions.
Logical expressions will be described
in the glossary under Logical-expression?*.

All rules for FORTRAN II apply except
the one concerning the mode of the expres-
stion.

an expression may consist
entirely of integer quanti-
ties I =3%1ABS (K)

no other types of quanti-

ties may appear in an in-

teger expression except as

funcetion arguments L+1FCN(T)

real quantities may be
combined (for +,-,%*,/)

with either double 4.2%(5.3,7.9)
precision or complex
quantities A+5.3D7

(Note: The result will
be double precision or
complex respectively.)

tllegal! double preci-
sion may never appear
with complex .72D1-(5.3,7.9)

logical quantities may

never appear in arith-

metic expressions (see A.GT.B
logical-expressions*)

integers may appear as

exponents for real,

double precision and ABLE**2+
complex quantities (22.7,5.3)%*3

illegal! complex quanti-

ties may not appear as
exponents Y*¥%¥(2.1,3.5)

140

13, Field: A single character* or group of characters
which logically constitute one item of
information

examples:

numeric field (all num-
bers)

alphanumeric field (com-
bination of alphabetic
and numeric characters)

14. Fixed Point an integer*
Number : See examples of Integers
15. Floating A number* written with a decimal point
Point which i1s expressed internally as a de-
Numbexr: ecimal fraction times a power of 10.
examples:

whole number with a 1.
decimal point

decimal fraction .99
any of the above may 3.5E2
have E notation (deci-

mal exponent) which

means 8.6 x 10, or 350

same as .96 x 10'3, or .95E-3
.00085

FORTRAN IV: See Real-Number*.

16. Function: A set of procedures to be followed for
which there <is a single answer
examples:

subprogram functions
arithmetic statement functions
built-in functions

library functions

141

1492

16. Function: FORTRAN IV: [Library functions are

(contd.) classified as subprogram functions.
17. Hollerith A series of alphabetic, digit, and
String: special characters?
examples:
ABC1234

ANSWERS TO THE PROBLEM

18. Integer: A whole number*
examples:

can be one digit*
valid integer

positive integers may
have plus sign

negative integers must
“ have minus sign

+794

-93

19. List: A sequence of variables*, separated by
commas, usually appearing in an input

or an output statement.
examples:

simple variables

single values of sub-
geripted-variables*
(Note: I must have
been given a value
previously)

a group of values of
a subscripted variable
(Note: This is called

an implied DQJ

an entire array*

A,B,K

C(3),0(1),
T(4,7)

(DC1Y,1=1,5),
((ECJ,K),J=1,10)
K=1,20)

MATRI X

)

19. List: any combination of C,TABLE, (JOB(1),
(contd.) the above examples I=1,3)

The list may nmot in- R(2),S5,3.721
clude constants?* ex-

cept if used as an

argument* list

FORTRAN IV: A list may also appear in
a DATA statement.

20. Logical A sequence of logical constants*, logical
Expression: variables*, logical funections*, logical
operators*, arithmetic expressions* sepa-
rated by relational operators*, and paren-
theses, indicating that a calculation <is
to be performed; also a single logical
constant, variable or function.

Rules of Calculation:
The hierarchy of operations is as follows:

exponentiation * %

multiplication, division *,/

addition, subtraction +,-

relational operators?* JLT.,.LE.,.EQ.,
.NE.,.GT.,.GE.

negation .NOT.

intersection .AND.

union .OR.

For operations on the same level, the order
of ecalculation is from left to right.
examples:

the result of a logical
expression is either

.TRUE. or .FALSE. A.EQ.B
single variable LOGIC
single constant .TRUE.
single function LFCN(SWTCH)

143

20. Logical integer quantities may

Expression: be combined by relational
(contd.) operators only with other
integer quantities I .NE.J

real and double precision

quantities may be com-

bined by relational opera-

tors BOB.GE.31.3D5

illegall logical quanti-
ties may not be combined
by relational operators LOGIC.EQ..TRUE.

complex quantities may

appear in logical expres-

sions only as function

arguments A.GT.REAL(COMP)

only logical quantities

may be comnnected by the

logical operators (this

is .TRUE. if SW1 is .TRUE.

-or 1f both SW2 gnd SW3 are SWI1.0R.SW2.AND.
.TRUE. and A#B) SW3

calculations in parentheses

have priority (this is

.TRUE. only if D is .TRUE.

and either C is .TRUE. or (A.EQ.B.OR.C)
A=B) .AND.D

21. Logtical record: See logical-tape-record*. The record so
defined need not appear on magnetic tape.
It may be on any I/0 device capable of
handling it.

22. Logical tape That amount of information which is defined
record: by a single input or output Llist*. It
may be made up of several physical records,
each containing a signal word which deter-

. . .
mines the boundaries of the logical record.

23. Logical tape Numbers used to refer to each tape unit
units: in writing a FORTRAN program.

24.

28.

27.

28.

Logical Value:

Loop, or
Looping:

Main Program:

Monitor:

Mode:

A value of true or false.

examples:

true
false

.TRU

.FALSE.

The process of repeating a sequence of
instructions a number of times until a
terminal condition is reached.

A program which can be executed without
being called upon by another program.

However, it may reference any number of
associated programs called subprograms*.

A master control program which governs
the flow of jobs through a computer.

Form of a number*; form of a name?*;

Fform of an expression?*.

Modes may be

integer* or floating-point*. Mode of

a number is determined by the presence
or absenceof a decimal point. Mode

of a variable or function is determined
by its name. Mode of an expression is
determined by the modes of its operands*.

examples:

a constant* in the
integer mode

a constant in the
loating point mode

a variable* in the
floating point mode

a variable in the
integer mode

a function name in

ALPHA

MONEY

SINF(X)

the floating point mode

a function name in
the integer mode

XANYF(Y,P,3)

28. Mode: a function name in FIRSTF(A,T,4.7)
(contd.) the floating point mode

an expression in the X-Y*5,27
floating point mode

an expression in the | *¥J-K
integer mode

an expression in the A-B**2
floating point mode

an expression in the V-SQRTF(7.51)~-
floating point mode W(3,4)

FORTRAN IV: The term mode is usually
referred to as 'type' in FORTRAN IV
(see Type in glossary).

89. Name: A label given to an integer*, to a
onatzng point-number*, to a Hollerith-
String*, to a functzor* to a subprogram*.
Data with a name is considered a variable?*;
hence, distinction between variable and
name 18 conceptual.
examples:
Name Data

integer name (1-6 JOB 425
alphabetic or nu-

meric characters*;

first character must

be I, J, K, L, M, or

N)

Floating point nam

(1-6 athabetzc or
numeric characters;
first character must
be A-H or 0-2)

Al BHA

e

N

N
N

]
U

Hollerith string name DATE 1/30/5
(1-6 alphabetic or nu-

meric characters; first

character must be alpha-

betie). Note: This is

included to emphasize

that alphabetic data may

be manipulated as numeric

when assigned a name.

146

29.

Name:
(contd.)

Name Data
funetion name (3-6 ABS 33.7
alphabetic or numeric
characters; first
character must be alpha-
betic; first character
must be X if, and only
i1f, answer 1s to be an
integer.)

function subprogram CALC 9418.2
name (1-6 alphabetic

or numeric characters;

first character must be

I, J, K, L, My, or N <if

answer i1s to be an inte-

ger; first character must

be A-H or 0-7Z <1f answer

i8 to be a floating point

number)

subroutine subprogram MATMPY No data <s
name (1-6 alphabetic associated
or numeric characters; with a sub-
first character must routine sub
be alphabetic) program nam

FORTRAN IV: A label given to an integer*,
to a real-number*, to a double-precision-
number*, to a complex-number#* to a logical#
value, to a Hollerith string, to a function,
to a subprogram, to a common block; also
a label which is part of a NAMELIST state-~
ment.

examples:

integer name (1-6

alphabetic or nu-

meric characters;

may begin with any

letter 1f the name

appears in an INTEGER

type statement) TAB 370

147

29. lName: Name Data
(contd.) real name (1-6 alpha-

betic or numberic

characters; may begin

with any letter 1f

the name appears in a

REAL type statement) LENGTH 36.37

a double precision

name (1-6 alphabetic

or numberic characters;

may begin with any

letter and the name

must appear in a

DOUBLE PRECISION type G24 .379841D6
statement)

a complex name (1-6

alphabetic or numberic

characters; may begin

with any letter and the

name must appear in a

COMPLEX type statement) S0S 24 .3+47]

a logical name (1-6

alphabetic or numberic

characters; may begin

with any letter and the

name must appear in a

LOGICAL type statement) LOGIC .TRUE.

Hollerith string name

(1-6 alphabetic or nu-

meric characters; first

character must be alpha-

betic) DATE 1/30/5

funection name (1-6 alpha-

betic or numberic charac-

ters; may begin with any

letter 1f the name appears

in a type statement) ANY 225

148

29. Name: Name Data
(contd.) function subprogram name
(1-6 alphabetic or numeric
characters; may begin with
any letter ©1f the name
appears im a FUNCTION

statement with its type) POLY 48.3
subroutine subprogram name MATRIX No data is
(1-6 alphabetic or numeric assoctated
characters; may begin with with a sub-
any letter) routine sub-
program name
common block name (1-6 BLK1 No data is
alphabetic or numeric associated
characters; may begin with a
with any letter) common block
name
a NAMELIST name (1-6 LISTI No data is
alphabetic or numeric associated
characters; may begin with a NAME-
with any letter) LIST name
30. Number: a string of digits, either signed or

unsigned, in admissible FORTRAN form;
an integer, a decimal number
examples:

86

=777

+9357

0

1.768

3,7E+3

§1. Object a machine language program produced from
Program: a source-program?*

32. Open a subroutine designed only for sequential
Subroutine: execution, not referenceable from other
parts of a program; usually very short.

149

150

33,

34.

Operands:

Operators:

constants*, variables*, and functions?*
connected by operators* in an arithmetic

expression?
examples:

a variable and a con-
stant

a subscripted-vari-
able* and a simple
variable

a function and a sub-
scripted variable

a constant and a sub-
seripted variable

A+5.31

B(3)*C

SQRTF(D) -

5-40B(3)

FORTRAN IV: Also pertains to constants,
ables and functions in a logical expres-

sion.

symbols designating arithmetic
examples:

addition
subtraction
multiplication
division
exponentiation

X))

vari-

FORTRAN IV: Also symbols designating logical

and relational operations
examples:

arithmetic operators (same as FUORTRAN

logical operators
negation
intersection
union

relational operators
greater than
greater than or equal to
less than
less than or equal to
equal to
not equal to

.GT.
.GE.
LLT.
.LE.
LEQ.
.NE.

II)

35.

36.

37.

38.

39.

Real Number:

Sense Light:

Sense Switch:

Source
Program:

Statement:

A number written with a decimal point which
18 expressed internally as a decimal frac-
tion of 8 or fewer significant digits times

a power of 10 (same as floating-point-
number* in FORTRAN II).
examples:

whole number with a 1.
decimal point

decimal fraction .99

any of the above

may have E notation

(decimal exponent)

which means 75.1x10

or 7510. 75, 1E2

-3
same as .22x10 or
00022 .22E-3

A light on a computer console which may
be turned on, turned off, and tested by
a computer instruction.

An external switeh on a computer con-
sole which may be turned on or off by a
machine operator andmay be tested

by a computer imnstruction.

A program written in a language other
than machine language, such as FORTRAN.

An instruction in the FORTRAN language
examples:

arithmetic statement A=B+C*D
control statement GO TO 45
specification statement DIMENS|ION

X(15)

151

40. Statement
Number:

41. Subprogram:

42. Subroutine:

43. Subscript

152

An integer* associated with a single
FORTRAN statement?* which may be used
to refer to that statement within a
program.

examples

smallest permissible 1
statement number

largest permissible 32767
statement number

must be an unsigned 394
integer

A program which cannot exist alone but
must be executed in conjunction with at
least one other program called a main-
program*; there are two types of FORTRAN
subprograms - function subprogram and
subroutine subprogram.

FORTRAN IV: There is an additonal type of
subprogram called a block data subprogran.

Tt is used when data is to be entered into
a labeled common block during compilation.
example:

BLOCK DATA

A set of instructions to perform some
well-defined procedure which is usually
of a recurring nature.

examples:

Sine, cosine, square root

A designation of one element within an
array*

examples:
integer constant* desig- A(2)
nating 2nd number in an
array

43.

44.

Subscript
(contd.)

Subscripted
Variable:

integer variable* desig-
nating the ith number in
an array

integer variable plus (or
minus) an integer constant,
designating the § plus 3rd
number in an array

integer constant times an
integer vari%ble, designa-
ting the 7mt" number in

an array

integer constant times
an integer variable, plus
(or minus) an integer con-
stant, designating the
4k-3rd number in an array

combinations of the above

the 5th number i1n a
floating-point* array
whose name 1s A

the 1-2nd number in the
floating point array
named TABLE

2-dimensional array
element

illegal! Array names
may not end in 'F' if
they are 4, 5, or 6

characters* in length

C(J+3)

D(7*M)

E(4*%K-3)

F(1-4,3%K,L)

A variable* which is an array* element
having its subscripts?* enclosed in par-
entheses, and separated by commas.
examples:

A(5)

TABLEC(1-2)

JOB(3,L-4)

NAITF(3)

163

45. Symbol: A character* which is part of a particu-
lar language.

examples:
alphabetic characters A,B,C,...c.cve.n ,Z
digit characters 0,1,2, eeiiences , 9
special characters +, =, /, *, (,)

46. Symbolic device Technique for referencing an I/0 unit
(input or without specifically designating it.
output): This permits flexibility in the use of
the I/0 units. The actual correspondence
is handled by the FORTRAN processor.

47. Type: Form of number*, form of a name*, form
of an expression*. Types may be integer*,
real*, double_precision*, complex*, and
logical*. The type of a number is deter-
mined by a type statement or by its name.
The type of an expression is determined by
the types of its operands?*.

examples:

an integer constant 273

a real constant 3.75E2

a double precision 14.5D-3
constant

a complex constant (22.1,3.3E5)

a logical comnstant .FALSE.

integer variable INTEGER CAR

complex variable COMPLEX POLY

real function SIN (A*B)

double precision DSIN (A*B)
function

logical expression P.EQ.Q.AND.CHK

48. Variable: Integer* with a name*; a floating-point-

number* with a name; a Hollerith-String*
with a name; a variable ig referred to
in a program by its name.

examples:

164

48.

Variable:
(contd.)

FORTRAN IV:

Value of
Variable
integer variable 347
(name may be from
1-6 alphabetic or
numeric characters:
first character is I,
J, K, L, M, or N)
floating point vari- 93,2

able (name may be
from 1-6 alphabetic
or numeric characters;
first character is
A-H, 0-2)

Hollerith-string C12C3=
(name may be 1-6

alphabetic or nu-

meric characters;

first character

must be alphabetic)

double precision 327.4217892

variable (name may

be from 1-6 alpha-
betic or numeric
characters and must
appear in a DOUBLE
PRECISION type state-
ment)

complex variable 32+121
(name may be from

1-6 alphabetic or

numeric characters

and must appear in

a COMPLEX type state-

ment)

logical variable .FALSE.

(name may be from

1-6 alphabetic or
numeric characters
and must appear in

a LOGICAL type state-
ment)

X15

STRING

A double precision number with

a name, a complex number with a name, Q
logical value with a name.
examples:

TOT

IMAG

SWTCH

165

Appendix 2

FORTRAN Built-In Functions and Library Functions

FORTRAN Butilt-In Functions and Library Functions

Built-In
FUNCTION NAME* MODE No. OF ACTIVITY
FORTRAN II | FORTRAN IV| ARG. ANSWER ARGS. PERFORMED
ABSF ABS Real Real 1]
Absolute Value
XABSF [ABS Integer|Integer 1)
DIMF DIM Real |Real 2 |
argl - min(arg,,arg,)
XDIMF iDIM Integer|Integer 2
FLOATF FLOAT Integer | Real 1 Convert Integer to Real
XF I XF FF1IX Real Integer 1 Convert Real to Integer
INTF AINT Real Real 1
Extract Largest Integer
XINTF INT Real Integer 1
MAXOF | AMAXO Integer|Real > 2|
MAX1F AMAX1 Real Real > 2 || Select
XMAXOF MAXO Integer|Integer > 2 Largest Value
XMAXTF MAX1 Real Integer > 2 |
MINOF AMINO Integer|Real > 2 |
MINTF AMIN1 Real Real > 2 Select
XMINOF MINO Integer|Integer > 2 Smallest Value
XMINTF MINT Real Integer > 2 J
MODF AMOD Real Real 2 | —
arg ;- argz/argg *arg
XMODF MOD Integer|Integer 2 z
L/
SIGNF S1GN Real Real 2 | | |
Sign(argg)*largﬂ
XSIGNF ISIGN Integer|Integer 2,

168

.

Library
FUNCTION NAME* MODE No. OF ACTIVITY
FORTRAN II | FORTRAN IV |ARG. ANSWER ARGS. PERFORMED
ATANF ATAN Real | Real 1 Arctangent
COSF Cos Real | Real 1 Trigonometric Cosine
EXPF EXP Real | Real 1 Exponential
LOGF ALOG Real Real 1 Natural Logarithm
SINF SIN Real Real 1 Trigonometriec Sine
SQRTF SQRT Real | Real 1 Square Root
TANHF | TANH Real | Real 1 | Hyperbolic Tangent
ALOG1O Real | Real 1 Common Logarithm
ATAN2 Real | Real 2 Arctangent(argz/argz)

169

Appendix 3

FORTRAN Symbols with Equivalent Codes

162

FORTRAN Symbols with Equivalent (Codes:

SYMBOL CODE SYMBOL

12-
12-
12-
12-
12-
12-
12-
12~
12-
11-
11~
11~
11-
11-
11~
11-
11~
11-

0-

0-

o-

0~

0=

I + N~Oo~NOWVMFWNRFON=< X

a
-~

DR WD WO WMMRNOONNDUTHN WD R
o
[N

T<CHNDTVOVOZIrRC=ITOTMOO®I>

NQ

CODE

0- 7
0- 8

©

WCONHITUNMHRAN WSO
[}

11, 8-
12, 8-
0, 8-

0, 8-
12, 8-

NARIVARE SN

	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162

