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Foreword

The field of systems programming primarily grew out of the efforts of
many programmers and managers whose creative energy went into pro-
ducing practical, utilitarian systems programs needed by the rapidly grow-
ing computer industry. Programming was practiced as an art where each
programmer invented his own solutions to problems with little guidance
beyond that provided by his immediate associates;>:1.r_1"’l“968,' the late
Ascher Opler, then at IBM, recognized that it was necessary to bring
programming knowledge together in a form that would be accessible to all
systems programmers. Surveying the state of the art, he decided that
enough useful material existed to justify a significant publication effort.
On his recommendation, IBM decided to sponsor The Systems Pro-
gramming Series as a long term project to collect, organize, and publish
principles and techniques that would have lasting value throughout the
industry.

The Series consists of an open-ended collection of text-reference
books. The contents of each book represent the individual author’s view
of the subject area and do not necessarily reflect the views of the IBM
Corporation. Each is organized for course use but is detailed enough for
reference. Further, the Series is organized in three levels: broad introduc-
tory material in the foundation volumes, more specialized material in the
software volumes, and very specialized theory in the computer science
volumes. As such, the Series meets the needs of the novice,.the experi-
enced programmer, and the computer scientist.

The Editorial Board






Preface

The word ‘‘code’’ is a word of broad meaning and application. Legal
codes, fire safety codes, building construction codes, a code of ethics,
and so on, exemplify the use of the word in some of its dictionary
meanings, ‘‘a system of rules or regulations on any subject.”’ A dictionary
meaning that comes closer to the context of this book is ‘‘a system of
signals.”’

From early beginnings, humans have used many methods to convey
information over a distance. Indians (of North America) used a set of
smoke signals for sending messages. A semaphore, a vertical post with
one or more arms moving in a vertical plane, was and is used to send
messages over line-of-sight distances.

The method that comes close to the meaning used in this book is the
Morse Code, an alphabet in which the letters are expressed as dots and
dashes. This method can be used visibly with short and long flashes of
light, audibly with short and long bursts of sound, electrically with short
and long pulses of current, and so on. The interesting aspect of the Morse
Code is that it is based on two possible states—dot or dash, short or
long, and so on—that is to say, it is binary in nature. Standing aside from
the spaces between dots and dashes, and between letters, the Morse
Code may be regarded as a binary code.

Analogously to the Morse Code, the set of alphabetic, numeric and
special (such as period, comma, plus sign, minus sign) symbols processed
by a computer are associated with a set of particular binary representa-
tions. Such a set of graphic symbols and binary representations is called
a coded character set, or, more familiarly, a code.
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The binary aspect of a coded character set stems naturally from the
binary, or two-state, nature of many mechanisms, components, or proc-
esses of a computer. A switch is on or off, a relay is normal or transferred,
a vacuum tube is or is not passing current, a condenser is or is not
charged, a magnetic pole is north or south, a voltage is positive or
negative or is equal to or less than a reference voltage, and so on. Relays,
vacuum tubes, transistors, magnetic cores, diodes, as used in computer
circuits, are binary in nature.

In the decimal number system, there are ten digits—0, 1, 2, 3, 4, 5,
6, 7, 8, 9. In the binary number system, there are two digits—O0 and 1.
Very early in the history of computing, the words “‘binary digit’’ were
contracted to the word “‘bit’’; ‘‘a bit may be 0, or 1,”” means ‘‘a binary
digit may be 0 or 1.”” A discrete grouping of contiguous bits, 1001011 for
example, is called a bit pattern.

A coded character set, or code, is a set of meanings associated with
a set of bit patterns. For a particular code, the number of bits is generally
a fixed number; all bit patterns in a particular code have five bits, or all
bit patterns in a particular code have six bits, and so on. This aspect of
a fixed number of bits in the bit patterns of a particular code is frequently
used to characterize a code as a 5-bit code, or as a 6-bit code, and so. on.
In this respect, the Morse Code, which has different numbers of bits for
different letters, although it continues to be used for sending messages,
was deemed not to be satisfactory for computing purposes.

The number of different possible bit patterns in a particular code
depends on the fixed number of bits of that code. In consequence, the
number of different possible meanings that may be associated on a one-
to-one basis with the different bit patterns of a code depends on the
number of bits of a code. Reasoning in the opposite direction suggests
that the number of different meanings required in the code of a computer
may be a determining factor in the number of bits in a code.

Perhaps the most famous code in the history of computing was that
invented by Dr. Herman Hollerith of the United States Census Bureau
in the late nineteenth century. His code was a decimal code based on the
position of a punched hole across a paper card—ten digits, ten punching
positions. His code was actually a twelve-position code—ten positions
for digits, two positions for other purposes (positive or negative, for
example). Today, more than seven decades later, Dr. Hollerith’s twelve-
position code is fundamental in the punched card code used by
many/most computers.

A number of different codes have evolved in the computing and data
communication fields: different codes evolved because different require-
ments emerged as computing and data communication evolved. Many
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Factors shaped the different codes. This book describes those factors and
how they either led to or mandated decisions in the development of some
codes. This book is not a definitive book on all computer or data com-
munication codes. Discussion is limited to those codes which have
evolved, have been developed, or have been used in the author’s personal
experience.

Mainly, the factors discussed are of a technical nature, but some of
the factors are of an economic or cost nature. For example, in computers,
bit patterns are stored in registers. In early computers, registers were
implemented in vacuum-tube technology. The number of bits to be stored
in a register bore a relation to the number of tubes needed in the register-—
8-bit registers required more tubes than 6-bit registers. The manufacturing
cost of a register was related to the number of tubes in the register. In
this sense, a 6-bit code was considered to be more ‘‘economical’’ than
an 8-bit code.

Two processes have shaped the evolution and development of codes.
One process is the process of developing computing and communication
products and systems, a process of individual manufacturers. The other
process is the developing of standards for the data processing industry,
a process of both manufacturers and users, in concert.

With respect to the first process, during the 1960s, two great tech-
nological evolutions were occurring in the data processing field. On one
hand, computing systems were evolving from an architecture of six bits
to an architecture of eight bits. (Many people consider this to have been
more of a revolution than an evolution.) On the other hand, communi-
cations systems were evolving from five-bit codes to six-, seven-, and
eight-bit codes.

With respect to the second process, during the 1960s, there was a
quite remarkable development of standards in the field of data processing.
One particular area of standardization was the area of coded character
sets and their representation on physical media—magnetic tape, paper
tape, punched cards, data transmission, tape cassettes, and so on. This
standardization effort was exerted on both the national and international
level. In the United States alone during the 1960s, some twenty standards
in this area were started, and most were completed.

As might be supposed, the interaction between these two processes
was considerable. One characteristic of codes is very interesting. In the
data processing industry over the last twenty years, older computing and
communications products and systems have not infrequently been re-
placed with newer, more economically efficient products and systems.
But old codes do not die, nor do they fade away. A 5-bit telegraph
communications code standardized in 1931 is still in wide use although
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a 7-bit communications code was standardized in 1963, and many prod-
ucts implementing the 7-bit code are available. A 6-bit computer code
developed in 1962 continues in wide use, although 8-bit computers with
an 8-bit computing code have largely replaced the 6-bit computers. Codes
have the characteristic of continuity and long-life expectancy due to
user’s application demands.

A problem that has to be faced in a technical book such as this is
the existence of the specialized jargon used by professionals in the sub-
ject. Words or terms that make up the jargon came from two sources.
The first source is words with a general meaning or meanings in the
English language that are given a very specialized meaning in the jargon.
Such specialized meanings are not in common use and will not be found
in common dictionaries. An example is the word ‘‘track.”’ In railroading,
““track’” means one thing; in fur trapping, it means something else; and
in horse racing, it means yet something else. These meanings will likely
be found in common dictionaries. But in the field of magnetic tape en-
gineering, ‘‘track’’ has a meaning most unlikely to be found in common
dictionaries, although it is likely to be found in technical dictionaries for
the field of data processing. The second source of jargon is new words
or terms invented by the professionals. An example here is ‘‘bit.”” The
meaning ‘‘binary digit,”” from which ‘‘bit’> was contracted, is not likely
to be found in common dictionaries, although its meaning is well known
in the data processing field.

Technical jargon must be used in a book on a technical subject.
Early in this book some terms and concepts very necessary to an under-
standing of the field of coded character sets are defined and explained;
the glossary of this book is devoted to a comprehensive set of definitions
of terms.

Just as letters, digits, and special symbols make up a language in
which humans intercommunicate, the letters, digits, and special symbols
with associated bit patterns of a coded character set make up the language
in which information is passed, interchanged, and processed by com-
puters. A complete knowledge of the art of computing, which includes
both the manufacture and use of computers, requires a knowledge of the
art of coded character sets. This book describes some of that art.

The author would like to express his appreciation to Mrs. Helena
Russo, Mrs. Janet Palome, and Mrs. Betty Birdsall, who did the lengthy
and frequently very difficult typing of the manuscript of this book.

Poughkeepsie, New York C.E.M.
January 1980
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The
Standards
Process

Most of the codes discussed in this book have been developed in the
context of developing data processing standards of one kind or another.
These standards may be categorized as being either public or company
standards. Public standards are those developed by governmental,
national, or international organizations. Company standards are those de-
veloped by a company. Many company standards are well known outside
the developing company, and in many instances are used by companies or
organizations other than the developing company. Although the discus-
sion of company standards is intended to be of a general nature, it does
draw primarily on the author’s experience in the IBM Corporation.*
Also, most of the national standards discussed in this book are those
developed in the United States of America, again by reason of the
author’s familiarity. Equivalent national standards have been developed
in many other countries.

1.1 THE PUBLIC COMMITTEE PROCESS

The suggestion to standardize in a particular subject area may originate
anywhere; an individual, a company, a government agency/department, a
society/association, a standards committee, and so on.

Public standards are developed by committees—committees estab-
lished specifically for the process of developing the standard, or stan-
dards, and staffed with professionals from the field of the subject.

*The views expressed in this book are those of the author and not necessarily
those of the IBM Corporation.
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Generally speaking, the organization is as follows. At the top will be an
administrative body, whose functions are to establish the procedural rules
for developing standards, to monitor adherence to these rules, to deter-
mine that any particular standard is not in technical conflict with other
standards, and to publish and distribute the standards. In the case of
national standards, the administrative body will generally be the national
standards institute or association of the country.

Reporting to the administrative body will be one or more managerial
committees, each dedicated to a particular subject area of standardiza-
tion. The area of standardization assigned to the managerial committee is
generally divided into subareas. Technical subcommittees are established
to develop standards for the subareas. One main function of such mana-
gerial committees is to direct and coordinate the activities of technical
subcommittees who do the actual work of developing and drafting the
standards. The other main function is to assess the economic (and
sometimes social) implications of draft standards.

Usually some organization will serve as secretariat for the committee
and subcommittees. The secretariat distributes to the members, and keeps
on file, the minutes, papers, and other correspondence of the committee
and subcommittees.

The committees and subcommittees function very similarly. There
will be a chairman, usually a vice-chairman (sometimes called chairperson
and vice-chairperson today), and a secretary. Minutes of the meetings are
kept. Members submit papers of a technical, economic, or social nature.
The papers, and the subject matter of the standard(s), are discussed at
meetings. Decisions on points of issue and points of agreement are taken
by votes or ballots, under various rules of majority, consensus, or unanim-
ity. The meetings are conducted under parliamentary rules of procedure.
Draft standards are (generally) subjected to some form of public review
before final approval. '

In the case of national managerial committees, members are com-
panies, governmental units, and professional societies or associations. In
the case of national technical subcommittees, members are professionals
knowledgeable in the subject area of the standard(s). In the case of
international committees and subcommittees, members are countries,
with actual attendees at meetings being delegations selected by the
countries. Not unexpectedly, the individuals on country delegations are
usually selected from the members of national committees and subcom-
mittees.

12 THE COMPANY PROCESS

Company standards are generally developed by the same procedures and
methods the company uses to manage itself and to develop its products.
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1.3 DECISION PROCESSES

Usually, national and international standards are derived from and based
on well-established industrial practices or techniques. The task of a
standards committee developing a standard in such instances is to de-
scribe completely, consistently, and unambiguously what already exists,
removing or smoothing any incompletenesses, inconsistencies, and am-
biguities.

In some cases, standards committees foresee the need to develop a
standard where practices or techniques are not well established, or do not
exist at all. Such standards are called anticipatory standards. The main
problem for standards committees in such instances is to try to guess or
anticipate what the needs of users will be. These guesses are always
speculative and judgmental, and frequently controversial. Sometimes, the
most controversial aspect of such guesses is whether a standard is actually
needed before users build up experience, practices, and techniques over a
period of time and a range of applications.

The development processes for public and company standards are in
some respects the same. A group of professionals knowledgeable in the
subject area is called together, a chairman or coordinator is appointed,
and the group is charged with the responsibility to develop a standard for
the subject area. The group reviews the subject area, reviews relevant
technical facts, and drafts the standard.

Inevitably, on one or more aspects of the standard, technical alterna-
tives will emerge, and decisions for one of the alternatives must be made.
If, after review of the alternatives, the group is unanimous in selection of
a particular one, the matter is resolved. But if the group is not unanimous
in opinion, a decision must be made. It is in respect of such technical
decisions that the process in a company is quite different from the process
of a standards committee.

In the company, if the group is not unanimous, a management
decision must be made. It may be made by the group coordinator. Or it
may be referred to a higher level of management or to a series of
management levels. But in all cases, the decision will be made by a single
person. It is made after that person reviews the alternatives, and the pros
and cons, and makes a decision based on personal judgment.

In a public standards committee, the decision is not made by a single
person. It is made by taking a vote or ballot, the outcome of the voting
process being determined by pre-established rules of majority or consen-
sus for the particular committee. That is to say, the decision is a reflection
of the combined personal judgments of all committee members, each
committee member’s judgment being given an equal weight. In theory, it
should be possible to follow the company approach of letting the most
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knowledgeable person on the committee make the decision. In practice, it
is not possible to determine who of the committee members is the most
knowledgeable. The equal-weight voting approach is the only practical
and workable one for a committee.

In a particular situation when the pros and cons of alternatives are
based purely on technical aspects, the committee is not likely to have
difficulty in arriving at a decision. The decision can be made purely on
technical merit, and it is simply a question of determining the relative
technical merits of the alternatives. The professionals on the committee
are very well qualified to make such determinations. '

An interesting situation that sometimes arises, (more likely in the
development of an anticipatory standard than in the standardization of an
established industry practice) is that two technical alternatives face the
committee, and each alternative would be equally satisfactory. In such
situations, the act of making the decision is more important than the
technical matter of the decision. For example, standardization in the area
of data communications eventually faced the question of order of trans-
mission of the bits of a byte—should transmission be low-order bit first or
high-order bit first? A priori, there were arguments in favor of each of the
alternatives, and the arguments were clearly of equal technical weight. It
did not matter, a priori, which choice was made, but it was necessary to
make the choice.

A posteriori, once the choice was made, and implementations
emerged, it did matter, because then the fact of implementation for the
particular choice was a weighty argument.

Intuitively, it would seem that, for a particular subject area, one
standard, which is to say one technique or one practice, best serves the
interests of the data processing industry. Thus, if a card code is to be
standardized, only one card code (whatever it may be) should be standard-
ized. Two card codes would result in conflicts and confusions. Many
standards associations, as a cardinal principle, forbid the approval of
conflicting standards in any area.

But there are situations where more than one standard, a family of
standards, is a viable solution, each member of the family serving a
particular purpose in the general subject area. For example, in the area of
data transmission, standards specifying different speeds or rates of trans-
mission have been developed. In the area of magnetic tape, standards
specifying different densities of recording have been developed. Such
families of standards reflect the practical economics that exist. Thus, in
general, the lower the density of recording, the lower the cost of the
magnetic tape drive. A low density of recording may be quite satisfactory
in some data processing applications, and then the user will appreciate the
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lower cost of tape drives. Other data processing applications may require
a higher density of recording, and for such situations, the user accepts the
higher cost of tape drives.

1.4 ECONOMIC CONSIDERATIONS

Frequently, factors other than technical, such as economic and sometimes
social, are involved, and then the committee’s decision process becomes
much more difficult. A standard committee, when developing standards in
a particular subject area, may face a number of possible situations.

Situation 1. There is a single, uniform practice in the subject area.

Situation 2. There is essentially a single practice in the subject area, but
with slight individual variations.

Situation 3. There are a number of different practices in the area, with
much in common but with appreciable differences.

Situation 4. There are a number of different practices in the subject area,
with little if anything in common.

Situation 1 is the simplest for the committee. All that is needed is to
draft a standard which accurately describes the established practice. Of
course, there may be some question on the accuracy of the description,
but the committee members are well qualified to resolve just such
questions.

Situations 2, 3, and 4 become increasingly more difficult for the
committee members to resolve. The difficulty is the same kind for these
three situations, but different in degree. The difficulty is that the practices
under review are in use in the industry, and the final decision of the
standard will make some current practices standard, while making other
current practices nonstandard. Then, if those who are using the just-
defined nonstandard practice want to use the just-defined standard prac-
tice, they will have to change what they are doing, or the way they are
doing it. Such changes will generally involve cost to the user.

In such situations, then, economic as well as technical factors affect
the decision process. Indeed, there are situations where the economic
factors are more, sometimes much more, significant than the technical
factors. And, while the technical factors can be determined with some
degree of precision, it will generally be difficult or impossible to deter-
mine the economic factors with any degree of precision.
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1.5 NAMES OF STANDARDS

National and international standards take their titles (which lead to their
names) from the organizations under which they were developed, and to
some extent, from the purpose for which the standard was developed.
Company standards often take their titles from the purpose for which the
code was developed (the Paper Tape and Transmission Code, for
example).

The international organization responsible for standards in the data
processing field (as well as in many other fields) is the International
Organization for Standardization (ISO). Until recently, “standards” de-
veloped under ISO were not called “standards,” but were called “Recom-
mendations.” The intent of such documents was vested in the name,
“Recommendation.” It was recommended when national standards
bodies developed their own national standards that such standards be
based on the ISO Recommendations. Recently, ISO decided to call their
documents ISO Standards in name as well as in fact. Another interna-
tional organization, responsible for all matters pertaining to worldwide
telegraph and telephone communications, is the International Telegraph
and Telephone Consultative Committee. Its acronym, CCITT, comes
from the equivalent French name for the organization (Commité Consul-
tatif International Telegraphique et Telephonique). A European organi-
zation that develops data processing standards is the European Computer
Manufacturers Association (ECMA).

In the United States, the national standards organization has gone
through a number of changes of name. Organized in 1918 as the
American Engineering Standards Committee, it became the American
Standards Association (ASA) in 1928. In 1966, it was re-named the
United States of America Standards Institute (USASI) and in 1969 it
took its present name, the American National Standards Institute (ANSI).

A 5-bit code was standardized in 1931 by CCITT for telegraph
communications purposes. It is designated CCITT #2, and is still in
worldwide use.

The U.S. Army developed a 7-bit code for data communications that
became a U.S. Military Standard in 1960. Its developers coined for it the
name FIELDATA.

A 7-bit code described in this book has been standardized by a
number of national and international standards organizations:

a) In 1963, under ASA, it became the American Standard Code for
Information Interchange, acronym ASCII (pronounced ‘ass-key).
When ASA became USASI in 1966, the code was called the United
States of America Standard Code for Information Interchange, with
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acronym USASCII (pronounced you-sass-key). However, the previ-
ous acronym ASCII, prominent in the literature, was officially desig-
nated as an acceptable alternative acronym. When USASI became
ANSI in 1969, the code was called the American National Standard
for Information Interchange. Needless to say ANSCII was proposed
as a new acronym, but the standards committee rejected further
name changes, and ANSCII as an acronym was rejected. ASCII was
then designated as the preferable acronym. (USASCII is an accepta-
ble alternative acronym, but has fallen into disuse.)

In 1967, it was incorporated into the ECMA Standard for a 7-Bit
Input/Output Character Code, ECMA-6.

In 1967, it was incorporated into an ISO Recommendation, the 6
and 7-Bit Coded Character Set for Information Processing Inter-
change. In that context, it is referred to as the ISO 7-bit code.

In 1969, it was incorporated into the Japanese Industrial Standard
Code for Information Interchange (JISCII).

In 1968, it was incorporated into a CCITT standard designated
CCITT #5.

These 7-bit codes are essentially the same. They differ in graphic symbols
which reflect different national requirements. This similarity is not coinci-
dental,; it is intentional—the result of professionals in different countries
working together to achieve that result.

The original twelve character (ten numerics and two special symbols)

code invented by Dr. Herman Hollerith in the late nineteenth century
grew to include alphabetics and special symbols. It also was incorporated
into national and international standards, specifying either 128 or 256
characters:

a)

b)

d)

In 1969, 128 characters were incorporated into the American Na-
tional Standard Hollerith Punched Card Code. This standard took its
name from the original inventor of the card code. It is now referred
to as the Hollerith Card Code.

In 1970, 128 characters were incorporated into an ISO Recommen-
dation, Representation of ISO 7-Bit Coded Character Set on 12-Row
Punched Cards. It is referred to as the ISO 12-Row Card Code.

In 1970, the American Standard was extended to incorporate 256
characters, retaining the same name.

In 1971, another ISO Recommendation incorporated 256 characters,
Representation of 8-Bit Patterns on 12-Row Punched Card. It also is
referred to as the ISO 12-Row Card code.
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Items (a) and (b) are identical; items (c) and (d) are identical. The 128
characters of (a) and (b) are a subset of the 256 characters of (c) and (d).
As with the 7-bit code standards, this is intentional, not coincidental.

Four codes developed in IBM are discussed in this book. Two of
these codes (described in more detail in Chapter 2) were named in
consequence of a particular aspect of codes; namely, that the decimal
numbers 0 through 9, when represented in a binary code, have particular
binary bit-patterns which are called binary coded decimal in the litera-
ture. The acronym, BCD, is well understood in the data processing
industry to characterize a code whose decimal numbers are in the binary
coded decimal representation.

The first code developed in IBM, formalized in 1962, is a 6-bit code
called the BCD Interchange Code, with acronym BCDIC (pronounced
bee-see-dick). An 8-bit code adopted within IBM in 1964 is called the
Extended BCD Interchange Code with acronym EBCDIC (pronounced
ebb-see-dick).

Two other IBM standard codes were developed for use in perforated
tape and transmission products. These 6-bit codes were originally named
Perforated Tape and Transmission Code for use in 6-Bit BCD Environ-
ments, with acronym PTTC/6, and Perforated Tape and Transmission
Code for use in 8-Bit BCD Environments, with acronym PTTC/8. These
names turned out to be confusing. People thought that PTTC/6 meant
that it was a 6-bit code, and PTTC/8 meant it was an 8-bit code. The
former was correct, the latter was incorrect. Therefore, PTTC/6 was
renamed the Perforated Tape and Transmission Code for use in BCDIC
Environments, with acronym PTTC/BCD, and PTTC/8 was renamed the
Perforated Tape and Transmission Code for use in EBCD Environments,
with acronym PTTC/EBCD. Whether the confusion was reduced is moot,
but the second set of names has remained.

Reference is made in this book to various American National Standards
and ISO Recommendations:

1. The American National Standard Code for Information Interchange,
X3.4-1968, referred to in this book as ASCII.

2. ISO Recommendation, 6 and 7-Bit Coded Character Sets for Infor-
mation Processing Interchange, ISO/R646-1967, referred to in this
book as the ISO 7-Bit code.

3. The American National Standard Bit Sequencing of the American
National Standard Code for Information Interchange in Serial-by-Bit
Data Transmission, X3.15-1966.

4. The American National Standard Hollerith Punched Card Code
X3.26-1970, referred to in this book as the Hollerith Card Code.
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5. ISO Recommendation, ISO 7-Bit Coded Character Set on 12-Row
Punched Cards, ISO/R1679-1970, referred to in this book as the
ISO 12-Row Card code.

6. ISO Recommendation, Representation of 8-Bit Patterns on 12-Row
Punched cards, ISO/R2021-1971, referred to in this book as the ISO
12-Row Card Code.

Copies of these American National Standards and ISO Recommendations
are available from the American National Standards Institute, 1430
Broadway, New York, New York 10018.

The 7-bit bit codes of items (1) and (2) above are similar. When
there is no need to distinguish between them, they are referred to
generically as the 7-Bit Code in this book. When distinction is necessary,
one is referred to as ASCIL, the other as the ISO 7-Bit Code.

The 256-character card codes of items (2) and (5) above are equival-
ent. When it is necessary to distinguish between them, one is referred to
as the Hollerith Card Code, the other as the ISO 12-Row Card Code.






Terms
and
Concepts

There are some basic terms which should be understood at the onset of
reading this book. These are grouped in this chapter for convenience. (A
lengthy set of terms and definitions is found in the Glossary.)

A fundamental concept involved in data processing products is the

binary, or two-state, nature of many mechanisms, devices, and processes:

A relay is transferred or normal.

A switch is on or off.

A condenser is charged or discharged.

A light is on or off.

A diode is, or is not, conducting current.

A vacuum tube is, or is not, conducting current.
A magnetic pole is North or South.

A punching position on a paper card or on paper tape is punched or
unpunched; which is to say, in a punching position, a hole is present
or absent.

At a point in an electrical circuit, the voltage is positive or negative,
or is zero or negative, or is zero or positive, or is high or low, and so
on.

The decimal number system has the familiar ten digits 0, 1, 2, 3, 4, 5,

6, 7, 8, 9. The binary number system has two digits, 0 and 1. The
representation of physical, electrical, or magnetic two-state situations
such as those above by binary digits is the analytic process of representing

1
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a physical situation by a mathematical model. In the literature, the term
“binary digit”” soon came to be contracted to ‘“bit.”

21 BIT
A bit is a binary digit, either 0 or 1.

2.2 BIT PATTERN
A bit pattern is an ordered set of bits, usually of a fixed length.

Example 1 101011, a bit pattern of 6 bits
Example 2 1100011, a bit pattern of 7 bits
Example 3 10011100, a bit pattern of 8 bits

A bit pattern of n bits is called an n-bit bit pattern. Thus we speak of
6-bit bit patterns, 7-bit bit patterns, 8-bit bit patterns, and so on.

23 BYTE

A byte is a bit pattern of fixed length. Thus we speak of 8-bit bytes, 6-bit
bytes, and so on.

2.4 BINARY VARIABLE

A binary variable is a variable which can take two possible values or
represent two possible states.

Three major conventions for representing bit patterns of binary
variables have developed.

= The first convention is the obvious one, a string of Os and 1s; thus
10100, 1001111, 10010101, and so on.

®=  The second convention is based on the realization that, for a binary
variable, call it A, we have either A or the inverse of A; we have
either A or “not A.” The convention is to represent ‘“not A” (or the
inverse of A) as A (A overlined). Thus for a set of three binary
variables, A, B, C, we may have eight possible states:

Example 4
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ABC
ABC
ABC
ABC
ABC
ABC

®  The third convention is based on a presence/absence concept and the
naming of the specific bit positions within a bit pattern.

Example 5

The four bit positions of a 4-bit bit pattern are named 8, 4, 2, 1; these are
the decimal equivalents of 23, 22, 2", 2°, respectively. Then the sixteen
4-bit bit patterns are represented as in Fig. 2.1, sometimes in a columnar
form as at the left and sometimes in a compact form as at the right.

814 (|21

0 No bits
1 1 1

2 2 2

3 211 21

4 4 4

5 4 1 41

6 4 |2 42

7 4 1211 421
8 |8 8

9 |8 1 81
10 | 8 2 82
11 |8 211 821
12 {8 | 4 84
13 |8 | 4 1 841
14 (8 | 4 |2 842
15 18|14 2] 1 8421

Fig. 2.1 8421 notation

Under the second convention, A and A are equated to 1 and 0,
respectively. Under the third convention, presence and absence are
equated to 1 and 0, respectively.
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Example 6

Figure 2.2 shows the sixteen possible states of a 4-bit bit pattern rep-
resented under the three conventions, using A, B, C, D as variables for
the second convention.

Convention 1 Convention 2 Convention 3
0000 ABCD No bits
0001 ABCD 1
0010 ABCD 2
0011 ABCD 21
0100 ABCD 4
0101 ABCD 41
0110 ABCD 42
0111 ABCD 421
1000 ABCD 8
1001 ABCD 81
1010 ABCD 82
1011 ABCD 821
1100 ABCD 84
1101 ABCD 841
1110 ABCD 842
1111 ABCD 8421

Fig. 2.2 Conventions for binary notation

The first and second conventions lead to a uniform, fixed-length represen-
tation. The third convention leads to a compact, variable-length represen-
tation.

2.5 BIT NUMBERING AND BIT NAMING

For purposes of reference, the bit positions of the bit patterns of a code
are numbered, or named:

" For a 7-bit code (Fig. 2.26) the seven bits are numbered b7, b6, b3,
b4, b3, b2, bl, from high- to low-order significance.

®  For an 8-bit representation based on that 7-bit code (Fig. 2.27) the
eight bits are numbered a8, a7, a6, a5, a4, a3, a2, al, from high- to
low-order significance.

" For the code table of Fig. 2.28, which is an 8-bit code (structured
differently from the 8-bit representation in Fig. 2.27), the eight bits
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are numbered 0, 1, 2, 3, 4, 5, 6, 7, from high- to low-order
significance.

v For 6-bit codes (Fig. 2.29), the six bits are named B, A, 8,4, 2,1,
from high- to low-order significance. This bit-naming convention for
the four low-order bits is based on the 8421 convention previously
described.

2.6 BIT STRING

A bit string is a contiguous sequence of bits, usually not a fixed length. In
data processing applications, bit patterns of variable length are generally
called bit strings.

2.7 CARD HOLE PATTERNS

The twelve vertical punching rows of a punched card are called the
12-row, the 11-row, the 0-row, the l-row,...,the 9-row (see Fig. 2.3).
The vertical punching rows of a card give their names to hole punches 1n
those rows. Thus a hole punch in the 12-row is called a 12-punch, a hole
punch in the 11-row is called an 11-punch, a hole punch in the 0-row is
called a O-punch, and so on. (The numeric designators may also be
spelled out, twelve-row, eleven-row, twelve-punch, eleven-punch, etc.)

/ Gz Card rows (horizontal) seeee——

12-row j
11-row

O-row

1-row

2-row

3-row S Card columns (vertical)

4-row
B-row
6-row

7-row
8-row
9-row B

[ e f e e o Y e o o o e e

Fig. 2.3 Punched card

2.7.1 Hole Pattern

A hole pattern is a set of punched holes within a single vertical punching
column of a card.

In documents, a hole pattern is given as the punches separated by
hyphens. Thus 12-8-2, 12-11-3, 12-11-0-8-7 and so on.
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2.8 ZONE ROW, ZONE PUNCH

The 12-row and 11-row are called zone rows. The 12-punch and 11-
punch are called zone punches. The 9-row and 0-row are sometimes
called zone rows, sometimes digit rows (Section 2.9 below). The 9-punch
and O-punch are sometimes called zone punches, sometimes digit punches
(Section 2.9 below).

29 DIGIT ROW, DIGIT PUNCH

The 1-row, 2-row, 3-row, 4-row, 5-row, 6-row, 7-row, 8-row are called
digit rows. The 1-punch, 2-punch, 3-punch, 4-punch, 5-punch, 6-punch,
7-punch, 8-punch are called digit punches. The 9-row and O-row are
sometimes called digit rows, sometimes zone rows (Section 2.8 above).
The 9-punch and 0-punch are sometimes called digit punches, sometimes
row punches (Section 2.8 above).

2.10 GRAPHIC

A graphic is a particular shape, printed, typed, or displayed, that repre-
sents an alphabetic, numeric, or special symbol.

In documents, books, magazines, newspapers, for example, we find
three kinds of symbols; letters, numbers, and special symbols used for
punctuation, mathematical operations, editorial inserts, and the like.
These symbols are called graphic symbols; more commonly, simply
graphics.

2.10.1 Alphabetic

An alphabetic is a letter in the alphabet of a country. Generally taken to
mean a letter of the Latin alphabet but sometimes particularized as, for
example, Latin alphabetic, Cyrillic alphabetic, Greek alphabetic, Hebraic
alphabetic.

2.10.2 Numeric
A numeric is one of the ten decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

2.10.3 Special
A special is a graphic symbol indicating a specific purpose.

Special symbols are frequently multi-purpose. Thus “.”” may be a
period or a decimal point; “-” may be a hyphen or a minus sign, or a

dash.
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Example 7
some specials commonly found on data processing products are
a2 < >4+ =
=|"—@# % &$¢{}[]

2.11 CONTROL MEANING

Control meaning refers to a particular function or operation that controls
hardware or software products of systems. Control functions come in
many categories. Some of the categories are as follows:

Format effectors. Functions to control the formatting of data on a printed
page, or on a display.

Information separators. Functions to separate and block data.

Device controls. Functions to control a device (as “On” or “Off”) or to
control actions within a device.

Transmission controls. Functions to control intercommunications on data
transmission lines.

Mode change. Functions to set or change some particular mode of
operation.

Miscellaneous. Functions which do not fall into the above categories.

2.12 CHARACTER

A character is a specific bit pattern and an assigned meaning.

2.12.1 Graphic Character

A graphic character is a specific bit pattern and an assigned graphic
meaning.

In order that data processing equipment may process graphic infor-
mation, specific bit patterns must be assigned to specific graphic mean-
ings. Thus if 100 0001 is assigned to graphic meaning of the alphabetic A,
for example, the electrical circuits of a printer will analyze bit patterns, and
when it detects 100 0001, the letter A will be printed.

2.12.2 Control Character

A control character is a specific bit pattern and an assigned control
meaning.
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Data processing products perform certain control functions. For
example, a typewriter performs the operations of spacing, backspacing,
up shifting, down shifting, tabulation, carriage return. If the typewriter is
to operate as a printer, certain bit patterns must be assigned the meaning
of control functions.

2.13 DATA STREAM

A data stream is a variable-length string of bit patterns, representing the
data of a data processing application.

2.14 CODED CHARACTER SET—CODE

A coded character set is a specific set of bit patterns or hole patterns to
which both specific graphic and control meanings have been assigned.

2.14.1 Bit Code

A bit code is a set of bit patterns to which either graphic or control
meanings have been assigned.

A code byte in general can be of variable length. The Morse code,
for example, has variable-length code bytes. However, codes used in data
processing systems invariably have fixed-length bytes.

The code byte prescribes the number of different possible bit pat-
terns in a code—the code byte is generally used to characterize a code.
Thus we speak of a 5-bit code, or a 6-bit code, or a 7-bit code, and so on.
A n-bit code has 2" possible different bit patterns. A 4-bit code has
2*=16 possible different bit patterns. A 5-bit code has 2° =32 possible
different bit patterns. A 6-bit code has 2°=64 possible different bit
patterns. And so on.

Generally, the number of different possible bit patterns of a code
prescribes also the number of possible characters in a code. Thus, a 6-bit
code has 64 characters, and an 8-bit code has 256 characters. A 6-bit
code used in the early days of data processing is shown in Fig. 2.4. Itis to
be noted that graphic meanings only are assigned and that not all bit
patterns have an assigned meaning. This early 6-bit code consisted of 48
characters (64 would be possible)—the Space character, 10 numerics, 26
alphabetics, and 11 specials.

Three concepts (to be explained)—duals, character sequences, and
shifted codes—allow the assignment of more meanings to a code than the
total possible number of different bit patterns.

2.14.2 Card Code

A card code is a set of hole patterns to which graphic or control meanings
have been assigned.
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Bit pattern Graphic Bit pattern Graphic
No bits Space B - Hyphen, minus
1 1 B1 J
2 2 B2 K
21 3 B21 L
4 4 B4 M
41 5 B41 N
42 6 B42 O
421 7 B421 P
8 8 B8 Q
81 9 B81 R
82 0 B&2
821 # Number sign B821 $ Dollar sign
84 @ At sign B84 * Asterisk
841 B841
842 B842
8421 B8421
A BA & Ampersand
Al / Slash BAL1l A
A2 S BA2 B
A21 T BA21 C
A4 U BA4 D
A4l A" BA41 E
A42 W BA42 F
A421 X BA421 F
A8 Y BAS8 H
A81 Z BAS81 I
A82 BAS82
A821 , Comma BAS821 . Period
A84 % Percent sign BAS84 H Lozenge
AB41 BAS841
A842 BAS842
A8421 BAg421

Fig. 24 Early code
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2.15 REPRESENTATION

Representation refers to the form or manner in which the characters of a
coded character set are recorded or transmitted on some medium, such as
magnetic tape, magnetic disk, magnetic card, magnetic tape
cassette/cartridge, magnetic core, paper tape, punched cards, data trans-
mission lines, etc.

For such media representations, it is necessary to specify a precise
relationship between the format characteristics of the medium (rows,
columns, tracks, etc.) and the bits of the bit pattern of a character.

Characters may also be represented by graphic shapes either printed
on paper or displayed on cathode ray tubes. Such graphic shapes may
have a conventional font for human reading or a stylized font for machine
reading (optical character recognition, OCR, or magnetic ink character
recognition, MICR).

Pattorn ———| A B BA
SP - &

1 1 / J A
2 2 S K B
21 3 T L o

4 4 U M D

4 1 5 v N E

42 6 W o} F

421 7 X p ¢

8 8 Y Q H

8 1 9 b2 R I

8 2 0

8 21 # , $

8 4 @ 9 * b

84 1

842

8421

Fig. 2.5 6-bit code table, 8421 convention
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A more subtle form of representation is where a sequence of
characters is used, as an entity, to represent some single graphic or
control meaning (see, for example, Chapter 26, Code Extension).

2.16 CODE TABLE

A code table is a compact matrix form of rows and columns for exhibiting
the bit patterns and assigned meanings of a code. The 6-bit code,
previously listed in Fig. 2.4, is exhibited in a code table using the 8421
convention (Fig. 2.5). It is also exhibited using the binary convention for
representing bit patterns (Fig. 2.6).

The rule for reading these code tables is that the two high-order bits
of the 6-bit bit pattern are shown as column headings, and the four
low-order bits are shown as row sidings.

E;tem—> 65 00 01 10 11
4321

0000 SP - &
0001 1 / 3 A
0010 2 s K B
0011 3 T L c
0100 4 U M D
0101 5 v N E
0110 6 W 0 F
0111 7 X p G
1000 8 Y Q H
1001 9 7 R I
1010 0

1011 # , g

1100 @ y * n
1101

1110

1111

Fig. 2.6 6-bit code table, binary convention
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Example 8
From the code tables of Figs. 2.5 and 2.6 we derive the following:
Graphic Bit pattern Bit pattern
meaning Fig. 2.5 Fig. 2.6
7 421 000111
R B81 10 1001
E BA41 110101
Space No bits 00 0000

It is common practice to represent codes in code tables of 16 rows. Thus,
a 6-bit code has a code table of 4 columns and 16 rows, a 7-bit code has a
code table of 8 columns and 16 rows, an 8-bit code has a code table of 16
columns and 16 rows, and so on.

It is common practice to exhibit control meanings in code tables by
either abbreviations or acronyms of the name of the control meaning.

Example 9
Control meaning Abbreviation or acronym
Space SP
Segment mark SM
Record mark RM
End of Transmission EOT
Acknowledge ACK
Negative Acknowledge NAK
Null NUL
Bell BEL

A card code may be exhibited in a code table in the same way that a
bit code is exhibited in a code table. The conventions for bit-code code
tables are also used for card-code code tables. Zone punch hole patterns
are shown as column headings. Digit punch hole patterns are shown as
row sidings. The hole pattern for a particular character is made up of the
column heading and row siding. A 64-character card code is shown in Fig.
2.7. The Hollerith Card Code is shown in Fig. 2.8.

Example 10

From Fig. 2.7 we derive the following:

Graphic Hole pattern

Space No holes
Z 0-9
< 12-8-6
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Note. In card-code code tables, there may be exceptions to the general
rule of column headings and row siding. These will be designated with
small footnote numbers, with the actual hole patterns for such code
positions (shown below) appearing in the table.

Hole
Pattern—" 0 1 12
1
SP SB S - &
1 1 / J A
2 2 5 K B
3 3 T L C
4 4 U M D
5 5 v N E
6 6 W 0 F
7 7 X P G
8 8 Y Q H
9 9 Z R I
0 0 ™M EL ! ?
8-3 # y $
8-4 @ % * It
8-5 : WS ] C
8-6 > \ : <
8-7 ™ M MC M
Hole Patterns: Control Characters
[:] 8-~2 SP - Space
[2] 0-8-2 TM - Tape Mark
SB - Substitute Blank
RM - Record Mark
WS - Word Separator
SM - Segment Mark
MC - Mode Change

GM - Group Mark

Fig. 2.7 Card-code code table

It is possible to exhibit, in one code table, both bit patterns and hole
patterns, with zone bits and zone punches as column headings and digit
bits and digit punches as row sidings. See, for example, Fig. 2.9. In more
complex code tables, such as Figs. 2.8 and 2.10, zone punches for
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| I
Hote | 12 12 |12 12 [12 12 |12 12 | Hots
Pat. 11 11 [11 1 11 11 [11 J11 ] Pae
0 0 0 0 0 0 0 0o |
& - 0 |spP { ! } 8-1
1 A J / 1 a 3 ~ SoH { pcl 9-1
2 B K S 2 b k s STX | DC2 SYN 9-2
3 C L T 3 c 1 t ETX | DC3 9-3
4 D M U 4 d m u 94
5 E N v 5 e n v HT LF 9-5
6 F 0 W 6 f o w BS ETB 9-6
7 G P X 7 g P x DEL ESC | EOT 9~7
8 H Q Y 8 h q v CAN 9
9 I R yA 9 i r z EM NUL | DLE 9-1
8-2 L ] \ 9-2
8-3 $ . # vT 9-3
8-4 < * % @ FF | FS DC4 9-4
8-5 ( ) _ N CR | GS | ENQ| NAK 9-5
8-6 + H > = SO0 | RS | ACK 9-6
8-7 ! ~ ? " ST | US BEL| SUB 9-7
1 12 12 | 12 12 [ 12 12 [ 12 12
> 11 11 |11 |11 11 11 [ 11 [ 11
Hole 0 0 0 0 0 0 0 0
Pat. 8 8 8 8 8 8 8 8 8 8 8 3 8 8 3
Block | Hole Patterns at:
3 1 Top and Left
Bottom and Left
4

Fig. 2.8 Hollerith Card Code

2
3 Top and Right
4

Bottom and Right
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Code Table

?’iatttern A B BA
Hole
Pattern— ] 11 12
SP SB L - &
1 1 1 / J A
2 2 2 S K B
21 3 3 T L c
4 4 4 0) M D
4 1 5 5 v N E
42 6 6 W 0 F
421 7 7 X P G
3 8 8 Y qQ H
8 1 9 9 Z R 1
8 2 0 0 RM L2] ! ?
8 21 8-3 # s $
84 8-4 @ 9 * it
84 1 8-5 WS ] L
842 8-6 N \ ; <
8421 8-7 ™ SM MC GM
Hole Patterns:
[7] 8-2
[2] 0-8-2

Fig. 2.9 Code table, bit patterns and hole patterns

25

characters in the top rows of the table are different than they are for
characters in the bottom rows of the table, and digit punches for charac-
ters in the left columns of the table are different than they are for
characters in the right columns of the table. In such a case, zone punches
are shown as column headings and column footings and digit punches are

shown as left and right row sidings.

A rule for reading hole patterns for such a table must be stated. The
table of Fig. 2.10, is blocked into four blocks, as shown below, with the
rule for reading as follows:
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cowmn] 0 | 1 [ 2 ] 3 4 | 5 [ 6] 7 8 9 | A ] B c [ o ] E] F
Bit - 00 01 10 11
Pat. 00 | 01 ] 10 | 11 | 00 [ 01 | 10 | 11 6o ] 01 ] 10 | 11 00 | o1 10 11
Hole 9 9 9 9 9 9 9 9 Hole
Pat, | 12 12 12 12 12 12 12 12 Pat.
" 11 11 11 11 11 11 11 11 M
Row [ 0 0 0 0 0 0 0 0
i 2] (3 e (5] 8] [7] o] _[of T[u] D2
0 (o000 NUL | DLE | DS SP & - { } \ 0 8-1
T3] N 12
1 |oo001 1 | SOH | DC1 | S0S / a i A J 1 1
2 {0010 2 |STX|DC2 | FS SYN b k s B K S 2 2
3 {oo11 3 | ETX | TM c 1 t C L T 3 3
4 0100 4 | PF RES | BYP | PN d m u D M U 4 4
5 |0101 5 |HT [NL |[LF |RS e n v E N v 5 5
6 |o110 6 |LC |BS [ETB |{UC £ o w F 0 W 6 6
7 {0111 7 ] DEL | IL ESC | EOT g P X G P X 7 7
8 |1000]| 8 CAN h q y H Q Y 8 8
s [1001] 81 EM b i r z I R Z 9 9
15
A [1010]| 8-2 |SMM [CC |SM ¢ ! :l— 8-2
B |1011| 83 JVT [CUl |CU2 |CU3 . $ s # 8-3
c |1100| 8-4 |FF IFS DC4 < * % @ 8-4
p |1101] 85 JCR [IGS [ENQ |NAK ( ) _ ' 8-5
E |1110| 8-8 |SO |IRS [ACK + H > = 8-6
F {1111] 8-7 }SI |IUS |BEL |SUB | - ? " EO 8-7
9 9 9 9 9 9 9 9
112 12 12 12 12 12 12 12 12
Hole | 11 11 11 11 11 11 0 11
Pat. 0 0 0 0 0 0 0
Hole Patterns:
(] 9-12-0-8-1 11 3 o-1
E 9-12-11-8-1 12-11-0 9-11-0~-1 Block | Hole Patterns at:
[3] 9-11-0-8-1 [e] 12-0 12-11 1 3 1 | Topand Left
E 9-12-11-0-8-1 11-0 2 Bottom and Left
E No Pch EI 0-8-2 2 4 3 | Top and Right
E 12 @ 0 4 Bottom and Right

Fig. 2.10 256-character code table

Block 1: Zone punches at top of table, digit punches at left.
Block 2: Zone punches at bottom of table, digit punches at left.
Block 3: Zone punches at top of table, digit punches at right.
Block 4: Zone punches at bottom of table, digit punches at right.
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2.16.1 Column Number, Row Number

For purposes of easy reference, the columns and rows of a code table are
numbered and named. For the code table of Fig. 2.26, the 8 columns are
numbered 0, 1, 2, 3, 4, 5, 6, 7, and the 16 rows are numbered 0, 1, 2,
3,...,14, 15.

For the code table of Fig. 2.10, both the 16 columns and 16 rows are
numbered (or named) 0, 1, 2, 3, 4,5,6,7,8,9, A, B, C, D, E, F. This
notation is called the hexadecimal notation.

2.16.2 Code Table Character Position,
Code Table Characters Location

The position or location of a character in a code table is stated according
to its column and row number. For the tables of Figs. 2.26 and 2.27, the
convention is to give the position as x/y, where x is the code table column
number and y is the code table row number. For the code table of Fig.
2.10, the hexadecimal convention mn is used, where m is the hexadeci-
mal column number and n is the hexadecimal row number.

Example 11
In the code table of Fig. 2.26, the letter R is in position 5/2.

Example 12
In the code table of Fig. 2.10, the letter R is in position DO.

2.17 CODE NAMES

The following codes, to be discussed in detail later in this book, are used
in this chapter to illustrate certain basic characteristics of codes. Their
names, the derivation of which will be described later in this book, are
used in this chapter. (The term shifted, used below, is explained later in
this chapter.)

a) CCITT #2 A 58-character, shifted 5-bit code.

b) FIELDATA A 128-character, 7-bit code.

c¢) ASCII A 128-character, 7-bit code.

d) PTTC A 111-character, shifted 6-bit code.

e) BCDIC A 64-character, 6-bit code and 12-row card code.

f) EBCDIC A 256-character, 8-bit code and 12-row card code.

g) Hollerith A 256-character, 12-row card code.
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BASIC CHARACTERISTICS

There are some basic characteristics of coded character sets. Not all of
these characteristics will be exhibited by any particular code.

2.18 SHIFTED CODE

Recall that the total number of possible different bit patterns of a code is
prescribed by the number of bits in the code byte: a code byte of 5 bits
gives rise to 2° =32 different bit patterns; a code byte of 6 bits gives rise
to 2°= 64 different bit patterns; a code byte of 7 bits gives rise to 27 = 128
different bit patterns; etc.

Ordinarily, the number of possible different characters (a character is
a bit pattern with an assigned meaning) in a code equals the number of
possible different bit patterns. But, by the use of a technique called
shifting, the number of characters in a code may be increased beyond the
number of bit patterns. Under this technique, the meaning of a bit pattern
depends not only on the bit pattern itself, but also on the fact that it has
been preceded in the data stream by some other particular bit pattern,
which is called a precedence character or a shift character.

In CCITT #2 (Fig. 2.11), for example, there are two characters,
Figure Shift (11011) and Letter Shift (11111). The meaning of a bit
pattern in a data stream is determined not only by the bit pattern itself
but also by which of the two precedence bit patterns has preceded it. By
preceded, we do not necessarily mean “immediately” preceded. For exam-
ple, it the bit pattern 01010 has been preceded by the bit pattern 11011
(Figure Shift), it would mean “4”, but if it had been preceded by the bit
pattern 11111 (Letter Shift), it would mean ““R”. A precedence character,
when detected in the data stream, establishes a mode which remains in
cffect until another precedence character is detected, which then disestab-
lishes the previous mode and establishes its own mode, which in its turn
remains in effect until the subsequent detection of another precedence
character.

The precedence characters are generally called shift characters be-
cause they arc associated with the mechanism in a serial printer such as a
typewriter which shifts from one case to the other.

In the scrial printers that implement CCITT #2, the shift keys ““lock
in"" the shift mode of the printing mechanism. Thus when the key or keys
arc depressed to generate the Figure Shift character, the Figure Shift
Case is set for the printing mechanism and it remains set until the key or
keys are depressed to generate the Letter Shift character. At that time,
the Letter Shift case of the printing mechanism is set and it remains set
until the key or keys are depressed to generate the Figure Shift character.
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Bit Letter Figurc Bit Letter Figure
pattern case case pattern case case
00000 Not used Not used 10000 E 3
00001 T 5 10001 Z +or”
00010 CR CR 10010 D (2)
00011 0 9 10011 B ?
00100 SP SP 10100 S ’
00101 H (1) 10101 Y 6
00110 N , 10110 F (1)
00111 M 10111 X /
01000 LF LF 11000 A -
01001 L ) 11001 W 2
01010 R 4 11010 J Bell
01011 G (1) 11011 FS FS
01100 I 8 11100 U 7
01101 P 0 11101 Q 1
01111 C 11110 K (
01111 \Y = or, 11111 (3)LS LS

(1) For National Use

CR Carriage Return

(2) Used for Answer Back
(3) Also used for Delete

SP Space
LF Line Feed
FS Figure Shift

LS Letter Shift

Fig. 2.11 CCITT #2

In precedence codes, certain bit patterns, usually those associated
with control meanings, are independent of shift. That is to say, the bit
pattern of a shift-independent character has the same meaning, regardless
of which precedence bit pattern has preceded it in the data stream. In
CCITT #2, the control characters Carriage Return, Space, Line Feed,
Figure Shift, and Letter Shift are shift-independent. There is a human-
factors reason for this. Assume the following:

a) The Space bit pattern operates only in Letter Shift, not in Figure
Shift.

b) An operator is transmitting data using a keyboard.
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¢) The data consists of blocks of numerics, the blocks separated by a
Space.

Each time the operator comes to the end of a numeric block and wishes
to key the Space, he would first have to depress the Letter Shift key, then
the Space key, then the Figure Shift key (to reestablish the Figure Shift
mode for the next block of numerics). In short, to generate the Space
character he would have to have depressed three keys. Similarly, if we had
assumed that the Space bit pattern operated only in Figure Shift (not in
Letter Shift) and if the operator was transmitting text (alphabet blocks,
separated by a Space), he would have to depress three keys in order to
generate the Space character.

In both instances, if the Space key operated in both Letter Shift and
Figure Shift, he would have had to depress only one key, the Space key.
In short, making the Space character shift-independent increases operator
productivity by decreasing the number of key strokes needed. Analysis
shows that the other control characters—Carriage Return, Form Feed,
Letter Shift, and Figure Shift—should be shift-independent for similar
reasons.

If the number of bits in a code byte is x and if the number of
shift-independent characters in a code is Y, then

=  npumber of shift-dependent characters = 21 _2Y;

= total number of different characters shift-dependent and
shift-independent=2*"1-Y.

CCITT #2 is a 5-bit shifted code, with 6 shift-independent charac-
ters. The number of shift-dependent characters is 52, and the total
number of different characters is 58. PTTC (Fig. 2.30) is a 6-bit shifted
code and has 17 shift-independent characters. The number of shift-
dependent characters is 84; the total number of different charactersis 111.

2.19 BINARY CODED DECIMAL (BCD)

The binary bit patterns for the ten decimal digits, shown in Fig. 2.12
under both the 8421 convention and the binary convention, are called
Binary Coded Decimal bit patterns, with acronym BCD.

2.19.1 BCD for Numerics

For a code to have the characteristic of BCD bit patterns for numerics,
the low-order four bits of the bit patterns for the numerics must be as
shown in Fig. 2.12, and the high-order bits must be the same for all
numerics. Figure 2.13 shows excerpts from two codes, ASCII and EBC-
DIC, with BCD for the numerics.
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Binary Coded Decimal bit patterns
Decimal
digits 8421 convention Binary convention
0 0000
1 1 0001
2 2 0010
3 21 0011
4 4 0100
5 4 1 0101
6 4 2 0110
7 4 21 0111
8 8 1000
9 8 1 1001
Fig. 2.12 BCD bit patterns
co.umno]1[zla 4|a]e]7 [ ] ] cIDIE]F
Bit 1
Row Par. © 000} 001 010|011 100 101 110 111 00 01 10 11
0 0000 0 P 0
1 |0001 1 A Q A J 1
2 0010 2|1 8| &r B| K[| s | 2
3 |o011 3| cl s c| )l | 3
4 (0100 4 D T D M U 4
5 |]0101 5 E U _ E N v 5
6 (0110 6 F v F 0 W 6
7 (o111 7 G W G P X 7
8 |1000 8 | x E| | v | 8
9 1001 9 I ¥ I R Z 9
10 1010 J Z
11 1011 K
12 1100 L
13 {1101 M
14 {1110 N
15 1111 0
ASCII ' EBCDIC

Fig. 213 BCD for numerics and alphabetics
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2.19.2 BCD for Alphabetics

For some codes, the alphabetics have bit patterns where the low-order
four bits for A to I, for J to R, and for S to Z have BCD bit patterns. In
Fig. 2.13 EBCDIC exhibits this characteristic while ASCII does not.

2.20 SEQUENCES OF BIT PATTERNS

2.20.1 Numerics in Numeric Sequence

The natural sequence of numerics is 0, 1,2, 3,4,5,6,7,8,9. The binary
bit patterns of the numerics may be in numeric sequence for a code. In
Fig. 2.14, ASCII and EBCDIC exhibit this characteristic; CCITT #2 and
BCDIC do not. (BCDIC almost does, since its numerics are in the
sequence 1, 2,3,4,5,6,7,8,9,0.)

o] 5 [ [ 211 1 1 ] T [ 1]~

Bit | 11

Pat. "
Row 000 |oco1|o010|o011] 00 | 01 10 | 11 00 | 01 10 | 11 00 { 01 10 | 11
0 |oooo0 0 3 0
1 |0001 1 5 1 1
2 o010 2 2 2
3 |oo11 3 9 3 3
4 |o100 4 4 4
s (0101 5 6 5 5
6 (o110 6 6 6
7 |o111 7 7 7
8 [1000 8 8 8
9 |1001 9 2 9 9
10 (1010 0
11 1011
12 (1100 8 7
13 (1101 0 1
4 1110
1B 1111

ASCII CCITT#2 BCDIC EBCDIC

Fig. 2.14 Numerics, numeric sequence, contiguous sequence
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2.20.2 Numerics in Contiguous Sequence

For some codes, the binary bit patterns of the numerics are in contiguous
sequence, that is, the sequence of bit patterns is continuous and uninter-
rupted. In Fig. 2.14, ASCII, BCDIC, and EBCDIC exhibit this charac-
teristic; CCITT #2 does not.

2.20.3 Alphabetics in Alphabetic Sequence

The natural sequence of alphabetics is A, B, C,...,X, Y, Z. For some
codes, the binary bit patterns of the alphabetics are in the same relative
sequence as the alphabetics. Figure 2.15 shows the alphabetics of ASCII,
FIELDATA, BCDIC, and EBCDIC. Figure 2.16 shows that the alphabe-
tics of EBCDIC, although not contiguous in the sequence of bit patterns,
are nevertheless in relative sequence. By contrast, Fig. 2.17 shows that
the alphabetics of BCDIC are not in relative sequence. Figure 2.18 shows
that the alphabetics of ASCII are in relative sequence and in contiguous
sequence. The alphabetics of FIELDATA can be seen from Fig. 2.15 to
be in relative sequence and in contiguous sequence.

Column 4 | 5 I 6 I 7 4 I 5 l 6 l 7 0 I 1 I 2 | 3 Cc l D l E [ F
Bit 11
Row Pat. 7] 100 (101 110 1111 100 101|110 | 111 00 01 10 11 [ 1] 01 10 11
0 0000 P K
T o|e001) A Q L J A A J
2 jo0010} g R M S K B B K S
3 joo011l ¢ s N T L C o L T
4 |0100 D T 0 U M D D M )
5 [0101) g U P v N E E N v
6 |0110 7 v A Q W 0 F F 0 W
7 [o0111 G W B R X P G G P X
8 (1000] X [ S Y Q H H Q Y
9 |1o01} T Y D T zZ R I 1 R Z
10 1010 J VA E U
—

11 {1011} g F v
12 [1100] g, fe) W
13 |1101 M H X
14 [1110] K I Y
16 1111 0 J 4

ASCII FIELDATA BCDIC EBCDIC

Fig. 215 Contiguous and noncontiguous alphabetics



1100 0000 01 0000 100 0000
0001 A 0001 0001 A
0010 B 0010 S 0010 B
0011 C 0011 T 0011 C
0100 D 0100 U 0100 D
0101 E 0101 V 0101 E
0110 F 0110 w 0110 F
0111 G 0111 X 0111 G
1100 1000 H 011000 Y 100 1000 H
1001 I 1001 Z 1001 I
1010 1010 1010 J
1011 1011 1011 K
1100 1100 1100 L
1101 1101 1101 M
1110 1110 1110 N
1111 1111 1111 O
1101 0000 10 0000 101 0000 P
0001 J 0001 ) 0001 Q
0010 K 0010 K 0010 R
0011 L 0011 L 0011 S
0100 M 0100 M 0100 T
0101 N 0101 N 0101 U
0110 O 0110 O 0110 V
0111 P 0111 P 0111 W
1101 1000 Q 101000 Q 101 1000 X
100t R 1001 R 1001 Y
1010 1010 1010 Z
1011 1011 1011
1100 1100 1100
1101 1101 1101
1110 1110 1110
1111 1111 1111
1110 0000 11 0000 110 0000
0001 0001 A 0001
0010 S 0010 B 0010
0011 T 0011 C 0011
0100 U 0100 D 0100
0101 V 0101 E 0101
0110 W 0110 F 0110
0111 X 0111 G 0111
1110 1000 Y 111000 H 110 1000
1001  Z 1001 I 1001
1010 1010 1010
1011 1011 1011
1100 1100 1100
1101 1101 1101
1110 1110 1110
1111 1111 1111
Fig. 216 EBCDIC Fig. 2.17 BCDIC Fig. 218 ASCII
alphabetics in relative  alphabetics not in alphabetics in relative
sequence and in non- relative sequence and sequence and in
contiguous sequence in noncontiguous contiguous sequence

sequence
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2.20.4 Alphabetics in Contiguous Sequence

For some codes, the bit patterns of the alphabetics are in contiguous
sequence. In Fig. 2.15, ASCII and FIELDATA exhibit this characteristic
(ASCII is also shown in Fig. 2.18). BCDIC and EBCDIC do not, as can
be seen in Figs. 2.17 and 2.16.

2.20.5 Alphabetics in Noncontiguous Sequence

For some codes, the bit patterns of the alphabetics are not in contiguous
sequence. In Figs. 2.17 and 2.16, BCDIC and EBCDIC exhibit this
characteristic. ASCII (Fig. 2.18) and FIELDATA (Fig. 2.15) do not.

Note 1. Characteristics described in Sections 2.20.4 and 2.20.5 are, of
course, opposite. A full discussion of the significance of contiguity and
noncontiguity of the alphabetics is given later in this book.

Note 2. Some codes (for example, that of the IBM 7030 (Stretch)
computer) exhibit the characteristic of “interleaved alphabets;” that is,
the upper- and lower-case alphabetics are interleaved. This is discussed
more fully in Chapter 3.

2.21 SIGNED NUMERICS

It is a common practice in punched card applications to punch the
11-punch in the same card column as a numeric to indicate a negative
numeric. Thus 11-0, 11-1,...,11-9 represent —0, —1,..., -9, respec-
tively. It is a recognized though little-used practice to punch the 12-punch
in the same card column as a numeric to indicate a positive numeric. Thus
12-0, 12-1,....,12-9 represent +0, +1,..., +9, respectively. And, of
course, 0, 1,...,9 punches are used to represent absolute numerics 0,
I,...,9, respectively. This is shown in Sections 1 and 2 of Fig. 2.19.

In the Hollerith card code, the hole patterns 12-0, 12-1, 12-
2,...,12-9 are assigned to {, A, B, ... , I, the hole patterns 11-0, 11-1,
11-2,...,11-9 are assigned to }, J, K, ..., R; the hole patterns 0-2, (-
3,...,0-9 are assigned to S, T,...,Z; and the hole patterns 0O, 1,
2,...,9 are assigned to 0, 1, 2,...,9 as shown in Section 1 of Fig. 2.20.
For ASCII and EBCDIC, the graphics { and }, the alphabetics A through
Z, and numerics 0 through 9 have bit patterns as shown in Sections 2 and 3
of Fig. 2.20.

It is to be noted, therefore, that such over-punched numerics in the
card code have a duality of meaning. For example, the hole pattern 12-1
might mean A, or it might mean + 1. There is nothing intrinsic to the hole
pattern itself that determines which meaning is to be applied. The actual
meaning would be determined within the context of a data processing
application.
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o s ] sl o [ [ [clolc]r
Bt 11
Row Pat. ~ o11{100 [101|110]111] 00 | O1 10 | 1
o |ooo00]12-0}11-0} O +0 | -0 0 =7 +0| -0 0
1 j0001]12-1]11-1 1 +1 | -1 1 1] +#1 | -8 +1 ] -1 1
2 joot10}12-2(11-2} 2 +2 | -2 2 2| +2 | -9 +2 | -2 2
3 |oo14(12-3|11-3[ 3 +3 | -3 3] +3 +3 1 -3 3
s |lo1oo]12-4[11-4[ 4 +4 | =4 4 4 | +4 +4 ) -4 4
s (0101]12-5/11~5] 5 +5 | =5 5 51 45 +5 1 =5 5
6 |o0110§12-6(11-6| 6 +6 | -6 6 | +6 +6 | -6 6
7 (e111}12-7111-7{ 7 +7 § =7 7| +7 +7 1 -7 7
8 [1000}12-8/11-8| 8 +8 | -8 8 8| +8 +8 | -8 8
o |1001]12-9{11-9] 9 +9 | -9 9 9 | +9 +9 | -9 9
10 |1010 -1
11 (1011 -2 +0
12 {1100 -3
13 {1101 -4 -0
14 {1110 -5
15 (1111 -6
Hole Equivalent ASCIT EBCDIC
Patterns Signed Signed Signed
Numerics Numerics Numerics
Section 1 Section 2 Section 3 Section 4
Fig. 2.19 Signed numerics

In consequence of the relationship between positive, negative, and
absolute numerics and hole patterns (Sections 1 and 2, Fig. 2.19) and in
consequence of the relationship between hole patterns and ASCII and
EBCDIC bit patterns (Sections 1, 2, and 3, Fig. 2.20), the positive,
negative, and absolute numerics take bit patterns for ASCII and EBC-
DIC as shown in Sections 3 and 4 of Fig. 2.19.

The signed and absolute numerics for EBCDIC (Section 4, Fig. 2.19)

exhibit the following characteristics:

a) For all numerics, signed or absolute, the numerics 0 to 9 have the
low-order four bits as BCD bit patterns.

b) For all positive numerics O through 9, the four high-order bits are

the same.
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Column | I 1 o [ [ 2T 3 4 [ 5] 6T 7 c [ o] e ] F
Bit . 01 10 11
Pat. g 00 01 10 11 00 [ 01 10 | 11 00 [ o1 10 11
Hote
Pat. | 12
" 11
ow 0
0 |oooo0 0 { } 0 0 A Q { } 0
I
1 ]0001 1 A J 1 1 B R A J 1
2 |oo010 2 B K S 2 2 ¢} S B K S 2
3 |0011 3 C L T 3 3 D T C L T 3
4 {0100 4 D M U 4 4 E U D M U 4
5 {0101 B E N \ 5 5 F v E N v 5
6 (0110 6 F ] W 6 6 G W F 0 I 6
7 (o111 7 G P X 7 7 H X G P X 7
8 (1000 8 H Q Y 8 8 I Y H Q Y 8
9 11001 [} I R Z 9 9 J Z I R Z 9
9 |1010 K {
1 |1011 L
2 |1100 M }
3 {1101 N
4 {1110 0
5 [1111 P
HOLLERITH ASCII EBCDIC
HOLE PATTERNS BIT PATTERNS BIT PATTERNS
SECTION 1 SECTION 2 SECTION 3

Fig. 2.20 Aiphabetics and numerics

¢) For all negative numerics 0 through 9, the four high-order bits are
the same.

d) For all absolute numerics O through 9, the four high-order bits are
the same.

Note. In characteristics (b), (c), and (d) above, the actual four high-order
bits are not important. What is important is that for each category—(b),
(c), (d)—the four high-order bits are the same.

It is clear that when the arithmetic circuits of a CPU are built around
the EBCDIC signed and absolute numerics advantage can be taken of
characteristics (a), (b), (c), and (d). It is equally clear, that for ASCII,
arithmetic circuits would have to be more complex, since characteristics
(a), (b), and (c) are not present. A full discussion of this is given later.
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2.22 SPACE CHARACTER HAS “NO PUNCHES” CARD CODE

It is an established card practice for the Space character to generate a
“no punches,” or ‘“blank column,” card code. This characteristic is essen-
tial in data processing card applications where fields are left blank on
punched cards in the initial keypunching operation—blank fields to be
filled with punched data in subsequent card operations.

The Hollerith Card Code, also called the Twelve-Row Card Code,
and the EBCDIC Card Code (see Chapters 11, 16, and 17) have this
characteristic. The 96-Column Card (see Chapter 27) has this characteris-
tic. During the technical debates in standards committees on binary card
codes and on the Decimal ASCII Card Code (Chapter 16, Decimal
ASCII), there was a technical controversy as to whether the “no punches”
card hole pattern should be assigned to the Space character or to the Null
character. This controversy was finally resolved with respect to Decimal
ASCII by assigning the “no punches” to the Space character, in accord
with de facto practice. It was not resolved for binary card codes, because
the standards committee ceased to study binary card codes.

2.23 DUALS

The practice of mapping more than one graphic meaning to a single bit
pattern or hole pattern is quite common. The different graphics with the
same bit pattern or hole pattern are called duals. Sometimes, more than
two graphics are mapped to a single bit pattern or hole pattern.

The duals of BCDIC are shown in Fig. 2.21.

Graphics | Hole pattern | Bit pattern
@ or’ 8-4 84

# or = 8-3 8 21

& or + 12 BA

% or ( 0-8-4 A84
Hor) 12-8-4 BAg4
Fig. 2.21 BCDIC duals

Some European languages require 29 letters, three more than the 26
letters of the English language. The additional three letters, which occur
in both lower- and upper-case alphabetics, are called diacritics. Some
codes, EBCDIC and the ISO 7-Bit Code, for example, accommodate this
aspect by assigning six code positions for alphabetic extenders (or Na-
tional Use graphics, as they are sometimes called). The EBCDIC scheme
is shown in Fig. 2.22, followed by the ISO scheme in Fig. 2.23.
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GRAPHICS
Hex Bit Norway/ Sweden/
position pattern U.S.A. Germany Denmark Finland
7B 0111 1011 # A £ A
7C 0111 1100 @ O 3 O
5B 0101 1011 $ U A A
7F 01111111 " a x a
4A 0100 1010 ¢ 0 @ 0
5A 0101 1010 ! i a a
Fig. 222 EBCDIC alphabetic extender graphics
GRAPHICS
Column Bit Norway/ Sweden/
row pattern U.S.A. Germany Denmark Finland
5/11 101 1011 [ A B A
5/12 101 1100 / O () 0]
5/13 101 1101 ] U A A
7/11 111 1011 { a ® a
7/12 111 1100 | 0 @ 0
7/13 111 1101 } i a a

Fig. 223 ISO National Use graphics

It is to be noted that the five BCDIC duals (Fig. 2.21) create duals
within a country (U.S.A.), while the alphabetic extender duals create
duals between countries. The former situation can be very troublesome (if
all ten graphics are needed in the same data processing application, for
example), while the latter situation does not cause trouble (for example,
systems problems) as far as is known today. Duals are not good or bad,
per se. Each situation must be examined individually.

There are, theoretically, two kinds of duals.

2.23.1 Many-to-one

Many-to-one refers to different meanings mapped into the same code
position. This is the type described above.
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2.23.2 One-to-many

One-to-many refers to a single meaning mapped into different code
positions. Generally, this is a situation that will arise not within a code but
rather between two different codes. For example, the 7-Bit Code has two
different control characters, Line Feed and Carriage Return. These two
functions are conbined into one EBCDIC Control Character, New Line.
There is an obvious problem in trying to determine the translation
relationship between these codes with respect to these three characters.

224 COLLATING SEQUENCE MATCHES BIT SEQUENCE

The bit sequence of a code is from low (all zero-bits) to high (all one-
bits). Thus for EBCDIC, the bit sequence is 00000000, 00000001,
00000010, ...,11111101, 11111110, 11111111, In a code, graphic
meanings are assigned to some of the bit patterns. For reasons outside the
code, there may be an established sequence, from low to high, for these
graphics. Such a sequence is called a collating sequence. The collating
sequence of the graphics may, or may not, match the bit sequence of the
graphics.

In the 64-character, 6-bit BCDIC, for example, the collating se-
quence does not match the bit sequence. Figure 2.9 shows the 64 characters
in bit sequence. Each of the 64 BCDIC characters was assigned a
collating number, from 0, low, to 63, high. The 64-characters of Fig. 2.9
are shown reordered into correct collating sequence in Fig. 2.24, with the
collating numbers shown in each code table position. Figure 2.25 shows
some of the BCDIC characters in column (1). Column (2) shows the
collating number, and column (3) shows the bit patterns from Fig. 2.9.

The sorting or collating operation in a computer involves putting
items in an ordered sequence, the collating sequence. Visualize a sort on
a one-character field. Then, for two items, X1 or X2, the following
question is asked:

Is X1 greater than, equal to, or less than X2?

When this question is answered, the two items X1 and X2 can then be
arranged in correct sequence. Actually, the comparison instruction, which
asks the question above, performs a binary subtraction, X1-X2, and
examines the sign and magnitude of the result.

First a binary subtraction is performed:

X1-X2=Y.
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s LU yl—li ¢ L g e

G o, b L
. &, b, G
[[—i‘bl-l—s’!l—”—x“ﬁ
PR Y P P I FTY IR P
P 3 R P I P B FTY
. Lo [ [ PV IR PY
PR ] [ PYY R VY I PP
P 7Y PR YY) RN VY I PPy
T B, ] 5 G
N T SN P R PPY I FTY
P S R 2 PR T I E1
T o &, e, L
T, =, ke L
T | s el Ll
s ] B, b, L

Fig. 2.24 BCDIC collating numbers

Then, If Y is minus, X1<X2;
or If Y is zero, X1=X2;
or

If Y is positive, X1>X2.

Performing this binary comparison on the bit patterns of column (3) will
not yield the desired result. But if the binary comparison were performed
on the pseudo bit patterns of column (4), the desired result would be
yielded. In short, if the bit patterns of column (3) are converted into the
pseudo bit patterns of column (4) before comparison, the graphics of
BCDIC can be sorted according to the prescribed collating sequence.

In some BCDIC computers, this conversion before comparison was
achieved with a software routine; in other BCDIC computers it was
achieved with a hardware comparator. In one instance there was a
performance penalty, and in the other instance there was additional
hardware cost.
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1 2 3 4
Collating Bit Pseudo
Graphic | number | pattern bit pattern
Space 0 00 0000 00 0000
$ 7 10 1011 000111
* 8 10 1100 00 1000
? 25 111010 01 1001
A 26 11 0001 01 1010
B 27 11 0010 01 1011
H 33 11 1000 10 0001
I 34 11 1001 10 0010
J 36 10 0001 10 0100
K 37 100010 10 0101
Q 43 10 1000 101011
R 44 10 1001 10 1100
S 46 01 0010 101110
T 47 01 0011 101111
Y 52 01 1000 11 0100
V4 53 01 1001 110101
0 54 00 1010 110110
1 55 00 0001 110111
2 56 00 0010 11 1000
8 62 00 1000 111110
9 63 00 1001 111111

Fig. 225 BCDIC collating sequence
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In developing EBCDIC, a primary design factor was collating se-
quence (see Chapter 8, the Sequence of EBCDIC). The 88 graphics of
EBCDIC were assigned 8-bit bit patterns such that the collating sequence
matched the bit sequence, thus saving software or hardware costs for
customers.

2.25 SUMMARY OF CODE CHARACTERISTICS

Seven codes or representations are given as follows:

Code Figure
ASCII 2.26
An 8-bit representation  2.27
EBCDIC 2.28
BCDIC 2.29
PTTC 2.30
CCITT #2 2.31
FIELDATA 2.32

These are analyzed below as they do, or do not, exhibit the previous
characteristics.

Figure | 2.26 | 2.27 2.28 2.29 2.30 2.31 2.32

Characteristics 8-Bit CCITT | FIEL
! Code | ASCII | Rep. | EBCDIC|BCDIC | PTTC #2 |DATA

Shifted code - No No No No Yes Yes No
BCD for numerics Yes Yes Yes No No Yes Yes
BCD for alphabetics - No No Yes | Yes Yes No No
Numerics in numeric : :

sequence Yes Yes Yes No No No Yes
Numerics in contiguous

sequence Yes Yes Yes Yes Yes No Yes
Alphabetics in : :

alphabetic sequence Yes Yes Yes No No No Yes
Alphabetics in

contiguous sequence Yes Yes No No No No Yes
Alphabetics in

noncontiguous sequence| No No Yes Yes Yes Yes No
Signed numerics No No Yes Yes Yes No No

Collating sequence
matches bit sequence Yes Yes Yes No No No Yes
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b7{ 0 0 1
b6 o 0 1 1 1
b5
Co! |

0 1 2 3 7
b4 b3 b2b1 | Row

NUL DLE SP 0 P
0000 0

SOH pcl ! 1 q
0001 1

STX DC2 " 2 r
0010 2

ETX DC3 # 3 s
0011 3

EOT DC4 $ 4 t
0100 4

ENQ NAK % 5 u
0101 5

ACK SYN & 6 v
0110 6

BEL ETB ' 7 w
0111 7

BS CAN ( 8 x
1000 8

HT EM ) 9 v
1001 9

LF SUB * : z
170101} 10

VT ESC + H {
1011 N

FF FS s < ‘
1100 12

CR GS - = }
1101]| 13

11

80 RS . > ~
11101 14

ST us / ? DEL
1111] 15

0-1

Fig. 226 ASCII
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 Column o|1[zl3 4|5‘6|7 s|9|1ol11 12[13[14|15_
git | 00 01 10 11
Row B 6o o1 | 10] 11 ] 00| o1 |10} 11 ] o00for|10] 11| 00]o0r]10]nn
o |oooo]| NUL ( DLE| SP ] @ P b P
1 |o001] sou| DCl ! 1 A Q a q
2 |0010] STX | DC2 " 2 B R b r
38 (o011} ETX | DC3| # 3 C s c s
—1
4 |o100] EOT | DC4 $ 4 D T d t
5 j0101] ENQ| NAK %. 5 E U e u
6 [o110] ACK| SYN| & 6 F \' £ v
7 |o111] BEL | ETB ' 7 G W g w
8 |1000} BS | CAN ( 8 H X h X
9 |1001| HT | EM ) 9 1 Y i y
10 |1010] LF | SUB| * : J z 3 z
11 |1e11] vt | EsC| + : K C k {
12 11100] FF | FS . < L \ 1 ‘ N
13 |1101] CR | GS - = M ] m } B
14 [1110]| SO | RS > N Ne n “ ] EC
16 {1111] SI | US / ? 0 _ o | DEL| BC EO
@ May be "I"
® May be "

Fig.

2.27

An 8-bit representation
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Column] © 1 ] 2] 3 a | s [ 8] 7 8 [ o [ Al B c [ o] e F
Bit N 00 01 10 11
Pat. 00 | 01 ] 10 | 11 | 0o | 01 | 10 | 11 | oo [ o1 | 10 | 11 [ o0 | o1 [ 10 [ 11
Hole 9 9 9 9 9 9 9 9 Hole
Pat. | 12 12 12 12 12 12 12 12 Pat.
11 11 11 11 11 11 11 11
Row 0 Q 0] 0[_ 0] Q Q [___ i 0[—
1 2 3 3 5 6 7 8 9 10 T 12
o [oo0o DLlE" DSL‘ e ¢ - { } N ] 0 ] 8-1
i3 N 14
1+ [oo01| 1 | son|Dpci | sos = a | 3 Al J SR L
2 |0010 2 STX | DC2 | FS SYN b k s B K S 2 2
3 10011 3 | ETX| ™ c 1 t vC L T 3 3
4 |0100 4 PF RES | BYP | PN d m u D M U 4 4
5 |0101 s |ur | NL |LF | RS e n v E N A 5 5
6 [0110 8 | LC BS ETB | UC £ o \ F 0] W 6 6
7 0111 7 | DEL | IL. | ESC | EOT g P x G P X 7 7
8 [1000] 8 CAN h.| q y H Q Y 8 8
9 |1001] 84 EM N i r z I R Z 9 9
A |[1010| 8-2 SMM | CC SM ¢ ! llﬁ 8-2
B |1011| 83 | VT | CUL | CU2 | cu3 $ , # 8-3
¢ |1100| 8-4 | FF | IFS DC4 | < * % @ 8-4
D |[1101| 885 | CR [ IGS | ENQ|[ NAK| ( ) _ ! 8-5
E [1110] 8-8 | SO IRS | ACK + H > = 8-6
F 1111 87 ] SI | IUS| BEL| SUB| | - ? " EO 8-7
9 9 9 9 9 9 9 9
o 12 12 12 12 12 12 12 12 12
Hote 1l 11 11 11 11 11 0 11
Pat. 0 0 0 0 0 0 0
Hole Patterns:
1] 9-12-0-8-1 11 [13] 0-1
[2] 9-12-11-8-1 12-11-0 9-11-0-1 Block | Hole Patterns at:
[3] 9-11-0-8-1 12-0 12-11 1 3 1 | Topand Lefe
[4] 9-12-11-0-8-1 11-0 2 | Bottom and Lett
[s] wo Pch [11] 0-8-2 2 4 3 | Top and Right
E 12 @ 0 4 Bottom and Right

Fig. 228 EBCDIC
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?’:r'ern A B BA
Hole
Pattern—"| 0 M 12
' 3
SP b - & or +
! ! 1 / J A
2 2 2 s K B
21 3 3 T L c
4 4 4 U M D
4 1 ] 5 \ N E
42 6 6 W 0 F
421 7 7 X P G
8 8 8 Y Q H
8 1 9 9 Z R I
8 2 0 0 i L2 ! ?
8 21 8-3 # or = s $
84 8-4 @ or ! %ort _ * o or )
84 1 8-5 : Y ] r
842 8-6 > \ : <
8421 8-7 Y " A 3

Hole Patterns:

[i] 8-2
[2] 0-8-2

Fig. 229 BCDIC
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Lower Case Upper Case
Hole
Pattern—P| 0 11 12 11-0 12-11 | 12-0
sp @ i & SP ¢ = JI'L + =
1 I 1 / i a L ? L J A
2 2 2 s k b it L] S K B
21 3 3 t 1 c 5 Lo T L c
4 4 4 u m d : Le] U M D
4 1 3 5 v n e % = v N E
42 6 6 W o f ' Le W 0 F
421 7 7 x P g v L2 X P G
8 8 8 y q h * Lo Y Q H
8 1 9 9 2 r i ( Ly Z R I
8 2 0 ] ¥ ER > ) = * Le Y = |/I2
8 21 8-3 # s $ + by s L] ! (20 . =
84 4 PN BYP RES PF PN BYP RES PF
84 1 5 RS LF NL HT RS LF NL HT
842 6 uc EOB BS LC uc EOB BS LC
8421 9 EOT PRE IL DEL EOT PRE L DEL
Hole—p| 9 9-0 9-11 9-12 9 9-0 9-11 9-12
Pattern
Hole Patterns:
(3] 8-« 8-5 [5] 12-8-2 [22] 8-7
[z] 0-8-2 [2] 8-1 12-8-7 [23] 12-8-1 Block | Hale Patterns at:

(3] 8-6 11-8-4 0-8-1
[] 12-8-4 [11] 12-8-5 0-8-6
[5] 11-8-6 [iz] 11-8-5 0-8-5
[e] 8-2 [13] 0-8-7 11-8-2
0-8-4 11-8-7 [=21] 12-8-6

Fig. 2.30 PTTC

3 1 Top And Left
Bottom and Left
4 Top and Left

e o

Bottom and Left
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Bit Letter Figure Bit Letter Figure
pattern case case pattern case case
00000 Not used Not used 10000 E 3
00001 T 5 10001 Z + or"”
00010 CR CR 10010 D (2)
00011 0 9 10011 B ?
00100 SP . SP 10100 S !
00101 H (1) 10101 Y 6
00110 N : 10110 F (1)
00111 M . 10111 X /
01000 LF LF 11000 A -
01001 L ) 11001 w 2
01010 R 4 11010 J Bell
01011 G (1) 11011 FS FS
01100 1 8 11100 U 7
01101 P 0 11101 Q 1
01110 C : 11110 - K (
01111 \Y = Oor ; 11111 (3) LS LS

(1) For National Use CR Carriage Return
(1) Used for Answer Back SP Space
(3) Also used for Delete LF Line Feed

FS Figure Shift
LS Letter Shift

Fig. 231 CCITT #2
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Column 0 1 2 3 4 5 6 7
Bit b7 |0 0 0 0 1 1 1 1
Pattern b6 0 0 1 1 0 0 1 1
b5 0 1 0 1 0 1 0 1
Row b4 b3 b2 b1
0 0000 K ) 0
1 0001 L - 1
2 0010 M + 2
3 0011 N < 3
4 0100 0 = 4
5 0101 P > 5
6 0110 qQ 6
7 0111 l B R $ 7
o CONTROL -
.~ (NOT DEFINED)
8 1000 e —I C S * 8
9 1001 ' D T ( 9
10 1010 E U " '
1 1011 F v H
12 1100 G W ? /
13 1101 H X !
14 1110 T Y . SPEC
15 1111 J Z STOP | IDLE

Fig. 2.32 FIELDATA

2.26 COMPATABILITY

Compatability between two different codes is not a single, simple aspect.
It is a number of aspects:

»  Structural Similarity. The code table is a compact way to exhibit the
relationship between the graphic and control meanings and the
associated bit patterns or hole patterns of a coded character set. As
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can be seen in Figs. 2.28 and 2.29, the 26 alphabetics of EBCDIC and
BCDIC are positioned similarly in three contiguous columns of the
code tables (although not in the same order of columns). From this
columnar positioning is revealed the fact that the low-order four bits
of alphabetics are the same in both codes. Equally significant, the
noncontiguous alphabetics are noncontiguous in precisely the same
way in both codes. Further, the specials in both codes are positioned
(mostly) in a 5 by 4 block of the code table. These two codes are said
to be structurally similar. By contrast, the alphabetics of ASCII (Fig.
2.26) are positioned in 26 contiguous bit-pattern positions in two
columns. EBCDIC and the 7-Bit Code are said to be structurally
dissimilar.

®  Collating Sequence. The collating sequence of the two codes should
match. If the codes are of different size, the collating sequence of the
smaller code should be embedded in the collating sequence of the
larger code (see Chapter 8, The Sequence of EBCDIC, for a full
discussion of this embedment). ‘

®  Functional Equivalence. The codes should be functionally equiva-
lent; that is, they should have the same set of control and graphic
meanings, although not necessarily with the same set of bit patterns.
A smaller code is said to be functionally equivalent upward to a
larger code if the smaller code’s set of graphics and control meanings
is contained in the set of the larger code. EBCDIC and the Hollerith
Card Code are functionally equivalent. ASCII is functionally equiva-
lent upward to EBCDIC.

®  Translation Relationship. Translation relationships between two
codes should be as simple as possible. The translation simplicity is
directly related to the structural similarity.

In debates on code compatibility, it often happens that one debater
views two codes as incompatible because not all of the four aspects above
are present, while the other debater views the two codes as compatible
because at least one of the aspects above is present. Certainly, two codes
are compatible if all four aspects are present, incompatible if none of the
four are present. For codes where some aspects are present and others are
not, to determine and agree on which are present and which are not is prefer-
able to arguing about the then indeterminate question of ‘“‘compatibility.”’

2.27 GRAPHICS FOR CONTROLS

In some codes, graphic representations are assigned to the control charac-
ters. The virtue of this is that when data are listed, particularly in debug-
ging operations, control as well as graphic characters are visible.
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In BCDIC for example, graphic representations are assigned to seven
control characters:

o

Substitute Blank
Mode Change
Word Separator
Record Mark
Group Mark
Segment Mark
Tape Mark
Graphic representations have been developed for the 32 control charac-
ters, for the Space character, and the Delete character of ASCIIL.
In Text/360, an IBM programming product for the application of
text processing, graphic representations have been assigned to the six

control operations (see Chapter 26, Code Extension):
ES

< F H H < B

Single capitilization
@ Continued capitalization
$  Underscoring

— Editing
+ Altering
/ Graphic set extension

228 COLLAPSE LOGIC

Consider a 256-character, 8-bit code feeding into a 64-character printer.
The 64 printing positions of the printing element may be considered to be
associated with 64 different 6-bit bit patterns. The hardware logic of the
printer will strip off the two high-order bits of 8-bit bit patterns, leaving
6-bit bit patterns. For each different 6-bit bit pattern, there will have
been four different 8-bit bit patterns.

Consider Fig. 2.33. The four bit patterns X1, X2, X3, X4 have bit
patterns 0010 1010, 0110 1010, 1010 1010, 1110 1010. If the two high-
order bits of these 8-bit bit patterns are stripped off, for each of them the
same 6-bit bit pattern 101010 will result. Each of these four 8-bit bit
patterns then would collapse to the same 6-bit bit pattern; that is, each
would go to the same printing position of the printing element. Advan-
tage is taken of the collapse aspect of coded character sets in the design of
printing sets.®

*Collapse logic varies among printer control units. The examples given here are
illustrative only, and do not necessarily reflect any actual printer control unit.
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Bits 0,1 00 01 10 11
2,3
0001 [10{11 [0001| 10 {11 0001 |10| 11| 0001} 10| 11
4567 { 0 1| 2| 3| 4 5| 6| 7] 8 9{ A} Bl CD F
0 | 0000
1
2
3
4
5
6
7
8
9
A | 1010 X1 X2 X3 X4
B
C
D
E
F 1111

Fig. 2.33 Collapse logic

In EBCDIC, the bit patterns of the small letters a, b, c, ...,z differ
from the bit patterns of the corresponding capital letters only in the two
high-order bits. On a 64-character printer, therefore, regardless of
whether the bit patterns of the small letters or the bit patterns of the
capital letters are fed into the hardware logic of the printer control unit,
the .same alphabetic printing positions on the printing element are

reached without any change in logic.

Collapse logic is used in the printing of alphabets other than Latin
alphabets. Consider, for example, Fig. 2.34 that shows the assignment in
the EBCDIC code table of 31 Cyrillic alphabetics, 10 numerics, and the

following 7 specials:

Y



Column| © [ 1 l 2 I 3 4 I B I 6 l 7 8 l 9 I A l B c I D I E I F
ait oo 01 10 11
Pat.
Row 00 | 01 | 10 | 11 oo | 01 10 | 11 00 | o1 10 [ 11 | o0 | 01 10 | 11
0 |ocoo SP - H 0
1 |[o001 / A n 1
2 |oo010 b M ) 2
3 |o011 B H X 3
4 |o100 r 0 U 4
s |o101 I M Y 5
6 |o110 P W 6
7 lo111 H C ] 7
8 (1000 3 T bl 8
9 |1001 H y b 9
A [1010
B (1011 - , H
c [1100 * " 3 A
D |1101
E |[1110 +
F 1111
Fig. 2.34 Collapse logic, Cyrillic-48
Column| 0 I 1 I 2 I 3 a | 5 l 6 I 7 8 ] 9 l A ] B c ] D ] E ] F
Bit | 00 01 10 11
Row Pat: 0o | o1 | 10 | 11 oo [ 01 10 | 11 00 | 01 10 | 11 | oo | 01 10 | 11
0o |oooo0 SP & - 0
1 |o0o001 / A J 1
2 (o010 B K S 2
3 |0011 C L T 3
4 |o100 D M U 4
5 0101 E N \ 5
6 |o110 F o] %) 6
7 (o111 G P X 7
8 |1000 H Q Y 8
9 [1001 I R Z 9
A [1010
B [1011 u , #
c |1700 < * % @
D [1101
E [1110 +
F {1111

Fig. 2.35 Collapse logic, Latin-48
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Consider also Fig. 2.35 which exhibits a 48-character printing set consist-
ing of 26 Latin alphabetics, 10 numerics, and the following 12 specials:*

+ & — / .
< * % @ ’ #

An examination of Figs. 2.34 and 2.35 will show the collapse logic for the
48 printing positions of a 48-character printer as shown in Fig. 2.36.
With the same printer control unit, the collapse logic will automati-
cally provide for a 48-graphic Cyrillic set, or a 48-graphic Latin set,
depending on which printing element is mounted by the user.

Cyrillic, 48 graphics Latin, 48 graphics
Fig. 2.34 Fig. 2.35
Hex Hex
position Graphic position Graphic
FO to F9 |10 numerics | FO to F9 |10 numerics
81 to 89 26 Cyrillic | C1 to C9 | 26 Latin
91 to 99 | alphabetics | D1 to D9 |alphabetics
A2 to A9 E2 to E9
5 Cyrillic 5 specials
8C alphabetics | 4C <
90 50 &
AC 6C %
BB 7B #
CB 7C @
7 specials 7 specials

4B : 4B :
4E + 4E +

5B X 5B b

5C * 5C *

60 - 60 —

61 / 61 /
6B , 6B )
TOTAL 48 graphics | 48 graphics

Fig. 2.36 Cyrillic/Latin collapse

*The special symbol )f, shown both above and in hex position 5B of Figs. 2.34
and 2.35, is the international ‘“Currency Symbol.”
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229 BOOLEAN EQUATIONS

In some of the cases that are given in this book, the question of the
simplicity or complexity of translation relationships from one code to
another, or from one representation to another, comes up. Generally, the
question is not of absolute simplicity or complexity but of comparative
simplicity or complexity. Hardware translation is accomplished by logic
circuits. The complete analysis of such circuits and the calculation of
hardware costs, estimated or actual, is beyond the scope of this book.
However, by making three simplifying assumptions, a reasonably simple
procedure can be used that is sufficiently accurate to answer the following
question:

Given two sets of translation relationships, which set would be more
complex to implement in circuitry?

Assumption 1. The circuit complexity is equal to implement each of four
Boolean operators (to be explained below), AND, Inclusive OR, Exclu-
sive OR, and IDENTITY.

Assumption 2. The circuitry that generates a bit also generates the
inverse of the bit with no additional complexity.

Assumption 3. Given two sets of Boolean equations representing two
sets of translation relationships, the relative circuit complexity of imple-
menting the relationships is proportional to the number of Boolean
operators in the equations.

Example 13
Setl: Y1=A&Y one operator, & (to be explained below).

Set2: Y2=(A&Y)|Z  two operators, &, | (to be explained below).

Set 2 is more complex than Set 1.

Absolute costs are not determined but relative complexities are; this
information is sufficient for making a decision between two sets. The
procedure, then, is to derive the Boolean equations, and then count the
operators.

There are different notations and conventions used in Boolean
Algebra. Some examples are shown below:

S=AB+CD
S=A-B+C-D
S=(A&B)|("C&D)
S=(AAB)v(CD)
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The binary, or two-state, nature of many mechanisms found in computing
systems was noted at the beginning of this chapter. For such two-state
situations, we might say we have A or we do not have A. Alternatively,
we might say we have A or the inverse of A. In Boolean logic, we would
say we have “A,” or we have ‘“not A.” A convention for representing
these two possible states is A and Aj; that is, A represents “not A,” or
“the inverse of A’ or ‘“‘the negation of A,” etc. If we consider A as a
binary variable, it can have two values, O or 1. By convention, when the
variable A has the value of 1, we will represent it by A, and when it has
the value of 0, we will represent it by A.

Example 14

We may represent the three bit positions of a 3-bit register by the
Boolean variables A, B, and C. Then the 8 possible states of the 3-bit
register can be represented as follows:

State Representation
000 A B C
001 A B C
010 A B C
011 A B C
100 A B C
101 A B C
110 A B C
111 A B C

Example 15

Another convention is to represent a variable when its value is 1 by the
presence of the variable and when its value is 0 by the absence of the
variable. This convention is used in a notation based on the decimal
equivalents of the powers of 2:

2°=1
2'=2
2°=4
2°=8

The bit positions of a 4-bit register are represented, from high-order bit
position to low-order bit position, by the variables 8, 4, 2, 1. Under the
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convention of Example 14, 1001 would have been represented as 8 421,
but under the presence/absence convention, 1001 is represented simply as
8 1. Under this convention, the 16 states of a 4-bit register are rep-
resented as shown below:

State Representation

0000 No bits
0001 1

0010 2

0011 21
0100 4

0101 41
0110 4 2
0111 421
1000 8

1001 81
1010 8 2
1011 821
1100 8 4
1101 841
1110 8 4 2
1111 8 421

Example 16

The 8 states of a 3-bit register, Example 14 under the presence/absence
convention, would be represented as shown below:

State Representation
000 No bits
001 C
101 B
011 BC
100 A
101 AC
110 AB

111 ABC
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Comment. The convention of Example 14 yields a uniform notation,
while the convention of Examples 15 and 16 yields a compact notation.

In this book, Boolean equations are used to represent translation
relationships. Five Boolean operators (frequently called logical operators)
and their representative symbols are shown below:

Operator Symbol

AND
Inclusive OR
Exclusive OR
IDENTITY
NOT

S e=
<< >

In order to define these operators, we consider two binary input variables,
A and B, and one binary output variable, Y, as illustrated below. There
are two kinds of operators: (1) dyadic operators; that is, operating on iwo
terms or expressions (parts (1-4) above), and (2) monadic operators; that
is, operating on one term or expression (part (5) above).

A ﬁ -
Dyad
oy:raltcor > Y
B ey p
Monadic B
A ’ operator >V

There are two possible states for one variable and four possible states
for two variables taken together:

Variable State

A1
A 0
AB . 00
AB 01
AB 10

AB 11
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The operators are defined in the following table:

NOT | AND | Inclusive OR | Exclusive OR IDENTITY
Al B|A|B|AAB AvB A~vB A=B
O[0! 1] 1 0 0 0 1
0] 11 0 1 1
11001 0 1 1 0
117010 1 1 0 1

Conceptually, we say

AND means both A and B are 1.
Inclusive OR means either A or B is 1, including the case when both

a)
b)

c)

d)

are 1.

Exclusive OR means either A or B is 1, excluding the case when

both are 1.

IDENTITY means A and B are identical; that is, both are 0, or both

are 1.
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Early Codes

During the early days of data processing and telecommunications, a
number of codes were in use or proposed for use:

a)
b)

c)

d)

€)

f)

CCITT #2, a 58-character, shifted 6-bit code, used nationally and
internationally on telegraph lines.

FIELDATA [3.1, 3.2, 3.3]: a 7-bit code developed by the United
States Army for military communications systems.

BCDIC [3.4]: a 48-character, 12-row code (initially unnamed) used
on computing systems. This code was eventually expanded to be a
64-character, 6-bit code and 12-row card code.

The Stretch code: a 120-character, 8-bit code used on the Stretch
computer (the IBM 7030) [3.5, 3.6].

IPC, Information Processing Code [3.7]: a 128-character, 8-bit code
developed by the United States Air Force proposed to be used for
information processing and information interchange.

A 64-character, 6-bit code proposed by H. S. Bright in 1959 [3.8].

g) A 256-character card code proposed by R. W. Bemer in 1959 [3.9].

h)

4-out-of-8 code: a 70-character, 8-bit data transmission code.

These early codes manifested some of the characteristics of coded charac-
ter sets described in Chapter 2. Some of these characteristics would be
carried forward and incorporated into modern codes. It should not be
supposed that these early codes have disappeared from the data proces-
sing scene. Products and systems implementing these codes (with the

61
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exception of IPC) are still in common use. Figure 3.1 shows the codes and
their characteristics. '

CCITT
#2

Fiel-
data

BCDIC

Stretch

IPC

Bright
Proposal

Proposal

Bemer -

4-out-
of-8

Shifted code

yes

BCD for
numerics

yes

yes

yes

yes

yes

yes

Numerics in
numeric
sequence

yes

yes

yes

yes

Numerics in
contiguous
sequence

yes

yes

yes

yes

Signed
numerics

yes

yes

BCD for
alphabetics

yes

yes

yes

yes

Alphabetics in

alphabetic
sequence

yes

yes

yes

yes

yes

Alphabetics in

contiguous
sequence

yes

yes

yes

Alphabetics in
noncontiguous

sequence

yes

yes

yes

yes

yes

Alphabetics in

interleaved
sequence

yes

yes

Space equals
no punches

yes

yes

yes

Collapse logic

yes

yes

yes

Fig. 3.1 Characteristics of early codes

3.1 CCITT #2

CCITT #2 was, and is, a 58-character, shifted 6-bit code, standardized as
an international telegraph code in 1931 by the Comité Consultatif Inter-
national Telegraphique et Telephonique (see Fig. 3.2).
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Bit Letter Figure Bit . Letter Figure
pattern case case pattern - case case
00000 Not used Not used 10000 E 3
00001 T 5 10001 Z +or”
00010 Cr Cr 10010 D (2)
00011 @) 9 10011 - B ?
00100 SP. SP 10100 S !
00101 H (1) 10101 Y 6
00110 N , 10110 F (1)
00111 M . 10111 X /
01000 LF LF 11000 A -
01001 L ) 11001 w 2
01010 R 4 11010 J Bell
01011 G (1) 11011 FS FS
01100 I 8 11100 U 7
01101 P 0) 11101 Q 1
01110 C 11110 K (
01111 A% =or; 11111 (3)LS LS

(1) For National Use

(2) Used for Answer Back
(3) Also used for Delete

Fig. 3.2 CCITT #2

CR Carriage Return

SP Space

LF Line Feed
FS Figure Shift
LS Letter Shift

Figure 3.1 reveals that CCITT #2 manifests few of the characteris-
tics of the other codes, characteristics deemed desirable for data proces-
sing codes. The numerics are not BCD, nor contiguous, nor in numeric
sequence; the alphabetics are not in alphabetic sequence, and so on. But
it should be realized that CCITT #2 was developed as a telegraph code,
and characteristics desirable for a data processing code have little impor-
tance for a telegraph code.

CCITT #2 did manifest a characteristic that is quite necessary for
data processing codes and for telecommunication codes. Three code
positions were reserved for “national use.” This recognizes a characteris-
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tic of certain European languages (German, Danish, Swedish, Finnish,
Norwegian, for example) which is that such languages have three letters
in addition to the 26 alphabetics of English-speaking languages (see Table
3.1). Such letters are called diacritical letters, or diacritics.

TABLE 3.1 Diacritical Letters

German AOU
Danish/Norwegian £ O A
Swedish/Finnish AOU

Clearly, telegraph devices operating within national boundaries of
countries whose languages require 29 alphabetics would have to have the
capability of sending and receiving all 29 letters. The telegraph code,
then, must have code positions available for 29 letters and CCITT #2
does.

In English-speaking countries, such code positions could be used to
represent other symbols. In the U.S.A., on Western Union telegraph
devices, for example, the symbols # $ and & were provided in these three
code positions.

3.2 FIELDATA

FIELDATA was a 7-bit plus parity code developed by the United States
Army for use on military data communications lines. It became a U.S.
Military Standard in 1960 (see Fig. 3.3).

It is to be noted that although there are 128 code positions in the
7-bit code, only 64 were defined, consisting of 9 control functions and 55
graphic characters. The controls are of the kind required by rather simple,
typewriter-like devices—Space, Upper Case, Lower Case, Line Feed, Car-
riage Return, and so on. The 64 undefined code positions were intended to
be assigned to the more complex kinds of functions necessary for inter-
connection and control of data transmission networks.

As it turned out, three different communications systems were de-
veloped implementing FIELDATA, and each of these three systems used
different control functions in the “not defined” portion of the code
table—different in the sense of technical definition and different in the
sense of the number of control functions. It was found that because of
these different control functions interconnection of these three communi-
cation systems, and intercommunication between them, was difficult or
impossible.



3.2 FIELDATA
Column 3 4 5 6 7
Bit b7 0 1 1 1 1
Pattern b6 1 0 0 1 1
b& 0 1 0 0 1
Row b4 b3 b2 b1
o 0000 K ) 0
1 0001 1L - 1
2 0010 M + 2
3 00 11 N < 3
4 0100 0 = 4
5 0101 P > 5
6 0110 Q 6
7 0111 R $ 7
8 1000 g * 8
9 1001 T ( 9
10 1010 U " 1
" 1011 v . ;
12 1100 W 2 /
13 1101 X 1 .
14 1110 Y , SPEC
15 1111 Z STOP | IDLE
MS - Master Space SP - Space
UC - Upper Case STOP - Stop
LC - Lower Case SPEC - Special
LF - Line Feed IDLE - Idle
CR ~ Carriage Return

Fig. 3.3 FIELDATA

65

A valuable lesson was learned here. For various reasons, it may be
desirable not to complete the assignment of meanings to all code posi-
tions of a code table initially. For example, the American National
Standard Code for Information Interchange (ASCII), when first standar-
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dized in 1963, left some 28 code positions without assigned meanings.
And when the extended BCD Interchange Code (EBCDIC) was adopted
as an internal standard by IBM in 1964, of the 256 available code
positions, only 108 code positions had assigned meanings. Indeed, at this
time (almost a decade later) there are still many code positions in
EBCDIC with unassigned meanings. However, in the administration of
these standards, ASCII and EBCDIC, implementors were advised to
provide implementations which did not assign meanings to those code
positions without already assigned meaning. These code positions were
reserved for future standardization. For FIELDATA, implementors pro-
vided implementations with their own local meanings for those code
positions not initially assigned. The result was inter-implementation con-
fusion. The disciplined administration of ASCII and EBCDIC prevented
such confusion. This point of administrative discipline will be discussed
below with IPC, Information Processing Code.

3.3 BCDIC

With modern codes, such as ASCII and EBCDIC, it is common practice
to provide implementations which use not the full repertoires of the codes
but subsets, subsetted by graphics, or by controls, or by both. By contrast,
the code that came to be called the BCD Interchange Code (BCDIC)
evolved from a smaller repertoire to a code with a complete repertoire.
(The evolution of BCDIC is described in detail in the next two chapters.)

The punched card code devised by Dr. Herman Hollerith at the end
of the nineteenth century was a 12-character code consisting of the 10
numerics, 0 through 9, and two control characters in what are now the
12-row and the 11-row of the card. In the statistical applications of the
United States Census—for which Dr. Hollerith devised the punched
card—these control punches served many purposes. When punched cards
came to be used in accounting applications, the 11-punch came to be used
to represent a credit balance (mathematicians would call it a negative
number).

Somewhere around 1932, the punched card code was expanded to
include 26 alphabetics and three special symbols—minus sign, asterisk,
and ampersand. The minus sign had replaced the credit symbol, asterisk
was used for check protection, and ampersand was used in name-and-
address applications (Mr. & Mrs. J. L. Smith, for example). The punched
card code for these 39 graphics and space is shown in Fig. 3.4.

During the 1950s, the advent of computers such as the IBM 702,
705, and 1401 saw the expansion of BCDIC into 47 graphics, and also
the development of a 6-bit code to represent these graphics. With one
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?-’iatr'em >
Hole .
Pattern— 0 n ) . 12
y
SP - &
1 1 J A
2 2 s K B
3 3 T L o
4 4 U M D
5 5 v N E
6 6 W 0 T
7 7 X P G
8 8 Y Q H
9 9 z R I
0 0
8-4 *

Fig. 3.4 BCDIC, 40-character card code

exception, the 11 special symbols served an obvious purpose in one or
another commercial application:

S L H % - &F) n

The exception was the special symbol, x. (lozenge). Because the lozenge
appeared on printer chains, it was put to various uses; for example, to
indicate, in the margin of a tabulation, final totals as contrasted to
subtotals.

The 48-character BCDIC is shown in Fig. 3.5.

3.4 THE STRETCH CODE

In 1961, the IBM 7030 was delivered to the Los Alamos Scientific
Laboratory. This computer was developed under “Project Stretch,”” and
this name was popularly used to describe this computer.
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?’iatttern__——’ A 8 BA
Hole
Pattern—"{ 0 " 12
SP - _ &
1 1 1 / J A
2 2 2 s K B
21 3 3 T L C
4 4 4 U M D
4 1 5 5 \ N E
42 6 6 W 0 F
421 7 7 X P G
8 8 8 Y qQ H
8 1 9 9 7 R 1
8 2 0 0
8 21 8-3 ¢ , $
8 4 8-4 @ % * hid

Fig. 3.5 BCDIC, 48-character code

There were many technological innovations in Stretch. Architectur-
ally, its main innovation was that it had an 8-bit architecture, as con-
trasted with the 6-bit, or 6-bit oriented, architectures of other computers
of the time. With an 8-bit architecture, a 256-character code is possible.
In fact, the designers of Stretch chose to provide a 120-character set that,
apart from its size (most computer character sets of that day were
48-character sets), had some interesting innovations.

The codes for contemporary computers of that time had evolved
from earlier beginnings and compatibility was the primary design criter-
ion. The designers of the Stretch code, E. G. Law, H. J. Smith, Jr., F. A.
Williams, W. Buchholz, and R. W. Bemer, did not perceive compatibility
with contemporary codes to be a primary criterion. Instead, they them-
selves set some criteria that they felt were reasonable for a code. The
criteria were in regard to the size and structure of the set. The criteria are
first stated, and then some of them are discussed.
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3.4.1 Size

Criterion 1. The set should contain the contemporary 48-graphic set
ound on IBM computers:

B Space

" 26 alphabetics (upper case)

" 10 numerics

" 11 specials L &% (-, # X

Criterion 2. The set should contain the following graphics:

I 26 lower case alphabetics

" The more important punctuation symbols found on office
typewriters R R 2 R

"  Enough mathematical and logical symbols to satisfy the needs of such
programming languages as ALGOL. (The total ALGOL set was well
over 100 symbols.)

3.4.2 Structure

Criterion 3. Certain subsets, such as the contemporary 48-character set
for high-speed chain printer printing and an 88-graphic set for a typewri-
rer, should be simply derivable.

Criterion 4. The graphics should be blocked contiguously by function;
viz., the specials should be in a contiguous block, the alphabetics should
be in a contiguous block, the numerics should be in a contiguous block,
and so on. '

Criterion 5. The binary sequence of the bit patterns representing the
graphics should match whatever collating sequence was prescribed for the
graphics.

Criterion 6. The 48 graphics of contemporary IBM computer codes
should have, in the Stretch code, the same collating sequence, or should
be embedded in the same relative collating sequence, as the contempor-
ary collating sequence, namely, Space, then the specials . X & § * — /,
% # @then the alphabetics, then the numerics.

Criterion 7. The upper and lower case alphabetics should be inter-
leaved.

Criterion 8. There should be unique bit patterns for each unique
graphic; that is, duals would not be permitted.
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As well as these criteria, there was a constraint on the size of the set. The
theoretical constraint was a maximum of 256 characters, since the byte
size of Stretch was to be 8 bits. But there was a more pragmatic constraint
due to the printer to be used with Stretch, the chain printer. The chain
printer, due to its design geometry, had 240 printing positions; so this was
clearly the maximum possible set size. However, as a practical considera-
tion, the larger the set size, the lower is the printing speed of the chain
printer. The actual choice was 120 charaeters. This was a matter of
judgment; it was decided that this increment over existing sets would be
sufficiently large to justify a departure from contemporary codes and
would not include many characters of only marginal value. Also, the set
size of 120, in terms of the 240 printing positions of the chain printer,
meant that each symbol could appear twice on the chain, yielding a not
unreasonable printing speed.

The actual character set and the coded representation is shown in
Fig. 3.6. It is evident from inspection of the code that not all criteria were
met. In fact, the criteria were somewhat mutually conflicting, and some
trade-offs were necessary.

Column 0 [ 1 l 2 ] 3 4 I 5 l 6.] 7 8 ] -] l A I B c I D T E ] F

00 01 10 11 [ X] 01 10 11 00 01 10 11 00 01 10 11
Row

o [oooo] sp L & c k 8 0 8

1 |o0001 + > + [ K s 0 8

2 Jooro0]| -+ ] $ d 1 t 1 9

3 [o011 = ° - D L T 1 9
4 |o100 A + * e m u 2
s |o101] { = ( E M U 2
6 jo110] 4 - / £ n v 3 -
7 [o111] } v ) F N| V 3 ?
8 J1o00}) v % , g o w 4
o |1001] \ H G 0 W 4
A [1010] ¢ ¢ ' h p x 5

8 |1011] |l ] " H P X 5

c 1100 > # a i q y 6

D {1101 > ! A I Q Y 3
E 1110 < @ b j r z 7
Foluvnagp o 7 B| | R| z| 7

Fig. 3.6 Stretch, 120-character set
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Comment on Criterion 6

The contemporary collating sequence for the 47 graphics provided on
contemporary computers was not achieved. In order to provide an
89-graphic subset and a 49-graphic subset derivable by simple logic
(Criterion 3), the specials had to be positioned somewhat arbitrarily
(see Figs. 3.7 and 3.8), and this was deemed more advisable than the
collating-sequence criterion. Nine of the contemporary specials did col-
late low to alphabetics and numerics, although even these were not,
within themselves, in the contemporary collating sequence. It was felt that
the new sequence would be quite usable and that it would be necessary
only rarely to resort a file in the transition to the Stretch code. And it is
always possible to translate codes to obtain any desired sequence.

Comment on Criterion 3.

As can be seen in Figs. 3.7 and 3.8, both the 49-graphic subset and
89-graphic subset were simply derivable from the 120-graphic code.

columno[1lzls 4|5|6l7 slslAlB cln]EIF
Bit 00 o1 10 11
Pat. |
Row oo | o1 10 | 11 00 | o1 10 | 11 00 | 01 10 | 11 00 | o1 10 | 11
o |oooo] sP & 0 8
1 |oo001 C K S
2 (o010 $ 1 9
3 |oo11 D L T
4 |o100 * 2
65 {01071 E M i
6 (0110 / 3 -
7 o111 F N v
8 [1000 % , 4
9 (1001 G (0] W
A |1010 ¢ ! 5
B [1011 H P X
c |1100 # 6
D |1101 A I Q Y
E [1110 @ 7
F |1111 B J R A

ig. 3.7 Stretch, 49-character set
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Columnol1|2[3 4|5|6‘7 a|9|AlB ClDlEIF
Bit . 00 01 10 11
Pat.” |
Row 00 | 01 10 1 g0 | 01 10 | 19 00 | 01 10 | 11 0o | 01 10 1
o (0000} gp & c k ] 0 8
1 |o0001 + C K S 0 8
2 |o0010 $ d 1 t 1 9
3 (0011 = D L T 1 9
4 |0100 * e m u 2
5 (0101 ( E M U 2
6 (0110 / f n v 3 -
7 Jor11 ) F N v 3 ?
8 |1000 , g o w 4
9 [1001 H G o] W y
A |1010 ' h ] X 5
B [1011 " H P X 5
c |1100 a i q y 6
D |1101 A I Q Y 3
E [1110 b 3 r 4 7
F 1119 B J R Z 7

Fig. 3.8 Stretch, 89-character set

Note that the 49-graphic set included the contemporary 48-graphic
set (see Criterion 1) and additionally had the graphic apostrophe or
single quote. The provision of a 48-graphic-plus-Space set fitted neatly
into the geometry of the 240-printing-position chain printer: 5x 48 =240.
Each graphic was provided in 5 printing positions, yielding very respecta-
ble printing speeds.

Note that the 49-graphic set is not entirely a subset of the 89-graphic
set. Note also that it was found not practical to retain the upper- and
lower-case relationships of punctuation and other special symbols com-
monly found on typewriter keyboards. (There was no single convention
anyway, and typists were accustomed to finding differences in this area.)

Comment of Criterion 7

The benefit of interleaving upper- and lower-case alphabetics is dubious.
(For a fuller discussion of this point, see Chapter 25, Contiguous, Non-
contiguous, and Interleaved Alphabets.) However, once it is decided to
interleave the alphabets, as was done in the Stretch code, a further
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decision is necessary: Which alphabetic should precede within the pair,
the upper-case or the lower-case? The designers of this code had ob-
served that no real precedent existed for the relative position within the
code. But the choice had to be made. They chose that lower case should
precede upper case within the pair, for reasons not known to the author.

It is interesting to note that had they made the other choice, so that
“A” had bit pattern 0010 1100 and ‘““a” had bit pattern 0010 1101, for
example, the derivation of the 49-character subset (Fig. 3.7) from the
120-character set (Fig. 3.6) would have been logically simpler. Observe
that in Fig. 3.7 the specials chosen alternate in code position with those
not chosen and the same is true for the alphabetics and the numerics.
However, two code positions intervene between the last special and the
first alphabetic, and no code position intervenes between the last alphabe-
tic and the first numeric. The logical equations to describe the choice of
code positions are somewhat complex because of the double gap and the
null gap. Had the opposite choice been made in assigning upper- and
lower-case alphabetics, both anomalies would disapppear, and the logical
equations would have been quite simple. It should also be noted that this
latter choice would not have affected the derivability of the 89-character
subset, since the 52 alphabetics would still occupy the same contiguous 52
code positions.

It is interesting that in the design of IPC, Information Processing
Code, described below, where the designers also chose to interleave the
upper- and lower-case alphabetics, the decision was that upper-case
should precede lower-case alphabetics within the pair.

In conjunction with the Stretch bit code, there was a punched card
code. The bits of the code were named BO, B1, B2,...,B7, from
high-order to low-order significance within the byte. A parity bit, odd
parity, named Bp was also punched. The card code (see Fig. 3.9) was a
binary card code, specified by the following algorithm:

Card Row Code Bit

12 —
11 —
0 —
1 Bp
2 BO
3 B1
4 B2
5 B3
6 B4
7 BS
8 B6
9 B7
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Fig. 3.9 Cards punched with extended character code

In order to distinguish cards with this binary punching from cards
punched with the conventional Hollerith card code, binary punched cards
had 12-holes and 11-holes punched in column 1. Within an application,
conventional Hollerith card code punching could be used in the right end
of such cards, as shown in Fig. 3.9. The Space character, having no bits in
the code, would nevertheless have a parity bit punched in row 1.
However, skipped fields would have no punches, as can be seen in the
lower card in Fig. 3.9.
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As in discussed in Chapter 16, “Decimal ASCII,” the structural
strength of a card punched in binary came under serious question
particularly if most of the data was numeric (which would lead to one or
more rows being laced because of the zone bits in the representation of
the numerics). It should be noted that the question of binary card coding
in the Decimal ASCII debate was considered in the environment of an
individual card, mailed to a human, carried by the human in a pocket in
varying conditions of humidity, temperature, and abuse, and subsequently
required to be further processed in card equipment. By contrast, the
normal environment for a Stretch card was much more protective—
generally a deck of cards, handled with reasonable care in a machine
room environment. The binary card discussed in Chapter 16 was expected
to be subjected to structural stress, the Stretch card was not.

35 IPC

IPC, Information Processing Code, was developed by Edward Morenoff,
John B. McLean, and Lt. Lawrence Odell in 1964. It was intended as an
information manipulation-oriented character set with associated binary
code representation. The author does not know if it was actually im-
plemented, but it has some interesting aspects. The design criteria were
somewhat similar to those of the Stretch code.

Criterion 1. The set should contain the following graphics:

®  Upper- and lower-case alphabetics
®  Numerics

®  The more important punctuation symbols found on office typewriters
2

b

B Special symbols peculiar to user operations.

Criterion 2. Certain subsets, 7-bit, 6-bit, 5-bit, 4-bit, should be easily
derivable.

Criterion 3. Code positions should be provided that would be dedicated
to local interpretation.

IPC was an 8-bit code. However, only 128 characters were specified,
and the use of the 8th bit was deliberately left undefined for specification
in local environments on the basis of particular applications. For example,
the 8th bit might be used as a parity bit to increase the reliability of data
transmission. Or it might be used to indicate that some special signifi-
cance should be attached to a particular character, such as being part of a
“keyword,” or a part of a highly sensitive piece of information. Since the
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Column 0 1 2 3 4 5 6 7
Bit b710 0 0 0 1 1 1 1
Pattern b6 0 0 1 1 0 0 1 1
113 0 1 0 1 0 1 0 1
Row b4 b3 b2 b1
0 0000 0 C K 3 ( o 5 .
1 0001 1 c k s l x !‘ 2
2 0010 2 D L T ? B < @
3 0011 3 a 1 t # L ®
4 0100 4 E M u o = > Bk,
5 0101 5 e n u / - Y Bk,
6 0110 6 7 N v J/ . Bk3
7 0111 7 £ n v s ' Bk,
8 1000 8 G 0 W * 8 .
9 1001 9 g o - ) : 4 ,
10 1010 SP H P .
X e ¢ C,y
" 1011 RES h P x , X - Cy
12 1100 A I "
Q Y 1T K C4
13 1101 a { q y ' - CS
14 1110 B J
15 1111 b
h| r z + ¢ ] c7

Fig. 3.10 IPC, 7-bit subset

8th bit is undefined, the code is shown in a 7-bit representation (see Fig.
3.10). The names of the graphics and control characters are given in
Table 3.2.

As with the Stretch code, IPC has the upper- and lower-case
alphabetics interleaved. And as with the Stretch code, a decision had to
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TABLE 3.2. |PC, special graphics and controls

( Left parenthesis " Quotes
! Exclamation > Apostrophe
?  Question $ Dollars
# Numbers ¢ Cents
°  Degrees Y Summation
/  Slash 1/4 One quarter
*  Asterisk = Equal or less
) Right parenthesis 1/2 One half
Period = Equal or greater
, Comma 3/4 Three fourths
7 Pi o Infinite
—  Minus { Arrow (down)
o Omega 0 Theta
+ Plus 1 Arrow (up)
a Alpha ¢ Phi
X Multiply — Arrow (right)
B Beta k Kappa
+ Divide «— Arrow (left)
= Equals 1  Right bracket
- Dash [ Left bracket
v Square root *  Cubed
§  Integral > Squared
:  Colon Escape code #2
: Semicolon €1 Escape code #1
@ At Bk; Blank key #i
X Box —x + Center dot

C;, Control #i

be made on which should precede within the pair. The IPC designers
chose that upper case should precede lower case, so that proper nouns
would collate ahead of common nouns. For example, Jack

0011110,0001101,0010001, 0100001
collates ahead of jack

0011111, 0001101, 0010001, 0100001.

The most interesting aspect of IPC is the design philosphy of Criter-
ion 3—local interpretation. In the design of ASCII, described in later
chapters, a set of control characters was defined to include several types
of input/output equipments, thus forming a general set, which must of
necessity have more characters than the set contained in IPC that is
interpreted differently for different equipments.
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Example
The seven control characters could be locally interpreted as follows:

C1 backspace C5 Stop underline
C2 Unformatted tab Cé6 Carriage return
C3 Formatted tab C7 End of message

C4 Start underline

Cotumn 0 1 2 3 4 5 6 7
Bit b710 0 0 0 1 1 1 1
Patternl'—’bG 0 0 1 1 4] 0 1 1
b5 0 1 0 1 0 1 0 1
Row b4 b3 b2 b1
0 0000 0 c K S
1 0001 1 c k 8
2 0010 2 D L T
3 0011 3 d 1 t
4 0100 4 E M i}
5 0101 5 e m u
6 0110 6 F N v
7 0111 7 £ n v
8 1000 8 G 0 W
9 1001 9 g o w
10 1010 SPp H P X
1 1011 RES h p x
12 1100 A I Q Y
13 1101 a i q y
14 1110 B J R 4
15 1111 b j r z

Fig. 3.11 IPC, 6-bit subset
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Contained within the set were four positions with unassigned meaning
and corresponding to two ‘“blank keys” on a keyboard. Thus there are
two upper-case and two lower-case characters available for local interpre-
tation.

As stated under Criterion 3, subsets should be simply derivable. By
dropping the high-order bit, a 6-bit subset is derived (Fig. 3.11). It
contains numerics, upper- and lower-case alphabetics, Space, and the
reserved code for local use.

Column| 0 1 2 3 a 5 6 7
Bit b7 |0 0 o 0 1 1 1 1
Patternl——’bS 0 0 1 1 0 0 1 1
b5 0 1 0 1 0 1 0 1
Row b4 b3 b2 b1 '
0 0000 UN c K 5
1 0001
2 0010 UN D L T
3 0011
4 0100 UN E M U
5 0101
6 0110 UN F N v
7 0111
8 1000 UN G 0 W
9 1001
10 1010 SP H P X
1 1011
12 1100 A 1 Q Y
13 1101
14 1110 B J R b4
15 1111

UN - Unassigned

Fig. 3.12 IPC, 5-bit subset
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Column 0 1 2 3 4 5 6 7
Bit b7 |0 0 0 0 1 1 1 1
Patternrbbﬁ 0 0 1 1 0 0 1 1
b5 0 1 0 1 0 1 0 1
Row b4 b3 b2 b1

) 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 UN
11 1011 UN
12 17100 UN
13 1101 UN
14 1110 UN
15 1111 UN

UN - Unassigned

Fig. 3.13 IPC, 4-bit subset

By dropping the highest- and lowest-order bits, a 5-bit subset is
derived (Fig. 3.12). It contains upper-case alphabetics, Space and five
“unassigned” characters. One of these unassigned characters could be
used to indicate either upper- or lower-case representation.

By dropping the three highest-order bits, a 4-bit subset is derived

(Fig. 3.13).

It contains the numerics and 6 “unassigned” characters for

local interpretation.
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"1 00 01 10 11
h 4

0000 0 + _ b
0001 1 A J /
bo10 2 B K s
0011 3 c L T
6100 4 D M U
0101 5 E N i
0110 6 F 0 W
0111 7 d P X
1000 8 " Q v
1001 9 I R z
1010 u e v d
1011 = $ ,
1100 s ) * (
1101 = + < >
1110 - ] L -
1111 ; u ; n

- - OR u - Up Shift
~ ~ AND b - Space

e — End of line, end of card, d - Down Shift
or carrilage return n - Null

Fig. 3.14 Early 64-character proposal

3.6 AN EARLY 64-CHARACTER CODE PROPOSAL

In a Letter to the Editor, Communications of the ACM, 1959 May, H. S.
Bright proposed a 64-character, 6-bit code. At that time, most printing
and keypunching equipment was limited to 47 or 48 characters. The
proposed code is shown in Fig. 3.14.

It is structurally compatible with BCDIC (Fig. 3.5). The sequence of
the code table columns containing the alphabetics has been reversed from
BCDIC, so that the alphabetics are in relative collating sequence. Oddly
enough, Space, which traditionally collates low to numerics, alphabetics,
and specials, was not assigned to the bit pattern 000000. This was
undoubtedly done so that zero could be given bit pattern 000000, so that
the numerics would be in relative collating sequence.
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3.7 AN EARLY 256-CHARACTER CARD CODE PROPOSAL

In 1959 September, R. W. Bemer proposed a “Generalized Card Code
for 256 Characters.” At that time, as stated previously, character
sets provided on printers and keypunches were mainly limited to 48.

As described earlier in this chapter, Project Stretch was started in
IBM in 1954. It was a project to develop a bigger and faster computer-
than any then in the field. One decision made was that Stretch would
have an 8-bit architecture, in contrast with most computers of that time
which had a 6-bit, or 6-bit oriented, architecture.

R. W. Bemer, therefore, foresaw the need for a 256-character card
code. The card code he proposed was not, in fact, adopted by Stretch, but
it has many ingenious aspects. The card code set had criteria for design.

Criterion 1. The new set must contain the existing 48-character set as a
subset, with exactly the same graphic-to-hole-pattern relationship.

Criterion 2. The new set should contain at least 256 combinations and
be expansible beyond this number.

Criterion 3. Meanings need not initially be assigned to all hole patterns.

Criterion 4. The hole patterns should be structured, if possible, on
existing zone punch/digit punch hole patterns.

Criterion 5. Hole patterns should be constructible and reproducible on
existing keypunches (for example, the 024 or 026).

Criterion 6. There should be no duals.
Criterion 7. ALGOL characters should be included.

Criterion 8. Characters not in the current IBM set or ALGOL set, but
used by other manufacturers, should be included.

Criterion 9. There should be a simple relationship between upper- and
lower-case alphabetic hole patterns.

There are 322 possible combinations of no more than four punches
per card column, when no more than two may be zones (12, 11, 0) and no
more than two may be digits (1 through 9). Figure 3.15 shows the 256 of
these that remain when all combinations with two-digit punches contain-
ing a 1-punch and ten other combinations are excluded. The figure also
shows assignment of both old and new graphics to hole patterns.

An ingenious aspect of this proposal is that each of the hole patterns
may be constructed in a card column by superimposing the hole patterns
for two of the alphameric characters in current use. These two characters
are chosen for their mnemonic content. Thus [ is represented mnemoni-
cally by LB (for Left Bracket) and is constructed of the hole pattern 11-3,
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An Early 256-Character Card Code Proposal

Fig. 3.156 A 256-character card code proposal

M Mnemonic

Zone

Punches 12 11 0 12-11 11-0 0-12

Digit

Punches | G | M| G M G M |G M G M G M |G M
P + le |- |-]o 0| & —+10 |o-1]0 +0

1 1 1 1A A J J / / a —A 1] oJ

2 21218 B K K|S S b —B | k 0K | s +S

3 313]|C C L L |T T c —C {1 OL |t +T

4 4 14 ]|D D M M | U U d —Di{m OM | u +U

5 5 6 |E E N N |V Y e —E | n ON | v +V

6 6 | 6|F F 0 o | W w f —F o 00 |w +W

7 71716 G P P X X ] —G|p OP | x +X

8 8 18| H H Q Q|Y Y h -H | q 0Q |y +Y

9 9 |9 |1 | R R | Z Z i = |r OR | z +Z

2-3 \ [ LB = LS |; SC

24 NN _ uUs

2.5

2-6 N switch | SW| bool BO

2-7 N { BG stop | SP | O BX

2-8 \ # sY v sQ

2-9 \ 1 RB | = RS

34 Xx A LM comm | CM ~ TD

35 t\\ ¢ |CE < LE [10 | TN

36 NN Y LO : co |« LW

3-7 { LP proc | PC complex | CX

3-8 # | #|. . $ $ , )

3-9 O Ccl | < LR cr CR | A TR

4.5 } ND | # UN

46 0 UW| do DO 1 DW

4.7 ° DG| * PM dbl pr | DP

4.8 @ @| X | X * % % " DQ |’ Qu

4-9 = ID \ RD

5-6 - NO v EO

5-7 > GE EP

5-8 ¥ EH = EQ

5-9 ifei | IE return | RE | | VR

6-7 goto | GO

6-8 % HF

6-9 ? IF orif | OR for FR | = RW

7-8

7-9 ) RP > GR

89 Ya QR array| RY | e 1Y

G  Graphic

83

for L, and 12-2, for B. Therefore, the hole pattern chosen to represent
Left Bracket is 12-11-2-3. Fig. 3.16 shows the derivation of the
mnemonics chosen for new graphics.

Some ALGOL words were arbitrarily assigned to single graphics:

If is assigned to ?
BEGIN is assigned to {
END is assigned to }
INTEGER is assigned to #
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Mne- Mne-
Graphic monic Symbolizing Graphic monic Symbolizing
+ + ’ ;
X * ; SC SemiColon
/ / : co COlon
\ RD Reverse Divide ! EP Exclamation Point
£ PM Plus or Minus ! Qu QUote
v sSQ SQuare root “ Da Double Quote
= EQ EQuals 1= LS Left Substitution
+* UN UNequals =: RS Right Substitution
> GR GreateR 10 TN base TeN
= GE Greater or Equal ] RB Right Bracket
< LE Lesser or Equal ( LP Left Parenthesis
< LR LesseR ) RP Right Parenthesis
~ TD TilDe [ LB Left Bracket
T NO NOt t UwW Up arroW
\Y LO Logical Or 4 DW Down arroW
A LM Logical Multiply - LW Left arroW
v EO Exclusive Or - RW Right arroW
= ID IDentical to { BG BeGin
} ND eND
¢ CE CEnts ] VR VeRtical
Ya QR one QuarteR A TR TRiangle
% HF one HalLf O BX BoX
cr CR CRedit ®) Ci Clrcle
° DG DeGree _ us UnderScore
oo 1Y InfinitY procedure PC ProCedure
go to GO GO to switch SW SWitch
do DO DO array RY aRraY
return RE REturn comment CM CoMment
stop SP StoP integer #
for FR FoR boolean BO BOolean
or if OR OR if complex CX CompleX
if either IE If Either double pr DP Double Precision

Fig. 3.16 Mnemonic derivations for characters

Other words could be assigned to single graphics:

COMMENT could be assigned to "
STOP could be assigned to !
RETURN could be assigned to <«
Record Mark + and Group Mark = were assigned to existing hole
patterns 0-8-2 and 12-8-5, respectively. The mnemonics chosen, SY and

EH, are not of course mnemonics for Record Mark and Group Mark, but
are mnemonics for the appropriate hole patterns for keypunching:

S, 0-2 Y, 0-8 SY, 0-8-2
E, 12-5 H, 12-8 EH, 12-8-5
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o] o[ (23] ] sle] [eloale]eclo]e]cr
Bit 00 019 10 11
Pat.
00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11
Row
o joo0co SP
1 {0001 A / J 1
2 0010 B S K 2
4 |o100 D U M 4
6§ [01019 TL CL E 5 \ N
6 |0110 < L F 6 W 0
7 Jo111 7 X P G
8 |1000 H Y Q 8
IN
g (1001 IDLE ER% I 9 Z R
A |1010 \ EgT ? 0 + |
B {1011 # . $
¢ [1100 ; T%L I @ % *
D |1101 Y +o+ A #
E [1110 > o) - &
F 11114
TL - Transmit Leader INQ - Inquiry
CL - Control Leader ERR - Error
SOR1 - Start of Record 0dd IDLE - Idle
ACKl - Acknowledge 0dd *TEL ~ Telephone
SOR2 - Start of Record Even #EOT - End of Transmission/Message
ACK2 - Acknowledge Even

. * May be sent as valid
Fig. 3.17 4-out-of-8 code data characters

3.8 4-OUT-OF-8 CODE

Another code of the early 1960s had an interesting characteristic. It was
used solely for data transmission; it was an 8-bit code. The interesting
characteristic was that, of the 8 possible bit positions for any bit pattern
of the code, exactly four of the bits would be one-bits. Hence the name,
4-out-of-8 code (see Fig. 3.17). Any single “hit” (the accidental change of
a zero-bit to a one-bit, or of a one-bit to a zero-bit) on a bit of a
transmitted bit pattern would create an other than 4-out-of-8 bit pattern,
and such erroneous bit patterns could be checked by very simple circuitry.
Each bit pattern, as received, was fed through a counter. If the count was
4, the bit pattern was accepted as valid, otherwise a data check was
raised. Of course, compensating hits (that is to say, hits on a single bit
pattern that changed some one-bit to a zero-bit and some zero-bit to a
one-bit) would not be detected, but occurrence of such hits was statisti-
cally very much less than occurrence of single bit hits.
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Mathematically, the code allows exactly 70 valid 4-out-of-8 bit
patterns. As can be seen by examination of Fig. 3.17, 64 of these were
graphic characters (called “data characters” at that time) and 6 were
control characters. Thus this code fittted BCDIC nicely with its 64
characters. As will be described in Chapter 5, 7 of the 64 characters of
BCDIC were control characters between various BCDIC CPU’s and
magnetic tape drives. However, these 7 BCDIC control characters were
not 4-out-of-8 control characters; that is to say, they would be transmit-
ted, end to end, without effecting any control actions on the data
transmission units.

Some of the 4-out-of-8 control characters did double duty, depend-
ing on the data transmission situation. Thus a data transmission unit,
sending a data record, would precede it with SOR1, Start of Record Odd.
When the transmission unit at the other end received this record, it would
send back to the original transmission unit ACKI, Acknowledge Odd
(providing no data check had been detected by the receiving unit).

Note from Fig. 3.17 that although the numerics and alphabetics are
not contiguous within columns, they are nevertheless BCD, under the
definitions in Chapter 2.
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The Duals
of
BCDIC

The code described in the previous chapter as ‘“‘early BCDIC” will be
called BCDIC, Version 1 in this chapter. This coded character set was
extended; first by the addition of duals, to BCDIC, Version 2, and then by
an expansion to 64 characters, to BCDIC, Version 3.

4.1 BCDIC, VERSION 1

In the late 1950s, the chain printers provided by IBM had a printing
repertoire of 48 graphic characters, as follows:

Space 1
Alphabetics: A to Z 26
Numerics: 0 to 9 10
Specials:
Dollar sign
Slash
Lozenge
Asterisk
Percent sign
At sign
Ampersand
Minus, Hyphen
Number sign
Period )
Comma )

11

* I REK FR TS

-

87
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Hole
Pattern—¥ 0 1 12
SP - &
1 1 / J A
2 2 S K B
3 3 T L C
4 4 U M D
5 5 v N E
6 6 W 0 F
7 7 X P G
8 8 Y Q H
9 9 Z R 1
0 0
8-3 # , $
8-4 @ % * it

Fig. 4.1 BCDIC, Version 1

These 48 graphic characters were also keypunchable, interpretable, and
verifiable by a single keystroke on the IBM keypunches and verifiers of
the day. These 48 characters, which constituted BCDIC, Version 1, are
shown in Fig. 4.1

4.2 BCDIC, VERSION 2

Two data processing requirements, European languages and FORTRAN,
led to the development of what came to be called “duals.”

4.2.1 European Languages Requirements

The languages of some European countries (Germany, Sweden, Den-
mark, Norway, Finland) require 29 letters—the usual 26 alphabetics of
English-speaking countries plus three letters called diacritics. Spanish and
Portuguese alphabets have 27 letters. It would be clearly advantageous,
from a marketing point of view, to be able to provide these extra
alphabetics on printers, keypunches, and verifiers. But how could this be
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done? The solution that was examined first was to increase the character
capability of printers, keypunches, and verifiers from 48 to 51.

In the case of chain printers, this was entirely feasible, since the chain
has a possible graphic capability of 240. In fact, on 48-character chains,
each of the 48 graphics appears five times on the 240-graphic chain. If
there are more than 48 graphics, 51, for example, some of these graphics
will not appear five times on the chain; in consequence, the printing speed
(lines per minute) would be reduced. Since printing speed was (and is) a
primary competitive factor for printers, the solution of providing 51
graphics on a chain, with consequent slower printing speeds, was unat-
tractive.

In the case of the keypunch (and verifier), two approaches were
examined. Under the first approach, card hole patterns beyond the 48
could be assigned and keypunched by the technique known as multi-
punching. Under this technique, while a “multipunch” key is held down,
other keys may be struck, but the punched card does not advance to the
next card column. Accordingly, a number of holes may be punched in a
single card column. Clearly, when any of the three diacritic letters is
encountered on a data sheet by a keypunch operator, the keypunching
mode would have to depart from touch-keying while the operator pays
special attention to holding down the multipunch key and to keying such
other keys as necessary to generate the appropriate hole pattern. In this,
approach, then, the keypunching speed would be reduced. As with the
line-printer solution discussed above, this approach to keypunching was
unattractive.

Under the second approach, either existing keypunches and verifiers
could be modified, or new keypunches and verifiers could be designed
with additional keys to generate each of the three diacritics with a single
keystroke. Presumably (after some training) keypunch operators would be
able to touch-key the additional keys, so keypunching speed would be
maintained. This approach would result in a relatively costly design and
development project, with a product that would have only a small market.
The projected additional price for European keypunches and verifiers was
unattractive.

A different kind of solution was then proposed. It was observed that
three special graphics @ # $ were peculiar in origin and use to English-
speaking countries. They were neither needed nor used at that time in
continental European countries. The suggestion was to substitute the three
diacritics for these three specials, wherever they appeared on the chain.
The consequence was that printing speed would not be reduced. Simi-
larly, they could be substituted on the keytops and printing plates of
keypunches.
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Under this substitution approach, only minor costs would be in-
volved. The solution, then, had the following characteristics:

No reduction in printing speeds.
No reduction in keypunching/verifying speeds.
Small cost.

This approach had the advantages above, and no (known) disadvantages.
It was adopted. The approach is still used in current products.

It should be noted, in respect to this approach, that there results a
number of graphics—multiple graphics, that is—for three card hole
patterns, as shown in Fig. 4.2. However, within a country, the graphic set
is unique, without duals.

Hole pattern | U.S.A. | Germany | Sweden | Finland | Norway | Denmark

8-3 # A A A £ £
8-4 @ o 6 R @ @
11-8-3 $ U A A A A

Fig. 4.2 Diacritic letters

4.2.2 FORTRAN Requirements

The FORTRAN programming language had, among its other objectives,
the objective of a printed listing that would resemble as much as possible
the formulae found in mathematical text books. Many of the mathemati-
cal symbols found in text books were deemed to be unnecessary for
FORTRAN. Some mathematical symbols / — ., were already provided
on IBM printers. It was decided that the asterisk * could be used to
represent multiplication. But five symbols ( ) + = ' (not provided on
IBM printers) were deemed to be absolutely necessary for FORTRAN.
How to provide them?

It was decided that the most economical and efficient solution was to
provide them by substitution, as with the European diacritics. The only
remaining problem was to choose which five of the specials provided on
IBM 48-character printers, keypunches, and verifiers should be replaced
by the five mathematical symbols. It was decided to replace % X & # @
by () + = ' (respectively). This solution resulted in duals within a
country. The addition of these five duals led to BCDIC, Version 2, shown
in Fig. 4.3.
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Hole
Pattern—"» 0 " 12
SP IL - & or +
1 1 / J A
2 2 s K B
3 3 T L C
4 4 U M D
5 5 v N E
6 6 W 0 F
7 7 X P G
8 8 Y Q H
9 9 z R I
0 0 [z
8-3 # or = s $
8-4 @ or ! %2 or ( * X or )
8-5
8-6
8-7

Hole Patterns:

[0]8-2
[2] 0-8-2

Fig. 4.3 BCDIC, Version 2

Initially, this solution was ideal. With very few exceptions, computing
installations in those days were either of a commercial orientation or of a
scientific/engineering orientation. In ‘‘commercial” installations, such
commercial applications as payroll, inventory, premium billing, and utility
billing were processed; in such installations, neither scientific nor en-
gineering applications were processed. Similarly, in “scientific” installa-
tions, scientific or engineering calculations were processed, and commer-
cial applications were not. (I repeat, there were few exceptions.)

The exceptions that began to be noted were those users who had
installations that were commercially oriented, although the company itself
was of an engineering or scientific nature. In such companies, there were
people who wanted to use the computer for scientific or engineering
calculations. It is to be noted that the processes of compiling, debugging,
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and executing FORTRAN programs could be performed regardless of
whether the printers, keypunches, and verifiers had the scientific or
commercial graphic sets. However, if the installation had the commercial
graphic set, program listings were somewhat bizarre. For example, a
FORTRAN statement such as

X =(A+B)*(C—-D)/(E+F=*G)
would show in the program listing as
X#% A&B*%C—Dx/% E&F*G x

Such program listings, though bizarre, were unambiguous. To FOR-
TRAN programmers who suffered in the commercial installations of the
day, the mental translation of

% to (
o to )
& to +
# to =
@ to '

became an automatic act.

It should be reemphasized that the scientific symbols seldom (if ever)
were needed or used in the listings that were the final results of the
executed programs. It was only in the listings of the original FORTRAN
programs that programmers had to put up with the graphic substitutions.
Programmers were (and, incidentally, still are) notably vocal. If there
were something to complain about, they complained vociferously. These
complaints gave rise to the question, Could this situation, admittedly
infrequent but nonetheless aggravating, be ameliorated?

4.3 BCDIC, VERSION 3

A solution to the “duals problem” was attempted with the IBM 1410.
(Another attempt was made in the System/360. See Chapter 9, The Duals
of EBCDIC.) The 1410 was to have as its console, a typewriter. The
typewriter could provide up to 88 graphics. It was decided it would
provide 63, and Space. (The reasons for a character set size of 64 are
detailed in the following chapter, The Size of BCDIC.) The 47 graphics
and Space provided on 48-character chain printers are shown in Fig. 4.3.
The 63 graphics and space proposed to be provided on the 1410 console
typewriter are shown in Fig. 4.4; it is called BCDIC, Version 3.

It is to be observed in Fig. 4.4 that four of the five “scientific”
graphics () = ' were to be given unique card hole patterns. Curiously, the
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Hole
Pattern—" 0 1 12
SP ¢ L] - &
1 1 / J A
2 2 S K B
3 3 T L c
4 4 U M D
5 5 v N E
6 6 W 0 F
7 7 X P G
8 8 Y Q H
9 9 VA R I
0 0 I ’
8-3 # R $
8-4 @ % * <
8-5 = ) (
8-6 > ' ; >
87 4 " A ¥
Hole Patterns:
[1] 8-2
[2] 0-8-2

Fig. 4.4 BCDIC, Version 3

fifth scientific graphic + was not to be provided. The author does not
know the reason for this curious anomaly.

Beyond the four scientific graphics, 12 new graphics had been added.
These were of two kinds:

Kind 1 S sy < > ¢
Kind 2 + Vv A =
The graphics of Kind 1 were added as a result of market studies for
“most-needed graphics” in data processing applications. The graphics of
Kind 2 were chosen to meet a criterion which will be described in the
next chapter.

This coded character set was announced for the IBM 1410. How-
ever, as will be discussed in the next chapter, a review of coded character

sets was then undertaken, and this led to the BCD Interchange Code,
BCDIC.






The Size
of
BCDIC

5.1 SIZE OF CHARACTER SET

What limits the size of a character set? Is it the number of characters in a
character set? The limitation is mathematical, and comes from the binary
characteristic of the code that represents the character set. Recall that the
binary aspect comes from the nature of the physical medium or hardware
that handles the character code. Once the binary aspect of the physical
medium is perceived, the binary capacity must next be determined. Some
examples follow.

Magnetic tape, seven tracks. One track is for parity, leaving six tracks
for storage of characters. The character set size is 2° = 64 characters.

Magnetic tape, nine tracks. One track is for parity, leaving eight tracks
for characters. Set size = 2% = 256 characters.

Paper tape, eight rows. One track is for parity, leaving seven tracks for
characters. Set size = 27 = 128 characters.

Punched cards, twelve rows. Set size = 2'2 = 4096 characters. Most
punched card character sets have a set size less than the maximum
capacity. For the System/360, for example, the punched card character
set size is restricted to 256, in order to match the Nine Track Magnetic
Tape character set size of 256 characters.

As described in the previous chapter, IBM character set sizes before
the introduction of the 1410 were 48 characters, a limitation imposed by
the chain printers and keypunches of the day. The chain-printer limitation
of 48 characters was based not on the number of possible different

95
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graphic characters on the chain but on marketing considerations having to
do with printing speeds.

With the introduction of the 1410, its console typewriter provided a
possible character set size of 88 characters. The limitation of printing
speed held the chain printer set size to 48 characters, but it was decided to
expand the console typewriter set size beyond 48 characters. What should
this character set size be?

There were two hardware aspects which limited the set size, happily
to the same number. The 1410 architecture was 6 bits, hence maximum
set size was 64 characters. Magnetic tape for the 1410 was seven tracks.
One track was for parity leaving six tracks for characters. So the magnetic
tape also restricted the set size to a maximum of 64.

It was decided to expand the 1410 character set size to 64 characters.
Before this time, the 48-character set, BCDIC, Version 2, was as shown in
Fig. 5.1.

Bit

Pattern A B BA
Hole
Pattern~—" 0 1 12
SP - & or +
1 1 1 / J A
2 2 2 s K B
21 3 3 T L c
4 4 4 U M D
a 1 5 5 v E
42 6 6 W 0 F
421 7 7 X P G
8 8 8 Y Q H
8 1 9 9 b/ R I
8 2 0 0
8 21 8-3 # or = s $
8 4 8-4 @ or ' % or ( * Il or )

Fig. 5.1 BCDIC, Version 2
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5.2 BCDIC, VERSION 3

The binary coded decimal (BCD) nature of the card-code—to-bit-code
relationship pointed to the obvious card-code expansion, to include 8-2,
8-5, 8-6, 8-7 digit punches in conjunction with the zone punches, as
shown in Fig. 5.2.

There were two problems to be solved in determining the 64 hole
patterns. Since the numeric “0”” would clearly retain its card hole pattern
0, what hole patterns would be assigned to code positions in Fig. 5.2
indicated by ' and *? Both of these code positions (following the table
column and table row indications) would have the card hole pattern of 0,
but three code table positions with the same hole pattern, 0, would be
unacceptable.

?)i;mm —_—» A B BA
Hole
Pattern—¥] 0 11 12
SP UN. IL - & or +
1 1 1 / J A
2 2 2 S K B
21 3 3 T L c
4 4 4 U M D
4 1 5 5 v N E
42 6 6 W 0 F
421 7 7 X P G
8 8 8 Y Q H
8 1 9 9 Z R I
8 2 0 0 li UN., [i‘ UN. ]L UN. T'S—
8 21 8-3 # or = , $
8 4 8-4 @ or % or * T or )
84 1 8-5 UN. UN. UN. UN.
842 8-6 UN. UN. UN. UN.
8421 8-7 UN. UN. UN. UN.
Hole Patterns: UN. - Unassigned graphic
[1] 8-2
2] 0-8-2

Fig. 5.2 Expansion of BCDIC card code to 64




98  The Size of BCDIC

Bit

Pattern A B BA
Hole
Pattern = 0 " 12
sP ¢ u - &
! ! 1 / J A
2 2 2 S K B
21 3 3 T L d
4 4 4 U M D
4 1 5 5 v N E
4 2 6 6 W 0 F
421 7 7 X P G
8 8 8 Y Q u
8 1 9 9 Z R I
8 2 0 0 ¥ [_2_ 1 2
8 21 8-3 # , s
84 8-4 @ P % I
84 1 8-5 = ) (
842 8-6 > J ; <
8421 8-7 ;L] " e R E
Hole Patterns: SP - Space
[7] 8-2
[2] 0-8-2

Fig. 5.3 BCDIC, Version 3

Note that the bit pattern for code table position ? is 82. From the
BCD relationship, therefore, a card hole pattern of 8-2 would generate
the proper bit pattern. Combining the digit punches 8-2 with a zone
punch O would therefore generate the correct bit pattern, A82, for code
table position 2. This hole pattern therefore was chosen for this code
position.

But what about code table position '? Although the numeric “0”
occupies code table position > and has the hole pattern 0, a proper hole
pattern from a BCD relationship point of view would be 8-2.

It should be pointed out that the objective was to determine a set of
64 hole patterns with a BCD relationship. One such set would be the 16
digit combinations, ‘“‘no-digits”’, 1, 2, 3, 4, 5,6, 7, 8,9, 8-2, 8-3, 8-4, 8-5,
8-6, 8-7 taken with the four zone punches, ‘“no-zone”, 0, 12, and 11.
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However, this set does not include the hole patterns 12-0 and 11-0, which
were widely used in card processing applications. In order to include
these in the BCDIC set, two would have to be dropped out of the set of
64 above. The two chosen to be dropped out were 12-8-2 and 11-8-2.
(Note: As described in Chapter 10, these were included in the 64-
character subset for EBCDIC, and 12-0 and 11-0 were not included.)

The hole patterns 11-0 and 12-0 fall logically, for the code table of
Fig. 5.2, in code positions * and °. The only remaining hole pattern from
the set of 64 above that has no logical position is 8-2, and the single code
table position without an assigned hole pattern is position !, so that by a
process of elimination, the hole pattern 8-2 was assigned to code table
position .

As described in the previous chapter, 16 graphics had been chosen
for the IBM 1410 to expand the character set from 48 to 64. The result,
BCDIC, Version 3, is shown in Fig. 5.3.

5.3 BCDIC, VERSION 4

Of these 16 graphics, four had been chosen to eliminate duals and
provide () ' = as unique graphics. Eight had been chosen as a result of
market studies for most-wanted additional graphics:

A -

Four had been chosen to meet an interesting criterion:

+ = Vv A

These four graphics occupied code positions 2, ?, 4, and °, whose bit
patterns had a control function with respect to magnetic-tape devices on
one or another of the IBM computing systems.

There is an aspect of human nature which surfaces in data proces-
sing. Experience has shown that if graphics are provided on a computing
system, they will be used in one way or another by customers, even if they
have no intrinsic meaning. The lozenge is an example. It has no intrinsic
meaning but customers came to use it to signify things peculiar to their
applications—within applications, customers gave the lozenge a meaning.
For example, in banking installations, the lozenge was frequently used on
tabulation listings to indicate (to the customer) second level totals.

But it would be very undesirable if customers, within an application,
used the graphics for code positions 2, *, 4, and ® so that they would be
required to print out on listings. The actual printing of such graphics
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would not present any hazard, but the data containing the bit patterns
representing these graphics, if written on or read from magnetic tape,
might cause strange and unwanted results. These bit patterns had a
common and interesting characteristic. They were generated or removed
automatically by the magnetic-tape hardware. The customer did not have
to enter them with his input data.

The obvious criterion for graphics to be assigned to these code
positions was that they should cause customers to be disinclined to use
them in applications. They should, therefore, be abstract shapes without
intrinsic meaning. The graphic shapes finally chosen to meet the criterion
are as follows:

2 3 4 5
+ v A =

How well the graphics meet the criterion the reader can judge.
As stated in the previous chapter, a reconsideration of BCDIC,
Version 3 was undertaken. There were a number of reasons:
1. The plus sign was not provided.
2. The characters

I D T B
[12-8-5 | 11-8-5 | 0-8-5 | 0-8-6 |

would require multipunching on a keypunch. The speed of
keypunching FORTRAN source language programs would be re-
duced.

3. FORTRAN program decks, keypunched according to the 1410 pro-
posal, BCDIC, Version 3, could not be compiled on any non-1410
computer, because the card hole patterns (and hence the bit patterns)
for () = " had been changed. Similarly, the FORTRAN compiler for
the 1410 could not compile any FORTRAN program decks from
non-1410 computers.

4. If a 1410 FORTRAN program deck were entered into a 1410, it
would not list properly on the chain printer of the 1410. () = '
would not list as ( ) = " nor indeed even list as % X # @ (the dual
graphics). Such a program deck could be listed properly on the 1410
console typewriter, but this mode of listing would be excessively slow
as compared with listing on a chain printer.
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Reason 3 above was crucial. The ability to enter, list, compile, and
execute a FORTRAN deck on any IBM computing system was a very
strong sales point. Therefore, the 1410 coding proposal was changed to
remedy the four problems above.

The result of this change became the BCD Interchange Code,
BCDIC. The criteria set for BCDIC were as follows:

1. The 48-character code would be extended to 64 characters—63
graphics and Space.

2. Compatibility with the 48 characters of the day—Space, 10 numerics,
26 alphabetics, and 11 specials (including the 5 duals)—would be
maintained. That is to say, BCDIC, Version 2 (Fig. 5.1) would be the
point of departure.

Pattarn A B BA
Hole
Pattern—® 0 T 12
SP ¢ LY - & or +
1 1 1 / J A
2 2 2 S K B
21 3 3 T L C
4 4 4 U M D
4 1 5 5 v N E
42 6 6 W 0 F
421 7 7 X P G
8 8 8 Y Q H
8 1 9 9 Z R I
8 2 (] 0 ¥ L2 ! ?
8 21 8-3 # or = , $
8 4 8-4 @ or ! % or ) * T or )
8 4 1 8-5 l—a- u |_6_
842 8-6 > I—k— ; <
8421 8-7 R W Lo A s . Lo
Hole Patterns: SP - Space
(1] 8-2
[2] 0-8-2

Fig. 5.4 BCDIC, Version 4
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3. As much as possible, compatibility with the announced 1410 set,
BCDIC, Version 3 (Fig. 5.3), would be maintained.

4. Graphics for control characters should have no intrinsic meaning.

Initially, these criteria led to the code table of Fig. 5.4.

5.4 BCDIC, FINAL VERSION

Code positions ©, °, 3, * that had held () = ' in the 1410 proposal were
left blank, with four new graphics to be chosen.

Code positions 2, 7, 2, '° with graphics + v A £ were deemed to
satisfy Criterion 4. But code positions ' and ® had bit patterns that
functioned as control characters on one or another IBM computer.
Graphics ¢ " were clearly a violation of Criterion 4; they were rejected.

This left code positions ', °, and ® to be assigned graphics satisfying
Criterion 4, and code positions * and © to be assigned new graphics.

Code positions ¢, °, and * had held ( ) ' under the 1410 proposal.
When new graphics [ ] / were suggested to fill these code positions, the
suggestion was adopted.

After much debate, b v # were chosen for code positions *, 3, and 2
to satisfy Criterion 4. To satisfy Criterion 4, then, eight graphics had
been chosen:

b v £ £ m AV #

How well these graphics satisfy the criterion, the reader may judge.

The final result was BCDIC, shown in Fig. 5.5. It was approved as an
IBM Corporate Systems Standard in 1962.

Two factors were primary in the development of BCDIC from early
BCDIC, Version 1: equipment limitations and compatibility. Equipment
limitations led to the introduction of duals both for alphabetic extension
and for programming language symbols. Compatibility led to the reten-
tion of the duals, even when the 1410 console typewriter removed one
equipment limitation. (It may be remarked that the chain of the chain
printer, with its capability of 240 graphic positions, did not limit the
printing set to 48. Another aspect of the chain printer, printing speed,
was responsible for limiting the printing set to 48 graphics.)

Compatibility with existing practice is an important factor in deci-
sions on coded character sets. In summary, the four objections to the
1410 proposal were as follows:

1. Absence of plus sign.
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BCDIC, Final Version 103

?’:nern — A B BA
Hole
Pattern— 0 1 12
SP b B - & or +
! ! 1 / J A
2 2 2 s K B
21 3 3 T L c
4 4 4 u M D
4 1 5 5 v N E
42 6 6 W 0 F
421 7 7 X P G
8 8 8 Y Q B
8 1 9 9 z R I
8 2 0 0 $ 2] ! ?
8 21 8-3 it or = , 3
8 4 8-4 @ or ! % or ( * X or )
84 1 8-5 Y ] L
842 8-6 > \ ; <
8421 8-7 v " A "
Hole Patterns: SP ~ Space
(] 8-2
[Z] 0-8-2

Fig. 5.5 BCDIC, Final version

. Multipunching required for keypunching,

() ="

that is, for keypunching FORTRAN program decks.

FORTRAN incompatibility—1410 versus other computing systems.
1410 FORTRAN Programs not listable on 1410 chain printer.

All of these problems were in fact solvable at the time, admittedly at
some cost. The incompatibility that would have resulted pre- and post-
1410 was unacceptable. The problems were not solved. Duals were
assigned into BCDIC.






The Size
and Structure
of PTTC

6.1 INITIAL CONSIDERATIONS

In 1959, engineers had started to design and develop a new communica-
tions terminal which came to be the IBM 1050. The keyboard and
printing functions were to be provided by an electric typewriter. The
typewriter provides a capability of 88 graphics. The question to be
decided was what the transmission code should be. Since perforated tape
was also envisaged for this terminal, the code came to be named the
Perforated Tape and Transmission Code (PTTC).

In today’s technology, where hundreds and thousands of electronic
circuits can be placed on a small chip, the cost of a bit is negligible. But in
the technology of the early 1960s, the cost of a bit was appreciable—6-bit
registers cost appreciably more than 5-bit registers, 7-bit registers cost
appreciably more than 6-bit registers, and so on.

Another cost factor was implicit in the byte size. On serial data
transmission lines, a fixed factor was the number of bits transmittable per
second. To transmit, for example, a thousand characters of seven bits per
character would take appreciably more time than to transmit a thousand
characters of six bits per character. The length of time the data transmis-
sion line was in use was a direct factor in determining the amount of
money that had to be paid for the use of the data transmission line. In
short, data transmission line costs were dependent on the byte size of the
transmission code.

These two cost factors, hardware cost and transmission cost, both
pointed to the necessity of keeping the byte size of a transmission code as
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small as possible. In those days, a design engineer built his reputation on
his ability to “squeeze the bits.”

Before the introduction of the IBM 1050, printing terminals had
been limited to single case capability. But the use of an electric typewriter
on the 1050 would give the capability of duocase printing—capital letters
and small letters. This duocase capability was held to be a very significant
marketing factor.

6.2 SIZE OF CHARACTER SET

Recall that the byte size of a code prescribes the number of characters
that can be incorporated into the code, by virtue of a simple binary
relationship. If the byte size if 5 bits, then 2° = 32, and there are 32
different bit patterns available; that is, a 5-bit code can have 32 charac-
ters. If the byte size is 6 bits, then 2° = 64, and there can be 64 characters.
Similarly, 7 bits leads to 128 characters, 8 bits leads to 256 characters,
and so on.

In designing a coded character set, the first determination must be
the number of characters needed to meet the requirements of the
applications in which the code will be used. This done, the code size may
then be determined by applying the analysis of the preceding paragraph
in reverse. For example, if 48 characters are needed, the 32 character
positions of a 5-bit code are insufficient, but the 64 character positions of
a 6-bit code are (more than) sufficient. A 6-bit code is needed if 48
characters must be provided.

In the case of the 1050, the determination of the number of charac-
ters proceeded as follows:

Alphabetics: 26 lower case and upper case
Numerics: 10

Specials: At this time, the character set for most IBM products was 47
and Space. For the console typewriter of the 1410, the set was 63
and Space. From this, it was rationalized that from 11 to 27 specials
should be provided. Assume at least 11 would be needed.

Space: 1

Controls: The number of control characters needed was not known in the
initial design phase of the 1050. Clearly, characters would be needed
to control the typewriter, to control the perforated-tape facility, and
to control the data transmission lines. Initially, let the number of
control characters be x.
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The above tabulates as follows:

Lower case alphabetics 26
Upper case alphabetics 26 ‘
Numerics 10 73 graphic characters®
Specials 11 at least
Space 1
Controls x

74 + x

Therefore, initial analysis showed that (at least) 73 graphic characters, the
Space character, and an as yet undetermined number of control charac-
ters would be needed for PTTC. This apparently showed that a 6-bit,
64-character set was insufficient; a 7-bit, 128-character set was appar-
ently indicated. But it was pointed out that a particular technique of
coding, which involved the use of shift characters, could reduce the size
requirement to 6 bits. (A full discussion of this coding technique is found
in Chapter 2.) '

6.3 PTTC, VERSION 1

Recall from Chapter 2 the formula 2*** — y (where x is the number of
bits in the code byte and y is the number of characters wanted to be
independent of preceding shift characters). For PTTC it was decided that
the Space character and all control characters should be independent of
preceding shift characters. At a first analysis, x was taken to be 6.

2x+1_y =26+1_y
=128 —y

Thus it was seen that with a byte size of 6 bits, and using the technique of
shift characters, 128 — y characters could be realized. Also, if y =
number of control characters, including Space, then the number of
graphic characters is 128 — 2y. The following possibilities were reviewed.

* It is to be noted that the number of graphic characters needed would be more
than 73. This would certainly be realizable on the 88 graphic capability of the
electric typewriter. Also, the figure 88 would clearly dictate that the maximum
number of specials would be 88 —62 = 26.
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Number of Number of Number of
control graphic different
characters characters characters
(y) (128 — 2y) (128 — y)

17 94 111
18 92 110
19 90 109
20 88 108

At first it was argued that, since the typewriter provides 88 graphics
only, the choice should be 20 control characters (including Space) and 88
graphics.

It was counter-argued that extensive analysis of applications suitable
for the 1050 showed that 16 control characters and the Space character
would be sufficient. Consequently, the choice should be 17 control
characters (including Space) and 94 graphic characters. While it was
admitted that the typewriter could print 88 graphics only, it was also true
that paper tape, punched cards, data transmission lines, and serial printers
could certainly implement 94 graphic characters.

At this point, a completely different factor emerged. At this time,
standards committees, nationally and internationally, were developing a
standard interchange code. All details of this code were not yet decided,
but some details were decided:

a) The code would be 7 bits.

b) There would be 32 control characters, the Space character, the
Delete character, and 94 graphic characters.

It was now proposed that the 1050 should implement the 7-Bit Code, so
that it would be compatible with the emerging national and international
standards. On the question of 7-bit size for the 1050, two counter-
arguments were voiced:

a) A 7-bit 1050 would cost much more than a shifted 6-bit 1050, and
low cost was a primary design objective of the 1050.

b) The 1050 development schedule was such that it would certainly be
developed and announced before the slowly developing national and
international standards were approved. Details of the standards, such
as number and choice of control characters and graphic characters,
changed from one committee meeting to the next. It was a reason-
able certainty, then, that the 1050 character set would disagree, in
greater or lesser detail, with the finally approved character set of the
standards.
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These two factors, particularly the cost factor, were decisive. The earlier
decision, to design and develop a shifted 6-bit 1050, was upheld.

However, out of this debate emerged another factor, which was
decisive on the earlier question of graphics and controls. A communica-
tions system was postulated which would have terminals implementing
the 7-bit code, communicating via a computer, with 1050s implementing
the shifted 6-bit code. The significant aspect here was that a message,
consisting of graphic characters and the Space character, would go from
one kind of terminal, through a computer, to the other kind of terminal.

If these different kinds of terminals needed different control charac-
ters to send or receive messages, the computer program could accommo-
date such differences, removing or injecting control characters into the
data stream as necessary. But if the terminals had different graphic sets,
no computer program could compensate. The number of graphics, and
the actual graphics must match.

From this analysis, it was decided that the number of graphics in
PTTC and the 7-bit code should be the same, 94. At this stage, the actual
graphics could not be matched, since the 7-bit code was not yet finalized.
However, after the 7-bit code was finalized, a later model of the 1050 could
match the graphics. So the decision was made for the 94 graphic charac-
ters. As a consequence, Space and 16 control characters would be
independent of shift. The initial code chart for the 1050 looked like Fig.
6.1.

The 16 control characters to be independent of shift were:

PN Punch On
BYP Bypass
RES Restore

PF Punch Off

RS Reader Stop

LF Line Feed

NL New Line

HT Horizontal Tab

UuC Upper Case
EOB End of Block

BS Back Space

LC Lower Case
EOT End of Transmission
PRE Prefix

IL Idle
DEL Delete

Upper Case and Lower Case would be the two required shift characters.
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Bottom and Left

Fig. 6.1 PTTC, Version 1

6.4 PTTC, VERSION 2

Since there was to be a card reader/punch attached to the 1050, a
translation would be needed for the bit code of PPTC to/from the card
code. In order to minimize the cost of such a translator, it was decided to
structure the code, with respect to alphabetics and numerics, so that it
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Fig. 6.2 PTTC, Version 2

resembled BCDIC; that is, the alphabetics would be distributed into three
columns of the code table. Clearly, a corresponding upper- and lower-
case alphabetic would be on the same 1050 keytop. In order to minimize
the logic circuitry between keytops and the generation of the bit patterns
of PTTC, lower-case and upper-case alphabetics should occupy corres-
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ponding (same bit pattern) locations in the code table. The numerics
should be in the lower-case side of the code table, since they are
commonly on the lower-case shift of a typewriter. Finally, with these
decisions made with respect to numerics, upper-case alphabetics and
lower-case alphabetics, it seemed intuitively right that the controls occupy
the block of four rows at the bottom of the table. This led to the code
table of Fig. 6.2.

6.5 PTTC, VERSION 3

There now remained the assignment of 32 specials to code positions. It is
to be noted that, with 94 total graphic positions and a typewriter printing
capability of 88 graphics, 6 of these remaining 32 code positions would
contain graphics not printable on the typewriter. Clearly, because of the
typewriter concept of upper- and lower-case graphics on a key, it would
be confusing to an operator if any key had a printable graphic in one
case but not in the other case. Also, it would complicate the logic circuitry
to realize such an aspect. These considerations led to the conclusion that
three of the nonprintable graphics should be in lower case and three in
upper case. Also, they should be located in corresponding positions in the
code table (to do otherwise would create the undesirable aspect). It was
decided that positions ' and * (Fig. 6.2) would be assigned to nonprintable
graphics.

Before decisions were made on specific assignment of the 32 specials,
some preliminary decisions were made with respect to the associated card
code. The reason behind this sequencing of decisions was as follows.
Hopefully, card-code assignments could be made on some orderly basis
that would optimize the card-code to bit-code relationship, and hence
minimize the cost of the hardware translator. If such an assignment of
card codes could be worked out, then most of the 32 specials would
automatically locate themselves in the code table, because of their already
established BCDIC card codes.

The first problem to be solved was with respect to alphabetics.
Hitherto, in data processing equipment and applications, only one set of
alphabetics was provided. It would be more correct to call these alpha-
betics “‘capital letters,” rather than “upper-case letters.” To refer to them as
“upper-case alphabetics” would imply the existence of ‘“lower-case
alphabetics,” and these latter were not, in general, provided on data
processing printers.

The “capital letters” had well-established card codes. Now, however,
on the typewriter of the 1050, there were to be both lower- and
upper-case letters. The question was, should lower- or upper-case letters
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be assumed as corresponding to the previous capital letters and hence be
assigned their card codes? At first, the answer seems obvious. Upper-case
letters should be considered equivalent to the previous capital letters.
After all, they would have the same graphic shapes when printed.

There was a counter-argument. Three modes of operation were
visualized for the 1050. In the first mode, a communications network
would consist of 1050s only, with human operators sending, receiving,
and routing messages. In the second mode, the network would consist of
1050s communicating to a computer, and not directly to each other. In
this mode, a computer program would do the work on routing or
switching messages. In the third mode, the network would be of the same
kind as for the second mode, but the 1050s would be considered as data
entry points, with the computer executing some data processing applica-
tion on the data received.

In the first two modes (for which the telegraph network of Western
Union might be considered an example), it was assumed that the mes-
sages sent and the messages received would use both lower- and upper-
case letters. There was a human-factor reason for this decision. Human
beings are educated to read text in lower- and upper-case letters. Books,
magazines, newspapers, etc., display text in both lower- and upper-case
letters. It is interesting to read a page of text, printed only in upper case.
It is difficult to read; quite possible, of course, but difficult. Interestingly, a
page of text in lower-case letters poses very little difficulty in reading. The
reason is clear. In a page of text, very few capital letters appear. First
word in sentence, people’s names, names of cities, towns, countries, etc.,
are initially capitalized. But all other letters are lower case. A human being
is more used to reading lower-case letters. On the Telex telegraphic
network, this human factor was recognized, and text on a Telex printer is
totally lower-case letters (no capitals). By contrast, a Western Union
telegram, printed on Teletype printers, all in capital letters, is more
difficult to read.

To repeat, it was assumed that in the first two modes, both lower-
and upper-case capability would be used. But in the third mode, remote
data entry to a computer, it was assumed that only upper-case letters
would be used. This was because the printer of the computer had capital
letters only. There would be less confusion if both terminal and computer
printers printed letters of the same shape, that is, capital letters. This
assumption led to a most interesting conclusion.

The fewer times an operator has to depress the case shift key, the
higher the operator productivity. The numerics on the typewriter are in
lower case. On the assumption that capital letters would be used, and not
small letters, it would be more efficient (in this particular communications
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mode) if the capital letters were actually reached by the lower-case shift
of the printing element. In fact, recognizing this potential efficiency
factor, typewriter elements were provided that had capital letters in
lower-case shift as well as in upper-case shift.

In the first two communication modes, then, it was assumed that
small letters would predominate, with occasional occurrence of capital

Lower Case Upper Case
Bit ) A B BA A B BA
Pattern
Hole
Pattern—¥ 0 11 12 NYA NYA NYA NYA
y
No Pch
1 1 1 11-1 12-1
2 2 2 0-2 11-2 12-2
21 3 3 0~3 11-3 12-3
4 4 4 0~4 11-4 12-4
5 - - - N SRR B
4 1 5 0-5 11-5 12-5 UPPER CASE
42 6 6 0-6 | 11-6 | 12-6 AE IR
421 7
8 8
8 1 9
8 2 0
8 21 NYA
84 NYA
84 1 NYA I
- CONTROLS o :
842 NYA i -
8421 NYA e
Hole—y| NYA NYA NYA NYA
Pattern

NYA -~ Not Yet Assigned

Block { Hote Patterns at:

1 3 1 Top And Left
2 Bottom and Left

2 4 3 Top and Left
4 Bottom and Left

Fig. 6.3 PTTC, Version 3
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letters. In the third communication mode, it was assumed that capital
letters would be used exclusively. At this point, a principle was evolved,
as follows: -

In common data processing applications a particular set of card hole
patterns is associated with the letters. In such data processing appli-
cations, such letters happen to be capital letters. In 1050 communica-
tions applications, this same set of card hole patterns should be
associated with the set of letters predominantly used in the applica-
tion. In the first two modes of 1050 communication applications, the
predominant letters will be small letters. In the third mode, the
predominant (actually, the only) letters will be capital letters. What is
significant is that, for all three modes, the predominant letters will
appear in the lower-case shift of the typewriter. Therefore, the card
hole patterns that have, in data processing applications, been as-
signed to capital letters, should for PTTC be assigned to the lower-
case shift of the code, regardless of whether small or capital letters
are implemented in the lower-case shift.

After considerable debate, agreement was reached on this principle. The
card code assignment to PTTC then began to take shape. Compare Fig.
6.2, where the assignment of the numerics and lower-case letters is
shown, to the preliminary card code for PTTC as shown in Fig. 6.3.

6.6 PTTC, VERSION 4
Some further decisions were now made with respect to card codes:

1. Upper-case alphabetics would have the same digit punches as lower-
case alphabetics, but with zones corresponding as shown below:

Zone punches

Lower-case alphabetics 0 11 12
Upper-case alphabetics 11-0 | 12-11 12-0

2. In code positions * and ? in Fig. 6.3, hole patterns of 11-0, and 12-0,
respectively, would be assigned.

3. For the sixteen control characters, the digit punches would be 4, 5, 6,
and 7, to optimize the bit-code to card-code translation relationship.

4. The control characters would have the zone punches already assigned
to the table columns for lower-case alphabetics, and also, for all
control characters, an additional zone punch, 9.
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These decisions deserve some comment. In choosing the zone punches for
the upper-case alphabetics, the reasoning was as follows:
a) There would be no more than two zone punches.

b) Of the two zone punches, one would match that of the corresponding
lower-case alphabetic.

Lower Case Upper Case
o o——————" A B BA A B BA
Hole
Pattern—# 0 11 12 NYA 11-0 12-11 | 12-0
No Pch ]—3" LLL
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Fig. 6.4 PTTC, Version 4
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In choosing 11-0 and 12-0 for code positions ' and 2 in Fig. 6.3, the
objective was to provide the algebraic sign capability already provided in
common practice. That is, the eleven punch over a digit punch in a
numeric card field should indicate a negative number for all numerics, 0
through 9. Similarly, the twelve punch over a digit punch in a numeric
field should indicate a positive numeric for all numerics, 0 through 9.

The choice of 4, 5, 6, and 7 as digit punches for the bottom four rows
of the table would optimize their BCD translation to/from the PTTC bit
code.

A zone punch of nine would distinguish all control characters from
all graphic characters. Advantage could be taken in the hardware of this
distinguishing characteristic.

With these decisions, the card code assignments shown in Fig. 6.3
were increased to those shown in Fig. 6.4.

6.7 PTTC, VERSION 5

There now remained 32 graphic positions in the PTTC code table with
unassigned graphics. Of these 32 code positions, 30 had not yet been
assigned card hole patterns. The numerics, alphabetics, and Space of
BCDIC had been assigned. There remained 27 BCD graphics and hole
patterns to be assigned in PTTC. For compatibility reasons, the 27
BCDIC graphics and hole patterns should match the 27 in PTTC. The
BCDIC specials were now reviewed:

@ 8-4 11-8-6
/ 0-1 b 8-2
- 11 %( . 0-8-4
&+ 12 : 8-5
#= 8-3  * 11-8-4
+ 0-8-2 [ 12-8-5
, 0-8-3 ] 11-8-5
$ 11-8-3  # 0-8-7
n 12-8-3 =+ 12-8-7
A 11-8-7 0-8-5
\ 0-8-6 8-7
< 12-8-6 ! 11-0
> 8-6 2 12-0
X 12-8-4

The card hole patterns 11-0 and 12-0 had been assigned in locations *
and 2 in Fig. 6.4, so the BCDIC graphics ! and ? would be assigned to
these PTTC code positions.
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Fig. 6.6 PTTC, Version 5

For translation reasons, the hole pattern 11 should be assigned in
position >, and the hole pattern 12 in position * of Fig. 6.4, which would
then dictate the assignment of graphics — and & +. For translation pur-
poses, hole patterns 8-3, 0-8-3, 11-8-3, and 12-8-3 should be assigned
in positions ©, 7, &, °, respectively, which in turn would dictate the
location of graphics # =, $ . (respectively). For translation purposes,
hole pattern 0-1 should be assigned in position 5. which would dictate
the location for /.

These decisions resulted in Fig. 6.5.
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Fig. 6.6 PTTC, Final Version

6.8 PTTC, FINAL VERSION

There are 23 unassigned code positions (shaded) and 18 unassigned
BCDIC graphics. The remaining card hole patterns and remaining PTTC
bit patterns were simply not able to be matched to any orderly translation
relationship. The assignments were made to optimize the translation
relationship as much as possible, while realizing that the relationship
could not be very good.
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When the 18 BCDIC graphics and hole patterns were assigned in the
PTTC code table, there would remain five unassigned code positions. Five
graphics and five hole patterns were finally chosen as follows:

Graphic  Hole pattern

. (UC) 12-8-1
, (UC) 0-8-1
' (UC) 11-8-2
? (UC) 12-8-2
" 8-1

These five were then assigned into the PTTC table, leading to Fig. 6.6,
the final version of PTTC.

These five hole patterns were chosen for the following reason. An
examination of the table shows that all combinations of digit punches 1,
2, 3,4,5,6, 7, 8 9, 83, 84, 8-5, 8-6, 8-7 with zone punches
“no-zones”, 0, 11, and 12 (the hole patterns from BCDIC) had been
assigned in PTTC. Additionally, for the capital letters, the double-zone
combinations 11-0, 12-11, 12-0 had been introduced as previously de-
scribed. Additionally, the two BCDIC hole patterns 8-2 and 0-8-2 had
been assigned. Now five more hole patterns were needed. What should
they be?

They could have been some combination of double-zone punches
with the double-digit punches 8-3, 8-4, 8-5, 8-6, 8-7, but this would have
resulted in hole patterns of four holes. It was thought preferable to choose
hole patterns of no more than three holes, and there were six such that
suggested themselves; 8-1, 0-8-1, 11-8-1, 12-8-1, 11-8-2, 12-8-2. The
8-1 was first choice, since it was a hole pattern of two holes only. Then
four of the five remaining possibles were chosen, 0-8-1, 12-8-1, 11-8-2,
and 12-8-2.



The
Structure of
EBCDIC

7.1 INITIAL CONSIDERATION

It is supposed by some people that the requirement that led from
computers with a 6-bit architecture to computers with an 8-bit architec-
ture was the requirement for a larger set of characters. It was known that
the then current 64-character set of 6-bit computers, while sufficient for
most data processing applications, was becoming insufficient for some
data processing applications. On the one hand, an insufficient number of
graphic code positions had led to the use of duals (Chapter 4). On the
other hand, an insufficient number of control code positions had led to
the development of PTTC (Chapter 6). The implementation of PTTC on
the IBM 1050 (which was based on an electric typewriter) had introduced
lower-case as well as upper-case alphabetics to many people in the data
processing world. Also, a new data processing application, text proces-
sing, had led at least one customer to order a special IBM 1403 print
chain and to have special instructions developed for his 1401 computer to
allow him to manipulate and process upper- and lower-case alphabetics.
These situations and applications in the data processing field cer-
tainly emphasized the needs for a larger coded character set than that of
BCDIC. But these needs were very far from sufficient to dictate a
requirement for an 8-bit computer architecture. There were two other
very fundamental aspects of computer architecture that pointed at the
requirement for an 8-bit architecture. These aspects led to the develop-
ment and marketing of the IBM System/360. Once an 8-bit architecture
was decided on, with a consequent possible 256 character code positions,

121
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the opportunity to enlarge or extend the character set from that of
BCDIC was obvious. IBM did indeed take that opportunity; the 8-bit,
256-character EBCDIC was developed and implemented.

The first aspect was the efficiency of representation of numerics in a
coded character set. The requirement for 26 (or 29) code positions to
represent alphabetics and for 10 code positions to represent numerics
together set a requirement for at least 36 code positions. In its turn, the
requirement for at least 36 code positions set a requirement for a code
byte of at least 6 bits, and BCDIC was (and is) a 6-bit coded character
set.

Although 4 bits at most are required to represent the 10 numerics,
the 10 numerics of BCDIC are represented by 6 bits, 2 bits more than
needed for numeric representation only. That is to say, numerics in
BCDIC have an unnecessarily large, and hence inefficient, bit representa-
tion.

So numerics are inefliciently represented in BCDIC. Is this signific-
ant? Indeed it is. It was variously estimated in the early 1960s that
approximately 75 percent of the data used in data processing applications
was numeric data. In short, 75 percent of the data was inefficiently
represented. Was this fact significant? In previous paragraphs, it has been
stated that requirements for larger character sets, although clearly per-
ceived, were not deemed sufficient to increase the bit size of computer
architecture. But the inefficiency of numeric data representation affected
about 75 percent of the data processed in computers. It hardly needs to
be said that efficiency of a computing system was (and is) one of the key
clements of any computer marketing strategy. Could the efficiency of
numeric representation be improved?

The ‘“packing” of two numeric digits into one 8-bit byte would
essentially represent numeric data in 4 bits, the practical minimum.
Maximum efficiency of numeric representation would be realized. This was
one of the aspects which led to the IBM decision to develop an 8-bit
architecture for computers.*

The other aspect had to do with the binary nature of the System/360.
In designing the Stretch Computer [7.1], for a number of reasons the
organization was chosen to be binary rather than decimal. Similar reasons
led to the decision that System/360 would be binary. Not only, of course,

* It must be noted that 8 bits, while ideal for representation of packed numerics,
is not ideal for the representation of all data, such as alphabetics and special
graphics. To represent all of numerics, alphabetics, and an adequate number of
special graphics, 6 bits is sufficient. So, to represent alphabetics and special
graphics by an 8-bit code is for them, inefficient. That is an illustration of a design
trade-off.
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would arithmetic be binary but so also would addressing be binary. For
binary addressing of memory words, there is considerable advantage in
choosing the number of bits in each word to be a power of 2. The three
possibilities looked at were

2°=32
2° =64
27=128

The choice of 64 bits gives a good compromise between speed and cost of
memory, and provides ample space to represent a floating-point number
in one memory word. ‘

Since the memory word size of 64 bits was chosen, and since a byte
must be an integer submultiple, eight 8-bit bytes was the natural choice.

The decision to go to 8 bits was made, and a coded character set of
potentially 256 characters resulted. The 6-bit code had been named the
BCD Interchange Code, with BCDIC as the acronym. Since the number
of available character positions was to be extended from 64 to 256, the
new code came naturally enough to be named the Extended BCD
Interchange Code, with EBCDIC as the acronym.

7.2 TECHNICAL DECISIONS
7.2.1 8-Bit Code Table

The first technical decision, then, was that the coded character set would
be 8 bits with a potential of 256 characters, although as narrated above,
this was more a consequence than a decision. The second decision was
how to exhibit it in manuscripts, documents, manuals, and so on. At the
time, 6-bit codes were being exhibited in 4-by-16 code tables; 7-bit code
tables were being exhibited in 8-by-16 code tables. The natural decision
was to exhibit EBCDIC in the form of a 16-by-16 code table.

7.2.2 Bit Numbers

The next step was to decide how to number or name the bits of an 8-bit
byte, for reference purposes. The philosophy for BCDIC was bit naming:
B, A, 8§, 4, 2, 1. The philosophy for ASCII was a combination of bit
naming and bit numbering: b7, b6, b5, b4, b3, b2, bl. A common
engineering practice was to number from left to right and to associate the
order of the numbering with high to low significance; for example,
memory addresses in a computer, columns on a punched card, tab stops
on a typewriter. It was decided to number the bits of an EBCDIC byte
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according to this same philosophy (0, 1, 2, 3, 4, 5, 6, 7) from the
high-order to the low-order bit of a byte, as shown:

ol1[2]3]4]5]6]7

7.2.3 Hexadecimal Numbers

The next step was to decide how to reference a particular code position.
It was decided that the 16 columns (from left to right) and the 16 rows
(from top to bottom) would be named 0, 1, 2,3,4,5,6,7,8,9, A, B, C,
D, E, F, as shown in Fig. 7.1.

A particular code position would be referenced by giving its column
name followed by its row name: for example, code position A7 in Fig.
7.1. This notation came to be called the hexadecimal notation, or hex
notation.

The columns and rows could have been named (numbered) O, 1, 2, 3,
4, 5,6, 7,8,9, 10, 11, 12, 13, 14, 15, as was done with another 8-bit

Column 0 [ 1 ] 2 l 3 4 l 5 l 6 l 7 8 I 9 ] A B c l D l E ] F
Bit 00 01 10 11
Pat. =

Q0 01 10 1 00 01 10 11 00 01 10 11 00 01 10 11

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111 A7

8 1000

9 1001

A 1010

B 1091

c 1100

D 1101

E 1110

F 1711

Fig. 7.1 Hexadecimal columns and rows
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code form (to be discussed in Chapter 20). The hex notation is more
compact, and always requires exactly two ‘“‘typing” spaces for the man-
uscript representation of a code position; 35, A7, EF, etc. By contrast,
the numeric notation requires a separating mark (the slash /) to avoid
confusion; 0/9, 3/15, 1/11, etc. Also, if allowed to be a non-uniform
notation to gain compactness, as 1/6, 1/11, 11/1, 11/11, the number of
“typing” spaces could vary from three to five, while, if uniformity was
imposed, as 01/06, 01/11, 11/01, 11/11, the number of “typing”’ spaces
required would be exactly five. Either way, the hex notation, with its
always uniform requirement for exactly two ‘“‘typing” spaces, seems
superior.

7.2.4 Quadrants

The final decision, also for purposes of referencing the code table, was to
consider the code table to be divided into four equal quadrants, as shown
in Fig. 7.2. The quadrants would then be referred to as the first quadrant,
the second quadrant, etc., or as quadrant one, quadrant two, etc.

Column0l1lzl3 4|5|6I7 BIQIA]B CIDIVE[F

Bit 00 01 10 1
Pat.

0 0000

1 0001

2 0010¢

3 |oo11f

4 0100}

3 0101§

6 0110

Wl

7 0111

. Quadrant

8 1000

9 |1001f

A 1010

B 1011

c [(1100¢

D 1101

€ {1110}

F 1111

Fig. 7.2 EBCDIC quadrants
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7.2.5 Blocks

The code table would have to be shown with four unequal blocks in order
to exhibit the card code (as described in Chapter 2), as shown in Fig. 7.3.

Block 1
Block 3
Block 2
Block 4
" Figure 7.3

7.3 SUMMARY

In summary, then, five decisions were made in order to exhibit and
reference the EBCDIC Code Table:

1.
2.

The cbde table would be 8 bits, with a potential of 256 characters.

The bits of an EBCDIC byte would be numbered 0, 1, 2,3,4,5,6,
7. from left to right, that is, from high-order bit to low-order bit of a
byte.

. The 16 columns and 16 rows of the code table would be named

according to a hexadecimal notation: 0, 1,2,3,4,5,6,7,8,9, A, B,
C, D, E, F. A particular code position would be referenced by giving
first its column name, then its row name.

. For purposes of reference the code table would be considered to be

divided into four quadrants of four columns each; first quadrant,
second quadrant, etc.

_ In order to exhibit the card code, the code table would be shown in

four (unequal) blocks.

These decisions having been made (the last four decisions might be
considered more of an administrative than of a technical nature), atten-
tion was then directed to the technical aspects of EBCDIC. Ten criteria
emerged.

7.4 CRITERIA

Criterion 1 (Collatability)

The 64 characters of BCDIC, when embedded in the 256 code positions
of EBCDIC, should have the same collating sequence, not necessarily
contiguously, as BCDIC.
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Criterion 2 (Space collatability) _ | ,

The Space character should collate low to all EBCDIC graphic charac-
ters, those immediately assigned and those to be assigned in the future.
Criterion 3 (Separability)

Control characters should be easily distinguishable, by their bit-patterns,
from graphic characters; that is, graphic and control characters should be
separable.

Criterion 4 (DudcaSe ocapébility)- ‘

Lower-case alphabetics, as well as upper-case alphabetics, should be
assigned.

Criterion 5 (Duocase relationship)

Corresponding upper- and lower-case alphabetics should differ only in
high-order, or zone, bits. The bit patterns for corresponding upper- and
lower-case alphabetics should have the low-order four bits identical.
Criterion 6 (Sign capability)

The concepts of positive, negative, and absolute numerics, zero through
nine, should be incorporated.

Criterion 7 (Card-code compatibiiity)

The card hole patterns for the 64 BCDIC characters should be the same
for BCDIC and EBCDIC.

Criterion 8 (Translation simplicity)

The translation from the 64 6-bit bit patterns of BCDIC to their equival-
ent 8-bit EBCDIC bit patterns should be as simple as possible.
Criterion 9 (Subsetability)

By dropping the two high-order bits of the 8-bit EBCDIC bit patterns, a
compact 64 character subset should emerge. This subset should consist of
the 64 BCDIC characters but need not have the same bit patterns.

Criterion 10 (No duals)

The five dual pairs of BCDIC should be eliminated, giving rise to ten
unique EBCDIC characters.

It was recognized that Criterion 10 conflicted with Criteria 1, 7, 8,
and 9. The resolutions of this conflict led to user dissatisfaction, as
described in Chapter 9, The Duals of EBCDIC.
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Criteria 1 through 7 are discussed in Chapter 8; Criteria 8 and 9 are
discussed in Chapter 10; Criteria 7 and 10 are discussed in Chapter 9.

REFERENCE

7.1 W. Buchholz, “Planning a Computer System.” New York: McGraw-Hill,
1962, Chapter 5. ‘



The
Sequence of
EBCDIC

During the late 1950s and early 1960s, the code used on IBM computers
was a 64-character, 6-bit code, called BCDIC. It met the require-
ments of the time well enough. The 64 6-bit bit patterns were sufficient to
represent the following:

a) Space, alphabetics, and numerics.

b) The extra diacritic and accent letters needed for the major European
Latin alphabets.

c) Special graphics needed for most data processing applications.

d) Special graphics needed for the major programmmg languages (As-
sembler, COBOL, FORTRAN, etc.).

e) Control characters needed for control of either data processing
devices (mainly tape drives) or formatting of data.

It came to suffer from two defects—duals and collating sequence. (For a
discussion of the duals problem, see Chapter 9.)

We learned in Chapter 7 of the decision to go to an 8-bit computer
architecture. This led to the potentiality of a 256-character, 8-bit code set
and to the establishment of ten criteria. The application of seven of these
criteria, beginning with Criterion 1 relating to collatability, are discus-
sed in this chapter.

8.1 BCDIC COLLATING SEQUENCE

The 63 graphics, and Space, of the BCD Interchange Code (BCDIC) are
shown in Fig. 8.1, arranged in sequence of bit patterns from low (00,0000)

129
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sz-imtt"ern—-’ 00 01 0 '
0000 : sp b - & or +
0001 1 / J A
0010 2 S K B
0011 3 T L c
0100 4 U M D
06101 5 v N E
0110 6 W 0 F
0111 7 X P G
1000 8 Y Q H
1001 9 Z R I
1010 0 % ! ?
1011 # or = , $

1100 @ or ' % or ( Lk Hor )
1101 : Y 1 C
1110 > \ : <
1111 v " A #
Fig. 8.1 BCDIC

to high (11,1111). There was, however, an established collating sequence
for these 64 characters. Each graphic character, and the Space character,
was assigned a collating number, from low (0) to high (63). In Fig. 8.2 are
shown the collating numbers assigned to the 64 characters of Fig. 8.1. As
can be seen, the bit-pattern sequence of the 64 characters did not
correspond in any way to the collating sequence of the 64 characters. The
graphic characters, arranged in collating sequence, are shown in Fig. 8.3,
with collating numbers running from 0 (low) to 63 (high).

The basic element in any sorting or collating application is a com-
parison of the magnitude of two quantities. Essentially, the question is
asked (by machine instructions in a program):

Is item A greater than, equal to, or less than item B?

Depending on the answer, the item is inserted into an ordered list of
items. This comparison (by executing what was generally called a Com-
pare instruction) is generally implemented in hardware by subtracting one
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Pattern >
0 19 12 6
55 13 36 ' 26
56 46 37 27
57 47 38 28
58 48 39 29
59 C 49 40 30
60 50 41 31
61 51 42 32
62 52 43 33
63 53 b4 34
54 45 35 25
20 14 7 1
21 15 8 2
22 16 9 3
23 17 10 4
24 18 11 5

Fig. 8.2 BCDIC collating numbers

item from the other and inspecting the sign and magnitude of the result
(positive, zero, or negative).

In order that the Compare instruction would function correctly on
the basis of the established collating sequence, and despite the disordered
bit-pattern sequence, one of two approaches has been employed.

8.1.1 Convert/Compare/Reconvert Approach

On the binary machines (704, 709, 7090, etc.) an instruction was pro-
vided, generally called a Convert instruction. When executed, this instruc-
tion would convert the 6-bit bit patterns to another set of bit patterns.
This other set of bit patterns had the characteristic that the bit pattern
sequence matched the collating sequence. Thus, when executed, the
hardware Compare instruction subsequently would function so that the
data would be arranged into the correct collating sequence. After the
sorting or collating function was implemented on all the data, that portion
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o ] BERET] JAN 73 B BT
EN N PV IR TS R FYY
Hor)l—2 w 22 Il—“—- wL—5°—
R B B FEY N [ TV
< B g or - 2] g B y 22
L eor v 2 e z
PP B3 R % I FTY IR FTY
s o, =, ] G
PR S IR FT' I VS I T
] [ A FYY R (YW , G
;B A 28 p 2 A
a B A Qli 5 L2
T, =l [, L
/LIL DL“— #‘—“-‘L 7IL
S e b e
%or)Lli‘ p B Thl- 9[i

Fig. 8.3 BCDIC graphics in collating sequence

of the data that had been “converted” had to be reconverted back to its
correct BCD bit patterns. This reconversion was accomplished by another
instruction.

8.1.2 Comparator Approach

On the character machines (1401, 1410, 705, 7080, etc.) special hardware
called “comparator” hardware was built in. This hardware, when execut-
ing a compare instruction, first performed the equivalent of the Convert
instruction described above, then executed the actual comparison of the
two items. Thus, the hardware, without actually converting any data (and
thus eliminating the need for a subsequent reconversion) allowed the data
to be sorted or collated into the correct sequence.
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An analysis of the two approaches reveals the following:

® In the Convert/Compare/Reconvert approach, no extra hardware
was required, but extra CPU time was required to execute the
conversion and reconversion parts of the program.

" In the Comparator approach, no extra CPU time was required, but
the Comparator hardware itself increased the cost of the computing
system.

There was, therefore, either a performance penalty or a hardware cost
penalty.

8.2 EMBEDMENT OF BCDIC COLLATING SEQUENCE

In the design of the new 8-bit CPU code, the Extended BCD Code
(EBCDIC), it was postulated that the above penalties could be removed,

Column| © | 1 | 2 ] 3 4 | 5 [ 6 l 7 8 | 9 I A ] 8 c ‘ D [ E I F

Bit 00 01 10 11

Pat.

00 01 10 11 00 | 01 10 1M 00 { 01 10 11 00 [ 01 10 11

Row .
0 {0000 : I 0 19 12 6
1 (0001 55 13 36 26

I

2 |oo010 56 ue 37 27
3 (o011 57 47 38 28
4 [o100]. 58 ug 39 29
5 (0101 II] s9 49 40 30
6 [o110 60 50 41 31
7 o111 ) 61 51 42 32
8 |1000 62 52 43 33
8 11001 63 53 by 34
A |1010 ITI| s 55 | -as 25
B |1011 20 14 7 1
c [1100 21 15 8 2
D (1101 V| =22 18 9 3
E 1110 23 17 10 n
F 1111 24 18 11 5

Fig. 8.4 Blocks in BCDIC
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without any deleterious effects on the user. Let us see what actually
happened.

In studying Fig. 8.2, it was observed that the code table could be
visualized as being in four major blocks, designated I, II, III, and 1V in
Fig. 8.4. Then if the blocks were rearranged relative to each other, with a
view towards coming closer to a correct collating sequence, the result
would be as shown in Fig. 8.5. Then, if the two high-order bits of each
column were inverted (zero for one, and one for zero) and the columns
reordered on the new two high-order bits, the result would be as shown in
Fig. 8.6. Finally, given the freedom that columns, or if necessary, partial
columns, could be distributed into the 16 column spaces of an 8-bit code
table, the results would be as shown in Fig. 8.7.

In Fig. 8.7, observe that the 64 characters are almost (not quite, see
character 0 and character 13) in correct collating sequence, albeit not
contiguously in bit-pattern sequence. The fact that the BCDIC collating
sequence could be embedded in the EBCDIC collating sequence was the
primary design factor for EBCDIC.

Column| 0 l 1 I 2 I 3 4 [ 5 l 6 l 7 8 ] 9 l A l B c l D l E 1 F
Bit 00 01 10 11
Pat.

Row 00 | 01 10 | 11 oo | o1 10 | 11 00 | 01 10 | 11 ] oo | 01 10 | 11
o |ooo00 20 15 7 1
1 |ooo01 21 15 8 2
2 {0010 vy 22 16 9 3
3 (o011 23 17 10 y
4 lo100 24 18 11 5
5 (0101 I 0 19 12 3
6 o110 ITIT | su 5 35 25
7 |loi1 55 13 36 26
8 1000 56 46 37 27
9 [1001 57 u7 38 | 28
A |1010 IT | 58 48 39 29
g8 [10611 59 49 w0 30
¢ {1100 60 50 41 31
D {1101 61 51 u2 32
e [1h10 62 52 43 33
F {1111 63 53 yy 34

Fig. 8.5 BCDIC rearrangement 1



Column 0 [ 1 I 2 1 3 4 I 5 ] 6 l 7 8 | 9 I A l 8 c I D ] E I F
Bit 00 01 10 11 ]
Pat.
Row 00 01 10 11 0o 01 10 11 00 01 10 11 00 01 10 11
0 (o000 1 7 14 20
1 0001 2 8 15 21”
2 0010 v 3 9 16 22
3 |0011 4 10 17 2374
-1
4 |o100 5 11 18 24
5 0101 I 6 12 19 0
6 0110 IIT | 25 35 45 sy
7 (o111 26 36 13 55
8 [1000 27 37 46 56 )
9 1001 28 38 u7 5777
A [1010 29 39 ue 58
B |1011 IT] 30 4o 49 59
c |[1100 31 41 50 60-~
D (1101 32 u2 51 61
E (1110 33 43 52 524
F 1111 34 b 53 637
Fig. 8.6 BCDIC rearrangement 2
Column| © I 1 I 2 l 3 4 ] 5 l 6 I 7 8 I 9 l A [ B c I D J E ] f
Bit | 00 01 10 11
Pat. |
Row 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11
o (oooo0 1 7 1n 20
1 0001 2 8 15 21
2 Jloo1o v 3 9 16 22
3 (0011 u 10 17 23
4 (o100 5 11 18 24 n
5 |0101 Il s 12 19 ® -
6 0110 IIT } 25 35 45 54
7 loe111 26 | 36 | @) | 55
8 |1000 27 37 L6 56
9 1001 28 38 47 57
A |1010 29 39 48 sa-
8 1011 1T 30 4o 49 59
c (1100 31 41 50 60
]
D (1101 32 42 51 61
E |1110 33 43 52 62
F {1111 3k uh 53 63

Fig. 8.7 BCDIC rearrangement 3 (two collating exceptions)
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8.3 BCDIC CARD CODE RELATIONSHIP

It was at this point that several other factors were reviewed as design
requirements. Following this review, criteria for EBCDIC design were
established, and the final EBCDIC was designed. Before looking at the
criteria, let us look at the other design factors.

First, in BCDIC, there was a reasonably simple relationship between
BCDIC card hole patterns and BCDIC bit patterns (see Fig. 8.8). This
relationship, the cornerstone of the binary coded decimal algorithm,
results in relatively simple and inexpensive hardware translators in card
reader/punch units serving as input/output units to CPU’s. It was deemed
desirable to maintain this simple bit-pattern—to-hole-pattern relationship
in EBCDIC, if possible. The translation relationship, bit patterns to/from
hole patterns, reveals itself on examination of Fig. 8.8.

Bit

Pattern m—— No Zone A B BA
No Pch 8-2 L 11 12

1 1 0-1 11-1 12-1

2 2 0-2 11-2 12-2

21 3 0-3 11-3 12-3

4 4 0-4 11-4 12-4

4 5 0-5 11-5 12-5

42 6 0-6 11-6 12-6

421 7 0-7 11-7 12-7

8 8 0-8 11-8 12-8

8 1 9 0-9 11-9 12-9

8 2 0 L] 0-8-2 -0 B o

8 21 8-3 0~-8-3 11-8-3 12-8-3
8 4 8-4 0-8-4 11-8-4 12-8-4
84 1 8-5 0-8-5 11-8-5 12-8-5
842 8-6 0~8-6 11-8-6 12-8-6
8421 8-7 0-8-7 11-8~7 12-8-7

Exception translation

Fig. 8.8 BCDIC-BCD relationship
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Zone punches—no zone, zero zone, eleven-zone, twelve-zone—
translate to/from the two high-order, or zone, bits—No zone, A, B,
BA.

Digit punches 1, 2, 3, 4, 5, 6, 7 translate to/from their binary
equivalents, 1, 2, 21, 4, 41, 42, 421.

Eight punch translates to/from its binary equivalent 8. This holds
whether or not it is in conjunction with digit punches 1, 2, 3,..., 7.

Nine punch translates to/from its binary equivalent 8 1.

Zero punch translates a little trickily, depending on whether it is a
zone punch or a digit punch. It is a zero punch'if it is alone, or if it is
in conjunction with either zone punch 12 or 11 and then translates
to/from its conventional BCD equivalent 8 2. It is a zone punch if it
is in conjunction with any other digit punch 1, 2, 3,...,7, 8,9, and
translates to/from the A zone bit.

Cotumn| 0 ] 1 l 2 [ 3 4 [ 5 l 6 | 7 8 l 9 l A | B c I D I E J F
Bit 00 01 10 11
Pat.
00 01 10 11 0o | o1 10 11 00 | 01 10 11 oo | 01 10 1
Row
o |oooo GO (@ |25 |35 [us | su
1 |oo001 26 | 36 [ @) | 55
2 |oo10 27 37 46 56
3 |oo11 28 38 w7 57
4 lo100 29 39 ug 58
4
5 (0101 30 ) 49 59
6 (0110 31 ul 50 60
7 o111 32 42 51 61
8 [1000 33 43 52 62
9 |1001 34 ['4" 53 63
A |1010
el
B (1011 1 7 1y 20
c |1100 2 8 15 21
D [1101 3 9 16 22
E [1110 Y 10 17 23
F |1111 5 11 18 24

Fig

. 8.9 BCDIC rearrangement 4 (five collating exceptions)
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In order to maintain this hole-pattern-to-BCD bit-pattern relationship, it
is clear that the embedment of the 64 BCDIC characters in the 8-bit code
table, as shown in Fig. 8.7, would be wrong. Instead, the embedment
shown in Fig. 8.9 would come closer to preserving both the collating
sequence and the BCD relationship.

Block I is a little garbled on the collating sequence, and Block III
would put the BCD bit patterns 8 2 in the top row. But these are
peculiarities which we will study later.

8.4 TECHNICAL DECISIONS

Decision 1

The first decision was with respect to control characters and graphic
characters. It was decided (on a purely intuitive basis) that there would be
64 control character code positions and 192 graphic character code
positions.

Decision 2

The second decision was with respect to the code table location of the
control and graphic characters. It was decided that a quadrant would be
devoted to control characters (i.e., control characters should not overlap
quadrants) and that the first quadrant would be reserved for control
characters. Both Decision 1 and Decision 2 were based on Criter-
ion 3 (see Chapter 7): “Control characters should be easily disting-
uishable, by their bit patterns, from graphic characters; that is, graphic
and control characters should be separable.”
The first structuring of EBCDIC began to emerge (Fig. 8.10).

1 2 3 4
Control
characters Graphic characters
Figure 8.10

Decision 3

It was decided that the special graphics should be contained in one
quadrant (mostly) and the alphabetics and numerics in another quadrant,
as shown in Fig. 8.9. This decision was based on Criterion 1, the
requirement to embed the BCDIC collating sequence in the EBCDIC
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collating sequence. Letting S stand for special graphics, and AN stand for

alphabetics and numerics, this gave rise to three possibilities, as shown in
Fig. 8.11.

1 2|1 3|4 1 2 3]4 1 2|13 |4
S [AN S AN S |AN
Possibility one Possibility two Possibility three
Figure 8.11

Decision 4

Criterion 2 dictated that the Space character should occupy the first
code-table position in the Second Quadrant (Fig. 8.12).

Space

/
¥]

1 2 3 4

Figure 8.12

Decision 5

The gross collating sequence of BCDIC, and hence of EBCDIC, was
specials, alphabetics, numerics. It was decided (intuitively) that specials
should collate low to lower-case alphabetics as well as to upper-case
alphabetics.

Decision 6

Criterion 4 (inclusion of lower-case alphabetics) and Decision 5 clearly
ruled out Possibility 3 of Fig. 8.11.

Decision 7

It was decided (intuitively) that lower-case alphabetics as well as upper-
case alphabetics should collate low to numerics.

Decision 8

Decision 7 clearly ruled out Possibility 1 of Fig. 8.11, and left Possibility
2 as the only possible structure for EBCDIC. Decision 2, and Decisions
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3, 5, 6, and 7 which led to Decision 8, established the EBCDIC structure
as shown in Fig. 8.13.

Cnlumn0|112]3 4[5]617 ﬂlQIAIB CIDIE[F

Bit |

Pat.
L 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11
Row

o |ocoo} SP

1 0001}

2 001

3 001

4 |o1oo0}

5 0101}

6 |o110f

7 0111:

8 |[1000}

9 |1001})

A 1010

B 1011

[ 1100

D 1101

E 1110

F 1111

Fig. 8.13 EBCDIC gross structure

Decision 9

It was decided that Criterion 1 would be applied absolutely, regardless of
other criteria. An examination of Fig. 8.9, therefore, indicated that
characters 6, 12, 19, 0, and 13 must be rearranged and Figs. 8.14 and
8.15 show the final result.

It is to be noted that Criterion 6 was also met by Fig.
8.15. The card hole patterns and positive, negative, and absolute
numeric equivalents were as shown in Fig. 8.16. Note also that some of
the card hole patterns for EBCDIC had now been established, as shown
in Fig. 8.17. It was decided at this time that, as regards small letters and
capital letters, the capital letters should be assigned to the BCDIC hole
patterns for alphabetics, in order to ensure a more reasonable migration
from BCDIC to the EBCDIC environments.



owm] o [ 1] 2] 3]s ] s e ] ] s]s]a]s]c]o]c]~
Bit | 00 01 10 11
Pat. =
00 | 01 10 11 0o | o1 10 | 11 oo [ 01 10 11 0o | 01 10 11
Row
0 (o000 I 0 6 12 19 III § 25 35 45 sy
1 0001 13 26 36 55
2 (o010 27 37 ue 56
3 [0011 28 38 w7 57
4 0100 29 39 48 58
5 0101 II] 30 (Y] 49 59
e
6 0110 31 41 50 60
e
7 o111 32 42 51 61
8 [1000 33 43 52 62
9 |1001 3 Ly 53 63
A [1010
B (1011 1 7 14 20 J
c jti100 2 8 15 21
—
D |[1101 v 3 9 16 22
E [1110 " 10 17 23
F 1111 5 11 18 24
Fig. 8.14 BCDIC rearrangement 5 (correct collating sequence)
Column| 0 | 1 ] 2 1 3 4 I 5 I 6 ] 7 8 I ) I A l B c l D l E [ F
Bit 00 01 10 11 3
Pat. =
00 | o1 10 11 oo | o1 10 11 00 | 01 10 11 oo | 01 10 11
Row
6 |ooo0 SP | &+ - b ? 1 t 0
1 0001 / A J 1
2 0010 B K S 2
3 |0011 C L T 3
4 |o100 D M U 4
5 |0101 E N v [
6 (0110 F (o] W 6
7 o111 G P X 7
8 1000 H Q Y 8
] 1001 I R 7z 9
A [1010
—f
B 1011 . 4 , | #=
c [1100 ) *= 1z (|e’
D |[1101 r ] Y
E (1110 < H \ >
Fo[1111 ¥ A # v

Fig. 8.16 BCDIC graphics in EBCDIC
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Hole Numeric Hole Numeric Hole Numeric
Graphic | pattern | equivalent | Graphic | pattern | equivalent | Graphic | pattern equivalent
? 12-0 +0 ! 11-0 -0 0 0 0
A 12-1 +1 J 11-1 -1 1 1 1
B 12-2 +2 K 11-2 -2 2 2 2
C 12-3 +3 L 11-3 -3 3 3 3
D 12-4 +4 M 11-4 -4 4 4 4
E 12-5 +5 N 11-5 -5 5 5 5
F 12-6 +6 O 11-6 ~6 6 6 6
G 12-7 +7 P 11-7 -7 7 7 7
H 12-8 +8 Q 11-8 -8 8 8 8
1 12-9 +9 R 11-9 -9 9 9 9
Fig. 8.16 EBCDIC-BCD relationship
Cowmn| 0 | 1 [ 2 | 3 a | s | 6 [ 7 8 | o [ A ] 8 c [ o[ E] F
Bit 00 01 10 11
Pat. ""60 | 01 ] 10 | 11 | oo | 01 [ 10 | 11 00 ] 01 | 10 | 11 00 | 01 10 [ 11
Hole Hole
Pat. 12 Pat.
11 N
Row 0 -
o loooo R EE T Xli XLG_ )9_7_. 8 XL9_ XIlO_ )}1 }Jl'i
1 jooo1 )JE X X 4 X 1
2 |oo10 X X X X 2
3 |oo11 X X X X 3
4 (0100 X X X X 4
5 |0101 X X X X 5
6 o110 X X X X 6
7 jo111 X X X X 7
8 [1000 X X X X 8
9 |1001 X X X X 9
A [1010 [1s)
B {1011| 8-3 X X X X
c |1100]| 8-4 e X X X
D [1101] 8-5 X X X X
£ |1110] 8-6 X X X X
F |1111]| 8-7 X X X X
> 12
Hole 11
Pat. 0
Hole Patterns: X = Assigned Hole Patterns
o] 11 [13] 0-1
E Block | Hotle Patterns at:
E E 12-0 1 3 1 Top and Left
E 11-0 2 Bottom and Left
[s] No Pch [+1] 0-8-2 2 4 3 | Topand Right
E 12 @ 0 4 Bottom and Right

Fig. 8.17 Preliminary EBCDIC hole patterns
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of
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9.1 A- AND H-DUALS

In Chapters 4 and 5 there is a discussion of the five duals of BCDIC; why
they came into being, an attempt to eliminate them, and why they were
not eliminated after all. The duals came into existence because of
equipment limitations and were retained for reasons of compatibility.

A number of different 48-character chains were provided for the
families of 6-bit computers. These chains were designated by letters A, B,
C, D, E, F, G, H, I, etc. One of these chains carried the “commerical”
graphics and was designated an A chain. Another chain carried the
“scientific”’ graphics and was designated the H chain. In time, the duals
came to be designated by these letters; the A-duals and the H-duals.

Hole patterns A-duals H-duals

0-8-4 % (
12-8-4 X )
12 & +

8-3 # =
8-4 @ '

While EBCDIC was being developed (as described in previous chapters),
the question arose again, “Should the duals be eliminated?”

9.2 IMPLICATIONS OF REASSIGNING DUALS

Certainly, the equipment limitations could be removed. While the
System/360 was being designed, a new keypunch (which came to be the
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IBM 029 Keypunch) was being designed. It would expand from the
capability of the 026 Keypunch to key 48 characters by single key-stroke
to a capability of 64 characters. New printers were being designed, and it
was assumed or hoped that the long-established 48-character printing set
could be expanded without sacrificing printing speed. The question of
compatibility of card hole patterns with BCDIC would obviously arise
and would have to be reviewed. But the full implications of any such
incompatibility could not be reviewed in depth until the nature and extent
of the incompatibility was known. The first thing to be determined was
what the incompatibility might be. There were four possibilities:

Possibility 1. Retain the de facto BCDIC hole patterns for the A-duals,
and assign new hole patterns to the H-duals.

Possibility 2. Retain the de facto BCDIC hole patterns for the H-duals,
and assign new hole patterns for the A-duals.

Possibility 3. Retain the de facto BCDIC hole patterns for some of the
A-duals and for some of the H-duals, and assign new hole patterns to the
other A-duals and to the other H-duals.

Possibility 4. Assign new hole patterns to the A-duals and to the
H-duals.

It was clear that, whatever the implications of Possibilities 1 and 2, these
must be determined first, after which the implications of Possibilities 3
and 4 could be determined easily. So Possibilities 1 and 2 were looked at
first.

Three data processing customer situations were reviewed:

Situation 1. Customer now, or in the future, will take a successfully
performing application on a BCDIC computer and convert it to run on an
EBCDIC computer.

Situation 2. An application will be organized so that it is processed
partially on a BCDIC computer and partially on an EBCDIC computer.

Situation 3. An application will be processed completely on an EBC-
DIC computer.

With respect to Possibilities 1, 2, 3, and 4, Situation 3 seemed to display
no implications, so it was disregarded in further review.
Two assumptions were now made:

Assumption 1. A-duals will appear mainly in data. That is, they will be
required to be input to the system, will exist in data during various stages
of processing, and may be required in output listings or other output data.



9.2 Implications of Reassigning Duals 145

Assumption 2. H-duals will appear mainly in programming source lan-
guage statements. That is, they will require to be input to the system, and
will be required for source language program listings, and will be required
during compile processes, but will not then be required in further stages
of processing.

Some implications now emerged:

Implication 1. Possibility 1 posed no adverse implications under As-
sumption 1 for any of Situations 1, 2, or 3, but it posed adverse
implications under Assumption 2.

Implication 2. Possibility 2 posed no adverse implications under As-
sumption 2 for any of Situations 1, 2, or 3, but it posed adverse
implications under Assumption 1.

Implication 3. Possibilities 3 and 4 posed adverse implications for all of
Situations 1, 2, and 3 under both Assumptions 1 and 2.

Before we consider adverse implications, let us look at another
assumption that was made.

Assumption 3. Under Possibilities 1, 2, 3, and 4, the “new’ hole
patterns would nevertheless be contained within the set of 64 BCDIC
hole patterns. That is to say, the “new” hole patterns™ could still be input
to BCDIC computing systems, even though their graphic meanings had
been changed.

Now, let us examine the adverse implications in detail. First we need
some terminology to cover the four Possibilities precisely.

If the old and therefore compatible hole patterns are retained for the
A-duals, the data containing these duals will be called ‘“compatible
BCDIC A-data,” or “compatible EBCDIC A-data,” depending on which
code is used. Similarly, if old hole patterns are retained for the H-duals,
reference will be made to “compatible BCDIC H-data,” or to “compati-
ble EBCDIC H-data.”

If new and therefore incompatible hole patterns are assigned to the
A-duals, reference will be made to “incompatible BCDIC A-data” or to

*An intriguing aspect of “new” hole patterns emerged in EBCDIC. A 64-
character subset of the 256 EBCDIC hole patterns was the set that was single-
stroke keypunchable on the 029 Keypunch. But the EBCDIC set of 64 hole
patterns did not match the BCDIC set of 64 hole patterns. EBCDIC subset
contained 12-8-2 and 11-8-2, but not 12-0 and 11-0 (12-0 and 11-0 were, of
course, contained in the total set of 256 EBCDIC hole patterns). BCDIC set
contained 12-0 and 11-0, but did not contain 12-8-2 and 11-8-2. This anomaly is
fully discussed in Chapter 10.



146 The Duals of EBCDIC

“incompatible EBCDIC A-data.” Similarly, if new hole patterns are
assigned to the H-duals, reference will be made to “incompatible BCDIC
H-data” or to “incompatible EBCDIC H-data.”

9.2.1 Situation 1 Consequences
Consider Situation 1 under each of the four Possibilities:

Situation 1/Possibility 1. There will be no problem with A-data, but all
programs will have to be either reprogrammed or rekeypunched for the
incompatible EBCDIC H-data, then recompiled and redebugged.

Situation 1/Possibility 2. Data containing compatible BCDIC A-data
will have to be converted to incompatible EBCDIC A-data. Programs
will have to be either reprogrammed or recompiled and redebugged (but
not rekeypunched).

Situation 1/Possibility 3. The actual situation here would depend on
which A- and H-duals were, or were not, changed. However, for those
applications with A-data whose A-duals had been changed, data would
have to be converted. Programs would have to be either reprogrammed
or rekeypunched, then recompiled and redebugged.

Situation 1/Possibility 4. Data containing compatible BCDIC A-data
would have to be converted. Programs would have to be rekeypunched,
recompiled, and redebugged.

9.2.2 Situation 2 Consequences

Now, Situation 2 had to be defined in greater depth. There are three
considerations:

= BCDIC computer does, or does not, process H-data.

=  BCDIC computer does, or does not, pass A-data to EBCDIC
computer.

=  BCDIC computer does, or does not, receive A-data from EBCDIC
computer.

The various possible situations are shown in the left column of Fig. 9.1.
For these various situations, the table indicates whether implications are
unsatisfactory (U) or satisfactory (S). For the various Situations under the
four Possibilities, Situation/Possibilities were unsatisfactory in 12 in-
stances because of change of H-duals, unsatisfactory in 18 instances
because of change of A-duals. Assuming all Situation/Possibilities were
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BCDIC Possibility Possibility Possibility Possibility

Computer 1 2 3 4
Processes H, yes U S U U
Passes A, yes S U U U
Receives A, yes S U U U
Processes H, yes U S U U
Passes A, yes S U U U
Receives A, no S S S S
Processes H, yes U S U U
Passes A, no S S S S
Receives A, yes S U U U
Processes H, yes U S U U
Passes A, no S S S S
Receives A, no S S S S
Processes H, no S S S S
Passes A, yes S U U U
Receives A, yes S U U U
Processes H, no S S S S
Passes A, yes S U U U
Receives A, no S S S S
Processes H, no S S S N
Passes A, no S S S S
Receives A, yes S U U U
Processes H, no S S S S
Passes A, no S S S S
Receives A, no S S S S

Figure 9.1
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equally likely to occur, the table shows more unsatisfactory implications

for A-dual changes than for H-dual changes.
There was another consideration. There are vastly more tapes con-

taining application data (i.e., containing A-duals) than there are source
language program tapes (i.e., tapes containing H-duals). In general, it was
reasoned that the costs of converting data (if A-duals were changed)
would be vastly greater than the costs of converting programs (if H-duals
were changed). Possibility 1, therefore, seemed to pose very much less of
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a cost implication for users than Possibility 2. Possibilities 3 and 4 seemed
to pose more cost implications for users than either Possibilities 1 or 2. In
short, Possibility 1 seemed to be the least onerous choice.

9.3 FIRST DECISION

The first decision was made. If one of the four Possibilities were chosen, it
would be Possibility 1—to retain the BCDIC hole patterns for the
A-duals and to change the hole patterns for the H-duals. This Possibility
would be taken together with Assumption 3—to retain the 64 BCDIC
hole patterns.

The next step was to decide which five BCDIC graphics would be
replaced by the EBCDIC H-duals:

() + ="

9.4 FURTHER DECISIONS
Soine further decisions were made:

1. Space, numerics, alphabets would not be changed.
2. @ # % & X would not be changed.
3. ., * /' $ — would not be changed.

This left the following BCDIC graphics for consideration:

o2 < > [
/] b v * £ # A V

This problem was being considered in the same time frame as the
design and development of the System/360. It had already been decided
that none of the control functions provided by the seven BCDIC control
characters would be provided as functions on the System/360, and the
seven graphics would not be provided on the System/360. Therefore, the
seven graphics would not be provided in EBCDIC, and the seven
corresponding code positions were available for assignments of the H-
duals or of new graphics as seemed appropriate.

It was decided that the five H-duals would not be assigned to any of
these seven code positions. The reasoning went as follows. The five
H-duals were graphics used in programming languages. It was entirely
possible that source language programs intended for execution on
System/360 might first pass through a BCDIC computer, for one or
another reason. But such programs would have to have the “new” codes
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for the H-duals, whatever they might be. If the H-duals were assigned to
the hole patterns of BCDIC control characters, then, when such programs
were entered into a BCDIC computer, the H-duals would have bit
patterns of control characters. And if such programs were then recorded
on seven-track magnetic tape, during the recording or subsequent reading
of such tapes on BCDIC computers, the control bit patterns might cause
unexpected and undesirable effects. Might not, of course, if care was
taken, but the feeling was, it was better to be safe than sorry. The
H-duals should not be assigned to the hole patterns of the BCDIC control
characters.

This left the following set of BCDIC graphics, of which five were to
be replaced by H-duals:

;o< > N [ ]
Intuitively, it was decided to replace
[ 1 by ()
leaving
;o< >\

three of which were to be replaced by
+ =

As has been mentioned before, it had already been decided not to
provide on the 029 keypunch the hole patterns 12-0 and 11-0 as
single-stroke keypunchable characters. In consequence, the hole patterns
of the BCDIC graphics ? ! were not available to be replaced by any of the
H-duals. (The reason for this aspect of the design of the 029 Keypunch is
discussed more fully in Chapter 10.) This left BCDIC graphics

;< >\

The ; was a required graphic in COBOL, so it could not be replaced.
Both < and > were also COBOL graphics, but the COBOL standard
stipulated that they could be represented by two-character representa-
tions; GT (Greater Than) for > and LT (Less Than) for <. It was
decided that < and > were the two BCDIC graphics to be replaced, and
+ and = were chosen to replace them, respectively. BCDIC ; and
EBCDIC ; would be matched. This left BCDIC graphic either : or \ to be
replaced by ’; on not much more than a toss of a coin basis, it was decided
to replace

by '’
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The situation was now as follows:

BCDIC EBCDIC
Space match Space
0-9 match 0-9
A-Z match A-Z
,ox [ - match L% [ 8 -
@ # % & H match @ # % & H
> [ < ] replaced by = +)
71 hole patterns not

to be assigned
EBCDIC graphics

\ undecided
By + £ #AYV not to be assigned
in EBCDIC

At this stage then, five BCDIC graphics < > [ ] : were to be replaced,
the card hole patterns of two BCDIC graphics ? ! were not to be on the
029 Keypunch, and no decision has been made with respect to the
BCDIC graphic \ .

The next question was whether any of the seven BCDIC graphics

< > [1] :!?
should be reassigned to BCDIC hole patterns to be vacated by
+ = # b AV vy

9.5 PL/I CONSIDERATIONS

While this question was being considered, a new factor came on the
scene. A new higher-level programming language, PL/I was being de-
veloped. PL/I itself has some character set requirements. The Space
character would be needed and so would the following 59 graphics:

10 numerics 0to9
26 alphabetics AtoZ
3 alphabetic extenders # $ @
20 syntactics™® + = = ] ox () < > _

, Do 2T % &

*A syntactic is a character that has some specific meaning within the syntax of a
programming language.
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Actually, the PL/I designers had wanted more graphics, in particular [
and ], but the requirement to implement the set on a 60-character chain
made it impossible to provide the brackets to PL/I.

It was decided that these 59 graphics must definitely be assigned in
EBCDIC and to hole patterns that are single-stroke keypunchable on the
029 Keypunch. Many of them had already been assigned, under the
discussion above. The Space character, numerics, alphabetics, and al-
phabetic extenders had been assigned. Of the syntactics, 13 had been
assigned:

() + =7 5% & [ % -

Seven syntactics remained to be assigned:

< > | 7 - 2

Also, graphics for three lower-case alphabetic extenders needed to be
assigned. Ten BCDIC graphics had not yet been replaced:

270N b + = # A V

Of these ten, as mentioned previously, the hole patterns 12-0 and 11-0
for 7 and ! were not to be available on the 029 Keypunch. Compensating
for this, two new hole patterns would be available, 12-8-2 and 11-8-2.

It seemed like a fortuitous match—seven syntactics and three lower-
case alphabetic extenders needed to be assigned, and eight BCDIC hole
patterns and two new hole patterns were available. This fortuity quickly
disappeared, for the following reasons.

9.6 88 - 26 = 62"

The console typewriter for the System/360 would provide 88 graphics and
the Space character. Of these 88, 26 are lower-case alphabetics, leaving
62 graphics. The 029 Keypunch can provide 63 graphics and the Space
character, but if it does so, one of those 63 graphics cannot be typed on
the console typewriter. The system would be out of balance. To resolve
this system imbalance, the 029 Keypunch must be allowed to provide
only 62 graphics, and the Space character. The 029 would have the
physical capability of providing a 63rd graphic, but it must not do so. This
reasoning was accepted. (A fuller discussion is given in Chapter 10.) The
029 Keypunch was designed to have a key that will generate the 0-8-2
hole pattern, but no graphic is interpreted on the punched card. Since the
0-8-2 hole pattern was selected, no EBCDIC graphic would be assigned
to replace the BCDIC #.
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9.7 ASCIl CONSIDERATIONS

The consequence of this decision was that there were 9 hole patterns
available and 10 graphics to be assigned. This dilemma was resolved by
consideration of another factor. It would be helpful in the long run if
EBCDIC provided the same set of graphics as ASCIL. A corollary of this
was that EBCDIC should not have graphics that were not in ASCII. This
focused attention on three EBCDIC graphics:
| ° X

The first part of the solution involved | and 7' . As described in Chapter
24, this problem was solved when the standards committees decided that
the ASCII graphics ! and " could be stylized as (that is, substituted by) |
and

This left the graphic X to be resolved. Attempts to persuade the
standards committees to assign this graphic in ASCII were unavailing.
Eventually, it was decided not to assign X in EBCDIC. This decision, as it
turned out, was not subsequently accepted by many customers, who
requested that it be provided on printers for the System/360. It was

provided to these customers, although it ostensibly did not exist in
EBCDIC.

9.8 BCDIC CONTROL CHARACTERS

This brought the counts back to match—EBCDIC graphics for BCDIC
hole patterns. The question that now arose concerned the fact that six of
these BCDIC hole patterns represented BCDIC control characters. As
stated above, BCDIC hole patterns that represented BCDIC control
characters were avoided in reassigning the H-duals. Shouldn’t they also
be avoided in assigning the rest of the PL/I syntactics?

It would not be possible to avoid them, however, if Assumption 3
above was to be valid. So the question was not how to avoid assigning
PL/1 graphics to BCDIC control characters, but rather what the implica-
tions of such an assignment might be. The reasons for avoiding BCDIC
control characters for H-duals were reviewed:

= H-duals were used in FORTRAN and COBOL source language
programs.

" Such programs, intended for execution on a System/360, might
nevertheless be processed in some way on a BCDIC computer before
arriving at the System/360.

s  During the processing on a BCDIC computer, the source language
program might be stored on magnetic tape.
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® The control bit patterns might cause unpredictable and unwanted
results.

Since PL/I, as a programming language, was not being developed for
use on a BCDIC computer, it seemed unlikely that any PL/I source
language programs intended for execution on a System/360 would be
entered into a BCDIC computer for any reason. Therefore, it seemed
that assigning PL/I syntactics to BCDIC control bit patterns was unlikely
to lead to trouble. Two of these syntactics < and > were also COBOL
syntactics, so it was decided not to assign < and > to BCDIC control
characters. There were just two BCDIC noncontrol characters remaining
unassigned, X (freed up as described above) and \. These two hole
patterns were assigned to < and > (respectively).

The five remaining PL/I syntactics | 7 _ : ? were assigned to the hole
patterns previously assigned to BCDIC graphics £ y A b # respec-
tively.

9.9 LOWER-CASE ALPHABETIC EXTENDERS

The sole remaining problem, then, was assignments for the three lower-
case alphabetic extenders. While this development work on EBCDIC was
going on, a new PTTC was being developed for the System/360 (see
Chapter 12). The criterion developed for lower-case alphabetic extenders
for the new PTTC was as follows:

U.S.A. graphics for the three lower-case alphabetic extender code
positions must be such that they will not be required or wanted in
any European country with a Latin alphabet. That is, in such
countries, the U.S.A graphics can be “throwaways.”

The three graphics ¢ ! ” were chosen to meet this criterion. (These
graphics also met the requirement that they be ASCII graphics, although
¢ disappeared from ASCII before ASCII was finally approved as an
American National Standard.) And so ¢ ! were assigned to the two new
hole patterns, 12-8-2 and 11-8-2, and ” was assigned to the sole re-
maining BCDIC graphic / with its hole pattern of 8-7.

It should be pointed out that because of their card hole patterns 12-
8-2 and 11-8-2, the EBCDIC ¢ and ! came in time to be associated with
the ASCII graphics [ and ] associated with those hole patterns. When this
association became firm (when the American National Standard Hollerith
Punched Card Code was approved), it was suggested that EBCDIC be
changed, replacing ¢ and ! with [ and ] (respectively). This suggestion was
reviewed, but not adopted, for the following reasons.
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1. The cost to replace 029 Keypunch printing plates and keytops,
printer chains and trains, typewriter printing elements, graphic dis-
play character generators, etc., would be considerable.

2. Graphics [ and ] were in ASCII code positions which corresponded
to National Use positions in the ISO 7-Bit Code. ISO 7-Bit Code
National Use graphics, like EBCDIC alphabetic extenders, were ex-
pected to be replaced in those European countries with Latin al-
phabets of more than 26 letters; that is, the graphics [ and | would
not, in fact, appear in Europe.

3. In FORTRAN and PL/I, there had long been an unfulfilled require-
ment for a second pair of “parentheses.” The [ and ] would certainly
serve that purpose. If the brackets were put on the 029 Keypunch,
that would make them available for just such a second level of
parentheses.

4. But such a compiler would not serve in Europe, where the brackets
would be replaced by letters.

5. To avoid such a potential dichotomy for programming languages
between Europe and the U.S.A., graphics [ and | were not put on the
029 Keypunch.

6. A small glitch between ASCII and EBCDIC—{ and ] corresponding
respectively to ¢ and !—seemed preferable to the potential program-
ming language dichotomy of reason 5 above.

9.10 FINAL ASSIGNMENT OF SPECIALS

Figure 9.2 shows the final assignment of specials into EBCDIC in 1970,
as a result of reassigning the H-duals. Figure 9.3 shows, for comparison,
the graphics that would have been assigned in EBCDIC if the BCDIC
specials, complete with A/H-duals, had been assigned according to their
BCDIC card hole patterns. Of the 27 BCDIC specials, only 11 ended up
with unchanged code positions in EBCDIC.

9.11 CONSEQUENCES OF REASSIGNMENT

A question that arose was whether the collating sequence had been
affected by these changes. The primary criterion in the development of
EBCDIC was that the collating sequence of BCDIC should be embedded
in the EBCDIC collating sequence (see Chapter 8). In a very real sense,
this criterion had not been aborted, even though many BCDIC graphics
ended up with EBCDIC card hole patterns different than their BCDIC
card hole patterns.
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Fig. 9.3 BCDIC specials in EBCDIC
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Example

The field on which records are sorted or collated is called a keyword.
Keypunch a set of records, and keywords, on an 026 (BCDIC) Keypunch.
Enter the data into a BCDIC computer. Sort the records in sequence of
keywords.

Take the same card deck, and enter it into an EBCDIC computer.
Sort the records in sequence of keywords.

The sequence of records in the BCDIC computer and the sequence
of records in the EBCDIC computer will be identical.

The sequence of records will be identical, but will anything be
different? List the keywords and records on the printer of the BCDIC
computer. List the keywords and records on the EBCDIC computer.
Compare the listings. If all graphics in the keywords and records are in
the following set, the listings will be identical:

Space

Numerics 0to9

Alphabetics A to Z

Specials o, = 8 - 5 & % # @

If graphics are used in keywords or records beyond the set above, the
listings will look different, the differences corresponding to the differences
between Fig. 9.2 and 9.3. But it must be reemphasized that the sequence of
records will be identical.

Were there any adverse effects of the reassignment of the H-duals?
Yes, indeed! The first effect showed up for programmers who were
developing various programs for the System/360. Engineering models of
the System/360 were available for the use of programmers, but 029
Keypunches were not. Programmers could not get their programs
keypunched according to the EBCDIC card hole patterns. If programs
could not be keypunched, they could not be entered and debugged. The
solution to this impasse was to modify several 026 keypunches to gener-
ate the EBCDIC hole patterns for () + = . Then the programs could be
keypunched, entered, and debugged.

The second effect was on customers who had received a System/360.
Of course, old BCDIC machine language programs would not work on
the System/360, but, to the extent that customers had retained source
language program decks or program tapes for COBOL or FORTRAN,
the programs could be recompiled, a task which was a far less onerous
proposition than reprogramming. Unfortunately, such program decks or
tapes would have the old BCDIC H-dual hole patterns or bit patterns for
() + = ' and the System/360 compilers for COBOL and FORTRAN had
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Fig. 9.4 A- and H-duals in EBCDIC

been written assuming the new EBCDIC patterns for these graphics.
Could this dilemma be resolved?

It could, and was, with the aid of some IBM customers. Consider Fig.
9.4. EBCDIC hex positions 4D, 5D, 4E, 7E, and 7D were the assigned
positions for the bit patterns of () + = '. EBCDIC hex positions 6C, 4C,
50, 7B, and 7C were where these graphics would have been assigned
according to their old BCDIC hole patterns or bit patterns. Three things
were done.

1. The logic in the control unit of the chain and train printers was
modified, as shown in Fig. 9.4, so that

either hex position 4D or 6C printed (
either hex position 5D or 4C printed )
either hex position 4E or 50 printed +
either hex position 7E or 7B printed =
either hex position 7D or 7C printed '
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2. The scan portion of the FORTRAN compiler was modified so that
either of the equivalent pairs of bit patterns would be accepted for ()
+ ="

3. The scan portion of the COBOL compiler was similarly modified.

By these actions, old FORTRAN or old COBOL program decks or tapes
could be read into a System/360, listed for debug purposes, compiled, and
executed.

Clearly, if these actions had been taken during the development cycle
of System/360 programs, the first adverse effect above would not have
occurred, and unmodified 026 Keypunches could have been used. Hind-
sight is easily come by.

With the reassignment of H-duals in EBCDIC, and with the assign-
ment or reassignment of the remaining PL/I syntactics and of the lower-
case alphabetic extenders, the 88 graphics of EBCDIC were set in place.
Attention now centered on completing the 256 card-hole-patterns—to—
bit-patterns assignments. This will be discussed in Chapter 11.



The
Graphic Subsets
of EBCDIC

The 256-character code EBCDIC was designed as the CPU code for the
System/360. As described in Chapter 8, a decision was made to reserve
64 code positions for control meanings and 192 code positions for graphic
positions. The physical capability of chain/train printers of providing up
to 240 different graphics did not limit the total numbers of graphics to be
assigned in EBCDIC. Other factors did set limits and gave rise to graphic
subsets of EBCDIC.

10.1 88-GRAPHIC SETS

The console printer for the System/360 was based on an electric typewri-
ter, duocase, with 44 keys, and a capability of printing the following 88
graphics:

10 numerics 0to9
26 lower-case alphabetics atoz
3 lower-case alphabetic extenders ¢ ! ”
26 upper-case alphabetics Ato Z
3 upper-case alphabetic extenders # $ @
20 specials /] *+ = - & % | T
— ;1< >() "

As described in Chapter 8, these 88 graphics were assigned to code
positions as shown in Fig. 10.1.
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Fig. 10.1 EBCDIC 88-graphic set

10.2 62-GRAPHIC SUBSET

From the duocase set of 88 graphics emerged a monocase set. The IBM
029 Keypunch was being designed at the same time as the System/360,
and it had been decided to provide 64 hole patterns on the 029. One of
these hole patterns would be the ‘“no-holes” hole pattern for the Space
character, leaving 63 hole patterns to be assigned. It was decided that the
029 Keypunch would provide a monocase set, and that the hole patterns
for the monocase alphabetics would be those already assigned to the
upper case alphabetics of EBCDIC. A keypunch keyboard is represented
in Fig. 10.2.

By the decision to assign the hole patterns of the EBCDIC upper-
case alphabetics to the keypunch monocase alphabetics, the EBCDIC
lower-case alphabetics were excluded from the keypunch—excluded in
the sense of being single-stroke punchable. That is to say, of the 88
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Numeric Punch Code

62-Graphic Subset

v\Alphabetic Punch Code
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Fig. 10.2 029 keyboard
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Hole
Pattern— 12 1 0
& - 0 SP
1 A J / 1
2 B K S 2
3 c L T 3
4 D M U 4
5 E N A 5
6 F 0 W 6
7 G P X 7
8 H Q Y 8
9 1 R Z 9
0 ¢ !
8-3 $ , #
8-4 < * 9 @
8-5 ) _ [
8-6 + =
8-7 ( - ? "

Fig. 10.3 EBCDIC 64-graphic set

EBCDIC graphics, 88 — 26 = 62 could be provided. But the keypunch
could provide 63 graphics. There were, then, two possible choices:

1. Assign 63 graphics on the keypunch, and add a graphic to EBCDIC,
making a total of 89.

2. Assign 62 graphics on the keypunch, and thus leave one of the 63
hole patterns unassigned.

If choice (1) were made, the 89th graphic could then not be printed on
the 88-graphic console typewriter. An imbalance in the system would be
created. For this reason, choice (1) was rejected.

Under choice (2), the keypunch could punch and interpret 62 charac-
ters and the Space character. The hole pattern 0-8-2 has no graphic
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62-Graphic Subset

Hole
Pattern—»

n

& or + - 0 SP
1 A J / 1
2 B K S 2
3 c L T 3
4 D M U 4
5 E N v 5
J T ) W 6
7 G 3 X 7
8 H Q Y 8
9 1 R Z 9
0 ? H ! L2] $ B
8-3 $ s # or =
8-4 T or ) * % or ( @ or '
8-5 C 1 Y
8-6 < ; \ >
8-7 % A e 4

Hole Patterns:

(] 12-0
fz] 11-0

Fig. 10.4 BCDIC 64-graphic set
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assigned. As can be seen from Fig. 10.2, 0-8-2 is engraved on a keytop.
When this key is depressed, the hole pattern 0-8-2 is punched in the card,
but no graphic is interpreted on the card. (As described later in Section
10.3, a graphic was assigned some years later to the hole pattern 0-8-2,
but it is not interpreted on the 029 Keypunch.)

The 64 characters of this EBCDIC subset are shown in Fig. 10.3.

Figure 10.4 shows the 64-character set of BCDIC. It is to be noted that
the two sets of 64 hole patterns are not quite the same. EBCDIC-64 has
hole patterns 12-8-2 and 11-8-2, and does not have 12-0 and 11-0.
BCDIC has hole patterns 12-0 and 11-0, and does not have 12-8-2 and



164 The Graphic Subsets of EBCDIC

11-8-2. The hole patterns 12-8-2 and 11-8-2 were chosen instead of 12-0
and 11-0 for the 029 Keypunch because of a mechanical problem.*

It is of interest that these 64 hole patterns of the 029 Keypunch are
the hole patterns assigned to the 64 graphics and Space in columns 2, 3,
4, and S of the 7-Bit Code (Fig. 2.26). In that code, the graphic \ is
assigned to the hole pattern 0-8-2, and the graphics [ and ] are assigned
to the hole patterns 12-8-2 and 11-8-2, respectively, as contrasted to the
EBCDIC graphics ¢ and !. Further, in the 7-Bit Code, graphics ! and A
are assigned to hole patterns 12-8-7 and 11-8-7, respectively, as con-
trasted to the stylistically similar EBCDIC graphics | and —1. This
64-graphic set is shown in Fig. 10.5.

Another 64-character set emerged during the design of the IBM
System/3. It was decided to provide a printing set of 63 graphics and
Space. Of these 63 graphics, it was quickly decided that 62 would be
those of EBCDIC previously described. But what should the 63rd graphic
be? It will be recalled that for the System/360, a console typewriter of
88-graphic capacity limited the EBCDIC monocase set to 62 graphics.
But for the System/3, a 63 monocase printer would be provided for the
console, so the system imbalance limitation did not appear.

In the System/3, as with other BCD computers, the BCD relation-
ship for alphabetics would be provided. That is, as discussed in Chapter 2,
hole patterns 12-1, 12-2,...,12-9 would mean A, B,...,I as alpha-

betics, but would mean +1, +2,..., +9 as signed numerics; hole patterns
11-1, 11-2,...,11-9 would mean J, K, ..., R as alphabetics, but would
mean —1, —2,...,—9 as signed numerics.

When signed numerics are printed out in final listings, the sign — is
separated from the units position of a numeric field and printed sepa-
rately. But during debugging runs, the sign is generally not printed out.
That is to say, —1, —2,..., =9 will print as J, K, ..., R. While this may
look peculiar, it is quite unambiguous to the programmer, and is accepta-
ble. Similarly, +1, +2,..., +9 will print as A, B,..., L.

The problem is, what will print for —0 and for +0 ? The problem
with +0 is not so pressing, since input data for debugging generally has
absolute (unsigned) numbers instead of positive (signed) numbers. But the

* Without going into details on this mechanical problem, let it suffice that to
interpret from hole patterns 12-0 and 11-0 would be quite difficult, while to
interpret from hole patterns 12-8-2 and 11-8-2 was quite easy, so the latter pair
were chosen. The hole patterns 12-0 and 11-0 are included in the total set of 256
hole patterns of the EBCDIC card code, but they are not in the 64-character set
of the 029 Keypunch.
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62-Graphic Subset

Hole
Pattern—¥ 12 11 0
& - ! Sp
1 A J / 1
2 B K S 2
3 C L T 3
a D M U 4
5 E M \ 5
6 F 0 W 6
7 G P X 7
8 H Q Y 8
9 I R Z 9
0 C ] \
8-3 $ s #
8-4 < #* % @
8-5 ( ) — !
8-6 + ; > =
8-7 ! ~ ? "

Fig. 10.6 7-Bit code 64-graphic set
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problem for —0 remains. It was decided that there must be an actual
graphic to represent —0. The bit pattern for —0 is in hex-position DO. As
explained later in this chapter, the graphic } had been assigned to this
EBCDIC code position. Therefore, it was chosen to represent —0 in the

System/3.

It seemed strange to provide, in a printing set, } and not to provide {.
However, with the addition of } to the 62 graphics and Space, all positions
of the 64-character set were filled. If { were to be provided, then one of
the 62 graphics would not be provided, and this possibility was rejected
by the System/3 designers. The 64-character set of the System/3 is shown

in Fig. 10.6.
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Column| © I 1 [ 2 I 3 4 l 5 | 6 i 7 8 I 9 I A l B c I D [ E l F

Bit 00 01 10 11

Pat.
Raw 6o | 01 10 11 co | 01 10 | 11 00 | 01 10 11 00 | 01 10 11
o |oooo SP & - } 0
1 |ooo01 / A J 1
2 |o010 B K S 2
3 |0011 C L T 3
4 {0100 D M U 4
5 (o101 E N v 5
6 (0110 F 0 W 6
7 [o111 G P X 7
8 |1000 H Q Y 8
s |1001 I R Z 9
A |1010 ¢ !
B [t011 . $ R #
c [1100 < * % @
D (1101 ( ) _ '
E |1110 + ; > =
F 1111 | - ? "

Fig. 10.6 System/3 64-graphic set

10.3 94-GRAPHIC SUBSETS

ASCIL, the U.S.A. version of the ISO 7-Bit Code, has 94 graphics. When
the card code for ASCII was approved (to be discussed in Chapter 17), it
was possible to match the graphics of EBCDIC with the graphics of
ASCII, through their associated card hole patterns. At that time, the four
anomalies previously described were revealed:

Hole pattern ASCII EBCDIC
12-8-2 [ ¢
11-8-2 1 !
12-8-7 ! |
11-8-7 A -

(A fuller discussion of the respective matching of ! and A with | and = is
found in Chapter 24.)
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In addition to these four anomalies, the 94-graphic set of ASCII
contained 6 more graphics than the 88-graphic set of EBCDIC. Since
these 6 graphics had associated hole patterns, and since the hole patterns
had associated code positions in EBCDIC, it was possible to determine
where to locate them in EBCDIC, as follows:

Hole Hexadecimal

Graphic pattern position
Back slash \ 0-8-2 EO0
Grave accent | 8-1 79
Opening brace { 12-0 Co
Vertical line | 12-11 6A
Closing brace } 11-0 DO
Tilde ~ 12-11-0-1 Al

These six graphics were assigned in EBCDIC, as shown in Fig. 10.7.

cwm[ o [ 12 s a5 o] ]e]s]a]e]c]o]=]>~

Bit 00 01 10 11
Row Pat ~ 00 | 01 | 10 | 11 | oo | 01 10 [ 11 | o0 | 01 10 | 11 | oo | o1 | 10 | 1
o [oooo SP & - { } \ 0
1 (o001 / a 3 - A J 1
2 |oo10 b k [} B K S 2
3 [o011 c 1 t C L T 3
a lo100 d m u D M U 4
5 |0101 e n v E N A 5
6 [0110 £ o w F 0 W 6
7 o111 g p X G P X 7
8 |1000 h q y H Q Y 8
9 [1001 b i r z I R yA 9
A [1010 ¢ ! )
B [1011 $ #
c |1100 < %* % @
D 1101 ( ) _ '
E [1110 + ; > =
F o111 [ - ? "
Fig. 10.7 EBDIC 94-graphic set
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10.4 CHAIN/TRAIN PRINTER SETS

It is necessary to understand the fundamental principles of chain/train
printers in order to see the rationale for printer sets of graphics.

Chains and trains are similar in concept. They are loops of printing
slugs which are continuously circulated in a plane normal to the plane of
the paper on which printing is to take place (Fig. 10.8).

One principle of a chain/train is significant: the more times a graphic
is repeated around the chain/train, the more frequently it will pass a
printing position. It is common practice to repeat sets of graphics around
the chain/train. Thus a 48-graphic set can be repeated 5 times (5 x48 =
240), a 60-graphic set can be repeated 4 times (4 X 60 =240), and so on.
The chain/train does not move more rapidly, but individual graphics pass
a given printing position more frequently. The following table presents
comparative information. Nominal printing speed is given in number of
lines printed per minute (LPM).

Number of graphics Repeated sets Nominal printing speed
40 6 1250 LPM
48 5 1100 LPM
60 4 950 LPM
120 2 570 LPM
240 1 300 LPM
Type array

Paper form

Armature
hammer
magnet

Fig. 10.8 Schematic representation of chain/train printer
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10.5 “PREFERRED” GRAPHICS

A more subtle method is to repeat more frequently used graphics more
often than less frequently used graphics. The sets of more frequently used
graphics are called “preferred” graphics. Of course, the principle is still
the same—the more times a graphic is repeated around the chain/train,
the more frequently it passes a given printing position.

Consider a 60-graphic set, which could be repeated 4 times around
the 240 position chain/train, with nominal printing speed of 950 LPM.
But it is also possible to repeat 45 of the graphics 5 times and 15 graphics
just once:

(45 X 5) + (15 x 1) = 240

Then, if all the data being printed on a line contain graphics only in the
set of 45, the nominal printing speed will be 1100 LPM. If the data of a
line contains one or more graphics in the set of 15, the printing speed of
those lines will be 300 LPM. If the data consists mostly of graphics in the
set of 45, printing speeds will approach 1100 LPM, as compared with
950 LPM for a chain/train with 60 graphics repeated 4 times.

Some examples of chain/train sets with preferred sets are given, with
both 48- and 60-character chains for comparison:

Chain/train sets Repeat pattern Nominal printing speed

48 1100 LPM

60, with 45 preferred . 45 X 5 = 225 950 LPM
15x1=_15
60 240

52, with 47 preferred 47 X 5 = 235 950 LPM
Sx1=_5
52 240

42, with 39 preferred 39 X 6 =234 1250 LPM
3x2= 6
42 240

84, with 78 preferred 78 X 3 =234 770 LPM
6x1=_6
84 240

120 120 x 2 = 240 570 LPM
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10.6 48-GRAPHIC SETS

We know that 48-character sets are very popular. They strike a good
balance between reasonably fast printing speeds and adequate graphic
capability. Two well-known sets emerged in the days of BCDIC (Chapter
4) called the A-set and the H-Set, and were perpetuated into EBCDIC
(Chapter 9). Some care must be taken with the terminology. A 48-graphic
set for BCDCIC consisted of 47 graphics and Space, while a set for
EBCDIC consisted of 48 graphics and Space. The X of BCDIC was
replaced by the < of EBCDIC.

11 specials
BCDIC A-set Space 0 to 9 AtoZ , /1 F =9 % X # @ &
H-set Space 0to9 | AtoZ /=% () ="' +
12 specials
EBCDIC A-set | Space0to9 | AtoZ /=8 & + % < #@
H-set | Space0to9 | AtoZ -8 & + () ="'

10.7 PL/I SUBSETS

The 60-character set for the programming language PL/I consists of 59
graphics and Space:

1 Space

10 numerics 0to9

26 alphabetics AtoZ

3 alphabetic extenders # $ @

20 specials /] * 4+ = = | 0 _ & %
() <= ' ., : s ?

In addition, four 2-character operators are recognized by PL/I:

>= QGreater than or equal to
<= Less than or equal to
—1= Not equal to

| Concatenation

A 48-graphic subset of PL/I consists of 48 single-graphic representa-
tions and some 2- and 3-graphic representations:

1 Space
10 numerics
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26 alphabetics

12 specials R
+ - () =&
Operator , Representation Meaning
: Colon
; . Semicolon
% /] Percent
> GT Greater than
< LT Less than
>= GE Greater than or equal to
<= LE Less than or equal to
= NE Not equal to
| NOT Logical NOT
| OR Logical OR
& AND Logical AND
I CAT Concatenation

10.8 KATAKANA SUBSETS

The Japanese written language, like the Chinese written language on
which it is based, consists of ideographs—one ideograph per word. Kanji,
as it is called, consists of many thousands of ideographs. For normal data
processing printers, with limited graphic repertoires, the printing of Kanji
is quite impossible.

Another alphabet, invented by the Japanese and called Katakana, is
more amenable to data processing printer technology. Katakana is a
phonetic alphabet; each Katakana character consists of a vowel, or of a
consonant and a vowel, as shown in Fig. 10.9. Thus, Japanese spoken
words can be phonetically approximated by a written or printed
alphabetic. |

As originally assigned in EBCDIC, Katakana consisted of 47
graphics assigned to bit patterns as shown in Fig. 10.10. From- this
assignment, two Katakana sets were available.

64-character
Space
10 numerics
Katakana graphics
6 specials — / y . ,




Shape Name Shape Name
P A N HA
1 1 t HI
. U J FU
1 E A HE
* 0 i HO
pi| KA ? MA
¥ KI = MI
2 KU L MU
5 KE A ME
3 KO T MO
bl SA Y YA
o SHI
A SuU 1 YU
1 SE
v SO 3 YO
A TA 5 RA
¥ CHI ] RI
Y TSU I RU
T TE v RE
k T0 0 RO
¥ NA 9 WA
- NI W) N
X NU
X NE N Voiced Sound Symbol
J NO ° Semi-voiced Sound Symbol
Fig. 10.9 Katakana-47, phonetics
ColumnO[1l2]3 4|5|s|7 B]BlAIB CID[EIF
Bit 0o 01 10 11
Row Pat ~ oo | 01 10 | 11 00 | 01 10 | 11 00 | 01 10 | 11 00 | 01 10 | 11
0 |oo000O sSp - ) 0
vojeeot / P2 A3 1
2 |oo10 9 F N B K S 2
3 [oo011 D] J hi c L T 3
4 (o100 I b ? D M U 4
5 (0101 Vi B = E N v 5
6 (o110 | ¥ 4 F 0 W 6
7 jo111 F = A G P X 7
8 |1000 ) 2 £ H Q Y 8
9 1001 b) ? P I R Z 9
A 1010 a J 1 L
8 (1011 ¥ , 0
c {1100 * bl 3 7
D |1101 o N 2 v
E 1110 2 £ 1 *
F o111 L J b °
Fig. 10.10 Katakana 89-graphic set
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This set, outlined by heavy lines in Fig. 10.11 is provided by collapse logic
(as described in Chapter 2).

89-character
1 space
10 numerics
26 Latin alphabetics
47 Katakana alphabetics
5 Specials . , * — /

The 64-character set was sufficient for most normal data processing
applications. The 89-character set was provided on 44-key electric type-
writers. The 89-graphic set is shown in Fig. 10.10.

We shall learn in Chapter 18 that the assignment of Katakana in
EBCDIC created complications.

cwml 0 | v [ 2] ]| s 7] s a5 [c [o]:]>

git 00 01 10 11

pat. >
Row i oo | 01 10 | 11 00 | 01 10 | 11 00 | 01 10 | 11| o0 | 01 10 | 11
0 [(ocoo SP - Y 0
1 |0001 / P 3 1
2 |oo010 1 7 2
3 (0011 ) 0 i 3
4 |0100 T F ? 4
5 |0101 4 b = 5_
6 (0110 1 ¥ 4 6
7 |o111 + - A 7
8 [1000 7 4 £ 8
9 |1001 ) b3 ¢ 9
A [1010 J J A v
B |1011 . ¥ ’ o
c |1100 % 1 3 9
b [1101 2 N 2 V)
E [1110 Z2 |t Y "
F 1111 e pJ W °

Fig. 10.11 Katakana 64-graphic set






11
The

Card Code
of EBCDIC

As described in Chapters 8 and 9, some 63 graphic and card hole-pattern
and bit-pattern assignments had been made in EBCDIC. In Fig. 11.1, the
code positions designated X indentify the hole patterns assigned in
EBCDIC.

11.1 PTTC CONSIDERATIONS

In Chapter 6, it was noted that the de facto monocase card hole patterns
12-1,...,12-9, 11-1,...,11-9, 0-2, 0-3,...,0-9 were assigned to
lower-case alphabetics A, B,...,I, J, K,...,R, S, T,...,Z, and that
new card hole patterns 12-0-1, 12-0-2,...,12-0-9, 12-11-1, 12-11-2,
... 12-11-9, 11-0-2, 11-0-3,...,11-0-9 had been assigned to upper-
case alphabetics. However, as will be described in Chapter 12, a new
version of the IBM 1050 terminal was being designed for the System/360,
and with it, a new PTTC emerged, which reversed the assignments of
lower-case and upper-case alphabetics noted above. In Chapter 8, it had
been decided to locate the lower-case alphabetics in hex-columns 8, 9,
and A. The card hole-pattern—to-bit-pattern assignments for EBCDIC
were thus extended from those of Fig. 11.1 to those of Fig. 11.2. In
Chapter 9, two hole patterns, 12-8-2 and 11-8-2, were noted and
assigned to graphics ¢ and ! in hex-positions 4A and 5A, respectively.

Figure 11.2, then, shows the hole patterns assigned at this point.
Where a graphic is shown in the code table, the corresponding hole
pattern was assigned.

175
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Coumn] 0 | 1 | 2 [ 3 a [ 5 [ s 7 8 9 [ Al s c|[ o[ e F
Bit 00 01 10 11
Pat. "] oo 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11
Hole Hole
Pat. 12 Pat.
" 11
Row L L— L— 0
1 2 3 4 5 16! 7] L8] 19 10 11 12
o (ooo00 o 2 E = XI-“ X X X X X X
13 14
1 |ooo01 xl— X X [ X 1
2 o010 X X X X 2
3 |01 X X X X 3
4 |o100 X X X X 4
5 (0101 X X X X 5
6 (0110 X X X X 6
7 |0111 X X X X 7
8 |1000 X X X X 8
9 |1001 X X X X 9
15
A 1010 X X [—‘ X
B 1011 8-3 X X X X
¢ [1100| 8-4 X X X X
D [1101]| 85 X X X X
E |1110] 8-6 X X X X
F |1111]| 8-7 X X X X
. 12
Hole 11
Pat. 0
= Asgigned Hole Patterns
Hole Patterns:
™ 11 [13] 0-1
E Block | Hole Patterns at:
[ﬂ E 12-0 @ 1 3 i Top and Left
E 11-0 2 | Bottom and Left
[5]no Pch [11] 0-8-2 2 4 3 | Top and Right
El 12 @ 0 4 | Bottom and Right

Fig. 11.1

EBCDIC card code, Version 1
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Column] 0 1 [ 2] 3 a [ s ] 6 ] 7 8 9 [ A B c [ 3] & F]
Bit . g0 01 _ L i —
Pat. T oo [ o1 [ 10 | 11 00 | o1 | 10 | 11 00 ] o1 ] 10 [ 11 00 | 01 10 11
Hole | Hole
Pat, 12 |12 12 B T L
] 11 (11 11 S
Row 0 0 0
2 3 a 5 ® 7 8 9 10 11 12
o loooo (2] (3] [4] SPl_ﬁ,» &L._ _l.< [ ER [11] 0
13 . ial
1 10001 /L—~ a 3 A J 1 1
2 [0010 b k s B K 5 2 2
3 (0011 c 1 t [ L r 3 3
a lo1o0 d m u D M 1 4 4
§ (0101 e n v E N v 5 5
6 |0110 £ o w F 0 W 6 6
7 |0111 g o] X G P X 7 7
8 (1000 h q y H Q Y 8 8
9 (1001 i r z I R Z 9 9
A {1010 ¢ | [15]
B [t011] 8-3 $ , #
¢ f1100| 8-a < * % @
D |1101]| 85 ( ) _ '
E |1110] 8-8 + ; > =
F l1111] 827 I - 2 "
12 ] -
Hole 11
Pat. 0 Bl
Hole Patterns:
] 11 [13] 0-1
E Block | Hole Patterns at:
[E] 12-0 @ 1 3 1 Top and Left
E 11-0 2 Bottom and Left
(] No Pch [11] 0-8-2 2 4 3 | Top and Right
IE 12 @ 0 4 | Bottom and Right

Fig. 11.2 EBCDIC card code, Version 2
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Hote | 9 9 9 9 9 9 9 9

Pat. | 12 12 12 12 12 12 12 12

11 11 11 11 11 11 11 11
0

Fig. 11.3 256 hole patterns

In order to arrive at the total EBCDIC set of 256 different hole
patterns, two decisions were made:

Decision 1 All 32 possible combinations of the zone punches 9, 12, 11,
0, 8 (including ‘“no-zones”) would be used.

Decision 2 With each of the 32 possible zone-punch combinations, one
of the digit punches 1, 2, 3, 4, 5, 6, 7 (including ‘“no-digits”’) would be
used.

The logical set of 256 hole patterns is shown in Fig. 11.3.

In BCDIC, 0 had served both as a zone punch and as a digit punch
for the numeric 0. Thus, in 0, 12-0, and 11-0, the O is regarded as a digit
punch rather than a zone punch. In a sense 8 also served as both a zone
punch and a digit punch. With the decision for EBCDIC that 9 would
serve as a zone punch, 9 would also serve both as a zone punch and as a
digit punch for the graphics 9, I, R, Z, i, r, and z.

As described in Chapter 6, in PTTC 16 hole patterns had been
assigned to control characters, as shown in Fig. 11.4. It was decided to
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carry these assignments forward into EBCDIC. The control characters
might, probably would, not be needed for EBCDIC as a CPU code, but it
was sensible to preempt these hole patterns in EBCDIC, so that they
could not subsequently be assigned to EBCDIC control characters that
would conflict with the PTTC control characters. Besides, with the
decision to attach the IBM 1050 (implementing PTTC) to System/360, it
was clear that PTTC data would enter the System/360. It would be
necessary to have EBCDIC bit patterns into which all PTTC bit patterns,
controls, and graphics could be translated.

In Chapter 8, it was decided that the first quadrant of EBCDIC
would be reserved for control characters. In consequence of this decision,
the PTTC control characters would be located in the first quadrant.
Therefore, zone punches 9-12, 9-11, 9-0, and 9 would be assigned to
Quadrant 1.

Zone
punches
9 9-0 |9-11| 9-12
Digit
punches
4 PN |BYP|RES| PF
5 RS |LF |[NL |HT
6 UC |ETB |BS |(LC
7 EOT | ESC | IL DEL

Fig. 11.4 PTTC hole patterns for control
characters

11.2 TRANSLATION CONSIDERATIONS

From Fig. 11.2, it was noted that zone patterns 12, 11, 0, and “No-zone”
would appear for the bottom six rows of Quadrant 2 and for the top ten
rows of Quadrant 4. It was decided for purposes of reducing translation
complexity (bit patterns to/from hole patterns) that the zone patterns for
the top ten rows of Quadrant 2 should also be the zone patterns for the
bottom six rows of Quadrant 4. (This decision was later slightly amended,
but the spirit of it was maintained.) Fig. 11.5 represents decisions up to
this point.
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Coumn] o [ 1 [ 2 3 4 | s [ 6] 7 8 [ o[ A B c | o] e[ F
Bit o 00 01 10 11
Pat. | oo 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11
Hole
Pat.
Row
o 0000
1 |[oco001
2 |0010
3 {06011
ZONES
4 [0100 9 - 12
5 (0101 9 - 11
9 -0
6 0110
9
7 0111
8 1000
9 |1001
A |1010
8 [1011
?
c |t100]| B ot bR
D |1101
E |1110
F {1111 (,,,;_”'.j’;:?www&wmw
Hoﬁ>
Pat.
Hole Patterns:
2] (3
@ Block | Hole Patterns at:
[E E @ Top and Left
[Z] Bottom and Left
E E Top and Right
[a @ Bottom and Right

Fig. 11.5 EBCDIC card code, Version 3

This left zone patterns 12-11-0, 9-12-0, 9-12-11, 9-11-0, 9-12-11-0

unassigned. It seemed intuitive that the fourth zone pattern for Quadrant
3 should be one of these five without a 9-zone, that is, 12-11-0.

To meet the criterion above for the top ten rows of Quadrant 2 and
the bottom six rows of Quadrant 4, the zone patterns 12-0, 12-11, 11-0,
12-11-0 clearly could not be assigned, because they had already been
assigned to the top ten rows of Quadrant 3. Also since zone patterns
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9-12, 9-11, 9-0, 9 were to be assigned to Quadrant 1 (not yet decided if
to the top ten rows, the bottom six rows, or to both the top ten and the
bottom six rows), they could not be assigned to the top ten rows of
Quadrant 2 and the bottom six rows of Quadrant 4. This left only one
choice; zones 9-12-0, 9-12-11, 9-11-0, 9-12-11-0 for the top ten rows of
Quadrant 2 and for the bottom six rows of Quadrant 4. We now had Fig.
11.6.
This now left two choices:

Choice 1

= 9-12, 9-11, 9-0, 9 for the top ten rows of Quadrant 3.

= 12-0, 12-11, 11-0, 12-11-0 for the top ten rows of Quadrant 3 and
the bottom six rows of Quadrant 1.

Choice 2

"  9-12, 9-11, 9-0, 9 for both the top ten and the bottom six rows of
Quadrant 1.
cmumu'o]1lzla 4I5,6|7 8|9|AIB CIDIEIF

P

Pat.

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101}

6 0110

7 0111

8 1000

9 1001

A 1010

8 1011

c 1100

D 1101

E 1110

F 1111

Fig. 11.6 EBCDIC card code, Version 4
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= 12-0, 12-11, 11-0, 12-11-0 for both the top ten and the bottom SiX
rows of Quadrant 3.

Choice 2 posed a less complex translation relationship (hole patterns
to/from bit patterns) and Choice 2 was decided. This led to Fig. 11.7.

Coumn] 0 | 1 | 2 [ 3 4 | s [ 6 [ 7 s | o [ Al B c [ o] e F
Bit N 00 01 10 11
Pat 60 | 01 ] 10 | 11 | 06 | 61 ] 10 | 11 | oo [ 01 [ 10 [ 11 oo | o1 | 10 [ 11
Hole 9 9 9 9 9 9 9 9 Hole
Pat | 12 12 112 12 |12 |12 12 [12 Pat.
11 11 L1 11 11 11 11 11
Row 0 0 0 0 0 0 0 0 L
o loooo 1 2 B] o] 5] L& [zy L8] Lo Dof [af T2
1 |ooo1 1 12 1
2 (o010 2
3 o011 3
4 |o100 4
5 (0101 5
6 |0110 6
7 o111 7
8 [1000 8
9 {1001 9
A |1010| 8-2 b
B [1011] 8-3
c [1100]| 8-2
o |1101| 85
E [1110] 8-8
Fo[1111] 87
9 9 9 9 9 9 9 9
N 12 12 12 12 12 12 12 12
Hole 11 11 11 11 i1 11 11 11
Pat. 0 0 0 ol olo 01 0

Hole Patterns:

(=] (=] (2] {o] [+ [

Block | Hole Patterns at:

G &l E

1 1 Top and Left

2 Bottom and Left

EIEIGE [ EN

Fig. 11.7 EBCDIC card code, Version 5
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11.3 8-1 VERSUS 9

It was now noted (Fig. 11.7) that certain hole patterns appeared twice: for
example, 9 in hex F9 and in hex 30, 9-12 in hex C9 and hex 00. Further,
missing from the set of hole patterns were zone punches combined with

Coumn] 0 [ 1 [ 2 [ 3 4 [ 8 ] 6 | 7 8 ] 9] A | B c [ o e 1
Bit R 00 01 10 LS
Pst. 1 00T o1 1011t oo o1 [ 1011 [o00] 01 ] 10 11 |00 ] o1 [ 10 11
Hole 9 9 9 9 9 9 9 9 i Hole
Pat. [ 12 12 |12 12 |12 [12 12|12 R
" 11 11 |11 [11 1111 [il 11 1
Row 0 0 0 0 0 0 0 0
o loooo np o2l B ] ] e 2] g Lo oy Taaf T2
1 Jooo01 1 il (1
S R
2 (o010] 2
3 |oo11 3
4 |o100| 4
5 {0101 5

6 |0110 6

7 (0111 7

8 (1000]| 8

9 (1001 8-1

A |1010] 8-2 (s
B |1011| 8-3
C f1100| 8-4
D |1101] 85
----- B -
E |1110]| 8-86
F |1111| 8-7 J
1 9 1919 ]9 91 9191 9 |
o 12 12 12 12 12 12 12 12 ]
Hole 11 11 11 11 11 11 11 11
Pat. 0 0 0 ol ol o 0 0
Hole Patterns:
] 3]
E Block | Hote Patterns at:
E E @ 1 1 Top and Left
E 2 Bottom and Left
B (] 2

Fig. 11.8 EBCDIC card code, Version 6
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8-1 hole patterns. This glitch could be fixed by applying the digit-punch
combinations 8-1, rather than the digit 9, to hex row 9. The result was
Fig. 11.8.

While the card code of Fig. 11.8 would lead to a translation (bit code
to/from card code) of not unreasonable complexity, it was not acceptable.

Cowmn] 0 | 1 [ 2 | 3 4 | 5 [ & [ 7 a [ e 1 A8 c [ o] E] F
Bit g0 01 10 11
Pat. "1 a0 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11
Hole 9 9 9 9 9 9 9 9 Hole
Pat. | 12 12 12 12 12 12 12 12 ‘P‘"-
7 11 11 11 [11 1 |11 |11 11
Row [ 0 0 0 0 0 0 0 0 +
s loooo 7] ] & & Bl ] [ 5] o] ] iz
13 14
1 [0001 1 [ 1
2 Joo1o0 2 2
3 o011 3 3
4 (o100 4 4
5 (0101 5 5
6 |0110 6 6
7 |o111 7 7
8 |[1000]| 8 8
9 (1001 8-1 9
A 1010 8-2 it 8-2
B |1011| 8-3 8-3
¢ |1100]| 8-4 8-4
D [t101]| 85 8-5
E [1110( 8-8 8-6
F l1111] 87 8-7
9 9 9 9 9 9 9 9
W 12 12 12 12 12 12 12 12
Hole 11 11 11 11 11 11 11 11
Pat. 0 0 0 0 0 0 0
Hole Patterns:
KN 11 [13] o-1
@ Block | Hole Patterns at:
E E 12-0 @ 1 3 1 Top and Left
E 11-0 2 Bottom and Left
[s] No Pch [11] o0-8-2 2 4 3 | Top and Right
E 12 @ 0 4 Bottom and Right

Fig. 11.9 EBCDIC card code. Version 7
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The digit-punch combination 8-1 could not be assigned to hex row 9 of
Quadrants 3 and 4, because i, r, z, I, R, Z, and 9 (all of which had the
digit punch 9) were already assigned to that row.

But if hole patterns 9-12-0, 9-12-11, 9-11-0, 9-12-11-0, 9-12, 9-11,
9-0, and 9 are assigned to hex row 9 of Quadrants 3 and 4, then hole
patterns 9-12-0-8-1, 9-12-11-8-1, 9-11-0-8-1, 9-12-11-0-8-1, 9-12-
8-1, 9-11-8-1, 9-0-8-1, and 9-8-1 must be displaced. Since the hole
pattern 8-1 translates in BCD the same as 9, these displaced hole
patterns were assigned intuitively to hex row 9, Quadrants 1 and 2, as
shown in Fig. 11.9. Note that the horizontal line is now staggered as it
crosses between hex columns 7 and 8. |

11.4 EXCEPTION TRANSLATIONS

As shown in Fig. 11.2, there were eight code positions with exception
hole patterns. These are also noted in Fig. 11.9. These eight exception
hole patterns would, of course, displace eight more hole patterns, as
shown in Fig. 11.10. These exception hole patterns, if they had occupied
their “theoretical” code positions in Fig. 11.9, would have occupied
positions as shown as shown in Fig. 11.11.

Thus there were twelve code positions affected directly or indirectly
by the exception hole patterns:

40, 50, 60, 61, 6A, 80, 90, C0, DO, EO, E1, FO

Code-table Exception Displaced
location hole patterns hole patterns

40 No punches 9-12-0
50 12 9-12-11
60 11 9-11-0
61 0-1 9-11-0-1
Co 12-0 12
DO 11-0 11
E6 0-8-2 0
FO 0 No punches

Fig. 11.10 Exception and displaced hole patterns
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Exception Theoretical
hole patterns code-table location
No punches FO

12 Co
11 DO
0-1 E1
12-0 80
11-0 90
0-8-2 6A
0 EO

Fig. 11.11 Theoretical code-table
locations

In the accommodation of the displaced hole patterns, even more hole-
pattern exceptions were generated, giving rise to a total of 15, as shown
in Fig. 11.12.

The card code shown in Fig. 11.12 became the EBCDIC card code. It
was incorporated into IBM’s Corporate System Standard CSS 2-8015-
002 [11.1], later designated CSS 3-3220-002 [11.2]. The EBCDIC code
chart of that time (1964 October) was completed with the assignment of
the 16 control characters of PTTC (from Fig. 11.4).

11.5 A DIFFERENT BLOCKING

It was subsequently discovered that if the blocking into four blocks was
done in a slightly different way, and if the four zone patterns above block
1 were amended as shown in Fig. 11.13, four of the exception translations
(hole pattern to/from bit patterns) would disappear, namely those in hex
positions 00, 10, 20, and 30. It is to be emphasized that while the tableau
of Fig. 11.13 is different than that of Fig. 11.12, the actual translation
relationship (hole patterns to/from bit patterns) is, in fact, identical for
both tableaux. For both tableaux, the hole patterns for hex positions 00,
10, 20 and 30 are 9-12-0-8-1, 9-12-11-8-1, 9-11-0-8-1, 8-12-11-0-8-1,
respectively.
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Cowmn|] 0 [ 1+ ] 2 [ 3 s | s [ 61 7 8 | 9 [a]w® c[ o[ ETF
Bit N 00 01 10 11
Pat. 00 01 10 11 00 01 10 | 11 00 | 01 10 | 11 00 | o1 10 11
Hole | 9 9 9 9 9 9 9 9 Hole
Pat. | 12 12 12 12 12 12 12 12 Pat.
" 11 ) 11 11 11 11 11 11 11
Row 0 0 0 0 0 0 0 4]
1 2 3 4 5 3 7 8 ) 10 11 12
o loooo L1 3 R ) A3 R -3 g £ R 1 3 (2 R )
13 13
1 o001 1 /L“ a i A J 1 1
2 {0010 2 b k s B K S 2 2
3 [o011 3 c 1 t C L T 3 3
4 [0100| a4 |PF |RES |[BYP |BEN d m u D M U 4 4
5 [0101 5 | HT NL LF RS e n v E N v 5 5
6 |0110 6 |LC BS ETB | UC f o w F 0 W 6 6
7 J]o111 7 | DEL | IL ESC | EOT g P X G P X 7 7
8 |[1000{ 8 h q y H Q Y 8 8
9 11001 8-1 i ¥ z I R z 9 9
A |1010] 8-2 ¢ 1 L1§‘ 8-2
B [1011] 8-3 $ s # 8-3
C |1100( 8-4 < * 7 @ 84
D |1101| 85 ( ) _ ' 8-5
E ({1110 8-8 + > = 8-6
F {1111 8-7 | - ? " 8-7
9 9 9 9 9 9 9 9
12 12 12 12 12 12 12 12
Hole 11 11 11 11 11 11 11 11
Pat. 0 0 0 0 0 0 0 0
Hole Patterns: .
9-12-0-8-1 11 [13] o-1
[:a 9-12-11-8~1 12-11-0 9-11-0-1 Block | Hole Patterns at:
[:3] 9-11-0-8-1 E 12-0 E] 12-11 1 3 1 | Top and Lett
‘ZJ 9-12-11-0-8-1 11-0 2 | Bottom and Left
E No Pch E 0-8-2 2 4 3 Top and Right
[E 12 @ 0 4 Bottom and Right

Fig. 11.12 Final EBCDIC card code
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Coumn] 0 | 1 | 2 | 3 42 | s [ &6 [ 7 8 | 9 | A [ 8 c [ b [ E] F
Bit | 00 01 10 11
Pat. "1 oo 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11
Hole 9 9 9 9 9 9 9 9 Hole
Pat. | 12 12 12 12 12 i2 12 12 12 12 Pat.
M 11 11 |11 11 11 J11 11 11 _[11 11
0 0 0 0 0 0 0 o] 0 0
5 3 7 8 9 10 11 12
vo00 | a1 E] ] ] [ G [ 0] o1
3 14
0001 1 iE) i 1
0010 2 )
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000} 8 8
1001 8-1 9
1010 8-2 bs 8-2
1011 8-3 8-3
1100 8-4 8-4
1101 8-5 8-5
1110 8-8 8-6
1111 8-7 8-7
9 9 9 9 9 9 9 9
12 12 12 12 12 12 12
Hole 11 11 il il 11 11 11 11
Pat. 0 0 0 0 0 0 0 0
Hole Patterns:
| 11 [5] 0-1
E 12-11-0 9-11-0-1 Block | Hole Patterns at:
(=] [e] 12-0 [18] 12-11 | 1 3 1 | Topand Left
E 11-0 2 Bottom and Left
E No Pch F_TI 0-8-2 2 4 3 | Top and Right
E] 12 @ 0 4 | Bottom and Right

Fig. 11.13 EBCDIC card code, modified tableau

REFERENCES

11.1 IBM Corporate Systems Standard, CSS 2-8015-002, “Extended BCD
Interchange Code,” 1964 October.

11.2 IBM Corporate Systems Standard, CSS 3-3220-002, “Extended BCD
Interchange Code,” 1968 November.



12
The

New PTTC

In Chapter 6, the development of a shifted 6-bit code for paper tape and
for transmission was described. In Chapter 9, how the graphic assignment
of some graphics to hole patterns was changed in order to eliminate duals
was described. The IBM 1050, a terminal implementing PTTC, had been
designed for use with BCDIC computers. The 1050 had an associated
punched card code.

12.1 A NEW 1050

A new model of the 1050 was being designed for use with the then-being-
designed System/360. This new model would also implement PTTC and
have an associated card code. Since some graphic-to—hole-pattern assign-
ments had been changed between BCDIC and EBCDIC and since the
new 1050 would be used with the System/360, an EBCDIC computer, it
was clear that some corresponding changes would have to be made in the
PTTC card code. There would have to be a new PTTC.

Since the old and new PTTC would be different, it was decided that
they should be distinguished by different names. The old PTTC was
designed for use in the environment of 6-bit, BCDIC computers. The new
PTTC would be used in the environment of 8-bit, EBCDIC computers.
Initially, then, the codes were named

PTTC/6, the PTTC for 6-Bit Environments, and
PTTC/8, the PTTC for 8-Bit Environments.

When these two names were published an unexpected confusion arose.

100
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Some people interpreted PTTC/6 to mean a 6-bit code and PTTC/8 to
mean an 8-bit code. The latter interpretation, of course, was incorrect.
This confusion became manifest to such an extent that it was decided the
names must be changed to eliminate the source of confusion. Eventually,
the two codes were renamed:

PTTC/BCD, the PTTC for BCDIC Environments, and
PTTC/EBCD, the PTTC for EBCDIC Environments.

12.2 CRITERIA
Some criteria were established for the design of PTTC/EBCD:

Criterion 1. PTTC structure

PTTC/EBCD should have the same structure as PTTC/BCD; that is, be a
shifted 6-bit code, with Space, 16 shift-independent control positions, and
94 graphic positions.

Criterion 2. PTTC/BCD compatibility

PTTC/EBCD should be as compatible as possible with PTTC/BCD.

Criterion 3. EBCDIC compatibility

The graphic-to—card-hole-pattern assignments for PTTC/EBCDIC
should match those of EBCDIC.

Criterion 4. Monocase/Duocase*

There should be a monocase alphabet set of the 62 graphics of the 029
Keypunch, and a duocase alphabet set of the 88 graphics of EBCDIC.
Criterion 5. Basic/extended card code

There should be a card-code subset of 64 hole patterns that is a subset of
the full set of 111 hole patterns.

* The Monocase Alphabet Set of PTTC/EBCD is so entitled because it contains
only the capital-letter representations of the alphabet independent of whether the
case shift is upper or lower. The Duocase Alphabet Set contains both capital-
letter representations and small-letter representations of the alphabet. A clear
distinction must be kept between the concept on the one hand of small and capital
letters and the concept on the other hand of lower-case shift and upper-case shift
on a typewriter-like device. Normally, small letters are implemented on the
lower-case shift, and capital letters are implemented on the upper-case shift. This
was the way the 1050 implemented the duocase alphabet for PTTC/BCD. But for
PTTC/EBCD, the Monocase Alphabet Set was implemented on the 1050 with
capital letters in both upper- and lower-case shift (as will be described).
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Monocase and Duocase Sets 191

As with the 1050 implementing PTTC/BCD, the 1050 implementing

PTTC/EBCD used an electric typewriter as the keyboard and printer.

The

typewriter forced its arithmetic on the decision for the code.

12.3 TYPEWRITER ARITHMETIC

1.

kW

44 keys, lower-case shift

44 keys, upper-case shift

26 keys, alphabetic in both shifts

10 keys, numeric in lower-case shift, specials in upper-case shift
8 keys, specials in both shifts

The structure of the code also forced its arithmetic on decisions

for the code.

12.4 PTTC/EBCD ARITHMETIC

1.

NN kW

47 graphic positions in lower-case shift, 3 of which would be non-
printing '

47 graphic positions in upper-case shift, 3 of which would be non-
printing

1 Space position, shift independ‘ent

16 control positions, shift independent _

64 lower-case shift positions, 17 of them shift independent

64 upper-case shift positions, 17 of them shift independent

111 different characters (94 shift-dependent graphic characters plus 1
shift-independent Space character plus 16 shift-independent control
characters) '

This structure is illustrated in\Fig. 12.1.

125 MONOCASE AND DUOCASE SETS

In the design of the 1050, there would be two variables that were

€8Sse

ntially independent. The first variable would be the graphic set,

Monocase and Duocase (Criterion 4). The particular set in use at any
particular time would be determined by which printing element the
customer mounted on the 1050. The printing elements for both would
have 88 printing positions. In the case of the Duocase Alphabet Set
element, all 88 graphics would be different, and small and capital letters



192 The New PTTC

Lower Case Upper Case

Bit

___.——’
Pattern

Hole
Pattern—|

.16 CONTROLS %

Hole
Pattern

Block | Hole Patterns at:

1 3 1 Top And Left

Bottom and Left

2
2 4 3 Top and Left
4

Bottom and Left

Fig. 12.1 PTTC structure

would be provided. In the case of the Monocase Alphabet Set, 26
printing positions would provide capital letters, and 26 other printing
positions would also provide capital letters, so that there would, in fact,
be 88 —26 = 62 different graphics.
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12.6 BASIC SET AND EXTENDED SETS

The other variable would be the card-code set, which came to be called
the Basic Set and the Extended Set (Criterion 5). The Extended Set
would consist of 111 different hole patterns; the Basic Set would consist
of 64 different hole patterns. The particular card-code set in use on the
1050 would depend on which of the two card-code features the customer
had ordered.

12.7 INITIAL DECISIONS

The code-structure arithmetic spoke quickly to Criterion 5. The 64-
character, Basic Card-Code Set would be assigned to both sets of 64-
character upper- and lower-shift code positions.

1 space character
47 graphic characters

17 control characters
64 characters

Although it would be possible to use the Basic Card-Code Set with the
Ducocase Alphabet Set (as will be described), it is more reasonable to
discuss the Basic Card-Code Set in the context of the Monocase Alphabet
Set.

It was decided that PTTC/EBCD should have not only the same
structure as PTTC/BCD (Criterion 1) but also the same set of control
characters (Criterion 2). Since the positioning of the alphabetics and
numerics was implicit in the structure, the Monocase Alphabet Set would
start as shown in Fig. 12.2.

As described in Chapter 6, it was decided to assign the BCDIC hole
patterns for alphabetics to the lower-case shift, regardless. of whether
these were small or capital letters. This decision was reviewed for
PTTC/EBCD in the context of the Duocase Alphabet Set (as will be
described), but in the context of the Monocase Alphabet Set and the
Basic Card-Code Set, it seemed obvious that these alphabetic hole
patterns should be assigned to the capital letters in both shifts.

Further, it was observed in PTTC/BCD (see Fig.- 6.6) that the 8
printable graphics

in the lower-case shift had not changed card hole patterns between
BCDIC and EBCDIC. Therefore, it was decided, in view of Criteria 2
and 3, that these specials should have the same bit patterns in
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Lower Case Upper Case
Bit —— A B BA A B BA
Pattern
Hole
Pattern—
4
Sp SP
1 1 J A J A
2 2 S K B S K B
21 3 T L C T L C
4 4 1) M D U M D
4 1 5 v N E v N E
4 2 6 W o] F \ 0 F
421 7 X P G X P G
8 8 Y Q H Y Q H
8 1 9 Z R I Z R I
8 2 0 N.? N.P N.P N.P N.P N.P
8 21
84 PN BYP RES PF PN BYP RES PF
84 1 RS LF NL HT RS LF NL HT
842 uc EOB BS LC ucC EOB BS LC
8421 EOT PRE IL DEL EOT PRE IL DEL
Hole—3,
Pattern
N.P, - Non-Printing Positions
Block | Hole Patterns at:
1 3 1 | Top And Left
2 Bottom and Left
2 4 3 Top and Left
4 Bottom and Left

Fig. 12.2 PTTC/EBCD Monocase Alphabet Set, Version 1

PTTC/EBCD as in PTTC/BCD and the same hole patterns as in BCDIC,
EBCDIC, and PTTC/BCD.

Further, in view of Criterion 2, it was decided that the 16 control
characters should have both the same bit patterns and the same hole
patterns in PTTC/EBCD as in PTTC/BCD. (This decision led to the
decision, as described in Chapter 11, that these 16 control characters
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Lower Case Upper Case
b — A B BA A B BA
Pattern :
Hole
Pattern—| 0 11 12 0 11 12
y
1 1
SP @ L - & sSP L
1 1 1 / J A J A
2 2 2 S K B S K B
21 3 3 T L C T L C
4 4 A U M D U M D
4 1 5 5 v N E v N E
42 6 6 W 0 F W 0 F
421 7 7 X P G X P G
8 8 8 Y Q H Y Q H
8 1 9 9 Z R T Z R I
[2] L3} [4] (2] Ls] (]
8 2 0 0
8 21 8-3 # , $
8 4 4 PN BYP RES PF PN BYP RES PF
84 1 5 RS LF NL HT RS LF NL HT
842 6 uc EOB BS LC UcC EQB BS LC
8421 7 EOT PRE IL DEL EOT PRE 1L DEL
Hole—p ¢ 9-0 | 9-11 | 9-12 9 9-0 | 9-11 | 9-12
Pattern .
Hole Patterns:
] s
E] 0-8-2 Block | Hole Patterns at:
(3] 11-0 1 3 1 | Top And Left
[Z] 12-0 2 Bottom and Left
2 4 3 Top and Left
4 Bottom and Left

Fig. 12.3 PTTC/EBCD, Version 2, Monocase Alphabet Set,

Basic Card-Code Set

would be assigned in EBCDIC, and with the PTTC/EBCD hole patterns.
This decision, therefore, also satisfied Criterion 3.)

Finally, for the Basic Card-Code Set, it was decided, for the non-
printing graphic code positions (in both shifts), to maintain card-code

compatibility with PTTC/BCD (Criterion 2).
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With these decisions, the Monocase Alphabet Set and Basic Card-
Code Set shaped up as in Fig. 12.3. Blank spaces in the code table are for
as yet unassigned graphics. The 64-character, Basic Card-Code Set was
complete.

In the development of PTTC/BCD, as described in Chapter 6, it was
decided for various reasons to assign the BCDIC card hole patterns for
alphabetics to the lower-case shift, regardless of whether small or capital
letters were assigned to that shift. That decision was now reviewed for
PTTC/EBCD.

For the Monocase Alphabet Set, capital letters would be assigned to
both lower- and upper-case shift code positions. For the Duocase Al-
phabet Set, small letters would be assigned to lower-case shift and capital
letters to upper-case shift. (The same decision had been made for
PTTC/BCD.) In assigning card hole patterns for PTTC/BCD, it had been
decided at that time to assign the BCDIC hole patterns for alphabetics to
small letters and another (related) set of hole patterns to capital letters.
Criterion 2 should dictate the same decision for PTTC/EBCD. But for
EBCDIC (Chapter 8) exactly the opposite had been decided. Criterion 3
should dictate the same decision for PTTC/EBCD.

12.8 FURTHER DECISIONS

Since PTTC/EBCD was being designed for a 1050 to operate with the
System/360, an EBCDIC computer, it was decided that Criterion 3,
EBCDIC compatibility, outweighed Criterion 2, PTTC/BCD com-
patibility.

It was also decided for the Duocase Alphabet Set and Extended
Card-Code Set, that the eight specials

#@/l., - $&

should have the hole patterns previously decided for the Basic Card Set,
in order to ensure compatibility with EBCDIC (Criterion 3).

Since no reason could be found not to do so, it was decided to carry
forward from positions 2, 3, and * in Fig. 12.3 the hole patterns 0-8-2,
11-0, and 12-0 for lower-case shift. This would be in accord with
Criterion 2, PTTC/BCD compatibility.

With these decisions, a beginning was made on the Duocase Al-
phabet Set and Extended Card-Code Set for PTTC/EBCD, as shown in
Fig. 12.4. Blank spaces on the code table are for as yet unassigned

graphics or hole patterns.
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Lower Case Upper Case
Bit A B BA A B BA
Pattern
Hole
Pattern—»| 11-0 12-11 12-0 0 11 12
y
L1 5] L8]
SP @ - & SP
1 1 1 / L2 3 a J A
2 2 2 s k b S K B
21 3 3 t 1 c T L C
4 4 4 u ‘m d U M D
4 1 5 5 v n e v N E
42 6 6 W o £ W 0 F
8 8 8 y q h Y Q H
8 1 9 9 z r i Z R I
3 9
8 2 0 0 L3] L8] Lo}
32 7 10
8 21 8-3 4 [a2] ’ (] § L7] . o]
8 4. 4 PN BYP RES PF ] PN BYP RES PF
8 4 1 5 RS LF NL HT RS LF NL HT
842 6 uc EOB BS LC Uc EOB BS LC
8421 7 EOT PRE IL DEL EOT PRE IL DEL
Hole—y ¢ 9-0 | 9-11 9-12 9 9-0 | 9-11 9-12
Pattern
Hole Patterns:
(] 8-4 12
E 0-1 E 12-0 Block | Hole Patterns at:
(3] 0-8-2 12-8-3 1 3 1 | Top And Left
E 0-8-3 @ 8-3 2 Bottom and Left
IE] 11 | 2 4 3 Top and Left
E] 11-0 4 Bottom and Left
11-8-3

Fig. 124 PTTC/EBCD, Version 1, Duocase Alphabet Set,
Extended Card-Code Set

There now remained the question of 18 printable graphic positions
and the 3 nonprinting graphic positions in upper-case shift. In
PTTC/BCD, for the 3 nonprinting graphic positions in upper-case shift,
hole patterns 12-8-7, 0-8-5, and 8-7 had been assigned. At the same
time, hole patterns 8-1, 0-8-1, and 12-8-1 has been assigned to graphics
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in printable positions. The typewriter arithmetic referred to earlier would

yield 88 printable graphic positions (hence the 6 nonprintable graphic
positions in the code structure’s 94 graphic positions). Of these 88
graphics, 26 would be small letters, leaving 62 graphic positions for
numerics, specials, and capital letters.

Lower Case Upper Case
g — A B BA A B BA
Pattern
Hole
Pattern—| 11-0 12-11 12-0 0 11 12
x Mg Lsf 4 L& (22] [26] [29]
1 1 X L] X X [ 23] X X
2 2 X X X uz X X X
21 3 X X X Ly X X X
4 4 X X X L X X X
4 1 5 X X X L) X X X
42 6 X X X Lig X X X
421 7 X X X Lz X X X
8 8 X X X Uy X X X
8 1 9 X X X b X X X
8 2 0 X L X L2 X Le] (20 X e X B X Lz
8 21 8-3 Lz X Lo X = X Lo = g L) e
8 4 4 X X X X X X
84 1 | 5 X X X X X X
842 6 X X X X X X
8421 7 X X X X X X
r;:;:*' 9-0 9-11 9-12 9-0 9-11 9-12

Hole Patterns:

(7] 8-4 12

[z] o-1 fe] 12-0
[2] 0-8-2 12-8-3
[7] 0-8-3 0-8-1
[5]11 12-8-1
[e] 11-0 8-1

11-8-3 [22] 8-3

X - Assigned Hole Patterns

Block

Hole Patterns at:

Top And Left

Bottom and Left

Top and Left

slwlr

Bottom‘and Left

Fig. 126 PTTC/EBCD partial card-code assignments
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During the design of EBCDIC, this same typewriter arithmetic had
been reviewed in the context of the console typewriter for the
System/360. It had been decided that, in EBCDIC, the 62 numerics,
specials, and capital letters would be assigned to the hole patterns of the
62 interpretable graphics on the 029 Keypunch.

It was now decided that these 62 029 Keypunch hole patterns would
be assigned to the 62 printable graphic positions of PTTC/EBCD referred
to above. Since the set of 62 hole patterns included 12-8-7, 0-8-5, and
8-7, these three hole patterns should not be assigned in PTTC/EBCD to
nonprintable positions (as they had been in PTTC/BCD); and since they
did not include 8-1, 0-8-1, and 12-8-1 (assigned to printable positions in
PTTC/BCD), these should not be assigned to printable positions in
PTTC/EBCD. Once again, Criterion 3, EBCDIC compatibility, out-
weighed Criterion 2, PTTC/BCD compatibility. Hole patterns 0-8-1, 12-
8-1, and 8-1 were assigned to the nonprintable positions in upper case
designated by 24, ?’, and *° in Fig. 12.5; 12-8-7, 0-8-5, and 8-7 would be
assigned somewhere to printable positions.

The situation on assignment for PTTC/EBCD, Duocase Alphabet
Set, and Extended Card-Code Set is shown in Fig. 12.5, where X
indicates code positions with assigned hole patterns. Eighteen printable
code positions remained for assignment of hole patterns and graphics.

12.9 ALPHABETIC EXTENDERS

At this point another factor was taken into consideration. In EBCDIC,
graphics # $ @ were designated as upper-case alphabetic extenders for
European and South American countries. That is to say, on printing,
display, and interpreting devices, these graphics would be replaced by
alphabetics as required. For example, the German language requires 29
alphabetics—the 26 alphabetics of English-speaking countries and three
more alphabetics, A, U, and O. On equipment designed for Germany,
therefore, A, I"J, and O would replace # $ @ respectively. Also in
EBCDIC, three graphics " ! ¢ were designated as lower-case alphabetic
extenders, to be replaced, in Germany for example, by &, i, and 0.
Certainly, provision must be made in PTTC/EBCD for alphabetic
extenders, both lower and upper case. The dilemma was that upper-case
alphabetic extenders were to replace graphics # $ @ which had been
assigned in PTTC/EBCD to lower-case shift. The actual assignment in
PTTC/EBCD was not significant, but the reason for the assignment was.
In accordance with the long-established U.S.A. electric typewriter prac-
tice, # $ @ were in upper-case shift. Which' should take precedence, the
U.S.A. electric typewriter practice or the alphabetic extender require-
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ment for Europe? A very interesting decision was made. For the new
1050s implementing PTTC/EBCD, # $ @ and their respective hole
patterns 8-3, 11-8-3, 8-4 would indeed be in lower-case shift for the
U.S.A. But, for new 1050’s for Europe, modifications would be made so
that the hole patterns assigned to # $ @ in upper case for the U.S.A.
would be in lower case for Europe.

Lower Case Upper Case
Bit A B BA A B BA
Pattern
Hole
Pattern—»]
@ ¢
1
2
21
4
a4 1
4 2
4 21
8
8 1
8 2
8 21 # $ " ]
8 4
84 1
842
8421
Hole—]
Pattern
Block | Hole Patterns at:
1 3 1 Top And Left
2 Bottom and Left
2 4 3 Top and Left
4 Bottom and Left

Fig. 12.6 PTTC/EBCD alphabetic extender positions
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Clearly, for Europe, one would require that alphabetic extender keys
on the 1050 that provide capital alphabetic extenders in upper case would
provide the equivalent small alphabetic extenders in lower case. Relating
this to the U.S.A., the 1050 keys with # $ @ in lower case must provide
"1 ¢ in lower case. This dictated, for PTTC/EBCD, that ” ! ¢ be in
upper-case code positions corresponding to the lower-case code positions
of # $ @ . That is to say, the PTTC/EBCD code positions for # $ @
already having been assigned, ” ! ¢ must be assigned as shown in Fig.
12.6.

12.10 DIFFERENCES WITH PTTC/BCD

As described in Chapter 9, hole patterns 8-7, 11-8-2, and 12-8-2 had
been assigned to ” ! ¢. The assignment of ! (as shown in Fig. 12.6) with
its hole pattern of 11-8-2 coincidentally matched PTTC/BCD (Fig. 6.6),
but the assignment of hole patterns 8-7 and 12-8-2 to graphics ” ¢ (as
shown in Fig. 12.6) would displace the PTTC/BCD hole patterns 0-8-7
and 11-8-7 assigned to these positions. Also, as previously noted, the
assignment of 0-8-1, 12-8-1, and 8-1 to positions ?*, ?, and *° (Fig. 12.5)
would displace hole patterns 12-8-7, 0-8-5, and 8-7 from PTTC/BCD
positions ¢, ) and ?? as shown in Fig. 6.6.

In short, five hole patterns had been assigned to PTTC/EBCD
differently than to PTTC/BCD as shown below:

Move 1. 8-7 assigned to ?', displacing 0-8-7
Move 2. 12-8-2 assigned to %, displacing 11-8-7
Move 3. 8-1 assigned to 3°, displacing 8-7

Move 4. 0-8-1 assigned to **, displacing 12-8-7
Move 5. 12-8-1 assigned to %7, displacing 0-8-5

(Code table position references above are in respect to Fig. 12.5)

12.11 “MUSICAL-CHAIRS” PHENOMENON

These moves, by the “musical chairs” phenomenon, necessarily led to
further moves as shown below:

Move 6. 12-8-7, displaced by Move 4, replaced 0-8-1 in 25, moved from
25 by Move 4

Move 7. 11-8-7, displaced by Move 2, replaced 12-8-1 in ', moved from
31 by Move 5
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Move 8. 0-8-7, displaced by Move 1, replaced 12-8-2 in *>, moved from
23 by Move 2

Move 9. 0-8-5, displaced by Move 5, replaced 0-8-6 in ¢

Move 10. 0-8-6, displaced by Move 9,* replaced 8-1 in '7, moved from
7 by Move 3

Of course, these code positions, having hole patterns assigned to them by
these moves, also took their EBCDIC graphics with them under Criterion
3, EBCDIC compatibility.

No further moves were made. Under Criterion 2, PTTC/BCD com-
patibility, the remainder of the code positions in upper-case shift took the
hole patterns from PTTC/BCD (Fig. 6.6 in Chapter 6), but under

PTTC/BCD PTTC/EBCD
Code Code EBCDIC
Hole pattern Graphic po§ition Graphic po_sition graphic
(Figure 6.6) (Figure 12.8}

8-6 > = =
12-8-4 " or ) E < <
1186 E

8:2 b E}

0-84 % or ( % @ %

85 ' !
1184 . . .
1285 [ ( (
1185 ] ) )
1182 ! ! !
12.8:6 < + +

Fig. 12.7 PTTC/BCD compatibility

* The author cannot recall why, in Move 9, 0-8-5 displaced 0-8-6 in code position
26 It would seem to have been reasonable for 0-8-5 to have replaced 8-1, moved
from code position '’ in Move 3. Such a move would then have completed the
“musical chairs’” moves. However, Move 9 was made, for whatever reason, and
led to Move 10, which did complete the moves.



12.11

"“Musical-Chairs’’ Phenomenon

203

Criterion 3, EBCDIC compatibility, they took for those hole patterns the

EBCDIC graphics as shown in Fig. 12.7.
This, then, completed the assignment for the Duocase Alphabet Set

and Extended Card-Code Set for PTTC/EBCD, as shown in Fig. 12.8.

Lower Case Upper Case
Bit
—
Pattorn A B BA A B BA
Hole
Pattern—| 11-0 12-11 11-0 0 11 12
sp FRLET I T R Y | R o 2] _ ke | o]
1 1 . ; L2] J R Sl ksl A
2 2 2 s Kk b el g K B
1
21 3 3 t 1 c H 3] T L C
14
4 4 4 u m d : Ly U M D
4 1 5 5 v n e % s \ N E
1
42 6 6 w ) £ P e W 0 F
17
4 21 7 7 x P g > L— X P G
18
8 8 8 y q h 12y Q H
8 1 9 9 z r 1 ( o] A R I
s 2 0 0 (5] L] o] y 22 [24] [27] [3¢]
1
8 2 8-3 #lﬂ_ ,l_l» $L_7_ 0 ,, 21] I@ !m ~ 1]
8 4 4 PN BYP RES PF PN BYP RES PF
8 4 1 5 RS LF NL HT RS LF NL HT
842 6 uc EOB BS LC ucC EOB BS LC
8421 7 EOT PRE IL DEL EOT PRE IL DEL
Hole—p 4 9-0 | 9-11 | 9-12 9 9-0 | 9-11 | 9-12
Pattern
Hole Patterns
1] 8~4 12 0-8-4 [22) 12-8-2 12-8-6
E 0-1 12-0 8-5 @ 0-8-7 8-1 Block | Hole Patterns at:
[El 0-8-2 12-8-3 0-8-6 0-8-1 @ 11-8-7 1 3 1 | Top And Left
(3] 0-8-3 [i1] 8-6 11-8-4 [3) 12-8-7 [33] 8-3 2 | Bottom and Left
[EI 11 @ 12-8-4 12~8-5 0-8-5 2 4 3 | Top and Left
E 11-0 IE 11-8-6 11~8=5 12-8-1 4 Bottom and Left
m 11-8-3 8-2 @ 8-7 11-8~2

Fig. 128 PTTC/EBCD, Duocase Alphabet Set, Final Version,
Extended Card-Code Set
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The Basic Card-Code Set had been completed (see Fig. 12.3), but
the Monocase Alphabet Set had not. The Monocase Alphabet Set could
now be completed since it, as previously described, would be different
from the Duocase Alphabet Set only in that capital letters would appear
in both lower- and upper-case shift. That is to say, the specials in
upper-case shift for the Duocase Alphabet Set (Fig. 12.8) would also

Lower Case Upper Case
S A B BA A B BA
Pattern
Hole
Pattern—» 0 11 12 0 11 12
SP @ = - & sp ¢ = — +
L2
1 1 1 / L2 J A = ? J A
2 2 2 S K B < S K B
21 3 3 T L c ; T L c
4 4 4 U M D U M D
4 1 5 5 A N E % v N E
4 2 6 6 W 0 F ' W 0 F
4 21 7 7 X P G > X P G
8 8 8 Y Q H * Y Q H
8 1 9 9 Z R I ( Z R I
8 2 0 0 N.P N.P N.P ) N.P N.P N.P
8 21 | 83 # , $ n | ! -
84 4 PN BYP RES PF PN BYP RES PF
8 4 1 5 RS LF NL HT RS LF NL Ht
842 6 uc EOB BS LC Uc EOB BS LC
8421 7 EOT PRE 1L DEL EOT PRE IL DEL
Hole—yp ¢ 9-0 | 9-11 | 9-12 9 9-0 | 9-11 | 9-12
Pattern
N. P. - Non-Printing
Hole Patterns:
[ &
E] 0-1 Block | Hols Patterns at:
1 3 1 Top And Left
2 Bottom and Left
2 4 3 Top and Left
4 Bottom and Left

Fig. 12.9 PTTC/EBCD, Final Version, Monocase Alphabet Set,
Basic Card-Code Set
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appear in upper-case shift for the Monocase Alphabet Set. The final
version of PTTC/EBCD Monocase Alphabet Set and Basic Card-Code
Set, is shown in Fig. 12.9.

At this point it should be emphasized that the 64-character Basic
Card-Code Set and the 63-character Monocase Alphabet Set do not
consist of the same set of characters. The Basic Card-Code Set consists of
the hole patterns for the Space character, 47 graphic characters (3
nonprinting), and 16 control characters. The Monocase Alphabet Set
consists of the Space character (in upper- and lower-case shift), 10
numerics in lower-case shift, 8 specials in lower-case shift, 18 specials in
upper-case shift, and 26 capital letters in upper- and lower-case shift.

12.12 INTERACTIONS, BASIC AND EXTENDED SETS

Some examples are now given to illustrate interactions between the Basic
and Extended Card-Code Sets and the Monocase and Duocase Alphabet
Sets. Applications are straightforward when the 1050 is configured either
with the Basic Card-Code Set feature and the Monocase Alphabet Set or
with the Extended Card-Code Set and the Duocase Alphabet Set. Other
combinations were possible, such as the Basic Card-Code Set feature with
the Duocase Alphabet Set, but ingenuity and a knowledge of the codes
was necessary in such cases in order to make the 1050 produce the
desired result.

In the examples that follow, the “desired result” is a line of printed
characters, whether produced by reading a punched card on the 1050 card
reader or produced by the operator keying from the 1050 keyboard.

Example 1

This example illustrates the use of the 1050 Basic Card-Code Set feature
to drive the Monocase Alphabet Set, with capital letters, but with
lower-case shift only; that is, no shift characters are required.

Linel J L . SP S M 1 T H SP $ 1 . 23
2 ) A A N A A A A 1 R
i ) 2 S L A A A 1 R
2 ) ) ! L A R
Line 2

J' . ILl . |SP|SIMI I 'T'H'SP‘ $ |1| } |2l3'
Line 3| 11-1{12-8-3/11-3|12-8-3 NP |0-2 |11-4{12-9{0-3]|12-8 INP | 11-8-3 {1|12-8-3|2|3

Note: NP means No Punches. SP means Space
Line 1 is the print line—J. L. Smith $1.23.

Line 2 are the Basic Card-Code Set characters.
Line 3 are the Basic Card-Code Set hole patterns.
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Example 2

This example illustrates the use of the 1050 keyboard to drive the
Monocase Alphabet Set, with capital letters but with lower-case shift
only; that is, no shifting is required during the keyboard operation.

Line1 J L . SP S M I T H S $ 1 . 23
J, ! ) N A A | S l N A A A S A
! S ) NN l l ) J N A A A
! } } { l l } N A A A A A
Line2}J' . ‘ ‘ | l H ‘SP $ H 203
Line 3 | B11 A821 | B211A821 SP A2 B4 BA8] A211BAg| sp B821 |11 A821|213

Line 1 is the print line—J. L. Smith $1.23.
Line 2 are the keys.
Line 3 are the PTTC bit patterns.

Example 3

This example illustrates the use of the 1050 Basic Card-Code Set feature
to drive the Monocase Alphabet Set, with capital letters only, but with
upper- and lower-case shift.

Line 1 Z =( X + Y )Y*( P - D )
N A A ! VoLl y Vo
— <} i | ¥ A A — «— | << | |

y J \
l N A y N A A { Voo Vol
Vol A [ AN l i Vool Vol
Line 2 119 X | & 0[8]9 — |UC ‘
Line 3 ‘09'19 0-71 12 ’08\ 0(8]9 9126 11 9-6\12-4\0

Line 1 is the print line—Z = (X+Y)*(P—-D).
Line 2 are the Basic Card-Code Set characters.
Line 3 are the Basic Card-Code Set hole patterns.

Example 4

This example illustrates the use of the 1050 keyboard to drive the
Monocase Alphabet Set, with capital letters only, but with upper- and
lower-case shift.

Line 1 Z =( X + Y ) * ( P — D )
Vvl N A A S Vool

—«{ | l { N A A A — «— | <] |

) VoLl N A A A ) A Vool

i 3o Logn | 5 18] aioal o PR e g b R Y
Line 3 842 A81 | 1 111l A421IBA|A8| 82|81811B421 | BA842 842 | BA4 |82
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Line 1 is the print line—Z = (X+Y)*(P—-D).
Line 2 are the keys.
Line 3 are the PTTC bit patterns.

Example S

This example illustrates the use of the Basic Card-Code Set feature to
drive the Duocase Alphabet Set, with small and capital letters.

Line 1 Sp Sp

S a m a n d J a n
! N 2 Vo
e S R A et i |
A l ! Vool l l A ¢ Voo
{ ! y l l l A l Vo
Line 2 D |SP|UC| ]

o | 02] ez oanshoalin
Line3'9-6 0-219-12-6 121114NP12111512-4 NP|9-6(11-119-12-6112-1111-5

Line 1 is the print line—Sam and Jan.
Line 2 are the Basic Card-Code Set characters.
Line 3 are the Basic Card-Code Set hole patterns.

Example 6

This example illustrates the use of the 1050 keyboard to drive the
Duocase Alphabet Set, with small and capital letters.

Line 1 S a SP Sp

m a n d J a n

2 A A ) Vo d §
S A s T

VA { AN A S NS i i { S VA
Vol ) A ! ! \ J, o

Line 2|UC a n n

Line 3 842‘A2 ‘BA842 ‘BAI | B4| IBAI B41 ‘BA4| I842|B1| BA842 BA1| B41

Line 1 is the print line—Sam and Jan.
Line 2 are the keys.
Line 3 are the PTTC bit patterns.

Example 7

This example illustrates the use of the Extended Card-Code Set feature
to drive the Duocase Alphabet Set, with small and capital letters. Shift
characters are not required.

Linel S a m SP a n d SP J a n
I \J Vol } A y y

Vool ! Vool l ool d y

s d Vo d Vool y !

Line 2| S a n J a n

Line 3‘0—2‘11—0—2\12—11-4 NP‘11—0—2'12—11—5‘11—0—4‘NP 11-1111-0-2 112-11-5
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Line 1 is the print line—Sam and Jan.
Line 2 are the Extended Card-Code Set characters.
Line 3 are the Extended Card-Code Set hole patterns.

12.13 PTTC AND EBCDIC

One final aspect of PTTC/EBCD needs to be covered—the translation of
the shifted 6-bit PTTC into the unshifted 8-bit EBCDIC.

The translation of a shifted code into an unshifted code, and vice
versa, is an interesting problem. For example, a and A, both have the
same bit pattern, BA1, in PTTC/EBCD, but have different bit patterns,
10000001 and 11000001, respectively, in EBCDIC. Of course, whether
BA1 means a or A in PTTC/EBCD depends on whether it was preceded
in the data stream by BA842, lower case, or by 842, upper case. Another
complication is that in the EBCDIC data stream equivalent to a
PTTC/EBCD data stream, the UC and LC bit patterns should not be
present.

The solution, for the 1050 and System/360, was to transform the
PTTC/EBCD data stream first into an intermediate 8-bit data stream,
with shift characters replaced by “shift bits”” in each 8-bit byte, and then
to translate this string of 8-bit bytes into a string of EBCDIC bytes. The
transformation process from shifted to intermediate form was effected by
hardware (by the IBM 2701 Data Adapter Unit, which stood between
the data transmission lines and the System/360). The translation from the
intermediate form, which was called the “System/360 Oriented Form” in
IBM literature, was effected, if necessary, by software in the System/360.

PTTC/EBCD as actually transmitted was a 9-bit byte as follows:
Start B A 8 4 2 1 C Stop

The start-stop bits are deleted by the 2701 on receive operations and
inserted on transmit operations. The C-bit is a “check bit,” actually an
odd-parity check.

The transformation process of the resultant 7-bit byte (start and stop
bits deleted) into the 8-bit “System/360 Oriented Form” proceeded as
follows:

S B A8 4 2 10C

As the data stream goes through the transformation process, UC bit
patterns are removed from the data stream, and a one-bit is set into the S
bit position of each succeeding 8-bit byte until an LC bit pattern is
detected (and removed from the data stream). Then a zero-bit is set into
the S bit position of each succeeding 8-bit byte until a UC bit pattern is
detected, and so on.
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The bit positions of a System/360 8-bit byte are numbered as
follows:

01 2 3 45 6 7

Then the S-bit as described above, the 6 bits BA9421, and the check-bit
C of the PTTC/EBCD byte are set into the System/360 byte as follows:

S B AS8421C
R
VR 2 R A
01 2 3 45 67

The resulting code table, PTTC/EBCD, System/360 Oriented, is shown in
Fig. 12.10. The six shaded code positions come from the six nonprinting
code positions of PTTC/EBCD.

The System/360 Oriented Form of PTTC/EBCD could then be
translated (if necessary) by software. The “if necessary” aspect should be
noted. There are applications, store and forward, for example, where
translation into EBCDIC would be unnecessary.

Column| © ] 1 l 2 l 3 4 I 5 I 6 I 7 8 I 9 I A I B c l D ] E l F

Bit 00 01 10 11 ]
fow . oo | o1 | 10| 11 | o0 | 01 10 | 11 [ o0 ] 01 10 | 11 | oo | 01 10 | 11
0 |oooo0 8 @ - h #* ¢ _ H
1 [o001] gP y q & sp Y Q + 4
2 [o0o010] 1 4 r a = Z R A
3 |oot1 9 / j i ( ? J I |
4 |o100] 2 b < B 1
5 |o101 0 s k ) s K
6 [0110 # t 1 . " T L -
7 o111 3 R $ c ; | ! C
8 1000 4 BYP RES d H BYP RES D

4

9 |1001 PN u m PF PN U M PF
A [1010 RS v n HT { RS v N HT4
B (1011 5 LF NL e _ % LF NL E
c |1100 uc w o LC uc W 0 LC
b |1101] ¢ EOB BS f - EOB BS F
E {1110 7 PRE IL g > PRE IL G
F o11nm EOT{ x b DEL EOT| X P DEL

Fig. 12.10 PTTC/EBCD, System/360 Oriented Form
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A similar, but opposite, process took place on transmitting from the
System/360 to a 1050. A string of bytes of the System/360 Oriented
Form was processed through the 2701. The first byte was inspected for its
S-bit. If S-bit is one, a UC bit pattern is injected. If S-bit is zero, an LC
bit pattern is injected into the data stream. S-bits of succeeding bytes
were inspected for a change: if a change was from zero to one, a UC bit
pattern is injected; if a change was from one to zero, an LC bit pattern is
injected into the data stream. For all bytes, the S-bit was deleted, yielding
PTTC/EBCD bytes. Of course, start-stop bits were appended to each
PTTC/EBCD byte before transmission from the 2701.

12.14 DIFFERENCES, PTTC/BCD AND PTTC/EBCD

As has been pointed out, there were a number of differences between
PTTC/BCD and PTTC/EBCD. These stemmed mainly from changes
going from BCDIC to EBCDIC and from different principles for assign-
ment of card hole patterns to the small and capital alphabetics. Before the
design of either PTTC, the well-established hole patterns for alphabetics
had been assigned to capital letters, the only kind of letters then available
on monocase data processing equipment. The use of a duocase electric
typewriter for PTTC/BCD and for PTTC/EBCD introduced the capabil-
ity for both small and capital letters. The principles established for
PTTC/BCD and for PTTC/EBCD were as follows:

PTTC/BCD. The card hole patterns previously associated with mono-
case alphabetics will be assigned to the lower-case shift (of the typewri-
ter), regardless of whether small or capital letters appear in that case shift.

PTTC/EBCD. The card hole patterns previously associated with mono-
case alphabetics will be assigned to capital letters, regardless of whether
capital letters appear in upper- or lower-case shift.

The principle for PTTC/BCD had as its objective maximum simplicity of
the logic circuitry between the keys of the keyboard and the hole patterns
of the punched card. The principle for PTTC/EBCD had as its objective
unvarying (for the future) hole patterns for small and capital letters, even
though this would increase the complexity of the logic circuitry between
the keys of the keyboard and the hole patterns of the punched card.
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The Size

and Structure
of ASCII

During the late 1950s, the need was recognized for a standard code for
the communications industry not only in the U.S.A. but also in Europe
and in Japan. Internationally, the development work was carried out in
ISO/TC97/SC2. In the U.S.A., the work started under the auspices of
E.I.A. (Electronic Industries Association). With the formation of the X3
Committee under the auspices of the A.S.A. (American Standards As-
sociation) to develop standards for the data processing industry, the X3.2
Subcommittee was established to develop a standard code, standard
media (magnetic tape, punched cards, paper tape), and the representation
of the standard code on those media.

13.1 NAME OF THE CODE

Since a code was to be developed as an American Standard, it would be
called the American Standard Code. It was thought well to qualify the
name of the code, according to its purpose, and it came to be titled the
American Standard Code for Information Interchange. From the initials
of this title emerged the acronym ASCII. Later the American Standards
Association changed its name to the United States of American Standards
Institute (U.S.A.S.I.). The code then came to be titled the United States
of America Standard Code for Information Interchange, from which
emerged the acronym USASCII. Both acronyms, ASCII and USASCII,
enjoyed currency and were eventually written into the standard itself as
co-equal “‘standard” acronyms. Then U.S.A.S.I. once again changed its
name, to the American National Standards Institute (A.N.S.I.). Needless
to say, the code again changed its name, to the American National

21
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Standard Code for Information Interchange. However, the suggestion
that the third acronym, ANSCII, be adopted, met with opposition, and
was rejected. The code is now commonly referred to as ASCII, the
acronym USASCII having fallen into disuse.

During the initial development of ASCII, the developers went
through the same process that the developers of PTTC/BCD went
through (see Chapter 6). The first thing to determine was the functional
requirements of the code, how many graphic characters and how many
control characters. It was at this time that the American Telephone and
Telegraph Company stated its official requirements on the code. There
should be an all-zeros character, Null, and an all-ones character, Delete.

13.2 GRAPHIC REQUIREMENTS

The standards committee first tackled the question of graphic characters.
Existing codes were studied.

CCITT #2 had 26 alphabetics, 10 numerics, 3 code positions for
national use, and 11 specials

, o= )"+ T -

for a total of 50 graphics.
The Western Union Telegraph Company, using equipment from the
Teletype Corporation, had substituted

t

; for = +

The punched card code of the day commonly (there were some
variations) provided 52 graphics; 26 alphabetics, 10 numerics, 6 unique
specials . , * $ / — and 10 specials as duals:

% " & # @
() o+ =
Fieldata, a code developed by the United States Army (later to be-

come a military standard) for telecommunications, had 10 numerics, 26
alphabetics, and 19 specials:

, & / - C ) + =
_o< > ;o

?

BCDIC had 10 numerics, 26 alphabetics, and 32 specials (5 dual
pairs)

, o /% — N\ % (. x ) &

A

# = @
;2] £ £ # By ’ >

<

+
J
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for a total of 68. Of these 68 specials, 7 were for the representation of
control functions, leaving 25 as true graphics.

It seemed, therefore, that widely used codes of the day had a
requirement for 10 numerics, 26 alphabetics, and from 11 to 25 specials.
A total across these codes comes out as follows:

Punctuation and correspondence A 9
Bracketing ()] 4
Commerical & % # @ % X 6
Mathematical + - =% [\ < > 8

27

From this preliminary survey then, there appeared to be a requirement
for at least 46 graphics and maybe for as many as 64 graphics. Other
graphics in wide use were fractions } and %, commonly provided on

electric typewriters, and small letters (as well as capital letters).

13.3 CONTROL FUNCTION REQUIREMENTS

It began to appear that upward of 64 graphics should be provided in the
standard code for information interchange. The standards committees

were also studying the requirements for control characters.
CCITT #2 had provided 7:

Space Letter Shift
Carriage Return Answer Back
Line Feed Audible Signal

Figure Shift

Fieldata had provided 9 specific control characters and code positions
for 64 unspecified control characters:

Master Space Space
Upper Case Stop
Lower Case Special
Line Feed Idle

Carriage Return

BCDIC provided 7:

Record Mark Mode Change
Group Mark Word Separator
Tape Mark Substitute Blank

Segment Mark
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The standards committee working on data transmission was studying
the question of characters purely for data transmission control. A require-
ment for about 10 data transmission control characters seemed to be
emerging.

13.4 MORE THAN 64 CHARACTERS!

Putting the two tentative requirements for graphic and control characters
together, one fact seemed to be very clear. More than 64 characters
would be required for a code to span the needs of computing and of
communications. The figure 64 was a key figure because it pointed at a
code of more than 6 bits—at least 7 bits. This fact was very significant
because nearly all the computers of the day had essentially a 6-bit
architecture. In order to implement the standard code for information
interchange, therefore, it was very desirable that it be 6 bits (or less). But
try as it could, the standards committee could not reduce the character
requirement to 64 or less.

13.56 SHIFTED CODES

At this point, the possibility of a shifted or precedence code was raised.
The concept is explained in Chapter 2. The world-wide telegraphic code,
CCITT #2 (see Chapter 3), was a shifted 5-bit code. IBM had made a
decision to provide a shifted 6-bit code (see Chapter 6, the Size and
Structure of PTTC).

The great virtue of a shifted code is the capability of providing more
characters than the byte size of a code would normaily permit. The
formula (given in Chapter 2) for the number of different characters is

2x+1 ____ y

where x is the number of bits in the code byte and y is the number of
shift-dependent characters.

CCITT #2, a shifted 5-bit code, provided 58 different characters.
PTTC, a shifted 6-bit code, provided 111 different characters. It ap-
peared, therefore, that the character requirements for the standard code
for information interchange would be accommodated by a shifted 6-bit
code.

A strong argument arose against adopting the concept of a shifted or
precedence code for the code. In those days, telecommunication lines
were not wonderfully reliable. A phenomenon known as a “hit” occurred
not infrequently. When a one-bit was hit, it turned into a zero-bit. When
a zero-bit was hit, it turned into a one-bit. If an individual graphic bit
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pattern was hit, the individual graphic would be garbled, but the word in
which it appeared would generally be intelligible to a human. For
example, suppose the bit pattern 11101 for Q was hit and turned into
11001, the bit pattern for W. Then a word REQUIRE would be received
and printed as REWUIRE. But, from context of the sentence and
message in which REWUIRE appeared, it would usually be possible for
the recipient to reason out that REQUIRE had been intended.

If the graphic bit pattern that was hit was a numeric, and it was in
consequence turned into another numeric or into a special, it was virtually
impossible to reason out from context what the numeric had been.
Indeed, if a numeric was changed into another numeric, it was not even
evident to a human reader that a hit had taken place. To compensate for
this, telegraphists would commonly take all numerics that had occurred in
a telegram and rekey them in sequence at the end of the message.
Provided there were no hits on this sequence of numerics, a comparison
by the recipient showed what numerics, if any, had been hit in the
message.

Consider an example using CCITT #2 with its two shift characters,
FS for Figure Shift and LS for Letter Shift. Consider a data stream

LS| X | X |X|FS|X|X|LS|X|X|X|X]|FS|X|X|, etc.

where X stands for a 5-bit graphic bit pattern.

If a hit occurred in the bit pattern of either a Figure Shift character
itself or a Letter Shift character itself, the message would generally be so
garbled as to be incomprehensible, and retransmission would have to be
requested.

There were two situations then. If a graphic bit pattern were hit, the
individual graphic would be garbled, but could sometimes be reasoned
out. If a Figure Shift or Letter Shift bit pattern were hit, the message or a
portion of the message was generally incomprehensible.

The first controversy on the standards committee was the economy of
a shifted code versus the potential occasional garble of a message on the
telecommunication lines. Giving more weight to reliability than to cost,
the standards committee decided against the concept of a shifted or
precedence code. (Interestingly, much later, the committees nevertheless
did decide to place two shift characters in the code, Shift In and Shift
Out.)

13.6 7 BITS OR 8 BITS?

However, at that time, the consequence of the decision against a shifted
code was that the code would apparently require at least 7 bits. At this
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point, it was proposed that the code should be 8 bits. The central basis of
this proposal was the efficiency of representation of numerics. Each of the
10 numerics can be represented by 4 bits (the BCD representation). The
26 alphabetics can be represented by 5 bits. A 36-character code set
consisting of the numerics and alphabetics requires 6 bits. But consider. If
4 bits can represent numerics, but numerics are represented by 6 bits,
then there are 2 bits of “overhead.” Two bits more than strictly necessary
are used to represent numerics, and this is clearly inefficient. The al-
phabetics also, then, are inefficiently represented, with 1 bit of overhead.

At the time the standard code was being developed, it was estimated
that 75 percent of the data in data processing operations was numeric
data. In short, 75 percent of the data was inefficiently represented. And
now it was being suggested on the standards committees to use a 7-bit
code. This would bring about 3 bits of overhead for numerics and 2 bits
of overhead for alphabetics—even more inefficiency than in 6-bit rep-
resentation.

Into an 8-bit byte, two 4-bit bit patterns can be packed; that is, two
numerics can be represented in an 8-bit byte. And there is zero overhead.
An 8-bit byte provides optimum efficiency of representation of numeric
data. Of course, the consequent 3 bits of overhead for alphabetics is more
inefficient than the 2 bits of a 7-bit representation.

The argument for an 8-bit byte, therefore, was that numeric data, 75
percent of all data, could be represented with optimum efficiency.

There were arguments against an 8-bit byte. One argument was a
cost argument. In those days of relay logic and vacuum-tube logic, a “‘bit”
cost an appreciable amount. Seven-bit registers were appreciably more
costly than 6-bit registers, and 8-bit registers were appreciably more
costly than 7-bit registers. Also, given a data communications line speed
of a fixed number of bits per second, it would take more time to transmit
1000 8-bit characters than 1000 7-bit characters. And time of use of data
communication lines bears directly on cost of use of the lines.

Another argument bore on the reliability of perforated tape. A
common perforated tape of the day was l-inch, 8-track. Representing a
7-bit byte on such perforated tape meant 7 tracks for data, 1 track for
parity. Representing an 8-bit byte on such tape meant 8 tracks for data,
and no parity track. In short, a 7-bit byte could be represented more
reliably on 8-track perforated tape than could an 8-bit byte.

13.7 A 7-BIT CODE!

The arguments for a 7-bit byte—cost of communications products, cost of
data communication, and reliability of perforated tape—were weighed by
the committee against the argument for an 8-bit byte—efliciency of
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representation of numeric data. This technical controversy was decided,
as all technical controversies on standards committees are decided, by the
democratic process of taking a vote. The majority voted for the 7-bit
byte. The decision was thus made that the standard code for information
interchange would be a 7-bit code. The words set down by Subcommittee
X3.2 are interesting (set down after the character set had been developed,
but essentially justifying the 7-bit decision):

Consideration led the Subcommittee to a seven bit code set providing
128 combinations. This character set contains a graphic subset ade-
quate for both data processing and communication purposes. The
character set also provides control characters for use in controlling
transmission terminal equipment and input/output devices; data de-
limiting characters for segregating and formatting data; and selected
characters for special purposes.

The Subcommittee recognizes that computer manufacturers are un-
likely to design computers that use 7-bit codes internally. They are
more likely to use 4-bit, 6-bit, and 8-bit codes. There is no wide-
spread need at present for interchange of more than 128 separate
and distinct characters between computers, and between computers
and associated input/output equipment. However, an eight bit code
structure does have distinct advantages in that two 4-bit numeric
characters can be packed into an 8-bit frame. And larger code sets
reduce the number of multicharacter symbols required for problem
definition and programming.

The Subcommittee concluded that a set larger than seven bits should
not be recommended as a standard. Some of the primary factors
which led to this conclusion were as follows:

a) The 128 combinations available in a 7-bit set satisfy the infor-
mation and control interchange requirements for the large ma-
jority of users.

b) Utilizing an 8-bit set which provides 256 combinations would
require recording and transmission of 8-bits by all input-output
and transmission systems even though the great majority of
requirements are satisfied by a code of fewer bits.

¢) A redundancy (parity) bit is employed in most read/write opera-
tions and may be used in transmission of data for error control
purposes. 8-bits (7 coded bits plus one redundancy bit) are the
maximum that can be recorded in a single frame or character
position on one inch perforated tape under present recording
practices.
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13.8 STRUCTURE OF THE CODE

With the decision on size out of the way, the standards committee now
went on to consider the structure of the code. The first decision to be
made was more of an administrative than of a technical nature. How
should the code be exhibited in documents? The committee opted for a
matrix or tableau of eight columns and sixteen rows. The three high-order
bits of the seven bits 000, 001, ..., 111 would be used to distinguish the
eight columns. And the four low-order bits 0000, 0001, ...,1111 would
be used to distinguish the sixteen rows.

The next administrative decision was how to name or number the
seven bit positions. It was decided to name them

b7, b6, b5, b4, b3, b2, bl

from high-order bit position to low-order bit position.
These administrative decisions are shown in Fig. 13.1.
Some facts were now reviewed.

1. AT&T had stated a functional requirement for an all-zeros character,
Null, and an all-ones character, Delete.

2. The Subcommittee’s surveys had shown a requirement for 10
numerics, 26 alphabetics, and up to 27 specials; that is, up to 63
graphic characters.

3. There might or might not be a requirement for small letters, as well
as for capital letters.

4. From the data transmission standards committee was emerging a
requirement for 10 or more data transmission control characters.

5. There was a requirement for a number of format-effector characters,
such as Space, Carriage Return, Line Feed, New Line, Horizontal
Tab, Vertical Tab, Form Feed.

6. There was a need for data-delimiter or information-separator charac-
ters. How many would be required was far from clear.

7. Looking to the future, it would be wise to include characters, such as
Escape, Shift In, Shift Out, that could be used to extend the
repertoire of control and graphic characters without increasing the
byte size of the code.

8. There would be a requirement for a number of specific or general
control characters to control either devices or functions of devices.

Two conclusions were drawn from these facts.
Conclusion 1. About 64 graphic characters might be adequate.

Conclusion 2. More than 16 control characters would be needed.
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Bit b7 ]0Q 0 0 0 1 1 1 1

Pattern b6 0 0 1 1 [} 0 1 1
b5 0 1 0 1 0 1 0 1

b4 b3 b2 b1

0000

Fig. 13.1 Matrix representation of 7-bit code

The numbers 64 and 16 (above) were used because the standards com-
mittee was beginning to think of the code in terms of the code table (see
Fig. 13.1) with its 8 columns of 16 characters each—16 and 64 are
multiples of 16.

At this point, the first criterion relative to the structuring of the code
emerged.
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Column 0 1 2 3 4 5 6 7
Bit b7 (0 0 0 0 1 1 1 1
Patterni—* b6 0 0 1 1 0 0 1 1
b5 0 1 0 1 0 1 0 1
Row b4 b3 b2 b1
0 0000
1 0001
2 0010
3 0011
4 0100
5 o101
6 0110
7 0111
8 1000
9 1001
10 1010
1 T 011
12 1100
13 1101
14 1110
15 1111

Fig. 13.2 7-bit code table

13.8.1 Criterion 1

Control characters and graphic characters should not be intermingled.
Control characters should be grouped contiguously, and graphic charac-
ters should be grouped contiguously.

Conclusion 3. A further review of facts 4, 5, 6, 7, 8 above led to the
conclusion that more than 16 control character positions were needed,
but 32 positions (that is, two columns) might be sufficient.
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At this point, for purposes of easy reference, another administrative
decision was made—to number the code columns O, 1, 2,...,7, and to
number the code rows 0, 1, 2,..., 15, as shown in Fig. 13.2.
Conclusions 1 and 3 said that four columns of graphics and two

columns of controls should be assumed as an initial basis for structuring
the code. There were then twelve possibilities, as shown in Fig. 13.3,
where

C stands for a column of control characters,

g stands for a column of graphic characters, and

X stands for a column of as yet undefined function.

Table
Columns— 0 1t 2 3 4 5 6 7
Possibilities ¥

1 c ¢ g g g g X X
2 c ¢ x g g g g X
3 c ¢ X X g g g g
4 X ¢ ¢ g g g g x
5 X ¢ ¢ x g g g ¢
6 X X ¢ ¢ g g g ¢g
7 g g g g ¢ ¢ x X
8 g g g g X ¢ ¢ X
9 g g g g X X ¢ ¢
10 X g g g g ¢ ¢ X
11 X g g g g X ¢ ¢
12 X X g g g g ¢ ¢
Figure 13.3

Some of these possibilities were eliminated because of the require-
ment for a control character of all-zeros, Null, and because of Criterion 1
(not intermingling controls and graphics). The committee put two in-
terpretations on Criterion 1.

Interpretation 1. Within a column, there should not be both controls
and graphics.

Interpretation 2. A column of controls should not be positioned be-
tween columns of graphics, and a column of graphics should not be
positioned between columns of controls.

Given Null, a control character, in column 0, Interpretation 1 ruled out
possibilities 7, 8, and 9.

All possibilities satisfied Interpretation 2. But if the x columns
ultimately were defined to be graphic columns, possibilities 4, 5, and 8
were ruled out, and probably 10. And if the x columns ultimately were
defined as control columns, possibilities 2, 4, 10, and 11 were ruled out.
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Essentially, then, all possibilities with separated single x columns
were ruled out, leaving possibilities 1, 3, 6, 12 with the two x columns
always appearing as contiguous column pairs.

The four remaining possibilities each gave rise to two possibilities,
depending on whether both x columns were defined as controls or as
graphics, as shown in Fig. 13.4.

Table
Columns— 0 1 2 3 4 5 6 7
Possibilities |

la c ¢ g g g g ¢ ¢
1b c ¢ g g g & & &
3a c ¢ ¢ ¢ g g g g
3b c ¢ g g g g g g <vruledoutsame aslb
6a c ¢ ¢ ¢ g g g g <ruledoutsame as 3a
6b g &g ¢ ¢ g g g &8

12a c ¢ g g g g ¢ c <ruledoutsame as la

12b g & & g 8 g8 ¢ ¢

Figure 13.4

We see that 6b and 12b were ruled out by Interpretation 1 and Null, a
control character, in column 0; 3a was ruled out by Interpretation 1 and
Delete, a control character, in column 7.

Strictly speaking, the ruling that ruled out 3a also should rule out 1b,
leaving only la as a possibility. However, the standards committee was
reluctant, at this time, to rule out possibility 1b. The committee wanted to
retain the possible configuration ccggggxx, with xx not yet decided as to
controls or graphics. To rule out 1b would rule out the graphic possibility
for xx for configuration ccggggxx, and the committee was not yet ready to
decide to rule that possibility out. However, possibility 3a was ruled out,
for another, somewhat more torturous reason.

The Space Character

One character that was definitely going to be included in the final set was
the Space character. But was the Space character a control character or a
graphic character? Is it the nonvisible or nonprinting graphic in a set of
graphics or is it the control character that moves the carriage of a serial
printer one character position forward? It is, of course, both. However,
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from the point of view of a parallel printer, it is only one of these things,
the invisible graphic. By this rather hair-splitting reasoning, the standards
committee persuaded itself that the Space character must be regarded as
a graphic character; that is, it must be positioned in a column of graphics,
not in a column of controls.

Now an interesting conclusion could be drawn. It was a well-
established data processing practice that in sorting and collating opera-
tions, the Space character should collate low to all other graphic charac-
ters, specials. numerics, and alphabetics. Consider then the two Pos-
sibilities 1 and 3:

13.8.2 Criterion 2

The Space character should collate low to all graphic characters.

For Possibility 1, the Space character would clearly be positioned in
column 2, row 0, thus preceding all graphics, and this precedence would
hold regardless of whether the two x columns were subsequently decided
to be graphic or control columns. But for Possibility 3, the situation was
different. The Space character would be positioned in column 4, row 0,
thus preceding all graphics. If the x columns, columns 2 and 3, were
subsequently decided to be control columns, the precedence would still
hold. But if the x columns, columns 2 and 3, were subsequently decided
to be graphic columns, then the graphics in these two columns would
collate low to the Space character, thus violating Criterion 2; that is to
say, this possibility would be ruled out. In short, positioning the two x
columns as columns 2 and 3 preempted the choice that the x columns
might in the future be decided to be graphic columns.

The standards committee did not at this time want the future choice
of the two x columns as graphic columns or control columns to be
preempted. Possibility 3 would really preempt this decision in advance (as
outlined in the preceding paragraph). Therefore, the committee ruled out
Possibility 3. This left Possibility 1 as the committee’s decision for
structure of the code: |

The basic structure of ASCII had now been decided. See Fig. 13.5.
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Column| © 1 2 3 4 5 6 7
Bit w7 |0 0 0 0 1 1 1 1
Pattern b6 0 0 1 1 0 0 1 1
b5 0 1 0 1 0 1 0 1
Row b4 b3 b2 b1
0 0000
1 0001
2 0010
+—
3 0011
4 0100
5 0101 -
6 06110
7 0111 :
. CONTROLS
8 1000J_""
9 1001
10 1010
1 1011
12 1100
13 1101
14 1110
15 1111

Fig. 13.6 ASCII structure



The
Sequence
of ASCII

In the previous chapter, the basic structure of ASCII was defined:
Controls in Columns 0, 1; Graphics in Columns 2, 3, 4, 5; Undefined for
Columns 6, 7. The Null character would be in code position 0/0, the
Space character in code position 2/0, and the Delete character in code
position 7/15. The standards committee now turned to the definition of
ASCII in finer detail.

During the discussion of ASCII structure, four kinds of control
characters had been discussed; Transmission Controls, Formal Effectors,
Device Controls, and Information Separators. As a preliminary step, the
committee decided to apportion the 32 control code positions equally
among these four categories. It was recognized that it was very unlikely
that, in the final analysis, there would be exactly eight of each kind of
control character. It was also recognized that there were control charac-
ters, such as Escape, Shift In, Shift Out, that would not fit into any of the
four categories. Nevertheless, it was decided to make this preliminary
categorization of control characters, as shown in Fig. 14.1, and see what
would befall.

Attention now focused on the question of collating sequence of
graphics. As described in the previous chapter, Space, by being positioned
in code position 2/0, would collate low to all graphics.

Column 2 was chosen for specials for two reasons:

1. Numerics could not be located in this column, because if so, “0”

would require the row 0 position, and this was already preempted by
the Space character.

225
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The Sequence of ASCI

Column 0 1 4 5 6 7
Bit b7 |0 0 1 1 1 1
Pattern b6 0 0 0 0 1 1
l—_’.bs 1] 0 1 0 1

Row b4 b3 b2 b1

0 00O0O NUL

1 0001

2 0010

3 0011

a4 0100 TC DC

5 0101

6 0110

7 0111

8 1000

9 1001

10 1010

1 10 11 FE I8

12 1100

13 1101

14 1110

15 1111

Fig. 14.1 ASCIl, basic structure

TC -~ Transmission Controls
FE - Format Effectors

DC Device Controls
IS - Information Separators

2. Alphabetics should not be in Column 2, because if so, specials in
columns 3, 4, or 5 would then necessarily collate high to alphabetics.
But there were some specials, such as period and hyphen, which
should collate low to all alphabetics in sorting operations on names

of people.
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14.1 SEPARATE OR INTERLEAVED ALPHABETS?

This apparently left columns 3, 4, and 5 for numerics and alphabetics. But
other questions had to be settled first. In the event that it was eventually
decided to include both small and capital letters, should the two alphabets
be separate, or interleaved? And if separate, should small letters collate
low to capital letters or vice versa?

The question of separate or interleaved alphabets was approached
first. Two possibilities were apparent for interleaving:

Possibility 1 Possibility 2
a A
A a
b B
B b
z Z
Z VA

The choice between these two possibilities was clear, and stemmed from
the very reason for having interleaved alphabets. In sorting names, it is
conventional for capital letters to precede small letters. Thus, the AA
Company precedes the Aardvark Company. But in sorting names of
peoples, the rules become more subtle and complex. Does MacKenzie
precede Mackenzie? In some telephone directories, yes, but in other
telephone directories, the capitalization or noncapitalization of the K will
be ignored in MacKenzie and Mackenzie—such names being blocked
together, and ordered on the basis of the first names or initials. Indeed,
the proponents of alphabet separation cited the fact that different tele-
phone directories had different rules as evidence that alphabet interleav-
ing would really not accomplish anything tangible.

In any event, there was a more compelling argument against inter-
leaving. In columns 2, 3, 4, and 5 there are 64 code positions, sufficient to
accommodate the Space character, specials, numerics, and alphabetics;
that is to say, a graphic set sufficient for most data processing applica-
tions. And this set of 63 graphics and Space is derivable from the 7-bit
code by dropping b6. The four columns 2, 3, 4, and 5 then form a 6-bit
subset.

If, however, the alphabets were interleaved, then it would clearly
take columns 2 through 7 to contain Space, specials, numerics, small
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letters, and capital letters. With the alphabets interleaved, the derivation
of a 64-character, 6-bit subset containing Space, specials, numerics, and
capital letters, would require more complex logic. Suppose, for example,
that Fig. 14.2 exhibits a 7-bit code with interleaved alphabets, and Fig.
14.3 exhibits the 6-bit, 64-character subset to be derived. Let the bit
positions of the 6-bit subset be named a6, a5, a4, a3, a2, al from
high-order bit position to low-order bit position. Then the transformation
equations, from 7 bits to 6 bits, are as follows:

a6=b7/\b_1-

a5=(B7Ab6Ab5)v(b7Ab6AB_i)
a4 = (b7 A b6 A bd) v (b7 A b5 A bl)
a3 = (b7 A b6 A b3) v (b7 A b4 A b1)
a2=(€i/\b6/\b2)v(b7/\b3/\ﬁ)

al = (b7 A b6 A bl) v (b7 A b2 A bl)

The consideration of a 6-bit, 64-character graphic subset was important
to the standards committee. If the ultimate decision was that columns 6
and 7 would be for graphics, then columns 2 through 7 would contain
Space, 94 graphics, and Delete. But, even with the code providing 94
graphics, a major assumption of the standards committee was that data
processing applications would, for the foreseeable future, be satisfied with
a monocase alphabet (that is, a 64- or less graphic subset) as they had in
the past—that 64-character printers would predominate. So it was impor-
tant to be able to derive a 64-character, monocase alphabet, graphic
subset from the code by simple, not complex, logic.

It was this consideration that weighted the decision against inter-
leaved alphabets. Interestingly, consideration of this example led to
another, and unexpected, conclusion. In the example, the capital alphabet
was contained in two columns. Clearly, two alphabets, small and capital
letters, could be contained in four columns; that is, the two undefined
columns, 6 and 7, could contain an alphabet of small letters, if it was
eventually decided to include that alphabet.
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Column 0 1 2 3 4 5 6 7
Bit b7]0 0 0 0 1 1 1 1
Patternl—'"bii 0 0 1 1 0 0 1 1
b5 0 1 0 1 0 1 0 1
Row b4 b3 b2 b1

0 0000 NUL SP 0 A I Q Y

1 0001 1 a i q y

2 0010 2 B J R Z

3 0011 3 b 3 T z
4 0100 4 C K S
5 0101 5 c k s
6 0110 6 D L T
7 0111 7 d 1 t
8 1000 8 E M 18]
9 100 1 9 e m u
10 1010 F N v
1 1011 £ n v
12 1100 G 0 W
13 1101 g o w
14 1110 H P X

15 1111 h P % DEL

Fig. 14.2 Interleaved alphabets
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Column 0 1 2 3
Bit b7 0 0 0 0
Patterni—’bﬁ 0 0 1 1
b5 0 1 0 1
Row b4 b3 b2 b1
0 0000 Sp 0 a Q
1 0001 2 B R
2 0010 3 C s
3 0011 4 D T
4 0100 5 B U
5 0101 6 F v
6 0110 7 G 1)
7 o111 8 H X
8 1000 9 I 4
9 1001 J 7
10 1010 K
11 1011 L
12 1100 M
13 1101 N
14 1110 o
15 1111 P

Fig. 14.3 6-bit subset

14.2 THREE COLUMNS FOR ALPHABETICS?

But consider the kind of code structure where the alphabet is contained in
three columns (see Fig. 2.29). In order to provide two alphabets, small
and capital letters, as in EBCDIC (see Fig. 2.28), six columns are
required. And to provide two alphabets and also a column for numerics,
seven columns are required.
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Column 2 3 4 "8

Row
0 sp t t 0
1 A J T 1
2 B K S 2
3 C L T 3
4 D M U 4
5 E N v 5
6 F 0 W 6
7 G P X 7
8 H Q Y 8
9 1 R Z 9
10 T t t T
n t t t t
12 t t t t
3 t t t t
" + t T t
18 + T + +

t - Special

Fig. 14.4 BCD arrangement

Even if it was eventually decided to assign graphics to columns 6 and
7, there would be only six columns available for graphics. Given the basic
structure of ASCII, as defined in Fig. 14.1, two alphabets structured
noncontiguously, as in BCDIC and in EBCDIC, and a column of
numerics could not be accommodated in the 7-bit code table. At least an
8-bit code table is necessary to accommodate a column of numerics, three
columns of small letters, and three columns of capital letters. And the
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standards committee had already decided for a 7-bit code and against an
8-bit code.

The conclusion of the preceding paragraph is based on the assump-
tion that two alphabets, small letters and capital letters, would be in-
cluded in the 7-bit code and that decision had not yet been made. If the
decision was ultimately made that columns 6 and 7 would contain
controls, then small letters would not be included in the 7-bit code.® If
only capital letters were to be included in the code, it would be quite
feasible to have a BCD arrangement, such as shown in Fig. 14.4, for the
graphic subset. Such an arrangement was, in fact, proposed to the
standards committee, but it was rejected because it intermingled specials
with alphabetics, and the subcommittee deemed this to be unwise, for
collating reasons.

The standards committee at this time made a fundamental decision.
The 26 letters of the alphabet should be grouped contiguously in the code
and should occupy two contiguous columns.

The standards committee had, as described above, decided that column
2 would contain specials. With respect to the assignment of numerics and
alphabetics, there were two possibilities:

Possibility 1. Numerics in column 3

Alphabetics in columns 4 and 5
Possibility 2. Alphabetics in columns 3 and 4

Numerics in column 5

14.3 EXISTING COLLATING SEQUENCE

The committee recognized that an existing collating practice was that
alphabetics collate low to numerics. So Possibility 2 seemed the clear
choice. But there was an argument against this choice.

If the ultimate decision for columns 6 and 7 was for graphics, then
there would be two choices for the graphics: specials, or small letters.
Suppose the choice was for small letters. Then the two possibilities above
became as shown in Fig. 14.5. Assume, for purposes of discussion, that
the alphabets are positioned as shown. Then, for Possibility 1, the bit
patterns of the capital letters and the bit patterns of the small letters have
a single bit difference, b6, for all corresponding small and capital letters.
For Possibility 2, three bits, b7, b6, b5, are different and the bit differ-
ences between A and a, for example, are not the same as the bit
differences between Q and q.

* If the committee did decide for controls in columns 6 and 7, it is still likely that
they would have wanted an alphabet of small letters to be provided. Presumably,
the small letter alphabet would then have been provided by a caseshift approach.
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Columns 2 3145|617 2 31415167
b7 0 oj1|11}11]1 0 O]J]1]111711
b6 |1 ] 1[o0]o]|1]1 1 1fofo]1]1
b5 0 110(1]0]1 0 110110 ]1

SP| 0O |A[Q]|a|q SP| A|JQ|0f|a}q
1|B|[R{b]|r B[R|[1|b]r
21 C|[S|c|s C|S{2]c|s
3(D|[T|dj|t D|(T|3{d]|t

Possibility 1 Possibility 2

Fig. 14.5 Positioning of alphabetics

Clearly then, in order to keep open the choice for columns 6 and 7
between graphics and controls, and between small letters and specials,
Possibility 1 was preferable.

Possibility 1, of course, would provide a collating sequence, specials,
numerics, alphabetics, from low to high, contrary to the existing practice,
specials, alphabetics, numerics. But to the standards committee the argu-
ment above, keeping choices open at this time, was more compelling.

The committee rationalized the decision against accepting the exist-
ing collating sequence somewhat along the following lines:

If it is necessary to achieve the de facto collating sequence (specials,
alphabetics, numerics), it may be achieved, during comparison opera-
tions, by inverting b7 if b6 = b5 = 1. That is, the three high-order
bits of the column of numerics would then become 111, which would
make them collate high to the alphabetics, with high-order bits of
100 and 101.

Out of this discussion, the committee established a major criterion.

Criterion

There should be a single bit difference between capital and small letters.
The standards committee had now made its final decision with
respect to the sequence of ASCII. The result was as follows:

lofjv | 2 | 3 | 4]s | 6]7 |
| Controls | Specials l Numerics | Alphabetics | Undefined |

We have, then, a code structure as shown in Fig. 14.6.
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Column 0 1 2 3 4 5 6 7
Bit b7|0 0 0 0 1 1 1 1
Pattern b6 0 0 1 1 0 0 1 1
b5 0 1 0 1 0 1 0 1

Row b4 b3 b2 b1

0 0000O0

1 0001

2 0010

3 0011

4 0100

5 0101

[} 0110

7 0111

8 1000

9 1001

10 1010

1" 1011

12 1100

13 1101

14 1110

1% 11 11 DEL

TC - Transmission Control
FE - Format Effector
. DC - Device Control
Fig. 14.6 ASCII structure IS - Information Separator

144 CRITERIA

Up to this point, the standards committee had made a number of
decisions, based on criteria. Three of those criteria have been stated so
far in this chapter. In fact, the committee formulated 20 criteria. It should
be noted that some of these criteria are conflicting, so not all can be met.
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Criterion 1. All bit patterns in the code should consist of the same
number of bit positions.

Criterion 2. The structure of the code should be such that logically
related subsets or supersets are derivable simply; that is, by simple bit
dropping, bit adding, or bit inversion.

Criterion 3. All possible bit patterns of the code should be considered
valid. For illustration, on 7-track magnetic tape with even parity, the
all-zeroes 6-bit bit pattern was considered invalid, as being indistinguisha-
ble from unrecorded tape, with the recording practice used at that time.

Criterion 4. The code size, that is, the number of different possible
character positions, should be sufficient to accommodate alphabetics,
numerics, specials, and control characters needed for information inter-
change.

Criterion 5. The numerics 0 through 9 should be contained in a 4-bit
subset.

Criterion 6. The numerics should have bit patterns such that the four
low-order bits shall be the binary coded decimal representation of
numerics.

Criterion 7. The intermingling of control and graphic characters should
be avoided. The bit patterns of control characters should be distinguisha-
ble from those of graphics by some simple test of the high-order bits.

Criterion 8. The meaning associated with a bit pattern should depend
on only the bit pattern itself, and not on any preceding bit patterns.

Criterion 9. The alphabetics A through Z, and some code positions
contiguous to the code position of Z, should be contained in a 5-bit
subset.

Criterion 10. The alphabetics should have contiguous bit patterns.

Criterion 11. Such control characters are as required for communication
and data processing should be included.

Criterion 12. An Escape character, to allow for code extension, should
be included.

Criterion 13. The class of specials, the class of numerics, and the class of
alphabetics should be distinguishable one from the other by simple binary
comparison tests.

Criterion 14. The Space character should be positioned so as to collate
low to all other graphics.
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Decision 9. Columns 0 and 1 would be for control characters, columns
2, 3, 4, and 5 for graphic characters, and columns 6 and 7 undeﬁned at
this time (Criteria 7, 13, 19).

Decision 10. The Space character would be in code position 2/0 (Criter-
ion 14).

Decision 11. Tentatively, code positions would be reserved for 8
Transmission-Control characters, 8 Format-Effector characters, 8 Device-
Control characters, and 8 Information-Separator characters (Criterion
11).

Decision 12. Column 2 would be reserved for Specials (Criterion 13).

Decision 13. Small and capital letters, if provided, would be provided as
separate alphabets, not as interleaved alphabets.

Decision 14. A 6-bit, 64-character graphic subset should be collapsible
out by dropping one of the seven bits (Criterion 2).

Decision 15. The 3-column BCD arrangement for alphabetics is re-
jected (Criteria 9, 10).

Decision 16. Alphabetics would be contiguous (Criterion 10).

Decision 17. The structure of the code would be

Columns 0 and 1, controls

Column 2, specials

Column 3, numerics

Columns 4 and 5, alphabetics

Columns 6 and 7, undefined at this time.

As stated above, the standards committee had decided that the al-
phabet(s) would be contiguous and positioned in two contiguous columns
of the code. For English-speaking countries, there are 26 alphabetics.
There are 32 contiguous code positions in two columns. The first letter,
A, could therefore be positioned in any of seven positions of column 4,
as shown in Fig. 14.7.

The standards committee noted that in Fieldata (see Fig. 3.3) the
contiguous alphabet had been positioned with A in 4/7 down to Z in
5/15. One factor precluded the position of the alphabet of the standard
code into the Fieldata positions. The alphabets of some European coun-
tries (Germany, Sweden, Norway, Denmark, Finland) require 29 letters—
the 26 letters of the English-speaking countries and 3 diacritic letters.
The Portuguese and Spanish languages require one or more diacritic
letters. The French and Italian languages require accented letters.
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14.6 NATIONAL USE POSITIONS

It was generally recognized by American manufacturers marketing
equipment in Europe that these additional diacritic or accented letters
must be provided. It was a natural decision, therefore, to provide code
positions in the standard code to meet such requirements. In some of the
continental European countries, from a collating sequence point of view,
the diacritic letters are interspersed among the other letters. But in
Sweden they follow the letter Z. It was a natural decision, therefore, to
assign the three code positions following the code position of Z to
accommodate the alphabetic extender requirement. These three code
positions came to be called National Use positions.

It should be noted that this consideration rules out the last three
possibilities shown in Fig. 14.7. In any event, the Fieldata positioning was
ruled out by this consideration. But this still left four possibilities—
positioning the letter A in code positions 4/0, 4/1, 4/2, or 4/3. Which of
these should be chosen?

The American standards committee decided on position 4/1 for the
letter A because that code position had been decided for a draft British
Standard and also for a draft ECMA Standard being developed at that
time. So the American decision was based on the sensible desire for
international accord on this point. (But the author does not know on what
factors the British and ECMA decision was based.) This decision, Decision
18, then, was the first on the specific positioning of graphics.

Column

Row 4 4 4 4 4 4 4
0 A
1 B A
2 C B A
3 C B A
4 C B A
5 C B A
6 C B A
7 C B
8 C
9

Fig. 14.7 Positioning of A
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14.7 POSITIONING OF NUMERICS

Decision 19. The next decision of the standards committee had to do
with the positioning of the numerics. It had already been decided to
position the numerics in column 3. Criterion 6 clearly required that the
numerics 0 through 9 should be in code positions 3/0 through 3/9,
respectively. The specifics of the code were now beginning to shape up, as
shown in Fig. 14.8.

Column 0 1 2 3 4 5 6 7
Bit b7 (0 0 0 0 1 1 1 1
Pattern b6 0 0 1 1 0 0 1 1
r b5 0 1 0 1 0 1 0 1
Row b4 b3 b2 b1
0 0000 NUL Sp 0 P
1 0001 1 A Q
2 0010 2 B R
3 0011 3 c g
4 0100 4 D ™
5 0101 5 E U
6 0110 6 F v
7 0111 7 G W
8 1000 8 H X
9 1001 9 1 v
10 17010 J 7
11 1011 K
12 1100 1
13 1101 M
14 1110 N
15 1111 0 DEL

Fig. 14.8 ASCII, initial specifics
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14.8 ASSIGNMENT OF SPECIAL CHARACTERS

Decision 20. The standards committee now turned its attention to
assignment of specials. After much discussion, the standards committee
decided on the 27 graphics to go in the available code positions in
columns 2, 3, 4, and 5. The specials are classified by function.*

Punctuation and Correspondence ., : ; ! ?2'" 8
Commercial Usage #9$ % & @ 5
Bracketing (Programming) ()[1] 4
Mathematical (Programming) +-F\=<> 8
Flow Charting (Programming) 1 2

Clearly, Criteria 4 and 18 bore on this decision.

Decision 21. The standards committee now considered specific code
positions for these specials. A number of criteria bore on this decision,
Criteria 13, 15, 16, and 17. Actually, Criterion 13 was of little signifi-
cance here, because the sets of available bit patterns had already been
established by previous decisions on the positioning of Space, numerics,
and alphabetics.

It was soon evident that Criterion 16, which spoke to grouping of
specials by function, would conflict with Criteria 15 and 17, which spoke
to collating considerations and to typewriter-keytop-pairing considera-
tions. Criterion 16 was considered to be of less importance than the other
two.

Criterion 17 spoke to positioning graphics in the code table to
correspond to their positioning on typewriter keys. From this criterion,
some decisions stemmed easily.

The specials # $ % were positioned 2/3, 2/4, 2/5, respectively, in
correspondence with 4, 5, 6 in 3/3, 3/4, 3/5, respectively, thus providing
the typewriter-keytop pairing. The specials / and ? were positioned in
2/15 and 3/15, respectively, thus providing correspondence with
typewriter-keytop pairing.

14.8 Period and Comma

On electric typewriters both the period and the comma appear in both
lower and upper-case shift. It was decided to correspond these two

* Note that these classifications are not mutually exclusive. Bracketing symbols,
the hyphen, and the asterisk are used in business correspondence. Period, comma,
semicolon, apostrophe are used in programming languages. And so on.
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graphics with two others that typewriter manufacturers would reckon
were unneeded in normal business correspondence; that is, the period
and the comma in one case shift would be replaced. The specials < and
> seemed to fill the bill. Accordingly, it was decided to pair , and < and
to pair . and > in the code, but it was not yet clear where these four
should specifically go.

It was noted that the specials , . — frequently appear in sorting or
collating situations. Under Criterion 15, then, these should be positioned
so as to collate low to numerics and alphabetics. Clearly, this meant they
would have to be positioned in Column 2. Of these three specials, it had
been decided, as related in the previous paragraph, to pair , . with < >,
To satisfy these two conditions, specials , . < > were positioned in code
positions 2/12, 2/14, 3/12, 3/14, respectively.

14.8.2 Left and Right Parentheses

The graphics ( and ) are paired with 9 and 0 on electric typewriters. But
no graphic could be paired with 0 in the code, since the Space character
had already been assigned to the pair position of 0. It was decided to pair
them in the code with 8 and 9 because then, if the code were im-
plemented on a keyboard, they would be located as close as possible to
their usual electric typewriter positions; that is, paired with 9 and 0. Also,
on many European typewriter keyboards, ( and ) appear paired with 8
and 9. Therefore, ( and ) were positioned in 2/8 and 2/9, respectively.

It was now pointed out that in the United Kingdom the monetary
system required not only the numerics O through 9 but also 10 and 11.
Clearly, if these numerics were provided in the code for implementations
for the United Kingdom, they would occupy the two code positions in the
column of numerics under the 9; that is, code positions 3/10 and 3/11. It
was deemed wise to assign to these two code positions graphics that could
be replaced in the United Kingdom with minimum anguish. Eventually,
the standards committee decided to assign : and ; to code positions 3/10
and 3/11, respectively.

14.8.3 Alphabetic Extenders

Attention was now focussed on the three code positions 5/11, 5/12, 5/13
that, as was explained above, would receive alphabetic extenders in
European implementations. As in the preceding paragraph, the search
was for graphics whose replacement would cause minimum anguish. The
standards committee decided for [ \ ] for code positions 5/11, 5/12, 5/13,
respectively.
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14.8.4 Further Special Characters
There now remained 10 specials to be assigned:
! ' & @@ + * _ T «

It seemed apt to position = in the code position between those occupied

Column 0 1 2 3 4 5 6 7
Bit b7 |0 0 0 0 1 1 1 1
Pattern b6 0 0 1 1 0 0 1 1
b5 0 1 0 1 0 1 0 1
Row b4 b3 b2 b1
0 0000 NUL DCO sp 0 @ P
1 0001 TCl DCl | 1 A Q
2 0010 TC2 DC2 ' 2 B R
3 0011 TC3 DC3 # 3 C S
4 0100 TC4 DC4 $ 4 D T
5 0101 TC5 DCS % 5 E 4]
6 0110 TC6 DC6 & 6 F v
7 0111 TC7 DC7 ! 7 G W i
UNASSIGNED
8 1000 FEO IS0 ( 8 H X
9 100 1 FE1 Is1 ) 9 L Y
10 1010 FE2 1S2 * : J Z
1 1011 FE3 183 + 5 K C
12 1100 FE4 IS4 s < L \
13 1101 FES5 185 - = M ]
14 1110 FE6 156 . > N 4
15 11101 FE7 187 / ? 0 <+

TC -~ Transmission Control
FE - Format Effector
DC - Device Control
IS - Information Separator

Fig. 14.9 ASCIl, sequence of 63 graphics
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yy < and >. Thus these three mathematical symbols would be in code
equence < = >, which might aid human beings to remember their
ode positions. Therefore, = was assigned to 3/13.

Because the special @ is not used in continental Europe, it seemed
ikely to be replaced with an accented letter a in France and Italy. This
etter should be in proximity to other letters in the code table. Code
yosition 4/0 filled the bill, and @ was assigned thereto.

For the eight specials remaining, no reasons could be found for any
»articular code position. They were therefore positioned in the remaining
sight code positions, more or less arbitrarily. The code table now looked
ike that shown in Fig. 14.9. '

149 CONTROL CHARACTERS

F'he standards committee responsible for coded character sets discussed
vith the standards committee responsible for data communications the
sontrol characters necessary for data transmission control.

Nine functions were identified as being required for data transmis-
sion control:

SOM Start of Message

EOA End of Address

EOM End of Message

EOT End of Transmission

WRU Who Are You?

RU Are You...?

DCO Device control reserved for Data Link Escape
SYNC Synchronous Idle

ACK Acknowledge

When it came to decisions to position these characters in the code table,
the concept of “Hamming distance” came into play. On transmission lines
transmitting binary digital data, what was called a “hit” could occur. If a
0-bit was hit, it changed into a 1-bit. If a 1-bit was hit, it changed into a
0-bit. -

As a result of hits, with resultant changes to bit patterns, changes in
meaning could occur. Consider the following:

Graphic

meaning Bit pattern
B 1000010
C 1000011

If the bit pattern 1000010 meaning B received a hit in its last bit,
changing it to 1000011, the meaning would be C. Hits on graphic bit



244 The Sequence of ASCII

patterns would result in garbled messages. But if hits occurred to data

transmission control characters changing them into other data transmis-

sion control characters, the transmission system could go out of control.

This was clearly to be guarded against to the maximum extent possible.
Consider two bit patterns:

b7 b6 b5 b4 b3 b2 bl
1 0 0 0 0 1 0
0 1 0 1 1 0 0
Column 0 1 2 3 4 5 6 7
Bit b7 | 0 0 0 0 1 1 1 1
Pattern L——O b6 0 0 1 1 0 0 1 1
b5 0 1 0 1 0 1 0 1
Row b4 b3 b2 b1
(¢} 0000 DCO
1 0001 SOM
2 0010 EOA
3 0011 EOM
4 0100 EOT
5 0101 WRU
6 0110 RU SYNC
7 0111
8 1000
9 1001
10 1010
1 1011
12 1100 ACK
13 1101
14 Tt110
15 17111

Fig. 14.10 Data transmission control characters
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For these two bit patterns, b7, b6, b4, b3, and b2 are different. That is to
say, five hits would have to occur to change one bit pattern into the other.
The number of bits different between two bit patterns is known as their
“Hamming distance.”

Clearly, to minimize the possibility of one data transmission control
character being hit and turning into another data transmission control
character, the Hamming distance between the two characters must be
maximized. The set of data transmission control characters, therefore,
should be positioned in the code table to maximize the hamming dis-
tances between and among them. '

Many combinations were studied and, ultimately, agreement was
reached to position them as shown in Fig. 14.10.

The standards committee eventually came into agreement to include
the following control characters:

Format Effectors

HT/SK Horizontal Tabulation, Skip (punched card)

LF Line feed

VT Vertical Tabulation

FF Form Feed

CR Carriage Return

FEO Format Effector

Device Control Code Extension

DC1 Device Control 1 ESC Escape
DC2 Device Control 2 SO Shift Out
DC3 Device Control 3 SI Shift In

DC4 Device Control 4

Information Separators Miscellaneous
SO Separator 0 BELL Audible Signal
S1 Separator 1 ERR Error
S2 Separator 2 NULL  Null
S3 Separator 3 DEL Delete
S4 Separator 4 ® Unassigned Control

S5 Separator 5
S6 Separator 6
S7 Separator 7

The final ASCII code table, as of 1963, is shown in Fig. 14.11.
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Column 0 1 2 3 4 5 6 7
Bit 7|0 0 0 0 1 1 1 1
Pattern b6 0 0 1 1 0 0 1 1
b5 0 1 0 1 0 1 0 1
Row b4 b3 b2 bi
Y 0000 NULL DCO SP 0 @ P
1 0001 SOM DC1 ! 1 A Q
2 0010 EOA DC2 " 2 B R
3 0011 EOM DC3 # 3 c S
4 0100 EOT DC4 $ 4 D T
5 0101 WRU ERP % 5 E U
6 0110 RU | SYNC & 6 F v E
Az
7 0111 BELL | LEM ' 7 el W S
I
8 1000 FEO | 80 ( 8 H X g
E
9 1001 HT/SK | s1 ) 9 T Y D
10 1010 LF s2 * : J Z
n 1011 VT 53 + ; K C
12 1100 FF S4 ; < L \
13 1101 CR 85 - = M )
14 T11o S0 s6 | . > N 4
15 L SI 87 / ? 0 <

Fig. 14.11 ASCH, 1963

14.10 ASCII, 1967

At the first meeting of ISO/TC97/SC2 in 1963 October 29-31, a resolu-
tion was passed that the lower-case alphabet should be assigned to
columns 6 and 7. Of course, with the assignment of three code positions
7/11, 7/12, 7/13 for National Use, this meant that ACK must be removed
from code position 7/13.
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Column 0 1 2 4 5 7
Bit b7 0
Pattern b6 0 0 1 0 0 1
b5 0 1 1 0 1
Row b4 b3 b2 b1
L] LL‘
0 0000 NUL DLE SP @ P P
[1]
1 0001 SOH DCl ! A Q q
[
2 0010 STX DC2 " B R r
[1]
3 0011 LTX DC3 # C S s
[2]
4 0100 EOT DC4 $ D T t
2] L]
5 0101 ENQ NAK % E ) u
[3]
6 6110 ACK SYN & F v v
[2]
7 0111 BEL ETB ' G W w
[2] 2]
8 1000 BS CAN ( H . X b4
1,2
9 1001 HT EM ) 1 Y y
[ 2]
10 17010 LF SUB * J Z z
L] [2]
1 1011 VT ESC + K X {
[.2] [2]
12 1100 FF FS , L \ !
2] [2]
13 1101 CR GS - M 1 }
2] [ 2] T2}
14 1110 S0 RS N ~ -
[ 2] [ 2]
15 1111 ST us / 0 _ DEL

Change of name
[__‘f] New character
E Moved character

Fig. 14.12 ASCIl, 1967 and 1968

247

This decision was in due course accepted by X3.2 for ASCIL
[nteraction between members of X3.2 and delegations at ISO/TC97/SC2
ultimately led to further changes in ASCIL The final code table, as

embodied in USAS X3.4-1967, is shown in Fig. 14.12.
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Changes were of four kinds:

® Changes of name. For example, Start of Message (1963) became
Start of Header (1967).

*  Characters moved. For example, Escape, in position 7/14 (1963),
was moved to position 1/11 (1967).

® Introduction of new characters. For example, grave accent and the
opening brace {. For example, SUB (Substitute), CAN (Cancel).

" Deletion completely of some characters. For example, RU (Are
You...?) and ERR (Error) in the 1963 version are not in the 1967

version at all.



15

Which
Bit First?

Following the approval of the American Standard Code for Information
Interchange (ASCII) in 1963, the data transmission standards committee
turned its attention to determining the bit sequence in which the bit
patterns of ASCII should be transmitted for serial-by-bit-serial-by-
character data transmission. The committee soon decided that the ASCII
bit patterns should be transmitted consecutively. As well as considering
problems of character framing and parity on data transmission lines
(which problems are not discussed in this book), the committee consi-
dered the problem of whether the ASCII bit patterns should be transmit-
ted high-order bit first or low-order bit first.

15.1 SPECIFIC CRITERIA

The committee developed a set of ten specific criteria®* pertinent to the
decision of bit sequencing. Not all of the criteria were satisfied by the
committee’s final decision. Some of the criteria are conflicting. The final
decision on bit sequencing was based on a detailed analysis and weighting

*The ten Specific Criteria are reproduced with permission from American Na-
tional Standard for Bit Sequencing of the American National Standard Code for
Information Interchange in Serial-by-Bit Data Transmission, X3.15-1966,
copyright 1966, by the American National Standards Institute at 1430 Broadway,
New York, New York 10018. The Criteria are reproduced from Appendix A2 of
the Standard X3.15-1966. The Standard is available from the American National
Standards Institute at 1430 Broadway, New York, New York 10018.

249
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Which Bit First?

of the criteria. The Specific Criteria follow:

1.

W

10.

The transmission bit sequence should be in consecutive numerical
order (ascending or descending) in terms of ASCII nomenclature.

. The transmission bit sequence should minimize the amount and

complexity of existing and future hardware.

The transmission bit sequence should be selected to minimize ad-
verse consequences of equipment or system malfunction.

The transmission of a binary bit stream should not be precluded.
The transmission of encrypted material should not be precluded.

. There should be a correspondence among media track (channel or

row) designation, ASCII bit number, and transmission bit sequence,
in order to minimize training and reduce confusion of operating,
maintenance, and engineering personnel.

. The transmission bit sequence should allow a logical extension of

supersets of ASCII.

The transmission bit sequence of any subset or superset of ASCII
should provide that any designated bit be immutable in its position in
the transmission sequence as well as in its logical order and media
representation.

The character parity bit should be positioned to allow it to be
generated “on the fly,” following the data bits.

The transmission bit sequence should allow maximum design flexibil-
ity in future systems utilizing ASCII.

The two bit-sequencing choices, high-order bit first, or low-order bit first,
were then investigated to determine their influence on data interchange
from the following points of view:

a)
b)
c)
d)
€)
f)

flexibility of hardware design,
hardware efficiency,

ease of maintenance,

contraction of ASCII to subsets,
expansion of ASCII to supersets, and
system reliability.

The arguments that were advanced to the committee are now reproduced.
It is to be emphasized that the author does not testify to the validity or
significance of the arguments. He merely reports the arguments. The
arguments are grouped under the last five of the above points of view. In
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parentheses after each argument is indicated whether the argument was in
favor of transmission high- or low-order bit first.

15.2 HARDWARE EFFICIENCY

1. Although the bit sequence is immaterial in a great majority of
today’s applications, nevertheless specific cases were considered in
which either one or the other bit order was advantageous.

2. When ASCII is transmitted high-order bit first, it is possible to
determine, by the first two or three bits received, the general use of
the character and, in certain classes of equipments, thereby know the
routing and final disposition of the remaining bits. In particular, this
can reduce the necessary bit storage in I/O typewriters where reduc-
tion in bit-storage requirements can be a reasonably 51gn1ﬁcant
portion of the total cost. (high)

3. The problem of mapping the 7-bit ASCII code into a 6-bit data
processor character code can be simplified if the high-order bit is
placed first. _

In particular, the first two bits received may be sufficent to
generate an ‘‘escape’ character prior to reception of the complete
ASCII character, thus allowing a considerably longer effective time
upon completion of reception of the ASCII character with conse-

quent increase in traffic handling capacity for a given equipment.
(high)

4. Time (clock) codes are transmitted low-order bit first and low-order
character first so that the fine detail will appear earlier, and the
redundant, infrequently changing coarse portions will appear later in
each time code group. If it is desired to intersperse time codes in
general interchange data, less confusion should arise, and less hard-
ware should be required, if the interchange data is also transmitted
low-order bit first. (low)

16.3 EASE OF MAINTENANCE

1. With low-order bit transmitted first, the first data pulse can corres-
pond to ASCII bit b1, the second to bit b2, etc. Thus “third’’ will
mean third pulse as well as bit b3. It can also mean third track (or
channel or row) in media. This extremely simple relationship among
media track number, pulse number, and bit designation number is
highly desirable in the maintenance of communication equipment,
especially in discussions between remote technicians or between
technicians and engineers. (low)
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2.

Which Bit First?

This correspondence argument was at least partially offset in asyn-
chronous systems where serially received bits are accompanied by
synchronization bits. Thus the received ASCII bit bl could actually
be the second received bit, bit b2 could be the third received bit, etc.
(high)

16.4 CONTRACTION TO ASCIlI SUBSETS

1.

Logic for serial recognition of characters limited to specific coding
groups of the 7-bit ASCII is expected to be implemented with less
total hardware where transmission is sequential with high-order bit
first. (high)

If subsets of ASCII, such as a 4-bit numeric subset or a 6-bit graphic
subset, are used, then the low-order-bit-first arrangement allows
high-order bits to be appended “on the fly,” according to logical
rules, for transmission of the full 7-bit ASCIIL. (low)

Equipment receiving the full 7-bit ASCII, but operating on only a
subset, may, with the low-order bit first, obtain the subset by simply
ignoring bits received after the prescribed number for each ASCII
character received. (low)

165 EXPANSION TO ASCIl SUPERSETS

It has not been decided just how the 7 bits (b7 through b1) of ASCII will
be represented in an 8-bit environment. If a superset takes the form of an
8th bit which is higher in order than bit 7, then

1.

In the expansion and contraction between both 7- and 8-bit sets and
6- and 8-bit sets, only the data contained in the high-order bits will
be needed to determine the transformation. The transmission of
high-order bit first provides the maximum time to convert between
the sets. (high)

With low-order bit transmitted first, compatibility between terminal
equipments using ASCII and terminal equipments using an 8-bit
superset of ASCII may be simplified, and transmission switching
equipment may more readily handle either mode of transmission.
(low)

15.6 RELIABILITY

1.

Asynchronous transmission of characters results in a greater proba-
bility of error in the later bits transmitted.
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2. If low-order bits are transmitted first, an error in the later bits would
tend to convert some graphics to control characters. (high)

3. If high-order bits are transmitted first, numerics may be converted to
other numerics, and control characters to other control characters.
(low)

After many committee meetings, long discussion, and the considera-
tion of over seventy technical papers on the subject, the standards
committee decided in favor of low-order bit first for serial-by-bit-serial-
by-character data transmission.

Author’s Note

All data is transmitted high-order character first, and it may be observed
that similar arguments for order-of-character transmission could be made
as for order-of-bit transmission. That is to say, it might have been argued
that since similar reasons could have been advanced for order-of-
character transmission but that nevertheless high-order-character trans-
mission is universally practiced, it would seem to be logical to conclude that
high-order-bit transmission first should become the practice. This argu-
ment, however, was not introduced into the discussion.
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Decimal ASCIT

After the bit code ASCII became an approved American National
Standard in 1963 (actually termed ‘“American Standard” then), the
attention of the standards committee turned to developing standards for
the representation of the code on the principal media, perforated tape,
magnetic tape, and punched card.

16.1 PERFORATED TAPE

The representation for perforated tape presented no technical problems.
A common form of perforated tape of the day was one-inch, eight-track
paper tape. It was soon agreed

a) To number the tracks of the tape 1, 2, 3, 4, 5, 6, 7, 8.

b) To record the seven bits of the code:
b1l in track 1
b2 in track 2

b7 in track 7.
c) To use track 8 as a parity track.

16.2 MAGNETIC TAPE

The problem for magnetic tape was not quite so simple. First, the
committee decided to reject as a candidate the existing magnetic tape of

255
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the day—half-inch, seven tracks. One of the seven tracks was dedicated
to parity—odd parity for some computing systems, even parity for other
computing systems.

If a track were to be dedicated to parity for the standard on magnetic
tape, and the standards committee agreed that it should be, then only six
tracks would remain to record the seven bits of the code. While it is
feasible to devise a theoretical scheme for recording the 128 characters of
a 7-bit code on 6 tracks (and, indeed an ISO Recommendation for just
such a scheme was eventually approved), the American standards com-
mittee deemed such a scheme unacceptable for an American standard. As
described in Chapter 20, the standards committee proposed a recording
format of nine tracks, and eventually, the representation of ASCII on
magnetic tape became an approved American standard.

16.3 PUNCHED CARDS

The problem of deciding how to record ASCII on punched cards turned
out to be extremely troublesome.

The most common form of punched cards in use in the U.S.A. at the
time used a 12-row, rectangular-holes representation (which came to be
called the Hollerith Card Code in the U.S.A.). A less common representa-
tion, provided by the UNIVAC Division of the Sperry-Rand Corpora-
tion, used a punched card of virtually the same size, and twelve rows of
punching, but the holes were circular. The initial draft American standard
specified both the rectangular-hole and circular-hole representations.

Eventually, the standards committee voted to exclude the circular-
hole representation from further consideration, for an interesting reason.
The circular-hole card had 45 columns of punching. The encoding format
divided the twelve rows into two tiers of 6 holes per tier. The card was
visualized as having 90 columns, and was frequently called the 90-column
card (the rectangular hole card had 80 columns of punching, and was
frequently called the 80-column card). But these 90 columns had only 6
punchable rows per column and therefore could record a maximum of 64
different characters. The problem with the 90-column card was the same
as the problem for magnetic tape (6 data tracks plus 1 parity track). How
could the 128 characters of ASCII be recorded on the 6 rows of the card?
Of course, physically, the card had 12 rows. The alternatives for the
circular-hole card were

a) Using the 12 rows as necessary, record all 128 characters of ASCII,
but then have a capacity of only 45 columns per card.

b) Record only 64 characters of ASCII, and have a capacity of 90
columns per card.
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c) Use 90 columns, record all 128 characters of ASCII by some
complicated recording scheme involving the concept of a shifted or
precedence code.

None of these alternatives was attractive, and the committee dropped
the circular-hole card from further consideration.

Attention then focused solely on the rectangular-hole card. Inciden-
tally, the “name” of this kind of card enjoyed some changes. During the
discussion of the circular-hole card, it was necessary to differentiate
between the two kinds of cards. “Circular-hole card” and rectangular-
hole card” were two differentiating names; “90-column card” and “80-
column card” were more commonly used differentiating names (both
kinds of card had 12 rows, so this characteristic could not be used to
differentiate). After the circular-hole card was dropped from further
consideration, the remaining card was referred to as the 80-column card
for a while. But it was pointed out that this name was a misnomer, because
different lengths of the card (that is, different numbers of columns) were
available in the market. At this point, therefore, the standards committee
began to refer to the rectangular-hole card as the 12-row card (12 rows
being a characteristic of such cards regardless of length). The ISO

Recommendations on punched cards refer to the card as the 12-Row
Card.

16.4 BINARY REPRESENTATION

The standards committee now focussed on the 12-row card. At first, the
problem seemed simply solvable. The card has twelve rows, commonly
named the 12-row, the 11-row, the O-row, the 1-row, the 2-row, ..., the
9-row, as shown in Fig. 16.1. Some members of the standards committee

G e Card rows (horizontal) see———

—

12-row

11-row
O-row T
1-row
2-row
3-row 3 Card columns (vertical)
4-row
5-row
6-row
7-row v
8-row
9-row _J

CoOoOooocOooOooooo

Fig. 16.1 Punched card
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suggested that the code be recorded according to a very simple algorithm:

a) bl would be recorded in the 1-row,
b2 would be recorded in the 2-row,
b3 would be recorded in the 3-row,
b4 would be recorded in the 4-row,
b5 would be recorded in the 5-row,
b6 would be recorded in the 6-row,
b7 would be recorded in the 7-row.

b) When a bit of the bit pattern is 1, punch a hole.
When a bit of the bit pattern is 0, leave the hole position unpunched.

This proposed representation on punched cards came to be called the
Binary Representation (and later came to be called the Direct Binary
Representation). The advocates of the Binary Representation pointed out
its advantages:

1. It was a simple, direct representation (no translation required).

2. If it became necessary some day in the future to expand the 7-bit
code to an 8-bit code, the eighth bit of such a code could be recorded
in the 8-row.

3. The 12-row, 11-row, and 9-row would be available so that error-
checking, and even error-correcting, schemes could be implemented,
a facility not previously available with the punched card medium.

The initial argument against the Binary Representation was that it
was completely different from the existing Hollerith Card Code. This
argument was discounted by the Binary Representation proponents.
After all, they argued, ASCII was different from any existing code; the
representation of ASCII on magnetic tape would be different from any
existing magnetic tape code; the representation of ASCII on paper tape
would be different from any existing paper tape code. So what was
alarming about the suggestion that the representation of ASCII be
different from the existing punched card code? While the opponents of
the Binary Representation grappled with this argument, a much more
telling objection emerged.

16.5 NUMBERS OF HOLES

Observe, said the Direct Binary opponents, what happens when the
numerics of ASCII are recorded on the punched card under such a
scheme (see Fig. 16.2).
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Fig. 16.2 Numerics, Binary Representation

Two facts emerge with respect to numerics:

1. O requires 2 holes; 1, 2, 4, and 8 require 3 holes; 3, 5, 6, and 9
require 4 holes; 7 requires 5 holes; this gives an average of 3.5 holes
per numeric.

2. For all numerics, both the 5-row and the 6-row have punched holes.

These two facts contrast with the equivalent facts for the Hollerith
Representation of numerics (Fig. 16.3).

1. Each numeric requires exactly one hole.
2. There is a different row punched for each different numeric.
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Fig. 16.3 Numerics, Hollerith Representation
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The significance of fact (1) is that if more holes are required per
character, the dies that punch the holes will wear out sooner, and thus
maintenance costs will be higher. The statistics above for fact (1) relate to
numerics only. Consider the statistics for all 64 characters in columns 2,
3, 4, 5 of the code:

2 characters require 1 hole = 2
10 characters require 2 holes = 20
20 characters require 3 holes = 60
20 characters require 4 holes = 80
10 characters require 5 holes = 50
_ 2 characters require 6 holes = 12

64 224

The average is 224/64 = 3.4 holes per character.
By contrast, consider the Hollerith Card Code associated with BCDIC
(see Fig. 16.4):

1 character requires 0 holes = 0
12 characters require 2 holes = 24
35 characters require 2 holes = 70
16 characters require 3 holes = 48

64 142
The average is 142/64 = 2.2 holes per character.

We have, then, average number of holes per character, as shown
below:

Kind of Binary Hollerith
characters | Representation | Representation
Numerics 3.5 1

All 64 3.4 2.2
characters

For numeric data, which was estimated at that time to constitute 75
percent of all data punched, we have 3.5 holes per character compared to
1 hole per character. For the 64 graphic characters, we have 3.4 holes per
character compared to 2.2 holes per character.
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Fig. 16.4 BCDIC, Hollerith Card Code

Fact (1) led to the conclusion that the Binary Representation would
result in higher maintenance costs for punched card equipment than the
existing Hollerith Representation. And, it is important to note, this would
not be a one-time conversion cost (because of converting from one code to
another); it would be a continuing cost.

16.6 LACING

Fact (2), however, led to an even more compelling argument against the
Binary Representation. Observe Fig. 16.5. For numeric data, for all
numerics, rows 5 and 6 are punched. If a card was punched with numeric
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Fig. 16.5 Laced card

data only, the rows 5 and 6 would be punched completely across the
length of the card. The technical term used for this phenomenon is
“lacing.” For the Binary Representation, the card would be “laced”
completely across two rows for numeric data.

The punched card is unique among the physical recording media in
one very significant aspect, the way in which it is handled by human
beings. Of course, reels of magnetic tape are also handled by human
beings. And rolls of paper tape or lengths of paper tape are also handled
by human beings. But these human beings are operators in a computing-
room environment who handle the magnetic tape reels, or the paper tape,
with some care. Punched cards, by contrast, go out of the computing-
room environment into the hands of people who, not infrequently, treat
the card with considerable roughness. The punched card is used for pay
checks, for insurance premium billing, for utility billing, etc. In many
cases, the punched card goes to people outside the computing-room
environment, and is then subsequently returned for further computer
processing. The cards may be folded, crumpled, wetted, scraped, torn,
spindled, etc. (The famous phrase, “Do not spindle, fold, or mutilate”
was devised by Mr. Charles A. Phillips in the hope that people, so
advised, would treat cards more carefully.)

The punched card is made of a fairly stiff paper stock. To some
extent, it resists folding, wrinkling, tearing, etc. The presence in a
punched card of two rows laced across the length of the card clearly make
it much more susceptible to damage when casually or roughly treated by
human beings. The thrust of this argument was that the Binary Represen-
tation would make the card unreliable. On the standards committee,
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manufacturers of punched card equipment were unanimous in their op-
position to the Binary Representation; partly because of the potential
increase in continuing maintenance costs but mainly because of the
potential unreliability of the punched card which would result.

The proponents of the Binary Representation offset the cost argu-
ment with a counter argument on cost. A hardware translator to translate
ASCII to/from the Hollerith Representation would be very much more
costly than a hardware translator to translate ASCII to/from the Binary
Representation. But the reliability argument could not be offset. At first,
it was suggested that using the 12- and/or 11-rows for error checking or
error correcting would partly compensate for the unreliability aspect. But,
punching 12 or 11 rows would add even more holes per character, which
would worsen the maintenance cost situation.

16.7 MODIFIED BINARY REPRESENTATIONS

The reliability defect of the Binary Representation stemmed from the
lacing phenomenon, which stemmed from the three high-order zone bits
of ASCII. This defect could clearly be removed if the numerics had no
zone bits. The solution now advanced by the Binary Representation
proponents was to modify the binary representation as punched on the
card by modifying the zone holes. Two representations were proposed for
consideration—the Modified Binary Representation and the Optimum
Modified Binary Representation. In both these representations, the
numerics had no zone punches in the 5-row or 6-row, so the lacing
phenomenon disappeared for numerics.

The zone bits for the three binary representations are shown in Fig.
16.6. The three binary representations and the Hollerith Representation
are compared in Fig. 16.7, which shows the average number of holes per
numeric and the average number of holes for the 64 characters of
table-columns 2, 3, 4, and 5 of ASCII.

While the Optimum Modified Binary Representation came the clos-
est to Hollerith in average number of holes per numeric or character, it
suffered from some other defects:

1. A 64-character, 6-bit subset from columns 2, 3, 4, and 5 of the 7-bit
code cannot be generated by simply dropping one bit.

2. The translation algorithm, ASCII to/from Representation, is some-
what complex (although not as complex as the one to/from Hol-
lerith).

If the three high-order bits of the Optimum Modified Binary Representa-
tion are bj, bg, bs and the three high-order bits of ASCII are b7, b6, bS5,
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Fig. 16.6 Binary representation

Average number of holes per character
Representation Numerics All 64 characters
Direct Binary 3.5 3.4
Modified Binary 1.4 3
Optimum Modified Binary 1.4 2.7
Hollerith 1 2.2

Fig. 16.7 Average number of holes per character

then the translation equations are

5 = (b7 A b5) » (b7 A b6)
bs = (b7 A b6) v (b7 A bS)
bi = (b7 A b6) » (b7 A bS)
With respect to all three Binary Representations, two more problems

arose, which came to be called the Null/Space/Blank Problem, and the
Plus and Minus Zero Problem.
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16.8 NULL/SPACE/BLANK PROBLEM

In punched card applications, a blank card column, with no holes
punched, represented one of three things, depending on the application:

1. A card column not used in the application.

2. A card column not punched in the initial keypunching operation but
punched in a subsequent card-punching operation.

3. A space; that is, if the card is listed on either serial or parallel
printers, blank card columns would be represented by unprinted
printing positions on the paper.

In practice, the blank card column was equated to the Space character. In
keypunching, blank card columns are created by depressing the Space
bar, or by skipping the card to a subsequent card column, or by ejecting
the card. These operations are precisely analagous to the typing opera-
tions of Space, Horizontal Tabulation, and Carriage Return. The format
of data on the punched card is precisely analogous to the format of data
printed from the card.

Observe, however, the hole patterns for Null, Space, and Zero in the
Binary Representations (Fig. 16.8).

Representation Optimum
Direct Modified Modified
Character Binary Binary Binary
Null Blank column | 7-6-5 punches | 7-6-5 punches
Space 6 punch 6-5 punches 7 punch
Zero 6-5 punches Blank column | Blank column

Fig. 16.8 Null/Space/Zero hole patterns

The blank card column is associated with the Null character in the Direct
Binary Representation, and with the Zero character in the Modified and
Optimum Binary Representation. In no case is blank card column as-
sociated with the Space character.

At first, the Binary proponents took the following lines:

For the Direct Binary Representation. In the future, associate the blank
card column on punched cards with the Null character. On keypunches
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the ““old” Space bar would now have to be called the Null bar, but a
change in nomenclature should not be too distressing to users.

The Binary opponents held that this proposal would be unacceptable.

The proposal might be acceptable purely in the context of the
punched card environment. But punched cards do not exist in a vacuum.
A common punched card application is to read a deck of punched cards
into a card reader, translate the data to a transmission code, and then
transmit the data to some other location for further processing. But it was
known that some communications products, when receiving the Null
character, would not transmit it further. Also, it was known that, for
various reasons in some data transmission systems, Null characters are
injected into the data stream.

In short, Null characters might be injected into, or removed from,
the data stream. In the context of the punched card used in a data
transmission application, if the Null character was equated to a blank card
column, this would mean that, under data transmission, blank card
columns would be added to, or removed from, the punched cards. Even
the Binary proponents had to concede that such a consequence would be
intolerable.

For the Modified and Optimum Modified Binary Representations. In
the future, associate the blank card column on punched cards with the
Zero character.
The Binary opponents held that this proposal would be unacceptable.
The proposal to equate the blank card column with the zero charac-
ter would lead to a dilemma. Consider a card punched as shown in Fig.
16.9. Card-columns 1, 2, 4, 7, 12, 13, 16, and 19 are punched with
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Fig. 16.9 Card with blank columns
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wumerics. Card-columns 3, 5, 6, 8, 9, 10, 11, 14, 15, 17, 18 and 20
hrough 80 are blank. This punching represents numeric fields 12809001
n card-columns 1 through 8, and 24001006 in card-columns 12 through
19.

The dilemma is how to list such a card. Card-columns 3, 5, 6, 14, 15,
7, and 18 were Zeros in the data, and should be listed as Zeros. But
ard-columns 8 through 11 and 20 through 80, although blank card
olumns, should not be listed as Zeros, but as Spaces. And there is no
vay for a printer to tell when a blank card column means Zero, and when
t means Space.

The Binary proponents responded that the problem is that card
olumns 8 through 11 and 20 through 80 should not have been blank
ard columns, which is equated to the Zero character, but should have
yeen punched whatever hole pattern would be associated with the Space
‘haracter.

The Binary opponents labeled this unacceptable for two reasons:

1. Card-columns 8 through 11 would normally be created as blank card
columns in keypunching by skipping, and card-columns 20 through
80 by ejecting. Now, while it might be feasible to modify keypunches
so that they would create the specific hole pattern for the Space
character on skipping or on ejecting, the modification would reduce
the relatively fast card motion of skipping or ejecting to the relatively
slow card motion of punching. That is to say, the consequence of
such a keypunch would be a substantial reduction in keypunch
productivity.

2. How would one provide the traditional capability of leaving certain
card columns unpunched (blank card columns) during keypunching
to be filled with punched data on subsequent card processing opera-
tions? Such card columns would, in fact, have to be created by
punching the Zero character that is equated to blank card column. In
normal keypunching operations, such card columns are created by
spacing, skipping, or ejecting. Under this proposal, then, the rela-
tively fast card motion of skipping or ejecting would be replaced by
the relatively slow card motion of manual keying by an operator. As
in the previous argument, key punching productivity would be sub-
stantially reduced.

After much discussion, it was accepted that none of the Binary
Representations, as shown in Fig. 16.6, would be viable, because of the
Null/Space/Blank Problem. The Binary proponents then made some new
proposals. Under these proposals, the zone hole patterns shown in Fig.
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Table column
0]112|3|4|5/|6|7
Representation
010]0{0]|1}1]{1|1|b7
Direct Binary 110/0|1]{0(0[1|1|b6
0[1]0[1[0|1{0(1]b5
1|1{0(0[{0(0|1|1|b7
Modified Binary 0{1(0]0|1]|1|[1[0|b6
0[1{0[1(0|1[1]|1|b5
- 1|10{0|1j0|D|1|1|b7
Optimum Modified Binary 1{1{0]0]1[0]0(1|b6
1|1{0|0|0[1]1{0[b5

Fig. 16.10 Row O

16.6 would hold for rows 1 through 15 of the code table, but for row 0 of
the code table, some changes should be made, as shown in Fig. 16.10.

Note, in Fig. 16.10, that for all three Binary Representations, the
Space character, which is Column 2, Row 0 of the ASCII code table, is
equated to blank card column. The three high-order bits in Fig. 16.10
have been chosen to preserve the desirable characteristics of each of the
Binary Representations and, at the same time, to minimize the translation
complexity—ASCII to/from Binary card-code representation.

This proposal would, of course, introduce translation complexity into
the translation of ASCII to/from Binary card code. And translation
simplicity, or requirement for no translation at all, was the primary and in
fact the only argument in favor of a binary card-code representation over
the de facto Hollerith card-code representation. The Binary opponents
pointed out this undesirable consequence.

The Null/Space/Blank Problem in the context of Binary Representa-
tion was not resolved by the standards committee, for a reason that will
emerge later in this chapter.

16.9 PLUS AND MINUS ZERO PROBLEM

The capability to store greater and greater quantities of data has been a
requirement since the very beginning of data processing. Insufficient
memory capacity, data records overrunning magnetic tape reels or paper
tape reels, etc., have plagued, and will probably always plague, the data
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processing industry. Punched cards as a medium for storing data are not
sxempt from, and in fact are particularly prone to, this aggravation. How
many readers of this book have experienced the aggravation of trying to
squeeze 81 characters into an 80-column card? Indeed, most modern
schemes of packing or compacting data had their forerunners in punched
card applications.

One very common ‘“trick” was to make a single card column do
double, triple, or multiple duty. This was particularly evident in statistical
applications. For example, the 12-punch could be used to signify male or
female; the 11-punch, married or single; and the numerics 0 through 9
could be used to specify some other statistical characteristic.

A widespread convention was the use of a 12-punch, an 11-punch, or
neither of these, to signify positive, negative, or absolute numerics,
respectively. Usually the units position of a numeric field on a card was
the sign position. Either the 12- or 1l-punch was punched over the
appropriate units position of a numeric field (as well as punching the
actual digit for the units position). Since 12- and 11-punches, in conjunc-
tion with numeric punches, also had the meanings of alphabetics, the
result was dual meanings for these hole patterns, as shown in Fig. 16.11.

A crucial aspect of this convention for signed numerics was that they
must be keypunchable by the technique of overpunching. A skilled
keypunch operator, being required to keypunch —3, for example, would

Meaning Meaning Meaning
Hole Hole Hole
pattern | Alphabetic Numeric | pattern | Alphabetic | Numeric | pattern | Alphabetic Numeric
0 0 12-0 * +0 11-0 * -0
1 1 12-1 A +1 11-1 J -1
2 2 12-2 B +2 11-2 K -2
3 3 12-3 C +3 11-3 L -3
4 4 12-4 D +4 11-4 M -4
5 5 12-5 E +5 11-5 N -5
6 6 12-6 F +6 11-6 O -6
7 7 12-7 G +7 11-7 P -7
8 8 12-8 H +8 11-8 Q -8
9 9 12-9 I +9 11-9 R -9

*In BCDIC, 12-0 and 11-0 have the meanings of ? and !, respectively. In EBCDIC, they
have the meanings of { and }, respectively.

Fig. 16.11 Overpunched numerics



270 Decimal ASCII

know that this was equivalent to the alphabetic L, and would depress the
L key. However, a less skilled operator would use the multipunch key
that had the function that, when depressed, would allow further key
depressions of alphabetic, numeric, or special keys that would generate
the appropriate hole patterns in the card, but the card would not advance
longitudinally until the multipunch key was released; that is to say,
multiple punches could be created in a single card column. The operator,
then, being required to generate the 11-3 hole pattern, for —3, would
depress the multipunch key, would then depress the 3 key, then depress
the — key (which generates an 11-punch), then release the multipunch
key. Similarly to generate the hole pattern 12-3 for +3, the sequence
would be depress multipunch key, depress 3 key, depress + key (which
generates a 12-punch), release multipunch key.*

The requirement that signed numerics be keypunchable in this fash-
ion places an interesting constraint on hole patterns for signed numerics.
The hole pattern for positive, or for negative, must not conflict with the
hole patterns for numerics. In the case of the Hollerith Card Code, where
numerics had hole patterns 0 through 9, this constraint was met by the
hole patterns for numerics. In the case of the Hollerith Card Code, where
respectively.

What would this constraint say with respect to a Binary Representa-
tion? Given that the numerics are represented by BCD equivalents, that
is, punches in rows 1, 2, 3, 4 of the card, the hole patterns for positive and
negative must be restricted to rows 5, 6, 7, that is, to the zone rows.
Further, if the same convention would be used—minus sign for negative
zone and plus sign for positive zone—then the hole patterns for plus sign
and minus sign must not have any holes in card rows 1, 2, 3, 4, for they
would then conflict with hole patterns for numerics. But this constraint
cannot be met, since ASCII plus sign and minus sign are in table-rows 11
and 13; that is, they would have hole patterns in card-rows 1, 2, 3, 4.

There is, then, no way in which the sign-overpunch-numeric conven-
tion can be incorporated into a Binary card code, unless the minus sign
and plus sign had zone bits only, no digit bits; that is, plus sign and minus
sign to be in row 0 of the ASCII code table. Such a change to ASCII itself
was not acceptable.

The Binary proponents proposed that this problem be solved by
making the problem go away. They proposed that, with a Binary Rep-
resentation, algebraic sign be represented not by overpunching but by
carrying the algebraic sign in a separate card column. The Binary propo-

* Whether the sequence was first 3 key and then — key or first — key and then 3
key was immaterial.
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nents then were proposing not only that the user change his card code,
from Hollerith to Binary, but also that he give up the widespread practice
of overpunching numerics for algebraic sign.

This problem, as with the Null/Space/Blank Problem, was not resol-
ved, for a reason that will emerge later in this chapter.

In the remainder of this chapter, various card codes are illustrated
and described. Some of these card codes have 128 hole patterns and are
taken in conjunction with a 7-bit code. Other card codes have 256 hole
patterns and are taken in conjuction with an 8-bit code. Both the
Null/Space/Blank Problem and the Plus and Minus Zero Problem
emerged with respect to some of these codes, and they became major
points of technical controversy on the standards committees.

16.10 TRANSLATION SIMPLICITY

An aspect of these card codes that became crucial in discussions was the
translation relationship, card code to/from bit code. The relative simplic-
ity or complexity of translation became a factor for decision between
candidate card codes. Boolean equations for the various card codes are
set down in this chapter, using the notation described in Chapter 2. When
comparing equations, the three simplifying assumptions of Chapter 2
(repeated here for emphasis) are made.

Assumption 1. The circuit complexity is equal to implement each of the
four Boolean operators:

AND
Inclusive OR
Exclusive OR
IDENTITY

<< >

Assumption 2. The circuitry which generates a bit generates the inverse
of a bit with no additional complexity.

Assumption 3. Given two sets of Boolean equations representing two sets
of translation relationships, the relative circuit complexity of implement-
ing the relationships is proportional to the number of Boolean operators
in the equations.

It should be understood that, to implement a hardware translator, bit
code to/from card code, two sets of equations are necessary; the equa-
tions for deriving bit patterns from hole patterns, and the equations for
deriving hole patterns from bit patterns. However, in order to compare
two card codes for relative complexity, one set of equations is sufficient.
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Accordingly, in this chapter, we set down only the equations for deriving
bit patterns from hole patterns.

At this point it must be stated that the equations for deriving
EBCDIC bit patterns from EBCDIC hole patterns (to be given later) are
not necessarily the actual set of equations used in implementing hardware
translators. The equations for EBCDIC were derived by the author
purely for purposes of illustration and comparison in this chapter. The

Coumn| 0o [ 1 ] 2 ] 3 4 [ s T 6] 7 8 | o [ Al B c [ o] e[°F
Bit N 00 01 10 11
Pat. T oo 01 10 11 00 01 10 11 00 | 01 10 11 0o 01 10 11
Hole 9 9 9 9 9 9 9 9 Hole
Pat | T T T T T T T T Pat.
e E E E E E E E E N
Row Z Z Z Z Z Z Z Z
1 2 3 ) 5 3 7 8
o loooo B a1 ] ] O E (8 ) R (51 B 1 S
1 (o001 1 [3] 12 1
2 |oo10 2 2
3 (0011 3 3
4 |o100 4 4
5 [0101 5 5
6 [0110 [ 6
7 o111 7 7
8 |1000]| 8 8
9 |1001| 8-1 9
A |1010} 8-2 i 8-2
B |1011| 8-3 8-3
c |1100] 8-4 8—4
D [1101] 8-5 8-5
E [1110] 8-6 8-6
F |1111] 8-7 8-7
9 9 9 9 9 9 9 9
> T T T T T T T T
Hole E E E E E E E E
Pat. Z z z Z 2 z Z Z
Hole Patterns:
] 9-T-z-8-1 ] E [13] z-1
E 9-T-E-8-1 T-E-Z 9-E-Z-1 Block | Hole Patterns at:
E 9-F-Z-8~1 E T-Z @ T-E 1 3 1 Top and Left
E 9-T-E-7Z-8-1 E-Z 2 Bottom and Left
[s] ¥o Pch [1] z-8-2 2 4 3 | Topand Right
E T @ Z 4 Bottom and Right

Fig. 16.12 EBCDIC, 1963
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optimization of Boolean equations is an art. It is quite possible that the
EBCDIC equations given here could be optimized further. However, they
are adequate for the purposes of this chapter.

During the early part of 1963, the author had been evolving the bit
code and card code that came to be called EBCDIC. As described in
Chapter 8, two criteria were of major importance; the embedment of
BCDIC collating sequence in the EBCDIC collating sequence, and up-
ward compatibility of the BCDIC card code to the EBCDIC card code.
These two requirements together resulted in less than optimal simplicity
in the translation relationships, EBCDIC card code to/from bit code. In
consequence, at that time, the EBCDIC card code had not been adopted
in IBM. The EBCDIC bit code and card code then under consideration
are shown in Fig. 16.12.

16.11 BENDIX PRIME

The author had been requested to review a card code provided on some
card equipment by the Bendix Corporation, to see if it might lead to a
card code with simpler translation relationships to EBCDIC. Also, the
“Bendix card code” did not suffer from the defects described above for
binary card codes.

The “Bendix card code,” per se, will not be described in this book.
However, the principle of the Bendix card code is interesting and will be
described. It will be called “Bendix Prime” for purposes of reference.

12-row

11-row Tier 1
O-row

Tier 2 ?

1-row
2-row
3-row

7-row
8-row
9-row

Tier 4

4-row
B-row Tier 3
G-row

Fig. 16.13 Bendix card
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There are twelve punching rows in the punched card. In Bendix
Prime, these are grouped in four tiers of three rows each, as shown in
Fig. 16.13.

Within a tier within a card column, only one of the three rows may
be punched, or none may be punched. For example, within a card
column, in the third tier, there are four possible hole patterns; 4-hole,
5-hole, 6-hole, or no holes. There are therefore four possible hole
patterns for each tier, and there are four tiers. Hence, within a card
column, there are 4 X 4 X 4 X 4 = 256 different possible hole patterns.
That is to say, the Bendix Prime card code could be used to represent
256 characters.

One possible Bendix Prime representation is shown in Fig. 16.14.
For convenience, the twelve-, eleven-, and zero-rows are represented by

Cowmn] 0o [ 1 [ 2 ] 3 a | s ] 6 1 7 s | o9 ] Al s c [ o] e[ F
Bit | 00 o1 10 11
Pat, P00 ] 01 ] 10 | 11 | 00 | 01 ] 10 | 11 | oo ] o1 [ 10 [ 11 [ oo [ 0% [ 10 | 11
Hole T T T T Hole
Pat, E E E E Pat.
e Z Z z Z
Row 1 2 3 1 2 3 1 2 3 1 2 3
o |[oooo
1 {0001 7
2 (o010 8
3 (o011 9
4 |o0100]| 4
5 (0101 4-7
6 |0110]| 4-8
7 0111 4-9
8 [1000] &
9 1001 5-7
A 1010 5-8
B {1011]| 5-8
c |1100( &
D [1101] &7
E [1110] 68
Fl1111] &9
Hole
Pat.

Fig. 16.14 Bendix Prime
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EO=E~ Z
El=T~Z
E2=2~3
E3=1~+w3
E4 =5~ 6
E5=4+6
E6 =8 v 9
E7 =79

Fig. 16.15 Bendix Prime equations
Common expressions

A=2~3
R =4~5
C=6~7

D= 9A8na1l
F=A~R~C
G=(T/\E/\Z)V(T/\E/\Z)V(T/\E/\Z)V(T/\E—/\Z)
G=(TAEAZY(TAEAZY(TAEAZY~v(TAEAZ)
J=(TAEA(~2Z)
L=TAEAZASA2AD
K=(AFAS8ATAZ)A=E)
U=1F
Equations
EO={(F/\§)/\[(1/\(_})V(g/\f)]}v{(T/\F)A(9v8)}
vIUAOAD) v BAGYV{OATAEAZALAB} VL
El1=OA8ATAR~{O~v G A{FA(1~ 8]~ Ut~ {(GAF
A[OASA DY OA8AD]
E2 ={(TAE)~ (EAZ]ALF D)~ Ult v {(F A D)
A(E A Z)v-[(Z A1) A (T = E)]}}
E3={TAE) v (TAZYA{{FABv D]~ [AA8A9 v~ U}~ {[F A D]
AEAZ)~[EA(T~ 21}
E4={FABAQAAGL~{BATIA[OV(TAEAZ]L
v {8 A{3 Rv Clv[2AOATAEAZN

E5=R~ C
E6 ={3~v6~vTIv2AOABATAEAZYv{DAFATAEAZ)
E7T=B~Sv T~ {FA{lABv BAG]I~[9A8AI1N

Fig. 16.16 EBCDIC equations
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T, E, Z, respectively. The bits of an 8-bit byte are named EO, El,
E2,...,E7, from high to low order.

Using Boolean notation, the translation equations may be derived as
shown in Fig. 16.15. These translation relations for Bendix Prime card
code to/from EBCDIC bit code are considerably less complex than those
for EBCDIC card code to/from EBCDIC bit code, which are shown in
Fig. 16.16.

16.12 EBCDIC PRIME

While the author was reviewing Bendix Prime, it occurred to him that it
would be useful to have some basic card-code—to-bit-code relationship
against which other relationships could be compared for simplicity or
complexity. Such a basic relationship is shown in Fig. 16.17. It is called

Cowmn| 0 [ 1+ ] 2 T 3 4 [ s 6] 7 s | o ] A B c [ o[ e F
Bit N 00 01 10 11
Pat. oo J ot [ 1011 oo o1]10 11 ] 00] 01 ] 10 |11 |00 ] 01 ] 10 ] 11
Hole 9 9 9 9 9 9 9 9 Hole
Pat. T T T T T T T T Pat.
E E E E E E E E
Row Z Z Z Z Z Z Z Z
0 [oco0
1 {0001 1
2 o010 2
3 [oo11 3
4 {0100 4
5 (0101 5
6 |0110 6
7 Jo111 7
8 [t1000| 8
9 [1001]| 8-1
A |1010( 8-2
B |1011] 8-3
c [1100] 82
L |1101] 85
E (1110 86
P11 87
Hole
Pat.

Fig. 16.17 EBCDIC Prime
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3BCDIC Prime for purposes of reference. The letters T, E, and Z are
1sed to represent the 12-row, 11-row, and 0-row. The Boolean relations
‘or EBCDIC Prime, card code to bit code, are shown in Fig. 16.18.

It may be noted, then, that Bendix Prime equations and EBCDIC
Prime equations both require 8 Boolean operators.

Common expressions

A=2»3
B=4~35
C=6~7
Equations
EO0O =9
El1=T
E2 = E
E3 =2
E4 =8
E5=B~ C
E6=A~C

E7T=1~»3~v5~7
Fig. 16.18 EBCDIC Prime equations

16.13 COMPARISON OF BENDIX PRIME AND EBCDIC PRIME

The possibility of using either Bendix Prime or EBCDIC Prime, or some
version of them, as the card code for ASCII was then considered. Neither
card code manifests the undesirable trait of lacing. In order to arrive at
figures of comparison for the average number of holes per character, we
observe that the figures in Fig. 16.7 were in terms of 64 characters; that
is, we would have to decide which 64 characters of Bendix Prime, or of
EBCDIC Prime, were to be considered. If we want to optimize on the
minimum number of holes per character, for Bendix Prime (Fig. 16.14),
we would select table-columns 0, 1, 2, and 3; and for EBCDIC Prime
(Fig. 16.17), we would select table-columns 0, 1, 2, and 4. For these
selections, the figures for 64 characters are as follows:

Average number of holes per character

Bendix Prime 1.12

EBCDIC Prime 0.98
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Both Bendix Prime and EBCDIC Prime, for 64 characters, have an
average of far fewer holes per character than do the Binary Representa-
tions (Fig. 16.7).

It is to be noted that Figs. 16.14 and 16.17 do not represent codes
per se; that is, a set of meanings assigned to a set of bit patterns or hole
patterns. Figures 16.14 and 16.17 show a relationship between a set of
hole patterns and a set of bit patterns.

These sets of hole patterns for Bendix Prime and EBCDIC Prime
have interesting characteristics in contrast to the Binary Representations
described above:

1. No card lacing.

2. On the average, fewer holes per character than Binary Representa-
tions.

3. Simple translation relationships, bit patterns to/from hole patterns,
although slightly more complex than the Binary Representations.

16.14 THE PLOMONDON PROPOSAL

Such a card code would seem to be the obvious candidate for the card
code for ASCII. In November 1963, a card code based on the principle of
EBCDIC Prime was proposed for study to the standards committee by
E. E. Plomondon. This card code (although not this actual version) came
to be called Decimal ASCII.

The Plomondon proposals were for a 128-character version and a
256-character version, shown in Figs. 16.19 and 16.20, respectively. It
should be noted that the 256-character proposal is, strictly speaking, not
the one that was actually made. As described in Chapter 20, the al-
gorithm for embedding the 7-bits of ASCII in an 8-bit byte had not
actually been decided at that time by the standards committees. The
algorithm E6 = b7 had been implemented on the System/360.

Ultimately, the standards committees decided for the algorithm
E8 = 0. The actual embedment algorithm does not affect any of the
discussion that follows in this chapter. In consequence, since the E8 = 0
algorithm was the one chosen, the author has used that algorithm in this
chapter, even though the actual proposal at that time assumed the
E6 = b7 algorithm. What is meant by the E8 = 0 algorithm is that the 8
columns of the 7-bit ASCII code table were embedded in the first 8
columns, the high-order bit, EO, is zero; hence the algorithm was
characterized as E8 = 0.



16.14

The Plomondon Proposal

Fig. 16.19 Decimal ASCII-128, Plomondon proposal

Coumn| o [ ¢+ [ 27T 3 a | s T 6 | 7
Bit .
Pat. 000001010 011[100]101]110] 111
Hole 9 9
Pat, T T
‘E E
Row Z Z 7 yA
by 2] 3] (o] 1s] [ 1= [®]
0o |oooo
1 (0001 1
2 |oo10 2
3 |oo11 3
4 |o100 4
5 (0101 5
6 |0110 6
7 {0111 7
8 [1000 8
9 10
9 |1001 9 Lof o]
10 (1010 8-2
1 [1011| 8-3
12 [1100]| 8-4
13 [1101| 8-5
14 [1110] 8-8
15 {1111 8-7
Hole |
Pat.

Hole Patterns:

X
E
(=]
(=]

=]

Z81

81

No Pch
4

TZ

EZ

9281
981

B =] [=] [
> I

279
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Coumn] 0 | 1 | 2 [ 3 4 | s | & | 7 8 | 9 [ 10 [ n 12 [ 13 ] 1a] 18
Bit R 00 01 10 11
Pat. " oo 01 10 11 00 01 10 11 o0 [ o1 ]| 10 | 11 00 [ 01 10 11
Hote | 9 9 9 9 9 9 9 9 Hole
Pat. T T T T T T T T Pat.
E E E E E E E E |
Row 7 z Z 7 7 Z 7 7 !
o locoo Gl 2l 2] ] ] B (77 e (o] (o [f [zp a3 4] L] e
1 |oo01 1 1
2 |oo10 2 2
3 |oot1 3 3
4 |o100 a4 4
5 (0101 5 5
6 0110 6 6
7 jot11 7 7
8 |1000 8 8
3 19 20
g 1001 9 EE JIT) Lol 2o 8-1
0 [1010) 8-2 8-2
11 (1011 8-3 8-3
12 |{1100] 8-4 84
13 [1101] 8-5 8-5
4 |1110( 8-6 8-6
15 [1111] 8-7 8-7
Ho|o~
Pat.
Hole Patterns:
(1] zs1 T [13] T81 9TEZ
E 81 E E81 9TE Block | Hole Patterns at:
[3] No Pch [e] TEZ81 [18] Tz81 1 | Top and Lett
[] = TE81 EZ81 1 2
E TZ @ TEZ @ 9781 2 | Top and Right
[s] Ez 2] TE 981
Fig. 16.20 Decimal ASCII-256, Plomondon proposal
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Decimal ASCII, Versions 1 and 2

16.15 DECIMAL ASCIl, VERSIONS 1 AND 2

It was pointed out, in connection with these proposals, that the 9-punch
was functioning as a zone punch. In the 128-character proposals, the 9 as
a zone punch was assigned to columns 0 and 1 of the code table; that is,
to control characters. And this was cited as desirable with respect to
circuitry in terminals where a clear differentiability between control

characters and graphic characters would be desirable.

Row

Column [

a ] 5 ]

6 |

7

Bit

>

Pat.

L

000

011

100

101

110

Hole

Pat. T

T

=

0000

L8]

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

12

1100

13

L |

14

1110

15

1111

—p
Hole

Pat.

Hole Patterrs:

]
E3)

[3] ¥o Pch

(4] =z
(=]

Fig. 16.21 Decimal ASCII-128, Version 1
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Another member of the standards committee (Task Group X3.2.3)
suggested that it seemed preferable to use the 9-punch, when used as a
zone punch, to differentiate between the E8 = 0 and E8 = 1 halves of the
8-bit code table, as shown in Fig. 16.22. If a distinguishing punch (or
punches) was desirable for control characters, then the 12-11 combina-
tion could serve as well as the 9 proposed by Plomondon. This suggestion

Coumn] 0o [ 1+ | 2 | 3 s | s [ & [ 7 8 [ 9 [ 10 n 12 [ 13 ] 14 ] 15
Bit . 00 01 10 11
Pat. "] oo 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11
Hole 9 9 9 9 9 9 9 9 Hole
Pat. T T T T T T T T Pat.
E E E E E E E E |
Row A Z Z Z Z Z Z Z
s loooo 12 2 & 5] ] ] ] ] he] [ Gzl 03[ [ hsf hef o
1 (o001 1 1
2 oo10 2 2
3 (o011 3 3
4 |0100 4 4
5 [0101 5 5
6 0110 8 6
7 {0111 7 7
8 (1000 8 8
9 {1001 9 8-1
10 (1010 8-2 8-2
11 (1011} 8-3 8-3
12 |1100]| 8-4 8-4
13 |1101] 8-5 8-5
14 [1110(| 8-6 8-6
1% {1111] 8-7 8-7
Hole‘
Pat.
Hole Patterns:
& [ 181
E E81 Block | Hole Patterns at:
[2] Yo Peh [e] TEz81 [18] Tz81 1 | Topand Left
4] z [10] TES81 EZ81 2
E E Z81 2 Top and Right
(e] [12] 81

Fig. 16.22

Decimal ASCII-256, Version 2
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seemed good, and was accepted by the standards committee. The result
was Version 1, 128 characters (Fig. 16.21) and Version 2, 256 characters
(Fig. 16.22).

Versions 1 and 2 were superior to the initial Plomondon proposal in
one respect. The translation equations (which are shown later in this
chapter), card code to/from bit code, are less complex.

16.16 THE NULL/SPACE/BLANK PROBLEM (AGAIN)

For Version 1, as for the IBM 128-character proposal, the No punches
hole pattern was assigned to code position 2/0 (the Space character), and
the Zero hole pattern was assigned to code position 3/0 (the zero
character). (This is a reflection of the Null/Blank/Zero Problem referred
to previously in this chapter.) In the Plomondon proposal and in Versions
1 and 2 the assignment of No punches to Space was made. This later
became a matter of contention in the standards committee because, if No
punches had been assigned instead to code position 3/0, and if Zero
punch had been assigned instead to code position 2/0, the translation
relationships, card code to/from bit code, would have been simpler. And
simplicity of translation relationships was desirable. The assignment,
however, was ultimately accepted by the committee.

It should be borne in mind that, at the time Decimal ASCII was
proposed, there were two contenders for standardization—a Binary Rep-
resentation of one kind or another and Hollerith Representation.

The following comparison of the merits of Decimal ASCII and of
Binary Representation shows clearly that Decimal ASCII suffered from
none of the defects previously described for the Binary Representations,
and enjoyed a reasonably simple translation relationship, to/from ASCII.

If

A = complexity of translation, Binary card code to/from ASCII bit code,
and if

B = complexity of translation, Decimal ASCII card code to/from ASCII
bit code.

and if

C = complexity of translation. Hollerith card code to/from ASCII bit
code,

then
A<B<C,

And in fact, A and B are very much less than C.
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Technically, then, Decimal ASCII appeared to the standards com-
mittee as superior to Binary Representations. Indeed, the standards com-
mittee soon dropped Binary Representations from further consideration.
(Recall that the Null/Blank/Zero Problem and the Plus and Minus Zero
Problem were previously stated not to have been resolved for Binary
Representations. The reason, of course, is because the Binary Represen-
tation card codes were themselves dropped from further consideration.)

16.17 EUROPEAN CARD CODES

There was another important point in favor of Decimal ASCIL In
Europe, three manufacturers of punched card equipment, IBM, ICT
(now ICL), and Bull, employed card codes in their equipment radically
different one from another (see Fig. 16.23). In the European standards
committee responsible for codes, ECMA/TCI1, card code standardization
was at an impasse.

Each of the three manufacturers advocated his own code as a
candidate for standardization. More significantly, if the punched card code
of one manufacturer was accepted for standardization, then that manufac-
turer could enjoy an advantage in the market place. The other members
of ECMA/TC1 felt that, until the three punched card manufacturers
came into agreement on some proposal, it was useless to try to arrive at a
consensus on a standard card code.

These European card codes deserve comment. Their common area of
agreement is the original Hollerith numerics. The card codes used by
IBM and by ICT also agreed on alphabetics. But the method of extending
the repertoire of hole patterns beyond this point was different. For the
IBM card code, the extension was achieved by using the 8-punch as a
zone punch. As has been described elsewhere in this book, this had the
merit of preserving the BCD characteristic of the code. By contrast, the
ICT card code was extended by using the 1-punch as a zone punch.

And for the Bull code, to extend the repertoire of hole patterns
beyond the numerics, the 7-, 8-, and 9-punches were used as zone
punches. This undoubtedly had to do with the method of feeding a card
through a card reader. If a card is fed 12-edge first (IBM), then punches
toward that edge of the card (12, 11, 0) serve best as zone punches. But if
the card is fed 9-edge first (ICT), then punches toward that edge of the
card (7, 8, 9) serve best as zone punches.

Not long after E. Plomondon proposed Decimal ASCII to X3.2.3,
W. F. Bohn proposed it to ECMA/TC1. It was perceived that Decimal
ASCII was not implemented on any equipment. In consequence, all three
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Fig. 16.23 European card codes

manufacturers could begin to design and develop Decimal ASCII card
equipment from an equal start. Decimal ASCII was seen by ECMA/TC1
as a proposal which would remove the impasse, and Decimal ASCII was
accepted. Decimal ASCII was now accepted in principle both by
ECMA/TC1 and by ASA X3.2.

16.18 THE PLUS AND MINUS ZERO PROBLEM (AGAIN)

The Plus and Minus Zero Problem now arose to plague the committees.
It will be observed in the original Plomondon proposals (Figs. 16.19 and
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16.20) that, although the general translation relationship for the code
table would have prescribed T, E, TZ, and EZ for code positions 4/0, 5/0
6/0, and 7/0, respectively, hole patterns TZ, EZ, T, and E, respectively,
were assigned instead.

It will further be observed that in the Decimal ASCII Version 1
proposals (Figs. 16.21 and 16.22) these translation exceptions were
removed. What was behind this?

The intent behind the Plomondon proposals was to provide the
overpunched numeric capability in Decimal ASCII. Hole patterns T1
through T9 are assigned to code table positions 4/1 through 4/9, and E1
through E9 to 5/1 through 5/9. Assuming that the overpunched numeric
convention prevalent with Hollerith punched card applications would be
continued by users in Decimal ASCII punched card applications, it would
be necessary also to provide for plus zero and for minus zero. And the TZ
hole pattern must correspond to the same ASCII bit code table column as
T1 through T9, and the EZ hole pattern must correspond to the same
table column as E1 through E9. This would displace, in the 0-row of the
code table, T and E, which would be moved to code positions 6/0 and
7/0.

These four translation exceptions were the solution to the Plus and
Minus Problem in the Plomondon proposals. But they were not provided
in the Decimal ASCII Version 1 Proposals. Why not?

They were not provided precisely because they were translation
exceptions. For those members of the standards committees who felt that
translation simplicity was the primary criterion, it had been hard to accept
the two previously mentioned translation exceptions to solve the
Null/Blank/Zero Problem. And these members would not accept four
more translation exceptions, as proposed by IBM to resolve the Plus and
Minus Zero Problem.

16.19 DECIMAL ASCII, VERSIONS 3 AND 4

Representatives to the standards committee did urge the solution of the
Plus and Minus Zero Problem, and submitted proposals incorporating the
solutions, Decimal ASCII Version 3 (128 characters) and Version 4 (256
characters), as shown in Figs. 16.24 and 16.25, respectively.

The arguments for Versions 1 and 2 versus Versions 3 and 4 then
centered on the relative importance of translation simplicity versus provi-
sion for Plus and Minus Zero.
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Decimal ASCII, Versions 3 and 4
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Fig. 16.24 Decimal ASCII-128, Version 3
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Cowmn] 0 [ 1 [ 2 | 3 s [ s [ & ] 7 8 [ o [ 10 [ 1 12 [ 13 ] 14a] 15
Bit N 00 01 10 11
Pat. T oo 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11
Hole 9 9 9 9 9 9 9 9 Hole
Pat. [ T T T T T T T T Pat.
E E E E E E E E |
Y Z Z Z Z Z Z YA Z f
000 = & W Bl ] [ &) (3] 09 b1 [ b3 Gar bsp tef o
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 8-1
1010| 8-2 8-2
1011 8-3 8~3
1100 8-4 8-4
1101} 8-5 8-5
1110 8-6 8-6
1111 8-7 8-7
Hole
Pat.
Hole Patterns:
] T [:3] 81
E E E81 Block | Hole Patterns at:
[2] No Pch [@] TEz81 [15] Tz81 1 | Topand Lsft
(4] z TE8L EZ81 1 2
[:ﬂ TZ [_1_1_] 781 2 | Top and Right
[e] ez [12] 81

Fig. 16.25 Decimal ASCII-256, Version 4

16.20 DECIMAL ASCIlI PRIME

In order to assess the relative translation complexity/simplicity of Ver-
sions 1 and 2 versus Versions 3 and 4, Boolean equations are derived. To
have a base against which comparisons can be made, Decimal ASCII,
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Fig. 16.26 Decimal ASCII-128, Prime
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Prime (128 characters) and Decimal ASCII, Prime (256 characters) are
shown in Figs. 16.26 and 16.27, respectively. There are no translation
exceptions in these latter two card codes, neither the exceptions to solve
the Null/Blank/Zero Problem nor the exceptions to solve the Plus and
Minus Zero Problem.
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Fig. 16.27 Decimal ASCII-256, Prime

16.21 TRANSLATION EQUATIONS

The translation equations for Decimal ASCII Prime, the original Plomon-
don proposal, Versions 1 and 2, and Versions 3 and 4, for both 128
characters and 256 characters are set down in Figs. 16.28 through 16.35.
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Using the three simplifying assumptions previously noted, Boolean
operators are counted for these equations. The results are summarized in
Fig. 16.36. Results for EBCDIC are also shown for purposes of
comparison.

Common expressions

A =23 F=A~J~C

J=4~5 H=T~vE

C=6vw7 P=0OAD)~[(FAB A(@©w1)]
Equations

A7T=HAP

A6 =[(TAE)v(HAZ)]AP
AS5={TAZ)~v[(Tv Z)AE} AP

A4 =TA[OA8 A(OASAF]
A3 =J~ C

A2 = A~ C
A1=(3v5v7)v[§/\(9v1)]

Fig. 16.28 Decimal ASCII-128, Prime

Common expressions

A =23 K=T~E
J=4~5 R=9A@B=1DAF
C=6w7 U=1AF
F=AvJ~C W=F~U
Equations
A8=[(1/\F)/\(9v8)]v[i/\9/\(8vF)]
AT=K A W

A6 =[(TAE)v (KAZ)]AW
AS5={TAZIv[(Tv Z)AE} A W

A4 =8Ar1)~R

A3 =J~v C

A2 =A~wC

Al =B 5~y Tl {FA{8 A1~ 9]}~ {19

Fig. 16.29 Decimal ASCII-2566, Prime



Common expressions

A=2x3 P=0On
J=4~35 S=FAD
C=6~w7 U=1AF
D=9A8A1 K=TAE
F=A~J~C X =K~ (9 A H)
H=T~E

Equations

A7T=HAP

A6 =[K~v (HAZDIA{EAOAB~ Dlv OA8A DI~ (FANY
v {[K~ (Hn Z)] S}

AS={KA{{(Z=D)AFl~[ZA U} +{T A E AP}

Ad=KAIA8) v {TAE)ATALO A8 » (9A8AF]

A3 =X A (K~ C)

A2 =X nr(Aw O

Al={XA[AA8) B~ 5~ D]
v{[(9/\F)/\(1/\8/\K)]V[(T/\§)/\(T/:_E5]}

Fig. 16.30 Decimal ASCII-128, Plomondon Proposal

Common expressions

A =23 N=[9v8 Al]lvw(©OAB
J=4~5 R=9A@8=1)AF
C=6wvw7 U=1AF
F=A~J~C W=F~U

K=TwE D=9A8A1

L=[O9~8 Al]l~ (9 A8)

Equations
AS=(TAEAW)»{KA[FAL)~(©OAUL
A7T=Kr W

A6 ={KA[FEAN)»OA U]} {IKA{FA(Z~ D)]~I[Z AU}
A5 = (TAE)A{FA(Z=D)~[ZAULV{EA(TAZ)A W}
Ad=8Ar1)~»R

A3=J~vC

A2 =A~C

Al=[B~» 5T v RlvBAl1AF)

Fig. 16.31 Decimal ASCli-256, Plomondon Proposal
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Common expressions

A=2~3 Q=9a1

J=4~%5 B=(FA8AO w1
C=6~v7 P=Qw~vB
F=AvJ~C G=[OA(Fv8]vB
H=Tw~E S=FAOA8AT1
Equations

A7T=HAP

A6 =[(TAE)v (HAZ)]AP
A5={[(T/\Z)’v(EAZ_)]AS}V{{(T/\Z—)V[(TV Z) A E} A G}

Ad=TA[OA8 AGOASAF]
A3 =J~C
A2 =A~C

Al=0CB 55T ~[8A 0O w1)]
Fig. 16.32 Decimal ASCII-128, Version 1

Common expressions

A =23 R=9A8=1AF
J=4x~x5 =1AF
C=6v7 W=F~U
F=A~J~C K=T~E
D=9A8A1

Equations

A8=[AAF)AOVvEI~[TA9A @BV F)]

A7 =K A W

A6 =[(TAE)v (KAZ]AW

AS=[EA(TAZ) A(Fw~ U~ {TAEYA{[FA(Z=D)]v (Z A )

Ad=B8A1)v R

A3 =Jv C

A2=A~C
Al=Bv5~vTI~{FA{BA 1w} ~{1A0

Fig. 16.33 Decimal ASCII-256, Version 2
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Common Expressions

A=2v3 Q=9n1

J=4%5 B=(FAr8)AO~1
C=6w7 P=Q~B
F=A~J~C G=[QA(Fv8]vB
H=T~E S=FAr9r8n1
Equations

AT=HAP

A6=(TAEAP)v{HAUZAS)~(Z A G}

A5 ={(TAZ)» (ErZDIASt» T A Z)» (T~ Z) A EL A G}
A4 =T A[O A8 A A8AF)]

A3=J~C

A2=A~»C

Al=0CB% 5% ~[8A 0O~ 1)]

Fig. 16.34 Decimal ASCIl-128, Version 3

Common expressions

A=2~3 R=9AB=1)ArF
J=4v5 U=1AF
C=6w7 W=F~U
F=A~J~C H=T~E
D=9A8An1

Equations

AS=[AAF)AOVv]v[1TA9ABV F]

AT=K AW

A6 = (TAEAW) »{KA{ZAU]~[Fn(Zv D}
AS=[EA(TAZ)AF~ U]~ {TAEYA[FA(Z=D)]v(Z AU
Ad=8A1)~+R

A3 =Jv C

A2=Aw~wC

Al =[Bx35v Tl {FA{BA1» N}~ {1l

Fig. 16.35 Decimal ASCII-256, Version 4
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Common
Proposal Size |expressions| Equations| Total

Prime 128 11 22 32
256 11 29 40

Plomondon 128 18 52 70
Proposal 256 21 38 59
Version 1 128 17 27 44
Version 2 256 13 35 48
Version 3 128 17 30 47
Version 4 256 13 39 52
EBCDIC 256 43 110 153

Fig. 16.36 Counts of Boolean operators

16.22 ANOMALY OF BOOLEAN EQUATIONS

Before discussing the comparative complexities, what seems to be an
anomaly should be explained. For the Plomondon proposals, for Versions
1 and 2, and for Versions 3 and 4, the count of Boolean operators for the
256-character version is less than the count for the 128-character version,
~vhereas the opposite might have been expected. One aspect of the
optimization of Boolean expressions is that very often the more terms
‘here are initially, the more combinations and condensations will result.
And there are more terms initially in the 256-character cases than in the
128-character cases.

In the routine work of simplifying Boolean expressions, it is quite
valid to

a) treat A A B as AB,

b) treat A~ B as A + B,

c) manipulate the Boolean variables as if they were algebraic variables
with algebraic operations.

Thus A v+ (B A C) can be treated as if it were A + BC.

Example

[n the derivation of Version 1 and Version 2, certain terms are found in
conjunction with TE Z and T E Z.
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Version 1

(TEZ + TEZ)(F981 + F981 + F981 + F981 + F981 + F981)

= (T + T)EZ[F((O81 + 981 + 981 + 981) + F(981 + 981)]

= EZ[(F + F)(981 + 981) + F(981 + 981)]

= EZ[(9 + 9)81 + F9(81 + 81)]

= EZ[81 + F9(8 + 1)]

=(EANZ)A{BATI~[(FA9 A @BV D]

to put it back into Boolean form.

Version 2

(TEZ + TEZ)(F981 + F981 + F981 + F981 + F981 + F981
+ F981 + F981 + F981 + F981 + F981 + F981)

Inspection reveals that of the 16 possible terms involving F, 9, 8, 1, four
are absent:

F981 + F981 + F981 + F981
We have

(T + T)EZ(F981 + F981 + F981 + F9381)

= EZ[F1(98 + 98 + 98 + 98)]

= EZ(F1)

=(EAZ)A (F A 1) to put it back into Boolean form.

We see therefore that, although we started with more terms in Version 2
than in Version 1, after combination and condensation, this part of
Version 2 requires only three Boolean operators, whereas Version 1
requires Six.

It is clear that Versions 1, 2, 3, and 4 are less complex than the
initial Plomondon proposals, and therefore preferable.

The increments from Decimal ASCII Prime are revealing:

128 Characters 256 Characters

Prime 32 | Prime 40
Version 1 44 | Version 2 48
Version 3 47 | Version 4 52

For the 128-character versions, the perturbation from Prime to solve the
Null/Blank/Zero Problem, an increment of 12, was greater than the
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perturbation to solve the Plus and Minus Zero Problem, an increment of
4. For the 256-character versions, the perturbation to solve the
Null/Blank/Zero Problem was an increment of 7, while the perturbation
to solve the Plus and Minus Zero Problem was an increment of 5. And, of
course, compared to EBCDIC with a Boolean count of 153, these
increments were really negligible. .

However, the positions on the standards committees hardened; the
issue being between minimum complexity versus provision for Plus and
Minus Zero.

Plus and minus zero proponents. The increase in complexity to provide
for Plus and Minus Zero is very small.

Minimum complexity proponents. Since positive and negative numeric
fields on punched cards can be provided in other ways than overpunching
(namely, carry the algebraic sign in a separate card column), no increase
in complexity is justified, however small.

Technical issues on standards committees are resolved by the demo-
cratic process of a majority vote. In this case, the minimum-complexity
group had more votes, and Version 1 and 2 became the draft American
National Standard. Version 1 became an approved ECMA Standard.

16.23 SIC TRANSIT GLORIA DECIMAL ASCIi

As the draft American National Standard moved through the various
committee levels, users became very concerned. As they saw it, the
consequences of Decimal ASCII becoming an approved American Na-
tional Standard were that

= existing card files would have to be converted to the new card code;

®  existing card equipment would have to be modified or replaced with
new Decimal ASCII card equipment.

These two consequences would be immensely costly to users and they
rose in opposition. IBM felt it must support its customers in this matter,
reversed its position, and also came out in opposition.

At the X3 level, Decimal ASCII failed to obtain a majority, and was
deemed to have failed. Ultimately, the ECMA Standard was withdrawn.
The standards committee turned back to a consideration of the Hollerith
card code, as will be related in Chapters 17, 18, and 20.






17

Which
Hollerith?

\s described in Chapter 16, the Decimal ASCII Card Code was proposed
or study at the end of 1963 to ASA Subcommittee X3.2 (now ANSI
{3L2). It was initially very successful in the standards committees, but
schnical controversies arose which delayed its final acceptance. In April
964, opposition to the draft standard arose in Subcommittee because of
ts substantial incompatibility with the Hollerith card code in common
se. Support for a standard based on the Hollerith card code increased,
nd in September 1964, Subcommittee X3L2 voted to prepare a draft
\merican Standard Hollerith card code.

While it is correct to say that ‘“the” Hollerith card code was in
oommon use, in fact there were many versions in actual use, versions
lifferent between different manufacturer’s equipment, and even different
rersions on different equipments of the same manufacturers. Which
Jollerith card code to incorporate into the draft American Standard
yecame the question which vexed Subcommittee X3.2. It took four years
ind many proposals, submitted by members of Subcommittee X3.2, to
-esolve this question. _

Since there were many versions in common use, it was clear that the
inal ‘“‘standard’’ version, whatever it was, would necessarily be different
rom most versions in common use, very possibly different from all of
hem. It was realized, therefore, that the final standard version would
mply economic impact both to users and manufacturers of punched card
squipment. One or another of three economic principles was considered
by the members of the standards committee:

1. To minimize the impact across all users and manufacturers.

2. To equalize the impact between all users and manufacturers.

299
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3. To minimize the impact on the users of equipment of a particular
manufacturer.

It was clear to the standards committee that no single solution could
satisfy all principles.

It should be realized that these economic principles, although they
undoubtedly influenced the judgments of individual members, were not a
subject of discussion at the meetings of the committee. Technical factors
were the subject of discussion.

17.1 TECHNICAL CRITERIA

During the earlier committee discussions on candidate card code stan-
dards, which considered various binary representations as well as versions
of Hollerith, technical criteria emerged and were formalized by the
committee. Since some of these criteria were conflicting, no candidate
card code could satisfy all of them. The criteria that are grouped below
accordingly as Binary Representation, Decimal ASCII, or Hollerith did
or did not satisfy the criteria. The word “Hollerith,” in the discussion
below, is used generically, and covers any or all versions of Hollerith then
is use.

17.1.1 Satisfied by Binary Representation, Decimal ASCII,
and Hollerith

Criterion 1. The code should represent the full ASCII character set.
(Note: Some of the Hollerith proposals put before the standards commit-
tee did not, in fact, satisfy this criterion.)

Criterion 2. The code should provide for logical and orderly expansion
to larger sets.

Comment. Eventually the standards committee realized that until “logical
and orderly expansion” was defined, this criterion was not useful. It was
claimed for all candidates that they did satisfy this criterion, but they
clearly satisfied it in different ways, and according to some particular
interpretation of the criterion.

Criterion 3. The code should not decrease the present character storage
capacity of the card.

Comment. In fact, no candidate was proposed which violated this criter-
ion. This criterion was a carryover from codes for other kinds of media,
where what were called shifted or precedence codes required more than
one consecutive bit pattern per character. Such a code would decrease the
character storage capacity of a card, but none such were proposed.
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This criterion would have ruled out the UNIVAC card code which
had 45 card columns, but actually two tiers per card column, giving a card
capacity of 90 characters. However, this code was a six-row code, and
could accommodate a maximum of 64 characters. To extend it to 128
characters (for ASCII) would have resulted in a twelve-row code, but
then it would have a capacity of only 45 characters per card.

Criterion 4. No more than one card column should be used to represent
one character.

Comment. This was a criterion intended to rule out shifted or precedence
codes.

Criterion 5. Character representation should be independent of card
column locations.

Comment. All proposals satisfied this criterion.

Criterion 6. All hole patterns in the set should require the same number
of punchable positions.

Comment. Again, this was a criterion intended to rule out a shifted or
precedence code.

Criterion 7. The code must be capable of being implemented in the
standard card.

Comment. The “standard card” was (nominally) 37 inches by 72 inches. A
standards proposal at that time under study by a different standards
committee implied a card of 3; inches by 83 inches, a size which would
not have satisfied this criterion.

17.1.2 Satisfied by Decimal ASCIHl and Hollerith;
" Not Satisfied by Binary Representation

Criterion 8. The code, when punched in a card, should not appreciably
weaken the card; that is, the code should cause a minimum number of
holes to be punched. Another way of stating this is that the code should
be designed for

a) minimum hole density per unit area of the card,

b) minimum hole density per column, and

¢) minimum hole density per row.

Comment. This is a relative criterion, not an absolute criterion. That is to
say, it is always possible to consider two candidate card codes and decide

which satisfies the criterion better. For example, Decimal ASCII and
Holierith certainly satisfy it better than a Binary Representation. As is
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discussed in Chapter 16, the Modified Binary Representation satisfied it
better than the Direct Binary Representation, with respect to the special,
numeric, and alphabetic characters in columns 2, 3, 4, and 5 of ASCIIL

Criterion 9. The code should be capable of being used with existing
equipment.

Comment. “Existing equipment,” of course, accommodated the Hollerith
card code. The set of 64 hole patterns assigned to columns 2, 3, 4, and 5
of ASCII (the so-called graphic subset) for Decimal ASCII were the same
set of hole patterns accommodated by much punched card equipment of
the time, albeit with different graphic meanings. Thus if care was exer-
cised within a punched card application to bear in mind the differently
mapped graphic meanings of Decimal ASCII and Hollerith, it was
contended that Decimal ASCII could ‘“‘use” some of the punched card
equipment of the time.

Criterion 10. The codes for the numerics should be readily sight
readable.

The phrase ‘‘readily sight readable” in the above criterion is an
example of jargon, with a well-understood meaning to members of the
X3.2 Subcommittee. The phrase “‘sight readable” conveys the meaning of
readability by human beings, as contrasted with readability by
input/output card readers. The adverb ‘‘readily” conveys a qualification,
as covered in the two examples below:

Example 1

The hole patterns assigned to numerics in the Decimal ASCII card code
were the same as those in the Hollerith card code; that is, punches in card
rows 0,1,2,...,9 for numerics 0, 1, 2,...,9. These would be held to be
“readily sight readable”.

Example 2

The hole patterns for numerics in the Direct Binary Representation card
code were as follows:
Numeric  Hole Pattern

0 No punches
1 1
2 2
3 2-1
4 3
5 3-1
6 3-2
7 3-2-1
8 4
9 4-1
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'hese hole patterns, while certainly “sight readable,” would require
ither training or mental calculation on the part of the human to associate
sem with the numerics, so they were held not to be “readily” sight

eadable.

7.1.3 Satisfied by Decimal ASCIl and Binary Representation;
Not Satisfied by Hollerith

‘riterion 11. The code should require minimum translation to and from
\SCII.

~omment. This also was a relative criterion, not an absolute criterion.
“he essential design feature of Decimal ASCII was minimum translation
o/from ASCIL, but in the sense of being less than the translation of
Iollerith to/from ASCII. Clearly the Direct Binary Representation would
equire even less translation than Decimal ASCII to/from ASCII.

17.1.4 Satisfied by Binary Representation;
Not Satisfied by Decimal ASCIl or Hollerith

“riterion 12. The code should provide for error detection (parity).

Comment. In the concept of the Direct Binary Representation where bits
| through 7 of ASCII would be punched in card-rows 1 through 7 of the
-ard, card-rows 12, 11, 0, 8, and 9 would then be available, if needed, for
yarity-row schemes. With Decimal ASCII and Hollerith, since all 12 card
-ows of the card are required for hole patterns of the code, no card rows
ire available for parity schemes.

17.1.6 Satisfied by Hollerith;
Not Satisfied by Decimal ASCIl or Binary Representation

Criterion 13. The code should be compatible with the common existing
itandard domestic code (Hollerith).

Criterion 14. The code should be such as to require the minimum
wumber of passes in mechanical sorting.

Comment. By “mechanical sorting” was meant the mechanical sorters of
the day without logic circuitry. Schemes were devised, involving multiple
passes per card column, to sort Decimcal ASCII and to sort Binary
Representation, but such schemes would clearly require more than the
minimum number of passes required by Hollerith.

Criterion 15. The code should be compatible with international card
standards.

Comment. This criterion was not really applicable because, at the time,
there were no international card standards.
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Criterion 16. The code should preserve the logical arrangement of the
ASCII columns.

Comment. The standards committee was never able to agree what, if
anything, this criterion meant.

The 16 criteria above, while meaningful in inter-code discussions on
Hollerith, Decimal ASCII, and Binary Representation, were of no use in
trying to decide “which Hollerith?” A survey conducted in November
1964 of various card equipments provided by eight manufacturers (Bur-
roughs, CDC, GE, Honeywell, IBM, NCR, RCA, and UNIVAC) showed
there was complete unanimity on the hole patterns for the alphabetics,
numerics, the Space character, and six specials . , */ — § but, for other
special graphics, there were 21 versions of Hollerith, different to a greater
or lesser degree.

The time frame in which the Hollerith discussion began and con-
tinued is significant. In April 1964, the IBM System/360 computing
systems were announced, with an 8-bit architecture. Up to that time,
computing systems had prevailingly been of 6-bit (or homomorphically
6-bit) architecture. Card-code sets that had consisted of up to 64 charac-
ters would need to be extended to 128 characters for ASCIIL, and had
been extended to 256 characters by the System/360’s code, EBCDIC.

As well as the problem of different versions of Hollerith, there was
also the problem that there were no “common existing standard Hollerith
codes” (Criterion 13) for the control characters of ASCII, and for the
lower-case alphabetic characters of ASCII. Indeed, ASCII as then pub-
lished (ASA X3.4-1963) did not have the lower-case alphabetics assigned
to columns 6 and 7, and many of the control characters were not defined
specifically.

However, when the first proposed American Standard Hollerith
Representation of ASCII was drafted in September 1964, ASA Subcom-
mittee X3.2 had agreed internally on specific definitions for all 32 control
characters of ASCII, and had assigned the lower-case alphabetics and five
special graphics to columns 6 and 7 of ASCII.

17.2 PROBLEMS OF DECISION

At this time, or before final approval in 1968, there were eight problems

(apart from the many extant versions of Hollerith) that made consensus
on “which Hollerith?” difficult.

Problem 1

No commonly used card hole patterns for lower-case alphabetics (al-
though assignments had been made in EBCDIC for the System/360).
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'roblem 2

o commonly used card hole patterns for the control characters of ASCII
although about half of these control characters had been assigned in
iBCDIC).

’roblem 3

['wo special graphics, @ (Commercial At) and , (Grave Accent) seesawed
yack and forth between code positions 4/0 and 6/0 of ASCII at successive
neetings of ISO/TC97/SC2. A hole pattern for Commercial At was in
.ommon use. The question was whether this hole pattern should be
issigned to code position 4/0 or 6/0.

Problem 4

Sraphics for code positions 5/12, 7/12, and 7/14 changed and inter-
‘hanged. While none of the various graphics had commonly used card
10le patterns, two of them were assigned in EBCDIC.

Problem 5

There was a continuing debate on whether the final Hollerith card code
and the EBCDIC card code should or should not be compatible. This was
complicated by the fact that ASCII had graphics not in EBCDIC, and
EBCDIC had graphics not in ASCII.

Problem 6

Two graphics, =1 (Logical NOT) and | (Logical OR), were in and out of
ASCII, and in different code positions of ASCII, at different times
between 1963 and 1967. Both these graphics had assigned hole patterns
in EBCDIC.

Problem 7

Code position 1/10 at the inception of the Hollerith debate was SS (Start
of Special), but was subsequently changed to SUB (Substitute). This was
really an administrative problem, not a code problem, but it did lead to
different looking code charts.

Problem 8

As described in Chapters 4, and 9, the so-called A- and H- duals were
broadly implemented in different punched card equipment as shown
below:

Hole pattern 8-4 83 12 12-8-2 0-8-4

A-graphic @ # & )x ¢ %

H-graphic ' =+ ) (
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In EBCDIC, the decision had been made to provide unique bit patterns
and hole patterns for all ten of these graphics, and to replace the n
(lozenge) with the < (less than), as follows:

Graphic  Hole pattern

@ 8-4
# 8-3
& 12

< 12-8-4
% 0-8-4
! 8-5
= 8-6
+ 12-8-6
) 11-8-5
( 12-8-5

That is to say, the A-graphics (but replacing X with <) were assigned
their existing hole patterns, but the H-graphics were assigned new hole
patterns. On the standards committee, the same question arose:

Should the A-graphics retain existing hole patterns and the H-
graphics receive new hole patterns, or should the H-graphics retain
existing hole patterns and the A-graphics receive new hole patterns?

On the standards committee, there were protagonists for the former, and
protagonists for the latter. Problem 1 was soon resolved (hole patterns for
lower-case alphabetics), but the other problems were resolved only after
many discussions and ballots, and were the source of many different
proposals for a standard Hollerith card code.

Resolution of Problem 1. In deciding on hole patterns for the lower-
case alphabetics, two principles were applied:

A) Each lower-case alphabetic hole pattern should bear some logical
relationship to the corresponding upper-class alphabetic hole pattern.

B) The number of holes in lower-case alphabetic hole patterns should
be minimum.
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The obvious way to apply Principle A was to include the hole pattern for
the upper-case alphabetic in the hole pattern for the lower-case alphabe-
tic, and then to distinguish between them by adding a zone punch.

Indeed, there is no other solution than the addition of a zone punch
either 0, 11, or 12. In the full set of 256 hole patterns, both the 8-punch
and 9-punch act as zone punches in some hole patterns. But neither they
nor indeed any numeric punch 1 through 9 could act as zone punches for
the alphabetics, since they act as digit punches for the alphabetics.
Ideally, it would be nice if the additional zone punch could be the same
additional zone punch for all letters. But this was not possible. We know
that

upper-case alphabetics A to I had zone punch 12,
upper-case alphabetics J to R had zone punch 11,
upper-case alphabetics S to Z had zone punch 0.

Available as new zone-punch hole patterns were 12-0, 12-11, 11-0, and
12-11-0. There were four possible hole patterns, from which three had to
be chosen. No choice of three would satisfy the ideal condition.

However, Principle B clearly implied that the three choices should be
12-0, 12-11, 11-0, and not 12-11-0. The possible choices were

atoi 12-11 or 12-0,
jtor 11-0  or 12-11,
stoz 12-0  or 11-0.

Between these two sets of choices, the actual choice appeared to be quite
arbitrary—with no technical reasons for or against either choice.

It was observed on the standards committee that the same choice
must have been available when designing the card code for EBCDIC. The
choice for EBCDIC had had to be made, and it was made, admittedly
arbitrarily, for

atoi 12-0,
jtor 12-11,
stoz 11-0.

The standards committee decided that, since there was no technical
reason against this choice for the Hollerith card code, there was no reason
not to accept the same decision that had been made for EBCDIC. The
decision was so made by the committee.
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17.3 PROPOSALS

During the deliberations of the committee, seventeen proposals were
submitted by various committee members. These proposals were submit-
ted in the form of committee documents.

Proposal 1

On September 11, 1964, the first Proposed American Standard Hollerith
Representation of ASCII was drafted (document X3.2.3/53). It specified
hole patterns for all 128 characters® (see Fig. 17.1). What solutions did
this proposal provide for the eight problems?

Lower-case alphabetics

Hole patterns matched EBCDIC hole patterns, as previously described.
(This problem will not be referred to subsequently in this chapter.)

Control characters

The draft standard says

The de facto Hollerith had not contained the ASCII control charac-
ters. Since new hole patterns had to be devised for all characters in
ASCII columns 0 and 1, the hole patterns for these two columns
were developed with a logical relationship to the ASCII Code.

Examination of the hole patterns for columns 0 and 1 shows this to
be true:

i) Zone-punches 9-12 apply to all of column 0.
ii) Zone-punches 9-11 apply to all of column 1.

iii) With the exception of row 0 of columns 0 and 1, all digit-punch hole
patterns translate to the ASCII low-order four bits on a precise and
exact BCD basis.

There was a little problem for row 0 of columns 0 and 1. The “logical”
hole patterns to correspond to part (iii) above would have been 9-12 and
9-11. But these hole patterns were already preempted for graphics I and
R. As is observed in other sections of this book, this kind of preemption
(for example 0-9, 12-0-9, 12-11-9, 11-0-9 are also preempted) led to the

*For a reason that will be given later, some subsequent Hollerith proposals
specified fewer than 128 hole patterns. One, for example, specified only 43 hole
patterns!
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b7| O 0 (] 0 1 1 1 1

b6 0 (] 1 1 () 0 1 1
b5 0 1 0 1] ol . 1 0 1
Col
()} 1 2 3 4 5 6 7
b4 b3 b2b1 | Row
NUL DLE Sp 0 \ P @ P
6000 0 9-12-0 |9-12-11
8-1 8-1 0 8-1 11-7 8~4 [12-11-7
SOH DCl 1 A Q a q
0001 1 .
9-12-1 [9-11-1 1 12-1 11-8 |12-0-1 {12-11-8
STX DC2 2 B R b T
6010 2
: 9-12-2 [9-11-2 | & 2 12-2 11-9  |12-0-2 [12-11-9
ETX DC3 3 C S c s
0011 3 .
9-12~3 |9-11-3 8-3 3 12-3 0-2 |[12-0-3 |11-0-2
EOT DC4 [3 T D T d t
0100 4
9-12-4 [9-11-4 |11-8-3 4 12-4 0-3 |[12-0-4 {11-0-3
ENQ NAK % 5 E U e u
0101 5
9-12-5 |9-11-5 [ 0~-8-4 5 12-5 0-4 [12-0-5 |11-0~4
ACK SYN & 6 F A f v
0110 6
9-12-6 |9-11-6 12 6 12-6 0-5 |12-0-6 {11-0-5
BEL ETB ! 7 G W g w
0111 7 : :
9-12-7 [9-11-7 8-5 7 12-7 0-6 |12-0-7 |11-0-6
BS CAN ( 8 " H X h x
1000 8 9-12 9-11
8 8 12-8-5 8
HT EM ) 9
1001 9 9-12 9-11 -
8-1 8-1 11-8-5 9
LF Ss * :
1010/ 10 9-12 9-11
8-2 8-2 11-8-4 8-2
VT ESC F ;
1011 N 9-12 9-11
8-3 8-3 12-8-6 | 11-8-6
FF FS s <
1100 12 9-12 9-11
8-4 8~4 0-8-3 [ 12-8-4
CR GS - =
1101 13 9-12 9-11
8-5 8-5 11 8-6
S0 RS . >
1110 14 9-12 9-11 '
8-6 8-6 12-8-3 | 0-8-6
ST Us / ?
1111 15 9-12 9-11
8-7 87 0-1 8-7

Fig. 17.1 Hollerith, Version 1

hole pattern 8-1 in combination with zone-punch hole patterns also being
displaced, and these (in both EBCDIC and Hollerith) usually ended up in
row 0 because they were the hole patterns left over to fill up the code
positions in row 0. Following this line of reasoning, 9-12-0-8-1 and 9-12-
11-8-1 were chosen for row 0, columns 0 and 1.
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@ and '

At this time, in ASCII, * (Grave Accent) was in code position 4/0 and @
(Commercial At) in 6/0. It is to be noted that @ received its de facto 8-4

hole pattern.

5/12, 7112, 7/ 14

At this time graphics ~ | and ~ were in code positions 5/12, 7/12, 7/14,
respectively.

EBCDIC/Hollerith compatibility

This proposal was evidently drafted by a proponent of EBCDIC Hollerith
compatibility. Except for columns 0 and 1 (see above) all hole patterns
were compatible, except those shown shaded in Fig. 17.1. The graphics [
1" {} were not incorporated into EBCDIC at that time. Looking back, it
is not clear why the hole patterns of graphics “ — ~ were not chosen to
be compatible with those of EBCDIC.

Logical OR, Logical NOT

The Logical OR, Logical NOT problem (to be described later) had not
yet surfaced.

Position 1/10

Control character SS (Start of Special) was at that time in code position
1/10 in ASCIIL. (This problem will not be discussed again until the
problem actually surfaces.)

A versus H

Since the drafter was evidently a proponent for EBCDIC/Hollerith
compatibility, and since EBCDIC had chosen existing hole patterns for
the A-graphics, this proposal also did so.

Comment. At this time, only two criteria were being applied:

i) Simple translation relationship, Hollerith to/from ASCII, for the
control characters.

ii) EBCDIC/Hollerith compatibility as much as possible.

Proposal 2

On November 10, 1964, the second proposal was made (document
X3.2.3/69) by Mr. J. L. Tobin. The proposer chose not to make any
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suggestions with respect to control characters, so he suggested hole
patterns only for the 94 graphics, and Space. The proposer had analyzed
the different versions of Hollerith previously referred to, and had counted
up the number of companies (out of 8) who agreed on a particular hole
pattern. He had then proposed a “‘consensus’ approach as follows:

Unanimous 8 companies
Overwhelming 6 or 7 companies
Substantial 4 or 5 companies
Little or none 3 or less

Based on this analysis, the proposer chose the hole patterns shown in
Fig. 17.2.

Comments. As might be supposed from the selection scheme, there was
considerable incompatibility with EBCDIC among the specials.

This proposal did not receive support in the standards committee.

At the January 28, 1965 meeting, ASA Task Group X3.2.3 formally
voted to accept the existing Hollerith hole patterns for Space, the
alphabetics, 10 numerics, and 6 specials:

'7*/_$

All manufacturers’ equipments provided these. It was at this meeting,
therefore, that the concept of the “hard-core 43 graphics” emerged and
was never subsequently objected to.

Proposal 3

On November 23, 1964, another proposal was made. The proposer was,
as in the previous case, wrestling with the problem of criteria. This
proposer restricted himself to 64 hole patterns, since the maximum
existing implementation (except for EBCDIC on the System/360) had
64 hole patterns. The proposer, Mr. E. H. Clamons, presented a rather
pragmatic set of criteria, as follows:

1. Old established codes, IBM 407.

2. New established codes, IBM BCD.
3. New established codes, UNIVAC 1004.
4. Suggested for adoption.

The proposal is shown in Fig. 17.3. It did not receive support in the
standards committee.
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w7[ 0 0 0 0 7 1 1 1
b6 0 0 1 1 0 0 1 1
b5 0 1 0 1 0 1 0 1
Col
0 1 2 3 a 5 6 7
b4b3b2b1 | Row
NUL DLE SP 0 @ P \ P
0000 0
No Pch 0 8-4 11-7 0-8-1 |12-11-7
SOH ncl ! 1 A Q a q
0001 1
11-8-2 1 12-1 11-8 {12-0-1 }12-11-8
STX DC2 " 2 B R b T
0010 2
0-8-7 2 12-2 11-9 |12-0-2 [12-11-9
ETX DC3 # 3 c s c s
0011 3
8-3 3 12-3 0-2 [12-0-3 |11-0-2
EOT DC4 s 4 D T d t
0100 4
11-8-3 4 12-4 0-3 12-0-4 |11-0-3
ENQ NAK % 5 E U e u
0101 5
0-8-4 5 12-5 0-4 |12-0-5 |11-0-4
ACK SYN & 6 F \ £ v
0110 6
12 6 12-6 0-5 |12-0-6 |11-0-5
BEL ETB ' 7 G W g W
0111 7
8-2 7 12-7 0-6 |[12-0-7 |11-0-6
BS CAN ( 8 H X h x
1000 8
12-8-5 8 12-8 0-7 {12-0-8 [11-0-7
HT EM ) 9 I Y i y
1001 9
11-8-5 9 12~9 0-8 |12-0-9 |11-0-8
LF 58 * : J yA 3 z
17010 10
11-8-4 85 11-1 0-9 |[12-11-1{11-0-9
VT ESC + H K { k {
1011 1
12-8-2 |11-8-6 | 11-2 [12-8-7 |12-11-2| 12-0
FF FS s < L ~ 1 [
1100 | 12
0-8-3 |12-8-6 | 11-3 [12-8-4 |12-11-3|12-8-1
CR GS - = M ] m }
1101]| 13
11 0-8-6 | 11-4 {11-8-7 |12-11-4| 