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PREFACE

This book is written for the person who
wants to get a rapid grasp of the use of a
computer in the solution of problems in
science and engineering. The application of
a computer to such problems is greatly sim-
plified by the use of ALGOL, or a similar
language, because it is not necessary to learn
the details of computer operation.

The book does considerably more, however,
than explain ALGOL.

* 1t develops for the newcomer to com-
puting the fundamental idea of an algorithm.
That is, since computers do not accept prob-
lem statements, how does one go about
transforming a problem statement into a
problem-solving procedure, stated in a lan-
guage acceptable to a computer? (This also
applies, of course, even when a computer is
not involved.) Experience shows that it is
here that students have the most difficulty in
getting started with computer work.

* It includes many examples and case stud-
ies that show how computers are applied in
science and engineering. This material is
drawn from a wide variety of application
areas and is used as the means for a further
elaboration of how to write an algorithm.

* It includes illustrations of some of the
basic ideas and techniques of numerical
analysis. It will therefore tie in nicely with
a combined course in computer programming
and numerical analysis.

* Nearly 20 per cent of the book is devoted
to exercises and the answers to about half of
them. It is therefore quite suitable both for
self-study and for use in formal courses with
homework. KExperience indicates that a seri-
ous student ean do all the exercises in 30 to
40 hours; anyone who does so—or even does

half of them-—will have acquired a firm grasp
of the subject.

* It is organized so that each reader can
easily select the material he needs. The
person who wants only a quick view of
programming can study Chapters 1 to 3;
Chapters 4 and 5 develop all the remaining
material needed for the majority of applica-
tions; Chapters 6 and 7 bring in the rest of
the ALGOL language features; Chapter 8
suggests input and output methods for the
person who has no actual system to study.
The person who already knows programming
and is interested only in a quick explanation
of ALGOL can skip Chapters 1 and 8 and
skim the examples and exercises; he will have
no difficulty at all in picking out the third
of the text that is specifically about ALGOL.

* Tt brings in, at various relevant points,
a number of matters of computer efficiency.
In few cases, however, are they peculiar to
ALGOL, so that the reader can get a good
idea of how to make effective use of a com-
puter.

In addition to the obvious usefulness of
this book for self-study of ALGOL or of
scientific computing in general, it is antieci-
pated that it will find application in several
types of formal courses.

1. It can be used as the text for a short
seminar in engineering, science, or mathe-
matics. A six-week session of two to three
hours per week could cover the first five
chapters and leave time for a good term
problem.

2. It can be used as the text for a one-
semester hour course, which provides more

than enough time to cover the material. The
v



vi

PREFACE

extra time can be used to give a survey of
machine-language coding or to let the stu-
dents run a number of practice problems and
a sizable term problem.

3. It can be used as the text for a supple-
ment to some other course. Covering the
fundamentals of ALGOL will take only a
few hours away from the course, and this
“lost” time can be recovered by the as-
signment of more realistic problems in
the primary subject matter. A particularly
happy combination is numerical analysis and
ALGOL, by which the time spent in teach-
ing ALGOL will be more than recovered.

4. Students in an industrial course in
ALGOL programming will find the book use-
ful as an elaboration of the presentation in
the reference manual and as a guide to the
ways in which ALGOL can be applied in the
solution of realistic problems.

Ossining, New York
June 1962
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To obtain the most value from a study of
this book, the reader should be aware of a
few matters concerning its content and or-
ganization,

1. The word ALGOL refers to a language
for stating computational procedures, inde-
pendent of any computer, and also to a com-
puter program called a “processor” that is
able to translate a procedure stated in
ALGOL into the elementary “instructions”
that a computer is capable of executing.
Thus ALGOL is useful for communication
between humans and for communication to
a machine. The treatment in this book is
applicable to both purposes.

To be able to use ALGOL for communi-
cating computational procedures to a com-
puter, there must be an ALGOL processor
available for it. Because of the variety of
the problems that arise in constructing these
processors, not all computer systems for
which there is an ALGOL processor are able
to accept the full generality of the language
discussed in this book. Furthermore, there
are minor variations from one ALGOL
processor to the next, even in things that
are included in all of them; these are mostly
detailed matters of how certain symbols are
written.

The presentation in this book covers the
full ALGOL language, with one or two ex-
ceptions. The reader who is concerned with
a particular processor, therefore, will need

INTRODUCTION: HOW TO USE THIS
BOOK EFFECTIVELY

to find out exactly what his system includes
and how it operates. For this purpose, it
will ordinarily be necessary to have access
to a reference manual for the particular
system. This book does not replace the
reference manual, and vice versa; the two
complement each other.

2. Fully half of the book is devoted to
examples and exercises, including nine case
studies. These studies are intended to illus-
trate the ALGOL language features and to
show how computers can be used for scien-
tific computation. They go even further by
attempting to show how one can approach
the formulation of a procedure to solve a
given problem. This is perhaps the most
important thing the beginner in computing
has to learn. Many of the exercises are de-
signed specifically to provide practice in this
matter. There are answers to about half of
the exercises, so that the student may check
his understanding of the concepts involved.
Some of the exercises at the ends of the
chapters are considerably more difficult than
the earlier ones; in some cases they will
suggest term problems.

3. The speed and depth of learning will be
enhanced by actual practice in preparing and
running problems—early and often. It is,
of course, not necessary to have a computer
at hand in order to master the subject, but
if one is available it should be utilized at
every opportunity.



1.1 Typical Applications
of Computers

Electronic computers are widely used to
assist in solving the problems of science, en-
gineering, and business. This use is based
on their ability to operate at great speed, to
produce accurate results, to store large quan-
tities of information, and to carry out long
and complex sequences of operations with-
out human intervention.

Computer applications generally fall into
one of the following categories, although it
should be noted at the outset that the divid-
ing line between them is rather indefinite in
some cases.

Commercial applications. Many com-
puters are employed in the processing of
business data. How much did each man
in a factory earn last week? What accounts
of a department store are delinquent? How
much of each inventory item is on hand and
how much on order? How much of each
product was sold in the preceding month and
how do sales compare with those of the same
period last year? Such problems are gen-
erally characterized by a large volume of
data, with relatively little computation on
each item. Despite the simplicity of the
calculations usually involved, such work is
nevertheless challenging because of the
amount of data and the measures that must
be taken to achieve speed of processing and
accuracy of the results.

]. COMPUTERS, ALGORITHMS, AND
ALGOL

Engineering. Computers are heavily used
in many branches of engineering. The de-
sign of a new airplane requires thousands
of hours of computer time to investigate the
interrelated requirements of structures, aero-
dynamics, powerplant, and control system
as they would operate under numerous flight
conditions. The design of a chemical plant
involves calculations of capacities, operating
conditions, and yields under a variety of cir-
cumstances. The design of an electric trans-
mission line requires study of the loads that
would be imposed on the different sections
of the line as the consumption changed and
as unusual conditions arose.

It may be noted in this sampling that the
computer does not “solve the problem.” In-
stead, it helps to explore the alternatives.
We do not ask the computer, “How should T
build this new device?”’ but rather, “How
would the device work under this set of con-
ditions if I built it this way?” There are
many ways in which the equipment could be
built; there are various operating conditions
to consider, and there are several different
and even conflicting goals to be balanced.
The computer cannot enumerate the design
choices, specify the operating conditions, de-
cide what the goals are, or determine the
trade-offs among conflicting goals. Tt can,
usually, provide us with great assistance in
predicting the consequences of our choices
in these matters.

Research. This category covers a lot of

ground, some of which is not too far from
3



4 ALGOL PROGRAMMING

engineering, Representative examples would be
problems in the theory of numbers, study of molec-
ular and nuclear structure, research into numerical
methods of solving mathematical problems, and
the study of methods for describing economic
processes.

Process control. Many physical and business
situations change so rapidly and require such quick
response that a human being would find it difficult
or impossible to keep up. An extreme example is
the prediction of the orbit of a satellite from radar
data received shortly after launching. No human
being could possibly carry out the calculations to
decide whether the trajectory would be satisfactory
within the time available. Many other applica-
tions of a less dramatic nature could be cited.

Non-numerical applications. This is another
category that, to a certain extent, overlaps with
others. Examples would include translation of
languages by computer, the simulation of one com-
puter by another, attempts to simulate intelligent
behavior, and the “translation” from the language
of ALGOL (or some similar system) to the lan-
guage of a particular computer. It will be realized
that some of these are also research, but others are
used routinely.

1.2 The Steps in ""Solving a Problem”
with a Computer

We have already seen that there is much more
to “solving a problem” with a computer than the
work the computer does. It may be instructive
to outline the complete process of setting up a
typical engineering problem for computer solution
to see just what the human does and what the
computer does.

Problem identification and goal definition. This
is the question of choosing a general approach,
deciding what combination of goals the system
must satisfy, and specifying the conditions under
which it will be required to operate. In some ap-
plications this is very simple; in others it may take
months.

Mathematical description. There are, as a rule,
several ways to describe a process mathematically;
one of these must be chosen, or a new one must be
developed if no standard method is applicable.

This is the area of applied mathematics, mathe-
matical physics, operations research, and the like.

Numerical analysis. The mathematical formula-
tion of the problem may not be directly translatable
to the language of the computer, since the computer
can only do arithmetic and make simple quantita-
tive decisions. Trigonometric functions, differen-
tial equations, integrals, square roots, and loga-
rithms, to name a few common examples, must
be expressed in terms of arithmetic operations.
Furthermore, it must be established that any errors
inherent in the data or introduced by the computa-
tions do not invalidate the results.

Computer programming. The numerical proce-
dure must be stated as a precisely defined set of
computer operations. There are usually two steps
to this part. In the first the sequence of operations
is written in graphical form in a block diagram, as
we shall see in Section 1.3. Then the procedure
must be stated in a language that can be ‘“under-
stood” by the computer or which can be under-
stood after a preliminary translation stage.
ALGOL is such a language. This book is devoted
almost entirely to the subject of programming.

Program checkout. There are so many chances
to make mistakes in programming that most pro-
grams do not work when first tried. The errors
must be located and the program thoroughly tested
to be sure that it does perform as desired. The
computer is used during this step.

Production. Now, finally, the program can be
combined with data and run. In a typical situa-
tion many sets of data are run off at one time.
This step may take a few seconds to many hours,
depending on the problem and the computer.

Interpretation. As we have noted, the results
printed by the computer do not always constitute
a final “answer” to the “problem.” The user of the
computer must interpret the results to see what
they mean in terms of the combination of goals
that the proposed system must satisfy.* Fre-
quently it will be necessary to repeat some or all
of the preceding steps until the problem is really
“solved.”

Several conclusions may be drawn from this
discussion. First, the computer does not solve

*If the combination of goals can be stated in numerical
terms, it is sometimes possible for the computer to assist
in the first part of this analysis.



problems, it only follows carefully defined com-
putational procedures. Second, a computer does
not relieve the user of the responsibility of planning
the work carefully; in fact, the computer demands
much more careful planning. The computer is
faster and more accurate, but it cannot decide
how to proceed or what to do with the results.
Third, a computer does not in any way reduce
the need for a full and detailed understanding of
the problem area or for a thorough knowledge of
the mathematics involved. Finally, it should be
realized that the programming step—the primary
subject of this book-—is only one part of the com-
plete process; it may not even take a majority of
the time of the user.

This is" not meant to minimize the importance
of programming nor to suggest that it can be done
haphazardly. Programming can be a sizable task
and is frequently fascinating in its own right. We
simply wish to suggest at the beginning that pro-
gramming be viewed in the perspective of the full
range of activities.

1.3 What Is an Algorithm?

Let us look now at the question of specifying
a problem-solving procedure to a computer. In
some ways it is similar to giving instructions to a
person doing the calculations with pencil and paper,
but in certain other important respects it is quite
different. The following considerations must al-
ways be kept in mind when working with a com-
puter.

1. Everything must be specified in advance; once
you have written a procedure and entered it into
the machine for execution yow are no longer in
the picture. The execution of the procedure is
done entirely by the machine, with no intervention
on your part. Naturally, if the results are not
what you need, you get back into the picture and
revise your procedure, but during the execution
the machine is in complete control. This means
that you must state beforehand exactly what should
be done in every circumstance that can reasonably
arise.  If something special should be done when a
certain variable becomes negative, you must, write
its handling into the procedure in advance. 1If you
would like the machine to stop when a certain
number gets too large so that you can investigate
what is happening, you must so signify. If printed
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results are required as soon as some measure of
convergence 1s satisfied, you must define this eri-
terion in precise terms.

2. A computer cannot exercise judgment unless
it has been provided with explicit directions for
making a decision. It must always be remembered
that a computer has no common sense. If you enter
angles in degrees into a computer system that has
been set up to accept angles in radians, the com-
puter will blindly carry out the computations speci-
fied even though the results are meaningless. Any
person familiar with trigonometry would raise a
questioning eyebrow if handed a sheet of data with
angles of 300 radians—but not the computer. Hand
a person a column of numbers to be added, and
you don’t have to tell him how many numbers
there are or show him some other way to recognize
the end of the list—but you do with a computer.
It 1s simply not possible to say to a computer, “If
anything unusual turns up, give me a call.” Not
unless you can specify in advance what constitutes
“anything unusual.”

These considerations are incorporated in the idea
of an algorithm, which is a precise and complete
statement of a computational procedure. This is
the heart of learning how to use a computer effec-
tively: how to go about devising an algorithm,
what constitutes a good algorithm, and the way
to write an algorithm in a language that is ac-
ceptable to a computer.

Let us consider what is meant by an algorithm
in terms of a simple example.

Problem. Find z, given that ax® + bx + ¢ = 0.

We should begin by emphasizing that computers
cannot do much with problems. It would be pos-
sible to enter this equation into a computer in some
suitably coded form, but doing so would not lead
to a solution. We must give the computer a pro-
cedure for computing the solution. It happens that
there are several ways to solve this problem in
terms of numerical procedures, of which we must

choose one. The most familiar is to use the
formulas
—b 4+ Vb2 — 4ac
X1 =
! 2a
and
—b — Vb? — 4dac
Xg =

2a
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Roots = 1

xlreal = —c/b

x2real = Q
xlimag = 0
x2imag = 0

Roots = 2

Figure 1.1. The first part of a block diagram of a method for
finding the roots of a quadratic equation.

These formulas form the basis of an algorithm
in that they suggest a procedure for solving the
given problem. If we substitute numerical values
for @, b, and ¢ into these formulas, we will usually
get values for x; and ., thus solving the problem.
The formulas are not themselves a complete algo-
rithm, however. We need three more things: a
precise statement of what to do with exceptional
cases, a precise statement of the sequence of opera-
tions, and a “language” for expressing the proce-
dure.

One exceptional case suggests itself immediately.
If a is zero, the formulas do not apply; we must
go back to the original equation and note that in
such a case the equation is linear, not quadratic,
giving only one root. Now we must make a deci-
sion—one that the computer cannot possibly make
for us: what do we want to do in such a situation?
Is this a normal occurrence for which provision
should be made? Does this indicate a data error?
If we were to assume that a would never properly
be zero, we could let such a coefficient signal the
end of a deck of data cards. Is this to be done?

A computer problem usually requires many de-
cisions such as this one. The computer can be
set up to do whatever we want it to do, within
limits, but 1t cannot decide which choice should
be made.

Without trying to fabricate enough details of a
hypothetical application to permit a realistic dis-
cussion of what would be best in this case, let us
assume that a can be zero without indicating any-
thing special. We will compute the one root, set
the other “root” equal to zero, and print a 1 in a
column set up to indicate the number of roots.
When there are two roots, we will print a 2 in
this column.

A second exception is of a different kind. The

formulas as written apply whether the roots are
real or complex, but the computational procedure
is quite different in the two cases. In fact, if a
computer procedure is set up on the assumption
that all roots are real, complex roots will not be
computed correctly at all. For the real case the
output consists of two numbers; for the complex
case the real and imaginary parts of the two roots
make four numbers to be printed. If the computer
is expected to handle complex roots correctly, space
for the two additional numbers must be provided.
Once again we have a decision: are complex roots
a normal occurrence or do they signal data errors?
(Some physical situations described by the equa-
tion should never lead to complex roots.)

In any case, the algorithm should include a test
for a negative discriminant, b2 — 4ac. Whatever
is to be done about it, we must not try blindly to
take the square root of a negative number, using
a computational procedure designed for real num-
bers. Let us assume that complex roots are normal
and set up the algorithm to distinguish between the
real and complex cases.

Having decided what to do with the obvious
special cases, we are ready to start working out
the exact sequence of operations in a procedure
that will solve the problem.

What should we do first? We had better start
with a test to determine whether a is zero, because
the formulas do not apply if it is. Figure 1.1 is
a block diagram (also called a flow chart) of this
test and the actions to be carried out if a is zero.
(This is actually just the beginning of a complete
block diagram of the algorithm; the lines leaving
the boxes must go somewhere, to be decided on
later.)

In the reasonably simple block diagramming
notation used in this book a diamond denotes a test
or comparison. The test 1s shown here in the form
of a question to which the answer is yes or no. A
rectangle denotes almost any kind of computer
operation except a test or an input/output action.
All rectangles in this example result in the assign-
ment of a new value to one or more variables, which
is generally what a rectangular box contains. In
fact, this kind of operation is so common and so
fundamental that we might call a rectangular box
an assignment box.

We note in Figure 1.1 that after asking whether
a is zero we set a variable named Roots equal to
the number of roots in either case. Also shown is
the assignment box that indicates the computations



decided on for the case in which a is zero. Names
for these quantities have been made up more or
less arbitrarily; it is a good idea to make names
suggestive of the quantities they represent, as we
have done here.

The large assignment box embodies a completely
arbitrary choice of another kind. If one root is
to be set equal to zero and the other to —¢/b, which
shall we ecall zlreal and which z2real? In this
example it makes absolutely no difference, and the
choice was made by tossing a coin. In other prob-
lems there might be some reason for doing one or
the other.

If we look ahead a bit, we will realize that the
diseriminant b2 — 4ac 1s going to turn up in a num-
ber of places. Why not give it a name and compute
it once, rather than repeating the same arithmetic
steps several times? Having done so, we can test
the sign of the discriminant to determine whether
the procedure should follow the real or the complex
path. Figure 1.2 shows the incomplete block dia-
gram as it now stands. It may be noted that a
different notation has been used in the box that
indicates the testing of the discriminant. A colon
represents any kind of comparison, the nature of
which is then shown on the arrows leading out of
the decision box. The question-mark type and the
colon type are both acceptable decision boxes.

This much of the block diagram embodies an-
other decision on our part: if the discriminant is
zero, we follow the path for the real case. Taking
the square root of the zero discriminant and going
through the separate computations of the two roots
is an apparent waste of computer time. Why not
make a test for a zero discriminant and simply set
both roots equal to —b/2a if it is zero? The course
taken here is based on the assumption that a, b,
and ¢ are taken from physical measurements, in
which case it is extremely unlikely that the dis-
criminant would be exactly zero. Making a test
for zero in every case would in fact waste more
time than would be saved in the rare cases in
which the diseriminant was zero.

Now we are ready to compute the roots. Look-
ing ahead again, we see that the square root of
the discriminant will be needed in two places in the
real case. Why not compute it once and use the
result wherever needed? The block diagram of
Tigure 1.3 is based on this decision. The rest of
the procedure for the real case is a simple state-
ment of the formulas, with the imaginary parts
set equal to zero.

COMPUTERS, ALGORITHMS, AND ALGOL 7

Roots =1
xlreal = —c/b
Roots = 2 x2real = 0
xlimag = 0
x2imag =0

disc = b? = 4ac

A
v

disc:0

Figure 1.2. Continuation of the block diagram of Figure 1.1.

In the complex case there is no need to compute
the square root of the diseriminant in advance
because the root will appear only once in the rest
of the procedure. This is made possible by taking
advantage of a characteristic of complex roots:
they always occur in conjugate pairs; that is,
the real parts are the same and the imaginary parts
are the negative of each other. The block diagram
shows clearly the sequence of computational steps
in calculating the four numbers that comprise the
answer in the complex case.

It must be realized that even though we are com-
puting complex roots all the arithmetic in this
procedure is real. It is necessary to set up the
operations to handle the real and imaginary parts
of a complex number separately, which is all any
digital computer can do. Furthermore, in the
case of the imaginary square roots of a negative
number the procedure is set up to take the square
root of the negative of the negative disecriminant,
since a procedure based on operations with real
numbers cannot take the square root of a negative
quantity.

One final question must be considered: what is
the source of the coefficients a, b, and ¢ and what is
to be done with the results? If this algorithm is
to be regarded simply as a general procedure for
finding the roots of a quadratic equation, then we
might assume that a previous procedure would
have generated the coefficients and that some fol-
lowing procedure would make use of the results.



8 ALGOL PROGRAMMING

Let us assume here, however, that this is supposed
to be a complete procedure for a computer, with
the coefficients read from cards and the results to
be printed. There is no need to -delve into the
details of computer input and output here; we can
simply indicate the card reading and the printing
and leave the details until later. Note the shape of
an wnput/output box in Figure 1.4.

While we are completing the block diagram, we
may as well make one more slight improvement.
As the diagram has been developed so far, there are
two places at which we set the imaginary parts of
the roots equal to zero. No complications are in-
troduced if we delete one of these (for the special

real case in which a is zero) and draw an arrow
down to the box that does the same thing for the
general real case. The complete block diagram is
shown in Figure 1.4.

The algorithm is now just about completed. All
that remains is to express it in a language that is
understandable to a computer. Figure 1.5 shows
the procedure written in ALGOL, which is such a
language. Since the remainder of the book is de-
voted to a detailed explanation of ALGOL and how
to use it, there is no point in presenting a detailed
explanation of this ALGOL algorithm. With a few
pointers, however, it is nevertheless possible to read
it rather easily.

a=0? Yes Roots = 1
xlreal = —c/b
Roots = ZJ x2real = 0
xlimag =0
x2imag = 0
disc = b2 ~ 4ac
< =
disc: 0
A
1real =
xtrea —b sqroot = ~/disc
x2real = Za
a
x1lreal =
—b + sqroot
JV 2a
xlimag =
V—disc
2a A
x2real =
—~b = sgroot
2a
A
X2imag = xlimag =
—xlimag x2imag = 0

Figure 1.3. Continuation of the block diagram of Figure 1.2
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Read values
ofa, b, ¢
from a card
Yes
a=0? Roots = 1
No
P oo &; e i fvuuéx“\.._
Roots = 2 xlreal = ~-¢/b Coe o v
x2real = 0 £
A
disc = b2 - 4ac

xlreal =
x2real =

~/=disc
2a

xlimag =

x2imag =
~xlimag

Print a, b, ¢,
roots, x1real
xlimag, x2real
x2imag

sqroot = +/disc
x1lreal =
~b + sgroot
2a
x2real =
=b = sgroot
2a
xlimag =
x2imag = 0

Figure 1.4. Block diagram of o method for finding the roots of a quadratic equation.

9
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The Read and Print operations that call for the
reading of data and the printing of the answers are
not strietly part of ALGOL. TFacilities for such
operations are a part of any computer system that
can accept an ALGOL procedure, but they do rep-
resent an extension of the basic language. Words
printed in boldface have special meaning in
ALGOL. Semicolons separate statements, which
are commands to the computer to carry out actions.
When several statements are grouped to form a
compound statement, they are enclosed between
the words begin and end, which are called state-
ment brackets. The colon in front of some equal
signs can be ignored for the present. The if-state-
ment allows an operation to be done only if some
condition is satisfied; if the condition is not met,
the entire statement (which is compound here)
following the then is skipped. The words zeros and
output are labels with which it is possible to specify
transfers of control, as is done in the seventh line.
Spacing between characters and the placement of
statements in lines carries no significance; all such
matters of arrangement may be employed however
one wishes, to improve readability.

This algorithm, slightly modified, was run on a
computer with several sets of data. The results are
shown in Figure 1.6, just as they were printed by
the machine.

Read (a, b, ¢);

ifa = 0 then
begin
Roots : = 1;
xlreal ;
x2real : = 0;
go to zeros
end;

Roots : = 2;

il

Ii

—c/b;

1.4 What Is ALGOL?

ALGOL, which stands for ALGOrithmic Lan-
guage, is exactly what its name implies: a language
for expressing algorithms. Tt was developed by an
international group of computer people between
1957 and 1960. Improvements and modifications
are still being suggested, but the language is more
or less stabilized at the present time as that defined
in the May 1960 issue of the Communications of
the Association for Computing Machinery, in “Re-
port on the Algorithmic Language ALGOL 60,”
edited by Peter Naur. The “60” distinguishes the
present language from a preliminary one, some-
times referred to as ALGOL 58, and from later
versions that may in time be sufficiently different
to warrant a new designation.

ALGOL is intended to serve two rather different
purposes. One is the communication of algorithms
among people; computational procedures must be
expressed precisely whether or not a computer is
immediately involved. The other purpose is to
describe procedures in a form that can be accepted
by a computer, causing it to carry out the desired
processing.

The second should be amplified somewhat. A
procedure written in ALGOL cannot be executed
directly by present computers; the ALGOL pro-

disc :=DbT2—-4XaXe;

if disc < O then

begin

xlreal : = x2real : = —b/(2 X a);
xlimag : = sqrt (—disc)/(2 X a);
x2imag : = —xlimag;

go to output
end;

sqroot @ = sqrt (disc);
xlreal : = (—b + sqroot)/(2 X a);
x2real : = (—b — sqroot)/(2 X a);
zeros; xlimag : = x2imag : = 0;
output: Print (a, b, ¢, xlreal, xlimag, x2real, x2imag, Roots);

Figure 1.5. An ALGOL program segment to find the roots of a quadratic equation.



gram must first be translated into machine lan-
guage. Present computers can carry out only sim-
ple operations such as adding two numbers, storing
a result, reading a card, or transferring to a dif-
ferent group of instructions if two numbers are not,
equal. The language of ALGOL, which is much
more sophisticated, must be translated into the
machine’s own elementary language before the pro-
gram can be executed. This translation, however,
can be done by the machine itself, under control of
a separate program of machine instructions called
an ALGOL processor.

Let us review the steps in getting an ALGOL
program executed on a computer. A source pro-
gram is written in ALGOL; this is simply the algo-
rithm to solve the problem, written as a set of
ALGOL statements. This program, not including
any data, is translated by an ALGOL processor
into an object program, consisting of elementary
machine instructions for the machine on which the
problem is to be solved. The object program is not
executed during this processing; no data is read;
no results are printed or punched. Now, with the
program expressed in terms the machine can “un-
derstand,” it is executed: data is read, the compu-

A B C X1REAL
14000 =24000 14000 14000
14000 ~74000 104000 54000
64000 ~94000 -64000 24000
1000 « 000 =14000 1.000
1000 +000 14000 «000
1000 ~24000 24000 14000
44000 244000 204000 ~14000

1004000 2004000 1004000 =14000

+ 000 634900 =2214300 34463
1000 =4,000 84739 24000
40129 ~144811 -614002 64035

-1.016 e 499 -494573 0245
¢ 000 5684981 ~4904652 862
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tations carried out, and results written. The proc-
essor, which is itself a computer program, is not
involved during this execution phase.

When ALGOL is used to express algorithms to
a computer, it can be viewed as a language together
with a processor program, and the word is used
with both meanings.

Clearly, to use ALGOL as a computer source
program language, an ALGOL processor must be
available for the machine on which the object pro-
gram 1s to be run. Furthermore, if all features of
ALGOL are to be utilized, the ALGOL processor
must be able to accept all features. In fact,
ALGOL processors are not available for all com-
puters, and some processors accept only a subset of
ALGOL. Therefore, the reader who wishes to use
ALGOL as a computer programming language
must ascertain what processor is available to him
and what its characteristics are.

The reader should also realize that almost no
ALGOL processor accepts the exact notation used
in the ALGOL 60 Report and in the bulk of this
book. This reference language uses symbols and
notational conventions that are not directly ac-
ceptable as input for most computers, such as the

X1IMAG X2REAL X2IMAG ROOTsS
«000 1000 +000 2
+ 000 24000 «000 2
+000 -¢500 «000 2
«000 =14000 +000 2
14000 « 000 =14000 2
14000 1.000 =14000 Z
« 000 -54000 «000 P
« 000 -1.000 «000 2
« 000 « 000 « 000 1
20176 24000 -2.176 2
+ 000 =2e448 + 000 2
-64980 245 64980 2
«000 « 000 «000 1

Figure 1.6
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symbol > for “greater than” and an arrow to de-
note exponentiation. Such matters are handled by
some kind of transliteration, such as writing the
letters “GR” for > and ** to denote exponentia-
tion. The language formed when all such trans-
literations have been established is called a hard-
ware representation. Different computers, in gen-
eral, have different hardware representations of
ALGOL.

There is also an intermediate level called the
Publication Language, which may be used to write
algorithms for man-to-man communication. It
permits considerable freedom in notational matters
(Greek letters, for instance) that are not included
in the reference language and that might not be
acceptable in a particular hardware representation.

Most of this book is based on the reference lan-
guage. It should therefore be useful whether or
not the reader is interested in ALGOL as a com-
puter source program language.

EXERCISES

The point of these exercises is to give you practice in
defining a precise procedure to operate on variables about
which you know only the general characteristics. You
are asked in each case to develop an algorithm, expressed
as a block diagram. You need not show input or output
operations.

Answers to starred exercises are given at the back of
the book.

*1. Place whichever of the variables X and Y is larger
in BIG. If X =Y, place either of them in BIG.

2. Place whichever of the variables X, ¥V, and Z is
largest in BIG. (This can be done with only two com-
parisons. Establish whether X or Y is larger, place it
in BIG, then determine whether what is now in BIG is
less than Z, and if so place Z in BIG.)

X2, Y2

Lo

Ag

X1, Y1

Ay

Figure 1.7

Az

Lo

Ly

A1

Figure 1.8

*3. Y1, Y2, and Y3 are the ordinates of three points
on a curve. If Y2 is a local maximwm, that is, if
Y1<Y2and Y2> Y3, place Y2 in Top and place a 1
in Maz; otherwise, do nothing.

*4. If 0.999 < X < 1.001, set test equal to 1; other-
wise set test equal to zero.

*5. Given a directed line segment beginning at the
origin, together with its length and the angle it makes
with the z-axis, write expressions for z; and y, the
coordinates of its endpoints.

6. Given two line segments as sketched in Figure 1.7,
where you are given the length of each and the angle
each makes with the z-axis. Find z, and y,, the co-
ordinates of the endpoint of the second segment. (You
are given no information about orientation; you do not
know which quadrant either angle is in or the relative
sizes of the lengths and angles. This uncertainty will
create no problems as long as you do not try to take
advantage of any special characteristics of the sketch.)

*7. Given three line segments, as sketched in Figure
1.8, and the same type of information as in Exercise 6,
compute the value of closure, the distance of the end of
the last segment from the origin.

8. Given four line segments that supposedly form a
square, as sketched in Figure 1.9. If the error of closure
is less than 19 of the sum of the lengths of the four
sides and no side equals zero, then set the variable OK
equal to 1; otherwise set OK equal to zero.

9. The system
ar + by =¢
dr +ey=f

has no solutions, one unique solution, or an infinite number
of solutions. The criteria for the three cases can be stated
as follows, where we have also given the actions you should
perform.

a. If ae —bd =0, but af —cd 0 or bf — ce # 0,
there are no solutions; set solutions equal to zero.

b. If ae — bd # 0, there is one unique solution; com-
pute it (get the values of z and y) and set solutions
equal to 1.

c. If ae — bd = af — ¢d = bf — ce = 0, there are an
infinite number of solutions; set solutions equal to 2.



Ag

Ly

Ay

As

Figure 1.9

*10. Given the line y = ax + b and the circle z2 +
y2 = 12, set solutions equal to 0, 1, or 2, depending on
whether the line and the circle do not intersect, are
tangent, or intersect at two points, respectively. (Solve
the two equations simultaneously and use the discrim-
inant of the resulting quadratic equation.)

*11. Given the following tax table, compute tazx from
earnings.

Annual Earnings Tax

Less than $2000.00 Zero
$2000.00 or more but less 29, of the amount over
than $5000.00 $2000.00
$5000.00 or more $60.00, plus 5% of the
amount over $5000.00

*12. The present United States Social Security tax
is 3%% of earnings up to $4800 in one year. Given a
man’s previous year-to-date earnings (PYTD) and this
week’s earnings, compute his tar on this week’s earn-
ings and his new year-to-date (NYTD). You should
take into account the following possibilities:

8. The man has earned $4800 or more before this week,

in which case the tax is zero.

b. The man has not earned $4800, including this week’s
earnings, in which case the tax is 3%, of this week’s
earnings.

c. Before this week he has not earned $4800, but in-
cluding this week he has, in which case his tax is
3%% of the difference between $4800 and his pre-
vious year-to-date earnings.

13. The current United States Withholding Tax on a
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weekly salary can be computed as follows: 189 of the
difference between a man’s gross pay and $13 times the
number of dependents he claims. Given gross and de-
pendents, compute the taz. (Do not assume that there
18 always a tax: a man may not have earned more than
the dependency allowance.)

14. Suppose that the squares in a tic-tac-toe game
are numbered as shown in Figure 1.10 and that you are
given N1, N2, and N3, the numbers of three squares.
Assume that N1 < N2 <N3. If the three squares so
designated are in a line, set line equal to 1; otherwise,
set line equal to zero. Can you suggest a way of re-
numbering the squares that would greatly simplify the
test?

*15. Given two times, both expressed in hours and
minutes since midnight, such as 0145, 1130, or 2350.
You are guaranteed that hym,, the first time, is earlier
than hym,, the second time, and that they are less than
24 hours apart. Compute the difference between them
in minutes.

16. A certain parlor game requires determining the
number of common letters in two five-letter words,
neither of which has any duplicated letters. For in-
stance, there are no common letters in BLACK and
WHITE, one common letter in BLACK and MAUVE,
and five common letters in NAILS and SNAIL. Out-
line in words a method of doing this; a complete block
diagram would require techniques not yet discussed.

17. The algorithm for finding the roots of a quadratic
equation shown in Figure 1.4 gives correct results for
every combination of zero coefficients except a = b = 0,
but it takes no advantage of special conditions such as
b=0 or ¢=0. Redraw the block diagram to make
use of any special conditions. If any two coefficients
or all three are zero, set both roots equal to zero (ad-
mitting that this does not make complete sense for the
“equation” ¢ = 0).

The result will be a block diagram with many more
boxes than the one in Figure 1.4, but the new version
will take fewer computational steps when the special
cases arise. This situation exemplifies a common choice
in programming: whether to write an algorithm that is
big but fast or one that is compact but slow.

Figure 1.10



2. NUMBERS, VARIABLES, AND
EXPRESSIONS

2.1 Numbers

We must now leave the fundamental con-
cept of an algorithm long enough to learn
the vocabulary of ALGOL. With the vo-
cabulary in hand, he shall be able in suc-
ceeding chapters to develop illustrative algo-
rithms as new language elements are intro-
duced.

We begin by considering the two types of
numbers that may be used in an ALGOL
program: tnteger and real.

An integer is simply a positive or negative
whole number, including zero. In the refer-
ence language there is no consideration of
maximum permissible sizes of quantities; in
any hardware representation there is some
reasonable limit. Different hardware repre-
sentations in general have different limits,
but a typical figure would be ten decimal
digits.

The following are acceptable integer num-
bers:

0

6

+400
—1234
70000000

The following are not acceptable integer
numbers:

17.38 (decimal point not allowed)

14.0 (decimal point not allowed, even
though a whole number is repre-
sented)

2108 (exponent part—see below—not al-
lowed, even though a whole number
is represented)

1,000,000 (commas not permitted)

123456789000 (probably too large for most
hardware representations)

An integer must be a whole number; an
ALGOL real number may be a whole num-
ber or have a fractional part. In a hard-
ware representation the important difference
between the integer and real types is that
real quantities are stored in the computer in
what is called floating point form. This is
a method of representation similar to scien-
tific notation, in which a number is treated
as a fraction (between 0.1 and 1.0), times
a power of 10. The quantity so represented
must either be zero or lie between reason-
able limits established for each computer
system. A typical range is 103 to 1050

The main point of the floating point sys-
tem is that the programmer is relieved of
any problems concerning the handling of
decimal points. All questions of lining up
decimal points before addition or subtrac-
tion and of determining the location of the
decimal point after multiplication and divi-
sion are automatically taken care of by the
computer. This is the reason for the term
“floating point.”

Any number that appears in literal ex-
plicit form in an ALGOL program is called
a number, whereas a quantity that is given
an dentifier (name) is called a wvarigble.
For instance, we shall see shortly that the



following are assignment statements:
1:=2
X:=A+127

Here 2 and 12.7 are numbers; I, X, and A are
variables.

An integer number may be written with or with-
out a sign; it must not be written with a decimal
point. A real number may be written in just about
any of the familiar forms, except that its last char-
acter must not be a decimal point. It may be
written with or without a sign and with or without
a decimal point. It may be written as a number
multiplied by an integral power of 10 by placing
10 below -the line followed by a signed or unsigned
integer.* The lowered 10 and the integer power
are called the exponent part.

Most quantities in an ALGOL program are or-
dinarily of the real type, since in dealing with
physical data it is necessary to work with non-
integral amounts. Integer quantities are in most
cases used for special purposes required by the
structure of ALGOL, as we shall see in later chap-
ters.

The following are acceptable real numbers:

0.0 — 107

6.0 00074

.873 10— 4

0.873 +10+ 5

8 —07.63,512
—47 +0.512500
+37.98376 2108

0 02.800,9 — 003

The following are acceptable ways of writing the
real number 200:

200 +210+ 2
-+200 20.000040 + 1
200.0 .0002,46

2102 20000, — 2

The following are not acceptable real numbers:

6. (must not end in decimal point)

* Few present hardware representations accept this nota-
tion. In ALGOL for the Burroughs B5000, X 10 * is substi-~
tuted for the lowered 10, leading to numbers like 1.258 X
10*6 and 2 X 10* — 9. In an ALGOL system which fol-
lows FORTRAN notation the letter E is substituted for
the lowered 10, leading to numbers like 1.258E6 and
2E — 9.
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157 107 (must not end in decimal point,
even if there is an exponent
part)

1.853-10° (the 10 must be lowered, the dot
is not permitted, and the expo-
nent must not be raised)

87,649,992 (commas not permitted)

14.7462.5 {exponent must be an integer)

2.2 Variables and Variable Identifiers

The term variable is used in ALGOL to denote
any quantity that is referred to by name rather
than by explicit appearance and that is able to
take on different values rather than being restricted
to one value.

Variables may be of the real or integer type.*
An integer variable is simply one that can take
on any of the values permitted of an integer num-
ber, namely zero or any positive or negative in-
teger no greater than the limit imposed by the
hardware representation. A real variable is one
that can take on any of the values permitted of a
real number, namely zero or any positive or nega-
tive rational number no greater or smaller than
the limits imposed by the hardware representation.
Real variables are also stored in most computers
in a different way than integer variables are: a
real variable is always stored with an exponent
part that locates the decimal point. Generally,
most variables in an ALGOL program will be set
up as real variables because of the convenience
provided by the automatic handling of decimal
points. Integer variables are useful in special
situations that we shall investigate later.

A variable identifier is a name given to a vari-
able by the programmer. ALGOL provides almost
complete flexibility in devising variable identifiers:
there are no restrictions except that an identifier
must begin with a letter of the alphabet and must
contain only letters and digits. An identifier can
be any length.

The reference and publication languages permit
both lower- and upper-case letters, which are con-
sidered distinet; thus sigma, Sigma, and SIGMA
are all different identifiers. Very few computers
are able to accept both, however, making it neces-
sary to use only capital letters. In this book we
use both, but we never employ identifiers that are

*Or Boolean, as we shall see in Chapter 3.
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distinguished only by upper- and lower-case letters.

The publication language permits other symbols
to be used as long as they do not conflict with sym-
bols that have special meaning in ALGOL. A
typical example would be letters of the Greek
alphabet.

The following are all acceptable variable identi-
fiers:

A DALLAS

a largest
Alpha diagonal
x12 B7
Gsquared alb2c3d4ed

The assignment of identifiers to variables is en-
tirely under control of the programmer. Common
practice is to devise names that suggest the mean-
ing of the variable, such as X2 for X squared or
pv for a variable that always has the value = to
some number of places. It should be noted that
ALGOL does not attach meaning to any character-
istic of an identifier. If the programmer chooses
to assign names that simplify recall of the mean-
ing of the variable, it is perfectly permissible to
do so, but no such meaning is attached to the
symbols by ALGOL. A name such as B7 specifi-
cally is not interpreted by ALGOL to mean B
times 7, B to the seventh power, or B;. Further-
more, no distinction of any type is made between
the rules for forming identifiers of real and integer
variables. It should also be noted that every com-
bination of letters and digits constitutes a separate
identifier. Thus ABC is a different identifier from
BAC, and the identifiers A, AB, and AB? are all
distinet.

There is one consideration that is in a sense a
restriction on the free invention of identifiers. A
number of words are used in ALGOL with special
meaning, namely, true, false, go to, if, then, else,
for, do, step, until, while, comment, begin, end,
own, Boolean, integer, real, array, switch, proce-
dure, string, label, and value. It is conventional
to underline these words to set them off from iden-
tifiers; as a typographical convenience, they are
shown in this book in boldface.

Ideally, these ALGOL words would always be
represented by distinctive symbols to show that
they stand for themselves and nothing else. If this
were the case, the ALGOL word true could never
be confused with the identifier true, which might
be invented by a programmer. In some hardware
representations ALGOL words are set off by dis-

tinguishing marks such as quotes or dollar signs, so
that there is in fact no confusion between ‘true’
and true or between $while$ and while. In Sys-
tems not having a distinguishing method it is neces-
sary to avoid all ALGOL words as identifiers.

In any case, it is necessary to avoid use of iden-
tifiers that are the same as the identifiers of cer-
tain standard functions to be investigated shortly:
abs, sign, sqrt, sin, cos, arctan, In, exp, and entier.

2.3 Arithmetic Expressions

The idea of an expression appears repeatedly in
ALGOL, most frequently in connection with the
assignment statement by which we give a new
value to a variable.

An expression is a collection of one or more num-
bers, variables, and functions (see Section 24),
combined with arithmetic operators and paren-
theses to form a meaningful mathematical expres-
sion. Note that a single number or variable is an
expression.

The common arithmetic operators and the sym-
bols * used to denote them are

addition +
subtraction —
multiplication X
division / and sometimes —+
exponentiation T

Examples of expressions:

16.48

Alpha

r12—s12

a+b-—c
sumsquares/n
(x—y—2)/@a+Dh)
87 X (theta — 2 X N)
a/2X (a+bXx)12)

An arithmetic expression always defines a single
value; what is done with this value depends on
where the expression is written. If it is written on
the right side of an assignment statement, it
causes a new value to be assigned to the variable
named on the left. For example, the assignment

*In most hardware representations not all of these Sym-
bols are available. ALGOL for the Burroughs B5000 sub-
stitutes the letter combination DIV for = and * for 1.
Other substitutions might be * for %, / for +, and **
for 1.



statement
Y: =X+ 3.69

causes the value of the variable Y to be replaced
with the value of the variable X, plus 3.69.

Every variable named in an expression must
already have been given a value, either by an
earlier agsignment statement or by reading in data
from punched cards or magnetic tape. The value
of a variable in general changes during the execu-
tion of a program. Whenever a variable name ap-
pears in an expression, it identifies the value most
recently assigned to that variable.

Two arithmetic operators must never be written
side by side. Thus, A X —B is not a legitimate
expression, but A X (—B) and —A X B are.
Since plus and minus signs are indistinguishable
from the arithmetic operators for addition and sub-
traction, this rule also means that any exponent
expression beginning with a sign must be enclosed
in parentheses.

In the absence of parentheses to define prece-
dence, all exponentiations are carried out first, then
all multiplications and divisions, and then all addi-
tions and subtractions. Thus the following two ex-
pressions are equivalent:

AXB+C/D-EXF1G
(AXB)+ (C/D) — (EX (FTQ)

Naturally, one is not limited to the precedence
defined by this rule: parentheses can be used to over-
ride it. Thus (z + %)® would be written (z + %) T 3
to convey the intended meaning; z + y T3 would
mean z + y°. Since exponentiation is the highest
rapking operation, any exponent expression other
than a single unsigned number or variable must be
enclosed in parentheses. For instance, the mathe-

2i—1
matical expression (E) must be written (z/10)

1(2 X 1 — 1);if it were written (z/10) T2 X 7 — 1,

the rules of precedence would cause it to be inter-
2

preted as (%) - ¢ — 1, which is not the same thing

at all.

If neither parentheses nor the rules of precedence
define the sequence of operations, they are carried
out from left to right. Thus A/B X C means
A A
B’ C, not BO and 21 21 k means (22)*, not 2.
It may be seen that this left-to-right assumption
defines the meaning of expressions that are con-
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sidered ambiguous in ordinary mathematical nota-
tion, such as A/B X C.

The multiplication sign must never be omitted,
as it frequently is in ordinary mathematical nota-
tion. It is easy to see why this rule must be fol-
lowed: without it, there would be no way to deter-
mine whether AB meant A times B or the single
variable named AB.

This sort of consideration can occasionally have
a bearing on the computation of expressions that
in ordinary mathematical notation are considered
equivalent, when large and/or small numbers are
involved. Suppose that A and B are large and
nearly equal and that C is small in the expression
A — B 4 C. Taken from left to right, this means
(A — B) + C, which first subtracts one large num-
ber from another, giving a small number, and then
adds a small number. If the expression were taken
from right to left, the expression would mean to
subtract a large number from a small number and
then add a large number. The difficulty is that if
B were a great deal larger than C subtracting them
could cause complete loss of significance in C, so
that the two interpretations of the expression would
not give the same result, even though they were
mathematically equivalent. (Try both versions on
12345.678 — 12345.678 + 0.00012345678, discard-
g all but eight significant digits after each opera-
tion.)

Real and integer quantities may be mixed freely
in an expression. For the operators +, —, and X,
the value of the expression will be integer if both
operands are of type integer, and real otherwise.
The operator / is defined for all four combinations
of operands of type real and integer and yields a
quotient of type real in any case.

There is a special division operator —, defined
only if both operands are the integer type. The
result is always type integer and is found by trun-
cating the quotient; that is, there is no rounding.
Stated otherwise, this operator gives the wnteger
quotient of two integers, and the remainder is
ignored. Thus 7 = 4 gives 1, not 2, and 99 + 100
equals zero. In applications of this operator the
truncation aspect requires careful attention to the
sequence of operations. For instance, 6 X 4 = 3
gives 8; 6 is multiplied by 4, giving 24, which is
divided by 3 to give 8. However, if the expression
is written 6 X (4 = 3), the result will be 6: the
parentheses force the division to be done first,
giving the integer 1 (no rounding, remember),
which is multiplied by 6 to produce 6.
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Mathematical Correct Incorrect

Notation Expression Expression
A-B AXB AB (No operator)
A-(—B) AX(—B)or —A X B A X —B (Two operators

side by side)

—(A+ B) —(A + B) —A+4+Bor—+A+B
Alt? AT(G4+2) ATi+2(=AT4+9
AiIT%.B AT(G—-3) XB ATj—3XB(=Al-3B)
A'B ABD
- — A X B/(C X D)or AXB/CXD<=——>
C-D A/C X B/D C

<A+ B>2.5
C
AX+B(X+ 0)]

(—4)! (=4A)Ti

((A+B)/C)T25
AX (X+BX X+ )

A+B>

02.5

(A + B)/C125 <=

AX + B (X +0))
—ATi(= —(aY)

Figure 2.1. Correct and incorrect ALGOL expressions.

This operator is obviously of a rather special
nature, to be used only when there is a specific need
for its features. The foregoing examples illustrate
nicely how careful one must be when working with
a computer to be positive that the processing is
carried out preeisely as intended.

The operator 1 produces various kinds of re-

sults, depending on the size and type of the base
and of the exponent. Denote a number of the inte-
ger type by ¢, a number of the real type by r, and
a number of either type by a. Then the meaning
of the exponentiation operator is given by the fol-
lowing rules:

ali Ifi > 0,a X a X...X a (i times), of the same type as a.
Ifi = 0,if a 5 0, 1, of the same type as a.
if a = 0, undefined.
Ifi <0,iffa=0,1/(a X a X...X a)(the denominator
has —1i factors), of type real.
if a = 0, undefined.
alr If a > 0, exp (r X In (a)), of type real, i.e., e™'22,
Ifa =0,if r > 0, 0.0, of type real.
if r < 0, undefined.
If a < 0, always undefined.

Figure 2.1 illustrates some correct and incorrect
ways of forming ALGOL expressions to correspond
to mathematical expressions.

2.4 Common Functions

ALGOL provides a simple mechanism for the
use of certain common mathematical functions
such as square root, sine, and absolute value. All
we need do is write the name of the function de-

sired; the ALGOL processor will automatically in-
corporate the machine language instructions to
compute the function. The argument for which
we want the function value is written in paren-
theses following the function name.

The number and kind of functions that may be
included in a program automatically vary gener-
ally with the processor and the computer installa-
tion, but certain common ones are available in just
about every system. These standard functions and
their identifiers are
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abs (E) the absolute value of the value of the arithmetic expression E.
+1ifE >0
sign (E) the sign function of the value of E = {0if E =0
—1if E <.
sqrt (E) the square root of the value of E.
sin (E) the sine of the value of E, E assumed to be expressed in radians.*
cos (E) the cosine of the value of E, E assumed to be expressed in radians.*
arctan (E) the principal value of the arctangent of the value of E, produced in radians.*
In (E) the natural logarithm of the value of E.*
exp (E) the exponential function of the value of E, that is, e, where e is the base of the
natural logarithms.*
entier (E) the largest integer not greater than the value of E.{

* A few conversion formulas may be stated for reference.

E degrees = 0.01745329 E radians

E radians
logE

57.29578 E degrees
0.43429448 In E

In E = 2.3025851 log E
10F = exp (2.3025851 E)

+ Roughly speaking, “entier”” is French for “entire.”” In mathematics entier (E) is commonly called the greatest integer function
y sp! g g

of E and is written [E].

In every case the expression in parentheses may
be any arithmetic expression. Writing the func-
tion name, followed by parentheses enclosing an
expression, calls for the evaluation of the named
function of the expression.

2.5 The Assignment Statement

An ALGOL statement is an order to perform
some action. As we shall see, an ALGOL program
is composed of a series of statements of various
kinds, including some that specify the sequence of
execution of other statements.

The fundamental statement is the assignment
statement, which assigns a value to one or more

x:=3
omegsa : = theta + 6.2832
deriv : = N X cos (ang) T (N — 1)

variables. A simple assignment statement takes
the form

Variable : = Expression

This is not an equation! It is instead a command:
replace the value of the variable on the left with
the value of the expression on the right. The com-
bination := 1is sometimes called the replacement
operator; it is not a statement of equality. The
reference language uses the combination of the
colon and the equal sign to denote replacement and
reserves the ordinary equal sign for use as a
relational operator, as we shall see in Chapter 3.
A good policy is to think of : = as meaning “is re-
placed by.”
Examples of assignment statements:

replace the present value of x with the value 3.
replace the present value of omega with the value of theta plus 6.2832.
replace the present value of deriv with the value of Ncos™ ™! (ang),

where the current values of N and of ang are to be used in evaluat-
ing the expression.

ki=k-—1

compute the value of k¥ — 1, using the current value of k in the

computation, then replace the current value of k with the value
of the expression just computed. In short, decrease k by 1.
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This last example, which is clearly not an equa-
tion, brings out rather forcefully that := means
is replaced by, not equals.

The examples in Figure 2.2 show several ordi-
nary formulas and corresponding assignment state-
ments. Identifiers of variables have been chosen
to suggest the original quantities, but the choices,
of course, are arbitrary; any other identifiers would
have been just as acceptable to ALGOL. It is also
assumed that previous statements would have as-
signed values to all the variables on the right.

It is permissible for the variable on the left to
be of the real type and the expression on the right
to be of the integer type, and vice versa. In such
a case the expression on the right is evaluated in
the type of arithmetic dictated by its variables and
operators; then the value of the expression is con-
verted to the type of the variable on the left. In
most computers real and integer variables are
stored somewhat differently, so that a conversion
in the form of representation is required. In any
case, an assignment statement of the form integer

1= real will cause the value of the real expression
to be rounded to an integer. This feature is occa-
sionally useful in itself.

A single assignment statement can set several
variables equal to the same value by a simple and
obvious extension of the notation. For instance, if
7, y, and z are all to be made zero, we can write

Xi=y:=z:=0

All “left part” variables must be of the same type.

Seldom will anything complicated be done with
such a multiple assignment statement, but a com-
plete definition must account for certain unusual
possibilities. One is that the expression at the
right of the statement involves one of the variables
in the list of variables to be assigned new values.
The procedure is this: the expression on the right
is evaluated, using the current values of all vari-
ables appearing in it; all variables in the list are
then assigned this value. Consider the statement

a:=b:=c:i=c+1

Original
Mathematical
Formula ALGOL Assignment Statement
A + BX
= R:=(A+BXX)/(C+DXX
C ¥ DX ( )/( )
8 _1+A2 Bet 1/@XX)+A12/4 X X12)
=— 4+ — eta, 1= —
2X  4X?
X2 _ Y2
C = 1.112K - 212 C:=1112 X K X1l X r2/(r] — r2)
Iy — Ia
k=12 k:=12
r = 3.1415927 pi ;= 3.1415927
X 1
I=~——In(a+ be™) I:=x/a—1/(a X p) XIn(a+b Xexp(p X x))
a ap
1 a
V= ~— tan ! <emx —) Vi=1/(m X sqrt (a X b)) X arctan (exp (m X x) X sqrt (a/b))
mVab b
Myew = 2Mgq + 10J M:=2XM+10xJ
IneW:Io]d+1 I=I+1
Inewznj[old I:=DXI
Ineszgld I=IT2

Figure 2.2. Some formulas and corresponding ALGOL assignment statements.
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Error

Y :=2X+4+ A

314:=x —a

gamma : = 1,678,982 X delta
a:=(x+yal2+ R —s) 12/168

—m:=1T4
aXxT24+bXx4+c:=0

X missing

Left side must be a variable

Commas not allowed in constants

Not same number of left and right parentheses;
X missing

Variable on left must not be written with a sign

Left side must be a single variable

Figure 2.3. Some errors in writing assignment statements.

This means to add 1 to the present value of ¢ and
then make ¢, b, and a equal to the sum.

There is really nothing very difficult about writ-
ing ALGOL assignment statements. For the most
part the rules are those of familiar mathematical
notation. There are a few restrictions, however.
To emphasize some of the things commonly for-
gotten by beginners, Figure 2.3 illustrates some
errors in writing assignment statements.

EXERCISES

*1. Do the following pairs of ALGOL real numbers
represent the same number in each case?

16.9 +16.9

23000 2.3104

0.000007 T —5

1.0 1.000

906105 =+906.000,0 + 2

*2. Which of the following are acceptable variable
identifiers?

X il2¢g Cat x+3 next
42Y delta A/M Last T1.4
(square) IA Al X X12
1X2 xsquared arctan begin while
2a g~! 158 First Bessel

function
set next1l Lasted T1point4 Bs

3. Write ALGOL arithmetic expressions correspond-
ing to each of the following mathematical expressions:

a. x+y? b. (x +y)?
* . x1-687 d. A+g
e.A—gB *f.A—%—%
- ohp G X

. 3
*1.—A+B *J.1+X+~X;+£
C+ D 2! 3!
F+G
-1
k. E)g *1. B 2
D2 x
1+
(2x)*
3+ g
54 (8x)*
7 + (4x)?
*m. a-b + ¢d — (25)2 n. (xi® + x2® + x3%)

0. AREA = 2.P-R-sin (n/P)
p. CHORD = 2R sing

q. ARC = 2VY? + (aX/3)

cost X
4

r. = —

4. Shown below are a number of mathematical ex-
pressions and corresponding ALGOL arithmetic expres-
sions. All contain at least one error. Point out the
errors and write correct expressions.

a. (x+y)°? x+y7T3
X+ 2
*b.y+4 x+2/y +4
c.—Cé—% AB/(C + 2)
X + A+ m\?
*d, ( - ) (X + A + 3.1416)
/@2XZ)T2
X\*~
e. (?) (X/Y)tn—1
a c-d
*f, E+e-f-g a/b + ed/efg

g (m 4 n)(r + s) m+nXr+s
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h. a + bx 4+ ex* 4 dx? a+xX((b+xX((e+dXx)
=a+x[b+ x(c+ dx)]

L. 1,600,042-G + 10°

. 1 42 . 108
i 1,568,995 G + 10° (1,600,042 X G + 1.105)/(4,568,995 X G + 1.10%)

' (1)2 ( R—)3 (ﬁ ' 1/A12 X (R/12.3) 13 X (25/23.4) 1 4
\a/ "\i23/ \231 ' '
5. The following expressions are all acceptable, but number of parentheses. (There is nothing really wrong
each contains at least one pair of parentheses that can with extra parentheses, of course. In fact, they are often
be removed without changing the meaning of the ex- advisable, just to make the meaning clearer.)

pression. Rewrite the expressions with the minimum

. (A X B)/C
(A/B) X C

A4+ X)X (B/Y)

(A+BT({+2) X B/NC)

.(AXBXC/(D X E)

. (a X (b/(e X (d/(e X D))

L @TE+2)+bTEA+3)+ X +4) X DY)

CATO- +H)/ATGE -+ 1D +6.28)

A HFBYH O XD T/AF+T79TGE -1+ BAC + D)) X (A + 6)
((A/BY X C)/DYy X R+ (A/BTK) —((BT2) X T)/(W T4

*
e TR e o T®

*

*



3. PROGRAM ORGANIZATION,

if-STATEMENTS, AND

BOOLEAN VARIABLES

3.1 Elements of Program
Organization

An ALGOL program is composed largely
of statements, a statement being a command
to perform some action. We saw in Chap-
ter 2 that an assignment statement causes a
new value to be assigned to one or more
variables. We shall see that there are sev-
eral other kinds of statements, some of
which are considerably more flexible than

the assignment statement.

The statements of a program are executed
sequentially as written, in the absence of in-
structions to the contrary. However, this
one-after-the-other sequence may be inter-
rupted in several ways, of which two are
considered in this chapter: The go to state-
ment explicitly names the statement to be
executed next, and the if-statement permits
statements to be executed in a sequence that
depends on the values of data and results.

Because of this possibility of transfer of
control (nonsequential execution of instrue-
tions), and for other reasons, it is necessary
to specify precisely where every statement
ends. For this purpose, every statement
must be followed either by a semicolon,* the
word end, or the word else. Which of the
three to use is determined by rules that will

* Many computers require a transliteration of the
semicolon; a simple and common substitution is

the dollar sign.

be considered later; the semicolon is most
common.

It is often desirable to make a number of
statements act as a single group for pur-
poses that we shall begin to investigate
shortly. In such a case the group must be
preceded by the word begin and followed
by the word end; the group is then called a
compound statement. The words begin and
end are called statement parentheses, since
they serve to denote the limits of a group
of statements in much the same way as or-
dinary parentheses specify the limits of a
mathematical expression that is to be treated
as a unit in later operations. A semicolon
is not necessary before the end.

A block has the appearance of a com-
pound statement, being enclosed between
begin and end, but in addition it includes
declarations immediately following the be-
gin. There are various kinds of declara-
tions, which we shall investigate in subse-
quent chapters; at a minimum, every vari-
able must be declared to be of type real,
integer, or Boolean. (Boolean variables are
discussed in Section 3.6.) For many simple
programs the only declaration required is
the word real followed by the identifiers
of all variables in the program.

Every program must be a block; that is,
1t must start with begin, be followed by
declarations and the statements of the pro-

gram, and terminate with end. Thus we
23
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beginreal E, R, L, C, I, F;
Read (E, R, L, C);
Print (E, R, L, C);

Repeat: Read (I");

I:=FE/sqrt (RT2+ (62832 X F X L — 1/(6.2832 X F X C)) 1 2);

Print (F, I);
go to Repeat
end

Figure 3.1. An ALGOL program to read o data card, compute a result, and return to read another card.

now see that Figure 1.5 was not a complete ALGOL
program. We shall see in Chapter 6 that block
structure does a good deal more than merely setting
the boundaries of a program.

3.2 Labels and the go to Statement

In order for one statement to refer to another,
it is necessary to be able to identify a statement,
which is the purpose of labels. A label may be
any unsigned integer or it may be any identifier,
which, it will be recalled, is a string of letters and
digits beginning with a letter. A label must always
be followed by a colon * to separate it from the
statement that it precedes.

ALGOL attaches no meaning to the arrangement
of statements in a program, except for their se-
quence. Blank spaces may be freely inserted into
statements to 1improve readability, and statements
may be arranged into lines in any way that the
programmer wishes. One line may contain one
statement, several statements, or only part of a
statement. Readability (by a human, that is) is
considerably enhanced by some systematic format,
such as putting each statement on a separate line
and by some scheme of indentation that clarifies
relationships within the program.

The go to statement is about the simplest in the
language. It is of the general form geo to L, where
L is the label of a statement elsewhere in the
program. It specifies that the statement to be
executed next is the one identified by the label.

A particularly simple usage of the go to state-
ment is to return from the end of a program to its
beginning, to execute it again. The following ex-
ample illustrates this application of the statement
and also shows how an ALGOL program can be
organized on the page.

*One simple transliteration of the colon is two periods.

Suppose that we are required to compute the
current flowing in an a-c¢ circuit containing re-
sistance, capacitance, and inductance. The steady-
state current in a series circuit of this type is given

by
E

1 2
R? <2 FL — >
\/ T 27FC

where I = current, amperes
E = voltage, volts
R = resistance, ohms
L = inductance, henrys
C = capacitance, farads
F = frequency, cycles per second

I:

i

i

We assume that the purpose of the computation
is to provide the data for drawing a graph of the
relation between current and frequency for fixed
values of voltage, resistance, inductance, and ca-
pacitance. The fixed values of these variables are
read from a card at the beginning of the program.
The desired values of frequency are read from a
series of cards; after each card is read, the current
for that frequency is computed and printed.

An ALGOL program to do this job is shown in
Figure 3.1. Reading this program should present
no difficulty, but a few additional words should be
said about the purpose of some of its features.
A printed report can be almost useless without
some identification in addition to the answers.
Therefore, a Print statement has been placed after
the Read, to print the values of voltage, resistance,
inductance, and capacitance as soon as they have
been read. For the same reason, each current
value is printed with the corresponding frequency.
There is no provision for. stopping the execution of
this program; it will therefore continue reading
frequency cards, computing the current, printing
it, and returning to read another frequency card
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as long as cards remain to be read. When the last
card has been read, the computer will “hang up”
trying to read another card. This is usually not
good practice, at least on large eomputers; another
approach is presented in Section 3.3.

Note that no semicolon is required after the
go to statement, since it is immediately followed
by the word end. See the rule at the end of Sec-
tion 3.1.

It wuay be well at this point to review the proce-
dure for setting an ALGOL program into opera-
tion.

1. The program 1is written approximately as
shown in Figure 3.1, except that it is written on
some kind of form that makes the desired spacing
more explicit, and any transliterations required by
the particular hardware representation are made.
In most present computers only capital letters may
be used.

2. The program is punched onto cards or paper
tape (and perhaps transeribed from there onto
magnetic tape). The result is the source program
deck (or tape). It does mot include data cards.

3. The ALGOL processor, which is itself a large
program of computer instructions, is read into the
machine from another deck of cards or, more com-
monly, from magnetic tape or from magnetic drum.

4. The processor reads the source program deck
or tape, not including any data cards, into the
computer and comptles it into an object program
consisting of actual machine instructions. De-
pending on the circumstances, the object program
may be left in the machine ready to run or it may
be written out onto cards or tape. The object pro-
gram has not been executed and no data cards have
been read.

5. The processor program is removed from the
scene and the object program takes over after being
read in from cards or tape if it was not left in the
machine by the processor. With the computer un-
der control of the objeet program, the machine
instructions produced from the source program can
carry out the specified processing, including read-
ing of data and printing of results.

It is important that this process be clearly un-
derstood; much of the following material would
be almost meaningless without such an understand-
ing. This is all the more true because of the short
cuts that must be taken to describe the operation
of programs. The phrase “the execution of the
machine instructions produced from the statement

in the source program” is awkward if repeated as
often as would be necessary. We therefore use
such phrases as “when the if-statement is executed.”
It must never be forgotten that this is an abbrevia-
tion for the complete phrase; the actual execution
occurs only after compilation.

In some ALGOL systems the translation of the
source program to an object program is done so
unobtrusively that one may not quite realize that
it has happened. This is the ease if the translation
is very fast and the object program is left in the
computer ready to run, in which case it may be
customary to place the data cards immediately
following the source program. Except for a short
delay after reading the source program, it might
appear that the source program is being executed
as soon as it is read, but this is not so.

The reader who wishes to get ahead of the game
and try some programs on a computer at this point,
which is an excellent idea, should bear in mind
that virtually every processor requires some trans-
literations, such as replacing 1 with * or **. Check
the manual for your system. Also check the
manual for the simplest possible way to write
input and output statements; it is quite unlikely
that the simplified statements in this book will be
acceptable. In most cases you will have to add
some kind of specification of the format of the
cards and of the printed report, but do not try to
do anything fancy. If there is some simplified
form of input and output requiring no format in-
formation, by all means use it.

3.3 The if-Statement

The go to statement provides a way to alter the
sequence of statement execution wunconditionally.
Besides this, however, we need a way to change
the sequence of statement execution on the basis
of what happens during execution of the program.
In other words, we need a way of making a condi-
tional transfer of control based on data or com-
puted results. The 1f-statement provides this capa-
bility, among other things.

A few definitions will simplify the explanation of
the if-statement. A relational operator is any of the
following: <, =<, =, =, >, or #. Note that the
equal sign is written here without a colon. The
relational operator = is to be interpreted in the
sense, ‘‘if one arithmetic expression is equal to
another arithmetic expression, then the relation is
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Read
E, R LC,
initial, incr,
final

F := initial

(

Compute
Iasa <
function of F

A

Print
F, I

Ne—

F + incr True )
=final? > F:=F + incr
False
Stop

Figure 3.2. Block diagram of a program to compute current in
an a-c circuit for equally spaced valves of frequency.

true.” On the other hand, the separator : = means
to assign the value of the expression on its right to
the variable(s) on its left and has nothing to do with
the idea of equality. This distinction between the
equal sign as a replacement operator and the equal
sign as a relational operator is not always made
clear in elementary mathematics; it must be made
explicit in any algorithmic language.

A relation is of the form E,RE, where E; and E,
are any two arithmetic expressions and R is any
relational operator. A relation is said to be true
or false, depending on whether the relation is satis-
fied by the values of the expressions. A relation
should therefore not be thought of as a statement
of fact but rather as an assertion that may be
true or false. For instance, the relation z = 2
does not mean that x equals 2 but rather, in effect,
asks, “Is it true that z is equal to 2?7

The if-statement is easily described in terms of
these definitions. In its simplest version the gen-
eral form of this statement is

if relation then statement

The operation is as follows: if the relation is true,
the statement following then is executed; if the
relation is false, the statement following then is
not executed and control passes to the next state-
ment in sequence.

For example, the if-statement

if x < 10 then go to delta;

will cause a transfer to the statement having the
label delta if x is less than 10; if x is greater than
or equal to 10, the entire statement will have no
effect and control will pass on to the statement
that follows.

The statement following the then can be of any
type except another conditional. Frequently it will
be a compound statement, as in the following
example:

if I' 4 incr < final then begin
F := F + incr; go to repeat end

The begin and end, we recall, are statement
brackets denoting the limits of a compound state-
ment. They are essential here, incidentally. With-
out them, the action would be correct as long as
the relation is true, but as soon as it becomes false
the effect would be to skip over the F : = F + iner
and continue to the go to statement. The effect
is thus quite different from what it is with the
brackets, in which case both statements between
begin and end are skipped when the relation is
false.

This example provides the basis for a much more
realistic version of the example in Section 3.2.
Suppose that instead of reading every new value
of frequency from a card we read just three num-
bers from a card at the beginning. These are the
first frequency, named nitial, an increment, named
incr, and a largest value, named final. The pat-
tern is now to be as follows: compute the current
for the initial frequency, then increment the fre-
quency repeatedly and compute the current for
each new value, but stop the process as soon as the
current has been computed for the largest value
of frequency not exceeding the final value.

As usual, a block diagram is easier to follow
than a verbal description. Figure 3.2 shows the
procedure clearly. The precise nature of the test
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begin real E, R, L, C, I, F, initial, incr, final;
Read (E, R, L, C, initial, incr, final);

Print (E, R, L, C);
F : = initial;
twopi : = 6.2831853;

Repeat: I:= E/sqrt(RT2 4+ (twopi X F X L — 1/(twopi X F X C)) T2);

Print (F, I);

if I + incr < final then begin F : = F + incr; go to Repeat end;

Stop
end

Figure 3.3. An ALGOL program to carry out the computation diagrammed in Figure 3.2.

is worth noting. We ask, in effect, “Would adding
the increment once more give a new frequency
less than or equal to the specified final value?”
If the answer is yes (true), we go ahead and add
the increment and repeat the computation of the
current. If the answer is no (false), we stop the
process.

An ALGOL program is shown in Figure 3.3.
There is nothing really new here, except the Stop.
This is not an ALGOL statement, as Read and
Print are not; all three would have to be defined
as procedures, as discussed in Chapter 7. Note
also the assignment of the value 6.2831853 to the
variable named twopt, to avoid having to write
out the long constant twice. This is common prac-
tice.

3.4 The Conditional Statement

The if-statement, as we have defined it so far,
provides for carrying out a statement if and only
if some relation 1s true. Stated otherwise, it pro-
vides for skipping over a statement if some relation
1s false. A complete conditional statement does
more; it specifies a second statement to be carried
out if and only if the relation is false. The gen-
eral form 1is:

if relation then S, else Sy;

where S; and S; are any two statements. The
operation is as follows: if the relation is true, state-
ment 8; is executed and statement S, is skipped;
if the relation is false, statement 8; is skipped and
statement S. is executed. In either case control
passes to whatever statement follows S; (unless S;
or Sp contain go to statements).

For an example, suppose that at a certain point

in a program we must do the following. If
t =n—1, set D equal to 22 and go on to what
follows, but if ¢t = n — 1 go to the statement labeled
special. This can be done with the statement:

ift =n — 1then D := x72 else go to special;
The following statement has exactly the same result:
if t  n — 1 then go to special else D : = x T 2;

This last statement, in turn, has the same effect as
the two statements:

if t = n — 1 then go to special;
D:=x172;

In the general form of the conditional statement
the statement following then must be unconditional,
but there is no such restriction on the statement
following else. It may very well be another con-
ditional statement. Conditional statements can be
“nested” in this way to any depth. A nest of two
conditionals, for instance, would appear in skeleton
form as

if R; then S; else if R, then S; else S3; S,

The word else implies two actions. The obvious
one is to indicate what to do if a preceding relation
is not true; in this sense, it means “otherwise.”” The
other function is to dictate what to do if a preceding
relation ¢s true. The word else always oceurs in the
combination

then S else

where it defines the successor of statement S as
the statement following the entire conditional state-
ment (unless S is or includes a go to statement, of
course). In schematic block diagram form the
nest above can be expressed as shown in Figure 3.4.
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if Ry then $; else if R then Sy else S3; Sy
1
A
0 True 51 0 True S S5 - S

False False

Figure 3.4. Schematic block diagram of the meaning of a “nested’” conditional statement.
g 9

The effect of this construction ean be stated
another way: the statement is inspected from left
to right; as soon as a relation that is true is found,
the unconditional statement following it 1s exe-
cuted and the rest of the conditional i1s skipped
entirely; if all relations are false, the statement
following the last else (if there is one) is executed.
If all relations are false and there is no else at the
end, the entire statement has no effect.

All of this may be illustrated with the following
hypothetical example. We are given these specifi-
cations:

1. If a < b, set g equal to 8.9 and go on.

2. If alpha — beta = 14.7, set rho equal to cos
(theta/2), set sigma equal to 7 — tau'-® and go on to
whatever follows these steps.

3. If neither of the above is true, go to the state-
ment labeled unusual, which is somewhere else—not
shown here.

4. After executing the statements in (1) or (2), set
Sflag equal to 1.

All this can be done with the following:

ifa < bthen g := 8.9 else
if alpha — beta = 14.7 then

begin

rho := cos (theta/2);.
sigma = 7 — taul 1.5 end
else go to unusual;

flag : = 1;

3.5 The if-Clause

We have so far discussed the if-then-else con-
struction in terms of its use as a complete state-
ment. The same general form can be applied in
a variety of ways by relaxing the assumption that
complete statements are involved. The general-
ization 1s almost obvious. Suppose, for example,

we wish to set signal equal to zero if w = 2z and
set it equal to 1 otherwise. This can be done with
the single assignment statement:

signal : = if w = z then O else 1;

This has exactly the same effect as the complete
if-statement:

if w = z then signal : = 0 else signal : = 1;

This explicit form is not recommended, however.
The if-clause in an arithmetic expression is more
compact, easier to read once the scheme is clear, and
in many cases will lead to a more efficient object
program.

For a second example, consider this requirement:

Y =05X +095ifX £ 2.1
Y =07X 4 053if X > 2.1

This computation can be specified with the concise
statement:

Y:=ifX <21then0.5 X X + 0.95
else 0.7 X X 4 0.53;

A third example of this powerful technique in-
volves the definite integral: *

ks .'
—— ifa<0
2
* adx .
Q=f0 =] 0 fa=0
+7 fa>0
2

Suppose that a has been assigned a value by a
previous statement and that Q is to be found:

Q:=ifa < 0then —1.5708 else
if 2 = O then 0 else 1.5708;

* The example can be read without knowledge of calculus.
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An if-clause may also be utilized in connection
with a go to in another rather obvious extension of
the same basic scheme. Suppose that at a certain
point in a program we wish to go to the statement
labeled done if the absolute value of the difference
between x and final is less than 105 and otherwise
to the statement labeled more. One statement will
do 1it:

go to if abs (x — final) < 15— 5 then done else more;

3.6 Boolean Variables and Expressions

We now turn to a generalization of the ideas
contained in the discussions of relations. We saw
that a relation is an assertion about two arithmetic
expressions, which may be true or false. Actually,
a relatlon is just one example of a Boolean * ex-
presston, which is closely analogous to an arith-
metic expression, except that it may have only
true or false as “values.”

We saw that arithmetic expressions are made up
of numbers, variables, and functions, combined
with arithmetic operators and parentheses. Boolean
expressions are formed in an analogous way from
one or more of the following:

Logical values, that is, true or false.

Boolean variables, that 1s, variables that have
been declared to be the Boolean type.

Boolean functions, that is, functions that have
been declared to be the Boolean type.

Relations, as previously discussed.

These elements are called Boolean primaries.
Any Boolean expression, even though it may be
more complex than the rather simple forms per-
mitted of a primary, may be made into a primary
simply by enclosing it in parentheses. Parentheses
may thus be used in the familiar manner to indi-
cate grouping.

These primaries may be combined into more
complex Boolean expressions by the use of logical
operators, of which there are five in ALGOL.

The simplest‘logical operator is 1, which stands
for megation. This operator always applies to a
single primary; that is, it is a unary operator. If B

* After the English mathematician George Boole, 1815-
1864, who originated the systematic study of logic as a
mathematical discipline.

is any Boolean primary, then 1B is false if B is
true, and 1B is true if B is false. Negation is thus
similar to the unary arithmetic operator —, which
reverses the sign of an arithmetic primary.

The operator A is called logical and. If bl and
b2 are any two Boolean primaries, then b1 A b2 is
true if b1 and b2 are both true and false otherwise.

The operator V is called logical or. If bl or b2
or both are true, then bl V b2 is true; bl Vv b2 is
false only if b1 and b2 are both false.

The logical operator O is called smplication. If
bl is true and b2 is false, then bl D b2 is false;
bl D b2 is true otherwise.

The logical operator = is called equivalence. If
bl and b2 are both true or both false, bl = b2 is
true; it is false otherwise. Implication and equiva-
lence will have little application in the examples in
this text.

It - may be helpful to summarize the meaning of
these operators in a truth table, as shown in Table 3.1.

A Boolean variable can be given a value by an
assignment statement; the only requirement is that
the expression on the right be a Boolean expression.
Thus we can write statements like the following:

A = true;
B : = false;
C:=x < 10;

The last will result in setting C equal to true if the
current value of z is less than 10 and setting it equal
to false otherwise.

Di=y=1Ag>8;

This will cause D to be set equal to true if y equals
1 and ¢ is greater than 8, and will set D equal to
false otherwise.

For further examples, suppose that the following
assignment statements, in which the first four vari-
ables are obviously Boolean and the others are real,
have been executed.

E :=true; I' : = false; G : = true; H : = true;

R:=2;,8:=6;T:=0;U := 20;

TABLE 3.1
(28 b2 a1 b1 ADB2 Bl VB2 bl =b2 bl D2
False False True False False True True
False True True False True False True
True False False False True False False
True True False True True True True
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TABLE 3.2
Logical
Assignment Value
Statement Assigned
L:=F; false
M:=8S =T false
N:=H A U < 25; true
O=AFVR+8=T true
P=G=T —1—12>U false
Q=EVFDR=T; false

Table 3.2 shows what values would be assigned to
Boolean variables as the result of executing a number
of Boolean assignment statements.

These examples raise a question that must be
answered in any scheme involving a set of operators:
when two or more operators appear in the same
expression and the sequence is not specified by
parentheses, what is the order in which the opera-
tions are performed? This is answered by stating the
hierarchy of the operators, in our case, as follows:
1, A, V, D, =. In other words, in the absence of
parentheses to dictate the sequence negation is per-
formed first, then and, then or, then implication, then
equivalence.

The complete definition of an if-clause may now
be given; it is any construction of the form

if Boolean expression then

This construction may be used everywhere that we
have previously used the construction

if Relation then

For instance, suppose we wish to stop some com-
putational process as soon as ¢ and h are both less
than 0.001 in absolute value. This can be done with
one statement:

if abs(g) < 0.001 A abs(h) < 0.001 then go to exit;

For another example, suppose that a special com--

putation must be carried out if a or b or ¢ is zero:
ifa =0V b =0V c=0then go to special;

Again, suppose that we should stop if ¢ = 0 and

b=1,o0ra=0and ¢c=2. This can be done with
ifa=0Ab=1Va=0Ac=2thengoto finish;

And is a higher ranking operator than or, so that
there is no question of the meaning of this expression.

Following the maxim ‘“when in doubt parenthesize,”
we could write equivalently

fa=0Ab=1)Va=0Ac=2)
then go to finish;

It happens that and is distributive over or (a fact
that will not be proved here), so that we could also
write

ifa=0A (b=1Vc=2)then go to finish;

For an example of negation, suppose that we wish
to go to move as long as a and b are not both less than
1. This can be done in several equivalent ways.

if 1(a <1ADb<1)then go to move;

The parentheses are essential to make the unary
operator "1 apply to the entire expression. This
statement may be read, ‘“if it is not true that a is
less than 1 and b is less than 1, then go to move.”

if Ta <1V T1b <1 then go to move;

This may be read, “if it is not true that a is less
than 1, or 1f it is not true that b is less than 1, then
go to move.’

ifa =1V b =1 then go to move;

This may be read, “if a is greater than or equal to
1 or b is greater than or equal to 1, then go to
move.”

The reader is encouraged to satisfy himself that
these three statements accomplish exactly the same
thing.

It should be noted carefully that in the construc-
tion if . . . then . . . else the else is sometimes
optional and sometimes required. We may state
the rule as follows: in an if-statement, that is, a
statement beginning with the word if, the else is
optional; in a conditional expression appearing
within an arithmetic expression or a go to state-
ment the else is required. Thus we are allowed
to write either of the following forms:

ifa =6theny := 2;
ifb=0thenz:=0elseq:=9;
However, it is not permissible to write
g:=ifc = 1thenxT2;

because there is nothing to specify what should be
done in case ¢ is not equal to 1.

Further examples of Boolean expressions appear
in Case Study 2, Section 3.8.
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3.7 Case Study 1: Column Design

A mechanical engineer wishes to obtain data for
plotting a curve of the safe loading of a certain
type of column as a function of the slimness ratio
of the column. He has selected from a handbook
two empirical formulas that give the safe loading
in two ranges of the slimness ratio.

17,000 — 0.485 B2 for R < 120

18,000
8= 1— for R > 120
1
+ 18,000

S = safe load, pounds/in.2
R = slimness ratio

where

The safe loading is to be calculated for slimness
ratios of 20 to 200 in steps of 5. This range of
values ean be expressed in the convenient notation
(mathematical notation, not ALGOL):

slimness ratio = 20(5)200

This is not a very difficult task. We need to set
up the iteration on R, which requires setting B = 20
before getting into the body of the computation,
together with some sort of testing and increment-
ing scheme. Suppose we arrange the latter as fol-
lows: after each time through the “loop” we will
ask whether the value of R just used was less than
200; if it was, we still have more values of R to use,
so we add 5 to R and go around the loop again. On
the other hand, if the value of R just used was 200
or greater, we are done.

The main computation is a simple matter of de-
termining from the value of R the formula that
applies and computing S accordingly. A block
diagram of the procedure is shown in Figure 3.5.

In writing the ALGOL program, there is only
one area in which the way to go about it is not per-
fectly obvious and that is in writing the statements

to handle the two different formulas. Shall we
write
ifR <120then ... or ifR = 120 then...?

This makes no difference at all, as long as the
appropriate agsignment statement is associated with
whatever way we choose. In the same connection,
what is the best way to go about the selection of
one of the two formulas? One way would be with
an if-statement without the else:

R:=20
False |g. . _ 18000
R <120 T 14 R2
18,000
True
S:=17,000
—0.485R?

Print@(—

R:=R+5

Stop

Figure 3.5. Block diagram of the method of solution of Case
Study 1.

if R < 120 then begin
S 1= 17000 — 0.485 X R X R;

go to around end;
S : = 18000/(1 + R X R/18000);

around:

This is a bit awkward because of the necessity of
skipping around the second formula after executing
the first. If we were going to do it this way at all,
a single if-then-else statement would be better:

if R < 120 then S : = 17000 — 0.485 X R 1 2 else
S := 18000/(1 + R T 2/18000);

(It is largely immaterial whether we write R 12 or
R X R)

A better approach, because it is neater and sim-
pler (and likely to be faster for the object pro-
gram), is to take advantage of the ability to put
an if-clause in an assignment statement. This is
probably the best approach whenever a single vari-
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begin real R, S;
R = 20;

again: S := if R < 120 then 17000 — 0.485 X R 1 2 else 18000/(1 + R T 2/18000),

Print (R, S);
if R = 200 then Stop;

R:=R + 5;
go to again
end

Figure 3.6. ALGOL program for Case Study 1.

able is to be set equal to one of several expressions.
S := if R < 120 then 17000 — 0.485 X R T2 else

18000/(1 + R T 2/18000);

The complete program is shown in Figure 3.6.

3.8 Case Study 2: A Logical Problem
in Surveying

A surveyor has been given data on a great many
quadrilaterals. He would like to make a prelim-
inary analysis of the areas represented by the data,
to determine for each whether it is

square;
rectangle (but not a square);

rhombus (but not a square or rectangle);
parallelogram (but not a square, rectangle, or
rhombus) ;

none of these.

e » oo

Let us label the diagram as shown in Figure 3.7.
How can we go about determining the shape of the
figure, given only the four sides and the four
angles?

A necessary and sufficient condition for a quad-
rilateral to be a square or a rectangle i1s that all

Figure 3.7. Naming of the four sides and four angles of the
quadrilateral of Case Study 2.

four angles be 90°. A tentative starting point in
the analysis would be a statement of the general
form

if ABC = 90 then ...

This will not do, however: physical measurements
are not exact. We will be willing to accept the
figure as a rectangle or square if the angles are
all within some small tolerance of 90°. Suppose
we leave the size of this tolerance to the discretion
of the surveyor; in other words, one of the inputs
to the program will be a number named, say,
angtoler. The program must be set up so that an
angle on etther stde of 90° by no more than this
tolerance will be accepted. The easiest way to do
this is with a relation of the type

abs (ABC — 90) < angtoler

There are four angles to be tested; we are inter-
ested in knowing whether all of them will meet
the test. The simple way to do this is with an
if-clause having four such relations combined with
logical ands.

It is clearly going to be necessary to test some
combinations of sides for near-equality also. Here,
we had better set up the tolerance in terms of a
relative error, since we have no information about
the dimensions of the areas: an error of a foot
might be acceptable in a large area but not close
enough n a small one. This kind of test can be
set up in several different ways. One that seems
reasonable is to accept the two sides as “equal” if
the difference between their lengths is less than a
preseribed tolerance multiplied by the sum of their
lengths. If we call this tolerance sidetoler, the
test will be of the general form

if abs (AB — CD) < sidetoler
X (AB + CD) then ...
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Now let us see if we can devise a sequence of
tests that will establish the shape of the figure.
This, too, can be done in many ways. Here is one:

The figure is a square if all angles are 90° and
any two adjacent sides, say AB and BC, are equal.

If it is not a square, it is a rectangle if all angles
are 90°.

If it is neither a square nor a rectangle, it is a
rhombus if all sides are the same. This test can
be made by asking whether AB = BC, 4B = CD,
and AB = AD; if each of the other three is equal
to AB, all are the same.

If it is none of the above, it is still a parallelo-
gram if both pairs of opposite sides are equal, that
is, if AB = CD and BC = AD.

It is important that the tests be made in this
order, since we want to print out the most restric-
tive definition that the figure satisfies. All of the
others are special cases of the parallelogram, but
we want to call a square a square, not a parallelo-
gram. The only exception is that since a rectangle
and a rhombus are not special cases of each other
the order of the two tests is arbitrary.

So far we have established the basic decision
logic. Now we must investigate the simplest way
to state the algorithm in ALGOL. It would be
possible, of course, to write out long if-statements
expressing each of the rules above, but doing so
would result in an unnecessarily long program since
we would be making the same tests repeatedly. It

appears that it would be helpful if there were some
way to set up a variable that would be true if a test
were satisfied and false if it were not. And there
1s: this is precisely what a Boolean variable per-
mits. We can conveniently take advantage of three
Boolean variables here, which we call angles, opp-
sudes, and adjstdes, defined as follows:

angles is true if all angles are within the tolerance
of 90°

oppsides is true if AB = C'D, within the tolerance

adjsides is true if AB = BC, within the tolerance

Each of the Boolean variables will be used at
least twice. In addition, we will have to test two
other pairs of sides for equality, once each, but
there is not much point in setting up Boolean
variables for them; nothing would be saved since
they are used only once.

With these Boolean variables it is quite simple
to make the tests that establish what figure we
have. The test for a square, for instance, is just

angles A adjsides

Recall that angles is true if and only if all angles
are 90°; adjsides is true if and only if the two
adjacent sides are equal. The Boolean expression
angles N adjsides is true if and only if both vari-
ables are true. Recall finally that an if-clause
permits any Boolean expression; the relations that
we have used in all examples so far are merely
special cases of Boolean expressions.

begin real AB, BC, CD, AD, ABC, BCD, ADC, BAD, angtoler, sidetoler;
boolean angles, oppsides, adjsides; integer case;

Read (angtoler, sidetoler);

Nextcase: Read (case, AB, BC, CD, AD, ABC, BCD, ADC, BAD);
angles : = abs (ABC — 90) < angtoler A abs (BCD — 90) < angtoler
N abs (ADC — 90) < angtoler A abs (BAD — 90) < angtoler;
oppsides : = abs (AB — CD) < sidetoler X (AB + CD);
adjsides : = abs (AB — BC) < sidetoler X (AB + BC);
if angles A adjsides then begin Print (‘square’); go to Nextcase end;
if angles then begin Print (‘rectangle’); go to Nextcase end;
if oppsides A adjsides A abs (AB — AD) < sidetoler X (AB 4+ AD) then
begin Print (‘rhombus’); go to Nextcase end;
if oppsides A abs (BC — AD) < sidetoler X (BC 4 AD) then
begin Print (‘parallelogram’); go to Nextcase end;

Print (‘none’);
go to Nextcase
end

Figure 3.8. Program to determine the shape of a quadrilateral, given sides and angles.
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ANGTOLER 10000 SIDETOLER +0100
CASE AB BC Ccb AD ABC BCD ADC BAD FIGURE
1 50400 50400 50400 50400 90400 30400 90400 90400 SQUARE
2 50410 49470 50600 50420 90400 90480 89410 89450 SQUARE
3 50410 49410 52400 53450 90400 91420 88470 90620 NONE
4 22430 87410 22040 87400 90400 90410 90420 89490 RECTANGLE
5 63400 63410 63420 62480 41460 138440 41450 138450 RHOMBUS
6 130400 264400 131600 263400 23440 156460 23440 156410 PARALLELOGRAM
7 14140 100400 14140 300000 135400 135400 45400 45400 NONE
8 100400 200400 300400 400400 1400 2400 3400 900400 NONE
9 200400 200400 800400 9999400 90400 90400 9000 90400 SQUARE
10 100400 100400 100400 100400 6000 60400 60400 00 RHOMBUS
11 100400 200400 100400 200400 60400 300400 300400 6000 PARALLELOGRAM
Figure 3.9

The program can now be written. The declara-
tion must list angles, oppsides, and adjsides as
Boolean so that the ALGOL processor will set
them up as having only logical values. The dec-
laration will list a variable named case as being
the integer type; this is simply a case number to
be read in with the data for each figure to make
1dentification of the output easier.

In reading the program of Figure 3.8, remember
that an assignment statement for a Boolean vari-
able must have a Boolean expression on the right
and that a simple relation is a Boolean expression.
If the value of the expression is true, the variable
1s given the logical value true; if the expression is
false, the variable is given the value false. Note
the Print operations here, which contain words to
be printed on the report rather than the names of
variables. When a string of letters and/or digits
is not to be regarded as a variable identifier but
as a thing in itself, it is enclosed in string quotes;
the string is then sometimes called a literal. The
output procedure must naturally be able to accept
literals, which we assume for our hypothetical input
and output procedures.

This program was run on a computer with several
sets of data after modifying the Print statements
to include the sides and angles in the output.
Headings were also printed. The results are shown
in Figure 3.9. Exercise 9 asks you to correct the
program to avoid the nonsense in cases 9, 10,
and 11.

EXERCISES

1. Write statements to do the following.
*a. If a is greater than b, set  equal to 16.9, but i a
is less than or equal to b set y equal to 23.1.

b. If rho + theta < 1078, transfer to the statement
labeled alldone; otherwise do nothing.

*¢. If rho + theta < 1078, transfer to the statement
labeled alldone; otherwise transfer to the statement labeled
oncemore.

d. If sigma > 6, set swl equal to 1; otherwise set sw?2
equal to 1.

*e. If g and & are both negative, set signs = —1;
if both are positive, set signs = +1; if they have different
signs, set stgns = 0. (Note that it is permissible to use
an identifier like “signs.”” The addition of the s makes it
essentially different from the function identifier “‘sign.”)

*f. If0.999 < z < 1.001, transfer to wrapup; otherwise
transfer to start new tteration.

g. If a < 0and b >0, orif ¢ =0, set lambda equal to
cos (x + 1.2); otherwise do nothing.

*h, If ¢ =1 and R < 8, transfer to statement 261;
if ¢ =1 and R = 8, transfer to statement 257; if ¢ = 1,
transfer to statement 297.

i. If N = 1, 2, or 8, transfer to statement 250; if N = 3
or 7, transfer to statement 251; if N = 4, 5, or 6, transfer
to statement 252; if N is none of these, transfer to state-
ment 9999.

*J. At a certain point in a program it is necessary to
transfer to

(1) the statement labeled first ife=1
(2) the statement labeled between if1 < ¢ < N
(3) the statement labeled last ifi=N

*k. Place whichever of the variables X and Y is
algebraically larger in Big. If X = Y, place either of
them in Big.

1. Place whichever of the variables X and Y is larger
in ahsolute value in Bigabs.

* m. Xreal and Ximag are the real and imaginary parts
of a complex number. Transfer to square if Xreal and
Ximag are both less than 1 in absolute value.

n. Transfer to circle if v/Xreal? + Ximag? < 1.

o. Transfer to diamond if the point with the coordinates
Xreal and Ximag lies within a square of side /2 with its
corners on the coordinate axes.

2. Write statements, or groups of statements, to do
the following.



PROGRAM ORGANIZATION, if-STATEMENTS, AND BOOLEAN VARIABLES 35

*a. Compute

g™ ifm>0
P=40 ifm=20
Tetm  ifm<o0
2
b. Compute
Q = al, x < bl
=22, bl S x< b2
=23, b2 < x < b3
=a4,b3 = x
* . Set
switchg =1 ifk <0
=2 ifk=0
=3 ifk>0

d. Set lvne = 1 if
N1+4+2=N2+4+1=N3
orif NI +4 = N2+ 2 = N3
orif N1 +6 =N2+ 3 = N3
orif N1 +8 = N2 +4 = N3
Set line = 0 otherwise.

e. If YI < Y2 > Y3, go to local maz, and to again if
not.
f. Compute

a+bx+cex? ifk=1
v=1d+ex+fx* ifk=2
g+ hx+ix2 ifk =3
Note. In the remaining exercises you are asked to
write complete program blocks, including declarations.

All variables may be taken to be of type real, except
in Exercise 9.

*3. Y is to be computed as a function of z according
to
y = 16.7x + 9.2x? — 1.02x3

for z values from 1.0 to 9.9, inclusive, in steps of 0.1.
Write a program segment to print 2 and y for each of
the 90 values of z.

4. Y is to be computed as a funetion of z according
to

a + bcosx
ax? — bx® sin x

for z values from 0.5 to 8.5 in steps of 0.05. Write a
program segment to print x and y for each of the 161
values of x, except that if the denominator is less than
1073 in absolute value set y equal to 107 instead of
evaluating the formula.

*5. Write a program segment to carry out the process-
ing required in Exercise 8 of Chapter 1.

6. Write a program segment to carry out the process-
ing required in Exercise 9 of Chapter 1.

¥7. Write a program segment to carry out the process-
ing required in Exercise 10 of Chapter 1.

8. Write a single assignment statement to carry out
the processing required in Exercise 11 of Chapter 1.

9. The results printed in Figure 3.9 show the analysis
of the possibilities to be somewhat lacking in that a lot
depends on receiving sensible data. Add tests to the
program of Figure 3.8 to make the identification iron-
clad. Hint. Consider whether it would suffice to test
that the supposed quadrilateral actually has four nonzero
sides and that it is elosed (or nearly so).

*10. Given a, b, and n, and

compute

Trapezoidal = g [f(a) +2f (a + h) + 2f (a + 2b) +- - -

+2f(b — 2h) + 2f (b — h) + f (b)

where

11. Same as Exercise 10, except compute

h
Simpsons = 3

[f (a) + 4f (a + h) + 2f (a + 2h)

+ 4f (a + 3h) +--- 4 4f (b — 3h)
+ 2f(b — 2h) + 4f (b — h) + f (b)]

where 7 is now assumed to be even.
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4.1 Introduction

One of the most frequent operations in
computing is the repetition of some calcula-
tion, each time with a different value of what
is called the controlled variable. We saw
an elementary example of such a computa-
tion in Case Study 1, in which the safe load-
ing of a column was found for many values
of a slimness ratio. As we proceed, we shall
see that there are many other situations in
which something of this general character
must be done. It is quite valuable, there-
fore, to have language features that simplify
these operations. The ALGOL for-state-
ment provides wide flexibility in this respect.

The general form of the ALGOL for-state-
ment is

for variable : = for-list do statement

The for-list is composed of one or more
for-list elements, which may be of several
types. The simplest for-list element is an
arithmetic expression {which includes single
variables and single numbers, remember).
The basic idea of the for-statement is that
the statement following the do is executed
repeatedly, with the controlled variable tak-
ing on the successive values specified by the
for-list. If several statements are to be
repeated under control of a for-statement,
they must be made into a compound state-
ment by enclosing them between begin and
end.

As an elementary example, suppose that

it is necessary to compute and print the
value of the expression

X3 3

= — — —log|a® + x*
y=373 gl |

for x = —2.0, —1.2, 1.7, 2.4, and 4.9. This
is as easily done as said, as shown in Figure
4.1. This compound statement will be exe-
cuted five times, with x taking on the suec-
cessive values given in the for-list.

A much more powerful form of for-list
element is the step-until type, in which we
are able to specify an initial value for the
controlled variable, an increment, and a final
value. A complete for-statement having this
type of for-list has the general form

for variable : = initial step increment
until final do statement;

“Initial,” “increment,” and “final” can be
any arithmetic expressions. Execution of
this statement proceeds as follows. The
controlled variable is first set equal to the
value of the “initial” expression. If the
value of the controlled variable is not greater
than the value of the “final” expression, the
statement following the do is executed;

forx: = —20, —1.2,1.7, 2.4, 49 do
begin
yi=(xT73—-2aT3
X In (abs (a T3 + x713)))/3;
Print (x,y)
end

Figure 4.1. An elementary example of a for-statement.



begin real R, S;
for R : = 20 step 5 until 200 do
begin
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S:=if R < 120 then 17000 — 0.485 X R 1 2 else 18000/(1 + R T 2/18000);

Print (R, 8)
end
end

Figure 4.2. Program for Case Study 1, using the for-statement.

otherwise, control passes to the statement follow-
ing the complete for-statement. After executing
the statement following the do, the controlled vari-
able is increased by the value of the “increment”
expression and the test for completion is made
again.

We can begin to illustrate the power of this
heavily used statement by rewriting the program
for Case Study 1 that was shown on page 32.
Figure 4.2 shows how much simpler the program
becomes with the for-step-until construction.

Note in the explanation of the for-step-until
construction that the statement following the do
is executed until the value of the controlled vari-
able exceeds the value of the “final” expression.
That is, if the “initial” and ‘“increment” expres-
sions lead to a value of the controlled variable
equal to the “final” value, then the statement fol-
lowing the do will be executed for that value. In
the program of Figure 4.2, for instance, the formula
1s evaluated for z = 200.

Actually, the description above is not quite pre-
cise in referring to an increment and in the refer-
ence to exceeding the value of the “final” expres-
sion. The “increment” can, in fact, be negative,
in which case the test for continuation is to deter-
mine whether the value of the controlled variable
is less than the value of the “final” expression.
For instance, if it were desired to compute the safe
loading for slimness ratios starting with 200 and
working down to 20, the for-statement in Figure
4.2 could be written

for R : = 200 step —5 until 20 do

The operation of this type of for-statement can
be expressed in terms of a group of ALGOL state-
ments in a way that is entirely equivalent and
which displays the complete logic of the operation
a little more clearly. For conciseness, write the
statement in the form

for V:= A step B until Cdo S;; S,

The result of this statement is the same as the re-
sult of statements:

Vi=A;
L: if (V — C) X sign (B) > 0 then go to So;
Statement S;;
V:=V 4 B;
go to L;

It is quite important to realize that “sign (B)”
means the sign of the value of B, not whether the
expression B as written begins with a minus sign.
For instance, this group of two statements will
decrease the value of the controlled variable X:

N:i= -7,
for X : = 90 step N until 4 do

In most situations this kind of consideration does
not arise, but it is occasionally necessary to refer
back to the precise definition contained in the set
of equivalent statements above. Bearing in mind
that A, B, and C in that definition can be complete
arithmetic expressions and that the sign of the
expressions may change during the repeated execu-
tion of the statements controlled by the for-state-
ment, this analysis can become quite complex.
Situations of such complexity are uncommon.

The controlled statement of a for-statement must
never be entered except by executing the for-state-
ment; that is, a go to leading into the controlled
statement from outside it is illegal. (Note the
phrase from outside it; this does not prohibit a
compound controlled statement that contains go
to statements.)

A compound controlled statement is allowed to
have a go to that leads completely outside the con-
trolled statement. If this is done, the repetition
stops, of course, regardless of the status of the
termination conditions in the for-statement.

The step-until for-list allows great flexibility in
the specification of the starting and incrementing
expressions but somewhat less freedom in the
method of stopping the repetition. The third type
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of for-list, that based on the while construction,
takes away some of the flexibility in starting and
inerementing but provides almost complete freedom
in the method of stopping.

The general form of a for-statement based on
this for-list element is

for V : = E while F do S;; S,

E is any arithmetic expression and F is any Boolean
expression. Every repetition of the execution of
such a construction is exactly the same: V, the
controlled variable, is set equal to E; if the Boolean
expression 1s still true, statement S; is executed and
the process repeated; if the Boolean expression is
not true, statement S, is executed, stopping the
repetition. The operation can be more concisely
described by the following equivalent program:

L: V:=E;
if 1 I then go to Sy;
Statement S ;
go to [;

It is important to notice that the controlled vari-
able is set equal to the arithmetic expressions each
time the controlled statement is repeated. This
means in practice that the controlled variable must
be given a starting value before entering the for-
statement; the for-statement then handles only the
modification of the controlled variable and the
testing. 'This initialization of the controlled vari-
able can also be handled (and somewhat more
smoothly) by using a for-statement of the form

for V.= E;, E; while B do

That is, the initialization can be done within the
for-statement itself.

A simple example of the operation of this type
of statement is provided by rewriting the program
of Case Study 1 with a for-while construction. All
that need be done is to replace the for-statement
in Figure 4.2 with the statement

for R : = 15, R + 5 while R = 200 do

This example shows only how it is possible to
carry out the calculation with either the for-step-
until method or the for-while method; it does not
demonstrate the power of the for-while technique.
For an illustration of the simplification made pos-
sible by the latter, consider a standard method of
computing a square root. To find the square root
z, of a number A, we repeatedly apply the formula

1/ A
X = — <_— + prevx>

2 \prevx

The number prevz is initially given some starting
value, from which we calculate an approximation
to the root, x. If 2 and prevx are sufficiently close
together, then x is the square root and we stop the
process; if the two are not close, then prevr is
given the value # and the process is repeated. The
basis of this technique, which is known as the
Newton-Raphson method, is given in caleulus
courses but can be explained quite easily without
calculus. Suppose first that prevz is in fact the
square root of A. Then we have

1/ A
X = — (——ﬁ + prevx>

2 \prevx

1/ A

-5(Ta V)
=%(\/K+ VA) = VA

Suppose next that prevz is less than the square root
of z. Then A divided by something less than its
square root gives a quotient greater than its square
root; we are thus repeatedly taking the average
of two numbers, one greater and one less than the
square root. A similar analysis applies if prevz
is greater than the square root of A,

A program to carry out this repetitive caleulation
involves four operations: obtaining a starting value
for prevz, carrying out the evaluation of the for-
mula, testing for completion, and assigning the
newly computed value of z to prevx if the process
is not completed. These operations can be built
into a for-while construction in several ways, of
which we shall show one.

The first step in this program is to set prevz
equal to a starting value before going into the for-
statement. The starting value has a significant
mnfluence on the number of iterations (repetitions)
of the process that will be required to converge to
the square root, but in fact the process will con-
verge for any positive starting value; in this pro-
gram we shall start with 1 and not worry about
the number of iterations that may be required.
The for-statement will be used to calculate a new
value of x and then to test whether the absolute
value of the difference between x and prevz is less
than some preassigned tolerance. If they are the
same or nearly the same, the operation of the for-
while construction will stop the iteration; if they
are not the same, we will execute a simple assign-
ment statement that gives preva the value of z
and repeat the calculation and testing. The pro-
gram is shown in Figure 4.3.



prevx : = 1;

for x : = 0.5 X (A/prevx + prevx) while abs (x — prevx) >y—6 do prevx : = x;
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’

Figure 4.3. A square root program using the while construction.

The tolerance, it may be seen, has been arbi-
trarily chosen as 10-¢ Note the absolute value
function: although it happens that convergence is
always from above, the first time the test is made
in computing the root of a number less than 1
the difference will be negative. Without the abso-
lute value, the loop would stop before it ever really
got started.

This method, or some variation of it, is almost
always used to calculate square roots in digital
computers. With ALGOL, we do not have to write
out this little procedure; the same general approach
is called into action when we write sqrt. Since
this kind of program tends to be employed fre-
quently, great effort is put into making it as fast
as possible. In particular, various schemes are
used to get a starting value that is at least a fair
approximation to the square root in order to reduce
the number of iterations required. In fact, if the
starting value is good enough, it is sometimes pos-
sible to repeat the caleulation a fixed number of
times without any testing.

This example brings up a feature of all versions
of the for-statement that must be kept constantly
in mind: upon exit from the for-statement by ex-
haustion of the for-list, the value of the controlled
variable is undefined. In this example the result
is that one cannot assume that z will in fact have
the value of the square root when the computation
has been completed. Here the restriction is of little
importance, for, when repetition stops, z and preva
must have nearly the same value anyway, and we
can call prevx the square root.

Note that this restriction does not apply to a
variable that is set equal to the controlled variable
within the for-statement, as in this example. From
this one could guess that the reason for the restric-
tion is that the testing for completion can cause
the controlled variable to be changed, at least in
SOImMe PIrocessors.

Note, finally, that if the repetition is terminated
by encountering a go to statement within the loop
the value of the controlled variable is defined; the
restriction applies only after completion of the
loop by exhaustion of the for-list.

The off-hand choice of 10—8 as the tolerance for
stopping the repetition is worth a short digression
with much broader application than this example.

We encounter no difficulty here as long as the num-
ber of which we want the square root is somewhere
in the vieinity of 1 to 100; but what happens if it
is very large or very small? As it happens, we get
into very serious difficulties either way. Suppose,
first, that we are trying to take the square root of
1039 The program is set up to stop repeating as
soon as two approximations are the same within
10—%; this will happen long before the correct
square root of 10—1!% is reached. As a matter of
fact, the “square root” would be given as about
9.5-10—7. Thus we see that the procedure stops
too soon in this case.

For a very large number, on the other hand, it
may never stop! Suppose we try to take the square
root of 2-10%°. To express the answer to six deci-
mal places requires 16 digits, but most computers
carry ALGOL real variables to only eight or ten
places (plus the exponent that locates the decimal
point). Thus it will be only by chance that two
approximations can ever agree to the required
accuracy, and the while construction will never get
us out of the computation.

It is well to keep this kind of consideration in
mind in any work with a computer. In this par-
ticular case we got into trouble by specifying an
absolute accuracy, and we can get out of it by
changing to relative accuracy. In other words, in-
stead of asking that two approximations be the
same to within a tolerance, we could ask that their
difference be less than some small fraction of one
of them, say the most recent. The for-statement
would then be

for x : = 0.5 X (A/prevx + prevx)
while abs (x — prevx) > ;p—6 X x do

In other situations in which the precision is a prob-
lem other remedies may be necesary.

This introduction may be completed with a for-
mal definition of the for-statement, in which we
give precise definitions of some terms used above.

A for-list element may be any of the following:

1. arithmetic expression

2. arithmetic expression step arithmetic expres-
sion until arithmetic expression

3. arithmetic expression while Boolean expres-
sion
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begin real v3v2, firstR, incR, lastR, firstgamma, incgamma,

lastgamma, R, gamma, Eff;

Read (v3v2, firstR, incR, lastR, firstgamma, incgamma, lastgamma);

for R : = firstR step incR until lastR do

for gamma : = firstgamma step incgamma until lastgamma do

begin

Eff :=1~— 1/R T (gamma — 1) X (v3v2 T gamma — 1)/(gamma X (v3v2 — 1));

Print (v3v2, R, gamma, Eff)
end
end

Figure 4.4, Diesel efficiency program.

A for-list is any one or more of these, separated
by commas if there is more than one.
A for-clause has the general form

for variable : = for-list do

A for-statement consists of a for-clause followed
by any statement, possibly ecompound; the for-
statement may have a label.

The main thing that these definitions tell us is
that a for-statement may have any number of for-
list elements, possibly of different types.

The following are acceptable for-statements:

for N := 1,2, 6 step 2 until 14, 17, 26 do
Statement;
(N would take on the successive values 1, 2, 6,
8, 10, 12, 14, 17, and 26.)
for G : = rho T 2 step sigma/6 until final do

Statement;

for theta : = —61.8 step —x 1 2 until —90, —96 do
Statement;

fora := 2, 45 6, a 4+ 3 while y > epsilon do
Statement;

for beta : = 23.08, 26 step 1 until gamma + 2,
beta T 2 while sqrt (a T2 + b 7 2) > toler,
2.958 do
Statement;

4.2 Further Examples of the Use
of the for-Statement

Two examples bring out additional ways of em-
ploying the for-statement and at the same time
are rather typical of small problems that can be
solved easily with ALGOL.

We have emphasized that the statement follow-
ing the do may be any statement and that it is
often compound. In particular, it can be another

for-statement, and the compound statement can
contain a for.

Consider the following problem. One form of
the equation for the theoretical efficiency of a

Diesel engine is
va\?
1 Vo

R/le <V3 >
yl——1
Vo

where R = compression ratio
v = ratio of specific heats
U3

Efficiency = 1 —

I

load ratio
V2

An engineer wishes to study the variation of
efficiency with changes in R and y for a fixed value
of vs/vs. He wishes to be able to run the program
several times, perhaps using a different fixed vs/vs
and perhaps with different ranges of values of
R and Y-

It seems reasonable to set up the program so that
it will read in a value of vs/vs along with enough
data to specify the ranges of B and y. Each range
can be specified by reading in a starting value, an
increment, and a final value. The formation of
all combinations of values of R and y can readily
be accomplished with two “nested” for-statements.

A program 1s shown in Figure 4.4, most of which
is self-explanatory. The names chosen for the
variables are obvious, but it is worth noting that
v3/v2 could not be used. (Why?) The two for-
statements operate as follows. The first one sets
a value of R, then the second one runs through all
values of y. When the second for-statement has
been completed, the first one steps the value of R
and the second one again runs through all values



of v, etc. Thus we get all combinations with a
minimum of effort.

This program illustrates a matter of definition
that is quite important in understanding ALGOL:
Statement parentheses begin-end are not needed
around the second for-statement. What follows
the do in the first for-statement must be a single
statement, and it is: the second for-statement.
The fact that the “single” statement is itself com-
pound and contains several other statements is im-
material.

For a second example, consider a problem in
plotting the frequency response of a certain servo-
mechanism. The response is given by

K
iw(l + iTiw) (1 + iTow)

T (lw) =

where o = angular frequency, radians per second
i=+v-1
T = transfer function
T1, Te = time constants, seconds

An electrical engineer wishes to be able to read
in values of K, Ty, and Ts and compute the trans-
fer function for a number of values of w. The
transfer funetion will, in general, be a complex
number. The simplest way to handle the complex
arithmetic in this case is to rewrite the formula so
that the real and imaginary parts are separated.
All arithmetic will then involve only real quanti-
ties—which is all we can deal with in any case.
By rewriting the formula in the simplest form, we
get

—K (T: + Ty)

Tl = T (1 1 T

K(l - T1T2(J)2) .
o(l + T2 (1 + To2w?)
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The real and imaginary parts of T are to be
printed for each of a range of values of . We
will read in a starting and final value of o, as we
have done before, but this time the manner of in-
creasing o will be a little more flexible. A number
C and a number L will be read. If L is zero, C is
to be added to » between repetitions, but if L is
not zero o is to be multiplied by C. In either case
the computation is to be continued until T has
been computed with the largest value of » not ex-
cceding the specified final value of .

The decision whether to add or to multiply by
C can be handled in many ways. Here we put the
choice In the for-statement, mostly to illustrate
what can be done. The automatic modification of
the controlled variable in a for-statement always
adds the value of the step expression to the vari-
able; there 1s no way to change the execution of
the for-statement to make it multiply. However,
what is added can be the value of any arith-
metic expression. Observe, then, that Co = o +
Co —w. If L is nonzero, therefore, specifying
multiplication, we will add Co — o t0 w.

We must still find a way to make the choice be-
tween the two methods of changing w. This could,
of course, be done with an if-statement and two
for-statements, but it can be done much more
neatly by taking advantage of the fact that the
step expression may include an if-clause.

The program shown in Figure 4.5 is not espe-
cially complicated. Note that an intermediate
variable named D has been set up to avoid two
computations of a factor that is common to the
denominators of both formulas. This practice is
recommended.

It is unfortunately not true that the most elegant
source program is always the most efficient on the
computer. In this program it is a bit awkward to
have to make the decision whether to add or multi-

begin real K, T1, T2, omegastart, omegalast, C, L, omega, D, Treal, Timag;

Read (XK, T1, T2, omegastart, omegalast, C, L);

for omega : = omegastart step if L. = 0 then C else C X omega — omega until omegalast do
begin
D:= (144 (T1 X omega) T2) X (1 + (T2 X omega) T 2);
Treal : = —K X (T1 + T2)/D;
Timag : = —K X (1 — T1 X T2 X omega T 2)/(omega X D);

Print (K, T1, T2, omega, Treal, Timag)

end
end

Figure 4.5. Servomechanism frequency response program.
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ply every time the formula is evaluated, when it
could be settled at the outset. In a small program
like this one it would not matter much in running
time of the object program. In larger programs
things like this can make a big difference. The
following case study makes this point rather graph-
cally.

4.3 Case Study 3: Heat Transfer

A heat transfer problem has been formulated to
require evaluation of the series

800 [/p\ . 1/0\?.
T(p,@)———;z—[(i—))sm@—?(E) sin 36
1/p 5'
+5§<E>Sln50—+'}

The ranges of interest are 0 <p < 10 and
0 £ 6 £ 7; in these ranges convergence is assured.
All we need to do is to determine how many terms
are required for sufficient accuracy.

The analysis of the error committed by trun-
cating the series after a finite number of terms
poses some difficulties. Although the series is abso-
lutely convergent (that is, it would converge even
if all the signs were plus), it is only “approxi-
mately” alternating because of the minus sign that
is introduced by the sine function. Therefore, we
cannot say that the error committed is less than
the first term neglected, as we could if the terms
alternated in sign. For the moment, let us take a
conservative (and perhaps careless) approach and
use 40 terms of the series, regardless of the size of

begin real rho, theta, i, signfactor, sum, Temp;
Read (rho, theta);

p and 6. This is probably a great deal more than
adequate, but we will not worry now about the
possible waste of computer time.

We may exhibit this formula in a way that
makes it a little more obvious how a for-loop can
be set up to evaluate it.

- 800 40 (_1)i+1 P 2i—1 ) ) .
b 0) =5 S@-1)2 <1o> sin{(2i = 1) 4l
The program in Figure 4.6 is simple enough to fol-
low. The only thing that is not a straightforward
counterpart of the formula is the mechanism for
getting the power of —1. Raising —1 to a large
power just to get an alternating sign would waste
too much computer time; instead, we set up a vari-
able that is 41 before going into the loop and re-
verse its sign after each execution.

Note the assignment statement in which sum is
set equal to itself plus another term of the series.
This is the customary way of forming a summa-
tion. The statement means to add the next term
in the series to the present value of sum and to
replace the value of sum with this new value. The
technique works properly only if sum is made zero
before going into the iteration, as we do just be-
fore the for-statement.

In practice, we would ordinarily compute the
temperature at a network of points; using two for-
loops to work through ranges of values of p and 6.
However, we understand how this could be done
and will not bother with the required statements.
We simply read values of p and 6 and compute the
temperature at that particular point.

The programmer who sets up the evaluation of
the formula this way is in for a rude shock. He

sum : = sum -+ signfactor/(2 X i — 1) T2 X (rho/10) T (2 X i — 1) X sin ((2 X 1 — 1) X theta);

signfactor : = 1;

sum : = 0;

fori:= 1 step 1 until 40 do
begin
signfactor : = —signfactor
end;

Temp : = 800/9.8696 X sum;
Print (rho, theta, Temp)
end

Figure 4.6. Initial version of the heat transfer program.
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begin real rho, theta, signfactor, sum, X, X2, angle, denom, test, Temp;

Read (rho, theta);

signfactor : = 1;
sum : = 0.0;
X := rho/10.0;
X2:= X XX;
angle : = theta;
denom : = 1.0;
for test : = X/denom T 2 while test > ;y—4 do
begin
sum : = sum -+ signfactor X test X sin (angle);
X:=X X X2;
angle : = angle 4+ 2 X theta;
denom : = denom + 2.0;
signfactor : = —signfactor
end;

Temp : = 81.05696 X sum;
Print (rho, theta, Temp)
end

Figure 4.7. An improved version of the heat transfer program.

will discover when he runs the program that the
speed of a computer can be completely wasted by
careless problem analysis. The object program
will be some five to ten times slower than neces-
sary, the exact ratio depending on the size of p.
[f we bear in mind that this problem is much sim-
pler than many that are solved on computers, it
will be clear that some thought must be given to
speed of execution of the object program.

A number of things can be done to improve the
speed. To begin with, something must obviously
be done to reduce the number of terms computed
when a few will suffice. For instance, when p =
1.0, the third term of the series is less than 108,
regardless of the value of §; it makes no sense to
go on computing terms when a temperature accu-
rate within 0.001 degree would be more than ade-
quate for almost all applications. Even when
p = 9.0, the twentieth term is less than 10—¢, re-
gardless of the contribution of the sine function.
We clearly need to set up a proeedure for stopping
the evaluation of the series after the terms have
become smaller than some minimum value. This
is not precisely correct, of course: in a test of the
size of a term we must exclude the sine factor;
otherwise we might incorrectly stop after finding
a term that is small only because of the sine. We
therefore set up the testing procedure so that it

will be carried out before multiplification by the
sine.

A second likely candidate for time reduction is
the raising of p/10 to a power. The method used
in the program of Figure 4.6 is particularly bad,
since the exponent is real (rather than an integer),
and we recall from Section 2.3 that this is done in
the object program by use of the formula

aTr=exp(rXln(a))

The computation of the exponential and the loga-
rithm are both fairly time-consuming compared
with arithmetic operations.

A much better technique is available in which
p/10, which we will call X, and (p/10)2, which we
will call X2, are computed initially. Multiplying
the two together gives (p/10)3; multiplying this
by X2 gives (p/10)5 ete. This running computa-
tion of the next power of (p/10) from the previous
one is easily set up in the repeated statement of
the for-loop.

Similarly, each new value of the angle in the
sine function can be obtained by adding 26 to the
previous value of a variable that is initially set
equal to 6. An equivalent process produces the
1/(2¢ — 1)2 factor.

If we rather arbitrarily establish the criterion
that the evaluation of the series should be stopped
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as soon as the absolute value of a term (exclusive
of the sine factor) becomes less than 10—% it will
not be too difficult to set up the program with a
for-while construction. We do have to be careful
to get the system going properly, however. Be-
fore going into the for-loop, it will be necessary to
establish the starting values of the various inter-
mediate variables. Also, to avoid computing the
test factor within the computation and in the for-
loop testing, it would be a good idea to give this
part of the term a name and use it in both places.
This variable, which is called fest in the program
of Figure 4.7, must also be given some starting
value; it must be larger than 10—4, to avoid stop-
ping the computation before it gets started. (Re-
member that testing in a for-statement is always
done before executing the controlled statement.)
The assignment of a value to this variable is done
in the for-statement itself.

A careful study of Figures 4.6 and 4.7 will show
that they do accomplish the same computation,
although in rather different ways. Both programs
have been run on a computer and do in fact give
the same results.

The lessons of this case study are worth ponder-
ing. There is always more than one way to accom-
plish something, but the different ways are not
always equally good.

4.4 Case Study 4: Luminous Efficiency

A black-body (perfect radiator) emits energy at
a rate proportional to the fourth power of its tem-
perature, according to the Stefan-Boltzmann equa-
tion

E = 36.9-10712K*

where E = emissive power, watts/cm?
K = temperature, degrees Kelvin

We are interested in the fraction of this total
energy contained in the visible spectrum, which is
taken here to be 4-1075 to 7-1075 em. We can get
the visible part by integrating Planck’s equation
between these limits:

7.10-5 2.39- 1071 dx

Evisible :f Y
4107° eKx — ]

where x = wavelength, cm
E and K as before

The luminous effictency is defined as the ratio
of the energy in the visible spectrum to the total
energy. If we multiply by 100 to get this efficiency
in per cent and eombine the constants, the problem
will become that of evaluating

7-1075

64.77 f — .
4-107 5 (

Kx_l

B, =
% K*

The integral is evaluated by Simpson’s rule,
according to which

b
ff(x)dx=§[f(a)+4f(a+h)+2f(a+2h)
+ 4f (a + 3h) +-- -+ 2f (b — 2h)
+ 4f (b — h) + £ (b)]

b—a

n

where

h =

and
n = number of intervals; n even

The summation of these terms can be carried
out in several ways. The most efficient, from the
standpoint of speed of the object program, is to
accumulate the terms that are to be multiplied by
2 separately from those that are to be multiplied
by 4. A minor difficulty is that there is one more
term to be multiplied by 4 than to be multiplied
by 2, which is an annoyance, since we would like
to use one for-loop to accumulate both sums.
This can be handled by using the for-loop to ac-
cumulate all but the last of the terms to be multi-
plied by 4, and then adding it in after getting out
of the for-loop.

We can set up the for-loop to add 2k to the con-
trolled variable z each time through, after starting
with ¢ + h. In this way z gives a term to be
multiplied by 4, summed in sum4, and z + h gives
a term to be multiplied by 2, summed in sum2.
After getting out of this loop, we can add in the
terms for x = a, b, and b — A, multiply by h/3,
and complete the calculation of the efficiency.

The program in Figure 4.8 is designed to read in
three numbers that specify a range of tempera-
tures, for all of which the luminous efficiency is to
be computed and printed. The limits of the visible
spectrum are also read in, so that these somewhat
indefinite numbers can be varied if desired, and
finally the number of intervals to be used in the
integration i1s made part of the input.
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begin real templ, temp2, temp3, a, b, K, n, sum4, sum2, h, x, Percenteftf;

Read (templ, temp2, temp3, a, b, n);

h:= (b — a)/n;
for K : = templ step temp2 until temp3 do
begin
sum4 := sum?2 : = 0.0;
forx :=a-+hstep2 X huntilb —3 X hdo
begin

sumd : = sum4 + 1.0/(xT5 X (exp (1.432/(K X x)) — 1));

It

sum?2 :
end;

sum? + 1.0/((x + h) 75 X (exp (1.432/(K X (x + h))) — 1))

Percenteff : = 64.77 X h/3 X (4 X sum4 + 2 X sum2 + 1.0/(a T 5 X (exp (1.432/(K X a)) — 1))
+4.0/((b —h) 15 X (exp (1.432/(K X (b — h))) — 1))
+ 1.0/(b 15 X (exp (1.432/(K X b)) — 1)))/K T 4;

Print (K, Percenteff)
end
end

Figure 4.8.

This program shows another example of a for-
statement within a for-statement, with the two
having entirely different purposes. The second for-
statement carries out the summations of the inte-
gration; it is important here as always to be sure
that the stopping value is precisely what is in-
tended. We wish to compute f (b — 3h) and
f (b — 2h) within the for-loop, leaving f (b — h)
and f (b) to be computed afterward. Since the
loop already contains an addition of A to the cur-
rent value of the controlled variable, the proper
stopping point is b — 3k, as shown.

It is a real annoyance to have to write out the
formula of Planck’s equation five times, as is done
here. We shall see in Chapter 7 that there is an
easy way out, whereby we write a procedure body
in one place, then refer to it from as many differ-
ent places in the program as necessary.

EXERCISES

1. Write statements or groups of statements to do
the following. Complete program blocks are not re-
quired.

* . Compute and print y =z — tanz for = = 1.1,
1.2,1.3, ---, 1.9. Print both z and y for each value of z.

b. Compute and print for z = 0.5, 0.7, 0.9,--- , 1.5
y = xtan%—{—Zlntcosg‘

* ¢. Compute and print for z = 0.1, 0.6, 0.7, 0.8, 0.9, 1.0

1 a tan x
y = arctan

Luminous efficiency program.

d. Compute and print for z = 1.0, 1.05, 1.10, 1.15,
1.20, 1.25, 1.30, 1.45, 1.60

—1(i l)arctan§ L +1
Y=z\at T ¢ a 12ax® ' 4a®x

*o. (liven «, compute e* from 20 terms of the infinite
series

x x* x*
€ =1+ﬁ+ﬂ+§—!+.”

*f Compute ¢* from the infinite series, stopping after a
term that is less than 10° times the sum so far.

g. Compute arctan z from the infinite series
arctanx =x——+ ———+ — -

stopping after a term that is less than 1075 times the sum
so far.
h. Compute = (to about four decimals) from
T
s l-sts -t
taking 500 terms. (Gregory’s series.)
i. Compute 7 from

T
1= 4 arctan 1 — arctan 545

In each arctangent stop after a term that is less than 1077
times the sum so far.

*j. Compute 7 from the infinite product

T 2

2.3
1
2

e
i
cnio:
<

taking 150 factors. (Wallis’ product.)
k. Compute and print y = ae™** for z = 0.1/b, 0.2/b,
0.3/b, ---, 3/b. (You may use the exponential function.)
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*1. Compute and print y = ae™®* for z = 0.1, 0.2,
0.3, - - -, stopping when ¢ 7% is less than 0.001.

m. Compute \ﬂ by repeatedly applying the iteration
formula

17 A
Kiyt = X5+ 3 (Xi2 - Xi)

stopping when two approximations are the same within
1077 times the most recent.
*n. Compute and print

—a/2

e
b+ 6

y =V @)’ + 1/b +
for all combinations of
a: 1.0(0.1)1.9
b: 1(1)20

where a: 1.0(0.1)1.9 means 1.0, 1.1, 1.2, -- -, 1.9,
0. Compute and print

y =se %’ 4 t1n ‘ cosl?}
for all combinations of
r: 0.01(0.005)0.5
s: 5(0.5)10
t:1,2,3

2. Read values of «, ¢, and z from a card; then
compute

60 <1 e . nwx
7(x,t) =50 — 4x — - n;1 —e 4n2r202/100 gip) =

Stop computing terms of the infinite series as soon as
the exponential factor becomes less than 10—5. Com-
pute all possible constant factors before going into the
for-loop. Write as a complete block, with declarations.

*3. Write a program segment to print the value of
N if N is a prime number and do nothing if N is not
prime. N is odd.

A number is prime if it has no factors except 1 and
itself. One way to determine whether N has any factors
is to divide by the successive odd integers between 3 and
VN, inclusive. If the remainder on division is ever zero,
the number is not prime and we stop testing. If all
remainders are nonzero, the number is prime.

A difficulty arises in that ALGOL does not provide
the remainder on division.* With some extra effort,
however, we can get it anyway, using the <+ operator.
This operator, we recall, is defined only when both
quantities are integers and produces a truncated integer
quotient. Thus 23 +3 =7. Writing Q = N+ D, we
can get the remainder from the formula

R=N—-(N+D)XD.

*1It is entirely feasible, however, to set up a special
function to provide the remainder. It could be of the
form mod (4,7), giving the remainder on dividing 7 by j.
This useful function, or something equivalent, will prob-
ably be supplied in most processors.

For example, the remainder on division of 23 by 3 is
23 - (23+3)X3=23-7X3=2.

Similarly, the remainder on division of 36 by 3 is
36— (36+3)X3=36—-12x3=0.

We should give some thought to the method of stopping
the loop that divides N by the successive odd integers
between 3 and A/N. It would be both awkward and
unwise to make an actual test against /N (which we
would have to compute, of course). It would be unwise
because the inherently approximate methods of a digital
computer might not produce the exact square root of a
perfect square. The “square root” of 25 could very well
come out 4.9999999, which would lead to printing 25 as a
prime. It would be awkward because there is a much
simpler way: compare the square of the current, diviser
with N rather than the divisor itself with 4/N. This
technique requires us to use a for-while construction in a
rather simple program.

If you really want to compute primes, don’t do it in
ALGOL. The awkwardness in getting the remainders
would be extremely costly in running time of the object
program, among other problems. Such applications are
probably best done in the language of the computer it-
self, that is, using machine-language coding.

4. Using the program segment of Exercise 3, write
a complete program block to print all the primes from
5 to 5000. That is, use the earlier program to test 5,
7,9, -+, 4999

5. Write a complete program block to print a table
of the natural logarithms of the numbers 2.00, 2.01,
202, ---, 5.00—without using the logarithm function.

There are many fairly simple series such as

x—1 (X—1)3+(X—.1)5 +]

l”:2[x+1+3(x+1)3 5+ 1)

to do this job. These converge slowly, however, and
anyway there is a much better way. Use the series

In(x+a) =Inx

at a

5
3(2X+$+5(2x+a)5+'“]

where z = 2.0 initially and e = 0.01 (In 2 = 0.69314718).
With these numbers the third term of the series is no
greater than 10—13, which would be completely lost
when added to the first term, which is more like 10—3.
Therefore only two terms of the series need be taken
and 1t is not even necessary to set up a loop to compute
it.

6. A truth table of a Boolean expression lists the log-
ical value of the function for all possible combinations
of logical values of the variables appearing in the ex-
pression. For instance, the truth table of the expression
r=aVbis

+2[2x3—a+

a b X

False False TFalse
False True True
True False True
True True True



If we let zero stand for False and 1 stand for True, this
table can be presented a little more compactly as

a b x
0 00
01 1
1 01
111

Suppose we wanted to write a program to print a
truth table. One way to do it (there are many others)
would be to set up two nested for-statements to make
the integers a and b both take on the values zero and
one, then convert a and b to logical values, evaluate
z=aV b, convert z back to an integer, and print.
A program could be as shown in Figure 4.9.

Write a program to produce a truth table of the Boolean
expressiony = a A (b V Tc¢)

7. Write a program to produce truth tables of the
Boolean expressions

El=(TAACA TE)V(TAA TCAD)
VIAACA TIDA IE)V((TAACADAE)
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E2=(TAAD)V(CA 1D A E)

(The results of the executed programs should be the
same.)

begin integer a, b, x; Boolean al, bl xl;
fora:=0,1do
forb:=0,1do

begin

al : = if a = 1 then true else false;
bl : = if b = 1 then true else false;
xl :=al V bl;

x : = if xl then 1 else 0;

Print (a, b, x)

end

end

Figure 4.9. Program to compute a truth table.
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5.1 Introduction

Subscripted variables permit us to repre-
sent many quantities with one identifier.
A particular one of the values is indicated
by writing a subscript (or subscripts) in
square brackets following the identifier.
The complete set of quantities is called an
array, and the individual quantities are
called elements of the array. A subscripted
variable may in principle have any number
of subscripts. An array with one subsecript
is said to be one-dimensional, an array with
two subscripts is said to be two-dimensional,
etc. (When used in this connection, these
terms refer to the number of subscripts, not
to the number of elements: a one-dimen-
sional array can have many elements, and
a six-dimensional array could in principle
have only one element—although there
would be no point to such an array.) Any
particular array has a fixed number of sub-
seripts.

The first element of a one-dimensional
array is frequently given the subscript 1,
the second i1s number 2, ete., up to the num-
ber of elements in the array. In mathe-
matical notation we might write 21, s, 3,

“*, Tig, T20; in ALGOL subseript notation
we would write x[1],x[2],x[3], ---,
x [19], x [20].

Thus we see that the identifier x repre-
sents an entire array of elements; a particu-
lar element is specified by writing the iden-
tifier followed by brackets enclosing the
number of a particular element. (We shall

see that a subseript is not restricted to being
a number but may in fact be any arithmetic
expression.)

A two-dimensional array may be thought
of as being composed of horizontal rows and
vertical columns. The first of the two sub-
scripts then refers to the row number, run-
ning (usually) from 1 up to the number of
rows, and the second to the column number,
running (usually) from 1 up to the number
of columns. For instance, an array of two
rows and three columns might be shown in
mathematical notation as

Al,l A1,2 A1,3
Az Asp App

In ALGOL subscript notation the elements
could be written

AL 1, AL 2] AL 3L, A2 1], A2, 2],
A2, 3]

We note that the subscripts are separated
by commas, as they are with three or more
subscripts. '

A three-dimensional array may be thought
of, if one wishes, as being composed of
planes, each plane containing rows and col-
umns. The interpretation, however, depends
somewhat on the purpose of the computa-
tion; other interpretations are possible.

As an example of the subscript notation,
consider the problem of solving two simul-
taneous linear algebraic equations in two
unknowns. To emphasize the similarity of
subscripted variables with mathematical no-



tation, we may write the system of equations com-
pletely in mathematical subsecript form.

a1,1X1 + a,9%s = by

82,1X; + ag,9Xs = by

This problem can conveniently be set up with a
one-dimensional array of two elements for the con-
stant terms b, and bs and another for the unknowns
2, and z, that we will compute. The coefficients
(a’s) will be the four elements of a two-dimen-
sional array of two rows and two columns.

As with almost every problem, there are several
ways to approach the solution of this system of
equations. For our purposes here we may use
Cramer’s rule; a more widely applicable method
is shown in Section 5.6. According to Cramer’s
rule, the solutions are

bi-ag,2 — bg-a1,2

Xy =
a1,1'82,2 — 82,1°81,2

bs-a; — bl'a'2,1

Xy =
a1,1°82,2 — 82,1°31,2

A program segment to evaluate these formulas
is shown in Figure 5.1, in which we have done two
things that should be explained. First, since the
denominator of both expressions is the same, it is
computed first and used in computing both z, and
Zs. Second, there is a possibility that this denomi-
nator could be zero, indicating either no solution
or an infinite number of solutions, depending on
the constant terms. Either way, this formulation
of the solution is not valid, since a division by
zero would be required. (If division by zero is
attempted in a computer, some sort of error indi-
cation is given, the nature of which depends on
the machine and the particular version of ALGOL.)
The program should test for this possibility.

Actually, we need to do a little more than just
test the denominator for zero. Because of the
rounding and truncation errors mentioned on page
17, the denominator could be very small—indicat-
ing trouble or at least inaccurate results—without
actually being zero. We therefore test whether the
absolute value of the denominator is less than
some small number, taken arbitrarily to be 10—
here. (In keeping with the discussion on page
39, it would in fact be much better to test for
some sort of relative error.)

The preceding example showed only numerical
subscripts. As we have noted, a subscript can be
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denom :=a[l,1] Xa22] —al2 1] Xall?2]
if abs (denom) < ;o—5 then stop;

x[1]:= (b[l] X a[2,2] — b[2] X a1, 2])/denom;
x[2):= (b[2] Xal[l,1]—b[1] X a[2, 1])/denom;
Figure 5.1. Program segment using subscripting to solve two
simultaneous equations.

much more general: any arithmetic expression.
The following illustration shows one use of arith-
metic expressions in subseripts and another way
that arrays can be viewed.

Suppose that at a certain point in a program the
following computation is required:

a+bx+ex? ifk=1
y=4d+ex + x> ifk =2
g+ hx+ix? ifk =3

The values of z and k have already been estab-
lished. We know how to write three assignment
statements with different coefficients and then use
if-statements to pick the appropriate statement,
but the procedure is much simpler with sub-
scripting.

Suppose we make the nine coefficients the ele-
ments of a one-dimensional array which we may
call C and suppose we number the nine elements
3 to 11:

a b e de f g h i
3456 7 8 9 10 11

Now observe that if k¥ = 1 the numbers of the de-
sired elements are

3 =3k
=3k +1
5=3k 42

For k = 2, the numbers of the desired elements are

6 = 3k
7=3k+1
8 =3k +2

For k = 3, the numbers are

9 =3k
10=3k+1
11 =3k 42
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Thus, for any value of k, the proper coefficients
will be used if we write

y:=CBXkl+C[3Xk+1] Xx
+CBXk+2/XxT2

To illustrate once again that there is always
another way to do anything, suppose the coeflicients
had been arranged thus:

a d g b e h ¢ f i

1 23 456 7 89
The assignment statement would then have been
y:=Clkl+Clk+3Xx+Clk+6] XxT2

Finally, the coefficients could be made the ele-
ments of a two-dimensional array, with rows and
columns both being numbered from 1:

a b ¢
d e f
g h 1

Now the assignment statement is
yi=Clk 1]+ Clk 2] Xx+Clk3] XxT2

This simple example shows in a variety of ways
how subscripted variables facilitate the selection
of one set of data from a larger set.

5.2 Array Declarations

When subscripted variables are used in a pro-
gram, certain information must be supplied to the
ALGOL processor:

1. Which vanables are subscripted?

2. How many subscript positions are there for
each subscripted variable, that is, what is the di-
mension of each?

3. How many elements are there in each array?

4. How are the elements numbered?

All of these questions are answered by an array
declaration for each array. Every array, like
every nonsubscripted variable, must be declared.
This is done at the beginning of the block in which
it 1s used, along with the type declarations and, as
we shall see in later chapters, the switeh and pro-
cedure declarations for the block.

Two definitions will simplify this discussion. A
bound pair consists of two arithmetic expressions

separated by a colon. A bound pair list consists
of one or more bound pairs, separated by commas
if there is more than one. Throughout this chap-
ter, and in many practical applications, the bound
pairs used in array declarations consist simply of
two integers.

An array declaration for a single array consists
of the word array, followed by the name of the
array, followed by brackets enclosing as many
bound pairs as there are subseript positions. Each
bound pair specifies the range of values of the sub-
seript in that position. For instance, a one-dimen-
sional array named coef containing 15 elements
numbered zero to 14 would be declared by

array coef [0:14];

The two-dimensional array used at the end of Section
5.1 would be declared by

array C [1:3,1:3];

The lower bound (the first of a pair) must not
be greater than the upper bound. Elements are
always numbered consecutively in steps of 1 from
the lower bound to the upper bound; that is, there
is no provision for counting by twos or anything
else but one. Subscripts may be negative.

The elements of a single array must all be of the
same type, that is, real, integer, or Boolean. Real
arrays may be declared by writing array or real
array; integer arrays must be declared with integer
array, and Boolean arrays with Boolean array.
Notice that if the type of an array is not specifi-
cally identified, 1t is assumed to be real. (There
18 no such assumption for nonsubseripted varia-
bles.) When several arrays of the same type are
to be declared, the words array, real array, integer
array, or Boolean array need not be repeated.
When several arrays of the same type and having
the same bound pair list are to be declared, the
bound pair list enclosed in brackets may be written
only after the last group.

The following are acceptable array declarations.

array mu {1:100];

array kappa [—2:2];

array iota [—20: —10];

real array L [1:6, 0:24];

real array A [1:50], B [1:200], C [1:10, 1:10, 1:10];
array D, E F, G [1:20, 1:20];

integer array data [—8:—3, —2:3, 29:57];

Boolean array Quine [1:30, 1:5];

Boolean array j, k, m [0:39], n [0:14], p, q [0:8];



Declarations for arrays of different types may
be combined in any order; each declaration of a
different type is considered to be a separate decla-
ration and must therefore be set off by a semicolon.
The following are acceptable declarations.

array X {1:10,1:10], Y
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5.3 Subscript Expressions
A subscript expression can be any arithmetic

expression, including conditional expressions if de-
sired. We saw examples of subscripts that were

0:49]; integer array 1 [—10:0];

[
Boolean array N [10:20]; array ABC [1:9,0:10];
integer array ijk [0:5,0:5, 0:5, 0:5,1:10];

array BCD [1:2, 1:500]
array DEF [10:20); array FEG [20:30]; array GHI [1:100]

We see from these examples, incidentally, that
it is not necessary to take advantage of the various
flexibilities in the manner of writing array declara-
tions.

So much for the question of what information is
conveyed by an array declaration and how it is
written. What do we need to know about what the
processor does with this information? The main
point, for our purposes, is that an array declara-
tion causes storage space to be reserved to hold the
elements of the array. The processor must inspect
the subscript bound pairs to determine how many
dimensions there are and how many subseript posi-
tions there are in each dimension. On the basis
of this information, enough storage locations can
be set aside to hold the elements.

Thus we see that an array declaration causes the
processor to take certain action in setting up the
program, but it does not produce any action in the
object program. This is true of all declarations.

One other processor action that results from an
array declaration should be mentioned briefly.
What is written in an array declaration has a sig-
nificant influence on how the object program is set
up to handle subscripted variables. A more pre-
cise statement of exactly what the processor does
would require an extended discussion of processors
for particular machines, which would be beyond
the scope of this book. We may suggest, however,
that the speed of the object program can in some
cases depend rather strongly on such matters as
whether arrays are numbered from one or from
zero. In situations in which object program effi-
ciency is important it would be well to obtain in-
formation on the characteristics of the source pro-
gram with the most influence on object program
efficiency. (This remark applies to other things
than array declarations, but once again much de-
pends on the particular computer and processor.)

b

simple arithmetic expressions in Section 5.1.

Subscript expressions are most commonly writ-
ten with integer quantities. If the value of a sub-
script expression is of type real, it is algebraically
rounded to the nearest integer before being used
as a subscript in picking out an element from the
array. Thus A [2.4,5.8,6.5] leads to the same ele-
ment as A [2,6,7] and B [1.89, —2.84, —7.5] leads
to the same element as B [2, —3, —7].

In a great majority of practical applications all
subscript expressions will be integers anyway, and
the intricacies of the rounding of negative non-
integral expressions, etc., will never arise.

One of the common reasons for declaring a vari-
able to be of type integer is that it will be used
primarily in subsecript expressions. This is done
to improve the efficiency of object programs, since
the conversion from the form in which real quanti-
ties are represented in most, computers to the form
in which integer quantities are represented takes
a certain amount of time. Although it is fre-
quently true that the results will be about the
same, whether variables are real or integer, run-
ning time may be quite different.

Unless there is a specific reason to do otherwise,
all variables and numbers appearing in subscript
expressions should be of type integer, and quanti-
ties of types real and integer should not be mixed
within one expression. These suggestions are for
machine efficiency only, in most cases. On the
other hand, any quantity that is not a whole num-
ber must, of course, be of type real.

5.4 Arrays and the for-Statement
The examples presented so far do not really in-

dicate the power of subseript notation. There is
nothing in the program for solving two simulta-
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neous equations, for instance, that could not be
done just as well by giving each variable a sepa-
rate name. Why then are subscripted variables
such an important feature of the ALGOL language?

The answer is that by using subscripts that are
themselves variables we can set up a program in
terms of a general element of one or more arrays,
then perform the same computation on many ele-
ments by changing the value of the subsecript. The
modification of the variables in subscript expres-
sions is most commonly done with for-statements;
this use of the for-statement to manipulate ele-
ments of arrays is one of the most powerful aspects
of ALGOL.

Suppose, for example, that we need to compute
the sum of the squares of 20 numbers, z; to 20,
that have previously been stored in the computer.
We could, of course, give them 20 different identi-
fiers and write a long assignment statement to com-
pute the sum of their squares, but this would be
tedious, cumbersome, and inflexible. Instead, we
set, up the 20 numbers as the elements of a one-
dimensional array which we may call z. Now,
any of the 20 can be referenced by the subseripted
identifier x [i], and we can arrange to let the sub-
seript ¢ run through all the values from 1 to 20.

The usual mathematical notation for this opera-
tion is

20

sumsquares = p_ X;
i=t

The computation can be done with the program
segment shown in Figure 5.2. We have included
the array declaration here and have shown the
program as a complete block to emphasize the
necessity for a complete set of declarations in every
program. After the declarations, the first step is
to set sumsquares equal to zero so that we may
use a single expression to compute each of the in-
termediate sums. Then we have a for-statement
that causes ¢ to take on the values 1 to 20 in suc-
cession, each time executing the one statement fol-

lowing the do of the for. Note that since there
is only one controlled statement it does not have
to be enclosed in statement parentheses. (See
Figure 4.7, for instance, for a situation in which
statement parentheses are required.)

A similar example is provided by the computa-
tion of the inner product of two veetors (one-
dimensional arrays). Suppose the two arrays are
named @ and b and that each has ten elements
numbered zero to nine. The mathematical defini-
tion of the problem is

9

innerproduct = E asb,
s=0

A program segment to do this is shown in Figure
5.3. Tt presents no new concepts.

For a third example, consider the multiplication
of a vector by a matrix. An nxn matrix consists
of n* elements denoted by subscripts in precisely
the same way as we have denoted the elements of
a two-dimensional array. (The similarity is no
accident, obviously: the ALGOL subscript nota-
tion was designed to be the same as matrix nota-
tion.) If we write the one-dimensional array
(vector) by which the matrix is to be multiplied
as a column vector, and the product also as a
column vector, then the problem may be stated
thus:

a11 @12 - ann by C1
A1 ags -+ Aagy||[bs Cg
an1 8ng e Ann bn Cof

where
n
ci:za’ijbb i=1,2,"',D
=

We see from this definition that the first element
of the c-array is the sum of the products of the
first row of the a-array and the elements of the
b-array; the second element of ¢ is the sum of the

begin real sumsquares; integer i; array x [1:20];

sumsquares : = 0.0;
fori:= 1 step 1 until 20 do sumsquares : = sumsquares + x [i] ] 2
end

Figure 5.2. Program segment using subscripting and the for-statement to compute the sum of the squares of 20 numbers.
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begin real innerproduct; array A, B [0:9]; integer s;

innerproduct : = 0.0;

for s : = O step 1 until 9 do innerproduct : = innerproduct + A [s] X B [s]

end

Figure 5.3. Program segment to compute the inner product of two vectors.

products of the second row of a and the elements
of b; in general, the ith element of ¢ is the sum
of the products of the ¢th row of a and the elements
of b.

An ALGOL program to produce the product
array will evidently require two for-statements,
one to form the sum of products and another to
get each of the elements of the product array. The
first for-statement will advance the ¢ subscripts
and the second the j subscripts. Saying it another
way, during the execution of the second for-state-
ment the subsecript controlled by the first will be
constant. The program is almost easier to write
than to describe. In Figure 5.4 note that we have
added one small refinement: the subscripts are all
declared to range from 1 to 20 but the for-state-
ments run until n. The idea here is that the arrays
all have a maximum size but that there might be
fewer than this maximum number of elements in
them. For instance, if the a-array contains only
100 elements in a 10 by 10 segment of its 400
storage positions and the b-array has only ten ele-
ments, we can set n = 10 and carry out the com-
putation correctly for that case. It is assumed
here that the value of n is established by a state-
ment not shown. This kind of flexibility will be
elaborated in Chapter 6.

Also note in Figure 5.4 that the assignment
statement to set each element of ¢ equal to zero is
included in the range of the first for-statement.
This clearing to zero will thus be carried out once
for each time through the for-loop that controls
the 7 subseript.

5.5 Case Study 5: Determining a Median

We are given a frequency distribution of the
weekly earnings of the employees of a factory in
a form like that shown in Table 5.1.

The median of such a distribution is defined as
the salary that divides the employees into two
equal groups, half earning less and half earning
more. For the data shown the median is $57.69,
computed by the following method (which is itself
an algorithm of sorts).

1. Divide N, the total number of employees, by
2, which gives the number that must lie on each
side of the median to be found.

TABLE 5.1
Weekly
Earnings Number
0-% 20.00 17
$ 20.00- 29.99 48
30.00- 39.99 70
40.00- 44.99 53
45.00- 49.99 67
50.00- 54.99 94
55.00- 59.99 129
60.00- 69.99 142
70.00- 79.99 92
80.00- 89.99 55
90.00- 99.99 36
100.00— 200.00 34

begin integer i, j, n; array a [1:20, 1:20], b, ¢ [1:20];

fori:= 1 step 1 until n do
begin
¢ [i} : = 0.0;

forj:=lstepluntiindoc[i]:=cli]+alij]l Xb][j]

end
end

Figure 5.4. Program segment to form the product of a matrix and a vector.
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2. Begin at the lower end of the distribution and
add together the number of employees in the suc-
cessive classes until reaching the class containing
the median.

3. Determine the number of employees from this
class that must be added to the total of all the
preceding classes to give N /2.

4. Divide the additional number thus required
by the number of employees in the class containing
the median. This indicates the fractional part of
the class-interval within which the required cases
lie.

5. Multiply the class-interval by this fraction.

6. Add the result of this multiplication to the
lower limit of the interval containing the median,
giving the median.

The last four steps amount to a simple interpola-
tion.

We may generalize the problem statement some-
what in order to make it apply to a wider class of
data and to make it more suitable for computer
solution. Suppose we limit the number of class-
intervals to 100. We can then set up two one-
dimensional arrays to hold the definitions of the
intervals and the number in each interval. It
might seem that each interval would require two
numbers to define it, but we can get by with one
if an additional assumption is justified: there are
no gaps between intervals. This allows us to store
only the upper limit of each interval, since the
lower limit of the next interval must always be
one cent more. (Storing only the lower limit would
also be possible, of course.)

Let us call the array containing the upper limits
of the intervals class and the array containing the
number in each class freq, for frequency. It is
essential that the data be placed in these arrays
in corresponding positions so that the first element
of class will correspond to the first element of fregq,

ete. It is also essential that the data be arranged
in ascending sequence, as in the example.

We shall assume that a value has been given to
a variable named number; this specifies how many
intervals (and corresponding frequencies) there ac-
tually are. It will, in general, be less than the
maximum of 100. Thus our program will be able
to handle any data as long as there are no more
than 100 classes; this kind of generality is typical
of computer programs.

We may now begin to investigate what is in-
volved in writing an ALGOL program to follow the
six-step proeedure outlined above. The first thing
will be to find the total of the frequencies in the
freq array. This is easily done with a simple for-
loop. After dividing this total by 2, we begin
looking for the interval in which the median must
lie. This may conveniently be done with another
summing loop, this time based on the for-while
construction. The Boolean expression will be writ-
ten to stop the loop as soon as adding the frequency
for one more class interval would take us past the
halfway point of the total. Once we get out of
this loop we can subtract the total of the preced-
ing classes from the halfway point, divide the dif-
ference by the number in the next class, multiply
by the class-interval of that class, and add the
lower limit of that class—giving the median.

A program to do all this is shown in Figure 5.5,
in which there are only two features that should
require elaboration. As always in a for-loop that
is terminated by exhaustion of the for-list, the
value of the controlled variable will be undefined
upon exit. Yet the value of the subseript upon
termination is needed to determine which class con-
tains the median. The solution is to set another
variable, named j, equal to the controlled variable
each time the compound statement following the
do is executed.

The second point requiring careful attention is

begin integer i, j, number; real sum, midpoint, median; array class, freq [1:100];

sum : = 0.0;

fori:= 1 step 1 until number do sum : = sum + freq [i];

midpoint : = sum/2.0;
sum : = 0.0;

fori:= 0,1+ 1 while sum + freq [i] < midpoint do
begin sum : = sum + freq [i]; ] : = i end;
median : = (midpoint — sum)/freq [j + 1] X (class [j + 1] — class [j]) + class [j] + 0.01

end

Figure 5.5. Program to compute a median.



the precise value of the variable j after exiting from
the loop: does it specify the class containing the
median or the one before it? A good practice at
this point is to work with a small example. Sup-
pose there were only three elements in each array,
with sample data as follows:

Class Frequency
0.00-19.99 2
20.00-29.99 12
30.00-39.99 6

For this sample, the second for-loop would termi-
nate with j = 1, the number of the class before
the one containing the median, since adding the
frequency for the next interval would take us
past the midpoint. In terms of j, the number in
the next class—the one containing the midpoint—
is freq [j + 1]. The class interval of the next
class—20.00 to 29.99 in the sample—is given by
class [j 4+ 1] — class [j]. (Remember that we
stored the wpper limit of each class.) The lower
limit of the next class is given by class [j] + 0.01.

With the necessary logic worked out, the program
in Figure 5.5 is not difficult. The logic is not
exactly obvious, however, and the reader is urged
to satisfy himself that the program actually does
compute a median. Try out the program on a
small set of sample data by working through on
paper just what the program would do at each
point. (This is an excellent idea in checking any
program.)

It will be noted that there are no input or output
operations here. These have been omitted simply
because we are concentrating on other things.*

5.6 Case Study 6: Simultaneous Linear
Algebraic Equations

A program is to be set up to solve a system of
simultaneous linear algebraic equations. The pro-

* But we cannot this time fall back on the phrase “values
are assumed to have been assigned by previous sections
of the program, and later sections will use the results.” We
shall see in Chapter 6, in discussing block structure, that
all the variables declared in a block are local to that block
and thereby become inaccessible in any higher level block.
To make a usable program of this example, it would be
necessary either to include the input and output operations
in this block or to declare the input and output variables
in a higher level block.
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gram should be able to solve a system of any num-
ber of equations, up to some maximum imposed by
the amount of storage available in the computer.
We shall arbitrarily take 50 equations as the maxi-
mum number that the program will be able to
handle.

Among the many methods for solving such a
system, we choose the Seidel iteration method,
which applies if the coefficients of the unknowns
meet the following restriction: the main diagonal
coefficient in each row must dominate the other
coefficients in the row, which is true if

[Asi| > 20| Ay,

i)

i=12 - n

n = number of equations

(Less stringent conditions are actually sufficient,
but a discussion of them is beyond the scope of
this book.)

The Seidel iteration method will find the solution
(if there is one, of course) to any system meeting
this restrietion, but it will be particularly advan-
tageous if either or both of the following additional
conditions are satisfied:

1. An approximate solution is known in advance.

2. Most of the coefficients are zero. (If the array
has special characteristics, such as all zeros above
the main diagonal, much better methods are avail-
able.)

The essence of the Seidel iteration method is to
make a guess at the values of the unknowns and
then to improve the approximation repeatedly.
With the restriction stated above, the successive
approximations will converge to the true values
of the unknowns, no matter what initial guess is
taken. We may illustrate the process with a sys-
tem of three equations:

a11X; -+ a19Xe + agxg = by
891Xy -+ ageXe + 93Xz = by

831Xy + ageXe + agzXz = by

If there i1s any information available about the
expected values of the unknowns, then such values
should be used. The closer the initial guesses to
the final values, the fewer the number of iterations
that will be required. Lacking such information,
we may use any values, typically zero for each
variable.

We begin by computing a new value of x; from
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the first equation. With a prime to denote a new
value of an unknown, we may write

Xy’ = (by — agaXe — a13%3)/811

Using this new value of z; and the old value of z3,
we compute a new value for zp from equation 2:

xg = (b2 — 891Xy’ — a3%X3)/a92

Using the new values of x; and x5, we compute a
new value of x3 from equation 3:

x3 = (bg — ag1xy’ — agXy’)/ass

This gives us a new approximation to the values
of the unknowns, which constitutes one iteration.
As many iterations are taken as are required to
obtain two successive approximations to the un-
knowns that are “sufficiently close” to each other.
Various definitions of closeness are used; here, on
each iteration we will form the sum of the absolute
values of the difference between each new value
of the unknowns and the previous value of the
unknowns. The measure of the difference between
two sets of unknowns, which is called the norm,
is thus given by

Norm = Y [x; — x{/|
i=1
What this means in programming terms is that
before storing the new value of each unknown we
must form the absolute value of the difference be-
tween it and the previous value of that unknown
and add to the norm. At the end of each iteration
we will determine whether the norm is less than a
test constant that has been read in as input to the

program. If it is, then the unknowns have been
computed to sufficient accuracy; if not, we must
make another iteration.

One of the most challenging aspects of a pro-
gram like this is the question of getting the data
into the computer. With the assumption of a
maximum of 50 equations, there could be as many
as 2600 numbers to enter: 50-50 = 2500 coeffi-
cients, 50 constant terms, and 50 guesses to the
unknowns. If it should happen, as is not unlikely,
that many of the coefficients are zero, the program
should be able to accept only nonzero quantities.
We must bypass this interesting question, however,
since we have not yet considered the details of
input and output. The interested reader is invited
to preview Chapter 8 or to consult the manual on
his version of ALGOL.

The program of Figure 5.6 is an extension of
the short example above to the general case of n
equations. The major for-loop computes a new
value of one unknown each time it is executed.
Its controlled variable, 7, picks out one equation,
which is the same for all executions of the inner
for-loop. This for-loop is the first realistic example
of a for-statement with more than one for-list.
The first for-list gets the products to the left of the
main diagonal term, and the second gets all prod-
ucts to its right. It is always a good idea to check
carefully whether a statement of this sort operates
correctly on the first and last equations: in the
first there is no term to the left of the diagonal,
and in the last there is none to the right. The way
the execution of the for-statement is defined, how-
ever, we encounter no difficulty. Since the test for
computation is made before executing the con-

begin real sum, norm, tempx, test; integer i, j, n; array b, x [1:50], a [1:50, 1:50];

again: norm := 0.0;
fori:= 1 step 1 until n do
begin
sum : = 0.0;
forj:= 1step luntili —1,i-+ 1 step 1 until n do
sum : = sum + a [i, j] X x [j];
tempx : = (b [i] — sum)/a [i, i];
norm : = norm + abs (tempx — x [i]);

x [i] : = tempx
end;

if norm < test then stop else go to again

end

Figure 5.6. Program for solution of a system of simultaneous equations by the Seidel iteration method. (Input and output operations

not shown.)



trolled statement, the first for-list will have no
effect when ¢ = 1 and the last will have no effect
when ¢ = n.

This brings up a worthwhile digression. If it
were not for the fact that the ALGOL for-statement
is as flexible as it is, we might have been tempted
to form the sum of the products for the entire row,
including the main diagonal term, and then sub-
tract off the diagonal term after getting out of the
for-loop. It would seem that this would be no
more than an application of the obvious equation
a4+ b — b =a. This unfortunately is not always
true in a computer. Consider the following
example:

0.00005782
+974286.35
—974286.35

Consider now what happens when the addition is
performed. In any computer we can maintain
only a finite number of places, typically eight in
an ALGOL real quantity. With the data shown,
the addition creates a sum having 14 significant
digits; if the computer can hold only eight, the
sum must be rounded, giving 974286.35 as the sum.
The smaller number has been lost entirely. When
the larger number is subtracted from this “sum,”
the result is zero!

This is an extreme example, of course, but even
when the difference in size is not so great there
can still be partial loss of significance. Considera-
tion of this problem must be a major concern in
programming any application in which it could
arise. It is not at all difficult to ‘“solve” a large
system of equations and arrive at a set of values
for the unknowns having no significant places what-
soever. And it is easy to overlook this considera-
tion, since the answers may be printed with eight
or ten digits and still mean next to nothing. To
see how this can happen, consider the expression

(1.2345678 — 2.3345678) X 8.7654321

—1.501x; + 19.832x5 + 0.694x3 —
2.308x; + 1.728x, — 15.165x3 —
3.359x; — 0.913x, — 6.441x3 + 27.864x4 + 3.737x5
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The result might be printed as 9.6419753, yet it has
exactly two significant digits.

The situation is usually not quite so dire as this,
but the reader will still do well to exercise caution
in accepting a computer result as being accurate
to the number of places printed. (Analysis of
errors of this and other kinds is one of the most
important and most interesting aspects of numerical
analysis.)

Turning again to the program, we may note a
few more instructive features. The assignment
statement for tempzx contains a subscripted variable
in which both subscripts are the same. This is
perfectly legitimate; what we want here is to obtain
the diagonal element from whatever equation we
are in, and the subscripting shown does just that.
The following statement adds to the error sum the
difference between the new value of the unknown
just computed and the old value of that unknown.
The absolute value function is used to discard the
sign of the difference. After the difference has
been added to the norm, we store the new value
in the location for the unknown. After getting out
of the outer for-loop, which completes one iteration,
we have an if-statement to determine whether the
process has converged within the limit set by the
value of the variable test. If we have finished, we
would normally go on to print the values of the
unknowns; the output statements are not shown
here.

This program, with input and output statements
added, was run on a computer using the system of
five equations shown in Figure 5.7. Zeros were
used for the initial guesses. The exact answers
are 1, —2, 3, —4, and 5. The machine output is
shown in Figure 5.8, where the approximations to
the five unknowns are listed across the page, fol-
lowed by the norm. The test for convergence
was 0.1.

EXERCISES

1. Write program segments to do the following. Make
each program a block, including array declarations. All

12.418%; — 1.061x, + 2.660xs + 4.361x, — 0.119x5 =  4.508
4.816x, + 2.27T4xs = —8.449

2.023x, + 1.104x5 = —33.031

= —106.909

= 30.268

~1.562x; + 1.168x; — 2.004x3 + 1.818x4 + 9.490x5

Figure 5.7. The system of equations used fo test the program of Figure 5.6 and which produced the output of Figure 5.8.
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subseripts should be numbered from 1, unless there is
a definite advantage to you in doing otherwise.

*a. The coordinates of a point in space are given by
the three elements of a one-dimensional array named z.
(Note the different usages of the word dimension: the
elements of a one-dimensional array are the coordinates
of a point in three-dimensional space!) Compute the
distance from the origin to the point.

b. Given a two-dimensional array named R, the ele-
ments of which are to be viewed as the elements of a
3 x 3 determinant, compute the value of the determinant,
which should be named det. (Use any method you
know, without trying to develop a general method for
finding the value of an n xn determinant.)

*c. Two one-dimensional arrays named a and b each
contain 30 elements. Compute

30
D= E (ai - bi)2
=1

d. Two one-dimensional arrays named z and y each
contain 45 elements. Compute

45 %
N = wao
i=1

*e. A one-dimensional array named data contains 78
elements. Compute the sum of every third element,
beginning with the second.

f. A one-dimensional array named G contains 64 ele-
ments. Form the sum of the first, fourth, ninth, six-
teenth, twenty-fifth, thirty-sixth, forty-ninth, and sixty-
fourth elements.

g. A one-dimensional array named z contains 50 ele-
ments. Compute the 49 elements of another array
named firstdiffz, according to

firstdiffx [i] = x[i+ 1] — x[i],i=1,2,8, ---, 49

*h. A one-dimensional array named Y contains 32
elements. Compute

trapezoidal = Y; + 2Y, + 2Y;
+- -+ 2Y30 + 2YyH + Ya

1. A two-dimensional array named amatriz contains
ten rows and ten columns. A one-dimensional array
named adiagonal contains ten elements. Compute the
elements of adiagonal from

adiagonal [i] = amatrix [i,i]

«363 ~¢398 24187
14090 ~1le748 24917
1018 ~14976 26994
1002 ~14998 20999

*]. Given two one-dimensional arrays named @ and
b, each containing 23 elements. If every a;>b;, for
=1, 2, 3, +--, 23, assign the logical value true to a
Boolean variable named greater; otherwise, assign it
the logical value false.

*k. A one-dimensional array named vector contains
20 elements, numbered from 1. Place the element that
is algebraically largest in Big and its element number
in Nbig. Hint. Place the first element in Big and
place a 1 in Nbig, then compare Big with the other 19
elements in succession. Each time an element is found
that is larger than Big, place it in big and its element
number in Nbig.

1. Using the scheme of the previous exercise, exchange
the first and the largest element of the array named
vector.

*m. The two previous exercises form the basis of a
scheme to sort the elements of the array named vector
into descending sequence. After exchanging the first
and the largest, go on to exchange the second and the
largest of those remaining, then the third and the larg-
est of the remaining, etc. (Naturally, if the element in
any position is already the largest of those remaining,
the exchange is not performed.)

n. Sort the 37 elements of a one-dimensional array
named list into ascending (note change) sequence of
absolute values.

*0. An array named influence has seven rows and 17
columns. Place the algebraically largest element of
influence in heavy, the row number of heavy in row,
and the column number of heavy in column.

p. A one-dimensional integer array named M contains
20 elements numbered from 1. Replace each element
of M by itself, multiplied by its element number. In
other words, replace m; by i-m,.

*q. Two one-dimensional arrays named R and S have
a mazximum of 40 elements each. The actual number
of elements in each is given by the value of a previously
computed integer M. Compute the first M elements of
an array named 7, which also has a maximum of 40
elements, according to

T[l = R[]+ S[i] 1i=123 --- M

*r. A one-dimensional array named F contains at
most 50 elements to:be smoothed, as follows. Each of the
first M elements, except the first and Mth, is to be replaced
by :

Fias4+F +Fin

j -
-3e387 44409 10e746
-3e942 44955 34908
~34996 44998 0474
-44000 54000 2048

Figure 5.8. Output of the program of Figure 5.6, using the system of equations in Figure 5.7 as input.



As soon as a new value of an element has been com-
puted, that new value is to be used in the computation
of the new value of the next element.

s. The same as the previous exercise, except use only
old values of all elements.

*t. Two one-dimensional arrays named X and Y con-
tain 50 elements each. A variable named zs is known
to be equal to one of the elements of X. If zs = X,
place Y, in ys.

u. In a certain problem Y is given as an empirical
step function of X, according to a set of formulas:

if
x<a;, Y=y
a1 <x=a, y=Yy:

a2 <x=a3 y=Yy;

ag < X , Y =Ya

Set up appropriate arrays and a program to find y when
x is given.

v. Two one-dimensional arrays named z and y con-
tain 50 elements each. The elements in # form a mono-
tonic ascending sequence, that is, 2,4, >z, t =1, 2, 3,
<o+, 49, If zt <z, or xt > x5, transfer to statement
4190. If at = z; for any i, place y; in yt. Otherwise,
find two elements of the =z array such that
z;_; <zt <z; and compute yt from

i —Yi-1

yt=yio +§ (xt — xi_1)

i — Xi-1
(Linear interpolation.)

w. Two one-dimensional arrays named z and y con-
tain 60 elements each. The y array is expected to have

exactly one local maximum, that is, three elements such
that

Vi1 < ¥i > Vi41

If there is no local maximum, place a zero in number;
if there is more than one, place a 2 in number; if there
is exactly 1, place a 1 in number, place z; in xloc, and
place 1 in where.

*x. Three two-dimensional arrays, a, b, and ¢, have
15 rows and 15 columns each. Compute the elements
of ¢ according to

15
Cij = Zaikbkj 1,] = 1, 2, el 15
k=1

y. A two-dimensional array, rst, has 25 rows and 25
columns. Compute the product of the main diagonal
elements of rst and place it in diagprod. A main diag-
onal element is one that has the same row and column
number.

2. Given a 30x30 array named coef and two one-
dimensional arrays named b and x, together with an
integer variable named n. Coef and b are to be re-
garded as the coefficients and the constant terms of the
specialized system of simultaneous equation:
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a11Xy = by
221X1 + 420Xz = by

azx1 + asXi + azxz = bg

811X1 + 8n2X2 + 8n3%3 + -+ -+ 8nnXn = by

Compute the values of the n unknowns.

3. The elements of a two-dimensional array named
u are to be regarded as the values of a function at the
mesh-points of a rectangular grid. The array has a
maximum of 40 rows and 40 columns, with the actual
number for a particular solution being given by the
values of the integer variables m and =, respectively.
Each of the interior points of the arrays is to be replaced
by

Ui—1,j + Uigy,j + Wij—1 + Ui j41
Uj; = 1

As each new interior point is computed, form the abso-
lute value of the difference between the new and old
values of w;;; form the sum of all of these residues. The
computation of a new value of u; at all interior points
and the computation of the sum of all residues is called
a sweep of the grid. Sweep the grid as many times as
necessary to produce a sum of residues on one sweep
that is less than 0.01. (One method of iterative solu-
tion of Laplace’s equation.)

4. Given two one-dimensional arrays named length
and angle, each containing a maximum of 15 elements.
The elements are to be regarded as the lengths and
angles of a supposedly closed polygon, as shown in Figure
5.9. You do not know how many sides the polygon has;
this will be signaled by the first “length” of zero as the
length array is scanned. Compute closureerror, the
amount by which the polygon fails to close.

5. Refer to Exercise 16 of Chapter 1. Suppose that
the letters of the two words are represented by the
elements of two one-dimensional arrays, in which the
letters have been coded in some numerical form. Place
in common the number of letters common to both words.

Figure 5.9. Polygon having, in general, n sides, for Exercise 4.
All angles are measured from the horizontal and are in degrees.
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6. Boolean variables and Boolean equations are
heavily used in designing logic circuits for computers.
In such work it is frequently necessary to find the
simplest Boolean expression that is equivalent to a
given expression. This exercise explores part of one
method for doing so.

Two Boolean arrays named Quinel and Quine2 each
contain ten rows and five columns. First compare row
1 and row 2 of Quinel, examining each pair of elements
for equivalence. (Two Boolean variables are equivalent
if they are both true or both false. See page 29.) If
exactly one pair of the Boolean variables in the two
rows is not equivalent, we shall say that the two rows
combine. For instance, writing T for true and F for
false, these two rows combine:

T T
TFFT

So do these:

T F T
T FTTFF

These two do not combine:

TF TTT
F TTTT

Neither do these:
T TUJFFT
T TPFF T

(You may assume that this last will never happen, if
it matters to your method of solution, because of the
way Quinel would have been generated.)

Compare the first row with all the other rows in this
manner. If the first row does not combine with any
other row, move the first row of Quinel to the first row
of Quine2. Similarly, compare the second row of Quinel
with the third and all following rows of Quinel and
move it to Quine2 if it combines with none of them,
finally comparing the ninth row with the tenth row.

You will move from one to nine rows of Quinel to
Quine2, depending on how the comparisons turn out.
The rows of Quine2 should be filled in order; that is, if
the first row of Quinel combines but the second does
not, then the second row of Quinel should be moved to
the first row of Quine2, etec.

You will find it advantageous to employ four variable
subscripts: one for the row number of Quinel being
compared with all following, another for the row number
following, one for the column number of either array,
and one for the row number of Quine2.

Place in count the number of rows moved to Quine2.

7. The program in Figure 5.5 will not work if the
median lies in the first class interval. Why not? Does
the same problem arise if the median lies in the last
class interval? Rewrite the program to avoid this
problem.



6. SWITCHES AND BLOCKS

6.1 Switches

An ALGOL surttch is an extension of the
idea of a conditional transfer of control; it
allows us to transfer to any one of a number
of statements, depending on the value of
an arithmetic expression.

Suppose, for example, that it is necessary
to transfer to one of the statements labeled
L1, 8, 67, 43, and L3, depending on whether
the value of the integer ¢ is 1, 2, 3, 4, or 5,
respectively. We already know how to do
this with a long if-statement:

if 1 =1 then go to L1 else if i = 2 then
go to S else if 1 = 3 then go to 67
else if i = 4 then go to 43
else if i = 5 then go to L3;

This could also be done with a go to state-
ment having a long if-clause:

go to if i = 1 then 1.1 else if i = 2 then S
else if 1 =3 then 67 else if i =4
then 43 else L3;

Either way is cumbersome; it is much
better to set up a switch to do the same thing
much more compactly and efficiently. The
switch is established by declaring it:

switch S : = L1, 84, 67, 43, L3

It can then be used to do what the long con-
ditional statement does, simply by writing

go to S[i]

A switch may be thought of as analogous
to a one-dimensional array, in which the

“elements” are not values but labels. Writ-
ing the name of the switch followed by
brackets enclosing an arithmetic expression
designates the kth label of the switch, where
k 1s the integer nearest the value of the
expression. (In most cases the arithmetic
expression will, in fact, be a single integer
variable.) The labels in a switch declara-
tion are taken to be numbered from 1 up-
ward; in contrast to arrays, there is no way
to specify that the numbering start with
anything but 1. This is occasionally a bit
awkward but rather easily compensated for,
as we shall see.

Switch declarations must appear in the
heading of a block, along with the type
declarations (real, integer, or Boolean), the
array declarations, and one or two other
kinds of declarations. The switch may then
be used anywhere in the program.*

For an example of one way in which a
switch may be utilized, consider the follow-
ing problem. We are required to compute
one of the first five Legendre polynomials,
given values of legno and z:

If legno = 0, Po(x) = 1
=1, Pi(x) =x
=2, Pyx) = %Xz - %
=3, Pa(x) = §x® — $x
= 4, Py() = Bt — 3ox 4 §

* More precisely, anywhere that the declaration
is valid and defined, in the case of more complex
block structures. See Section 62.

61
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go to poly [legno + 1];
PO: legendre : = 1.0; go to next;
P1:legendre : = x; go to next;

P2:legendre : = 1.5 X x T2 — 0.5; go to next;
P3:legendre : = 2.5 X x T3 — 1.5 X x; go to next;
P4: legendre : = 4.375 X x T4 — 3.75 X x T2 + 0.375; go to next;

next

Figure 6.1.

Let Legendre be the name of the polynomial to be
calculated. The job is done fairly readily with a
switch. In the head of the appropriate block we
place the switch declaration

switch poly : = PO, P1, P2, P3, P4;

The name poly has been made up for the switch,
together with the labels shown for the five state-
ments that will compute the appropriate poly-
nomial. Figure 6.1 shows an ALGOL program
segment to find the desired result. The first state-
ment causes a transfer to one of the following five.
With poly having been declared a switch, the
statement

go to poly [legno + 1]

will transfer to the statement with the kth label
in the declaration, where k is the integer nearest
legno 4 1. Since legno runs from zero to four (not
one to five), this arrangement does precisely what
we want.

Another example of switeh usage appears in Sec-
tion 6.6.

6.2 Block Structure

We have noted earlier that an ALGOL program
is always a block, a block being one or more state-
ments enclosed between the statement parentheses
begin and end and containing declarations imme-
diately following the begin. We shall now explore
a more complex (and more typical) program or-
ganization in which the over-all program block
contains other blocks.

The fundamental concept is that of local and
global identifiers. Consider the schematic diagram
of a program shown in Figure 6.2. The variables
a, b, and ¢ are local to block Bl, which contains
blocks B2 and B3 as sub-blocks. The variables

Program using a switch to compute a Legendre polynomial.

d and e are local to B2, and the variables f and ¢
are local to B3. The variables a, b, and ¢ are global
to blocks B2 and B3. Variables d and e are neither
local nor global to block B3, and f and g are neither
local nor global to B2. Blocks B2 and B3 are said
to be independent.
Let us generalize these examples.

that a block B2 is a sub-block of B1.

Suppose first

1. Any variable that is declared in Bl and not
in B2 is local to B1 and global to B2,

2. Any variable that is declared in B2 is local to
B2 and wndefined in B1. This means that a state-
ment in B1 cannot refer to any identifier declared
in B2 because such an identifier is unknown out-
side of B2.

Suppose next that blocks B2 and B3 are inde-
pendent of each other, that is, neither is a sub-
block of the other.

Bl: beginreal a, b, c;

B2: . be.gin real d, e;
em;l B2;
B3: be?in real f, o;
enc.l B3;
em’l B1

Figure 6.2, Schematic representation of a block structure.
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TABLE 6.1
Block
Vari-
able C1 C2 C3 C4 C5 C6 C7
r Local Global Global Global Global Global Global
8 Undefined Local Global Global Undefined Undefined Undefined
t Undefined Undefined Local Undefined Undefined Undefined Undefined
w Undefined Undefined Undefined Local Undefined Undefined Undefined
X Undefined Undefined Undefined Undefined Local Undefined Undefined
y Undefined Undefined Undefined Undefined Undefined Local Global
Z Undefined Undefined Undefined Undefined Undefined Undefined Local

3. Any identifier declared in one block is unde-
fined in any block that is independent of it.

From a practical programming standpoint, the
important question is where is an identifier defined;
that 1s, when is it possible to use an identifier in a
statement? We may attempt a generalization as
follows:

An identifier is defined in any block in which it
is local or global, and not otherwise.

We may illustrate these ideas with a more com-
prehensive example, shown in Figure 6.3. Table
6.1 summarizes the ways in which statements in
one block may refer to identifiers declared in other
blocks. A note of caution: when we say “a state-
ment in block C1,” for instance, we mean in block
C1 but not in any of its sub-blocks.

One important concept of block structure is that
of where an identifier is defined; a second is the
matter of retention of values of variables declared
in a block:

After leaving a block, the values of all variables
declared in that block are lost; upon re-entry into
the block, their values are undefined.*

This may appear at first glance to be a pointless
restriction; actually, it is the major reason for
bothering with the complications of block structure
at all because it permits more than one variable
to be allocated to the same computer storage loca-
tion. This can be erucial in doing a job requiring
a great deal of storage.

Consider the structure shown in Figure 6.3 again.
Since values are not preserved on leaving a block,

*This rule can be bypassed with the own declaration.
See Section 6.4.

the variables ¢, w, and z can all be stored in the
same location; the three are never defined at the
same time. Similarly, s, z, and ¢ are never defined
at the same time and can be stored in the same
place. The variables s and ¢ cannot be assigned
to the same location, on the other hand, because
there is a time when both are defined, namely dur-
ing the execution of block C3. ALGOL processors
are designed to recognize these possibilities and
assign storage accordingly.

The computers used with ALGOL typically have
storage for many thousands of numbers, so that
this consideration is not of great importance for
single variables. With arrays, it can be decisive.

We may conclude this part of the discussion of
blocks by noting that statement labels are always
local to the block in which they appear. In other

C1l: begin real r;

C2: begin real s;
C3: begin real t;
end C3;
C4: begin real w;
end C4;
end C2;
C5: begin real x;
end C5;
C6: begin real y;
C7: begin real z;
end C7;
end C6;
end C1
Figure 6.3. Schematic representation of a more complex block

structure.
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words, a label is considered to have been “declared”
in the block in which it is written. There are two
important consequences of this fact. First, there
is no problem of duplication of labels in different
blocks; this is perfectly acceptable and will cause
no problems to the processor. Second, it s impos-
sible to transfer into the middle of a block from
any other block.

6.3 How to Use Blocks Effectively

If the general ideas of local and global variables
have been understood, it should not be too hard
now to see how to take advantage of block strue-
tures in organizing a program.

Suppose first that the goal is to conserve storage
by allocating temporary variables and arrays so
that some of them share locations. Proceed as
follows. The complete program must, of course,
be a block. Divide the complete program block
into several sub-blocks, each of which will then
be independent of the others. Make the division
so that temporary variables and arrays in one sub-
block are never needed in the others. Declare
only the temporary identifiers in the sub-blocks;
any information that must be common to all sub-
blocks should be declared in the complete program
block.

Examples of this technique that are both small
and realistic are hard to find. Therefore, we shall
look at one that is not completely realistic, in that
one would never go to this kind of bother for such
a small program, but that is otherwise fully indica-
tive of the method and purpose.

Suppose that three formulas are to be evaluated:

Ansl 2< —1 n a >
BT 2 \a+ 0% | 3 (a+ bx)®

Vg2 — o2 2
u5-——%'——}—51—21n|x—+— Vx? — a3

b2

A2 2

R/
Values of a, b, and x are to be read; the values of
a, b, z, Ansl, Ans2, and Ans3 are to be printed.
The question is how to break the program into
blocks so that storage space will not be wasted.

In the first formula it looks like a good idea to
compute the square root of a 4 bz once, then to
cube it for the second term, since a square root

'Ans2 =

I

Ans3

takes a lot longer than cubing. This temporary
variable will need a name; let us call it temp. In
the second formula we would similarly save time
by computing V22 — a® once, and a little bit of
time can be saved by computing a? only once. Call
these temporary variables root and asq. Likewise,
the third formula could make use of two variables
that might be called root and bsq.

Now we should think about how to set up blocks
and what should be declared in each in order to
minimize storage requirements. It 1s clear that
not all of the five temporary variables are ever
needed at once, so we ought to set up blocks to
use the same storage wherever possible. The sim-
plest way to accomplish the desired result is to
make the computation of each formula a separate
block and to declare the temporary variables in
these; the input and output variables can be de-
clared in the “outer” block. Proceeding accord-
ingly, we arrive at the program shown in Figure
6.4.

Despite its unrealistically small size, there is
a great deal to be learned from study of this pro-
gram. First, it is immaterial for our purposes so
far whether the Read and Print operations are
placed in the sub-blocks. The variables appearing
in them are local to the main program block and
global to the sub-blocks; there is no difficulty either
way. Putting them in the maln program block
does facilitate separate compilation of the sub-
blocks, however, a subject to which we shall return
later.

It is worth noting that block structure accom-
plishes nothing in this example that could not be
done without it—but with more effort. The stated
goal was to conserve storage; this could also have
been accomplished without sub-blocks. We could
have declared two temporary variables in the head-
ing of one main program block and used these two
in the computation of each formula. In a small
program like this one there would have been no
great inconvenience in doing so; about the only
annoyance would have been that the names could
not have been as descriptive of what the variables
represented at each point.

In a large program, however, this very matter
of keeping the temporary variables straight be-
comes quite awkward. Not only would the names
have to be meaningless, it would be crucial to know
at all times exactly which ones were still needed.
In a program with a complex pattern of statement
execution it 1s almost impossible to be both effi-



cient and accurate in this regard. Block structure
thus makes it possible to break a large job into
little pieces that are more easily managed and still
produce an efficient program.

Suppose now that we were worried about comput-
ing x? twice (in the second and third sub-blocks)
and we wanted to set up one variable name that
would have the same meaning in both sub-blocks
in order to compute 2> once and then use it in both
places. How could we do it? One way, of course,
would be to declare a temporary variable for z?
in the main program block, but this would in gen-
eral be wasteful, since it is not needed in the first
sub-block. The simple solution would be to set
up one more level of blocks: place the second and
third sub-blocks of the program of Figure 6.4 in
another sub-block of the main program. This new
block would declare the temporary variable for
72 and would contain the present blocks for com-
puting Ans2 and Ans3. (We emphasize once again
that although no one would ever bother with these
techniques in such a small program the concepts
are still valid.)

Note that two of the sub-blocks declare variables
named root. These are not the same variable!
They have the same name, they are used for similar
purposes, and an ALGOL processor might by
chance assign them to the same storage location—
but they are still completely independent. A vari-
able is unknown in any block in which it is neither
local nor global. If it were desired to make these
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two the same variable, it would be necessary to
declare it once in a higher level block, so that it
would become global to both.

This does raise a sticky point, however. Sup-
pose that a variable declared in one block has the
same name as a variable that is global to that
block. What happens? Answer: the global vari-
able becomes unknown as long as the sub-block
is being executed. The value of the global variable
is not lost, but as long as control is in the sub-
block the name will refer to the local variable.

This “temporary forgetting” of a variable de-
clared in a higher level block can be used deliber-
ately to advantage and ean also cause trouble for
the unwary. It can be helpful when several pro-
grammers are working on the same job and do not
want to have to check that they have never used
the same names for temporary variables. Another
example would be a program borrowed from some-
one else.

On the other hand, the unintentional duplication
of a variable name can lead to errors that are quite
difficult to diagnose; it may therefore be worthwhile
to suggest a mechanical procedure for avoiding it.
We assume for now that the primary reason for
using blocks is to conserve storage and to split a
large job into manageable pieces. For this pur-
pose it will often be sufficient to have only one level
of block structure, as in the example under con-
sideration. In such a situation one can stay out of
trouble by following this procedure: declare in the

begin real a, b, x, Ansl, Ans2, Ans3;

Read (a, b, x);
begin real temp;

temp : = sqrt (a + b X x);
Ansl : = (2/b12) X (—1/temp + a/(3 X temp T 3))

end;
begin real root, asq;
asq :=aT2;

root : = sqrt (x T2 — asq);
Ans2 : = x X root/2 + (asq/2) X In (abs (x + root))

end;
begin real root, bsq;
bsq:=bT2;

root : = sqrt (bsq — x T 2);

Ans3 : = root + bsq/root

end;

Print (a, b, x, Ansl, Ans2, Ans3)

end

Figure 6.4. A program using block structure to conserve storage.
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main program block only those variables that are
needed in several sub-blocks or that are needed
for “communication” between sub-blocks. Keep a
list of these variables handy on a separate sheet
of paper. Every time a new temporary variable is
to be declared in a sub-block, check that its name
has not already been used. (There is no need to
be concerned about using the same name in several
sub-blocks, since with only one level of block struc-
ture all such names will be independent.) If a
program requires more than one level of blocks, a
slightly more complex checking system can be de-
vised. The basic idea is always to avoid declaring
a variable that has the same name as some variable
that is already global to the block.

6.4 Dynamic Storage Allocation

The ALGOL block concept provides another ca-
pability that in some problems may be the differ-
ence between a relatively simple fast program and
a complex slow one. It is possible to define the
sizes of arrays in terms of program variables, which
means that the determination of the sizes of arrays
and the allocation of storage to them is not done
until the program is executed (more precisely, upon
entry to a block in which variable size arrays are
declared). Thus, if a program involves a number
of arrays, not all of which reach their maximum
dimensions simultaneously, dynamic storage alloca-
tion makes it possible to employ the storage avail-
able to best advantage.

We spoke in Chapter 5 of the lower and upper
bounds for each subseript position in an array dec-
laration; at that time we showed all bound pairs
as numbers. Actually, a subscript bound may be
any arithmetic expression, with the one restriction
that all variables used must be global to the block
in which the array is declared. This last is for the
simple reason that declarations must appear in the
heading of a block, before any data has been read
and before any assignment statements have been
carried out; local variables could therefore not yet
have been given values. There is no question of
stating maximum sizes in an cuter block and de-
tailing the actual—variable—size in an inner block.
In fact, this would destroy the whole scheme, since
it would amount to using the same name for both
a local and a global variable.

The restriction to global variables in subscript
bound expressions does mean that any arrays de-

clared in the outermost block of a program must
necessarily have fixed sizes. This is in the nature
of things; it could not be avoided, and there would
be no way to take advantage of any scheme that
might be devised to avoid it.

An example of dynamic storage allocation ap-
pears in Case Study 7, Section 6.7.

6.5 Separate Compilation

The block structure idea provides another kind
of flexibility: the ability to compile a part of a
program without compiling the other parts. In
many situations this is more important than dy-
namic storage allocation.

Returning to the program of Figure 6.4, imagine
that each formula is a large computation involving
hundreds of statements and many days of pro-
gramming. What would happen if it were neces-
sary to have three different people do the three
parts? As this program has been set up, each
would be able to write and test his own part sepa-
rately, with the three parts being combined into
one program after the parts were completed.

This can be done as follows. After writing the
program for one formula, that block ean be put
together with the over-all program block and com-
piled; all variables are defined and input and out-
put will operate correctly (although not all results
will be printed). TUsing a separate copy of the
main program block, the programmers working on
the second and third formulas can similarly com-
pile and check out their pieces. A reshuffling of
cards then puts the whole program together ready
to be compiled into one complete object program.

Naturally, the procedure might not be so simple
in a large job. In particular, if the three parts are
not independent, as they are here, but instead de-
pend on the results produced by the-others, more
elaborate things have to be done to enable the
parts to be tested separately. But this is true in
any ease; no compiler can solve this problem with-
out some thought on the part of the programmer.

6.6 Own Variables

We have seen that after exit from a block the
values of all variables declared in the block are
lost and that this is done deliberately to allow
multiple storage assignments for variables that are



not needed simultaneously. It can happen, how-
ever, that we may wish to preserve the value of a
variable declared in a block after exit from it,
when the block structure idea is being used for
some other purpose than to conserve storage for
such a variable.

The own declaration makes it possible to specify
that a variable is to retain its value after leaving
the block in which the declaration is made. When
the block is re-entered, an own variable has the
same value it had at the time of the last exit from
the block, even though it remains undefined until
re-entry.

This does raise some problems, however. A vari-
able cannot be referred to when it is neither local
nor global,” and an own variable is neither until
the first entry into the block where it is declared.
Therefore, no value can be assigned to the own
variable until the block where it is declared is
reached. One of the statements in the block must
therefore assign a value to it. This value is pre-
served after leaving the block. Now, what hap-
pens when the block is entered again? The value
has been preserved, but the assignment statement
to give it a value will again assign a value to it—
and if this is done, why save its value at all? One
is first tempted to suggest that an initial value be
assigned to it before entering the block—but this,
of course, is illegal, since the variable is neither
local nor global at a point where this would have
to be done.

The situation is not hopeless, however. With a
moderately simple device, it is possible to avoid
this apparent logical problem. We may illus-
trate the technique by developing a program seg-
ment to produce the next term of the Fibonaceci
sequence each time it is entered.

The Fibonaeci sequence is 1, 1, 2, 3, 5, 8, 13, 21,
etc., where each term (except the first two) is the
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sum of the two preceding terms. We can set up
the computation of the next term as a separate
block simply by saving the last two terms each
time the block is entered, but some way must be
devised to get the process started properly.

Let us call the two most recent terms Fib and
PrevFib. Once these two variables have been made
equal to 1, then a new term can always be found
by the statements

Temp : = Fib 4 PrevFib;
PrevFib : = Fib;
Fib : = Temp;

These statements compute the next term and re-
assign the values of the two most recent terms.
The question is, how can we set up the assignment
of the initial values to Fib and PrevFib in such a
way that it will be done only once?

The program segment to do this is to be a block.
Suppose that at some point in the program con-
taining this block, which is placed to be executed
only at the beginning of the program, we assign
the value 1 to a variable named which. This vari-
able must naturally be declared in the “outer”
block so that it is global to the block that computes
the next Fibonacei number. Now consider the
block shown in Figure 6.5. We see that Fib and
PrevFib have been declared as own variables and
that a switeh has been declared. Each time the
block is entered, the switch will be encountered.
The first time, which is equal to 1, and we go to the
statement labeled first. Here we give Fib and
PrevFib their starting values and set which equal
to 2. The program then continues to compute the
next number. Every time after the first the switch
will cause a transfer to the statement labeled there-
after, thus bypassing the initialization.

The variable named Next, which must be global
to this block, always contains the next Fibonaceci

Fibonacci: begin own integer Fib, PrevFib; integer Temp;
switch S : = first, thereafter;

go to S [which];

first: Fib : = PrevFib : = 1;

which : = 2;

thereafter: Temp := Fib + PrevFib;

PrevFib : = Fib;

Next : = Fib : = Temp

end

2.

Figure 6.5. Program using an “own’ variable in a block to compute the next Fibonacci number.
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a11X1 = by
291X; + agoXs = by
a31X; + azsXz + a33Xs = by

An1X1 + anoXsg + an3X3 +-- + AnnXnp = bn

Figure 6.6. The system of equations to be solved in Case Study 7.

number on exit from the block. The first number
generated is 2; if it were desired to generate the
sequence from the start, that is, produce 1, 1, 2,
3,5, - -, the switch arrangement could be modified
to do so.

This has all the appearances of begging the ques-
tion: if we can arrange to execute the statement
that sets which to 1 only once, why cannot we ar-
range to set Fib and PrevFib to their initial values
only once? The answer is that Fib and PrevFib
are local to the block where they are declared,
whereas which is global to it.

There are other ways to accomplish the same
result without using a switch, but they must depend
on some variable that is global to the block where
the own variable is declared.

6.7 Case Study 7: Simultaneous Equations

We are given a system of simultaneous linear
algebraic equations, as in Case Study 6, except
that the matrix of coefficients is special: all ele-
ments above the main diagonal are zero. This is
called a lower triangular system and is represented
in Figure 6.6.

Such a system is trivial to solve, of course, by
simple substitution into each equation of the vari-
ables already found. The thing that makes it
interesting to us is the question of avoiding the
wasting of a large amount of storage. There are
two aspects to this situation. For one thing, we
would like to set up a program that will handle any
number of equations up to some maximum, but we
would prefer not to establish the arrays as having
that maximum, regardless of the number of equa-
tions in a particular set of data. This implies
dynamic storage allocation. The second considera-
tion is that if we took the obvious step of making
the coefficients into a two-dimensional array, about
half the array would never have anything in it.

The approach to be taken in this Case Study is
to set up the coefficients in a one-dimensional array
of variable size and to develop subscript expres-
sions that will locate the desired elements of this
array in terms of the row and column numbers of
the array as written in Figure 6.6. To begin with,
let us make a notational change in the array as
shown to regard the constant terms as elements
of the system array, each constant term being im-
mediately to the right of the last coefficient in its
row. This amounts to the notational change
@iiv1 = b

It is essential that the notation be completely
clear, so consider an example of a system of three
equations. These would be written

a11X1 = ax2
291X1 + ageXy = Ag3
ag1X; + ageXe + 433Xz = Az

We propose to make these coefficients and constants
the elements of a one-dimensional array, in which
the nine quantities in this example would be laid out
like this:

411 a12 d21 dgz2 d23 431 432 833 934

In other words, the rows are placed in the array
in succession.

The next, and most important, question is how
to reference an element in this array in terms of
the original row and column number of the ele-
ment. We can start by searching for a general
expression that would give the number of elements
in the array for a system of n equations. Observe
that the numbers of the elements in the rows of
the original system form the series

2434+ @+ 1)
This series contains n terms; we can rewrite it as
(I1+24 - +mn)+n.

The sum of the first = integers is given by
n (n+ 1) /2. By adding n to this and rearranging,
we get for the total number of elements in the
system n (n + 3) /2.

Now consider the question of locating an ele-
ment in the one-dimensional array in terms of its
row and column number in the original system.
We may begin by deciding that the elements in
the one-dimensional array will be numbered from
1. Applying a modification of the formula above,
we get for the number of the last element of row



=1 -1DE-1+4+3)/2=(GE—-1)0E+2)/2
The first element in the ith row, therefore, has
the number (i — 1) (¢ + 2)/2 4+ 1. This evidently
must also be the number of the element in row ¢,
column 1; it appears that the number of the ele-
ment in row ¢ column j must be: (z — 1) (1 + 2)/2
+ J.

Setting j = v, we get for the number of the diag-
onal element in row 2: (¢ —1) (¢ 4-2)/2 + ¢ The
number of the constant term in row 7 is then
(t —1)(Z+2)/2 + 14 1, which can be rewritten
as 1 (1 + 3) /2.

Let us summarize these formulas. Transforming
a lower diagonal system of simultaneous equations
into a one-dimensional array numbered from 1,
with the constant term in each equation entered
immediately following the last coefficient in its
row, we get the following for the one-dimensional
element number:

Element in row 7 column j= (¢—1) $42)/2+j

Diagonal element in row i= (i—1) (14+2) /241

Constant term in row 1=1(143)/2

The total number of elements in the array
=n (n+3)/2

Now we should think about how to get the ele-
ments of this array into the machine. In many
practical problems the system of equations would
be generated by a previous section of the program,
and some following section would use the results.
Here, however, to make the discussion a little more
coherent, we shall assume that the coefficients and
constants are to be read from cards and the solu-
tion printed. The question now is how to organize
the card deck to make it as simple as possible and
still have some protection against card-handling
errors. As usual, there are many ways to proceed.
The approach chosen here is to place each element,
together with its row and column number, on a
separate card. As each card is read, the row and
column information can be used to determine where
in the array to store the value on the card. The
end of the deck will be signaled by a card having
a row number of zero. With this arrangement, the
elements do not need to be entered in sequence,
which is a convenience.

With an additional statement or two in the pro-
gram, we can also arrange another convenience:
zero elements need not be entered at all. This
merely requires clearing the array to zeros before
starting to read cards.

Figure 6.7.
Study 7.
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Since the size of the system to be solved is left
variable, 1t will be necessary to place at the front
of the deck a card containing the value of n, the
number of cquations. This must be read at the
very beginning of the program, before entering the
block that will do the work, because we wish to
declare the variable size of the element array upon
entering that block. The first part of the block
diagram 1n Figure 6.7 shows the logic of card
reading,.

With the cards read and the elements entered,
we are ready to start computing the values of the
unknowns. This will require two for-loops, one
to run through the equations in order, and a second
to sum the terms in each row up to the diagonal.
This involves no new concepts. The block dia-
gramming of for-loops of this kind is a bit awk-
ward without speeial diagramming notation, which
we do not choose to introduce. The two loops
have been represented rather differently. One is
shown explicitly, in terms of the literal meaning
of the for-step-until construction, and the other
has been summarized by the word “sum.” The
diagram could naturally have been drawn in other
ways, but this seems to be a reasonable compromise
between an awkward complete explicitness and a

begin integer n;
Read (n);

hard-to-follow terseness. Some such compromise
is usually necessary.

The program of Figure 6.8 merits a few com-
ments. The block structure here is used for the
sole purpose of getting variable size in the array
of coeflicients and constants, recalling that vari-
ables in subscript bound expressions must be global
to the block where the declaration is made. The
reading of the value of n, the number of equations,
must be outside the inner block for this reason.
(More precisely, the reading and declaration must
be outside the inner block.)

The compound statement between begin and end
after the second for-statement is not a block, since
it contains no declarations.

The most interesting thing about this program,
and about the Case Study, is the use of moderately
complex subseript expressions to make a variable
size one-dimensional array do what would ordi-
narily be set up as a two-dimensional array. The
particular techniques used here are not in them-
selves fundamental, but the general idea of the sort
of thing that can be done to conserve storage is
quite important. The reader will be amply re-
warded for the effort necessary to understand the
workings of this program.

begin integer i, j; real element, sum;
real array x [1:n], a [1:n X (n + 3)/2];
fori:= 1step luntiln X (n+3)/2doali]:=0;

more data: Read (i, j, element);

if 1 = 0 then go to compute;

ali—1) X (04 2)/2 +j] : = element;

go to more data;

compute:  fori:= 1 step 1 until n do
begin
sum : = 0;

forj := 1step 1 untili — 1do
sum :=sum + a [0 — 1) X G+ 2)/2 4+ j] X x [j];
x[i]:=(a[i X 1+ 3)/2] —sum)/a [(i — 1) X (i +2)/2 + i];

Print (4, x [i])
end
end
end

Figure 6.8. Program for Case Study 7.



EXERCISES

1. Set up program segments with switch declarations
to do the following.

a. Ifn=—2 y =6x —ecsinx
n=—1y=3ax*4+ b+ ccosx
n= 0,y=ax*+bx+csinx

bx?

— — CCO8X

n= Ly=-+75

Assume that —2

IIA

n < 1 and that n is an integer.

*h.If 0<a =< 9, y=rex+1D
10 £a 219,y = sex+15D
20 £a <29y = tex+289
30 <a <39,y =uetsow

a
a
Assume 0 = a < 39 and that a is an integer.

c. 052t < 1.5,y =a-+ bx + cx?
1.5 £t < 2.5,y = (asin bx)°
255t<385y=~/a+bx®—c¢
35st<45y=aln b—+—§“

Assume 0.5 < ¢ < 4.5 and that ¢ is real.
*.If12k<2,y=¢g
2=<k<3y=gx
3=k<4,y=gx*+h
4§k<5,y=gx3+hx+i
55k <6, y=gx*+hx*+ix
Assume 1 < k& < 6 and that k is real.

2. Make a table similar to Table 6.1 for each of the
following block structures.

a. A: begin real r;
B: begin real s;
C: begin real t;
end C;
end B;
end A;
: begin real u;
begin real v;
end B;
begin real w;
end C;
begin real x;
end D;
end A;
begin real ¢;
begin real h;
begin real i;
end C;
begin real j;
begin real k;
end E;
end D;
end B;
begin real 1;
end F;
end A;

*b.

© 2 wpE

*c,

HY Q@E

=
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d. A: begin real p;
B begin real q;
end B;
C: begin real r;
D: begin real s;
E: begin real t;
end E;
F: begin real u;
end F;
end D;
G: begin real v;
end G;
end C;
H: begin real w;
end H;
end A;

3. Write programs to read all variables, compute
results, and print input and output for the following.
Use temporary variables to conserve object program
time and block structure to conserve object program
storage space.

_ o —ah¥ | B —a)¥ | 3(a’ —a?)
a. r = yor + Raix? Kz
x} ol 3 s
S——g—'gln[d/ +X‘
6 3
t:;}—{—Z(aX) 4+ 2 In|ax|
A In a)
*b,h=\/a2——x2lna+*———’—~
Var =2 41
o 3 1 x
— h2 2 2 — —
—b\/a X +b4\/;2_~_—_x_2 bgarctana
2 ,9\% L2( 2 2y 34
jz(x "Zd) —QL(X;a) + c¥(x2 4 a? ¥
s U
T At 3 4 )
+hhEx+VEF + a?)
~ Ina (1 +b) 1
C'f_(x2+b2)yz+ s +;
g=sin(a+x)+ﬂn—*(3ab+ )
h=—~——-\/_+e
V<2 al
i=e*VA/x+ v+ a
j=\/x2+a2arctan§——&
a X
arctan —
a
S b
dp= VR
P Va? F x2
ab
— a2(q? 2% _ e 2) %
q = a*(a’® + x% b? (a? + x%)* +(a T )%

r=aln(a —x)+ba—x)?
s = a’b?(a — x)**
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4. Exercises lk-1m of Chapter 5 provide a method
of sorting the elements of a one-dimensional array into
ascending or descending sequence. Given two one-
dimensional arrays of 20 elements each, named a and b,
print the elements of each in ascending sequence without
disturbing the original arrays. (Block structure is not
really needed here, since the same temporary array could

be used in doing both sorts, but do it anyway for
practice.)

5. An upper triangular system of simultaneous equa-
tions is one in which all elements below the main diag-
onal are zero. Given the same card input arrangement
as in Case Study 7, write a program to solve such a
system along the lines of Case Study 7.



7. PROCEDURES

7.1 Introduction

It fairly often happens that some basic
computation is required at a number of
places in a program. It is possible, of course,
to write out the necessary statements each
time they are needed, but doing so wastes
programmer time and machine storage space
and is conducive to errors. It would seem
desirable to be able to write the statements
once and then to refer to them whenever the
computation is needed. Procedures provide
this capability.

It also frequently happens that many pro-
grammers have need of some common com-
putation, such as square root or cosine; it
would be unreasonable for everyone to have
to write a routine to do these widely used
operations. Instead, they are set up as pro-
cedures that can be incorporated into an
object program by the processor and are
called into action simply by writing their
names. (We shall see below that these par-
ticular procedures are somewhat special in
that they do not require a procedure declara-
tion.) Even when a procedure is not in-
cluded in the list of those available auto-
matically, it still happens that one pro-
grammer would like to be able to borrow
something written by another and incorpo-
rate it into his program with a minimum of
effort. This is valuable, even though the
procedure may be called into action only
once. Here, we are interested in the saving
of programming time instead of the saving
of storage space.

For whatever reason, it is most convenient

to be able to set up a group of statements
in one place in a program and to refer to
them as needed.

7.2 The Procedure Heading
and Procedure Body

We must distinguish carefully between the
definition of the processing to be done by a
procedure and the use of that procedure.
We define a procedure with a procedure dec-
laration, which consists of a procedure head-
ing and a procedure body. The procedure
heading gives the name of the procedure,
together with (usually) the names of the
parameters of the procedure and certain in-
formation about them. The procedure body
consists of a statement, a compound state-
ment, or, most commonly, a block.

Let us consider an extremely elementary
example. Suppose that in a certain program
it is frequently necessary to compute one of
the roots of the quadratic equation

ax? 4+ bx + ¢ = 0,

given values of a, b, and c¢. A procedure to
do this can be defined as follows:
procedure root (a, b, ¢, X);
x:=(=b+sqgrt (b2 —4XaXe)/
(2 X a);

(We assume, for our purposes here, that this
statement is valid, that is, the root is real

and a is not zero.)
73
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This declaration defines a procedure to carry out
certain processing. Its appearance in a program
would cause a group of machine instructions to be
inserted in the object program, but it would not
by itself cause any processing to take place. That
occurs as a result of calling the procedure, which
is done by writing its name with actual parameters
in place of the formal parameters in the declaration.

Suppose now that it is desired to compute one
of the roots of a quadratic equation in which the
coefficient of z? is 16.9, the coefficient of z is r — s,
the constant term is T 4 12, and the root is to be
stored as the new value of a variable named answer.
All this is done by writing the procedure call:

root (16.9, r — s, T + 12, answer);

The call will cause the formal parameters a, b,
¢, and x to be replaced by the actual parameters
169, r — s, T 4+ 12, and answer, just as though
the procedure body had been written

answer := (—(r —s) +sqrt (r —s) T2 — 4
X (16.9) X (T 4+ 12}))/(2 X 16.9);

If at some other place we want one root of the
equation z* — 7z + log (2 + ¢) = 0, with the root
called result, we could write the procedure call

root (1.0, —7.0,In (2 + g), result);

For a particularly instructive example, suppose
we wanted the root of the equation 222 4 ax +
b = 0, with the result to be called zvalue. The
procedure call would be

root (2, a, b, xvalue);

The crucial concept is that the actual parameters
a and b in this call have nothing to do with the
formal parameters a and b in the procedure declara-
tion. The formal parameters are no more than
dummy variables that indicate what to do with
the actual parameters in the call; the actual param-

eters are expressions involving actual variables
that have been declared elsewhere in the program
that calls the procedure. In this example the for-
mal parameter ¢ would be replaced in the body
by 2, the formal parameter b by a, the formal
parameter ¢ by b, and the formal parameter z
by zvalue. Usually a procedure body is a block
because it will have local variables; if the names
of any actual parameters are the same as the
names of local variables in the body, the latter
will be changed when the procedure is called.

For an example of a procedure having as its
body a compound statement, suppose we wanted
both roots of the quadratic equation. The proce-
dure declaration could be

procedure root2 (a, b, ¢, x1, x2);

begin
x1:=(=b4+sqrt(bT2—4XaXe)/(2Xa);
x2:=(—b—-sqrt (bT2—-4XaXe)/(2Xa)
end

This example shows how it is usually desirable
to make a procedure body a block: there is really
no point in computing the square root twice—
better to give it a name and compute it once. But
to give it a name requires a declaration of the
name, which in turn requires a block.

procedure root2 (a, b, ¢, x1, x2);
begin real temp;

temp :=sqrt (b 72 — 4 X a X ¢);
xl := (=b 4 temp)/(2 X a);

x2 := (—b — temp)/(2 X a)

end

Consider an example in which one of the input
parameters is an array and in which there are two
output variables. Suppose that in a certain pro-
gram it is frequently necessary to find the largest
element (in absolute value) in a specified row of
an nxn array. The input to the procedure is

procedure big element (a, i, n, aij, j);

begin

integer k;

aij 1= abs (a [i, 1]);

ji=1

for k : = 2 step 1 until n do

if abs (a [i, k]) > aij then begin aij : = a [i, k];j : = k end

end

Figure 7.1. Procedure to find the largest element in a specified row of an array.



therefore the name of the array, the row number,
and n. The output is to be the largest element in
the row and its column number.

While we are about it, let us introduce another
way of writing the parameters in a procedure dec-
laration or procedure call. So far, we have used
the comma as the delimiter between parameters.
It is also possible to substitute the following for
the comma:

a right parenthesis, followed by
a string of letters, followed by
a colon, followed by

a left parenthesis

Thus, in this example, we will have a procedure
heading something like

procedure big element (a,i,n, aij,j);

where a is the name of the array, ¢ the row num-
ber, n the order of the array, aij the largest ele-
ment, and j its column number. To make the
declaration more readable, we may write

procedure big element (a)row: (i)order:
(n)element: (aij)column: (j);

This variation is available if and where we may
wish to use it. It has no effect on the operation
of the program; it may be used in the declaration
and not in the call, or vice versa. Used with dis-
cretion, it can help to make a program more under-
standable to someone else. Note that this substitu-
tion applies only to the commas in a parameter list.
There is no way to give a description of the first
parameter and therefore no way to use this facility
in a procedure having only one parameter.

The program shown in Figure 7.1 presents no
great difficulties. We start by assigning the first
element of the given row as the assumed largest
and then compare it with each of the other ele-
ments in the row. Any time a larger element is
found, it becomes the largest and its column num-
ber 1s assigned to the output column number.
When all elements in the row have been tested in
this way, atj will contain the largest element in
absolute value and j will eontain its column number.

With this declaration in the heading of some
block, suppose now that we want the largest ele-
ment In the third row of a 19x19 array called
chv matriz, this largest to be assigned to the vari-
able named biggest and its column number to
column. We write the statement
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big element (chi matrix, 3, 19, biggest, column);
or

big element (chi matrix)row: (3)order:
(19)element: (biggest)column: (column);

7.3 Functions

The procedure calls we have seen so far have
been complete statements in themselves. When
such a procedure call is encountered in the execu-
tion of the program, it brings the procedure body
into action and does whatever processing is speci-
fied (usually including assignment of new values
to actual parameters). Control then passes on to
the statement following the procedure call.

When only one variable is assigned a new value
as the result of executing a procedure, the proce-
dure call can be considerably simplified by making
the procedure a function. When this is done, writ-
ing the name of the procedure calls it into action,
as before, but now the name itself represents a
value that is used where the procedure name is
written. In other words, the procedure represents
a variable with the same name.

A procedure is made into a function by preceding
the word procedure with a type (real, integer, or
Boolean) and assigning a value to the procedure
within the procedure body. For instance, suppose
we wanted to make the calculation of one root of
the quadratic a function:

real procedure rootl (a, b, ¢);
rootl := (=b +sqrt (bT2 —4 X a Xc)/(2X a);

Now, if we want to get one root of the quadratic
322 — fr — 12 = 0, add it to a variable named theta,
and assign the sum as the new value of a variable
named kappa, we can write simply

kappa : = theta + rootl (3.0, —f, —12.0);

Or suppose we wanted to get one root of the equation
(a — 8)2% + x — cos w = 0, square it, subtract the
natural logarithm of z, and assign all this as the new
value of ¢:

q :=rootl (a — 8, 1.0, —cos (w)) T2 — In (2);

In short, a function is used by writing its name
wherever its value is desired in any place that a
variable may be used. It is defined in the same
way a procedure is defined, with a type before the
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begin real templ, temp2, temp3, a, b, n, sum4, sum2, h, x, K, Percenteff;

real procedure E (x);
E:=1/x15 X (exp (1.432/(K X x)) — 1));
Read (templ, temp2, temp3, a, b, n);

h:= (b — a)/n;
for K : = templ step temp2 until temp3 do
begin
sum4 : = sum?2 : = 0.0,
forx:=a-+ hstep2 Xhuntilb—3 X hdo
begin
sum4 : = sum4 + E (x);

sum?2 : = sum2 + E (x + h)
end;

Percenteff : = 64.77 X h/3 X (4 X sum4 + 2 X sum2 4+ E(a) + 4 X E (b — h) + E (b))/K T 4;

Print (K, Percenteff)
end
end

Figure 7.2. Luminous efficiency program of Case Study 4, written with a function.

word procedure and with an assignment statement
to give a value to the function.

When this is done, the name of the procedure
(function) is not local to the procedure body. The
name must not be declared within the body, and
the name must never appear anywhere but on the
left-hand side of an assignment statement. This
avolds confusion with recursive procedures, dis-
cussed in Section 7.7.

For another example of a function, consider the
evaluation of Planck’s equation that we met in
Case Study 4, Section 4.4. Omitting the constant
multiplier, which was handled separately there, the
formula was

1

= 1432
x° (e Kr — ]

This is easily set up as a function:

real procedure E(x);
E:=1/x75 X (exp (1.432/(K X x)) — 1));

The value of Planck’s formula, given K and z,
may be used in an expression simply by writing
the name followed by parentheses enclosing the
actual argument. The program for the case study
is now much simpler, as shown in Figure 7.2.

Note that K is neither a formal parameter nor
local to the procedure body (which is not even a
block, of course). Therefore, it must be global

to the procedure body. There is nothing to pre-
vent this. As a matter of fact, it is permissible to
have nothing but global variables, that is, no formal
(or actual) parameters.

It happens that z is used as a formal parameter
in the procedure declaration and in some cases as
an actual parameter in the function call: This
also is legal, but always remember that the two
are unrelated. The formal parameter x indicates
what to do with the actual parameter when the
function is called; it has no value and is never
declared. The actual parameter z is the name of
a variable that has been declared elsewhere in the
program; the fact that it has the same name as
the formal parameter is a coincidence that has no
bearing on how the procedure body is executed.

7.4 Call by Name and Call by Value

It is worth emphasizing exactly what happens
to the actual parameters when a procedure is called.
The idea is illustrated in the following example,
which at the same time suggests a little of the range
and power of procedures.*

Suppose we need to compute the following three
sums.

*The example is similar to one in Bottenbruch, “Struc-
ture and Use of ALGOL 60,” Journal of the Association
for Computing Machinery, Volume 9, Number 2 (April
1962).



20
e =D x°
x=1
14
f =3 cos (0.1 Xy)
y=3

8
g =2 (a+ zl[t] + 220t)*
t=0
Different as these may appear, they can be handled
by one procedure in a rather simple manner. We
shall set up a procedure to handle a general summa-
tion of the form

s= > f

where we understand that f, the function being
summed, involves the index of summation <.

This is easily set up as a procedure.

procedure sum (s, i, m, n, f);

begin

s:=0;

fori:=mstep luntiindos:=s-+4f
end

The three summations will be performed as a re-
sult of the following three procedure calls:

sum (e, x, 1, 20, x T 2);
sum (f, y, 3, 14, cos (0.1 X y));
sum (g, t, 0, 8, sqrt (a + 21 [t] + 22 [t]));

The result of these three calls will be the same as
the result of executing the following three com-
pound statements:

begin

e:=0;

forx:= lstepluntil20doe:=¢+xT2

end;

begin

f:=0;

fory :=3stepluntil 14dof :=f + cos (0.1 X y)
end;

begin

g:=0;

fort := Ostep Luntil 8do g : = g + sqrt (a + zl [t]
+ 22 [t])

end

Thus we see that what is transmitted to the pro-
cedure body by a procedure call is a rule for com-
puting values, not the values themselves. Still,

PROCEDURES 77

the object program machine instructions corre-
sponding to the procedure body are in computer
storage in only one place; there need not be a
copy for each procedure call.

We see in this example, incidentally, that the
actual parameters of a procedure call can include
other procedures. (Cosine and square root are
proeedures, although of a “built-in” variety that
does not require declarations.) In fact, we shall
see in Section 7.7 that the call of a procedure may
even involve that same procedure.

Let us consider another example to see how we
might prefer to transmit the value of an expression
to a procedure instead of the expression itself.
Suppose we wanted to use the procedure named
sum to compute the sum

[n(a—1)}/2
h= D i
i=n+41
When we write the procedure call sum (h,i,n 4 1,
n X (m— 1)/2, i73);, the procedure body will in
effect be changed to

begin

h:=0;

fori:=n-+ 1stepluntiiln X (n — 1)/2do
h:=h+it13

end

Because in the full generality of the for-statement
it is possible that the expression after the until
could change, it will be evaluated every time it is
tested. Yet in this program it never will change,
since it does not depend on the index of summation
or on anything in the controlled statement. We
would be perfectly content to have the expression
evaluated once upon entry into the procedure body
and to use that value in all tests.

This is precisely what happens when a parameter
is called by value, which we indicate by writing
the word value immediately after the formal
parameter list in the declaration, followed by the
names of all variables to be called by value. The
procedure declaration for our example could be
as follows, where we have dictated that both limits
of summation should be called by value.

procedure sum (s, i, m, n, f); valve m, n;
begin

s:=0;
fori:=mstepluntilndos:=s+4f
end
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Now, when the procedure is called, the expres-
sions that are the actual parameters corresponding
to the formal parameters m and n will be evaluated
once at the outset and those values used through-
out (although in general they could be changed
in the body of the procedure).

Why not call everything by value? TFor one
thing, the whole idea applies only to input param-
eters: it makes no sense to talk about finding the
value of an output parameter at the outset. Sec-
ond, there are several types of parameters that do
not represent numerical or Boolean values: proce-
dures, functions, labels, switches, and strings, for
instance. Finally, there is a processor considera-
tion. In programs compiled by some processors
there might not be any saving in calling an actual
parameter that is a single number or variable by
value; in others there might be considerable ad-
vantage.

Calling by value is primarily a question of ob-
ject program efficiency, although rare occasions
may arise in which the operation of the procedure
is ambiguous without it. We ignore these occa-
sions as being quite unlikely in the vast majority
of typical programs. For the sake of efficiency,
we suggest the following routine approach: call by
value any input parameter that actually does rep-
resent only a value.

7.5 Specifications

Nothing that we have done so far gives the
processor any information about the kinds of things
represented by the formal parameters—they could
be real, integer, or Boolean variables; they could
be strings of letters and digits; they could be
switches; they could be labels; they could be pro-
cedures. The difficulty is that the object program
produced from the procedure body will in general
be different for different kinds of parameters, and
the processor has no way of knowing what each
parameter is until it translates the various proce-
dures calls. This leads to considerable difficulty
in translating the procedure and in many cases to
an inefficient object program.

For a simple example of the latter, suppose that
two of the formal parameters in a procedure decla-
ration are p and ¢ and that within the procedure
body we have the expression p1q. What kind of
object program segment should be set up to evalu-
ate them? If ¢ is a real variable, the object pro-
gram should use the formula p1q = etxX0 byt if

q is an integer variable it should multiply p by it-
self g times. Since g could be either, the object
program must be able to accept either, and if both
actually occur the object program must handle
them differently.

In most cases we do not really want this kind
of generality; in this example, we would know per-
fectly well whether g is real or integer. Therefore,
why not provide the processor with this informa-
tion in the procedure declaration? This is precisely
what specifiers allow. A specifier may be any of
the following: label, switch, string, real, integer,
Boolean, procedure, real procedure, integer proce-
dure, Boolean procedure, array, real array, integer
array, or Boolean array. Specifiers are written
following the value list (if any). They are analo-
gous to declarations, in a way, in that they specify
certain things about the formal parameters; they
are quite different from declarations in that they
do not of themselves cause any action to take place,
such as the assignment of storage locations to vari-
ables and arrays.

A specifier does this: it tells the processor what
kind of thing to expect when actual parameters are
written in procedure calls. This simplifies setting
up the object program corresponding to the proce-
dure body and removes the possibility of certain
ambiguities that can arise.

Omission of specifiers often leads to completely
pointless generality and to much additional work
for the processor. Some ALGOL systems require
specifiers.

Examples of specifiers appear in the case studies.

7.6 Machine Code in Procedure Bodies

ALGOL permits the body of a procedure to be
written in actual machine language, or something
close to it, either to do things that are impossible
or inconvenient in ALGOL language or that are so
commonly used that object program efficiency dic-
tates a carefully written machine code.

All the standard funetions (square root, absolute
value, ete.) listed on page 19 would ordinarily be
written in machine code, as would input and out-
put procedures. Machine code procedures can be
set up either as functions or as ordinary proce-
dures. The standard functions, as we have seen,
are set up as functions: writing the name and some
expression for a parameter produces a value that
may be used where the function name is written.
Input and output operations, on the other hand,



would tend to be written as procedures: writing the
procedure name with parameters causes the input
or output action to take place, with no value being
associated with the procedure name.

Machine code functions and procedures will tend
to be different at different computer installations.
Each installation will have its own needs for spe-
cial functions, and input-output may be different
for different machines or different installations.
Input and output procedures are discussed a little
more fully in Chapter 8.

7.7 Recursive Procedures and Calls

ALGOL permits a procedure body to make use
of itself and also permits the call of a procedure to
name the procedure. Let us illustrate each of
these briefly.

A procedure is to be set up to evaluate the fac-
torial of an integer n. This can be done with a for-
statement, but here we shall employ a recursive
procedure body to illustrate the concept. The pro-
cedure is quite short but not exactly obvious at
first glance:

real procedure factorial (n);
if n = 1 then factorial : = 1 else
factorial : = n X factorial (n — 1);

We see that the procedure body calls the same
procedure if n is not 1. If n is 2, the body says
that the factorial is 2 X factorial (1), which is
just 2 X 1. Thus the procedure would be called
n times to compute the factorial of =.

This is not a very good way to compute a fac-
torial, since it is much slower than a simple two-
statement computation based on a for-loop. In
fact, it is rather difficult to find simple examples
that show this technique to good advantage. The
best examples, unfortunately for us, seem to be in
things like theorem proving, language translation,
and ALGOL processors. In these cases the idea
of a recursive procedure is basic to the whole oper-
ation—but it would be out of the question for us
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to try to delve into such applications in a book of
this type.

Recursive function calls are another matter.
Suppose we have to evaluate the double sum

8 11
d= 2 2 (" +K)*
j=1 k=2
Suppose now that we have a function similar to
the procedure of Section 7.4, that is, the value of
the summation is assigned to sum.:

real procedure sum (i, m, n, f);
begin real temp;

temp : = 0;

fori:= m step 1 until n do temp : = temp + f;
sum : = temp

end

Now, the double summation is easily written as a
recursive call of the function sum:

d :=sum (, 1, 8, sum (k, 2, 11,
sqrt G T2+ k 12)));

We see that the summand in the main procedure
(function) call is another call of the first proce-
dure. This does precisely what we want in evalu-
ating the double sum.

It should be understood that the processor can
still set up the object program to contain the pro-
cedure body only once. How this can be done is a
fascinating question but unfortunately not rele-
vant, here.

Recursive procedure bodies and recursive proce-
dure calls are potentially among the most signifi-
cant features of the ALGOL language. Neverthe-
less, they do pose some serious problems for the
writers of processors. Several of the presently
avallable versions of ALGOL do not permit them.

7.8 Case Study 8: Special Functions
We are required to evaluate the following three

formulas for fixed values of a, b, and ¢ and a range
of values of r, s, and ¢.

w = a sinh (7rI‘ + bS) + ce(surcnsin r — arctanh r/2)
x = b%Jy(t/m) — rsinh (b arctanh r/x)

(Ve — J1(t)) cos (aresin (1 — 12/5)) + In|Jo(rt + s/t)]
y =

r: 000.1)1
2(0.5)5
t: 1(1)10

s

aresin —

2%
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real procedure sinh (x); real x;

begin real temp;

temp : = exp (x);

sinh : = (temp —1/temp)/2

end;
real procedure arcsin (x); real x;

arcsin : = arctan (x/sqrt (1 — x T 2));
real procedure arctanh (x); real x;

arctanh : = 0.51In ((1 4+ x)/(1 — x));

Figure 7.3. ALGOL procedure declarations for functions to com-
pute a hyperbolic sine, inverse sine, and inverse hyperbolic tangent.

This example is obviously contrived and per-
haps not wholly realistic. The intention is to show
how a programmer can make use of ALGOL funec-
tions (procedures) in an uncomplicated way to
simplify the work of programming. Things of this
general nature are not uncommon.

The problem to be solved in programming this
job is the occurrence of mathematical functions
that are not included in the standard ALGOL set.
Furthermore, every such function appears at least
twice, and we would like not to have to write out
the steps to evaluate these mathematical functions
every time they are needed.

The first step is to express the unfamiliar func-
tions in terms of things we can readily compute.
The following identities do what we need:

Hyperbolic sine: sinh (x) = 5

Inverse sine: arcsin (x) = arctan
T~ X

Inverse hyperbolic tangent:

1+x

— X

arctanh (x) = 3 log

Bessel function of the first kind, integral order n:

T
n! 1-n+ 1)
(x/2)*
1-2(m +1)n + 2)
(x/2)°

1230+ Do+ 2@ + 3) +_"'}

Taking these in order, an ALGOL function to
compute the hyperbolic sine presents no great prob-
lems. To save computing the exponential twice,
however, it would be a good idea to rewrite the

formula as

X __ 1/eX
sinh(x)=e——/e—

The inverse sine and inverse hyperbolic tangent
present no problems either. The procedure decla-
rations for the first three functions are shown in
Figure 7.3. Note that z is specified in each case
as real.

The Bessel function is a little more work, since
it involves the evaluation of a series and since we
choose to set it up to be valid for any integer value
of n. Let us lock at the series first. Probably the
best way to evaluate it, for our purposes here, is to
derive each term from the preceding one. The
exact method of doing this can be read from the
algorithm in Figure 7.4 as easily as it could be
described in words. The program has been set up
to stop computing terms after finding one that is
less than 10—® times the sum so far. After the
sum of the (truncated) series has been found, we
compute the factorial of n and perform the calcu-
lation of the Bessel function. Note that if n = 0
we must be sure that the factorial of zero is cor-
rectly computed as 1, which it is in the method of
Figure 7.4. Note also that z is called by value to
avoid several computations of the expression that
might be written as an actual parameter.

With these functions out of the way, it is rela-
tively simple to write the main program, which is
shown in Figure 7.5. It is understood that the four
procedure declarations would appear in the head
of this program block.

7.9 Case Study 9: An Ordinary
Differential Equation

We are required to set up a procedure. to inte-
grate any differential equation of the form

dv

— y = y¢ when x = xq
dx

=y =1k,
We choose, more or less arbitrarily, to solve this
problem with one version of the Runge-Kutta
method.

As in any numerical attack on an ordinary differ-
ential equation, we begin at a known point on the
curve and use the equation for the derivative to
locate an adjacent point. Stating the problem a
little more precisely, we are given y, at zo; we are



PROCEDURES 81

real procedure Bessel (x, n); value x; real x; integer n;
begin real sum, term, denoml, denom2, nfact, m;

sum : = term : = denoml : = 1;

denom?2 :=n 4 1;

A: term := —term X (x/2) T 2/(denoml X denom2);
sum : = sum -+ term;

if term < ;p—6 X sum then go to B;

denoml : = denoml + 1;

denom?2 : = denom2 + 1;

goto A;

B:nfact : = 1;

form : = 1 step 1 until n do nfact : = m X nfact;

Bessel : = (x/2) T n/nfact X sum

end

Figure 7.4. ALGOL procedure declaration for a function to compute a Bessel function of the first kind, integral order n.

tofind y at ¢ = 29 + h, xg + 2k, z + 3h, - - -, where
h is a constant interval on the z-axis. Let us say, in
general terms, that we know y = y;at a point z = z;;
we are required to find y = y;44 at a point z =
zjiy1 = z; + h. With the Runge-Kutta method, we
find y;11 by applying the following formulas in
sucecession:

ky =h-f (x;, y3)
ke =h-f (x; + h/2,y; + k1 /2)
ks = h-f (x; + h/2,y; + k2/2)
ky =h-f (x; + h,y; + ka)
Vi1 = Vi + & (ki + 2ky + 2ks + ky)

The procedure to carry out this computation
must be able to accept four parameters: z, y, h,

begin real 2, b, ¢, 1, s, t, pi;

and the function of z and y that gives the deriva-
tive, that is, the differential equation. We shall
assume that the procedure is called once for each
pair of values of z and y; in other words, the in-
crementing of x and the use of the values of y are
handled by the calling program. The procedure
shown in Figure 7.6 has been given the name RK.

Note that f is specified as a procedure; this will
be the function of = and y that gives the deriva-
tive, that is, the equation to be integrated. This
procedure is therefore able to integrate any differ-
ential equation once we write a function to tell it
what the equation is.

Suppose we want to integrate

X3 y2 %
e *> + 1.63 e 7 1Y
Y (5 2

(The procedure declarations of Figures 7.3 and 7.4 would be

written here)

pi: = 3.1415927;

Read (a, b, ¢);

forr : = 0 step 0.1 until 1 do

for s : = 2 step 0.5 until 5 do
fort : = 1 step 1 until 10 do
begin

w:=a X sinh (pi X+ b X s) + ¢ X exp (arcsin (r) —arctanh (r/2));
x:= b 12 X Bessel (t/pi, 0) — r X sinh (b X arctanh (r/pi));
v = ((sqrt (¢) — Bessel (t, 1)) X cos (arcsin (1 — r T 2/s))

+ In (abs (Bessel (pi X t + s/t, 2))))/aresin (r X s/(2 X pi));

Print (r, s, t, w, X, ¥)
end

Figure 7.5. Program for Case Study 8.
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procedure RK (x, y, h, f); value x, h;
real procedure f;
begin real k1, k2, k3, k4;
kl :=h X f(xvy);
k2 :=h X {(x+ h/2, y + k1/2);
k3 :=h X fx+h/2 y+ k2/2);
kd :=h X f(x+ h,y 4+ k3);
y:=y+(kl+2Xk24+2Xk3+ k4)/6
end

Figure 7.6. A procedure declaration for integration of a differen-
tial equation by the Runge-Kutta method.

Figure 7.7 is a program to do this, calling RK for
the integration. The program has been set up to
read from a card the initial values of z and y, the
interval A, and the final value of . The stepping
of x and the printing of z-y pairs is set up as a
for-loop.

Let us investigate a little more closely what hap-
pens when the program of Figure 7.7 is executed.
The procedure declaration in its heading causes no
computation to take place; it merely defines the
function. When the procedure call RK (x, y, h,
deriv) is encountered, the Runge-Kutta integration
procedure is called, with the current value of z, the
interval h, and the function identifier derv as
input parameters; y is the single output parameter.
The procedure RK in turn calls the function dertw
to evaluate the formula for the derivative at four
points as required in this version of the Runge-
Kutta method. With the new value of y computed
for x = x + h, control returns to the calling pro-
gram, where the new value of x and the new value
of y are printed. Note the expression in the out-
put procedure call.

We may note the three different ways = and y
are used as identifiers in this example: as formal

begin real x, v, h, xfirst, xfinal;
real procedure deriv (x, y);
deriv := (xT3/6 +y12/2) 7 (1/3)
+ 1.63 X exp (—x — y);
Read (xfirst, h, xlast, y);
for x : = xfirst step h until xlast — h do
begin
RK (x, v, h, deriv);
Print (x + h, y)
end
end

Figure 7.7. Program to integrate a differential equation, using

the function of Figure 7.6.

parameters of the function dertv, as formal param-
eters of the procedure RK, and as variables in the
main program, where they become actual param-
eters in the call of RK. Different names could
have been used in each of these three places, with
absolutely no effect on the operation of the com-
plete program. On the other hand, the duplication
causes no trouble to the processor or the object
program and makes the source program a lot easier
for us to follow.

What was gained here by setting up the integra-
tion as a procedure? Actually, not much, in this
example; but suppose the integration method were
much more complex and that the procedure had
already been written by someone else. Now, to
integrate an equation would merely require writing
the calling program (with a function declaration
to define the equation) and inserting the RK pro-
cedure in our program. Here we see one of the
major applications of the idea of procedures: a
general program, set up as a procedure, can be
borrowed by other programmers, often at a great
saving in effort.

EXERCISES

*1. Declare a function to compute

Then write assignment statements using this function to
compute

alpha = Gﬁlﬁ_

¥+ V14 2y + 3y
2.1z 4 z*

beta = —

22 + V1 + 22 + 322
gamma = Sy

v+ V12 + 3y

delta = !

sin?y + V14 2siny + 3sin’y

2. Declare a function to compute
1
Slg () = 2549 log (a + a* + -)
Then use the function in assignment statements to compute

R=X+logX+2.549log<X+X2+%)

8 = cos X + 2,549 log (1 + X + (1 + X)? +W}_X)

T = 2.549 log ((A _B) +(A—B) + ____L*)

U = (B[il + 6)° + 2.549 log (El[l‘] + BL[H# B [i])



*3. Declare a function to compute

S34 (x,a) = Vx2 —al?

Then use it in computing

V\/WR

SFK = og|V + vV - R?|
12 — % %
pgp — (X[ = BY% | 2B (X [iI" — B)
7 5
+ B¢ (X (i)2 _ Bz) 21

3

4. Declare a function to compute

squad (a, b, ¢, x) =
Then use it in computing
B 4P7 + 2Q
(4PR — Q)VPZ2+ QZ + R
AVP = VRY? +8Y + V/DY? 1 EY + 16

*5. Declare a function to compute

1+vV1+x ifx<0
Y = o ifx =0

1—\/I—l—x2 ifx>0

Then write statements to compute the following formulas,
which use the mathematical function notation: “Y as a
function of a + 2,”’ ete.

F=2+Y(a+12

Y(x[k)+Yxk+1])
2

H = Y (cos 27x)) + 1 + Y (27x)

6. Declare a function to compute

G =

a n
Rho (a, B, n) = 5- 3. B;
T i=1
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where B is a one-dimensional array of 50 elements and
n £ 50. Then use it to compute 1/2r times the sum of the
first 18 elements of an array named A4; call the result
Some.

*7. If A is any two-dimensional array with 20 rows
and 20 columns, declare a function to get the sum of
the absolute values of the elements in the kth row of A4,
except for a [k, k], that is,

sumnr (A, k) = > | Ayl
ik

8. A is any 20x20 array. Declare a function to

compute
PD (A1, )

_AG-LI+AT+L+ALI -+ Af+ 1]
4

Then use it to compute
Bij = (1 - a.lpha)-Bij

+ alpha Bi_ii + Biy,j + Bij—1 + Bija

4

*9. A is a one-dimensional array with a maximum of
50 elements. Declare a procedure to compute the aver-
age of the first N elements and a count of the number
of these elements that are zero. Name the procedure
Avernz (A, N, average, NZ).

Then use the procedure to get the average of the first
20 elements of an array named Zeta, place the average
in Zmean, and place the count of zero elements in Nzent.,

10. Same as Exercise 9, except that there is to be a
fifth parameter named error, with the procedure param-
eter list to be written A, N, average, NZ, error. If all
of the first N elements of the array are zero, set error =
true; otherwise, set error = false.

11. Given a one-dimensional array with N elements,
declare a procedure to compute the mean and variance
of the elements, with the declaration beginning statistics
(A, N, mean, variance). The necessary definitions are

12 . 12
mean = — »_ A;  variance = = > A;> — mean?
Ni=1 Di=1
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. INPUT AND OUTPUT

8.1 Introduction

We have chosen in this book to minimize
the topic of input and output in order to
concentrate on the more important (to the
beginner) concept of an algorithm and how
algorithms can be expressed in the ALGOL
language. It should be realized, however,
that in actual computer applications of any
reasonable size the question of input and
output becomes a major issue. Without try-
ing to give an exhaustive treatment, we can
indicate some of the typical techniques.

As a matter of fact, the extremely simpli-
fied Read and Print procedure calls that
have been used so far could be implemented
—that is, a processor could rather easily be
designed to turn out usable object programs,
given no more information than the names
of the variables. For reading of cards, this
would require that the cards be punched in
some way that would indicate where one
number leaves off and another begins. A
particularly simple way to do this 1s to re-
quire that each number be separated from
adjacent numbers either by a comma or a
blank column. With such a convention,
numbers can be of any required length and
need not be punched in fixed position on the
card. That is, the first number on each of
a group of cards might occupy five columns
on the first card, seven columns on the sec-
ond, two on the third, etc. Numbers can be
punched with a decimal point if desired, and
negative numbers can be indicated by
punching a minus sign in front of the num-

ber. Figure 8.1 shows a card punched ac-
cording to this system, with the four num-
bers being 12.754, —874, 0.000078, and
—0.6664938. Note that 1t was punched on
a card punch that prints the contents of
each column at the top.

For output, the simple Print procedure
would have to print numbers in a fixed for-
mat. Since the numbers to be printed could
be of any size, it would be necessary to print
them in floating point form, that 1s, as a
decimal fraction times a power of ten. The
conventional way to indicate the exponent
is to precede it with the letter “E.” If 20
printing positions are allowed for each num-
ber, the four numbers on the card of Figure
8.1 would print in this format as shown in
Figure 82. The printers for most com-
puters have 120 printing positions in a line,
so that a maximum of six numbers per line
could be printed with this scheme. If the
Print procedure listed more than six quan-
tities, additional lines would be printed.

Such a simplified system is entirely ade-
quate for running practice problems while
learning the basic ideas of algorithm writ-
ing. We feel, in fact, that it is much to be
preferred that the beginner not become en-
tangled in the details of a complete input and
output system too early, lest the more im-
portant idea of the language of computing
be obscured.

By now, however, these basic ideas should
be fairly well in mind, and we turn to a brief
consideration of something a little closer to
computing world reality.
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Figure 8.1. An example of a data card.

8.2 Input and Output in ALGOL

ALGOL was designed to be as independent of
the characteristics of particular computers as pos-
sible. Since different machines differ widely in
their input and output devices, it was decided not
to include anything about the subject in the formal
definition of the ALGOL language. Each writer
of an ALGOL processor, therefore, must choose
some system of input and output that is appropriate
to his machine.

Since the various ALGOL processors will have
different input and output characteristics, we can-
not describe “the” ALGOL system and have it
correct for every version of ALGOL. We have
chosen to work with a hypothetical system, which,
so far as is known, is not precisely the same as that
for any actual processor. However, it is rather
similar to the input and output capabilities of
ALGOL for the Burroughs B5000 and not greatly
different from the input and output characteristics
of FORTRAN, a computer language somewhat
similar to ALGOL.

0¢12754000E 02 ~0+87400000E 03

8.3 The Format Declaration

The fundamental idea, which is common to all
ALGOL and FORTRAN input and output sys-
tems, is that a lLst of variables is associated with
a set of field specifications contained in a format
declaration. This is the method of solution of the
basie problem: how to tell the processor how much
space is occupied by each number and how the
number is written (with or without decimal points,
with or without an exponent, ete.).

The format declaration is not a part of the basic
ALGOL language; the processor must be designed
to accept it accordingly. The simplest format
declaration, as used here, takes the form

format identifier (field specifications) ;

The identifier is used to distinguish the various
format declarations, since in most programs there
will be many of them. The field specifications,
which we shall consider in Section 8.4, are sep-
arated by commas if there is more than one—which
is almost always.

0+78000000E-04 ~0466649380E 00

Figure 8.2. A line printed from the data on the card in Figure 8.1. The numbers are in floating point format, with 20 spaces for each.
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In the system assumed here every Read and
Print proeedure call must now contain as its first
parameter a format declaration identifier.* The
processor scans across the list of variables in the
Read or Print statement, keeping in step with a
similar scan of the field specifications in the format
declaration to determine the format of each data
field on a card or the format in which each number
is to be printed.

Before considering the various field specifica-
tions in detail, let us look at a simple example.
Suppose that five integer variables named a, b, ¢, d,
and e are to be printed, with four columns for a,
five for b, six for ¢, and seven each for d and e.
{The determination of the amount of space to be
allowed for each number is the programmer’s re-
sponsibility; enough space must be allowed to
accommodate the largest value that could ever
need to be printed.) It happens that the conven-
tional way to designate an integer for printing is
with the field specification “I,” which is followed
by a decimal number that dictates how many
spaces are to be allowed for the number. We
could therefore print the five integers with the two
statements:

format F1 (14, 15, 16, 17, 17);
Print (F1, a, b, ¢, d, e);

These work as follows. The format declaration is
required to appear in the heading of some block.
It does not by itself cause any action to take place
in the object program. When the Print procedure
call is encountered, the F1 specifies that the vari-
ables are to be printed according to the field speci-
fications in the format declaration having the iden-
tifier F1. The list of variables is then scanned,
from left to right, keeping in step with a similar
scan of the field specifications in the referenced
format declaration. The two statements would
thus print @ in four printing positions, b in five, ¢
in six, and d and e in seven each. As we proceed,
we shall see several extensions of this fundamental
scheme of scanning.

* A system could be designed to make this requirement
optional. If the first parameter was not a format identifier,
which the processor could determine from the declarations
elsewhere in the program, it would be assumed that the
highly simplified input and output used heretofore in this
book was desired. The same system could thus be used
either for simple programs and student practice or for
regular production computing.

8.4 Field Specifications

We shall discuss four types of field specifica-
tions, plus two other things that a format declara-
tion may contain in our hypothetical but realistic
input and output system. In each of the four
types a complete field specification consists of the
following:

1. A letter (I, F, E,or B) to designate the type
of information and something about how it is to
be handled.

2. A number to designate how many card col-
umns or printer spaces are involved.

The E and F field specifications require a second
number to prescribe decimal-point handling.

To save repetition, we may note some facts that
apply to each of the field specifications I, F, and E.

On wmput a sign, if any, must be the first non-
blank character of the field. The use of a plus
sign is always optional; if no sign appears, the
number is taken to be positive. Embedded blanks
are taken to be zeros.

On output the number will appear at the right
of the assigned field if more characters are speci-
fied for the field than there are characters in the
number to be printed. If too few characters are
specified, the sign and high-order digits will be lost.
Plus signs are not printed.

In all four kinds it is permissible to specify that
the same field specification applies to several suc-
cessive fields by writing a repetition number in
front of the field specification.

Field Specification | (Integer)

This is of the form Tw. T specifies conversion
between an internal number of type integer and
an external decimal integer. The total number of
characters in the field, including sign and any
blanks, is w. Decimal points are not permitted.

Field Specification F (External Fixed Point)

This is of the form Fw.d. The F indicates con-
version between an internal number of type real
and an external number written without an ex-
ponent. The total number of characters in the
field, including sign, decimal point, and any blanks,
is w. The number of places after the (assumed)
decimal point is d.

On input the use of an actual decimal point is
optional: if one is supplied, it overrides d. Shown
below are some sample data fields and the numbers



to which they would be converted if read under
control of F10.6.

Converted

Data Internal

Field Number
412345678 +12.345678
1234.5678 +1234.5678
—1.2345678 —1.2345678
012345678 +.012345678
—1.2 —-1.2
+1234567 +1.234567
123 +.000123

On output there will be d places to the right of
the decimal point. For example, consider the real
numbers 1.2345678, 12.345678, and —123.45678.
With the field specification F11.5, they would print
as

1623457 12434568 ~123445678

Note that each number has been rounded to five
decimal places and that each occupies a total of
11 spaces. With the field specification F8.2 they
would appear as

123 12435 -123e46

If the field specification F8.5 were used, there
would be trouble because there would not be
enough space to contain the numbers. The result
would be

1¢234571243456823445678

This illustrates that when using the F field
specification it is essential to know the maximum
sizes of all numbers, a problem that is avoided
when the E field specification is used.

Field Specification E (Floating Point)

This is of the form Ew.d. E specifies conversion
between an internal real number and an external
number written with an exponent. The total num-
ber of characters in the field in the external me-
dium is w, including sign, decimal point, exponent,
and any blanks. The number of places after the
decimal point (not counting the exponent) is d.

On wnput the use of an actual decimal point is
optional; if one is supplied, it overrides d. The
exponent part of the field is of the general form
E + ee, which is similar to one transliterated form
of the exponent in a real number in a statement.
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Actual processors would in most cases permit some
shorteuts in writing exponents to simplify card
punching. A positive exponent could appear with
the + omitted or replaced with a blank, that is,
in the form Eee or Eee. If the first digit of the
exponent is zero, it may be omitted. If the ex-
ponent is written with a sign, the E may be omitted.
Thus the following are permissible (and equiva-
lent) ways of writing the exponent plus 2: E + 02,
E 02, E02, E + 2, E2, 402, +2.

For example, observe that the following four data
fields convert to the same internal number if read
in under the control of E14.7 (remember that an
actual decimal point overrides d in the field specifi-
cation) :

+ 12345678 E03
12345678.E — 4

1234.5678E0
+0.12345678 + 4

On output the number will normally appear in
the form +0mnn---E + ee (except that plus signs
are replaced with blanks), where the number of
places after the decimal point is specified by d.

Field Specification B (Blank)

This is of the form Bw. It causes the insertion
of w blank spaces in a line of printing, between
the printing positions for the preceding and follow-
ing numbers. The same thing can always be ac-
complished by providing the same number of addi-
tional spaces in the field specification of the fol-
lowing field, but this is sometimes inconvenient.

Strings

It is frequently desirable in printing results to
provide various kinds of identification, such as
column headings, problem or data identification,
explanatory comments, ete. Such information can
be printed by inserting a string in the format state-
ment. A string is simply any set of the characters
available on the computer, enclosed in quotation
marks.* The characters in the string are printed
in the position in the line indicated by the position
of the string in the format statement. The string
does not correspond to any variable in the list of
the Print that references the format statement.
Instead, the string itself is printed. No indication
of the presence of the string is required in the
Print. Whenever the string is encountered in the
scanning of the format statement, the text of the
string is written out, and scanning continues with-

* Or some transliteration of the quotation marks, typically
asterisks
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out any variable from the list having been trans-
mitted. It is possible to print a line consisting
entirely of text by putting nothing but a string in
the format declaration and listing no variables in
the Print procedure call.

Printer Carriage Control

We have assumed throughout that lines of print-
ing are single spaced, which is what happens if
nothing to the contrary is indicated. Frequently,
however, it is necessary to do something different;
most often, we wish either to double space or to
skip to the top of the next page. In the system
assumed here, these actions are called for by writ-
ing either double or page, respectively, as the first
thing in the format declaration. (Actual input/
output systems usually provide considerably more
than this in the way of carriage control, but the
details vary so much that it would be difficult even
to summarize them. Furthermore, the beginning
programmer would seldom need these capabilities.)

8.5 Additional List Features

So far we have discussed Read and Print calls
in which each variable is named explicitly. This
would obviously not be convenient when an array
is to be read or printed. For this purpose we are
permitted to write variables with subscripts; a
scheme similar to the for-step-until construction
then provides for stepping through the elements
of the array.

Last indering can be specified in a number of
ways in the Read or Print call. Probably the most
direct is to imitate the action of the for-step-until
rather directly, as in the following example:

Print (fori : = 1 step 1 until 5 do x [i]);

In a rather obvious interpretation, this ecalls for
the printing of the first five elements of the array
named X. Tt is permissible to use all of the normal
facilities of the for-statement with a step-until
for-list, such as nesting, a step value other than 1,
and indexing parameters that are themselves vari-
ables.

This does raise a new and important question,
however: what happens if more values are listed
than can be contained in one card or one line of
printing? Let us begin to answer this question by
noting that any input or output operation always
implies starting with the leftmost position of a

new card or line. If there are six numbers punched
on a card, it is impossible to read them with two
Reads, the second taking up where the first left
off. Next, we should note that whenever the clos-
ing parenthesis of the format declaration is en-
countered, the program moves on to a new card or
page, even if space remains in the one at hand.
Thus, if we have five numbers to be printed, all
with the same field specification of E20.8, and we
wrote the format declaration

format F (E20.8);

the five numbers would be printed on five lines.
To get them all on one line, the format declaration
must contain five field specifications; if they are
all the same, it is convenient to use a repetition
number:

format F (5E20.8) ;

The final part of the answer to the question above
is that whenever list variables remain when the
end of a card or line is reached, whether or not the
closing parenthesis of the format declaration has
been reached, the program moves on to a new
card or new line.

For an example of all this, suppose we wanted
to print the 20 elements of an array named R on
four lines, five to each line. The Print call has
no concern with the arrangement on the page:

Print (fori:= 1 step 1 until 20 do R [i]);

The format declaration should have a repetition
number of 5: after repeating the field specification
five times, the closing parenthesis of the format
will be reached, causing printing to start over with
a new line and causing scanning of the format
declaration to begin again at the beginning.

We may note that in the case of output there is
no restriction to single variables. In most systems
any arithmetic expression may be written; it is
the value of the expression that is printed. In
particular, it is permissible to write numbers in the
list of a Print, causing the numbers themselves to
be printed. Note, however, that this is not the
same as writing a string in a format statement.
In the case of the string the characters in the string
are printed exactly as they are written; in the case
of numbers in a list the numbers are printed as
dictated by the corresponding field specification.
It could happen, for instance, that writing the digit
1 in a list would result in printing 0.10000000E 01.

One final note on lists. Tt is permissible to use



a variable in the list as a subsecript in the same
list. This means, typically, that an element of an
array can be punched on a card with its element
number; a single Read call will cause it to be
stored in the proper place in its array. A typical
call would be:

Read (i,},2a [1,]]);

The data card would have to be punched with
the row number first, then the column number,
then the element. It should be clear that variables
used in this way for input must appear earlier in
the list as variables than as subseripts (otherwise
old or nonexistent values would be involved). For
output, there is no such restriction.

8.6 Additional Format Features

Just as it is possible to repeat a field specifica-
tion by writing a repetition number in front of it,
it is also possible to repeat a group of field specifi-
cations. The group is enclosed in parentheses, and
the desired number of repetitions is written before
it. For instance, suppose that eight fields on a
card are alternately described by 12 and F10.0.
We can write 4(12, ¥10.0) to get the desired action.
This is not the same as 412, 4F10.0, which would
describe a card with four 12 fields followed by four
F10.0 fields rather than the desired alternation.

When the list of an input or output operation is
used to transmit more than one record (card or
line), with the different records having different
formats, a slash (/) is used to separate the format
specifications of the different records. For exam-
ple, suppose that two cards are to be read with a
single Read call; the first card has only a four-
digit integer and the second has six real numbers.
We could write

format H12 (I4/6E14.0);

0e¢12345678E 03

0el23E 03 =0e556E 00

-0455555555E 00
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It is possible to specify a special format for the
first one or more records and a different format
from the first group for all subsequent records.
This is done by enclosing the last record specifica-
tions in parentheses. For instance, if the first card
of a deck has an integer and a real number and
all following contain two integers and a real num-
ber, we could write

format form (14, £14.0/(214, E14.0));

A slash always indicates the end of one record
and the beginning of a new one, just as the closing
parenthesis does. The skipping of entire records
(on the printer, usually) is called for by writing
successive slashes. Note that the skipping of n
records is called for by writing » 4+ 1 successive
slashes.

A scale factor may be used with the E field
specification on output by writing the field specifi-
cation in the form sPnEw.d, where s is the scale
factor, P stands for “place” or “point,” and n is
the repetition number. The effect of the scale
factor is to move the decimal point s places to the
right and decrease the exponent by s.

For an example, suppose there are three numbers
that under control of 3E17.8 would print as shown
in the first line of Figure 8.3. The same numbers
printed under control of 3E12.3 would print as
shown in the second line. Printed under control
of 1P3E11.4, the numbers would appear as shown
in the third line. Notice that by allowing only
the minimum number of spaces we have crowded
the printing, making it difficult to read.

For routine printing of numbers of the real type,
the most common field specification is probably
1PE20.7. This prints the decimal point in the
familiar position between the first and second
digits, prints all significant figures available in
most ALGOL systems, and provides plenty of space
for easy reading.

0e87654321E-05

0¢877E~05

1e2346E 02=545556E=01 847654E-06

Figure 8.3. Three ways of printing the same numbers, showing the effect of different field specifications.



90 ALGOL PROGRAMMING

ACCELERATION CALCULATION

X= 4¢9143062E-02
X= 601462201E-02

X= Be9001657E-02
X= 161297321E~01
X= 500163284E-01
X= 8¢6489962E~01
Figure 8.4.

8.7 Examples

A few examples may help to clarify some of the
ideas regarding the use of format declarations to
accomplish desired results.

Suppose that we wish to read a deck of ecards
containing elements of a one-dimensional array
named data. The first card contains only the value
of a number n, punched in columns 1-2, which
specifies how many cards there are in the rest of
the deck. Each remaining card contains an ele-
ment number in 1-2 and the value of the element
in 3-15 in a form for reading with E13.0. The
deck can be read and each element stored in the
proper location with the following format declara-
tion and Read procedure call:

format F56 (I12/(12, £13.0));
Read (F56, n, fori:= 1 step 1 until n do
begin k, data k] end);

In the format declaration the slash says that the
first card contains only one integer. The paren-
theses around 12, E13.0 will cause repeated scan-
ning of those two field specifications. In the Read
the F56 is the format identifier; the n goes with
the first 12; indexing is used to read just n cards.
The use of v as the indexing parameter and k as
the variable subscript is no mistake: we want to
repeat the reading of cards containing an integer
and a real number exactly n times, but there is
no assumption that the integers on those cards
run in order from 1 to n. In other words, the
elements may not be in the deck in proper order;
with this arrangement, it doesn’t matter.

For a second example suppose that an output
page is to be printed with a page heading and
column identifications as shown in Figure 8.4. Note
that there are two blank lines between the heading
and the body. The “X=" and “Y=" are obtained

Y= =641243299E 05
Y= =944016230E 05
Y= =246033842E Q6
Y= =545610328E 07
Y= =9¢8632141E 07
Y= =441126813E 08

Sample output produced by the program segment of Figure 8.5.

with strings in the format, as is the heading. The
X and Y values are the elements of two one-dimen-
sional arrays of six elements each. The statements
to do all this are shown in Figure 8.5.

We have here an example of a Print call without
a list of variables. The format for printing the
heading contains only string text and the three
slashes to skip two lines, but no field specifications.
The second Print uses list indexing to specify the
six elements of each array. The second format
illustrates several features. The X values will be
printed under control of 1PE16.7. Recall that
“1P” will move the decimal point one place to the
right and adjust the exponent accordingly. In
“##Y =" the symbol # is used as the conven-
tional indication of a blank space. These blanks
are necessary to avoid having the Y= print im-
mediately adjacent to the previous X value, which
would make the report difficult to read.

Let us now investigate briefly the kind of Print
and format arrangements used to produce the out-
put samples reproduced elsewhere in the book.*

First consider the results of the quadratic equa-
tion program shown in Figure 1.6. The output
statements should arrange to skip to a new page
before printing the column headings and double
space everything. The data and results are to be
printed with three decimal places and no exponent,
every number being allowed ten printing positions.
The number of roots is a one-digit integer, but six
positions are allowed for it to improve readability.
All this is done simply enough with the segment
shown in Figure 8.6.

Next consider the output of the quadrilateral
analysis program results shown in Figure 3.9. The

* More precisely, would have been used if the printing
had been done according to the scheme presented here.
In fact, it was done in slightly different form with a proces-
sor for an existing computer.
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format G (‘ACCELERATION CALCULATION’ ///);
format H (‘X =’ 1PE16.7, ‘4#Y =" 1PE16.7);

Print (G);

Print (H, fori:= 1 step 1 until 6 do

begin X ii], Y [i] end);

Figure 8.5. Format declarations and Print procedure call to print the output of Figure 8.4. The formats would have to be in the head
of the block containing the calls. The symbol # is used to denote positions that should be left blank in punching the cards of the

program.

two tolerances are to be printed on a separate line
at the top of a new page. Each line of output con-
sists of an integer case number, eight real numbers
with two decimal places, eight blank spaces, and
a word to identify the type of geometrical figure.
The format declarations for this job are shown in
Figure 8.7. Note the convenience of the B field
specification: without it, we would have had to
insert blanks into each string. (It should be
realized that in an attempt to keep the program
of Figure 3.8 simple a shorteut was taken: the
string was inserted in the list instead of in a for-
mat declaration. Although this method is con-
trary to the system described in this chapter, it
could presumably be implemented.)

8.8 Other Input and Output Devices

In this book we have spoken exclusively of read-
ing cards and printing lines. There are, however,
a number of other input and output devices, some
of which are more or less frequently used in connec-
tion with ALGOL programs.

Many computers have a device for punching
cards; a few can only punch cards instead of being
able to print lines on a page. Card punching is
a rather slow process to be avoided if there is any
satisfactory substitute.

Some computers have a typewriter instead of,
or in addition to, a printer. Only the smaller com-
puters have a typewriter as the only printing de-
vice, since typing is slow compared with printing
an entire line at a time, the ratio being in the neigh-
borhood of a hundred to one for a full line of
(generally) 120 characters. A number of the larger
machines have both a line printer and a type-
writer. The line printer is used for volume results
and the typewriter mostly for comments and in-
structions to the operator.

Some machines, typically the smaller ones, are
able to read punched paper tape and to punch it.
An input tape must be prepared on a special type-
writer designed for the purpose, or tape previously
punched on the computer can be read. Output
tapes can be printed on the same special type-
writer. Paper tape can be read at approximately
the same speed as cards or a little slower; it can be
punched faster than typing but much slower than
line printing. It is far slower than magnetic tape.

A few machines can be equipped with a cathode
ray tube (TV) display device. This can be used
for visual displays of graphs and text; if it is pro-
vided with a camera, it can produce permanent
records.

The most important input and output device
besides a card reader and a printer is magnetic
tape. This is available without exception for all

format heading (PAGE, ‘H### A HHH#BIH#H##HFC
X I REA L#HHX LTMAGH4£X 2REALHHX2IMAGH#ROOTS?) ;

format body (DOUBLE, 7F10.3, 16);

Print (heading);

Print (body, a, b, ¢, x1real, x1imag, x2real, x2imag, Roots);

Figure 8.6. Format declarations and Print calls to produce the output of Figure 1.6.



92 ALGOL PROGRAMMING

format L1 (PAGE, ‘ANGTOLER’ F10.4, 5B, ‘SIDETOLER’ F10.4//);

format [.2 (‘CASE’ 2B, ‘AB’ 6B, ‘BC’ 6B, ‘CD’ 6B, ‘AD’ 6B, ‘ABC’ 5B,
‘BCD’ 5B, ‘ADC’ 5B, ‘BAD’ 11B, ‘FIGURE’//);

format square (I3, 81'8.2, B8, ‘SQUARE’);

format rectangle (I3, 8F8.2, B8, ‘RECTANGLE’);

format rhombus (I3, 8¥8.2, B§, ‘RHOMBUS’);

format parallelogram (13, 8F'8.2, B8, ‘PARALLELOGRAM’);

format none (I3, 8F8.2, B8, ‘NONE’);

Figure 8.7. Format declarations to produce the output of Figure 3.9.

large computers and for most small ones as well,
although the smaller machines are not always
equipped with it even though it is available. Mag-
netic tape is utilized in two rather different ways;
the more common application is in speeding input
and output.

Reading cards at a few hundred a minute is slow
compared with the internal arithmetic speed of a
large computer, and printing is little better. There-
fore, except when the amount of input and output
is small, the usual procedure is to use magnetic
tape to reduce the wasted computer time. This is
done, in the case of input, by first taping the in-
formation on the cards with a separate card-to-tape
converter that is not connected to the computer.
While this is being done, the computer ean be used
for other work. When the problem is ready to be
run, the magnetic tape is mounted on a tape unit
that 1s connected to the computer, and the problem
data 1s read in at about a hundred times the speed
of card reading.

Similarly, problem results are written on mag-
netic tape rather than directly printed. When the
problem is completed, the output tape is moved
from the computer to a separate tape unit con-
nected to a printer. The results are then printed
while the computer is engaged in other work.

This perhaps sounds like more trouble than it
is. In practice, the whole operation runs very
smoothly, and the programmer ordinarily has noth-
ing to do with the mechanics of the tape handling.
(In many installations all computer operating is
done by specialists in such work; some program-
mers have never so much as touched a computer.)
The net result is a considerable increase in com-
puter efficiency.

The other, less common, use of magnetic tape
provides intermediate storage for results during
the solution of a problem. For instance, some prob-
lems involve large arrays, which may be too big

to fit in computer storage at one time. In such a
case the intermediate results can be written on
magnetic tape as they are computed and read back
In when they are needed.

A few computers have magnetic drums that are
used for intermediate storage in the same way that
magnetic tapes are. (This is distinet from the
machine in which a magnetic drum is the primary
storage device.) Drums are in about the same
speed range as magnetic tapes but of much smaller
capacity.

No computer would be likely to have all these
devices. A typical small machine has a typewriter
for typing in minor amounts of data and for typing
out results, plus a paper tape reader and punch.
A typical medium-to-large machine has a card
reader, a line printer, a few to a dozen magnetic
tapes that may be used either for input and output
or for intermediate storage, and perhaps a type-
writer.

Writing programs to work with these various
input and output devices requires some additional
language features to specify the device to be em-
ployed and, in some cases, to provide the additional
information they need. These additional language
elements can be built up in two ways. In one class
of ALGOL system there are just two input and
output procedures: Read and Write. The choice of
a particular device is indicated as one of the param-
eters on the call or by a separate deseription of
the file (collection of information) that is to be
read or written. The designation of an input or
output device can be made conditional upon a con-
trol card that is read at the start of a problem
run; this makes it possible to change the choice of
input or output medium rather simply, without
reprogramming. (For instance, it might be desir-
able to switch from the normal tape output to
printer output when only a few lines of printing
are expected for a certain set of data.)



The other way to specify the device to be used
is to provide additional procedure calls for the
various devices, such as punch, type, read paper
tape, write paper tape, read drum, write drum,
read tape, write tape, read input tape, write out-
put tape, backspace, rewind, ete. This method
seems to be in somewhat wider use.

EXERCISES

*1, Four numbers are punched on a card; they are
new values of real variables named BOS, EWR, PHL,
and DCA. Each number is punched in eight columns,
with a decimal point. Write Read and format state-
ments to read the card.

2. Samr: as Exercise 1, except that there is no decimal
point. Theé numbers are to be treated as if they had
two decimal places, that is, two places to the right of
an assumed decimal point.

3. Same as Exercise 1, except that each numper oc-
cupies 14 columns and is punched with an exponent
(and a decimal point).

*4. A Card is punched in the following format.

Associated
Col- Sample Variable
umns Format Name
1-3 4+ xx LGA
4-6 XXX IDL
7-20 =+ x.xxxxxxxE =+ ee BAL

21-34 + x.xxxxxxxli + ee ATL

The small letters stand for any digits. Write statements
to read such a card.

*5. Data is a one-dimensional array of at most ten
elements. A card is punched with a value of N in
columns 1-2 and with one to ten elements of data in
succeeding columns. The number of elements is given
by the value of N. Fach number is punched with a
decimal point but no exponent, in seven columns. Write
statements to read such a card.

6. Same as Exercise 5, except that the numbers are
the odd-numbered elements of data; there are therefore
at most five of them. N is the element number of the
last one, not the total number of elements.

*7. M is a two-dimensional array of integer numbers,
with three rows and four columns. A card is punched
with the 12 elements of M, each integer taking three
columns. Write statements to read such a card, after
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deciding the most advantageous order for the elements
to appear on the card.

8. L is a three-dimensional array named in the dec-
laration

real array L [1:2,1:2,1:3];

A card is punched with the 12 elements of L, each
integer taking three columns. Write statements to read
such a card, after specifying the order in which they
should be punched on the card.

*9, The values of the variables A, B, X, and Z are
to be printed on one line. A and B are to be printed
without exponents, X and Z with. Twelve spaces should
be allowed for A and B, and they should have four
decimal places. Twenty spaces should be allowed for
X and Z, and they should be printed in the normal
form with eight decimal places. Write appropriate
statements.

10. Same as Exercise 9, except that a positive integer
named K is to be printed in six spaces between 4 and B,
and the decimal point is to be moved one place to the
right in X and Z.

*11. A two-dimensional array named ABC consists
of ten rows and four columns. Write a program seg-
ment to print the following on a page. At the top of
the page is the heading “MATRIX ABC.” The ele-
ments .are then printed in the normal row-and-column
arrangement for a two-dimensional array, using E20.8
field specifications. (Hint. Be sure that exactly four
numbers are printed on each line.)

12. A one-dimensional array named CVG contains a
maximum of 40 elements. The input deck has one card
per element; each card has the element number in
columns 1-2 and the element itself in columns 3-12,
punched with a decimal point but without an exponent.
The cards may not be assumed to be in correct order.
It is not known how many cards there are, but the last
card of the deck is blank, which will look like an element
number of zero. Write a program segment to read the
deck and store each element in the correct location in
the array.

13. A two-dimensional array PHX is named in the
declaration

real array PHX [1:10,1:13];

The actual number of rows and columns is given by
the values of the variables M and N, respectively.
Write a program segment to print as many elements
as there actually are, in row order. FEach element is to
be printed on a separate line along with its row and
column numbers. Use I2 for the integers and 1PE20.7
for the real numbers.



ANSWERS TO SELECTED
EXERCISES

There are several acceptable answers to many of
these exercises. Sometimes the one shown here is
better than others, but only occasionally are we able
to discuss the choices open to the student. In other
cases there are several equally good answers; it
ordinarily makes no difference whether one writes

CHAPTER 1

>
v
<

X<y

Big=Y Big =X

A=B+Cor A=C+ B. In short, the answers
given here are correct but usually not unique.

The general idea is to provide you with a way of
checking your over-all approach. If your solution is
different from that given here but produces the same
results with about the same amount of effort, your
answer will be accepted.

No
Yes
s
Yes
Top = Y2
Max =1
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4,
0.999 <X
X <1.001
Yes
Test =1 Test =0
5. x; = Lcos A
y1 = Lsin A
7.
X1 = L; cos A
y1 = L1 sin A1

X2 = X1 + Lo cos Ay
yo = y1 + LosinAg

X3 = Xg + L3 cos Ag
y3=yo+ lgsinAg

Closure

= ~/X32 + y32

!

A better way is to use absolute value:

[X = 1.000|
< 0,001

Test=1 Test =10

10.

Solutions = 0 Solutions = 1

Solutions = 2
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PYTD > 4800

11. 12.

Earnings
< 2000
Earnings
<5000

Tax = 60 + 0.05 x
(Earnings — 5000)

Tax =0 — Yes

PYTD
+ Earnings
= 4800

Tax = 0.02 x
(Earnings —2000)

Yes

Tax = 0 Tax = 0.03125 Tax = 0.03125
(Earnings) (4800 — PYTD)
NYTD = PYTD
+ Earnings
15. Best to get both times in minutes since midnight, l
as shown in first box. Then comes the catch in l
this problem: the two times may not have been
in the same day. Since we are guaranteed that Ty = 600y + m;
they are less than 24 hours apart and that the Tz = 60hg + mg

first one actually is earlier than the second, we
can detect this condition by asking if Ty > Ts.
If this happens, we can correct for it by adding
1440 minutes (= 24 hours) to the second time 1> Ty Yes Ty = Tg + 1840
and proceeding.

No

Difference

CHAPTER 2 =Te-Ty [

Yes l
2. 42Y, 1X2, 2a, and 158 are incorrect because they

start with a digit. x + 3, A/M (square), and

T1.4 are wrong because they contain a character

other than a letter or a digit. g™ and B; are

wrong because superscripts and subscripts are not

allowed. arctan is a function name; begin and

while would be reserved words in some systems.

4. b x+2)/Fy+4
3. ‘f}: ZT+1.26/7(C + D) d. (X + A + 3.1416)/(2 X Z)) 1 2
b (At B)/(C 4+ D) + X112 f.a/b+cXd/leX1Xeg)
L (A + BY/(C + D/(F 1+ G) i (1600042 X G + 1145)/(4568995 X G + 1165)
i1+ x4 x12/24x13/6 5.4 A+B1(+2) XB/C
Lox/(1+x12/3+ (2Xx12/5 f.a X b/(c X d/(e X f))
+ B Xx)T2/(7T+ 4 Xx)12))) i A+B+CXDT2)/(A+79HTG—1)

maXb+eld—2TxT2 + B/(C+ D)) X (A + 6))
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CHAPTER 3

1. a. ifa > bthenx := 169 elsey : = 23.1;
c. go to if rho + theta < ;o — 6 then alldone else oncemore;
e.

signs : = ifg <0 A h <Othen —1elseifg >0 A h > 0then +1 else 0;

f. go to if 0.999 < x A x < 1.001 then wrapup else start new iteration;
Better: go to if abs (x — 1.000) < 0.001 then wrapup else start new iteration;

h. gotoifi = 1 A R < 8 then 261 else if i = 1 then 257 else 207; Note that with this sequence of testing
it 18 not necessary to include the conditions R = S and i # 1.

j. ifi =1 then go to first else if 1 <i A 1 < n then go to between else if i = n then go to last; Note that
the problem statement does not say what to do if 7 is less than 1 or greater than n; we assume in
this solution that nothing is to be done. On this assumption, it is not possible to use a go-to-if
construction, since such a form is required to have the else at the end.

k. Big : = if X < Y then Y else X

m. if abs (Xreal) < 1 A abs (Ximag) < 1 then go to square;

2. a. P:=ifm > 0then 1.5708 X exp (—m)
else if m = 0 then 0
else 1.5708 X exp (m);
Also possible:
P :=if m = 0 then O else
1.5708 X exp (—m X sign (m));
¢. switchg : = ifk < 0 then 1
else if k = 0 then 2 else 3;
Better: switchg : = 2 + sign (k);

3. begin real x, y;

x 1= 1.0;
again: y := 167X x4+ 92 X x72— 1.02
X x713;

Print (x, y);
x:1=x+4+0.1;
if x < 10.0 then go to again;
Stop
end

5. begin real A1, A2, A3, A4 L1, 1.2, 1.3, 14,

x, ¥, OK;

x 1= L1 X cos (A1) + L2 X cos (A2)
+ L3 X cos (A3) + L4 X cos (A4);

y 1= L1 X sin (Al) + L2 X sin (A2)
+ L3 X sin (A3)
+ L4 X sin (A4);

OK :=ifsqrt (xT2+y7T2) <0.01 X
(L1 + L2+ L3+ L4

ALL=#0AL2#Z0AL3I=#0AL4+#0

then 1 else 0
end

The computation could be arranged in many

other ways.

7. begin real a, b, r, Solutions;
Solutions :=14sign(a72Xr724r72
—b1T2)

end

If this were to be used in a practical program, the
test would probably have to be set up so that a dis-
criminant very close to zero would be accepted as
indicating tangency.

10. begin real x, a, b, n, h, Trapezoidal,

sum;

h:= (b — a)/n;

sum : = 0;

X :=a+ h;

here: sum := sum + sqrt (x)

X sin (x)/(x + exp (x));

X :=x+ h;

if x < b then go to here;

Trapezoidal : = h/2 X (sqrt (a)
X sin (a)/(a + exp (a))
+ 2 X sum + sqrt (b) X sin (b)/
(b + exp (b))

end

CHAPTER 4

1. a. forx : = 1.1 step 0.1 until 1.9 do
begin
y := X — sin (x)/cos (%);
Print (%, y)
end

c.root :=sqrt (aT2-+Db12);
for x : = 0.1, 0.6 step 0.1 until 1.0 do
begin
y := 1/(a X root) X arctan (a X
sin (x)/cos (x)/root);

Print (x, y)
end
e. sum : = 0;
term : = 1;

forn : = 1 step 1 until 20 do
begin
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sum : = sum -+ term; Print (%, y)
term : = term X x/n end
end n. fora := 1.0 step 0.1 until 1.9 do
sum :=n := 0; for b : = 1 step 1 until 20 do
term : = 1; begin
for n :=n + 1 while term > ;0—6 X sum y = sqrt ((3.14159 X a) 12 + 1/b)
do begin + exp (—a/2)/(b + 6);
sum : = sum + term; Print (a, b, y)
term := term X x/n end
Pi:— ;';d 3. begin integer N, T';

T:=1;
forT:=T + 2 while TT2 = N do
fFN-N=-T)XT=0

fori:= 2 step 2 until 150 do
Pi:=PixXit2/(i— 1 X i+ 1D);

l. x:=0; o
for x : = x + 0.1 while Print (E;“ go to NotPrime;
beuin (=b X'x) 2 0.001 do NotPrime: (((Whatever follows)))
y :=a X exp (—b X x); end
CHAPTER 5
1. a. begin real distance; real array x [1:3];
distance : = sqrt x [1]7T2+x[2] T2+ x[3]T2)
end
c. begin real D; integer i; real array a, b [1:30];
D:=0;
fori:= 1 step 1 until 30 do
D:=D+ (ali] —b[iDT2
end
e. begin real sum; integer i; real array data [1:78];
sum : = 0;
fori:= 2 step 3 until 78 do
sum : = sum + data [i]
end
h. begin real trapezoidal, sum; integer i; real array Y [1:32];
sum := 0;
fori := 2 step 1 until 31 do
sum : = sum + Y [i];
trapezoidal : = Y [1] + 2 X sum + Y [32]
end
j. begin Boolean greater; real array a, b [1:23]; integer i;
greater . = trve,
fori:= 1 step 1 until 23 do
if a [i] < b [i] then begin greater : = false; go to out end;
out: (((whatever follows)))
end
k. begin integer i, Nbig; real Big; real array vector [1:20];

Big : = vector [1];
Nbig : = 1;
fori:= 2 step 1 until 20 do
if vector [i] > Big then begin Big : = vector [i]; Nbig : = i end
end
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m. begin real Big; integer i, j, Nbig; array vector [1:20];
fori:= 1 step 1 until 19 do

end

begin
Big : = vector [i];
Nbig : = i;

forj : =1+ 1 step 1 until 20 do
if vector [j] > Big then

begin
Big : = vector [j];
Nbig : = j
end;
if Nbig 5 i then

begin
vector [Nbig] : = vector [i];
vector [i] : = Big
end
end

0. begin real heavy; integer i, j, row, column;

real array influence [1:7, 1:17};

heavy : = influence [1, 1];
row : = column := 1;
fori:= 1 step 1 until 7 do
for] : = 1 step 1 until 17 do
if influence [i, j] > heavy then
begin
heavy : = influence [i, j|;
row @ = i;
column : = j
end
end
q. begin real array R, S, T [1:40]; integer i, M ;
fori:= 1 step 1 until M do
Th := R[]+ Sl
end
r. begin real array F [1:50]; integer i, M ;
fori:= 2step luntil M — 1 do
Fli]:=(Fi—-1+F[i]+ F[i+41])/3
end
t. begin real xs, ys; integer i; real array X, Y [1:50];

fori:= 1 step 1 until 50 do

if xs = X [i] then begin ys : = Y [i]; go to out end;

out: (((whatever follows)))

end

x. begin
fori
forj :
begin

real array a, b, ¢ [1:15, 1:15]; integer i, j, k;

= 1 step 1 until 15 do

= 1 step 1 until 15 do

clj]:=0;
fork : = 1 step 1 until 15 do
clijli=cl,jl +ali, k]l X bk, j]

end
end
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CHAPTER 6

—
.

. switch b : = first, second, third, fourth;

gotob|n + 10 + 1];

first: y :=r X exp (x + 1.117); go to continue;
second: y : = s X exp (x + 1.57); go to continue;
third:y : = t X exp (x + 2.89); go to continue;
fourth: y : = u X exp (x + 3.04); go to continue;
continue: (((whatever follows)))

. switch d : = 40, 41, 42, 43, 44,

go to d [entier(k)];

40:y : = g; go to more;

41:y := g X x; go to more;

42:y :=g X xT2 + h; go to more;

43:y :=g X x13 4+ h X x + i; go to more;
44:y:=gXxT4+hXxT2+1Xx;
more: (((whatever follows)))

b. A B C D
u L G G G
v U L U U
w U U L U
X U U U L
c. A B C D E F
g L G G G G G
h U L G G G U
i U U L U U U
j U U U L G U
k U U U U L U
1 U U U U U L
b. A: begin real a, b, ¢, x, asq, xsq, h, 1, ], k;
Read (a, b, ¢, x);
asq:=al2;xsq:=xT2;
B: begin real rootl;
rootl : = sqrt (asq — xsq);
C: begin real log;
log : = In (a);
h : = rootl X log + abs (log)/(rootl 4 1)
end C;
D: begin real bsq;
bsq :=b12;
i:= bsq X rootl 4+ 3/(bsq T 2 X rootl)
—arctan (x/a)/bsq
end D
end B;
E: begin real root2;
root2 : = sqrt (xsq + asq);
F: begin real csq;
esq:=c¢T2;

ji=root215/5 — 2 X esq X root2 T3/3
4+ ¢sq T2 X root2
end F;

101
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G: begin real xcube;
xcube : = x13;
k 1= —xcube T 2/root2 — xcube/(3 X root2 1 3)
+1In (x + root2)
end G
end E;
Print (a, b, ¢, x, h, i, }, k)
end A;
d. begin real a, b, x, p, q, 1, s, asq, bsq;
Read (a, b, x);
asq :=aTl2;
bsq:=b7T2;
begin real T1;

T1 := sqrt (asq + x T 2);
p:=aXT1+ b/Tt;
g:=asq X T173 — bsq X Tl +a X b/T1

end;
begin real T1;
Tl :=a —x;

r:=aXIn(Tl)+bXT113;
s:i=al3Xbsq X T17(1/3)
end;

Print (a, b, x, p, q, 1, 8)

end

CHAPTER 7

1. real procedure denom (x);
denom :=xT24sqrt (1 +2 X x+3 X x12);
alpha : = (6.9 + y)/denom (y);
beta : = (2.1 X z + z 1 4)/denom (z);
gamma : = sin (y)/denom (y T 2);
delta : = 1/denom ( in (y))

The last example suggests that it would have been
a good idea to call z by value; as it is, the sine will be
computed three times in getting denom (sin (y)).

3. real procedure S34 (x, a);
834 :=sqrt (x 72 —a12);
SFK :=V X834 (V,R)/2 — R12/2 X In (abs (V 4 834 (V, R)));
PSB :=834 (x[i], B)17/7 +2 X B12 X S34 (x[i], B) 1 5/5
+ BT4 X S34 (x[i], B) 13/3;

There is no point to a call by value here, since
each formal parameter appears only once in the
procedure body. Nevertheless, both are inefficient,
since the same function of the same parameters is
computed several additional times. Much better:

Temp : = S34 (V, R);

SFK :=V X Temp/2 — R12/2 X In (abs (V + Temp));

Temp : = 834 (x{i], B);

PSB := Temp17/7 42X B12 X Temp 15/5 + B14 X Temp 1 3/3;



5. real procedure Y (x);

ANSWERS TO SELECTED EXERCISES 103

Y:=ifx <Othenl +sqrt (1 +x72)elseifx =10

then 0 else 1 — sqrt (1 + x T 2);
F:=2+4+Y (a4 2);
G:=(Y&xk)+Y&k+1D)/2;

H:
7. real procedure sumnr (A, k);
begin real sum; integer i;
sum : = 0;

It

Y (cos (6.28318 X x)) + 1 + Y (6.28318 X x);

fori:= 1step 1 untilk — 1, k + 1 step 1 until 20 do

sum : = sum + abs (A [k, i]);
sumnr : = sum
end

It is very important not to use sumnr for accu-
mulating the sum in the procedure body: doing so
would require the procedure name to appear on the
right-hand side of an assignment statement—which
would be a recursive procedure body.

9. procedure Avernz (A, N, average, NZ);
begin integer i;

average : = 0;

NZ :=0;

fori:= 1 step 1 until N do
begin
average : = average + A [i];
ifA[i] = 0then NZ := NZ + 1
end;

average : = average/N

end

Avernz (Zeta, 20, Zmean, Nzcnt);

CHAPTER 8

1. format probl (4F8.0);
Read (probl, BOS, EWR, PHL, DCA);
4. format prob4 (213, 2K14.7);
Read (prob4, LGA, IDL, BAL, ATL);
The “7” position in 2E14.7 is immaterial since
the decimal point is punched.

5. format prob5 (12, 10K7.0);
Read (prob5, N, fori : = 1 step 1 until N do data
[iD;
7. The elements can be set up in any systematic
order that is expressible in two nested for-

statements. One simple way is to punch them
in row order.
format prob7 (1213);
Read (prob7, fori:= 1 step 1 until 3 do
forj : = 1 step ! until 4 do M [3, j]);
9. format prob9 (2F12.4, 2E20.8);
Print (prob9, A, B, X, Z);
11. format problla (PAGE, “MATRIX ABC”);
format probl1lb (4520.8);
Print (problla);
Print (probllb, fori: = 1 step 1 until 10 do
forj : = 1 step 1 until 4 do ABC [, j]);
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Array declaration, 50, 66
Assignment statement, 6, 15, 19
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Boldface, 10, 16
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74
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Cramer’s rule, 49
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Declaration, 23, 50, 51, 66, 73
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Diesel efficiency example, 40
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Dynamic storage allocation, 66, 68
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Expression, 16, 17, 18, 19

Factorial example, 79
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for-list, 36, 38, 40, 54, 56
for-list element, 36, 38, 39, 56
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Formal parameter, 74, 82
Format declaration, 85
for-statement, 36, 40, 51, 54, 56
FORTRAN, 15, 85
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Function, 18, 75, 78
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go to, 16, 24
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76

i, 16, 26, 27
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Implication operator, 29

Inner product example, 52
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84

Instruction, 1, 11, 25, 78

integer, 16, 23, 50, 75, 78

Integer number, 14, 50, 51

Integer variable, 15, 20, 51

Inverse hyperbolic tangent example, 80

Inverse sine example, 80

Iteration, 24, 26, 38, 55

label, 16, 78

Label, 10, 24

Laplace equation example, 59

Legendre polynomial example, 61

Linear interpolation example, 59

Local identifier, 62, 74, 76

Logarithm function, 19

Logical and, 29

Logical operator, 29

Logical or, 29

Logical value, 29

Loop, 31

Lower-case letters, 15

Luminous efficiency example, 44, 76
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Machine language, 11, 78
Magnetic drum, 25, 92

Magnetic tape, 25, 91

Median computation example, 53

Negation operator, 29

Nested conditional statements, 27, 28
Nested for-statements, 40
Newton-Raphson method, 38

Norm, 56

Number, 14

Object program, 11, 25, 51

Object program efficiency, 28, 43, 51, 64,
78

Or operator, 29

Output, 8, 24, 25, 56, 69, 78, 84

own, 16, 67

Own variables, 66

Paper tape, 91

Parameter, procedure, 74

Parentheses, 17, 22

Planck’s equation, 44, 76

Precedence of arithmetic operators, 17

Prime number example, 46

Print, 10, 24, 84, 91

procedure, 16, 76, 78

Procedure body, 73

Procedure declaration, 73

Procedure heading, 73

Procedures, 18, 73, 84

Processor, 1, 11, 25, 51, 66, 78

Program, see Source program; Object
program

Publication language, 12, 15

Quadratic equation example, 5, 13, 73,
75, 90
Quadrilateral analysis example, 32, 90

Read, 10, 24, 84

real, 16, 23, 24, 50, 75, 78
Real number, 14, 51, 57
Real variable, 15, 20, 51, 57
Recursive procedures, 76, 79
Reference language, 11, 15
Relation, 26, 29
Relational operator, 25
Relative error, 32, 39
Remainder, 46

Rounding, 17, 46, 57
Runge-Kutta method, 80

Scientific notation, 14

Seidel iteration method, 55

Semicolon, 10, 23

Separate compilation, 66

Sequence of statement execution, 25

Servomechanism example, 41

Sign, 15, 17, 84

Significant digits, 57

Simpson’s rule, 44

Simultaneous equations examples, 12,
49, 55, 59, 68

Sine funection, 19

Social Security example, 13

Sorting example, 58

Source program, 11, 25

Spacing, in a program, 10, 24, 25

Specifications, 78

Square root example, 38

Square root function, 19

Statement, 10, 19

Statement parentheses, 10, 23, 26, 41, 62
Stefan-Boltzmann equation, 44
step, 16, 36

string, 16, 78

Strings, 87

Subscripted variables, 48
Subseript expressions, 51, 52, 68
Summation example, 77

Sum of squares example, 52
Surveying example, 32

switch, 16, 61, 78

Switches, 61, 67

Tax example, 13

then, 10, 16, 26, 67

Tic-tac-toe example, 13

Time difference example, 13
Transfer of control, 10, 23, 25
Transhteration, 12, 15, 23, 24, 25, 87
true, 16, 29

Truncation, 17, 39, 42, 57

Truth table, 29, 46

Typewriter, 91

Unary operator, 29
until, 16, 36
Upper-case letters, 15, 25

value, 16, 77

Variable, 14, 15, 19, 20, 29, 33, 51, 57, 60

Variable identifier, 7, 15, 16, 48, 62

Vector by matrix multiplication ex-
ample, 52

Wallis’ product, 45
while, 16, 38
Withholding tax example, 13
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