ARITHMETIC OPERATIONS
IN DIGITAL COMPUTERS

R. K. RICHARDS, Pu.D.

Development Engineer
International Business Machines Corporation

FOURTH PRINTING

D. VAN NOSTRAND COMPANY, INC.

PRINCETON, NEW JERSEY
TORONTO LONDON
NEW YORK



D. VAN NOSTRAND COMPANY, INC.

120 Alexander St., Princeton, New Jersey
257 Fourth Avenue, New York 10, New York
25 Hollinger Rd., Toronto 16, Canada
Macmillan & Co., Ltd., St. Martin’s St., London, W.C. 2, England

All correspondence should be addressed to the
principal office of the company at Princeton, N. J.

CoryriGHT, 1955, BY
D. VAN NOSTRAND COMPANY, INC.

Published simultaneously in Canada by
D. Van Nostranp Comrpany (Canada), L.

All rights reserved. This book, or any
parts thereof, may not be reproduced
in any form without written permais-
sion from the author and the publisher.

Library of Congress Catalog Card No. 55-6234

First Printing February 1955
Second (Prepublication) Printing February 1956
Third Printing August 1966
Fourth Printing February 1966

PRINTED IN THE UNITED STATES OF AMERICA



PREFACE

Among the first things that are learned in a study of mathematics are
rules and procedures for performing basic arithmetic operations, notably
addition, subtraction, multiplication, and division. The rules and pro-
cedures taught in school are, for the most part, aimed at making the
operations as simple and speedy as possible when a pencil and a piece
of paper are the only tools. In the design of more elaborate arithmetical
tools, it is usually found necessary or at least highly desirable to devise
new methods for executing the various arithmetic operations.

This text has been written to point out the shortcomings of pencil-and-
paper rules and procedures when applied to computing machinery and
to explain the more important of the schemes which have been worked
out for executing arithmetie operations in that class of machinery gener-
ally known as “digital computers.” Of course, to appreciate the features
of the different schemes, many other points must be considered, and these
range all the way from the systems of symbols which are to be used to
the ideas involved in causing a computer to proceed through a long se-
quence of arithmetic operations in an automatic fashion. In other words,
it might be said that the text has been prepared as an answer to the ques-
tion: “How does a digital computer work?”

In the design of computers, not only the methods of performing arith-
metic operations, but also the fundamental concepts with regard to sym-
bolic representation of quantities have been subjected to ecritical review.
For this reason, the explanation of computer functioning has been started
with a discussion of systems of symbols which have been invented for
representing the numbers entering into the computations. Relatively
little attention is given to actual components, circuits, and other en-
gineering details which must be considered when designing a computer.
However, these details have been a great influence in the selection of the
arithmetic methods to be presented, and the advantages and disadvan-
tages of the various schemes from an engineering standpoint are pointed
out throughout the text. Most of the means for performing arithmetic
operations are explained through the use of “functional block diagrams,”
where it is understood that any set of physical components which pro-
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iv Preface

vide the indicated functions may be used. A Boolean algebra notation
is introduced at any early point and is widely used as a convenient
means of representing the block diagrams and, in many cases, as a device
for finding improved functional arrangements.

In the descriptions of the arithmetic operations themselves, separate
chapters are devoted to the methods employed in the binary and the
decimal systems. This separation has been made because, from a ma-
chine standpoint, the operations are quite different in spite of the fact
that the systems are alike, from a mathematical standpoint, except for
a change in the value of the radix. On the other hand, most of the im-
portant ideas relating to the organization of a computer and to the pro-
gramming of it to execute a long series of arithmetic operations are not
related to its binary or decimal nature. Since principles of operation
have been considered to be of first importance, no attempt has been made
to give a complete, detailed description of any one machine, although in
some cases the explanations have been patterned after certain machines
which seemed to be typical of a category. To explain programming prin-
ciples, a simplified “specimen” machine was used as a model. By this
means it is possible to illustrate the important concepts of programming
without the need for describing numerous details which, although highly
desirable in an actual machine, tend to cause confusion in explanations
and which may be totally different from one machine to the next.
This book ‘was originally prepared-as a set of ‘notes to be used with a
course of instruction for engineers at IBM’s laboratories. 1 wish to thank
all of those at IBM, particularly the students in the classes, who have
given assistance either through discussions or through suggesting im-
provements in the text. Also, I wish to acknowledge with thanks the
support and encouragement given me in this project by Mr. Ralph L.
Palmer, Director of Engineering at IBM.

R. K. R.
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Chapter 1

To those familiar with ordinary arithmetic processes, the symbols
which should be used to represent various quantities may appear to offer
no problems or even no room for choice. The Arabic numerals together
with decimal points, plus and minus signs, exponents, and so on, serve
very well for grade-school arithmetic and higher mathematics as well,
and there is no self-evident reason why these same symbols cannot be
adopted for use in computing machinery. To some extent these symbols
can be used; and, since they are so well established, it is desirable that
they be used as much as possible. However, it could hardly be expected
that a system of symbols which was developed along with pencil-and-
paper arithmetic would be the most desirable system when transported
to the field of machine computations. There are many problems con-
nected with the use of the decimal system in a computer, especially when
attempts are made to employ it in the arithmetic unit, or that portion of
the machine which performs the actual computations. It is because of
these problems that it is usually desirable to modify the decimal system,
sometimes considerably, in order to adapt the computations to machine
operations. In some cases it has been found expedient to abandon the
decimal entirely in the computer in favor of another system, known as
the binary system, which will be deseribed in detail later.

The increase in speed of computations (other factors assumed equal)
and the saving in tubes, relays, and other components that can be
achieved by the proper choice of symbols are well known to machine
designers. Of equal importance is the fact that mathematical progress
can be aided or hindered in no small way simply by the properties of
the systems of symbols in use by the mathematicians. The Roman
numeral system, for example, did much to stall the Romans in their
mathematical endeavors. As another example, Leibnitz and his asso-
ciates on the Continent for a time far outdistanced Newton and his asso-
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2 Arithmetic Operations in Digital Computers

ciates in England in the development of the caleculus largely because
the English employed a clumsy system of symbols, while the Germans
had a more useful means for expressing the operations and ideas involved.

The best system of symbols which may be used for computing ma-
chinery applications is difficult, if not impossible, to determine conclu-
sively. Further, it is probably true that the system which is most ap-
propriate for a computer designed for one purpose can be quite unsatis-
factory when applied to a computer designed for another purpose.
However, it is possible to point out the features and characteristics of
the various systems, and this will be done through relating the symbols
to the quantities which they represent. Although a reasonably broad
coverage of the symbols available for use in computors is presented, it
would be well to keep in mind that further modifications or even com-
pletely new systems may be invented which will greatly enlarge the use-
fulness of computing machinery.

Zero. One of the simplest and most elementary quantities which re-
quires a symbol is the quantity of nothing at all, or zero. A common
symbol for zero is 0, which may be thought of as representing a hole or
empty container. Everyone who is familiar with the Arabic numerals
is familiar with the symbol 0 and it may appear ridiculously trivial to
mention it here. When discussing computers, however, it is not a trivial
point, because, as a matter of fact, 0 is for some applications an incon-
venient symbol to use, and other symbols are. frequently adopted. One
such other symbol is 999999, and another is 0011. The reasons behind
the adoption of such symbols are varied, and they depend to a large
extent upon the nature and purpose of the particular computer under
consideration. Factors such as reliability of operation, ability to detect
errors once they occur, savings in components, to name a few, create
problems in the design of computers which are quite different from those
occurring when the familiar pencil-and-paper method of computation
is employed. One unexpected reason for the adoption of an unusual
symbol for zero is that, when this symbol is employed in the internal
mechanism of the computer, it is actually easier to cause the computer
to print the familiar symbol than when the familiar symbol is used
throughout. The details of this and other reasons can be made under-
standable only after certain other topics have been discussed.

One. A single item or unity is called one and may be represented by
the symbol 1, which could easily have been derived from a finger or a stick
or some similar object used for counting. As in the case of zero, the
symbol for one may be, and is frequently, modified to suit the require-
ments of the machine. These modifications, incidentally, are not merely
the substitution of a character of one shape for the character of another
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shape. The shape of the symbol as written on a piece of paper is of no
consequence to a machine because the machines do not handle printed
information, except in that portion which prints the final result, and in
this printing mechanism the type face may have any desired design
without the slightest effect on the computations. If data were entered
into the machine in printed form, symbols of some shapes could prob-
ably be distinguished and identified more readily than those of other
shapes; but in all existing machines the input is of some other nature

PN alad wAe on
such as punched cards or magnetic tape. The modifications which are

of consequence involve the number of characters, the meaning of each
character in the group, and its position in the group.

Twe, In chooging a Svm]'\n] for one nlnc one, or fwn there are three
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quite different lines of procedure that may be fo]lowed

Probably to a person inventing his own system of symbols the most
obvious choice for two is two 1’s placed side by side. In examining the
systems of ancient peoples it is found that this choice is actually rather
common. The Roman numeral system, which is well-known even today,
employs this notation for two. As has already been mentioned, Roman
numerals are clumsy and awkward, and computations performed with
them are much more difficult than those performed with Arabic numerals.
Tt is for this reason that Arabic numerals have replaced Roman numerals
in all but simple counting applications, such as the designation of the
volumes in a series of books or the recording of the date on the corner-
stone of a building. It is debatable, though, that the clumsiness in the
Roman numeral system is caused by their choice of a symbol for two.
The real difficulties are created by their choice for larger numbers, and
the possibility of devising a system useful for computers and based on the
use of two 1’s for two should not be overlooked, although as yet no such
useful system is known.

Another choice for a symbol for two is simply a character of a shape
different from 0 or 1. The Arabic numeral 2 is an example of such a
choice.

A third idea for the development of a symbol for two is to use the same
symbols that were employed for zero and one but to place them in such
a manner that their meaning is two. A scheme which has received con-
siderable use and which is based on this idea is to use the symbol 1 for
two as well as for one but to place the 1 in a different position when it is
indicating two. Then, to indicate that the one is in this different position,
it is customary to place a zero in the original position. The binary sys-
tem of numbers is a continuation of this method of notation.

Three and Larger Integers. No outstanding new ideas that could not
have been employed for zero, one, and two are obvious for the designa-
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tion of three and larger integers. Three may be symbolized by three
1’s, a new symbol such as 3, or by a 1 in the different position combined
with a 1 in the original position with the meaning of two plus one. If a
1 in the different position were to be interpreted as indicating three, a
0 would be placed in the original position; the ternary system of num-
bers involves this step in its system of symbols.

For integers larger than three, all of the processes just described may
be extended, but the writing of a large number of 1’s or the establishment
of a great many different symbols to represent large numbers is clearly
impractical. Although each of these two systems is by itself impractical
for large numbers, a combination of the two systems is not at all out of
the question. For example, symbols may be established for one, ten, one
hundred, one thousand, and so on, and any reasonable integer could be
represented by a reasonable number of these symbols written in any se-
quence or relative position. No particularly successful system is known
which is based on this combination, however. The Roman numeral sys-
tem is similar but with additional complications.

The greatest advances in arithmetic have been made through the em-
ployment of a very few different symbols with their position being used to
indicate their value. The ten familiar Arabic numerals 0 through 9
employed in the well-known manner comprise the most outstanding sys-
tem of this type.

- Radix, The number of digit symbols employed in a system such as the
Arabic numeral system is called the radix of the system. Consideration of
various number systems, particularly when the consideration has been for
possible use in digital computing machinery, has been largely limited to
systems of the Arabic numeral type but with a variation in the choice of
radix. The selection of radix ten was made long before the conception
of computing machinery and was probably chosen to facilitate counting
on fingers. When chosen for such a reason, radix ten is a good choice.
But when finger counting is not practiced, some other radix might appear
more attractive. The advantages of radix twelve have been extolled
from time to time, and this radix has actually been adopted in a limited
way for use with time clocks and in the counting of eggs, tacks, and other
objects by the dozen and gross. The advantages of twelve are derived
mainly from the fact that twelve is divisible by more numbers than any
other small integer. In the design of computing machinery, twelve has
no outstanding advantages over ten. However, certain other radices do
offer substantial advantages over ten for use in computing machinery
when the machinery is designed along certain lines. The phrase, “when
" the computing machinery is designed along certain lines,” is important,
because there are ways of going about designing a computer for which
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radices eight, ten, or eleven, for example, would be approximately equally
desirable. For those designs where the radix does make an important
difference, radices two, eight, and sixteen offer the best possibilities for
an efficient computer. Actually, radix two is the only one which has
been found to offer any improvements functionally. Radices eight and
sixteen are mentioned because they can be employed with substantially
the same designs as used for two. In such cases they amount to little
more than an imaginary grouping of the radix two or binary digits ex-
cept for printed representations of the data and the resuits. Printed
numbers in the binary system are undesirable because it is difficult to
handle a large number of nothing but 0’s and 1’s without making ex-
cessive errors.

So far as is known, radices two, three, eight, ten, twelve, and sixteen
are the only.ones which have ever received serious consideration for use
in computing machinery. The list of those which have actually been
used is much more restricted. In fact, no computer is known in which a
radix other than two or ten is employed. One minor exception to this
last statement exists in that at least two companies have built small
electromechanical desk computers in which radix eight is used. The
purpose of these radix eight computers is to provide a more satisfactory
means for manually checking the computations performed on the radix
two computers; therefore, it would not be quite correct to consider them
in the same category.

The terms binary, ternary, and decimal have already been mentioned
as referring to systems of radix two, three, and ten, respectively. Oe-
tonary, duodecimal, and sexadecimal are the accepted terms applying
to radix eight, twelve, and sixteen, respectively. It is interesting to note
that the Standards Committee of the Institute of Radio Engineers has
gone to the trouble of listing the adjectives to be used in describing
systems of many other radices, including, for example, septendecimal for
seventeen and nonagenary for ninety.

The Digits and Numbers. By way of definition, a digit is a single
symbol or character representing an integral quantity. A number is a
quantity represented by a group of digits. The usual relationship be-
tween the digits, d;, and the number, N, may be expressed mathemati-
cally as

N= d0+d1R+d2R2+d3R3+"'

where R is the radix (also an integer) of the number system in use. A
further condition which is usually, but not necessarily, applied is that
the number of digits be equal to the radix and that 0=d; < R.

When applied to computing machinery, another term frequently used
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to indicate a group of digits is “word,” but the digits in & word may
have any of a wide variety of meanings, and there is not necessarily any
connection between a word and a quantity.

It is standard practice to write the digits of a number in the opposite
order from that shown above; that is,

N = d3d2d1d0

This way, the digits appear from left to right in order of decreasing sig-
nificance where the significance of a digit refers to the change in N that
would be caused by a change in the digit. The term “order” is also used
in connection with digit significance, and it means the digit position in the
group with high and low orders referring to large and small significance,
respectively. The placing of the higher-order digits on the left seems
reasonable in view of the practice of reading from left to right, because
1t is thereby possible to ascertain the relative magnitude of a number at a
glance more easily than if the low-order digits were encountered first.
Although the arrangement of the digits on a piece of paper is of little
consequence, the practice of reading and writing the highest-order digit
first in time is sometimes a source of considerable difficulty in the de-
sign of computers. The difficulty is especially acute for small com-
puters where the data are sent directly to the arithmetic unit as an
operator keys it one digit at a time; and the difficulty arises because it is,
-in general,awkward-to perform computations on numbers.where the digits
appear in descending order of significance.

A somewhat different requirement often arises in the printing of digits.
It is customary to write a number such as 0076, for example, as 76, with-
out any zeros in orders higher than the highest-order nonzero digit. In a
computing machine the zeros are not usually nonexistent as may be the
marks on a piece of paper, and therefore it is necessary to provide means
for suppressing the printing of the unwanted zeros. If the printing is
done one digit at a time with the digits in ascending order of significance,
the zero suppression function is difficult to incorporate into a machine,
but if the digits are printed in descending order of significance, zero sup-
pression is relatively easily accomplished.

The term “significant” has another, slightly different meaning in con-
nection with digits. A digit is significant if it is any of the digits of a
number except one of zeros in orders higher than the highest order non-
zero digit and if it is known or believed to be of consequence for the
accurate representation of the magnitude of the quantity being repre-
sented by the number. If, because of round-off errors, inaccuracies in
measurement, or otherwise; a digit is believed to be of no consequence
for the accurate representation of the magnitude of a quantity, this
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digit is called “not significant.” Tt usually follows that, if any given
digit is not significant because of an inaccuracy, all lower-order digits
in the number are also not significant.

It is now almost self-evident that a “digital” computer is a computing
device which employs numbers composed of digits to represent the vari-
ous quantities undergoing the computations. For some computations of
purely mathematical interest the numbers or the digits are the end and
not just the means, but the functioning of the computer is the same in
either case. In a digital computer the individual digits are represented
by variations in discrete steps of a different set of physical quantities
which may include distance, angle, time, electrical potential, magnetiza-
tion, and others. The physical quantities undergoing computations are
related to the physical quantities in the computer through the medium
of digits and numbers, which are symbols used to facilitate the computa-
tions in the computer.

There is another class of computing machinery known as “analog”
computers, which differ from digital computers in two fundamental re-
spects. The physical quantities in an analog computer are varied con-
tinuously instead of in discrete steps, and they are direct representations
of the physical quantities undergoing computations rather than repre-
sentations of intermediate symbols. Since digital computers are the
subject of this study, analog computers will not be discussed in more
detail.

Economy of Storage “Space” Through Choice of Radix. A factor
frequently mentioned in connection with the choice of radix is the
amount of equipment necessary to store a given amount of numerical
information. This factor is of interest in the design of computers, be-
cause it is usually necessary to store, at least temporarily, in the com-
puter itself the numbers making up the input data, results of inter-
mediate computations, and the final results to be printed. In addition, in
some computers the “program” for a given problem is stored in the same
storage unit with the same system of symbols as other numerical in-
formation. _

In order to discuss the amount of equipment required to store a num-
ber, it is necessary to consider the nature of the equipment. One assump-
tion that may be made is that the amount of equipment required to store
one digit is proportional to the radix of the digit. That is, two units of
equipment may be required for a binary digit, three for a ternary digit,
ten for a decimal digit, ete. In some cases such an assumption is ap-
proximately correct. If the storage device is a mechanical wheel, the
number of gear teeth or detent positions would be proportional to the
radix. Also, it is possible to design electronic storage equipment wherein
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the required number of vacuum tubes is proportional to the number of
stable states of the circuit. It is easy to design a circuit employing two
triodes which has two stable states and therefore is capable of storing
a binary digit, with the existence of the circuit in one state indicating 0
and its existence in the other state indicating 1. It is not difficult to de-
sign a circuit employing three triodes which has three stable states for
the storage of a ternary digit. The extension of the design to a circuit
with ten stable states and employing ten triodes is possible, but such
circuits are generally unreliable and not satisfactory. A different ap-
proach to the problem may be made by using a number of circuits, each
employing two triodes and each with two stable states. For radix ten,
then, ten such twin-triode circuits would be employed, and provision
would be made to cause one and only one of the circuits to be in a given
state of equilibrium at any one time, with all the other circuits in the
opposite state of equilibrium. Although twice as many triodes are re-
quired (2R, where E is the radix), it is possible to design reliable operat-
ing circuits of this type, and the assumption that the amount of equip-
ment required for one digit be proportional to the radix is satisfied.

If n is the number of digits, R* = N is a measure of the maximum
amount of information the digits can represent and is equal to the
number of different stable states of the digit-representing devices con-
sidered collectively. With the above assumption, the amount of equip-
ment required to store N is proportional to nE. Both n and R are usu-
ally integers so that when a change in radix is made there is also of
necessity at least a small change in N. Therefore, an exact comparison
of the storage efficiency of the various radices is difficult, but for illus-
trative purposes it will be assumed that N can be held constant as R is
varied. Then, n (log R) = log N = K, where K is a constant. There-
fore, the amount of equipment is proportional to KR/log R. To deter-
mine the most efficient radix for storage, the expression R/log R should
be examined for minima. By taking the derivative of R/log B with re-
spect to R, it is found that there is a minimum at B = e == 2.718, but the
significance of a nonintegral radix is difficult to imagine. A tabulation
of the expression for several selected radices is more useful.

Radic  R/lgR

2 6.64
3 6.29
4 6.64
5 7.15
8 8.86
10 10.00
12 11.12

16 13.29
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The tabulation indicates that radix three is the most efficient, that radices
two and four are only slightly less efficient than three, and that radices
ten and higher are substantially less efficient.

It should be remembered that these results were obtained after mak-
ing the rather restrictive assumption that the amount of equipment re-
quired to store a digit is proportional to the radix of the digit. Some
serious objections may be made to this assumption, because it seldom
applies to any practical example. Even in the case of the gear teeth
on a storage wheel, it does not apply well. Much more equipment than
gear teeth is required to make a complete and useful mechanical storage
device. In fact, in this particular case, the additional equipment adds so
many compiications that a meaningful comparison of radices is almost
impossible. .

In the case of twin-triode circuits where each circuit has two stable
states, a different objection to the assumption may be raised. The ob-
jection is that it is not necessary to use, for example, ten such circuits to
store a decimal digit, and this is so because each circuit may function in-
dependently. Four independent circuits, each with two stable states, are
sufficient for the storage of 4 decimal digit, since the four taken together
can exist in any one of 24 = 16 stable states. Six of the stable states
may be disregarded, and the other ten may be used to represent the digit.
With a scheme such as this, the inferiority of radix three when compared
with radix two is clearly evident. To store a ternary digit through the
use of bistable twin-triode eircuits, two such eircuits are required, and
of the four stable states available, three are used and one is wasted. To
store a binary digit, only one twin-triode circuit is required, and there
is no waste in the stable states. Because there is no waste in the stable
states, no radix can be more economical with regard to storage space
than radix two when bistable storage elements are used, although any
radix that is a power of two may be equally economical provided each
individual digit is coded properly. If, for example, three twin-triode
circuits are used in the storage of an octonary digit, all possible combina-
tions of stable states must be used in designating all possible values of
the octonary digit. In this respect the octonary system is practically
nec different from the binary system; the octonary digits may be con-
sidered a grouping by threes of the binary digits.

Most of the various types of storage units used in computers are com-
posed of devices which are essentially binary in character, such as the
twin-triode circuits just mentioned. Other examples are a hole punched
or not punched in a card or tape, a relay which may be open or held
closed by the action of a holding coil, a pulse which may be circulating in
a delay-line storage unit or which may be nonexistent, a “dot” or a
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“dash” in a Williams type electrostatic storage tube, and magnetization
in one direction or the opposite direction in a small area of magnetic
tape. One of the few exceptions to the rule is the mechanical counter
wheel. Some of the devices mentioned as being binary in character could
conceivably be used in decimal fashion such as by using the intensity or
direction of magnetization to indicate the magnitude of a decimal digit,
but little success has been achieved in making devices of this character
reliable.

If one of the essentially binary storage devices is employed, the ques-
tion arises as to how much saving in storage space may be secured by
changing from, say, the decimal system to the binary system. The
problem may be solved in the following manner. The number of storage
elements, D, necessary to store a decimal number of d digits is D = 4d.
The maximum number of different conditions, M, that can be represented
by this number is M = 10% Similarly, the number of storage elements,
B, necessary to store a binary number of b binary digits is B = b, and
the maximum number of different conditions that can be represented
by this binary number is M = 2. For a given amount of information
to be stored,

10 = 2° and 10%%D = 2B

From a solution of this equation it is found that B = 0.83D. In other

“words, a saving of approximately 17% may be obtained by changing
from a decimal system employing four storage elements per digit to a
binary system.

To illustrate the above result, consider the storage of a ten-digit
decimal number through the use of 40 storage elements. A binary num-
ber which is nearly as large, 233 = 8,589,934,592, may be stored through
the use of 33 storage elements. The saving is in approximate agreement
with the computed result.

It is of interest to solve the problem under the assumption that the
amount of storage space is a constant and to compare the amounts of in-
formation that may be stored through the use of different radices. For
instance, with four storage elements, one out of 10 different conditions
may be recorded by employing the decimal system, but one out of 16
different conditions may be recorded by employing the binary system.
The increase is 60%. With 32 storage elements, the respective numbers
are 10® and 232 = 4,294 967,296, which indicates an increase of over
4000%. Such a comparison is valid if information is defined as being
groportional to the number of possible different stable states, but this
definition is not very satisfactory. It is better to define information as
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being proportional to the logarithm of the number of different stable
states. The reason for the use of the logarithm may be explained through
the use of a simple example. Assume that L letters may be written on
one page. Since there are 26 letters in the alphabet, the number of
different arrangements of the letters (meglecting spaces, periods, ete.)
that may appear on one page is 26%. The number of different arrange-
ments that may appear on two pages considered together is 2622, The
ratio of the logarithms of these two quantities is two, which indicates the
generally accepted fact that twice as much information may be written
on two pages as may be written on one page. With the latter definition,
the ratios of the quantities of information are

log 10 _ log 103
log16  log (4.29) 10°

which is in agreement with the result obtained previously.

The 17% saving in storage space which may be achieved through the
use of the binary system when compared with the decimal system is
probably worth considering, but it is doubtful that a decision on a choice
between the two systems has ever turned on this factor. The differences
in the nature of the computer components and circuits which may be or
must be used with the respective systems are much more striking.

Other Possible Systems of Symbols. Although the Arabic numeral
system and similar systems, but with different radix, are the only ones
with which much success has been achieved and which have found general
use, it might be well to mention certain other systems. Although zero
is a logical starting point for a system of numbers, it is not the only
possible starting point. In fact, historically, zero was not recognized
and understood until long after the positive integers were in common
use. Symbols for the positive integers can then be employed in such a
fashion that they signify zero. For example, 1 — 1, with the meaning of
one minus one, is a possibility. Another idea which may be employed
in the development of a system of symbols is to have certain symbols
in a group be multiplied by certain other symbols in the group. An
example would be the assigning to 23 the value of two times three, or
six. It is easy to let the imagination run wild on a wide assortment of
schemes of this nature; but since they have not been found to have any
practical value, they will not be discussed in more detail.

A system that deserves slightly more attention is called the “reflected
binary” system, its name being derived from a simple method by which
it may be generated. The outstanding feature of the reflected binary
system is that the representations of successive integers differ, one from
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the next, by only one digit. The system starts with the customary 0
for zero and 1 for one.  For two and three, the 0 and 1 are written in
inverted sequence and then distinguished from zero and one by a 1 in the
second position. Therefore, for zero, one, two, and three, the representa-
tions are 00, 01, 11, and 10, respectively. For four through seven, these
symbols are repeated, again in inverted sequence, with a 1 in the third
position to distinguish them from zero through three. The symbols for
eight through fifteen and so on are generated in an analogous manner.
A list of the symbols for zero through fifteen is shown below to illustrate
the process more clearly.

Zero 0000 Eight 1100
One 0001 Nine 1101
Two 0011 Ten 1111
Three 0010 Eleven 1110
Four 0110 Twelve 1010
Five 0111 Thirteen 1011
Six 0101 Fourteen 1001
Seven 0100 Fifteen 1000

Many variations in the above scheme are possible. For one thing,
any column of digits may be interchanged with any other column. Actu-
ally, it is not difficult to derive such a system by simply changing one
digit at .a time in an almost random fashion. An example is shown
below.

Zero 0000 Eight 0110
One 0001 Nine 1110
Two 0011 Ten 1111
Three 0111 Eleven 1011
Four 0101 Twelve 1001
Five 1101 Thirteen 1000
Six 1100 Fourteen 1010
Seven 0100 Fifteen 0010

A useful application of the reflected binary system or one of its varia-
tions is found in some types of analog-to-digital and digital-to-analog
conversion equipment. Its advantage is derived from the fact that sue-
cessive integers differ, one from the next, by only one digit. This prop-
erty is in contrast with the familiar decimal system and similar systems,
because in these systems successive integers may differ by several digits.
For example, 3999 and 4000 are successive integers, yet the digits in each
of the four orders are different.

Unfortunately, the usefulness of the reflected binary system does not
extend to arithmetic operations. Even simple addition is relatively diffi-
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cult with the system, and therefore it is not expected that it will find
much use in digital computers.

Negative Numbers. Negative numbers are in such common use today
that it is somewhat surprising to learn that it was in relatively recent
centuries that they were first recognized and understood. Probably,
negative numbers were slow in coming into use because there is no such
thing as negative material or negative space, at least according to the
concepts of classical physies. When a quantity is spoken of as being
negative, it invariably can, with a simple aiteration of viewpoint, be
considered as positive. A temperature of minus 10°C is a positive tem-
perature on the Fahrenheit or Kelvin scales; a negative sum of money
usually implies a debt and would appear as a positive sum in the credi-
tor's account books; a dimension tolerance may be listed as plus or
minus two-thousands of an inch, but in this case positive or negative
indicates direction from a given point and it should not be taken to indi-
cate the existence of negative distance. The scoring system used for
certain card games comes closer to the use of true negative quantities,
if a score may be considered a quantity. For certain eventualities in the
game, a player receives points to be added to his score; but for certain
other eventualities, points must be taken away from his score. It may
well happen that the player loses more points than he gains, in which
case his score becomes negative or “in the hole.” Even though examples
of true negative quantities are difficult to find, the value of negative
numbers for representing the application of a quantity should be ap-
parent. The value of negative numbers becomes considerably more out-
standing when computations are performed with numbers representing
the quantities.

From a purely mathematical standpoint, there is no reason at all why
the series of integers has to have an abrupt ending at zero. Mathemati-
cal symobls may be devised to indicate solutions to problems such as
2 — 5 = ?, and the relationship, or lack of it, of the symbols to physical
quantities may be ignored. The customary way to indicate the solutions
to such problems is to extend the series of integers in the opposite direc-
tion from zero and to call the new integers minus or negative. Note that
the minus sign in the problem means that 5 is to be taken away, that is,
subtracted, from 2. The 5 is not by itself a negative number; if it were
negative, the problem would have been written some other way, such as
2 + (—=5) = ? The minus sign therefore has two different, although re-
lated, meanings. One meaning is the designation of the operation of
subtraction, and the other is the designation of those integers which
continue the series of integers beyond zero in the direction of smaller
numbers. The terms “small” and “large” and also the frequently used
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terms of “less than” and ‘“greater than” are derived from the applica-
tion of numbers to physical quantities, and although phrases such as
“less than nothing” or “smaller than zero” have little meaning when
applied to physical quantities, they may assume a useful meaning when
applied to negative numbers.

The most familiar system of symbols for negative numbers is the same
system which is used for positive numbers, where the group of digits
indicates the “distance” from zero, and a sign, plus or minus, indicates
the “direction” from zero. It follows that, for a negative number, all
coefficients in the expression dy + diR + d2R? --- are negative. For
positive numbers, the plus sign is frequently omitted, with the under-
standing that the absence of a minus sign signifies that the number under
consideration is positive.

From a mathematical point of view, the sign of zero is usually of no
consequence and may be either plus or minus, or, in other words, plus
zero, minus zero, and zero without any sign indication all refer to the
same integer. Nevertheless, it is sometimes desirable to retain the sign
of zero in a problem to indicate from which direction the computations
proceeded in arriving at the result of zero. For commercial applications,
it is customary to consider zero as a positive quantity always; the red
ink is not used unless the balance is less than zero. Although they offer
no problems with paper-and-pencil computations, the details concerning
the sigh of zero frequently are a sotirée 6f considerable annoyince in the
design of computing machinery.

A question which arises at this point involves the necessity or desir-
ability of requiring that all coefficients in the expression for a number be
positive or all be negative. This requirement is not necessary, although
the advantages to be gained by omitting it are not obvious. One result
that is obtained by allowing the coefficients to be independent of one
another with regard to sign is that a given integer then has no unique
representation. For example, another decimal representation for the
integer, 7, would be a 1 in the tens order and a —3 in the units order.
The representation can be made unique, if desired, by restricting the
range of the integers to only ten different values, such as from —4 to 5,
and it turns out that there are some practical applications of this idea
in connection with decimal multiplication and division.

Another system with positive and negative coefficients which has been
studied with at least moderate thoroughness is the ternary system. In-
stead of using 0, 1, and 2 for coefficients, the coefficients which are used
are —1, 0, and +1, abbreviated to —, 0, and 4. The nature of the
system may be illustrated by listing a few of the integers.
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-3 0-0 +4 04+
-2 0—+ +5 +——
-1 00 — +6 +-0

0 000 +7 +-—+
+1 00+ +8 +0 -
+2 0+— +9 +00
+3 0+0

As can be seen from the brief listing, the sign of the number is contained
in the digits making up the number, but since a given nonzero digit
always represents a number which is larger in magnitude than the sum of
all less significant digits, the sign of the number may be quickly deter-
mined from the sign of the most significant nonzero digit. The pro-
cedure for inverting the sign of a number while not changing the magni-
tude is to change all +’s to —’s and all —’s to 4+’s and to leave the 0’s
unchanged. Addition and multiplication tables for this system may be
built up without difficulty. The multiplication table is particularly
simple; and, because of it, the study of the system can be a source of
great fascination. Further, it is intriguing to visualize a computer which
uses positive electrical pulses to represent +’s, negative pulses for —’s,
and no pulses for 0’s. However, it takes more than a simple multiplica-
tion table and a bare idea about pulses to design a computer. When
the difficulties which are encountered in the design of a ternary com-
puter are combined with the dearth of ternary computer components
and with the difficulties in adapting the system to applications where the
decimal system is already entrenched, it appears that the disadvantages
of the ternary system with positive and negative coefficients substantially
outweigh the advantages.

There are cases, however, where the simple medium of plus and
minus signs is not the most convenient means of indicating negative
quantities. Consider a computer that is performing only the function of
counting, and assume that it has started with some positive number and
is counting downwards or in the direction of smaller numbers. The units
counter wheel (or other counting device) proceeds from digit to digit in
the sequence of +-- 2,1,0,9,8 --- as it counts, and each time it passes
from 0 to 9 it causes the tens counterwheel to move one position and
indicate the next lower digit. This process should continue until the
counters of all orders reach zero. If further counts are recorded, the sign
indicating device should be actuated to indicate a negative balance; and
for succeeding counts, the counter wheels should be caused to move in
the opposite direction with digits appearing in the sequence --- 8, 9, 0,
1, 2 --- and with counts being sent from one order to the next higher
order as the corresponding counter wheel passes from 9 to 0. It is pos-
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sible to design a counting mechanism which will perform a function
such as this, but the requirements that the system be able to sense when
the counters of all orders are at zero and that the counters be able
to operate in either direction cause undesirable complexities in the
mechanism.

If negative numbers were represented according to the pattern,

+2 0002
+1 0001

0 0000
-1 9999
-2 9998

it would be possible to avoid the zero sensing device and to use counter
wheels which will function in one direction only. With the illustrated
system for portraying negative numbers, it is not necessary to sense
zeros to determine when the balance changes from positive to negative,
because it is necessary only to detect when the thousands order counter
moves from 0 to 9. Also in counting numbers beyond zero on the nega-
tive side, the counter wheels may function in exactly the same manner as
for positive numbers. Another feature of this method of representing
negative numbers is that the highest order counter wheel may be used
to indicate the sign of the balance at the expense of the capacity of the
counter. For example, a 9 indication in the highest order may be taken
to indicate a negative-balance with any other digit in this order indicat-
ing a positive balance. In this case, the capacity of the counter is from
1-8999 to —1000. If an 8 or a 9 in the highest order is used for a nega-
tive indication, the capacity is shifted to the range 47999 to —2000.
The term used to describe this scheme for negative number representa-
tion is “10’s complement,” although the term is not to be interpreted to
mean that each individual digit is a 10’s complement. Actually, only
the least significant nonzero digit is a 10’s complement of the true digits;
higher-order digits are 9’s complements. For example, the 10’s comple-
ment of 4680 is 5320. A more deseriptive term would be “ten-thousand’s
complement,” but this is clumsy.

Frequently it is desirable to employ a system for negative numbers
similar to that just described in the counter itself but to convert the
representation to that shown in the left-hand column when the result is
recorded. For this purpose a slight but important modification is useful.

+2 0002
+1 0001

0 0000 or 9999
-1 9998

-2 9997
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With this method of representation for negative numbers, the change to
the commonly used system is made very conveniently by subtracting each
individual digit from 9, and for this reason the representation is known
as the 9’s complement. The 9’s complement may be generated when the
counter goes from a positive to negative balance by using the signal ob-
tained from the highest-order counter wheel as it passes from 0 to 9 to
cause one additional count called “end-around borrow,” to be registered
in the units order. When counting in the positive direction from a
negative balance, the counter will arrive at 9999 instead of 0000 for a
zero indication. Then, when the next count is received, the signal which
is obtained from the highest-order counter wheel may be used as an
“end-around carry” to advance the units order counter from 0 to 1. From
this point on, the counter will proceed in the usual manner and yield a
true indication for positive balances. The balance sign indicator may be
a separate device operated by the highest-order counter wheel, or, as
before, the highest-order counter wheel itself may be used; but in this
case the capacity for negative balances is reduced by 1, such as from
+8999 to —999, when compared with the previous system.

The differences between true and complement notation become of in-
creased importance when operations of addition and subtraction, other
than by simple counting, are considered. On the other hand, for multi-
plication, the complement system frequently introduces more problems
than it solves.

Similar ideas involving complement notation may be employed for
the binary system or system of any other radix.

Nonintegral Quantities. There are two types of nonintegral quantities
—those which may be represented as the ratio of two integers and are
called rational (the integers themselves are rational), and those which
cannot be represented as the ratio of two integers and are called irrational.

If it is desired to represent exactly a rational quantity, commonly
called a fraction, it is usually done by recording the two integers involved,
each with the same notation as used previously. The fact that the two
integers are related is indicated on paper by writing one above the other
with a line drawn between the two. It is conceivable that a computer
could be designed whereby the position of the number in a storage unit
is indicative of its function in a fraction, although the incorporation of a
physical device to represent the line between the numbers appears to be
somewhat superfluous. The advantages of a computer built along these
lines would be realized only in certain special cases; and, in those cases
where fractions must be dealt with in an exact manner, it has been found
more practical to handle separately and independently irn the computer
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each of the two integers involved. The functional relationship between
the two integers may be maintained through the programming of the
sequence of arithmetic and other operations to be performed.

Usually it is not necessary, and sometimes it is not even desirable,
that fractions be represented exactly. By extending the number system
to include terms involving the negative powers of the radix, such as
d_iR—*, d_sR—?2 etc., any fraction may be represented to any degree of
accuracy. With this extension,

N =--- dgdadidy-d_1d_o - -+

The period or point between do and d_; is used to signify the location
of the units order, and the locations of all other orders are automatically
specified. This point, called the decimal point in the decimal system,
the binary point in a binary system, ete., is necessary when writing on
paper because the digits corresponding to positive and negative powers
of the radix are otherwise indistinguishable; but in a computer the
orders may be assigned certain specific locations in the storage unit and
are operated upon accordingly. Therefore, there is no need to provide an
additional physical device in the computer for recording a counterpart
of the dot (point) on a piece of paper. The assignment of the locations
may change from problem to problem or even from step to step within
a problem, but such changes are usually noted and recorded in the
program. In general, it is possible to give an exact representation of a
fraction by this scheme if the denominator of the fraction contains no
prime factors which are not factors of the radix. An example is one
eighth, which is 0.125 in the decimal system. The denominator of the
fraction, one seventh, for example, contains a prime factor, seven, which
is not a factor of ten. Therefore, one seventh cannot be represented
exactly by this scheme, although by employing enough orders (0.1428571
--+) the difference between the indicated value and the exact value
may be made as small as desired.

Some irrational numbers may be represented by integers with ap-
propriate positional significance. For example, the integers 1, 2, and 3,
if placed in the manner, 2%, represent the cube root of two. Much more
exercise of the imagination is required to employ integers in the repre-
sentation of irrational numbers derived from limits, trigonometric func-
tions, and other sources. But, as in the case of fractions, an exact repre-
sentation is not usually required anyway, and the customary procedure
is to employ the same extension of the number system to terms involv-
ing negative powers of the radix in order to gain an approximate repre-
sentation to any desired degree of accuracy.
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Integral and Fractional Computers. Some computers are assumed to
handle only integers and are therefore called integral computers, whereas
in other computers the numbers are all assumed tc have a magnitude
less than unity, and these eomputers are called fractional. Although the
difference between integral and fractional representation is of consider-
able importance when preparing a problem for solution by a computer,
this difference is largely a figment of the imagination when considering
the actual physical construction of the computer. But one physical
difference worth mentioning iies in the disposition of the product after a
multiplication. If a computer is built to handle numbers of a certain
size, say four digits, the product of two of these numbers may contain
eight significant digits. In an integral computer, if a number is to be
added to the product, it should be added to the right-hand four digits,
which are the ones of lesser significance. For the points to be lined up
in a fractional machine, the addition should be to the left-hand, or most
significant, digits. Sample computations of the kind AB 4 C for the
two types of computers are shown below.

3023. A 3023 4
X 6104. B X .6104 B
18452392. AB .18452392 AB
+ 4116. C + 4116 C
18456508. AB + C 59612392 AB + C
Integral Fractional

Integral computers are most useful for problems which are essentially
integral in nature; and many money calculations, for example, are of this
type. With an integral computer, a quantity such as $109.30 would be
considered to be 10930, and the problem would be solved in cents instead
of dollars and hundredths of dollars. At the conclusion of the problem,
appropriate reconversions would be made.

The value of a fractional machine is realized for those problems where
the data are not of an integral nature and where results of extreme ac-
curacy either cannot or need not be obtained. Although the product of
two four-significant-digit numbers may contain eight digits, it can be
shown that only the four higher-order digits in the product are significant
if the original factors were approximations and not exact representations.
Actually, to say that a number has four significant digits implies that
there is some doubt in the accuracy of the fourth digit; the extent of this
doubt combined with certain fine points which may be included in the
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definition of significance may indicate that the product has only three
or as many as five significant digits, but in general the number of sig-
nificant digits in the produect is equal to the least number of significant
digits in any one of its factors. In the above fractional example, the
digits 2392 in the product AB are not significant and may be dropped.
A subsequent addition should, therefore, be made to the left-hand four
digits, as shown. If the factor C to be added were 0.004116, the last
two digits may as well be dropped, because, even though they are sig-
nificant in the factor C itself, they would not increase the number of
significant digits in the result to any more than four when added to a
product such as AB.

In an integral computer, therefore, the disposition of the product is
such that subsequent additions are automatically made to the lowest
orders, and special steps must be taken to handle any overflow into the
higher orders. But in a fractional computer, the additions are auto-
matically made to the highest-order digits of a product and the low-order
digits are dropped unless special steps are taken to preserve them. In
all but the most modest of computers it is possible to shift the digits in
a number to lower or higher orders and thereby make additions of a
number into any desired orders of a product, although the means for
shifting vary greatly in convenience of operation and in required time
in machines of different designs. Because of the ability to shift numbers,
it is possible to perform fractional-type calculations on an integral ma-
chine and integral calculations on a fractional machine.

If the factors 4 and B in the fractional example had been 0.1342 and
0.1041, respectively, the product would be 0.01397022 with the four sig-
nificant digits appearing in the second to the fifth positions to the right of
the decimal point instead of the first to the fourth positions. For this
and other reasons, frequent shifting is required for some problems; and,
in general, the more shifting that is required for miscellaneous reasons,
the less difference it makes whether the problem is solved on an integral
or a fractional machine. Some computers are designed so that the orders
into which a number is added must be specified for each addition. With
computers of this type, either integral or fractional calculations may be
performed with equal ease (or equal difficulty).

Floating-point Computers. A floating-point computer produces the
effect of indicating the location of the point in a number, but the effect
is accomplished through a means quite different from a physical indi-
cation between the digits. A number may be indicated by a series of
digits multiplied by a power of the radix, where the point in the series
of digits is understood to be always in the same place, such as to the left
of the highest-order nonzero digit. The number, therefore, may be deter-
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mined by the digits and the power, or exponent, of the radix. Some ex-
amples in the decimal system are listed below:

Customary Notation Floating-point Notation
8076000. = 0.8076 X 107 8076 +07
80.76 = (0.8076 X 10% 8076 +02
0.8076 = 0.8076 X 10° 8076 00
0.0008076 = 0.8076 X 103 8076 —03

This floating-point type of notation is particularly useful for eomputa-
tions involving many multiplications and divisions where the magnitudes
of the quantities involved are likely to vary widely and where only crude
predictions can be made of the amount of variation. In multiplication,
for example, the digits are multiplied in the usual manner, and the ex-
ponents are added. The main advantage of the system is derived from
the ability to store very large or very small numbers by storing only
the significant digits and the exponent; whereas, in a fixed-point machine,
either integral or fractional, it is necessary to include all the zeros be-
tween the significant digits and the point or else keep track of the point
through the programming of the problem.

In the examples shown above, the sign of the exponent is also of im-
portance and must be recorded. The necessity of recording the sign can
be avoided by assuming the point to be several orders to the left of the
most significant digit. If it is fifty orders to the left, 0.8076, for example,
would be thought of as 0.00---008076 X 10°° and would be recorded as
807650 with the last two digits indicating the exponent of the multiplier.
Of course, the range of exponents is halved by the dropping of the sign.

The floating-point system has an important disadvantage beyond the
obvious fact that increased complexities are required to handle both sig-
nificant digits and exponents in multiplication. Addition and subtraction,
which are normally relatively simple operations, become much more diffi-
cult and time consuming than in fixed-point machines because of the
necessity of shifting to mateh exponents before two numbers can be
added together or subtracted one from the other. Also, overflows become
more frequent. For example, the sum of two four-digit numbers can
produce a five-digit number and require a shift to the right of one order
and an increase by one in the exponent. Further, products and quotients
must be tested for zeros to the left of the most significant digits and
appropriate shifts executed when zeros are detected; otherwise there
may be a gradual loss of significant digits as the computations proceed,
which will be in addition to any losses caused by the mathematical nature
of the problem.

With most large “general-purpose” fixed-point computers, it is possible
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to perform computations in a floating-point manner by special tech-
niques in the programming of the problems.

Mixed Radices. So far, it has been assumed that the radix of each
term in a number is the same as the radix of all other terms. As might
be expected, it is not necessary to impose a restriction such as this;
and, in faet, in some fields of application, different radices are com-
monly used for different terms, especially for terms to the right of the
point in comparison with the terms to the left of the point.

Although the decimal system is well adapted to the finger counting of
integers, it is not so well adapted to the division of a quantity into parts.
Anyone who has tried to cut an object into ten equal parts knows that
it is not easy; whereas the cutting of the object into halves, then to
fourths and eighths and so on, may be accomplished readily with rea-
sonable accuracy. The cutting into thirds is also an awkward operation,
but it is nevertheless a particularly frequent requirement. It is probably
for reasons of this nature that in India the counting of rupees is done in
the decimal system with the rupee divided into 16 annas, the anna di-
vided into 4 pice, and the pice divided into 3 pie. The same reasons
might have figured in the adoption by the English of 20 shillings to the
pound, 12 pennies to the shilling, and 4 farthings to the penny, or in the
adoption of the English system of weights and measures, which is badly
scrambled with an assortment of radices. The linear measuring system,
-involving inches; feet; yards; rods; furlongs, and miles; is particularly
confusing. The New York Stock Exchange employs the decimal system
for dollars and a substantially binary system for parts of dollars in the
representation of the price of stocks, even though the amount of money
involved in any transaction is always indicated in dollars and cents. A
possible justification for this practice is that a buyer and a seller can
more readily establish a compromise price which is halfway between the
bid and asked prices.

By using special codings for each digit in the conventional decimal
system, another set of systems (including, notably, the biquinary sys-
tem) may be derived; and some of these systems are often considered
to be of the mixed radices type. However, it has been decided to omit
these systems from the present discussion and to include them in the
subject of decimal codes, because in almost every case the purpose of
the coding is to make the decimal system more adaptable to computing
machinery and because the mixed radices properties are usually in-
cidental.

It is of interest to note that, in many cases where a mixed radices
system has been established, it has been subsequently abandoned in favor
of a pure decimal system. An example is surveying, where it is fre-
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quently found desirable to replace inches with tenths of a foot. For
mechanical machine work and other applications where small or accurate
dimensions are involved, the practice of subdividing the inch into eighths,
sixty-fourths, etc., has been largely replaced by the employment of the
decimal system for fractional parts with the unit being the mil, or 0.001
of an inch. The division of pounds (weight) and gallons into tenths,
instead of ounces and quarts, respectively, is frequent practice. The
use of the decimal system for fractional parts in disregard of the estab-
lished umits is done for buupuuluy of notation and ease of compu’aatxon
and is evidence that any advantages which may be advanced in support
of the mixed radices system cannot be very strong.

Tt is possible to design a special computer which will handle any one
of the mixed radices systems fairly well, and in some simple applications
a computer of this type is probably the best solution to the problem of
performing computations once the system is established. An example is
an adding machine for English or for Indian money, but a special adding
machine would be useful only for the special application for which it was
designed. A second solution to the problem is feasible when a more
elaborate computer is employed, because then the computer itself can be
used to execute conversions to pennies or annas, as the case may be, even
though the machine operates with a number system of uniform radix.
After the desired computations are completed, the computer can then
reconvert the results into the desired units. Neither of these solutions
is particularly satisfactory, however; and there is little doubt that the
uniform radix systems are superior. As machine computations come into
increased use, the reasons for abandoning the mixed radices systems be-
come more compelling.

It should be pointed out that the mixed radices systems which have
been mentioned employ the same decimal digits in every case instead of
special digits as might be expected. For example, three thirty-seconds
in a stock quotation is written 345, and not 0.00011; also, thirteen shill-
ings is written 13 where the 1 and the 3 together may be considered to
be a new symbol, but it is more customary to view the digits with their
usual decimal meaning. Details such as this, although of no funda-
mental importance, must be taken into consideration in the design of
computing machinery.

Complex Numbers, Matrices, and Tensors. A complex number is
customarily written as A + jB, where A and B are numbers according
to previously described number systems, and j is the square root of minus
one. As in the case of fractions, it is conceivable that a computer could
be designed whereby the position of a number in a storage unit would in-
dicate its function in a complex number and that addition, multiplication,
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and other operations on complex numbers would be handled in the
proper fashion automatically. For some classes of problems, particularly
in communications and power engineering work, practically all quantities
involved are most conveniently represented by complex numbers. For
these problems a complex number machine has advantages, and at least
one organization (Bell Telephone Laboratories) has constructed complex
number machines. However, because a complex number computer would
be inefficient when applied to other types of computations, and since the
two parts, 4 and B, of a complex number are so easily handled separately
with all individual arithmetic steps programmed, the usefulness of a ma-
chine designed especially for complex numbers appears to be of limited
importance. T4

Similar remarks could be made with regard to ma! ices, tensors, and
other forms of mathematical symbols, but the over-all desirability of a
machine built to handle such quantities automatically seems to be even
less because of the great complications which would be necessary in the
machine and because of the more limited application of the symbols.

Conclusions with Regard to Symbols. Although the advantages and
disadvantages of the various systems of symbols can be pointed out, it
does not appear possible to prove that any one syster: is better than all
other systems.

It is a fact, however, that the systems employing the principle of posi-
tion and a uniform radix are the only ones that have received wide
acceptance; and if there is a system more adaptable to computers, it is
probably one which has not yet been invented.

The important decision to be made is the choice of radix. Radix two
is most attractive if machine simplicity is of prime importance, but the
choice of radix ten is frequently dictated because of the desirability of
using the computer in applications where the decimal system is already
in general use. With large-scale high-speed computers, it is sometimes
practical to employ the binary system internally in the computer and to
use the computer itself to perform the necessary conversions between
the decimal and binary systems in those cases where the use of the
decimal system is required. The use of a binary computer with special
conversion equipment to allow the use of the decimal system for data
and solutions is also practical in some cases.

If the decimal system were not already so well established for general
use, the choice might not fall on either the decimal or binary systems.
In the choice of a radix, a compromise has to be made between the num-
ber of digits necessary to write a number and the number of different
digits which it is necessary to employ. For the binary system only two
different digits are required, but for any given number, over three times
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as many digits are required for recording the value of the number, when
compared with the decimal system. On the other end of the scale, to
decrease the number of required digits by a factor of two, it is necessary
to employ a radix of one hundred, which means that one hundred different
digits would be required. Although radix ten appears to be a good com-
promise, radices eight and sixteen are also good compromises, and most
of the advantages of the binary system can be realized with the octonary
or sexadecimal systems.

The advantages of radix twelve are not derived from any particular
adaptability of this radix to machine computations, and the advantage
of radix three is slight at best and is found to be no advantage at all
when the true nalure of practically all currently available computer com-
ponents is eonsicured.



Chapter 2

BOOLEAN ALGEBRA APPLIED TO COMPUTER
COMPONENTS

Boolean algebra derives its name from George Boole, who first intro-
duced it in 1847 in a paper on the mathematical analysis of logic. The
adaptability of this form of algebra to telephone and computer switch-
ing circuits appears to have been first pointed out by C. E. Shannon
some ninety years later (1938) in the Transactions of the American In-
stitute of Electrical Engineers. Since 1938 the interest in Boolean algebra
and the extent of its use have grown rapidly with its growth closely
paralleling the rapid development of complex switching networks as
found in automatic telephone dialing systems and in large digital com-
puters.

Boolean algebra is very different from ordinary algebra at first glance,
and for this reason it may seem confusing or even a little ridiculous.
Actually, it is an extremely simple algebra and, as will be shown, is of
great value in the design of switching networks. However, one point
should be understood from the start: it does not lead directly to the
“best” circuit (usually the circuit with the least number of components,
although sometimes other criteria are more important) in the same sense
that, for example, calculus can be used to find minima in a function.
What the algebra does provide is a convenient means of representing a
switching circuit without drawing the circuit. Also, and probably more
important, is the fact that it provides a means for quickly finding a multi-
tude of different circuits that will perform any desired switching func-
tion. With a little practice, the circuit designer thereby has a powerful
tool to aid him in finding a “good” ecircuit, even though it may not be the
“best’”” one.

Basic Principles of Boolean Algebra. In Boolean algebra, there are
only two different quantities or values which come into consideration,

and these quantities are 0 and 1. Arithmetic operations in Boolean alge-
26
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bra with “numbers” which can be only 0 or 1 bear little resemblance in
meaning to the arithmetic operations in ordinary algebra, although in
many instances the rules for performing the operations are the same.
In particular, addition will be assigned the meaning of “or,” and multi-
plication has the meaning of “and.” The results obtained when “add-
ing” and “multiplying” the various combinations of 0’s and 1’s are as
follows:

04+0=0 0X0=0
04+1=1 0X1=0
1+41=1 1X1=1

The first equation involving “addition” has the meaning, “0 or 0 is
equal to 0.” The second equation has the meaning “0 or 1 is equal to 1,”
because the “or” function, as indicated by the plus sign, serves to signify
that the resultant quantity is 1 if either of the given quantities is 1.
This interpretation of the “or” function includes the case where both of
the given quantities are 1; therefore, “1 or 1 is equal to 1.” Since there
is no such quantity as 2 in Boolean algebra, the latter equation is, of
necessity, different from anything found in ordinary algebra. A simple
example of the Boolean algebra “or” funetion would be a fire-alarm de-
vice which may be actuated by signals from two different sources. The
signal from each source may be represented by a 1, and the absence of
a signal may be represented by a 0. The signal lines from the two sources
should be combined so that the alarm will sound whenever a signal is re-
ceived from either source. In other words, a signal is sent to the alarm
when a signal is received from one source “or” the other source. Of
course, if signals are received from both sources simultaneously, the
alarm will sound in this case also, but not with twice the amplitude.

The equations involving “multiplication” have corresponding mean-
ings, but with the word “and” substituted for “or.” The “and” signifies
that the resultant quantity is 1 only when both of the given quantities
are 1. The last equation, which states that “1 and 1 is equal to 1,”
should not be confused with addition in ordinary algebra. An elementary
example of an “and” function would be the firing of an explosive charge
through the use of two signals where, in the interest of safety, it is re-
quired that both signals be present simultaneously in order to cause the
charge to explode. The charge will explode only when a signal is re-
ceived from one source “and” the other source also.

As in ordinary algebra, symbols may be used to represent “unknowns”
or “variables,” although the range of variation is limited to one or the
other of the two discrete quantities, 0 and 1. The symbolic equation
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C = A + B, for example, means that C is 1if 4 “or” B is 1 (or if both
are 1); otherwise, C is 0. Similarly, the equation C = AB means that
C is 1 only if both A “and” B are 1; otherwise, Cis 0.

From the above definitions, the following relationships may be ob-
tained directly:

A+0=4
A+1=1
A+A=4A
A40=0
Al =A
AA =A

The meaning of these equations may be readily understood by substitut-
ing for A each of the two possible values it may have.
Both the “or” and “and” functions are commutative and associative.

A+B=B+A4
AB = BA
A+B+C=4+B+0)
(AB)C = A(BC)

Also, each function is distributive with respect to the other.

AB+ AC=AB+0)
A+ BC=A+B)A4+0)
These equations are not definitions, but are natural consequences of the
nature of the “or” and “and” functions. For example, if 4 “and” Bis 1
orif 4 “and” Cis 1, it must be that A is 1 “and” that B “or” C'is 1. The
last two equations above are not independent of one another as may be
observed by multiplying out (4 + B)(4 + C) and simplifying according
to the rules of the preceding equations.
A+BA+C)=A+BA+ A+ B

=A+4+ BA+ AC + BC

=AQ1+ B+ C)+ BC

= A + BC



Boolean Algebra 29

With the above set of basie rules it is possible to solve a wide variety
of Boolean algebra problems. A simple but illustrative example is prov-
ing that A(4 + B) = A. The steps in one form of the proof are as fol-
lows:

AA+B) =AA+AB=A+AB=AQ1+B) =41 =4

A fundamental concept which is found in Boolean algebra and which
has no counterpart in ordinary algebra is the “not” function, as indicated
by a line over a symbol. In particular, 0 means “not 0" and has the value
of 1 because, if it is not 0, the only other value it can have is 1. Similarly,
1 has the value of 0. From this definition it follows that, if a variable, A4,
is 0, then A (called “not A”) is 1; but, if A is 1, then 4 is 0. From this
definition and the nature of the “or” and “and” functions, the following
equations may be obtained.

A+4A=1
A4 =0
A=A

Two other important equations are

ABC=4A+B+C
and

A+B+C= ABC
where the line over a group of symbols means that the “not” function
applies to the entire expression under the line. These equations are
shown for three variables, although analogous equations exist for any
number of variables. The validity of the equations may be established
easily by allowing the variables to take on the two possible values, 0
and 1, in all possible combinations. To obtain a better visualization
of the meanings of the equations, it may be observed that the left-hand
side of the first equation is 1 when the quantity ABC is 0, and ABC
will be 0 whenever any of the individual variables are 0, which is ex-
actly the same condition that will cause the right-hand side of the equa-
tion to be 1. For the second equation, a corresponding observation may
be made.

It is now possible to prove, for example, that

AB+BC+CA=AB+BC+CA
which is an equation arising in the study of binary adders. One way to

establish the equality is to apply the equations given above according to
the method outlined on the next page.
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AB 4+ BC + CA = (AB) (BC) (CA)
=A+BB+0OC+4)
= (AB + AC + B)(C + 4)
=AB+ BC+C4
The operations of subtraction and division have no parallel in this sys-
tem of Boolean algebra. Division, in particular, is to be avoided; quanti-

ties cannot be “divided out” according to the familiar rules used in ordi-
nary algebra. An example is the equation,

(AB + BC + CA)(AB + BC + CA) = (4 + B+ C)(4B + BC 4 C4)
where the quantity, AB + BC + CA, cannot be divided out because
AB+BC+CA#A+B+C

Tt is instructive to prove by means of the relationships already discussed,
first, that the equation is correct and, second, that the inequality is cor-
rect. A more obvious example is the equation, A(A + B) = A, where
the factor, 4, cannot be divided out because A + B is not necessarily
equal to 1.

The subject may be extended far beyond the elementary points pre-
sented here, but the definitions and relationships which have been given
should. be sufficient to.take_care of all of the problems and applications
to be presented. However, as an indication of the direction in which
further development of Boolean algebra proceeds, the following equa-
tions are presented without proof.

f(4, B, C) = Af(A, B, C)a—1 + Af(4, B, C)a—o
f(A1 B, C) = 4+ f(A, B, C)A=0]{A + f(A7 B, C)A=1]

Here the notation, f(4, B, C)4-1, for example, means any arbitrary func-
tion of A, B, and C but with the value, 1, substituted for 4 and the value,
0, substituted for 4.

Tt should not be construed that the system of Boolean algebra notation
used here is universally accepted. In fact, several different types of
symbols have been employed by various writers to indicate the “and”
and “or” functions. Also, the “not” function may be represented in a
number of different ways, some of which differ by more than just the
choice of a symbol. However, the system of notation which has been
described is well suited for the application, algebraic manipulations are
straightforward, the symbols are easily learned and remembered, and the
confusion with the ordinary algebraic functions which might be expected
has not been found to exist in practice.
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An important variation in the notation may be obtained by inter-
changing the “product” and “sum” indications with respect to the “and”
and “or” operations. It happens that all of the basic relationships are
correct with either convention. Whichever convention is chosen, it is
occasionally desirable in the design of computer circuits to apply the
opposite convention to the solution of a problem. In this way it is some-
times possible to discover quickly certain eircuit arrangements which
might otherwise be overlooked. Since the use of both conventions does
Involve a certain amount of confusion, the procedure will not be de-
scribed further.

Application to Computer Components. The bare rules of Boolean
algebra, as described in the previous section, probably seem somewhat

A — A — -
B O ~A+B B — A —~AB A— 1 l—°A

(a) (b) {c)

Fi16. 2-1. Symbols for components that perform the basic functions.

artificial and pointless when considered by themselves, but their meaning
and application should become more understandable when the correla-
tion between the functions and computer components is described in
more detail.

A simple “or” switch will be symbolized by a block labeled with the
letter O. The “or” switch may have any number of inputs, and each
input will be indicated by a separate line with an arrow pointing in the
direction of the block. The output from the switch correspondingly will
be represented by a line with an arrow pointing away from the block,
as indicated in Fig. 2-1(a). If the input signals to a two-input “or”
switch are represented by the variables, A and B, and the output by C,
the functional relationship between the output and the inputs may be
designated by the equation, C = A + B. Of course, the input variables
are always the independent variables, with the output being dependent
upon the inputs. Again, each variable is either 1 or 0, according to the
presence or absence of a signal on its corresponding line. The equation,
therefore, has the meaning that a signal will be present on line C if a
signal is present on line A “or” on line B (or both).

With practical cireuits and components, the nature of the signal on a
line may assume any of a wide variety of forms. A frequently used form
of signal is a positive voltage to represent a 1 and a negative voltage to
represent a 0, where “positive” and “negative” are potentials relative
to each other and not necessarily relative to ground potential. Another



32  Arithmetic Operations in Digital Computers

form of signal could be a transient pulse of voltage of either polarity.
Further, the signal need not even be electrical; mechanical motions of
various descriptions may be used.

A simple “and” switch will be symbolized, correspondingly, by a block
labeled with the letter 4, as shown with two inputs in Fig. 2-1(b). In
the case of the “and” switch, the functional dependence of the output,
C, expressed in terms of the inputs, A and B, may be represented by the
equation, C = AB. The meaning of the equation is that C is 1 only
when both A “and” B are 1.

The “not” operation, or inversion, is symbolized by a block labeled
with the letter I. If the input to an inverter is A, the output is 4.

Diodes. Because of the wide application of the diode switch, a brief
description of this particular form of switch will be given. . With the

A—DF— s
+——A+B
B —DH—
A
l AB
(a) (b)

Fig. 2-2. Diode “or” and “and” circuits (1 and 0 are represented by positive and
negative voltages, respectively).

assumption that 0’s and 1’s are represented by relatively negative and
positive potentials, respectively, the diode “or” cireuit is shown in Fig.
2-2(a). The diodes are connected to a common load resistor, which in
turn is connected to source of relative negative voltage. Each diode will
pass current freely in the direction of the “arrow,” but offers a high im-
pedance to the flow of current in the other direction (electron flow is
against the arrow). Then, when both input lines indicate 0, the output
line will also indicate O because the diode resistance to current flow in this
direction is assumed to be negligible compared to the resistance of the
load resistor. If either one of the input lines is raised in potential to
indicate a 1, the output line will indicate a 1, since an increased amount
of current will be caused to flow in the load resistor. In other words, the
output line will still be connected through a relatively low impedance to
the input line with a 1-signal, and the diode corresponding to the input
line with a O-signal will not pass current because the potentials on its
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terminals will be in the high-impedance direction of this particular diode.
Therefore, the output will be positive if one input line “or” the other (or
both) is positive.

The diode circuit for forming an “and” switch is indicated in Fig.
2-2(b). The circuit is similar to the “or” switch except that the con-
nections of the diodes are inverted and the load resistor is connected to
source of relatively positive potential. With the “and” switch, if both
of the input lines are held at a relatively negative potential to represent
0’s, the output line will also be at the same relatively negative potential
bhecause the voltage drop from the positive supply will appear across the
resistor and not the diodes. When the potential of one of the input lines
is raised to indicate a i, the corresponding diode will have a voltage
impressed across it which is in the reverse, or high-impedance direction,
and the potential of the output line will be unaffected. Only when 1’s
appear on both input lines will potential on the output line become rela-
tively positive as is required for a 1 indication. In other words, the
output line will become positive only when one input line “and” the
other line also become positive.

Tt should be noticed that the roles of the circuits in Fig. 2-2 become
interchanged when a 1 is represented by a negative instead of a positive
potential. For example, in Fig. 2-2(a) the output becomes negative when
both of the input lines are negative, and in (b) the output becomes
negative when either input line is negative. For this reason, in identify-
ing “or” and “and” circuits, it is necessary to specify the polarity of
signals which are in use.

The importance and usefulness of Boolean algebra notation arise from
the fact that each algebraic expression represents a different physical
circuit, even when the expressions are mathematically equivalent. As an
example of this property of the relationship between the notation and the
circuits, consider a switching network with four input lines, 4, B, C, and
D, and with an output line, E, which is 1 when A “and” B are 1 or when
C “and” D are 1. The Boolean algebra expression is E = AB + CD,
and the switching network which will perform this function is shown in
Fig. 2-3(a). However, it is possible to write down the desired switching
function in other ways. One other way is indicated by the following
equation.

AB+CD=A+CO)A+D)B+O(B+D)

The expression on the right-hand side of the equation describes the switch-
ing arrangement shown in Fig. 2-3(b). The correctness of the equation
may be established either by multiplying out the terms in the right-hand
side or by factoring the left-hand side and arriving at the expression,
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(A4 CD)(B 4+ CD), as a first step. That the arrangement in Fig.
2-3(b) yields the desired switching function may be understood by ob-
serving that both A and B must be 1, or both C and D must be 1 in order
to cause signals to be present on all four input lines of the “and” switch,
which is the necessary eondition for a 1 to appear on the output line.

In spite of the functional equivalence of the two arrangements in Fig.
2-3, the physical difference in the two circuits is by no means trivial.

A—-
B— A i
O —AB+CD
D—-
{a)
A
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C—-—
B—-—
p—0©

(b)

Fie. 2-3. Equivalent switching circuits.

With the diode switching circuits which have been described, the number
of diodes in any “or” or “and’” switch is equal to the number of inputs to
the switech. Therefore, a total of 6 diodes is required to form the circuit
in (a), but 12 diodes are required in (b). If the switching circuit given
in (b) had been given first, a reduction in the required number of diodes
could have been achieved merely by performing algebraic manipulations
without any consideration to the switching circuits themselves. Un-
fortunately, it is not always possible to arrive in a direct manner at the
switching network which gives the desired switching function with the
minimum number of components. However, the important point is that
each manipulation of a Boolean algebra expression represents a physical
change in the switching network without a change in the switching func-
tion, that is, without a change in the relationship between the output and
input signals. Therefore, Boolean algebra provides not only a convenient
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notation for recording switching networks without drawing them out in
detail, but also a means for making changes in the network configuration
in the search for the most desirable network for any given switching
function. Numerous practical examples of the notation employed for
this purpose will be found in subsequent chapters.

The Vacuum Tube. The vacuum tube is another frequently used com-
ponent in computers although its application to “or” and “and” switch-
ing functions is not quite as straightforward as in the case of diodes.
The fundamental triode vacuum-tube circuit is shown in Fig. 2-4(a).
The input voltage, which for the purpose at hand is assumed to be taken
from the anode of another vacuum-tube circuit, is applied to a voltage
divider comprised of resistors RB; and R,. The circuit is so designed and
the supply voltages are so chosen that the potential of the grid will be
maintained either below cut-off value or slightly above ground potential.
The output potential, which is developed across the anode load resistor,
R3, is positive when the input is negative and is negative when the input
is positive. “Positive” and “negative” potential here are relative to
each other and not relative to ground. Because of the nature of this
triode circuit, it is an inverter; that is, if a signal, 4, is applied to its
input, the signal appearing on the output line is A. The functional
properties of the simple triode may be represenied by a block labeled
“I” with one input and one output line as in Fig. 2-4(b). Sometimes a
triode circuit is more conveniently indicated by a symbol, such as shown
in Fig. 2-4(c), with the input grid connection in the lower-left corner
and the output anode connection in the upper-right corner.

When two triode circuits are connected with a common anode load
resistor, as shown in Fig. 2-4(d), the functional result depends upon the
convention used in the assignment of polarities. If a positive signal
represents & 1 and a negative signal represents a 0, the funection is
equivalent to two inverters feeding an “and” circuit. This function may
be visualized by noting that the output will be positive only when both of
the inputs are negative. The function is the same as that of an “or”
circuit feeding an inverter because, as has been pointed out, AB = A 4+ B.
The corresponding functional block diagrams for two triodes with their
anodes connected together are given in Fig. 2-4(e). If the opposite con-
vention with respect to polarities had been assumed, the “and” and “or”
functions would be interchanged. When the symbols for two or more
triodes (or multigrid tubes) are shown with the output terminals con-
nected together as in Fig. 2-4(f), it is implied that there is only one
anode load resistor in the circuit and that the value of its resistance is
substantially the same as would be used for one tube alone.
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F16. 2-4. Vacuum-tube functions.
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A circuit employing a tube with two control grids is shown in Fig.
2-4(g). The functional nature of this circuit may be represented by an
“and” circuit feeding an inverter as can be determined by noting that
the output will be negative only when both input signals are positive. An
equivalent functional arrangement is two inverters feeding an ‘“or”
circuit. As in the case of the two triodes, the functional properties of
the multigrid tube depend upon the assumption made concerning the
polarities of the signals. It has been assumed that a positive signal repre-
sents a 1; if a negative signal represents a 1, the “and” and “or” opera-
tions would be interchanged. The symbol which will be used for the
two-grid tube is the same as for the triode except that two input termi-
nals are placed in the lower-left corner of the rectangle. Tubes with
three or more control grids can be constructed; however, they are gen-
erally considered to be impractical not only because they would involve
a more complicated and possibly inefficient electrode arrangement, but
also because conventional triodes and two-grid tubes can be adapted
to any functional operation and their large volume of production causes
them to be less expensive.

For simplicity, certain important, although nonessential, components
have been omitted from the circuits in Fig. 2-4. Among the omissions
are devices for suppressing parasitic oscillations (usually low-value re-
sistances in series with the grids), condensers across the upper resist-
ances in the voltage dividers for increasing the speed of the cireuits, and
various screen and suppressor grids which may be desirable particularly
in the two-grid tube.

It is possible to assemble vacuum-tube circuits to yield any desired
switching function. For example, the elementary “or” and “and”
switches may be formed with nothing but triodes, as indicated in Fig.
2-5. With these two “components” together with the single triode used
as an inverter, the assembly of any switching function may proceed in a
straightforward manner, but the circuit so obtained will, in general, con-
tain many more tubes than necessary. The problem of arriving at the
circuit composed of the least possible number on tubes is a formidable
one. In the text, Synthesis of Electronic Computing and Control Cir-
cuits, by members of the staff of the Harvard Computation Laboratory
(Harvard University Press, 1951), a system is presented for arriving at
economical cireuits when a limited number of input signals and one out-
put signal are involved. Also, some special cases involving multiple
output switching circuits are included. However, since the system has
its complications and limitations, and since engineering details often
dictate numerous special considerations, it is usually necessary to resort
to “cut-and-try” methods in order to obtain the most desirable circuit.
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Boolean algebra is nevertheless a useful tool in the design of vacuum-
tube switching circuits, because it provides a means for quickly and
accurately analyzing the switching arrangement obtained at each stage
of the development. To determine the relationship between the output
signals and input signals in any switching circuit, it is sufficient to write
down the output of each tube or set of tubes with common anode connec-
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Fie. 2-5. Triode “or” and “and” circuits.

tions in terms of the signals on the corresponding grids in accordance
with the functions shown in Fig. 2-4(b), (e), and (h). The case where
‘multigrid tubes have their anodes connected incommon with the anodes
of other tubes may be handled conveniently by visualizing each multigrid
array as constituting an “and” switch, the tube itself as constituting an
inverter, and the common anode connection as constituting another “and”
switch. An example of this sort is shown in Fig. 2-6. After proceeding

I T T = (AB) (C) (DE)
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F16. 2-6. Multi-grid tubes with common anode connection.

through all tubes from the input lines to the output lines, the resulting
expressions for the output signals may, of course, be rearranged as de-
sired when they are not immediately in suitable form.

Gate Tubes. The two-grid tube discussed in the previous section is
sometimes used in such a different manner that it is worthy of special
mention. Through the use of a two-grid tube, a pulse-type signal may be
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“gated” by the presence or absence of another signal, which may be
either a steady-state type of signal or another pulse. The distinguishing
feature of a tube used in this manner is that the output is always a pulse,
and therefore a transformer may be placed in series with the anode to
obtain an output pulse which has the same polarity as the pulse being
gated. Functionally, a gate-tube circuit of this sort is a simple “and”
switch.

A conventional pentode may be used as a gate tube, in which case it is
customary to apply the pulse input to the control grid and the gating
signal to the suppressor grid. The opposite connection is not used be-
cause a steady-state signal applied to the control grid would ecause
excessive current to the sereen grid in the absence of a signal on the
SUPPressor.

Relays. The basic “or,” “and,” and “not” circuits as performed with
relays are shown in Fig. 2-7. The input signals are applied to the coils
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Fic. 2-7. Basic relay circuits.
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of the relays, and when a coil is energized it attracts the armature toward
it. In the case of the “or” and “and” circuits, the effect is to close con-
tacts which are normally open; but for the “not,” or inverter, function, a
normally closed contact is opened by the action of the coil. In the figure,
the symbol for the relay armature is drawn so that its normal state may
be determined by noting whether motion toward the coil would tend to
close or open the contact. It will be assumed that positive polarity volt-
ages are used to actuate the coils and to provide the signals through the
contacts, although negative voltages could be used just as well. The
“or” switch is simply a parallel connection; a signal applied to one relay
“or” the other will cause a signal to appear on the output line. The
“and” switch is a series connection where one relay “and” the other must
be energized to yield an output signal. In the “not” circuit, an output
signal appears except when an input signal is applied, which causes the
contact to open.
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Any desired switching function may be assembled through the use of
the three basic circuits by following exactly the same procedures that
would be used to assemble switching arrangements composed of diodes
and vacuum-tube inverters. However, the circuits so obtained would
be wasteful of relays and contacts because there are several ways by
which relay switching networks may be simplified which are not ap-
plicable to other types of components. As an example, consider the
switching function Z = AB + AB. The “straightforward” way to form
such a switching function would be to invert X and Y, then apply the
signals to relay “and” circuits each composed of two relays, and finally
apply the outputs of the “and” circuits to a two-relay “or” ecircuit.
This configuration is shown in Fig. 2-8(a).

One fact that may be used to reduce the number of relays appearing
in Fig. 2-8(a) is that no relays at all are required to form an “or” circuit
when the inputs to the “or” circuit are from the contacts of other relays.
Therefore, relays numbered 4 and 8 may be eliminated simply by con-
necting together the contacts on relays numbered 3 and 7. Further, it is
not always necessary to use two relays to perform an “and” function; an
“and” cireuit may be made by applying one signal to the contact and the
other signal to the coil of a single relay. By this means, relays numbered
2 and 6 may be eliminated., The resulting eircuit is given in Fig, 2-8(b).
Since it is not necessary that each contact have its own separate actuat-
ing coil, the number of relay coils may be reduced by mounting all con-
tacts operated by the 4 signal on one relay and all contacts operated by
the B signal on a second relay, as shown in Fig.'2-8(e).

By the use of transfer points, another reduction in circuit complexity
may be achieved. A transfer point corresponds to the “double-throw”
switch used in electrical power work. The moving point makes a contact
at each end of its motion. That transfer points may be used in the
switching function presented in Fig. 2-8 is not exactly obvious, but it may
be determined readily when it is observed that in an “and” circuit the
order or sequence of the contacts makes no difference and that the
connections to an individual contact may be reversed if desired. When
these steps are taken, the circuit given in Fig. 2-8(d) can be derived.
The derivation can probably be visualized more easily through study of
(b) than (c); in (b) if relays 1 and 3 are interchanged and if the con-
nections to the contacts on the relays actuated by B are reversed, the
circuit in (d) follows almost directly.

The switching function, Z = AB + AB, may be generated by other re-
lay circuits involving interesting variations if the expression is factored
according to the following steps:
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AB 4+ AB = (A + AB)(B + AB)
= (A + A)(A + B)(B + A)(B + B)
= (4 +B)A + B)

The “straightforward” relay circuit for providing the switching function
according to this expression is shown in Fig. 2-9(a). A + B is formed by
relays 1 and 2; relays 5 and 6 combine A with B to form A + B; and re-
lays 7 and 8 perform the final “and” operation. Since the inputs to relays
5 and 6 come from other relays, this “or”’ function may be accomplished
simply by connecting the outputs of relays 3 and 4 together. Also, it is
possible to eliminate relays 7 and 8 by connecting the two “or” circuits in
series instead of applying to outputs of the “or” circuits to separate relays
which have their contacts in series. The resulting arrangement is given
in Fig. 2-9(b). As before, all contacts actuated by the signal may be
combined on one relay, and in this case the circuit of Fig. 2-9(c) is ob-
tained. By reversing the connections to the contacts on relays 1 and 2
in Fig. 2-9(b), it is possible to make use of transfer points as shown in
Fig. 2-9(d). Note that each of the circuits in Fig. 2-9 is different from the
circuits in Fig. 2-8; yet the switching function is the same in every case.

It is necessary to be cautious when using the simplifications deseribed
in the previous paragraphs because of the possibility of getting undesir-
able “back circuits” in the system. Two examples of situations where
back circuits can arise are shown in Fig. 2-10 (coils not shown). In (a)
the desired switching function is (AB + CD) E + (CD)F. The term,
CD, is generated by a series connection of contacts on relays operated by
the C and D signals. If this term is combined with AB in an “or” funec-
tion by merely connecting the wires together instead of using separate
relays for the “or” function, it cannot be combined with F with nothing
but another series connection. The reason is that a path from the supply
voltage to the output line would be closed when ABF = 1, which is not
desired. By placing a diode, as indicated, current flow through that par-
ticular wire is limited to one direction, and the undesired connection
is eliminated. In (b) the switching function is (4B - D) C 4 AE, but
without the diode the term DBE would be included also since the con-
tacts can pass current in either direction. If the use of diodes is objec-
tionable, the difficulty may be avoided without employing individual re-
lays for every ‘“or,” “and,” and “not” function by using duplicate con-
tacts for certain input signals. In Fig. 2-10(a), back circuits could have
been avoided by using duplicate contacts for C and D; in (b) a duphcate
contact for 4 would be sufficient.

An alternative method of eliminating back circuits in the switching
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Fia. 2-9. Relay circuits for (4 + B)(d + B).
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arrangements shown in Fig. 2-10 is through the use of normally closed
contacts as found on a relay inverter. In Fig. 2-10(a) a normally closed
contact on relay F may be used to replace the diode. With this arrange-
ment, if relays A, B, and F are operated, there will be no closed path
through the contacts from the supply voltage to the output. However,
when C, D, and E are operated there will be a closed circuit through
the contacts as desired. The path will be through the normally closed
contact on F and then through the contact on E if F is not operated but
will be through the normally open contact on F if F is operated. In Fig.
2-10(b) the diode may be replaced by a normally closed contact oper-
ated either by D or by E. This method of back circuit elimination is

A B E E
— A[/—-’B —}_’
*H_,_,}:} o I v
C D F D
(a) (b)

Fie. 2-10. Use of diodes to eliminate back circuits.

sometimes preferable because it is possible to make use of transfer points
which utilize both ends of the motion of the relay armature.

There are.several further.methods. by. which relays may be.adapted
to switching circuits. For example, an “or” function is readily formed
by placing two windings on the same relay. Two windings on the same
relay may be used as an “and” switch if the magnetic force from either
winding alone is not sufficient to operate the armature, or they may be
used to create a “not” operation by passing current in the windings so
that the magnetic fields oppose instead of aid each other. However,
multiple-winding relays are, in general, difficult to design for reliable
operation as “and” or “not” elements.

Bridge Circuits. The ability of a relay contact to pass current in
either direction can sometimes be used to advantage in reducing the
number of contacts required to assemble certain types of switching
functions. An elementary bridge circuit is shown in Fig. 2-11(a) with
coils for actuating the relays omitted. There are four different paths
from the supply voltage to the output line, and they may be indicated
by the expression,

Z =AB+ CD + AED + CEB

where the current flows through the E contact in opposite directions in the
two situations that it contributes to the output signal. Although the
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analysis of switching circuits containing bridge connections is usually not
difficult, the finding of a bridge connection to satisfy a given switching
function is mostly a matter of cut-and-try, and the practical cases where
any bridge connections at all can be used are not particularly numerous.

Other types of switching components, such as the diode switches which
have been described, are “one-way” devices, and bridge circuits cannot

A B
vof Ve -
c., . D
\{a)
B
A ¢ 0 A
1
A i
o, ;-
A
I e

c

of
(b)

Fig. 2-11. Relay bridge circuit and its diode analogy.

be formed with devices of this type. Of course, it is possible to simulate
a bridge circuit as indicated in Fig. 2-11(b), but this particular arrange-
ment could easily be found by writing the switching function as follows:

Z = B(A + CE) + D(C + AE)

The visualization of this arrangement as a bridge ecircuit is somewhat
artificial; also, it has no advantages as in the case of a relay bridge
circuit.

Although the bridge eircuit itself is not of outstanding importance as a
switching scheme, it is illustrative of a fundamental difference between
switching components which involve the controlled opening and closing
of “two-way” current paths and those which have the property that
signals appearing on the output line from other sources cannot react back
on the input lines. Many of the basic principles are the same, but the
details of the procedure for determining the most desirable arrange-
ments are quite different in the two cases.
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Inhibitors. Signals on certain input lines will inhibit the passage of
signals applied to other input lines by means of a device called an in-
hibitor. The symbol for an inhibitor is shown in Fig. 2-12, where the
use of a semicircle instead of an arrow indicates the inhibitor input.
A signal will be present on the output line when a signal is applied to
input line, 4, unless there is a signal present on B to inhibit it. The
output of the inhibitor is therefore AB. If A = 1, that is, if there is

always a signal present on A, the function of

A — _  an inhibitor is no different from that of an in-
8 AB  verter. |
A considerable variety of functions can be

Fig. 2-12. Symbol for in- . e . .
hibitor. built into inhibitors with more than two input

lines. For example, two or more “ordinary”
input lines can be made to operate as an “or” function where the output
will be inhibited by a signal on any one of several inhibitor inputs. Simi-
larly, either the “ordinary” or the inhibitor inputs, or both, can be made
to operate in an “and” fashion.

The distinction between inhibitors and inverters is sometimes little
more than a matter of viewpoint, although usually there is also a physical
difference in the components. Inhibitors are most adaptable to applica-
tions where transient pulse-type sig-
nals are employed; inverters are more
convenient for-steady-state  signals.
In the functional organization of any
arithmetic or switching operation, the
two types of components are substan-
tially interchangeable. Inverters will
be used in the following chapters be-
cause, for the most part, steady-state
signals will be assumed. Where it is
desired to adapt any of the arrange-
ments to pulse-type signals, inhibitors
may be substituted in a relatively
straightforward —manner provided Fre. 2-13. Tnhibitor cireuit.
proper precautions are taken with
regard to any delays that may be encountered by the signals in passing
through the various components. With pulse-type signals it is frequently
necessary to introduce compensating delays at appropriate points in a
switching network to insure that all input signals arrive simultaneously
at any given “and” switch or inhibitor.

A typical inhibitor circuit is shown in Fig. 2-13. Resistors Ry and R,
are so chosen that the tube is normally cut off. A positive pulse on in-




‘Boolean Algebra 47

put, A, will cause the tube to conduct and create a positive pulse on the
output line unless the action is inhibited by a positive pulse on input, B.
The transformers are used principally for polarity inversion, although
they also serve the useful purpose of shifting the voltage levels of the
signals in order that the output from the plate circuit may be used to
drive the grid circuit of other tubes.

Feedback Connections. In some cases, useful results may be obtained
by feeding the output lines of a switching network back to one or more

PRSP

of the input lines. The most outstanding use of such connections is in the
formation of multistable circuits. As an example, consider the circuit
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Fic. 2-14. Bistable circuit.

in Fig. 2-14(a) comprised of two inverters and two “or” switches con-
nected so that there is a closed loop in the eircuit. Assume that signals
are not present on either of the input lines, A and B. If no signal, that is,
a 0, is present at the input to the first inverter, a signal (1) will appear
at the output of this inverter and will pass through the “or” switch to be
applied to the input of the second inverter. The output of the second
inverter will therefore be 0. This 0 will be applied to the “or” switch
connected in the input circuit of the first inverter and, since a 0 was as-
sumed to be applied to input, 4, the circuit will remain in this state indefi-
nitely. When a signal is applied to input, 4, even temporarily, the 1
appearing at the input of the first inverter will cause the input to the
second inverter to be 0. The output of the second inverter, which will
now be 1, will be applied through the “or” switch to the first inverter and
will cause the circuit to change to this state. In an analogous manner,
a signal applied to input, B, will cause the circuit to transfer back to its
original state. Commonly used names for a bistable arrangement of this
nature are “trigger” and “flip-flop.”

By connecting the two input lines it is possible to form a cireuit which
will alternate from one stable state to the other upon reception of a
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series of pulses applied to the resulting common input line. However,
provision must be made to insure that an input pulse will reach only the
desired “or” switeh. One configuration which will achieve this result is
shown in Fig. 2-14(b). Assume that the arrangement is in the state
indicated by the 1’s and 0’s in the figure and that a signal is applied
temporarily at the input. The input signal will pass through the right-
hand “and” switch and then through the right-hand delay unit (indicated
by a block labeled D) to the corresponding “or” switch. If the input
signal is terminated by the time the delayed signal arrives at this “or”
switch, the input signal will not reach the left-hand “or” switch, and the

circuit will change to its other stable state. A

' t I I subsequent application of a temporary input signal
will cause a transfer back to the original state by

o 1 o 1| @ similar process. A flip-flop connected in this
manner can be used as a binary counter in ways

t t t that will be described in more detail in other chap-
ters. Actually, in many practical binary counter

(a) (b) circuits (for example, the familiar twin-triode
Fic. 2-15. Symbols for {ip-flop), separate components are not needed for
bistable devices. all of the various “and,” “or,” and delay func-

tions; but an analysis of the circuit operation
will reveal that each of the required functions is being performed by
some means or.other. « e
The bistable arrangement of Fig. 2-14 is so frequently used that it
is convenient to adopt a special symbol for it, as given in Fig. 2-15. The
two stable states can be represented by a 0 and a 1; that is, the device
is capable of storing a binary digit. In Fig. 2-15(a) a signal applied to
the input line of the left-hand side will cause the bistable device to trans-
fer to the state representing 0 if it is not already in this state. Similarly,
a signal applied to the right-hand input line, even temporarily, will initi-
ate a transfer to the state representing 1. The output lines, which are
taken from the outputs of the inverters, are used to indicate the state of
the device. A signal is always present on one or the other, but not both,
of the output lines; and the state is 0 or 1 according to whether the
signal is on the left- or right-hand output line, respectively. The symbol
given in Fig. 2-15(b) corresponds to the configuration shown in Fig.
2-14(b); a temporary signal applied to the common input line will cause
the flip-flop to change to its opposite state regardless of which state
it was in originally.
The arrangement shown in Fig. 2-16(a) has three stable states; and
the circuit can be caused to exist in any one of the three states by the
temporary application of signals to inputs, 4, B, or C, respectively. A
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variation is shown in (b). Much more elaborate feedback loops are pos-
sible; but, since none are used in the arithmetic eircuits to be described
in subsequent chapters, the subject will not be discussed further.

It is plausible to apply Boolean algebra to feedback loops including
the loops found in individual triggers. Since triggers can be thought of as

) t
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Frg. 2-16, Arrangements with three stable states.

being comprised of elements of switching circuits, it is even conceivable
that Boolean algebra techniques could be extended to the point where a
whole computer could be represented by a single algebraic expression.
However, such an extension does not appear practical, and the use of
Boolean algebra will be confined to isolated
switching networks without feedback connections. ID
One other important feedback loop is employed
in the formation of a bistable element when pulse-

type instead of steady-state signals are used. The | 1 A 0
arrangement, is shown in Fig. 2-17. A pulse ap-
plied to the input line, marked 1, will pass through T t t

the “or” switch to a delay device (1D) which de- O  CLOCK |
lays the pulse approximately one “cycle” or the PULSES
. « 'y . Fre. 2-17. Bistable ar-
time between the “clock pulses,” which are a con- .
. . R L rangement employing
tinuous series of pulses at a uniform repetition pulse-type signals.
rate applied to the “and” switch as shown. The
initial pulse must be applied at a time relative to the clock pulses such
that the delayed pulse arrives at the “and” switch simultaneously with
the next clock pulse. The output of the “and” switeh then circulates
through the loop in the same manner as the initial pulse.

The purpose of matehing the circulating pulse in an “and” switch is to
insure that the pulse ecirculation occurs in step with the remainder
of the machine of which this eircuit is a part. Although it is not shown,
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the loop must also contain an amplifier which will prevent the deteriora-
tion of the amplitude and shape of the pulse. In order to terminate
the circulation of a pulse in the loop, a pulse is applied at the proper
time on the input line marked 0, which is connected to the inhibiting
input of an inhibitor. One stable state is therefore represented by the
existence of a pulse circulating in the loop, and the other stable state is
represented by the nonexistence of a circulating pulse. The output signal
may be taken from any point in the loop. Variations in the configuration
may be obtained by rearranging the four components in any sequence
without affecting the bistable properties.

Other Components. There are many types of components other than
diodes, vacuum tubes, and relays which may be adapted to switching
circuits. For example, a conducting path between two electrodes in a
gaseous tube can be established by applying a high-frequency signal to
an electrode which is external to the tube. The input signal turns on or
off an oscillator that generates the high-frequency signal, which in turn
causes the gas in the tube to be ionized and allow a flow of electrons.
Such a device would be a direct analogy to an electromechanical relay ex-
cept that transfer points would not be possible.

Transistors and magnetic cores are components which are adaptable
to computer circuits and with which it is possible to perform switching
operations. However, their major application seems to be in amplifiers
--and storage; respectively; -and. their role-in-switching. circuits -does. not
appear to be as straightforward as in the case of diodes, tubes, or relays.

The arrangements for performing the various arithmetic operations,
as discussed in subsequent chapters, are substantially independent of the
components that are used to perform the various switching and storage
operations. Some types of components can be made to fit directly in the
block diagrams, whereas appropriate modifications in the block dia-
grams will have to be made for other components; but the principles of
operation of the arrangements can remain unchanged.



Chapter 3

SWITCHING NETWORKS

Before proceeding to the arithmetic operations specifically, this chapter
will be devoted to switching networks in general. As will be illustrated
in subsequent chapters, arithmetic operations are performed in com-
puters largely through the assembling of the computer components to
form switching networks of various descriptions. Also, switching net-
works have application in parts of a computer other than the part which
does the actual adding, multiplying, and other operations. In particular,
the control portion of a computer is comprised almost entirely of switeh-
ing networks. Further, switching networks are of interest in many ma-
chines and devices such as elevator controls, telephone switchboards, code
and cipher machines, and railway signaling systems, which are not com-
puters in the usual sense of the word at all.

In broad terms, a switching network is any digital device to which in-
put signals may be applied and from which output signals may be ob-
tained that are some prescribed function of the input signals. In the
examples to be described, it will be assumed that the signals are all two-
valued; that is, on a given signal line, a signal either will be present or
will not be present. In other words, a signal can be considered as having
the value 1 or 0, according to whether it is in existence or not. There
is no inherent reason why multivalued signals could not be used, but very
little practical use has been made of them because of the difficulties in
designing suitable physical components. Reference will be made both
to steady-state and pulse-type signals. In most cases either type of
signals may be assumed; those instances which require one kind of signal
or the other will be apparent from the text or from the nature of the
switching network.

Some of the most elementary networks were discussed in the previous
chapter. More complicated, in fact even very complicated, switching
petworks usually may be quite easily assembled in a straightforward

51
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manner. The difficult part of the task is finding an arrangement which
has the minimum or a reasonable number of components or which meets
some other requirement such as speed of operation. Frequently, further
complications are introduced that might not be apparent from the func-
tional block diagrams containing only the switching elements. One such
complication is encountered when diodes are used. When a signal passes
through a succession of alternate “and” and “or” switches, its amplitude
rapidly diminishes. If the circuits are properly designed, simple ecathode
follower circuits may be used at intermediate points to produce the re-
quired current gain. With a large number of stages, voltage amplifica-
tion as well as current amplification will be required. Of course, the sig-
nal amplification equipment must be considered as well as switching ele-
ments themselves. Even with components that require no separate ampli-
fiers, two or more different types of components may be used; and then it
1s necessary to find the lowest possible “weighted count” in the various
possible switching configurations, because the different types may have
variations in cost or desirability.

In spite of the virtual impossibility of finding a general solution to net-
work problems which must include engineering considerations, a few
aids and tricks are known. Some of the more useful procedures for find-
ing suitable switching networks will be pointed out.

Elemental Form of Network. Any switching function involving a
single output signal which is a function of a set of simultaneously applied
input signals may be reduced to an “elemental form.” Here, the term,
elemental form, means a Boolean algebra expression (or the equivalent
physical circuit) where the desired result is obtained by a set of “and”
terms combined by an “or” relationship, where each “and” term contains
all of the variables. It is possible to find this form in any given instance
merely by noting those combinations of input signals for which an output
signal is desired.

For example, with three input signals, 4, B, and C, there are eight and
only eight possible input combinations. Each input combination may be
represented by an “and” term such as ABC, which has the meaning that
a signal is applied to input B but not to inputs A or C. Any given switch-
ing function may be specified by a listing of the combinations of input
signals which will produce an output signal. Since the listing implies an
“or” relationship, it follows that any switching function may be repre-
sented by an expression of the form,

ABC + ABC + ABC +---
where only those terms which are to yield an output signal are included.
Of course, when a switching function is encountered in a practical prob-
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lem, it may not appear in this elemental form, but through Boolean algebra
manipulations it is not difficult to alter the representation to fit this form.
For instance, the elemental form of the function (AB + C) may be found
by proceeding through the following steps:

(AB + C) = ABC
(4 4+ B)C

= ABC + ABC + ABC

I

Through a study of the elemental forms of switching networks, the total
number of different switehing funections may be determined. In the case
of only one input variable, the networks are all trivial; nevertheless, there
are four of them as represented by the expressions, 0, 4, 4 and 4 + 4.
The first is an open circuit, the second is a straight connection between the
input and output, the third is an inverter, and the last is a steady output
signal independent of the input. With two input variables, there are six-
teen different switching functions as follows:

0 AB + AB + AB
AB AB + AB + AB
AB AB + AB + AB
AB AB + AB + AB
AB AB + AB + AB + AB
AB+ AB

AB + AB

AB + AB

AB + AB

AB + AB

AB + AB

As will be explained shortly, most of these expressions can be simplified
considerably. With three input variables, a total of 256 different switch-
ing functions are possible, although many of them are merely rearrange-
ments of the variables.

In general, the number of switching functions may be found by noting
that the total number of different input combinations is equal to 27,
where N is the number of input variables. It may be desired to have
an output signal for any set of input combinations. Therefore, each of
the sets can be represented by a binary number of 2¥ digits with a 1 or
a 0 in the number, meaning that the corresponding input combination
causes or does not cause, respectively, an output signal. Since there is a
one-to-one correspondence between the sets and the binary numbers, the
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total number of switching combinations is equal to 2 raised to the 2¥th
power.

Simplifying the Elemental Form. The elemental form of representa-
tion of a switching function does not, of course, necessarily yield a repre-
sentation of the physical switching ecircuit which is most economical in
terms of the number of components required. In fact, in the wide ma-
jority of instances, the circuit may be simplified. In this section only
those cireuit conﬁguratlons which involve a set of “and” sw1tches com-
bined by an “or” switch will be considered.

When huntmg for unnecessary components to remove from an ‘“and-to-
or” switching circuit (such as a circuit in its elemental form), a good way
to start is to look for combinations of variables in any of the forms, XY +
XY, X + XY, or X + XV, because each of these expressions can be
reduced as follows:

XY+Xxy=XT+7) =
X+Xy=XQ+7Y) =
X+XY=X+X)X+Y)=X+Y

As an illustration of the use of these relationships, consider the switching
function, AB + AB + AB, which is found in the list of the sixteen two-
input functions. The first two of the three terms in the expression are of
the type represented by-the first equation above, and the function may
therefore be reduced to A + AB, which, in turn, may be reduced to A + B
as determined by the third equation. Through the use of the three equa-
tions, it may be found quickly that the entire list of sixteen two-input
switching functions may be reduced to the following list of relatively
simple expressions.

0
AB A+ B
AB A+ B
AB A+ B
AB A+ B
A

B

AB + AB

AB + AB

B

A

When working with switching functions involving three or more input
variables, the three equations presented in the previous paragraph can be
represented in a more general manner.
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F(XR) + f(X)g(Vi) = f(X2)
F(Xo) + f(X)g(Vn) = f(Xn) + 9(Ym)

Here, X, signifies a set, X, of n variables; and Y, signifies a set, ¥, of m
variables. It is not a requirement that any given variable appear in only
one set; it may appear in both sets. A notation such as f(X,) means any

fravrats ~F Y Tn
Boolean algebra function of X,. In this section most of the functions are

limited to simple “and’” combinations of the variables, but it should be

understood that this limitation is not general.
As another nmmn]n of the nrnonﬂnrp consider the fun CtiOB;

ABC + ABC + ABCD

If the first two terms of the expression are examined, it will be observed
that AC is common to both of them and may be taken as a single variable
or function. Therefore, the expression reduces to AC + ABCD. Further
simplification cannot be achieved through direct application of any of the
three equations; but, if the common variable, A4, is factored to yield
A(C + BCD), then BD may be taken as a single variable. The resulting
expression is A(C + BD) = AC + ABD. In this, as in most other ex-
amples, several different sequences of steps could have been used to achieve
the same result.

Sometimes when simplifying a switching function it is easier, at least
from the standpoint of visualization, to use a given term more than once
in the process. For example,

ABC + ABC + ABC = ABC + ABC + ABC + ABC
The third term in the left-hand side of the equation is recorded twice in
the right-hand side (possible because X = X + X). Then, by considering
the first and third terms together and the second and_fourth_terms to-
gether, it is found that the expression is equivalent to BC + AC.

A more striking example of the power of the three generalized simplify-
ing equations is illustrated in the following example.

(AB+C)+ (AB+C)(CD+ A) = (AB+C) + (CD + 4)
=4A4+C
The simplified form is found very quickly by considering the expressions

within the brackets as individual variables. Without the generalized
equations, a process somewhat as follows would be necessary:
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(AB+C) + (AB + C)(CD + A) = (4B + C) + ABC(CD + 4)
= 4B+ C)+ (4 + B)C(CD + A)
= (AB+ C)+ ABC
= AB+ B0+ C
=AB+0)+C
=AB+ AC+C
=AB+A+C
=A+C

A Difficulty and Its Solution. Occasionally, switching functions of the
simple “and-to-or”’ variety contain superfluous terms which cannot be de-
tected by the methods described in the previous section. An example is
AB + BC + AC, where the third term, AC, is superfluous and may be
dropped without altering the value of the function.

One way to show that the term is superfluous is through multiplying it
by B + B, which is equal to 1 and therefore does not change its value.

AB + BC + AC = AB + BC + AC(B + B)
= AB + BC + ABC + ABC
= AB1 +C) + (1 + 4)BC
= AB + BC

Although the steps illustrated here may seem perfectly straightforward, it
is sometimes quite puzzling to find the proper steps when an example of
this type is encountered for the first time. Experience and practice are a
great help in knowing which steps of the multitude that are possible are
most likely to be fruitful in finding simplifications in the switching func-
tion. A study of the following additional three examples will aid in dis-
cerning patterns that are likely to signify superfluous terms.

AB + BC + AC = AB+ BC

AB+ BC + AC = AB+ BC

AB + BC + AC = AB + BC
By using a “testing” process, superfluous terms can be detected in-a
positive manner. To test a given term, the values of the input variables
are observed which cause an output signal because of the term being tested.

These values of the variables are then inserted in all of the other terms;
and if it is found that an output signal is always created through at least
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one other term, it is known that the term being tested is superfluous. The
process will be illustrated by testing the term AC in the previous example
of AB+ BC -~ AC. For AC to cause an output signal (that is, to cause
the value of the switching function to be 1), it must be that 4 = 1 and
C = 0. In this case, however, the first two terms yield (1)B + B(1),
which is always equal to 1. Therefore, the AC is superfluous. By apply-
ing this test to all terms in an “and-to-or” switching function, it is pessxble
to find with certainty any that may be superfluous.

At Tv
Another llustrative cxample is the switching function,

AB+BC+CA+ AB+ BC+C4A

Aack A oy AT 3
A test on any ons of the six terms will indicate that it is sup

result of testing the first term (set A = 1 and B = 0) is

0+0+0+1CH+CH) =1

and analogous results are obtained from tests of any one of the other
terms. However, it should not be concluded that all terms are superfluous
and that the function is equivalent to 0. After testing one term and find-
ing that it is superfluous, it should be eliminated before testing another.
In particular after eliminating the first term, the second or third terms
will be found superfluous, but the last three will not be superfluous. It
happens that in this example the switching function may be simplified to
any one of two equivalent functions which are:

AB+BC+CA=A4AB+ BC+CA

Although individual variables that are superfluous can usually be found
by methods described previously, the testing procedure may be used for
them also. A slight modification in the procedure is required. For ex-
ample, in the switching function, 4B 4+ ABC, the appearance of B in the
second term is superfluous. To test this particular appearance of the
variable, it must be observed that it will contribute to the output only
when A = 1 and C = 1. But then the expression is equivalent to (1)(B)
+ (1)B(1) = 1. Since the first term causes the expression to be equal to
1 when B = 1 and since the variables other than B would cause the second
term to be equal to 1 when B = 0, the value of the expression is never de-
pendent upon the B factor in the second term. Therefore, the B factor
in the second term is superfluous and may be eliminated.

As another example, consider the switching function, AB + ABC + AB.
The appearance of A in the second term or the appearance of B in the
second term, but not both, is superfluous as may be determined by test-
ing. The test for A in the second term is to note that B = 0 and ' = 1
when this term contributes to the output. Since, in this case, the switch-
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ing function is 0 + A(1)(1) + A(1), which is always 1, it follows that the
A in the second term is not needed. The same result could have been
found with previously described methods by factoring B out of the second
and third terms as a first step. By similar procedures it may be shown
that B in the second term could be eliminated instead of 4.

Another Difficulty and Its Solution. In all of the examples described
previously the simplifications were accomplished through eliminating un-
necessary variables or terms in the expression. Occasionally, when apply-
ing the methods which have been described, it is possible to proceed into
a ‘“trap.” The trap is a situation where an expression is found which con-
tains no superfluous variables or terms, as can be proved by testing, but
yet is not the simplest “and-to-or” expression which represents the de-
sired switching function.

An example is the following switching function which, when represented
in its elemental form, is

ABC + ABC + ABC + ABC + ABC + ABC
By grouping first and fifth, the second and fourth, the first and sixth, and
the third and fourth terms in pairs, the function may be simplified to:

AB+ AB+ AC + AC
which contains no superfluous variables or terms. Yet it is possible to
form the function with less terms than this. If the terms in the original

expression had been grouped with the first and fifth, the second and sixth,
and the third and fourth terms in pairs, the result would have been

AB+ BC +CA4

Although a criterion for simplicity is sometimes difficult to define, by al-
most any conceivable standards this expression is simpler than the previous
one. It may be recognized that this example is substantially the same as
a previous one; by a different grouping of the original terms the different,
but equivalent, expression

AB+ BC+CA
could have been obtained.

What is needed in avoiding traps of the type just described is a system-
atic way of finding all possible combinations of simplified forms so that
the most desirable one may be selected. One such system involves ex-
panding the function to its elemental form (if it is not already in its ele-
mental form). Then, through repeated applications of the formula, XY
+ XY = X, in a systematic manner, all “basic” terms in the expression
may be found, where a basic term is any correct term which contains no
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superfluous variables. In the previous example, a total of six basic terms
(AB, etc.) is found by pairing the terms of the elemental form in various
ways. Actually, it is not known that these terms are basic until each of
them has been compared with all others and it has been determined that
further reductions cannot be made. After finding all basic terms, a table
is made that indicates which of them are contained in each term in the
elemental form. For the example cited, the table is shown in Table 3-I,
where an X indicates that the basic term listed in the corresponding row
is contained in the elemental term at the top of the corresponding column.

Tasre 3-I. Tapik ror Smveuirvine AB + AB + AC + AC

_ ABC iBC ABC  ABC  ABC  ABC
AB X X
AB X X
BC X X
BC X X
cA X X
ca X X

Through inspection of the table and a systematic selection of the basic
terms, all possible combinations of basic terms which will be equivalent
to the original expression can be found. The basic terms must, of course,
be selected such that each term in the elemental form is represented at
least once (that is, such that the selected terms will represent at least one
X in each column}).

As another example, it may be shown by similar procedures that the
following four-term expression is a trap in that it contains no superfluous
terms or variables and that it may be reduced to either of two different
three-term expressions.

ACD + ABC + ABC + ACD = ACD + ABC + BCD
= ABC + ACD + BCD

The systematic procedure for analyzing switching functions is some-
times useful even when no simplifications can be achieved. As an example
of this case, consider the switching function, ABC + ABD 4+ BD. When
this expression is expanded to its elemental form by multiplying individual
terms by expressions of the form X + X, it is found that the elemental
terms shown at the top of Table 3-II are present after duplicates have
been eliminated.

When the terms of the elemental form are grouped by two’s in all pos-
sible combinations, a set of three-variable terms is found as follows: ABC,
ACD, ABD, BCD, ABD, BCD, and ABD. Of these, the third and seventh
and also the fourth and sixth may be paired, with each pair yielding the
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Tasre 3-II. Anavysis or ABC + ABD + BD

ABCD ABCD ABCD ABCD ABCD ABTD ABCD
ABC X X

ACD X X
BD X X X X
ABD X X

term, BD. The basic terms of the expression are, therefore, ABC, ACD,
BD, and ABD. In this example, it happens that three of the basic terms
were in the original expression, but one new one has been found. From
Table 3-II it is easily determined that BD is a necessary basic term be-
cause it is the only one appearing in the columns for ABCD and two other
elemental terms. For a similar reason, ABD is necessary. Since both of
these terms must appear in any simplified form of the switching expres-
sion, the only elemental term not accounted for is ABCD. Either ABC
or ACD may be chosen, and the other one becomes superfluous. Although
no reductions in the number of terms or variables have been achieved, it
has been found that ACD + BD 4+ ABD is an alternate expression; this
expression would have been extremely difficult to find in any haphazard
way. One possible value of the alternate expression could arise from physi-
cal characteristics of the circuits supplying the input signals. If it hap-
pened that the circuit supplying B were capable of operating only one

“and” switch while the circuit supplying D could operate two, the alter-
nate would be preferable.

Separation of Variables. If it is possible to group the terms in an ex-
pression so that none of the variables appearing in any one group appears
in any other group, the network simplifying procedures that have been
described can be applied to the individual groups instead of to the entire
expression, with a considerable saving in effort. Consider the switching
expression,

AB+ BC+ ACD+ D+ ABE+ E

To analyze this expression thoroughly by expanding it to its elemental
form would be laborious, but by procedures described previously it may
be quickly simplified to:

(AB+BC+AC+ AB)+ D+ E) = AB+BC+D+E

Note that the terms in the first set of parentheses contain only A, B, and
C; and the terms in the second set contain only D and E. Although a
formal proof is somewhat involved, it can be shown that the expression
obtained from simplifying the groups separately is the same as would be
obtained by handling all of the original terms together.
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Factoring. When it is not a requirement that the switching function
remain of the “and-to-or” type, a reduction in the number of components
can be achieved frequently through the use of simple factoring. An
example is AB 4 AC, where the 4 may be factored out to yield A(B +
C). Ii diode switching is employed where the number of diodes in the
circuit is equal to the number of input signals to each “and” and “or”
switch, a total of six diodes is required for a circuit conforming to the
original expression, but only four are required for the factored form.

Factoring does not always yield a simpiifieation; in fact, in some in-
stances more components are required and other disadvantages are in-
troduced. Consider the switching function, ABC + ADE 4 F, which re-
quires nine diodes. If the 4 is factored to yield A(BC + DE) + F, a
total of ten diodes becomes necessary. Furthermore, some of the input
signals, B for instance, must proceed through an “and-to-or-to-and-to-or”
switching sequence. Multiple level switching such as this is accomplished
only with difficulty when diodes or some other types of switching com-
ponents are used.

Converting to an “Or-to-and” Type of Circuit. Through repeated ap-
plications of the formula, X + YZ = (X 4 Y) (X + Z), any switching
function in “and-to-or” form may be converted to “or-to-and” form.
In the previous chapter, this procedure was used to develop the following
equality:

AB+CD = (A 4+ CO)(A + D)YB + C)(B + D)

In this case, no simplification is obtained; instead, the expression becomes
more complex. However, if the original expression had been AC +
AD + BC 4 BD, it could be shown by the same procedure (or by simple
factoring in this case) that it is equivalent to (4 4+ B) (C + D), which
corresponds to a substantially simpler circuit.

From the above example it might be expected that the probability of
finding a more complex or a simpler circuit is the same. For random
switching functions this situation is true because there is a one-to-one
correspondence between the set of all possible “and-to-or” circuits and
all possible “or-to-and” ecircuits, which of course includes all possible
circuits. For the switching functions encountered in practical applica-
tions, there is considerable question about their randomness. Although
no conclusive data are known, some rough surveys have indicated that
the “and-to-or” type, which becomes more complex upon conversion,
is the more prevalent.

Factors other than the number of components frequently contribute
to the “simplicity” of a circuit. One such factor is standardization. It
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is sometimes desirable, for reasons of standardization, to use only “and-
to-or” circuits or only “or-to-and” circuits. In other cases, it may be
that switching components are chosen which function much more satis-
factorily in one type of circuit than the other. Since conversion is pos-
sible, either type may be used regardless of the nature of the switching
functions. If it happens that the type most suited to the components
requires a larger number of components than the other type, this dis-
advantage may be avoided in some machines by redefining the represen-
tation of a “signal” and “no signal.” For example, if a signal is norm-
ally represented by a relatively positive voltage, changing to a relatively
negative voltage for a signal representation will cause all “and” and
“or” functions to be interchanged.

The significance of the “or-to-and” form of switching networks is of in-
terest from the standpoint of mental visualization. In some cases the
“or-to-and”’ form is a distinet aid in visualizing the true nature of a switch-
ing function, but in most cases it seems to be only an artificial sort of rep-
resentation. In particular, the elemental “and-to-or” form specifies in an
easily visualized manner those combinations of input signals which create
an output signal. Elemental “or-to-and” functions can be worked out,
but their usefulness, if any, is difficult to imagine. For example, the ele-
mental “or-to-and”’ form for (4 + B)(B -+ C) would be

A+B+C)YA+B+0C)A+B+C)(A+B+0)

which seems to obscure the true nature of the function.
One example where the “or-to-and’’ form might be useful for visualiza-
tion purposes is

AB+BC+CA=A+BUAU+OB+0C)+CA
=A+B+O)A+EB+0)

From the “or-to-and” form, it may be observed readily that the function
causes an output signal to be generated in any situation where at least one
of the three input variables, 4, B, and C, is 1 and at the same time at
least one of the variables is 0. This visualization of the function is not
so clearly observable from the “and-to-or” form.

Two reasons for the selection of the particular Boolean algebra nota-
tion which is being used here can now be explained. One reason is re-
lated to the fact that the majority of switching functions encountered in
practical applications yield a less complex switching circuit when in the
“gand-to-or” form. The other pertains to the fact that the “and-to-or”
form is usually more useful for mental visualization of the function. For
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both reasons the use of -+ signs and parentheses is the lesser when the
“and” and “or” function notations are made to correspond to sums and
products, respectively. In applications where the “or-to-and” form is
known to predominate, the opposite convention may be used in order to
decrease the incidence of + signs and parentheses.

A peculiar property of the conversion process is that, if the factors in
the “or-to-and”’ expression which is obtained after a conversion are arbi-
trarily altered to form terms in a new ‘“‘and-to-or” expression, the new ex-

311 £, +1
pression will frequently contain superfluous terms which cannot be re-

moved by the more elementary procedures. For example, the expression,
AB + BD -+ CD, when converted to “or-to-and” form is equal to

A+B+0)A+B+D)yA+C+D)YB+C+ D)

When the variables in the factors are arbitrarily grouped to generate a
new “and-to-or’”’ expression, the following switching function is obtained:

ABC + ABD + ACD + BCD

Either the first or the third term, but not both, is superfluous, as may be
proved by testing or by analyzing the expression more completely through
use of methods which have been described. By inverting the new expres-
sion, it is found to be equal to

(4 + B)(4 + C)(A + D)(B+ C)(B + D)(C + D)
which may be arbitrarily altered to
AB + AC + AD + BC + BD + CD

It can be shown that the second, third, and fourth terms are all superflu-
ous in this “and-to-or” expression. Note that it is equivalent to the ex-
pression used at the start of the example. Tt is always true that, after
two conversions with arbitrary alterations of this type, the result will be
equivalent to the original expression.

The conversion property described in the previous paragraph has aca-
demic usefulness in that it may be used to find new examples and prob-
lems for students. Also, incidentally, through mere rearrangement of
terms and inversions of variables, many of the examples given in
this chapter can be rendered substantially unrecognizable and can then
be used as problems. Three miscellaneous examples which provide good
practice in Boolean algebra manipulations and which were originally
discovered through selecting random functions and running them through
two successive conversions are listed below.
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AB + AC 4+ AD + BD = ABC + BD + AD
= AC+ AD + BD
ABC + ABD + ACD + AC + BCD = ABC + ACD + AC + BCD
= ABC + ABD + AC
ABC + ACD + ABC + ACD + BCD + BD

= ACD + ACD + BCD + BD
= ACD + ABC + BCD + BD
= ABC + ABC + BCD + BD
= ABC + ACD + BD

‘When performing conversions, if relationships of the type

WH+X+Y+2)W+X)=W+X

are kept well in mind and used where possible, much work can be
avoided by simplifying the expressions obtained at intermediate steps
in the process. The correctness of this relationship can be established
readily through methods described previously.

An alternative method of finding the “or-to-and” form of a switching
function is to list all of the elemental terms for which the function is zero.
When these terms are combined by an “or” relationship and inverted, an
equivalent form of the initial function is obtained. Another way of view-
ing the situation is to observe that a function is equal to ‘“not” any of
those conditions which are not in the function. The expression in this
form may then be altered easily to yield an “or-to-and” expression. For
example, consider a function which in its elemental form is ABC + ABC
-+ ABC. By listing all other elemental terms, the following equation can
be obtained:

ABC + ABC + ABC = ABC + ABC + ABC + ABC + ABC

The “and-to-or”’ expression under the “not” sign in the right-hand side
of the equation may be simplified by the methods which have already been
described. When this simplification is made, the conversion of the original
function to “or-to-and” form proceeds according to the following steps:

ABC + ABC + ABC = AB + AB + BC
= (4B) (AB) (BC)
=A+BA+BB+C0)
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Situations Where Some Combinations of Input Variables Will Not
Exist. In all previous examples it was assumed that input signals might
be applied in any possible combination. In many applications encoun-
tered in computers and other machines which use switching networks, it
may be discovered upon detailed examination of the problem that certain
combinations of input signals will never exist. When this situation is
found, it is frequently possible to find a circuit which uses less com-
ponents or is otherwise simpler than one which must respond properly
to all possible combinations of input signals.

In other instances it may be, for one reason or another, that the exist-
ence or nonexistence of an output signal is immaterial for certain combi-
nations of input signals. TFrom the standpoint of switching network
design, this situation is exactly the same as the previous one; in either
case the response of the network to input signal combinations in question
may be disregarded.

As an example, consider a switching network where the desired output
signal in terms of the input signals may be represented by the expression,
AB + ABC, and assume that the combination of input signals represented
by the elemental term, ABC, will never be applied. For purposes of cir-
cuit simplification, a good way to visualize the problem is to imagine that,
if the combination were applied, an output signal would be caused. The
representation of the switching function would then be AB + ABC +
ABC, which can be reduced to AB + AB. The fact that this particular
expression is not a correct representation of the desired switching function
is of no consequence because it has been assumed that the combinations
of input signals which would cause a discrepancy will never occur. As a
variation in the example, assume that it is the combination, ABC, which
is never applied to the input lines. In this case, the expression which may
be used is AB + ABC 4+ ABC. Although the A in the third term is
superfluous, the expression is more complex than the original one; there-
fore the fact that ABC is never applied is of no help in this example.

As a further variation in the above example, assume that the input
combination, AC, is never applied. This specification is the same as stat-
ing that neither ABC nor ABC will be applied. It may be imagined that,
if AC were a valid input combination, an output signal would be generated.
The resulting switching expression would then be

AB + ABC + AC = AB+ AB + AC

In applications where three-input “and” switdhes are highly undesirable,
it is conceivable that this form of the switching network would be chosen
in preference to the original form, which was AB + ABC. However, in
most applications the original form would probably be preferable.
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From the nature of the above example it is apparent that, when making
use of nonexistent input combinations for finding network simplifications,
they must be considered in all possible ways. More specifically, the non-
existent input combinations must be expanded to their elemental form.
Then attempts must be made to simplify the network by making use of
each one combination in turn, each two input combinations, each three,
and so on. In the above example, the greatest simplification would be
achieved when making use of the fact that ABC was nonexistent even in
the case when both ABC and ABC are nonexistent. If, when represented
in their elemental form, there are N nonexistent input combinations, a
total of 27 different switching expressions must be studied in order to
find the most desirable one. Although the task can be laborious when
many input variables are involved, an experienced circuit designer can
frequently eliminate many of the possibilities “by inspection.”

A slightly more illustrative example is the switching function ABCD +
ABCD with the input combinations, ACD and BCD, nonexistent. If the
switching network is altered so that it would produce an output in the
presence of one or the other, or both, of these combinations, no simplifi-
cation can be achieved (by most standards). However, when the non-
existent terms are expanded to their elemental form, three different terms
are found: ABCD, ABCD, and ABCD. When the second and third of
these terms, but not the first, are used, the switching function can be sim-
plified to ABD + ABC.

A Diagram Method of Finding Suitable Switching Arrangements. For
cases where the number of input variables is no greater than four, there is
a diagram method of finding suitable switching arrangements which is con-
venient because it by-passes much of the clerical work required with the
previously described methods. As will be explained later, the method can
be extended to problems involving more than four variables, but the diffi-
culties in visualizing the various patterns increase rapidly as the number
of variables is increased.

For four variables, the diagram consists of a square divided into six-
teen smaller squares as shown in Fig. 3-1(a). To assist in the explanation
of the method, the squares are numbered from 1 to 16, although normally
the numbers are neither required nor used. The top half of the large
square (small square numbers 1 through 8) corresponds to A, that is, to
cases where 4 is 1; and the bottom half, to the cases where A is 0 (that is,
where 4 is 1). Similarly, the left or right half of the large square corre-
sponds to the cases where B is 1 or 0, respectively. The two center rows
(numbers 5 through 12) correspond to cases where C is equal to 1, with
the top and bottom rows for ' equal to 0. For D, it is the center and out-
side columns, respectively. With these assignments, each small square
represents one of the sixteen possible combinations of the input variables.
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For examples, square number 2 represents ABCD, number 9 represents
ABCD, and number 16 represents ABCD.

To indicate any given switching function, its Boolean algebra notation
is expanded to elemental form, and for each elemental term in the result,
a 1 is written in the corresponding square in the diagram. As an example,
the diagram representation for ABCD + ABCD + ABCD is given in
Fig. 3-1(b).

B 8 B 8
1{213|4]|¢C c
A A
5{6l71!8 1 I
c c
K910|||2 .
13{14[15|16|C c B B_
5l o ID 5l o Ip X|X|c
(a) (b) X1 XX
c
_|1 X | X
- - A -
B B B B X|X|x|x|C
I I C HERE 4 3 B
A A D D 'D
AR L1 1 (e)
c c
REEERERN _ I
Y - A -
I C HERE C
D D !'D D D I'D
(c) (d)

Fia. 3-1. Diagram method of simplifying switching functions.

The usefulness of the diagram is derived from the fact that patterns
of 1’s which will yield the simplest terms can be easily and quickly ob-
served by inspection (after a little practice). If any two 1’s are located
in adjacent squares or at opposite ends of any row or column, it may
be observed that three of the input variables will be the same in the
two corresponding elemental terms, and the status of the fourth variable
will be irrelevant. These two elemental terms may then be combined
into one three-variable term. If any row or column or squares, any
block of four squares, the four end squares of any two adjacent rows
or columns, or the four corner squares are filled with 1’s, it will be found
that two of the input variables are the same in each of the correspond-
ing elemental terms and that the other two variables will be encountered
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in all possible combinations. Therefore, the four terms can be combined
into one two-variable term containing the two common variables.
Further, if any two adjacent rows or columns, the top and bottom rows,
or the right and left columns are completely filled with 1’s, the corre-
sponding terms can be represented by a single variable.

When using the diagram, a search is first made for any possible one-
variable terms that can be used in an expression for the desired switching
function. Then, if no such terms can be found or if there are some 1’s
not accounted for, a search is made for patterns of these 1’s (in combi-
nation with the 1’s that are already accounted for, if necessary) which
can be represented by two-variable terms. The search is continued in an
analogous manner for three-variable and then for four-variable terms
until all of the 1’s in the diagram are contained in at least one of the
terms. The selection of the terms to yield the simplest “and-to-or” form
of the function is made in a manner which is the same in principle as the
method described previously. The value of the diagram is in the ease
with which the selections can be made.

For an illustration of the use of the diagram, refer to the pattern of 1’s
shown in Fig. 3-1(c). It may be observed that the two center rows (square
numbers 5 through 12) are filled with 1’s. These squares correspond to all
of the cases where C is equal to 1, with the result that C is a term in the
simplified expression for the switching function. The 1’s in squares 3 and
15 may be grouped with those in squares 7 and 11 to yield the term BD,
since this column contains all of the cases for which B and D are 1 simul-
taneously. In similar fashion, the 1’s in squares 1 and 5 may be grouped
to yield ABD. The function in its simplest “and-to-or” form is then
C + BD + ABD. As another illustration, consider the pattern in Fig.
3-1(d). Here, the 1’s in squares 1, 2, 13, and 14 may be grouped to yield
BC, and those in squares 2, 3, 14, and 15 may be grouped for CD. The 1
in square 12 can be grouped only with the 1 in square 8 to produce BCD,
but the 1 in square 5 may be grouped with either the 1 in square 8 or in
square 1 to yield ACD or ABD, respectively. The resulting expression is
then either BC 4 CD + BCD + ACD or the same with the last term re-
placed by ABD.

The diagram is particularly convenient for finding simplest “and-to-or’”’
expressions for problems where certain combinations of the input variables
will not exist (or, which amounts to the same thing, where the output is
irrelevant for certain combinations of the input variables). An X is placed
in the squares which correspond to the nonexistent input combinations.
When searching for simplest terms, any square containing an X may be
included in a grouping if it simplifies the result, or it may be disregarded.
For example, assume that it is desired to find the simplest switching net-
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work that will yield the function, ABCD + ABCD, under conditions
where the only other combinations of input signals that will ever be ap-
plied are ABCD + ABCD. The resulting pattern of 1’s and X’s is given
in Fig. 3-1(e). The right-hand half of the diagram is filled with X’s which
would be an indication for B; but, since all of the X’s may be disregarded,
this term need not be used. Each of the two 1’s must, however, be in-
cluded; and the 1 in square 9 can be included in the one-variable term, D,
since both the left and right columns are completely filled. The term AC
can be used for the 1 in square 6, because all of the squares in the second
row are filled. The switching function may therefore be reduced to D 4+
AC.

H 113 33 -
Equivalent “or-to-and” networks may be found easily by means of the

diagram. The procedure is exactly the same except that the empty squares
instead of the filled squares are considered, and the resulting expression is
“inverted.” Inversion here implies the interchange of all the “and” and
“or” functions as well as the inversion of all of the individual variables.
For example, in Fig. 3-1(d), the empty squares yield CD + ABC + BCD,
which upon inversion produces (C + D)(A + B + C)(B + C + D).
That this expression is equivalent to the original “and-to-or” form may
be checked by multiplying the factors and simplifying.

When the problem includes nonexistent input combinations, all empty
squares must be accounted for, and squares containing X’s may or may
not be included when forming the “or-to-and” circuit. In the example of
Fig. 3-1(e), square 2 can be combined with the remainder of the top and
bottom rows to obtain the term, C; and square 10 may be combined with
squares 11, 14, and 15 to obtain AD. The expression, C + AD, is then
inverted to yield C(4 4+ D). Of course, C(A + D) is not equal to the
previously obtained expression, D + AC, but in this instance it does not
matter because the combinations of input signals which will show up the
discrepancy have been assumed to be nonexistent.

One way of extending this diagram system to handle more than four
input variables is to subdivide the individual squares. Then for a fifth
variable, E, the left half of each square might correspond to E and the
right half to . To aid in determining at a glance which half of 2 square
a given mark is in, it may be preferable to divide the squares diagonally
with the upper-right and lower-left halves representing E and E, respec-
tively. Another idea is to build a three-dimensional array using trans-
parent planes so that all squares can be seen. With three dimensions, two
more variables, for a total of six, may be added with substantially the
same system as used for four variables in two dimensions. In all of the
schemes, the rules for grouping the squares are extensions of the rules
described previously, although visualization of the patterns becomes more
difficult.
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Miscellaneous Forms. In the general problem there is, of course, no
requirement that the final solution be of the pure “and-to-or” or “or-
to-and” variety. When multilevel switching networks are permissible,
it is frequently possible to find a more desirable arrangement through
some miscellaneous form of network. As mentioned in a previous sec-
tion, simple factoring of one or more of the variables will occasionally
produce desirable results. In more complicated cases, significant im-
provements in the switching circuits can usually be achieved only
through exercising considerable ingenuity; no general methods are
known.

For an example, consider the switching function,

AB + ACD + BC + BDE + ADE + CDE
It is easy enough to show that this expression is equivalent to
(4 + BC + DE)(B + AE + CD)

once this latter configuration has been found, but the finding of it is
indeed a puzzle. Frequently, clues to arrangements of this type can
be observed through a searching for similarities of variables in the
various factors of the pure “or-to-and” form. Even then, a certain
amount of cleverness and skill on the part of the circuit designer seems
to be required.

Inverted Inputs Not Readily Available. It has been implied in all
of the previous examples that the inverse of each variable has been
available as an input signal when required. When the signals are gen-
erated by flip-flop type of circuits, it is true that the inverse of any
variable may be obtained merely by making a connection to the oppo-
site side of the flip-flop. However, frequently more than just a con-
nection may be required. In electronic circuits particularly, it may be
necessary to install a power amplifier between the flip-flop and the
switching network. When the signals must be transmitted a substantial
distance, the fact that two wires are needed for each signal with its in-
verse may be an important disadvantage. Furthermore, in a computer,
signals may be obtained from many types of circuits other than flip-
flops, and in these cases the inverted signals must usually be obtained
through the use of inverters of some sort.

When inverters or other extra equipment must be used to obtain in-
verted signals, it becomes desirable to design switching networks with
the minimization of inverters an objective, as well as the minimization
of “and” and “or” switches. Here, the general problem becomes very
complex, because the most desirable network configuration in any given
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instance is dependent upon the relative importance of eliminating an
inverter or other components. Also, the more subtle points, such as
number of levels of swifching, the driving power of the input signals,
switching speed, and possible nonexistence of certain combinations of
input signals must be taken into consideration.

Again, ingenuity on the part of the circuit designer is the primary
requirement for finding the most desirable circuit. As an example, the
switching function

ABDE + ABC + ACDE + AB
requires that three of the input variables be available in inverse form.

Although it is difficult ¢o find, the expression

A+ BC(DE 4+ C)+ AB

represents the same function, and only one inverter is required.

Multiple-output Switching Networks. Multiple-output networks are,
in general, even more remote from the cases for which systematic pro-
cedures are known for finding the most desirable arrangements. Of
course, if each output signal may be generated by a separate network,
all of the remarks made previously can apply. Also, when the networks
are limited to pure “and-to-or” or “or-to-and” forms, obvious extensions
of the previously deseribed rules and procedures may be used as aids.
The rules will help in finding terms or factors which may appear in the
expressions for two or more of the output signals and which need not
be duplicated in the physical circuitry.

A few practical examples of multiple-output networks are worked out
in subsequent chapters. In particular, the full adders described in Chap-
ter 4 on binary addition and subtraction are examples of networks with
three input signals and two output signals. In the chapter on decimal
addition and subtraction, a decimal adder operating in the 84,21 code
and involving nine inputs and five outputs is worked out in some detail.
The method of analysis for this example was also used for deriving the
8,42.1 doubler and quintupler described in the chapter on decimal multi-
plication and division. Since these and other examples meeting various
specialized requirements can be found elsewhere in the text, none will
be presented here.

Matrices. A certain category of multiple-output circuits deserve spe-
cial mention because of their wide application. The circuits are known
as “matrices” because they are sometimes drawn on paper (or occasion-
ally even constructed physically) in an array of rows and columns which
vaguely resemble mathematical matrices. A switching matrix is a
switching network which has an output line corresponding to each pos-
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sible combination of input variables; that is, an output signal appears
on a separate wire for each elemental term composed of the input vari-

ables.
When only two variables are involved, the matrix as shown in Fig.

3-2 is almost trivial. An output signal is obtained on one of four sepa-

AB AB AB AB
f f | f
A A A A
| U B A
AB A B A B A B

Fic. 3-2. Two-variable matrix.

rate output lines according to the four possible combinations of input
variables. When A = 0 and B = 1, for example, a signal will be present
on the line yielding AB, but none of the others.

} ! } !

A A A A A A A
TIOft OFEOFIE TR OPRE PR T
ABC ABC ABC ABC ABC ABC ABC ABC

A A A A A A A A
I L I7 T IT TE, 77
c cC ¢ C ¢ C ¢ C
A A A A
HTT Hri
B A B B i B

(b)

Fic. 3-3. Three-variable matrices.

With three variables, either of the arrangements shown in Fig. 3-3
may be used. In (a) eight 3-input “and” switches are required, whereas
in (b) twelve 2-input “and” switches are required. With diode switch-
ing of the type described, it happens that a total of 24 diodes is necessary
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in either case, although when other types of switching components are
employed one or the other of the arrangements may be preferable. The
arrangement in (b) is sometimes called a “tree” or a “pyramid.” Note
that C appears as an input to a relatively large number of “and” switches
when compared with B or A. This unequal loading of the input signals
may be a disadvantage. The loading may be equalized somewhat by
interchanging the B and C inputs in either the right-hand half or the

s P - .

_ A Al Al A
A —n il e il s il
B—- P - P
L A ¢ A o= A o> A
A — I3
B_'A _ _ —
¢ Al e Al ¢ Al S A
ng H : H !
e~ Al 6= Al e A &5 A
A — 1 : :
5 —A ¢ o ¢
A

A A A
T T T
cD cD cCD cD

Fic. 3-4. One form of four-variable matrix.

left-hand half of the figure; it happens that this change does not affect
the output functions.

For four or more input variables, obvious extensions of Fig. 3-3 may
be made, but the number of diodes required for the two arrangements
are no longer the same. With n input variables, n2" diodes are required
when the first type of arrangement is used, and 2% 4+ 2% 4.4 2n+1
diodes are required for the “tree.” The type of matrix which is most
conservative in components, at least when diodes are used, is shown for
four variables in Fig. 3-4. The variables are divided into two groups
with one group including A and B and the other group including C' and
D. TFour intermediate signal lines are derived from each group, and
then these are combined in a set of sixteen two-input “and” switches
which will yield a signal on one of sixteen output lines.

With five input variables, an analogous array is used to minimize the
number of components. In this case one group would contain two vari-
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Fic. 3-5. Three-variable “gating” matrices.
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ables; the other would contain three with eight intermediate lines
formed according to either of the arrangements shown in Fig. 3-3. The
thirty-two output lines would then be obtained with a four-by-eight
array of two-input “and” switches.

In general, with » input variables, the variables are divided into two
groups with n/2 variables in each group when n is even and with
(n+1)/2 and (n — 1) /2 variables, respectively, when n is odd. Each
group is divided into subgroups in a similar manner, and the sub-
dividing is confinued until all subgroups contain either 2 or 8 variables.
The 2-variable and 3-variable subgroups are applied to switching net-
works of the types shown in Figs. 3-2 and 3-3, respectively. The sub-
groups are then combined with appropriate arrays of 2-input “and”
switches.

In some applications the output signals from a matrix are used di-
rectly as implied in the preceding discussion. In other applications the
matrix is used to “gate” an external signal (such as series of pulses) onto
one of a multiplicity of signal lines. For three input variables, probably
the most obvious way of accomplishing the desired result is shown in
Fig. 3-5(a). Since the signal to be gated may be considered as another
input to the switching network as a whole, a number of variations in
the matrix are possible. Two variations are shown in Fig. 3-4(b) and
(c). Either of these arrangements requires less components than (a),
but they have the disadvantage that the signal to be gated must pass
through more “and” switches in succession, and with some types of com-
ponents the delay might be excessive.

When a matrix involving four or more variables is necessary for the
gating of the signal, extensions of the schemes shown in Fig. 3-5 may
be readily worked out. One arrangement with four matrix variables,
which combines the features of Figs. 3-4 and 3-5(c), is given in Fig.
3-6. When choosing the most desirable arrangement for any given
application, it should be noted that in some arrangements certain of the
“and” switch inputs must pass the signal being gated, whereas others
need to respond only to the matrix switching signals. It may be that
an “and” switch which must pass the gated signal is much more expen-
sive than the other “and” switches. For this reason, the simple mini-
mization of “and” switches is not necessarily the best ecriterion for
judging the various possible network configurations.

Another important application of matrices is the selection of a signal
from one on several different lines and applying this signal to a single
output line. In this case the multi-output features of matrices substan-
tially disappear, and the notation used earlier in the chapter for single
output circuits may be applied directly. For selecting one of eight sig-
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Fi1e. 3-6. One form of four-variable “gating” matrix.

nals, S; to Ss, by means of a matrix using three control signals, A, B,
and C, the output may be expressed as

S = 8;4BC + S;ABC + SsABC + 84ABC + SsABC
+ S¢ABC + S;ABC + SgABC

This expression may be rearranged and factored in a number of different
ways to produce new circuits. An example is

8 = [(S14 + S:4)B + (Ss4 + S, A)BIC
+ [(Ss4 + SeA)B + (814 + SsA)BIC

When four or more control signals are involved, the principle illustrated
in Fig. 3-4 may be applied. If one of sixteen signals is to be selected,
the signals may be entered as third inputs to the four-by-four array
of “and” switches, and the sixteen outputs are then combined in an “or”
switeh.

In all of the matrix examples, when the number of outputs involved
is not exactly 2", where n is some integer, it is necessary of course to
choose a number, n, of control signals such that 2" will be greater than
the number of outputs. In these instances, special arrangements can
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sometimes be found which will require less components than will be re-
quired through eliminating unused “and” and “or” switches in the more
straightforward configurations.

Sequenced Signals. In some applications the sequence in which the
various input signals are applied to a switching network is of consequence
in the formation of the desired output signal. To make a switching net-
work sensitive to the sequence of the applied signals it it necessary to
employ feedback paths (storage).

As a simple example, consider two pulse-type signals, A and B, where
it is desired that A not appear on the output and that B appear on the
output line only in the event that A is applied prior to B. If it is known

o 1 Ay o !
RESET i !
A —_—
B * D 1A, = OUTPUT

Fi1e. 3-7. Example of circuit responsive to sequence of signais.

that A and B will never be applied very close together in time, it is
sufficient to have A flip a flip-flop, the output of which is applied to an
“gnd” switch that will control the passage of B. In the general case
when the input signals may appear at substantially random times, a
more refined switching circuit is necessary. The difficulty arises from
the fact that, when A and B are applied close together in time, the flip-
flop may be changing when B appears at the “and” switch. The ampli-
tude of the output pulse might then be reduced by an unknown amount
where it would be desired to have zero output or a full-sized pulse.

An arrangement which produces the desired result, except for a delay,
is shown in Fig. 3-7. A flip-flop and an “and” switch are used as de-
seribed in the previous paragraph, but the output of the “and” switch
is used to flip a second flip-flop. The output of this second flip-flop
is then combined in a second “and” switch with the delayed B signal.
With this arrangement, the second flip-flop will either flip or not (no
intermediate state is possible), regardless of the strength of the output
from the first “and” switch. Consequently, the output pulse will be
either full-sized or zero.

Several variations in the switching arrangement are possible which
have various advantages and disadvantages, depending upon the detailed
requirements of the application. One type of variation worth noting
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is derived from the fact that, of the four possible combinations of stable
states of the two flip-flops, one combination never exists. Specifically,
the second flip-flop is never in the “1” state at the same time that the
first flip-flop is in the “0” state. As a consequence, the two flip-flops
may be replaced by a single configuration which has three stable states.
The resulting arrangement is shown in Fig. 3-8. After a pulse is applied
to the “reset” line, a signal appears at the output of the first inverter, but
no signals appear on the output lines from the second or third inverters.

| | B
I, I, I I_l""l
Al D
0 o o
L ! A

OUTPUT

|

0 0 0
RESET A
Fic. 3-8. A variation of Fig. 3-6.

If the B input pulse is applied prior to A4, it will not pass either “and”
switeh. If A is applied prior to B, a signal will be caused to appear
at the output of the second inverter. The B signal will then pass the
first “and” switch and cause the array to exist in its third stable state.
The second “and” switch will now be opened, and the delayed B pulse
will appear on the output line. As before, the output pulse will be
either zero or full-sized.

A requirement frequently encountered in the control portion of a
computer involves the starting and stopping of a uniform series of pulses
by start and stop pulses which may be random in time. The basic prob-
lem involved, which is the causing of all output pulses to be either zero
or full-sized, is substantially the same as when designing switching net-
works to respond to sequenced signals.

Three solutions to the problem are shown in Fig. 3-9. All are similar
in their use of bistable storage elements, but the differences in the place-
ment of the delay device create important differences in circuit opera-
tion as illustrated by the timing chart in the figure. In (a), all pulses
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oceurring after the start pulse and before the stop pulse will appear on
the output line. However, they will be delayed because they must pass
through the delay device. The amount of delay should be short relative
to the time between successive pulses, but should be longer than the
time required for the bistable device to change its state. In (b) the
output pulses will not be delayed at all, although the first pulse after
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L]t
o Az o 1 Azl o 1 As
5] s
¢ D
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[o] |
PULSES o ! SEEB
b1 F—F PULSES
STOP START STOP START o 1|PULSES
stop] fPsTarT
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START —4; : N
STOP —+ ! | )
OUTPUT ———1—1 1 N B L1
- =D
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Frc. 3-9. Starting and stopping a series of pulses.

the start pulse (the 2 pulse in the timing chart) may not appear on the
output line. For the 2 pulse to appear, the start pulse must be applied
at a time prior to the appearance of the 1 puise at the A; and A, “and”
switches. Similarly, the 6 pulse may or may not appear on the output
in accordance with whether or not the 5 pulse arrives at the “and”
switches prior to the application of the stop pulse. With the arrange-
ment in (c¢), the first pulse to pass is the second one after the start pulse,
and the last one will be the first one after the stop pulse. In all three
arrangements, any given pulse will either not pass at all or will pass
with full amplitude, regardless of the timing relative to the starting
and stopping signals.
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The time of application of signals of the steady-state type can be
of consequence as well as when pulse signals are used. Flip-flops or
other multistable configurations are employed in the same general man-
ner. Because the problems that arise in practice are usually so “mis-
cellaneous” in nature and because no organized methods of solution are
known, the subject will not be discussed further.



Chapter 4

Addition and subtraction of numbers of any radix can be accom-
plished by a process of simple counting; that is, by adding “counts” to
one number while at the same time subtracting “counts” from another
number, the sum of the two numbers will be obtained when the second
number is reduced to zero. However, it is much faster and generally
more satisfactory to add and subtract digits of corresponding orders
separately and to adjust the results of the individual digit sums accord-
ing to rules of carrying and borrowing to be described. With pencil-
and-paper arithmetic it is customary to add three or more numbers to-
gether as a simultaneous process whenever such a sum is required. In
every known example it has been found more practical for machine
computations to handle numbers only two at a time. Then, three num-
bers would be added by adding the third to the sum of the first two.
Pencil-and-paper subtraction methods usually involve only two num-
bers at a time so, for subtraction, machine arithmetic involves no new
ideas in this respect.

In most instances, explanations of arithmetic operations will be made
through the use of functional block diagrams instead of actual compo-
nents and circuits. When making an attempt to reduce the functional
block diagrams to circuits which may be used, it is found that in some
cases the reduction is straightforward, but in other cases substantial
modifications in the functional arrangements must be made, with the
difference depending upon the characteristics of the computer eompo-
nents which have been chosen for use. Diode rectifier switching cireuits,
for example, fit many of the functional diagrams very well. On the
other hand, vacuum tubes are commonly used components which often
require substantial modifications in the functional diagrams for switch-
ing, and a few circuits employing vacuum tubes are presented to illus-
trate this point. Transistors and magnetic cores are components which
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also require modifications in functional arrangements in some cases.
However, the principles involved in the arithmetic operations to be de-
scribed are independent of the nature of the physical components.

Comparison of Parallel and Serial Operation. Addition and subtrac-
tion are executed in parallel or serially, according to the manner in which
the numbers are transmitted; and there are two different methods by
which binary numbers may be transmitted from one place to another
in a computer. One method involves the use of a separate channel or
wire for each digit of the number, and all digits are transmitted simul-
taneously “in parallel.” With the other method, only one channel or
wire is used and the digits are transmitted one at a time “serially” on
this channel. For parallel operation it is required that separate devices
be used for addition and subtraction in each order of the numbers in-
volved, whereas for serial operation only one such device is necessary
because it is possible to process the orders one at a time and thereby
use the same device for all orders.

The advantage of parallel operation is that higher computation speeds
are possible, and the advantage of serial operations is that less equipment
is required. The evaluation of these advantages is, however, quite diffi-
cult. For example, if 7 orders are involved, it is not true that a parallel
machine is 7 times as fast as a serial machine; neither is it true that
the parallel machine requires n times as much equipment. In making
_such- comparisons, it must of course be. assumed that similar_types of
components and engineering techniques are used.

Tt does not appear possible to make a definite statement about the
factor in speed that can be gained through parallel operation. In any
case, the factor is seldom as great as n because, for one reason, parallel
operation does not necessarily imply that the addition or subtraction
of all orders of two numbers is accomplished simultaneously. The result
of the addition or subtraction in the lowest order may affect the result
in the next order, and the result there may affect the next higher order.
This process may continue through all orders, and with most parallel
systems a finite amount of time is required for it. With serial operation,
the required time is automatically available through the nature of serial
transmission; therefore, no additional time need be allotted. Also, in
a computer, time is required for operations other than the fundamental
arithmetic operations. For example, with most computer designs, time
is required to send numbers to and from the number storage unit in
the computer, and this time is not available for computations.

Tt is similarly difficult to make a reasonable statement about the fac-
tor by which the amount of equipment is increased through the use of
parallel operation. Nevertheless, the factor is clearly less than n, be-
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cause there is much more to a computer than the wires for transmitting
numbers and the device which adds and subtracts. In particular, the
device for the storage of numbers in the computer would be roughly the
same size for the two methods of operation, where it is assumed that
the same amount of storage is provided and that similar types of storage
elements are used in the two cases.

The choice between parallel and serial operation is probably affected
by the type of number storage device which has been selected for use
as much as by speed and equipment considerations. Any type of number
storage device can be adapted to either serial or parallel operation; but
some types are more conveniently adapted to parallel operation, whereas
others lend themseives better to serial operation.

Both parallel and serial binary computers have been built, and there
is as yet no conclusive evidenee that one mode of operation has a net
advantage over the other.

Parallel Operation. In general, when the sum of two digits in corre-
sponding orders of two numbers to be added is equal to or greater than
the radix of the system in use, the sum digit of the next higher order
must be increased by one. The rules for the binary addition of digits
are most easily expressed by the use of a simple table such as Table
4-1, where the augend digit is the digit to which the addend digit is being

TaBLE 4-I. BINARY ADDITION

Augend Digit | 0 1 0 1

Addend Digit { 0 0 1 1
Sum Digit 0 1 1 0
Carry 0 0 0 1

added. A device which will accept two signals representing the augend
and addend digits and produce output signals representing the sum and
carry in accordance with Table 4-T is known as a “half adder.” The
reason that the term “half” is employed is that it is yet necessary to
add the carry signal from the next lower order so as to obtain the correct
sum digit in the number representing the sum of the augend and addend.
The rules for adding the carry are exactly the same as the rules in Table
4-T for the addition of the augend and addend digits, and therefore a
second half adder may be used for this purpose. Except for the lowest
order, two half adders per order are required for the addition of two
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numbers. Actually, slightly more equipment than two half adders per
order is required, because a carry signal may be received from either
of the half adders, and provision must be made for transmittal of either
one of these two carries to the next higher order. A block diagram of
the equipment necessary for the addition of two binary numbers by
this process is shown in Fig. 4-1. The two numbers to be added are
X =+ XsX,X;and ¥ =--- ¥;Y,Y, to produce a sum, S = -+ S38:8:.
The half adders are so labeled, and the “or” switches for “mixing” the
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Fi6. 4-1. Binary addition, first variation.

carries are indicated by blocks labeled O. The sum output of the first
half adder of each order is designated as S to distinguish it from the
correet sum, S, which is the sum output from the second half adder. The
carry outputs from the first and second half adders are similarly labeled
¢’ and C”. Note that from the rules of binary addition it is impossible
to have carry signals simultaneously from both half adders in an order.
This statement can be understood by observing that, for C” to be 1, it
is necessary that the corresponding digits of both X and Y be 1, in which
case & is 0 and therefore C” will be 0. The carry which is sent to the
next higher order is therefore comprised of C” or C”. The “or” funetion
is executed so ingeniously in some circuits and devices that its existence
can easily escape notice, but in the design of a binary adding device it
must not be forgotten.

A variation in the method of binary addition may be obtained by
adding the carry to the digit of one of the numbers and then adding
the digit of the other number to the resulting sum. A block diagram
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of this method is shown in Fig. 4-2. As before, the carry to be trans-
mitted to the next higher order is ¢’ or C”. Mathematically, the differ-
ence between the arrangements shown in Figs. 4-1 and 4-2 is trivial,
but from an engineering viewpoint there is an important difference which
occurs in the speed with which a carry may be propagated through the
orders. Consider the example where X = 00001 and ¥ = 01111. A carry
will occur in the lowest order, which, when added to the second order,
will produce a carry there; the carry in the second order will produce
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Fic. 4-2. Binary addition, second variation.

a carry in the third order, and so on. With the arrangement shown in
Fig. 4-1, the carry must proceed through only one half adder per order,
but in Fig. 4-2 it must proceed through both half adders in each order and
is therefore slower. Since there are no particular advantages for the
arrangement shown in Fig. 4-2, it will not be discussed in any further
detail. ’

Half Adder. From Table 4-1 it may be deduced that the Boolean
algebra expressions for simple binary addition (the function performed
by a half adder) are

Sum = XY + XY
Carry = XY
where X and Y are the input signals of a given order in the augend and

addend. The subscripts on X and Y are omitted for simplicity of nota-
tion. The determination of these expressions from the table is straight-
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forward; it is necessary only to note the cases for which the sum or carry
is 1 and to write down the corresponding conditions on X and Y. A
functional block diagram of a half adder operating in this straightforward
manner is shown in Fig. 4-3(a). With some types of computer equip- -
ment, the signals and their inverses are both available, in which case
the inverters in the half adder may be omitted; in this case the half
adder takes its simplest form.
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F16. 4-3. Three functional diagrams for a half adder.

The expressions for the sum and carry may be factored and rearranged
in a number of ways, and each different expression for the sum or carry
represents a physically different way of forming a half adder. For ex-
ample, the sum and carry could be written

Sum = X+ VNX+7Y)
Carry =X+ 7

and a functional block diagram for a half adder built in this way is
shown in Fig. 4-3(b). The derivation of these expressions may be ac-
complished either by an examination of Table 4-1 or by algebraic ma-
nipulations of the expressions obtained previously. The determination
of these expressions from the table is probably not as straightforward
as for the previous form, but it is not difficult. The sum would be thought
of as “at least one 1 in X or Y while at the same time at least one 0
in X or Y.” The carry would be thought of as “not a 0 in either X or ¥.”
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If the inverses of the input digits are not available directly, a reduc-
tion in the amount of required equipment, particularly inverters, may
be obtained by factoring the expression for the sum in the following
manner,

X + N)(XY)
Carry = XY

It is clear from Table 4-I that “the sum is 1 when X or when Y is 1,
but not when both X and Y are 1,” which is a word picture of this ex-
pression for the sum. The functional block diagram for this arrangement
is shown in Fig. 4-3(c).

For some applications it may be desirable to develop an output to
represent “not sum” and “not carry.” This may be accomplished for
each of the arrangements shown in Fig. 4-3 by the addition of inverters
on the sum and carry output lines. The purpose of generating the in-
verted outputs may be to provide a means for checking the operation
of the half adder; that is, for example, if both the sum and its inverse -
were 1 or both 0, an error would be indicated. For this application it
would be necessary to generate the inverted outputs separately to insure
that a malfunctioning of the adder would produce an output which could
be distinguished as an error. A simple inverter would not be sufficient,
because an error would occur in the “not sum” also, and the conditions
for an indication of an error would not be satisfied. Functional arrange-
ments for the generation of the inverted outputs may be designed from
the expressions for the inverted outputs, and the procedure is substan-
tially the same as previously described.

Sum

Sum = XY+ XY =XV + XV =X+ + V)=XY+ X +7)
Carry=5(—Y=X+7=I_(7+X7+XY

Application of Vacuum Tubes to the Half Adder. It is clear from
the description of vacuum tubes in the previous chapter that the func-
tional properties of vacuum tubes are such that vacuum tubes cannot
be adapted to the functional arrangements for a half adder shown in
Fig. 4-3. Additional rearrangements of the half adder are required.
No straightforward method is known whereby vacuum-tube half-adder
circuits can be determined. Through a “cut-and-try” process it has

been found that, if the expressions

Sum = (XYX) (XYY)
Carry = XY
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are used, the resulting functional arrangement is one to which vacuum
tubes may be adapted. The circuit is shown in Fig. 4-4(a). Note that
the output of tube 2 would be X XYX and the output of tube 3 would be

X YY but, when the anodes of the two tubes are connected together,
this 1ntermedla.te output line becomes positive only when both tubes
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Fie. 4-4. Half adder circuits employing vacuum tubes.

are cut off so that an ‘“and” operation is produced in the same manner
as when the outputs of two triodes are connected together.

A cireuit employing only triodes can be worked out when the sum
and carry are expressed as follows:

This circuit is shown in Fig. 4-4(b). Since two triodes can be built con-
veniently into one bulb, a rough estimate of the amount of equipment
in use can be obtained by counting the grids. Eight grids are in use
in each of the circuits shown in Fig. 4-4. In Fig. 4-4(b), the input to
tube 4 is the carry; and if the carry is generated with a circuit like that
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of tubes 1 and 5 in Fig. 4-4(a), a reduction to seven required grids may
be achieved.

Another eight-grid arrangement is shown in Fig. 4-4(c). Here, the
sum and carry are generated independently. This arrangement is prob-
ably more straightforward and has the minor advantage that the input
signals must pass through only two instead of three tubes to generate
the sum.

Full Adder. The amount of equipment shown within the dotted lines
in Figs. 4-1 and 4-2 is called a full adder. When the two haif adders
and the “or” circuit are considered as a unit, a number of different func-
tional arrangements may be worked out whereby the individual half
adders lose their identity. A full adder accepts signals, each of which
may represent a 1 or a 0, from three different sources and adds them
to yield 00, 01, 10, or 11 according to whether none, one, two, or all
three of the input signals are 1’s. The right-hand digit of the adder
output is the sum digit, and the left-hand digit is the carry signal to
be applied to the full adder corresponding to the next higher order. The
rules of operation of a full adder are shown in Table 4-II, where X and
Y are augend and addend digits, respectively, of a given order of two
binary numbers to be added together, and C is the carry signal from
the next lower order.

TaBLE 4-II. Bixary Apprtion RuLes ror FuLL ADDER

X 0 1 0 0 1 1 0 1

Y 0 0 1 0 1 0 1 1

Sum 0 1 1 1 0 0 0 1

Carry | 0 0 0 0 1 1 1 1

By noting the conditions on X, ¥, and C for which the sum and carry
are 1, it is readily determined that

Sum = XYC + XY(C + XYC + XYC
Carry = XYC + XYC + XYC + XYC

This same result could have been determined from the half adders and
the “or” circuit which may be used to form a full adder. From Fig. 4-1,
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Sum = 8'C + 8'C = (XY + XY)C + (XY + XY)C
= XYC 4+ XyYC 4+ XYC + XYC
Carry = C' + C” = XY (C + 0)+ (XY + XV)C
= XYC + XYC + XYC + XYC

A similar procedure may be followed through the use of the circuit shown
in Fig. 4-2. The switching eircuits for the generation of the sum and carry
according to these expressions may be developed in a straightforward man-
ner; in each case the requirements are four 3-input “and” circuits feeding
a 4-input “or” cireuit. The expression for carry may be simplified to

Carry = XYC + XYC + XYC + XYC + XYC + XYC
=XYC+C)+XCY+7Y)+Y0(X+X)
= XY + XC+ YC

so that only three 2-input “and” circuits feeding a 3-input “or” circuit
are required. The total number of inputs required for the various “and”
and “or” circuits is therefore 25.

A reduction to 21 in the number of required inputs may be obtained by
factoring the expressions for sum and carry in either of the following ways:

Sum = [(XY + XY) + CJXY + XY + O)
Carry = (XY + XY)C + XY
Sum = [(X + NEX + 7) + CJXY + XY + 0)
Carry = [(X + V)X + DIC + XY

The switching arrangements for these two variations in full adders are
shown in Figs. 4-5(a) and 4-5(b), respectively. The X, Y, and C inputs
may be interchanged, but the selections shown are preferred because
the C input has then to pass through only one “and” and one “or” circuit
to reach the “carry” output. As has already been mentioned, some
problems require that the carry signal be propagated through two or
more successive orders, and for purposes of high speed of carry propaga-
tion it is desirable to hold to a minimum the amount of equipment
through which the carry signal must pass. It is not to be construed
that the adder arrangements in Fig. 4-5 are necessarily practical; in
fact, for most switching components it is generally found more satisfac-
tory to employ a more straightforward switching arrangement even
though the number of switching elements may be increased.
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Fie. 4-5. Full adder arrangements, each employing 21 switching inputs.

Two other interesting although not very competitive ways of factoring
the original expressions for sum and carry are:

Sum = (XY + XC + YO)(XY + XC + Y0) + X¥C
Carry = (XY + XC + YCO)(XY + XC + YC) + XYC

Sum = (X + Y+ O)(XY + XC+ Y0) + XYC
Carry = XY + XC + YC

By using the relationships presented in the section on Boolean algebra,
the latter form may be used to derive a useful binary adder arrangement
which does not require the inverse of any of the three input signals. One
inverter is required ; the equations are:

Sum = (X 4 Y 4 O)(XY + XC + YC) 4+ XY(C
Carry = XY + XC + YC

It is not difficult to show that this may be modified to the following varia-
tion:

Sum = (X + Y + O)(XY + XC + YC + XYC)
Carry = XY + XC + YC

The block diagram switching arrangements for these two variations are
shown in Figs. 4-6(a) and 4-6(b). In addition to the inverter, 19 switching
inputs are required in each case.
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Fig. 4-6. Full adder arrangements, each employing one inverter but no inverted
inputs. )

The number of diodes can be reduced to 16 by appropriate factoring of
the above equations for the 19-diode adders. Two variations may be
represented as follows:

Sum = [(X + ) + ClIXY + (X + Y)C + (XT)(]
Carry = XY + (X 4+ Y)C

Sum = [(X + ¥) 4+ CI(X 4+ Y)(XY + C0) + (XY)C
Carry = (X 4+ V)XY + O)

The funectional block diagrams of these two variations are shown in Fig.
4-7. Note that carry in passing from the C input to the earry output
still has to pass through only one “and” switch and one “or” switch, with
the result that the speed of carry propagation is not impaired. Further,
it happens that in the design of diode switching cireuits two successive
“and” switches are only slightly more difficult to design than a single
“and” switch; the difficult problems arise when signals pass through
“and” and “or” switches alternately. Therefore, the fact that some
signals must pass through four switches in the arrangements in Fig. 4-7
is not a serious disadvantage.

Application of Vacuum Tubes to the Full Adder. It is possible to
form a full adder by employing two half adders as shown in Fig. 4-4
plus an “or” switeh for the carry. A parallel inverter circuit, as shown
in Fig. 2-4(b), may be used for the “or” switch, although an additional
inverter is necessary to yield a carry output of the proper polarity. A
full adder derived in this way is not the best that it is possible to obtain
for two reasons. One reason is that the total number of tubes which
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would be used is greater than necessary; and the other reason is that
the number of tubes through which the carry signal must pass when
being propagated through a succession of orders is greater than necessary,
and therefore the carry speed will be slow.

In Fig. 4-8(a) a circuit is shown for which the carry has to pass
through only one tube, but in this circuit the inverse of the carry instead
of the carry is obtained as an output. The obvious way to correct this
situation is to use an inverter to obtain the true carry, but this would

XY XY XY XY
N A R T
0 A l A 0 i'
0 A A 0]
C—— A 0 C—- 0 A
CARRY —-—e CARRY=—¢
I 0 1 A
A o
SUuM SUM
(a) (b)

F16. 4-7. Binary adder arrangements requiring only 16 diodes.

mean that the carry signal would have to pass through an extra tube
per order. By designing the adder of the next higher order to accept
Inverted carry signals, the extra inverter may be avoided. An arrange-
ment for an adder of this type is shown in Fig. 4-8(b). As with the
arrangement shown in Fig. 4-8(a), the carry must pass through only
one tube, but the true carry instead of its inverse is obtained. There-
fore, by using the arrangements shown in Figs. 4-8(a) and 4-8(b) in
alternate orders, the carry may propagate from order to order and pass
through only one tube per order. For engineering reasons, it may be
preferable that the one tube be a triode instead of a multigrid tube as
in Figs. 4-8(a) and 4-8(b). The realization of this preference, at least
in a straightforward manner, appears to be an impossibility, because,
when a positive signal is applied to the grid of a triode, its plate poten-
tial becomes negative regardless of the remainder of the circuit. When
a signal of either polarity is applied to one grid of a multigrid tube, the
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output potential may be either positive or negative, depending upon
the nature of the remainder of the circuit and the conditions existing in
the other parts of the circuit; and such a function is necessary in the
generation of the carry signal from the C input from the next lower
order. _

As might be expected, the variety of full adder circuits which may
be formed with vacuum tubes is extensive. The circuit shown in Fig.
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Fi1a. 4-8. Full adder employing vacuum tubes.

4-8 has been selected for presentation because, so far as is known, it
employs less tubes than any other arrangement. A total of fourteen
grids, or seven tubes, per order is required. A reduction of one grid
per order may be obtained if the inverted X and Y inputs are available
and if an inverted sum output from every other order can be used. If
inverted inputs are available and carry propagation through two tubes
per order is allowable, a reduction of two grids per order, or a total of
twelve, may be obtained. With this arrangement, it so happens that
the carry signal appears inverted between every order, but this is of
no real consequence. The circuits are presented in Figs. 4-9 and 4-10,
respectively.
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Fie. 4-9. Vacuum-tube adder requiring inverted inputs and yielding inverted sum
output in alternate orders.
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F1e. 4-10. Vacuum-tube adder requiring only twelve grids, but also requiring in-
verted inputs and two tubes per order for carry propagation.
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Kirchhoff Adders. A different approach to the problem of binary ad-
dition may be obtained through the addition of some physical quantity,
usually current or voltage. These adders are called Kirchhoff adders
because of the application of Kirchhoff’s laws to the design of the ecir-
cuits. One form of Kirchhoff adder is shown in Fig. 4-11. The X, Y,
and C inputs are positive or negative (relatively), according to whether
the corresponding input signals are 1 or 0, respectively. The voltages
in the grid ecircuit of triode, Ty, are so chosen that Ty is cut off when
none or only one of the input signals is positive, but is fully conductive

Fic. 4-11. One form of Kirchhoff adder.

when two or three of the inputs are positive. The components in the
grid circuit of T are so chosen that T'» is cut off when all inputs are
negative, but is fully conductive when only one input is positive. If
two inputs are positive, the negative signal from 7 again causes T2 to
be cut off. When all three inputs are positive, the amplitude of the
signal from T; does not change and T's becomes conductive again. The
output of T'; is the inverse of the carry, and output of T'; is the inverse
of the sum. For the carry signal to be useful for the driving of the
adder of the next higher order, it must of course be inverted unless tricks
are used, such as designing the adder of every other order to handle
negative signals.

Another type of Kirchhoff adder may be built up following the steps
shown in Fig. 4-12. If three resistances each have one end connected
to a common junction and the other end connected to a potential source
of either 0 or E, as in 4-12(a), the potential of the junction will be 0,
WE, %E, or E according to whether none, one, two, or three, respec-
tively, of the supply potentials are E. This output potential is then ap-
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plied to one end of two commonly connected resistances of values 2R,
and R,. If a potential of 0 is applied to the other end when the first
potential is 0 or 14E, and a potential of —14F is applied to the other
end when the first potential is 24 E or E, the potential of the junction
will be 0 or %E. These two resistance networks may then be joined
together to form an adder which utilizes the fact that the sum digit is
equal to the sum of the three input digits minus twice the carry digit
as can be determined from Table 4-II. Note that if none of the input
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Fic. 4-12. Another form -of Kirchhoff adder.

signals are 1, the carry and sum are both O; if one of the input signals
is 1, the carry is still zero and the sum is 1; if two of the input signals
are 1, twice the carry subtracted from the sum of the input signals, 2,
yields 0 for the correct sum digit; when all three of the input signals
are 1, twice the carry subtracted from 3 yields 1, which is again the
correct sum digit.

The combined circuit is shown in Fig. 4-12(¢). The carry may be
generated by applying the potential of point 4 to the grid of a tube
through a resistor K3, which should have a relatively high value of
resistance in order to minimize the loading on point A. The tube is so
biased that it is entirely cut off when none or one of the input signals
is positive, but is fully conducting when two or three of the input signals
are positive. The output (proper amplitude) of the carry tube is ap-
plied to the resistance network at the point shown, and a signal repre-
senting the sum is then available at point B. The value of R, should
be large relative to R, so that the potential of point 4 will be substan-
tially unaffected by application of the carry signal as described. Al-
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though the fundamentals of this type of adder are simple enough, the
engineering details which must be taken into consideration in the design
of a useful circuit cause the arrangement to be less attractive than may
appear at first glance. By changing the 2R, resistance to a value of
%R, and by feeding back a full amplitude carry signal instead of 14
amplitude, the amplitude of the sum output may be increased from 14
to ¥4 of the amplitude of the input signals, but this amplitude is still
smaller than would be considered desirable. ,

Since Kirchhoff adders must be built of components with properties
which must be accurately controlled and which are constant with time,
proper functioning is more difficult to attain with them than it is with
some of the other types of adder circuits. Nevertheless, circuit simplicity
remains an important advantage of the Kirchhoff adders.

Accumulators. All of the adders deseribed up to this point performed
only an adding function; that is, signals representing the two binary
numbers to be added were applied to appropriate input lines of the adder,
and, after the transients in the adder circuits had died out, signals rep-
resenting the sum of the two numbers appeared on the output lines.
The output signals remained as long as the input signals were held opera-
tive. An “accumulator” executes addition through a different process.

The term, “accumulator,” usually refers to a device which stores a
number and, upon reception of another number, adds the two numbers
and then stores the sum. An adder of any of the types described pre-
viously can be combined with a storage device to form an accumulator,
but in this section only those forms of accumulators which employ
“counters” will be taken into consideration. Unfortunately, at least
two important variations in the definition of the term, counter, have
come Into use. A binary counter is here intended to mean a device hav-
ing two stable states and which changes back and forth from one state
to the other upon reception of pulse-type signals. That this function is
counting in the binary system is apparent when it is observed that binary
counting in any given order is merely a matter of alternating back and
forth between zero and one. A counter in this sense is therefore one
order of & binary counter which “counts” from zero to some relatively
large number. When a number (the addend) is to be added to the
number (the augend) already present in the accumulator, pulses rep-
resenting the addend are sent in a parallel fashion to the appropriate
order of the accumulator, which accepts them by a counting action in
each order. )

When the counter of any order passes from the state representing
one to the state representing zero, an additional pulse (carry) is sent
to the counter of the next higher order, and there is a variety of func-
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tional arrangements for handling these carries. After the carry signals
have been recorded, the number in the accumulator is the sum of the
number there previcusly and the number which has been sent to it
The number previously in the accumulator has been obliterated. Addi-
tional numbers may be sent to the accumulator, which will add them
and indicate the accumulated sum, and it is from this function that the
name is derived.

The relative advantages of adders and accumulators are difficult to
assess when isolated units are considered. When an adder with a storage
device is used, the function of shifting is, with some types of components,
more easily accomplished than with an accumulator composed of coun-
ters. Shilblﬂg will be discussed in more detail in connection with multi-
plication. On the other hand, an accumulator can be assembled with
fewer components.

Many different forms of accumulators may be designed if different
types of components are used; but, even when a single given set of com-
ponents is considered, there are several different functional arrangements
which may be used, with the differences appearing mainly in the meth-
ods of handling the carry signals.

The most obvious way of handling the carries is to note, by some
means or another, those orders in which carry signals have been generated
and to send these signals to their corresponding next higher orders. The
entry of the carry signals into the counters may produce additional car-
ries. The next step is to sense if the entry of the carries has produced
any new carries and to enter these into the next succeeding orders while
at the same time making provision for the prevention of the entry of
the original carries a second time. For example, the steps required to
add 00011 to 01111 would be as follows.

01111

00011

01100
11

01010
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Since a carry occurring in the lowest order may ultimately generate a
carry to be entered into the highest order, the required steps to the
process are equal in number to the number of orders in the accumulator.
When several numbers are to be added together, the situation can be
improved somewhat by alternately adding carries and numbers, although
after adding the last number the carries must be added according to
the procedure shown above. As an example, 00110 will be added to the
two factors used above.
01111
Add number 00011
01100
Add carries 11
01010
Add number 00110
01100
Add carries 11
00000
Add carries 11

11000

Note that when this procedure is followed it will never be necessary to
add two ecarries into any given order in one operation.

When adding the last number with the above procedure, or when only
two numbers are involved, it may still be necessary to add, one at a
time, as many carries as there are orders in the numbers. If time is
allowed for the addition of all the carries, regardless of the number of
carries, actually occurring, the time required for addition may be un-
desirably long. If means are provided in the adding mechanism for
sensing that all carries have been added, the time for addition may be
materially reduced. The determination of the average number of suc-
cessive carries that will oceur in the addition of two numbers containing
random digits is a difficult problem in probability. The addition of two
forty-digit binary numbers will produce, on the average, 4.6 carries to
be added in succession, according to Preliminary Discussion of the Logi-
cal Design of an Electronic Computing Instrument, by Burks, Goldstine,
and von Neumann (Princeton University, 1947).

Although accumulators employing the step-by-step carry process have
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been designed, they are relatively slow in operation, and their use largely
vitiates the speed advantage that parallel binary operation has when
compared with serial operation. It is much faster and frequently more
conserving of components to use a carry-handling method, whereby a
carry signal is automatically passed along through higher orders in
those situations which require it instead of using a step-by-step process.
Tt is the automatic or “ripple through” processes which will be described.

o 1] ACCUMULATOR o 1
b
[ AT3 0 D I AT3 o ;)
-0 ® 0 *
i 1
Az A, A, —A,

CARRY PULSE
ADD_PULSE

o 1 ADDEND REGISTER o

Fic. 4-13. Binary accumulator, first type.

One form of an accumulator is shown in Fig. 4-13. The upper row
of blocks represents the binary storage devices or counters (usually
called triggers or flip-flops when bistable twin-triode electronie circuits
are used) of the accumulator register. Each binary counter has an
input line on which the pulse-type signals to be counted are entered.
Each binary storage device also has two output lines, one of which
(the right-hand one labeled 1 in Fig. 4-13) maintains a steady-state
signal when the storage device is in the state representing a 1, and the
other (labeled 0) maintains a signal when a 0 is to be indicated. The
lower row of blocks represents a storage register holding the addend.
To add, a pulse is applied to the line marked “add pulse” which is con-
nected to the “and” circuit marked No. 1 in each order. For those
orders which hold a 1 in the addend register, the pulse is sent through
to the corresponding counter in the accumulator to be counted.
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Now, if in any given order there is a 0 in the accumulator and a 1
in the addend register, it must be that the counter changed from 1 to 0
and a carry is to be sent to the next higher order. Therefore the 0 signal
from the counter and the 1 signal from the addend register are applied
to two of the three inputs to the No. 2 “and” circuit. Subsequent to
the entry of the addend digits into the accumulator, a carry pulse is
applied to the third input of the No. 2 “and” cireuits of all orders, and
for those orders containing the conditions for a carry, this carry pulse
is allowed to pass on through a delay device, indicated by a D, to the
counter of the next higher order. If the counter of this next higher
order contains a 1, this carry pulse should be transmitted on to the
next order beyond. To provide for this rippling through of the carry,
a No. 3 “and” circuit is provided for each order with one input to this
“and” circuit being the carry from the next lower order and the other
input being the 1 output from the counter. If several counters in con-
secutive orders in the accumulator indicate 1’s and a carry pulse is
received in the lowest order of the series, this carry pulse will then be
sent through the switching circuits to all appropriate counters in one
operation with the speed of operation limited only by the time required
for the carry signal to pass through the series of switching circuits. The
delay devices are necessary in principle to allow the applied carry pulse
to die out before the counter changes state, because, if the counter changes
state too rapidly, the carry may get through the switehing circuits in
cases when it should not. In practice, the counters are frequently slow
enough in action to allow the delay device to be eliminated.

A still faster method of carry propagation is shown in Fig. 4-14. The
entry of the addend into the accumulator is made through the No. 1
“and” circuit as before. The function of the No. 2 “and” circuit is
somewhat different in that, if in a given order the counter indicates a
zero and the addend storage unit indicates a 1, a steady-state signal is
immediately sent on to the Nos. 3 and 4 “and” cireuits of the next
higher order. If the counter indicates a 1, a signal is applied to the other
input of the No. 3 “and” circuit so that a signal arriving from the next
lower order will be passed on to the next higher order. With this ar-
rangement, the passage of signals through the successive orders is started
immediately upon entry of the addend into the accumulator and before
the carry pulse is applied. After allowing enough time for the signal to
be sent through all orders of the adder (usually less time than this maxi-
mum will be required, but provision must be made for the worst case), a
carry pulse is applied to the other input of the No. 4 “and” circuit, and
for those orders for which a signal from the previous order is received,
the carry pulse will be entered into the counters. In principle, a delay
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device is needed and may be placed in series with one of the input lines
to the No. 3 “and” circuit, as shown, but the counters are frequently
slow enough to allow the carry pulse to die out before the counter
changes state.

With some computer designs it may be impossible, or at least very in-
convenient, to obtain signals from the addend register for carry purposes
after the entry of the addend has been made. To get around the diffi-
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Fie. 4-14. Binary accumulator, second type.

culty, a carry-storage device may be used in each order. Figs. 4-15 and
4-16 each show one order of an accumulator with a carry-storage device
which has its input connected to the 0 output of the accumulator-storage
device. The connection is shown through a condenser to signify that a
pulse-type signal is sent to the carry-storage device when the accumu-
lator changes from the 1 state to the 0 state. At the beginning of an
adding operation, the carry-storage device is off, or in the 0 state, so
that a pulse from the accumulator-storage device always changes it to
the 1 state (turns it on) to record a carry. Entry of the addend into the
accumulator is indicated as being through the No. 1 “and” circuit in the
same manner as in Figs. 4-13 and 4-14, but it should be understood that
pulses representing the addend could arrive from any source without
affecting the way in which the carries are handled. In Fig. 4-15, if in
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a given order, the carry-storage trigger is turned on, a signal is applied
to one of the inputs of the No. 2 “and” circuit, and when the carry pulse
is applied it will be transmitted to the next higher order. If the aceumu-
lator-storage device of a given order indicates a 1 and a carry pulse from
a lower order arrives, the pulse will be transmitted to the next higher
order through the action of the No. 3 “and” circuit. The ripple-through
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PULSE LI
o 1|ADDEND REGISTER

Fic. 4-15. Binary accumulator, first type with carry storage.

action of the carry pulse is substantially the same as in the arrangement
shown in Fig. 4-13.

The arrangement shown in Fig. 4-16 is the same functional arrange-
ment as that of Fig. 4-14 except for the addition of the carry-storage de-
vices. Note that in Fig. 4-16, the No. 2 “and” circuit has been elimi-
nated. As in Fig. 4-14, the signals on the switch circuits are applied
and allowed to ripple through before the application of the carry pulse.
The delay devices in Figs. 4-15 and 4-16 may be in series with the 1
outputs from the accumulator-storage devices instead of as shown. The
locations of the delay devices in Figs. 4-13 and 4-14 are similarly inter-
changeable.

Another automatic carry propagation method for parallel accumulators
is shown in Fig. 4-17. The entry of the addend is made through the



Binary Addition and Subtraction 105

No. 1 “and” circuit and an add pulse, as before. Also, the carry-storage
devices are turned on when the storage devices in the accumulator change
from 1 to 0, as before. The 1 output from each carry-storage device is
applied to one of the input lines to the No. 2 “and” circuit of the next
higher order. After entry of the addend digits, a carry “gate” signal is
applied to the other input of the No. 2 “and” circuit. The output of this
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Fie. 4-16. Binary accumulator, second type with carry storage.

“and” circuit is applied through a condenser to generate a single pulse
to be applied to the counter. Therefore, when the carry-gate signal is
applied, a pulse will be entered into the counter of orders which should re-
ceive a carry. If a counter is holding a 1 when it receives a carry, it will
change to 0 and at the same time turn on the corresponding carry-storage
device. When this carry-storage device goes on, it will send a signal
to the next higher order which already has the carry-gate signal applied
and a pulse will be entered into the counter of this next higher order.
In this manner the carries will be propagated through all appropriate
orders, provided, of course, that the carry-gate signal is held operative
for a sufficient length of time. This method of carry propagation is not,
in general, as rapid as the previously described methods but can for some
applications be made sufficiently rapid through the use of high-speed
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counters and earry-storage devices. It has the advantage that less com-
ponents are required, and no delay devices are required, even in principle,
because of the sequential nature of the carry propagation.

With all three of the accumulator arrangements employing carry-stor-
age devices, it is necessary to reset these devices to 0 after each addition.
The resetting is accomplished by means of a reset pulse applied to them
after the carry propagation process has terminated.
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L t
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(o}

ADDEND REGISTER [0 1

Fic. 4-17. Another form of accumulator with carry storage.

The principles employed in Fig. 4-17 can be adapted to the carry propa-
gation method given in Fig. 4-13 to gain an important advantage. The
resulting functional arrangement is shown in Fig. 4-18. After entry of
the addend in the usual manner through the No. 1 “and” switch, the carry-
gate signal is applied. For those orders which contain a 0 in the accumu-
lator and a 1 in the addend, a pulse is sent to the next higher order
through the action of the No. 2 “and” circuit. If in a given order the
accumulator contains a 1, and a pulse arrives from the next lower order,
it will change to 0 and send a pulse to the No. 3 “and” circuit on which
the carry-gate signal is now applied to the other input. This pulse will
therefore be sent on to the next higher order. The advantage of this
arrangement is that no pulse or steady-state signal has to pass through
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more than one order of switching circuits, and switches which attenuate
the pulse may therefore be used without providing for amplification.
For high-speed carry propagation it is necessary to use high-speed count-
ers in the accumulator as well as high-speed switches.

With all of the accumulators so far described it has been necessary
to apply a carry pulse or gate signal on a separate control line subse-
quent to the actual entry of the addend digits in order to initiate the
propagation of the carries. A slow but simple form of accumulator re-
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Fic. 4-18. Accumulator with carry signals passing through the switches of only one
order.

quiring no carry pulse or gate is shown in Fig. 4-19. When any digit
counter changes to 0, a pulse is sent through a delay device to the next
higher order. Operation is slow because, for carry propagation, the de-
lays are “in series.”

A relatively fast carry propagation method requiring no separate carry
pulse or gate signal is shown in Fig. 4-20. The method has obvious dis-
advantages, but is presented mainly to illustrate the nature of the prob-
lems involved. Upon entry of the addend into the counters of the ac-
cumulator register through the No. 1 “and” circuit, any counters which
change from 1 to 0 will send a pulse through delay unit D, to the next
higher order. Delay unit D; is necessary to allow the transients in the
counter of the next higher order to die out because that counter may
have at the same time received a pulse from the addend. The higher
carry propagation speed is obtained in Fig. 4-20 by applying the 1 output
of the counter through delay unit D; to one of the inputs of the No. 2
“and” circuit. If a carry pulse arrives from the next lower order and
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Fie. 4-19. Accumulator with slow, but automatice, carry propagation.
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F1c. 4-20. Accumulator with automatic carry initiation.
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the counter indicates 1, the carry will be sent directly on to the next
higher order. Delay unit D, must provide enough delay to allow the
carry pulse to die out in those cases where it causes the counter change
from 0 to 1; otherwise, the carry will be sent on when it should not be.
On the other hand, the delay should not be so great that the 1 signal
from the counter is not applied to the No. 2 “and” cireuit by the time
the carry pulse from the next lower order arrives, which means that the
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Fi¢. 4-21. Another accumulator arrangement with automatic carry initiation.

delay in the D; units must be greater than the delay in the D, units.
When a counter changes from 1 to 0 upon receiving a carry pulse from
the next lower order, it will send a pulse to the next high order in addition
to the pulse propagated through the switching circuits. To eliminate this
second pulse, a “single-pulse device” is shown in Fig. 4-20. The single-
pulse device passes the first pulse but then becomes insensitive to pulses
for a short period of time in order to block passage of the second one. A
circuit known as a “one-shot multivibrator” may be used in the execu-
tion of this function.

Another accumulator arrangement with automatic carry initiation,
which is probably more practical than the one shown in Fig. 4-20, is
presented in Fig. 4-21. Here, the pulse, if any, which is entered into the
accumulator from the addend register is combined with an output pulse
from the accumulator in the A; “and” switch in those cases where the
accumulator changes from 1 to 0. It is assumed that there is sub-
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stantially no delay in the action of the counter; if there is a delay, a com-
pensating delay should be placed in the appropriate input line of the
“gnd” switch. The output from Az is passed through a delay, Dy, and
an “or” switch to the next higher order. D; must be great enough to
allow the counter in the next higher order to recover from the entry
of a pulse from the corresponding order of the addend register. In the
ever® that a carry signal from the next lower order is received and the
accumulator contains a 1, these two signals will be combined in A, and
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Tig. 4-22. Accumulator with carry determination prior to addition.

transmitted to the next higher order without delay. Note that an initial
delay occurs in the D; of the order where the carry originates, but
further delays in the ripple-through process are not required. If the
accumulator counter changes from 1 to 0 upon receiving a carry from the
next lower order, a second signal will not be transmitted through As;
because the “add pulse” will have disappeared by this time. Delay D»
is a short delay merely for the purpose of insuring that the carry pulse
will be terminated before the signal from the counter to A, changes,
and it may not be necessary if the counter action is slow relative to the
duration of the pulse.

Tt is possible to generate the carry signals even before the entry of
the addend into the accumulator is made, and Fig. 4-22 shows one
method of accomplishing this result. The scheme has two advantages.
One is that it may be somewhat faster to start generating carry signals
as soon as the addend is entered into the addend register. A somewhat
more important advantage occurs in the case of subtraction. As will be
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discussed in more detail later, the carry signal from the highest order
may be used to determine whether the sign of the difference will be
positive or negative. In some situations it may be desired to nullify the
subtraction after the sign of the difference is known, and the nullification
may be accomplished readily when the sign can be determined before the
actual subtraction takes place. In Fig. 4-22 the carry is formed in a
set of “and” and “or” switches according to the Boolean expression,
(X 4+ Y)C + XY, which has been discussed in connection with adders.
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counter to change its state twice in an addition where it happened to
receive a pulse from both the addend register and the carry line from the
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simultaneously can be sensed and both pulses may be eliminated. In
other words, it is desired that a pulse be entered into a counter if a 1 is in
the addend register or if a carry is received from the next lower order,
but not when both of these conditions are present. A half-adder cireuit
may be used to perform this function. In the figure, the half-adder cir-
cuit follows the expression (X 4+ C)XC with the “add pulse” applied as a
third input to the final “and” switch.

Asynchronous Operation. When a computer is designed to operate
n “asynchronous” fashion, each arithmetic or other operation is started
when a signal is received which indicates that the previous operation has
been completed. In all of the aceumulators described in previous para-
graphs, the carries could be initiated in any of the orders in the aceumu-
lator, and they would be propagated through as many higher orders as
necessary; but no means was provided for determining when the carry
propagation was complete. With many of the accumulator arrangements
which have been described, it would be awkward and difficult to install
means for indicating the completion of carry propagation, although in
some cases it would be possible to use a multi-input “and” switch to
sense the existence of a carry in any of the orders of the accumulator.
This method of carry sensing would be more applicable to the step-by-
step carry systems than the various “ripple-through” systems.

One accumulator arrangement with a ripple-through carry which yields
a signal upon completion of the carry process is shown in Fig. 4-23. In
each order of this accumulator there are two lines for the transmission
of the carry from one order to the next. One line, C, has a signal when
a carry is received from the next lower order and the other line, N, has
a signal when no carry is to be entered into a given order. Note that,
from the arrangement of the “and” and “or” switches forming the carry
signals to the next higher order, a signal will not be produced on cither
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F1c. 4-23. Accumulator for asynchronous operation.

of the carry-output lines until a signal is applied to one or the other of
the carry-input lines. In Boolean algebra notation, the carry and no-
carry signals may be expressed in the form:

Carry = (X + Y)C 4+ XYN
No carry = (X + V)N + XYC

To start the carry propagation process, a signal is applied to the N
input of the lowest order. This signal then progresses through all orders,
sometimes on the carry line between orders and sometimes on the no-carry
line in accordance with the binary numbers being added; and it finally
emerges from one of the output lines of the highest order. When the
signal emerges from the highest order, it is known that carry propaga-
tion is complete. The entry of the sum into the accumulator may then
be accomplished by applying a pulse to the “add pulse” line. This pulse
causes each counter in the accumulator to be changed to its opposite
state when the digit in the corresponding order of the addend register is
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1, or when the signal from the next lower order is on the C line, but not
when both of these conditions are present.

Many variations of the accumulator arrangement of Fig. 4-23 may be
worked out. One variation will be deseribed in connection with binary
multiplication, where it is of particular interest.

Simultaneous Carry. In all the methods which have been described
for handling the carries, either with adders or with accumulators, the

carry was “propagated” from one order to the next in those cases where

one carry created a carry in the next higher order. It is possible to add

all carries simultaneously instead of one after another, and Fig. 4-24
shows the functional arrangement for accomplishing it. The scheme, as
applied to an adder, is shown in Fig. 4-24(a). Consider the highest
order, that is, the one on the left-hand side of the figure. A carry from
this order to be sent to the next higher order ean be generated in any one
of three ways. First, the sum of the two digits X3 and Y5 may produce a
carry; second, the sum of these two digits may be 1, and a carry from
the next lower order may be present; and third, the sum may be 1, the
sum of X, and Y, may also be 1, and a carry from the lowest order may
be present. The “and” switches with two and three input lines and the
extra input lines to the “or” switch provide for the generation of the
carry when it arises from the conditions set forth in the second and third
cases, respectively. Although a rather large amount of switching is re-
quired when more than a few orders are employed in the adder unit, car-
ries which would otherwise have to be propagated will arrive substanti-
ally simultaneously at all appropriate orders.

One order (the 4th) of an accumulator employing simultaneous carry
is shown in Fig. 4-24(b). A number is added into the accumulator by
applying a pulse in the line marked “add pulse,” and the carry, if any, to
this order is entered by subsequent application of a pulse on the line
marked “carry pulse.”” The amount of time required for the carry to be
made ready for entry is independent of the order in which the carry
originated.

Several other variations in the functional arrangements for simultane-
ous carry may be devised. Also, it may be worth while in some applica-
tions to employ simultaneous carry with the orders in groups of, say,
three or four to increase carry propagation speed, whereas the amount
of equipment required for simultaneous carry in all orders might be
impractical.

Ditect Subtraction. When subtracting two digits, one from the other,
each digit of the minuend is decreased by the amount of the correspond-
ing digit of the subtrahend, and if the minuend digit thereby becomes
less than zero, the minuend digit of the next higher order must be re-
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Fic. 4-24. Simultaneous carry as applied to an adder (a) and an accumulator (b).
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duced by one; that is, a 1 must be “borrowed” from the next higher
order. This procedure, which follows the paper-and-pencil method of
subtraction, is referred to as direct subtraction and is in contrast to sub-
traction by means of complements, to be described later. The rules for
binary subtraction are shown in Table 4-II1.

TasLe 4-11I. BiNARY SUBTRACTION

Minuend Digit 0 1 0 1

Subtrahend Digit 0 0 1 1

Difference Digit - | 0 1 1 0

Borrow 0 0 1 0

A device which accepts minuend and subtrahend digits and produces a
difference and borrow in accordance with Table 4-IIT is called a “half
subtracter.” A second half subtracter is required to subtract the borrow
from the next higher order so that two half subtracters per order are re-
quired to execute binary subtraction. Actually, as in the case of addi-
tion, an extra “or” circuit per order is required also. Block diagrams
of two arrangements by which the half subtracters may be connected
are shown in Figs. 4-25 and 4-26, where X is assumed to be the minuend
and Y the subtrahend. The two inputs of the half subtracter are not
interchangeable as in the case of the half adder, and the input which is
marked with a plus sign receives the digit from which another digit is
being subtracted, and this other digit, which is beng subtracted, is applied
to the input indicated by a minus sign.

In Fig. 4-25 the borrow, indicated by B, is subtracted from the ap-
propriate digit of the minuend, and the subtrahend digit is then sub-
tracted from the difference. The resulting difference is then the desired
digit of the difference of X and Y. Note that the borrow signals from
the two half subtractors cannot both be 1 simultaneously, for if the
borrow B’ from the first half subtracter is 1, the difference D’ is also 1,
and B” will be 0 regardless of the digit from Y. A borrow signal from
either half subtracter must be transmitted to the next higher order, and
this is done through the “or” circuit. In Fig. 4-26, the borrow is sub-
tracted from the difference of the minuend and subtrahend digits. Al-
though this procedure probably does not follow the mental steps usually
taken when subtracting by the pencil-and-paper methods, it has the
advantage that the borrow signal must pass through only one instead of
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two half subtracters. This feature is important for fast operation, be-
cause borrow propagation through a series of orders may be required in a

X
> X2 X, Y,
+l - :—__-T I + ‘-
HALF b HALF ! HALF
SUB. i SUB. : SUB.
B D : B D b B D
8'|p’ Ys : 8' D' Y2 :
£ b : R l B
o] |%s| {o] W]}
SUB.
Bs B D B 2 : B D :
B" : Bu :
( ' |
R |
D3 D2 D,
Fic. 4-25. Binary subtraction, first variation.
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Fic. 4-26. Binary subtraction, second variation.

manner similar to carry propagation. When analyzing the speed of bor-
row propagation, it should be noted that two different types of situa-
tions must be taken into consideration; one is illustrated by the example
of subtracting 0001 from 1000, and the other by an example such as the
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subtraction of 0111 from 1110. The speed is not necessarily the same
in the two cases.

A third arrangement for binary subtraction is shown in Fig. 4-27.
Here, the sum of the borrow and subtrahend digit is formed in a half
adder. This sum is then subtracted from the minuend digit. The carry,
C’, from the half adder may be assumed to constitute a borrow because
a carry signal occurs only when both inputs to the half adder receive
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Fie. 4-27. Binary subtraction, third variation.

signals to be subtracted from the minuend, and the minuend digit will
therefore necessarily be reduced below zero. The “or” circuit is used
to combine C’ with the borrow, B”, from the half subtracter to form the
borrow, B, to be sent to the next higher order. That the arrangements
shown in Figs. 4-25, 4-26, and 4-27 are equivalent from a mathematical
standpoint may be established readily through the use of Boolean algebra.

The amount of equipment shown within the dotted lines in either Fig.
4-25, 4-26, or 4-27 is known as a full subtracter. A full subtracter is
not necessarily made up of the components indicated in these figures,
but is any device accepting three binary input signals and producing two
binary output signals in accordance with the rules shown in Table 4-1V,
where X is a digit of the minuend, Y is the digit of the corresponding
order of the subtrahend, and B is the borrow from the next lower order.

Although a cursory inspection may reveal no important differences
between the rules of binary addition and subtraction, the rules for sub-
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TasLe 4-IV. Binary SuBTRACTION RULES FOR FULL SUBTRACTER

X 0 1 0 0 1 1 0 1
Y 0 0 1 0 1 0 1 1
B 0 0 0 1 0 1 1 1
Difference | 0 1 1 1 0 0 0 1
Borrow 0 0 1 1 0 0 1 1

traction are actually significantly more complicated. The reason is tied
in with the fact that the X input of a subtracter is not interchangeable
with the Y and B inputs; whereas with an adder, all three inputs are
interchangeable.

Half Subtracter. From Table 4-IIT it may be seen that the Boolean
algebra expressions for a half subtracter are

Difference = XY + XY
Borrow = XY

where X and Y are digits of a given order in the minuend and subtrahend,
respectively. Circuits composed of “and’ and ““or”’ switches and inverters
may be used in a straightforward manner to generate these functions. If
the inverse of the input signals are not available and it is desired to gen-
erate the difference and borrow through the use of only one inverter, it
may be done by developing the difference and borrow in the following
manner. L

Difference = (X + Y)(XY)

Borrow = (X + Y)XYY

Full Subtracter. From Table 4-1V the following expressions for differ-
ence and borrow may be derived:

Difference = XYB + XYB + XYB + XYB

Borrow = XYB + XYB + XYB + XYB
As in the case of the adder, these expressions may be factored and re-
arranged in a wide variety of ways with each mode of expression repre-
senting a different physical circuit. One arrangement which will yield

the difference and borrow through the use of only one inverter even when
the inverted inputs are not available is:
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Difference = (X + Y + B)(XY 4+ XB 4+ YB) + XYB
Borrow = (Difference + BY)(B + Y)

Negative Balance. When the subtrahend is larger than the minuend,
the difference will be negative; that is, a negative balance will result.
Certain problems arise in the manner by which the negative balance
should be treated, because the subtracter will present the negative bal-
ance in 2’s complement form, which is analogous to the 10’s complement
which has been deseribed previously for the decimal system. There are
two reasons why the 2’s complement presentation is objectionable. One
reason is simply that it is not standard for pencil-and-paper work, and
the other is that other arithmetic operations, notably multiplication and
division, are rendered more complex by its use. The 2’s complement
representation should not be condemned categorically, however, because
through its use addition and subtraction are very straightforward. For
example, when adding a quantity to a negative balance and the balance
becomes positive, a true representation will again be obtained without
the necessity of providing for any corrective operations. Further, posi-
tive or negative quantities may be added or subtracted from positive
or negative balances in any combination without need for corrective
operations.

Two different procedures may be followed to remove the objections
to the 2’s complement presentation. One procedure is to convert the
2’s complement number, whenever it appears, to true representation,
and the other procedure involves the use of an “end-around borrow” to
generate the 1’s complement.

Mathematically, the most straightforward way of converting a 2’s com-
plement number to true form is to subtract from 27, since 2" — (2* —
N) = N. Frequently it is more convenient to invert each digit in the
2’s complement number (a process which generates a 1’s complement)
and then add one. The generating of the 1’s complement is the same
as a subtraction from 2" — 1; therefore, (2" — 1) — (2"~ N) +1 = N.
An alternative method of conversion is the use of the rule that the lowest
order nonzero digit and all zeros in orders lower than this digit remain
the same when converting, while all higher order digits are inverted.
When an attempt is made to design equipment to perform the conversion,
it is found that the various methods are not greatly different, although
they aren’t exactly the same, and the most adaptable method will depend
upon the design of the other portions of the arithmetic unit in the com-
puter. .

The “end-around borrow” may be used to change the 2’s complement
representation to a 1’s complement representation according to the foi-
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lowing procedure. When the balance changes from positive to negative,
a borrow signal will be obtained in the highest order of the subtracter
unit. This borrow signal may first of all be used to indicate the change
in sign of the balance, and it may also be entered as a borrow in the
lowest order of the subtracter. To illustrate the process, consider the
subtraction of 100101 (decimal 37) from 011101 (decimal 29).

Minuend 011101
Subtrahend (=)100101

— 111000
End-around borrow (=) 1
Difference in 1’s complement — 110111

The borrow signal which is obtained from the highest order is shown
as being subtracted from the lowest order in a separate step, although
actually this end-around borrow is handled at the same time as the bor-
row signals in any of the other orders. In the example given, the bor-
row signal when entered in the lowest order caused a borrow signal to
be sent to the next higher order and so on. This does not mean, how-
ever, that when performing subtraction with end-around borrow that time
has to be allowed for propagation of the borrow signal through the
subtracter unit twice. If the end-around borrow is the result of a bor-
row signal propagated from some lower order than the highest order,
it will not be propagated beyond the order in which it originated when
entered into the lowest order, so time for propagation through the sub-
tracter unit once is all that need be allowed. The subtraction of 110111
(decimal 45) from 110101 (decimal 43) will illustrate this point. That
the use of the end-around borrow does, in fact, yield the 1’s complement
for negative balances may be checked either by the examples or by not-
ing that the 2’s complement of a number, N, is 2" — N whereas the 1’s
complement is 2* — 1 — N, where n is the number of orders in use.

The advantage of the 1’s complement lies in the ease with which the
conversion to the true balance may be made, for in order to make the
conversion it is necessary only to invert every digit. This simplicity
of conversion is important in the execution of multiplication and division
as well as in the mere presentation of the number.

When a positive balance is obtained as the result of adding a number
to a negative balance, a carry signal will be obtained in the highest order
of the adder unit. As in the case of a change in the sign of the balance
when subtracting, this carry serves not only to indicate the change in
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sign from negative to positive but it should also be entered into the
lowest order of the adder as an end-around carry to restore the true indi-
cation of the sum. As an example, 100101 (decimal 37) is added to
—110111 (decimal —8).

Augend —110111
Addend (+) 100101

+ 011100
End-around carry (+) 1
Sum 4011101

The time allotted for carry propagation through the adder need not be
increased when this end-around carry is used.

Note that when a zero balance is obtained, the indication will some-
times be 000000 and sometimes —111111, depending upon whether the
last previous balance was positive or negative, respectively. For some
applications it is desirable to know from which direction a zero balance
was approached, in which case this feature is desirable; in other applica-
tions it is preferred that a zero balance be always indicated as a positive
quantity, and for these applications the feature is a nuisance. The two
different indications for zero were not encountered when 2’s complements
were used.

Addition by Subtraction. Actually a subtracter unit by itself is prob-
ably of more academic than practical value. But it is noteworthy that
both addition and subtraction can be executed on a subtracter. In order
to add two numbers, E and F, to obtain the sum, E + F, the procedure to
follow is to subtract E from zero to obtain —E, subtract F from —E to
obtain —E — F = —(E + F), and then subtract — (E + F) from zero
to obtain the desired result.

Adder-Subtracter. From Tables 4-I1 and 4-IV it may be observed
that the expression for the difference when subtracting is exactly the same
as the expression for the sum when adding, except that B is substituted
for C. Because of this similarity, an adder-subtracter unit may be con-
structed wherein one portion of the unit is used to develop a signal which
may represent either the sum or the difference, and other portions of the
unit are used to develop the carry and borrow. When adding, the carry
is sent from each order to the next higher order; but when subtracting,
the carry is suppressed and the borrow is sent from each order to the
next higher order. It may be desirable to use two borrow generating de-
vices, one for the case where X is the minuend and one for the case
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where Y is the minuend, because with these two different borrow generat-
ing devices it is possible to avoid entirely the use of complements. If,
when subtracting, the subtrahend is larger than the minuend, a borrow
signal will be obtained from the highest order of the adder-subtracter.
As well as indieating the sign of the difference, this borrow signal may be
used to indicate that the subtrahend is, in fact, larger than the minuend;
in which case a switch to the other borrow generating device is initiated.
Specifically, the sum or difference may be expressed as

Sum or difference = (X + Y + 2) XY+ XZ + YZ) + XYZ
where Z is the carry or borrow signal from the next lower order; the carry is
Carry = XY+ XZ +YZ

the borrow, B,, when X is the minuend is
Borrow, = XYZ + XYZ + XYZ + XYZ
=Y +2)XY+XZ+YZ)+YZ

a,ﬁd the borrow, By, when Y is the minuend is
Borrow, = XYZ + XYZ + XYZ + XYZ
=X+ 2XY+XZ+YZ)+ XZ

The output of the carry-borrow portion of the adder-subtracter may then
be expressed as

Z (for next higher order) = AC + S,B, + S, By

where 4, S,, and S, are control signals, only one of which is active at any
given time. A is active when addition is being performed, and 8, or S,
is active when subtracting, depending upon whether X or Y, respectively,
is the minuend.

As an example of the use of the adder-subtracter, consider the follow-
ing two numbers.

X 01101101
*
Y 01111100

Assume that Y is being subtracted from X. Here, X and Y refer to entire
numbers, not individual digits. A borrow will oceur in the order marked
with an asterisk; and this borrow will be propagated through all higher
orders, that is, all orders to the left. When the borrow occurs in the
highest order, it will be known that Y is larger than X and that, in effect,



Binary Addition and Subtraction 123

X should be subtracted from ¥. When X is subtracted from Y, a borrow
will oceur in this example in the lowest order, or the one on the right.
This borrow will be propagated to higher orders but will stop at the
order marked with an asterisk. The previous borrow need not “propa-
gate back” but may be canceled from all orders simultaneously by ap-
plying control signal S, a finite time after S, is removed. This example
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F1e. 4-28. Adder-subtracter.

illustrates that, except for the time required to switch from one borrow
signal to the other, subtraction requires no more time than addition even
when the wrong borrow signal is chosen first.

A simple rule for deciding which borrow signal, B, or B,, should be
used first when subtracting is to assume that the positive number is the
minuend and the negative number is the subtrahend. Note that, in sub-
traction, one number may always be considered positive and the other
negative; for example, when subtracting X from Y and both X and ¥ are
negative, X may be considered to be positive. In cases where the sub-
trahend turns out to be larger than the minuend, the borrow from the
highest order will be an indication of a negative difference as well as an
indication that the other borrow signal should be used in forming a true
representation of the difference.
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Physical circuits for an adder-subtracter may be worked out in a
fashion similar to that used for the full adder. One arrangement requir-
ing only one inverter and requiring that the carry-borrow pass through
only one “and” and one “or” switch per order is shown in Fig. 4-28. The
carry-borrow (Z signal) is generated according to the following ex-
pression.

Z (for next higher order)
= AXY 4+ AXZ + AYZ + SZ(XY + XZ+ YZ)
+8Y XY+ XZ+ YZ) + 8, YZ +8,XXY + XZ+ YZ) +8,XZ

In this expression, S is a control signal active when subtracting with
either number as the minuend.

Subtraction Accumulators. The accumulators which were desecribed
for addition may be modified in a simple manner so that they will execute
the function of subtraction. When subtracting, the counters in the
accumulator should count in reverse, but counting in reverse in the binary
system is the same as counting forward in that each individual counter
alternates back and forth between 0 and 1 upon the reception of pulses
to be counted. The difference lies in the fact that a pulse (borrow signal)
is sent from a given order when the counter changes from 0 to 1 instead
of when it changes from 1 to 0. Also, when a borrow pulse arrives at a
counter from a lower order, it should be propagated on to the next higher
order when the counter is standing on 0 instead of on 1 as in the case on
addition. Therefore, any of the accumulator arrangements in Figs. 4-13
to 4-23 may be converted to subtraction accumulators by interchanging
1 and 0 output lines from the counters in the addend register.

Remarks concerning negative balance, 1’s and 2’s complements, and
end-around carry or borrow made in connection with subtracters apply
equally well to subtraction accumulators.

Subtraction by Addition of Complements. In some, perhaps most,
computers it has been found more convenient to execute subtraction
through the addition of the complement representation of numbers in-
stead of through the use of a subtracter. Either the 1’s complement or
the 2’s complement may be used; the 1’s complement has the outstand-
ing advantage of simplicity of conversion back and forth between the
true and complement forms, but there are many other factors entering
into the determination of the most desirable number representation.

When subtracting two numbers one from the other, say N; from Ny,
through the use of 1’s complements, 2" — 1 — N;, which is the 1’s com-
plement of Nj, would be added to Ns. As before, » is the number of
orders in use, and note that the powers of two represented by the n orders
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range from 2° to 2"~%. The sum, (2" — 1 — Ny) + N3, must be treated
differently, according to whether Ny < Ny or N3y > Nao. If Ny < Ny,
then No — N; > 1 and the sum would be equal to or greater than 2%;
that is, a carry signal would occur in the highest order (2~ order) of the
adder. Instead of entering this carry into the 2™ order, which is nonexist-
ent, it is entered into the units order in end-around fashion. The result
is, therefore,

—1—Ni+Nz+1=Ny;—N;, (N1 <Nyp)

which is the desired difference. If N; > Ns, no carry will oceur in the
highest order and the result will then be

2" — 1 — (N1 — Ns), (N1 = Ny)

which is the 1’s complement of the desired difference. In this latter case,
the difference is either zero or negative, while in the previous case, it was
positive; therefore, the end-around carry can be used to indicate the sign
of the difference.

In the previous paragraph, N; and Ny were both assumed to be positive
quantities, whereas either one or both could have been negative. If Ny,
the subtrahend, were negative, it presumably would have been presented
in complement form. Then, upon complementing for subtraction, its true
form would be obtained at the input lines to the adder, and the net result
would be an addition as is desired when subtracting a negative quantity.
If N, were negative, it similarly would be presented in complement form
and the addition of 2* — 1 — N to 2 — 1 — N, would always produce
a carry in the highest order. This carry, when added into the units order,
would produce the result,

1= N;+2°—1—=Nog+1=2"—1— (N; + Ny)

which is the 1’s complement of the “difference.” If both N, and N, are
negative quantities and N is subtracted from N3, the mathematical prin-
ciples involved in forming the difference will be the same as when both
are positive, except that the roles of Ny and N, will be interchanged.

With the above arrangement the fact that the capacity of the adder
has been exceeded may be detected by the occurrence of an end-around
carry when, in effect, a quantity is added to a positive balance, or by
the absence of a carry when, in effect, a quantity is subtracted from a
negative balance.

A further property of the above arrangement is that a zero balance
will be indicated as a negative quantity always, because the result,
+4-0000, will never occur, and zero will always be indicated as —1111.
For example, —1100 (decimal —3) plus 0011 {decimal +3) is —1111;
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also 40011 minus 40011 is —1111 because the subtrahend is inverted
and added. This result is always obtained, even though it is possible
to add or subtract “positive zero” to either a positive negative quantity
and obtain the correct result. An example of the latter situation is the
subtraction of 40000 from —1111, which yields —1111 because the
subtrahend is inverted and added with end-around carry. A trivial ex-
ception to the rule is the addition of 4-0000 to -+0000. If it is desired
that zero be identified as a positive quantity, one procedure that may
be followed is to represent positive numbers in 1’s complement form and
negative quantities in true form. Then, when subtracting N; from N,
when N; = N, the result will be 2* — 1 — Ny 4+ N;, as before, which
is zero in 1’s complement form; but, since all positive balance will appear
in complement form, zero will be represented as a positive quantity.
Another means for getting zero to be indicated as a positive quantity is to
use a subtracter, in which case subtraction is executed in a straightfor-
ward manner, and addition is accomplished through the subtraction of
complements.

Adaptation of Complement Subtraction to Circuits. Although obtain-
ing the 1’s complement of a binary number is one of the simplest functions
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Fre. 4-29. True-complement arrangement.

one can imagine, it is easy to forget the amount of equipment required
to accomplish it. Figure 4-29 shows a functional arrangement for ob-
taining either the true or complement representation of a binary digit.
The input lines marked “True” and “Comp.” are control lines used for
selecting the representation to be produced on the output line. For a
parallel system this amount of equipment must be duplicated for each
order, and perhaps, in the case of an adder, for both the augend and the
addend.
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When using an accumulator, a different technique is available for con-
verting back and forth between true and 1’s complement representation.
By providing a third input to each “or” circuit feeding a counter in the
accumulator register, a pulse may be applied to each counter simultane-
ously to produce the complement of the number previously standing in
the register. A second pulse will restore the original number. With this
method of complementing available, true numbers may be entered into
the accumulator, and also a true representation of the balance may be

A A~ o accaditra

obtained regardless of the sign (positive or negative) of the numbers
involved. TFor example, when subtracting N; from N» and both are posi-
tive quantities, N, would appear in the accumulator and would be con-
verted to complement form. A positive difference would be indicated
as positive by the absence of an end-around carry and would appear in
complement form, but could be readily converted to true form. If N
were a negative number standing in the accumulator register and a posi-
tive number N; were added to it, N2 would again be the number to be con-
verted to complement form, but in this case a positive difference would
appear in true form and would be indicated by the occurrence of an
end-around carry. The situation of subtracting a positive number (or
adding a negative number) to a negative balance would be substantially
the same as adding two positive numbers.

The Difference Between the Two Subtraction Methods. It may be
suspected that there is no real difference between direct subtraction and
subtraction by the addition of complements, because there are so many
points of similarity in the two methods. However, when comparing an
adder with appropriate complementing devices for a single order with a
subtracter for a single order, it is found that there is a real physical differ-
ence between them. This difference can be established by an examina-
tion of the carry signal or borrow signal, as the case may be, which is
sent from a given order to the next higher order. If X is a digit of the
minuend and Y is the corresponding digit of the subtrahend, it can be
shown that when using a subtracter the borrow signal is

XY+ XB+ YB

where B is the borrow signal from the next lower order. When using an
adder with complementing devices, Y, and not X, would be complemented
so that the carry signal would be equivalent to

XY+ XC+7YC

where C is the carry from the next lower order. Because of the differ-
ence in the signal propagated through the orders, it follows that there is,
in fact, a physical difference in the two types of units.
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The Use of an Extra Order to Indicate Sign. An examination of the
rules for determining the sign of the balance after an addition or subtrac-
tion operation will reveal that they are exactly the same as the rules
for binary addition. Therefore, an adder which is identical to the adders
used for adding the digits may be used for generating the sign of the
balance. This point may be visualized more readily simply by observing
the system of binary counting, which in the vicinity of zero is with 1’s
complement notation as follows:

+2 00010
+1 00001
0 00000 or 11111
-1 11110
-2 11101

Note that the highest-order digit changes from 0 to 1 as the sign of the
number changes from plus to minus. The highest-order digit may there-
fore be assigned as a sign indication. The adder for the sign order uses
as its carry input the carry output from the highest digit order and carry
output of the signs adder is used as the end-around carry to the units
order in the 1's complement system. That this procedure works may
readily be established by working out a few examples.

Binary Point. In the previous discussion, the location of the binary
point was not specified. Beyond the specification that it be in the same
relative location for the two numbers involved in an addition or subtrac-
tion process, its location is of no consequence. In other words, the physi-
cal construction of the addition-subtraction equipment is independent
of the binary point, and the only requirement is that corresponding orders
of the two numbers involved be sent to the same order of the addition-
subtraction equipment. '

Serial Operation. Binary addition and subtraction in serial fashion
differs from the parallel method in that a single-order addition-subtrac-
tion unit is used. The binary digits of the two numbers to be added
together or subtracted one from the other are applied serially in time to
two input lines of the unit, and the sum or difference emerges also serially
in time from the output line. It is usually necessary that the two input
numbers be applied “in phase,” that is, with corresponding digits of the
two numbers appearng on the respective input lines simultaneously. In
some respects serial operation is fundamentally no different from parallel
operation, but in other respects the differences in the two systems are so
great that the design procedures followed in the two cases bear little
resemblance to each other.
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The basic rules for the addition and subtraction of binary digits, as
given in Table 4-I to 4-1V, are the same for serial as for parallel opera-
tion. For this reason, half and full adders and half and full subtracters
as described for parallel operation may be adapted for use in a serial sys-
tem. However, there are some differences in the method by which the
carry or borrow is handled which should be considered. For example,
Fig. 4-30 shows the arrangement which would be used for handling the
carry when a full adder is used in a serial system. The carry, which
must be added to the digits of the next higher order, is applied through
a delay unit to the third input of the full adder. The amount of the delay
must be such that, when added to the delay of carry generation in the
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F1c. 4-30. Serial operation of a full adder.

adder, the carry will be applied at the adder input at the same time
that the digits of the next higher order are applied. An important con-
sequence of this requirement is that it is the next higher and not the next
lower order which must be applied to the adder subsequent to a given
order, and therefore serial operation is almost always conducted with
the digits appearing in ascending order of significance. It would be pos-
sible to assemble a system which would handle the numbers with the
digits in descending order of significance, bui not in any simple or
straightforward way.

In a serial computer the speed of addition is usually set by factors
which have little relationship to the adder. It is most often the case that
the speed or pulse repetition rate which is used for number transmission
is a funection of the physical characteristics of the particular number stor-
age device which is used in the computer; and once this speed has been
decided upon, the adder is designed so that it will accept numbers at
this speed and consequently yield a sum at the same speed. Once the
speed of number transmission is set, nothing can be done in the carry
portion of the adder to increase the speed of addition. It follows that the
high-speed generation of the carry does not have the importance in serial
operation that it does in parallel operation; in fact, because of the delay
which must be inserted in the carry circuit for serial operation, the de-



130 Arithmetic Operations in Digital Computers

sign objectives with regard to carry speed are not the same in the two
cases.

Half adders may be used to form a serial addition unit by using either
of the two arrangements shown in Fig. 4-31, which are the serial counter-
parts of the circuits shown in Figs. 4-1 and 4-2.

From an engineering standpoint, further variations in the adder cir-
cuits which may be used can be developed from the variety in the
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F1e. 4-31. Half adder adapted to serial operation.

nature of signals which may be used to represent the numbers. In Fig.
4-32(a) the d-¢ method of representation is shown. To represent a 1,
the signal (usually an electrical potential) is held positive all during
the time allotted for the representation of the digit; and to represent a
zero, it is held negative. Here, “positive” and “negative” are relative to
each other; any two d-¢ levels may be chosen. When two or more 0’s
or two or more 1’s oceur in sequence, there is no change in signal level
between the digits.

The pulse method of representaton is illustrated in Fig. 4-32(Db).
A 1 is represented by a pulse, and a zero by the absence of a pulse.
With the pulse method of representation the “inverter” function is more
difficult to realize that when using the d-c representation; specifically, the
presence of a pulse can be converted readily to the absence of a pulse,
but the conversion of the absence of a pulse to the presence of a pulse is
usually not so straightforward.
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As examples of the use of pulses for digit representation, the functional
arrangements for a binary adder as shown in Fig. 4-6 are repeated in Fig.
4-33 but adapted to serial operation and pulse-type signals. A new func-
tion called the “unless” function is introduced, and the block labeled
“unless” in Fig. 4-33 will pass a pulse arriving at the input on the top
side of the block unless a pulse appears at the input shown on the side
of the block. This second input signal is sometimes called an inhibiting
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Fic. 4-32. Methods of serial representation.

pulse because its presence inhibits a pulse from appearing on the output
line. A semicirele is shown around the arrow of the inhibiting pulse input
to distinguish it from the regular input lines. The arrangement of Fig.
4-33(a) would be thought of as functioning according to the rule, “the
sum will be 1 if any one of the three input signals is 1 unless two of
three input signals are 1, or if all three of the input signals are 1.” In
order to translate the arrangement of Fig. 4-6(b) to that of Fig. 4-33(b),
the trick of inverting the presence or absence of a pulse must be used.
The “unless” block in Fig. 4-33(b) has as its input a continuous series
of pulses timed in synchronism with the digit pulses of the numbers to be
added, with the result that pulse will be passed each time that no pulse
appears on the inhibiting input and will not be passed when an inhibiting
pulse oceurs. This adder, then, functions according to the rule, “the
sum will be 1 unless at least two input signals are 1 or all three are 1,
and at least one input signal is 1.”

Many additional variations in adder circuits can be worked out when
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using a digit representation such as shown in Fig. 4-32(c), where 0 is
indicated by a negative pulse. Still further variations are possible when
two lines are used to carry a binary number in serial fashion. With
two lines, a signal (either a d-c signal or a pulse) on one line would in-
dicate a 1, and a signal on the other line would indicate a zero. Both of
these schemes of representation offer the possibility of error detection.
When pulses of opposite polarity are used, the absence of a pulse would
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Fig. 4-33. Functional arrangements of full adder adapted to pulse-serial operation.

indicate an error. With the two-line system, a signal on neither line or
signals on both lines simultaneously would indicate an error. The sub-
ject of error detection is an extensive one, and since error detection is de-
seribed in some detail in a later chapter, no attempt will be made to cover
it here. However, it will be remarked that the use of these types of
binary digit representation are not particularly attractive for most appli-
cations because of the increased complexity and amount of equipment
required for their use.

Another type of binary digit representation is shown in Fig. 4-32(d).
In this case the signal is not unique for a 1 or a 0; instead, a 1 is repre-
sented by a change and 0 by no change. It is sometimes called the “non-
return to zero” system when used in connection with recording on mag-
netic tapes or drums. The two states represent opposite directions of
magnetization. Since the system is extremely awkward to use in the
arithmetic portion of a computer, it is usually advantageous to transform
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the representation to one of the forms shown in (a) or (b) when arith-
metic operations are to be performed.

“Accumulator” is a term which is frequently used in connection with
serial addition. From a mathematical function standpoint, a serial
accumulator serves a purpose similar to that of a parallel accumulator
in that it stores the sum, but otherwise it is quite different. A serial
accumulator is only a storage device and plays no part in the actual addi-
tion as do the counters in a parallel accumulator. It is possible, how-
ever, to execute binary addition serially through the use of a counter;
but it would be necessary to apply sequentially the carry pulse from the
next lower order and the pulses representing the digits of the given orders
of the augend and addend. For most practical purposes, a parallel ac-
cumulator with counters has no close counterpart in serial operation.

Subtraction with Serial Operation. All the points concerning sub-
traction which were described in connection with parallel operation could
be applied to serial operation. However, the execution of end-around
carry or borrow with the serial mode of operation is much more cumber-
some than with parallel operation, with the result that the relative ad-
vantages of the 1’s and 2’s complement systems of notation are different
in the two cases. To add the end-around carry in a serial system, it is
necessary, after the addition, to pass the sum through the adder a second
time. By using the 2’s complement, the end-around carry may be
avoided.

If N, is subtracted from N, by the addition of the 2’s complement
of Ny to Ny, the result is {2 — N;) + N, where, again, n is the number
of orders involved, and the digits of Ny and N, correspond to powers
of two from 2° to 2=—1. If N;=N,, the result will be equal to or greater
than 27, and a carry will occur in the addition of the highest-order digits.
This carry, in effect, replaces the borrow from the 2"th order, which was
used in the original formation of the 2’s complement of N;, and is an
indication that the result is positive, is of value No— Ny, and is in true
and not complement form. If Ny > Nj, there will be no carry from
the highest order, and the result will be 2" — (N3 — N,), which is 2’s
complement representation of the magnitude of the difference between
N; and N, and the absence of the carry may be used to indicate a nega-
tive balance.

The original conversion of N; from true to 2’s complement form may
be readily accomplished by inverting to form a 1’s complement and then
adding 1, since 2* — 1 —N;+1=2"— N;. The addition of the 1
may be accomplished by entering a 1 in the carry circuit of the adder
at the time the lowest-order digits are being added. This procedure can
be followed because no carry will be appearing from other sources at
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this time. The conversion of the negative balance, which appeared in
2’s complement form, to true form may be performed if desired, although
it is necessary to send the result through the adder a second time. This
conversion may be avoided by storing the negative balance in 2’s com-
plement form. Then, if it is subsequently added to another number,
it will be sent directly to the adder in the desired 2’s complement form,
or if it is subsequently subtracted (which is, in effect, adding a positive
quantity), it will be automatically converted to true form through the
same process of inversion and adding 1 to the lowest order.

The practice of using the highest-order digit to indicate the sign of
a number may be used in serial as well as in parallel operation.

If the use of complement representation is objectionable in the storage
devices of the computer, it turns out that the complements may be
avoided with only moderate difficulty and lost time by actually exe-
cuting the conversion to true form each time a complement is obtained.
This process necessitates the transmission of the numbers with the sign
indication before instead of after the digits because, for example, the
addition of a positive number is handled differently from the addition
of a negative number, and therefore the sign of the number must be
known before the addition process commences. When numbers are sent
to the adder in true form only, there are the following three cases which
must be considered: addition of two positive numbers (this case includes
subtraction of a negative number from a positive number), addition of
one positive and one negative number, and addition of two negative
numbers. The first and third cases are substantially the same; in nei-
ther case are any complements involved, and the sign of the balance
is the same as the sign of the original numbers. In the second case, one
or the other of the two numbers is complemented before entry into the
adder. If it is always the negative one which is complemented, the re-
sult will be in complement form if a negative balance occurs and it must
be converted to true form by passing it through the adder again. The
amount of time which will be lost depends upon the nature of the prob-
lem being solved by the computer. In some problems the conversion
may be required frequently, but in many problems the first and third
cases will predominate. When performing the inital conversion on a
number being entered into an accumulator, regardless of whether this
number or the previous balance is negative, it turns out that the conver-
sion of the result is required only when the sign of the balance changes in
a series of additions and subtractions. With this scheme, again depend-
ing upon the nature of the problem, even less extra conversions may be
required.
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The Storage of Positive and Negative Numbers. With either serial
or parallel operation, a problem which always arises in the design of a
computer is determining the manner in which the complements that
arise in subtraction should be handled with regard to the storage of posi-
tive and negative numbers. With the possibility of using true, 1’s com-
plement or 2’s complement form, there are nine different variations in
the ways in which positive and negative numbers may be represented.
Of the nine variations, four are of interest.

Postiive Negative
1. True True
2. True 2’s Comp.
3. True 1’s Comp.
4. 1’s Comp. True

The principal advantages of the first scheme, whereby both positive
and negative numbers are stored in true form, arise from the facts that
the numbers conform better to familiar usage and that multiplication
and division (to be described in more detail in the next chapter) of nega-
tive factors are more straightforward. With the second scheme, addition
and subtraction can be accomplished in a more straightforward manner.
With the third and fourth schemes, all four arithmetic operations can
be accomplished in a reasonably straightforward manner; the outstand-
ing difference between the two schemes is that zero appears as a nega-
tive number in the former and as a positive number in the latter.

The choice of the convention to be used with regard to the storage
of negative numbers is frequently a difficult one to make because numer-
ous other considerations often arise. Among the factors which affect
the choice are the facilities for complementing in the computer, the
form of the numbers sent to and taken from the computer through the
input and output mechanisms, the relative frequencies of the various
arithmetic operations in the problems to be solved, and the contemplated
need for examining numbers in storage when servicing the computer.
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BINARY MULTIPLICATION AND DIVISION

Binary Multiplication. Multiplication by the paper-and-pencil method
using the familiar decimal system is accomplished with the aid of a
multiplication table, which is usually memorized. Multiplication in the
binary system may be accomplished in the same way, although the
binary multiplication table is so simple that it is almost trivial. It is
shown in Table 5-1.

TaBLE 5-I. Binary MurripLicaTiON TABLE

Multiplicand
Digit
0 1
s 0 0 0
Multiplier
Digit 1 0 1

In the decimal system, when multiplying 45 by 7, for example, the
5 is first multiplied by 7 to obtain 35, which yields 5 in the units order
and 3 to be carried into the tens order. The 3 is added to the produet
of 4 and 7, to yield the number 31, the digits of which comprise the
hundreds and tens orders of the product. The simplicity of binary mul-
tiplication arises principally from the fact that there are no “carries”;
in fact, when 0 and 1 are the only alternatives for the multiplier digit,
either zero or the multiplicand itself is used in the formation of the
product. The binary multiplication table may as well be forgotten, but
this statement should not be construed as meaning that the problem

136
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stops here, because there is yet the task of summing partial products in
the formation of the product of two binary numbers.

Multiplicand (z) 1111
Multiplier (y) 1101
A 1111
Partial Products 12 1111
D 1111
Product 11000011

In the foregoing example of a binary multiplication, 1111 (decimal 15)
is multiplied by 1101 (decimal 13) to cbtain the product 11000011 (deci-
mal 195). The partial products are clearly zero or equal to the multipli-
cand, according to whether the corresponding multiplier digit is 0 or 1.
That the partial products are recorded in the proper columns (orders)
can readily be proved, but this fact should be apparent to anyone who
is at all familiar with multiplication procedure. The customary way to
sum the partial products is to add the digits in the partial products,
one column at a time, starting with the lowest order. Strangely, except
to a person exceedingly skilled in the handling of binary numbers, this
operation is more difficult in the binary system than in the decimal
system, in spite of otherwise simple nature of the binary multiplication
process. The reason is, again, in the “carries.” When summing the
partial produets in a decimal system multiplication, the carry from one
column to the next seldom exceeds ten except when both the multiplicand
and multiplier are very large numbers. Even when the decimal carry
does exceed ten, it is not difficult to handle. In binary multiplication,
carries of 10 (decimal 2) and much greater are commonly encountered,
even though the multiplicand and multiplier are of moderate size. The
handling of multiple-order carries, although elementary in prineciple, is an
awkward process to execute mentally and is difficult to perform without
error. The problem is encountered in the example which was given, and
four-digit binary numbers are certainly not very large since they corre-
spond to scarcely more than one decimal digit. The difficulty may be
easily overcome by adding only one partial product at a time in the for-
mation of the product, although the recording of more intermediate sums
would be required. In the mechanization of multiplication it is almost
universal practice to handle the partial products one at a time, although
probably the reasons for doing so are slightly different.
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“Simultaneous” Multiplier. The term “simultaneous multiplier” is in- .
tended to mean the type of multiplication device to which steady-state
signals representing the multiplicand and multiplier are simultaneously
applied to the input lines; and, after the transients in the device have
disappeared, signals representing the product appear on the output lines.
The product representation will remain as long as the input signals are
maintained.

A straightforward way to go about designing a simultaneous multi-
plier is to use half adders and full adders in parallel arrangements of
the types described previously. For example, partial products 4 and
B in the previous example of a binary multiplication may be added
together in one parallel binary adder; partial products C and D may
be added in a second parallel adder; and these two sums may then be
combined in a third parallel adder to form the product. The input sig-
nals to the first two adders must represent either zero or the multiplicand
and must be under the control of the multiplier digits. This control
function may be obtained through the use of a series of “and” switches,
each with two input lines. If a signal representing a multiplier digit
is applied to one input line on each of a set of these “and” switches, and
if signals representing the multiplicand are applied to the other input
lines, the multiplicand will or will not pass according to whether the
multiplier digit is 1 or 0, respectively. The resulting multiplier arrange-
ment is shown in Fig. 5-1.

The reasons for the various half adders and full adders (or no adder
at all for the formation of P;) in Fig. 5-1 are not exactly obvious, but
it is not difficult to determine their functions from an examination of
the positioning of the partial products in a multiplication. The “or”
switch which is used in the formation of Ps deserves special mention. It
might be expected that a half adder should be in this position with the
carry output representing a ninth digit in the product. A multiplication
of 1111 by 1111 proves that the largest possible product of two four-
binary digit numbers contains only eight digits; further, it may be
shown that, in general, the maximum number of digits in a product is
equal to the sum of the numbers of digits in the factors regardless of
the radix of the system in use. Therefore, it must be impossible that
signals would appear simultaneously on both input lines of a half adder
in the position which would yield Ps and P, in this case. Since the
carry from this position will always be nonexistent, a simple “or” switch
may be used. :

To determine the speed of multiplication it is necessary to know the
number of half adders, full adders, and switching circuits through which
the input signals must pass in reaching the output lines. From Fig. 5-1
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it can be seen that, if Y;, X5, Y», and X; are all 1’s, a carry will occur
in the lowest-order half adder, and that this carry could conceivably be
propagated through any one of four different paths to the Pg output line.
However, when all possible combinations of numbers for the multipli-
cand and multiplier are considered, it is found in every case where Ps
is 1 that the signal arrived there through a less distant path. No simple
way is known for determining the maximum length path for the general
case of a multiplier designed to handle factors with an arbitrary num-
ber of digits; but, if the “maximum conceivable” path is used in deter-
mining multiplication time, the determination is certain to be equal to,
or on the conservative side of, the actual time required for all possible
combinations of factors in the multiplication. Note, in particular, that
the maximum conceivable path is shorter than the sum of the path
lengths of any two rows of half adder and full adder units.

A multitude of variations in the simultaneous multiplier are possible.
In the four-digit example which was given, partial product C could have
been added to the sum of A and B with partial product D added to the
sum of the three, or the sum of A and D could have been added to the
sum of B and C. Further variations may be obtained by scrambling
the digits in any column of digits in the partial products. Additional
variations are possible through adding the digits column by column with
half adders and full adders and generating the necessary multiple-order
carries with appropriate circuits, although this design procedure rapidly
becomes more complex as the number of digits is increased in the factors
to be multiplied.

The very large amount of equipment necessary to assemble a simul-
taneous multiplier which will handle numbers of useful size (say, 16 bi-
nary digits or larger) is certainly a detracting feature. On the other
hand, the simultaneous multiplier has the distinction of being the fastest
multiplier known and is therefore worth considering in applications
where speed is of extreme importance. In addition, there is always the
possibility that adder and switching components will be developed,
whereby the use of very large numbers of them will be more practical
and economical than at present.

Multiplication by Accumulation. Probably the most frequently used
method of binary multiplication is by accumulation, which is the re-
peated addition of the multiplicand into the appropriate orders of an
accumulator according to the digits of the multiplier. The accumulator
for this application may be a parallel accumulator of one of the types
described previously, or it may be either a parallel or serial adding unit
with a storage register to store the accumulated sum of the partial
products. When accumulating the partial products, a complication is
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encountered which was not encountered in the accumulation of a series
of numbers in an ordinary addition problem. The complication arises
from the fact that the number representing each partial product is the
same (the multiplicand) but that it must be shifted relative to the accu-
mulated sum for each addition. The shifting may be applied to either
the partial product or the accumulated sum. Although the mathematical
principles are substantially the same whether a parallel or a serial accu-
mulator is employed, the means for performing the shifting function are
quite different in the two cases, and therefore the two modes of operation
will be discussed separately.

Parallel Operation. If with parallel operation it is desired to shift
the multiplicand for entry into the proper orders of the accumulator, a
functional arrangement as shown in Fig. 5-2 is necessary. In Fig. 5-
2(a), lines A, B, C, and D are control lines to which signals are applied
according to whether partial produet A, B, C, or D in the previous ex-
ample is being entered into the accumulator. The seven output lines
from the parallel shifting arrangement are applied to the lowest seven
orders of accumulator. If the digit in the eighth order of the product
is to be a 1, as it may when two four-digit binary numbers are multi-
plied, the 1 will arrive in the eighth order as a carry from the seventh
order in every case.

From the nature of the shifting arrangement as shown in Fig. 5-2(a),
it can be seen that the amount of switching circuitry which is required
is dependent upon the number of digits in both the multiplicand and the
multiplier. More specifically, the number of “and” switches is equal
to the product of the numbers of digits in the multiplicand and multi-
plier, and the number of input lines to the “or” switches is approximately
equal to this same product.

An alternative shifting network is given in Fig. 5-2(b). Here, control
lines Ao and By are operative when no shift is desired. For a shift of
one order to the left, a control signal is applied to 4; instead of 4o, and
for a shift of two orders a control signal is applied to B, instead of B,.
Of course, a shift of three orders may be obtained by combining the one-
order and two-order shifts. When this scheme of shifting is expanded
to handle larger numbers and shifts of four orders, eight orders, and so
on, it turns out that somewhat less equipment is required than for the
arrangement given in Fig. 5-2(a), although the fact that the input sig-
nals have to pass through a succession of “and” and “or” switches may
be a disadvantage.

If the shifting is done in the accumulator instead of the input lines
to the accumulator, two advantages may be gained. One advantage is
in the amount of equipment required for adding, and the other is in the
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amount of equipment required for shifting. To understand how these
advantages may be realized it is necessary to examine the multiplication
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Fic. 5-2. Functional arrangement for parallel shifting.

process which utilizes the shifting of the accumulated sum. In Fig.
5-3 a nine-order accumulator is represented; and the multiplicand,
X XXX, is shown as being entered into the fifth to eighth orders,
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inclusive. The counter or storage device in each order of the accumu-
lator is constructed with the ability to transfer (shift) the digit which
it is storing to the counter or storage device in the next lower order and
at the same time accept the digit which was being stored in the next
higher order. With this arrangement, the first step in the multiplication
process is to enter the multiplicand or not, according to whether the
lowest-order digit of the multiplier is 1 or 0. The digit in each order
of the aceumulator is then shifted to the next lower order. The multipli-
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cana 1is again eniered Or noy, but under the control Ul the second multi-

plier digit, and a second shift to lower orders in the accumulator is made.
This process is repeated for each digit of the multiplier, and, with an
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Fic. 5-3. Multiplication through the use of a shifting accumulator.

accumulator of the size shown in Fig. 5-3, the multiplier may have a
maximum of four digits. An important feature of this arrangement is
that the orders numbered one to four in the accumulator need not per-
form an accumulation function at all. After entry of the first partial
product, the lowest-order digit of the final product is determined and
will not be altered by subsequent additions. After entry of the second
partial produect, the second digit in the final product is determined; and
this situation continues for as many digits as there are digits in the
multiplier. The lowest four orders in the accumulator therefore need
not be capable of performing any arithmetic operation other than shift-
ing, and the number of actual accumulating orders is equal to the number
of the digits in the multiplicand plus one additional order (the ninth
in the figure) to accept and hold temporarily the carries from the eighth
order. This number of accumulating orders is less than the number
required when shifting the multiplicand, where the required number of
accumulating orders was equal to the sum of the number of digits in
the multiplier and multiplicand.

A comparison of the amount of equipment required for shifting the
multiplicand by the method shown in Fig. 5-2 with the amount required
for shifting the accumulated sum is difficult to make because the means
for shifting are not the same in the two cases. One factor to be con-
sidered in making the comparison is that the number of digits to be
shifted when shifting the accumulated sum is equal to the sum of the
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numbers of digits in the multiplicand and multiplier, and the amount
of equipment needed to perform the shifting is proportional to the num-
ber of digits to be shifted. It follows that, for large multiplicands and
multipliers, less equipment for shifting is required when shifting the
accumulated sum than when shifting the multiplicand by the method
shown in Fig. 5-2 because with that method the amount of equipment
was approximately proportional to the product of the numbers of digits
in the multiplicand and multiplier.

An important feature of the shifting accumulator, as shown in Fig.
5-3, is the possibility of storing the multiplier in the nonaccumulating
orders on the right-hand end of the accumulator. Note that the number
of the nonaccumulating orders had, for other reasons, determined the
maximum permissible number of digits in the multiplier. The multiplier,
when stored in these orders, is then shifted to the right each time the
accumulated sum of the partial products is shifted. With this scheme
the multiplicand is entered into the accumulator, or not entered, accord-
ing to the multiplier digit which appears in the lowest (first) order of
the accumulator. After each shift, the multiplier digit which was in
the lowest order is lost, but no harm is done because it no longer has a
bearing on the final product. The details of the multiplication process
can be understood more clearly through an examination of the following
example, which shows the contents of the accumulator after each step
in the multiplication of 1111 by 1101. The digits of the multiplier are
distinguished by underlining:

Initial Setting 00000 1101
Add 1111 01111 1101
Shift 00111 1110
Add Zero 001111110
Shift 00011 1111
Add 1111 10010 1111
Shift 01001 0111
Add 1111 11000 0111
Shift (Final Product) 0 1100 0011

Shifting Registers. The shifting accumulator which was used in the
above method of multiplication deserves somewhat more attention. In-
stead of describing shifting accumulators in detail, some fundamentals
will be given for the design of a shifting register for any purpose, and
an adaptation of the fundamentals to an accumulator will be fairly
straightforward except for one or two difficulties, which will be explained.

Probably the simplest functional arrangement for a shifting register
is shown in Fig. 5-4. Each binary storage device has two input and
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two output lines. A signal arriving on the top input line causes the
device to change to the state representing 0 if it was not already in
that state, and when the device is in the 0 state a steady signal will
appear on the top output line. The bottom input and output lines func-
tion similarly for the state representing 1. When it is desired to shift
the digits in each storage device to the next storage device on the right,
a pulse-type signal is applied to one input of each “and” switch with
the result that, for each storage device, a signal representing its state
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Fre. 5-4. Shifting register.

will be sent to the next storage device on the right and will cause it to
store the indicated digit.

A difficulty which may be encountered with the arrangement shown
in Fig. 5-4 is that one storage device may respond to the signal coming
from the left before a satisfactory signal is sent to the right. The diffi-
culty may be overcome by inserting devices to delay the signals in either
the input lines or output lines of the storage devices. In the figure they
are shown in the input lines. With this arrangement the signals to be
sent from one storage device to the next may be generated, and the ini-
tiating pulse may be terminated before the signals to any given storage
device arrive from the device on the left.

An arrangement which can more readily be made reliable in its action,
but which requires more components, is shown in Fig. 5-5. In this figure
only the top row of storage devices are in the main shifting register;
the storage units in the bottom row serve merely for temporary inter-
mediate storage. The shifting register operates through the application
of pulses successively on control lines 1, 2, 3, and 4. The pulse on con-
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trol line 1 sets all the intermediate storage devices in the 0 state (“clears”
them). The pulse on line 2 causes any 1’s stored in the main shifting
register to be stored in the corresponding intermediate storage units also.
The pulse on line 3 then clears the main shifting register. Finally, a
pulse on line 4 causes the 1’s in the intermediate storage devices to be
returned to the main shifting register with each digit one position to
the right of its original position. With this method of shifting, no delay
devices are needed to secure reliable operation.
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Fi6. 5-5. Shifting register with intermediate storage.

An important variation in the shifting register shown in Fig. 5-5 may
be obtained through the use of “and” circuits in both input lines of
each storage device and appropriate connections from the 0 output lines.
The 1 and 3 control lines, which are used for clearing, may be eliminated,
and, in effect, the 0’s as well as the 1’s are transferred and shifted.

A quite different approach to the problem of designing a shifting regis-
ter may be made through the use of what might be called “dynamic”
storage devices in place of the “static” storage devices used in all pre-
viously described schemes. A functional diagram of one arrangement
for a dynamic storage device is shown in Fig. 5-6. Binary storage is
effected by the existence or nonexistence of a pulse circulating in the
loop through the delay device. A continuous series of pulses with a
uniform frequency is applied to one of the input lines of the “and” eir-
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cuit, as shown. If a pulse is not already circulating in the dynamic
storage device, no pulses will be returned through the delay device to
a second input line to the “and” switch, with the result that no pulses
will pass the “and” circuit into the dynamic storage device. To initiate a
circulating pulse, a single pulse in proper phase relative to the continu-
ous series of pulses may be applied to the “or” switeh at the point
marked “1 input.” After a pulse is once entered, it will be returned to
the “and” switch with the amount of delay necessary to make it coin-
cide with the next pulse in the continuous series of pulses. Since a
steady signal is normally applied to the third input of the “and” switch
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F1a. 5-6. “Dynamic” storage device.

from the inverter, the pulse will be returned to the loop and will con-
tinue to circulate. The amplifier, indicated by a block labeled “AMP.,”
is necessary to maintain the amplitude of the circulating pulse, although
with some types of components this function may be incorporated into
one of the other functions in the loop. If a pulse is applied to the line
marked “0 input,” the signal from the inverter to the “and” switch will
be removed temporarily and will cause the circulation of the pulse to
cease. The dynamic storage device may be considered to be storing
a 1 or a 0 according to whether or not a pulse is circulating, and it may
be transferred from one state to the other by a pulse on the appropriate
input line.

A shifting register employing dynamic storage devices is shown in
Fig. 5-7. The input and output lines are omitted for simplicity in illus-
trating the shifting function. In the figure, two control lines marked
“store” and “shift” are indicated. While a number is being stored in
the register without shifting, a steady signal is maintained on the “store”
line and no signal is applied to the “shift” line. A pulse in any given
storage device will then be allowed to return to the device through the
switching circuits, and it will continue to be circulated, that is, stored.
To shift the digits, the signal on the “store” line is removed temporarily
and a signal is applied to the “shift” line, which is connected to one
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input of an “and” switch in each storage device. The pulse, if any, cir-
culating in a storage device is applied to the other input line of the “and”
circuit corresponding to the storage device to which the digit is to be
shifted. Therefore, if the “shift” signal is held operative for a length
of time equivalent to the time of one pulse and is properly phased rela-
tive to the primary source of input pulses, the digit in each delay device
will be sent to the next device, which is the one to the right in Fig. 5-7,
in the shifting register. After the shift is executed, the “store” signal
is reapplied.
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Fie. 5-7. Shifting register with dynamic storage devices.

High-speed Asynchronous Multiplier. The principle of the synchro-
nous adder described in the previous chapter can be applied to a multi-
plication unit directly; but, if certain modifications are jncorporated,
the speed of multiplication can be increased substantially. The principal
modification is to generate each individual sum digit as a 0 or a 1 and
send it directly to the accumulator position to the right, rather than
perform this shifting in a separate operation. The functional block dia-
gram is given in Fig. 5-8.

The set of “and” switches and the “or” switch located in the diagram
between the accumulator and addend registers are for the purpose of
forming the sum of the digits held in the registers. A steady-state sig-
nal appears on one of the three lines marked 2, 1, and 0 in accordance
with the value of the digits to be added. When adding the contents of
the addend register to the accumulator, as is desired when a multiplier
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digit is 1, a pulse-type signal is applied to the no-carry (N) input of
the lowest order.

This pulse then progresses through all orders and follows paths de-
termined by the values of the various digits involved. In particular,
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Fra. 5-8. High-speed asynchronous multiplier.
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if a carry is to be sent from a given order to the next higher order, the
pulse will appear on the carry output line; otherwise, it will appear on
the no-carry output line. The C or N input is combined with the sum
in a set of six “and” switches so that the sum including the carry, if any,
from the next lower order appears as a pulse on one of six lines indicated
in the figure by the numbers, 3, 2, 2, 1, 1, and 0. Clearly, if the sum
including carry is 8 or 2, a carry should be sent to the next higher order,
but if it is 1 or 0, a no-carry signal should be transmitted. This func-
tion is accomplished through the ‘“or” switches on the left-hand part of
the figure.

The digit to be stored in the accumulator register is 1 if the sum in-
cluding carry is 3 or 1, but is 0 if the sum is 2 or 0. “QOr” switches are
used to combine the signals from the six lines and transmit a O-signal
or l-signal to the next lower order of the accumulater register. The
addition operation therefore “ripples” through the system. Actually,
small amounts of delay are needed on either the input or output lines
of the triggers in the accumulator register, but the delay in the action
of the triggers themselves may be sufficient.

When the multiplier digit is 0, it is necessary to shift the number in
the accumulator without adding the number in the addend register.
With the arrangement in Fig. 5-8, the shifting is accomplished by apply-
ing a pulse on the input line marked “shift signal” of the lowest order.
The outputs of the “and” switches are used not only for the signal to
be sent to the next lower order trigger, but also they are combined in
an “or” switch to form the shift signal for the next higher order. The
effect is a sort of “ripple shift.”

The completion of an operation, which may be either an addition
with shift or a shift only, can be sensed by combining the output signals
of the highest order in an “or” switch. This signal may then be used
to sense the next multiplier digit and initiate the next operation. In
some applications it is not necessary to wait for the completion of one
operation before starting the next one. It is possible to have two or
more signals rippling along the accumulator at the same time, one behind
another. In this case, the limiting factor is the resolution time of the
triggers; a second operation may be started as soon as the transients
from the first operation have died out in the lowest order.

Serial Operation. The shifting function required for multiplication
is, in principle, much more simple when serial operation is employed.
To shift the digits to higher orders, it is necessary merely to delay the
presentation of the digits by a number of pulse periods equal to the
number of orders desired in the shift. A shift to lower orders is accom-
plished by presenting the digits at an earlier time than when not shift-
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ing. While a pulse delaying device may be readily realized physically,
a pulse “advancing” device is an impossibility, and it is necessary to
consider the nature of number storage with serial operation to under-
stand thoroughly the shifting operation.

With serial operation, the digits of a number may be stored statically
and sensed one at a time when the number is to be sent from one place
in the ecomputer to another. In this case the number cannot be truly
shifted forward in time, although it is possible to sense, for example, the
ceeding digits will appear in the transmission line one digit period earlier
than otherwise. A second method of storage is through the use of a
delay device in which all the digits of a number, or perhaps even all the
digits of several numbers, are continuously circulated. With a delay
device, the digits of a number are presented one after the other (serially)
over and over again, and time may be defined, crudely at least, as start-
ing at zero each time the first digit of a number is presented. Time
then increases continuously until the first digit has been recirculated
in the delay line and is presented again, when time may be assumed to
return to zero. With delay storage of this type, the series of digits com-
prising a number may be delayed or advanced in time by increasing or
decreasing, respectively, the amount of delay in the circulation path.

Before proceeding to a description of multiplication, it will be pointed
out that the delay-type storage devices mentioned in the preceding para-
graph can be any one of at least three different forms. Static storage
may be used as a delay device by continuously sensing the digits one
after another and automatically returning to the first in the series after
the last has been sensed. Storage devices employing cathode-ray tubes,
in which the digits are recorded and sensed on the tube face by means of
an electron beam, are well adapted to this type of operation. Most static
storage devices require elaborate switching systems to provide access to
the individual elements, but the electron beam in a cathode-ray tube is
easily deflected from one position to another. A second type of delay
storage involves pulses traveling along a “delay line.” Practical elec-
trical delay lines with sufficient delay to store a reasonable number of
digits are not yet available, although mechanical vibrations generated
and detected by means of piezoelectric crystals and transmitted through
various substances, particularly mercury, have been employed in suc-
cessful and useful storage systems of the delay line type. In a third
variation in delay storage, the digits are recorded by some means or
other and then physically transported to another location, where the
recording is sensed, and the time of transportation produces the delay.
In this category are “magnetic drums,” which are continuously rotating
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cylindrical elements with a surface coating of magnetic material on
which digits may be recorded by the state of magnetization of small
areas in the surface. The state of magnetization can be established by
applying an electrical pulse to the coil of a “magnetic head” held near
the surface of the drum, and the sensing is accomplished through pulses
induced in the coil of the same or a different head as the magnetized area
passes in close proximity to it.

With all three of the delay-type storage devices, the digit signals ob-
tained from the sensing mechanism are seldom of the proper wave form
and timing to be returned to the delay device directly. To avoid de-
generation of the stored signals, it is necessary to send properly shaped
and timed signals to the delay-type storage device each time the number
is circulated. Therefore, instead of returning the signals directly, the
signals detected by the sensing mechanism are used to control the entry
of suitable pulses from a separate pulse generating device.

When all the details required for serial multiplication are included,
the resulting arrangement can turn out to be relatively complex in spite
of the functional simplicity of the components. The number of varia-
tions in funetional arrangements which may be used to form a multiplier
is, as might be expected, very great. No attempt will be made to de-
seribe all of them, but one multiplication ecircuit will be explained in
an effort to illustrate the nature of the problems involved and to indicate
possible means for solution.

A functional arrangement for a multiplier operating on numbers trans-
mitted in serial form is shown in Fig. 5-9. Four delay-type storage de-
vices are provided, each with » time units of delay, where a time unit
is the amount of time between successive digits in the serial representa-
tion. Each delay unit is therefore eapable of storing a number composed
of n digits. Initially, one of the storage devices is assumed to be storing
the multiplier and another is storing the multiplicand. The one-digit
delay shown in the circulation loop of the multiplicand storage is not
necessary for storage, but it will be used for multiplication. The other
two storage devices are initially cleared of digits; at the end of the
multiplication, one will hold the n highest digits of the product and the
other will hold the n lowest digits of the produect. It is, of course, not
absolutely necessary that the multiplier and multiplicand each be com-
posed of the same number, n, of digits, but it is the usual practice, with
only a few exceptions, to use in a computer only numbers with a given
number of digits. The operation of the multiplier will be explained with
reference to the timing chart at the bottom of Fig. 5-9, which shows the
sequence of appearance of the digits in the various delay units with the
assumption that n = 4.
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At the beginning of the multiplication operation, which is at time T,
the multiplicand and multiplier are assumed to be circulating in phase
(digits of corresponding orders appearing at the same time) in their
respective delay units. To start the multiplication, the one-digit delay
is inserted in the multiplicand delay loop and the input line to the
adder is closed at the point marked with an X in order to allow entry
of the multiplicand under control of the multiplier digits. Timed con-
trol signals, T, are applied to the “and” switches connected to the input
lines of the multiplier digit-storage device. From the timing chart and
the connections of the switches it can be seen that the multiplier digit-
storage device will be set to 0 or 1, depending upon whether the first
(lowest-order) digit of the multiplier is a 0 or 1, respectively. If the
first multiplier digit is a 1, a signal will be applied to one input of an
“and” switch which then allows the multiplicand to pass to the adder.
Because of the one-digit delay which has been inserted in the multipli-
cand storage loop, the first digit of the multiplicand appears at time T';.
The first partial product then enters the storage device which will eventu-
ally store the high-order digits of the final product.

At time T, the first partial product begins to emerge from the delay
device into which it was sent, and at time T’ the timed control signal,
T, performs two functions. For one thing, the first digit of the partial
product is the first digit of the final product and it therefore need not
be returned to the adder. Pulse T is applied to an “and” switch which
channels this first digit into the delay unit intended for storage of the
low-order digits of the product. Also, at T, the second digit of the
multiplier appears, and T is used to set the multiplier digit-storage
device to correspond to it. The second entry of the multiplicand is then
under control of the second digit of the multiplier. At time T, the first
digit of the multiplicand appears at the adder to be added to the second
digit of the first partial product as it should be. At time T, the first
digit of the final product emerges from the delay unit storing the lower-
order digits, and this digit is immediately entered again into this delay
unit for storage. The second digit, which has been determined, of the
final product emerges from the high-order digit-storage device and is
switched to the low-order digit-storage device at T3, Note that at
time, T, the last digit of the first partial product is being added to the
third digit of the multiplicand. This addition may produce a carry
which will be added to the fourth digit of the multiplicand at T, and
this addition may produce another carry, which will be returned through
the adder at Ty. However, this last carry causes no difficulties because
no multiplicand digits appear at this time and because the partial prod-
uct digit which appears at this time is not being sent to the adder.
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The process continues in similar fashion until T, at which time all
desired entries of the multiplicand have been made and the eircuit from
the multiplicand storage device to the adder is opened. After the T
pulse at Ty has been used to transfer the fourth product digit from the
high-order storage device to the low-order storage device, the multiplica-
tion is complete.

Many of the details have been omitted from the multiplication ar-
rangement, especially the details concerned with the starting and stop-
ping of the multiplication and the details concerned with entry of the
factors to the multiplier and the withdrawal of the product from the
multiplier. A useful multiplier must, of course, include provisions for
these details, but a discussion of them would add litile to an understand-
ing of the multiplication process.

A Serial-parallel Multiplication Arrangement. A practical and very
fast arrangement for multiplication where one factor is presented

LN N J X3X2XI
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Fie. 5-10. Serial-parallel multiplication arrangement.

serially and the other in parallel is shown in Fig. 5-10. One factor,
Y.Y3Y,Y,, is applied in parallel with one signal connected to one input
of each of the “and” switches which, in turn, are connected to the full
adders in the multiplier. The other factor, - -+ X;X,X;, is applied seri-
ally to the other input of each “and” switch. Either factor may be visu-
alized with some justification as being the multiplier, but for purposes
of explanation it will be assumed that the X factor is the multiplier
and that the Y factor is the multiplicand. The “and” switches act as
“gates” which allow the digits of ¥ to pass when a digit of X is 1. If
the first digit of X is 1, the multiplicand is sent in parallel to the adders
and will constitute the first partial product. The digits pass through
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the adders and the lowest-order digit appears on the output line as the
first digit of the product. The other digits encounter delay units, each
of which delays the signal an amount of time equal to the time between
the digits in the multiplier. When the second digit of the multiplier
appears, each digit of the multiplicand will have passed through one
delay unit and will be appearing at one of the input lines of the next
adder to the right. Then, if the second multiplier digit is a 1, the multi-
plicand will be entered and added to the proper orders of the first par-
tial product. The second digit of the product will now appear on the
output line. The third entry of the multiplicand is the same as the
second except that the carries from the second addition will be entered
into the adders along with the third entry of the multiplicand. This
process is repeated for each digit of the multiplier, and note that the
multiplier may have as many digits as desired. The amount of equip-
ment in the multiplication unit is determined by the number of digits
in the multiplicand and is independent of the number of digits in the
multiplier.

After the last entry of the multiplicand under control of the multiplier,
there may still be some digits in the multiplication unit which must be
“run out” to complete the formation of the product. The time required
to execute a multiplication by this method is therefore equal to the time
required to transmit the product in serial fashion, where the time be-
tween digits in the product is the same as the time between digits in
the serial transmission of the multiplier. As before, the product contains,
in general, a number of digits equal to the sum of the numbers of digits
in the multiplicand and multiplier.

During the “run out” part of the process as well as during the addition
of the multiplicand, if the addition of a carry digit generates another
carry digit, this second carry digit will be returned through the delay
device to the same adder to be added to the next succeeding digits ap-
pearing at the adder. The next succeeding digits will correspond to
the next higher order, as is desired for the proper propagation of carries
through successively higher orders.

It is instructive to work out an explanation of the serial-parallel mul-
tiplication arrangement with the assumption that X is the multiplicand
and Y is the multiplier.

The amount of equipment required for the serial-parallel multiplier
may be reduced by using the configuration shown in Fig. 5-11. One
factor, which will be assumed here to be the multiplicand, M, is applied
serially on the line indicated. The multiplicand is doubled by passing
it through a one-digit delay device, and the tripled multiplicand is ob-
tained by adding the multiplicand to its doubled value. The lines on
which the doubled and tripled values appear are indicated by 2M and
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3M, respectively. The digits of the multiplier, B, are used in groups
of two with B, and B, used to select the desired multiple to be added
to the first adder; B4 and Rs provide for the selection of the multiple
to be applied to the second full adder, and so on. Since the quantities
applied to the various adders are separated by two binary orders of the
multiplier, a two-digit delay is inserted between successive adders.

8.

M M
1D o
—
k 4
1D F
] C S
[ 3M
R32 Rl6R32 RI6R32 16 8R4 RB R4 RB R4 RZ Rl RZ Rl R2 Rl
' vhodel deb beb ded bvd 4l
A A A A A A A A A

BEEE R BEEX

2p| ol | F | lzo| fhol]| F | |eo] [1D| | F
T i T

F1e. 5-11. Serial-parallel multiplication arrangement requiring less equipment.

—

O

PRODUCT

The speed of multiplication with the arrangement shown in Fig. 5-11
is exactly the same as for the one shown in Fig. 5-10. The amount of
saving in equipment is dependent upon the number of digits in the multi-
plier. For only four binary digits in the multiplier, there is practically
no saving at all in equipment; but for multipliers of many digits, the
saving is approximately equivalent to trading each alternate full adder
for a nine-diode switching circuit. Note that the full adder used for
generating 3M is the only one required in this part of the circuit, regard-
less of the number of digits involved; and the number of adders for ac-
cumulating the partial products is less than half the number of multi-
plier digits.
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The above idea can be extended to the handling of the multiplier
digits in groups of three (or more) and the generating of multiples up
to the 7th of the multiplicand. However, the saving in equipment is
questionable even when a very large number of digits is involved, be-
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Fic. 5-12. Serial-parallel multiplication with digits of both factors grouped by 3’s.

cause the switching circuits necessary to select the desired multiples
become substantially more complex.

By handling the binary digits of both the multiplier and multiplicand
in groups of 2, 3, 4, or more, the serial-parallel multiplication method
can be made even faster, although the amount of equipment required
becomes considerable. The over-all functional block diagram for the
case of grouping by 3’s is given in Fig. 5-12, where the blocks labeled
“product generator” and “3F” are shown in more detail in Fig. 5-13(a)
and (b), respectively.

The multiplicand, M, is entered into the product generator three binary
digits at a time on three parallel wires. The doubled multiplicand, 2M,
is generated by shifting each digit to the next higher order with the
highest-order digit of the three returned through a one-digit delay de-
vice to become the lowest-order digit of the next group of three. The
tripled multiplicand is formed by adding M and 2M in a set of three
parallel binary adders with the carry from the highest order returned
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through a one-digit delay device to be added to the next group of three
digits. Higher multiples up to the seventh are generated in an analo-
gous manner, as indicated in Fig. 5-13(a). Note that, if there are any
delays in forming the sums in the adders, compensating delays should
be installed in the appropriate lines to cause all multiples to appear
on the output wires at the same time.

The “product selectors” in Fig. 5-12 are essentially 3-pole, 8-throw
switches and may be assembled with “and” and “or” switches in a rea-
sonably straightforward fashion along the lines indicated for the com-
ponents performing the same function in Fig. 5-11. The assembling of
the partial products also proceeds in an analogous manner except that
three full adders in parallel must be used to add each pair of numbers.
Since there is only one digit time separating each group of three digits,
one-digit delay devices are inserted in the paths between the groups of
adders. Although multiplication speeds may be increased by a factor
equal to the number of digits in each group (3 in this case), the sub-
stantial amount of equipment required for the product generator and
the product selectors causes this method of multiplication to be of
interest only in those applications where speed is of extreme importance.

Other Methods of Multiplication. All four of the binary multiplica-
tion methods which have been described employed, essentially, the addi-
tion of one factor called the multiplicand under the control of the digits
of the other factor called the multiplier. It turns out to be very difficult
to devise any multiplication methods substantially different from these.
One other method worth mentioning involves grouping the multiplier
digits into groups of, for example, three digits each. Each group may
then be considered to represent a single octonary digit. Then, in multi-
plication the multiplicand would be added a number of times equal to
the number represented by the octonary digit and a shift of three binary
orders would be made before the entry of the multiplicand under the
control of the next octonary digit in the multiplier. Since, on the aver-
age, more additions are required for multiplication by this method, it
does not appear attractive unless components are used whereby shifts of
three orders are much more easily executed than three shifts of one
order.

If the factors to be multiplied are larger than the largest factors for
which the multiplication unit was intended, it may still be possible to
obtain the product by breaking the factors into two or more parts, per-
forming several individual multiplications, and then adding the indi-
vidual products with due regard to corresponding orders. However, this
process, sometimes known as “expanded accuracy” multiplication, is



Binary Multiplication and Division 161

more a matter of “programming” a problem than a matter of multiplica-
tion.

Multiplication Involving Negative Factors. If one or both of the
factors entering into a multiplication are negative, the multiplication
may be carried out in the same manner as described previously, provided
the representations of the numbers are in true and not complement form.
It is only necessary to compare the signs of the two factors with the
sign of the product being positive or negative according to whether the
signs are alike or different, respectively. A functional arrangement
which is the same as is used for generating the sum in a half adder may
be used for sign comparison. When the negative factors appear in 1’s
complement form, the simplicity of conversion to true form causes the
same multiplication procedure to be attractive, although it must be
remembered that the signs of the factors must be known prior to the
start of the multiplication process, which may be of concern in serial
computers.

When negative numbers are represented by means of the 2’s comple-
ment notation, the complexities in converting to true representation may
be great enough to warrant consideration of multiplication procedures
which deal directly with the complement forms. Consider the multipli-
cation of two factors, X and Y, where Y is negative and is presented as
2" — Y, with n being the number of orders in Y. The fact that a quantity
is negative will be indicated by a 1 in the sign position of the number.
The product of the two factors will be negative and should be represented
as 22® — XY if both factors are composed of 2 orders, as will be assumed.
But the product of X and 2" — Y is X2" — XVY; therefore a correction of
(2" — X)2", which is the 2’s complement of X multiplied by 2", should
be added to the product obtained by the usual multiplication method to
obtain the correct result. As an example, the multiplication of (0) 1111
(decimal +15) by (1) 0011 (decimal —13) is shown.

©0) 1111 X
(1) 0011 2" — Y
1111
1111
0000
0000

00101101
0001 Add (2" — X)2*

(1) 00111101 22" — XY (decimal —195)
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When X is negative and Y is positive, the result of the multiplication,
if followed in the usual manner, will be ¥2" — XY'; and the proper cor-
rection term would be (2" — Y)2". But in some multiplication arrange-
ments, as was explained in previous paragraphs, the multiplier digits are
discarded one at a time as they are used in the multiplication process. A
trick which may be used that effectually adds in the 1’s complement of ¥
when X is negative is the adding of the sign digit of X each time the mul-
tiplier digit is 0. In addition to generating the 1’s complement, this proc-
ess causes it to be multiplied by 2", as is desired, when added to the prod-
uct. Since the 2’s complement may be obtained by adding 1 to the 1’s
complement, it is then necessary simply to add a corrective 1 in the proper
order of the product. To illustrate the process, the multiplication of
(1) 0001 (decimal —15) by (0) 1101 (decimal +-13) is shown.

(1) 0001 2" —-X

(0) 1101 Y
0001
10000 ‘‘sign” of X
0001
0001
00101101
1 Corrective 1

(1) 00111101 22" — XY (decimal —195)
When both factors are negative, the multiplication will yield
@ — X)2"—-Y) =2 — X2" - V2" + XY
Because Y is negative, the correction term involving X should be
2" — 2" — X)|2" = X27
and because X is negative, the quantity [2” — (2" — Y)]2" = Y2" should
be added. When both corrective terms are added, the result is 2% | XY,
but the 1 in the 22" order may be ignored, and the product is, in effect,

+XYV, as desired. The following is a sample multiplication with both
factors negative.
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(1) 0001 2" — X
(1) 0011 2" — Y

10000  “‘sign” of X
106000 “sign’ of X

ii
1111 Add x2

1
1 Corrective 1
(0) 11000011 XY (decimal +195)

The multiplication of (1) 1011 (decimal —5) by (1) 1010 (decimal —6) is
shown as another example.

(1) 1011 2" — X
(1) 1010 2" — Y

10000 “‘sign” of X
1011
10000 “gign” of X
1011

10111110
0101 Add x2"

00001110
1 Corrective 1

(0) 00011110 XY (decimal -+30)

In each of the above examples the sign of the product was determined
from the fact that the product is negative when one, but not both, of
the factors is negative. It is possible, by including the signs of the fac-
tors in the corrective terms, to develop the sign of the product in a
9nth order of the accumulator, in which the product is being assembled,
although no important advantage in this step is apparent.

The above procedure for multiplication of negative factors works
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independently of the location of the binary point. Note, in particular,
that if pure fractions instead of integers had been assumed, n would
have been zero and the corrective terms could have been assumed to
be added directly without a multiplication by 2* because 2° = 1. There
would be no physical difference in the equipment required in the two
cases.

Another multiplication process which may be used when negative
numbers are represented in 2’s complement form involves the examina-
tion of the multiplier digit to the right (one lower order) of a given
multiplier digit in the determination of the step to be taken with regard
to the multiplicand. The process may be reduced to three simple rules.

1. If a given multiplier digit is 1 and the next lower-order multiplier
digit is 0, subtract the multiplicand.

2. If a given multiplier digit is 0 and the next lower-order multiplier
digit is 1, add the multiplicand.

3. If a given multiplier digit is the same as the next lower-order mul-
tiplier digit, add or subtract nothing,

In the process the sign digits of the numbers are operated upon ex-
actly the same as though they were the highest-order digits of the
numbers. As examples (0) 1111 (decimal +15) will be multiplied by
(0) 1101 (decimal +13) and (1) 0011 (decimal —13).

0) 1111
(0) 1101

000000000
Subtract 01111

111110001
Add 01111

000001111
Subtract 01111

111010011
0000

111010011
Add 01111

(0)11000011 (decimal 4-195)
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(0) 1111

(1) 0011

000000000

Subtract 01111

111110001
0000

111110001
Add 01111

000101101
0000

000101101
Subtract 01111

(1)00111101 (decimal —195)

The process yields the correct product with negative as well as positive
multiplicands. Also, the location of binary point is of no consequence.

Although both of the procedures which have been described for the
multiplication of negative numbers in 2’s complement form are reason-
ably simple and straightforward, the extra-circuit functions which must
be included to incorporate the procedures into a computing machine
may be considerable in number and complexity. The attractiveness of
the procedures is therefore not very great for most applications.

Binary Division. In either division or multiplication, three numbers
are involved, one of which is the produect of the other two. In multipli-
cation, the two factors to be multiplied are given, and the problem is
to find the product. In division, the product (now called the dividend)
and one of the factors (called the divisor) are given, and the problem is
to find the other factor (called the quotient). Because of this connec-
tion between the two operations, it seems natural to attempt to analyze
division through a comparison with multiplication, and one of the first
questions to be answered is whether the divisor should be compared with
the multiplier or the multiplicand. Even though either factor may be
used as the multiplier in multiplication, the divisor in division rather
definitely corresponds to the multiplicand and not the multiplier. To
perform division by a process which may be considered to be the reverse
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of multiplication, one factor should be repeatedly subtracted, with ap-
propriate shifts, from the dividend. Since the quotient is not yet known,
it cannot be subtracted, and therefore the role corresponding to the multi-
plicand must be assigned to the divisor. In spite of the many features
that division has in common with multiplication, there are some im-
portant problems which arise in division which were not encountered
in multiplication.

The problems encountered when incorporating the process of division
into a computer are of such magnitude that it is sometimes found de-
sirable to omit the division function from the arithmetic portion of a
computer, even though the computer in question may be a large general-
purpose one. However, the omission of division from the arithmetic por-
tion of a computer does not mean that the computer is incapable of per-
forming division. There are certain iterative formulas involving only
addition, subtraction, and multiplication which may be used to obtain
the reciprocal of a number, and the reciprocal of the divisor may be
multiplied by the dividend to effect division. Two such formulas are, in
binary notation,

br41 = bx(10 — xbg)
and
bry1 = bg[11(1 — 2bg) + (zbg)']

where z is the number for which the reciprocal is desired, and the bg are
successive approximations of the reciprocal, 1/z. The first of the two
equations is second order and the other is third order, which means that,
once a reasonable approximation to the reciprocal is obtained, the num-
ber of significant digits in the approximation is roughly doubled and
tripled, respectively, after each application of the iterative formula.
The initial approximation, by, must lie between 0 and 10/z; otherwise,
the series of the bx will not econverge. The details of the use of an itera-
tive formula to perform division belong more properly in a discussion
of the programming of problems to be solved on a computer, but the
formulas are mentioned to illustrate the practicality of eliminating a
dividing unit in a general-purpose computer. Other factors to be con-
sidered in judging the desirability of a dividing unit in a computer are
the relative frequency of the division operation in the problems to be
solved by the computer, required speed, and ease of programming di-
vision on the computer.

The Basic Principle of Binary Division. The obtaining of the quotient
in binary division is accomplished through successive subtractions of the
divisor from appropriate orders of the dividend. Each time the subtrac-
tion leaves a positive remainder, a 1 is added to the corresponding order
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of the quotient. Each time a negative remainder would result, steps
must be taken which will, in effect, nullify the subtraction and leave the
quotient unchanged. At least three important problems are encountered
when working out the details of the division process which have no
counterpart in multiplication. One of the problems is the determination
of the correct orders from which the divisor should be subtracted the first
time. The second problem is related to the first but it is usually treated
in a much different manner, and it involves the means for handling the
situation when the subtraction of the divisor produces a negative re-
mainder. The third problem is the determination of the disposition of the
remainder after the quotient has been obtained to the desired accuracy.
The description of the division process will proceed through a description
of these three problems.

The Problem of Starting the Division Process. Probably the most
elementary way to perform division is to “line up” the binary points of
the dividend and divisor. The quotient may then be obtained by count-
ing the number of times that the divisor may be subtracted before a nega-
tive remainder is obtained. Although it is simple, the process is time
consuming, and it is useful for obtaining only the integral and not the
fractional part of the quotient. It is generally more satisfactory to multi-
ply the divisor by a power of two by appropriate shifts and obtain the
highest order nonzero digit of the quotient on the first subtraction re-
gardless of the order of this first digit. At least this is what is done
when dividing by the pencil-and-paper method. But a computing ma-
chine does not usually have the ability to ascertain relative magnitudes
of numbers by “inspection,” as does a person; consequently, different
rules are usually used in a computer for determining the orders from
which the first subtraction should be made.

If an eight-digit dividend and a four-digit divisor are taken as an ex-
ample, it might be expected after a study of multiplication that the
proper orders from which the divisor should be subtracted to obtain the
first quotient digit would be the fourth to the seventh orders, inclusively,
from the lowest order. In those cases where the dividend and divisor are
numbers which could occur in a corresponding multiplication process
involving two four-digit factors, the fourth to the seventh orders would
be the proper ones. However, the numbers involved in the division need
not correspond to any four-by-four multiplication, and because of this
fact certain difficulties will be encountered for some combinations of
dividend and divisor when the fourth to seventh orders are chosen. For
example, when the dividend is any eight-digit number equal to or greater
than 11111000 (decimal 248), it will be possible to subtract the divisor
twice before reducing the remainder to a negative value even when the
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divisor is the largest possible four-digit number, namely, 1111 (decimal
15). Therefore, the first subtraction of the divisor from the fourth to
seventh order of the dividend will not necessarily yield the highest-order
digit of the quotient. The difficulty in the situation can be more acute
when the divisor is less than its maximum value, and particularly when
the higher orders of the divisor are 0’s, such as when the divisor is, for
example, 0011 (decimal 3). Because of this difficulty it is usually found
necessary to impose restrictions on the relative magnitudes of the di-
visor and dividend.

The restriction placed on the relative magnitudes of the dividend and
divisor may be stated in a number of ways. In continuance of the above
discussion, it is sufficient to say that the divisor must be large enough
relative to the dividend to cause a negative remainder when a second
subtraction from the fourth to seventh orders is made. When program-
ming a problem for solution on a eomputer, it is often difficult to predict
that the dividends and divisors in the various division operations will
fall within the desired limits. For this reason it is desirable to make a
test at the beginning of each division operation. A simple way to deter-
mine that the divisor is sufficiently large relative to the dividend is to
subtract it from the fifth to eighth orders, inclusively, of the dividend,
which is equivalent to subtracting it twice from fourth to seventh orders.
Then if the first subtraction produces a negative remainder, it will be
known that the divisor is sufficiently large (or the dividend sufficiently
small), and the division process may then proceed.

The locations of the binary points in the factors entering into the di-
vision process are of no real consequence, although it is, of course, neces-
sary to keep track of where the points are when programming a problem
for a computer. If the binary points are visualized as being to the left
of all significant digits as in a fractional computer, the requirement on
the relative magnitude of the dividend and divisor may be reduced to a
simple statement. It is then only necessary to state that the divisor
must be larger than the dividend, because if the divisor were equal to or
less than the dividend, the quotient would be equal to or greater than
unity, which is beyond the capacity of the machine.

Other arrangements for handling the initial steps of a division process
may be used for special situations, particularly when floating-point type
of computations are employed, but a detailed discussion of them would be
beyond present purposes.

The Problem of Correcting a Negative Remainder. It has already
been mentioned that, if the subtraction of the divisor produces a nega-
tive remainder, the quotient which is being built up should be unaltered
and steps should be taken which will nullify the subtraction. One
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straightforward way to nullify the subtraction is to add the divisor back
into the remainder each time a negative remainder occurs. To illustrate
the process more clearly, the steps involved in dividing 10001100 (decimal
140) by 1100 (decimal 14) are shown in the following example.

10001100
Subtract 1110
Check to prove that dividend
(—)10101100; and divisor have proper rela-
Add 1110 tive magnitude
18001100
Subtract 1110
0011100 1---)
Subtract 1110
(—)100100 10--
Add 1110
011100 +Quotient
Subtract 1110
00000 101-
Subtract 1110
(—)0010 1010}

Add 1110

0000 Final remainder

Note that when a subtraction leaves a positive remainder it is not neces-
sary to make a second subtraction from the same orders, because it is
known that no digit in the quotient can be greater than 1. Also, there
can be no “carries” in the quotient because each determination of a
quotient digit is final when the quotient digits are determined in this way.

Although it is straightforward, the above procedure for division can be
improved upon from the standpoint of the number of additions and sub-
tractions required to complete a division operation. Instead of correct-
ing a negative remainder by adding the divisor into the same orders
from which it was last subtracted, it may be shifted to the right one
position (which effectually divides it by two) and then added. Since in
the previous method of division the divisor was in each case shifted to
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the right and subtracted, it can be seen that the two procedures produce
the same result. In the previous method, the operation could be ex-
pressed as +D — 14D, where D is the divisor and in the present case the
operation is simply +%D. If, after adding %D, the remainder is still
negative, it is known that the next quotient digit is zero, and the divisor
is shifted another position to the right and added. The arithmetic steps
in a sample division by this process are shown below.

10001100

Subtract 1110 Check to prove that dividend

and divisor have proper rela-

(- )m tive magnitude

Add 1110
(+)00011100  1---]
Subtract 1110
(=)100100 10--
Add 1110 Quotient
(-+)000000 101-
Subtract 1110
(—)0010 1010}

A great number of details and fine points could be included in a discus-
sion of this method of division, but most of them can be obtained through
a study of the example. However, one detail which bears pointing out
involves the final remainder, which was not obtained in the above ex-
ample. To obtain the final remainder (0000 in this example), it is
necessary to add the divisor into the orders from which it was last sub-
tracted. Although such a step fits well into the previously described
method of division, it would be a special operation in this method of
division because the normal procedure is to shift right once before
adding. A further complication will be exposed if additional division
examples are worked out; namely, the final remainder must in some
cases be obtained by a subtraction instead of an addition. In many
applications the final remainder is of no consequence and is discarded,
and for these applications this division method is attractive because only
one addition or subtraction per quotient digit is required. But in appli-
cations where the final remainder is required, the corrective steps which .
must be taken at the conclusion of the division process cause substantial
complications in the design of a dividing unit.

A third method of handling the negative remainder problem follows the
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pencil-and-paper division process quite closely. There are several varia-
tions to the method, and the adaptability of the various variations de-
pends upon the type of computer components in use. With some types
of components, none of the variations appears useful. The method in-
volves a comparison of the divisor with the appropriate orders of the
dividend (or the remainder after one or more subtractions have been
performed) and executing the subtraction only when the comparison
indicates that the remainder will be positive. The comparison may be
made digit by digit in either ascending or descending order of signifi-
cance. When making the comparison with the digits appearing in ascend-
ing order of significance, a “high-low” storage device is set to indicate
“high” or “low,” as the case may be, when corresponding digits of the
two numbers being compared are not the same. When corresponding
digits of the two numbers are the same, the setting of the storage device
is not changed. The last setting will indicate whether or not the divisor,
if subtracted, will produce a negative remainder. If the digits of the
two numbers to be compared appear in descending order of significance,
the first pair of digits which indicate a difference will denote which of the
numbers is the larger, and the “high-low” storage device should be set
accordingly. Since in a serial computer the digits are normally presented
in ascending order of significance, the former method of comparison
would probably receive the more serious consideration in most cases. It
is possible to work out circuit arrangements whereby the comparison for
the suceeeding subtraction is performed during the time that a given sub-
traction is being executed. The major steps involved in division by this
method are shown in the example below.

11
10001100 Check to prove that dividend and
Compare only 1110 . . .
divisor have proper relative mag-
10001100) 04
Compare and subtract 1110 1-—-
0011100
Compare only 1110 10--
011100 Quotient
Compare and subtract 1i10 101-
00000

Compare only 1110 1010]

0000
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When parallel operation is being employed, the comparison of the
divisor with the dividend may be made by means of an adder with true-
complement switching on the input lines or by means of a subtracter.
Only that portion of the unit which generates the carry or borrow is
needed to make the comparison. If a borrow signal is obtained from the
highest order (in the case when a subtracter is used) it will be known
that a negative remainder will result and that the subtraction should not
be carried out. In arrangements where a subtracter is being used in
connection with a storage register to produce an accumulating function,
the portion of the subtracter unit which generates the difference can be
used to generate the difference for each step in the division process, but
the difference should be entered into the storage unit only for those steps
in which it is positive. Additional forms of dividing units employing
this method of division can be worked out whereby the borrow position
of a subtracter unit is used in combination with an accumulator employ-
ing binary counters.

The Problem of the Final Remainder. Although the problem of the
final remainder has already been encountered in the discussion of correct-
ing a negative remainder, there are further points concerning the final
remainder which deserve consideration. In the examples of division
which were shown, the final remainder was zero in each case, which
indicates that the dividend was an exact multiple of the divisor. That
the dividend be an exact multiple of the divisor is not generally a re-
quirement applied to the factors entering into a division operation. Each
of the division procedures that have been deseribed will produce a
quotient that corresponds to the largest multiple of the divisor which is
equal to or less than the dividend. The difference between this largest
multiple and the dividend is the final remainder, and when the final re-
mainder is not zero the quotient that has been obtained is not an exact
representation of the desired result. To increase the accuracy of the
quotient, the division process may be continued until as many quotient
digits as desired are produced; but, as was pointed out, some ratios of
integers cannot be represented exactly by a single number, and eventually
the remainder must be either discarded or stored separately.

Although the remainder is usually of no interest and is therefore dis-
carded, there are occasional examples when the remainder is of import-
ance. One such example is the determination of the angular position
of a wheel or other rotating object after a specified number of degrees of
rotation. If the rotation in degrees is divided by the number of degrees
in a circle, the remainder will indicate the angular position. Because
problems of this type are relatively rare, it is often preferable to dis-
card the remainder in all cases and reconstruct it when necessary by
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subtracting from the dividend the product of the unrounded quotient and
the divisor.

The Physical Realization of a Divider Unit. Four quite different
physical arrangements for performing multiplication were described, and
the various physical arrangements which may be used for division will be
explained through comparisons with the multiplier units. Although the
details which must be considered in making a complete divider unit are
considerable in number, they are for the most part merely details, and
no attempt will be made to present a thorough discussion of them.

A simultaneous divider to correspond to the simultaneous multiplier
shown in Fig. 5-1 is a possibility, although it does not appear to be a
very practical possibility. Any of the division procedures described
previously could be used in the design of a divider unit whereby steady
signals representing the dividend and divisor could be applied to the in-
put lines; and, after all switching transients had died out, signals repre-
senting the quotient, and possibly the remainder also, would appear on
the output lines. However, the number of adders, subtracters, and mis-
cellaneous switches necessary to complete a simultaneous divider by
any known arrangement is so great that this type of divider seems worthy
of consideration only in the rarest of cases.

For parallel operation, an accumulator capable of subtraction as well
as addition provides a straightforward and practical means for as-
sembling a divider unit. Either the divisor may be shifted according to
the arrangement shown in Fig. 5-2, or a shifting accumulator analogous
to that shown in Fig. 5-3 may be used. The shifting accumulator should,
of course, shift to the left for division instead of to the right as is re-
quired for multiplication. One word of caution is in order when sub-
traction is accomplished through the addition of 1’s complements. The
end-around carry should be entered into the order corresponding to the
lowest order of the divisor in each case unless, when adding the comple-
ment of the divisor, 1’s are entered into all orders of the accumulator
lower than that corresponding to the lowest order of the divisor. In the
latter case, the end-around carry may be entered into the lowest order of
the accumulator. With the shifting accumulator, no particular diffi-
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culties are caused by the requirenien
should be remembered that it may be necessary to shift the end-around
carry also.

When a serial computer is under consideration, division arrangements
analogous to the multiplication arrangements shown in Fig. 5.9 become
of interest. Since division is a somewhat more complicated process than
multiplication, the factors do not circulate quite as “smoothly” through
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the delay-type storage devices, and additional complexities in the switch-
ing and control functions must be included. However, no important
new ideas are involved.

No arrangement for division which corresponds closely to the serial-
parallel multiplier shown in Fig. 5-10 has ever been worked out so far as
is known. It is suspected that such a divider is an impossibility, although
a proof of the impossibility is not known either.

Division Involving Negative Factors. Since division involves both
addition and subtraction of the divisor, it turns out to be possible to use
substantially the same division process for negative factors expressed in
2’s complements that is used for the case when both the dividend and
divisor are positive. However, certain complications arise in the correct
determination of the very last quotient digit. A possible round-off
procedure (to be described in the next section) involves the placing of a
1 in the lowest order of the quotient regardless of the factors in the di-
vision. When this round-off procedure is used, the division process is sat-
isfactory; but when a more accurate round-off procedure is required,
it becomes more desirable to use true instead of 2’s complement repre-
sentation for negative numbers entering into the division.

No useful division process for negative factors is known which corre-
sponds closely to the multiplication process involving corrective terms
or to the multiplication process involving the examination of the multi-
plier digits in pairs.

Round-off Procedures. Either the multiplication or division process
may produce more digits in the result than are desired. In multiplication
the number of digits in the product will be equal to the sum of the num-
bers of digits in the two factors, but the number of significant digits in
the product will be no more than the lesser number of significant digits
in either of two factors. In divison, the quotient may in some cases be
comprised of an infinite series of digits regardless of the size or the
number of significant digits in the factors involved. It is the usual prac-
tice to retain only the required number of digits in the product or quotient,
and the problem is then to obtain the number which is closest to the de-
sired number. If, for example, the eight-digit number 1011XXXX is
being rounded to a four-digit number, it is usually desired to record the
number as 1011 when the right-hand four digits are less than 1000, and
to record the number as 1100 when the right-hand four digits are greater
than 1000. When the right-hand four digits are exactly 1000, either
choice for the number would be satisfactory except that it is customary to
choose the larger of the two, or 1100 in the present case.

The most straightforward way to obtain the desired rounded number



Binary Multiplication and Division 175

is to add a 1 in the highest order which is to be dropped. If a carry is
propagated to the next higher order, it is known that the quantity being
dropped is equal to or greater than 1000 in the example. Note that
when the 2’s complement notation for negative numbers is being used,
the round-off may occur in an undesired direction. For example
(1)0010.1 (decimal —13.5) will be rounded to (1)0011 (decimal —13)
instead of {1)0010 (decimal —14). To avoid the difficulty, the number
may be converted to its true representation before rounding. When
negative numbers are represented in 1’s complement form, correct
rounding may be achieved by subtracting 1 from the highest order which
is discarded. Then, since the 1’s complement representation is (1)0010.0
(decimal —13.5), the number will be rounded to (1)0001 {(decimal —14)
as desired.

The amount of equipment required to produce a rounded product or
quotient by the above method may be deemed excessive for some appli-
cations. The amount of required equipment may be particularly exces-
sive in the case of division because the quotient may otherwise be built
up in a register which has no adding or carry propagating properties. In
applications where the rounding operation has as its primary purpose
the function of producing a result which has an equal probability of
lying above or below the exact result, a different and somewhat simpler
rounding procedure may be used. The procedure is to make the lowest-
order digit to be retained a 1 regardless of the other digits in the number.
With this method of rounding, 10111111 and 101000, as examples, would
both be rounded to 1011. In the first case, 00001111 is dropped and in
the second case 00010000 is “added.” Since the error with this method
of rounding may be twice as great as with the previously described
method, it is not as desirable, but it is relatively easily incorporated into
a computer, and the average error over a large number of round-offs
is usually sufficiently small.

The above procedure has the minor disadvantage that zero is never
obtained as a result after a rounding operation regardless of the factors
entering into the computations. A variation in the procedure is to add
1 to the lowest-order retained digit when that digit is a 1 and to do
nothing when it is a 0. A register with carry propagating properties is
required; but it is not necessary to store, even temporarily, any digits
which will be subsequently dropped.

A fourth round-off procedure is to add a 0 or a 1 chosen in a random
fashion into the lowest order to be retained. Although this method does
require that the number to be rounded be placed in an accumulator or
other device capable of propagating carries, it does not require that any
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more digits be saved than are desired in the final number. The amount
of error which occurs with this method of rounding may vary, as in the
previous example, from 00001111 too low to 00010000 too high. However,
besides requiring a random number generator, the method has the disad-
vantage of making the computations difficult, if not impossible, to re-
peat exactly in the computer.



Chapter 6

DECIMAL CODES

The considerations involved in choosing a representation for a decimal
digit in a computer are considerably more complex than was the case with
binary digits. With the binary system the only significant choices were
a signal or no signal, a signal on one of two different lines, or a “posi-
tive” or a “negative” signal to represent a O or 1, respectively. In the
decimal system a single digit may have any one of ten different values,
and one of the more obvious ways of representing a decimal digit is
through the use of signals having the possibility of ten different ampli-
tudes. A considerable amount of thought has been given to decimal digit
representations of this type, but very little progress has been made in
the adaptation of multiple-amplitude signals to digital computers. Con-
sequently it has been necessary to look for other means of digit repre-
sentations.

Since most computer components are inherently binary in nature or
else work most satisfactorily when employed in binary fashion, it has
been almost universal practice to use binary-type signals to represent
the decimal digits. One method of representing a decimal digit by means
of binary signals is to use ten separate lines and to place signals on a
number of the lines corresponding to the digit value. For example,
signals on six of the lines would indicate the digit, 6. It is more common
practice to specify that only one signal at a time will be placed on any
of the ten lines, and then each of the ten lines is identified with one of the
ten digits. This representation is frequently used in transmitting decimal
digits from a manual keyboard to a computer. Also, binary components
may be used to transmit a decimal digit on a single line if time is em-
ployed as a variable. For example, the duration of a signal may be
varied in ten equal steps to represent the ten decimal digits, or the signal
may be repeated a number of times equal to the value of the digit.

Another method is to use the timing of a single pulse-type signal.
177
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Although the various “one-out-of-ten” schemes for digit representation
that have been mentioned are relatively simple and straightforward,
other forms of representation frequently are found to be more desirable
in the design of computers where factors such as speed, savings in com-
ponents, and reliability are important. It has already been mentioned
that it is possible to represent a decimal digit with a minimum of four
binary signals by using ten and ignoring six of the possible sixteen
different combinations of the four signals. But of the more than 29
billion (16!/6!) different ways by which ten of the sixteen combinations
can be assigned to the ten decimal digits, only a few of the ways are
useful, and the problem of selecting the best way for a given application
is frequently a formidable one. The problem is further complicated by
the fact that the use of more than the minimum of four binary signals
may provide means for gaining important advantages in some applica-
tions. A particular way of assigning groups of four, five, or more binary
signals to the ten decimal digits is called a decimal code, and it is the
object of this chapter to point out the distinguishing features and some
of the advantages and disadvantages of several of the codes which may
be used.

The Weighted 4-bit Codes. Of the many possible 4-bit (where a
“bit” refers to a binary digit) codes, only relatively few have the
property that values, or weights, can be assigned to each of the four bits
with the decimal digit being represented equal to the sum of the weights.
All known weighted 4-bit codes are listed in Table 6-I, although the list-
ing is more for the record than for any practical value. Since the codes
were found by a cut-and-try search process, it cannot be guaranteed
that all such codes have been found.

TasLE 6-I. WeicaTED 4-BiT CODES

*5211 8421 631-2 842-3 74-2-1
*4311 531-1 *731-2 621-4 84-2-1
5311 *631-1 441-2 721-4 72-3-1
6311 522-1 541-2 8214 72-4-1
*4221 *622-1 *641-2 *751-4 84-3-2
5221 432-1 841-2 8614 *87-4-2
6221 *532-1 *632-2 632-4
*3321 632-1 *443-2 *832-4
4321 732-1 543-2 *652-4
5321 *442-1 643-2 653-4
6321 542-1 843-2 643-5
7321 642-1 621-3 *753-6
4421 742-1 721-3 63-1-1
5421 842-1 751-3 63-2-1
6421 621-2 542-3 54-2-1

7421 531-2 *642-3 64-2-1
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To illustrate the meaning of the listings in Table 6-1, three of the more
useful codes and one code involving a negative weight are displayed in
detail in Table 6-11.

TABLE 6-II. DETAILED LISTING OF SOME OF THE 4-BIT WEIGHTED CODES

8421 2421 5421 753-6
0 0000 0000 0000 0000
1 0001 0001 0001 1001
2 0010 0010 0010 0111
3 0011 0011 0011 0010
4 0100 0100 0100 1011
5 0101 1011 1000 0100
6 6110 1166 1661 1101
7 0111 1101 1010 1000
8 1000 1110 1011 0110
9 1001 1111 1100 iiii

The 8,4,2,1 code is one of the most straightforward 4-bit codes be-
cause, with it, each decimal digit is represented in a conventional binary
system. Therefore, the code has the advantage that the relatively simple
binary techniques may be used, to some degree at least, in the arithmetic
manipulations involving decimal digits. A disadvantage of the code is
that the binary representations for ten to fifteen, inclusive, have no mean-
ing, and steps must be taken to eliminate or correct these binary combi-
nations each time they occur in an arithmetic operation. Another dis-
advantage of the code is that it is not “self-complementing,” a self-com-
plementing decimal code being one in which the 9’s complement of each
decimal digit may be obtained by changing the 1’s to 0’s and the 0’s to 1’s
in the coded representation of the digit. Since a simple inversion yields
the 15’s complement, it is necessary in obtaining the 9’s complement to
add 10 to the result obtained by inversion or to add 6 to the digit before
inversion. In the first of the two methods, a carry from the “8’s” order
will be obtained, but this carry is ignored, which effectually subtracts
16 from the result. That the two processes yield the 9’s complement may
be illustrated mathematically by the equation

B-D)+10—-16=15—-D+6)=9—D

where D is the decimal digit.

When the bits of the 8,4,2,1 code are presented in parallel, a somewhat
simpler scheme than adding and inverting may be used to generate the
9’s complement. By an examination of the code in Table 6-II, it may
be observed that the 1-bit should always be inverted in generating the
9’s complement, the 2-bit is always the same in the 9’s complement as in
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the original digit; the 4-bit in the 9’s complement is a 1 when the 2-bit
or the 4-bit, but not both, in the original digit is 1; and the 8-bit in the
complement is 0 when the 2-bit, 4-bit, or 8-bit in the original digit is
1. In Boolean algebra notation these relationships are

Ci=T
Co=T,
Cy = ToTy + ToT,
Cs=Ty+ Ts+ Ts

where, here, the letters, T and C, refer to true and complement, re-
spectively. The functional arrangement is shown in Fig. 6-1.

Tg Ta T2 T
y /
0 A 0 1
1
I I A
| '
Cs Cs Cp, G
Fic. 6-1. Functional arrangement for generating the 9's complement with the 8,4,2,1
code.

Those codes in Table 6-I which are marked with an asterisk do have
the property of being self-complementing, that is, the changing of the 0’s
to 1’s and the 1’s to 0’s in each representation of a decimal digit will yield
the 9’s complement of that digit. Note that the sum of the weights in
each self-complementing code is nine. That a sum of nine is a require-
ment may be easily understood by observing that 0000 must be a re-
presentation of the decimal digit, zero, in any of the weighted codes, and
therefore 1111 must be a representation for the decimal digit, nine.

The 4,2,2,1 code, which is self-complementing, is shown in Table 6-1I
although the first two columns have been interchanged to indicate a
2,4,2,1 arrangement to correspond to common practice with this particular
code. With the 2,4,2,1 code, the representations for the decimal digits
two to seven, inclusive, are not necessarily unique. For example, either
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0011 or 1001 may be used to indicate three, but the self-complementing
feature is not effected because 1100 and 0110 are both proper representa-
tions of six. The self-complementing codes with only positive weights
are useful also when changing from a 4-bit code to a single-line decimal
code with the true or complement representation of the decimal digit
being indicated by the number of pulse-type signals appearing on the

2 PULSE
2 PULSES, | o— 1 2—A
00—
2 —»
4 PULSES _ ! 2 A TRUE
0°o—¢ 4 PULSES ,
2PULSES _i° 4| A 10 A b—
oo0—e _ YT
4 —»
A
| PULSE cl)c —]
o 2 PULSES C
| > _A — [
6| al 2— A O A
COMP. {TRUE
| PULSE
A COMP.
| ——
I =a
{a) (b)

F1c. 6-2. Conversion from parallel 4-bit code to a series of pulses on a line.

line. Fig. 6-2(a) shows an electrical cireuit utilizing relay contacts,
which may be used to perform the conversion; and Fig. 6-2(b) shows the
functional arrangement. Although the self-complementing weighted
codes, particularly the 2,421 code, have been used in a few computers,
they create difficulties when attempting simple arithmetic operations
such as addition, and therefore their use has not been widespread.

The 5,4,2,1 code is included in Table 6-I1 mainly for the purpose of
comparison with the 2,421 code, although it is not without practical
application. Note that the first bit in each code is 1 for the decimal
digits. five through nine, but in the 5,42,1 code the other three bits are
the same for the five through nine as for zero through four, which is not
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the case in the 2,4,2,1 code. The usefulness of the 5,4,2,1 code may be
found in certain multiplication and division systems which employ
only halving and doubling. The 2 and 4 factors may be obtained by
doubling, and the 5 factor may be obtained by multiplying by 10 (shift-
ing) and halving.

The study of codes with negative weights can be a source of great
fascination; however, no advantages of them deemed worth recording
have as yet been found.

Nonweighted 4-bit Codes. For some applications, rather unusual con-
siderations may assume a role of magnified importance, with the effect
that one of the nonweighted codes may be the best choice. For example,
it may be desired to minimize the amount of power required to store
or transmit the digits; and, with an objective such as this, a code with as
few 1’s as possible may be desirable. The 8,4,2,1 code has a total of
fifteen 1’s, and by using, say, 1010 instead of 0111 for the digit 7, the
number of 1’s may be reduced to fourteen, which is the minimum possible
with a 4-bit code. It so happens that the 7,4,2,1 weighted code also has
only fourteen 1’s. For another example, it may be desired that all deci-
mal digits including zero be represented by at least one 1 so that the
absence of a signal can be detected positively. Again, it is possible to use
a weighted code such as the 5,3,1,—1 code for the purpose where zero is
0011; but, if the weighted properties are not useful, one of the non-
weighted codes may be better.

Still another example is in the use of a 4-bit code for storage when
the code used for computations is a 5-bit code. With 5 bits there are ten
different combinations with two 1’s, and when the ten decimal digits are
represented in this manner, it is possible to distinguish any digit without
the use of inverters, which is an advantage. However, only 4 of the 5
bits are really necessary for unambiguous representation so, by dropping
one of the five digits a nonweighted 4-bit code for storage is obtained.
The fifth bit may be generated when needed. One variation of the scheme
is shown in Table 6-III. This variation is sometimes called the 7,4,2,1,0
code because, except for zero, the bits have these weights.

Although all of the ideas presented in this section have been seriously
proposed at one time or another and may have actually been used in a
few instances, it should be understood that the difficulties encountered
when attempting to use the codes in a computing device usually offset
the advantages which have been mentioned.

One nonweighted code of more importance is called the excess-3 code
because it may be generated by adding a binary 3 to each digit represen-
tation in the conventional 8,4,2,1 code. Table 6-IV shows the excess-3
code in detail.
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TasLe 6-1I1. A 5-BiT CopE REDUCED T0 A 4-BiT CODE FOR STORAGE
2out of 56 Code  Code as Stored

74210
0 11000 1100
1 00011 0001
2 00101 0010
3 00110 0011
4 01001 0100
5 01010 0101
6 01100 0110
7 10001 1000
8 10010 1001
9 10100 1010

TasLe 6-IV. Excess-3 Cobe

0 0011
0100
0101
0110
0111
1000
1001
1010
1011
1100

OO~ O

The excess-3 code has several useful properties. First of all, except for
certain corrections which must be applied, straight binary techniques
may be used in the performance of many of the arithmetic operations
involving the digits. When adding two digits, the decimal earry is readily
generated by using the carry from the highest-order binary digits. That
the carry may be obtained in this manner may be understood by observ-
ing that, when two excess-3 digits are added, the sum is excess-6, which
automatically eliminates the six unwanted binary configurations.
Further advantages of the code are that it is self-complementing and
that all decimal digits have at least one 1 in their representation so that
zero and the condition of no digit at all may be distinguished. On the
other hand, the fact that the excess-3 code is not weighted frequently
introduces considerable disadvantages. For example, it is more difficult
to learn and remember than the 84,2,1 and other weighted codes. Cer-
tain forms of arithmetic operations are more difficult with the excess-3
codes than with other codes including the frequently required operation
of conversion between a 4-bit code and one of the various one-out-of-ten
systems of representation. Also, in some computers a redundancy bit is
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used for checking purposes, and when this is done the advantage of the
excess-3 code with regard to the representation for zero is largely
nullified.

Codes Involving 5 or More Bits. One reason it might be desirable
to use 5 or more bits in the representation of a decimal digit in spite of
the availability of 4-bit codes is that it may be possible to effect simpli-
fications in the arithmetic circuits in some cases. The use of a 5-bit code
with each decimal digit represented by two 1’s in the 5 bits has already
been mentioned as providing an improved means for sensing the indi-
vidual digits. When addition is being performed by switching circuits,
the 8,6,4,2,1 or the 54,3,2,1,0 weighted codes offer certain advantages.
All three of these codes have been employed in computers built at
Harvard University; however, the use of codes with more than 4 bits for
the purpose of circuit simplification has not become widespread.

A second advantage that can be gained by using 5 or more bits in the
representation of decimal digits is the ability to detect errors. In the
code involving two 1’s out of 5 bits, for example, the existence of three
1’s or only one 1 in the representation of a digit would be recognized as an
error. Another code, known as the biquinary code, has 7 bits with the
weights of 5,0,4,3,2,1,0. With this code, arithmetic operations may be
performed in a moderately straightforward manner, although whether
or not there is a net simplification when compared with the 4-bit codes
is a debatable point. The main reason for the use of 7 bits is the ability
to detect errors. From the detailed listing of the code in Table 6-V it
may be observed that one of the first two bits and one of the last five
bits is 1 in the representation of each decimal digit.

Another 7-bit code is the quibinary code, where the bits have the
weights of 8,6,4,2,0,1,0. This code has properties which are similar for
many applications to the properties of the biquinary code except that the

TaBLE 6-V. BiquinarRy CobE (a) axp QuiBINARY CobE (b)

5043210 8642010
0 0100001 0000101
1 0100010 0000110
2 0100100 0001001
3 0101000 0001010
4 0110000 0010001
5 1000001 0010010
6 1000010 0100001
7 1000100 0100010
8 1001000 1000001
9 1010000 1000010

(@) (b)
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group of 2 bits and the group of 5 bits are interchanged. The quibinary
code is listed in Table 6-V for comparison.

rror-detecting and Error-correcting Codes in General. In any code
composed of binary bits, if a single error in a bit combination can pro-
duce another bit combination which is also in the code scheme, the error
cannot, in general, be detected. For example, in the 8,4,2,1 code, 0110
{decimal digit 6) may appear as the proper representation for six, but
if there were an error and it should be 0111 (decimal digit 7) or 0010
{decimal digit 2), there would be no way of detecting from the coded
representation itself that the bits were an erroneous representation of
some other digit. In order to detect the presence of a single error
in the bits of a code it is necessary that the code be such that at least
two changes must be made in the bits of the code when changing from
the representation of one digit to the representation of any other digit.
The 2-out-of-5 code shown in Table 6-IIT is an example of a code
satisfying this requirement. To change from the representation of deci-
mal 3 to decimal 8, for example, it is necessary to change both the first
and the third bits of the code. The changing of any one of the bits in
any of the code combinations will result in a combination which can be
recognized as an error, and the code is therefore known as “error-detect-
ing.” However, the detection of an error does not mean that it can be
corrected. For example, the bit combination, 11010, would be recog-
nized as an error because there are three instead of only two 1’s, but
there would be no way of knowing from the code itself which of the
three 1’s should be a 0. The code is therefore not “error-correcting.”
For similar reasons the biquinary code in Table 6-V is error-detecting
but not “error-correcting.” If two or more errors occur simultaneously
with either of the error-detecting codes which have been mentioned, the
errors may pass undetected because the result of the errors may be the
production of a bit combination which is a proper representation of one
of the digits.

To be error-correcting, a code must be such that at least three changes
in the bit combination must be made when changing from the represen-
tation of one digit to the representation of any other digit. With a code
meeting this requirement, an error will produce a bit combination that
can be recognized to contain an error, as before, but further, the indi-
vidual bit in error can be determined. The finding and correcting of the
incorrect bit can be accomplished through changing the bits one at a
time and observing when a bit combination is obtained that is a correct
representation of one of the digits. When two errors occur simul-
taneously the resulting bit combination will be recognized as not corre-
sponding to any digit, but the changing of one bit may produce a bit
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combination which corresponds to one of the digits, but not the desired
digit. Therefore, the error-correcting code will fail with the occurrence
of two errors in the representation of a given digit.

By using a code requiring four changes in the bits when changing from
the representation of one digit to the representation of any other digit,
“double-error-detecting” properties may be obtained. With a code such
as this, two simultaneous errors will produce a bit combination which
not only may be recognized as not corresponding to any digit, but also
may not be changed to any digit-representing combination by the change
of any one bit. Therefore, the code is capable of producing an indica-
tion that two errors have oceurred in a given digit representation, and the
ability to correct a single error is not lost. However, it is still not pos-
sible to correct two simultaneous errors, because the alteration of 2
bits can yield a bit combination corresponding to one of the digits but
not necessarily the desired one. Also, the occurrence of three or more
simultaneous errors may cause a failure in the error-detecting and error-
correcting scheme.

“Double-error-correcting,” “triple-error-detecting,” and more powerful
schemes may be devised through the use of codes requiring still more
changes in the changing of the representations of the various digits, al-
though the number of bits required for the code soon reaches an im-
practicable value. For the error-detecting, error-correcting, and double-
error-detecting codes, a minimum of 5, 7, and 8 bits, respectively, is
necessary.

An interesting property of error-detecting and error-correcting codes
is that correcting power can be traded for increased detecting power. For
example, an error-correcting code can be used as a double-error-detecting
code; although, if it is used in this manner, the ability to correct single
errors is lost. Similarly, a code requiring four changes in proceeding from
one digit representation to another may be used as a triple-error-detect-
ing code, but then the ability to correct single errors is lost. The prop-
erties of the codes as a function of the number of changes are summarized
below, where a notation such as “1E Det” stands for single-error de-
tection.

Changes Property
1 No error-detecting or error-correcting properties
2 1E Det
3 1E Cor or 2E Det
4 2E Det with 1E Cor or 3E Det
5 2E Cor or 3E Det with 1E Cor or 4E Det

Although the concepts presented in this section are of interest in the
understanding of the nature of error-detecting and error-correcting codes,
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these concepts have not been found to be of much value in the devising
of useful codes. The concept of redundancy, which is discussed in the
next section, appears to be a more useful tool for the development of
practical codes for the detection and correction of errors.

Redundancy Checks. Among the more obvious ways of checking for
errors in digit transmission is the transmission of each digit twiece. If
there is a discrepancy in the two transmissions, it may be concluded
that an error has occurred. By transmitting the digit three times, it is
possible not only to detect the error but aiso to correct it, because two
of the three transmissions should be the same unless two or more errors
have occurred, in which case the method fails. More powerful checks
may be secured through additional transmissions and comparisons for
each digit, but the increased complexity which would be required in the
equipment causes the scheme to be unattractive.

The above method of checking involves the use of redundant informa-
tion. Since the purpose of the redundant information is only to check
and correct errors in the original informaton, it is possible to use less
redundant information than is necessary for the complete duplication of
the transmissions. For example, a coded decimal digit is represented by
a set of signals indicating a certain configuration of 0’s and 1’s, and the
configuration has elementary properties which will be changed in the
presence of an error. Therefore, in order to check for an error it is
sufficient to use one of these elementary properties for the redundant
information. The number of 1’s is one such property that may be used,
but a simpler property and one that is well adapted to the binary nature
of the signals which are usually employed is the fact that the number
of 1’s is either odd or even. Then, if an extra bit is transmitted along
with the coded representation of the digit, the extra bit may be used to
indicate whether the number of 1’s is odd or even, and a discrepancy in
the indication will signify that an error has occurred. This extra bit is
redundant information because it may be derived directly from the coded
digit.

In order to use redundancy bits for the correction as well as detection
of errors, it is necessary to devise a system whereby discrepancies in one
or more of the odd-even checks can be identified with individual bits in
the code. One arrangement that may be used incorporates the checking
of several digits into a single operation. Each digit is provided with a
redundancy bit and also each “column” of bits in the several digits is pro-
vided with a redundancy bit. If any bit in the digit representing part
of the code is in error, two of the checks will fail and the error may be
located in Cartesian coordinate fashion. The decimal number, 69,073 in
the 8,4,2,1 code in shown with its redundancy bits in Table 6-VI. Note
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TaBLE 6-VI. Repuxpancy Birs For ErrRor CORRECTION

8421 R

6 0110 1

9 1001 1

Decimal Number{ 0 0000 1
7 0111 0

3 0011 1

R 0100 O

that the redundancy bit is 1 whenever the number of 1’s in the bits be-
ing checked is even. The opposite convention could have been used,
although the digit, zero, would have no 1’s in its representation which, -
as has already been mentioned, is sometimes undesirable. If only one
check fails, it may be assumed that the check bit itself is in error unless
more than one error has occurred. By including a check on the re-
dundancy bits (the bit in the lower right-hand corner of Table 6-VI), the
checking system becomes double-error detecting as well as single-error
correcting. If it is assumed that the lower-right redundancy bit checks
the bottom row (and not the right-hand column): (a) an error in one
of the information bits will cause a failure in one row check bit and one
column check bit; (b) an error in one of the row redundancy bits will
cause the check in only that row to fail; (c) an error in one of the
column redundancy bits will cause that column check and the bottom
row check to fail; and (d) an error in the lower-right redundancy bit
will cause a check failure only in the bottom row. If any other combina-
tion of checks fail, two errors are present. Note that the presence of
three or more simultaneous errors will in some cases cause the system
to break down.

By using three redundancy bits for each digit represented with a code
of 4 bits, it is possible to develop a digit-by-digit error-correcting code.
One variation of the method when applied to the 8,4,2,1 code is to use
one redundancy bit (A) to check the 1’s in the 4, 2, and 1-bits; a second
redundancy bit (B) for the 8, 2, and 1-bits; and a third redundancy bit
(C) for the 8, 4, and 1-bits. The pattern and the 8,4,2,1 code with its
redundancy bits are shown in detail in Table 6-VII.

From Table 6-VII it may be observed that the location of any error
may be determined by the combination of checks which fail. If, for
example, checks B and C fail, the error must be in the 8-bit. If all three
checks fail, the error is in the 1-bit, or, if only one check fails, the error
is in the redundancy bit itself. The occurrence of two errors in the
representation of a single digit will cause a failure in the system, although
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TasLe 6-VII. Tar 8,4,2,1 CopE witH ERROR-CORRECTING REDUNDANCY BiTs

8 4 2 1 A BC 8 421 A4BC
A A A 4 0/0 000111
B B B B 1{0 001000
¢ C c C 210 010001
3]001 1110

4/0 1 00010

5{0 1 01101

6(0 110100

7/0 111011

81 000100

9i{1 001011

a fourth check bit (D) for indicating the 1’s in all four of the original
digit positions could be used to make the code double-error detecting.
Note that the coded representation for each decimal digit differs from
the representation of each of the other digits by at least 3 bits, which is in
line with the discussion in the preceding section.

Four redundancy bits, 4, B, C, and D may be used to generate an
error-correcting code involving eleven information-carrying bits by fol-
lowing the pattern shown in Table 6-VIIL.

TaBLE 6-VIII. PaTTERN FOR AN ERROR-CORRECTING CoDE INvoLving ErevEN
INFORMATION-CARRYING BITS

1024 512 256 128 64 32 16i8 4 2 1 A B C D

A A A A4 4 A A A
B B B B B B B B
c C c c:c ¢ c c
b D D D D D D D

Again, the bit in error can be ascertained by the combination of checks
which fail. For example, if checks 4, B, and D fail, the 256-bit is in
error. In general, » redundancy bits may be used to form an error-cor-
recting code involving 2* — n — 1 information-carrying bits.

In most instances, redundancy bits are useful only in the checking of
the transmission of digits. Computations involving the digits usually
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must be checked by some other means, although there are a few schemes
for calculating the new redundancy bits which are necessary after arith-
metic operations have been performed on the digits. For digits which
are the results of computations, the simple generation of the new re-
dundancy bits according to the pattern in use affords no checks at all in
the computations.

Many of the ideas which have been presented on the subject of error-
detecting and error-correcting codes may be found in the text, The Design
of Switching Circuits, by Keister, Ritchie and Washburn (D. Van Nos-
trand Co., Inc., New York, 1951).

Check Sums. Although it may be deemed impractical to incorporate
a system that will detect multiple errors which occur in a random fash-
ion, it is sometimes feasible and highly desirable to install circuits for
detecting certain special types of multiple errors. Such a situation oceurs
in the transmission of digits in parallel where one of the transmission
lines may fail in such a manner that signals are always or never present
on this line. A common example of this type of error is in the sensing of
punched cards, where a failure of a sensing brush will cause a consistent
failure of signals to be transmitted.

A straightforward way of detecting consistent errors in one of several
parallel transmission lines is through the use of a check sum. A check
sum is generated by adding a series of numbers both before and after
the transmission, and observing whether or not the sums are the same.
With each of the numbers transmitted in parallel, a consistent error will
cause the check sum to be too large when the defective line is picking
up erroneous digits; but if the line is dropping desired digits, the check
sum will be too small.

It should be observed that, for a complete check, it is necessary to
transmit the check sum over a different path from the one used for the
transmission of the numbers being checked; otherwise, some types of
errors will not be detected. For example, in checking the transmission
of the two binary numbers, 1001 and 1101, the check sum would be
10110. 1If the 1’s in the 4-bit column were consistently dropped, the
error would not be detected because the checking circuits would add 1001
and 1001 to obtain 10010 which would match the incorrectly transmitted
check sum. It may be shown that a shift of the check sum one or more
positions to the left (but not to the right) is sufficient to satisfy the re-
quirements of a different path for the check sum. In other words, by
shifting the check sum in the example to 101100, it is possible to detect
all consistent errors in any one column.

An undesirable feature of the check sum error-detecting system is the
fact that the check sum will, in general, have more digits than the
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numbers being transmitted because of the carries which may occur in the
highest order when forming the sum. One way to avoid this difficulty is
to add the carries in end-around fashion into the lowest order. It is
then necessary to limit the length of the list of numbers which enter
into the formation of a given check sum. In the case of 4-digit binary
numbers, if a check sum is formed for more than 15 numbers being
checked, there is a possibility of some errors escaping undetected
when the end-around carry is used. When a shift to the left of one

nogition ig comhbhinaed with and_arnimd sarrvy tha mavimim ig rediinnd +a
POSIniOn 18 COMNoINCa Wita ChHG=ardulli Cally, wil HaXimiuill 18 IeGulil o

7. In general, with these conditions the check sum may be formed on a
maximum of B*—! — 1 numbers, where R is the radix and n is the number
of digits in the numbers being checked, For large n or R this limitation
is not, of course, so severe.

Distinguishing Between Errors and the Absence of Information.
When using an error-detecting code, a peculiar but severe problem some-
times arises in those cases where a set of information bits contains only
one 1. For example, in the 8,4,2,1 code with a redundancy bit, the repre-
sentation for 4 would be 01000 if the first 4 bits are the information bits
and the last bit is the redundancy bit (to make the number of 1’s odd).
Now if this digit is transmitted from one point to another and an error
occurs in the 4 bit with the result that all 5 of the bits are 0, the receiv-
ing instrument would not be capable of distinguishing whether a digit
with an error was transmitted or whether no information at all was
transmitted.

An outstanding instance where this problem is encountered is in the
sensing of information recorded on magnetic tape. The location along
the length of the tape where the information is recorded is not, in gen-
eral, known exactly. If it is assumed that the 5 bits are recorded on five
parallel tracks, the tape will pass under the sensing heads with the heads
indicating that no information is recorded until at least one of the heads
senses a 1. Then it is known that some information is being detected;
but in the cases where there was only one 1 originally and it is lost
through an error, the receiving instrument will not detect the error even
though an error-detecting code is employed; instead, it will indicate
that no information is being sensed.

There are two principal ways to get around this problem. One way is
to send a separate signal from the transmitter to the receiver to signify
when information is being transmitted. In most parts of a computer,
these “alerting” signals are usually present, although, perhaps incon
spicuously, in the form of various timing and control signals. When
magnetic tape is the transmitter, the alerting signal may be recorded on a
sixth track. The other way to insure that all digits with one error are
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sensed is to avoid those combinations which have only one 1. In those
applications where all bit combinations are needed, this scheme cannot
be used, but in the case where 4 bits are used for a decimal digit, there
are sufficient combinations to spare. With the 84,21 code, the desired
result may be accomplished without losing the useful binary properties
of the code by inverting all 1’s and 0’s. Then 4, for example, would be
10111 where the redundancy bit creates an even number of 1’s.



In a digital computer, counting is that process which records the num-
ber of pulse-type signals that occur in succession on a single line. In
general, the pulses may be randomly distributed in time except that the
physical properties of any counting device always set a minimum time
separation between the pulses to which the device will respond properly.
The counting device is said to be “fast” or “high speed” when this mini-
mum time is relatively small. With some systems the pulses must ap-
pear at uniformly spaced intervals, but at any such given time a pulse
may or may not be present with its presence determined in a random
manner.

In almost all practical examples, the pulse-type signals are in them-
selves of a binary nature, although the system for counting them may
employ any radix. When the binary number system is used, the counting
device consists of a set of bistable storage elements, each of which trans-
fers back and forth between its two stable states upon the reception of
pulses. The pulses to be counted are applied to one of the bistable ele-
ments. Each time that this element changes from the state representing 1
to the state representing 0, a pulse is caused to be sent to the second ele-
ment in the set. When the second element transfers to 0, a pulse is
sent to the third element; and this process continues in a similar manner
for all of the bistable elements in the set. Witk the decimal number
system, elements having ten stable states are used; and each time a
given element changes from the state representing 9 to the state repre-
senting 0, a pulse is sent to the next element. As was mentioned in
connection with binary aceumulators, the term, “counter,” may be used
to refer to any one of the multistable elements, or it may be used to
refer to the counting device as a whole. In this chapter the term will
be used only with the second meaning, and “digit counter” will be used
to deseribe the individual multistable counting elements when confusion

193
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would otherwise result. These definitions apply to both the binary and
decimal systems.

Some “computers” perform no function at all other than counting.
Many practical examples of simple counting are to be found, and they
vary from counters such as those which are used on a printing press to
count the number of papers printed to the high-speed electronic counters
used for counting nuclear particles. Also, counters may be found as
components of more elaborate computers; in particular, counters are
used to count and keep track of the “program steps” in a computation.

Binary Counting. An elementary arrangement for counting in the
binary system is shown in Fig. 7-1. The input pulses to be counted
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Fi1e. 7-1. Binary counter, first variation.

are applied to the binary digit counter corresponding to the lowest order.
Each time that this digit counter changes from a 1 to a 0 indication,
a pulse-type signal is sent to the digit counter in the next higher order.
‘The condenser in the signal line between the two digit counters signifies
that the otherwise steady-state output signal is differentiated to yield
the desired pulse-type signal when the digit counter changes to 0.
Although the counting speed for the counter arrangement shown in
Fig. 7-1 is limited only by the speed of the lowest-order digit counter,
the time required for the “carry” to progress through several orders may
be objectionably long. For example, when the counter indicates 0111
(decimal 7) and one additional pulse to be counted is received, the digit
counters change successively, one at a time, to the indication, 1000
(decimal 8). The time lag required for the counter to present an indi-
cation of the new total may be substantially eliminated through the
use of the counting arrangement shown in Fig. 7-2. With this arrange-
ment the input pulses are applied simultaneously to all digit counters
through “and” switches. If, for any given digit counter, the digit coun-
ters of all lower orders are standing on 1’s, steady-state signals will be
applied to the remaining input lines of the “and” switch and allow the
input pulse to pass. The delay devices are needed to prevent the appli-
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cation of a signal to an “and” switch when a digit counter changes from
0 to 1 before the input pulse has terminated. However, the delay devices
do not necessarily cause a reduction in the maximum speed of the coun-
ter; and, in cases where the action of the digit counters is slow relative
to the duration of the input pulses, the delay devices may not be required.
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Fia. 7-2. Binary counter, second variation.

The amount of switching required for the carry method in Fig. 7-2
becomes very great when a large number of orders are employed in the
counter. A reduction in the amount of switching equipment may be
achieved at a moderate cost in carry speed by the method shown in
Fig. 7-3. In Fig. 7-3, the input pulse is sent on to the next higher order
each time the corresponding counter is standing at 1. The input pulse,

o 1 D o 1 D o 1 D o 1
t t !
A A Af=

INPUT PULSES

™ O POII ITEN
IV Do WWUIV i W

Fic. 7-3. Binary counter, third variation.

therefore, has to pass through a series of “and” switches to reach any
of the counters except the first one; but this process may, depending
upon the nature of the various components in the counter, be much more
rapid than the successive operations of the digit counters as in Fig. 7-1.
The delay devices in Fig. 7-3 serve the same purpose as in Fig. 7-2.
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Compromises between the schemes shown in Figs. 7-2 and 7-3 may
be achieved, and one such compromise is shown in Fig. 7-4. The first
three digit counters and the fourth to sixth, inclusive, digit counters
handle the carries as in Fig. 7-2, but the carry is passed between the
two groups of three as in Fig. 7-3. The result is that the input pulse
has to pass through only three “and’” switches to reach the sixth digit
counter, and yet no more than three input lines are required for any
one “and” switch. The scheme shown in Fig. 7-1 may also be combined
with the other schemes in a number of different ways.
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F1e. 7-4. Binary counter compromising features shown in Figs. 7-2 and 7-3.

Half adders may be used to form a binary counter in a variety of
ways. One arrangement is shown in Fig. 7-5. The pulses to be counted
are applied to one input of the half adder corresponding to the lowest
order in the counter. The 1-output of the binary storage device is ap-
plied to the other input line of this half adder. The sum output of the
half adder is used to turn the storage device to the state representing 1,
and the carry output is used to turn the storage device to the state rep-
resenting 0 as well as to send a carry pulse to the next higher order.
From the functional operation of a half adder, it can be seen that the
storage device will alternate back and forth between its two stable
states upon the reception of input pulses, and a carry pulse will be sent
to the next higher order each time it changes to the state representing 0.
The digit counters in the next higher order and succeeding orders oper-
ate in exactly the same way. The advantage of this arrangement lies
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in the fact that the individual binary storage devices have two separate
input lines, which may allow more positive transfer action between the
two stable states than when bistable devices with a single input line
are used. Since the carry portion of each half adder is a simple “and”
switch, carry propagation can be made reasonably rapid.
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F1e. 7-5. Binary counter empioying half adders.

Another counter arrangement employing half adders is shown in Fig.
7-6. Each half adder in combination with a delay element is used as a
dynamic binary storage device. The first pulse to be counted will cause
a pulse to appear on the sum output of the lowest-order half adder, and
this pulse will be returned through the delay element to the other input
line of the half adder. The pulse will continue to circulate; that is,

DELAY —= DELAY F— = DELAY DELAY
S S S S
H H H H
- c C
INPUT PULSES

TO BE COUNTED
Fie. 7-6. Binary counter with half adders and dynamic storage.

it will be stored. The second pulse to be counted must come at a time
when the first stored pulse is entering the half adder, and when two
pulses are applied simultaneously to the input lines of the half adder
a pulse will appear on the carry output to be sent to the next higher
order to start a pulse circulating there. No pulse will appear on the
sum output, which will stop the eirculation of a pulse in the lowest-
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order digit counter. The third pulse to be counted starts a circulating
pulse in the lowest order again, and the counting process continues in a
like manner for all succeeding pulses. Certain important details have
been omitted from Fig. 7-6. In particular, means must be provided for
amplifying, reshaping, and retiming the circulating pulses. A more
difficult problem may arise from the slight delay which will occur to
the input pulses as they pass through the half adders in succession be-
cause this delay will necessitate a phase difference in the circulation of
the pulses in the various storage devices.

L N-DIGIT DELAY

INPUT PULSES__| 0

TO BE COUNTED
'— DELAY

Fric. 7-7. Binary counter with n-digit delay line for storage.

A third method of employing a half adder to form a counter is shown
in Fig. 7-7. The first pulse to be counted may come at any time. The
pulse will then circulate through the half adder and the n-digit delay
line, where 7 is the number or orders in the counter. The second pulse
must come at a time the first is emerging from the delay line; in fact,
all succeeding pulses must come at times corresponding to the arrival
of the lowest-order digit at the half adder. The carry which occurs when
the second pulse is added to the first one is returned to the half adder
after a 1-digit delay, and it then circulates through the loop as the digit
corresponding to the next higher order. When, in counting, the addition
of the carry creates a new carry, the new carry is returned with another
1-digit delay which, in effect, causes it to be entered in the next higher
order in succession, as is desired in the counting procedure. The sum
of the counted pulses appears on the output line in serial form each
time the number in the loop completes its circulation.

Decimal Digit Counters Formed with Binary Elements. In Fig. 7-1,
for example, four orders of a binary counter are shown, and the counter
is capable of registering numbers of pulses from zero to fifteen. If more
than sixteen pulses are applied, the counter will return to zero and re-
peat its operation, and an output signal may be obtained from the highest
order upon application of the sixteenth pulse. The four-order binary
counter could therefore be used as a digit counter of radix sixteen. To
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make a decimal digit counter with the four binary elements it is neces-
sary to include means for nullifying six of the sixteen stable states, and
there are several ways by which this may be accomplished. They will
be discussed under the headings of feedback connections, pulse blocking,
pulse advancing, and parallel connections.

Feedback Connections. One way to nullify effectually some of the
stable states in a counter is to enter output pulses from the digit counter
of one order to the input of a digit counter in a lower order. Means will
have to be included to insure that only one pulse at a time will reach any
given counter and that the time separation between the pulses will be
sufficient to allow them to be counted, but this problem may be solved
simply, in principle at least, by delay devices inserted in the feedback lines.
Consider, for example, the counter arrangement shown in Fig. 7-8(a). A
counter of n = n; + ne + ng orders is shown with a feedback connection
around the ny orders. The delay device in the feedback line and the “or”
function in the input line of the lowest order binary digit counter in the
ng group have been omitted for simplicity. Also, it is assumed that each
digit counter passes a signal to the next higher order when it changes
- from 1 to 0. The problem of determining how many input pulses are re-

quired to generate an output pulse may be solved by considering separately
the three groups of digit counters. An output pulse from the n; group
will be applied to the ng group for every 2™ input pulses. An output pulse
from the n, group will be obtained after each 2™ input pulses to this group
except that one additional pulse will be added to the group through the
feedback connection each time an output pulse from the group is obtained.
The feedback reduces the required number of input pulses to 2™ — 1.
The ng group functions in the same manner as the ny group; and, since
the number, N, of input pulses per output pulse for the three groups to-
gether is the product of numbers for the individual groups,

N = 2n3(2nz —- 1)2n1 — 2n1+nz+n3 _ 2n1+na

Two feedback connections are shown in Fig. 7-8(b) and, for similar
reasons,

N = 2m(@2™ — e — 1) = gmtnetns _ onitns _ onatns 4 oms

The feedback connection around the ny group is intended to be applied
to the input of the ny group only, and not to the input of the n; group
also, as might be implied from the simple diagram.

In Fig. 7-8(c), the feedback connection around the mg group reduces
the count of that group to 2"* — 1, and the feedback connection around
all three groups reduces N by 1, so that

N — zm(znz _ 1)2n3 — 1= 2m+n2+n3 _ 2n1+n3 -1
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F16. 7-8. Feedback arrangements.
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Two interlocked feedback connections are shown in Fig. 7-8(d). The
feedback connection around the n; and n, groups causes the count of
that group to be 2™*™ — 1; but, every 2™ times an output pulse is pro-
duced by these two groups, the feedback connection around the 7y and ny
groups effectually adds 2™ pulses to the first two groups. Therefore,

N = 2n1+nz -1 = g"_l\ [ - 2n1+n2+na — on1 __ oms
= 2n3) =
Note that setting n, = 0 in Fig. 7-8(d) does not produce the same coun-
ter arrangement as setting ng = 0 in Fig. 7-8(b).

The analysis of three or more feedback connections is more complex,
but it may be accomplished through extensions of the procedures which
were used for two.

1
- i O |= 0
0 [o] 0 o]
(a)
D
D
I I [} 1
- 0 0 f—
0 0 [o] (o]
(b)

F1a. 7-9. Decimal counters employing feedback connections.

Fig. 7-9 shows in more detail two of the several ways by which feed-
back connections may be used to form a decimal digit counter.

Note that, for a given design for individual binary counters, the speed
of the decimal counter arrangement in Fig. 7-9(a) is greater than for
the arrangement shown in Fig. 7-9(b). The reason is that, in (a), the
lowest-order binary counter receives only the incoming pulses to be
counted and therefore its full speed capabilities may be utilized; whereas
in (b), the lowest-order binary counter must accept two pulses in some
steps of its operation. Since the other binary counters in either arrange-
ment receive pulses less frequently, they are capable of recording two
pulses at some steps in the operation of the decimal counter without
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being a limiting factor on speed. This same principle applies as well
to the counters to be described in the next three sections.

Pulse Advancing. Instead of feeding back pulses from the high-order
binary digit counters to the lower-order counters, the input pulses may
be sent to counters other than the lowest-order counter in order to nul-
lify some of the stable states. In general, the advancing of the input
pulses around the lower-order counters must be done under control of
higher-order counters by means of switching circuits. Three decimal
counter arrangements employing this scheme are shown in Fig. 7-10.

In Fig. 7-10(a), each time the highest and lowest orders indicate a
binary 1, steady-state signals are applied to two of the three input lines
of the “and” switch. The next input pulse is then applied to the second
and third orders as well as to the first order, which has the same effect
as counting six additional pulses. The next stable state of the counter
is with all four orders indicating binary 0’s, and the counter then con-
tinues on in normal fashion with each decimal digit indicated in the
8,4,2,1 code.

The circuits may be made in a somewhat more straightforward man-
ner if the arrangement shown in Fig. 7-10(b) is used. Here, the input
pulse is advanced to higher orders on the next count after the equivalent
of decimal 8 has been reached. No delay devices are needed because
none of the binary digit counters will be receiving more than one pulse
at this time; the first three counters will be changing from 0 to 1, and
no carries will be propagated. However, with this arrangement, the
stable state representing 9 does not conform to the 8,4,2,1 code. In Fig.
7-10(c), a scheme is shown for adding 3 twice during the counting of
ten pulses, and the counter happens to operate with a 5,4,2,1 code.

In Fig. 7-10(d), the input pulse is applied to the second and third
individual binary counters when the counter as a whole stands on 0100
(decimal 4). The effect of this arrangement is to cause the counter
to operate in the 2,42,1 code, which is self-complementing. In order
that carries may be propagated from one individual binary counter to
the next, a signal must be maintained on the line marked “count.” To
complement the contents of the counter, the signal is temporarily re-
moved from the “count” line, and a pulse is applied to the line marked
“complement.” This operation causes each individual binary counter
to change to its opposite state without interruption from the carries.
The obtaining of the 9’s complement in this manner is sometimes useful
in executing subtraction because input pulses are, in effect, subtracted
as they are applied when the counter is storing the complement repre-
sentation of the total.
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Frc. 7-10. Decimal counters employing pulse advancing.
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In each of the arrangements in Fig. 7-10, short delays are needed in
the lines from the outputs of the binary counters to the “and” switches,
but these have been omitted from the figure for simplicity.

Pulse Blocking, Another idea that is sometimes used in forming a
decimal counter with binary elements is the blocking of the entry of
the pulses into some orders under certain conditions. In Fig. 7-11, for
example, a carry pulse can advance from the first to the second order

A =

— | I 1 i
— ] " _

Fic. 7-11. Decimal counter employing pulse blocking.

only when the fourth order is indicating 0, because a signal must be
applied to both input lines of the “and” switch between the first two
orders. When the first and fourth orders indicate 1’s, the next input
pulse will change the first order to 0, but the carry to the second order
will be transmitted through another “and” switch to change the fourth
order to 0. The second input line of this other “and” switch has a signal
applied when the fourth order indicates a 1. All orders in the decimal
counter now indicate 0’s, and the counting continues in normal binary
fashion with each decimal digit represented in the 84,2,1 code. The
use of two separate input lines in the fourth order merely saves one “or”
switch that would otherwise be necessary.

Parallel Connections. By applying the input pulses to be counted
to two or more separate counters and by using an “and” switeh to pro-
vide an output signal only when output signals oceur simultaneously

D

A

0

F16. 7-12. Decimal counter composed of two counters in parallel.
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from all counters, it is possible to devise a variety of new counter ar-
rangements. The number of input pulses required to produce an output
pulse will be equal to the least common multiple of the same numbers
for the individual counters. In particular, a 5-counter and a 2-counter
can be used to form a decimal counter, since 10 is the least common
multiple of 5 and 2. Fig. 7-12 shows a decimal counter arrangement
of this type. Feedback connections are used in the 5-counter, and this
is operated in parallel with a single binary digit counter. The same
number of binary counters, namely four, are required as in all previously
described decimal counters.

Ring Counters. Digit counters of any radix may be formed by as-
sembling a series of bistable devices in “ring” fashion. In the ring only
one (usually) of the bistable devices is “on,” or in the state representing
1, and the rest are “off,” or in the state representing 0. The “on” state
proceeds from one of these devices to the next in succession as the pulses
to be counted are applied to the ring circuit as a whole. The ring may
or may not be “closed”; that is, the “on’ state may proceed automatically
from the last device in the ring to the first, or it may be that separate
means are provided for turning on the first bistable device in the ring.
A ring circuit may be used to perform a function similar to that of an
electromechanical commutator, and for this reason the term “commu-
tator circuit” is sometimes used instead of “ring.” In fact, it is probably
true that commutator-type applications of ring circuits prevail because
a ring is wasteful of bistable devices in simple counting applications.
However, a decimal ring counter does offer the advantage that a static
decimal indication of the digit stored may be obtained in a more straight-
forward manner than with counters employing less than ten bistable
devices.

One form of ring counter is shown in Fig. 7-13(a), where the pulses
are applied to the input line of each bistable device which causes the
device to be turned off. Since only one was on (as indicated by an X
under the 1), only one device changes state. A signal from the device
which changed state from on to off is sent to the next one in the series
and causes it to be turned on. A delay unit is shown in series with
each line between two bistable devices. The delay allows the input pulse
to die out, but, as in previously described applications of this nature, the
operation of the bistable devices may be slow enough for the delay unit
to be omitted.

By using “and” switches as shown in Fig. 7-13(b), the input pulses
may be directed to the desired bistable devices. The 1-output from the
device which is on is applied to the corresponding “and” switch, and the



206 Arithmetic Operations in Digital Computers

1 5151

X O |l

—

| 0 |
e
4 . A A A
41 5 B I Vo }
(a)
1 mll m I I
[ ] [ ] [ ] [ ]
0 I 0 I o | 0 1
X X X X
T | LT | LT | Lo
A J ) y | )
A l«— D Ale—D]| [ale—D l:;x__go
1 } } :
(b)
[ ] [ ] [ [ ]
0 | 0 I 0 | 0 |
X X X X
L A Af \ \?
) \ \ 1 v=
[_;\7 D A D| |A D A*—E)]
! ! ! !
(c)
-—
1 ] . @
o] | o 1] | o1l | 0 |
X X X X
1“ R ?1 L\
\ ] Y Y _—
—{ A DI— A DA D — A
i Y

L 4

(d)
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input pulse is thereby allowed to pass through this switch while its pas-
sage is blocked through all of the other “and” switches. The location of
the delay units in this circuit allows a more rapid eounting action than in
Fig. 5-13(a), because no delay need be employed in the transmission
of the pulses from one bistable device to the next.

A counting action which is even faster may be obtained by using the
arrangement in Fig. 7-13(c). The input pulses not only turn off the
bistable device which is on, but they are also used to turn on the next
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Fia. 7-14. Ring counter with alternate input lines connected together.

device in the series. Therefore, the two devices operate simultaneously
rather than one after the other.

In the arrangement shown in Fig. 7-13(d), the input pulses are used
to turn the appropriate bistable devices on. At the time a given device
is to go on, a signal from the 1-output of the preceding device in the
ring is applied to the corresponding “and” switch to allow the input pulse
to be applied. When a device is turned on it causes a signal to be trans-
mitted to the preceding device to turn it off.

A type of ring circuit which employs a binary digit counter, but re-
quires no delay units, even in principle, is shown in Fig. 7-14. The
input pulses are applied to the binary digit counter, which generates
pulses on its 0 and l-output lines alternately. Kach output pulse is
applied to alternate stages in the ring. With the ring in the condition
as indicated by the X’s in the figure, the next input pulse will change
the binary counter from O to 1, and the pulse on the 1-output line will
turn “off”’ the bistable device which is second from the left. The pulse
obtained from the O-output of this bistable device is used to turn “on”
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the next one, and since no other pulse was applied to this next one, no
delays need to be used.

A binary digit counter may be used in a similar fashion for any of
the other ring circuits shown in Fig. 5-13, and in each case the delay
units may be eliminated. As before, in (b) and (¢), advantages in
counting speed may be gained; and in (d) one device comes “on” before
the preceding one goes “off.” One disadvantage in the use of the binary
counter is that closed rings must be composed of an even number of
stages.

Decimal Counters. Any of the carry schemes shown in Figs. 7-1
to 7-4, inclusive, may be applied to the decimal system. In Fig. 7-1,
decimal digit counters may be substituted directly for the binary digit
counters, which are shown. It is necessary, of course, that the decimal
digit counter yield a signal when it reaches 0. For the arrangements
in Figs. 7-2 to 7-4 the counter must provide a static output signal when
it is registering the digit, 9. The means that may be used for accom-
plishing this depend upon the nature of the digit counter which has
been selected. With an 84,2,1 counter as in Fig. 7-10(a) or in 7-11,
for example, the 1-output signals from the 8 and 1 binary digit coun-
ters may be combined in an “and” switeh to indicate 9. It is sometimes
possible to make the arrangement in Fig. 7-1 a bit faster in its operation
by using a “leaving 9” signal instead of an “arriving or 0” signal to
transmit the carry.

Counter Components Having More than Two Stable States. Although
the analysis of counting action which has been presented fits many
types of components very well, there are at the same time many other
types of counting components that are not covered by the analysis, ex-
cept by rather farfetched extensions. Among the latter are digit coun-
ters which collect charge in a condenser and reset to an initial value
when a certain potential across the condenser plates is reached; gaseous
counter tubes that support glow discharges which move from electrode
to electrode upon reception of pulses; and many forms of the ordinary
mechanical counter wheel. In general, the analysis covers only those
schemes involving essentially binary components. No functional analy-
sis has been worked out for components having more than two stable
states; each such component requires its own description.



Chapter 8

DECIMAL ADDITION AND SUBTRACTION

As in the case of addition and subtraction with the binary system
of numbers, decimal addition and subtraction may be accomplished in
computing machinery through the use of either of two different types
of devices. One type involves adders (subtracters for subtraction),
where signals representing the digits to be added are applied to appro-
priate input lines in steady-state fashion, and, after transients have
died out, signals representing the sum appear on the output lines. The
other type employs counters, which are devices that change from one
stable state to the next upon the reception of pulse-type signals. Either
type may be used in either parallel or serial systems. Because there
are so many ways by which individual decimal digits may be repre-
sented, the number of different ways by which addition and subtraction
may be performed is tremendous, and no attempt will be made to describe
them all. On the other hand, there are relatively few new ideas or
principles which can be applied to the decimal system and which were
not also applicable to the binary system.

Decimal Adders. A decimal adder requires a minimum of nine input
lines and five output lines, since a minimum of 4 bits, and therefore
four lines, are required in the representation of a decimal digit when
signals of a binary nature are employed. Fig. 8-1 shows the assignment
of the input and output lines of a decimal adder. The two digits to be
added are X and Y, and each is applied through the use of four separate
lines as indicated by “he subsecripts a, b, ¢, and d. The ninth input line,
C, is the carry from the next lower order in the addition process. The
sum digit, S, appears on the four output lines indicated by S with sub-
seripts, and the carry, if any, to the next higher order appears on the
output line marked carry. Note that in addition the carry is never
greater than 1, regardless of the radix being used, and therefore a single
line is sufficient for its transmission. If the code used for the decimal

209
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digits contains more than 4 bits, the number of input and ouput lines
on the adder must be increased accordingly. Further, there is no in-
herent reason why the same code must be used throughout; that is, one
code may be used for X, another for Y, and the code for S may be dif-
ferent from either of the first two. Even with a given set of codes for
X, Y, and S, there is a great variety in the functional arrangements
which may be used to form an adder.

Adder for the 8,42,1 Code. Among the more straightforward codes
from the standpoint of adder design is the 8,4,2,1 code, because, with this
code, the simple binary addition methods may be used to a large degree.

Y

f

YbYo XchX Xo c

LT

lc

l b
CARRY Sd Sc Sb So
Fie. 8-1. Decimal adder.

However, two problems do arise which were not encountered in the
pure binary system. One problem is in the generation of the decimal
carry. A carry signal should be sent to the next higher order when
the sum is equal to or greater than ten, but an indication of ten or
greater cannot be obtained solely by a carry from the 8-order. A decimal
carry is also desired when 1’s are present simultaneously in the 8 and
9_orders or in the 8 and 4-orders of the sum. The other problem is that
a carry has the effect of carrying sixteen instead of just ten when a carry
from the 8-order is obtained and the sum must be corrected by adding
six. For example, the sum of eight and nine (seven with a carry) is
obtained in the following manner.
1000 Eight
1001 Nine
Carry (1) 0001
11

0111 Seven

If the sum is from 10 to 15, inclusive, the carry is detected by the
other means, and it is necessary to subtract 10 from the indicated sum.
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The subtraction of 10 may be performed by the addition of 6 and the
subtraction of 16, with the subtraction of 16 accomplished by ignoring
the carry which now occurs in the 8-order. An example is in the addi-
tion of 5 and 7 to produce a sum of 2 with a carry.

0101 Five

0111 Seven
— (1) 1100

11

Ignore — (1) 0010 Two

A functional arrangement for an adder operating in this way with
the 8,4,2,1 code is shown in Fig. 8-2. The half and full adders may be

Carry, detected by presencel
of I’s in 8 and 4-orders J

YgXg Yo X4 Y, X Y, X,

Vi UM U lhre

F F F F
T L

CARRY ]

S S, s,

exactly the same as described in the chapter on binary addition and
subtraction. The signal representing the decimal carry, when it occurs,
is added into the 2 and 4-orders (as shown in the bottom row of half and
full adders) to effect the addition of 6.

If several decimal adders of the type shown in Fig. 8-2 are used to add
decimal numbers in parallel fashion, the speed of carry propagation
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becomes of interest as it did in the case of parallel binary addition.
When the sum of two decimal digits is 9 and a carry is received from
the next lower order, the sum should be changed to 0 and a carry should
be sent on to the next higher order. In Fig. 8-2 when the sum is 9, sig-
nals appear on the sum output lines of the full adder which adds X and
Y5 and the full adder which adds X; and Y;. No signal will appear on

Xg Y X Yq X, Y X, Y,
L ey Hi;y
F F F H
c_S c S c s c S
— I L
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Fic. 8-3. Adder for 8,4,2,1 code, equipped with high-speed carry.

the carry output of the latter adder because X; or Yy, but not both, will
be 1 when the sum is 9. Then, when the carry signal from the next
lower order arrives, it will cause a carry signal to be present on the
output of this adder, and this carry is applied to the full adder which
adds X, and ¥,. The signal which now appears on the sum output line
from this adder is sent to an “and” switch, the other input of which
is the sum output from the 8-order. The signal will now pass through
the “or” switch and become the decimal carry to be sent to the next
higher decimal order.

The two full adders through which the decimal carry must be sent
when the sum is 9 may be by-passed by using a functional arrangement
for a decimal adder as shown in Fig. 8-3. The full adder for adding
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X; and Y is broken up into two half adders and an “or” switch, following
the procedure described in Chapter 4 on binary addition and subtraction.
A third “and” switch is provided, and when the sum of the two decimal
digits is 9, two of the three input lines to this “and” switech will receive
signals from the half adder which adds X; and Y, and from the sum out-
put line of the 8-order. When a carry signal from the next lower order
arrives, it supplies the third input signal to the “and” switch and the
decimal carry is thereby propagated through the decimal order by pas-
sage through only one “and” switch and one “or” switch.

The several half adders, full adders, “and” switches, and “or” switches
could be combined into a single decimal adder unit wherein the individual
components lose their identity in the same way that the two half adders
and an “or” switch can lose their identity when combined into a full
adder. The variety of ways by which a decimal adder may be assembled
with “and” switches, “or” switches, and inverters is tremendous. Most
of the ways offer no particular advantages; the functional arrangements
shown in Fig. 8-2 and 8-3 are, at least, straightforward and relatively
easy to understand. However, it is possible to reduce the required num-
ber of components somewhat.

Reducing the Number of Components in the Decimal Adder. As a
general rule, when a eircuit is designed to accept all possible combinations
of input signals where in actuality certain combinations will never occur,
it is likely that more components than necessary have been used. The
discovery that this situation exists in a given circuit does not necessarily
give any indication of how to go about eliminating the unnecessary com-
ponents or to find a rearrangement requiring less components. These
steps still depend upon the designers ingenuity. In the adder of Fig.
8-2, clues that the number of components may be reduced appear in at
least two places. For one thing, when the correction is added, it is al-
ways either 0 or 6 even though the bottom row of half and full adders is
capable of accepting any one of the values 0, 2, 4, or 6. Also, the X and
Y inputs are never greater than 9, whereas the top row of full adders
would funection properly with X and Y values up to the full limit of 15.
After discovering these clues, the problem is to find, if possible, an im-
proved circuit configuration.

One way to go about the task of actually achieving a component reduc-
tion is to abandon the concept of correction by the addition of 0 or 6
and instead to examine the desired output in relation to the uncorrected
output. The uncorrected output, U, may have any value from 0 through
15; in some cases it will remain unchanged and in other cases it will be
altered as illustrated below:
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Us Uy Uy Uy

0 000 —0110

0 001 —-0111|IfC,=1
0 01 0 —-1000{IfCg=1)
0 011 —-1001

01 0 0

01 0 1

g i } (1) No correction required
1 0 0 O

1 0 0 1

1 01 0 —0000

1 01 1 —-0001

1 1. 0 0 —-0010{Always

1 1 01 —-0011((C,=1)
1 110 —-0100

1 1 1 1 —0101

If the uncorrected output is 0000, a correction may or may not be de-
sired, depending upon the input signals which caused this particular out-
put. When 0000 is the result of adding two decimal zeros, the uncor-
rected sum should remain unchanged; but when it is the result of add-
ing 7 and 9, for example, the true sum is 6 with a decimal carry (C,) and
a correction is required. Similar remarks hold for uncorrected sums of
1,2, or 3. In other words, the correction should be made if C; = 1. Note
also that when C, = 1 in these cases, Cs = 1, where Cg is the carry from
the binary adder which adds the 8 bits.

When the uncorreected sum is 4 through 9, no correction will be re-
quired regardless of the combination of input digits which produced this
sum. If the uncorrected sum is 10 through 15, a correction will always
be required, as indicated.

From an examination of the desired output signals in terms of the un-
corrected output, U, it may be observed that the desired sum, S, may be
expressed by the following Boolean algebra equations:

Sy =U;

8y = UsC, + ULl

8y = UsCo + UsUy + UxCs
S = UsCa + UsCs

The derivations of the expressions for S; and S, are reasonably obvious,
but the expressions for Sy and Sg deserve a bit of explanation. For Sy,
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the term U,C, equals 1 (Boolean) in those cases where the decimal sum
is 4 through 7 without a carry. The term U,U, equals 1 where the un-
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Fic. 8-4. Simplified adder for the 8,4,2,1 code.

corrected sum is 14 or 15 and the desired sum is 4 or 5, respectively, and
U,Cs equals 1 when the desired sum is 6 or 7 as a result of an uncorrected
sum of 0 or 1, respectively, when a decimal carry occurred. These latter
two terms have no particular arithmetic significance; they just happen
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to yield the correct result. Similarly, for Sg, the term, UsC, equals 1
when the uncorrected sum is 8 or 9 without a carry, and UgCs = 1 when
a carry occurs and the desired sum is 8 or 9.

Because of the fact that the input signals never represent digits greater
than 9, it follows that there will never be three simultaneous input signals
to the 8-bit binary adder; that is, Xs¥sZs = 0 in every case, and provi-
sion for this term need not be made in designing the decimal adder.

At least one more reduction in components can be achieved. Normally,
Us would be generated according to the expression,

Us = (Xg+ Y5 + Zs)Cs

where Cg is as defined above; but in the expression for Sg, where Uy is
used, it is combined in an “and” relationship with C,. Since C, =1
whenever Cg = 1, the Cg term may be eliminated.

The resulting functional block diagram is shown in Fig. 8-4. It is con-
ceivable that an even further reduction in the number of components may
be achieved by viewing the decimal adder as a whole instead of a collec-
tion of binary half and full adders, because some of the clues are still
present. For example, the fact that X and X, inputs are never present
simultaneously has not been considered.

Adder for Excess-3 Code. When using binary adders to add two
digits, D; and Dy, which are expressed in the excess-3 code, the sum is

Sum=D1+D2=l_)_1+3+l_)§+3=21+]ﬁ+6

where an underline is used to represent a digit expressed in the 84,2,1
code. Clearly, the sum is not in the excess-3 code unless certain correc-
tions are applied. Two cases must be considered: when D+ Dy <10
(ten) and when Dy + Dp 2> 10. In the former case, no carry to a hlgher
order is required, “and it is sufficient to subtract 3 from the sum. The sub-
traction of the 3 may be accomplished by adding 13 and then subtracting
16 by ignoring the carry which occurs. For example, consider the addi-
tion of 1 plus 4 in the excess-3 code.

0100 One
0111 Four
1011

1101

Ignore carry (1) 1000 Five

When the decimal sum is greater than 10, a decimal carry should be sent
to the next higher order. The decimal carry may be sensed conveniently
by sensing the carry in the “8’s order,” because the sum will, in this case,
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be greater than 15. The decimal carry has the effect of carrying 16,
which is 6 too much; therefore, in this case 6 must be added. But it is
still necessary to restore the sum to excess-3 code by subtracting 3, so that
the net correction should be the addition of 3.

Of course, a carry from the next lower order may be added to the two
digits, D; and D, but this may be done without affecting the nature of
the corrections which must be applied.

. licz—] e i
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F
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Fic. 8-5. Adder for excess-3 code.

A funectional block diagram of a decimal adder for the excess-3 code
is shown in Fig. 8-5. Regardless of whether the additive correction is 3
or 13, a 1 will be added into the “1’s order.” A simple inverter may be
used to perform the correction in this order, and the uncorrected sum bit
may be used as the carry from this order. The decimal carry may be
used for the additive correction bit in the “2’s order,” and the inverse
of the decimal carry may be used for the additive correction bits in the
“8s and 4’s orders” to effect the addition of 3 or 13 as is required. A
total of two inverters and seven full adders are required, except that
the carry from full adder which forms the correction in the “8’s order”
is not used. ’ : .

Decimal carry propagation is relatively slow in the excess-3 adder
because the carry must pass through all four binary orders when the
decimal sum is 9. However, it may be made faster by resolving each of
the four full adders into two half adders and an “or” switch. The corre-
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sponding bits in each binary order are added in one half adder, and the
carry from the next lower binary order is added in the second half adder.
A five-input “and” switch is then used to sense signals from the sum out-
put lines of the first half adder in each order and the carry from the next
lower decimal order. The output of this “and” switch is then combined
by means of an “or” switch with the regular decimal carry output line.
With this arrangement, when the decimal sum is 9 and a carry is received
from the next lower order, it will be transmitted on to the next higher
order through only one “and” switch and one “or” switch. The resolv-
ing of each full adder into two half adders and an “or” switch is desir-
able, if not necessary, because the sum output signals of the full adders
change during the addition of the carry to a sum of 9.

Adder for 5,42,1 Code. The 54,2,1 code is another code which is
readily adaptable to decimal addition through the use of binary tech-

Xg Vs X Ys X, Y, X, Y,
L W Wy b
F F F F
C S C € C S C S
|- |
CARRY
1o 1 !
A j—Q
2EIXE ¥
H F H
C S C S C S
IGNORE 1 ‘ l
Sy Se S, S,

Fic. 8-6. Adder for 5,42,1 code.

niques. From the listing of the 5,42,1 code in the chapter on decimal
codes, it may be observed readily that the 4, 2, and 1-bits are used in
the standard binary fashion except that decimal equivalents of 5, 6, and
7 are missing. In the adder, a carry to the “5’s order” may be detected
either by a carry from the “4’s order” or by the simultaneous existence
of 1’s in the “4’s and 2’s orders” or the “4’s and 1’s orders.” When such
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a carry is detected, 3 must be added in some cases and 5 must be sub-
tracted in other cases. The subtraction of the 5 may be accomplished
by adding 8 and subtracting 8. The functional arrangement of an adder
operating with the 54,2,1 code is shown in Fig. 8-6. Notice that it is
substantially the same as the 8,4,2,1 decimal adder shown in Fig. 8-2,
except that the “adding by 5’s” is done in the lowest three orders instead
of the highest three orders of binary adders which make up the decimal
adder.

Decimal carry propagation may be made faster by sensing by means
of an “and” switch signals from the sum output lines of the binary adders
in the “4’s and 5’s orders” and the carry from the next lower decimal
order. The output of this “and” switch is then combined by an “or”
switch with the carry output from the “5’s order.” Actually, the full
adder in the “5’s order” should be resolved into two half adders and an
“or” switch, and the sum output from the half adder which adds the two
5-bits should be used, because the sum output of the full adder changes
when adding a earry to a sum of 9.

Decimal Adders Employing Miscellaneous Codes. Decimal codes
which are not based on the binary number system require a quite different
approach in adder design. It is usually necessary to consider the decimal
addition table, which is given in Table 8-I.

TaBLE 81. DrcimaL Apprrion TABLE

Addend Digit
0123456789
010123456789
111234567890
2123456789[01
‘ 3(3456789[012
Augend 4]456789[0123
Digit 5[{56789[01234
616789012345
7{789]/0123456
8/89/]01234567
9(9(012345678

| Carry

If, for example, a given bit in the code which is chosen is 1 for decimal
digits 2, 4, and 9, switching cireuits must be designed to detect all pairs
of addend and augend digits which yield a sum of 2, 4, or 9, and there are
thirty such pairs. Similar switching circuits must be assembled for all
of the other bits in the code. Although the design of the switching cir-
cuits is straightforward, a large number of switching components are re-
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quired, and the resulting adder would probably be impractical for most
applications. It is usually possible to obtain a reduction in the required
number of components by clever rearrangements of the “straightforward”
switehing functions; however, it is, in general, extremely difficult to find
an arrangement which competes well with binary addition techniques
when these can be used.

The switching circuits for handling the carry may also require a large
number of components when the adder design is built around the decimal
addition table. When a carry from the next lower order is received, the
sum digit should, of course, be increased by 1. With some codes and
types of components this function may be relatively simple, but in other
cases it can be quite complex. As indicated in the table, there are forty-
five pairs of input digits for which a carry to the next higher is re-
quired. When a carry from the next lower order is received, the pairs
which otherwise produce a sum of 9 should be included. As with the
development of the sum, the development of the carry can be straight-
forward, but it also may be complex especially when compared with
binary techniques.

Redundancy Bits for Checking Addition. In Chapter 6 on decimal
codes, the use of redundancy bits was described for checking the transmis-
sion of decimal digits. When two decimal digits are added, it would be
advantageous if the same redundancy bits could be used to check for
errors in the addition process. For this purpose it is necessary to find a
relationship between the redundancy bit of the sum and the redundancy
bits of the addend and augend digits. Since the sum of the 1’s in the
sum digit is not equal to the sum of the 1’s in the addend and augend
digits, the nature of the addition process must be considered in finding
the relationship between the redundancy bits. Actually, of course, in
determining the redundancy bit it is not necessary to know the sum of
the 1’s in a digit, but it is sufficient to know only whether the sum of the
1’s is odd or even. The redundancy bit is (usually) 0 when the sum of
the 1’s is odd, and 1 when the sum of the 1’s is even.

The use of redundancy bits for checking addition will be described
for the 8,4,2,1 code with the addition performed as shown in Fig. 8-2.
With binary addition, a sum bit is 0 if the corresponding bits of the
addend and augend are both 0 or both 1. For this reason, the number
of bits in the sum digit would be odd or even, depending upon whether
the number of bits in the addend and augend digits, taken together, is
odd or even, except that the binary carries disrupt this simple relation-
ship. For each binary order into which a carry is added, the rule for
the sum bit is reversed; that is, the sum bit then becomes 1 when corre-
sponding bits of the addend and augend are both 0 or both 1. Therefore,
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to determine the redundancy bit for the sum decimal digit it is necessary
to examine the carries in the addition process as well as the redundancy
bits of the addend and augend. As an example, consider the addition of 6
plus 2 with a carry from the next lower decimal order.

Carries may 1
Augend 01
00

10 1
Addend 10 0| Redundancy

hi+

Sum 1001 1JUiUS

From the redundancy bits, it may be determined that the total number
of 1’s in the augend and addend is odd. Therefore, there would be an
odd number of 1’s in the sum if no carries had occurred in the addition.
Byt in this example there was an odd number (three) of carries so that
the odd-even status of the 1’s in the sum was altered an odd number of
times. The net result is that there is an even number of 1’s in the sum
and its redundancy should therefore be 1.

In these instances where the sum is ten or more and a correction of
six is added, the carries which occur during the addition of six should
be counted in the same manner.

Counting pulses which occur serially in time is no problem, but it is
not obvious how signals which appear in parallel may be counted. One
way is through the use of circuits such as those used in forming the sum
in either half adders or full adders. Note that with either a half adder or
a full adder, the sum bit is 1 if there is an odd number of signals present
on the input lines. A half adder is therefore capable of “counting” two
signals, and a full adder is capable of “counting” three. If more than
three signals are to be “counted,” the output of the adder may be used
as one of the input signals of another adder. Fig. 8-7(a) shows how a half
adder and a full adder may be used to determine whether there is an odd
or even number of signals present on four input lines. With an inverter,
as shown, this arrangement may be used to generate the redundancy bit
of a 4-bit decimal digit.

Another functional arrangement for “parallel counting” is shown in
Fig. 8-7(b). Actually, it is only a series of half adders, but the com-
ponents are arranged in the figure to make their functions more easily
understood. With this arrangement, the 8-bit is used as the redundancy
bit, but it is inverted or not, according to whether the other bits are 1’s
or 0’s. For example, if the 4-bit is a 0, the 8-bit passes through an
“and” and an “or” switeh without change. But if the 4-bit is a 1, the
8-bit becomes inverted because its path is then through an inverter.
The 8-bit is subject to a second inversion in a similar manner under
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Fic. 8-7. Methods of forming a redundancy bit.
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control of the 2-bit. A third inversion, exactly the same as the first two,
could be used for the 1-bit, but the redundancy bit so obtained would
be 1 when number of 1’s in the digit is odd, whereas it is desired (usually)
to use the opposite convention. The redundancy bit could be passed
through an extra inverter, but the inverter may be eliminated by using
the connections as shown in Fig. 8-7(b). The 1-bit causes an inversion
if it is 0, but not if it is 1. For purposes of uniformity, the same con-
nections could have been used for the inversion by the 4 and 2-bits.

A somewhat different method for generating the redundancy bit is
shown in Fig. 8-7(¢). With this arrangement both the 8-bit and its in-
verse are transmitted through the switching circuits. The 4-bit is used
to reverse the lines on which the signals appear. If the 4-bit is 0, the
signals pass through the bottom set of “and” switches and are not altered,
but, if the 4-bit is 1, the signals pass through the top set of “and”
switches and are then transmitted on to the next stage on the opposite
lines because of the reversed connections to the “or” switches. Similarly,
the 2-bit reverses or does not reverse the lines, according to whether
it is 2 1 or 0, respectively. The 1-bit is used to select one or the other
of the lines according to whether this bit is 0 or 1. With the connections
shown, the signal appearing on the output line is then the desired re-
dundancy bit. This functional arrangement is similar to the switching
circuit which is commonly used to control an ordinary electric light or
other electrical device by means of switches at several different locations.
Regardless of whether the light is on or off, its status may be changed
simply by throwing the switch at any of the locations. Each switch
reverses the connections on a pair of wires, with the result that the
circuit is closed when an odd number of switches have been changed
from their initial “off” setting.

The same type of functional arrangements may be used for “com-
puting” the redundancy bit as were used for forming it from the decimal
digit itself. Instead of “counting’ the 1’s in the sum digit, the redundancy
bits of the augend and addend and the carries are “counted.” To check
the addition, the redundancy bit should be obtained from both sources
and compared. The comparison may be performed by means of a half
adder, because the sum output of a half adder is 0 when neither or both
of the input signals are 1, such as would be the case when the redundancy
bits obtained from the two sources are the same. An output of 1 from
the half adder would indicate that the bits as obtained from the two
sources were not the same and, therefore, that an error had occurred.

However, there are further complications to the problem of checking
addition by means of redundancy bits. For one thing, the carries used
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in computing the redundancy bit should be generated separately from
the carries used in computing the sum. Otherwise, an error in one of
the carries can cause an error in both the sum and the computed re-
dundancy bit, with the result that the final comparison of redundancy
bits may fail to detect the error. The duplication of the carry eircuits
including the carries which may occur in the adding of the corrective
6 in the 8,4,2,1 code would require that almost the entire adder be

XgYg X, Y, X, Y, XY, ¢
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Fic. 8-8. Method of computing redundancy bit of sum (8,4,2,1 code).

duplicated. However, an examination of all possible cases reveals that
the corrective 6 will cause an alteration of the redundancy bit only when
added to 12 or 13 (1100 or 1101). Since the corrective 6 will never be
added to any of the digits, 4 through 9, the presence of 1’s in the 8 and
4-bits and a 0 in the 2-bit of the sum may be used to invert the re-
dundancy bit. In other words, a signal representing the presence of a 12
or 13 is “counted” along with the original redundancy bits and the
carries. The resulting functional arrangement for computing the re-
dundancy bit with separate circuits for generating the carries is shown
in Fig. 8-8.

Even when the carries are generated separately, some types of errors
can escape undetected. As an example, assume that 1 is being added
to 3, and there is a failure in the carry. '
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(O

0011 0011 Carry
Correct 0001 0001 fails

0100 0010

Since, in this case, a carry in the 2’s order causes a carry in the 4’s order,
the failure of the carry will reduce the number of carries from two to
none. The computed redundancy bit will be the same for the incorrect
sum as for the correct sum, and also the number of 1’s is the same for the
incorrect and correct sums. Therefore, the comparison of the computed
redundancy bit with the redundancy bit obtained from the sum digit
will fail to detect the error.

Although it is possible to make the checking circuits elaborate enough
to detect errors from all sources in the addition process, the number of
components necessary to do so is relatively large. If complete checking
is required, duplication of the entire adder with comparison of the sums,
bit by bit, is probably as attractive as computing the redundancy bit.

Checking Addition Through the Use of an Error-detecting Code.
When an error-detecting code is used, the adder itself may provide a
means for checking the addition if it is designed properly. As an ex-
ample, a functional arrangement for an adder employing the biquinary
code will be deseribed.

The biquinary code was deseribed briefly in Chapter 6 on decimal
codes. As was mentioned there, the code is composed of two parts—the
binary part and the quinary part. The two bits in the binary part signify
whether the decimal digit is from 0 to 4 or whether it is from 5 to 9, and
the bits may be considered as having the weights of 5 and 0. The 5 bits
in the quinary part have the weights of 4, 3, 2, 1 and 0. When adding
two decimal digits, the binary and quinary parts of the digit codes may
be added separately, except that an “internal ecarry” may occur from the
quinary part to the binary part. Mathematically, the addition process
is quite simple. The quinary parts of the augend and addend can yield
a sum which may be from 0 through 8. When the carry from the next

lower decimal order is added, the range may be extended to 9. For sums
of 5 through 9, the quinary part is reduced by 5 and an internal carry
is sent to the binary part. Therefore, in the binary part, “5’s” may be
received from three different sources, the binary parts of the augend
and addend and the carry from the quinary part. The binary part of
the sum and the carry to the next higher decimal order may be generated
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Fic. 8-9. Error-detecting adder for quinary part of biquinary code.
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from the three “5’s” in the binary part in the same manner that the
sum and carry are generated in ordinary binary addition, which has
already been discussed.

Fig. 8-9 shows a functional block diagram for the addition of the
quinary part in the biquinary code. The quinary bits of the two decimal
digits are X, through X, and Y, through Y,. Two lines are used for the
carry from the next lower decimal order. A signal is obtained on one
line, marked C, when a carry is present and a signal is obtained on the

. | A o nnnivrad MA anf e

other uue, marked v, wnen 1o ucur:y is received. To PEriorin auuw;uu
the quinary bits of X and Y are applied to a set of “or” and “and”
switches, as shown, to form an intermediate sum, J, which may have
any value from O through 8. A signal is present on the J; line, for ex-
ample, in the case where X is 1 and Y is 0, or in the case where X is 0
and Y is 1. Then in Boolean algebra notation (see Chapter 2), the
signals on the nine lines representing the nine possible values of J >may

be generated as follows:
Jo = XoYo
J1 = X 1Yo + XoY,
Jo = XY + X1Y1 4+ XoY,
Js = X5V + Xo¥V1 + XuYa + XoV3
Jo = X4Yo + X3V + XoYo + X1 V3 + XYy
Js = XuV1 + XY, + XpYs + X1 ¥y
Jo = X4¥5 + X3V3 + XY,
Jr = X4¥V3 + X3Y,
Jg = X, Y4
The lines on which these signals appear are indicated in the figure. The

“carry”’ and “no carry” lines from the quinary part to the binary part,
also in Boolean algebra notation, are:

1
v

MNoares . T T [ S
ValTy = v 4 Tu5"r06—rur7+urg

NOC&I‘I‘y=J0+J1+J2+J3+J4N

In forming the quinary part of the sum, a few switching components may
be saved if, instead of adding the carry at this point, a tentative sum is
formed first and the carry is added as a subsequent step. The five lines
in the tentative sum, T, would then be:
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To=Jo+Js
T=Ji+Je
To=Jdy+Jy
Ts=Js+Js
Ty=J,s

The “final” sum, S, is obtained after adding the “carry” and “no carry”
(C and N) signals from the next lower order according to the following
arrangement:

8o = ToN + T,C
Sy = TN + ToC
Se = ToN + T',C
S3 = TsN + T,C
8y = TyN + TsC

The various switching functions set forth above are indicated in Fig. 8-9.

To retain the error-detecting feature of the biquinary code, it is
necessary to use both the “carry” and “no carry” signals in forming the
sum. Although through the use of an inverter, the “carry” signal would
be sufficient to obtain the desired sum, a failure in that part of the adder
which handles the carry could go undetected. With the arrangement as
shown, if any individual “and” or “or” switch fails or if an improper
combination of input signals is applied to the adder, there will be none
or two signals present on the five lines carrying the quinary part of the
sum digit, or else signals will appear on neither or both of the “carry”
and “no carry” output lines. Either of these conditions may be used to
detect the presence of an error. However, it would not be possible to
correct the error, and it is possible that two or more simultaneous fail-
ures in the switches would not be detected.

Any of the arrangements shown in Fig. 8-7 could be used to check
the presence of one and only one signal in the five sum lines. Since these
arrangements sense the odd-even status of a number of signals, three or
five signals would produce the same response as one, but the presence of
three or five signals would indicate that two or more errors had occurred.
Because the adder is useful in detecting the presence of only one error
at a time anyway, the odd-even count is sufficient for checking the sum.
If desired, more elaborate checking arrangements may be designed.

A moderate reduction in the number of switching components required
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for the quinary part of the biquinary adder may be achieved if the J
signals are formed according to the following Boolean algebra expressions.

Jo = XoYy
= (Xo + Yo)(X1 + Y1)
J2 = (Xo+ Yo)(Xz + Y3) + X1y
J3 = Xo+ Y0)(X3+ Y3) + (X1 + Y1)(Xz + V)
Jo=(Xo+ Yo)(Xy+ Yy) + (X1 + V1) (X3 + V3) + X,V
Js = (X + V2)(Xz + V3) + (X1 + Y1)(Xs + Vo)
Jo = (Xo+ Y2)(Xs + Yy) + X573
Jr = (X3 + Y3)(Xs + Yo)
Js = X,Y,

That these expressions are equivalent to the previous ones may be
understood by expanding them to simple “and-to-or” form and noting

A B c D E
0 0 l—+——o0 0
A 1a A A
1 |
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INDICATOR SIGNAL
¥F16. 8-10. Functional block diagram for indication of one and only ome signal.

that terms such as XX, may be ignored because only one X signal and
one Y signal will be applied at any one time. However, in the event
of an error it may happen that signals will appear on three instead of
just two of the final output lines representing the sum. An example
of this kind of error occurs when one of the “or” switches, say the one
for Xy + Y, produces an output when it should not.
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To check the above form of the adder for errors it is necessary to have
a circuit which will indicate the presence of one and only one signal on
the five output lines; the simple indication of an odd number of
signals is not sufficient. A block diagram of a switching circuit which
will provide this function with a reasonable quantity of components is
shown in Fig. 8-10. This particular arrangement is useful in that it may
be readily expanded in a straightforward manner to sense the presence
of one and only one signal on any number of signal lines.

Addition Through the Use of Decimal Digit Counters. Decimal digit
counters may be used to effect addition in a manner analogous to the
way in which binary counters were used for binary addition. In the
case of parallel operation, a decimal digit counter is used for each order
in the numbers which are to be added. Each individual digit of a
number is transmitted by a series of pulses with the number of pulses
equal to the value of the digit. The units, tens, hundreds, and so on,
digits are transmitted on separate lines to units, tens, hundreds, and so
on, counters, respectively. After the one of the numbers to be added
is entered into the counters, and second number is entered in a similar
fashion. If, for example, the hundreds digits of two numbers which are
being added are 2 and 7, two pulses will be sent to the hundreds counter
when the first number is entered, and seven pulses will be sent to the
same counter when the second number is entered. The counter will then
have received nine pulses and will register the digit 9. A similar process
will take place in the counters of all orders. Of course, the sum of the
two digits in a given order may be more than ten, in which case the
counter will register only the excess above ten, and a pulse must be
entered in the counter of the next higher order to increase the digit in
that counter by one. This extra pulse is the familiar carry. If a given
counter registers a total of 9 and a pulse is received from the next
lower order, the counter must not only advance to 0, but it must also
cause the carry to propagate to the next higher order. Functionally, the
various addition methods employing counters differ, for the most part,
only in the manner in which the carries are propagated from order to
order.

With the binary system of numbers it was possible to generate the
carry signal by comparing the binary digit entered into a counter with
the digit in the counter after the entry. If the digit entered was a 1 and
the digit in the counter was a 0, the counter must have changed from 1
to 0, and, therefore, a carry should be sent to the next higher order. It is
conceivable that an analogous method for transmitting carries could be
worked out for the decimal system, but for most applications the idea
does not appear to be practical. To generate the carry by this method
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in the decimal system, it would be necessary to employ almost as much
equipment as is required to form a decimal adder, because there are so
many digits to be compared. For example, if the digit in the counter is
a 3 after entry of the number being added, a carry should be sent to the
next higher order if digit entered was any digit from 4 through 9, but
no carry should be sent if the digit entered was from O through 3. Also,
since the digit entered is represented by a series of pulses, it is usually
impractical, if not impossible, to make the digit entered available for
comparison after the entry.

It is more common, or almost universal, practice to generate the earry
by a signal which is obtained from the counter itself when it passes
from 9 to 0. Since the counter may pass from 9 to 0 at any time during
the entry of the pulses being added, most types of counters are designed
to store the earry until the entry of pulses is complete. Subsequently, a
“carry pulse” initiates the actual transmission of the carries from
order to order. One functional arrangement for accomplishing this re-
sult is shown in Fig. 8-11, which illustrates three orders of a parallel
aceumulator. “Digit pulses,” which are the pulses representing the
digits being added, are applied to the counters of the orders correspond-
ing to the respective digits; that is, for example, if the number 37 is to
be added, three pulses are sent to the tens counter and seven pulses are
sent to the units counter. If any decimal digit counter changes to the
state representing 0, a pulse-type signal is sent from that counter to its
corresponding carry-storage device and turns it from “off” to “on.” In
the figure this function is represented as a line passing from the 0-output
of the counter through a condenser to a binary storage device. The eon-
denser differentiates the otherwise steady-state signal, and “off” and
“on” may be considered to correspond to 0 and 1, respectively, in the
binary carry-storage device. Before the start of the addition process,
all carry-storage triggers had been set to 0 through the action of a pulse
on the “carry reset” line.

After all digit pulses have been entered into the counters, a carry pulse
is applied to the line indicated. For each order in which a carry had
been generated, signals will be present simultaneously on both input lines
of the No. 1 “and” switch and the carry pulse will be transmitted
through a delay device to the counter in the next higher order. If a
counter contains the digit 9, and a carry pulse is received from the
next lower order, the carry pulse will be automatically propagated to
the next higher order because signals will be applied simultaneously to
both input lines of the No. 2 “and” switch. The delay device is neces-
sary in principle to prevent the transition of the counter from one state
to the next before the carry pulse has disappeared; otherwise, the carry
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pulse might be propagated from one order to the next when it should not
be. In some cases the decimal digit counters may be slow enough in
their counting action to cause the need for a separate delay device to be
eliminated.

The carry arrangement shown in Fig. 8-11 is actually no more than
the decimal equivalent of a binary carry arrangement which was de-
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Fic. 8-11. Parallel decimal accumulator.

seribed in connection with binary addition. In the binary system it was
found possible to propagate the carry pulse, as described, or it was pos-
sible to apply the signals from the counters to the switches in such a
manner that these signals would be propagated, and the carry pulse
would then be sent directly to the counters. The same idea may be
adopted in the decimal system. One order of a parallel accumulator
operating in this fashion is shown in Fig. 8-12. With this arrangement
the digit pulses, the counter, and the carry-storage device function as
before. The distinguishing feature is that the l-output of the carry-
storage device is sent directly through the “or”” switch to the next higher
order. Also, in a given order, if such a signal is received from the next
lower order and the counter contains the digit 9, the signal will be
propagated to the next higher order through the action of the No. 1
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“and” switeh. The signal is also applied to one input line of the No. 2
“and” switch; therefore, the carry pulse will pass through the No. 2
“and” switch, through the delay device, and through an “or” switch to
the counter regardless of the order in which the carry originated. This
arrangement, is slightly faster than the one described previously because
the propagation of a signal from order to order starts immediately upon
entry of the digit pulses instead of upon application of the carry pulse.
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Fie. 8-12. Variation in the parallel decimal accumulator.

Two orders of another type of carry arrangement are shown in Fig.
8-13. After entry of the digits a carry “gate” signal instead of a pulse
is applied to transmit the carries. In a given order, the 1-output of the
carry-storage device in the next lower order is applied to an “and” switch.
When the carry gate is applied, the differentiated output from the “and”
switch is entered into the counter as an additional pulse to be counted.
If this additional pulse happens to cause the counter to pass from 9 to
0, the carry-storage device will be changed to 1 and a signal will be
transmitted to the “and” switch of next higher order. It is assumed
that the carry-gate signal is still applied, and therefore a pulse will be
entered into the counter of the next higher order. The carry-gate signal
must be maintained for a length of time sufficient to allow the propaga-
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tion of carries through all orders. Since the counters and carry-storage
devices must all function one after another, this carry propagation
method is relatively slow, but less switching equipment is required than
for the other methods. The method also has the advantage that no de-
lay devices are needed, even in principle.

If it is desired to eliminate the carry-storage devices, the carry propa-
gation method shown in Fig. 8-14 may be used. With this arrangement,
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Fic. 8-13. Parallel decimal accumulator employing carry “gates.”

carries are sent from one order to the next immediately after a counter
passes from 0 to 9 rather than after all digit pulses have been entered.
When eliminating the carry-storage devices, two important problems
must be solved. One problem arises from the fact that, when a carry
occurs in a given order, the counter in the next higher order may be
receiving a digit pulse at substantially the same time. Therefore,
means must be provided for delaying the carry pulse sufficiently to pre-
vent its interfering with a digit pulse, and yet in the interests of fast
operation the delay should not be cumulative as the carry is propagated
from order to order. The second problem arises in the attempt to solve
the first one. If a given counter contains the digit 9, a carry from the next
lower order may be transmitted without substantial delay to the next
higher order through the use of an “and” switch with the 9-output signal
from the counter used as one input signal for the switch. But when
the given counter changes from 9 to 0, a second and unwanted carry sig-



Decimal Addition and Subtraction 235

nal will be transmitted to the next higher order unless means are pro-
vided to prevent it.

Fig. 8-14 shows one way in which the problems of automatic carry
initiation may be solved. The digit pulses are applied to the No. 1 “and”
switeh in a given order as well as to the counter. When the counter
arrives at the state representing 0, a pulse is applied to the other input
line of this “and” switch. It is assumed that there is no delay in the
transfer of the counter from 9 to 0; if there is a substantial delay, a
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F1e. 8-14. Parallel decimal accumulator with automatic carry initiation.

compensating delay may be placed in the first input line of the “and”
switch. The coincidence of pulses at the No. 1 “and” switch then causes
a pulse which acts as a carry pulse to be sent through delay device, D,
to the next higher order. Delay device, D;, allows sufficient time to
elapse between the arrival of a digit pulse and the arrival of a carry pulse
to make it possible for the counter to aceept both pulses. When a counter
contains the digit, 9, and a carry pulse is received from the next lower
order, the carry will be transmitted to the next higher order through the
No. 2 “and” switch in a manner which has been described previously.
However, when the counter transfers from 9 to 0 upon reception of a
carry pulse, it will not transmit a second pulse to the next higher order
because no digit pulse is being applied to the No. 1 “and” switch at this
time, and therefore the pulse from the 0-output of the counter cannot get
through. Delay device, D,, allows the carry pulse to die out at the
input of the No. 2 “and” switch before the counter changes state. Note
that when a carry pulse is propagated through many orders, it must pass
through only one D; and one D, delay device. The outstanding disad-
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vantage of this method of carry propagation is that the accumulator is
made slower for a given type of components because the time between
individual digit pulses must be increased sufficiently to allow for carry
propagation after any one of them.

In all of the accumulator arrangements which have been described,
the carry was generated by the arrival of the counter at the state repre-
senting 0. In many applications it is equally practical or even preferable
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Fie. 8-15. “Leaving 9” carry applied to counters with intermediate stable states.

to use the 9-output signal from the counter to generate the carry. The
differentiated 9-output signal will yield a pulse in one direction when the
counter arrives at 9 and another pulse, but of opposite polarity, when the
counter leaves 9. This opposite polarity “leaving 9” pulse may be used
for carry purposes just as well as the “arriving 0” pulse because, if a
counter leaves 9, it is known that it will arrive at 0. One advantage of
using the “leaving 9” pulse is that the 0-output line from the counter may
be eliminated with the 9-output being used both for carry generation and
carry propagation.

With some types of digit counter it is necessary to use the “leaving 9”
signal in order to obtain satisfactory carry propagation. Included in
these types are gas-tube counters, of which there are several varieties.
A gas-tube counter requires pulses which have a relatively long duration
rather than short “impulse-type” characteristics. The pulse to be counted
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causes the counter to transfer to one of ten intermediate stable states,
and at the termination of the pulse the counter transfers from the inter-
mediate stable state to one of the stable states which represents a digit.
The functional arrangement is as shown in Fig. 8-15. The carry pulse
which is entered into the counter of a given order is the carry gate com-
bined with the 1-output of the carry-storage device in the next lower
order. If the entry of a carry pulse causes the counter to leave 9, the
corresponding carry-storage device will be changed from 0 to 1 and a
carry pulse will thereby be applied to the counter in the next higher
order. At the termination of the carry-gate signal, each counter which
has been affected will transfer from an intermediate state to the next
digit-representing state.

The “leaving 9” carry is also required for some forms of parallel ac-
cumulators employing counters comprised of magnetic cores. The rea-
sons are similar in that the magnetic core counter operates through the
use of intermediate stable states, to which the counter transfers when
proceeding from one digit-representing state to the next.

Parallel-serial and Serial-parallel Operation. The adders which were
described may be used to add decimal digits either in parallel or serially.
If they are used in parallel, the operation might be ealled parallel-parallel,
because both the decimal digits and the bits within the digits are handled
in parailel. If serial operation is employed, the adder unit itself func-
tions in the same way, except that only one such unit is required to add
two decimal numbers, and the carry is stored after the addition of one
pair of digits and is added to the next pair of digits along with the addi-
tion of those digits. Since the individual bits of the decimal digits are in
parallel, this type of operation might be called serial digit, parallel bit.

In the case of the accumulators employing decimal digit counters, the
pulses representing the digits were applied in serial fashion even though
the operation with regard to the digits was of a parallel nature. Opera-
tion of this type might be called parallel digit, serial bit. On the other
hand, a single decimal digit counter may be used to add to decimal
numbers. First, the units digit of one number may be entered into the
counter, and then the units digit of the other number may be entered.
The counter would then contain the sum of the two digits; and the carry,
if any, may be stored in a separate carry-storage device. The sum may
then be removed from the counter, such as by shifting each bit into the
first stage of a shifting register. After resetting the counter to zero, the
carry from the units order may be entered as one pulse and the counter
is ready to accept pulses representing the tens digits of the numbers being
added. Since both the digits and pulses representing the digits are ap-
plied serially, this mode of operation is serial-serial.

The four types of operation mentioned above do not exhaust the possi-
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bilities. In fact, there are many variations in the ways decimal digits
may be handled for addition. One variation, which is a form of serial-
serial operation, will be described because it illustrates a bit-to-bit carry
propagation scheme which has not been deseribed previously. The
functional arrangement is shown in Fig. 8-16. An 84,2,1 code is used.
When adding the decimal digits of corresponding orders of two numbers
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Fic. 816. Another arrangement for decimal addition.

the 8,4,2,1 binary digit counters are set to zero. The carry-storage de-
vice, indicated by C, contains the carry from the addition of the next
lower-order digits. A pulse applied on the “carry entry” line enters the
carry in the 1’s storage device, and the carry-storage trigger is then reset
to zero through means not shown. One of the digits then appears on the
“digit input” line in serial form; and, during the same time, control
signals are applied on the “control” lines. At the time an 8-bit is to
arrive, the 8-control line allows a pulse to be entered into the 8's
counter if there is an 8 in the binary coded representation of the digit.
The 4, 2, and 1-bits are channeled into the 4’s, 2’s, and 1’s counters in a
similar fashion. The digit of the same decimal order in the other number
then appears on the “digit input” line and is entered into the storage
devices in the same way. If any of the storage devices change from 1
to 0 when the second digit is entered, a pulse will be sent to the counter
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of the next higher binary order. The distinguishing feature of this
method of addition is that no storage devices are required for the binary
carries; and the binary carries may be sent directly through an “or”
switch because there will be no other bits being entered into the adding
device at this time. If the decimal carry-storage device, C, receives a
pulse or if the sum contains an 8 and a 4-bit or else an 8 and a 2-bit, a
decimal carry is required and 6 should be added to the sum to correct it.
Both of these results may be obtained by applying a pulse on the line
marked “correction puise.” A puise will be entered in the 4’s counter
and subsequently, because of the delay device, into the 2’s counter. The
binary carries resulting from the addition of 6 will cause the decimal
carry-storage device, C, to be changed from 0 to 1 if it was not already
at 1. ‘The sum digit is then withdrawn from the binary counters by
means not shown; and, after the counters are reset to zero, addition may
be performed on the digits of the next higher decimal order.

Decimal Subtraction. As in the case of subtraction in the binary sys-
tem, there are two general methods of subtracting in the decimal system.
One method might be called “direct subtraction,” and the other method
involves the addition of complements. Either method may be adapted
to either decimal adders or decimal counters.

When the decimal digits are coded in the binary 8,4,2,1 code, for ex-
ample, a sort of hybrid form of subtraction may be used; that is, the
decimal digits may be subtracted direetly, but the subtraction of the in-
dividual digits may be accomplished through the addition of binary com-
plements.

Direct Subtraction. For direct subtraction, a “decimal subtracter”
may be used in place of a decimal adder. A decimal subtracter would
have a minimum of nine input lines and five output lines, which is the
same number as is required for an adder; but borrow signals would be
substituted for carry signals, and four of the output lines would represent
the difference digit instead of the sum digit. As with adders, there are a
great many ways by which a subtracter may be formed, even when the
code for representing the decimal digits is specified. When one of the
codes with binary properties such as the 84,21 code or the excess-3
code is employed, binary subtracters, which were described in Chapter
4 on binary addition and subtraction, may be used. The use of the
84,2,1 code is particularly simple. The binary bits comprising the
coded representations of the decimal digits are merely applied to appro-
priate input lines of four binary full subtractors. If a borrow signal is
obtained from the 8’s order, this borrow signal without any corrections to
be applied represents the decimal borrow to be sent to the next higher
decimal order. However, when a borrow occurs, it is necessary to cor-
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rect the difference by subtracting 6. For example, when subtracting 7
from 5, the following steps are taken.

Borrows 1 O
0101 Five
0111 Seven

1110
Subtract 6 11

(=) 1000 (—) Eight

The result is 8, which is the 10’s complement of the correct difference, 2.
If 777 were subtracted from 555 by the use of three decimal subtracters
in parallel, decimal borrows would be subtracted in the tens and hundreds
orders, and the result would be 778, which is the 10’s complement of the
difference, 222. (Strictly speaking, it would be the 10" complement,
where n is the number of orders, but this term is not usually used.) The
9’s complement of the difference may be obtained by using an end-around
borrow in the same fashion that an end-around borrow was used in
binary arithmetic. (The 9’s complement is obtained by subtracting each
individual digit in the number from 9.) If desired, conversion from 9’s
complement representation to true representation may be accomplished
as deseribed in Chapter 6 on decimal codes.

When counters are used for direct subtraction, it is necessary that
the counter be able to count “backwards.” Counting backwards in the
decimal system is more of a problem than in the binary system, because
a binary digit counter does nothing but transfer back and forth between
0 and 1 regardless of whether it is counting forwards or backwards. For
a decimal counter to count backwards, it is necessary that it progress
through the ten stable states in the opposite sequence. Of course, if
the counter counts only backwards and not forwards, a trivial redefining
of the stable states is sufficient to establish backwards operation. When
redefining the stable states it should be remembered that the counter
should produce a signal (the borrow) when it arrives at 9 instead of
when it arrives at 0. Since, in general, it is desired to be able to perform
either addition or subtraction, the counter must be capable of operation
in either direction. ,

Many different types of decimal digit counters have been designed
which will count either forwards or backwards. However, particularly
in the case of counters employing electronic or electromagnetic com-
ponents, very few of them have ever been adopted for use in practical
applications. The reason is not that there is anything inherently wrong
with such counters; it just seems to turn out when all details are coz
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sidered that it is more satisfactory from the standpoint of simplicity
to subtract by the addition of complements.

Subtraction by the Addition of Complements. The use of 9’s or 10’s
complements for subtraction in the decimal system corresponds almost
exactly to the 1’s and 2’s complements, respectively, which were used
for subtraction in the binary system. However, the important features
of the use of complements will be repeated here because it is not particu-
larly convenient to study binary complements when it may be that only
the decimal system is of interest.

When subtracting one number, N;, from another number, N,, by add-
ing the 10’s complement of Ny to Ns, the result is 10" — Ny 4- Nao. The

addition may have produced & carry in the highest order, or it may nct
have produced a carry. Since the highest order is the n — 1 order (the
orders correspond to the range of n from 0 to n — 1 inclusive), the carry
would be added into the nth order, but this order is presumably non-
existent. The carry, if it occurs, is therefore dropped, and this has the
effect of subtracting 107, which then yields the difference, N; — Ny, as
desired. If no carry oceurs, the 10" is not dropped and the difference re-
mains 10* — (N; — N;), which is the 10’s complement of the difference.
Note that a carry will occur whenever Ny == N, so that the absence of
a carry in the highest order may be used to indicate a negative difference
and the fact that the difference is in compiement form.

When subtracting from N, when N, is negative, the result is 10* —
N; + 10" — N,, which always causes a carry in the highest order. The
dropping of this carry then yields 10" — (Ny + N3) for the “difference.”

There are three general methods by which the 10’s complement of a
number may be obtained. One method is the obvious method of sub-
tracting from 10». For example, the 10’s complement of 3260 is 10,000 —
3260 = 6740. The second method is to obtain the 9’s complement by
subtracting each individual digit from 9 and then adding 1. The 9’s
complement of 3260 is 6739; and, when 1 is added, the same result,
6740 is obtained for the 10’s complement. The third method is to use
the rule that, when examining the digits in sequence starting with the
lowest order, all 0’s are unchanged until the first nonzero digit is reached;
the first nonzero digit is subtracted from 10 and all subsequent digits
are subtracted from 9. Although the three methods are very similar
from a mathematical standpoint, the design of the machinery for per-
forming the complementing may be quite different for the three methods.

In many applications it is desirable to use the 9’s complement in pref-
erence to the 10’s complement, because the transfer back and forth be-
tween 9’s complement and true representation is more straightforward.
The 9’s complement system does introduce one complication, and that is
the requirement of an end-around carry, but this complication is negligible
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in most parallel systems and is not a great disadvantage even in some
serial systems. Since the 9’s complement of a number, N, is 10* — 1 — N,
the subtraction of Ny from N, by the addition of the 9’s complement pro-
duces the result, 10" — 1 — N; 4+ No. If Ny < N, (the case, N; = Ng,
is not included), the result will be equal to or greater than 10", which
means that a carry will occur in the highest order. The carry is entered,
end-around fashion, into the lowest order, and this has the effect of sub-
tracting 10" and adding 1. The difference is then Ny — N, as desired. If
N1==N;, no carry in the highest order will be obtained, and difference
will be 10" — 1 — (N; — N3), which is the desired difference in 9’s com-
plement form. As with the 10°s complement system, the absence of a
carry from the highest order may be used to indicate a negative differ-
ence and the fact that the difference is in complement form. Note that
a difference of zero will be represented as being negative.

If it is required that zero be represented as a positive quantity, posi-
tive numbers may be represented in complement form and negative num-
bers in true form. To illustrate how this scheme operates, the problem -+
23 — 50 4+ 27 — 15 + 81 — 66 is worked out below.

Balance

9999 Zero
Add 23 9976

9975
End-around carry 1

9976 +23
Subtract 50 50

0026
End-around carry 1

0027 -27
Add 27 9972

9999 Zero
Subtract 15 15

0014
End-around carry 1

0015 -15
Add 81 9918

9933 +-66
Subtract 66 0066

—

9999 Zero
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Table 8-I1 shows the rules for determining the sign of the balance in
all possible situations.

Tasie 8&II. RuLes ror DETERMINING SIGN OF BALANCE

No
End-around Carry | End-around Carry

Adding to + bal. + Capacity exceeded
Subtracting from - bal. - +
Adding to — bal. — +

Subtracting from — bal. | Capacity exceeded -

Several variations in the foregoing procedure are possible. One varia-
tion of importance should be considered when it is desired to represent
all numbers by magnitude and sign, with the magnitude always in true,
or always in complement, form. The above procedure may be used for
this case if appropriate conversions are made in the accumulator. How-
ever, the conversion must be made each time the balance in the accumu-
lator is negative (or each time it is positive, depending on the convention
which is used). If the number in the accumulator is always of the same
form—that is, always true or always complement—and if the number
being entered into the accumulator is entered in the same form when its
sign is the same, but in opposite form when its sign is opposite, the bal-
ance in the accumulator need be complemented only when balance
changes sign. For those systems where the complementing operation
requires extra time, this procedure may allow substantial savings in time
in many problems because the balance may change sign relatively infre-
quently compared to the total number of additions and subtractions.

Avoiding the Negative Zero Problem Through the Use of a Sub-
traction. If it is desired that zero be identified as a positive quantity
and it is also desired that positive quantities be represented in true form,
the use of subtraction instead of addition may be more convenient. To
add, the 9’s complement of the number is subtracted; and to subtract, the
true value of the number is subtracted. End-around borrow instead
of end-around carry is employed. As an example, 6 will be added to zero
and then subtracted to obtain a balance of zero.
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Balance

0000 Zero
Add 6 9993

0007
End-around borrow 1

0006 +6
Subtract 6 0006

0000 . Zero

With wheel or ring counters, subtraction is substantially the same as
addition; it is only necessary to change the “labels” on the stable states
to change from addition to subtraction. However, when the decimal
counters are composed of binary counters operating in the 84,2,1 code,
for example, some actual physical changes in the counters are required
when altering them to perform subtraction instead of addition.

Obtaining the 9’s Complement. The methods by which digits may be
subtracted from 9 in obtaining the 9’s complement depend greatly upon
the code, the type of computer components, and the type of operation
(serial-serial, etc.) being used. A method applicable to the 8,4,2,1 code
with bits in parallel was described in Chapter 6 on decimal codes. Also,
a scheme adaptable to self-complementing codes was described. An-
other commonly encountered requirement is the change of a one-out-of-
ten timed pulse indication to a series of pulses equal in number to the
value of the digit or its 9’s complement. A good example of where this
requirement is found is in the use of a punched card where a digit is
represented by a punching in one of ten locations. If the card is passed
by a brush such that the ten locations pass the brush one at a time, the
brush will make an electrical contact through the hole at a time corre-
sponding to the digit punched in the card. A functional arrangement for
changing the timed pulse to the desired series of pulses is shown in Fig.
8-17. The timed pulse which represents the digit, a control pulse, and
a series of nine pulses are applied on the lines shown with the timing as
shown in part (b) of the figure. A steady signal is applied on one of the
lines marked “True” or “Comp.,” according to whether true or comple-
ment representation, respectively, is desired. For the true representation
of the digit, the binary storage device is changed from 0 to 1 by the con-
trol pulse and is changed back to 0 by the timed digit pulse. If the digit
is 3, for example, the binary storage device is on 1 for a length of time
just sufficient to allow 3 of the nine pulses to pass the “and” switch. For
complement representation, the control pulse causes the binary storage
device to be changed to 0, but the timed digit pulse changes it to 1, which
allows the last 6 of the nine pulses to pass in the case of the digit, 3.



Decimal Addition and Subtraction 245

= OUTPUT

L QR .

PULSES

ft

|
A A AF-oraA

F1 Tt 1_1 COMPLEMENT

TRUE

CONTROL PULSE TIMED DIGIT PULSE

CONTROL (a)
PULSE | TIME —
s
PULSES HEEEE NN
| 1 | 1 I | | I ] 1]
(o] i 2 3 L} 5 6 7 8 9
i h)

N w7
Fic. 8-17. Arrangement for obtaining true or complement representation of a deci-
mal digit.

Self-complementing Counters. A few types of decimal digit counters
have been designed whereby the counter itself may be used to create
the 9’s complement as well as the true representation of a digit. The
design is straightforward in the case of electromechanical counters where
the value of the digit is indicated by the position of a brush on a commu-
tator. The complement may be obtained by installing a second brush
and commutator with appropriate connections to the segments of the
commutator. In the case of decimal digit counters composed of four
binary digit counters, it is possible to cause the counter to transfer to the
9’s complement of the digit it contains by applying a pulse on a special
input line. However, for most such counters, the amount of switching
components necessary to accomplish this function is prohibitively great,
although with a counter that operates in the 24,2,1 code or some other
self-complementing code, it is sufficient to enter a pulse into each binary
digit counter and to prevent propagation of binary carries. Also some
types of gas-tube counters and magnetic-core counters have been de-
signed and constructed which have self-complementing features.
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When self-complementing counters are employed in a parallel ac-
cumulator, the number in the accumulator (the augend) instead of the
addend may be transposed to 9’s complement form. The addition with
end-around carry may proceed as before except that, whenever the sign
of the difference is the same as the previous augend, the difference will
appear in 9’s complement form. The difference may be removed from the
counters in either true or 9’s complement form through the use of the
same self-complementing properties of the counters.

The Storage of Positive and Negative Numbers. When choosing the
convention to be used with regard to the form of positive and negative
numbers in the storage part of a computer, substantially the same factors
must be considered in the decimal system as in the binary system. If 10’s
and 9’s complements are substituted for 2’s and 1’s complements, respec-
tively, the section at the end of Chapter 4 on binary addition and sub-
traction may be applied directly to the decimal system.



Chapter 9

Multiplication and division methods as used by machines working in
the decimal system are usually considerably more involved than the
same operations in binary machines. It is possible to perform decimal
multiplication and division by a relatively straightforward series of
additions and subtractions, but this “straightforward” method is fre-
quently deemed not satisfactory because of speed considerations. To
increase the speed of these operations, a variety of refinements have
been worked out, although, in general, speed is gained only at the expense
of further complexities in the computing machinery. Nevertheless, the
high-speed multiplication and division methods may be attractive, par-
ticularly in large-scale computers where the arithmetic circuits are a rela-
tively small portion of the entire machine. ’

Most of the important ideas per’oalmng to the executlon of multipli-
cation and division in a computing machine are related to the way in
which the decimal digits are manipulated mathematically in forming the
product or the quotient. The means for manipulating the digits are,
of course, important too, but for the most part the means are merely an
assemblage (often elaborate) of switches, storage devices, counters, shift-
ing registers, and other components which have been discussed previ-
ously. A considerable length of text and extensive block diagrams would
be required to explain a complete functional arrangement in reasonable
detail. Since gomg into such detail would be beyonu present pur-
poses, attention in this chapter will be centered on the arithmetic of
multiplication and division rather than the actual circuits except in a
few instances where the circuits are of particular interest.

The Decimal Multiplication Table. The pencil-and-paper method of
multiplication involves the use of the familiar multiplication table,

which is usually memorized. A multiplication table type of operation is
247
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employed in some computers, as well. The digits of the multiplier are
examined one at a time, and each digit of the multiplicand is compared
with the multiplier digit. The product of each pair of digits is then ob-
tained either from a digit-storage device that effectively stores the multi-
plication table, or, which mathematically amounts to the same thing,
the product of each pair of digits is formed by an array of switching
circuits.

The multiplication table may be employed in any of a variety of ways.
One way, which corresponds closely to the pencil-and-paper multiplica-
tion method, is to compare each digit of the multiplicand with each digit
of the multiplier and obtain the corresponding two-digit products in
sequence. The individual products are then accumulated in the appropri-
ate orders of an accumulator to form the desired product of the multiplier
and multiplicand. For a 10-digit multiplicand and an 8-digit multiplier,
for example, 80 operations would be required. Although this mode of
operation has actually been employed in some computers, it is probably
more common practice to separate the multiplication table into two parts,
the left component and the right component, and to use a somewhat
different procedure.

The decimal multiplication table separated into its two components
is shown in Table 9-I. The left-component digit of the product is the

" TasLe 9-I. DrciMAL MuULTIPLICATION TABLE

Left Component Right Component
0123456789 0123456789
00000000000 00000000000
10000000000 10123456789
20000011111 20246802468
30000111222 30369258147
40001122233 40482604826
50011223344 50505050505
60011233445 60628406284
70012234456 70741852963
80012344567 80864208642
90012345678 90987654321

tens digit and the right-component digit is the units digit if the digits
in the two factors being multiplied are both in the units order. Multi-
plication usually proceeds with the multiplier digits handled one at a
time and with the lowest-order multiplier digit taken first. The entire
multiplicand is brought into-the computation once for each multiplier



Decimal Multiplication and Division 249

digit. The multiplicand digits may appear one at a time or simultane-
ously, that is, either serially or in parallel, but in the following explana-
tion it will be assumed that the multiplicand digits are in parallel. As
an example, consider the multiplication of 916 by 93.

916 Multiplicand
93 Multiplier
738 Right components
201  Left components
2748 Partial produet
194 Right components
805 Left components

85188 Product

The first step is to compare the first digit of the multiplier, which is
3 in this example, with each digit of the multiplicand. From the multi-
plication table it is found that the right components are 8, 3, and 7 for
the units, tens, and hundreds orders, respectively. The order of any
particular component digit depends, of course, on the orders of the digits
in the multiplier and multiplicand which make up that component digit,
but the rules for determining the orders are the same as in the familiar
pencil-and-paper multiplication procedure. The left-component digits
for the first multiplier digit are 1, 0, and 2 and should be added in the
tens, hundreds, and thousands orders, respectively. The partial product
obtained from the first multiplier digit is then 2,748. The second multi-
plier digit (9) is handled in the same fashion except that the component
digits are all shifted to positions corresponding to orders one higher than
before because this multiplier digit is in the next higher order. After
adding the left and right components, the final product of 85,188 is ob-
tained.

If the right- and left-component digits are accumulated as separate
numbers with carries added in after each addition, no particular prob-
lems are encountered with the above procedure. However, two adding
operations (accumulation operations) for each multiplier digit are re-
quired, and to increase the speed of multiplication it is desirable to re-
duce the number of required additions. It is not convenient to add both
the left and right components before adding in the carries which result,
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because in a given order a carry of 2 may be necessary. In the previous
example this situation occurred in the hundreds order when adding the
left and right components obtained from the second multiplier digit.
Nevertheless, time can be saved by accumulating the left and right com-
ponents in separate accumulators and combining the two sums in one
of the accumulators as a last step in forming the product.

916 Multiplicand
93 Multiplier

Left-components Right-components
Accumulator Accumulator

2010

80500 738

_ 1940

82510 _
2678 < 2678

85188

In the illustration the right components are added into the accumulator
holding the left components, but the opposite procedure would serve
just as well. Since the accumulation of the left and right components
can proceed simultaneously, the number of additions required to com-
plete a multiplication is only one greater than the number of digits in
the multiplier. The fraction of the time saved increases with increasing
number of digits in the multiplier and approaches 50% for multipliers
of many digits.

Multiplication by Over-and-over Addition. Although it does not cor-
respond as closely to the pencil-and-paper type of operation, the simplest
form of multiplication to incorporate into a computing machine is prob-
ably over-and-over addition. With this type of multiplication the digits
of the multiplier are examined one at a time, as before, but instead of
using a multiplication table to obtain the partial products, the multipli-
cand is added a number of times equal to the value of the multiplier
digit. It is common practice to place the multiplier digit in a decimal
digit counter which counts backwards toward zero (or the complement is
placed in a counter which counts forwards), and before each step in the
multiplication process the counter is sensed. If the counter is not at
zero, the multiplicand is added and a pulse is entered into the counter
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to subtract 1 from the digit it contains. The multiplicand is added re-
peatedly until the digit in the counter is reduced to zero. At this point,
the next multiplier digit is placed in the counter and the over-and-over
addition of the multiplicand is carried out in a similar fashion except
that the orders into which the multiplicand is added are shifted accord-
ing to the order of the multiplier digit. As an example, 916 is multi-
plied by 23.

Accumulator Multiplier
000 23
916
916

1832 21
916
2748 20
916
11908 10
916
21068 00

The number of additions required to perform multiplication by this
method is clearly equal to the sum of the digits in the multiplier. If
the multiplier digits are of random values, an average of 414 additions
per multiplier digit are required.

Including Subtraction in the Multiplication Procedure. The over-and-
over addition method of multiplication may be improved upon from the
standpoint of speed if provision for subtraction is included. With sub-
traction facilities, multiplier digits, 6 through 9, are handled by subtract-
ing the multiplicand a number of times equal to the 10’s complement of
the digit and then adding 1 to the next higher-order multiplier digit.
The adding of 1 to the next higher-order multiplier digit has the effect
of adding the multiplicand ten times. To illustrate the process, 1567
will be multiplied by 7918 as a multiplier. The equivalent multiplier is
1 2 1 2 2, where the underlined digits are negative.
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00000000
Sub. 1567
(—)9999 433
Sub. 567
(-)99996866
Add 1567
00012536
Add 1567
00028206
Sub. 1567
(-)99871506
Sub. 1567
(-)98304506
Sub. 1567
(=)96737506
Add 1567
12407506

By considering the number of additions or subtractions required for
each of the ten decimal digits, it may be determined that the average
number of additions or subtractions required per multiplier digit is 2.5 if
the “carry” to the next higher multiplier digit is left out of the computa-
tions. The “carry” to the next higher multiplier digit increases by 1 the
number of operations required for that digit if it is from 0 through 4, but
decreases by 1 the number of operation required if that digit is from
5 through 9. Therefore, except for the “carry” which may be caused by
the highest-order multiplier digit, 2.5 is the correct figure for the average
number of operations required per digit when the multiplier is composed
of random digits.

Doubling. With many types of components and decimal codes,
doubling is a relatively simple operation. If the doubled multiplicand as
well as the multiplicand itself is available for use in multiplication, the
number of additions required to complete a multiplication operation may
be reduced when compared with the straightforward over-and-over addi-
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tion method. The additions necessary for each multiplier digit would
then be as follows.

Multiplier Number of
Digit Add Additions
0 Nothing 0
1 1 1
2 2 1
3 241" 2
4 242 2
5 24241 3
6 24242 3
7 2+2+2+1 4
8 24+2+2+42 4
9 24+24+242+41 5

The digits in the add column indicate the number of times the multi-
plicand or the doubled multiplicand are added in the formation of the
partial product. The number of additions required for random multiplier
digits is 2.5 per multiplier digit on the average.

In the binary system of numbers, doubling may be accomplished sim-
ply by shifting each binary digit to the next higher order. If the 8,4,2,1
decimal code is used, the same shifting procedure may be used except
that, when the doubled digit is ten or greater, a decimal carry with a
correction of +8 is required for the same reasons that they were required
when adding two decimal digits in the 8,4,2,1 code. Doubling with this
code may be accomplished by the use of binary adders as shown in Fig.
9-1(a). However, it is possible to accomplish doubling with less equip-
ment. The functional arrangement may be derived by noting that sig-
nals are never present on the 8 and 4 lines simultaneously or on the 8
and 2 lines simultaneously and that, when a correction is added, it is
always added in the 4 and 2-orders simultaneously. Another way of
deriving a functional arrangement requiring less components is writing
down each decimal digit and its doubled value in the 84,2,1 code and
observing the conditions in the original digit that create 1’s in the re-
spective bits of the doubled digit. By either procedure, the following
Boolean algebra expressions may be obtained for the bits (indicated by
D) in the doubled digit. The carry from the next lower order is C, and
the carry to the next higher order is C,. The digit being doubied is X.

Co = X5+ Xu X5 + XuXy
Dg = XgX; + X,C,

Dy = X5C, 4+ XX + XXy
D, = XlCa + X].Ca

D, =C
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Fie. 9-1. Doubling with 84,2,1 code.
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This arrangement is shown in Fig. 9-1(b). Many variations in the
arrangement are possible.

Quintupling. Another relatively simple operation is quintupling.
There are two useful ways of viewing the operation of quintupling. One
is a straight multiplication by 5, in which case the resulting right-com-
ponent digit is either a 0 or a 5, but the carry (left-component digit)
may have any value from 0 to 4. From the other viewpoint, quintupling
is a division by 2 combined with a multiplication by 10. When dividing
by 2, the “carry” to the next lower order is either 0 if the diglt is even
or 5 if the digit is odd. This “carry” is added to the next lower-order
digit after it is divided by 2. The multiplication by 10 is accomplished
matically there is no difference between the two viewpoints, but when
adapting them to machine computations there is sometimes an important
difference. When multiplying by 5 the digits are handled in increasing
order of significance and it is necessary to use three bits for representing
the carry; when dividing by 2 and multiplying by 10 the digits are han-
dled in decreasing order of significance but only one bit for the “carry”
is required.

With the 8,4,2,1 code, quintupling is readily accomplished by using
the 1-bit to indicate whether the right-component digit is 0 or 5 and
the 8, 4, and 2-bits may be used without modification for the carry.
Note that the entering of the 8, 4, and 2-bits into the 4, 2, and 1-binary
orders in the next higher-decimal order gives the effect of dividing these
bits by 2 and multiplying them by 10, which amounts to a multiplication
by 5. The functional arrangement for quintupling in this manner is
shown in Fig. 9-2(a). Again, by noting that certain combinations of
signals are never present simultaneously or by studying the bits in the
quintupled digit as a function of the 1-bit and the bits in the carry,
the following Boolean algebra expressions may be obtained for the bits
in the quintupled digit. The symbols, C4, Cs, and C;, refer to the 4, 2,
and 1-bits, respectively, in the “carry” from the next lower order, and
Q refers to the quintupled digit.

Qs = X,Cy + X,C,C,

Q= (X1 + C1)Qs = X1Qs + CuQs

Qs = (Cz + X1C1)@s = C2Qs + X1C1Qs
Q: = (X1 + C)XC)

The functional arrangement for quintupling by this method is shown
in Fig. 9-2(b).
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Quintupling may be combined with over-and-over addition to reduce
the number of additions required in multiplication. For example, for
a multiplier digit of 7, the multiplicand would be added twice and the
quintupled multiplicand would be added once. For random multiplier
digits, an average number of 2.5 additions per digit are required.

“N-tupling.” The obtaining of all multiples of the multiplicand from
the first through the ninth is here called “N-tupling.” For multiplica-
tion purposes, N-tupling is similar to using a multiplication table, but
there is a distinction between the two methods. The use of a multiplica-
tion table implies that the product of every possible pair of digits is
actually stored by some means or other in the computer. For N-tupling,
no products of digits are stored; instead, the various multiples of the
multiplicand are generated each time the multiplicand is passed through
the generating device.

The complications involved in designing a switching circuit for gen-
erating the 3rd, 4th, 6th, 7th, 8th, or 9th multiples of a number are
substantially greater than are found in obtaining the 2nd or 5th mul-
tiples. The reason is that, when the carries are added into a given order,
the value of the earry to be sent to the next higher order may be affected.
For example, when multiplying 68 by 3 the product of the 3 and 8 is
4 with a 2 to be carried to the tens order. The product of 6 and 3 is 8
with a 1 to be carried to the hundreds order, but when the carry from
the units order is added the result is a product digit of 0 with the carry
to the hundreds order increased from 1 to 2. Such a situation cannot
arise when obtaining the 2nd or 5th multiples, as may be understood
from a study of the left and right components in Table 9-I. For these
two multiples the sum of any left-component digit and any right-com-
ponent digit can never be greater than 9, but the sum may be greater
than 9 for all other multiplier digits (except O and 1, of course).

Although a “tripler” may be relatively difficult to design, the tripled
value of a number can be obtained readily through the use of a doubler
and an adder. The adder is used to add the doubled value to the num-
ber itself. The quadrupled value of a number may be obtained by con-
necting two doublers in tandem. Similarly, the 6th and higher multiples
can be obtained by doubling or adding together appropriate lower mul-
tiples. For the case of serial digit, parallel bit operation, an arrange-
ment for obtaining all nine multiples 1s shown in Fig. 9-3. In this figure
a line implies four wires in parallel to transmit the four bits of a decimal
digit, and the digits appear serially, one after the other. The carries
are sent through one-digit delay devices to be returned and added to
the next higher-order digit.
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Except in the serial-parallel multiplication scheme to be described
later, it is generally not necessary to have all nine multiples of the mul-
tiplicand available simultaneously. In fact, with the ordinary N-tupling
method of multiplication, only one multiple at a time is required, and
in this case, it is possible to achieve a substantial saving in equipment.
From Fig. 9-3 it may be observed that no more than one adder is re-

M, M

L DOUBLER 2M

™ ADDER 3M

T’ DOUBLER >~

—= DOUBLER

QUINTUPLER

ADDER

* DOUBLER

ADDER =

Fic. 9-3. An arrangement for vobtaining the 9 multiples of the multiplicand.

quired for any given multiple. Then, if one adder is provided, it is pos-
sible to generate any one of the nine multiples through the use of this
adder, two doublers, and a quintupler by switching these components
into various arrays under the control of the multiplier digit.

There is a multitude of variations in the ways by which the adder,
the two doublers, and the quintupler may be switched. While it is not
difficult to derive a workable arrangement, the finding of the one that
requires the minimum number of components is a rather tricky puzzle,
and no method of solution except cut-and-try is known. One particular
arrangement which employs the 8,4,2,1 code for the multiplier digit and
which is reasonably conserving of equipment will be described.

If the two inputs to the adder are labeled X and Y, the multiples of
the multiplicand as obtained from the doublers (4M is obtained from
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the two doublers in tandem) and the quintupler according to the follow-
ing pattern:

Mulitplier X Adder Y Adder
Digit Input Input
0 —_ —

1 1M —
2 — 2M
3 1M 2M
4 aMm —
5 5M —
6 aM 2M
7 5M 2M
8 aM aM
9 5M AM

The control signals obtained from the 4 bits of the multiplier digit, R,
may be represented in Boolean algebra by the equations,

Mz = R1R4R3 2My = R2
AM, = RBi(Rs + Rg) 4M, = Rg
5Mz = RI(R4 + RS)

where the term 4M,, for example, signifies a control signal to be com-
bined with the 4M lines in a set of “and” switches. When a signal is
present on the 4M, control line (as it will be when the multiplier digit
is 4, 6, or 8 in this arrangement), the 4th multiple of the multiplicand
will be entered into the X input of the adder.

Fig. 9-4 shows the functional block diagram of this N-tupling scheme.
A heavy line indicates four parallel wires, which means that there are
actually four times as many “and” and “or” switches as indicated in
the corresponding circuits.

The adder used for accumulating the partial products is, of course,
separate from the one indicated in Fig. 9-4. Since one accumulation
of a partial product is required for each multiplier digit except zero,
an average of 0.9 operation per multiplier digit is required for random
multiplier digits.

The Use of Counters. The properties described in the previous sec-
tions concerning the sum of the left- and right-component digits are of
particular interest when accumulators employing counters are used to
assemble the partial products in the formation of a product. When
performing an accumulating function in an ordinary manner, a counter
in a parallel accumulator receives a maximum of 9 pulses (for the digit
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9) plus a carry pulse from the next lower order. With only minor modi-
fications the accumulator may be adapted to receive both the left and
right components in the same addition operation if the multiplier digit
is 1, 2, or 5. With other multiplier digits, the sum of the left- and
right-component digits in a given order may be greater than 9; and this
would not only require that extra time be used to enter the two digits,

R
2M 2 |A |
M 0
Re= p |1 Y
DOUBLER DOUBLER
4M ADDER |—e
R A X} N-TUPLED
R A MULTIPLICAND
4
o}
R et
8 A
R, A 0
QUINTUPLERF— f \
5M
A
NOTE: EACH HEAVY f
LINE. REPRESENTS FOUR ‘E — A __E
WIRES IN PARALLEL 9 8
T,

Fie. 9-4. N-tupler (multiplier digit in 8,4,2,1 code).

but also the counter may arrive at 0 twice during the entry of the pulses
and therefore require that two carry pulses be entered into the next
higher order.

The adding of the left and right components of the 1, 2, and 5 multi-
ples of the multiplicand into an accumulator in a single operation has
been adapted to at least one electromechanical computer (IBM’s type
602A Computing Punch).

Combinations of Subtraction, Doubling, and Quintupling. Addition,
subtraction, doubling, and quintupling may be combined in a variety
of ways to obtain further reductions in the number of operations required
to perform multiplication. If all four processes are used, the number
of operations per multiplier digit can be reduced to 1.3 by handling the
multiplier digits in the following manner.
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Multiplier
Digit Operations
0 —_
1 +1
2 +2
3 +2+4+1or+5—2
4 +24+20r4+5-1
5 +5
6 +5+1or—-2-2
7 +5+20r—-2-1
8 -2
9 -1

In the above listing, 1 must be added to the next higher-order multiplier
digit when subtraction is used for multiplier digits 6 through 9, but not
for multiplier digits 3 or 4.

Table 9-IT lists the average number of operations required per multi-
plier digit when various combinations of addition, subtraction, doubling,
and quintupling are employed in multiplication. Random multiplier
digits are assumed. When subtraction is employed the figure given is
only an approximation; the correct figure is slightly greater with the
amount of error decreasing with an increasing number of digits in the
multiplier.

TasrLe 9-II. NuMBER oF OPERATIONS REQUIRED FOR MULTIPLICATION

Operations per

Functions Multiplier Digit
Addition Only 4.5
Addition and Subtraction 2.5
Addition and Doubling 2.5
Addition and Quintupling 2.5
Addition, Doubling, and Quintupling 1.7
Addition, Subtraction, and Doubling 1.5
Addition, Subtraction, and Quintupling 1.7
Addition, Subtraction, Doubling, and Quintupling 1.3
Addition, Subtraction, Doubling, and Quadrupling 1.2
Addition, Doubling, Quadrupling, and Quintupling 1.4
N-tupling 0.9

In the table, figures involving quadrupling were included because rea-
sonably fast multiplication speed may be obtained through the use of
quadrupling. Although quadrupling by itself is usually not a particu-
larly simple operation, it can sometimes be achieved readily through
two doubling operations.
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Handling the Multiplier Digits in Opposite Sequence. Except when
subtraction was involved, the multiplication methods which have been
described could be used with the multiplier digits appearing in any de-
sired sequence. It is necessary only that the multiplicand or its appro-
priate multiple be entered into the proper orders in the accumulation
of the partial products. However, when the lowest-order multiplier
digit is used first and the other multiplier digits are used in ascending
sequence, the “length” of the accumulator need not exceed the length
of the multiplicand since one product digit is definitely determined and
may be shifted out of the accumulator after each multiplier digit is
used. When the multiplier digits are used in the opposite sequence, the
length of the accumulator must be as great as the length of the product,
because of the earries which may occur in the accumulation of the
partial products.

One scheme for saving a few operations in the multiplication process
when the multiplier digits are used in descending sequence is to add
the multiplicand according to the following pattern.

Multiplier

+1

+2

+5 -2

+5 and subtract 9’s complement of
succeeding multiplier digit

+5

+54+1

+5+2

+10 — 2

-+10 and subtract 9’s complement of

succeeding multiplier digit

Doubling, quintupling, and subtraction are employed. In the case
of digits 8 and 9, the tens multiple of the multiplicand is obtained by
adding the multiplicand itself shifted one order rather than by adding
1 to the next higher multiplier digit (which has already been used).
The reduction in the number of operations is achieved when the multi-
plier digit is 4 or 9. In these two cases, after an initial addition of
5 or 10 times, respectively, of the multiplicand, the succeeding digits
are sensed in 9’s complement form and subtracted. The subtraction of
9’s complement is continued until the last multiplier digit is reached
when the 10’s complement is subtracted or until a 4 or a 9 is to be sub-
tracted, in which case the procedure reverts to addition of the multipli-
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cand. The following example is presented to illustrate the process more
clearly; the number, 5,461,023,972, is the multiplier, and M is the multi-
plicand.

5 Add 5 X 10°M
4 Add 5 X 10°M
(Sense as 3) 6 Sub.5 X 10"M; Add 2 X 10°M
(Sense as 8) 1 Sub. 1 X 10°M; Add 2 X 10°M
(Sense as 9) 0 Sub. 1 X 10°M
2 Add 2 X 10*M
3 Add 5 X 10°M; Sub. 2 X 10°M
9 Add 1 X 10°M
(Senseas 2) 7 Sub.2 X 10'M
(Sense as 8) 2 Sub. 1 X 10'M; Add 2 X 10°M

The above procedure is used in IBM’s type 602A Computing Punch.

Error-detecting Multiplier. One way to detect errors in multiplication
is to employ ordinary over-and-over addition with an error-detecting
code in an error-detecting adder. In the case of the biquinary code, at
least, error-detecting doublers and quintuplers are relatively easy to
design, and these may be used to inerease the speed of multiplication.

Also, through the use of the biquinary code, it is possible to form
an N-tupler which has error-detecting properties; and one way of doing
this will be deseribed. The multiplier digit, B, is applied to one set of
input lines, and the digits of the multiplicand M are applied one after
the other to another set of input lines. Both the right- and left-com-
ponent digits will be generated; the right-component digit, P, will be
used as the partial product digit to be accumulated in the formation
of the final product, and the left-component digit, C,, will function like
a carry to be added into the N-tupler in the formation of the next higher-
order right- and left-component digits. If the digits of M and R are
broken up into their binary and quinary parts, indicated by the sub-
seripts b and g, respectively, the product of the two digits is

(Mb + Mq)(Rb + Rq) = MbRb + Mqu'I' Rqu 'I' MqRq

In Fig. 9-5, the four parts of the product are generated in the E, G, and
J boxes. The MyR, part has a weight of 0 or 25 and the output lines
from this box may be (in Boolean algebra notation) as follows in terms

of the input signals.
Ey =M, + Ry

Ezs = M3sRs
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My Rq Ry Mq M q R
A dafn il
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Mp QUINARY ADDER / Cq
‘ 1 | ] ) A l 1 l l l
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N
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F1c. 9-5. Error-detecting biquinary multiplier.

The MR, and RyM, parts may have a weight of 0, 5, 10, 15, or 20. The
G box for the MR, part may function as follows (the G box for the RyM,
part would be the same functionally).

Go = My + R,
Gs = MsR,
Gi1o = MR,
G5 = MsR;
Gao = MsR,

The J box for the M R, part is substantially a 5 by 5 multiplication
table. The output of the J box can have a weight up to 16, but this may
be divided into “binary’ part with weights of 0, 5, 10, or 15 and a quinary
part with a weight of 0, 1, 2, 3 or 4. The respective output signals may
be generated according to these functional relationships.
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Jo= Mo+ M;+ Ry + Ry, + MR,

J5 = MsRy + MRy + MsR; + M3R; + MR,
Jio = M3Rs + M4R;

Jis = MyRy
Jo=My+ Ry
Jy = MiR; + M3R; + MyR; + M R,

Jo = MRy + MyR, + MR, + M,R;
J3 = Mle + M3R1 + M2R4 + M4R2
Js = MRy + MyR, + M2R; + M3R3

Note that there are two Jo output signals, but this should not be con-
fusing because the biquinary code itself has a binary zero and a quinary
Zero.

The “carry,” C (the left-component digit from the next lower order),
must be added to the signals generated by the E, @, and J boxes. The
quinary part, C,, is added to the quinary part of J in an ericr-detecting
quinary adder. The “carry input” part of this adder is nov used.
The output of this adder is the desired quinary part, P, of the partial
product. The carry output of this adder has a weight of 0 or 5 and
must be added to the quinary part of J as well as to C; and the output
signals from the G boxes. Fig. 9-5 shows one way of performing the
necessary additions; the input lines on the right-hand ends of the adder
boxes represent the carry input lines.

The carry output lines from the binary adder in the figure have a
weight of 0 or 50 and may be used as the desired (C,); signals. The
Z and X lines in the figure must be translated according to the following
relationships to get the desired P, and (C,), signals.

= Zo(Xo + X10 + Xo0) + Z25(X5 + X15)
P5 = Zo(X;5 + X15) + Z25(Xo + X10 + X20)
(Ca)o = Zo(Xo + X5)
(Cadio = Zo(X10 + X15)
(Ca)20 = ZoX20 + Z25Xo
(Ca)zo = Z25(X's + X10)
(Ca)ao = Z(X15 + X30)

III
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The arrangement has error-detecting properties because every set of
binary or quinary signal lines normally transmits one and only one
signal, and each output signal in any “box” is generated independently
of all other output signals. It is not necessary to apply checking cir-
cuits to all of the lines between boxes; instead, it is sufficient to check
the product digit P because an error anywhere in the circuit will even-
tually be transmitted to P. An error in C, will be detected in the next
higher order P digit since the C, becomes the C of that order.

Serial-parallel Multiplication. One of the fastest known methods of
multiplication operates with one factor (the multiplicand) presented in
serial form and the other factor (the multiplier) in parallel. The indi-
vidual bits in the digits may, in principle, be in either serial or parallel
form, although parallel bit operation appears more practical. The
method is analogous to the serial-parallel scheme described for binary
multiplication except that the decimal system introduces substantial
complications.

Although the 9 multiples of the multiplicand are being generated by
means such as indicated in Fig. 9-3, the arrangement shown in Fig. 9-6
is used to assemble them under the control of the multiplier digits. The
lowest-order multiplier digit, Ry, causes the appropriate multiple of the
multiplicand to be sent to one set of input lines to one of the decimal
adders. The first (lowest-order) digit of this multiple is the correct
digit for the final product, and it appears on the output lines of this
adder. At the same time, the next higher-order multiplier digit, R;,
causes its corresponding multiple of the multiplicand to be entered into
the next decimal adder. The output lines from this adder are sent to
the other set of input lines of the first adder, but through delay devices
which cause the lowest-order digit of this multiple to be added to the
second digit of the multiple obtained through control by Ro. The addi-
tion of these two digits may create a carry which is returned to the
adder to be added to the sum of the third digit arriving from the mul-
tiple obtained through control by R, and the second digit arriving from
the next adder. - Note that the second digit from this next adder is now
the sum of the second digit obtained through control by R, and the first
digit of the multiple obtained through control by R,.

The process continues in an analogous manner for all orders of the
multiplier and multiplicand. A new product digit is determined after
each “cycle” of operation; therefore, the time required for multiplication
is equal to the number of digits in the product times the time required
for one “cycle,” and this is simply the time required to transmit the
product in serial form.
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Although the operation of division will be described in more detail
in subsequent paragraphs, it will be mentioned here that no method is
known for reversing this method of multiplication to obtain division.

GENERATE NOTE: EACH HEAVY
M LINE REPRESENTS FOUR
= MULTIPLES OF M | WRES IN PARALLEL

123456789

] Y
- - R - R R P R
4-P, 10-T e 4-P, 10-T ! 4-pP, 10T __9
SWITCH SWITCH SWITCH
| 4 \ I'
| DECIMAL _| DECIMAL o] DECIMAL
ADDER ADDER "1 ADDER
CARRY‘ \ CARRYv CARRY‘,
I-DIGIT I-DIGIT I-DIGIT
DELAY DELAY DELAY
]
PRODUCT

Fre. 9-6. Serial-parallel multiplication.

Multiplication by “Duplation.” A frequently discussed but seldom used

plation.” In this method, one factor is repeatedly halved and the other
is repeatedly doubled. Each time a remainder of 1 is obtained from
the halving process, the appropriate multiple of the other factor is accu-
mulated in the formation of the product. As example, consider the

multiplication of 93 by 75.
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Halved Doubled Partial
Factor Remainder Factor Products
75
37 1 93 93
18 1 186 186
9 0 372 —
4 1 744 744
2 0 1488 —
1 0 2976 —
0 1 5952 5952

6975 = Product

The method works because the series of remainders is simply the
binary equivalent of the factor undergoing the halving process. Since
the binary digits are coefficients of powers of two, and since the doubling
process produces powers of two times the doubled factor, the accumula-
tion of the partial products as described is the same as multiplying by
a number in binary form.

Division. In many respects, division can be considered as being the
inverse of multiplication. The dividend, divisor, and quotient in divi-
sion would correspond to the produet, multiplicand, and multiplier, re-
spectively, in multiplicand. Instead of adding the multiplicand under
the control of the multiplier digits to form the product, the divisor may
be subtracted from the dividend in determining the quotient digits. An
example of division by over-and-over subtraction in its simplest form
is illustrated below. A dividend of 292034 is divided by 967 to obtain
a quotient of 302.

Quotient
292034
967
195334 1--
967
98634 2--
967
1934 3--
967
967 301
967
0 302

Each time the divisor is subtracted from the dividend, a 1 is added into
the appropriate order of the quotient.
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In spite of the many similarities between multiplication and division,
there are some difficulties encountered in the division process which are
not found in multiplication and which cause division to be a substan-
tially more complex operation than multiplication. The difficulties are
of such magnitude that in many computing machines it has been found
advantageous to incorporate methods of division which bear little re-
semblance to the inverse of the multiplication procedure in use.

The first difficulty involves the determination of the proper orders
from which to subtract the divisor the first time. In the above example,
if the divisor had been 002 instead of 967, the units order of the divisor
should have been subtracted from (“lined up with”) the hundred-thou-
sands order instead of the hundreds order of the dividend. When em-
ploying the usual pencil-and-paper methods of arithmetic, the proper
orders from which to make the first subtraction may be readily deter-
mined by inspection. However, “inspection” is not necessarily a simple
operation to incorporate into a machine. In floating-point computers
the problem is not usually serious, because automatic means are pro-
vided to cause the digit in each number to be shifted so that the highest-
order nonzero digit appears on the left. In fixed-point computers it is
necessary that the approximate relative magnitudes of the dividend and
divisor be known or that means be installed which will, in effect, deter-
mine the approximate relative magnitudes. The sensing of zeros in
orders higher than the highest-order nonzero -digit in the dividend and
in the divisor will yield most of the necessary information. For exam-
ple, when dividing 008726 by 093, the 9 in the divisor should be lined
up with the 7 in the dividend, but if the divisor had been 043, the 4 in
the divisor should have been lined up with the 8 in the dividend. To
handle all possible combinations of numbers, it is sufficient to line up
the highest-order nonzero digit in the divisor with the highest-order
nonzero digit in the dividend. In some cases (as in the above example
when the divisor is 093), the first quotient digit will be 0, but this does
not affect the correctness of the quotient. Of course, it is possible to
start the division process with the lowest-order divisor digit lined up
with the highest-order dividend digit, regardless of the values of any
of the individual digits. However, this process consumes an excessive
amount of time for many applications, and the large number of zeros
which will be obtained before the first nonzero quotient digit in most
practical problems will cause complications in the efficient utilization
of the significant digits in the quotient.

The second difficulty encountered in division is the determination of
when to subtract the divisor from the dividend. Probably the most
straightforward way to make this determination is actually to perform
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the subtraction and then to add the divisor if the subtraction caused
The division of 292034 by 967 would then be

a negative remainder.

accomplished by the following steps.

Sub.

Sub.

Sub.

Sub.

Add

Sub.

Add

Sub.

Sub.

Sub.

Add

(=)

292034
967

195334
967
98634
967
01934
967

05234
967
01934
967
92264
967
01934
967
00967
00967
00000
967
99033
967

00000

Quotient

30-

30-

301

302

302

302

The appropriate digit in the quotient is increased by 1 only when the
subtraction of the divisor does not cause the remainder to become nega-
tive. The number of operations (additions and subtractions) required
for each quotient digit is two greater than the value of the digit. The
quotient digit of 0, for example, requires two operations—a subtraction
to determine that the digit should be 0 and an addition to correct the
negative remainder which is obtained. The quotient digit, 9, is an ex-
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ception to the rule. If the remainder has not become negative after a
series of nine subtractions, it is known that the corresponding quotient
digit must be 9 unless an error has been made at an earlier point in
the division operation or unless the divisor was not correctly lined up
with the dividend at the start of the operation. The tenth subtraction
should always cause a negative remainder; therefore, the tenth subse-
quent corrective addition may be eliminated. An average of 6.3 opera-
tions per quotient digit are required for random quotient digits.

A third difficulty encountered in division invoives the final remainder.
In cases where the dividend is not an exact multiple of the divisor, the
division process may yield an endless series of digits for the quotient.
It is customary to obtain one more guotient digit than is desired and
then to round off the quotient so that the digits retained will represent
a quantity which is as close to the exact quotient as it is possible to
represent with the number of quotient digits retained. Round-off pro-
cedures will be discussed in more detail in a later paragraph.

Increasing the Speed of the Division Process. There are a few avail-
able tricks that may be employed to improve upon the speed of the
division process. One such trick is to shift and perform over-and-over
addition when the remainder becomes negative instead of adding the
divisor and then shifting. This variation may be used because the sub-
traction which caused the remainder to become negative has the same
effect as ten subtractions in the determination of the next lower-order
quotient digit. The next lower-order quotient digit therefore may be
determined by noting which addition operation eauses the remainder
to become positive again. Consider the division of 201,136 by 967 ac-
cording to this method.
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Sub.
Sub.

Sub.

Add

Add

Add

Add

Add

Add

Add

Add

Add

Add

Add

201136
967

104436
967

007736
967

(=) 911036
967

(—) 920706
967
(=) 930376
967
(=) 940046
967
(=) 949716
967
(=) 959386
967
(=) 969056
967

(—) 978726
967
(—) 988396
967
(—) 998066
967
(—) 999033
967

(-+) 000000

Quolient

2 (10) -

29~

28-

27-

26~

25-

24-

23 -

22-

20 (10)

209

208

In the determination of the second quotient digit (0 in this example),
the 9th addition of the divisor still did not cause the remainder to be-
come positive. Since the 10th addition must necessarily cause the re-
mainder to become positive, it need not be executed; instead the divisor
may be shifted to the right and the determination of the next quotient
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digit may be commenced immediately. The number of operations re-
quired for each quotient digit is as follows.

Quotient When When
Digit Subtracting Adding

0 1 9

1 2 9

2 3 8

3 4 7

4 5 6

5 6 5

6 7 4

7 8 3

8 9 2

9 9 1

For random digits in the quotient, an average of 5.4 operations per quo-
tient digit are required.

The use of doubling and quintupling is not as fruitful for division as
it is for multiplication, although some gain in speed may be achieved.
For example the quintupled divisor may be subtracted to determine
whether the quotient digit is equal to 5 or greater, or whether it is less
than 5. However, if a negative remainder is corrected simply by adding
back the quintupled divisor, little is saved. For example, if the quotient
digit happens to be 0, four operations are required. After subtracting
and adding the quintupled divisor, it is still necessary to subtract and
add the divisor itself in determining the 0. For random digits in the
quotient it turns out that, as with the division method deseribed above,
5.4 operations per quotient digit are required on the average.

If the divisor and its quintupled value (indicated by a 5 and a 1,
respectively) are handled according to the following pattern, with shift-
ing and addition when a negative balance is obtained, a reduction to
3.8 operations per quotient digit may be achieved.

Quotient

Digit When “Subtracting” When “Adding”
0 -5 +1 +1 +1 +1 (N) +5 +1 +1 +1 +1 (V)
1 -5 41 +1 41 +1 +5 +1 41 41 41
2 -5 +1 +1 +1 +5 41 41 41
3 -5 +1 +1 +5 +1 +1
4 -5 +1 +5 +1
5 -5 -1 ) +5 —1 &)
6 -5 -1 -1 (N) +5 —1 -1 (N)
7 -5 —1 —1 —1 ™) +5 -1 -1 —1 N)
8 -5 =1 =1 =1 =1 () +5 -1 -1 -1 —1 (V)
9 -5 —1 —1 —1 -1 +5 -1 -1 -1 —1



274 Arithmetic Operations in Digital Computers

The letter, N, indicates the cases when the remainder is negative and
“addition” should be used to obtain the next quotient digit. Note that
it is for the quotient digits 0, 5, 6, 7, or 8 whether that particular digit
was obtained by a “subtraction” or addition process.

If doubling is combined with addition and subtraction according to
the following pattern, an average of 4.0 operations per quotient digit
are required.

Quotient

Digit When “Subtracting” When “Adding”
0 -2 +1 N +2 +2 +2 +2 42 -1 (V)
1 =2 41 42 42 42 42 +2 —1
2 -2 =2 +1 ) +2 +2 +2 42 -1 "y
3 =2 -2 +1 4+2 +2 42 +2 -1
4 -2 -2 =2 +1 N 42 42 +2 -1 o))
5 =2 -2 -2 +1 42 42 +2 -1
6 -2 -2 -2 -2 +1 &N 42 42 -1 "))
7 -2 -2 -2 -2 +1 42 42 -1
8 -2 -2~2-2-241%® +2 -1 0]
9 -2 -2 -2 =2 -2 +1 +2 -1

By combining doubling and quintupling with addition and subtraction,
the required number of operations for division is reduced to 3.4 per
quotient digit. The steps required for each quotient digit are as follows.

Quotient

Digit When “Subtracting” When “Adding”
0 -5 +2 42 )] +5 +2 +2 )
1 —5 +2 42 —1 (N) +5 4+2 +2 —1 (N)
2 -5 +2 +2 —1 +5 +2 +2 -1
3 -5 +2 —1 ) +5 +2 -1 @)
4 -5 42 —1 +5 +2 —1
5 -5 —2 +1 ) +5 —2 +1 )
6 -5 —2 41 +5 —2 +1
7 -5 —2 -2 +1 (V) +5 —2 =2 +1 (V)
8 -5 —2 =2 +1 +5 —2 =2 +1
9 -5 —2 -2 +5 —2 ~2

If the first quotient digit is 1, for example, the subtraction of the quin-
tupled divisor will cause a negative remainder. The addition of the
doubled divisor will not cause the remainder to become positive again,
but the second addition of the doubled divisor will create a positive re-
mainder. At this point it is known that the quotient digit is either 1
or 2. A subtraction of the divisor will then create a negative remainder
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to provide the final determination. Since the remainder is negative, the
next quotient digit should be determined by an “adding” process. If
the remainder had remained negative after the second addition of the
doubled divisor, a quotient digit of 0 would have been indicated. The
other quotient digits are determined in an analogous manner.

By making all nine multiples of the divisor available, such as with
the arrangement shown in Fig. 9-3, a much faster division method is
possible. Each multiple (appropriately lined up) is compared with the
dividend or the remainder by means of nine separate comparing circuits.
Each comparing circuit may consist of means for performing a subtrac-
tion, but since only the carries are needed to determine the sign of the
difference, the portions of the circuits which generate the difference digits
may be eliminated. The largest multiple which leaves a positive re-
mainder after subtraction is noted because it determines the quotient
digit, and then this multiple is actually subtracted. For the determina-
tion of the next quotient digit, the nine multiples of the divisor are
compared with the new remainder. In computers where the digits are
handled serially, the comparison for the determination of the new quo-
tient digit may proceed at substantially the same time as the subtraction
of the divisor multiple corresponding to the previous quotient digit be-
cause the digits of the new remainder are made available for the com-
parison as rapidly as the subtraction progresses. With this method of
operation, division may proceed at the rate of 1.0 operation per quotient
digit.

Division by “Duplation.” It is possible to reverse the “duplation”
process which was described for multiplication and obtain another
method of division except that it is necessary as a first step to find the
largest power of two times the divisor which can be subtracted from the
dividend. Since this determination of the starting point requires ap-
proximately the same amount of time (unless a very elaborate system
of doubling and comparing circuits is employed) as the division process
itself, the method is not particularly attractive.

The initial doubling procedure may be avoided if the decimal point
of either the dividend or the divisor is shifted in a manner to make the
dividend no greater than twice the divisor. The divisor is repeatedly
halved; each time it is less than the dividend (or remainder) a subtrac-
tion is performed. Concurrently, the digit, 1, is halved; and each time
a subtraction is performed the corresponding fractional part of 1 is ac-
cumulated to form the quotient. To illustrate the process, 6557 is
divided by 79.
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Divisor Dividend
79 65.57 1.0
39.5
39.5 26.07 0.5 0.5
19.75
19.75 6.32 0.25 0.25
9.875 0.125
4.9375
4.9375 1.3825 0.0625 0.0625
2.46875 0.03125
1.234375
1.234375 0.148125 0.015625 0.015625
0.6171875 0.0078125
0.30859375 0.00390625
0.828125,
Quotient

Since the decimal point was shifted two places to the left in the dividend,
it must be shifted two places to the right in the quotient. The quotient,
82.8125, is only an approximation to the correct quotient, which is 83.
The process could be continued to yield a more accurate approximation,
but the exact value could never be found in this example because, in
reality, a conversion between a binary fraction and a decimal fraction
is being made. This division method can produce an exact representa-
tion of the quotient only in those instances where the quotient (expressed
as a quantity less than 1) can be represented exactly in both the binary
and decimal number systems.

Division Through the Use of Trial Quotient Digits. In some com-
puting machines a division process somewhat similar to the pencil-and-
paper method has been incorporated. The divisor is “compared” with
the dividend or remainder and a trial quotient digit is selected. The
divisor is multiplied by the trial quotient digit and then subtracted from
the appropriate orders of the dividend. If the remainder is positive
and less than the divisor, the trial quotient digit is the correct quotient
digit. In the pencil-and-paper method, if these conditions are not satis-
fied, the work is erased and another trial quotient digit is selected. In
a computer, the speed of division may be increased by comparing the
divisor with the new remainder and proceeding in a similar manner



Decimal Multiplication and Division 277

regardless of the magnitude or sign of the new remainder. Appropriate
amounts are added or subtracted from the quotient digits as they are
developed.

The comparison of the divisor and the dividend can be made in a
variety of ways. By making a very elaborate comparison, a very good
determination of the trial quotient digit may be made. In a sense, the
comparing of all nine multiples of the divisor with the dividend (de-
scribed in a previous paragraph) is the carrying of this process to its
extreme. At the other end of the scale, only the highest-order digit
of the divisor need be compared with only the highest-order digit of
the dividend. At least one computer (IBM’s Type 602A) operates in
this fashion. The trial multiplier digit is selected according to Table
9-ITI. Note that only the 1st, 2nd, and 5th multiples of the divisor are

TaBLE 9-IIT. ONE SysTEM FOR DETERMINATION oF TRraL MULTIPLIER DigrT
Highest-order Dividend Digit

Highest-order 51.2(.5] .5 1] 1] 11122
Divisor Digit

employed. The 0.2 and 0.5 multiples are the same as the 2nd and 5th
multiples, respectively, except that each digit in the multiple is shifted
to the next lower order. To illustrate the division process more clearly,
the division of 206,362 by 473 will be worked out as an example.
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Quotient
473 206362 0000
Sub. 2365 +0.5
(=) 30138 500
Add 473 -1
(+) 17162 400
Sub. 946 +0.2
(+) 7702 420
Sub. 946 +2
(=) 1758 440
Add 948 —0.2
(=) 812 438
Add 946 2
(+) 134 436

In the determination of the trial multiplier digit, the divisor in this ex-
ample is considered as being divided into the first three nonzero dividend
digits. For this reason, the first trial multiplier digit is 0.5 in the thou-
sands order instead of 5 in the hundreds order. As the division opera-
tion progresses, the determination of each trial multiplier digit is made
by comparing the highest-order divisor digit (4 in this example) with
the highest-order nonzero digit in the remainder occurring at the corre-
sponding point in the process. If the final remainder should happen to
be negative, the situation may be corrected by adding the divisor and
subtracting 1 from the quotient.

In another computer (IBM’s Type 602), all nine multiples of the
divisor are available so that the trial multiplier digit may have any
value from 1 through 9. Also, the first two digits of the divisor are
compared with the first two digits of the multiplicand, and the trial
multiplier digit is selected in accordance with a relatively complex selec-
tion table. Twenty-three different combinations of the first two digits
of the dividend and of the divisor are utilized in the table. If the first
two digits do not happen to be one of these twenty-three combinations,
the next higher valued combination in the twenty-three is used. With
this arrangement, the trial quotient digit may be in error by 1. If this
is the case, the machine senses the fact after the subtraction of the mul-
tiple of the divisor from the dividend, and it then corrects the quotient
digit by an appropriate addition or subtraction of the divisor and a
decrease or increase of the quotient digit depending upon whether the
trial digit was too great or too small.
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Division by Iteration—First Method. There are several different
methods available for performing division whereby the desired result
is obtained through a series of successively better approximations rather
than by a straightforward determination of the quotient digits one at
a time. One such method was mentioned in connection with binary divi-
sion. In this method, division is performed by first obtaining the recip-
rocal of the divisor through an iterative process and then multiplying
this reciprocal by the dividend. Two different formulas for obtaining
the reciprocal are, in decimal notation,

bk+1 = bk(z el xbk)

bk+1 = b}c[?)(l - .’Cbk) -+ (ﬁ:bk)zi
where z is the number for which the reciprocal is being obtained and
the 03 are the successive approximations to the reciprocal. The first
approximation, by, may be chosen in an arbitrary manner provided that
it is greater than zero and less than 2/z; if by is outside of this range,
the series will not converge. The first equation given above is “second
order” and the other equation is “third order,” which means that once
a reasonably close approximation is obtained, the number of correct
digits in the approximation is doubled and tripled, respectively, upon
each application of the equation.

One straightforward way of determining how many applications of
the equation are required for finding the reciprocal is to compare each
by + 1 with by by means of a subtraction. If the difference between the
two successive approximations is less than the allowed error for the
reciprocal, the process is complete.

It is possible to design a computer which performs division according
to this process, but the process is probably of more interest in connection
with the performing of division on a computer in which division is not
a built-in operation. The various operations in the iterative process
would be executed by means of an appropriate program which would be
a part or a sub-program of the main program for solving the problem
in which the division operation is one step.

Division by Iteration—Second Method. The division method used in
the Harvard Mark IV computer makes use of the iterative equation,
Niya (2 - Dy)N:

Diyy (2-DyD;

where N is the dividend and Dy is the divisor. If Dy is made less than 1,
then it can be shown that

Dy<D; <1



280 Arithmetic Operations in Digital Computers

In practice, the divisor is multiplied by an appropriate power of ten
to cause Dy to be equal to, or greater than, 0.1 but less than 1. After
repeated applications of the iterative equation, D; approaches 1. Fur-
ther, N; approaches the quotient because the ratio between N; and D;
is not changed when both the numerator and the denominator are multi-
plied by the same factor, 2 — D,.

By employing only approximations to the quantities, 2 — D;, the
speed of the division process may be increased. If d; is taken to be
the highest-order nonzero digit of 1 — D; (that is: di~1 — D), then
14 di~2 — D;. The digit, d;, is readily determined by taking the 9's
complement of the highest-order nonnine digit in D;. Although the use
of this approximation increases the number of times the iterative equa-
tion must be applied to obtain a given number of significant digits in
the quotient, the multiplications are rendered so much simpler that there
is a net saving in division time. When the approximation, 1 4 d;, is
used, each multiplication involves a multiplication by only one digit plus
one addition operation.

At the start of the division process, Ny is placed in a register with
its highest-order nonzero digit in the second highest order of the register.
The reason for this step is that the multiplications by the 1 + d; may
cause carries into the highest order. Either Ng or Dy, or both may have
been shifted in the initial steps of the division operation, and it is neces-
sary to record these shifts so that the decimal point may be properly
placed in the quotient. It is desirable to make the digit capacity of the
registers holding N; and D; one or two digits greater than the number

Tasre 9-IV. Exampre oF DivisioNn By ITERATION (SECOND METHOD)

) N; D; 14 4d;

0 0359 .273 1.7

1 06103 .4641 1.5

2 091545 .69615 1.3

3 1190085 .904995 1.09

4 129719265 .98644455 1.01

5 13101645765 . 9963089955 1.003

6 13140950702295 .9992979224865 1.0007

7 1315014936778660 .9999974319322405 1.000002

8 1315017566808534 .9999994310271026 1.0000005

9 1315018224317317 .9999999310268181 1.00000006

10 1315018303218411 .9999999910268139 1.000000008
11 1315018313738557 .9999999990268139 1.0000000009
12 1315018314922073 1.00000000007
13 1315018315014125 1.000000000003
14 1315018315018070

359
273

= 1.315018315018315- - -
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of digits to be retained in the quotient in order to reduce the effect of
round-off errors.

As D; approaches 1, a point will be reached (depending upon the num-
ber of digits retained) where subsequent multiplications by 1 + d; will
have no more effect than to cause the digits of D; to change to 9, one
at a time. At this point, multiplications of D; by 1 + d; may be stopped
with each subsequent d; digit determined by taking the 9’s of the appro-
priate digit in D;. The division of 359 by 273 is set forth in Table 9-IV
as an example.

Division by Iteration—Third Method. Many variations to the above
method of division may be worked out. One such variation which has
several points of difference will be described as an example. In order
to obtain the first correct quotient digit in less steps, both the dividend
and divisor are initially muitiplied by a factor which causes the first
two digits in the divisor to be either 0.9 or 1.0. Note that the ratio
between the dividend and divisor, and therefore the quotient, is not
changed by this operation. In the division of 359 by 273 as illustrated
in Table 9-V, a multiplier of 4 brings the divisor into the desired range;

TaBLe 9-V. Exawpre oF DivisioNn BY ITERATION (THIRD METHOD)

1 N; D; 2 — D;

— 0.359 0.273

0 1.436 1.092 1-0.09

1 1.30676 0.99372 14 0.0063

2 1.314992588 0.999980436 1 + 0.00001957

3 1.3150183224049476  1.00000000561713252 1 — 0.0000000056171325
4

1.31501831501831500

for some divisors a two-digit multiplier is necessary. The term, D,, is
now equal to 1.092 and N, is equal to 1.436.
Here, Dy happens to be greater than 1, but in this case

D0>D1>1

and the D; approach unity just the same.

The next step in the division process is to examine the second digit
to the right of the decimal point in the divisor. This second digit is
used as an approximation for Dy — 1. If this quantity is subtracted
from 1, the result is approximately 2 — Dy, which is the multiplier de-
sired for obtaining N, and D;. In the example, the second digit is 9,
but instead of using a multiplier of 0.91, the term, D;, is obtained by
subtracting 0.09D, from Dy, and N, is obtained in a similar manner.
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To obtain an approximation for Dy — 1, the third and fourth digits
to the right of the decimal point in D; may be used. In the example,
D; happens to be less than 1 with the result that the approximation to
9 — D; is 1.0063 since the third and fourth digits are 37. The multiplier
for D, is obtained in a similar manner except that the fifth through the
seventh digits to the right of the point in D, are used. In the table, the
digits used for obtaining the multiplier are indicated by underlining.
Tor each D;, twice as many digits are used in the approximation as in
the immediately preceding step, and the highest-order digit in the group
is in the order one lower than the lowest-order digit of the previous group.

The D; may oscillate above and below 1; each time D; is less than
1, the 10’s complement of the digits used in the approximation are em-
ployed as the multiplier, but when D; is greater than 1 the true value
of the digits are used. In the table each approximation to 2 — D; is
recorded as shown, because in those cases where it is less than 1 the
multiplications can be performed more rapidly in two parts with one
multiplier being simply unity and with a negative quantity for the other
" multiplier.

Note that the number of successive 0’s or 9’s to the right of the point
in D; is an indication of the number of correct quotient digits in the
corresponding N;. The speed of the division operation may be increased
by sensing the 0’s or 9’s in the D; and employing an equal number of
digits to the right for use in the approximation to 2 — D;. The increase
in speed so obtained can be quite great for some examples but would
be relatively small on the average. In the example presented, there
would be no increase at all in speed.

Round-off Procedures. In multiplication, the number of significant
digits in the product is, in general, equal to the number of significant
digits in the multiplier or the multiplicand, whichever has the least.
Similarly, in division, the number of significant digits in the quotient
is no greater than the number of significant digits in the divisor or the
dividend, whichever has the least. It is usually desirable that the non-
significant digits be discarded, but it is often also desirable that the
retained digits be the number with the greatest probability of being
the closest possible approximation to the exact value (which may or
may not be determinable) of the quantity being represented. For ex-
ample, if 0.573 is multiplied by 0.605, the product is 0.346665. However,
if only three digits in each factor are significant, it is implied that there
is some doubt about the accuracy of the third digit in each factor, and
only three digits in the product should be retained. If the accuracy of
the factors is +0.0005, the exact value of the product could be any
value in the range from 0.34607625 to 0.34725425. The three-digit num-~
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ber which is the closest approximation to the exact value of the product
depends upon what the exact values of the factors happen to be, and
it could be either 0.346 to 0.347, but the number with the greater prob-
ability of being the closest approximation is 0.347 (unless, of course, it
is known that the —0.0005 tolerance limit is more likely to apply than
the 40.0005 tolerance limit).

Also, even though certain digits may be significant in the mathemati-
cal sense, it may be desirable for one reason or another to ignore them.
One example occurs in accounting problems where money quantities are
not represented more accurately than can be represented by the money
system in use. Examples of this type occur particularly frequently in
interest and other probiems where percentages are involved. Consider
the problem of finding 1.5% of $614.12. The 1.5% is usually assumed
to be exact, which means that it contains an infinite number of signifi-
cant digits; in other words, all zeros to the right of the 5 are significant.
Since there are five significant digits in $614.12, the product of the two
numbers has five mathematically significant digits, but not more than
three ($9.21) are desired in this case, because the fourth and lower-order
digits correspond to money values less than ean be represented in the
dollars-and-cents system. Another example of where mathematically
significant digits are dropped occurs even in purely mathematical prob-
lems. Consider the division of 2 by 3 where the 2 and 3 are integers.
The quotient contains an infinite number of significant digits, but for
purely practical reasons only a finite number of them can be retained.
In both examples it is desired that the retained digits represent the exact
quantity with the minimum amount of error.

The eliminating of the lower-order digits in a number is known as
round-off. Whenever digits are discarded for any of the reasons men-
tioned above, the desired result with regard to the accuracy of the ap-
proximation can usually be achieved by using a round-off procedure
whereby 1 is added to the lowest-order retained digit if the highest-order
digit which is discarded is 5 or greater. Then, for example, when round-
ing 0.3695--- to a 3-digit number, the result would be 0.370, and
0.3692- - - would be rounded to 0.369.

If the number to be rounded were exactly 0.3695, either 0.369 or 0.370
would be equally desirable from the standpoint of accuracy, but it is
customary to use the next higher value, or 0.370 in this case. When
rounding 4-digit numbers, which are exact representations, to 3-digit
numbers, the average error for a large number of round-off operations
will not be zero, but will be equivalent to +5 in the 5th order if the
digits are random. When rounding 5-digit numbers to 3-digit numbers,
the average round-off error will be +5 in the 6th order. The average
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error for a large number of round-off operations depends upon the num-
ber of digits required to give exact representations of the quantities in-
volved and approaches zero as this number of digits approaches infinity.

When the above round-off procedure is applied to negative numbers
represented in complement form, a number such as 0.3695 will be rounded
the wrong way if it is an exact representation. For example, the 10’s
complement of the number is 0.6305, and this will become 0.631 after
round-off. The result in true form is equivalent to 0.369 instead of 0.370.
The most straightforward way out of the difficulty is to convert all
numbers to true form before applying the round-off procedure. When
9’s complements are employed, it happens that the difficulty may be
avoided by subtracting 1 from the lowest-order retained digit when the
highest-order discarded digit is O through 4. With this system the 9’s
complement of 0.3695 is 0.6304, which becomes 0.629, and is equivalent
to 0.370 in true form, as desired.

In a computer the sensing of the highest digit which is to be discarded
may not be a convenient operation. It may be more convenient to
place the number to be rounded into an accumulator and to add a 5 into
the highest order to be dropped. A carry from this order to higher orders
will then occur if the digit already there is 5 or greater. The resulting
digit will be incorrect, but it is to be discarded anyway, and the carry
causes the desired 1 to be added to the retained digits. A variation in
the procedure is to double the highest-order digit to be discarded. The
doubled digit will be 10 or greater only if the original digit was 5 or
greater and the carry so produced may be used in the same way.

In the case of division where the quotient is being built up in a register
which does not have facilities for handling carries, a somewhat different
round-off procedure is sometimes useful. Instead of adding 5 to the
highest-order quotient digit to be dropped, 5 times the divisor is added
to the corresponding orders of the dividend before the actual division
process is started. The effect on the retained digits in the rounded quo-
tient is the same and all carry problems are handled in the register which
holds the dividend, where carry-handling facilities are needed for the
regular division process.

In cases where the major requirement is that the rounded number
have equal probability of being greater than, or smaller than, the exact
value, certain other round-off procedures may be used which may be
more readily incorporated into a computer. One such procedure is to
make the lowest or retained digit a 5 regardless of the correct value of
that digit and digits in lower orders. With this procedure the rounded
number may be too large by as much as 5 in the lowest order retained,
or may be as much as 4.999- -+ too small, but the error averaged over a
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large number of round-off operations is approximately zero if random
digits are assumed.

Another procedure which has been used is to add (with carries) a 0 or
a 1in a random fashion into the lowest retained order regardless of the
values of the digits in the number being rounded. It is difficult to repeat
computations for checking purposes when numbers are rounded in this
way, but the maximum error is reduced to the range of +1 and —0.999- - -
in the lowest retained order, and the average error is still approximately
zero. Neither of these two procedures yield results that are as accurate
as those obtainable with the previously deseribed procedures, where the
range of error was from +0.5 to —0.4999- - -.

A slightly different round-off procedure is to add 1 to the lowest-order
retained digit when it is even and add nothing when it is odd. When
the digits are represented in the 84,21 code, as an example, this pro-
cedure is particularly simple because it can be accomplished merely by
making the 1-bit of the lowest order a 1 regardless of whether it was
originally a 1 or 2 0. The rounded number may be as much as 1 greater
than or 0.999--- less than the exact representation. One disadvantage
of the procedure is that zero will never be obtained as a result regardless
of the factors which entered into the computation. This disadvantage
may be avoided by modifying the procedure to the adding of the 1 when
the lowest-order digit is odd instead of even. However, in this case it is
necessary to provide for the propagation of the carry which will occur
when the lowest-order digit is 9.



Chapter 10

MISCELLANEOUS OPERATIONS

Decimal-to-Binary Conversion. In many cases where a binary com-
puter is employed it is desired to retain the decimal system for the
representation of the input data and the computed results. For this
purpose it is necessary that means be provided for converting numbers
from one system to the other. While the conversion is not at all difficult,
it is, at the same time, not as simple an operation as one might imagine
at first glance. A machine of substantial complexity is required. Fre-
quently, it is found advantageous to use the binary computer itself to
perform the conversion. The decimal numbers may be entered into the
computer as sets of 1’s and 0’s in any appropriate decimal code. The
computer is then caused to operate upon the sets of 1’s and 0’s as though
they were binary numbers, and through a suitable program of operations
the computer converts the coded decimal numbers to true binary
numbers.

A great variety of mathematical procedures may be used to perform
the conversion. The particular scheme chosen in a given instance is
usually dependent on the characteristics and special features of the
machine in question. However, in practically all cases the conversion
procedure is a variation of one of the several basic procedures described
below.

One of the simplest pencil-and-paper methods of converting an integer
in the decimal system to its representation in the binary system is re-
peated division of the decimal number by 2. Each time that a remainder
of 1 oceurs in the division process, a 1 is entered in the appropriate order
of the binary number. For example, if the first division by 2 produces a
remainder of 1, the lowest-order binary digit is 1. That this is so may
be understood by observing that the remainder determines whether the
decimal number was odd or even, and in a binary number the value of

the lowest-order digit determines whether it is odd or even. The re-
286
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mainders from the second and succeeding divisions by 2 determine
whether the decimal number is made up of odd or even quantities of 2’s,
4’s, 8s, ete.; and this information is exactly the same as is contained in
the respective digits of a binary number.

If the decimal number is a fraction instead of an integer, it should be
repeatedly multiplied by 2 instead of divided by 2, and each time a carry
into the units order occurs, the corresponding digit is 1 in the binary
representation. For example, when the decimal fraction is 0.5 or greater,
the first multiplication by 2 will cause a carry and indicate that 1 is the
correct digit in the first position to the right of the point in the binary
number. The second multiplication by 2 will produce a carry if the
decimal fraction contained an amount equal to or greater than 0.25 in
excess of 0.0 or 0.5, whichever the case may be. The second digit to the
right of the point in the binary number is 1 or 0 depending upon whether
or not there is a carry from the second multiplication. Succeeding binary
digits are determined one at a time in an analogous maner.

To illustrate these methods of conversion, the steps involved in con-
verting the decimal integer, 243, and the decimal fraction, 0.413, are given
below.

Integer Fractron
243 0.413
121 1 0.826 0.0
60 11 1.652 0.01
30 011 1.304 0.011
15 0011 0.608 0.0110
7 10011 1.216 0.01101
3 110011 0.432 0.011010
1 1110011 0.864 0.0110100
0 11110011 1.728 0.01101001

1.456 0.011010011
0.912 0.0110100110

Note that a decimal integer always has an exact representation in the
binary system. A fraction may not have an exact representation, but
the binary equivalent may be determined to any desired degree of accu-
racy through the determination of a sufficient number of binary digits.

A second method of converting a decimal number to its binary equiva-
lent is to subtract powers of 2 (in decimal notation) from the given
number. The powers of 2 are subtracted in sequence starting with the
largest power of 2 which is less than the given number. Each power of 2
which would produce a negative difference is not subtracted, and the
corresponding digit in the binary number is 1 or 0, depending upon
whether the subtraction is or is not performed. This method, as applied
to the same examples, is set forth below.
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243 0.413
2 128 1--—---- 2= 0.25 0.01
115 0.163
26 64 11--—- 2% 0.125 0.011
51 0.038
28 32 111-~--- 2-5  0.03125 0.01101
19 0.00675
2t 16 111~~-- 2-8  0.00390625  0.01101001
3 0.00284375
2t 2 1111001 -
1
20 1 11110011
0

For most applications this method does not appear particularly attrac-
tive, because the powers of 2 in the decimal system are rather awkward
to handle and because it is not always a simple matter to mechanize the
determination of which powers of 2 should be subtracted and which
should not be subtracted.

The conversion methods described above employed the decimal sys-
tem, but it is possible to execute the conversion with the binary system,
if desired. One such procedure is to examine the digits in the decimal
number, one at a time, starting with the highest order if the number is
an integer. The binary equivalent of the highest-order digit is recorded
in the lowest four binary orders to the left of the point. This amount is
then multiplied by 1010 (decimal ten) and the binary equivalent of the
next decimal digit is added to the product. This process is repeated
for each digit in the decimal number. If the number to be converted
is a fraction, the digits are handled in the opposite sequence, and the
intermediate results are divided by 1010 instead of multiplied by 1010.
Note the binary equivalents of 0.1, 0.2, etc., must be represented in
binary form by at least as many binary digits as are desired in the final
converted number. The sample conversions by this procedure are as
follows.

Integer 243
Add 0010 (2) 0010
Multiply by 1010 10100
Add 0100 (4) 11000
Multiply by 1010 11110000

Add 0011 (3) 11110011
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Fraction 0.413
Add 0.010011001101 (0.3) 0.010011001101
Divide by 1010 0.000001111011
Add 0.00011011010 (0.1) 0.001000010101
Divide by 1010 0.000000110101
Add 0.011001100110 (0.4) 0.011010011011

Another conversion procedure employing the binary system is the
over-and-over addition of the binary equivalents of one, ten, one hun-
dred, ete., in the case of integers and one tenth, one hundredth ete., in

the case of fractions. When using this method of conversion the steps
would be as follows.

Integer 243
Add 1100100 (decimal 100) twice 11001000
Add 1010 (decimal 10) four times 11110000
Add 1 (decimal 1) threc times H
Fraction 0.413 .
Add 0.000110011010 (decimal 0.1) four times 0.011001101000
Add 0.000000101001 (decimal 0.01) once 0.011010010001

Add 0.000000000100 (decimal 0.001) three times 0.011010011101

The reason that the lower-order digits in the binary representations of the
fractional example do not agree is that the round-off errors are not the
same in the different conversion methods. The round-off error is likely
to be particularly great with the last-described conversion method; on
the other hand, this method is adaptable to a simple binary accumulator
and the round-off error can be minimized by using a few extra orders
in the accumulator.

Binary-to-Decimal Conversion. To obtain results in decimal form
when a binary computer is used, a binary-to-decimal conversion is, of
course, necessary. The computer itself may in some cases be used to
perform the conversion by properly manipulating the binary digits in
the numbers to cause them to represent decimal digits according to a
suitable code. In other cases a separate machine for the conversion may
be desired. Each of the four methods described for decimal-to-binary
conversion has its direct counterpart in binary-to-decimal conversion.

For binary integers the conversion to decimal form can be made by
repeated division by 1010 (decimal ten), and the remainder after each
division operation indicates the corresponding decimal digit. For ex-
ample, in converting 11110011 to decimal form, a division by 1010 yields
a quotient of 11000 and a remainder of 0011. The 0011 is the lowest-
order digit, 3, in the decimal equivalent. The higher-order decimal digits
are found, one at a time, by similar division operations.

The counterpart of the second conversion method which was de-
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scribed for decimal-to-binary operation would be the over-and-over
subtraction of powers of ten from the binary number to be converted.

One way of performing the conversion in the decimal system would be
to examine the binary digits, one at a time, in sequence, with the highest-
order digit examined first. The decimal number is then developed by
alternately adding the binary digits and doubling.

Another method of conversion using the decimal system is simply the
accumulation of the decimal equivalents of each of the binary digits in
the binary number.

Although the binary-to-decimal conversion procedures as outlined
above are for integers, the procedures may be modified for fractions in
substantially the same manner as the procedures were modified for
fractions in decimal-to-binary conversion. The same problems with re-
gard to round-off are encountered.

Comparison. When performing arithmetic by the pencil-and-paper
method, the comparison of two numbers is no problem because it is easy
to determine at a glance whether or not the two numbers are equal; and,
if they are not equal, to determine which is the larger. The operation
of comparison is not difficult to mechanize, but it is frequently more
complex than a simple “inspection.”

Probably the most direct method to use for the determination of rela-
tive magnitudes of two numbers in a computer is to subtract one from
the other and sense the sign of the difference. The method is particularly
convenient in most computers because the same circuits and components
used for subtraction may be used for comparison. However, the method
leaves something to be desired in the case where the two numbers are
equal. For example, if X is being compared with ¥ and the comparison
is made by subtracting X from Y, a positive difference indicates X =Y
and a negative difference indicates X =Y. If the comparison is made
by subtracting ¥ from X, a positive difference indicates X=Y. To
make the determination that X = Y, it is necessary to perform both sub-
tractions and to sense that the difference is positive each time.

As an alternative to performing the two subtractions it is usually found
desirable to install in the computer means for determining that a number
is zero. Zero-detection circuits may take on a variety of forms. When
electromagnetic components are used, it is generally a relatively simple
matter to design the digit-storage devices to include contacts which close
when the device contains the digit 0. If several such contacts are con-
nected in series, a closed circuit through the group is an indication that all
the digits in the group are 0. With other types of components the physical
realization of zero-detection circuits may not be so obvious but, in prin-
ciple, all that is required is an “and” switch which will produce an out-
put only when each individual digit-storage device contains zero. When



Miscellaneous Operations 291

decimal digits are being stored through the use of some code, such as the
8,4,2,1 code, it is necessary to sense all four of the individual binary
digits to determine that the decimal digit is zero; with the 1-out-of-10
code the sensing of the binary digit corresponding to zero would, of
course, be sufficient. In some cases where it is necessary to sense all
binary digits it may be more convenient to use an “or” switch which will
vield a signal whenever the number is not zero.

Another zero-detection method which is sometimes useful is to convert
the number to complement form and add 1. For example, in the decimal
system zero (00---0) would be converted to 9’s complement form
(99---9) and the addition of 1 would cause a carry in the highest order.
If the number were any value cther than zers, the addition of 1 would not
have caused the carry. The presence of the carry in the highest order
can therefore be used as an indication that each digit in the original
number was a zero.

If desired, circuits may be designed which will compare two numbers
without actually performing any subtraction or zero-detection operations.
For example, to determine that two numbers are equal the correspond-
ing bits of each number may be compared in a set of half adders (sum
parts only). If the outputs of all half adders as sensed by an “and”
switch are zero, the two numbers are equal circuits for the determination
of which of two numbers is larger may be designed in exactly the same
manner as the borrow portion of a subtracter would be designed; the
difference portion is not required.

Although the operation of comparison is not as complex as many of
the other arithmetic operations in a digital computer, its importance
should not be overlooked. Through the comparison of numbers in a
sequence of computations, the computer can be caused to proceed auto-
matically through one of two or more different routines of computation.
Since the person preparing the problem does not know in advance the
results of the comparison, the computer can be caused to proceed through
the proper routine without the operator’s knowing which routine is being
followed. This principle may be applied to many types of mathematical
problems in elaborate and complex ways; in fact, it is this principle
which makes digital computers the flexible and powerful mathematical
tools that they are.

Extracting the Square Root. The extraction of the square root is most
often accomplished in a computer through the use of a programmed
sequence of the more basic operations which were discussed in previous
chapters. It is possible to program the computer to follow paper-and-
pencil square-rooting methods, but it is probably much more common
practice to employ an iterative routine of some sort.
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Two reasonably simple iterative formulas for the square root are:

b —I(I—l—b)
1:-[-1—2 b k

bk( b,ﬁ)
bpar1 = —(3 — —
k41 9 z

where z is the number for which the square is sought, and b, is the kth ap-
proximation to the square root. In the first formula, the initial approxi-
mation, by, may have any positive or negative value except zero; in the
second formula the magnitude of by must be less than (5z)*%. Both for-
mulas are “second-order,” which means that once a moderately accurate
determination of the square root has been made, the number of significant
digits in the approximation is doubled upon each application of the
formula. Note that in the case of the first formula a division operation is
required for each successive approximation, but for the second formula
the determination of the reciprocal of z is the only division required re-
gardless of the number of times the formula is applied. This feature
is of particular importance when considering computers for which di-
vision is not a built-in operation. On the other hand, a more accurate
“first guess” is required for the second formula.

One way to determine when the iteration process should be termi-
nated is to subtract successive approximations, one from the other, and
observe whether or not the difference is less than the tolerable error.

Two third-order iterative formulas for extracting the square root are

as follows: .
b = 1 (3b + 6z :1;2)
SR N W
b 1062 3bt
Bits = —"(15 -—+ —;‘)
8 z T

When a computer is being designed for a specific application where it
is known that the extraction of the square root will be a frequent require-
ment (of which communications and electrical power network problems
are notable examples), it may prove advantageous to incorporate the
square-rooting process as a machine function. However, the iterative
formulas are not particularly convenient for building into a machine, and
it is probably more practical in most cases to employ a square-rooting
method which is more closely related to the pencil-and-paper process.

The pencil-and-paper method of extracting the square root is similar
to division in many respects but, of course, with some important differ-
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ences. A number of minor variations in the method can be worked out;
the basic steps in one particular variation will be explained by extracting
the square root of 184,729 as an example.

429
4V/18 47 29.00
16

2 47 29
6

8 [y

[
=t N
=~

849 8329
76 41

6 88

First, the digits of 184729 are set off in pairs starting from the decimal
point. The highest-order pair (18 in this case) is then examined, and
the largest digit for which the square is equal to or less than these two
digits is ascertained. The digit is 4 in this example. The fact is noted
on paper, as indicated, and the square of 4 is subtracted from the 18.
The first digit of the square root has now been determined. The second
digit is obtained by doubling the first digit and using it in the “tens”
order of a sort of “divisor” where the units digit is not fixed but is the
same as the trial square-root digit. In the above example, the doubled
digit is 8 (designated by an underline), and the next digit of the square
root is 2. Note that when the product of 2 and 82 is subtracted from the
previous remainder, the new remainder is 83. This fact does not mean
that the square-root digit should be 3 instead of 2 because, if the product
of 3 and 83 is subtracted a negative remainder will result. In a similar
manner the third digit of the square root is obtained by doubling the
first two digits to obtain 84 and using these as the tens and hundreds
orders of a new “divisor.” In general, the square root will not be an
integer, but the round-off procedures which may be used are substantially
the same as described previously in connection with multiplication and
division.

To adapt this method of square rooting to machine computations, some
means other than “inspection” must be found to enable the machine to
make the appropriate initial choices for the trial square-root digits and
then to select the correct one. One such means may be derived from
the fact that the squares of integers may be obtained by adding the
series of odd numbers, for example the square of 4is 1 +3 45 + 7 = 16.
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The odd numbers may be generated readily in a computer by setting an
accumulator or a counter to 1 and successively adding 2. Then, to
obtain the first digit of the square root, the series of odd numbers is
subtracted from the appropriate orders of the number for which the
square root is desired until a negative remainder is obtained. When the
remainder becomes negative, it is corrected by adding the last odd num-
ber which was subtracted. For successive digits of the square root, the
accumulator or counter in which the series of odd numbers is being built
up should be set to the value obtained by doubling the previously deter-
mined square-root digits. For the second square-root digit in the above
example, the numbers, 81, 83, 85, 87, 89, 91, --- would be subtracted
until the remainder becomes negative. To clarify the procedure, the steps
a computer would take in determining the first two digits of the square
root of 184,729 are indicated below.

Sgquare Root
18 47 29
1
17 1--
3
14 2--
5
9 3--
7
2 4 - -
9
-93
Add 9
+ 247 29
2 47 29
81
166 41 -
83
83 42 -
85
— 998
Add 85
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Although there are complications not previously encountered, the oper-
ation of extracting the square root can be accomplished much more
rapidly in a computer by techniques similar to those used for division.
However, since the incorporation of square rooting as a built-in opera-
tion is relatively rare, the problem of increasing the speed of the process
seems to have received little attention.

The description of the square-rooting operation has been given in
terms of the decimal system only; nevertheless, the principles apply
equally well to the binary system. Actually, extracting the square root
is very much simpler in the binary system because the largest digit in
the square root is 1 and therefore the “series” of odd numbers degenerates
to one term, 1. Not only is the necessity eliminated for building up
the series of odd numbers, but also no carries are involved in building
up the trial “diviscr.” The trial divisor may be obtained simply by
shifting the previously determined square-root digits to the appropriate
orders (a shift to the left of one order is a multiplication by 2) and by
placing a 1 in the “units” order. '

Sorting, Sorting is the process of arranging a set of numbers in 2
uniform sequence as determined by the magnitudes of the individual
numbers. As an example, consider the problem of sorting a group of
numbers where each number is in the range of 000 to 999. Although it
is not necessary, it is convenient for illustrative purposes to assume that
each number is recorded on a separate piece of paper or a card. A per-
son faced with this problem is most likely to follow one of two lines
of attack.

A rather obvious method of sorting would be to examine each card and
place all those numbers in the range 000 to 099 in one pile, all those
in the range 100 to 199 in another pile, and so on. After completing this
step, each pile would be divided into ten smaller piles according to the
digit in tens order, and a final subdivision would then be made as guided
by the digit in the units order. ‘

With the above procedure, it is necessary to handle each card three
times; and it may be found that the manipulating of the various piles is
awkward, particularly with the lower-order digits because the various
individual piles must he kept separate by some means or other. These
difficulties may be circumvented by using a different sorting procedure,
which involves the building up of the sorted set in its final form one
card at a time. That is, if the first card examined has the number 805,
it is placed in a file as a sorted set of one card. If the second card has
the number 920, it is placed behind the first. A third number of 259
would be placed in front of both. A fourth number of 809 would be
placed between the first and second, and so on.
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When a method of sorting is to be adapted to machine operation,
neither of the above manual methods is found to be convenient. The
first method may be altered to one applicable to machine operation
simply by reversing the sequence in which the orders are examined.
After sorting according to the digits in the units order, the ten piles are
appropriately reassembled, and a sort is then made on the tens digit.
This process is continued through the digits of all orders. To illustrate
the process more clearly, the arrangements of ten 3-digit numbers after
the various steps in the sorting process is presented.

After Sorting on

Random Units Tens Hundreds

Sequence Order Order Order
823 060 609 038
059 823 823 059
673 673 229 060
158 653 038 158
229 177 653 177
038 158 158 229
177 038 059 609
653 059 060 653
609 229 673 673
060 609 177 823

For purposes of computing the speed of the sorting operation, it may be
observed that the number of passes of cards through the digit sensing
device is equal to the product of the number of cards and the number
of orders on which the sort must be made.

The sorting method just described is convenient for sorting cards, but
it has important disadvantages for certain machine applications. In par-
ticular, it may be very inefficient when the cards or numbers to be
sorted are already in a known orderly arrangement. A common example
of this situation is the sorting of numbers when they are initially in two
groups with the numbers within each group properly sorted. A sorting
operation in this special case is frequently called “merging” two sets of
numbers. Another disadvantage of the previously described sorting
method lies in the fact that ten separate hoppers or storage locations
must be provided with each one large enough to hold the entire file of
numbers (unless a chance is taken with regard to the randomness of the
digits or unless special provisions are made to handle overflows).

A sorting procedure which minimizes both of these disadvantages is
known as sorting by “collating.” When sorting by collating, the various
numbers to be sorted are compared with one another and distributed
into one of two storage locations according to the results of the com-
parison. Three numbers at a time are considered in each comparison
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operation, and the rules for the operation are indicated below, where X
and Y are two of the numbers from the list to be sorted, and L is the
last number which was placed in one or the other of the two storage
locations.

If X > Y > L, store Y in same location as L.

IfY > X > L, store X in same location as L.

If X>L>Y, store X in same location as L.

If VY >L>X, store Y in same location as L.

If L>X >7, store Y in opposite location from L.
If L >Y > X, store X in opposite location from L.

When starting the operation, X and Y are the first two numbers in the
list. The smaller of the two is stored in one of the two locations, and
for the next step it is replaced by the next number in the Iist.

After proceeding through the entire list, the numbers in the two storage
locations, which will be called A and B, are then transferred to two new
storage locations, C and D, by following a similar comparison procedure.
‘When starting this part of the process, X and Y are the first numbers in
A and B, respectively. The smaller of the two is placed in one of the
two locations, say C, and for the next step this number is then replaced
by the next one in the storage loeation from which it came. After trans-
ferring the entire file to C and D, it is then placed back in A and B by
following the same comparison rules. This procedure of sending the
numbers back and forth between the A and B storage locations and the
C and D locations is continued until the numbers are preperly sorted.
Only four storage locations are required because the file may be initially
stored in C, for example. To illustrate the process of sorting by collat-
ing, the steps involved in sorting one particular file of random numbers
will be set forth. The numbers in parentheses indicate the order in which
the numbers are transferred from one storage location or pair of storage
locations to the next.

c A B ¢ D A B
{823 (3) 059 (1) {158 2) 059 038 038 —
J059 (1) 673 4) 1229 (3) 158 060 059 —
1673 (2) 1823 (5) {060 @) 229 177 060 —

158 (4) 038 (6) 1452 (9) 673 452 158

{229 ) 177 (8) 823 609 177
038 (5) 609 (10) 653 229
{ 177 (6) 653 (11) 920 452
653 (9) 920 (12) 609
{609 (8) 653
{060 an 673
920 (10) 823
{452 (12) 920
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The number of operations or the time required to sort a list of numbers
by this method depends upon the initial arrangement of the numbers.
The worst possible case occurs when the numbers are initially in the exact
opposite order from that desired. In this case it is not difficult to show
that the number of times the file must be transferred from one place to
another is (logs N)in:, where N is the number of numbers in the file and
the subscript on the logarithm indicates the next larger integral value of
10g2 N. '

When the numbers initially have a random distribution, the determi-
nation of the number of transfers is a difficult problem in the theory of
probability and, so far as is known, a solution has not been worked out.
However, if a group of consecutive numbers in the proper order is called
a “sequence,” the number of sequences, S, in the initial arrangement may
be used in the expression, 1 4+ (logs S) i, to obtain the maximum possible
number of times that the file must be transferred. In the example
which was worked out, the sequences are indicated by brackets. Since
there were seven sequences in the initial arrangement, a maximum of
four transfers may have been required. The formula indicates only the
maximum and not the actual number of transfers, because a phenomenon
called “accidental merging” sometimes occurs during a transfer. That
is, successive sequences in a storage location may happen to be continua-
tions of one another and therefore produce an effectual reduction in the
number of sequences. The first transfer may not produce any reduction
in the number of sequences (as may be observed by sorting the series of
one-digit numbers, 7, 8, 5, 6, 3, 4, 1, 2), but in general each successive
transfer reduces the number of sequences at least by a factor of two.
The file is sorted when the number of sequences is reduced to one.

In actual practice, the possibility of having two or more numbers
equal to each other usually must be taken into consideration. No severe
complications are introduced. If X = Y, an arbitrary choice may be
made as to which is stored. If X or Y is equal to L, the one which is
equal to L should be stored in the same location as L.

This method of sorting by collating may be expanded to two sets of
three or more storage locations. An analogous set of rules is followed.
In general, the numbers are transferred to the same storage location as
L as long as a sequence can be built up. When all numbers in a com-
parison are less than L, the storage locations are switched in a rotational
pattern. The comparisons are somewhat more complex in that one num-
ber from each storage location and L must enter into the comparing
operations, but the maximum number of transfers is reduced to (log.
N)int, where n is the number of storage locations in each group.
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Sorting by collation is particularly well adapted to situations where
the numbers appear on magnetic or punched paper tape instead of on
cards, although card collators are found to have wide application also.
The comparison operation which must be performed in collating is, of
course, more complex than the simple digit-sensing procedure used in the
previously described sorting method, and this factor must be considered
when designing a sorting machine. This problem is not so great when
sorting is to be accomplished on a computer where the basic operations
of addition and subtraction have already been incorporated.

Checking by “Casting Out 9s.” A method of checkmg arithmetic
operations performed in the decimal system is known as “casting out
9’s.” The method involves the use of the “residue modulus nine,” or
RMN, of the factors entering into the calculations. The RMN of a
number ig the remainder after dividing by 9; for example, the RMN of
392,971 is 4.

To check an addition, the RMN’s of the two numbers are added in a
modulus nine fashion and the result is compared with the RMN com-
puted from the sum. As an example, consider the addition of the fol-
lowing two numbers:

RMN
392,971 4
189,078 6
Sum 582,049 1

Although the sum of 4 and 6 is 10, the remainder after a division by 9
is 1, which checks with the RMN of the sum. If the second number had
been subtracted from, instead of added to, the first, the difference would
have been 203,893 which has an RMN of 7. This result checks with the
modulus nine difference of the RMN’s because, when subtracting 6 from
4, a 9 must be added to the 4 to avoid a negative result.

When using the casting out 9’s method to check a multiplication, the
RMN of one factor is added in modulus nine fashion a number of times
equal to the RMN of the other factor, and the result is checked against
the RMN of the product. The same result may be obtained by finding
the RMN of the product of the RMN’s. If the individual RMN’s are
4 and 6, respectively, as in the previous example, the product of the
two is 24, which has an RMN of 6, which will check with the RMN of
the product of the original numbers being multiplied.

For division, the RMN of the quotient is subtracted in modulus nine
fashion from the RMN of the dividend a number of times equal to the
RMN of the divisor, and the result is checked against the RMN of the
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remainder. Actually, the roles of the quotient and divisor may be
interchanged in this process.

In some applications, particularly when adapting the casting out 9’s
checking method to machine operation, it may be preferable to use a
different method for finding the RMN of a number. It may be shown
that the RMN of the sum of the digits of a number is equal to the RMN
of the number itself. In the example of 392,971, the sum of the digits
is 31 which has an RMN of 4. Of course, when adding the digits, the
9’s may be disregarded if desired. In a computer, the RMN may be
determined by adding the digits in the usual decimal fashion except that
each time a carry is obtained it is added with the other digits. Then,
when the digits in the example are considered (disregarding 9’s), the
RMN would be found according to the following steps:

1+7=8
8 + 2 = 0 with a carry of 1
1+0=1

34+1=4=RMN

In the binary system of numbers a “casting out 1’s” process would be
meaningless. However, an analogous checking process may be formed
by considering the binary digits in groups of three, for example, and
casting out 7’s as in an octonary system.

Trigonometric and Other Transcendental Functions. In the design
of a computer, it is necessary to “draw a line” between those arithmetic
operations which are to be built-in functions and those which are to be
performed through a programmed sequence of the built-in ones. The ad-
vantage in omitting any given operation is, of course, that a simpler
and less expensive machine may be realized. On the other hand, the in-
clusion of an operation will make it possible for the computer to function
faster and with less complications in the program for those problems
which require the operation. The frequency with which the various
operations must be performed in the problems to be solved by the com-
puter is the outstanding factor to be considered in determining the ones
to be included. Unfortunately, the problems which will be applied to the
computer are often not known.

Although it is possible to perform all arithmetic operations with simple
counting as the only built-in operation, the operations of addition, sub-
traction, and multiplication are almost always incorporated in any ma-
chine which is called a computer in the usual sense of the word. Di-
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vision is an operation which is included in most general-purpose com-
puters, but because of the existence of a simple iterative formula for
finding reciprocals, division is frequently omitted, especially when com-
puter cost is particularly important. The operation of extracting the
square root is rarely incorporated in a computer, but it has been done
in a few instances where it was known that the problems to be solved
by the computer required this operation frequently.

The computation of trigonometric and other transcendental functions
is definitely on the side of the line where the desired results are achieved
through programmed sequences of more basic operations rather than
through designing the computing machinery especially for the purpose.
Possibly some exceptions to this general rule could be found, such as the
means for generating sines and cosines which will be deseribed in the
section on digital differential analyzers. However, even the exceptions
usually amount to an assemblage of the more basic operations through
wiring if not through programming.

The programs which may be used for the computation of trigonometric
and other transcendental functions may be any one of at least three
different forms. First of all, a table of values may be stored, and the
function of an argument value which is not in the table may be com-
puted through the use of interpolation formulas. A second method of
approach is through the use of various infinite series forms of the
function. Any desired degree of accuracy may be obtained by employ-
ing a sufficient number of terms in the series. A third method is fre-
quently useful particularly when the function is needed only over a
limited range of the argument. The desired function may be approxi-
mated by a polynomial expression. The complexity of the polynomial
depends upon the extent of the range and the required accuracy.

The particular method of computation to be used in any given instance
can be the subject for intensive mathematical study. Many factors must
be considered in view of the many possible variations. One type of
variation, for example, is encountered when using the interpolation
method. Tt must be decided whether to store the functien in large steps
and use a complex interpolation procedure or to store the function in
smaller increments of the argument and use a simpler interpolation pro-
cedure. Among the important factors to be considered are the amount
of storage capacity available in the computer, the time required for
access to any one storage location, the speed of each individual opera-
tion, and the difficulty in preparing the program. Since the mathematical
procedures which are involved are well known to mathematicians and are
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not peculiar to computing machinery, they will not be deseribed in more
detail ‘here.

It is interesting to note that during the early development of computers
it was a widely held view that the computers would be used largely for
the preparation of extensive tables of complicated functions compiled to
a high degree of accuracy. Although computers are used for this pur-
pose to some extent, emphasis has been shifted away from this applica-
tion. It has become possible to make machines perform arithmetic oper-
ations extremely fast relative to the speed of access to the large-capacity
storage media. For this reason it is often more practical to compute a
value of a function when it is needed in the course of other computations
rather than to select the value from a table.

Integration and Differentiation. When evaluating an integral, a person
employing pencil-and-paper mathematics would attempt to find a func-
tion which represents the integral of the given funetion. If such a fune-
tion can be found, the value of the integral may be determined by insert-
ing the limits of the variable. For example, when finding the integral
of the function, cotangent of z, with = varying from /4 to «/3, it would
be determined by some means or other (probably from a table of
integrals in this case) that the desired function is the logarithm of the
sine of . Then, by using tables of logarithms and sines, the value of
the function at the limits may be determined, and the value of the
integral would be the difference between these two quantities. Differ-
entiation, similarly, is accomplished by finding a function which repre-
sents the derivative of the given function. The derivative at any desired
value of the variable would, of course, be obtained by evaluating the
deriative function with the desired value of the variable inserted in the
function.

So far as is known, no computer has ever been worked out which
integrates and differentiates through the process of determining inte-
grated or differentiated functions. Instead, a “numerical” approach is
followed. Since integration is substantially a matter of finding the area
under a curve, it is possible to evaluate the integral by evaluating the
given function at the end points and a number of intermediate points
and then computing the area by summing a series of incremental areas.
Any desired accuracy in the result may achieved by dividing the de-
sired area into a sufficiently large number of incremental areas appropri-
ately distributed as dictated by the variations in the function. Many
refinements to this procedure have been worked out and are well known
to mathematicians. Among them are the trapezoidal rule, Simpson’s
rule, and method of Gauss for more accurately evaluating an incremental
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area with a given change in the variable. Further, it is sometimes pos-
sible to simplify the computations by using the first and higher-order
derivatives of a function to determine successive values of the function
over a limited range of the variable. A first derivative may be com-
puted numerically to any required accuracy by evaluating the given
function at two values of the variable which are sufficiently close to the
value for which the derivative is desired. The derivative is then the
ratio between the change in the value of the function and the change
in the value of the variable.

As was the case with trigonometric functions, the numerical processes
for evaluating derivatives and integrals are usually accomplished in a
computer by programiied sequences of the more basic arithmetic oper-
ations rather than by building integration and differentiation into the
computer circuits. For this reason, the subject fits better in the realm
of mathematies than it does in the realm of computers. There is one
important exception to the rule, however, and that is in connection with a
type of machine known as a digital differential analyzer. The principle
of operation of this type of machine is explained in the next section.

Digital Differential Analyzer. The digital differential analyzer is a
digital adaptation of an analog type of machine, the principles of which
were first described by Lord Kelvin in 1876. Apparently the work of
Kelvin became obscured, and it was not until 1931 that Vannevar Bush
published a description of the first differential analyzer ever to be
built. Since that time many variations and improvements have ap-
peared, with the emphasis gradually shifting from mechanical through
electromechanical to electronic components. The digital version was
worked out shortly after World War II by a group of engineers who, at
the time, were with the Northrop Aireraft Corporation.

Although the principal purpose of the differential analyzer is to solve
differential equations, it is composed mainly of a set of units which per-
form an integrating function. Each such unit is called an integrator.
The integrators in the digital differential analyzer are functionally
analogous to the integrators found in analog machines; but, since there
are so many points of difference, the description here will be given
only in terms of digital devices.

The basic integrator circuit may be considered as consisting of an
accumulator register, B, and an addend register, Y, together with means
for adding the contents of ¥ to E. The arrangement is shown in Fig.
10-1(a). The addition occurs each time a pulse is applied to the line
marked dz. As the number in Y is repeatedly added to R, the R register
will overflow from time to time, and each time an overflow occurs a
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dz ,
-— R REGISTER y

ADD CIRCUITS |e—

dy
Y REGISTER a—
X
(a) ' (b)
dx fe—o
dz }—»
y dy fe—
(¢c)

Fic. 10-1. Integrator arrangement and symbol.

pulse will appear on the dz output line. The rate at which the overflow
occur will, of course, be dependent on the magnitude of the number
in Y; that is, the relationship between the number of dz pulses and dx
pulses will be

1
dz = - ydz

where y is the number in ¥, 7 is the radix of the number system in use,
and n is the number of orders in the registers. It may be helpful in visual-
izing the operation of the integrator to consider the time rates, dz/dt and
dz/dt, of the pulses as represented by the equation,

dz__K dx
a Va

N

This equation states that the rate of appearance of the dz pulses is pro-
portional to y and to the rate of application of the dz pulses. However,
it should be understood that time does not directly affect the operation
of this digital integrator; it may function at any speed. The dy input
in Fig. 10-1(a) is for altering the value of y. The dy signal may be either
a single pulse to add unity to y or it may be a number of substantial
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magnitude to be added to y. The counter or adder circuits necessary to
effect the alteration are not shown in the figure. That this arrangement
represents an integration type of operation may be observed by noting
that the dz output represents an area. The incremental areas which are
summed are indicated by the vertical strips in Fig. 10-1(b). Each dz
pulse, which may represent one unit of z, causes the corresponding value
of y to be accumulated. Means must, of course, be provided to cause y
to vary in accordance with the desired functional relationship with z.
If a suitable constant of proportionality, K, is chosen, a count of the dz
pulses will be a measure of the area under the curve. Figure 10-1(c)
shows a simplified symbol for the integrator.

As has been mentioned, differential equations are solved through ap-
propriate interconnections among an assembly of integrator units of the
type just deseribed. As a particularly simple illustration of the method,
consider the differential equation,

d
-—y=d:c
) s

which can be solved with just one integrator. For this equation the dz
output is connected to the dy input as in Fig. 10-2. The result is (ignore
K, for the moment):

dz = dy = ydz

The solution to this equation is ¥ = e, and therefore dy = e®dr. Since
¢® plays the role of y in this case, an initial value of  may be assumed

dx pe— dx
dy —»eXdx=de*
et dz |-

F1c. 10-2. Solution of (—lg =dz

and a number representing e may be placed in the Y part of the in-
tegrator. Then, as dz pulses are applied, which represent increases in
z and which cause successive additions of ¥ to R, the number in ¥ will
vary as e® and yield the result, ¥y = e®. In other words, the rate of pulses
on the dz output is e times the rate of dz input pulses.

Before proceeding further with the discussion of integrator connections,
the problem of signs will be described. Clearly, in the general case, it
will be desirable to allow ¥ to increase or decrease. Because in many
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applications the dy input of one integrator will be obtained from the dz
output of another integrator; and, for other reasons, means must be
provided for causing dz to indicate a subtraction. One ingenious system
uses the absence of a pulse to indicate that subtraction should be per-
formed. With this system, zero in a Y register is represented by a 1
for a sign digit, and the sign digit is placed to the left of the highest-order
digit of the number. Then, if zero represented in this way is repeatedly
added to the R register, the R register will overflow on each alternate
addition operation. The dz output when applied as an input to another
integrator will therefore cause alternate additions and subtractions, with
a net effect of zero. If the number in the Y register is some positive
quantity, the R register will overflow more often than not, with the re-
sult that more additions than subtractions will be signaled. When the
contents of Y are negative, a zero will appear in the sign position and
the number will be in complement form. Consequently, the R register
will overflow less than half the time so that more subtractions than addi-
tions will be caused by the dz output. When y has a maximum negative
value, all digits of y will be zero; and, in this case, R will never overflow,
with the result that dz will initiate a continuous series of subtractions.

An alternate system for handling negative numbers involves the use
of two wires for each signal line. A pulse on one wire is used to signify
addition, and a pulse on the opposite wire signifies subtraction. With
this system, the numbers in the registers may be handled in a more
straightforward manner, but if the R register overflows in the negative
direction either from subtracting a positive y or adding a negative y, the
dz output will appear on the line signifying subtraction. Note that the
dz output in this system or in the system described in the previous para-
graph may be used either as the dx or the dy input of another integrator.

In some applications it is desired to use the negative of the dz output.
The means that may be used for inverting dz depend upon the system of
negative numbers in use. With the two-wire system, for example, inver-
sion of dz may be accomplished simply by interchanging the signals on
the two wires. In the symbol for an integrator, an encircled minus sign
signifies that the negative of dz is appearing on the output.

As a further illustration of the use of the differential analyzer, consider
the differential equation,

The required connections between the integrators may be worked out by
noting the following relationships:
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(dzw dw
d -——) = —dw = — (—)dt
di? dt

dw 2w
d (— = g
dt de

If d?w/di? is placed in the ¥ part of one integrator and df is used for the
dz input, the dz output will be d(dw/dt) and the required dy input will be

N5 .S S, Sy

—{dw/di)di. These quantities form the dy input and dz output, respec-

dt

dx [= 2
Pw dz PG L P2
- dt dt
dt dy |

dx

dw

d - - ¥t -
dw @ z tdi dw
dt dy [

&
Fig. 10-3. Solution of Eg = —w.

tively, of a second integrator, with dy/dt in the Y part and with di as the
dz input. The resulting arrangement is shown in Fig. 10-3. The output
of the second integrator yields pulses at a rate which, when compared
with the rate of d¢ input pulses, gives w as a function of &. :
Since the solution being sought in the above example may be written as

w=Asint+ Bcost

where A and B are arbitrary constants, it is apparent that the form of
the solution depends upon the initial conditions entered into the ¥ parts
of the integrators. With appropriate initial conditions the output of
either integrator may be used to generate sine or cosine functions. Ac-
tually, the differential equation under discussion is so simple that a ma-
chine would probably not be used for its solution. Nevertheless, this par-
ticular method of generating sines and cosines is useful in the solving of
more complicated differential equations which involve these functions.

The usefulness of a differential analyzer type of computer can be ap-
preciated more fully through a study of a somewhat more complicated
example. Consider the differential equation,
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d®w dw

— —w——sinw =10

dat? di
The interconnections which will be required between integrators may be
found quickly by rewriting the equation as follows:

d(dzw) d( dw i J dw dwd i
az) ~ *\" dt) +dsinw) = w (dt) + g &+ dlsinw)
The “dy input” to the integrator containing d2w/dt? will consist of the
sum of three terms which must be obtained from the “dz outputs” of
other integrators. The resulting configuration is shown in Fig. 10-4. The
wd (dw/dt) term is obtained from an integrator which contains w and
which has d(dw/dt) applied to the dr input. Observe that the output
of the first integrator is (d%w/dt?)dt = d(dw/dt). The (dw/dt)dw
term is manufactured in an integrator containing dw/dt. The dw that
is needed in both of these integrators is obtained from another integrator
containing dw/dt, but which has dt as the dz input. The differential of
sin w is obtained from two additional integrators connected as in the
previous example. In Fig. 10-4, the block labeled with a summation
sign is any device which will collect the output pulses from the indi-
cated integrators and produce & number in an appropriate form for use
as a dy input.

It may appear that an unduly large amount of arithmetic equipment
would be required for all the integrators which would be required to
solve a differential equation of reasonable complexity. However, by
using a serial system it is possible to perform all arithmetic operations
with only one set of arithmetic circuits. In such a system the integrators
are merely storage locations, the contents of which are passed in serial
fashion through the arithmetic and control parts of the computer. A
type of storage medium well adapted to this application is the magnetic
drum. The Y and R portions of each integrator are stored side-by-side
in two parallel tracks, with the ¥ portions of all integrators in one track
and the R portions of all integrators on the other track. With this ar-
rangement the two magnetic heads sense all integrators in sequence,
and the contents of ¥ may be altered in accordance with the dy input
and Y may be added to B or subtracted from B in accordance with the
dz input. The new values for ¥ and R may be recorded on the drum
through a separate pair of magnetic heads.

The interconnections between integrators are, of course, not wires with
this serial system, but the effect of interconnections may be achieved
with a precessing storage track on the drum. If a series of integrators,
each requiring N pulse times, pass by the sensing heads on the drum, a
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short track of N — 1 pulse times can be used to produce the desired pre-
cessing action. The short track is formed by using two magnetic heads,
cne for recording and one for sensing, spaced a distance from each other
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on the circumference of the drum such that N — 1 pulse times pass dur-
ing the traversal of a magnetized spot from the recording head to the
sensing head. The sensed information is immediately returned to the
drum through the recording head, with the result that the information
in the track continually recirculates.

This precessing track, called the Z track, is used for temporarily stor-
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ing the dz outputs of the integrators. The dz output signal from an in-
tegrator occurs during the last pulse time of the integrator (or at least
nearly the last depending upon the detailed nature of the machine), and
it is placed in the Z track in the position which is under the record head
at the time. Assume this position is the number 1 position. Since each
integrator requires N pulse times and the Z track is only N — 1 pulse
times in length, the dz output of the second integrator will be placed in
the number 2 position, and so on. The problem is now to select, for each
integrator, the desired dz outputs and apply them as dx and dy inputs
to other integrators.

Note that, during the passage of any given integrator, the entire Z
track will pass under the sense head. Through the use of information
stored on a fourth track, the L track, it is possible to select by means
of an “and” switch the appropriate dz signals as required for the dy in-
puts by the differential equation being solved. The information in the
L track provides the “interconnections” and remains unchanged through-
out the solution of any given equation. Of course, while a given in-
tegrator is passing under the magnetic head, it is too late to use any of
the Z track data for this particular integrator, but during this time the
Z track data are gathered for use with the next integrator. The dy
input of an integrator may be the dz output of one integrator or it may
be the sum of the dz outputs of several integrators. For this reason it is
necessary to employ a counter to count the dz signals called for by the
information in the L track. The total is then shifted into a register for
addition as the dy input to the Y part of the next integrator, and the
counter then proceeds to gather the dz data for the integrator after the
next one.

The dr inputs may be obtained from the dz outputs by another track
similar to the L track. However, since each dz input is in nearly all
cases obtained from only one source instead of the sum of several sources,
it may be preferable to use a different scheme for the dx inputs.” When
the number of integrators in the computer is not the same as the number
of pulse times in the Z track it is necessary to use a somewhat more com-
plex control system than the simple one which has been outlined. Then
it may happen that certain pulse times are available for storing a num-
ber with each integrator, and this number may be placed in a counter
which will find the proper dz signal in the Z track by a counting action.
The dz signal when used as the dx input will control the addition or sub-
traction of ¥ and R in the next integrator to pass under the sensing
heads.

Many more details must be taken into consideration before a com-
plete and useful digital differential analyzer can be assembled; it has
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been the purpose here to present only the basic principles of operation.
However, one detail deserves further mention, and that is the constant
of proportionality, K, which was previously ignored. If the numbers in
the Y parts of the integrators are all assumed to be fractions instead of
integers, K becomes unity. Nevertheless, it is desirable to alter the
ratio of output to input pulses in order to fit the integrators to the re-
quirements of each individual problem being solved. In particular, the
requirements on accuracy of the solution is different in various applica-
tions. One way to alter K is to enter the dy input to orders in the ¥
register other than the lowest orders. With this system each Y register
contains a marker pulse in one of the orders, and dy is not added to y
until this marker pulse is sensed by the magnetic heads. Alternatively,
means may be incorporated for multiplying the dz outputs, each by a
different factor.

Conversions Between Conventional Binary and Reflected Binary Codes.
As was mentioned in the first chapter, the reflected binary code is fre-
quently found useful for input-output mechanisms because the represen-
tations for any two successive quantities differ by only one digit. Since
the reflected binary system is awkward to use when arithmetic operations
are involved, a scheme for translation between the two number systems
is needed.

Although there is a mathematical relationship between the values of
the digits in the two systems, the equipment necessary to perform the
conversions can probably be determined most readily through an inspec-
tion of the representations for a list of integers as given below.

Conventional Reflected
Dectmal Binary Binary

B; By Bs By By Rs By B3 R, Ry

0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101
10 1010 1111
11 1011 1110
12 1100 1 010
13 1101 1011
14 1110 1 001
15 1111 1000
16 10000 11000



312 Arithmetic Operations in Digital Computers

When converting from the conventional binary to the reflected binary
system, it may be observed that the value of any given digit in the re-
flected code is dependent upon the digits which are in the corresponding
and the next higher order of the conventional code. The translation
scheme may be represented in Boolean algebra notation as follows,
where B and R represent conventional binary and reflected binary, re-
spectively, and n represents the highest order in use.

R, =B,
Rn—l = (Bn + Bn—l)Ban—l
Ry_9 = (Bu—y + Bn_2)B,_1B,_,

Ry = (B + By)B,B,

The functions involved are the same as for the sum part of a half
adder, and a block diagram of the arrangement in terms of half adders
is shown in Fig. 10-5(a).

B, Bn-i Bn-2 Bn.3 Bo
B
< L [ *-—
] } \ y —‘ 1
H H H ® o o H
s s s s
voor !
Rn Ran-r Rpop Rn-3 Ro
(a)
Rp Rp- Rp-2 Rp-3 Ro
=l =l Al =y
H ' H ' H 1 o o e
S S s H s
B 1
By Bn-y Bp-2 Bp-3 Bo
(b)

Fie. 10-5. Arrangements for conversions between reflected binary and . conventional
binary codes.
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In the conversion from the reflected to the conventional code, the
value of any given conventional code digit is dependent upon the value
of the corresponding reflected code digit and the digits of all higher orders
as well. However, a conventional binary digit may be used in the de-
velopment of the next lower order digit according to the following scheme,
which is illustrated in Fig. 10-5(b).

Bn = Rn
Bn——l = (Bn + Rn—l)Ran—l
Bn——2 = (Bn—l + Rn—2)Bn—1Rn—2

By = (B; + Ro)B;R,



Chapter 11

COMPUTER ORGANIZATION AND CONTROL

The first serious thought involving the use of machinery to perform
computations seems to be credited to Blaise Pascal, who in about the
year 1642 built some elementary machines to assist in the computation
of taxes. In succeeding years various other mathematicians pondered
the problems of reducing the drudgery of routine computing and of
increasing the speed and aceuracy of the work. A few of them reached
the stage of constructing models, but it was some 200 years after Pascal’s
first work that the production of computing machinery was placed on a
commercial basis. Punched-card accounting and computing equipment
had its beginnings in the 1890 census, although punched cards had been
used years previously in the control of weaving complex patterns on
looms. After about 1890, the development of adding machines, desk
computers, bookkeeping machines, and punched-card accounting equip-
ment proceeded at a rapid pace. Even so, the machines appearing on the
market as late as the 1920’s might be considered crude compared with the
advanced models available today.

Some of the ideas presented in the various chapters of this book pertain
in a vague fashion to adding machines, desk computers, and machines of
similar categories, but for the most part an entirely new class of ma-
chines has been in mind. Scientific and accounting problems of any
complexity require long sequences of operations in order to reduce the
input data to computed results in the desired form. With the desk com-
puter category of equipment, substantially only one operation at a time
can be performed. For each addition, subtraction, multiplication, or
other operation, the operator must depress some keys on the keyboard.
The results of intermediate computations must be recorded externally
to the machine. Furthermore, the operator must make all decisions re-
garding the selection of alternate computing routines when the arithmetic
operations to be performed are dependent on the nature of the data or

314
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the values obtained at intermediate points in the computations. With
punched-card equipment many of these decisions can be mechanized
through the use of sorters and collators, but even then the operator must
at least handle the cards at each step in the process. The outstanding
feature of the computers which are the real subject of this book is their
ability to perform long sequences of arithmetic operations and “logical
decisions” in an automatic manner.

The construction of the first successful computer capable of perform-
ing long sequences of operations was started in 1939 by the International
Business Machines Corporation in cooperation with Harvard University
and was completed in 1944. It is known as the Automatic Sequence
Controlied Computer or the Harvard Mark I. One previous attempt at
the construction of such a machine had been made by the now-famous
Charles Babbage of England at the incredibly early period of approxi-
mately 1830 to 1840. Parts of Babbage’s machine were completed and
made to work, but the project as a whole failed largely because it was
too ambitious in view of the relatively primitive engineering techniques
available at the time. In spite of the facts that rather detailed descrip-
tions of Babbage’s work had been recorded and that substantial parts
of his incompleted machine had been preserved, the passage of the years
caused his ideas to be largely forgotten. It is believed that the Auto-
matic Sequence Controlled Computer owes its existence to a study of
Babbage’s work and to a recognition that components and engineering
techniques had been developed to a point where a large-scale computer
would be feasible.

Most of the components in the Automatic Sequence Controlled Com-
puter were developed by IBM for their regular line of business machines
and were electromechanical in nature. Although very useful large-scale
computers can be assembled with mechanical or electromechanical com-
ponents, the more outstanding achievements in computer technology
have been made through the use of electronic components because of
the extremely high speeds of operation which are attainable electroni-
cally. The first electronic computer, known as the ENIAC, was built
at the Moore School of Engineering in Philadelphia and was completed
in 1946. The construction of the ENIAC must have required great
courage for it was started at a time when the electronics industry was
having considerable difficulty making the approximately 100 tubes in
a radar set function simultaneously for long enough periods to be useful.
From tube life data available at the time, it was a simple problem in
arithmetic to prove that tubes in a large-scale computer would fail faster
than the defective tubes could be found and replaced. Nevertheless, in
spite of its 18,000 tubes, the ENIAC did operate successfully.
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A basic requirement of sequenced computers is the ability to store
numbers and other information. Even in the more elementary sequenced
machines, the storage of intermediate results must be accomplished by
some means or other; in the more sophisticated computers, number stor-
age is used for a variety of purposes. In the ENIAC, a bistable circuit
known as the Eccles-Jordan trigger or flip-flop, which was first described
in 1919, was employed as the storage means. The very large number
of tubes used in the ENTAC was largely a consequence of the fact that
only one binary digit can be stored in one flip-flop.

During the summer of 1946 the Moore School held a special course
on the subject of digital computers, and lecturers and students from a
variety of organizations interested in the field were invited to participate.
In this course the idea was presented that the information concerning
the sequencing of operations was data that could be entered into the
computer and stored through the use of the same components employed
for the entry and storage of the numbers undergoing the computations.
This concept contained a number of attractive features, the most out-
standing of which was the possibility of using the program to alter
itself. (Here, the “program” means the series of operations which the
computer is to perform.) Through the use of a “stored program” com-
puter, as this type of machine is called, a great variety of tricks could
be performed which would aid in the solution of many kinds of problems.
In particular, the using of portions of the program over and over (sub-
routines) became easy to accomplish, whereas this result had been
achievable only with considerable difficulty on previously existing com-
puter designs. Further, new means of electronic storage, such as ultra-
sonic delay lines, magnetic drums, and electrostatic storage tubes had
been recently invented, and the practicability of using large amounts
of electronic storage for programming was thereby enhanced immeasura-
bly. It is hardly possible to give an accurate estimate of the amount
of influence that the summer course had on progress in computers; never-
theless, shortly afterward several projects were organized for building
computers along the lines which had been described.

The first stored-program machine to be completed was built by a group
headed by M. V. Wilkes at Cambridge University in England. Although
their machine, known as the EDSAC, was modest in size and capabilities
when compared with other large-scale electronic computers being built at
the time, Wilkes and his associates are well known for their contributions
to programming techniques and procedures. Specifically they were the
first to make extensive use of a library of sub-routines with a system
for easily assembling them to make programs for the solution of new
problems.
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Another pioneering organization in the field of digital computers was
the Bell Telephone Laboratories. It was found that many of the com-
ponents developed by the telephone and telegraph industry were suitable
for the construction of a computing machine. The arithmetic and econ-
trol portions could be comprised largely of relays and other pieces of
telephone switching equipment, whereas teletype machines with their
associated punched-paper-tape facilities served well for input and output
equipment. As early as 1940, Bell Laboratories had completed a small
computer specifically intended to perform computations with complex
numbers, which arise frequently in telephone engineering problems.
Subsequently, a series of larger, more versatile, machines were built, with
the last one, known as Model VI, being completed in 1950. All were
of a type described as “relay computers” because, of course, of the ex-
tensive use of relays in their design. An outstanding feature of Models
II to VI of the series was the elaborate error-detecting facilities which
were incorporated into them. Although components would oceasionally
fail, the errors created could almost always be detected automatically.
Upon sensing an error the machine would stop so that appropriate cor-
rections or repairs could be made by the operator. The machines gained
an excellent reputation from the standpoint of reliability of the com-
puted results. Also, the floating-decimal-point idea seems to have ap-
peared first in the Bell Laboratories Model V, which was completed in
1946.

Although relays and other electromechanical components are still used
in certain portions, notably the input and output mechanisms, of most
computers, interest in the design of new “relay computers” has dimin-
ished almost to the vanishing point, especially in the realm of the so-
called large-scale computers. The reason is a simple economic one; for
a given amount of money more computing can be accomplished with
electronic computers because of the much higher speeds which are attain-
able. However, even the electronic computers are composed largely of
components which were developed by another industry, the radio com-
munications industry. In fact, it is literally true that, with a little
ingenuity, a quantity of radio sets could be disassembled and then re-
assembled in the form of a computer of quite respectable abilities. Al-
though the designs of many electronic components have been altered to
suit the needs and some new components such as magnetic drums and
magnetic storage cores have appeared, the debt of the computer industry
to the communications industry is great indeed.

Externally Programmed Computers. The phrase “externally pro-
grammed” is intended to mean that each operation which the computer

is to perform is under the control of some device external to the com-
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ponents and wiring of the computer itself. It is in contrast to plugged
program or stored program computers, which will be discussed in later
sections. Examples of external programming means are punched cards
and punched-paper tape. In the case of cards, one instruction might be
punched in each card in a coded form of some sort. Then, with the
deck of program cards in the hopper, the computer would cause a new
card to be sensed for each successive operation to be performed. To
anyone at all familiar with more sophisticated methods of operation it
will be clear that external programming of this nature has severe limita-
tions. However, because the method has considerable historical interest
and because the idea still has usefulness in some special applications,
it will be deseribed briefly.

Any computer that is to perform long sequences of arithmetic opera-
tions must be capable of storing a multiplicity of numbers which are the
initial data, the intermediate results, and the final results. Conceivably,
this storage could be entirely in the form of punched cards or tape of
the same type as used for program controls. In some of the earlier ma-
chines, punched cards or tapes were used for auxiliary storage (later
machines use the higher-speed magnetic tape), but they all employed
at least some “built-in” storage. In the earlier machines the built-in
storage was made up of decimal registers, each consisting of a set of
decimal counters in parallel.

In order to perform addition, at least one, and frequently several, of
the storage registers were equipped with carry-handling facilities to
form parallel accumulators, as described in Chapter 8 on decimal addi-
tion and subtraction. To add two numbers, it was necessary to place
at least one of the numbers in one of the accumulator-type registers and
then cause the other number to be sent to this same accumulator. For
shifting, multiplication, division, and other more complex operations,
the numbers were sent to one of a set of arithmetic units specially de-
signed for the purpose, and the result of the operation was then returned
to one of the storage registers.

The job of the program cards or tape was, therefore, largely reduced
to a matter of controlling the transfer of numbers from one place to
another. The problem is somewhat similar to the problem of telephone
switching; it must be possible to connect any unit (phone) to any other
unit. However, there is one important difference. In a telephone system
it is desirable to allow several conversations simultaneously, but in the
computer the program cards call for only one operation at a time. There-
fore, a common set of wires, or “bus,” may be used to connect all storage
registers and arithmetic units. Each must be equipped with an “in”
switch and an “out” switch. An instruction on the program card, there-
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fore, causes one “in” and one “out” switch to be closed. Then when the
storage registers are sensed, such as by applying ten pulses to each
counter and thereby rolling it around through zero to its original state,
a set of pulses representing the digits are caused to appear on the bus
from the unit which has its “out” switech closed and be transmitted to
the unit which has its “in” switch closed.

Many, many more details must, of course, be considered in order to
gain a thorough understanding of the system, but more important than
the details is an appreciation of the limitations of programming by ex-
ternal means. In the preparation of programs it is frequently desirable
to repeat some of the operations a number of times. A typical example
of this requirement is the computation of some quantity by an iterative
process. The portion of the program can be repeated easily as many
times as desired merely by punching enough program cards or tape, but
this procedure is clearly unattractive. It is particularly unattractive
when the number of times the iterative process is to be applied is not
known in advance. The automatic returning of cards to the hopper
or the back-spacing of tape by the required amount would accomplish
the desired result, although apparently no one has ever considered this
solution practical enough to build the required mechanism. Another
solution is to put the part of the program which is to be repeated on a
separate piece of program tape with ends joined to form a loop. This
tape loop may be placed on a separate tape reader which is called into
operation by the main program tape, and control is returned to the
main tape when the computed results indicate that a sufficient number
of iterations of the loop have been completed. This “sub-routine” tape.
may, if desired, control other sub-routine tape loops as sub-sub-routines.
Clearly, when many sub-routines are involved, the controls become com-
plex, and the number of tape reading units can become prohibitively
great.

A more severe limitation of external programming is encountered when
the sequence of operations is not continuous, but instead, it “branches”
according to the results obtained at intermediate points in the computa-
tions. Many examples are encountered where one set of arithmetic op-
erations is desired if a given number is positive and a partly or entirely
different set is desired when it is negative. Simple cases can be handled
by a multiplicity of tape readers; but, as more complex cases of branch-
ing are considered, this solution rapidly becomes impractical.

Further, it is not possible for the program to alter itself in the same
sense that it is possible in a stored program machine. Many useful pro-
gramming tricks, some of which are explained in Chapter 12 on pro-
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gramming, are thereby not available on externally programmed com-
puters.

Plugged-program Computers. A second general method for control-
ling the sequencing of operations is through the use of a plugboard (con-
trol panel). With a plugboard the actual physical wiring of the com-
puter is changed for each new set of computations to be performed by
the machine. Clearly, it is important to devise a systematic arrange-
ment for connecting the various plug hubs by means of plug wires in
order to reduce the required time and the likelihood for mistakes when
preparing the plugboard for a given sequence of operations. Even with
the best designs, the amount of effort required to prepare a plugboard
is likely to be excessive when compared with inserting a deck of program
cards especially in commercial applications where the same array of
connections must be assembled and disassembled frequently. IBM
solved this problem by making the entire plugboard removable, and for
each sequence of computations which might be repeated frequently, a
separate plugboard is maintained with all plug wires in place. The out-
standing limitation of a plugged program computer is the limitation on
the number of steps which can be accommodated in the sequence. The
limitation is a practical one and not a theoretical one; for many steps
(say much over 100), the amount of equipment becomes excessive and
the mass of plug wires required becomes unwieldy.

In explaining how a plugged program computer functions, no attempt
will be made to describe some imaginary “generalized” computer. In-
stead, one specific design of machine, IBM’s Type 604, will be used as
a pattern, although liberal variations in the details and nomenclature
will be made in an effort to illustrate the basic principles with a minimum
of confusion from information that is not pertinent. However, it should
be understood that the 604 arrangement is by no means the only one
possible. Any group of imaginative engineers at the task of designing
their own machine would probably incorporate many of their own ideas
and arrive at a design substantially different from this one.

A block diagram of the major units in the arithmetic and storage por-
tions of the computer is shown in Fig. 11-1. There are two eight-wire
number busses (each indicated by a single line) in the system. One is
used for entering numbers into the various registers, and this operation
is called “read-in,” which is abbreviated to RI. The other bus is for
“regad-out,” which is abbreviated RO. Besides the registers intended
specifically for storage, there are two special registers—one, the multi-
plier-quotient (M-Q) register; and the other, the accumulator. As the
name implies, the M-Q register is for storing the multiplicand when mul-
tiplying and for storing the digits of the quotient as they are generated
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when dividing; however, this register may be used for ordinary storage
if desired. All actual arithmetic is performed in the accumulator. The
accumulator is similar in many respects to the other registers except
that facilities for handling decimal carries are included. The deecimal
digit-storage devices in all registers are electronic decimal counters made
up of four binary flip-flops with connections to eliminate six of the
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Frc. 11-1. Organization for plugged-program computer.

sixteen possible stable states in accordance with one of the schemes on
counting described in Chapter 7. Then, to read-in a digit, a number
of pulses equal to the value of the digit are applied to the counter. To
read-out a digit, ten pulses are applied to the counter, and a pulse is
caused to appear on the corresponding wire of the RO bus at the time
the counter arrives at zero. After the tenth pulse the counter is, of
course, back in its original state.

All arithmetic operations involve the transferring of numbers from
one register to another, and all transfers occur through the “column-shift
unit” and the ‘“add-subtract control.” The column-shift unit is a
switching network capable of shifting the connections between the RO
and RI busses under the control of external signals which are applied




322 Arithmetic Operations in Digital Computers

to it. For example, if a shift of two places is called for, the units RO
signal will appear on the hundreds RI wire, the tens RO signal on the
thousands RI wire, ete. The add-subtract control converts the timed
pulses on the RO bus wires to series of pulses which the counters can
count on the RI bus wires. Either the true or 9’s complement represen-
tation can be obtained for addition and subtraction purposes in the man-
ner described in Chapter 8 on decimal addition and subtraction. To
cause a number to transfer from one register to another it is necessary
to apply a steady-state signal to one RI plug hub and one RO plug hub
during the time of the transfer. In Fig. 11-1 each “and” and “or” switch
actually represents eight such switches because of the eight wires in
the bus. Also, control signals must be applied to the column-shift unit
to indicate the desired shift and to the add-subtract umit to indicate
whether an addition or subtraction is to be performed. The set of “and”
switches on the output side of the accumulator is for the purpose of
preventing output pulses from reaching the RO bus when reading into
the accumulator. Corresponding “and” switches are not needed on the
outputs of the other registers because these other registers are always
reset to zero before reading into them, with the result that the counters
will never go past nine during read-in.

The basic source of pulses in the machine is a continuously running
multivibrator which drives a 23-stage ring counter. The signals obtained
from the various stages in the ring are used either directly or in con-
junction with other flip-flops to generate control pulses and “gate” sig-
nals which may be needed throughout the computer. This ring cireuit,
together with its associated equipment, is sometimes referred to as the
“clock.” Time is measured with respect to the status of the ring. The
instant when the last trigger in the ring goes off and the first one comes
on is known as 1-time. The time of the second trigger’s coming on is
2-time; the third, 3-time, and so on. The pulses generated from 1-time
to 10-time are used for a variety of purposes including the resetting to
zero of the appropriate storage registers, multiplication and division con-
trol, and others. The ten pulses used for the transfer of one storage
location to another are generated from 11-time to 20-time, inclusively,
and the carry-gate signal occurs from 21-time to 1-time of the next eycle.
Although a more detailed understanding of the “clock” would be desir-
able for some purposes, it will not be described further because an under-
standing of the sequencing of arithmetic operations does not depend
upon it.

The signals controlling the sequencing of operations are obtained
from another ring counter, called the “program ring.” The program
ring may have as many stages as desired with one stage, or step, being
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required for each operation. The program ring gets its stepping pulses
from the first stage in the clock ring, with the result that each time the
clock ring goes through one complete c¢ycle of operations the program
ring is advanced one step. The output signals from the program ring
are brought out to hubs on the plugboard. Therefore, during each entire
arithmetic operation (during each program step) a steady-state type of
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signal is available to control the various functions in the computer. Ac-
tually, each output from the program ring is brought to three separate
hubs, called the program-exit hubs, and each connection is made through
a separate electronic driving tube in order to prevent back circuits. The
reason for the three output hubs is that it is frequently necessary to
control three things during one program step.

To illustrate the functioning of a plugged program computer, a simpli-
fied plugboard wired to do the computation, z(z — 10y), is shown in
Fig. 11-2. Assume that z is initially in storage register 1, and y is in
storage register 2. During the first program step, steady-state signals
appear on the three program-exit hubs corresponding to this step. A
plugged connection is made from one of these hubs to one of the storage
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RO hubs corresponding to storage register 1. Note that there are four
of these latter hubs shown in the figure. The line connecting them in-
dicates that they are electrically wired together beyond the plugboard.
This arrangement allows the convenient plugging of this RO function
four times in the preparation of the plugboard. The same remarks apply
to other hubs which are similarly connected. A second plug wire is used
to connect program step 1 to an accumulator RI4 (add) hub. The
operation which occurs as the clock executes one cycle during the first
program step is the transfer of z to the accumulator (refer also to Fig.
11-1). It is assumed that the column-shift unit passes numbers without
a shift unless a plug wire is used to control it otherwise.

Plug wires connecting the program step 2 hubs to storage unit 2 RO,
accumulator RI— (subtract) and column shift 1 cause 10y to be sub-
tracted from z. To perform multiplication, one of the two factors must
be placed in the M-Q unit. This is accomplished in program step 3
by connecting plug wires to an M-Q RI hub and an accumulator RO
and Reset hub as shown in Fig. 11-2. During the fourth program step
the multiplication of £ by = — 10y is performed under the control of
plug wires to another RO hub for storage unit 1 and to one of the mul-
tiply hubs. Internally, multiplication proceeds by an over-and-over
addition process with the number in the M-Q unit as the multiplier and
the number in the indicated storage unit as the multiplicand. During
a multiplication the clock must execute as many complete cyeles as
there are additions to be performed, so the pulse to the program ring
from the clock is blocked until the multiplication is complete. During
multiplication and division operations the column-shift unit and the
sensing of the multiplier digits one at a time are under the control of a
ring counter which is advanced one step at the completion of the han-
dling of each multiplier or quotient digit, as the case may be.

As might be expected, any practical plugboard arrangement would
contain many more features than the basic ones which have been de-
seribed. Of these other features, the most important ones are the means
for causing the computer to proceed through different sequences of oper-
ations under the control of intermediate results and to repeat certain
sequences as required in iterative processes. One system for accomplish-
ing these results involves the suppression of certain program steps.
Along with the three program-exit hubs on the plugboard corresponding
to each program step there is a fourth hub called the program-suppress
hub. When a signal is applied to this hub through a plug wire from
any other source, the program step will not be executed because signals
will be prevented from appearing on the program-exit hubs. In most
cases the computations can be arranged so that the determination of
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which sequence to be followed is dependent on the sign of a number
in the accumulator. Therefore, the accumulator sign flip-flop can be
used to supply accumulator-plus and accumulator-minus signals which
may be used for suppressing unwanted program steps. Other sources of
program suppress signals may, of course, be used if desired. To repeat
a portion of the program using this system it is necessary to repeat the
entire program while suppressing all program steps except the portion
to be repeated. To facilitate the suppression of so many steps and for
other purposes, a ‘“group suppression” feature has been devised. A
binary storage device is used to control the suppression of any desired
group of program steps through the use of appropriate hubs and wires
on the plugboard. The steps in the group are suppressed or not, accord-
ing to the status of the bistable device, which may be an electronic flip-
flop or a relay, and which may be turned “on” or “off” by signals from
any of a variety of sources in the computer. By supplying a multiplicity
of group suppression devices, considerable flexibility may be achieved
in the altering and repeating of sequenced operations. This system is
used on IBM’s type 607 computer and the “Card Programmed Cal-
culator.”

More flexible and higher-speed methods of altering and repeating
programs may be worked out, usually at the expense of additional equip-
ment. One such method involves the elimination of the “ring” feature
of the program counter. Instead of proceeding from step to step in a
uniform sequence, each program step is provided with an “in” hub to
which a signal must be applied to initiate the action called for by the
plug wires of that step. Also, with each program step there is an “out”
hub on which a signal appears when that particular step has completed
its operation. A plug wire must then be used to connect the “out” hub
of each step to the “in” hub of the step which is to follow. When the
selection of the next step is to depend upon the status of some condition
in the computer (such as the plus-or-minus condition of the number in
the accumulator), a group of pluggable “and” and “or” switches are
needed. For example, assume that the program steps are executed in

a uniform sequence through step number 15, but after step 15 the next
step should be 16 if the number in the accumulator is plus or step 7 if
it is minus. To accomplish this result, the outputs of the accumulator
sign flip-flop are combined by means of plug wires in “and” switches
with the “out” signal from program step 15. The outputs from the
“and” switches are plugged to the “in” hubs of steps 7 and 16, respec-
tively, with the result that, upon completion of step 15, a signal will
be routed to step 7 or 16 in accordance with the status of the sign flip-
flop. The “or” function is needed at the input of step 7 because this
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step may be initiated from step 6 or step 15. Since there are no restric-
tions on which step may be the ‘“next” one, the altering and repeating
of sequences are accomplished in the same way.

Storage Devices. Before proceeding to stored-program computers, a
few points concerning the devices used in them for number storage should
be understood. Although the counters used for storage in the earlier
externally programmed and plugged-program computers could be used
in a stored-program fashion, they are not nearly as practical as the
storage devices which have been developed specially for the purpose.
The organizations which have been worked out for stored-program ma.-
chines depend in large measure upon the nature of the storage medium
which is chosen.

Of the various storage devices that have been considered for com-
puter applications, five have emerged as being acceptable from engi-
neering and commercial standpoints. They are: magnetic cores, electro-
static storage tubes, acoustic delay lines, magnetic drums, and magnetic
tapes. The differences in these storage devices are not only in the physi-
cal mechanism of storage, but also in the means used for gaining access
to the individual storage bits. In fact, from the standpoint of computer
organization, the access properties have a far greater effect on design
than the storage mechanism itself. Naturally, cost has an important
bearing also.

Magnetic Cores. Of the five, magnetic cores are the most recent to
become successful, and it is with them that the shortest access times
are possible. The storage principle of magnetic cores is simple enough.
A toroidal-shaped piece of ferromagnetic material with a nearly square
hysteresis loop is caused to be magnetized to saturation with the lines
of flux passing in one direction or the other around the toroid. The rema-
nent flux represents the storage of a binary 1 if it is in one direction,
and O if it is in the other direction. The problem of gaining access in
a practical manner to a specific core in an array is more difficult. In
general, the means which are employed make use of the fact that, with
a square hysteresis loop, it is possible to apply a magnetic field of strength
H, which will have no effect where a field of 2H, is sufficient to cause
the flux to change completely from one state to the other. Then, in a
rectangular array of cores, a current in a wire which passes through all
cores in one column combined with a current in a wire which passes
through all cores in one row can be used to selectively magnetize the
core at the intersection of the row and column. To sense the status of
the core, it is necessary to magnetize the core by the same procedure
but in the opposite direction and to use a third wire through the core,
which acts like a secondary winding of a transformer. A pulse or no
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pulse appears in the secondary, depending upon whether the flux was
changed or not when sensing. Therefore, the problem of selecting a
given core reduces to a problem of selecting two wires (one for row and
one for column) to which pulses of current should be applied. When
the number of cores is so great that one array is not practical, it is nec-
essary to select one of a third group of wires to select the desired array.
When each individual core is specified by a number which is stored in
a set of flip-flops, it is possible to select the desired wires through the
use of matrices as described in the chapter on switching networks.

Electrostatic Storage. With electrostatic storage the 1’s and (’s are
stored in small charged areas on the face of a cathode-ray tube; if a
given area is left charged positively or negatively, a 1 or a 0, respec-
tively, may be stored. Here, positive and negative are relative to each
other and not to ground. There are several different ways by which
the electron beam (cathode rays) can be used to create the desired
charge pattern. The most successful, at least in terms of amount of
use it has received, is known as the Williams tube system. With this
system ordinary cathode-ray tubes developed for oscilloscopes and tele-
vision sets can be used, although better results are obtained when certain
design parameters are changed.

The feature in common with most electrostatic storage systems is the
use of deflection plates to deflect the electron beam to the desired area
on the tube face for access purposes. To gain access to a given spot, a
voltage which is one of a multiplicity of discrete values is applied to
the horizontal deflection plates and another voltage which is one of a
different set of discrete values is applied to the vertical deflection plates.
If a number representing the location of the desired spot is stored in a
register composed of a set of flip-flops, it is necessary to convert these
binary voltages to a sort of “semi-analog” voltages to be applied to the
deflection plates. This effect is usually accomplished through current
summing cireuits comprised of precision resistors with values appropri-
ately chosen. The summed currents are passed through other resistors
to develop the stepped voltages which are then amplified and applied
to the deflection plates.

The time raqnwpd for access with eleetrostatic sto orage is shi

greater than for magnetic cores. The reason is largely in the fact that
it takes some time to develop the deflection voltages to the accuracy
necessary for the beam to hit the desired spot on the tube face within
the tolerance required for reliable operation. With either cores or elec-
trostatic storage, the sensing of information destroys it and it must be
re-recorded if its continued storage is desired. In the case of Williams

tubes, all stored information must be re-recorded periodically whether
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it is used or not, because otherwise the charge pattern would gradually
disappear because of ohmic leakage. As a result, with this type of stor-
age in some applications, a certain amount of time is required for re-
generating storage and is not available for calculating.

Acoustic Delay Lines. With acoustic delay lines the storage mecha-
nism is the presence or absence of mechanical vibrations traveling along
the length of some material, usually a column of mercury. The term,
“acoustic,” is somewhat of a misnomer in that the frequency of the vibra-
tions is well above the range of hearing; in fact, the pulse repetition
rate may be as high as 2 megacycles or more, and the major frequency
components of the individual pulses are even higher. To convert the
electrical signals from the computer to mechanical vibrations in the
mercury, a quartz crystal is mounted at one end of the column with
the vibrations being induced by virtue of the piezoelectric properties
of the quartz. Another quartz crystal is used at the far end of the line
to sense the pulses as they arrive and convert them back to electrical
signals. Of course, the amplitude and shape of the pulses are deteri-
orated when passed along the delay line. Therefore, for continued stor-
age of information they are not returned directly to be recirculated;
instead, they are used to gate fresh pulses into the line. This procedure
is possible because it is the time of the pulse in the line which is of
consequence in identifying it with a particular binary digit. The prac-
ticality of acoustic delay lines lies in the fact that it is possible to store
several hundred binary digits of information in one line.

The means used for gaining access to a given bit in a delay line is quite
different from the means used for cores or electrostatic storage. Once
a pulse is sent down the delay line it cannot be sensed until it reaches
the other end. Even a few intermediate sensing points along the line
are usually not considered practical. However, once the pulse does ap-
pear at the output of the delay line, it appears on one wire and no fur-
ther selection is required. To specify the location of a given pulse it
is necessary to divide time into cycles which repeat over and over, where
the time for one cycle is equal to the time required for a pulse to travel
the length of the line. Each cycle is subdivided into individual pulse
periods equal in number to the number of binary digits stored in the
line. Each subdivision of time may then be assigned one of a series
of numbers from zero to the storage capacity of the line. To gain access
to any given binary digit the number representing its time of arrival at
the output of the delay line (which is also the time of entry) is placed
in a counter. At the start of one of the cycles, pulses are supplied to
the counter to cause it to count toward zero in synchronism with the
individual pulse period of the delay line. When the counter arrives at
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zero, an “and” gate is opened to allow the pulse, if any, which is emerging
from the delay line at this time to pass into other computer circuits.
A 1 or a 0 is represented by the presence or absence, respectively, of
a pulse at this time. When more than one delay line is used, some of
the digits of the number which represent the desired storage location
are applied to a matrix to select the appropriate line in the same way
that electrostatic tubes or arrays of cores would be selected.

Magnetic Drums. In the case of magnetic drums, the binary digits
are stored as small magnetized areas on the surface of a revolving cylin-
der. Access to a spot on any one “track” is accomplished by substan-
tially the same procedure as is used for acoustic delay lines. The delay
in the drum is obtained from the time required physically to transport
the spot in its circular path. The drum may be used in two different
ways. If separate magnetic heads are used for recording and sensing
the binary digits, the digits may be reeirculated in the same manner as
in the case of delay lines. A track operating in this way is sometimes
called a “revolver.” The other mode of operation involves the use of
the same magnetic head for recording and sensing. With this scheme,
the digits are not continually erased and rewritten, but instead they may
be left on the drum surface indefinitely. However, it then becomes nec-
essary to synchronize the drum position with the circuits used for access.
A “timing track,” which consists of a special track with a uniform series
of magnetized spots permanently recorded, may be used for this pur-
pose. The pulses obtained from the timing track ecan be used to control
the drum speed, or the drum may be allowed to run at its own speed
and the pulses used to control the access circuitry.

Practical pulse repetition rates for drums are in the order of 100 kilo-
cycles, which is less than for acoustic delay lines by a factor of, roughly,
20. Also, the access time for comparable storage capacities is propor-
tionately greater. Both of these properties are strong disadvantages,
but magnetic drums have nevertheless found wide application because
of their relatively low cost.

Magnetic Tape. The storage principle used for magnetic tape is sub-
stantially the same as for magnetic drums, although, because of tape-
handling problems, the maximum practical pulse repetition rate is much
less. However, the access procedure is radically different. The amount
of information that can be stored on tape is almost unlimited, because
pieces of tape can be spliced together to form very long lengths. The
problem of physically handling the tape becomes acute, of course, when
unduly long lengths are used, but even with short lengths of tape the
problem of locating a desired spot is of importance. As a general rule,
no attempt is made to assign numbers to the storage locations on tape



330 Arithmetic Operations in Digital Computers

(although it is possible), as is done with all of the other storage devices
which have been described. Instead, information is usually recorded
along the length of the tape in sequential fashion as it passes under the
magnetic head without regard to the exact position of any particular
bit of recorded information. When sensing the information, the tape
is passed by the magnetic head, and the circuits which respond to the
pulses from the head must be prepared to accept pulses at any time
because the time of their arrival is not known.

When, as is usually the case, the recording is not being done continu-
ously, the tape-drive mechanism must be stopped when not recording.
Otherwise, large sections of unused tape would pass by the heads, and
this procedure would not only waste tape but would make the access
problem even more severe. Since the tape-drive mechanism cannot stop
or start in a time which is short compared with the pulse-repetiton rate
of the recorded information, a certain amount of space on the tape must
be allowed between each “block” of recorded information. Further,
there must be at least some safety factor in the amount of space. Be-
cause of the general uncertainty of the location of any information
stored on tape, it is usually not practical to alter single bits of informa-
tion. It is more common to erase an entire block and then record it
again in its altered form. Care must be taken that sufficient space for
tape starting and stopping is allowed at each end of the block.

Because of these characteristics of tape, computers are usually de-
signed so that access to the desired places on tape is gained by means
of programming instead of by built-in equipment. For example, the
program may be written so that the blocks of information recorded on
the tape can be counted. For another example, if tables of functions
are stored on the tape, the arguments and values can be stored in alter-
nate blocks. Then through programming, the computer can examine by
a comparison operation all of the arguments until it comes to the right
one, at which time it senses the next value of the function.

Consideration of Storage Devices Relative to Stored-program Com-
puters. Of the various storage devices that have been described, mag-
netic cores and electrostatic storage tubes are the most attractive for
stored-program computers in that access to any storage location may
be gained with equal ease at any time. The choice between the two
in any given application would be based on several engineering and eco-
nomic considerations, but from the standpoint of computer organization
either may be chosen.

Acoustic delay lines and magnetic drums are less desirable because,
in the general case, it is necessary to require the computer to wait to
place any information in storage or to recall it from storage. Never-
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theless, these two forms of storage are used in many machines because
they have other properties that are more advantageous. When using
acoustic delay lines in a computer employing the serial mode of opera-
tion, a reasonably fast and reasonably inexpensive machine can be built
because of the very high pulse-repetition rates that are possible. The
waiting time can be minimized by writing the program so that at each
step the desired storage location is the one approaching the end of the
delay line at the time. The outstanding advantage of magnetic drums
is the relatively low cost of a given amount of storage, and again, access
time can be reduced by writing the program in an appropriate manner.
However, the problem of “minimum access programming,” as it is usu-
ally called, is by no means a simple one. In the case of magnetic tape,
the access time is far too great to make tape practical as the principal
storage medium in general-purpose electronic computers.

Also, either magnetic drums or tape, or both, are useful storage de-
vices in computers using some other medium for its main, fast-access,
storage. Larger storage capacities can be made available at a more
attractive cost. The access problem can be side-stepped in large meas-
ure by transferring large blocks of information between the fast-access
storage and consecutive locations on the tapes or drums rather than by
making reference to substantially random locations on them. With this
arrangement, all arithmetic operations are performed with the aid of
only the main storage. When the capacity of the main storage will be
exceeded, a few storage locations are saved for instructions which will
record appropriate blocks of intermediate results on the tapes or drums
and then call in blocks of more program steps or data, as required.

Tape reels on a computer can be changed readily by an operator.
For this reason magnetic tape is frequently viewed as being an input
or an output device instead of a storage device. Since the true source
of information is seldom, if ever, found on magnetic tape and since in-
visible spots on a magnetic material are of little value as a final output,
the role of magnetic tape as an input-output device could be questioned
(compared with meter readings, keyboards, printers, and graph plotters,
for example). Regardless of the semantics of the case, magnetic tape
is frequently treated as an input and output device from the standpoint
of computer organization. Also, magnetic drums are frequently handled
organizationally as input-output mechanisms when used in conjunction
with magnetic cores or electrostatic storage tubes, even though drums
are usually not physically removable from the machine.

Organization of a Stored-program Computer. As with other forms
of computers, there are a great many variations in the ways in which a
stored-program computer can be organized. The organization which
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will be described here is patterned after IBM’s Type 701 (a parallel,
binary machine), although some modifications in details and nomen-
clature have been made to facilitate explanation of basic principles with-
out confusion from information which is not pertinent. The 701 was
chosen because the arrangement of this machine is about as straight-
forward as any and because all of the fundamental features of stored-
program computers are easily illustrated. Other important features
found in the 701 and other machines of this category will be described
in later sections.

As a general rule, the storage devices which are useful for the main
storage in stored program computers are not satisfactory for the tem-
porary storage of numbers during the time that they are undergoing
arithmetic operations or controlling the sequence of operations. For this
reason, a set of miscellaneous storage registers, each specially adapted
to a specific purpose, are employed in addition to the main storage. They
may be comprised of any of a variety of storage elements. Conven-
tional bistable flip-flops are frequently used, and for purposes of visual-
ization, the use of flip-flops may be assumed. Three registers are used
for storing numbers which enter into the computations. One, known
as the “storage register,” or S-register (see Fig. 11-3), serves the primary
function of storing the multiplicand during multiplication and the divi-
sor during division so that it is not necessary to make repeated references
to the main storage during these operations. With the electrostatic stor-
age system, as used in the 701, it is thereby possible in some cases to
do nearly all of the regenerating of storage during these two relatively
lengthy operations. Numbers are transferred from the main storage to
the S-register over a set of parallel wires, one for each binary digit. The
accumulator register can be of any one of the forms described in Chapter
4 on binary addition and subtraction, or it can be an adder used in con-
junction with a conventional register. The multiplier-quotient, or M-Q
register, as the name implies, is for the purpose of storing the multiplier
during multiplication and the quotient during division.

For addition and subtraction, numbers are taken from appropriate
locations in the main storage and sent to the accumulator. They are
sent through the S-register because this path is needed anyway for other
purposes. For multiplication, it is necessary as a first step to cause
the multiplier to be transmitted from the main storage to the M-Q
register. The accumulator and M-Q register are both capable of shifting
the numbers in them to right or left. Then, at the start of the actual
multiplication process, the multiplicand is obtained from the main stor-
age and placed in the S-register to be added in over-and-over fashion
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in the accumulator, which shifts to the right one step after each addition.
The product as it is built up is shifted into M-Q register as has been
described in an earlier chapter. At the conclusion of the multiplication
process the double-length product is stored with its high-order digits in
the accumulator and its low-order digits in the M-Q register. If it is
desired to retain the entire product, two storage locations in the main
storage are required and two program steps are used to transfer it from
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F1e. 11-3. One arrangement for a stored-program computer.

the two registers. Division is substantially the reverse of multiplication.
The dividend is placed in the accumulator (or the accumulator and the
M-Q register if a double-length dividend is required) and the divisor
is stored in the S-register. As the division process proceeds, the digits
in the accumulator are shifted to the left with the result that the final
remainder appears in the accumulator and the quotient in the M-Q
register. In Fig. 11-3, all paths used for the data and results are indi-
cated by solid lines.

The problem is now to control the transmission of data between the
main storage and the three registers in the arithmetic portion of the
machine. This function is to be accomplished through the use of num-
bers representing program steps, and these numbers are to be stored in
the main storage along with the numbers representing data. The in-
struction counter, the operation-address register, and the control cir-
cuits are the major units which are used for accomplishing this purpose.
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The instruction counter has two functions. First, it keeps track of

the program step that the computer is executing at any given time.
Normally, a pulse is sent to the instruction counter at the conclusion
of each arithmetic operation to step it up by one count; but for altering
or repeating a program the contents of the address part of the operation-
address register may be transferred to the instruction counter to replace
the number there. The second purpose of the instruction counter is to
control the storage-selection circuits when a number representing a pro-
gram step is being sensed in the main storage. The nature of this con-
trol would depend upon the choice of storage device used for the main
storage, as described in previous sections. The paths to and from the
instruction counter are indicated in Fig. 11-3 by dotted lines, as are all
of the paths which transmit information pertaining to the control or
programming of the computer.
. Before describing the function of the operation-address register, the
meaning of the term, “address,” must be explained. In its narrowest
sense, an “address” is a number which represents a storage location in
the main storage. Usually, each location is assigned one of a series of
consecutive numbers from zero to the storage capacity of machine.
Then, when an address is sent to the storage-selection circuits, access
is gained to the storage location represented by that address. By this
definition the number in the instruction counter is more than an abstract
number used for counting program steps; it is an address also, because
it prescribes the storage location from which a number representing the
program step is to be taken. As will be explained further later, an ad-
dress can be used to designate other things. For example, it is used to
specify the desired input or output mechanism when sending information
to or from the computer. Also, the address specifies the number of shift-
ing steps that are to take place in a shift operation.

The operation-address register is used for storing the “instruction,”
which has been previously referred to as the number which represents
the program step. An instruction consists of two parts, known as the
operation part and the address part. The operation part specifies the
operation to be performed, which may be an arithmetic operation such
as add or multiply, or which may be any one of a long list of other op-
erations such as the transfer of a number from one place to another or
the causing of a magnetic tape unit to rewind. This part of the instruc-
tion causes the computer to perform the indicated operation by means
of control circuits, which are described more fully in a later section. As
the name implies, the address part of the instruction specifies the ad-
dresses of the operands when the main storage is involved or the input-
output device, the number of shifts, and so on, as the case may be in
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other types of operations. In the 701, as well as in several other com-
puters, the address part of the instruction contains only one address,
and machines of this type are called “single-address” computers. Some
computers contain as many as four addresses per instruction. The na-
ture of the individual operations is somewhat different in multi-address
computers from the ones found in single-address computers, but the
general organization of the two types of machines can be quite similar.
Incidentally, the address part of the register is a counter as well as a
register and is used for keeping track of the shifts in a shift instruction
or during a multiplication or a division.

During operation, the computer alternately comes under the control
of the instruction counter and the operation-address register. To visu-
alize the sequencing of the computer functions, assume that the program
is initially stored in the main storage with at least the first few instruc-
tions in the lowest numbered addresses. The various items of data may
be at any desired addresses. If the instruction counter is initially at
zero, the control circuits first cause the instruction at address zero to
be taken from the main storage and sent to the operation-address regis-
ter. (The fact that the path is through the S-register is incidental.)
Normally, the instruction is rewritten at address zero so that it may
be used again. The computer then performs the operation indicated
by the digits in the operation part of the address register. Upon com-
pletion of the first operation, control is returned to the instruction coun-
ter, which has in the meantime been stepped from zero to one. The
instruction at address one is now caused to be sent from the main storage
to the operation-address register, after which the second instruction is
executed under control of this register, and so on. In other words, each
program step consists of two parts, which are (a) the securing of the
instruction and (b) the execution of the instruction. Reference to the
main storage may be made during each part; in (a) the storage selec-
tion circuits are under control of the instruction counter and in (b) they
are under control of the address part of the operation-address register.

For a further understanding of a stored-program computer, it becomes
necessary to consider the list of instructions which the computer is able
to perform. In any practical computer this list would involve a mass
of detail, the deseription of which would be well beyond present pur-
poses. Chapter 12 on programming describes a simplified list of instruec-
tions with sample programs illustrating its use. Here, the discussion
will be limited to two outstanding features of instructions which ean be
built into computers of the stored-program variety.

The basic problem of altering a program or repeating portions of it
is solved in the stored-program computer by a “jump” (sometimes given
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other terms such as “branch” or “transfer”) instruction. The jump in-
struction causes the address part of the instruction, which is in the opera-
tion-address register, to be sent to the program counter to replace the.
number there. The result is that the uniform sequence of addresses
from which instructions are obtained is terminated, and a jump is made
to some other address. Then, because the program counter receives one
pulse to be counted for each program step, the selection of instructions
from sequentially numbered addresses is resumed at the new address
and is continued until another jump instruction is encountered. The
great usefulness of jump instructions arises from the possibility of using
some criteria in the computer to control whether or not the jump is actu-
ally made. It is common practice to include at least two jump instrue-
tions, with one causing the jump to be made unconditionally and another
causing the jump to be made or not under control of the sign of the num-
ber which is in the accumulator at the time. Other jump instructions
may be included which are conditional upon different factors. It is not
necessary that the factor be within the computer; for example, in some
applications the jump might well be made dependent upon the time of
day.

A second important feature of the instructions in a stored-program
computer is that they are indistinguishable from the data. The program-
mer must keep track of which is which. Occasionally a certain amount
of confusion results, but it is useful to be able to perform arithmetic
operations on instructions. The addition or subtraction of a constant
from the address part of an instruction is an operation which is per-
formed frequently when using sub-programs. Another example of the
usefulness of the feature is in the storage of tables when the arguments
form a uniform sequence. To find the address of the value corresponding
to any given argument, it is sufficient to perform a simple computation
on the argument and then use the result as the address part of an appro-
priate instruction. A time-consuming searching process is thereby
avoided. Arithmetic operations on the operation part of an instruction
can be of considerable value too, but they usually fall in the category
of tricks, any one of which can be used only on the machine for which
it was devised. Also, as a result of the interchangeability of instructions
and data, the program can be arranged so that extensions of the program
can be entered into the computer through the input devices under control
of the program itself in the same manner that new data are entered.

The input and output devices are shown connected through the M-Q
register in Fig. 11-3. That the M-Q register is used in this way is inci-
dental; it just happens to be convenient. However, some temporary
storage of some sort is usually needed between the input and output
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devices and the main storage because the various units are not syn-
chronized with one another. When an instruction calls for a number
to be sent from main storage to an output deviece, for example, the out-
put device may not at that particular instant be prepared to accept it.
Then when the output device is ready to accept the number, the timing
in the arithmetic part of the computer may not be at the right point
for transmission. Another factor, which is probably even more com-
pelling, is the fact that the form of the number may be different in the
two places. In particular, in the 701 numbers are transmitted 36 bits
at a time to and from main storage, but only 6 bits at a time to and
from magnetic tape. Both the timing and the change of form problems
can be solved through the use of “buffer” storage, as it is sometimes
called.

Control Circuits. The objective to be accomplished by the control
circuits in a stored-program computer is the causing of all the individual
units of the computer to perform in such a manner that the instructions
in the main storage are sensed in the proper sequence and executed. In
general, the units are controlled by sending pulses to them over a set
of wires which may be called “command lines.” Each command line
is for a specific purpose, such as transferring a number from one register
to another, shifting the number in a register, resetting a flip-flop, or
any one of a multitude of other functions. Usually it is necessary to
send pulses, appropriately sequenced in time, over several different com-
mand lines to execute any one instruction. The ecircuit arrangement to
be used in any given case for distributing the control pulses on the com-
mand lines depends in large measure on the organization of the computer
as a whole, and in existing machines great variations will be found when
comparing one computer with the next. Two general methods of as-
sembling control circuits which can be used in a wide range of machine
organizations will be outlined.

One possible organization for the block labeled “control circuits” in
Fig. 11-3 is given in Fig. 11-4. The basic source of pulses is a continu-
ously running multivibrator (MV) which drives a ring counter indicated
in the figure as the “clock ring.” Timed pulses are obtained from each
stage of the clock ring, and one complete set of timed pulses is called
a “cycle.” At least two cycles are required to perform any arithmetic
or other operation; one cycle, called the “instruction cycle,” is used to
transfer the instruetion from the main storage to the operation-address
register, and then at least one “execution cycle” is needed for the actual
operation. The timed pulses from the ring are, therefore, sent through
a switching network which distributes them to the various command
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lines as called for by the operation and the status of certain signals
applied to the switching network as “miscellaneous inputs.”

Among the more important miscellaneous input signals are signals
from a flip-flop in the computer which indicates whether an instruction
cycle or an execution cycle is being performed at the time. An instrue-
tion is obtained from storage during an instruction cycle and executed
during an execution cyele. During an instruction cyecle the signals from
the clock are sent to appropriate units for the transfer of the instruction
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Fie. 11-4. Control circuits.

from the main storage to the operation-address register. Recall that
during an instruction cycle the storage-selection ecircuits are under con-
trol of the instruction counter. One of the last pulses in the cycle is used
to alter the instruction-execution flip-flop to cause the next cycle to be
an execution cycle. In general, all instruction cycles are exactly alike,
but there is a different type of execution cycle for each arithmetic or
other type of operation that the computer can perform. Further, some
operations, notably multiplication and division, require many execution
cycles, not all of which are alike. Also, the execution cycles for condi-
tional jump operations depend upon the conditions as supplied to the
switching network through some of the miscellaneous input lines.

The major factor controlling the computer during an execution cycle
is the number which was placed in the operation part of the operation-
address register by the immediately preceding instruction cycle. The
digits of this number are applied to a matrix which has one output line
for each operation the computer is capable of performing. The output
signal from this matrix together with certain signals from miscellaneous
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inputs then controls the distribution of the clock pulses to the command
lines to cause the execution of the indicated operation. For all operations
which refer to the main storage, the particular location selected will be
the one indicated by the number in the address part of the operation-
address register. For operations which require more than one execution
cyele, a counter must be provided, and output signals from the counter
are among the miscellaneous input signals to the switching network.
A command line is used to pulse the counter at the completion of each
cycle; when the counter indicates that the required number of cycles
have been completed, a pulse on a different command line causes the
instruction-execution flip-flop to call for the next instruction cycle.
During the execution of the instruction one of the command puises was
used to advance the instruction counter by one step so that the instruc-
tion located in the next sequentially numbered address will be sensed
unless the operation was a jump, in which case the next address will be
the one which was transferred into the instruction counter from the
address part of the operation-address register.

Although it is a relatively straightforward matter to assemble control
circuits along this pattern which will make a computer capable of per-
forming any list of operations that might be desired, minimizing the num-
ber components is usually a complex puzzle. Boolean algebra is a use-
ful tool, but it is not wholly adequate, not only because of the multi-
plicity of signals involved, but also because the timing of the signals is a
parameter which the designer can vary and which falls outside the scope
of Boolean notation. Much is left to the ingenuity of the designer.

A second system for assembling control circuits avoids the use of a
clock. Instead, a series of delay units is used for generating the timed
command pulses needed for transferring the instruction from the main
storage to the operation-address register. Also (in its most straightfor-
ward form), there is a set of delay devices to correspond to each opera-
tion the computer is capable of performing. The basic concepts of this
type of control will be explained with reference to Fig. 11-5, which shows
an abbreviated set of circuits in block diagram form. Assume that a
pulse is applied at the point marked X. This pulse will travel to the
right in the figure; and, as it passes through the delay units, appropriately
timed pulses may be taken from the junctions. The timed pulses are
sent along command lines to the required units in the computer for sens-
ing the instruction in the main storage and transferring it to the opera-
tion-address register. This much of the functioning corresponds to an
instruction cycle in the previous arrangement. The command lines are
indicated in the figure as unmarked arrows pointing downward.
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When the pulse emerges from the first set of delay devices it is applied
to a set of “and” switches, one of which is opened by a signal from the
matrix. The matrix, as before, is under control of the digits in the opera-
tion part of the operation-address register. The pulse will now travel
along the set of delay devices corresponding to the particular operation
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F16. 11-5. Alternate form of control circuits.

which is to be performed. The path of the pulse from this point may now
branch or loop in any of a variety of fashions under control of miscel-
laneous conditions in the computer. For example, if the A; switch is the
one which is open, the pulse will appear on command line C; or not, ac-
cording to the status of miscellaneous signal My;. When the operation
corresponding to A, is to be performed, the pulse will traverse a closed
loop as long as no signal is present on M,. Presumably one of the com-
mand lines, say Cs, leads to a counter which controls M,, and when the
loop has been traversed the desired number of times a signal will be ap-
plied to M so that the pulse can leave the loop and continue to the right.
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Loops of this type are useful in multiplication, division, and shifting oper-
ations. In cases where the pulse passes through As, the path branches
under control of M; so that two quite different sets of command lines
can be pulsed with a minimum of switching. Regardless of which opera-
tion was executed, the pulse will eventually appear at one of the inputs
to an “or” switch to be returned to point X. The next instruection will
then be sensed and executed.

As with the other system of control, the problem of minimizing the
number of delay devices and other components is a complex puzzle with
no straightforward method of solution. It should be noted, however,
that it is not necessary to have a different set of delay devices for each
operation, because in most computers many of the operations are similar
to one another. A single set of delay devices may than be used for all
operations in a given category with signals from the matrix being used
as miscellaneous inputs to gate the command pulses as required. In
some computers it may be necessary to operate the main storage or
other units on a fixed-cycle basis. In this case, synchronization problems
may be encountered because it will not always be known which part of the
computer will finish first when certain operations, such as shift, are being
performed. Synchronizing circuits similar to the ones described in Chap-
ter 3 on switching networks may be used to cause the unit finishing first
to wait for the other.

Synchronous and Asynchronous Computers. The two methods for
designing control circuits which were described in the previous section
are representative of two design philosophies, either one of which may
be continued much further in the design of a computer. In the first
method, the timing of all operations is under control of the “clock,” and,
therefore, all operations take place in synchronism with the clock. Each
operation requires an integral number of complete clock cycles. Because
of the definite time relationship between the period of the elock and the
execution of the operations, computers functioning in this way are said
to be “synchronous” computers.

In an “asynchronous” computer there is no fixed time reference for
the execution of the operations. Instead, one operation is commenced
as soon as the previous one is completed. To accorplish this purpose,
the circuits must be arranged so that, at the completion of each opera-
tion, a signal is generated which may be used to initiate the next one.
In Fig. 11-5 the delay devices and switching circuits were arranged so
that the path of the pulse was continuous; when the pulse arrived at the
end of one set of delay devices it was immediately entered into another
set. The philosophy of asynchronous operation may be extended to
apply to the individual parts of each operation. For example, the time
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required for handling the carries in an addition operation depends upon
the number of carries that happen to occur. Rather than wait an amount
of time required for the maximum number of carries, plus a safety
factor, the asynchronous adder described in Chapter 4 on binary addition
and subtraction may be used. In this case the path of the control pulse
would be through the carry circuits of the adder during this portion of
the operation. The asynchronous multiplier, which was described in
Chapter 4 on binary multiplication and division, could be used in a
similar manner. With this type of multiplier the loop for the control
pulse would be in the multiplier itself instead of in the control circuits
as shown in Fig. 11-5. The pulse would be circulated by passing it along
the carry or the shift lines as dictated by the digits of the multiplier until
a counter indicated that all multiplier digits had been sensed. Then,
through a switch operated by the counter, the pulse would be returned
to the control circuits.

1t is not clear that either the synchronous or the asynchronous system
has any outstanding advantages over the other. It would seem that the
organization of a synchronous machine would tend to be more systematic
and, therefore, perhaps easier to design, understand, and service. On
the other hand, there is the possibility of making an asynchronous ma-
chine somewhat faster because it is not necessary to use a complete
“cycle” of time for each operation. However, with either type of ma-
chine, the limiting factor with regard to speed is usually in the main
storage unit because, in most cases, it has been possible to develop
practical arithmetic circuits capable of operating on the numbers as fast
as they can be taken from and sent to storage. An outstanding exception
to the rule is in the operations of multiplication and division. For this
reason it is sometimes desirable to execute multiplication and division
in asynchronous fashion in a machine which is otherwise synchronous.
Many other compromises in the two design philosophies are to be found,
particularly in the input and output units, which cannot in a practical
sense be synchronized with the very high electronic speeds of the arith-
metic unit.

A-C and D-C Systems. Another criterion by which computers may be
classified is in the manner by which signals are transmitted through
switching networks and from one part of the machine to another. In one
type, all of the signals are pulses. Even the storage registers are of the
dynamic type, and the output signals from such devices are represented
by the presence or absence of pulses. Machines in this category are
known as a-c (alternating-current) computers. The SEAC, which was
built by the National Bureau of Standards, was the first computer in
which the a-c technique was employed extensively.
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At the other extreme is found a class of machines known as d-c¢ (direct-
current) computers. In a d-c computer each signal is represented by a
steady-state voltage, which is maintained at one of two levels according
to whether the signal is a 1 or a 0. The voltage level is changed, of
course, when the signal is changed, but during the time that the signal
is being used it is held constant. All of the storage devices used in the
registers are flip-flops or some other type of mechanism that produces
steady-state output signals. All flip-flops are caused to transfer back
and forth between their two stable states during computations by means
of “pull-over” circuits actuated by steady-state signals and not by
pulses. An outstanding example of a d-¢ computer is the ORDVAC,
which was built at the University of Illincis.

Not all machines can be classified as definitely one type or the other.
For example, IBM’s 604, 650, and 701 computers each contain many cir-
cuits employing pulses as well as many circuits of the d-¢ type.

It is not clear that either the a-c or the d-c technique is superior to the
other. With the a-c technique a serious design difficulty is encountered
from the fact that all pulses applied to an “and” switch must arrive at
the same time for an “and” function to exist. Since the passage of a
pulse through almost any component introduces a delay, the design of an
arrangement which will cause all pulses to arrive at the desired points
at the desired times can be a very complex puzzle. Also, when using an
inhibiter, it is necessary in practical circuits that the inhibiting pulse
be applied slightly before the arrival of the pulse to be inhibited, and it
must be maintained until a time which is slightly later than the pulse
to be inhibited has disappeared. Further, the requirement of retiming
and reshaping of signal pulses by means of clock pulses throughout the
computer is certainly an undesirable feature of the a-c¢ technique. On
the other hand, the fact that pulses may be passed through condensers
and transformers causes certain circuit isolation and voltage level setting
problems to be much simpler with the a-¢ technique than with the d-¢
technique. Apparently no two machines, one a-¢ and one d-c, of suffi-
ciently similar capabilities and history have been found for accurate
comparison of such factors as cost (of the machine as a whole), reliabil-
ity, and ease of servicing. These factors in the relative merits of the
two design techniques seem to be matters of opinion.

Other Forms of Computer Organization. The arrangements which
were described in the sections on externally programmed, plugged-pro-
gram, and stored-program computers do not exhaust the variations by
which a computer may be caused to proceed through the desired sequences
of operations. For one thing, any two, or even all three of the sequenc-
ing means may be combined. As an example, IBM’s Card Programmed
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Calculator (CPC) uses punched cards as an external programming means
together with a plugboard. Briefly, each card contains an instruction
which causes the computer to proceed through a certain set of program
steps that are wired on the plugboard. The instructions, as recorded on
the cards, are, therefore, highly flexible. Combinations of stored-program
techniques and externally programmed techniques may be found in al-
most any stored-program computer which includes an instruction for
sensing an input device. Since new instructions as well as data may
be entered through the input device, the program itself may be used to
call in instructions from an external source for continuing the sequence.
Some interesting possibilities can be visualized through the use of a
plugged program together with a stored program, but this combination
has not been exploited.

In the organization of a stored-program computer it is not necessary
that storage locations be used interchangeably for instructions and data.
The Harvard Mark IV computer, for example, is a stored-program
machine which has separate storage locations and separate transmission
paths for instructions and data. Arithmetic operations cannot be per-
formed on instructions in the same sense that this function is possible in
computers with interchangeable instructions and data, but there is pro-
vision for altering or repeating sequences of operations under control of
the computed results. There are advantages to keeping instructions and
data separated, such as the relative simplicity of certain aspects of
programming. However, the vast majority of stored-program computers
have been designed with interchangeable instructions and data because
of the many useful programming procedures which are thereby made
possible.

Another form of organization for a stored-program computer can be
obtained by using an idea found in the digital differential analyzer, which
was explained in the preceding chapter. It might be deseribed as a
“no-address” computer, in that each instruction specifies only an opera-
tion. The operation and the number or numbers to which it applies must
be stored in the same location, that is, at the same address. The ad-
dresses are inspected sequentially, and at each address the indicated
operation is performed on the data found there. Again, the possibilities
are interesting; but, so far as is known, no machine functioning in this
way has ever been put to use.

Special-purpose Computers. For the most part, the computer organi-
zations which have been described are for “general-purpose” machines,
where a general-purpose machine is one that is capable of solving a
wide variety of problems, the nature of which may not be known prior
to the design of the machine. When a computer is to be applied to a spe-
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cific type of mathematical problem, special features may be incorporated
to aid in its solution, and it then becomes known as a special-purpose
computer. These special features may range all the way from one or
two special instructions in an otherwise general-purpose computer to an
entirely different organization throughout. An example of a machine
with a radically different organization is the digital differential analyzer,
which is intended primarily for the solution of differential equations.
Another special-purpose computer bearing little resemblance to any
general-purpose machine is the USAF—Fairchild Specialized Digital
Computer, which was designed specifieally for solving simultaneous
linear equations.

Word Length. The term, “word,” is used to signify any group of
digits that is handled as a unit in a computer. Usually a word is one
number when referring to data, or it is one instruction, although there
are exceptions to this definition. Most computers operate with a fixed
number of digits in each word, and in the design of such machines a
decision must be made concerning the number of digits in each word, or
the word length to be used. If the word length is made large enough to
handle the largest numbers expected to be encountered, much storage
space and other equipment will be wasted for those problems requiring
less accuracy in their solution. If a short word length is chosen, two or
more words may be used to store each number when long numbers are
necessary, and arithmetic operations may be performed in parts by
following a so-called “multiple-precision” technique. However, many
extra program steps are required to execute multiple-precision opera-
tions with a resultant waste in storage space and also with a waste in
time. Word lengths which have been used vary from 15 binary digits
including sign (equivalent to about 414 decimal digits) in MIT’s Whirl-
wind I to 23 decimal digits in the Harvard Mark I.

The choice of word length is most difficult for general-purpose com-
puters when it is not known what mathematical problems the machine
is to solve. Some studies have indicated that the choice is not critical,
but that there is an optimum word length for the “average” problem
somewhere in the range of 10 to 12 decimal digits (or the binary
equivalent).

The number of digits in an instruction, as well as the accuracy of
computations, enters into the choice of word length. The number of digits
in an instruction depends upon the number of different operations the
computer is capable of performing, the number of addresses in each in-
struction, and the size of the addresses. In the interests of conserving
storage space it is desirable to adjust the number of digits in an instruc-
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tion or the number of digits in the word so that one is an integral multiple
(usually one or two) of the other.

There is no inherent reason why the words have to be of fixed length.
A computer can, by means of appropriate instructions together with an
appropriate organization, be caused to perform arithmetic and other
operations on numbers of varying length. The increments in size may
be as small or as large as desired. In a decimal machine, increments
as small as one decimal digit are advantageous, in which case each in-
dividual digit location in the main storage is addressable. An address
in an instruction then refers to the first digit in a word, and the remaining
digits are stored in successively higher-number address positions. The
number of digits to be used at any given time may be indicated by a
special counter, by a special character in the accumulator, or by other
means. Appropriate instructions must be included for altering the word
length. Another scheme is to include the word length as a part of each
instruction. Machines in this category are known as “variable word
length” or “variable field length” computers in contrast to “fixed word
length” computers.

Storage Capacity. Another important decision which must be made
during the design of any computer has to do with capacity of the storage
medium. In order to solve very complex problems at high speed it is
desirable to have a large storage capacity; yet, in the interests of high re-
liability and low cost, the storage capacity should be made as small
as possible. Clearly, a compromise is required. However, in some cases
other considerations arise that help in the determination of the proper
storage capacity. For example, in a plugged-program computer, a rough
upper limit to the number of storage locations that can be used profitably
is set by the number of program steps available on the plugboard.

In a stored-program computer the upper limit to the number of storage
locations in the main storage unit that can be used is set only by the
problem to be solved. Nevertheless, beyond a certain point, a “law of
diminishing returns” becomes apparent because of the possibility of in-
troducing blocks of new data or instructions into storage at reasonably
high speed. It should be noted that most computations applied to se-
quenced computers are highly repetitive in nature (otherwise, it would
be as easy to solve them on a desk machine as to prepare the program).
Because of this fact, the time required to complete the operations speci-
fied by one filling of the storage unit of a given size may be comparable
with the time required for refilling the storage unit. When this condition
exists, a larger sized storage unit would increase the over-all speed of the
computer by only a small factor. This line of reasoning applies best to
computers which use a random-access, high-speed, storage medium such
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as electrostatic tubes or magnetic cores for the main storage and which
use magnetic tape or drums for auxiliary storage. For machines of this
nature, the optimum main storage capacity appears to be in the range of
1000 to 4000 words.

Single-address and Multiple-address Computers. As has been men-
tioned, a computer may be organized with each instruction containing
one, two, three, or four addresses. More than four would be possible,
but the incremental advantages of each address beyond four diminishes
rapidly.

For single-address computers it is customary to execute the instruc-
tions as they are found in sequentially numbered addresses (except for
jumps) under the control of an instruction counter in the manner described
in the section on stored-program computers. The address in the in-
struction may refer to the location of one of the operands entering into
the computations in the case of an arithmetic operation, or it may refer
to the number of shifts, the identity of an input or output device, or
something else in the case of a different kind of operation. With this
arrangement a simple addition operation usually requires three instrue-
tions. The first instruction is used to cause one operand to be trans-
ferred from the specified address to the accumulator. The second in-
struction causes the other operand to be transferred from its specified
address to the accumulator to be added to the first operand. Then the
third instruction is used to transfer the sum from the accumulator to the
desired address in storage.

The two addresses in a two-address computer could be used to specify
the locations of two operands, or a shift and the location of one operand,
or any of a variety of other combinations. However, the second address
is probably most commonly used to specify the location of the next
instruction. With this arrangement, the instruction counter is not a
counter; instead, it is only a storage register. A counting action is not
needed because instructions are not necessarily taken from sequentially
numbered storage locations; each instruction is essentially a jump in-
struction. For conditional jump operations, one address may be used
. to specify the location of the next instruction when the condition is satis-
fied (such as positive sign for the number in the aceumulator at the
time), and the other address may be used for the location of the next
instruction when the condition is not satisfied. A two-address system
with one address specifying the location of the next instruction is particu-
larly useful in computers employing magnetic drums (or some other
storage medium which is not of a random-access type) for main storage.
By judicious positioning of the instructions on the drum, the computer
can be caused to waste much less time waiting for the next instruction
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to appear at the sensing heads than when the instructions are positioned
randomly. The finding of the proper addresses for the instructions is
part of the procedure known as “minimum-access programming.”

An example of the use of an instruction in a three-address computer
would be an arithmetic operation where the addresses of the two operands
are specified as well as the address of the location where the result is to
be stored. With this arrangement only one instruction would be required
to perform the addition operation that required three instructions in the
single-address machine. Several different variations are possible when
one or more of the addresses are used to specify locations of subsequent
instructions. '

In a four-address computer, at least one of the addresses is almost
always used for the location of the next instruction because there is little,
if any, use for more than three addresses for other purposes. '

As a general rule, as the number of addresses in each instruction is in-
creased, the number of instructions required and the time required to
solve any given problem are decreased because each instruction is able
to accomplish more. On the other hand, a multiple-address computer is
usually somewhat more complex than a corresponding single-address
machine. Also, more storage space is required for a multiple-address in-
struction than for a single-address instruction, and in many cases the
extra space is largely wasted because the extra addresses are not always
needed. There is some reason to believe that the preparation of a pro-
gram can be made a simpler and more straightforward process for single-
address machines than for multiple-address machines, but this point is
subject to question. Successful machines of each type have been built.

Floating-point Computers. The floating-point feature can be installed
in any of the computer organizations which have been described. In
most cases it will probably be found desirable to use special counters
for storing the exponent parts of the numbers entering into the computa-
tions. For each arithmetic operation, the required shifts are made under
control of the counters and under control of cirecuits for sensing nonzero
digits in the shifting register. A pulse is sent to the exponent counter
each time a shift is made. While a great many details in many parts of
a computer are affected by adoption of the floating-point system, no new
principles are involved, and appropriate extensions of the control systems
used for fixed-point computers can be used.

Index Registers. Innumerable special features can be found in the
various computers which have been built. Among the more important
features in some machines is a set of registers, called “index registers.”
In these machines, which are usually of the single-address type, each
instruction specifies an index register as well as an operation and an
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address. For each operation, the number stored in the indicated index
register is automatically added to the address, and the sum is then the
actual address which is used. A “load index register” instruction is
needed for transferring a number from storage into the indicated index
register so that the numbers stored in the index registers may be changed
during computations. Index registers facilitate the use of sub-programs as
will be described in the next chapter. A computer built at the University
of Manchester in England was the first to employ index registers, al-
though with this machine the ferm used to designate them {collectively)
was “B tube.”

Repeat Counter. Another useful feature is a “repeat counter” which
can control the number of times an instruction is repeated. A “load re-
peat counter” instruction is used to transfer the desired number from
storage to the repeat counter. Then, each time the instruction to be re-
peated is executed, a pulse is sent to the counter to count it down toward
zero, and the repeating is continued until the counter reaches zero.
Usually it is desirable to alter the address part of the instruction each
time it is repeated. For this purpose, the register storing the address
part of the instruction may be made capable of counting, and the pulses
which are sent to the repeat counter may be sent +~ lais counter also.
Functions such as adding a long list of numbers stored at sequentially
numbered addresses are very easily and rapidly accomplished with a re-
peat counter, where an iterative loop of some sort would be required
otherwise. Also, the repeat counter is useful in transferring large blocks
of information between the main storage and an input or output mecha-
nism. In this case, the number of words to be transferred is placed in the
repeat counter.

Input-output. In some respects the subject of input and output mech-
anisms for a computer can be as extensive as the subject of the arithmetic
operations themselves. In particular, for computers intended for ae-
counting applications, the preparation of voluminous information for
machine consumption and the subsequent preparation of records, reports,
bills, checks, and other documents are problems that can easily over-
shadow the arithmetic problems. In many cases even the machine work
is largely sorting, collating, and other nonmathematical operations that
can be accomplished to some extent through appropriate control of mul-
tiple input and output mechanisms.

Relative to the arithmetic operations, the outstanding characteristic
of practically all input and output devices is that they are slow in com-
parison with the speeds attainable with electronic components which
may be used in the arithmetic and control portions of a computer. There
are some problems, particularly in the scientific field, that involve long
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sequences or operations on relatively small amounts of input and output
data; and, for these problems, input and output speeds are not important.
However, in a surprisingly large number of cases even in the scientific
field, it is found that time required for input-output functions is an ap-
preciable fraction of the time required for the computations. For this
reason, it is desirable that the computer be organized in such a way that
the computations can proceed simultaneously with the input-output
functions. One way of accomplishing this purpose is through the use
of buffer storage. For example, if punched cards are the input medium,
a card full of data may be transferred to buffer storage during the time
that the computer is processing the data corresponding to the previous
card. At the completion of the operations, the data are transferred
at high speed from the buffer storage to the main storage in the computer.
An alternate method is to arrange the functioning of the system so that
arithmetic operations can be performed between individual operations
of the input-output mechanism. In the card-input example, the few
milliseconds of time between the sensing of individual holes may be
sufficient to allow the computer to execute a reasonably long sequence of
arithmetic operations. Both of these schemes have been used suc-
cessfully.

Error Detection and Correction. Because of the multiplicity of com-
ponents in a large computer, the detection and correction of errors is
a constant battle. It would, of course, be desirable to develop com-
ponents to a state of reliability such that a computer would function
for years without error. However, it is not essential that this objective
be obtained; in fact, the success of computing machinery is due in large
measure to the fact that procedures have been worked out for making
effective use of a computer even when components are randomly and
frequently deteriorating beyond the point of usefulness.

An error may be placed in one of the three categories according to
whether it was caused by a complete failure of a component, the marginal
operation of a component, or a random malfunctioning of a component.
Actually, an engineer attempting to repair a defective computer must
consider other sources of errors. For example, the internal wiring may
include some incorrect connections, particularly if the computer is new
or if modifications have been made recently. Also, in the course of
searching for a defect it can happen that wires will be disconnected and
then reconnected improperly. Further, the computer may be in perfect
condition with the defect occurring in the program. Even “tested” pro-
grams can fail when unforeseen and previously unencountered parameters
are used. Here, it will be assumed that the computer is designed properly
and that the program is correct. For the most part, all errors regard-
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less of source are detected by the same methods, but important differ-
ences arise in the means used for locating defective components.

One method of sensing errors is through the use of error-detection
circuits, some of which have been discussed in previous chapters. The
storage and transmission of information within a computer is easily
checked through the use of redundancy bits. Also, it is not difficult to
incorporate checking circuits for adders and other arithmetic devices if
appropriate codes are chosen. However, with many computers it has not
been found possible to devise practical checking facilities for the entire
machine; the control circuits, in particular, can be very difficult to check
completely. The other means of detecting the presence of errors is
through programming. The nature of program checks depends upon the
problem. For example, the solution to an algebraic equation may be
checked by observing (through programming) whether or not the result
fits the equation. For other types of problems it may be necessary to
solve the problem by a second method, which is as different as possible
from the first method, and compare the results.

After an error is detected, either by the error-detection circuits or by
programming, the computer may be automatically stopped for repairs.
The source of an error is usually relatively easy to find when the error
is caused by the complete failure of a component, for example, a fila-
ment burn-out in a tube. Test programs that require the functioning
of all components in the machine or the suspected region of it are useful
aids in locating components which have failed completely.

Probably a more common type of component failure is a gradual
deterioration until a point is reached where the component causes inter-
mittent failures. The operation of the component is then said to be
“marginal.” Test programs are helpful in locating marginal components,
although they are not when the marginal component creates errors
only rarely. It is usually desirable to increase the frequency of the
failure of the component by varying some parameter in the machine.
For example, if the cathode emission of a tube in a flip-flop circuit is
low, the operation of the circuit may be critically dependent upon the
grid bias voltage. Therefore, by altering the grid bias the circuit may
be caused to fail consistently so that it can be located easily. Since this
method is useful for locating components about to fail as well as com-
ponents which have already caused errors, the best way to treat errors
caused by marginal components is to prevent them as much as possible
by periodic machine inspection.

Sources of errors are most difficult to find when they are of a random
nature. An example of a random error would be found in the case where
a few loose flakes of cathode coating material in a tube were dropping
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off and causing temporary grid-to-cathode short circuits. Another ex-
ample might be a condenser with a dielectric which occasionally breaks
down with a very small arc and then heals. The search for sources of
random errors is a puzzle with no fixed pattern for solution. Almost
every computer engineer seems to have had the experience of searching
for many days or weeks for an elusive defect. Sometimes the frequency
of the error can be increased somewhat, in which case the error would
probably belong in the marginal category. In the example of the loose
flakes of cathode material, a light tapping of the tube might cause the
flakes to fall more frequently. On the other hand, after a few flakes
have fallen the tube might, for a time, be better than before. In the case
of the condenser the frequency of the arcing could probably be increased
by increasing the voltage across it, but this step might be impractical
because of the location of the condenser in the circuit. Defective con-
nections in the wiring are another source of substantially random errors
that are difficult to locate.

In general, error-detection methods do not indicate the nature of the
source of an error. Since an error may not be caused by the complete
failure of a component, it may not recur for a long period of time.
Therefore, it may be preferable to repeat the portion of the problem
where the error occurred and then continue instead of stopping the
machine. The repeating may be accomplished through the program,
and the attention of an operator is not necessarily required. In some
applications it is desirable to continue the computations for other reasons.
For example, if an error occurs in a computer which is computing the
direction of fire for an antiaircraft gun, there is no point in correcting
the mistake because the target will have moved. Yet, the next shot might
be successful. In contrast to these examples, when searching for the
source of an intermittent error, it is desirable to be able to stop the com-
puter on the very step where the error occurs. Then, by studying the
status of information in the various registers it is sometimes possible to
deduce the location of the defective component. For this purpose, error-
detection circuits are necessary; program checks seldom detect an error
until one or more steps later.

For very long programs, catastrophic failures such as loss of power
are worrisome. To avoid having to restart a problem at the beginning
when failure of this type occurs, all intermediate results may be recorded
at periodic intervals on punched cards, magnetic tape, or some other
medium whereby they can be re-entered into the computer. When this
precaution is taken, computations may be resumed at the point where
intermediate results were last recorded. In this connection, storage de-
vices are often classified as “volatile” or “nonvolatile” according to
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whether they lose or retain, respectively, information when power is re-
moved. Electrostatic storage, for example, is volatile, and most magnetic
storage devices are nonvolatile. To make use of nonvolatile storage in
minimizing the effects of power failures, it would be necessary not only to
“stop” the computer before the voltages had collapsed an appreciable
amount, but also it would be necessary to stop the computer at a point
where computations could be resumed. The latter requirement might be
difficult if a relatively slow-speed input-output device were in operation
at the time.



Chapter 12

PROGRAMMING

The methods used for programming a computer so that it will proceed
through the desired sequences of operations depend greatly on the way in
which the computer has been organized. In particular, programming
methods are quite different for externally programmed, plugged-program,
and stored-program machines. Although interesting and important tech-
niques have been worked out for certain externally programmed and
plugged-program machines, the outstanding advances in programming
methods have been made in connection with computers of the stored-
program variety. For this reason, the term, “programming,” frequently
implies that the program is stored. Further, it is generally assumed that
with a stored program the computer will be able to perform arithmetic
and other operations on instructions in the program as well as on items
of data, although a few stored-program machines have been built where
the program and data have been kept separate. In this chapter, the sub-
ject will be confined to stored-program machines that store instructions
and data interchangeably.

For each stored-program computer there is a list of instructions that
the computer is capable of executing. When preparing a program to
solve any given problem, the programmer must be familiar in some detail
with the steps the computer will take when following each instruction in
the list. Although the instruction lists of most computers contain certain
basic instructions, such as add, multiply, shift, and others, the details
in the steps taken to execute the instructions can vary considerably from
one machine to the next. Also, there are many miscellaneous instructions
which may or may not be incorporated into any given machine. Because
of the extensive variations which may be found in the instruction lists,
the program used to solve a given problem on one machine may seem
to bear little resemblance to the program used to solve the same prob-

lem on another machine. However, the same principles of programming
354
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can be applied to practically all computer organizations where the in-
structions are stored interchangeably with the data. These principles
will be explained and illustrated through the use of a “specimen” ma-
chine. The instructions in the instruction list for the specimen machine
have been chosen mainly for their usefulness in illustrative programs,
but at the same time there has been an attempt to make the list
realistic.

Instruction List for the “Specimen” Machine. A 5-digit, single-ad-
dress, decimal organization has been chosen for the “specimen” machine.
Each word will consist of five decimal digits with sign, and any word may
represent either an item of data or an instruction. When a word is
used to represent an instruction, the first two digits will serve as a code
to indicate the operation to be performed, and the last three digits will
represent the address; the sign will not be used in the case of an instruc-
tion. Normally, the computer will start by executing the instruction
found at address 000 and will continue by executing instructions found at
sequentially numbered addresses except when a jump type of instruction
is encountered. Besides the one thousand storage locations (designated
by addresses 000 through 999) in the main storage unit, there will be
one other storage register, called the accumulator, which will enter into
the various operations as described in the instruction list. A knowledge
of the material in the previous chapter, which explains how a computer
can be made to proceed through a sequence of instructions, ~hould be
helpful but not necessary.

Instruction Code Description

STOP 00  The computer stops regardless of the digits in the
address part of the instruction.

RESET AND ADD 01 The accumulator is reset to zero, and the number
at the indicated address is then placed in the ac-

cumulator.

ADD 02 The number at the indicated address is added to
the number in the accumulator, and the sum is
left in the accumulator.

SUBTRACT 03 The number at the indicated address is subtracted

from the number in the accumulator, and the dif-
ference is left in the accumulator.

MULTIPLY 04 The number at the indicated address is multiplied
by the number in the accumulator, and the prod-
uct is left in the accumulator. (This instruction
is somewhat irregular in that products of more
than five digits will not be possible.)
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Instruction
DIVIDE

SHIFT RIGHT

SHIFT LEFT

STORE

STORE ADDRESS

JUMP

JUMP IF MINUS

READ

PRINT

Code
05

06

07

08

09

10

11

12

13

Description
The number in the accumulator is divided by the
number at the indicated address. The quotient is
left in the accumulator, and the remainder is lost.

The number in the accumulator is shifted to the
right a number of places indicated by the number
in the address part of the instruction. Digits
shifted to the right from the units position are lost.

The number in the accumulator is shifted to the
left a number of places indicated by the number
in the address part of the instruction. Digits
shifted to the left from the tens thousands posi-
tion are lost.

The number in the accumulator is placed in the
storage location indicated by the address part of
the instruction. The previous contents of this
storage location are lost; the number in the accu-
mulator is unchanged.

Same as STORE except that the number in the
accumulator is assumed to be an instruction, and
only the three digits corresponding to the address
part of the word are sent to storage. The digits
corresponding to the code in both the accumulator
and address location are unaffected.

The next instruction is taken from the address in-
dicated by the address part of this instruction in-
stead of the next sequentially numbered address
position.

Same as JUMP if the number in the accumulator
at the time is negative (zero is assumed to be posi-
tive); otherwise, the next instruction is taken
from the next sequentially numbered address po-
sition.

One word from the input mechanism is placed in
storage at the indicated address. The previous
number at this address is lost.

The word at the storage location indicated by the
address is recorded by the output mechanism.
The number in storage remains unchanged.

Basic Programming Technique. To illustrate the basic procedure
which is used to cause a computer to proceed through a sequence of oper-
ations, the instructions required for the “specimen” computer to compute
zy + 22 and print the result will be shown. Assume that means have
been provided for placing the program and the data in the main storage
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unit of the computer. The first instruction will appear at the storage
location designated by address 000, and the other instructions are placed
in the storage locations designated by successively higher numbered
addresses. The data, 2, v, and 2z, may be stored at any convenient ad-
dresses not needed for instruections; in this example, locations 009, 010,
and 011 will be used. Recall that when a storage location is used for
storing an instruction, the sign is not used, the first two digits represent
the operation in ecoded form, and the last three digits indicate the ad-
dress part of the instruction. All five digits with sign are used as one
number when storing an item of data.

Address Conienis of Address Remarks »
000 RESET AND ADD 009 Places z in the accumulator.
001 MULTIPLY 010 Forms zy in the accumulator.
002 STORE 012 Places zy at address (location) 012 for

temporary storage.
003 RESET AND ADD 011 Places z in the aceumulator.

004 MULTIPLY 011 Forms 22 in the accumulator.
005 ADD 012 Forms zy + 2% in the accumulator.
006 STORE 0i2 Places zy + 2* at address 012 for tem-

porary storage. (The previous con-
tents of 012 are lost.)

007 PRINT 012  The number representing zy -+ 22 is
printed.

008 STOP --~  Computer stops. The address part of
this instruction is of no consequence.

009 z

010 Y

011 z

012 [1 Reserved for temporary storage.

In the above program the purpose and function of each instruetion is
explained through the comments in the “remarks” column. Several dif-
ferent variations in the program may be worked out. One minor varia-
tion is that location 012 need not be reserved as a place for the tempo-
rary storage of intermediate results. Location 009, for example, would
serve this purpose just as well, because after the first instruction = does
not enter into the problem again so that location 009 is no longer needed
for its storage.

Note the desirability of stopping the computer on step 008. If the
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computer is not stopped, it will automatically proceed to interpret the
items of data as instructions. Since the digits of z, v, and z could repre-
sent any of the instructions, all manner of unpredictable and unwanted
operations might result.

Elementary Logical Program. In the example of the previous section,
the computer proceeds uniformly through sequentially numbered address
locations to obtain its instructions. In many problems it is necessary
or desirable to alter the sequence of operations in accordance with the
data. A simple illustration of a problem of this type is the finding of
the largest of the three numbers, x, y, and 2, and printing the result.
Such a problem is more a problem of logic than a problem of arithmetic,
although certain arithmetic operations are employed in its solution.
When the computer compares two numbers (by subtracting one from
the other) JUMP instructions are used to cause one sequence of instruc-
tions or another to be followed in accordance with which of the two
numbers was the larger. The finding of a program which employs as few
instructions as possible is an intriguing puzzle; a program using one or
two less instructions than certain “obvious” programs will be explained.
As before, the instructions will be found in consecutive address loca-
tions, but in this case the computer will not necessarily follow them in
sequence because of the JUMP instructions. The locations, 013, 014,
and 015, will be used for storing z, v, and 2, respectively, and location
016 will be used for temporary storage.

Address Contenis of Address Remarks
000 RESET AND ADD 013 Places « in the accumulator.
001 SUBTRACT 014 Subtracts y from z.

002 JUMP IF MINUS 005 Computer takes next instruction from
address (location) 005 if ¥ > z; other-
wise, it proceeds to 003.

003 RESET AND ADD 013 Places z in the accumulator again.

004 JUMP 006  Causes computer to take next instruc-
tion from 006.

005 RESET AND ADD 014 Places ¥ in the accumulator.

006 STORE 016  Note that the computer will arrive at

this step from 005 when y > z, but
from step 004 when y < z with the re-
sult that the accumulator contains the
larger of # and y. This number is
stored in 016.

007 SUBTRACT 015  Subtracts z from the larger of z and v.
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Address Contents of Address Remarks

008 JUMP IF MINUS 011 If z is largest, next step is taken from
011; otherwise, from 009.

009 PRINT 016  The larger of z and y (which is now
known to be the largest of the three)
is printed.

010 JUMP 012  Causes computer to take next instrue-
tion from 012.

011 PRINT 015 Causes z to be printed. The computer
arrives at this step only when z is
largest.

012 STOP ---  Computer stops.

013 z

014 Y

015

016 [1 Reserved for temporary storage.

Again, several variations in the program are possible. For example, a
STOP instruction instead of a JUMP instruction could have been placed
in location 010. With this change, the computer would stop on step 010
or 012, depending on the relative sizes of 2, ¥, and z. In wus elementary
example, the change would be trivial; but in cases where a program of
this type is a part of a larger program, the termination of the part is
more likely to be of consequence.

Program Loops. In many problems of a highly repetitive nature, a
program prepared in a “straightforward” manner would consume an un-
duly large number of instructions. Through the use of JUMP instrue-
tions it is possible to prepare a relatively short program (program
“loop”) through which the computer will proceed over and over again
the desired number of times. The loop may comprise substantially the
entire program, but in most practical examples a loop would pertain to
only a small portion of it. Any one program may contain many loops
which may interlock one another in a complex manner. As a simple
example of a loop, a program for preparing a list of the squares of the
integers from 1 through 125 will be presented.

Address Contents of Address Remarks
000 RESET AND ADD 010  The number at address (location) 010
001 ADD 011 is increased by 1 (from 400000 to
002 STORE 010 400001 the first time through the

loop).



360 Arithmetic Operations in Digital Computers

Address Contents of Address Remarks
003 MULTIPLY 010 The number (+00001 the first time)
004 STORE 013  is squared and printed.
005 PRINT 013
006 RESET AND ADD 010 The quantity, .+00125, is subtracted
007 SUBTRACT 012 from the number with the result that
008 JUMP IF MINUS 000  the program will be repeated until the
009 STOP -—-  number is increased to +00125. -
010 [+00000]
011 400001,
012 400125
013 [1]

In this program, storage locations 010, 011, and 012 were used for the
storage of constants which were not data in the usual sense of the word.
The brackets around the number in 010 signify that this particular
quantity is changed during the course of the computations. Note that
in this example it was not necessary to store all of the numbers from 1
through 125 as data; instead, it was possible to generate them by means
of the program.

Modification of Instructions. As has been mentioned, one of the out-
standing features of most stored-program computers is their ability to
modify an instruction (particularly the address part of an instruction)
by means of the same arithmetic circuits that are used for performing
computations on the data. A frequently encountered application of this
facility is the performing of the same operation on a series of numbers
which are located in sequentially numbered addresses. For example, as-
sume that it is desired to accumulate and print the sum of the squares
of a series of numbers, x;, where ¢ varies from 1 to 100. Assume, also,
that these numbers are stored in addresses, 300 through 399, inclusive.
One program which may be used for this purpose is shown below. Again,
brackets are used to signify quantities that will be changed during the
course of the program.

Address Contents of Address Remarks
000 RESET AND ADD [300] These two program steps cause the
001 MULTIPLY [300] square of the specified number to be

placed in the accumulator. The first
time through the loop the specified
number is the one found at address 300.

002 ADD 016 Location 016 is used to store the ac-
003 STORE 016  cumulated sum of the squares.



Address
004

005
006

007
008
009

010
011
012

013

014
015

016
017
018

Programming

Contents of Address

RESET AND ADD

SUBTRACT
JUMP IF MINUS

RESET AND ADD
ADD
STORE

RESET AND ADD
ADD
STORE

JUMP

PRINT
STOP

[-00000]
-+00001
+01398

018

000
014

000
017

001
017
001

016

361

Remarks

In 018, a number representing the in-
struction RESET AND ADD 398 is
stored, and this number is placed in
the accumulator. Recall that the code
for RESET AND ADD is 01.

The number in 000 (which is an in-
struction) is subtracted. The differ-
ence will not be minus uniess the ad-
dress part of the number in 000 has
been increased to 399.

The address part of the number (in-
struction) in 000 is increased by 1.

The address part of the number (in-
struction) in 001 is increased by 1.

The process will be repeated. Each
time through the loop the next succes-
sive number in the series will be
squared and accumuiated because of
the altered addresses of the instruc-
tions in 000 and 001.

The computer will arrive at step 014
(from 006) only after all squares have
been formed and accumulated.

An important extension of programs of this type is in generalizing them
so that they will function properly by merely inserting one number
representing the length of the series. One variation in the ways by
which the preceding program can be generalized will be presented. The
number representing the first address of the series (300 in this example)
is placed in address 023, and the number representing the length of the
series (100 in this example) is placed in address 024. Address 024 is
used as a counter; the number stored there is reduced by 1 each time the
program loop is traversed, and when the count becomes negative, the
process is terminated.
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Address Contents of Address Remarks
000 RESET AND ADD 023 The address parts of the instructions
001 ADD 010  in 010 and 011 are set equal to the
002 STORE 010  number in 023.
003 RESET AND ADD 023
004 ADD 011
005 STORE 011
006 RESET AND ADD 024  The number in the counter is reduced
007 SUBTRACT 026  byl.
008 STORE 024

009 JUMP IF MINUS 021
010 RESET AND ADD [000] The square of the appropriate number

011 MULTIPLY [000] is formed and accumulated with the
012 ADD 025  sum being placed in 025.

013 STORE 025

014 RESET AND ADD 010 The address parts of the instructions
015 ADD 026 in 010 and 011 are increased by 1.

016 STORE 010

017 RESET AND ADD 011

018 ADD 026

019 STORE 011

020 JUMP 006 The program is repeated, except for

the first group of instructions, which
are needed only once.

021 PRINT 025  The computer will arrive at 021 (from

022 STOP - 009) only after all 100 squares have
been formed and accumulated.

023 -+-00300

024 [4+00100]

025 [+00000]

026 -+00001

With this particular arrangement one detail that should not be over-
looked when the program is used a second time is that the address parts
of the instructions in 010 and 011 and the number in 025 should be
reset to zero. In this “specimen” machine the number in 025 would be
reset to zero if the following three instructions were inserted at the
beginning of the program.

RESET AND ADD 025
SUBTRACT 025
STORE 025

The address part of 010, for example, could be reset to zero by using
the SHIFT instructions as follows.
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RESET AND ADD 010

SHIFT RIGHT 003
SHIFT LEFT 003
STORE 010

The STORE ADDRESS instruction is of considerable value in pro-
grams of the above type. A substantial reduction in the number of pro-
gram steps can be achieved, and the need for resetting to zero the address
parts of the instructions in 010 and 011 in the illustration is eliminated.
The required alterations in these addresses can be achieved by substitut-
ing the following five instructions in place of the first six instructions in
the illustration and by eliminating instructions 014 through 019.

000 RESET AND ADD 023  The address parts of the instructions
001 STORE ADDRESS 010  in 010 and 011 are replaced by the
002 STORE ADDRESS 011 number in 023, and that number is

003 ADD 026 increased by 1.

004 STORE 023

023 --300 The first two digits are of no conse-
quence.

The JUMP instruction would be altered to include this group of instruc-
tions in the loop, and, of course, a renumbering of all instructions would
be necessary.

Sub-programs. When a sequence of instructions is to be used fre-
quently, but not in the uniformly recurring manner of the previous ex-
amples, a technique known as “sub-programming’” is advantageous. By
preparing the sequence of instructions as a sub-program, it is possible to
arrange the “main” program so that the computer will jump to the sub-
program, perform the desired standard sequence of operations, and then
return to the main program. Actually, the summing of the squares of a
series of numbers when considered as an integrated operation might be a
good example of a program to be made into a sub-program if this opera-
tion is required frequently. However, another example has been chosen
to illustrate sub-programming because it is somewhat less complex, and
also because some other interesting points of programming are introduced
incidentally. The sub-program to be explained is one for computing the
square root of a number. The computation of the square root is required
frequently in many problems. If the sequence of instructions for extract-
ing the square root were inserted in the main program each time it was
needed, an unduly large number of storage locations in the computer
would be consumed. From the standpoint of storage space it is prefer-
able to write the square-root program once as a sub-program, and use
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the relatively few instructions which are required to refer to it each time
a square root is needed.

Before proceeding to the example itself, a useful notation relating to
addresses will be explained. Often when preparing programs it is in-
convenient to specify the exact address to be used in each and every
instruction. Instead, the notation, L(z), which signifies the address (lo-
cation) where z is stored whatever that address might be, may be used.
With this definition, an instruction such as ADD L(4-00003) means that
3 should be added to the number in the accumulator. Of course, before
the program is executed by the computer, the actual number represent-
ing the address, @ = L(x), must be inserted in the address part of the
instruction by the programmer either directly or by means of other in-
structions in the program. Also, it is frequently convenient to refer to
the number stored at a given address by the notation, C (a), which means
the “contents” of the address (location). If z is stored in a, C(a) = z.
To appreciate more fully the meaning of the notation, observe that the
equations,

LiC(a)] = a

CIL(z)] = =

follow directly from the definitions.
For computing the square root, the iterative formula,

s = 1 (5042)
k41 9 k bk

will be used with 400317 (the largest possible square root in a five-digit
machine) as the first approximation, by. Successive approximations will
decrease monotonically toward the desired wvalue. The constants,
-+00317 and +00005, may be stored as appendages to the sub-program,
pr they may be at some other known storage locations. Since the square
root is to be computed by an iterative process, the sub-routine will con-
tain a loop, and this loop will be traversed repeatedly until byi1 = bs.
Assume for purposes of illustration that the first instruction of the sub-
program is at address 850. The number, z, for which the square root is
desired, is at address 363 and the by are stored at 364.

Address Contents of Address Remarks
350 RESET AND ADD L(400317) The number for by is placed in the
accumulator.
351 STORE 364 The approximation, by (b the first

time through the loop), is placed in
364.
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Address Contents of Address Remarks
352 RESET AND ADD 363 The quantity, by + z/bs, is formed
353 DIVIDE 364 in the aceumulator.
354 ADD 364
355 MULTIPLY L(4-00005) A division by 2 with a rounded
356 ADD L(+00005) quotient is effected by multiplying
357 SHIFT RIGHT 001 by 5, adding 5 in the units position,

and dividing by 10 (shifting right).
The accumulator now containg

bes1.
358 SUBTRACT 364 If by 1 < by, the loop, starting with
359 JUMP IF MINUS 361 instruction at 351, is to be repeated.

Instruction at 361 is needed to re-
store the contents of the accumu-
lator to bg.1.

360 JUMP [1] Sub-program returns to main pro-
gram,

361 ADD 364 See remarks above.

362 JUMP 351

363 z

364 br

In order for the main program to be able to use a sub-program, two
important conditions must be satisfied. Any parameters of the sub-
program, such as z in this example, must be placed where the sub-
program can find them, and the proper address must be placed in the
JUMP instruction which causes the return to the main program. The
instructions which provide for the entry into a sub-program and the re-
turn from it are commonly referred to as the “linkage.” In particular,
the JUMP instruction which causes the return from the sub-program to
the main program (the one at address 360 in this example) is called the
“link” instruction. As an example of the use of the sub-program, as-
- sume that the main program has arrived at a step where the next in-
struction is to be taken from address 100, and it is desired to compute
the square root of the number in address 750. The square-root sub-pro-
gram may be utilized by the following instructions in the main program.

Address Contents of Address Remarks
100 RESET AND ADD 750 C(750) is placed at 363, where the sub-
101 STORE 363 program can find it.
102 RESET AND ADD 105  The number representing the link in-
103 STORE 360 struction is obtained from 105 and is

placed at the appropriate address ip
the sub-program.
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Address Contents of Address Remarks
104 JUMP 350 Computer jumps to the sub-program.
105 JUMP 106 See above remarks.
106  Continuation of main The sub-program returns the computer
program to this step. The square root of C(750)

is now at 364.

With above method of linkage, all steps in the placing of the link are
accomplished by the main program, and new instructions for this purpose
are required each time the sub-program is used. By making use of the
facility that the operation part as well as the address part of an instrue-
tion can be modified by the program, it is possible to employ two less
instructions in the main program for each entry into the sub-program
at the expense of two instructions at the beginning of the sub-program
and one special constant. When a sub-program is used many times in
one program, a considerable saving in storage space can be achieved in
this way.

Address Contents of Address Remarks
100 RESET AND ADD 750 These two instructions are the
101 STORE 363 same as before.
102 RESET AND ADD 102 The number, 01102, is placed in
103 JUMP 348 the accumulator. The next instrue-

tion is taken from 348, which is the
new beginning of the sub-program.

104 Continuation of main The sub-program returns the com-
program puter to this step.

348 ADD L(09002) The sum, 01102 4 09002 = 10104,

349 STORE 360 which is equivalent to JUMP 104,

is formed in the accumulator and
then placed in 360 as the link in-
struction.
350
The main body of the square
root sub-program is the same
as before.
364

By using the STORE ADDRESS instruction, the linkage can be made
equally conservative of storage space and possibly somewhat more
straightforward. In this example, different addresses will be used for the
linkage instruétions in the main program to emphasize that the link
instruction in a sub-program must provide for return to the “next con-
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secutive” step in the main program regardless of the location of the
instruction that caused the jump to the sub-program. Assume that the
computer has arrived at step 620 and that the square root of the
number at address 506 is desired.

Address Contents of Address Remarks
620 RESET AND ADD 506 These two instructions are the
621 STORE 363 same in principle as before.
622 RESET AND ADD 622 The number, xx622 (the first two
623 JUMP 348 digits are irrelevant in this case),

is placed in the accumulator, and
the next instruction is taken from

348.
624 Continuation of main The sub-program returns the com-
program. puter to this step.
348 ADD L(00002) The sum, xx622 + 00002 = xx624,

349 STORE ADDRESS 360 is formed in the accumulator. The
address part of this number is
placed in 360, which already con-
tains the code for JUMP in the
operation part.

350

The main body of the square root
sub-program is the same as be-
fore.

364J

In all of the linkage examples which have been cited, the same method
was used for placing the parameter where the sub-program could find it.
Another frequently used method for locating the sub-program parameters
is to place them immediately after the instructions that cause the jump
to the sub-program. Then, if z is the number for which the square root is
desired, a linkage arrangement employing the STORE ADDRESS in-
struction as illustrated in the next example could be used. Prior to the
arrival of the computer at step 622, x must be placed at 624 by instruc-
tions not shown. Note that in this case, the link must provide for a
return to the main program at a step that is 2, instead of just 1, steps
beyond the JUMP instruction which caused entry into the sub-program.

Address Contents of Address Remarks
622 RESET AND ADD 622 Same as corresponding instructions
623 JUMP 346 in previous examples except that

the first instruction of the sub-pro-
gram is now at 346.
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Address Contents of Address Remarks
624 z
625 Continuation of main
program.
346 ADD L(00002) The sum, xx622 4 00002 = xx624,

347 STORE ADDRESS 352 is formed in the accumulator. The
address part is placed in 352, which
contains the instruction involving
the location of z.

348 ADD L(00001) The sum, xx624 4 00001 = xx625,

349 STORE ADDRESS 360 is formed, and the address part is
placed in the link instruction.

3?0 The sub-program is the same in principle as before. Changes in details

will result from the fact that the address part of the instruction in 352 will

~ | be altered by the program and from the fact that storage location 363 will

364 | 0O longer be needed for the storage of .

In some of the above examples, the signs of certain numbers which re-
late to instructions have been disregarded in cases where only the mag-
nitudes were of primary consequence. Actually, for the program to func-
tion properly, the signs of these numbers must be chosen correctly. A
more detailed discussion of signs will be omitted because it would most
likely add confusion without aiding in the explanation of programming
principles. In many computers, special “magnitude” instructions are
provided which facilitate arithmetic operations involving only magni-
tudes and not signs.

Library of Sub-programs. Many sub-programs are likely to be use-
ful in more than one problem. The need for extracting the square root,
for example, is encountered in a wide variety of problems. Much pro-
gramming effort can be saved if sub-programs can be retained in a “li-
brary” of some sort from which they can be “withdrawn” and inserted in
other programs as needed. The outstanding factor to be considered in the
formation of a library arises from the need for being able to place a
sub-program at any set of consecutive addresses in computer storage
instead of one fixed set such as 348 to 364.

Assume, for example, that in the preparation of the program for the
solution of some problem the square root is needed, and addresses 348
to 364 happen to have been employed for the storage of other instructions
or data. The square-root sub-program can be moved to some other
part of the storage, say addresses 448 to 464, by adding 100 to the address
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where each instruction of the sub-program is stored and by adding 100
to the address part of each sub-program instruction which refers to an-
other part of the sub-program. Note that in the square-root sub-pro-
gram the address parts of some instructions, particularly the SHIFT
instruetion, should be the same regardless of where the sub-program is
stored. The address parts of the instructions involving constants should
also remain unchanged if special addresses are assigned for the storage
of constants. On the other hand, if the constants are stored as part of the
sub-program, the instructions which refer to the constants must be altered
by adding 100 to the address parts. :

Since the altering of a sub-program to fit it into any set of consecutive
addresses in storage is a routine job, it is possible to prepare a “position-
ing sub-program” which will make it possible for the computer to relieve
the programmer of this work. However, one difficulty of consequence
is encountered. The positioning sub-program must, by some means or
other, be able to distinguish which of the instructions are to have their
address parts modified and which are not. One reasonably simple means
of identification which can be used in some computers (including the
“specimen” computer) is to employ the sign of the number which repre-
gents an instruction. Previously, the signs of these numbers have been
ignored because they were not used for anything. The convention might
be used that all instructions represented by a positive number should not
be altered, but all instructions represented by a negative number should
have the appropriate constant added to their address parts. Of course,
any constants in the sub-program must then be stored as positive num-
bers; otherwise, the positioning sub-program will incorrectly interpret
them as instructions to be modified. Signs used in this manner are
sometimes called “tags.” Other means for making it possible for the
positioning sub-program to identify the instructions to be modified would
be to use extra storage locations to list the addresses of the instructions
to be modified. After the sub-program to be positioned has been properly
modified, the extra storage locations are no longer needed and may be
employed for other purposes. Since the details of positioning sub-pro-
grams vary tremendously from computer to computer and since no new
programming principles are introduced (once the possibility of a posi-
tioning program is recognized), the subject will not be discussed further
here. .

When assembling a library of sub-programs it is important to record
not only the sub-programs themselves but also as much pertinent data as
are available about each. In the example of the square root sub-program,
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a graph of the required time as a function of the parameter, z, would be
useful. In other cases where approximations or cumulative round-off
errors are involved, the accuracy of the result as a function of the various
parameters would be important. Also, sub-programs are likely to re-
spond in peculiar and unexpected ways when certain combinations of
parameters are used or when certain errors are made. The person prepar-
ing the sub-program might be well aware of its limitations, but unless
these limitations are recorded, the full value of the sub-program as a
library item will not be realized.

Interpretive Programs, First Type. An important extension of the
sub-program concept is the “interpretive” program. When an interpre-
tive program is used, each step in the main program is “interpreted” and
executed in a manner specified by one of a set of sub-programs. Inter-
pretive programs of many different forms and variations have been de-
veloped; two have been selected for presentation here and, for lack of a
better designation, they are referred to as first and second types, re-
spectively.

Consider the situation where all items of data are represented by com-
plex numbers of the form, z + jy, where j is the square root of minus one.
With complex numbers, the arithmetic operations are not as simple as
with real numbers. For examples, addition and multiplication in the
complex number system are represented by the following equations.

(@1 + Jy1) + @2 + Jy2) = (@1 + 22) + 5 (Y1 + y2)
(1 + jy1) (@ + Jy2) = @122 — y1y2) + j(@1ye + 22y1)

While it is possible to program the computer so that it will perform all
the necessary steps for each operation in the complex system, it would
be desirable to relieve the programmer of this burden. The sub-program-
ming procedure, as described previously, allows some reduction in pro-
gramming effort, but it is possible to simplify program preparation much
further. Through the use of the interpretive program, each instruction,
such as ADD, can be interpreted to mean the addition of two complex
numbers, and the jump to the appropriate sub-program is made auto-
matically and without any special link or other instructions being pro-
vided by the programmer (once the interpretive program has been pre-
pared).

For some purposes, particularly in forming loops and sub-programs
which are not related to the fact that the data are in complex number
form, it will be necessary for the ADD and other instructions to be in-
terpreted in their normal way. To distinguish which instructions pertain
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to complex numbers, the signs of the numbers representing instructions
may be used as tags. In the example to be presented, a minus sign will
be used to signify that a complex-number operation is to be performed,
and a plus sign will indicate that the instruction is to be interpreted in
the usual way. Note that the programmer must be careful if the signs
are used as tags for some other purpose such as in the positioning sub-
program described in an earlier section.

The convention will be used that the two parts z and y, of a complex
number will be stored in two consecutive address positions. To specify
the location of a number it is sufficient to give the address of the real
part, and it is understood that the imaginary part is located at the next
higher numbered address. Then, to illustrate by a simple example, all
the programmer needs to prepare to add two complex numbers and print
the sum are these instructions.

075 (—) RESET AND ADD 124
076 (—) ADD 151
077 (—) STORE 120
078 (—) PRINT 120

079 (+) STOP -

The real parts of the two numbers are taken from addresses 124 and
151, and 120 is used {for temporary storage of the real part of the sum.
Addresses 125, 152, and 121 play analogous roles for the corresponding
imaginary parts. The main program does not start at address 000;
instead, in this example, the first instruction of the main program is
found at address 075. The computer follows the interpretive program
and not the main program for its detailed instructions. Therefore, it is
the interpretive program which should start at address 000.

Before describing the interpretive program itself, one of the sub-pro-
grams will be explained. Assume that the sub-program for adding two
complex numbers is stored with its first instruction at address 500. In
principle, this sub-program does the same thing as the ADD instruction
for ordinary numbers; that is, the number at the specified storage loca-
tion is added to the number already in the accumulator, and the sum is
left in the accumulator. However, the accumulator built into the com-
puter is not capable of holding both the real and imaginary parts of a
complex number at the same time. For this reason, two addresses, num-
bers 998 and 999, in the main storage are reserved for use as a sort of
“acting” accumulator. The effect of the complex ADD sub-program,
then, is to cause the addition of the complex number at the specified loca-
tion to the complex number in 998 (and 999).
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Address Contents of Address Remarks
500 RESET AND ADD 004 The address of complex number to

501 STORE ADDRESS 503 be added is placed in 503. (The
interpretive program will have

placed this address in 004.)
502 RESET AND ADD 998 The real parts are added, and the
503 ADD [ 1 sum is placed in 998.
504 STORE 998
505 RESET AND ADD 503 The address of the imaginary part
506 ADD L(400001) of the complex number to be added

507 STORE ADDRESS 509 is formed by adding 1 to the address
of the real part. The result is

stored in 509.
508 RESET AND ADD 999 The sum of the imaginary parts is
509 ADD [ 1 formed and placed in 999.
510 STORE 999
511 JUMP 009 The computer takes its next in-

struction from 009, which is in the
interpretive program.

An analogous sub-program will be needed for each type of instruction
which can pertain to complex numbers. Besides the arithmetic opera-
tions, it is desirable to be able to interpret instructions such as STORE,
PRINT, and SHIFT, as operations to be performed on complex numbers.
The instruction, STOP, presumably has the same effect regardless of the
type of number under consideration and may therefore be treated as an
ordinary instruction always.

The interpretive program serves the function of examining each in-
struction in the main program and causing a jump to the proper sub-
program for actual execution. Note that even though an instruction in
the main program may be accompanied by a plus sign, which indicates
that only ordinary numbers and not complex numbers are involved, a
separate sub-program is needed for each type of instruction. The pro-
gram could be arranged so that the computer would execute the instruc-
tion directly, but this procedure would be of no use because the inter-
pretive program makes use of the accumulator for its functioning, and
the results of execution would therefore be ruined in most cases. When
the interpretive program finds an instruction accompanied by a plus
sign, a jump to address 040 (arbitrarily chosen) is made where an analo-
gous interpretation for real numbers is made. Another “acting” accumu-
lator, say storage location 997, is used for real numbers.

For the interpretive program to start properly, the address of the first
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instuction in the main program is placed as the address part of the in-
struction at 000. The interpretive program is as follows.

Address

000 RESET AND ADD

001

002

VS

003

005
006

007
008

005
010
011
012

013
014
015
016

Contents of Address

STORE

JUMP IF MINUS

JUMP
[

SHIFT RIGHT

ADD

STORE ADDRESS

JUMP

RESET AND ADD

ADD
STORE
JUMP

JUMP
JUMP
JUMP
JUMP

[075]
003

005
040
]

003
L(4-00012)

008
L1

000
L(4-00001)
000

000

L (r and a)

L (sub.)
L (mult.)

Remarks

The number representing the in-
struction to be interpreted (the
first one of which is at 075 in this
example) is placed in 003.

If the instruction is accompanied
by a minus sign, the computer
jumps to 005. Otherwise, it jumps
to 040 where a program for inter-
preting the instruction in ordinary

fashion is stored.

The two digits representing the op-
eration code are shifted to the right-
hand end of the accumulator, and
12 is added to the result.

The number representing the oper-
ation code, increased by 12, is used
as the address to which the com-
puter jumps from step 008.

These four instructions have the
effect of increasing the address part
of the instruction at 000 by 1 and
then causing a jump to 000 for the
interpretation of the next instruec-
tion in the main program. The
sub-programs provide for a return
to 009.

The computer arrives at one of
these JUMP instructions from 008,
and from here goes to the appropri-
ate sub-program. (Recall that the
code for ADD is 02; the jump to
500 is made from 014 since 02 + 12
= 14.)

The part of the interpretive program which starts at 040 and which
is for interpreting the instructions in an ordinary way is not shown.
However, its function is substantially the same as the instruction found
at addresses 005 through 008 except that jumps are made to sub-programs
which are intended for real numbers instead of complex numbers.

Observe that when the desired sequence of operations is accomplished
through the medium of an interpretive program, the computer never
does arrive at step 075 or any other step in the main program. Instead,
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the instructions of the main program are executed by transferring them
to the accumulator and address 004 for interpretation. As a result of
this situation, instructions of the JUMP type in the main program re-
quire further explanation. If a JUMP instruction in the main program
is interpreted in the ordinary way (that is, if it is accompanied by a
plus sign), the computer will jump to the specified address, which could
be at any point in storage. In particular, it could be at a location such
that the computer would leave the interpretive program altogether. For
some applications this effect would be highly useful. However, if it is
desired that the JUMP instruction cause a jump to some other step in
the main program while keeping the interpretive program in effect, the
JUMP must be accompanied by a minus sign. A sub-program for JUMP
is needed to make the required alterations in the interpretive sub-pro-
gram. It is necessary that the address part of the instruction stored at
000 be changed to the address of the instruction which is to be interpreted
after the jump; this alteration takes the place of increasing by 1 the
address part of the instruction at 000. The following three instructions,
arbitrarily stored at 580 to 582, may be used for a sub-program for
JUMP.

Address Contents of Address Remarks

580 RESET AND ADD 003 The address part of the JUMP instruc-

581 STORE ADDRESS 000 tion from the main program (which

582 JUMP 000 was placed in 003 by the interpretive
program) is placed in 000. Return is
made to 000 in this case, instead of 009,
because it is not necessary to increase
the address by 1.

The sub-program for JUMP IF MINUS is slightly more involved, but
it follows the same principles. Here, the “IF MINUS” applies to the
complex number stored in the “acting” accumulator. The “sign” of the
complex number may be taken from either the real or the imaginary
part by using the sign of the number stored in 998 or 999, respectively.

The same interpretive program may be used for all problems where
the data are represented by complex numbers. After it has been pre-
pared for one problem, the detailed procedure by which it functions need
no longer be of concern to the programmer. However, the programmer
must keep in mind the addresses in storage which are consumed by the
interpretive program and all of its sub-programs, because these addresses
will not be available for use in the main program.

Other categories of problems to which interpretive programs of this
type can be applied are multiple-accuracy computations (that is, where
each number is so long that two or more locations are required for its
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storage), floating-point computations, matrices, and multi-dimensional
vectors.

Interpretive Program, Second Type. The second type of interpretive
program which will be described is similar in basic principles to the
first, but it is much more general in its applications. Instead of merely
interpreting each existing kind of operation or instruction in some spe-
cial way, it becomes possible to create (in effect) any number of new
operations which are not built into the machine.

To illustrate how new operations can be created by means of an inter-
pretive program, a simplified example has been worked out for the “speci-
men” machine. It should be understood that almost any practical
interpretive sub-program for any real machine would probably differ
vastly from the example, but the important concepts can be found in
this simplified version. In the organization of the “specimen” machine,
the first two digits of each word were used as a code to indicate the vari-
ous instructions the machine is capable of executing. With two digits,
one hundred different instructions can be represented, but only the codes
from 00 to 13 were actually used. By using interpretive programming
techniques, these same two code digits can be made to represent any
one hundred instructions the programmer desires, except that the re-
quired auxiliary sub-programs must not be so elaborate that the storage
capacity of the machine is exceeded. Some of the selected instructions
may be substantially the same as the “built-in” instructions, but in the
general case there is no relationship between the list of instructions which
are formed by programming and the list of “built-in” instructions which
was given at the beginning of this chapter.

Suppose, for example, that the extraction of the square root is a fre-
quently encountered operation and that it is desired to form a special
instruction for it. The code, 30, might be selected for the square root
instruction so that the number, 30721, will have the meaning: “extract
the square root of the number found in address position 721 and leave
the result in the accumulator.” As in the original examples, the sign of
a number has no significance when the number is used to represent an
instruction. Also, it will be assumed that ordinary numbers (not com-
plex) are involved, although complex numbers or other special situations
can be handled easily with appropriate sub-programs and minor modifi-
cations in the interpretive program. As in the interpretive programs
of the first type, the computer never arrives at a program step which
contains an instruction of the main program. Instead, each instruction
in the main program is “interpreted” in accordance with the details of
the interpretive program together with all of its sub-programs. Since
the instruction counter which is built into the computer is needed to
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control the progress of the machine through the interpretive program
and the sub-programs, an extra storage location (009 in the example be-
low) is used as an “acting” instruction counter to cause the interpretive
program to interpret the main program instructions in the proper se-
quence. Further, the “accumulator” referred to in the square root in-
struction or in other programmed instructions is not the accumulator
built into the computer, but is a particular storage location (say 999)
which is reserved for the purpose. In other words, an interpretive pro-
gram executes an instruction of the main program in a manner roughly
analogous to the way the computer itself executes an instruction of the
interpretive program. The procedure by which an interpretive program
functions is explained in the “remarks” column of the following example,

Address Contents of Address Remarks
000 RESET AND ADD 009 The contents of the instruction
001 STORE ADDRESS 004 counter (the address part of 009) is

002 ADD L(+00001) placed in 004 and then increased
003 STORE 009 by 1.

004 RESET AND ADD [ 1 The instruction to be interpreted
is placed in the accumulator.

005 SHIFT RIGHT 003 The operation part of the instrue-
tion is caused to appear as the two
lowest-order digits.

006 ADD L(400009) The code representing the opera-
007 STORE ADDRESS 008 tion or instruction to be performed
008 JUMP [ 1 is modified by the addition of 9,

and the resulting number is used
as an address to which a jump is
made.

009 — [ 1 Instruction counter. Initially, the
address of the first instruction to
be interpreted is placed here.

010 JUMP xxx}
011 JUMP XXX

Jump table. The jump to the appro-
priate sub-program is made from here.

The square-root sub-program is as-
03 JUMP 600 sumed to start at 600.

The sub-programs can be substantially the same as described in earlier
sections. However, certain alterations in the linkage are required. In
the case of the square-root sub-program, for example, note that address
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004 will contain the address of the instruction being interpreted, and the
instruction being interpreted in turn contains the address of the number
for which the square root is desired. Therefore, the following sequence
of instructions can be placed at the beginning of the square-root sub-
program for the purpose of placing the number where the sub-program
can find it.

Address Contents of Address Remarks
600 RESET AND ADD 004 Places the address of the instruction
601 STORE ADDRESS 602 in 602.

602 RESET AND ADD [ ] Places the address of the number for

QMADTY ATYNTMDTGQ 2nA wrrblol Ll cvernsen wand 3o Aaciwnd 2. 2NA
603 D1lVNRL AL DS 604 Waila v 8Juarlt 1oy 1S GESired iii vut.

604 RESET AND ADD [ ] Places the number where the sub-pro-
605 STORE XXX  gram can find it.

With the system as described, the square-root sub-program must also
contain an instruction which will cause the result to be placed in the
“acting” accumulator. The return link is simply a JUMP 000 instruc-
tion in this case.

An outstanding extension of the interpretive program principle arises
from the fact that the instructions formed by the sub-programs need
not be limited to the single-address variety. A convention may be
adopted whereby a group of two or more address positions may be used
for each instruction, and an interpretive program can be prepared which
will interpret the instructions in any multi-address fashion. By this
means a single-address computer can be made to appear to a program-
mer as a multi-address computer of any desired form (after the inter-
pretive program has been worked out). Conversely, a multi-address
machine can be made to function in single-address fashion from a pro-
grammer’s viewpoint. The ability to make one machine appear like
another one has proved to be of great value in computer design. Before
a new machine is actually built, programs for it can be tested and cor-
rected on some existing machine. By this means, the need for certain
mprovements in the organization of the new machine can frequently
be discovered at an early stage of design when it is not difficult to make
changes.

Although it is probably obvious to most readers, it should be noted
that the time required to execute a given number of steps in the main
program is increased by a large factor in most cases where an interpretive
program is used.

Programming when Index Registers Are Available. As was explained
in the previous chapter, a computer may be equipped with one or more
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index registers. When index registers are available, the computer is usu-
ally so organized that certain digits in each instruction are reserved for
specifying which index register is to be used and, in some machines, for
specifying the amount (usually 1) by which the contents of the index
register should be altered. In the examples which have been presented
to illustrate various programming techniques, it may have been observed
that the addition of 1 to the address part of an instruction was a fre-
quently encountered requirement when a program loop of any sort was
involved. In most cases the traversing of the loop was terminated when
the address reached some predetermined number. The number of in-
structions involved was dependent upon the detailed requirements of the
situation, but it was always at least three. With index registers, the
number of instructions required for this function can be reduced to one
because built-in circuits cause the number in the specified index register
to be added to the address before execution of the instruction, and at the
same time the number is increased by 1 (or some other specified amount)
in an automatic fashion. Further, succeeding jumps in the program can
be made automatically in accordance with whether or not the number
in the index register has reached some preset value.

Besides facilitating the preparation of program loops, index registers
are found useful in numerous miscellaneous ways. No examples will be
given because, although index registers have been incorporated in many
computer designs, the details and elaborations vary so greatly from ma-
chine to machine that the value of an example worked out for a “speci-
men” machine would be severely limited.

Assembly Programs. When a single program contains hundreds or
thousands of instructions, its preparation contains problems which are
not encountered to any extent in short programs where the programmer
can remember the purpose and effect of each instruction. If, during the
preparation or correction of a long program, it is necessary to alter the
program by as little as inserting one instruction, it frequently happens
that numerous changes throughout the program must be made. Not only
are the storage locations of the instructions modified, but also certain
constants and the address parts of many instructions are usually affected.
For this reason it is extremely difficult to prepare a long program without
errors even after the logic of the program has been worked out perfectly.
For the purposes of reducing the labor and chances for error involved
in program preparation, techniques have been worked out whereby the
computer itself is given the job of assigning storage locations to the in-
structions and data and of determining the address parts of all instrue-
tions which refer to storage locations. With these techniques the pro-
grammer writes the program in sections with some sort of symbolic
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notation to describe the storage locations and addresses. An “assembly
program” is then used to assemble the sections and compute the actual
storage locations and addresses from the symbolic notation.

The basic idea behind at least one form of assembly program is to use
a symbolism whereby one series of numbers designates the major sec-
tions of the program; a second series, separated from the first by a dash
or some other mark, designates the instructions within the section; and
a third series designates instructions inserted after the initial writing
of the program. A portion of the eighth section of a program might then
appear as follows.

Address Contents of Address
812 JUMP 8-15
8-13 RESET AND ADD 10-2
814 SHIFT RIGHT 002
815 STORE ADDRESS 817
8-16 ADD 2-1
8-17 JUMP 15-3

The meaning of the instruction at 8-13, for example, is that the number
representing the second instruction in the tenth section of the program
is to be placed in the accumulator. The assembly program will assign
an actual address in storage for the symbol 8-13; also, it will assign an
address for 10-2 and place it in the address part of the instruction. The
assembly program will not affect the address part of the shift instruction
because no storage locations are involved and no alterations are to be
made.

Suppose that through an oversight or for some other reason it is de-
sired to insert a new instruction, say ADD 5-2, between instructions
8-13 and 8-14. A study of the example will reveal that it will be neces-
sary to alter the storage assignments of all instructions after 8-13.
Also, the address parts of some, but not all, of the instructions must be
changed. However, if a symbol such as 8-13-1 is assigned as the ad-
dress (location) of the inserted instruction, there will be no need for any
reshuffling of symbols by the programmer. Since with this system of
notation each address will be represented by different symbols and no
two symbols will represent the same address, it is possible to make all
changes in address assignments by means of the assembly program.

Numerous complexities in assembly programs are encountered in cer-
tain cases. One important case is in the assembling of a program with
help of a library of sub-programs. Some means must be provided for
distinguishing one sub-program from another; otherwise address 1-1
would mean one thing in one sub-program and something else in another
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(it is assumed that the same symbolic system is used for the sub-pro-
grams). Also, situations arise where it is desirable to cause particular
instructions in two different sub-programs to refer to the same address
where the symbolic addresses as stored in the library are not the same.

Another complexity arises when the assembly program and the pro-
gram being assembled are too extensive to fit into the storage unit of
the computer. The procedure in this case is to divide the program into
parts and assemble one part at a time. Since the instructions in one part
may refer to the addresses in another part, it is not always possible to
convert the address part of each instruction from symbolic form to an
actual address on the first pass through the machine. By using a part
of the storage unit for maintaining a file of unassigned addresses, the
assembly of the program can be completed the second time it is entered
into the computer. A further requirement of the assembly program is
that it record the assembled program in forms suitable for subsequent
use by the computer and suitable for visual reference by the programmer.

Most practical assembly programs for real machines are themselves
long and complicated and may require literally months to prepare. The
usefulness of an assembly program comes, of course, from the fact that,
once prepared, it can be used without alteration for the assembly of in-
numerable other programs.

The “Speed-coding” System. A different approach to the problem
of simplifying the preparation of long programs is to provide, by inter-
pretive sub-program techniques, a set of instructions which are much
more comprehensive than those built into the machine. By this means
it is possible in many cases to eliminate all sub-programs and certain
other complicating factors in the program as prepared by the program-
mer; in fact, it is not even necessary that the programmer understand
sub-programming techniques at all. Another advantage of the system
is that the number of instructions which must be written to solve a given
problem can be reduced by a large factor. The name, “speed-coding,”
was first applied to a system of this type which was prepared at IBM
for the 701 computer. Other groups have worked out analogous systems
for different computers; the systems have been given other names in
some cases.

As in the case of an assembly program, the speed-coding interpretive
program is long and involved and requires a matter of thousands of
instructions with its usefulness being derived from the fact that, once
prepared, it may be used by programmers who have no knowledge of
how it works. The programmer need be familiar only with the list of
“programmed instructions” which the speed-coding system provides. In-
cluded in the list are instructions for square root, sine, arc tangent, ex-
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ponentials, and logarithms, all of which would normally require sub-
programs when using the “built-in” instructions of the computer. Also,
several input and output instructions are included which allow the pro-
grammer to move an entire block of information from one place to
another with only one instruction. To handle situations where it is
desirable to modify an instruction, a set of index registers (referred to
as R-quantities in this case) and an address counter are provided by the
speed-coding system. The index registers function in principle by the
procedure described previously, and by means of the address counter
it is possible to replace selected addresses with new ones or to add ad-
dress increments in a variety of manners.

3al
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A {further convenience included in the speed-coding system ar
instructions for the automatic checking of computations. By placing a
START CHECK instruction at the beginning and an END CHECK
instruction at the end of the series of instructions to be checked, the
computer will be caused to proceed through the sequence twice and to
generate a check sum each time. The computer will then compare the
two check sums and, if they are equal, it will skip the instruction imme-
diately following the END CHECK; but, if there is a discrepancy, that
instruction will be executed. In the event an error is detected, the pro-
grammer may control the course of action the computer is to follow by
having placed an appropriate instruction in the position immediately
following the END CHECK instruction.

The basic ideas employed in writing a program in the speed-coding
system are substantially the same as when writing a program using
“built-in” instructions. There are a great many differences in detail,
however, because of the considerable differences in the nature and quan-
tity of the individual instructions. An instruction in the speed-coding
system consists of two operations, four addresses, and a digit relating
to the index registers. One operation and three of the addresses are
used for arithmetic and input-output functions in a manner similar to
that of a three-address computer. The other operation together with
the fourth address are used for jump, address modification, and error-
checking functions, although there are many interrelationships between
the two operations. All items of data are handled through the speed-
coding system as floating-point numbers even though the computer is
a fixed-point machine.

In spite of the relative complexity of the individual instructions in
the speed-coding system, the over-all task of preparing a program for
a given mathematical problem is made easier because many of the con-
fusing factors arising from sub-programming are avoided through the
interpretive process and because many less instructions in the “main”
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program are required. An outstanding disadvantage of the speed-coding
system is that the great number of instructions consumed in the inter-
pretive process cause more time to be required for calculations in the
speed-coding system than when the program is prepared entirely in terms
of “built-in” instructions.

An interesting combination of assembly program and speed-coding
concepts is the use of an assembly program to prepare address assign-
ments for a program written in terms of speed-coding instructions.

. Tracing Programs. It seems to be almost axiomatic that a program
when first prepared will not work. Occasionally programmers are able
to write short programs that are totally free from errors, but for a long
program the places where typographical errors, unforeseen circumstances,
and mistakes in logic can arise are so numerous that the chances of get-
ting it right the first time are extremely small. In spite of the difficulty
a human being has in discovering errors by a mental checking process,
the computer usually will show up errors in programming very quickly
by a failure to arrive at the right answer. The computer, then, is the
best tool the programmer has for perfecting his programs. However,
the computer will show only the existence of an error; it will not indicate
precisely what or where the error is. The programmer still has the job
of deducing the source of the error from the behavior of the computer,
which may be peculiar to say the least.

To assist the programmer in locating errors in a program, “tracing
programs” may be used. A tracing program is basically an interpretive
program which functions in the same general manner as other interpretive
programs which were described by means of examples in earlier sections.
When a tracing program is used, the computer does not execute the in-
structions of the main program directly; instead, each instruction is
“interpreted.” The interpreting in this case accomplishes the same end
result as direct execution, except that certain additional features are
added. For example, each instruction may be caused to be printed as
it is executed so that the programmer can have a record of what the
computer actually does. By studying this record, the path of the com-
puter through the main program can be determined to see whether or
not it was following the various jump instructions as expected. The ad-
dress parts of the instructions can be observed to indicate whether or
not the desired items of data entered into the computations at each point.
Tracing programs can also be used to obtain a printed record of the con-
tents of the accumulator or of other registers at the end of each program
step. With this information the progress of the computations for a sam-
ple set of parameters can be compared with the results obtained from
a desk machine in an effort to locate the mistake.
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Innumerable variations can be worked out for special cases. For ex-
ample, if the programmer is interested only in knowing the sequence of
program steps that the computer followed, the tracing program can be
altered so that it will be limited to printing information relative to jump
instructions. In other applications, computed values will be needed only
at certain intermediate points in the program instead of at each program
step. Since the progress of the computer through the main program is
much slower when a tracing program is used, it may be important from
a purely time consideration to limit the scope of the tracing functions.

Diagnostic Programs. If errors are being encountered which place
the computer and not the program under suspicion, speeial programs
known as “diagnostic” programs can frequently be used to locate the
source of the errors. A diagnostic program is to be distinguished from a
test program, although the dividing line between the two is not at all
well defined. A test program is generally employed to determine whether
or not the computer, or some particular portion of it, is working properly.
This purpose is accomplished by exercising each element in the computer
as thoroughly as practical by means of appropriate instructions in the
program and then observing to see that the proper response is obtained.
Since the proper response may consist of a check sum or some other
number obtained after a long sequence of operations, there may be no
indication of the source of an error in the event that the existence of
an error is sensed. On the other hand, diagnostic programs are generally
employed after a defect is known to exist, and the purpose is to find
the defect.

The details of any specific diagnostic program would be dependent
upon the engineering details of the computer under consideration. How-
ever, there are a few considerations which appear to apply to nearly
all computers. For one thing, for a diagnostic program to work, the
computer must be functioning well enough “to get a program off the
ground”; that is, the instructions of the program must be executed prop-
erly, and therefore certain portions of the computer must be in good
condition. For this reason it is difficult to prepare a program that will
properly diagnose an error in some of the important control circuits of
the machine. Errors originating in the power supply are also difficult
to locate by means of diagnostic programs. It is usually necessary to
check these parts of the computer through the use of oscilloscopes, volt-
meters, and other test instruments.

Although it would be desirable to have one all-inclusive diagnostic
program that would indicate the cause of an error regardless of its
source, it is generally more feasible to employ a set of specialized pro-
grams, each of which pertains to a relatively small portion of the ma-
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chine. Frequently when errors are encountered, the approximate loca-
tion of the source is known, and in this case the appropriate diagnostic
programs may be selected to aid in finding the trouble quickly. In in-
stances where incorrect results are being obtained with no indication
whatsoever of the cause, the specialized diagnostic programs are still
of great value, although it is then necessary to examine the entire com-
puter in some systematic manner such as would be used when testing
a new machine.

For IBM’s 701, for example, a library of at least seventy different
diagnostic programs has been assembled. One of the simplest (and sur-
prisingly useful) programs is merely a blank card to be fed through the
card reader; many clues to error causes can be obtained if the card fails
to feed properly or if extraneous digits are entered into the machine.
Most of the diagnostic programs are highly specialized and pertain to
such things as controls for a particular instruction, the instruction coun-
ter, a specific property of the electrostatic storage unit, drum addressing
circuits, or the printer circuits. The medium through which the pro-
grams present the results of their diagnosis to the operator is usually a
stopping of the computer at a point where the pertinent data are readily
observable in the various registers. Instructions for interpreting the
data are recorded in the library along with the programs. Some of the
diagnostic programs are capable of generating relatively elaborate re-
ports on the output printer.
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