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Preface

This book provides an introduction to the architecture of micro-
programmable computers. The term microprogrammable as used
herein implies machines with writable control store (or otherwise
supported for microprogramming by the user) and intended for
general purpose microprogramming. This is in contrast to micro-
programmed machines employing read-only memories that have been
designed only to implement a particular machine language and archi-
tecture and are not intended for further microprogramming.

The first chapter provides an historical overview of microprogram-
ming tracing the evolution of the microprogrammable computer.
Chapters 2 and 3 develop a comprehensive framework and descrip-
tive parameters for the analysis of microprogrammable computer
architectures. The emphasis is on identifying and analyzing those
architectural features that provide flexibility and thus enhance the
general purpose capabilities of microprogrammable processors.
Special attention is also paid to features that have utility in emula-
tion.

The remainder of the book is devoted to case studies of micropro-
grammable machine architectures. Four chapters (4 through 7) pro-
vide relatively detailed descriptions of particular machines with sig-
nificantly different architectural concepts (Microdata 3200,
Interdata 8/32, Burroughs B1700, and Nanodata QM-1); while in no
way exhaustive, these descriptions do cover the salient and most
significant features of primary interest from an architectural view-
point. The final chapter provides brief overview descriptions of an
additional six machines (Control Data 5600, Digital Scientific META
4, HP 2100/21MX, Varian 73, Intel 3000, and Western Digital MCP
1600) chosen to round out the variety of architectures presented and
in recognition of their popularity or potential. The Intel 3000 and
the Western Digital MCP 1600, in particular, are included as represen-
tatives of the new breed of microprogrammable microprocessors.

xi



xii

This book does not purport to be a text on microprogramming or
computer architecture. Nevertheless, it can serve as a useful reference
or supplemental text for a range of courses and seminars. The
material presented is largely an outgrowth of research conducted at
Stanford University; the reports on which the book is based have
already been used as supplemental reading at a number of institu-
tions.

The reader is assumed to have a knowledge of basic machine
structure including a familiarity with machine or assembly language
programming. Within these constraints, the material will be of inter-
est to computer engineers, computer scientists, programmers, and
managers alike.

The author is indebted to many people for helping make this book
possible. In particular, E. J. McCluskey, professor of Electrical Engi-
neering and Computer Science at Stanford University and editor of
the Computer Design and Architecture Series, is to be credited for
encouraging the project and for his careful editing of the manuscript
through several rewrites. Thanks also to A. J. Nichols of American
Microsystems for his review and constructive criticism of the pre-
liminary manuscript, to D. H. Sawin and J. C. Rhyne for their
reviews of the final draft, to Julia Fahey for her careful copyediting,
and to Marie Straniero for her excellent typing and editorial assis-
tance. Finally, appreciation is extended to Burroughs Corp., Control
Data Corp., Digital Scientific Corp., Hewlett Packard Company, Intel
Corp., Interdata Inc., Microdata, Nanodata Corp., Standard Com-
puter Corp., Varian Data Machines, and Western Digital Corp. for
their reference materials, review of pertinent parts of the manuscript,
and permission to reproduce appropriate illustrations.

The opinions expressed herein are those of the author and do not
necessarily represent opinions of the U.S. Army or the Department
of Defense.

Ft. Monmouth, New Jersey Alan B. Salisbury



Chapter 1

Microprogramming in Perspective

1.1 INTRODUCTION

Microprogramming in one form or another has been part of the
computer world for almost a quarter of a century! This may come as
a surprise to those who view it as a relatively “new” field, especially
when the short history of the entire computer industry is considered.
The field of microprogramming has been evolving from the exclusive
province of the computer designers into an area of potential utility
to the much broader community of computer users and pro-
grammers. Thus, its recent elevation to a topic of general interest.

This first chapter briefly traces the evolution of microprogram-
ming and introduces a number of related ideas and concepts. A major
objective is to give the reader an understanding of the varying degrees
to which a computer may be considered to be microprogrammable
and the resulting impact this has on its generality. Additionally, some
insight into current trends and possible future directions of the
continuing evolutionary process may also be gained.

1.2 GENERALITY OF COMPUTERS

Computers have traditionally been classified into two categories,
either general purpose or special purpose, terms that describe their
applicability to problem solving. Rather than a discrete description
of this nature, a continuous dimension including general purpose and
special purpose machines at opposite ends could more accurately be
used for such classification. In truth, some computers are more
general purpose than others, and special purpose machines may vary
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according to the number and variability of the tasks that they can
perform.

Such a dimension is illustrated in Figure 1-1. At the extreme left
we show the Universal Turing Machine, familiar to automata theo-
rists, a totally programmable device with an absolute minimum of
hardware—probably the most general purpose machine one could
imagine. At the opposite extreme we show a fully hard-wired, non-
programmable, special purpose computer capable of executing only a
single task. The notion of programmability is key to this conceptual
dimension, and it is manifested in a machine capability to accept
externally supplied instructions that can cause it to perform a desired
task. The more general purpose the machine, the more numerous and
detailed instructions will be required to program it for a given task.
There is thus an inverse relationship between hard-wired logic (hard-
ware) and programmed instructions (software) running the length of
the dimension.

While the above discussion is somewhat oversimplified and ne-
glects a number of factors, nevertheless, it serves to illustrate the
important concept of programmability and the interrelationship be-
tween hardware and software. The remainder of this discussion will
be restricted to a much narrower range of the generality dimension
(between dashed lines in Figure 1-1) into which fall the vast majority
of today’s commercially available and proposed computing systems.

1.3 THE CPU AND COMPUTER CONTROL

The central processing unit (CPU) of a digital computer can
generally be subdivided into two basic functional segments, the first
concerned with the transformation and movement of the data being
processed and the second with the control of the CPU itself. This is
Hlustrated schematically in Figure 1-2, in which the CPU is shown
consisting of the arithmetic and logic element, and the control
element. All movement and/or transformation of data is controlled
primarily by signals emanating from the control unit which, in turn,
behaves according to its internal logic and externally supplied “pro-
gram.” The program resides in main memory and is incrementally
moved to the control unit in the form of “instructions.” On the basis
of the information contained in an instruction and the present status
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Fig. 1-1: Continuous Generality Dimension for the Description
of Computer Applicability, Illustrating the Inverse Relationship
Between Associated Hardware and Software.

of the machine, the control unit must thus issue control signals
which: 1. specify what data movements and/or transformations
(operations) are to take place; 2. specify which data (operands) are
to be used; and 3. select and fetch the next instruction to be
executed. These signals are ultimately applied directly as binary
inputs to individual logic gates.

1.4 RANDOM LOGIC

In the so-called hard-wired computer, the control element is an
assemblage of interconnected combinational and sequential logic
networks that function as a finite state machine. The resulting
pattern of gates and interconnections has become known as random
logic, reflecting the ad hoc nature of the gate-by-gate (or chip-by-
chip) design and resulting circuit board layouts.

Consider, for instance, a small computer with a single accumulator
and, as part of the total instruction repertoire, several instructions
that affect the accumulator contents. Among these instructions
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Fig. 1-2: Functional Elements of a Digital Computer,

might be Clear and Add to the Accumulator (CLA), Add to the
Accumulator (ADD), and Subtract from the Accumulator (SUB).
Using the basic ADD capability, CLA can be accomplished by first
clearing the accumulator and then performing the ADD; similarly,
SUB can be accomplished by first complementing the number to be
subtracted and then also performing the ADD. Assuming 16 clock
pulses (CPO—CP15), are routinely provided for an instruction execu-
tion, they may be used to control the initiation of each of the tasks
required for overall instruction execution.

In the interests of simplicity, it would probably be desirable to use
the same numbered clock pulse to initiate the ADD function for each
of the three instructions discussed. If CP10 were chosen for this
purpose, it would then be possible to write a logic equation for the
signal to be applied to the adder (for example, A) of the form:

A =(ADD + SUB + CLA) * (CP10) * (E)

This is interpreted as: Signal A is to be activated when the instruc-
tion register operation code is decoded as an ADD OR a SUB OR a
CLA, AND clock pulse 10, execute phase, is also present. Similarly,
if the signal that will cause the accumulator to be cleared is called C,
and this is to occur at CP4 during the execution of the CLA
instruction, we could have a (partial) logic equation:

C=(CLA) * (CP4) - (E)
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Once again this is interpreted as: Signal C is to be activated when the
instruction register operation code is decoded as CLA AND clock pulse
CP4, execute phase, is present. Finally for this limited example, CP9
might be selected as the time to complement prior to adding for the
execution of a SUB instruction. If N is the complementing signal we
could have:

N = (SUB) - (CP9) * (E)

Next, consider that memory must be read both to fetch an
instruction and to fetch operands. Perhaps instruction fetches are
always performed at CP1 of the fetch cycle (F), and operands are
always fetched at CP5 of the execute cycle for those instructions
that require operands from memory (memory reference instructions
= MR). Then the signal R, which is activated to initiate a memory
read, might have for its equation:

R=(CP1) * (F)+ (MR) + (CP5) - (E)

The results of this very simplified portion of our design are shown
in Figure 1-3. Each signal is developed on an ad hoc basis, taking into
account the detailed conditions under which it is to be activated.
Logic networks are developed for each one based on a simplified
logic equation.

First, consider that only a few of the total number of func-
tions actually required to implement the CLA, ADD, and SUB
instructions were included in this analysis; second, note that only
three related instructions were addressed. When this is expanded to
all tasks required to implement an entire instruction repertoire, the
reader can begin to appreciate the large number of logic equations
involved and the varying sizes of the logic networks that may be
required to implement them. This is the nature of the random logic
design found in hard-wired computers.

1.5 THE MICROPROGRAMMED COMPUTER

In his classic paper of 1951, “The Best Way to Design an Auto-
matic Calculating Machine,”! Maurice Wilkes sought to eliminate the

1See WILKS1, bibliography.
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Fig. 1-3: An Elemental Portion of an Ad Hoc Random Logic
Control Unit Design.

randomness of control logic and replace it with an orderly logic
matrix. As shown in Figure 1-4, Wilkes’ scheme provided for the
computer instruction {order) to be decoded to select a particular row
of the matrix; the column elements of the selected matrix row would
then be used on a one-for-one basis to issue the necessary control
signals. A separate matrix contained the information required to
select subsequent rows, based on the current row and possible
conditional status information. Wilkes recognized that the execution
of a machine instruction could logically be broken up into a se-
quence of elementary operations that he termed micro-operations.
Each row of the combined matrix corresponded to a single micro-
operation and for the entire assemblage of microoperations he coined
the term micro-programme from which we have the currently popu-
lar term microprogram.

The control matrices represent a form of memory in the com-
puter. Each row can be considered as a single word in memory, with
the connected (heavy dot) intersections indicating 1’s, and the non-
connected intersections indicating 0’s. A fixed control matrix thus is
actually a read-only memory, as compared to the more conventional
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Fig. 1-4: Wilkes’ Classical Design of a Micro-Control Unit.

reqd-write memory used for the main memory element of a typical
computer.

One row of the control matrix (word of memory) can be thought
of as a control instruction, or a microinstruction. Microprogramming
can then be defined as the process of developing a set of microin-
structions (control matrix contents) that execute from a separate
control memory of a computer to govern the operation of the
functional units of the computer.

With the availability of suitable electronic components for reason-
ably fast read-only memories (ROM’s) in the mid 1960s, Wilkes’
scheme was utilized with minor modifications in a number of com-
mercial computers.? As Wilkes envisioned, microprogramming be-

2Predating most of the computers considered to be ‘“‘microprogrammed,” the
Whirlwind I computer utilized many of the concepts; in particular, the WWI
central control employed an orderly diode logic array not completely dissimilar
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came a powerful tool of the computer designer. In addition to
orderly simplicity, the principal advantages were that it allowed
many design decisions to be postponed until the end of the design
process and facilitated subsequent changes and modifications; the
prime disadvantage was that available ROM technology yielded
slower execution speeds than comparable hard-wired machines.

1.6 EVOLUTION THROUGH EMULATION

Wilkes subsequently speculated that it would be possible to “have
a number of interchangeable matrices providing for different order
codes, so that the user could choose the one most suited to his
particular requirements.”® This concept proved to be attractive as a
solution to the “compatibility” problem. Microprogrammed com-
puters of a new design could be equipped with additional read-only
memories enabling them to emulate earlier computers and hence
eliminating, at least for the moment, the necessity for reprogram-
ming. This kind of compatibility has been referred to as backward
compatibility.* Microprogrammed emulation has similarly enabled
families of machines to be upward and downward compatible
through a common basic machine language, even though the internal
organizations and technologies employed have been very different
from one model to another. Finally, sideways compatibility has
similarly been achieved allowing one manufacturer’s computers to
emulate another.

While functionally similar to interpretation, emulation, for the
purposes of this discussion, may be considered as the use of micro-
programming techniques for the simulation of one machine by
another. The machine doing the emulation is generally referred to as
the host machine and the machine being emulated as the target
machine. Occasionally, in the literature, the term virfual machine is
used in lieu of target, and Wilkes has used subject computer and

from those of Wilkes. The operation control matrix could perhaps be con-
sidered one of the earliest “read-only memory” type controls. See SMITS59,
bibliography.

3See WILKS3, bibliography.

4Compatibility definitions are those of Husson. See HUSS71, bibliography.
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object computer rather than host and target.® Host and target have
become the predominant terms.

As an example of an upward/downward compatible family of
computers, consider the IBM System 360 series. All models can be
thought of as having a common architecture as seen by the program-
mer. In this sense, the 360 is a target machine and the different
models are 360 emulators implemented on different host machines.
Figure 1-5 illustrates this concept; the solid blocks are microprogram-
med models, while the dashed blocks indicate the hard-wired
models.® The varying range of performance characteristics of the
host machines accounts for the resulting performance range of the
different models of the 360 series,

1.7 THE MICROPROGRAMMABLE COMPUTER

Thus far, we have only considered microprogramming as a tool of
the computer designer. Early microprogrammed machines were de-
signed with the primary goal of implementing a particular archi-
tecture and instruction set; neither generality nor extendibility were
major considerations. Modifications and emulation capabilities were
accomplished through the design of new or modified read-only
memories.

1.7.1 User Microprogramming

Microprogramming as a tool of the user has slowly evolved and is
still greeted with less than enthusiasm (or active discouragement) by
many manufacturers. Minicomputer manufacturers were probably
the first to actively support user participation in the design process
by making available facilities to assist in the design and checkout of
ROM programs and by producing customized ROM’s to meet special
needs, primarily in the process control environment. Costs, lead-time,

$See WILK 69, bibliography.

°Philosophically, one can even think of the hard-wired models as being
emulators. Further examination of emulation definitions and concepts can be
found in SALI73.
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Fig. 1-5: IBM System 360
(Solid blocks indicate microprogrammed models).

and the relative difficulty of microprogramming combined to limit
this mode of user participation.

1.7.2 Writable Control Store

The introduction of writable control store, control memory with a
write as well as read capability, has given rise to what can truly be
described as microprogrammable computers, in which not only the
designer but the systems programmer and even the applications
programmer can utilize the microprogramming capabilities to assist
in problem solving The first microprogrammable machines included
ROM for the bulk of the microprogram and a smaller amount of
writable control store to enable the addition of new, special instruc-
tions to extend the basic repertoire or perhaps permit the micropro-
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gramming of special routines to speed up highly repetitive and time
consuming tasks. Even in these machines, however, the micropro-
gramming features primarily reflect the designer’s intention of imple-
menting a specified target machine; while it may be relatively easy to
write microprograms to implement the intended machine, it may be
commensurately difficult to write microprograms to accomplish dif-
ferent tasks.

Recently, machines have begun to appear that are fully micropro-
grammable (that is, they employ extensive if not exclusive writable
control store) and whose architectures are intended to support gen-
eral purpose microprogramming. With equal facility (difficulty) they
may be microprogrammed to emulate a variety of different target
machines or accomplish a variety of tasks. (Although this is the
designer’s intention, this capability is achieved with varying degrees
of success.) The ultimate in machines of this type are those that have
no machine language in the conventional sense, but are only micro-
programmable; no specific higher level architecture was envisioned in
their design.” Throughout this book, the term microprograrmmable
will be used to describe machines in which a significant portion of
the control storage is writable or otherwise readily alterable.

1.7.3 The Universal Host

Several authors have discussed the designs of machines that can be
considered to be universal hosts, that is, they can be microprogram-
med to emulate any desired target machine.? Ideally, a universal host
would be equally efficient in the emulation of all target machines;
this is not an easy objective to achieve. The truly universal host must
have a data structure and microinstruction repertoire that have in
some way been optimized to accommodate emulation of the total
range of target machine architectural parameters.

The notion of host machines being microprogrammed to emulate
target machines is perhaps too restrictive, especially if the target
machine is perceived as a machine language programmable computer.
Indeed, a great deal of work has already been done in microprogram-

7See, for instance, OPLE67, ROSI71, and WILN72. Also see Chapters 6 and 7.
8See, for instance, ROSI69A, FLYN71A, and DAVP72, bibliography.
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ming machines for the direct execution of higher level languages,
microprogramming of operating systems, and even direct micro-
programming of applications programs.

While not specifically considering microprogrammable machines,
McKeeman made a strong argument for designing machines that
would be “reasonably amenable hosts for the operating systems,
compilers and popular languages presently in use” rather than merely
to achieve an arbitrary architecture.® This philosophy can be ex-
tended even beyond applications to the concept of “environments”
that are data oriented rather than program oriented.!® Herein lie the
goals of universality.

1.7.4. Dynamic Microprogramming

Just as conventional machines are multiprogrammed with pages
swapped in and out of main memory, microprogrammable machines
can be given the capability of swapping microprograms in and out of
a writable control store, resulting in a form of dynamic micropro-
gramming. With these same powerful multiprogramming techniques
come many of the same problems, the principal one being protection
(protecting programs from one another). This problem is somewhat
compounded at the microprogramming level in that the micro-
program is capable of altering the very structure of the machine.
Solutions to this problem will probably take the form of micropro-
grammed operating systems (with perhaps some portions in read-only
memory) including a system of modes and privileged microinstruc-
tions. 1!

There are those who question the user’s need or desire to utilize
microprogramming capabilities at all. They point out that today,
generally, the user has available to him machine language program-
ming capabilities that go unused in favor of higher level languages,
operating system utilities, and the like. The answer to this challenge
is twofold: First, there will always be users (although perhaps a

9See MCKE67, bibliography.

10 The notion of environments is due to Rosin. See ROSI69A, bibliography..

1A description of an operating system designed to accommodate multiple
emulators can be found in HOPK70.
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relatively few) who can make the most of any capabilities provided
to them; second, even if the applications user himself does not make
direct use of microprogramming capabilities, the systems program-
mer can use them to great advantage when providing better com-
pilers, run time environments, and such, which will benefit the user
indirectly. A dynamic microprogramming capability can thus be of
great benefit. In effect, it can provide a capability to dynamically
“redesign” the architecture of the machine to meet the needs of the
immediate job to be done.

1.8 FIRMWARE

A microprogram residing in a read-only memory has many of the at-
tributes of conventional software; it is, as its name implies, a program.
On the other hand, the applications programmer is normally able to
write programs only in the higher level machine language of the
system; to him the ROM and its microprogram are merely extensions
of the hardware. In recognition of this dual status, the term firmware
was coined to describe “microprograms resident in the computer’s
control memory [specializing] the logic design.”!?

It has been pointed out by Flynn and others that both hardware
and software designers work with algorithms and that they differ
only in the physical realization. Indeed, virtually any logic can be
replaced with memory. If the memory is writable we can refer to its
contents as software; if read-only, we can think of it as hardware. In
either case, the term firmware can describe its functional utilization
if not its complete implementation. Generally, however, manu-
facturers use the term firmware in conjunction with the read-only
memory microprograms supplied with their processors.

1.9 MICROPROCESSORS AND MICROPROGRAMMING

An unfortunate similarity in terminology has resulted in a good
deal of confusion concerning the subjects of microprocessors and
microprogramming. The term microprocessor is generally used in

12 5ee OPLE67, bibliography.
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reference to a large-scale integrated circuit (LSI) processor on a single
chip; with the addition of other LSI chips for memory, timing, and
other auxiliary functions, a microprocessor may be expanded into a
microcomputer, usually implemented on a single card or circuit
board. The micro in microprocessor and microcomputer is thus a
reference to the physical size of the units involved.

Use of the term microprocessor has also been made in the litera-
ture to describe a microprogrammed/microprogrammable processor.
In this sense, micro refers to an architectural (logic) level below
machine language instructions.

In order to make the distinction clear, all references to micropro-
grammed/microprogrammable processors and architectures within
this book will use the terms micro level processor or micro level
architecture. The term microprocessor will thus be restricted to mean
an LSI processor on a chip. Microprogramming then does not equate
to programming a microprocessor.

Having established this distinction, it can now be stated (with
some trepidation) that some microprocessors are also micropro-
grammable and more have been microprogrammed in their logical
implementation; in addition to being physically small in size, these
microprocessors contain a micro level architecture to implement
their instruction sets. Chapter 8 includes an example of such a
processor.

1.10 ARCHITECTURE, ORGANIZATION, AND CONTROL

At least for the immediate future, we will continue to have a
hierarchy of memory facilities available within a computer and its
CPU. These will be referred to herein as main memory, control store,
and local store, the latter consisting of the many functional registers
of the CPU.

1.10.1 Levels of Control

Control store itself may have more than one level. In the hard-
wired machine, there is no control store. A microprogrammable
machine contains a single level of control store. It is further possible
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that a micro level processor can itself be implemented utilizing a
program in a second level of control store; the term nanoprogram-
mable has been coined to describe such a two-level control struc-
ture.!3 In theory, additional levels of control store can be added
until the final hard-wired processor level is reached.

The highest level of control over the CPU is exercised by programs
residing in main memory. Macro-instructions are referred to in most
of the literature on emulation as equivalent to the conventional
machine instructions found in main memory; such usage should not
be confused with the more traditional connotation of macro’s as
being at a level above machine language instructions in many as-
sembly languages. Within this book, the term macro will be used to
refer to the machine language level, one level above micro. The lower
level of a two-level control arrangement will be referred to as nano,
in view of its rather well-established meaning.

1.10.2. Architecture and Organization Defined

Finally, it will be useful to differentiate between the terms archi-
tecture and organization as applied to computers. While they are
used by some to mean different things, most use them virtually
interchangeably. Within this book, architecture is reserved to refer to
those aspects of a computer’s structure that are visible to the pro-
grammer; this generally includes a set of registers, instruction
formats, and an instruction repertoire. QOrganization, on the other
hand, is at a level below architecture and is concerned with many
items that are transparent to the programmer. In short, the term
architecture is used to describe what facilities are provided, and the
term organization to describe how those facilities are provided.

To illustrate this distinction, consider briefly the relatively com-
mon technique of fetching the next instruction in parallel with
executing the current instruction, and assume that a branch is to take
place. It is possible that in one machine the replacement of the
prefetched instruction with the instruction that is being branched to
will merely result in a delay of duration equal to a memory access
time and the programmer will never be aware of it. It is also possible

13 See NANO74, bibliography, and Chapter 7.
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Target machine registers and instruction repertoire
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Fig. 1-6: An Illustration of the Hierarchical Structure
of Memories/Control Functions and the Differentiation
Between Architecture and Organization,

that in another machine the programmer must explicitly structure his
instruction sequence to allow for this occurrence. In the former case
we suppress the prefetch considerations to the organizational level; in
the latter case, we elevate them to the architectural level. The
concepts of levels of memory as related to the control function and
architecture versus organization are illustrated graphically in Figure
1-6.

The focus of this book is on the architecture of microprogram-
mable machines. The following two chapters provide a comprehen-
sive look at the many different architectural considerations as-
sociated with microprogrammable machines and define a set of
descriptive parameters. These chapters are followed by a series of
detailed case studies of representative, commercially available ma-
chines.



Chapter 2

Architectural Facilities
in Microprogrammable Machines

2.1 INTRODUCTION

In Chapter 1, computer architecture was defined to include those
facilities of a machine that are visible to the programmer. Now we
shall consider in some detail the architectural facilities of a micropro-
grammable machine.

The motivation for this study arises from an interest in machines
with general purpose! microprogramming capabilities, and in ma-
chines said to be universal hosts, capable of emulating any target
machine. These capabilities imply a high degree of generality in the
machine architecture; therefore, we seek to describe and analyze the
architectural parameters of microprogrammable machines with par-
ticular emphasis on those parameters that impact on generality.

The notion of generality should go beyond the mere ability to
emulate a given set of target machines. It should also encompass the
ability to support application environments directly in micro-
programs or, indirectly, through application oriented intermediate
languages. Architectural facilities so oriented could be said to be data
directed and are in consonance with McKeeman’s concept of
language directed computer design.? Unfortunately, little has been
done about characterizing the architectural implications of different

1The term general purpose is used here to distinguish these machines from
microprogrammed processors designed for the special purpose of implementing
a particular machine language architecture and not intended for further micro-
programming.

2The concept of data directed environments is due to Rosin. See ROSI69A,
bibliography.

17



18 MICROPROGRAMMABLE COMPUTER ARCHITECTURES

environments; on the other hand, target machines are tangible and
therr attributes are therefore more readily defined.

There is normally a trade-off between generality and efficiency. A
micro level architecture designed to implement a single target ma-
chine will reflect the target design and require only a few (perhaps
only one) microinstructions for the emulation of each machine
instruction. When attempting to implement a highly dissimilar target
machine on the same host, a large number of microinstructions
would probably be required for each target machine instruction (if in
fact exact emulation is feasible at all). Consider, for instance, the
IBM 2050 processor on which the IBM System 360 Model 50 is
implemented in microcode; one can readily envisage the difficulties
that would arise in microprogramming this processor, oriented prin-
cipally to 16- and 32-bit word lengths, to emulate the DEC PDP-10
computer with its 36-bit word length. Ideally, a universal host would
require similar numbers of microinstructions per target instruction,
regardless of the word lengths involved.

This chapter will first examine the primary characteristics of the
hardware features of microprogrammable computers. The discussion
here will concentrate on the data widths handled, the functional
processing units available, and the local storage facilities that consti-
tute the heart of the micro level architecture. The remainder of the
chapter will consider control store, main memory, bus structures,
interrupts, and input/output facilities.

2.2 DATA WIDTHS

The single most important factor impacting on the efficiency of
emulation of a target machine by a given host is undoubtedly the
data width(s) inherent in the host machine micro level architecture.
When the host and target machine data widths do not match, the
microprogrammer is faced with the task of creating a virtual match
through the proper manipulation of the facilities available to him.

Two basic approaches have been taken in designing micro level
architectures to handle this problem. The first approach is to provide
a relatively wide data width with facilities for effectively reducing it
to the desired number of bits. As an example, the MLP-900 (Stan-
dard Computer Corporation) provides a normal data width of 36 bits
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Fig. 2-1: MLP-900 Operating Engine Diagram
(Courtesy Standard Computer Corporation).

with a series of “data mask registers” that can be employed to mask
out unwanted bits to achieve smaller widths. Figure 2-1 is a block
diagram of the operating engine of the MLP-900. The data mask
registers can be seen to affect the function of the general registers,
the byte/decimal adder, and the primary adder.?

The second basic approach to handling different data widths is to
provide a small data width that can be expanded into larger data

3The MLP-900 system includes an operating engine, a control engine, and
control memory, plus optional auxiliary registers and main memory. See
STAN?70, bibliography.
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widths, usually through iterative multiple precision micropro-
gramming techniques. The Microdata MICRO 800 typifies this con-
cept with an internal data width of 8 bits, as shown in Figure 2-2.
Another example is the IBM 2020, host processor for the 360/20
system. The 2020 handles only a byte at a time, requiring several
sequential actions to accommodate 360 halfwords (16 bits), full-
words (32 bits), and double words (64 bits).

As an alternative to sequential microprogramming, physical con-
catenation of modular units can be used to achieve wider data
widths. The Burroughs Interpreter (basis for the commercial B700
line) uses this approach. Figure 2-3 shows a system with its modular
building blocks. Each Interpreter Logic Unit processes 8 bits; effec-
tive word widths of 8 to 64 bits can thus be achieved by coupling
from one to eight logic units.?

Microprocessors (CPU’s on a chip) may also employ both of these
techniques. Iterative techniques are used with some (where timing is
not critical), while many are designed to be physically coupled
together to form larger units. The INTEL 3000 series, for instance,
employs a basic 2-bit slice processor chip, providing great flexibility
in realizable word widths.5

In the design of the B1700, Burroughs has combined the tech-
niques of masking and iteration to achieve arbitrary data widths of
from 1 bit to 65K bits. The nominal internal data width is 24 bits,
and control facilities allow specification of the length of arithmetic
operands to be operated on by the ALU. Fields of arbitrary length
can be described in a field definition register, backed up by a bit
addressable memory with no visible preferred word/byte bound-
aries.®

2.3 FUNCTIONAL PROCESSING UNITS

The type, flexibility, accessibility, and number of functional units
provided have a direct impact on both the generality and efficiency
of a micro level architecture.

4See REIG72, bibliography.
$See Chapter 8 for a brief discussion of the INTEL 3000 series.
$The B1700 is fully described in Chapter 6.
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Fig. 2-2: MICRO 800 Block Diagram
(Courtesy Microdata Corporation).

Most common of the functional units is a conventional arithmetic
and logic unit, or ALU. This generally provides basic functional
operations including ADD, SUBTRACT, AND, OR, and so on, using
full binary operands. Occasionally, multiplication and division capa-
bilities are also included, but more often these are implemented by

the microprogrammer.
Generality requires that the machine also be capable of processing
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other arithmetic modes, as well as pure binary. These include decimal
(4-bit binary) and, possibly, floating point; the latter varies in format
considerably according to the particular target machine that is to be
emulated. Figure 2-1 illustrates the provision of a separate adder for
byte/decimal modes, while the primary adder handles the binary
mode. The B1700 (Chapter 6) also provides a separate 4-bit ALU.
The Interdata 8/32, on the other hand, employs a single ALU to
handle multiple modes (including floating point); this is feasible since
the 8/32 is designed to support a particular target machine architec-
ture rather than as an attempt at a universal host.”

Shift capabilities may either be included in the ALU, or in a
separate unit. A single-bit shift function is provided within the
MICRO 800 ALU. The MLP-900 (Figure 2-1) employs a separate
primary shifter. Similar units are called skew units, or shift/rotate
units by other manufacturers. One of the most powerful of these
separate shifting units is the barrel switch in the Logic Unit of the
Burroughs Interpreter, shown in Figure 2-4; it is implemented as a
matrix of gates that can shift a parallel input data word any number
of positions left or right, logical or circular (end-around). Another
alternative is to include shift/rotate capabilities in a multipurpose
general register; this is the technique used by Burroughs in the B1700

"The Interdata 8/32 is fully described in Chapter 5.
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(Chapter 6). The B1700 has several general registers that can be used
to shift/rotate operands.

An important capability required for general purpose emulation, is
the ability to extract a field of arbitrary length and position from a
word or register. This is required to decode target machine instruc-
tions, operation codes, modifiers, register numbers, addresses, and so
on, which are part of a target instruction and must be available for
use by the microprogrammer in implementing an emulator.

Several techniques are used for providing extract capabilities.
Without any special features, extraction can usually be accomplished
through the use of several shift instructions (for an example, see
Figure 2-5a). The B1700 has several registers that are addressable in
4-bit increments; these could be useful in extraction. It also has an
explicit extract microinstruction that allows the microprogrammer to
specify the right-most bit location and the field width to be ex-
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Fig. 2-5: Extraction of Bits efgh from a Register/Word.

tracted; this microinstruction operates on a special register designed
to provide extract capabilities. Masking registers can be used in some
cases for extraction, as can logical AND microinstructions (see Figure
2-5b). Finally, some machines provide special hardware assist
features that must be tailored to specific target machine require-
ments, Figure 2-1 shows the MLP-900 target instruction registers
feeding language boards that are built to specifications according to
the target formats; such special hardware features do little for
enhancing the actual generality of a machine.

Other hardware facilities may be dedicated to special functions
also. An example is a special adder for the purpose of adding base
and relative addresses in effective operand address calculations, as is
found in the Interdata 8/32; once again, such a feature can be used
only in emulating a particular target machine, or one very similar in
architecture.

The flexibility of the functional units is critical to the generality
of the micro level architecture, especially with regard to its emula-
tion capabilities. Ideally, the ALU should be able to operate on
operands of varying bit length and utilize various arithmetic conven-
tions according to target machine requirements. Some bit length
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options were described earlier in the general discussion of data
widths. Proper carry/borrow actions should occur for the operand
length specified, and the capability for the microprogrammer to
force carries/borrows out/in may assist multiple precision routines
and arithmetic convention handling. The latter requires that the ALU
should handle both 1’s complement and 2’s complement operands
with equal facility. Finally, if separate ALU’s are not provided to
handle different modes (such as, binary, decimal, and so on), the
primary ALU should have sufficient flexibility to handle multiple
modes to support maximum generality. In practice, some machines
come quite close to these ideals, with the most frequent departure in
the handling of arithmetic modes.

Both accessibility and the number of units available impact greatly
on efficiency through their more direct impact on concurrency of
operations possible. Concurrency refers to the ability to perform
operations in parallel, or simultaneously within the same execution
cycle. A separate shifter, for example, generally permits both an
arithmetic operation and a shift to be specified within the same
microinstruction, as is the case with the MLP-900 and the Burroughs
Interpreter. Contrast, for instance, the capabilities of the Inter-
preter’s barrel shifter with the ALU single-bit position shift found in
the MICRO 800; a three position shift in the former can be accom-
plished simultaneously with an addition, while in the latter machine
three explicit shift microinstructions are required.

Accessibility is used to further describe whether or not the func-
tional unit can be independently accessed, rather than being directly
coupled to another functional unit. A completely independent
shifter, for instance, could conceivably be shifting an operand al-
together different from the results being generated by an adder.8

24 LOCAL STORAGE FACILITIES

Under local storage we include the various registers available to the
microprogrammer. As with functional units, we are once again con-
cerned with the type, number, and accessibility of these facilities.

8Such a capability could be exploited to create a “pipeline’ architecture, taking
maximum advantage of parallelism potentials.
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Efficient emulation requires that the host machine have available
to it at least as many dedicated and general purpose registers as the
target machine being emulated. If a direct one-to-one mapping of
target to host registers is not possible, the microprogrammer is forced
to create a virtual match, probably using slower memory facilities to
make up for insufficient host registers with a resulting loss of time
and efficiency. A large number of general purpose registers thus
increases the generality of the machine. A number of single-bit
registers (flip-flops) usable for storing condition codes and other
status bits may also be of great utility.

The Interdata 8/32 (Chapter 5) architecture permits up to eight
sets of 16 general registers each; only one set is active at any given
time and it is necessary to alter bits in the program status word
(PSW) to change the set. In addition to a limited number of general
registers, the B1700 (Chapter 6) includes a set of scratchpad registers
to enhance local storage; these are not quite as powerful as general
registers in that they can be accessed by only a few microinstruc-
tions, but they are faster and hence more efficient than memory
locations for register mapping.

Special purpose registers frequently improve the efficiency of a
machine. They may be either dedicated to a special function or may
have a special capability in addition to a general purpose utility. The
ability of several B1700 registers to shift/rotate, extract, and so on,
has already been mentioned. Many machines designed as emulators
have registers intended to support related target machine registers,
such as a (macro) instruction counter and a (macro) instruction
register; target instruction registers of the MLP-900 are an example.

Accessibility remains of paramount importance. Ideally, all local
store facilities should be not only readable (testable), but writable
(setable) as well. Since some of these registers are associated with
control functions, writability implies great power and the inherent
caution required of the microprogrammer. Readability may be either
through direct or indirect addressing of the registers.

Indirect addressability of registers may be of particular utility in
emulation. It can relieve the microprogrammer of the requirement to
either decode a target machine register address, or move an address
field from a target instruction into an implementing microinstruction
field. This capability is used to advantage in the Interdata 8/32
(Chapter 5); a microinstruction may cite the YD register as a register
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address, rather than a specific general register, and the contents of
the YD register will be used as the resulting specific register address.

Stacks of registers are of use for two reasons in particular.® First,
they facilitate emulations of target machines that have stacks them-
selves. Second, they may be utilized to facilitate subroutines at the
microprogram level. The B1700 (Chapter 6) includes a complete
stack structure, while the Microdata 3200 (Chapter 4) includes a
stack head (the first few elements of a stack, plus related support
hardware) to facilitate implementation of a complete target (macro)
level stack. Micro level subroutine facilities (such as a stack to hold
return control store/microprogram addresses) enhance the general
purpose nature of the architecture and improve potential efficiency
by making it possible to eliminate redundant microprograms.

2.5 CONTROL STORAGE FACILITIES

The control storage architecture of a microprogrammable machine
influences the generality of the machine. This section will briefly
examine the functional characteristics, size, and structure of the
control store. Additional considerations, related to the addressing of
microinstructions, will be defined in Chapter 3.

Obviously it is desirable that most if not all of the control storage
be read-write with comparable times for both functions. The neces-
sity for this characteristic varies according to the operational environ-
ment. A good case can be made for designing a general purpose
architecture that will be microprogrammed to function in a multi-
tude of environments, but perhaps in only one environment for a
given machine; in such a case a read-only memory is acceptable. A
dynamic microprogramming environment, on the other hand, de-
mands a full, high-speed read-write capability. Various technologies
allow for intermediate characteristics employing programmable

%A stack or pushdown stack is a set of related registers that operate in a “last
in—first out” manner. Each time an item is added to the stack, it becomes the
top of the stack and the preceeding items are all pushed down one word; when
the stack is accessed, the top of the stack can be removed and all remaining
items pushed up. An analogy is a spring-loaded cafeteria tray storage facility.
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ROM’s or a facility to switch from one ROM to another. For some
environments, such capabilities are adequate.

In addition to storage of microprograms, it may be desirable to
utilize control store for implementation of target machine registers
when insufficient general purpose micro level registers are available
for this purpose. This implies a further requirement for control store
to be read-write, at least in part; since control store is typically an
order of magnitude faster than main memory, the efficiency of using
control store for this purpose rather than main memory is apparent,
It also implies the need for control store support registers indepen-
dent from those associated with the microprogram as illustrated in
Figure 2-6. Microprogram control is typically supported by a dedi-
cated microprogram location counter register to hold the address of
the next microinstruction to be accessed, and a microinstruction
register to hold the current microinstruction. The control store
address register and control store data register permit data to be
written into or read from control store independent of the other two
registers.

The size of the control storage may well limit the applications that
can be successfully microprogrammed on a machine. It is therefore
advantageous to facilitate reading programs from main memory into
control store under microprogram control and writing from control
store back to main memory. In concept, a virtual control store,
similar to conventional virtual memory, would provide for the
needed effective capacity; a microprogrammed basic operating sys-
tem is probably the best way to achieve this goal. The B1700
(Chapter 6) permits microprograms to reside in main memory as well
as control store.

Minimization and generality are essentially inconsistent when ap-
plied to control storage. It is possible to apply theoretical switching
theory techniques to minimize entire control memories; since these
techniques are totally dependent on the specific bit contents of the
memory, they can only be employed to minimize a fixed micro-
program and have no applicability to the general purpose micro-
programmable machine. Subroutine facilities have already been men-
tioned as one means of reducing control storage size. The following
chapter will discuss residual control and its capability to shorten
microinstruction width, further reducing the overall size of a control
store.
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Control Store Microprogram
Address Reg Location Counter
Control
Store
Control Store Microinstruction
Data Reg Register

Fig. 2-6: Control Store and Associated Registers.

26 MAIN MEMORY

Just as target registers must be mapped to host facilities, so target
main memory must be mapped to host memory. Thus, word width
and the total number of words available are of interest when general
purpose emulation is considered.

Techniques for handling variable data widths have previously been
examined. The relatively slow access times of main memories make it
highly desirable to have a wide memory data width to be reduced by
masking or packing of words, rather than to rely on iterative accesses
of smaller words to achieve wider effective widths.

Numbers of available words of main memory are usually limited
by addressability. Generality requires that the addressing structure
allow for the maximum practicable number of directly addressable
locations, letting the microprogrammer do any required address
mapping; this is in contrast to a limited number of directly address-
able locations and use of secondary or auxiliary memory addressing
to reach additional locations.

2.7 BUS STRUCTURES

Functional units, local store registers, control store, and main
memory are interconnected to one another with a number of data
paths usually referred to as buses. A bus is a parallel set of lines over
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which individual bits may be transferred, either in one direction
(unidirectional) or two directions (bidirectional).

Bus structures are important in micro level architecture both with
respect to the data width problem as described earlier and also for
the flexibility they provide. A machine with only a few fixed buses
will necessarily result in restrictions being placed on the micro-
programmer. One alternative is to increase the number of buses and
thus facilitate increased concurrency. Another alternative, as exem-
plified in the Nanodata QM-1 (Chapter 7), is to provide for a variable
or switchable bus structure that can be set up and altered under
microprogram control.

The number of major buses in a machine and the facilities con-
nected to them may be reflected in the microinstruction structure
and format. For instance, if an ALU has two buses providing inputs
and the output is applied to a third bus, a three address microinstruc-
tion may be utilized; two addresses can specify source registers, and
the third a destination register. This is the case with the Interdata
8/32. The MICRO 800 and MLP-900 (Figures 2-1 and 2-2) illustrate
different bussing concepts and different address structures. Micro-
instruction formats will be discussed in more detail in the following
chapter.

2.8 INTERRUPTS

Interrupt facilities are necessary for the micro level architecture
itself and for many of the target machines to be emulated. For the
sake of generality, interrupts should be soft rather than kard; that is,
the interrupt itself should only set a bit for examination and subse-
quent handling by the microprogram rather than cause a predeter-
mined control storage transfer. This permits the microprogrammer
maximum flexibility both in timing and the method of handling
emulated interrupts. Some hard interrupts may be required in prac-
tice to preclude catastrophic failure.

2.9 INPUT/OUTPUT

Requirements for input/output facilities depend on the environ-
ment in which the system is to be utilized and the objectives to be
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achieved. For general purpose microprogramming,- including areas
such as tailored instruction repertoire extensions, special function
microroutines, and applications microprograms, the requirements are
not usually overly demanding and any reasonably good I/O structure
can probably provide the required support. In the particular case of
emulation, however, the requirements may be very demanding and in
many cases the I/O capabilities of the host processor become the
limiting factor in the overall success of the emulator.

Just as it is necessary to create a mapping of target CPU facilities
(such as local store registers) onto host CPU facilities, it is also
necessary to create a similar mapping of target I/O devices to host
I/O devices. The total set of functions performed from the invoca-
tion of a target I/O command to the final resulting action by the I/O
device must then be provided for. This may include OS device
handler actions, channel functions, controller functions, and finally
the actions of the device itself. It is, of course, not essential that
these individual functions be performed (emulated) on a one-to-one
basis; the overall effect must, however, produce the desired end
result.

Emulation of second generation target machines by microprogram-
mable processors is relatively easier than third generation target
machines. I/O structures of second generation systems are compara-
tively simple, and the speed advantages of the microprogrammable
processor generally overcome any other inefficiencies. Third genera-
tion target machines, on the other hand, may have sophisticated 1/O
structures, including an 1/O channel that is essentially a small proces-
sor itself, dedicated to performing I/O functions. A single micro-
programmable host processor will be hard pressed to efficiently
perform the emulation of both the target CPU basic instruction set
and the capabilities of an I/O channel as well. The best answer to this
problem is probably the use of a separate processor to emulate 1/O
functions in detail; this is perhaps a good function to be considered
for implementation using a microprogrammable microprocessor.



Chapter 3

Microinstructions and Control

3.1 INTRODUCTION

In Chapter 2, the major facilities available for use in a micro-
programmable processor were discussed. This chapter now focuses on
microinstructions as the mechanism through which the micro-
programmer exercises control over these facilities, and then examines
alternative control structures and techniques.

Generality exacts a price in terms of increasing the number of
control signals required within the hardware. Each variable included
to enhance the flexibility of a functional unit, for instance, must be
specified before a microinstruction involving that functional unit can
be executed. The result can be a commensurate increase in the
complexity of the control structure of the microprogrammable proc-
essor. The impact of the added complexity of control of a processor
varies according to the fundamental control structures and concepts
utilized. One possibility is that microprograms can become much
longer, consisting of many more low-level specialized microinstruce
tions; another possibility is that individual microinstructions can
themselves increase in complexity; still another approach is a combi-
nation of the two effects, with the added possibility that control
information may not be entirely contained in a single microprogram,
but may, in effect, be decentralized to multiple control substructures
distributed in either space or time.

3.2 MICROINSTRUCTION FORMATS

A number of parameters may be used to describe microinstruction
formats. In many cases these parameters are highly interrelated, but
each conveys information of interest and significance. Generally, the

32
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commonly used parameters describe the length of microinstructions,
the timing of their execution, the amount of control information and
its degree of encoding, and the organization of information within
the microinstruction.

3.2.1 Fixed/Variable Formats

Microinstruction formats can be categorized according to whether
the format is fixed or variable. In the former case, each bit or field
always has the same meaning, while in the latter, the same field may
be utilized for different purposes and its function at any time is
implicitly or explicitly specified by another field within the micro-
instruction. Variable formats are more common and result in shorter
microinstructions at the expense of additional logic to provide for
the multiple function capabilities. As will be seen in the case studies,
the QM-1 nano level architecture utilizes a fixed format structure,
while the Interdata 8/32 and B1700 have variable formats. The
Microdata 3200 format is relatively fixed, but the meanings of some
fields may be conditioned by other fields.

3.2.2 Degree of Encoding

Even if a field is utilized for only a single purpose, the information
within that field may be encoded to varying degrees. At one extreme,
there may be no encoding at all, in which case each bit would
directly connect to a control line (direct control); this implies that
there would be one bit in the microinstruction for each control signal
required within the hardware, which would require an extremely
long or wide microinstruction. More typically, there is encoding of
the control information to reduce the length, again at the expense of
intermediate decode logic and time. The degree of encoding em-
ployed may be described as “little” or “highly” on a relative basis.

In addition to the requirement for additional logic, encoding may
also impose a loss of flexibility. Unless all of the control signals
grouped into a common field for encoding purposes are mutually
exclusive, the fact that a single field output can activate only a single
control signal at one time will restrict the amount of concurrency
that can be provided for within a microinstruction; hence, great care
must be taken in the establishment of such fields.

Consider as an example an ALU that can perform 16 arithmetic or
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logical functions, only one at a time. These 16 possible functions can
be encoded into a 4-bit field with no loss of generality. Assume also
that a separate shifter is available to manipulate the output of the
ALU, and that a total of 16 shifting options (arithmetic, logical, and
circular shifts) are available. Once again, the shift options may be
encoded into a 4-bit field with no impact. The resulting ALU and
shift control fields of a possible microinstruction are illustrated in
Figure 3-1a. A total of 8 bits are required.

An alternative encoding scheme is shown in Figure 3-1b. Here a
combined ALU/SHIFT control field is employed, and a single bit is
used to ‘“‘steer” the 4-bit control field to the appropriate decoder.
This scheme requires only 5 bits in the microinstruction as opposed
to the previous 8, which means every microinstruction (of this
format) could be reduced in width by 3 bits. Now, however, only
one operation can be activated by the microinstruction, either an
ALU function or a shifter function.

If the ALU is indeed separate as stated above, then the hardware
can probably perform the basic ALU operation and then shift the
results in a single execution cycle and the two operations are not
mutually exclusive. In this case, only the format encoding shown in
Figure 3-la is acceptable because it allows full concurrency. The
format encoding of Figure 3-1b permits only one of the units to
operate during the microinstruction execution cycle and hence pre-
cludes concurrency to save microinstruction bits.

On the other hand, if the ALU/shifter were in fact an integral unit
physically capable of performing one of the 32 possible ALU/shift
operations during a cycle, then the format encoding of Figure 3-1b
would be the appropriate one, and Figure 3-1a would represent a
waste of control word bits. These examples serve to illustrate the
concept of encoding of mutually exclusive control functions into a
common field.

Before leaving the subject of encoding, some timing/speed consid-
erations should be mentioned. Any encoding normally implies a
subsequent requirement for decoding. Decode logic, like any other
logic, takes a finite time from application of inputs to the activation
of the corresponding outputs. Even the encoding of mutually exclu-
sive bits results in a penalty of added execution time. The use of one
field to steer or otherwise condition the meaning of another (en-
coded) field, in effect, adds another level of encoding and may result



Chapter 3, Microinstructions and Control 35
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Fig. 3-1: Impact of Encoding Techniques on Concurrence.

in a further accumulative delay time. This is a good example of
classical time/(bit storage) space trade-offs.

3.2.3 Number of Control Fields

In order to maintain maximum flexibility and consequently pro-
vide for the most powerful microinstructions consistent with hard-
ware capabilities, there should be a separate field within the micro-
instruction for each independently controllable functional unit or
facility. This will permit all possible simultaneous operations to be
specified. A high degree of possible concurrency places a consider-
able burden on the microprogrammer to take full advantage of
possible parallel operations. In fact, not all allowable concurrent
actions may be useful from a practical point of view.

The number of control fields can also be expanded by including
multiple fields that can be applied to the same control signals at
different times. This concept is discussed further in the following
section.

3.2.4 Microinstruction Timing

The basic timing consideration of microinstructions is the number
of clock cycles during which the microinstruction remains effective.
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Monophase! or single-phase? machines are those in which the micro-
instruction is in effect for only a single clock pulse (or cycle). More
specifically, all control signals are generated by the microinstruction
simultaneously. If, on the other hand for a single microinstruction
control signals are issued in sequence over a number of clock pulses
(cycles) the machine can be described as being polyphase or multiple-
phase.

Generally, a multiple-phase system has a fixed timing structure. It
is possible, however, to include within the microinstruction explicit
information about the time phasing of the control signals to be used.
Alternatively, operation codes may implicitly determine the timing,

The QM-1 is one example of a machine with variable time phasing;
a single nanoinstruction bit can be set to cause the execution cycle to
be stretched to double the normal execution time. In addition, the
QM-1 also has multiple sets of control fields within a nanoinstruction
that are activated sequentially.

3.2.5 Horizontal/Vertical Microinstructions

The most common classification applied to microinstructions is to
describe them as horizontal or vertical in format type. The discussion
of this parameter has been delayed until now because it cuts across
many, if not all, of the preceeding descriptors. Further, there are no
universal definitions of the terms and the literature contains many
somewhat different uses of them.

Microinstruction word length by itself is not sufficient to deter-
mine whether a machine should be classed as horizontal or vertical,
since several previously mentioned factors directly affect bit length.
Nevertheless, short word and long word microinstruction types have
been used to characterize machines;* short word and vertical have
often been equated, as have long word and horizontal.

Timing has been considered by some to affect the horizontal/verti-
cal classification decision. Gschwind’s definition of vertical is essen-
tially equivalent to what was described earlier as single-phase or

i Monophase/polyphase terms are described in REDF71.
Smgle/multlple-phase terms are described in RAMA72,
See, for instance, BELL72, and ROSI71, bibliography.
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monophase and his definition of horizontal is similarly equivalent to
multiple-phase/polyphase;* the latter terms better fit his descrip-
tions.

Ramamoorthy and Tsuchiya draw their distinction solely on the
basis of the number of control fields (operation codes) present: A
single field indicates a vertical microinstruction and multiple fields
indicate horizontal microinstructions. This is an appropriate descrip-
tion only if it is restricted to single-phase microinstructions. The
point here is that several short word type instruction fields can be
combined into a single microinstruction for efficient control memory
accessing and then executed sequentially in a like number of clock
cycles. This, in principle, should still be considered vertical micro-
programming. In their earlier paper, Ramamoorthy and Tsuchiya
describe the two types of formats as function/field type (horizontal)
and machine code type (vertical).’

A more meaningful distinction between the two lies in the relative
capability to exercise detailed (and nearly direct) control over the
hardware. This capability is achieved to a far greater degree in the
horizontal machine, and one consequence is normally a wider micro-
instruction. Many separate control fields are required for all of the
controllable facilities with minimum resultant encoding and generally
a fixed rather than a variable format. Redfield has aptly chosen to
additionally describe this as kard microprogramming due to its close
association with the hardware.5 It meets Flynn’s criterion that all
separate functional units are controllable during a single execution as
well as Rosin’s view that individual bits select specific data paths in
such control word type microinstructions.”

Machines with greater parallel processing capabilities tend to be
more horizontal than vertical, although one does not necessarily
imply the other. Independent functional units are best served by
separate control fields in the microinstruction, and, as previously
mentioned, a lesser degree of encoding assures no loss of possible
flexibility in simultaneous control signal capabilities. These two
factors combine to create longer microinstruction words with more

4See GSCH67, bibliography.

$See RAMA69; RAMA70, bibliography.
6See REDF71, bibliography.

7See FLYN71A, ROSI69A, bibliography,
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direct control over the hardware for machines with significant paral-
lelism.

In summary, then, a preferred definition of horizontal micropro-
gramming would include a requirement for a sufficient number of
separate control fields to exercise simultaneous control over all
independent hardware facilities, with encoding limited to mutually
exclusive control signals. Vertical microprogramming, on the other
hand, is further removed from the hardware (hence it could also be
called soft microprogramming), employs variable formats, a high
degree of encoding, and, in many ways, resembles conventional
machine language programming. Vertical microinstructions are not as
powerful as are horizontal in that much of the flexibility (that is,
simultaneous control signal combination possibilities) is necessarily
lost. A typical vertical microinstruction has a single operation code
(with or without modifiers) and one or more address field, while
horizontal microinstructions may well have no address part at all
since the control signals are directly applied to registers, data paths,
and functional units. 1

Figure 3-2 illustrates examples close to the two extremes. The
horizontal example in Figure 3-2a is the microinstruction for the
IBM 2050 processor used to emulate the IBM System 360 Model 50;
it contains over 25 separate fields in its 90-bit microinstruction,
controlling independently an adder, mover, shifter, and address gen-
eration logic. By contrast, the Microdata 800 vertical example con-
tains only 16 bits with a single operation code field and modifiers.

The parameters used to describe microinstructions are summarized
in Figure 3-3, along with their typical association with the horizon-
tal/vertical classification. While the definitions (descriptions) pre-
sented herein are by no means universally accepted, they nevertheless
capture the essence of the critical issues involved. The last element in
the figure, microinstruction sequencing, has yet to be discussed and
is the subject of the following section.

3.3 MICROINSTRUCTION SEQUENCING

There are two aspects of microinstruction sequencing techniques
to be examined. The first of these concerns the timing of micro-
instruction fetches and the second concerns address generation.
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Literal Commands:

op | t/r | Literal
1514 131211109876543210

Operate Commands:
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B14131211109876543210

Execute Commands:
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514131211109876543210
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1514131211109876543210

Fig. 3-2b: A Vertical Type Microinstruction (Microdata 800).

3.3.1 Fetch Timing

We will touch only briefly on the timing of fetches of microin-
struction since more often than not this is an organizational rather
than architectural consideration. The terms serial and parallel can be
used to describe when fetches take place. In a serial case the next
microinstruction is not fetched until the current microinstruction has
completed its execution (see Figure 3-4a). All necessary information
is thus available to determine the correct microinstruction to be
fetched next. The parallel system, on the other hand, provides for
the next microinstruction to be fetched concurrent with the execu-
tion of the current microinstruction, with its obvious speed advan-
tages (Figure 3-4b). Conditional branches may create a problem in
the parallel case since all required information for the determination
of the next address may not be available until the completion of the
execution of the current microinstruction. Frequently, the system
will make a “best guess” as to what the actual next address will be. If
the guess is correct, no time is lost; if incorrect, at least a fetch cycle
will be lost (Figure 3-4c¢). It is possible that the microprogrammer
may be required to participate in the best guess or fix-up determina-
tion and, in that case, he should have an understanding of the overlap
techniques involved.
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Attribute Parameter Range
Parallelism High Little
Execution Timing® Polyphase Monophase
Encoding: Little Highly
Control Fields: Multiple Single
Formats: Fixed/Single Variable /Multiple
Microinstruction Address Field in Sequential w/
Sequencing: Microinstruction Explicit Branches

< Horizontal Vertical >

Fig. 3-3: Architectural Parameter Ranges and their Typical Association
with Horizontal/Vertical Classification.

3.3.2 Next Address Selection

A great many techniques have been employed for microinstruction
address generation in microprogrammable machines. Under close
examination they can be grouped into a relatively few general tech-
niques with specific implementations using minor variations.

The original Wilkes technique was adequate for microprogrammed
machines but is inadequate for microprogrammable machines owing
to its physical alteration of the address portion of the matrix when
conditional branch microinstructions are involved. Nevertheless, the
basic technique of including the address of the next microinstruction
within the current microinstruction is frequently utilized (with a
different technique from that of Wilkes for handling conditional
branches). A second basic technique for other than conditional
branch microinstructions is to provide an incrementing capability on
the microinstruction address register and execute from sequential
locations in control store. In this scheme it is necessary to include an
unconditional branch capability not required in the modified Wilkes
scheme since in the latter case every microinstruction that is not a
conditional branch is effectively an unconditional branch.

A microprogrammable machine requires that all of control store
be uniformaly structured so that different microprograms can be
loaded at different times. For this reason the Wilkes scheme for
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a. Serial Cagse:
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Fig. 34: Microinstruction Fetch Timing Considerations.

handling of conditional branches must be modified. When a micro-
instruction includes the address of its successor, it is common to
include a field in the microinstruction that can specify one or more
tests to be applied before the next address is finally determined. The
IBM 360/50 microinstruction, for example, includes a base (high-
order) address and several test fields for determining the low-order
bits according to available status information (see fields ZP,ZF, AB,
and BB, Figure 3-2a). With all possible successor microinstructions
stored in consecutive locations, the low-order bits are sufficient to
determine which one should be selected. Alternatively, a microin-
struction format may explicitly include more than one successor
address in every microinstruction, with one or more test fields used
to make the selection. In such a case two possible alternatives is a
reasonable limit, with cascaded branch instructions used for other
than two-way branches.

Normally, incrementing schemes must also make special provisions
for conditional branches. Many vertical machines utilize schemes
very similar to conventional machine language programming for
conditional branches, with two-way branch-on-condition or skip-on-
condition opcodes. Test masks may also be specified to provide for
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replacement of the sequentially generated address by a new address
selected from one or more other registers whose contents may be
gated to the microinstruction address register. An example of the
latter techniques is the Honeywell H4200, which permits selection
from up to five possible alternative addresses.®

In summary, two basic techniques for next address selection have
been considered, an explicit address field in every microinstruction
or an incrementing microinstruction address register. The following
general techniques for handling conditional branches have also been
considered: multiple address fields within microinstructions; con-
structive address generation (high-low/low-order bit selection); ad-
dress replacement from external registers; and more conventional
test/branch or test/skip instructions. Other schemes can, of course,
be described, but generally they will be found to be related to, the
above.

Most vertically microprogrammed machines employ the sequential
scheme that is most efficient when a high degree of locality or
proximity (consecutive microinstructions are physically stored in
sequence) is present in the microprograms. Horizontal systems that
can interpret macro-instructions with as few as one microinstruction
more effectively apply the modified Wilkes technique of explicit
address fields due to the high incidence of unconditional branches
encountered.

3.4 MICROINSTRUCTION REPERTOIRE

As much as any other area, the impact of the microinstruction
repertoire on the generality of a micro level architecture requires a
good deal of additional research. Even at the macro level there has
not been adequate research to determine what indeed is an optimum
instruction repertoire. Typically, machine design has been more
“bottom up” than “‘top down” in nature. The notion of generality of
the repertoire has been at best a qualitative one and rarely a quantita-
tive one. At the macro level we are beginning to see concern with
primitives, operations oriented to particular application areas that are
basic to that application and can greatly facilitate its implementation

8 A full description of the H4200 can be found in HUSS71, bibliography.
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if available as machine instructions. Similar information must be
available if an optimal microinstruction repertoire is to be deter-
mined.

In the absence of knowledge of what in fact constitutes an
optimum set of primitives, the horizontal or hard machine architec-
ture is certainly more general. In effect, the fully horizontal machine
has either “no” repertoire or an “unlimited” repertoire since the
total capabilities of the machine are accessible by the micropro-
grammer. Vertical machines, on the other hand, have compromised
between alternative combinations and have inherently less generality.

As a minimum, of course, the microinstruction repertoire should
provide access to all of the capabilities of each functional unit. This
causes a proliferation in the number of opcodes in the vertical
machine and the number of bits per microinstruction in the horizon-
tal machine. This is in part the bottom up approach alluded to
earlier. The top down approach provides for the inclusion of micro-
instructions oriented to tasks to be accomplished in the many en-
vironments the machine is to support. As an example, microinstruc-
tions that can facilitate table look-up operations will be extremely
useful in compilation; microinstructions that can handle queue
operations will similarly assist operating system coding.

A trade-off normally exists between power and generality. The
more powerful a microinstruction, the more limited its applicability
to different environments. If macro-primitives were known for most
application environments, it would then be possible to determine a
set of microprimitives to support them, and hence restrict the power
of microinstructions to that which is consistent with the desired
generality.

There are many who fear that powerful microinstructions are
dangerous tools when provided to the user microprogrammer. Power
in this sense generally refers to the ability to communicate on a
nearly direct basis with the hardware rather than through the usual
protection offered by an operating system. One solution to the
potential problems that arise here is to provide for privileged micro-
instructions or modes that can only be entered by activating certain
control features (such as a console switch). We have already discussed
the implementation of a basic operating system that would reside in
control memory and that could similarly control access to privileged

. microinstructions.
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3.5 MICROPROGRAMMING LANGUAGES

Since this book is about computer architectures, the overwhelming
emphasis is properly on hardware; nonetheless, a few words on
software considerations are in order at this point.

Unlike macro level machines that are heavily supported with
manufacturer supplied compilers for the most popular languages
(FORTRAN, BASIC, ALGOL, PL/1, COBOL), microprogrammable
machines generally do not have translators from higher order lan-
guages to microcode readily available. Indeed, in some cases where
the manufacturer still resists user microprogramming, no support
software is provided at all.

The most commonly provided software support package is an
assembler that translates symbolic instructions on a one-to-one basis
into executable microinstructions. These are backed up occasionally
by debug packages to aid the microprogrammer in finding and fixing
problems in his microprogram.

Assemblers for vertically programmed machines are commonplace
and differ very little from assemblers typically provided for machine
language level application. Horizontal machines, on the other hand,
pose a more difficult problem. The simple translation of symbolic/
mnemonic data into necessary binary codes is comparatively straight-
forward; the difficulty lies in assisting the microprogrammer to make
effective use of the horizontal machine’s possibilities for concurrency
without burdening the microprogrammer with all the inherent prob-
lem areas and limitations. Available assemblers for horizontal ma-
chines have achieved limited success from this standpoint. Much
work remains to be done in this fertile field.?

3.6 CONTROL STRUCTURES

The control concepts employed within a machine affect the com-
plexity of the microprogramming task and also the requirements for
microprogram storage. The following sections address distribution of
control information, the frequency of its change, and levels of

For a good discussion of microprogramming language, see AGRA74,
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control. Some novel architectures illustrating some of the concepts
are also introduced.

3.6.1 Distributed and Centralized Control

Most microprogrammable processors employ what can be termed
centralized control, in which all control is governed by a single
monolithic control unit; the entire microprogram in such a case
resides in a central control store. At the opposite extreme there
might be many independently controllable units, each with its own
store of control information. Rather than a single centralized micro-
program, there would, in effect, be many individual microprograms
that collectively control the functions of the entire processor
through what can be described as distributed control Many proces-
sors in practice lie somewhere in between the “pure” centralized
control concept and a fully decentralized concept.

At the system level, a multiprocessor system could be considered
as an example of a system with distributed control. Each processor
contains its own program and can perform its own tasks with only
occasional direction received from a master processor. Microprogram-
mable processors may similarly be organized into a larger system,
while each retains its own microprogram to control its particular
functions. Burroughs Interpreters are frequently utilized in such a
manner.

It is also possible to employ distributed control within a processor.
In such a case, functional units retain a certain amount of local
control and require less control from the central control unit. Many
processors exhibit this characteristic to some degree, if only by
having decode logic local to each functional unit, or using special
control registers associated with the functional units; in either case,
the externally supplied control information required by these func-
tional units is reduced.

A more interesting concept of distributed control is one in which
individual functional units can actually be microprogrammed to
perform different tasks within a processor, and perhaps their inter-
connection within the processor can be altered. Such a scheme could
be employed to create a variable structured pipelined machine in
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which consecutive functional units perform different processing or
transformation functions on data in assembly line fashion.!?

An example of an architecture based on distributed control is
Lesser’s Dynamic Control Structure shown in Figure 3-5. He specifies
two different internal languages for its control: A Structure Building
Language is used to define the control structure of each process
including input and output data sets and activation sequences, and an
Integer Function Language is used for general arithmetic and logical
computation such as in the simulation of functional units. The
architecture is designed specifically for emulation, and its capability
of tailoring the hardware into a virtual machine reflecting the archi-
tecture of the target machine adds greatly to its effectiveness.!!

Levy’s Z-Machine (Figure 3-6) is another example of multiple
microprocessors that can work in a masterslave mode to jointly
perform computational tasks. Unlike Lesser’s architecture, however,
Levy’s is essentially a fixed structure. All of the Z-Machine proces-
sors have access to a common microprogram store, but can function
independently. Therefore, it exhibits both distributed and central-
ized control characteristics. The allocator shown in the figure deter-
mines the assignment of slave processors and maintains detailed
status information on all processors.!?

3.6.2 Residual Control

On examination, control information may be loosely classified as
relatively “‘dynamic” or “‘static,” according to the frequency with
which it is altered. During any given emulation a significant amount
of otherwise variable information (such as data word width, arith-
metic conventions, and so on) can probably be specified at the
beginning of the emulation and thereafter remain unchanged. Special
purpose registers in the local store can be utilized to hold this

" The advantages of a microprogrammable pipeline have been described in
BARS71. Also, a discussion of the timing and interactive control problems
inherent in distributed control, with particular emphasis on two and three
control element CPU’s, can be found in MCCL71. See bibliography.

 For additional details, see LESS71, LESS72, bibliography.

12 See LEVY73, bibliography.
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Fig. 3-5: Lesser’s Dynamic Control Structure
Architecture for Emulation.

information. Such registers, commonly referred to as stafs or set-up
registers, provide a form of residual control and reduce the control
problem to the specifications of the more dynamic information;
residual control can thus permit a reduction in microinstruction
word length.!3 Essentially, it can be considered a special form of
distributed control.

13 See, for instance, DAVP72, FLYN7 1A, bibliography.
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Fig. 3-6: The Z-Machine Architecture.

One machine employing a form of residual control is the Nanodata
QM-1 (fully described in Chapter 7). The QM-1 has F store registers,
for instance, that are used to specify bus connections between
functional units and local store registers. Additionally, the F store
exercises limited control over the arithmetic mode of the ALU.

3.6.3 Multilevel Control

In 1962, Grasselli described a two-level control store scheme of
novel design.!* At the lowest level he envisioned a read-only
memory with microinstructions (presumably long word horizontal
type) arranged in random order, with each one appearing only once.
The upper level of control memory would contain “information
about the microprogram,” and in essence would simply contain
addresses to cause a particular sequence of lower level microinstruc-
tions to be executed.

One of the first machines with a true two-level control store is
Nanodata’s QM-1. While not utilizing Grasselli’s concept exactly, the
QM-1 does have long word horizontal type nanoinstructions at the
lower level and permits short word vertical type microinstructions at
the upper level. Just as a microprogrammable machine allows the
microprogrammer to define a target machine’s macro level architec-
ture, so does a nanoprogrammable machine allow the nanopro-
grammer to define a target micro level architecture. s

Closer to the Grasselli concept is the Burroughs Interpreter, al-
though it too has its differences. The Interpreter utilizes a split
memory for control store, divided into a microprogram memory and

4 See GRAS62, bibliography.
15 Alternatively, these two levels have been described as “mini” and “micro” in
RAMA72, bibliography.
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MICRO CONTROLS

Fig. 3-7: Interpreter Microprogram Reference Card

(Courtesy Burroughs Corporation).

123456789 10111213141516 Condition Adjust -- CAJ
0 pl* SAR AEENEEN gg‘l’ T Le3
1 0] SAR LIT 01 0 SETGC2
110 @x* AMPCR 011 RESET GC
11109799 ¢ Lt 10 i serics
111 1[* = NANO ADDRESS 11 0 SETGCL
111 SET LC1
§ Unused
* BSherter fields are right justified Successor
NANO CONTROLS Then Part Else Part
Parentheses surround optional lexic units, Used if SC=1 to MPAD Cils Used if SC4
provided by default. 0 0 0 WAIT 0 0 0
Brackets contain DC 2000 mnemonics 0 0 1 (STEP) 0 0 1
0 1 0 SAVE 0 1 0
? Codes not produced by TRANSLANG. 0 1 1 SKIP 0 1 1
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Result is Boolean cnd 110 CALL 110
1 11 RETN 1 1 1
0a sy & Adder X Input
0010 ILC1 0 0 0 (9
0 011 LC2 0 0 1 LIT
0100 MST 0 1 0 ZEXT [EXT]
0101 LST 0 1 1 CTR
0110 ABT 1 00 2
0111 AOV 1 0 1 A1
1 00 0 cCoOvV 1 1 90 a2
1 001 sAr [rRmi] 1 1 1 A3
1 010
1011 LC3 [RMA} 20 21 22 23 24 25 26| Adder Y Inm
1100 EXiI [EXT
1101 INT 0 0 - - -  BO--
1110 EX2[SRQ 0 1 - - - - BT--
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1 1 = =« « <« <« Ble
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1 Do Conditionally if SC 0 0 0 1 0 0 0 ZEXT [EX]
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INTERPRETER

MICROPROGRAMMING REFERENCE CARD
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06 0 0 1 X NOR Y X ¥
6 0 1 0+« X NRI Y XY
0 0 1 1 X+ Y +1 _
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¢ 0 1 O MR1
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1 0 0 o DL1 {(ASR
1 0 0 1 DL2 [ASE
1 0 1 1 DR1
1 0 1 1 DR2
1 1 0 o bUl
1 1 0 1 DU2
1 1 1 0 DW1
1 1 1 1 Dw2
Others ?
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nanomemory. The microprogram memory is 16 bits wide and con-
tains addresses into the 54-bit wide nanomemory. The difference
between this and the Grasselli concept is that  the microprogram
memory also contains “literal” microinstructions which are used
directly without reference to the nanomemory. Micro and nano
control formats are illustrated in Figure 3-7. This split control store
is quite different from levels of control store as in the QM-1.

A still different concept of multiple levels has been examined by
Tsuchiya and Ramamoorthy. They discuss a hierarchy of levels
related to the access speeds of the memories involved and reserve the
term control store for the level of memory out of which micro-
programs actually execute; other levels of microprogram memory
may be used for storage of microprograms. In addition to the control
store (also called the control cache), microprograms may be stored in
an intermediate secondary cache or microprogram buffer, or in the
main memory itself. The path from the main memory to the control
store is through the microprogram buffer. In addition to their design
for this multilevel architecture, Tsuchiya and Ramamoorthy have
developed algorithms for the optimum (cost-performance) allocation
of microprograms to the different storage levels in accordance with
their execution frequencies and the speeds of the memories.!6

To date, the two-level machine concept (Grasselli, QM-1) has
primarily been utilized for its capabilities in microprogramming re-
search. Potentially it can be exploited to provide effective compro-
mise solutions to the many trade-offs involved. Hard nanoprogram-
ming can be utilized to effect a limited tailoring of the micro-
programmable architecture to support a target machine emulation,
while soft microprogramming can make the actual task of writing the
emulator easier. Powerful (and hence dangerous) capabilities of hori-
zontal microprogramming can be restricted to a privileged mode,
while higher level microprogram capabilities are freely available to
the user. In short, a two-level control store structure has many
advantages; its prime disadvantage lies in the fact that the additional
level also adds additional delay and increases macro-execution (emu-
lation) time.

16 See TSUC72, bibliography,
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3.7 SUMMARY

This chapter has introduced many of the design alternatives and
parameters associated with microprogrammable machines. Although
each topic has been discussed independently, in practice there is
considerable overlap between them. Some of the more significant
characteristics that relate to the popular horizontal/vertical classifica-
tion of processors were presented and summarized in Figure 3-3.

Many examples have been cited of microprogrammable computers
having specific features or employing particular design concepts.
References have been provided in the footnotes for those interested
in more detailed study of any of the architectures mentioned.

In the following chapters, four commercially available micro-
programmable computers are examined in depth. These machines
have been selected on the basis of their representing significantly
different microprogrammable architectures. Additionally, summary
descriptions of other popular or otherwise interesting architectures,
including examples of microprogrammable microprocessors, are pre-
sented in the concluding chapter.



Chapter 4

Microdata 3200 Architecture

4.0 SUMMARY DESCRIPTION

The Microdata 3200 processor is a general purpose microprogram-
mable computer capable of handling data widths of 8 and 16 bits.
Working storage is provided by three 16-bit registers (X, Y, and 2)
supplemented by two banks of general purpose file registers, each
containing 16 registers. In addition, the file registers and several
special purpose registers have been designed to implement a stack
head for support of stack operations. Other special purpose register
facilities are provided to directly support target machine emulation.

Microinstructions are 32 bits in length and are essentially vertical
in that they control a single functional operation at a time. Each
microinstruction determines the address of its successor. Up to 4K
words of control store are available, either read-only or read-write.
Dynamic microprogramming is possible.

4.1 3200 SYSTEM

The Microdata 3200 is not only a general purpose microprogram-
mable machine, but it has facilities provided which enhance its use as
a general purpose emulator as well. At least two different emulators
are available from the manufacturer which tailor the micro level
architecture to perform as considerably different target machines.

At the system level it is possible to configure many different
systems, depending on the number and type of modules selected
(Figure 4-1). The simplest configuration includes a single module of
each of the three principal module types, processor, input/output,

54
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a. Basic 3200 System

I | |
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b. Typical Expanded System
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¢. Possible Multiprocessor System Configuration
Employing Cache Memory

] | [ ] | I
P M 1/0} |1/0| | MC M P c

P = Processor Module
I/0 = Input/Cutpyt Module
M = Memory Module
MC = Cache Buffer Module
C = System Console

Fig. 4-1: Representative Microdata 3200 System Configuration.

and memory, as shown in Figure 4-1a. Intermodule connection is via
a centralized high speed Monobus.

4.2 3200 PROCESSOR

The architecture of the 3200 CPU is illustrated in the block
diagram of Figure 4-2. It is primarily a 16-bit machine with a
generous amount of useful local store registers, including a stack
capability. Control is more vertical in nature than horizontal, al-
though it has some aspects of both. Only the principal registers and
units are shown in the figure.

4.2.1 Processing Facilities

ALU

The major processing facility of the 3200 processor is the arith-
metic logic unit (ALU). Capable of operating in either byte (8-bit) or
word (16-bit) mode, the ALU performs addition and subtraction,
data transfer, complementation, and logical AND, OR, exclusive-OR,
and implication functions. The arithmetic convention is 2’s comple-
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Fig. 4-2: Microdata 3200 CPU Block Diagram.

ment. It is possible to either enable or inhibit an input carry or
borrow from the previous (less significant) operation under micro-
program control.

Inputs to the ALU are from the A bus and/or the B bus as shown
in the figure. Output is always via the F bus to a selected destination
register. Operations are normally in 16-bit word mode unless one of
the allowable byte register destination codes is specified (X register
upper or lower byte, Z register upper byte, D Register upper or lower
byte), automatically causing the ALU to operate in byte mode.

Arithmetic Status

Two sets of status registers are available, each including carry,
overflow, negative, and zero bits. The F (firmware flags) register may
be enabled to set these four bits according to the actual conditions
generated by the ALU. The second set (TFG) is used for representa-
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tion of target machine conditions and may either be set according to
the F bits or, alternatively, may be set from the lowest four bits of
the Z register. This is one example of special emulation support
facilities provided in the 3200 architecture.

Shifting

Shifts of 1 bit may be performed on a byte, word, or double word
(32 bits). For greater than 1-bit shifts, repetitive single-bit shifts must
be executed in the microprogram. Shifts are accomplished in any of
the ALU working registers (X, Y, Z). Any of the three may be used
for full word shifts, while the X and Z both have byte shift capabil-
ities. The Y and Z registers may be used together for 32-bit double
word (or two independent full word) shifts. The bit position(s)
vacated by a shift may be filled with a 0, 1, or a bit being shifted out,
thus permitting a wide variation of shift types including arithmetic,
logical, and circular.

4,2.2 Local Store Facilities

Working Registers

The X, Y, and Z ALU working registers have already been men-
tioned. X and Z are byte addressable and the Y register may be
selected as either the A bus or B bus input to the ALU. Any of these
three working registers may serve as the ALU output destination.

File Registers

The file registers (FR) consist of two banks of sixteen registers,
each 16 bits long, that can function as high-speed general purpose
local memory. In addition, the first four registers of the primary FR
bank are organized to function as part of a push-down stack head,
and the last six registers of the primary bank can influence the
setting of the high order bits (18, 17) of the monobus address
register (M reg) (see section 4.3).

A file register can serve as either a source or a destination, but only
one or the other during any one microinstruction execution cycle.
Selecting an FR as a source register activates its associated bank as
the currently active bank, and subsequent destinations in the FR
must be within the same bank. A 4-bit bus is used to index into
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either bank of the file registers. It can be driven from a variety qr
sources including control memory, Z reg, and G reg.

Stack Fuacilities

A series of features are provided that contribute to a powerful
stack capability in the 3200 processor. These include the four file
registers in the primary bank previously discussed, a T-counter (not
shown), and the Y and N registers. The Y register and file registers
function together as a stack head, with the Y register as the top of
the stack. Up to four additional words complete the stack head in
the file registers, while unlimited additional stack words can be
placed in main memory. The T-counter keeps track of the file
register that contains the second word in the stack; operating as a
cyclic modulo 4 counter, it eliminates the need to physically move
data between file registers when the stack is pushed or popped. Since
it is possible that less than five words may be in the stack head at any
time, the N register indicates the number of active words. It func-
tions as a 5-bit shift register with consecutive 1’s indicating active
stack words and (’s indicating inactive words in the stack head. The
high order N bit corresponds to the top of the stack (Y reg), the next
bit the second stack word as pointed to by the T-counter, and the
remaining bits correspond to the remaining stack head file registers in
cyclic sequence. Actual pushing and popping requires microprogram .
routines, but these facilities greatly facilitate the actions.

Figure 4-3 illustrates a snapshot of a possible stack situation. As is
usually the case, Y reg is the top of the stack. The T-counter points
to FR 02 (primary bank) as the second word in the stack head. Since
there are four high order 1’s in the N reg, this indicates that a total of
four words are active in the stack head; hence, two additional file
registers are active, which are 03 and 00 (cyclic sequence) and FR 01
does not currently contain an active stack word. The next stack word
after FR 00 and ali other words in the stack would be in main
memory. (The microprogrammer would be required to maintain a
pointer to the cutrent top of the stack body in main memory, in
addition to controlling detailed stack manipulations.)

Memory Access Registers

The D register serves as a “destination” register capable of sending
information out on the data portion of the Monobus for transfer to
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Fig. 4-3: A Snapshot of a Typical Stack and
Associated Register Contents.

main memory or through an I/O module to an output device. It
functions in this manner in conjunction with the M register (18 bits)
which can similarly be loaded with an address to be applied to the
address portion of the Monobus (least significant 16 bits). These
registers, then, normally play key roles in input/output or main
memory accesses.

Another example of facilities designed to aid the 3200 in the
emulation of other machines is the P and I register set. These
registers are similar in some respects to the M and D registers, but
they are intended specifically to be used in the emulation of a target
machine’s program location counter (P reg, 18 bits) and instruction
register (I). Like the M register, P reg can gate an address onto the
address portion of the Monobus, as in the fetch of a target machine
instruction from main memory. The fetched instruction then is held
in the I reg, from which it may be gated onto I bus a byte at a time
and thence to either the ALU or the control unit to effect branching
to target instruction execution microroutines.

An incrementing capability is included in P reg to enhance its
function as a typical program location counter. Whenever it is incre-
mented to an even address (corresponding to a 16-bit word in the
byte addressable main memory), or loaded with new data from the F
bus, a main memory read into the I reg is automatically initiated to
effect fetch of the next target instruction. Generally, this can result
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in an overlap of target instruction fetch and execute cycles for
improved emulation efficiency.

Other Registers

A single bit generator (SBG) is available for special mask and
constant generation, Its function is to activate one of the 16-bit lines
of the F bus with a 1, placing 0’s on all of the others.

The general indicator register (G) is a 4-bit register that can be set
under microprogram control, as can the self-decrementing W-counter,
also 4 bits in length. Both of these facilities have utility in the
control of microinstruction sequencing operations that will be exam-
ined further in this chapter in section 4.2.4.

In addition to the registers mentioned here, a number of other
special purchase registers are included in the 3200. These will be
discussed along with the specific features to which they pertain.

4.2.3 Control Store

Control memory for the 3200 processor is organized into 32-bit
words, each containing a single microinstruction. Only one level is
utilized. Maximum size of the control memory is 4K words. Since
only 2K words (read-only) can be contained on the same physical
board holding the remainder of the control unit, control memory
address and data buses are indicated in Figure 4-2 and would be
'employed with additional control memory boards.

The 4K (maximum) words of control memory are divided into
eight pages, with each page containing 16 “blocks” of 16 two-word
microinstruction “pairs” each. The significance of these groupings
will be examined in the discussion of microinstruction sequencing
4.2.4).

Either read-only or read-write control store can be utilized. The
hardware does support control store writing under microprogram
control; thus, dynamic microprogramming is possible with this ma-
chine.

4.2.4 Microinstructions

Format

The 32-bit microinstruction is divided into nine encoded fields as
shown in Figure 4-4. The descriptive names in the figure oversimplify



Chapter 4, Microdata 3200 in Architecture 61

28 24 20 16 12 8 4 0

co |cr|co|cr|glS|ece|calca

o0

|_Jump Condifion

L..Constant Jump
Condition Extension

L_ Next [nstruction
Address Constant

L-Jump Addressing Mode

|_Expands CF Field (Destination)

L. Destination

|_File Register Address and Control

| Source, Shift End Conditions

L. ALU Function

Fig. 44: Microinstruction Format.

the functions performed by many of these fields, since in addition to
the encoding within fields, the exact function performed by a field
may be conditioned according to the contents of another field. A
significant amount of flexibility has been sacrificed in order to
reduce the control word size to 32 bits. If a longer control word had
been utilized, it would not have been necessary to preclude simulta-
neous control access over facilities not otherwise mutually exclusive
within the hardware (such as the restriction on file registers not being
both a source and a destination within the same microinstruction).
Of course, a longer control word would mean a commensurate
increase in control memory size (total bits) and hence cost, and
could well result in lower efficiency control memory utilization and
increased microprogramming difficulty. Such are the trade-offs faced
by every designer.

Operations

The CE, CF, CG, CI, and CJ fields together form the operative
portion of the microinstruction, specifying the processing function
to be accomplished and source and destination registers to be util-
ized. Additionally, the CB field may contain constant (immediate)
data to be input to the ALU, or extended control information
assisting the CJ, CI, or CG fields. Facilities and options available were
covered in sections 4.2.1 and 4.2.2.
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Sequencing

In effect, each microinstruction contains the address of its succes-
sor, with a considerable number of alternative jump options depend-
ing on testable conditions. The organization of control memory into
pages (up to 8 of 512 words each), blocks (16 per page), and
microinstruction pairs (16 per block) was described in section 4.2.3,
and the format of a complete 12-bit control memory address is
illustrated in Figure 4-5. This subdividing of control memory allows
fewer than a full 12 bits to be utilized within a microinstruction to
provide meaningful branches within pairs, blocks, and pages as will
be described.

A 12-bit Last Access Register (L reg) holds the address of the
microinstruction currently being executed. In addition a 16-bit Save
Register (S reg) is available for either saving the current (or modified)
L contents for use in returning from a subroutine, or, alternatively, it
may be used to receive data from the F bus. S reg contents can then
be used in developing an address for subsequent control memory
access.

The jump addressing mode for each microinstruction is contained
in the 4-bit CD field. The mode thus selected limits the resulting
range of jumps available to as low as a block or as high as the entire
control memory. In almost every mode, the CA field (and possibly
the CB field also) specifies a jump condition that will be tested to
determine the word within a pair of possible successor microinstruc-
tions. The CC field may further specify the pair, block, or page; and
in some modes, the CB field may be used (in addition to the CC field
which specifies a block) to select a pair as well. Finally, two modes
are available that allow branching according to the first or second
4-bit digit on the I bus (target instruction decoding) or in response to
pending interrupt signals.

Over 30 possible test conditions can be called for according to the
contents of the CA field (and frequently CB also). These primarily
allow testing of various conditions in the self-decrementing W-
counter (loop control), N register (stack manipulation), key bits in
the X, Y, and Z ALU staging registers, arithmetic flags (AF), and the
general indicator (G reg). Other testable conditions include key bits
in the S register and first and second I bus digits to facilitate
subroutine returns and target instruction decoding respectively.

The branching facilities provided readily permit complex branch-
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Plus/Minus Address Bit

Fig. 4-5: Control Memory Address Format.

ing operations. An example is the Next Operation Branch which can
be performed following completion of a microroutine used for the
emulation of a target machine instruction. In this case, a 48-way
conditional branch is executed. The first 16 choices are based on
possible interrupt conditions, both internal and external; if no inter-
rupt conditions are present, a 32-way branch is executed based on
the first four bits of the current target instruction (I reg, gated onto I
bus) and a selectable jump condition.

Interrupts

An 8-bit Q register is available and setable from the F bus to mask
selected interrupt conditions. Further control over interrupts is pro-
vided in that they can only be invoked through use of the First Digit
Branch control memory accessing mode as specified in the CD field.
If emulation is not being done in a particular microprogram, or if the
target machine instructions are such that decoding is best accom-
plished by a method other than through utilization of the first digit
branch, then such microinstructions must be included solely for the
purpose of interrupt response. Thus, interrupt handling in the Micro-
data 3200 is soft in the fullest sense and requires a great deal of
caution on the part of the microprogrammer.

Microprogramming

Depending on the nature of the target machine being emulated
and its instruction word format in particular, the 3200 architecture
as controlled by available microinstruction parameters may well
enable highly efficient emulation microprograms. It must be recog-
nized, however, that at least in some cases (unusual instruction
formats, field lengths, placements, and so on) it may be necessary to
“defeat” some of the 3200 hardware functions, with a resulting loss
of efficiency.

The 32-bit microinstruction length places the 3200 somewhere in
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between what can clearly be considered short word and long word
machines. The degree of encoding employed and the single control-
lable operation per microinstruction make the machine look general-
ly vertical, while the number of fields and their functions are more
horizontal in nature. To be sure, microprogramming the pure hard-
ware machine is not a simple task. The careful reader will have noted,
for instance, a number of potentially conflicting uses of the CB field
that might necessitate two or more microinstructions in lieu of one
(longer) microinstruction to accomplish a given action. Nevertheless,
a great deal of power is available to the microprogrammer through
the microinstruction capabilities provided.

4.3 MAIN MEMORY, INPUT/OUPUT, AND THE MONOBUS

External Data Access

The Monobus was shown in Figure 4-1 to be the vehicle for
intermodule communication. Hence all input/output operations or
main memory reads-writes called for by the processor are accom-
plished over the Monobus.

In Figure 4-2 the Monobus is seen to be subdivided into a 16-bit
Monobus Data bus and an 18-bit Monobus Address bus. The 18 bits
provide for a total addressing capability of 256K unique addresses.
The upper 16K addresses are reserved for I/O controllers and devices,
with the remainder available for main memory (229,376 bytes).
Since memory is byte addressable, the low order bit specifies a byte
within the two-byte word size.

Both the P and M registers are 18 bits in length and can thus
address the full address space available. Two small registers, each 2
bits long, are available for use in generating the upper 2 bits of an
18-bit address. These can be set from the F bus and then gated into
M reg prior to a Monobus data access. In addition, one of these
extender registers can receive the upper two most significant bits
from the P reg to pass to the M reg when any of the last six file
registers in the primary bank are accessed, enhancing the utility of
these file registers as pointers into main memory (that is, as program
counters, stack pointers, and so on).
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Monobus Features

Module selection by the Monobus can be overlapped with the
previous data transfer operation. Priority polling is used to determine
which module will have control for the next transfer operation, and
priority interrupt lines are provided for communication from the
Monobus to processors.

All bus transfers, regardless of modules involved, are fully asyn-
chronous; therefore, it is possible to replace modules with func-
tionally equivalent modules having improved performance charac-
teristics (such as faster memory) as technology evolves, and the
system can take full advantage of the resulting speed benefits. In this
same manner, a cache memory can be employed to reduce time lost
waiting for data to be read from main memory; the cache will
automatically abort the normal memory read when it detects a read
from a location indicated as present in its directory.

DMA

The ability of I/O modules to initiate Monobus cycles in the same
manner as processors results in an inherent direct memory access
(DMA) capability.

4.4 ORGANIZATIONAL PARAMETERS

The present generation of 3200 system modules employ state-of-
the-art technology with commensurate performance. Control
memory access time, for example, is 60 nanoseconds with a complete
control memory cycle time of 135 nanoseconds. This same interval is
the full cycle time of the synchronous CPU. Main memory accesses
into the MOS semiconductor memory module require 350 nano-
seconds, with a full read cycle taking 500 nanoseconds.

4.5 SUMMARY

The Microdata 3200 has both a modular system level architecture
and a CPU structure particularly well suited to emulation. Emulators
already exist that enable the 3200 to emulate the Microdata 800 and
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1600 series (marketed as the 3230), and also a new 32/S stack
oriented target machine, designed as an efficient high level language
processor.

The 3200 is certainly well suited to general purpose micro-
programming in addition to emulation. To ease the burden on the
microprogrammer, a full assembler CAP 32 is available.



Chapter 5
Interdata 8/32 Micro Level Architecture

5.0 SUMMARY DESCRIPTION

The Interdata Model 8/32 is a 32-bit machine with a 3-bus archi-
tecture (A/B source, S destination). From two to eight sets of 16
general registers each are available, plus an additional set of 16
registers dedicated to floating point operations and eight registers
reserved for microprogram use. The 32-bit ALU also includes hard-
ware floating point capabilities. Microinstructions are of the vertical
type with six general formats. Execution is normally sequential with
explicit branching microinstructions available. Control store (par-
tially read-write) words are 32 bits in length, each containing a single
microinstruction. Main memory, accessed via a memory bus, is also
32 bits wide, but is byte addressable. In addition to regular memory
address and data registers, special registers are provided to serve as
the user (target) level instruction register and location counter, the
latter as part of a program status word. Many features are tailored for
emulation of the user level Interdata architecture and are limited in
their general utility.

5.1 INTRODUCTION

The Interdata 8/32 micro level architecture is included in this
book as a representative of the class of microprogrammable machines
that have been designed with the primary purpose of implementing a
particular machine language level architecture, but can also support
limited general purpose microprogramming as well. As a minimum,
such machines should be capable of extending the existing macro-
instruction repertoire through add-on microcode in read-write con-

67
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trol store; ideally, sufficient read-write control store will be available
to permit substitution of a completely different emulator or compat-
able size microprogram. The latter is partially the case with the
Interdata 8/32 micro level architecture, although emulation capabil-
ities are somewhat restricted as will be seen.

There are strong similarities between the Model 8/32 micro level
architecture and the 8/32 user level architecture. This becomes
especially apparent when one considers that most 8/32 user level
instructions can be emulated with one or two micro level instruc-
tions. In effect, the micro level architecture is to a large extent an
extension of the user level architecture.

It may also be useful to know that the micro level architecture of
the Model 8/32 is very similar to that of the earlier Model 80 micro
level machine, or, more specifically, the Model 85, which provides
dynamic control store capabilities to support user microprogram-
ming. Of course, the Model 80 series processors are 16-bit machines,
do not include hardware floating point features, and have fewer
registers available. Since the microinstruction repertoires of the Model
85 and 8/32 are very similar, many of the differences between the
two are transparent to the microprogrammer, their primary effect
being in performance rather than functional capabilities.

To fully utilize the 8/32 micro level architecture for general pur-
pose microprogramming, the microprogrammer should have a basic
understanding of the 8/32 user level architecture (Figure 5-1) and
instruction set. This is true because of unique hardware features
designed to facilitate 8/32 user level instruction emulation; these
features must be either utilized to advantage or in some way defeated
by the microprogrammer, since they are controllable only to a
minimum extent. These hardware features and their relationship to
the 8/32 user level architecture will be discussed along with the
appropriate sections to which they pertain.

5.2 MODEL 8/32 HARDWARE

A block diagram of the Model 8/32 micro level hardware is shown
in Figure S5-2. Significant features include the 32-bit wide data paths
and arithmetic processing facilities, the three major buses (A, B, S),
and the dedicated (emulation) control hardware facilities and asso-
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Fig. 5-1: Model 8/32 User Level Processor Block Diagram

(Courtesy Interdata Inc.).
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Fig. 5-2: Model 8/32 Micro Level Block Diagram
(Courtesy Interdata Inc.).

ciated registers. Special buses are also provided to accommodate
condition code movement (CC bus), input/output operations (D
bus), and main memory operations (memory bus). While 32 bits
make up the normal word length, both halfword (16 bits) and byte
(8 bits) operations are also available.
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5.2.1 Processing Facilities

ALU

The primary processing facility available in the 8/32 is the 32-bit
arithmetic logic unit (ALU). Inputs to the ALU are from the 32-bit
A (first operand) and B (second operand) buses; arithmetic output is
via the 32-bit S bus, while resultant condition code output is available
on the 4-bit CC bus, including carry (C), overflow (V), greater than
zero (G), and less than zero (L).

The ALU performs the arithmetic operations of addition, subtrac-
tion, multiplication, and division on fixed point 32-bit operands, as
well as a variety of shift (logical and arithmetic) and rotate opera-
tions. Arithmetic and logical shifts can also be performed on half-
words. Logical operations possible include AND, OR, and exclusive-
OR. Two’s complement convention is utilized throughout for han-
dling negative operands.

Floating Point ALU

The 8/32 arithmetic logic unit is also capable of performing
floating point arithmetic operations using single precision floating
point operands. Format for floating point operands is indicated in
Figure 5-3. A 24-bit signed fraction (radix point is assumed to be to
the left of bit 8, the high order fraction bit) is raised to the power of
16 determined from the exponent field. The 7-bit exponent is
expressed in excess 64 notation; thus, the true exponent value is
obtained by subtracting 64 from the absolute value indicated in the
7-bit binary exponent field. Operations available include multiplica-
tion and division, addition and subtraction, unnormalized addition,
compare, and “compare and equalize” which unnormalizes the
smaller of the two operands to effectively align the two radix points.

b.2.2 Local Store

General Registers

From two to eight full sets of 16 general registers each (GRO-
GRF) may be available in the 8/32 processor.! Each register set is

1Set F shown in Figure 5-2 is actually set 7, for consistency with previous
Interdata notations.
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01 78 3
S | Exponent Fraction

S = Sign of Fraction

N = F x g (Exponent - 64)

Fig. 5-3: Model 8/32 Floating Point Format.

duplicated for the A and B buses (stack A and stack B in Figure 5-2);
the duplication permits independent concurrent accessing of the
registers by the two buses, but in actuality they behave in effect as
single sets and the duplication is transparent to the micropro-
grammer/programmer. (The term stack as used by the manufacturer
may be misleading here since the general registers do not function as
push-down stacks in the accepted sense of the term.)

The general register sets are intended for use at the macro-machine
level, and in fact are all available as part of the 8/32 user (macro) level
architecture. Of course, they are directly accessible to the micro-
programmer as well. Only one 16-register set is active at any one
time, as selected by 3 bits in the program status word (see below and
Table 5-1). This is a powerful feature which, for instance, can
enhance system performance in a multiprogramming mode since the
contents of an entire register set can remain intact and not require
temporary storage when another program is given control. Alterna-
tively, they may be used to support multilevel programming and
nested blocks.

General registers may be addressed either directly or indirectly.
Indirect addressing facilitates emulation by allowing the micro-
programmer to call for the general register(s) specified in the user
level instruction (see YD and YS fields in the instruction register
below) without having to evaluate the register specification fields in
the user’s instruction.

Floating Point Registers

In addition to the regular general register sets discussed above, a
full set of 16 floating point registers (ERO—ERF) is also provided,
dedicated for use with the floating point ALU operations. Like the
general registers, they are intended for user level usage and may be
addressed directly or indirectly. The floating point registers are not
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Table 5-1: Program Status Word Key Bits*
{Courtesy Interdata Inc.).

BIT MEANING

14
15
16

17 | Interrupt Priority Selection {w/bit 20)

18 | Machine Malfunction Interrupt Enable

19

20 | Interrupt Priority Selection (w/bit 17)

21 | Relocation/Protection Interrupt Enable

22

23 | Privileged/Protect Mode

24

25 | Selects
26 Active
27 General Register Set

28 | C—Carry

29 | V—Overflow Condition
30 | G—Greater than Zero Codes

31 | L—Less than Zero

*Blank entries have no hardware signifi-
cance and are definad only by the emulator.

distinguishable from the general registers by explicit address; instead,
they simply become the active set of registers (overriding the PSW
designated set) whenever a floating point arithmetic microinstruction
is being executed. Thus, an A bus register designation of 00010 will
select ER2 for a floating point microinstruction or GR2 (active set)
for any other microinstruction. In some ways this scheme limits
flexibility since the direct manipulation of data in the floating point
registers is restricted to that which can be explicitly accomplished
using the eight available floating point microinstructions.
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Microregisters

A special set of eight 32-bit general purpose registers (MRO-MR7)
is provided for the exclusive use of the microprogrammer. They are
explicitly (and directly) addressable in addition to the active set of
general registers.

It should be noted that floating point arithmetic microinstructions
may utilize the microregisters as well as the floating point registers;
hence, the microregisters can provide a link between the floating
point registers and the general registers, or permit indirect manipula-
tion of data in the floating point registers beyond the basic capabil-
ities of the floating point microinstructions if the requirement arises.
A number of microinstructions would be required to effect the
necessary transfers and processing, but the capability does exist to at
least partially offset the limitations on floating point register acces-
sibility.

Instruction Register

The instruction register (IR) is one of several hardware features
provided that is designed specifically for support of the emulation of
the user level 8/32 instruction set and not readily generalizable to
other emulations. The IR is comprised of three subregisters, OP
which contains bits 0—7 of a user level 8/32 instruction, YD which
contains bits 8—11, and YS which contains bits 12—15. Together
then, the three subregisters hold a 16-bit halfword; complete 8/32
instructions may be 16, 32, or 48 bits in length and may thus require
additional memory fetches as will be discussed below.

User level 8/32 instruction formats are indicated in Figure 5-4. In
all cases the user level operation code occupies bits 0—7 and will
therefore be available in the OP register. Similarly, bits 8—11 always
specify a user level general (or floating point) register, while bits
12-15 specify either a user level general (or floating point) register or
a 4-bit immediate operand. The YD and YS registers thus provide the
capability for indirectly addressing general and floating point regis-
ters within microinstructions; specification within a microinstruction
of YD or YS in lieu of a specific general register will cause the
microinstruction to utilize the register pointed to by YD or YS from
the user level instruction.

Memory control facilities are discussed in section 5.2.4. For the
time being it is sufficient to state that one of the memory control
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Fig. 54: User Level Model 8/32 Instruction Formats
(Courtesy Interdata Inc.).

options available to the microprogrammer is to specify an Instruction
Read operation. This will result in a halfword (as addressed by LOC
described below) being fetched and placed in the OP register and its
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8-bit extension as shown in Figure 5-2. YD and YS are not loaded at
this time, but the data that will subsequently be transferred into YD
and YS are held in the 8-bit OP extension.

Execution of an Instruction Read sets in motion a chain of events
employing user level 8/32 dedicated hardware support features.
Loading of the OP register causes an automatic table look-up opera-
tion using the Format ROM shown in Figure 5-2. The 8-bit OP code
is used as an address to select one of the 256 four-bit ROM words
that indicate the user level 8/32 instruction format in accordance
with the codes shown in Table 5-2a. Based on the user level instruc-
tion and data contained in the format ROM, additional halfwords are
automatically fetched as required and placed in the memory data
register. Resulting contents of the MDR and B bus are illustrated in
Figure 5-5. It is readily apparent then that this automatic hardware
support is tailored specifically to the user level 8/32 architecture.

Separate from the Instruction Read memory control action, the
microprogrammer can initiate a Decode Next User Instruction ac-
tion. This also sets in motion a chain of events to facilitate user level
8/32 emulation. First, interrupts are checked for (see section 5.4). At
this time, if no interrupts are pending, the YD and YS registers are
updated from the 8-bit OP register extension. Once again a 256-word
ROM is interrogated in a table look-up operation to check the
possible Privileged/Illegal status of the OP code being decoded. Each
ROM word again contains 4 bits whose meanings are indicated in
Table 5-2b. Any of the three illegal instruction bits will cause an
abort of the instruction fetch/decode and result in an illegal instruc-
tion interrupt. If the privileged instruction bit is set, then bit 23 of
the PSW determines the subsequent action; if it is a 1, the illegal
instruction interrupt occurs, while if it is a 0, decode and execution
are permitted to continue. Assuming a legal user level 8/32 instruc-
tion OP code is present, twice the OP code will be used as the control
store address to enter the execution portion of the emulation rou-
tine.

In summary, the Instruction Register and the associated Format
ROM and Privileged/Illegal ROM in a standard Model 8/32 are
tailored exclusively to the user level 8/32 emulation. These facilities
are activated by using the microinstruction commands Instruction
Read and Decode Next User Instruction. Their use greatly simplifies
user level 8/32 emulation and results in high emulation efficiency.
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Instruction
Format Contents of MDR
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Fig. 5-5: Contents of MDR after a User Lever 8/32 Instruction Read
(Courtesy Interdata Inc.).

Without hardware modification, emulation of other macro level
architectures must be accomplished without using these features/
commands and with considerable loss of efficiency.

Program Status Word

The 32-bit program status word (PSW) is used to indicate status of
the machine relative to the current user level program. Only bits
14-31 are actually implemented. The functions of key bits are
indicated in Table 5-1; these all have hardware significance, while the
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Table 5-2: Decode ROM's for User Level 8/32 Instructions (Cour-
tesy Interdata Inc.).

Contents Format

11 00 |0 | RX

0 0|0 ([t |RN

O 1 {0 |0]RI2

0] 011 |0 | RR (Short)

O 0] 0 |0 | Undefined

a. Contents of Format ROM
Words and Their Interpreta-
tion as User Level Formats.

Contents Meaning

1 lltegal Instruction:
Model 8/32 w/Double Precision Floating Point

1 Itlegal Instruction:
Modei 8/32 w/Fioating Point

1 Ilegal Instruction:
Basic Model 8/32

1 Privileged Instruction

b. Contents of Privileged/lllegal ROM Words and Their Meanings.

remainder (blank in Table 5-1) are defined only by the emulator. Bits
28-31 constitute the condition code of the user level program. The
microprogrammer has the choice of allowing these to be directly
updated from the CC bus at the conclusion of each arithmetic or I/O
operation (E field of microinstruction enables this) or he may direct-
ly control their contents by explicitly addressing the PSW as a
destination register. The location counter (LOC) discussed below
may be considered as an extension of the PSW; together, the two
registers indicate the complete status of the current user level pro-
gram.
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Flag Register

The 4-bit flag register (FLR) is the hardware implementation of
the 4 condition code bits (C, V, G, L). These bits are always set
according to the results of the last microinstruction executed; the
same information may or may not be gated to the CC portion of the
PSW as the microprogrammer desires.

A full set of branching microinstructions is available to test the
status of individual FLR bits. In addition, the CC field in the PSW
may be tested for a match with the user instruction R1 field (bits
8-11) to support similar user level branching instructions.

Location Counter

The last of the registers designed to support user level 8/32
emulation is the location counter (LOC). While logically 32 bits in
length, only bits 12—31 are physically implemented, allowing for an
address space of 1M bytes of directly addressable memory.

Functionally, the LOC points to the main memory address of the
next user level instruction. It is this register that is used to select the
main memory location when the Instruction Read memory com-
mand is included in the microinstruction. Thus, use of the LOC is
tied in with the loading of the IR (OP, YD, YS) as previously
discussed and is therefore limited in its general utility.

The LOC may be automatically incremented, either independently
or in conjunction with an instruction read. (The full range of options
is detailed later in Table 5-4). Incrementation is always by the total
number of bytes in the last user level instruction.

Machine Control Register

The machine control register (MCR) that is shown in the I/O unit
of Figure 5-2 is a 12-bit register (only 10 bits are used) that contains
indicators of internal and external conditions, including some of the
interrupt conditions to be discussed in section 5.4. It can be both
interrogated and cleared under microprogram control.

5.2.3 Control Store

Control store words are 32 bits long, each containing a single
microinstruction. Maximum size is 4K words, organized into 16
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pages of 256 words each. The standard Model 8/32 includes five
pages or a total of 1,280 words of control store implemented in
read-only memory (ROM) and containing the complete user level
8/32 emulator. Eleven pages are optionally available as writeable
control store (or dynamic control store in the manufacturer’s termi-
nology).

Control store addresses are 12 bits in length. Locations are ad-
dressed by the output of the ROM address gate (RAG) which has
several possible inputs. User level 8/32 instruction emulation, pre-
viously discussed, may provide a source of address selection based on
decoding of the OP field, or an illegal instruction interrupt. Alterna-
tively, the ROM location counter (RLC), selected bits of the ROM
data register (also called the ROM instruction register), and the B bus
may be used to provide addresses. The latter two sources permit a
variety of branching and data addressing options.

Output of the control store is normally to the ROM instruction
register. When control store words are accessed for data to be used as
operands, such access is accomplished indirectly. Setting of a control
bit (I) in the microinstruction results in what would normally be an
operand itself (register contents or immediate microinstruction field
on the B bus), being instead utilized as a control store address; the
contents of this control store address becomes the actual operand.

Writing into the control store is accomplished directly with the
data to be written taken from the A bus and the address taken from
the B bus.

5.2.4 Main Memory

Main memory for the Model 8/32 is available in 128K-byte
modules up to a maximum of 1M bytes of directly addressable
storage. The memory bus accepts commands from the current micro-
instruction. Operation of the memory is asynchronous, allowing the
microprogram to continue execution while the memory operation is
being completed. Attempting to access data before a read is com-
plete, for example, merely causes the processor to wait until the read
has been completed.

Memory Data Register

The memory data register (MDR) serves as a data buffer for both
memory read and memory write operations. In the special case of an
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Instruction Read operation, however, the instruction register (OP,
YD, YS) is utilized for the first halfword read, and the resulting
MDR contents are as indicated in Figure 5-5, as previously discussed
(section 5.2.2, Instruction Register). OQutput of the MDR is to the B
bus (memory reads) and input to the MDR is from the S bus
(memory writes).

Memory Address Register

Addresses for accesses to main memory normally come from the
memory address register (MAR). Again, in the special case of an
Instruction Read, the location counter (LOC) performs the same
function.

The 20-bit adder shown in Figure 5-2 is another feature aimed at
facilitating user level 8/32 emulation. Specifically, it is called into
play for effective address generation for operand fetch in the emula-
tion of complex user level addressing modes. Functioning of the
adder is invoked automatically during the Decode Next User Instruc-
tion operation according to the contents of the instruction register
and MDR (second and third halfwords of user instruction), and the
output of the format ROM. Further, additional hardware may cause
the MAR contents to be replaced by the sum of the general register
specified by the user instruction X2 field and the MDR contents (RX1
and RX2 formats), or the sum of the two general register contents
(SX2 and FX2) in the case of RX3 format. The MAR contents may
then be passed to the memory access controller (MAC), added to the
MDR, or added to the LOC as required.

A complete description of the entire 8/32 emulation operations is
beyond the scope of this book. However, this discussion should serve
to reemphasize the tailoring of the hardware to user level 8/32
emulation and the care that must be taken when using the machine
for general purpose microprogramming. Once again, avoiding the
Instruction Read and Decode functions will minimize difficulties.

Memory Functions

The full range of memory control operations will be detailed in
the next section which covers the microinstruction repertoire. Opera-
tions using the LOC have already been mentioned. General read-write
operations are available for both halfwords and fullwords, plus auto-
matic MAR incrementation. Additionally, a set of “privileged” read-
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write operations are available that disable the memory access con-
troller.

When memory operations are initiated by a microinstruction, they
do not actually begin until the remainder of the microinstruction has
completed execution. This permits updating of the MAR or MDR
within the same microinstruction and then use of the updated
contents in the memory operation.

5.3 MODEL 8/32 MICROINSTRUCTIONS AND CONTROL

Microinstructions for the Model 8/32 are essentially of the vertical
type. Each microinstruction is 32 bits in length with fields defined
according to one of the six formats shown in Figure 5-6.

8.3.1 Microinstruction Fields

Modules

The first 3 bits of a microinstruction select one of the processor
modules to perform the primary operation for that microinstruction.
Module O is considered to be the control module (branches, and so
on), module 1 the fixed point ALU, module 2 the I/O module, and
module 3 the floating point ALU. Modules are a logical concept for
the microprogrammer and are not necessarily physically separable
entitied.

Functions

The F or function field acts as an OP code field to specify the
function that the selected module is to perform;in some cases the F
field is extended by the K field (module 1 and module 2 only). Not
all F (or F-K) codes are utilized.

Register Select

The A and B fields are used to identify general registers in the
active set, microregisters, or special registers to be used as sources on
the A and B bus respectively. Similarly, the S field selects a register
to be the S bus destination register. Register address assignments are
indicated in Table 5-3. Setting of the I bit (indirect) causes the
original B bus contents to be used as an address in control store, and
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Address Link

0 23456 1011 1314 25262728 31
poolix[T] s | F | Address [elo] mc |
Register Branch
0 23456 01 1314 19 20 262728 3
loololx[T]  nun | F 21 B PE[F] mc |
Register to Register Transfer
0 23456 10 1 15 16 1920 242526 3

Modwelolo[1] s | A | F | B [c|Page Address
Register to Register Control
0 23456 1031 1516 1920 2425262728 3

ModueloftlI] s | a | F | B [KED MC |
Register to Register Immediote
0 23456 101 1516 1920 3l

Modue[1fOI] s | A | F | Data |
Register Write
0 23456 101 1516 1920 2425262728 3
poiifijr N | A | F | B [K[ED] MC ]

Field Meaning
A Selects register to be used as first operand.
B Selects register to be used as second operand.
c [f set, transfer is conditional.
D Decode next user instruction.
E Enable setting of condition code.
F Specifies function of addressed module.
1 B bus data addresses actual dota in control store.
K F field extension.
MC { Memory control field.
S Selects register to receive the result.
T If set, item F must be true for transfer, otherwise folse.
X If set, “execute and link," otherwise "branch and link."

Fig. 5-6: Model 8/32 Microinstruction Formats and Field Definitions
(Courtesy Interdata Inc.).

the contents of the addressed control store location to be used as the
final B bus operand. The E bit enables the resulting CVGL status
conditions to be gated into the CC field of the PSW as previously
discussed, in addition to being retained in the flag register.

Memory Control

Limited parallelism permits memory control operations to be
initiated by most microinstructions., MC field options and their
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Table 5-3: Register Addresses (Courtesy Interdata

Inc.).
HEX
ADDRESS S Bus A Bus B Bus Category
00 o 0 0
01 1 1 1
02 2 2 2
03 3 3 3
04 4 4 4
05 5 B 5
06 6 6 6 User's
07 7 7 7 General
08 8 8 8 Registers
09 9 9 9
0A 10 10 10
0B " 11 11
oC 12 12 12
0D 13 13 13
OE 14 14 14
OF 15 15 15
10 MRO MRO MRO
1" MR1 MR1 MR1
12 MR2 MR2 MR2
13 MR3 MR3 MR3 Micro-

14 MR4 MR4 | MR4 registers
15 MRb MR5 | MRb
16 MR6 MR6 MRé
17 MR7 MR?7 MR7

18 YS YS ¥S

19 YD YD YD

1A LOC YX LoC Special
1B MDR YDPI MDR Purpose
1C MAR - MAR

1D PsSw PSwW YSi

1E YDI - YD!

1F NULL | NULL | NULL

Note: For floating point instructions, correspond-
ing floating point registers are selected instead of
general registers.

meanings are detailed in Table 5-4. If the Instruction Read option is
selected, the microprogrammer may either initiate the decode actions
by setting the D bit in the same microinstruction, or he may do soin
a subsequent microinstruction.
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Table 5-4: Memory Control Options (Courtesy interdata Inc.).

MICROINSTRUCTION MEANING
BITS
26 29 30 3
0 0 0 0 | No Action
0 0 0 1 IL Increment LOC by instruction length
0] 0 1 0 | PW2 Privileged write halfword (2 bytes)
0 0 1 1 Dw2 Data write halfword
0 1 0 0 | No Action
0 1 0 1 14DW4 Increment MAR by 4, data write fullword
0 1 1 0| PW4 Privileged write fullword
0 1 1 1 Dw4 Data write fullword
1 0 0 0 | RAS Read halfword and set sign bit
1 0 0 1 ILIR Increment LOC by length and read instruction
1 0 1 0 | PR2 Privileged read halfword
1 0 1 1 DR2 Data read halfword
1 1 0 0| IR Instruction read
1 1 0 1 14DR4 Increment MAR by 4, data read fullword
1 1 1 0| PR4 Priviteged read fullword
1 1 1 1 DR4 Data read fullword
Notes:
IL The location counter {LLOC) is incremented by the length in bytes
of the last user leve! instruction fetched.
PW2 ‘The memory access controller (MAC) is disabled and the halfword
in MDR, bits 16:31, is written into the addressed location.
owW2 The halfword in MDR, bits 16:31, is written into the addressed location.
MAC is not disabled.
(4DW4  The memory address register (MAR) is incremented by four. Then the fuliword
in MDR, bits 0:31, is written into the location addressed by MAR.
PW4 The MAC is disabled and the fullword in MDR, bits 0:31, is written into
the addressed location,
Dw4 The fullword in MDR, bits 0:31, is written into the addressed location.
RAS The halfword at the addressed location is read then rewritten with bit 0
of the halfword set. The original vatue of the halfword replaces MDR
bits 16:31. Bits 0:15 of the MDR are set equal to bit 16
of MDR (Sign extension).
ILIR LOC is incremented by the length in bytes of the last user instruction fetched.

Then an instruction read is started from the address specified
by the new value of LOC,
(Continued)
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Table 5-4 {Continued)

PR2 The MAC is disabled and the halfword at the addressed focation is read and copied
to MDR bits 16:31. Bits 0:15 of MDR are set equal to MDR bit 16.

DR2 The halfword at the addressed location is read and copied to MDR bits 16:31.
Bits 0:15 of MDR are set equal to MDR bit 16.

IR An instruction read is started from the memory address specified by LOC.

|14DR4 MAR is incremented by four. Then the fullword at the location addressed
by the new value of MAR is read and copied to MDR.

PR4 MAC is disabled. Then the fullword at the location addressed by MAR is read
and copied to MDR.

DR4 The fullword at the location addressed by MAR is read and copied to MDR.

5.3.2 Microinstruction Types

The general nature of each of six types of microinstructions will
be explained in the following paragraphs.

Address Link

The incremented contents of the ROM location counter (RLC) are
placed in the selected S bus destination register. Then, if the specified
test condition is met (true if T = 1, false if T = 0), transfer takes place
and the next microinstruction is taken from the control store loca-
tion specified in the ADDRESS field. Otherwise, the next micro-
instruction in sequence is the next to be executed. MC and D
operations occur only if the transfer is not made. If X = 1, then the
ADDRESS field addresses a microinstruction that is executed if the
test condition is met, and the next microinstruction in the original
sequence is always the next to be executed.

Register Branch

Similar to Address Link except that the address to be branched to
is taken from the register on the B bus. If X = 1, then the B bus
register contains a microinstruction that is executed if the test
condition is met, and the next microinstruction in the original
sequence is always the next to be executed.
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Register to Register Transfer

Performs operation F using A and B register operands and places
the results in S register. Also provides for conditional transfer if C is
1; in this case a limited range transfer is performed by replacing the
six low order RLC bits with the PAGE ADDRESS.

Register to Register Control

Performs operation F-K using A and B register operands and places
the results in S register. Specified MC or D operations occur after the
basic register to register function has completed execution (as is true
for all microinstructions with MC and D options).

Register to Register Immediate

Performs operation F using A register operand and DATA field
(plus leading 0’s or 1’s, depending on bit 20 of the DATA field) and
places the results in S register. (If I = 1, DATA contains address in
control store of the actual second operand.)

Register Write

Stores the contents of A register in the control store location
whose address is contained in the B register.

5.3.3 Microinstruction Sequencing

Model 8/32 microinstructions are normally executed sequentially
using addresses from the incrementing RLC register. Address Link
and Register Branch type microinstructions provide for unlimited
range conditional transfers, while register to register transfers allow
conditional transfers within a 64-location range in control store.

Link options and register set flexibility can support both nested
subroutines and block structured microprogramming. Careful manip-
ulation of the active register set designation field along with the
remainder of the PSW could conceivably support up to eight distinct
levels.

54 INTERRUPTS

With the standard Model 8/32, all interrupts should be considered
as hard in that they generally cause automatic transfers to micro-
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program locations within the first five pages of control store, which
include the fixed ROM emulator of the user level 8/32 machine. The
privileged/illegal user instruction interrupt, memory access con-
troller, machine malfunction, and primary power fail interrupts are
all generated internally by the hardware. Additional internal intet-
rupts such as arithmetic faults, queue service, and supervisor calls
originate within the emulator and are handled therein as well.

External interrupts are hardware driven and include both a console
interrupt and four priority interrupts to be associated with peripheral
devices (see section 5.5, I/O). External interrupts remain active until
recognized and serviced by the processor.

As noted in Table 5-1, machine malfunction and memory access
controller (relocation/protection) interrupts may be individually
enabled/disabled by bits (18 and 21) within the PSW. In addition,
bits 17 and 20 enable or disable external interrupts on the basis of
levels, where the current level is determined by the designated active
register set. Microinstructions are also available in the Branch/
Execute and Link set that can collectively enable or disable all
interrupts except those of the memory access controller.

The interrupt system is further tied to the emulator in that the
preferred time for handling interrupts is between user level instruc-
tions. The display console interrupt, for example, is tested only
during the Decode (D) option of a microinstruction. True general
purpose microprogramming or emulation of another machine avoid-
ing 8/32 hardware assist features will therefore be complicated by
the standard interrupt system.

5.5 INPUT/OUTPUT

The Model 8/32 input/output system employs the 33-line D bus
(or multiplexor bus). Line assignments are indicated in Table 5-5. All
I/O operations are either halfword (16-bit) or byte (8-bit) oriented.
Since all 16 data lines are always used, special byte steering hardware
is employed to handle byte transfers. Any time a halfword oriented
device is being utilized, the halfword (HW) line becomes active and
suppresses the byte steering hardware.

A large number of microinstructions are available to facilitate I/0
operations. They utilize the basic formats previously discussed, speci-
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Table 5-5: D Bus (Multiptexor) Lines {Courtesy

Interdata Inc.).

LINE DIRECTION
Function Mnem Processor  Device
Data Lines: D00 - >
DO1 - —p
D15 . >
Control Lines:
Status Request SR »
Data Request DR >
1/0 Command CMD >
Data Available DA >
Address ADRS >
Acknowledge ACKO >
ACK1 —-
ACK2 »
ACK3 -
Control Line cLO?7 >
Test Lines:
Attention ATNO -
ATN1 -
ATN2 |
ATN3 | =
Synchronize SYN -
Halfword HW -
Initialize SCLR >

89

fying module 2, the I/O module. The repertoire provides for ac-
knowledging interrupts, addressing devices, sensing device status,
issuing I/O commands, and reading or writing data (both bytes and
halfwords). Addresses are normally placed in an A source register and
commands in a B source register. Status and device number informa-
tion from peripherals are passed to the processor via the indicated S
destination register.

Bidirectional data lines are used to pass commands, data, ad-
dresses, and status. Devices signal the processor using one of the
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priority interrupt attention lines. The processor in turn (by micro-
instruction) acknowledges requests for attention using acknowledge
lines. Additional communication occurs in the form of special 8-bit
commands, data or status requests or data available signals from the
processor. Device controllers respond to these signals using the syn-
chronize (SYN) line.

Input/output operations are fully asynchronous. Microinstructions
may result in one, two, or three operations occurring on the D bus,
each lasting until a SYN is received from the device.

5.6 ORGANIZATIONAL PARAMETERS

Basic machine cycle time for the Model 8/32 is 240 nanoseconds;
most microinstructions execute in that time. Those microinstructions
that require an additional fetch of data from the control store (for
example, I = 1 for indirect B operand) execute in 360 nanoseconds,
the additional 120 nanoseconds reflecting the control store access
time. Cycle time for the core main memory is 750 nanoseconds.



Chapter 6
Burroughs B1700 Architecture

6.0 SUMMARY DESCRIPTION

The B1700 is a general purpose microprogrammable computer
designed to support a variety of intermediate languages (S-machines).
Nominal data width is 24 bits; however, masking and iterative tech-
niques readily facilitate support of arbitrary data widths. Memory is
addressable down to individual bits to further support variable word
lengths.

Four general purpose registers (X, Y, L, T) are available. These are
supplemented by a scratchpad containing 32 words of 24 bits each,
addressable also as 16 words of 48 bits each to handle data descrip-
tors. The L and T registers have limited processing capabilities
including shifting and extraction functions, and may also be ad-
dressed/accessed in 4-bit increments. Major processing facilities in-
clude a 24-bit function box and a 4-bit function box. The 24-bit
function box may operate on less than 24-bit operands and in binary,
BCD, or EBCDIC modes.

Microinstructions are 16 bits long and are vertical in structure. The
repertoire includes 32 basic microinstructions with a wide range of
variants. Microprograms may be executed from main memory or
from control store; from 1 to 4K words of read-write control store
may be provided depending on the processor model. Microinstruc-
tions normally execute sequentially with explicit branches to alter
the sequence. An address stack is available to support microsub-
routines. Dynamic microprogramming is possible on the B1700.

91
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6.1 INTRODUCTION

Burroughs B1700 embodies a unique design tenet: The work done to
accomodate definable machine structure from instruction to instruction is
less than the work wasted from instruction to instruction when one
machine structure is used for all applications. In other words, execution of
machine language using procrustean hardware causes more inefficiencies
than foft interpretation of arbitrary machine language on protean hard-
ware.

The above quotation summarizes the philosophy employed in the
B1700 system. It is one of a relatively small class of machines
designed without a machine language (macro) level architecture in
mind. Rather, it is intended that the microprogrammable architec-
ture of the B1700 be capable of supporting virtually any inter-
mediate language, not solely for the purpose of emulating other
machines, but more generally for the purpose of providing the
optimum intermediate language suited to the ultimate task to be
performed.

Burroughs refers to these intermediate languages as S-languages (S
for secondary). The S-language optimized for COBOL execution, for
instance, is quite different from that which would be optimum for an
operating system. Through dynamic microprogramming, the B1700
can execute different microprogrammed interpreters according to the
requirements of the job at hand.

Many of the capabilities of the B1700 (virtual memory, multi-
programming, and so on) are provided by the MCP (master control
program), a software package written in a unique, higher level lan-
guage which is itself interpreted. This chapter will concentrate on the
actual physical architecture and will only mention the software
provided facilities as they relate to the hardware.

6.2 SYSTEM LEVEL ARCHITECTURE

B1700 systems are available in two system series, B1710 and
B1720. The key difference between the two lies in the processor; the

'Wayne T. Wilner of the Burroughs Corporation in “Design of the B1700,”
presented at the 1972 FJCC (see WILN72, bibliography.)
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CTL CTL
—i Processin
CTL MCU! —
Main
Memory

a. B1712 7/ B1714 Systems Contfiguration

r__.
ke

| 1]

Control Progessing | .),
Memory Vi) =T

Main

Memory

b. Bi726 System Configuration

Fig. 6-1: B1700 Series System Configurations
(Courtesy of Burroughs Corp. [BURR72]).

B1710 processor is employed in the B1712/1714 systems, while the
B1720 processor is used in the B1726/1728 systems.? The architec-
tures of both processors are similar and both are described in the
sections that follow, with their differences identified.

System configurations for the two series are illustrated in Figure
6-1a and b. In either case from one to eight I/O channels/controllers

281726 and B1728 systems differ only in the maximum size of memory
available (see 6.3.3 and 6.3.4). In all other respects what is said about the
B1726 applies also to the B1728 unless specifically stated otherwise.
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may be connected to the CPU. MCU refers to the memory control
unit which is part of the processor and handles all memory access
requests. On the B1710, the memory control unit is connected
directly to the processor, while on the B1726 a port interchange (8
ports maximum) provides the access path between the processor and
memory.

Only the B1726 has a separate, high speed control memory.
Microprograms for the B1710 must reside in main memory, while the
B1726 may use control memory and/or main memory for micro-
program storage. The only difference is in speed, since control
memory is approximately four times faster than main memory.

6.3 B1710 AND B1726 PROCESSORS

The B1700 processor architecture (Figure 6-2) includes two major
arithmetic/logic processing units, a 24-bit function box and a 4-bit
function box, as well as a number of working registers which them-
selves have a limited processing (shift/rotate, extract) capability. A
large bank of scratchpad registers is also available for general purpose
use.

Nominal data width within the B1700 is 24 bits. The micro-
programmer has available control facilities that enable him to process
any bit length from 1 to 24 bits, and, through iterative techniques, to
any length beyond 24 as well. This variable data length capability is
also supported by the main memory which is addressable down to
individual bits and effectively up to any desired field length.

The architecture is largely oriented around the registers, most of
which are capable of serving as both a source and destination.
Pseudoregisters are also available that provide (source only) access to
data as if they were available in actual physical registers; all outputs
of the 24-bit function box are addressable in this manner. Micro-
instructions generally call for a single source and/or a single destina-
tion register.

6.3.1 Processing Facilities

Twenty-four-Bit Function Box

A functional representation of the 24-bit function box is shown in
Figure 6-3. Data inputs are from the X and Y registers and the carry
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24-Bit XYST
Function |- XYCN Scratchpad
Box BICN Interrupts
] [ [
‘ LAILB|LC|LD|LE|LF| [TA[TB[TC][TO[TE[TF \
Lx Ly | L T [ ¢ ] [control
] []
Rotator FLCN
Mask I—:‘]
r‘ | \ (] ! \ 1 . 24-Bit
] [ Bus
[ ‘ ‘ ‘ ‘ ‘ 1 4-8it
Bus
\ \
TAS [Lr] 4-Bit
[____j Function
| 1 BR Box
[m] [MBR] ‘
) A Stack B Tr—
1/0 Bus
M.Aj_] Data
Cmnd.
Main
Memory

Fig. 6-2: B1712 Simplified Block Diagram.

flip-flop (CYF). Contro! inputs are the 2-bit CPU register that speci-
fies the arithmetic unit type, and the 5-bit CPL register that specifies
the actual length of the operands. CPU codes provide for arithmetic
unit types of 1-bit (binary) operands, 4-bit (binary coded decimal)
operands, or 8-bit (EBCDIC) operands, with the EBCDIC capability
restricted to the B1726 version. Operand lengths as indicated by CPL
must be an integer multiple of the unit type (n X 1, n X 4, n X 8) for
correct results.

A unique feature of the B1700 is the apparent simultaneous
availability of all the arithmetic and logic functions of X and Yina
set of output pseudoregisters. The nine outputs and their pseudo-
register names are as shown in Figure 6-3. The microprogrammer
need only load X and Y with the desired operands (assuming CYF,
CPU, and CPL have previously been set), and all nine functions will
be immediately generated and available in their respective registers;
changing any input immediately changes all outputs.

In addition to the usual arithmetic and logic functions of two
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Control Inputst CPU CPL

24 Bit XY Function Box Status /Condition Outputs:

Functions of X ond/or Y

SUM  X+Y Binary, 4 8it D

CMPX NOT X Complement 2

CMPY NOT Y Complement A [ BICN
XANY X-Y AND 0

XEOY X@Y Exclusive, OR r U

MSKX X Masked Controlled by CPL | 1

MSKY Y Masked Controiled by CPL | U

XORY X+ Y OR ;

DIFF X-Y Binary, 4 Bit

The Length of All Functions Is Controlled by the

Value in CPL., e CYD
Data inputs: CYF X Register Y Register

Fig. 6-3: 24-Bit Function Box
(Courtesy of Burroughs Corp [BURR72]).

variables, MSKX and MSKY result registers are filled with the low
order number of bits specified by CPL from X and Y respectively,
while the high order remaining bit positions are filled with leading
zeroes. Status and condition results are also produced and placed in
4-bit pseudoregisters as shown in Figure 6-4. CYF can be set using
the SET CYF microinstruction.

Four-Bit Function Box

Unlike its 24-bit counterpart, the 4-bit function box operatesin a
more traditional manner with specified source and destination regis-
ters and a single functional operation called for (see 4-Bit Manipulate
Microinstruction, Figure 6-8). Besides the 4-bit status, condition and
control registers, a number of working registers are addressable in
4-bit increments as will be seen; generally, any of these 4-bit registers
may be a source and any that are not pseudoregisters may be a
destination.
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0

LSUX

INT

Y#0

X#£0

LSUX = Least significont unit of X. (True if least significant unit of
X = 1in binary mode (CPY = 00), = 1001 in 4-bit mode (CPU = 01),
and undefined for other CPU values.)

INT = Interrupt.

b. X/Y Condition (XYCN) Register:

3

2

0

MSBX

X=Y

X<y

x>y

MSBX = Most significant bit of X. (As designated by CPL.)

. Binary Conditions (BICN) Register:

3

2

Lsuy

CYF

CyD

crL

Cyl. = Corry out level.

€YD = Borrow out level

CYF = Carry flag.

LSUY = Least significont unit of ¥. (See LSUX cbove.)

Fig. 6-4: Status and Condition Pseudo Register Outputs of the
24-Bit Function Box.

One input comes from a specified source register and the second
input is included as a literal field in the microinstruction, Results are
returned to the source register (except pseudoregisters).

Available functions include SET, AND, OR, Exclusive-OR, SUM
(Modulo 16), and DIFFERENCE (Modulo 16). Sum and difference
functions may also provide for skipping the next microinstruction if
a carry (borrow) is produced.

Shift/Rotate/Extract

Shifts, rotations, and data extractions are not accomplished by
dedicated processing units, but rather are special capabilities of key
working registers as described in the following section.
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6.3.2 Local Store

General Purpose Registers

The X and Y general purpose working registers have already been
mentioned as the operand inputs to the 24-bit function box. Addi-
tionally, they have the capability of shifting or rotating their con-
tents either individually or together as a concatenated 48-bit register.
(Rotating X and Y is possible only with the B1726.) Addressable as
either source or destination registers, the X and Y registers are also
capable of read-write operations with main memory.

Two additional general purpose 24-bit registers are the L and T
registers. Like X and Y, they are both capable of main memory
read-write operations. The T register has shift/rotate capabilities,
and, further, is the one register from which a 1-24 bit length field
can be extracted beginning with any bit position; this is a particularly
useful operation for target instruction decoding in emulation.

In addition to their roles as full 24-bit registers, L and T are
addressable in 4-bit increments as subregisters (Figure 6-5). This
allows for testing and/or altering any of the 4-bit groups of these
registers using the 4-bit function box or testing/branching microin-
structions.

Scratchpad

A scratchpad of 16 registers (S00—S15) each 48 bits in length is
available for the primary purpose of holding field descriptors of
operands (see Figure 6-7 and the discussion of main memory in
section 6.3.3). Alternatively, these registers may be addressed as 32
registers (SOOA-S15A, SO0B-S15B) each 24 bits in length, and they
may also be used as general purpose registers. In contrast to other
registers that can be addressed and used as sources/destinations in
many microinstructions, scratchpad registers can only be accessed
through a few dedicated scratchpad microinstructions.

Control Register

The 24-bit control register (C) is actually a collection of indepen-
dent subregisters as indicated in Figure 6-6. The functions of CPL,
CPU, and CYF were discussed along with the 24-bit function box.
Only 1 bit (3) of CD is actually used and its function is to indicate a
memory parity error. CC is used for four other possible interrupt
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T Register

23 2019 615 121 87 43 0
TA B TC TD TE TF

3 03 03 03 03 03 o

L Register

23 201 1815 121 87 43 ]
LA LB LC LD LE LF
3 03 03 03 03 03 0

Fig. 6-5: Four-Bit Subregister Addressability of the T and L Registers.

conditions, console interrupt, I/O service request, timer interrupt (set
automatically by the hardware every 100 milliseconds), and console
state.

The 4-bit CA and CB fields are general purpose registers available
for use as desired by the microprogrammer. Addressable as both
sources and destinations, they may be set, manipulated, and tested
just as other 4-bit registers and can be particularly useful in emula-
tion for keeping track of target machine status.

6.3.3 Main Memory and Memory Control

It has already been pointed out that the B1700 does not have a
fixed word size, but rather operates on defined fields, whose lengths
may vary from as small as a single bit. In support of this concept,
memory is addressable down to the individual bit.

Available memory sizes are from 16K bytes minimum (B1712) to
256K bytes maximum (B1728).3 Although physical memory is byte
oriented, special hardware (field isolation units) is used to achieve bit
addressability and variable lengths crossing normal byte boundaries.
In effect, then, memory sizes of 128K bits minimum to 2M bits are
realizable with currently available configurations.

A maximum of 24 bits of data may be handled in a single memory
read or write operation. For longer length fields additional read-write
microinstruction executions are required.

3 Maximum memory size for the B1726 is 98K bytes.
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23 0
7 CP 0
CA cs ce O IovF | cru| crL

3 03 03 03 O 01 04 O

Fig. 6-6: Control Register.

Addressing

Main memory is addressed by a 24-bit absolute address, a 1-bit
field direction indicator, and a 5-bit field length value. The absolute
address is obtained from the 48-bit definjtion (F) register (shown in
Figure 6-7a), FA field, while the field length and direction are con-
tained in the microinstruction. The field length contained in the FL
field of the F register describes the actual total length of the data
field (up to 65K bits) which may require multiple 24-bit memory
accesses to handle. FU and FT specify units of data (binary, 4-bit
binary, and so on) and type, and do not affect memory operation.
Microinstructions are available (B1726 only) to move descriptors
between 48-bit scratchpad registers and the F register.

The field length condition register (FLCN) is a 4-bit register that
continuously indicates the results of a comparison between FL and
the similar field of the descriptor stored in scratchpad SO0B: used in
conjunction with the capability to increment or decrement FL in the
memory read-write microinstruction, the FLCN register can facilitate
control of multiple read-write operations in handling fields greater
than 24-bits in length.

Memory base and limit registers (BR, LR) are available as source
and destination registers. They allow the microprogrammer to imple-
ment base relative addressing and memory protection (without sacri-
ficing other general purpose registers), as is done in the MCP,

6.3.4 Control Store

A single level of logical control store is utilized in the B1700
architecture. Only the B1726 has a physically separate control store,
while the B1710 stores its microprograms in main memory.

Control memory sizes of 1K or 2K words are available for the
B1726, with 3K and 4K sizes also available for the B1728. Like the



Chapter 6, Burroughs B1700 Architecture 101

ar F 0
23 FB 0
FA 15 FL
FUL FT Mre [ FLO | FLE | FLF
23 03 03 03 03 03 03 0
b.
FLCN
FL=SFL |FL>SFL|FL<SFL| FL#O
3 2 ! 0
Fig. 6-7: Field Definition (F) and Field Length Condition
(FLCN) Registers,

B1710, the B1726 can also execute microprograms from main mem-
ory and hence the 2K maximum physical size is not a limiting factor.
Word size in control memory is 16 bits, the length of a single
microinstruction,

An Overlay microinstruction provides the capability of writing a
variable number of microinstructions into the read-write control -
memory from main memory. The FA, FL, and L registers are used to
hold the necessary parameters.

A group of three key registers are used by the B1726 to permit
fetching microinstructions from either control memory or main
memory. The A register contains the logical address of the next
microinstruction; the top of control memory (TOPM) indicates the
number of K bytes of control memory in the system; and the
memory base register (MBR) points to the base location in main
memory at which microprograms are stored. Internal logic compares
the contents of A and TOPM X 512 to determine if the next address
lies within physical control memory; if not, the microinstruction is
fetched from main memory location (A X 16) + MBR. The B1710
has only the A register.

Additional facilities used with control memory will be discussed in
the following section on microinstruction sequencing.
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6.3.5 Microinstructions and Processor Control

General

Microinstructions for the B1700 are 16 bits in length and may be
considered vertical. The multiplicity of highly encoded formats is
shown in Table 6-1, along with the possible values of most of the
variants called for that are shown in Table 6-2.% Source and destina-
tion registers are addressed via a row and column matrix with 4-bit
registers grouped in columns 0 and 1 (Table 6-2),

The microinstruction currently being executed is held in the 16-bit
M register which is itself capable of being accessed as a source or
destination register. Since M is loaded by ORing with the present
contents, a MOVE to M may be used to modify the next microin-
struction without altering it in memory.

It is interesting to note the opcode scheme employed within the
microinstructions. As can be seen in Table 6-1, from 4 to 16 bits may
be used for the variable length opcode field; within the constraints of
bits required for necessary variants, shorter length opcodes are gen-
erally used for more frequently executed microinstructions, and
longer opcodes for less frequently executed microinstructions. A
constant length opcode field would have required at least one addi-
tional bit in every microinstruction, since 5 bits would be required
for the opcode field (32 microinstructions) and many only require 4
bits with this scheme.

Microinstruction Sequencing

Execution of microinstructions is normally from sequential loca-
tions in control (or main) memory, with explicit branches forced by
conditional or unconditional branching microinstructions. A 12-bit
dedicated high speed adder facilitates incrementing the A register for
relative branches.

An address stack of 32 words (16 in the B1710) each 24 bits long
is used to hold microinstruction addresses in a last in, first out
(LIFO) mode; the 24-bit length permits operand storage as well. This

4A1though not all commands shown are available for the B1710 system, Bur-

roughs software provides for B1710-B1720 compatibility by automatically
generating B1710 microinstruction sequences equivalent to “not available”
microinstructions.
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Table 6-1: B1700 Microinstructions and Formats (Continued)

M REGISTER
OP CODE
Micromnemonics | HEXADECIMAL |15 14 13 12 |11 10 7 6 3 2 1 0
Load F from SOURCE SCRATCHPAD
Doublepad Word* 005n 0 0 0 O 0 0 0 1 WORD (48 BITS)
CYF | CYF
Set TO | TO | CYF | CYF
CYF 006n 0 0 0 0 ) 0 0 1 CYD | CYL | TO1 | TOCO
Halt 0001 0O 0 0 O ) 0 0 0 ] 0 0 1
Overlay
M String* 0002 0O 0 0 0 0 0 0 0 0 0 1 0
Normalize
X 0003 0O 0 0 0 0 0 0 0 0 0 1 1
No
Operation 0000 0 0 0 O 0 H 0 0 0 0 0 0

*Not available on B1710 systems

ONE BIT VARIANTO




Table 6-2: Microinstruction Variant Codes (Courtesy Burroughs Corp. [BURR72] ).

BITS 4-6

000
001
010
on
100
101
110
111

FOUR-BIT MANIPULATE
{3nnn) VARIANTS

CONDITIONS

SET
AND
OR
EOR
INC
INC/TEST
DEC
DEC/TEST

BITS 56

00
01
10
1

EXTRACT FROMT REGISTER
(8nnn} VARIANTS

CONDITIONS

X REG.
Y REG.
TREG,
L REG.

BITS5-7

000
001
010
011
100
101
110
1M1

COUNT FAAND FL
(06nn) VARIANTS

CONDITIONS

NOP
FA?
FL?t
FAt FLI
FAl FLt
FAL
-FLI
FA{ FLI

BITS 46

000
001
010
o011
100
101
110
111

SKIP WHEN (6nnn) SKIP
TEST VARIANTS

CONDITIONS

ANY SKIP

ALL SKIP

EQU SKIP
ALL CLR SKIP
NOT ANY SKIP
NOT ALL SKIP
NOT EQU SKIP

NOT ALL CLR SKIP

{Continued)
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Table 6-2: Microinstruction Variant Codes {(Continued)

SWAP MEMORY
(02nn) VARIANTS
BITS 6-7 CONDITIONS
00 X REG.
01 Y REG.
10 T REG.

1 L REG.
DISPATCH (001n)
VARIANTS

BITS 1-3 CONDITIONS
000 DISPATCH LOCK
001 DISPATCH WRITE
010 DISPATCH READ
on DISPATCH RD & CLR
100 RESERVED
101 RESERVED
110 RESERVED
11 RESERVED

READ/WRITE MEMORY
{7nnn) VARIANTS

BITS 6-7 CONDITIONS
00 X REG.
o1 Y REG.
10 T REG.
1" L REG.
BITS 8-10 CONDITIONS
000 NOP
001 FAt
010 FLt
oM FAt FL}
100 FA! FL1T
101 FA}
110 FL{
m FA} FLJ

{Continued)
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Table 6-2: Microinstruction Variant Codes (Continued)
CASSETTE CONTROL
(002n) VARIANTS
BITS 3-1 CONDITIONS
000 START TAPE
001 STOP ON GAP
010 STOP ON X#Y
011-111 RESERVED
BIAS (003n) VARIANTS
BITS 3-1 CONDITIONS
000 FU
001 24 OR FL
010 24 OR SFL
011 24 OR FL OR SFL
100 NOP
101 24 OR CPL OR FL
110 NOP
11 24 OR CPL OR FL OR SFL
REGISTER COLUMN
0 | 1 | 2 | 3
CC REGISTER | . ,
0= CONSOLE INTR. 0 TA FU X SUM
1= 1/0 SERVICE REQ. 1 TB FT Y CMPX
2= CLOCK INTR {100 M3) R 2 TC FLC T CMPY
3=STATE FLAG E| 3 TD FLD L XANY
G
CD REGISTER . | 4 TE FLE A(MAR) XEOY
0 = WRT/SWAP OUT OF BDS* s | 8 TF FLF M MSKX
2 = OUT OF BDS OVERRIDE* g |7 ¢B FLCN LR XORY
9 LB RES. FB MAXS
INCN REGISTER® R |10 Lc Res. FL MAXM
1 = PORT DISP. INTR. w )
2 = PORT PRIORITY INTR. 12 LE XYCN cP MBR*
3= MISSING CONTROLLER ON PORT 13 LF XYST MSMA* DATA
OR CHANNEL 14 CC INCN* READ CMND
15 CD CPU WRIT  NULL

*NOT AVAILABLE ON B1710 SYSTEMS
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facility provides a powerful microsubroutine capability. It is accessed
by MOVEs to the top of the A stack (TAS) register, or CALLs, or
MOVEs from the TAS; these microinstructions push and pop the
stack to save and recall addresses or operands as desired.

Interrupts

All interrupts within the B1700 processors are soft in that they
must be explicitly tested for and reacted to by microinstructions.
The CC and CD fields of the control register (plus a B1726 interrupt
conditions [INCN] register) provide indicators for interrupts that
can be tested for, with conditional branches to interrupt handling
microroutines.

6.4 INPUT/OUTPUT

Input/output operations in B1700 systems are handled by I/0
controllers after being initiated by the processor. A 24-bit DATA
pseudoregister serves as an I/O buffer register; data are passed to and
from the I/O controller using MOVEs to and from the DATA
register. Similarly, I/O commands are passed to the 1/O controller
using the CMND register.

A tape cassette is available for specialized input, normally of
microinstructions. TAPE mode selectable by console switch permits
the processor to accept and execute microinstructions directly from
the cassette unit. Data input from the cassette are available to the
processor in the 16-bit U register, accessable as a source for MOVE
operations only.

6.5 ORGANIZATIONAL PARAMETERS

Basic clock rates in the B1712, B1714, and B1726 processors are
2MHz, 4MHz, and 6HMz respectively. Read-write cycle times of the
three processors are thus 2-3 microseconds (B1712), 1-1.5 micro-
seconds (B1714), and 667-1000 nanoseconds (B1726) respectively,
based on four clocks for a read cycle and six clocks for a write cycle.
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6.6 SUMMARY

The B1700 architecture is particularly well suited to general pur-
pose microprogramming. The processing facilities and microinstruc-
tion repertoire give the microprogrammer the capability of coding
efficient emulators, functionally oriented intermediate (S) languages,
or directly executed application programs. Finally, the defined field
concept together with the bit addressable main memory not only
facilitate handling of variable data lengths, but, in addition, serve to
maximize the efficient use of available memory.



Chapter 7
Nanodata QM-1 Architecture

7.0 SUMMARY DESCRIPTION

The Nanodata QM-1 is a general purpose computer employing two
levels of control below the traditional machine language (macro)
level. The micro level machine with microprograms residing in con-
trol store is not completely defined; the lower nano level machine
which executes nanoprograms from nano store will define the micro
level machine in the same manner in which a micro level program
defines a macro level machine.

The QM-1 nano level machine is a horizontally structured machine
that exercises detailed control over the hardware. Control is divided
between nanoinstructions (a 72-bit K vector and 72-bit T vector, or
144 bits total) and a set of residual control F registers (F store).

Data words may be either 16 or 18 bits in length. An ALU and
shifter operate in either of the two modes, and also support a
decimal mode. Local store consists of a bank of 32 general purpose
registers, some of which also perform special purpose functions. A
prime function of the residual control F registers is to control the
buses providing interconnection between the major functional units
and the local store registers; for example, three F registers select two
local store registers to supply left and right ALU inputs and a third
to receive the ALU output.

The 144-bit nanoinstruction includes over 60 fields. Individual
fields control selections of input/output sources/destinations, specifi-
cations of control variables, and detailed gating of register/functional
unit contents and initiation of actions. The nanoinstructions also
control the setting of the residual F store contents. The nanopro-
grammer must have a thorough understanding of hardware functions
and timing constraints.

112
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Nano store is writable and may contain up to 1K “words,” each
word consisting of a single K vector and four associated T vectors for
a total of 360 bits. T vectors are selected sequentially while the K
vector is held constant. Explicit branches with a variety of possible
test actions select new nanowords. The contents of nano store may
be dynamically altered. |

7.1 INTRODUCTION

The most unique architecture presented in this book is that of the
QM-1 from Nanodata Corporation. It represents the only com-
mercially available machine that employs two true levels of control
store, a nano store at what is termed the nanoprogrammable level,
and a control store at the microprogrammable level. The potential
thus exists for tailoring not only the macro level architecture, but the
micro level architecture as well.

At the lowest level, horizontal nanoinstructions exercise near
direct control over the hardware. To a large extent the busing
interconnections are even programmable. The micro level archi-
tecture implemented via nanoprogramming will generally be a verti-
cally organized machine, although only a minimum of constraints are
actually imposed.

This chapter will deal primarily with the nano level architecture
examining the horizontal control concept and the application of
residual control in some detail. At the same time, the features that
influence the higher level microprogrammable architecture will be-
come apparent. Because the nano level machine is horizontal in
structure, the discussions will of necessity be somewhat detailed.

7.2 GM-1 CPU

Major Units

A system overview block diagram is presented in Figure 7-1. The
hardware includes a hierarchy of stores (main store, control store,
nano store, plus local store, external store, and F store), functional
processing facilities (ALU, shifter, index ALU), and buses that gen-
erally connect the stores and processing facilities to the local store.
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EQD
[ Moo | [ 400 | coD [E0a]
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Fig. 7-1: Block Diagram of Nanodata QM-1
(Courtesy of Nanodata Corp.).

Conceptually, it is possible to separate the architecture into an
18-bit data oriented portion (the major stores, ALU, shifter, and
associated buses), and a 6-bit residual control portion (the F store
and associated facilities), both of which are controlled by the nano-

program.

Buses

Three-letter acronyms are used to label the various buses shown in
the diagram. The first letter indicates the major unit with which the
bus is associated (A = ALU, C = control store, E = external store, M =
main store, S = shifter); the second letter defines the direction of
data flow (I = input to the unit from local store, O = output from the
unit to local store); and the third letter contains further information
(A = address, D = data, L = left, R = right, X = multiplex).

Each of twelve buses is connected to a single local store register (at
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any one time) as selected by the nanoprogrammer and as specified in
a residual control register. Two additional buses provide connection
between two of the local store buses and external store (EIA, EOA).
A bus may connect to only one register, but more than one bus may
connect to a single register (producing the logical OR of the bus
inputs as the register contents). Since all the buses are independent,
it is theoretically possible for the nanoprogrammer to cause up to 12
data transfers to occur simultaneously.

Control

Control exercised by the nanoprogrammer is very close to the
hardware level. Six-bit registers in the F store are used to contain
residual control information, such as bus connections, that change
infrequently. Nanoinstructions themselves contain detailed nano-
primitives that effect current (as compared to residual) control over
the stores and processing facilities; this control is typically in the
form of commands to initiate memory reads-writes and gate informa-
tion between buses and stores.

7.2.1 Processing Facilities

ALU

The principal processing facilivy of the QM-1 is the arithmetic logic
unit (ALU), which can perform 16 functional operations using two
operands. In the normal mode, inputs and outputs are full 18-bit
words. A 16-bit mode is also available in which the sign is simply
extended over the two high order bits. Finally, a “decimal correction
word” can be generated to facilitate decimal arithmetic. For handling
negative numbers, 2’s complement or 1’s complement arithmetic
may be performed (or even unsigned arithmetic).

Inputs to the ALU are from the arithmetic input left (AIL) bus,
the arithmetic input right (AIR) bus, and the carry-in-hold flip-flop.
Control information is provided both by the current nanoinstruction
(KALC field, Figure 7-2), and by the FIDX (F store) register that
permits residual arithmetic unit control over the selection of 16- or
18-bit mode. ALU output is through the shifter extension to the
arithmetic output data (AOD) bus, the carry output condition, the
use of which is separately controlled by another nanoinstruction
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5 4 3 0
Decimal Logic ;
KALC| cControl | Conirol ALU Function
5 4 3 2 1 0
KsHC| cooft | Rignt Type Mode | Direction |
00 Circuler 0O Single O Left
01 Logical 1 Double 1 Right
10 Arithmetic
11 (Undefined)

Fig. 7-2: Details of Significant Nanoinstruction Fields,

field (CARRY CTL), and an overflow condition separately testable.
A carry-out-hold (COH) flip-flop is available and can be set by the
carry output condition, according to CARRY CTL.

The full range of ALU capabilities available can be appreciated
through study of Table 7-1, which details outputs produced as a
function of the inputs and control functions. Decimal corrections,
when produced, are placed on the shifter output data (SOD) bus for
subsequent use by the nanoprogrammer.

Shifter

Two shifting modes are available, single and double. In single
mode, only the shifter itself is used and the shifter extension merely
passes the ALU output onto the AOD bus; the contents of the shift
input data (SID) bus can then be shifted (independent of ALU
activities) and the shifted result placed on the SOD bus. Double
mode uses the shifter extension as well as the shifter to shift a 36-bit
word from the combined ALU output and SID bus.

Control over the shifter is through the KSHC field in the current
nanoinstruction (Figure 7-2). The nanoprogrammer can specify direc-
tion, mode, and type (circular, logical, arithmetic) of shift and also
influences both the source of the low order bit of SOD (left control)
and the input to the carry-out-hold flip-flop (right control). The low
order bit of SOD may come from either the low order output bit of
the shifter or the carry-out-hold (COH) flip-flop, while the input to
the carry-out-hold flip-flop may come from the ALU carry output
condition, the SH END (37th bit) of the shifter extension, or the low
order bit on the SID bus as selected by the nanoinstruction. Shift
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amount (number of bits) is controlled by the 6-bit KSHA field of the
active nanoinstruction.

Index ALU

A special and dedicated ALU, the Index ALU, is available to
facilitate rapid indexing and logical/masking operations on the con-
tents of certain registers of local store. The nanoprogrammer spe-
cifies either directly or indirectly four parameters: a local store
register to provide one input (AUX2 field of current nanoinstruction
points to the field that points to LS register); an index operand
source (second input) selected from one of 12 index registers in
external store, the contents of the MOD or COD buses, or all 1’s
(AUX3 field in current nanoinstruction points to field that selects
one of these sources); a function to be performed by the Index ALU
(FSEL2 field in current nanoinstruction either specifies directly or
points to the field that in turn specifies the function); and a local
store register to receive the Index ALU output (GSPEC field in
current nanoinstruction points to field that points to LS register).
The fields pointed to for indirect selection are generally other cur-
rent nanoinstruction fields (KA, KB, KX), fields of the current
microinstruction (A, B),! or specified residual control registers in F
store. A large set of arithmetic and logic functions may be performed
in the Index ALU making it a valuable general purpose facility in
addition to its indexing/addressing role.

Test Conditions

Six local conditions are produced within the ALU, shifter, and
associated logic. These include CARRY (C), which is the output of
COH flip-flop already discussed; SIGN (S), the high order bit of the
AOD bus; RESULT (R), indicating the presence of any 1’s in an 18
or 36-bit result for testing for absolute zero; OVERFLOW (O), the
logical OR of shift overflow and ALU overflow; and SHB and SLB,
the high order and low order bits of the SOD bus. The nano-
programmer can cause the local conditions to be gated into an F
store register (FIST) for retention as global conditions. Nanoinstruc-
tion control fields ALU STATUS ENABLE and SH STATUS EN-
ABLE permit moving the C, S, R, O bits to global status with the

1gee section 7.2.2.



Chapter 7, Nanodata QM-1 Architecture 119

GATE ALU command and the SHB, SLB bits with the GATE SH
command respectively.

7.2.2 Local Store

General Registers

There are a total of 32 registers in local store (LS) (R0-R31), each
18 bits long. In addition to their capabilities as general purpose
registers, several have special capabilities that are primarily oriented
toward use in implementing a micro level architecture.

Microinstruction Register

The last local store register, R31, is dedicated to functioning as a
microinstruction register (MIR). Specifically, it enables 6-bit fields
(C, A, B from high order end to low order end) to be accessed and
used in subsequent control actions. It thus provides an interface link
between the 18-bit data structure and the 6-bit control structure. A
more detailed discussion of this register is provided in section 7.2.7,
on nano store.

Microprogram Counters

Four local store registers (R24—R27) have special capabilities that
enable them to serve as microprogram counters (MPC). Residual
control register FMPC designates which of the four is currently
acting as the MPC. Under nanoprogram control the MPC may be
incremented by +1, +2, the contents of the B field of R31 (6 bits,
sign extended, 2’s complement convention), or the combined con-
tents of the AB fields of R31 (11 bits, sign extended, 2’s comple-
ment convention). The results of the incrementing may be used to
address control store directly (CS ADDR SELECT field of current
nanoinstruction) or be gated back into the physical MPC register
(INC MPC primitive in current nanoinstruction, using the GSPEC
field to specify increment value or source as above).

Index ALU Sources/Destinations

With the exception of the four MPC registers (R24-R27), any of
the local store registers may be used as a source of input to the Index
ALU or as a destination to receive the Index ALU output. The
operation of this facility was described above in section 7.2.1.
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7.2.3 External Store

A second bank of 32 registers, collectively referred to as external
store (ES), is partitioned into several groups in support of specific
functions. Eight port registers (EO—E7) provide the external interface
capabilities of the QM-1. Possible Index ALU operand sources are
E8—E19 as described above in section 7.2.1; eight of these are general
purpose, two (a QM-1 option) may serve as base address and field
Iength registers for use with main store, and two contain “program
check masks” to control interrupt enables. The remaining twelve
(E20-E31) include alternate base address and field length registers
(E20—-E21)?, and compacted addresses to be used for responding to
interrupts (see section 7.3.4).

Two nanoprimitives are provided to the nanoprogrammer to con-
trol external store data transfers. These are GATE ES which gates the
EOD bus contents into its designated local store register, and LOAD
ES which loads the designated external store register with the con-
tents of the EID bus. Register designations on both ends of these two
buses are established through residual control F store registers.

7.2.4 Control Store

QM-1 control store (CS) is implemented in a read-write semicon-
ductor memory, and is addressable in 18-bit words. Up to 16K words
of control store may be included in blocks of 1K words each.

As Figure 7-1 indicates, both the control store input address (CIA)
bus and microprogram counter (MPC) can be used to select control
store addresses for read-write operations. The CIA bus allows general
access for data storage and retrieval permitting use of control store
for such things as the emulation of target machine registers, tables,
and so on. Addresses from the MPC register would, of course, be
used for microinstruction fetching. In addition, the control store
address may be obtained from the control store output data (COD)
bus to facilitate indirect addressing, or from the output of the Index
ALU. Address source selection is effected through the CS ADDR
SELECT field of the current nanoinstruction.

An available QM-1 option permits the implementation of a virtual

?Note that these cannot be indexed.
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control store with a total address space of 256 pages of 512 words
each, mapped to the physical control store of 32 pages of 512 words.
Auxiliary hardware provided with this option includes a high speed
associative page selector, and a page access control memory for
control store read-write protection.

The nanoprogrammer may control the functions of control store
through use of the READ CS and WRITE CS nanoprimitives. After
the READ operation, the contents of the selected address appear on
the COD bus, from where they may be transferred to local store by
the GATE CS nanoprimitive.

7.2.5 Main Store

Main store (MS) is available from a minimum of 16K words to a
maximum of 256K in 8K increments. Word size is 18 bits, com-
patible with control store, local store, and external store.

The input bus to main store is called the main store input multi-
plex (MIX) bus since it is shared between main store addressing and
data functions sequentially. Qutput is via the main store output data
(MOD) bus.

Separate MSGO and MSRS nanoprimitives give the nanoprogram-
mer the flexibility of using either full or split memory cycles,
including a read/modify/write capability. In keeping with the de-
tailed hardware level control exercised elsewhere in the machine,
tests for MS Busy and MS Data Invalid must be performed, and a
GATE MS nanoprimitive must be accomplished at the proper time to
read data out of memory.

An available QM-1 option allows the use of E16 and E17 as
indexable main store base and field length registers respectively, and
also provides write-protection and address-alarm facilities. Also plan-
ned is a QM-1 optional RMI (rotate, mask, and index) unit to provide
a limited processing capability on data before it is gated into local
store.

7.2.6 F Store and Associated Operations

F store consists of 32 control registers, each 6 bits in length.
Generally, these registers are utilized for residual control purposes.
‘Although all are 6 bits long, all the bits are not necessarily utilized.
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Bus Control F’s

Fourteen of the F store registers provide for control of the buses
shown in Figure 7-1. The MOD bus, for example, is connected to the
local store register indicated by FMOD. Since only 32 local store
registers are available, only 5 bits are required to specify connection,
with some exceptions. The high order bit is ignored for registers
specifying local store destinations (output from buses); for local
store sources (input to buses), a 1 in the high order position causes
connection to a source of all 1’s rather than a local store register.
Exceptions are the MIX and MOD buses that can connect to the port
registers in external store and hence have more than 32 possible
connections to encode: 32—39 indicate port registers EO—E7; 4064
yield all I’s for MIX sources, while a GATE MS with FMOD contents
of 40-64 results in no operation.

Special F’s

Six of the F store registers are referred to as special F’s and their
functions will be briefly mentioned. FACT controls auxiliary actions
including interrupt enable and disable (see section 7.3.4), control of
the main store relative/direct addressing, and parameters for control
store options (CS address translation and RMI functions). FUSR also
is used with the optional virtual control store hardware to specify
user partition numbers. FMPC selects the local store register to
operate as the MPC (values 0—4 correspond to R24-R27 respec-
tively). FIDX has several functions as indicated in Figure 7-3. FIST
holds global status of conditions as described in section 7.2.1 and as
shown in Figure 7-3. Finally, a phantom F store register, FIPH, is
provided to facilitate direct transfer of information from one auxili-
ary field to another as will be described below.

G Registers

The last twelve registers in F store are the G’s, GO—G11. These are
general purpose 6-bit registers that can be used for constant,
scratchpad, temporary storage, or back-up to the other F store
registers. In the latter role they add further depth to the concept of
residual control and provide the nanoprogrammer with the means to
readily change the structure of the machine, and subsequently return
it to its original state.
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5 4 3 2 0]
ALU SUPR NS
FIDX Mode ST Mode NS Page Index

ALU Mode: 0O =18 bit, 1= 16 bit
SUPR ST:  1allows entry to protected nanoprograms
NS Mode: O = read-write, 1= read only
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FIST SHB c S R 0 SLB

Fig. 7-3: Key F Store Formats.

F Register Operations and the Auxiliary Fields

Transfer of information to and from registers in F store is nor-
mally accomplished using the auxiliary (AUX) fields, a collection of
fields in other registers that can function as sources for transfer into
F or destinations for transfer out of F. These include the C, A and B
fields of the MIR (R31), the K fields (KA, KB, KS, KX, KT, KSHA,
KSHC, KALC as shown in Table 7-2) of the current nanoinstruction,
and other miscellaneous sources. Of particular importance is the fact
that the G’s may also be used as AUX fields (as sources only) for
transfers into F; this allows the G fields to be used for holding
information that subsequently can be transferred directly into an F
register. Similarly, the use of the phantom F register, FIPH, as a
simultaneous source and destination for two AUX transfers results in
direct transfer of information from the source AUX to the destina-
tion AUX.

Several transfers between AUX fields and F registers can be
initiated in a single active nanoinstruction. AUX fields to be used are
selected using nanoinstruction fields AUXO, AUX1, AUX2, and
AUX3. F store registers to be used are selected using the FSELO,
FSEL1, and FSEL2 fields. Nanoprimitives INO, IN1, and IN2 can
then be used to cause transfers from AUX registers selected by
AUXO0, AUX1, AUX2 to F registers selected by FSELO, FSEL]1, and
FSEL2 respectively. Similarly, nanoprimitives OUT1, OUT2, and
OUT3 can command transfers from F registers selected by FSELDO,
FSEL1, and FSEL2 to AUX registers selected by AUXO0, AUX1, and
AUX3 respectively. G’s are specified indirectly by reference to the
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GSPEC field that points to the desired G. Within the constraints of F
and AUX selections, it is theoretically possible to have up to six
transfers take place simultaneously.

F register contents can be directly processed in one of two ways. In-
crement and decrement capabilities exist and are invoked by selection
of INCF or DECF as the AUX source in an IN1 and/or IN2 operation.
Also, a QM-1 optional 6-bit ALU (the ALUF) can be obtained to
process F store contents directly with 16 possible functions. The
function is specified indirectly (AUX3) and the output is obtained
by an INO transfer from ALUF (indicated in AUXO0) to another F.

7.2.7 Nano Store

The last major functional unit of the QM-1 to be described is the
nano store (NS). A full word in nano store is 360 bits, made up of a
72-bit K vector and four 72-bit T vectors as will be described in the
following section (7.3). Nano store is available in 256 word blocks,
up to a limit of 1,024 words. Blocks are further subdivided into 128
word pages.

Nanoprimitives READ NS, WRITE NS, and GATE NS are avail-
able, providing the nanoprogrammer with the capability to dy-
namically alter the contents of nano store as well as to read out
selected locations on command. A WRITE NS operation can only
alter 18 bits of a 360-bit word. For this purpose, a nanoword can be
considered to be composed of 20 units of 18 bits each (0—19). The
10-bit address is taken from R31 (bits 15-6, from C and A fields), the
18-bit-unit number from the B field (low order 5 bits), and the actual
data to be written from the EOD bus.

The detailed breakout of nanoword contents is described in the
following section, along with an examination of the nanocontrol
structure.

7.3 NANOINSTRUCTIONS AND NANO LEVEL CONTROL

It has already been pointed out that the nano level control is
horizontal and closely associated with low level hardware operations.
Many of the individual nano level commands have been described
along with the hardware features to which they pertain. This section
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K Vector | T Vector (1) | T Vector (2) | T Vector (3) | T Vector {4)

Fig. 744: Format of the 360-Bit Nanoword.

will examine the nanoinstruction as an entity and further describe
the overall nano level control structure with emphasis on the se-
quential occurrence of control actions.

7.3.1 Nanoinstruction Formats

The concept of a nanoinstruction in the QM-1 is somewhat un-
usual, in that a nanoinstruction does not correspond directly to a
nanoword. In fact, the term nanoinstruction is not generally used by
the manufacturer; essentially, it can be equated to the combination
of the K vector with the active T vector as will become clear. (The
nanoword may alternatively be considered to be a variation on the
“polyphase” nanoinstruction.)

A 360-bit nanoword contains the 72-bit K vector and four 72-bit
T vectors as shown in Figure 74. At any one time, machine opera-
tions are controlled by the K vector and one of the T vectors. K
vector field assignments are detailed in Table 7-2, while Figure 7-2
provides additional details of fields within the K vector. Nanoprimi-
tive fields of the T vector are similarly detailed in Table 7-3.

The high incidence of single-bit fields in the K and T vectors is
indicative of the hardware level of control. Longer bit fields employ
some encoding to reduce field width; nevertheless, little flexibility is
sacrificed since many encoded options are inherently mutually exclu-
sive,

7.3.2 Timing

The QM-1 CPU operates in a synchronous mode with a basic
machine clock period of 80 nanoseconds. A “T period” is equal to
the length of a machine clock period. Normally a single T vector
remains active for a single T period, but, by use of the STRETCH
field in the T vector, it may be extended to two T periods as is
required for certain operations.

Another factor that must be considered by the nanoprogrammer is
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the subcycle time at which any nanoprimitive takes effect. Thus-
nanoprimitives are generally classified as leading edge (LE) or trailing
edge (TE), according to whether they take effect at the beginning of
a T period or at the end; this information is included in Table 7-3.

7.3.3 Nanoinstruction Sequencing and Control

Sequencing

In lieu of a nanoinstruction register, the QM-1 has a control matrix
which holds a full nanoword with a K vector and four T vectors
(Figure 7-4). When the nanoword is loaded into the control matrix,
its K vector becomes active along with the first T vector (T1). With
no further intervention, successive T vectors become active with each
new T period (unless STRETCHed), while the K vector remains
active. This continues in cyclic rotation (T1, T2, T3, T4, T1, T2, and
so on) until a new nanoword is loaded and the process starts over
with a new K vector and a new Tl vector. Note that it is thus
possible to have useful program loops within a single nanoword.

The normal cyclic process can be broken in one of two ways: A
Program Check interrupt can occur, or the nanoprogram can cause a
new nanoword to be loaded. Interrupts will be discussed next in
section 7.3.4.

When a new word has been read from nanostore, it is not auto-
matically loaded into the control matrix. A new word is not loaded
until the GATE NS nanoprimitive is executed; since GATE NS is a
trailing edge action, the new nanoword will take effect at the
beginning of the following T period.

The GATE NS UNCONDITIONALLY nanoprimitive may be used
to load a new nanoword, or for conditional loading, the GATE NS
option in the TEST ACTION field is available. The TEST ACTION
function will conditionally occur according to the results of the test
specified by TEST SPECIFIER. Testable fields include global condi-
tions in FIST (Figure 7-3 and section 7.2.1), local conditions, and
special conditions (Figure 7-5). The K vector may contain masks to
be applied for selecting specific test conditions: KS masks global
conditions, KT masks local conditions, and KX masks special condi-
tions.

As an alternative to the conditional loading of the control matrix,
the TEST ACTION option of SKIP may be used to conditionally
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Table 7-2: Fields of Nanoinstruction K Vector (Courtesy Nanodata Corp.).

CONTROL FIELD BITS | SUMMARY OF CONTROL FUNCTION

KN (10) | Address of possibie successor nanoword.
Nanobranch address and source for MPC load.

SUPERVISOR (1) Program Check if on when this word is
invoked while not in Supervisor Mode.

LEGAL MICRO ENTRY (1) | Program Check if not on when this word
is invoked by a microinstruction.

BRANCH (1) Must be on if nanobranch planned from
this word. Complemented after each READ
NS when ALTERNATE is on.

ALTERNATE {1) | Causes BRANCH to be complemented after
each READ NS,

HOLD (1) | Inhibits automatic loading of KALC,
KSHC, KSHA, and KS from next nanoword
to be executed, unless executed by
microinstruction or Program Check.

HOLD 2 (1) Inhibits automatic loading of KA and KB
from next nanoword to be executed, unless
executed by microinstruction or Program
Check.

ALLOW NANO INTERRUPT {1) | Allows higher priority interrupts at end
of execution of this word, if nanobranch
is not taken,

ALLOW MICRO INTERRUPT (1} | Allows lower priority interrupts at end
of execution of this word, i nanobranch
is not taken.

GENERATE INTERRUPT {1) | Generates or clears an interrupt level
according to G1(GSPEC1} in T1.

ALU STATUS ENABLE (1) Enables move of C,S,R,0 bits from local to
global upon GATE ALLU; C treated specially.

SH STATUS ENABLE {1) | Enables move of SHB, SLB bits from local
to global upon GATE SH.

DIRECT MX ACCESS {1) !nhibits MS base addressing and field
length protection in this nanoword.

(Continued)
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Table 7-2 (Continued)

CONTROL FIELD BITS | SUMMARY OF CONTROL FUNCTION

KA {6 Constant and/or scratch field for nanoword;
source and destination AUX.

KB (6) Constant and/or scratch field for nanoword;
source and destination AUX.

KALC {6) | ALU control; destination AUX.
KSHC (6) | Shift control; destination AUX,
KSHA {6) | Shift amount; destination AUX.
KS {6) | Global condition (and general) test mask;

source and destination AUX,

KT {6) | Local condition test mask (also constant
and/or scratch); source and destination AUX,

KX {6) | Special condition test mask (also constant
and/or scratch); source and destination AUX.

SPARE (2) { Reserved for future use.

K Vector Total 72 Bits

skip the next T vector. The same tests apply as for GATE NS. Note
that by using GATE NS UNCONDITIONALLY and SKIP, it is
possible to conditionally skip the T1 vector of the new nanoword.

Nanoword Address Selection

The QM-1 effectively maintains a priority ordered list of possible
sources for the address of the next nanoword. These include, in order
of descending priority: program check (internal interrupts), nano-
branch, external interrupts, and the nanoprogram counter (NPC).
When a READ NS is executed, possible address sources are scanned
in priority sequence and the highest priority source that has been
enabled supplies the address for the read. Program checks and inter-
rupts will be described in the following section.

If the BRANCH bit in the K vector is on and no program checks
exist, the read address will be taken from the KN field in the K
vector; the ALTERNATE field provides for clearing this bit after
alternate READ NS operations (assuming no GATE NS).
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5 4 3 2 1 o

Not Program | R Index MS MS Dota | F Not
Used Check | Not Zero| Busy lnvalid Zero

Fig. 7-5: Special Conditions Masking Format.

Lowest priority address source is the nanoprogram counter. This
counter is maintained under nanoprogram control by use of the
LOAD NPC nanoprimitive. The NPC can be loaded from any of three
- sources. CS option creates an address from the nano store page index
in FIDX (Figure 7-3) (3 bits) and the 7-bit microopcode (assumed to
be on the COD bus); this provides entry to a nanoprogram for
microinstruction interpretation. KN option loads the NPC from the
KN field of the K vector and is functionally equivalent to BRANCH.
Finally, SEQUENCE increments the current NPC value by 1 for
sequencing through successive nano store locations.

Micro Level Architecture Support

Loading the NPC with the CS option has been described as the
principal method of branching to nanoprogram routines for micro-
instruction interpretation. It should be noted that neither this
branching method nor the availability of R31 as the MIR unduly
constrain the range of micro level architectures that can be sup-
ported. Microinstructions can be of arbitrary length with arbitrary
field assignments; it may be necessary, however, to do some manipu-
lation of the actual fields in order to take full advantage of the QM-1
hardware.

The complete set of nanoprimitives available combined with the
maskable condition fields provide an extremely flexible set of alter-
natives for nanoinstruction sequencing. Any desired macro level or
micro level sequencing scheme can readily be supported. Also, al-
ternative branching methods (with and without NPC) readily facili-
tate subroutine structures within nanoprograms.

7.3.4 Program Checks and Interrupts

Program checks are hard interrupts caused by internal QM-1 condi-
tions: MS parity error; MS address error; illegal microoperation
entry; privileged operation (supervisory) error; and nanoprogram
(microinstruction) time out. The latter prevents hanging up in tight
loops. These conditions result in automatic transfers to a program
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Table 7-3: Fields of Nanoinstruction T Vector (Nanoprimitives} (Courtesy Nanodata Corp.).

CONTROL FIELD BITS SUMMARY OF CONTROL FUNCTION TIME
STRETCH (1 Stretches time of this T step
from one T period to two.
WRITE NS {1 Writes 18 bits from EQD bus LE
into Nanostore.
X10 {1) Sends pulse to external interface; one LE
of eight external ports selected by KA.
RIO (1) Clears Port Register and sends pulse LE
through port, then gates external data
word into Port Register; selected by KA.
MSGO (1) Initiates MS operation; split-cycle if LE
alone, full-read if MSRS simultaneous.
MSRS (1) If alone, requests second half-cycle of LE
MS split-cycie operation; if with MSGO,
initiates full-read.
GATE MS {1) Gates MOD bus into Local Store or Port TE
Registers; modified by RM! SELECT.
RMI SELECT {2) Selects RMI parameters for GATE MS, LE
00 BYPASS including BYPASS. if RMI not
01 PARAMETER SET A installed all encodings are BYPASS
1Q PARAMETER SET B
11 PARAMETER SET C
GATE ES (1) Gates EQOD bus into Local Store. TE
LOAD ES (1) Loads an External Store register TE
from EID bus.
TXX (1) Halts T-Clock with Program Step Switch. TE
READ CS {1) Reads Control Store; uses CS ADDR LE
SELECT.
WRITE CS {1) Writes Control Store; uses CSADDN LE
Select.

(Continued)
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CONTROL FIELD BITS] SUMMARY OF CONTROL FUNCTION TIME
CS ADDR SELECT (3) Selects address for READ CS, WRITE LE
000 CIA CS. (MPC is selected by FMPC.)
001 COD A and AB are sign extended operands.
010 MPC INDEX is output of INDEX ALU.
011 MPC+1
100 MPC+2
101 MPC+B
110 MPC+AB
111 INDEX
GATE CS (1) Gates COD bus into Local Store. TE
GATE ALU (1) Gates AOD bus into Local Store. TE
GATE SH {1) Gates SOD bus into Local Store. TE
CARRY CTL (3) Controls Carry operation within the TE
000 NO OPERATION ALU and Shifter components.
001 CLEAR CIH
010 SET CIH
011 ALUTO BOTH
100 ALU TO COF.
101 SET COH
110 CLEAR COH
111 SHTO COH
INDEX {1} Gates INDEX ALU output into Local TE
Store, selected by G(GSPEC).
INC MPC (1) Increments MPC selected by FMPC; TE
modified by GSPEC.
LOAD NPC (2) Loads or sequences Nano Program TE
00 NO OPERATION Counter.
01 (CS)
10 (KN)
11 {Sequence)
READ NS {n Reads NS; address is from priority- LE
select mechanism. Influences BRANCH.
GATE NS UNCON- (1) Causes the nanoword last read to be TE
DITIONALLY gated into the Control Matrix.
Independent of any TEST ACTION in T.

{Continued)
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Table 7-3 {Continued)

CONTROL FIELD BITS] SUMMARY OF CONTROL FUNCTION TIME
TEST ACTION {1) Conditional Action based on TE
0 SKIP Test Specifier.
1 GATE NS
TEST SPECIFIER (3) Specifies the conditions under LE
000 NEVER which TEST ACTION is to be executed.
001 ALWAYS
O10 If FISTANDKS =0
011 If FISTAND KSNOT =0
100 If LOCAL CONDS AND KT =0
101 If LOCAL CONDS AND KT NOT =0
110 If SPECIAL CONDS AND KX =0
111 If SPECIAL CONDS AND KX NOT =0
LOAD R31 {1) Enables R31 to be loaded with micro- TE
instruction parameters.
AUXILLARY ACTION (1) Initiates Action specified by the LE

contents of FACT (F register 14).

GSPEC {4) | Selects a G or pseudo-G for 6 bit

0000 GO transfers, right input to ALUF,

¢ used in GENERATE INTERRUPT, External

1011 G11 interface G-lines; also used with

1100 KSHA INC MPC.

1101 B

1110 KS

1111 KT
FSELO (5) Selects F register for 6 bit transfers
FSEL1 (5) in Group 0, 1, and 2 respectively,
FSEL2 (5)
AUX0 (3) Selects AUX for 6 bit transfers in
AUX1 (3) Group 0, 1, and 2 respectively.
AUX2 {3) {AUX2 applies to Group 2 input,
AUX3 (3) AUX3 applies to Group 2 output.)
INO (1) | Commands AUX into F register transfer
IN1 {1) | using AUXO0, AUX1, AUX2 to FSELO,
IN2 {1) FSEL1, FSEL2, respectively.
ouUT1 {1) Commands F register output to AUX
QuT2 (1) transfer using FSELO, FSEL1, FSEL2 to
ouT3 (1) AUX0, AUX1, AUX3 respectively.

T Vector Total 72 Bits
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check service nanoprogram that resides in a special 32-word read-
only nano store (RONS) separate from the regular NS. Contents of
RONS is customer specified, and access is controlled by the NS mode
bit of FIDX (Figure 7-3).

External intérrupts are only partially soft in that the nanopro-
grammer has limited control over their handling. Hardware auto-
matically causes a transfer of control when an external interrupt is
pending (assuming, of course, that no higher priority NS address
source is active and the external interrupt has also been enabled).
Subsequent actions are at the discretion of the nanoprogrammer.

A total of 30 levels of external interrupts are provided in priority
order. The highest ten levels are considered as nano interrupts and
the lower 20 as micro interrupts; enabling of these two groups is
separately controllable through the nanoprimitives, ALLOW NANO
INTERRUPT and ALLOW MICRO INTERRUPT at the group level,
and through individual bits in external store registers E18 and E19 at
the individual interrupt level. Auxiliary action (FACT, section 7.2.7)
commands are also available to disable/enable all I/O interrupts with
a single command.

It was mentioned earlier in section 7.2.3 that external store
registers E22—-E31 contain compacted addresses to be used for
handling interrupts. Each 18-bit word contains three 6-bit compacted
addresses that are expanded into ten NS addresses by the insertion
of zeros (viz. abcdef = 0ab000cdef), such that each page of NS
has 16 possible interrupt entry addresses. Level assignments are made
during installation, while address assignments and handling routines
are the responsibility of the nanoprogrammer.

The K vector includes a GENERATE INTERRUPT field that
permits the nanoprogrammer to artificially generate an external
interrupt and/or clear one. The GSPEC field is used to select the
desired level and to specify the generate or clear action.

7.4 INPUT/OUTPUT

The QM-1 I/O system is shown in block diagram form in Figure
7-6. The CPU has eight I/O ports (as described in section 7.2.3), with
an 18-bit external store interface register for each. Used in conjunc-
tion with the external interrupt system, the port registers permit
control over multiple simultaneous I/O operations.
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Fig. 7-6: QM-1 1/0 System (Courtesy Nanodata Corp.).

One channel controller may connect to each port, with up to.64
device controllers on a channel. Since some device controllers can
control multiple devices, it is possible to have more than 64 devices
on a single channel.

Main store may be obtained with up to eight ports also (QM-1
option). With one port reserved for normal access by the CPU, up to
seven memory ports are thus available for connection to direct
memory access (DMA) controllers. This capability combined with
the standard 1/O ports allows a wide range of I/O options.

7.5 ORGANIZATIONAL PARAMETERS

The basic internal clock period of 80 nanoseconds has already
been mentioned. Nanoprimitives execute in either 80 or 160 nano-
seconds (T period or STRETCHed T period).

Main store has access and cycle times of 640 ns. and 800 ns.
respectively. Cycle times for control store and nano store are 75
nanoseconds.
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7.6 SUMMARY

The QM-1 architecture is ideally suited to a research environment
because of the multiple levels of control provided. Experiments on
design of micro level architectures can readily be conducted, with the
advantage of having the macro level available also for benchmark
application/target machine programs for execution/emulation.

The difficulties of nanoprogramming the QM-1 are at least par-
tially offset by the availability of a nano assembler, with special
capabilities to assist specifically in defining a micro level architecture.
In addition, a standard micro level emulator (implemented via nano-
program) called “MULTI” is provided to preclude the necessity of
writing nanoprograms. MULTI is a vertically structured system which
takes advantage of many of the nano level features and is particularly
well suited for emulation applications. Of course, the possible uses of
the machine are not restricted to macro or micro level emulation by
any means. Taking full advantage of all of the resources provided by
this machine is, nevertheless, a challenging task.

As this is written, several machines have been installed and others
are on order, within military research facilities, universities and
industry. Whether or not such an architecture can profitably be
utilized in a commercial production environment remains to be seen.



Chapter 8
Other Architectures

8.1 INTRODUCTION

The architectures presented in depth in the preceeding chapters
represent significantly different architectural approaches in the de-
sign of microprogrammable computers. They are neither exhaustive
of the approaches that can and have been taken, nor do they
necessarily represent the mainstream of current or future machine
popularity.

To add greater depth and balance to the overall range of archi-
tectures considered in this book, this chapter includes brief overviews
of an additional six machines. The first four—CDC 5600, Digital
Scientific META 4, Hewlett Packard 2100/21MX, and Varan
73—have been selected primarily on the basis of their past, current,
or anticipated popularity for general purpose microprogramming and
emulation. The last two—INTEL 3000 and Western Digital MCP
1600 are included as representatives of the new wave, micropro-
grammable microprocessors! Available as LSI chip sets, these new
microprocessors can be expected to serve as the basis for new macro
level machines, for emulators of existing machines, and as flexible
building blocks for a range of microprogrammed devices.

Collectively these architectures, when added to the four previously
presented, should round out the reader’s perspective in the architec-
ture of microprogrammable computers. Sufficient similarities and
differences can be identified within the total set to serve as a basis
for further analysis and comparisons.

136
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8.2 CONTROL DATA 5600

The Control Data 5600 is another machine with no specified macro
level instruction set. It is a general purpose microprogrammable
processor (MPP) with several features making it particularly well
suited to emulation applications.

" The architecture of the 5600 (Figure 8-1) provides for a modularly
cxpandable data width of from 8 to 32 bits in 4 bit increments.
Microinstructions are basically vertical, with parallelism limited to
simultaneous I/O or memory actions along with ALU operations and
next microinstruction selection. Each microinstruction (Figure 8-2)
is 32 bits in length, selecting A and B inputs to the ALU from among
the six principal registers and register files, as well as specifying an
ALU function and output destination.

The ALU operates in 1’s or 2’s complement mode as specified by
the microprogrammer. Options available include double precision
hardware and a “split” mode allowing simultaneous ALU operation
on independent upper and lower halves of the inputs.

The six basic registers are all general purpose, but their names
indicate typical usage during emulation; I normally holds the current
macro level instruction and P holds the macro level program address;
A and Q can be combined to form a double word AQ, and either A
or AQ can be shifted (without the ALU) by the count in the N
register; X is general purpose with no special use; and F holds
information to be stored in the file registers. Two register files are
available; file 1 consists of 256 word-length registers and file 2 has 32
word-length registers normally used for frequently needed constants.

The N and K registers are each 8-bit control registers. K selects file
1 registers and also serves as a general utility counter. N selects file 2
registers, acts as a “repeat” control to cause repeated execution of a
microinstruction pair, and as a counter controls A and AQ shift
functions, Other registers include status/mode (SM) for 1's, 2’s
complement mode selection, interrupt enable, ALU status, and so
on; MASK for individual interrupt enabling; P and MA for selection of
the current microinstruction pair with a counter (MAC) for incre-
mental sequencing; a bit generator to generate full words with a
single 1 bit present; and a return jump (RTJ) register for micro-
program address storage such as used in subroutine control.
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Fig. 8-1: Control Data 5600 Simplified Block Diagram
(Courtesy Control Data Corp.).

An important option available for dedicated emulation usage is the
transform module that can be custom designed to extract given bits
from selected registers, shift as required, add base addresses or
constants, and transfer resulting data to MAC, K, and N registers.
These functions can significantly improve emulation efficiency by
performing many of the target instruction decode operations.

Control store can be either ROM or read-write. Available sizes
range from 256 to 4K words, each containing two 32-bit microin-
structions with a cycle time of 80 nanoseconds.

8.3 DIGITAL SCIENTIFIC META 4

The META 4 (Figure 8-3) is a 16-bit processor from the Digital
Scientific Corporation designed for general purpose microprogram-
ming rather than implementation of a particular macro level architec-
ture. It has been actively marketed by Digital Scientific as an emu-
lator for the IBM 1130 and 1800 systems.
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Fig. 8-2: Control Data 5600 Microinstruction Format.

Microinstructions (Figure 8-4) for the META 4 are 32 bits wide,
highly encoded with four formats, and are essentially vertical in
structure. Separate fields specify the basic operation to be per-
formed, registers to be used as A and B sources and destination, I/O
and memory control, and special controls for microinstruction loop-
ing and arithmetic/shift options.

The arithmetic/boolean unit ALU performs 16 basic functions with
detailed carry options controllable by the microprogrammer. The
skew (shifter) unit can shift either 1 or 8 bits left or right. Sign
Extend and Scale (one place end-off right shift with arithmetic carry
into left) shift commands are also available.

The basic META 4 has four registers: all zeros in register 0,
Condition/Counter register 1, Link register 2, and a general purpose
register 3. This set can be expanded to 32 with various combinations
of additional general purpose registers, I/O register pairs, and
memory register pairs, as well as indirectly addressable scratchpad
registers.

Control store for the META 4 is novel and fast (90 nanosecond
access). Individual bits are alterable through positioning of removable
adhesive-bonded metallic “bit patch” patterns that can be done by
users in the field. Capacity is from 1 to 4K words of 16 bits each
(two per microinstruction) in 1K increments.
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Fig. 84: Meta 4 Microinstruction Formats
(Courtesy Digital Scientific Corp.).
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Fig. 8-3: Meta 4 System Block Diagram
(Courtesy Digital Scientific Corp.).

8.4 HEWLETT PACKARD 2100 AND 21MX

The HP2100 (Figure 8-5) and HP21MX (Figure 8-6) are both
microprogrammable processors that implement a common com-
patible basic set of macro (machine) level instructions, employing
somewhat different architectures. The newer of the two is the 21MX,
with a larger complement of registers, increased control store size,
and simplified bus structure as compared to the 2100. The basic
instruction set is fixed and standard, with writable control store
available to provide extensions or otherwise allow user micropro-
gramming,

Both machines utilize 24-bit vertical type microinstructions, with
a fixed format in the 2100 and four formats (more encoding) for the
21MX. The formats are illustrated in Figure 8-7. In the 2100, the R
bus and S bus fields gate specified registers onto their associated
buses, and the store field gates the ALU/shifter output from the T
bus back into a selected register, while the Function field controls the
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Fig. 8-5: HP2100 Micro Level Block Diagram.

ALU and shifter operation. The 21MX uses the S bus and Store fields
in a similar manner, but the second ALU input is from the L register
in lieu of an R bus. In both machines the Store field can also be used
to store the contents of the S bus in one of its connected registers.
While the lack of an R bus in the 21 MX appears to cause a loss in
flexibility and power compared to the 2100, the additional power of
the more complex microinstruction format set and the improved
hardware performance of the 21MX more than compensate for this
lack. In general, the 2IMX will out perform the 2100 on complex
instructions, while it may take longer than the 2100 on simple
instructions.

Functional units for data transformation in both machines consist
of the ALU and shifter. The 2100 microinstruction has only the 5-bit
Function field (plus the Special field) to control operations, while the
21MX, by virtue of its greater degree of encoding in microinstruc-
tions, enjoys a 5-bit ALU field as well as a 4-bit Operation field
permitting more complex operations to be controlled.

The A and B registers in both machines are for use as target
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Fig. 8-6: HP21MX Micro Level Block Diagram

(macro) level registers; the P register serves as the macro level
program counter and the instruction register holds target level in-
structions. The 21MX has 12 scratchpad registers compared to the
2100’s four, and, unlike the 2100, the 21MX scratchpad registers can
be read from and written into during a single microcycle. The Q and
F registers of the 2100 and the X and Y registers of the 21MX
provide extra general registers for use by the microprogrammer
which in both machines can be used to read from and write back into
during the same microinstruction.

Control store for the 2100 consists of four modules of 256 words
each, with module O dedicated to implementation of the basic
instruction set; the remaining three modules are available for options,
extensions, and user microprograms. A console switch permits substi-
tution of a different module zero as well. The 21MX can have up to
16 control store modules, with four (0, 1, 14, 15) reserved for the
basic instruction set plus extensions, Significantly greater user micro-
programming facilities are thus available with the HP21MX machine.
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0. HP 2100 Microinstruction Format

23 2120 1716 jr-41} 87 43 0
Bbus] S bus I Function ] Store Special [ Skip—]

b. HP2IMX Microinstruction Formats

23 2019 1514 109 54
[ op ] au ] Sbus | Store | Special |

1. Word Type 1 Common

23 20191817 09 54 0
l oP IModi Operand [ Store Special —l

2. Word Type 2 Immedicte

23 2019 151413 54 0]
[ OP ICondi!ion |g| Operand I Special ]

3. Word Type 3 Conditiongl Jump
(JS = Jump Sense)

23 2018 1716 54 [s]
{ OP [(Zero)] Operond Juump Mod |

4. Word Type 4 Unconditional Jump

Fig. 8-7: HP2100 and HP21MX Microinstruction

8.5 VARIAN 73

The Varian 73 (Figure 8-8) is a general purpose microprogram-
mable processor with a 16-bit data width. Although the typical
processor includes a read-only-memory (firmware) control store to
emulate the Varian 620 series machines, the inclusion of writable
control store facilities and the flexibility of the basic architecture
combine to permit the extension of the 620 repertoire, the emula-
tion of other target machines, and general applications micropro-
gramming as well.

The wide 64-bit microinstruction includes 25 individual fields with
the potential for simultaneous control of several different functions,
making the machine fall into the horizontal classification. The fields
are not all independent, however; not only is encoding used within
many of the fields, but in addition the meaning of a field is fre-
quently conditioned by the contents of another field.
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Fig. 8-8: Varian 73 Processor Block Diagram
(Courtesy of Varian Data Machines).

Basic fundamental facilities include a multifunction ALU with
status unit and controllable carry input, and a single bit shifter that
functions on the A input to the ALU or with the operand register. A
separate shift counter facilitates ALU/shift control. The general
register file includes 16 general registers. Target instruction emula-
tion is aided by the program counter, instruction register, and oper-
and register. In addition, the ability to selectively extract and mask
fields from the instruction register further assists the emulation
process.

Writable control store options include a separate writable decoder
control store (another bonus for general emultation) and a writable
I/O control store for additional flexibility. A subroutine stack to
hold return microprogram addresses is a standard feature. Each
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Fig. 8-9: Typical Intel 3000 Microcomputer Configuration.

microinstruction contains several fields and test conditions used in
determining the control store address of the following microinstruc-
tion. The instruction buffer permits an overlap of target instruction
fetching and executing.

8.6 INTEL 3000

The Intel 3000 series is a set of LSI components for assembling
microprogrammed processors and microcomputers. The two princi-
pal members of the family are the 3001 Microprogram Control Unit
(MCU) and the 3002 Central Processing Element (CPE). Each CPE is
a 2-bit slice, many of which can be arrayed together to construct a
processor of arbitrary word length (theoretically up to 320 bits). A
variety of ROM’s and PROM’s (programmable ROM’s) are available
for control memory purposes, as well as additional ancillary packages
to permit design of more powerful or faster microcomputers (for
example, look-ahead carry generators, priority interrupt control
units, and so on).

A typical 3000 system is illustrated in Figure 8-9. It consists of a
single MCU, an array of n CPE’s (n = wordlength/2), a control
memory, and a pipeline register that allows overlap of current micro-
instruction execution and next microinstruction fetch.
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Fig. 8-10: Intel 3000 Series Block Diagrams
(Courtesy Intel Corp.).
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The 2-bit slice CPE (Figure 8-10a) consists of an arithmetic/logic
section (ALS) capable of performing over 40 boolean and binary
functions, two multiplexers for selecting A and B ALS inputs, an
accumulator (AC) register and memory address register for ALS
outputs, and an 11-register scratchpad file. Three input buses permit
ALS input selection from memory data in, external device in, and
the K bus (mask), in addition to the scratchpad registers (RO—R9 plus
T), AC and ALS output. The mask input on the K bus originates
from a mask field in the microinstruction; the B multiplexer outputs
are always ANDed with this mask, adding great versatility to the
functions the microprogrammer can perform using the CPE. Another
novel CPE feature is the provision for conditional clocking, which in
effect freezes the clock, allowing an operation to be performed and
carry or shift data to be generated for test, while at the same time
prohibiting the results from being actually clocked into the specified
registers and potentially saving both microinstructions and execution
time.

The function of the MCU (Figure 8-10b) is to develop microin-
struction addresses based on the previous microinstruction, flags
(from carry/shift operations), and selected bits from the secondary
(that is, macro level) instruction from main memory. Control mem-
ory addresses are based on a row/column matrix addressing scheme
with a basic 512 location control memory organized into 32 rows
and 16 columns; the jump set of possible next microinstruction
instruction addresses is limited to being within the current row or
current column for unconditional jumps, while conditional jump sets
are less restrictive. Additional planes of 512 locations may be added.

Microinstruction length (Figure 8-11) will be determined by the
system configuration and desires of the designer. The minimum
microinstruction is 18 bits in length and is vertical in structure. Three
bits of the CPE function field select the ALS function group, and 4
bits select the register group; the actual complete function performed
is dependent upon the function group, the register group, and the K
bus contents. The remaining 11 bits control the flag options and
jump function. The mask field will be the same width as the data
width of the CPE array; optional processor function bits include
functions such as conditional clocking.

Properly configured, the 3000 series can cover a broad range of
microprogramming applications, including general purpose emula-
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Fig. 8-11: Intel 3000 Microinstruction Format,

tion. The technology employed makes 125 nanosecond microinstruc-
tion execution times readily achievable, according to the manu-
facturer.

8.7 WESTERN DIGITAL MCP 1600

The MCP 1600 from Western Digital is a 3 chip microprocessor set
that is microprogrammable. Designed as a microprogrammable pro-
cessor for direct applications microprogramming or for emulation of
an arbitrary macro level instruction set, it has already been used for a
microprocessor emulation of the DEC PDP-11 instruction set.

The architecture of the chip set (Figure 8-12) is divided into a data
chip, a control chip, and one or more MICROM control store chips.
Interchip communication is via the 18-bit microinstruction bus
(MIB). The vertical microinstructions are encoded in four formats
(Figure 8-13), with the basic microinstruction occupying 16 bits, 2
additional bits for special control functions, and 4 additional user
bits to be defined by the microprogrammer (not available on the
bus).

While the ALU is byte oriented, microinstructions may call for
either byte or word (16-bit) operations, the latter simply requiring
two cycles to complete. An added feature is the availability for test
of the carry out from the fourth bit (bit 3) and eighth bit from the
ALU to facilitate decimal arithmetic. Inputs fo the ALU include two
ports from the register file (a and b) and the output is fed back to
the register file (a). In addition to 4 micro level ALU status bits, the
data chip includes 4 macro level status bits controllable by the
microprogram for emulation usage.

The register file includes a total of 26 8-bit registers, some of
which can be paired for 16-bit operands. Fourteen registers are
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Fig. 8-12a: MCP1600 Block Diagram
(Courtesy Western Digital Corp.).

directly addressable, while eight pairs may be indirectly addressed
using the G register. The G register (3 bits) may be explicitly loaded
under microprogram control or, alternatively, may be implicitly
loaded with user designated bits from the macro level instruction
when that instruction is read.

The control chip includes the translation register (TR)—along with
the translation state register (TSR) to develop jump addresses di-
rectly from macro level instructions for instruction decoding. The
TR holds the macro level instruction word and presents it to the pro-
grammable translation array (PTA), a user specifiable array unit.
The location counter (LC) holds the address of the next micro-



Chapter 8, Other Architectures 151

MIR
[0 ~e] [5 [
miB b8 e A
c § - o= L
op &
-
I
——E[i <«——— DALO7 = 00
- = DALI1S =
Data - CP1611B 5=08
Wait
—Eu-—o PTA i LC —E]
= SYNC
TSR = DIN
Data = DOUT
i » Access = WB
_l Control TACK
Control R Reply
- Busy
Control-CP16218 i
L Reset
Compute
Interrupts
) — t J
Decode ™1 512w x 22Bit
ROM —{>—1—— 4 User/out
L
Chip Chi
- - p Seiect
Select| 4y 1cROM-CPI631B

Fig. 8-12b: MCP 1600 System Diagram
(Courtesy Western Digital Corp.).

instruction to be executed, and the return register (RR) is used to-
store the return address from micro level subroutines.

Each MICROM chip holds 512 microinstructions of 22 bits each.
Up to four chips may be included. Support available from Western
Digital (via time sharing) includes a microprogram assembler for both
the MICROM and PTA, as well as a full simulator to check out
microprograms prior to committing to production.
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Fig. 8-13: MCP 1600 Microinstruction Formats.

8.8 SUMMARY

In many respects microprogramming has matured in recent years.
No longer the exclusive province of the computer designer, it is now
a tool available to systems designers, systems programmers, and
applications programmers alike. |

The range of microprogrammable computer architectures cur-
rently available is very broad and can be expected to expand further.
The architectures presented in this book provide a good representa-
tive cross section of the state of the art. As new architectures arrive
on the scene, they can be better understood and appreciated by
comparing them to those included here.
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