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A BIT SLICE ARCHITECTURE FOR MICROPROGRAMMABLE MACHINES*

Michael Andrews
Department of Electrical Engineering, Colorado State University
Ft. Collins, Colorado 80523

The use of a bit slice architecture offers an attractive alternative to the design of microprogram-
mable computing architectures. By bit slice we mean typically a LSI chip containing either a 2
bit, 4 bit where n is very small. This paper describes these particular architectures to design

in horizontal microprogramming. Hardware desi

gn implementations for both fixed point and floating

point arithmetic algorithms are proposed. Experiences with these numerical hardware are discussed,

along with problems encountered.
1. INTRODUCTION

Until recently, computing hardware for original
design has been based mainly upon LSI (large scale
integration) chips which, at a minimum, were 8
bits wide. Generally, configurations have been
implemented with 16 bit chips. Now it is possible
to design architectures with chips that are very
short word width, of the order 2 or 4 bits. This
is made possible with the introduction of several
industrial chips, [1-4], and others. These short
width LSI packages offer some versatility in the
design and control of computing architectures for
variable word length scenarios. Typically such
applications are found in the process control
industry, numerical control of milling machines,
etc., and other on-line control applications. In
this paper we propose some architectural designs
using these bit-slice chips. It is found that an
additional vehicle for horizontal microprogram-
ming is now possible.

The paper begins with a description of the bit-
slice architecture of the INTEL series. The

next section discusses. a hardware design using a
modified INTEL 3000 in a floating point process-—
or. This section is followed by a discussion of
the microprogramming sequencing techniques em~
ployed in the 3000 series. The paper ends with

a discussion of the use of the 3000 as a vehicle
for demonstrating microprogramming techniques.

At this point, however, we mention that a major
modification to the INTEL 3002 CPE chip, for our
studies, was made in order to employ horizontal
microprogramming. In particular, rather than

use commercial functions, our functions were de—
vised on the basis of the availability of control
gate connections. These connections are hypothe-
sized to permit elementary microoperations. In
this way, it is possible to demonstrate the
actual timing requirements internal to any CPU
given this control gate accessibility. The
discussion to follow focuses briefly upon the
3000 series and our modifications to the CPU chip.

2. BIT SLICE ARCHITECTURES
This section provides a brief overview of a bit

*This work was supported by the AFAL under grant
F 33615-75-C-1138

slice architécture, the Intel 3000 Series. The
3000 series is configured around two LSI, a 3002
central processing element (CPE), and a 3001 mi-
croprogram control unit (MCU)[5]. With ancillary
hardware to enhance sophisticated implementations,
they include a carry look-ahead generator, pipe-
line latches, clocks. The CPE chip is a basic
ALU which does primitive boolean functions, ex-
cluding left-shifts. This absence of a left-shift
indeed penalizes some macroinstruction programming
as will be shown later. The ALU has two input
sources via 2 buses, an M bus and an I bus. How-
ever, the I bus is maskable with another bus, the
K bus, which allows for byte manipulation and bit
masking. The ALU outputs to two destinations, a
memory address register and an AC (accumulator)
register. However, it has been found in practice
that the AC does not perform as a typical accum-~
ulator. Rather, an eleven cell scratch pad serves
more suitably as the traditional accumulators.

The CPE also contains the necessary function bus
decoder logic to control the ALU and register ‘
transfers. Lastly, carry-in and-out, left-in, and
right-out signal lines are available. When cas-
caded to form an 8 bit or 16 bit macro-ALU, the
configuration is controlled by cascades of the
chip, which serves as the microprogram sequencer.
No address incrementer is available. Thus, all
sequencing is via jump addresses [6].

3. FIXED POINT BIT SLICE ARCHITECTURE

Implementation of a fixed point binary machine, 16
bits wide has been accomplished with eight 2 bit
CPE's similar to the Intel 3000 Series. See fig.
1.



Modifications were made to the commercially avail-
able CPE chip in order to provide for a horizontal
micro control structure [7,8]. This is accom-
plished by assuming that the individual control
gates internal to the CPE chip are available to
the microprogrammer as a field in the microin-
struction. There are 5 fields in each microin-
struction: the control field for the control
gates, Cl through C1 , a K field of 16 bits, a
function field of 4 gits labeled F, through F,, an
address field and a T-field (for branch testing).
Each microinstruction word was 42 bits wide not
including the next address field which, of course,
depends on the total microprogram content for any
machine. The structure in the microprogram con-
trol was assumed as a horizontal machine. Thus
simultaneous register activity could result in the
CPE chips. However, because the chip accumulator
did not serve as such in the traditional semse,
and because the scratch-pad registers were used
as accumulators, this particular configuration
placed some penalty upon the microprogram size.

As a result, for most of the fixed point add and
subtract, and all of the fixed point multiply and
divide routines, extra microinstructions were re-
quired to maintain an accumulating partial product
or partial remainder. For a typical nonrestoring
division routine by successive additions 30
microinstructions were required. This assumed
that the AC held the divisor, and the scratch-pad
registers contained the partial remainder, divi-
dent, and shift-right bit counters. Although the
3000 series microprogram format assumes an R
group concatenated with an F group for the on-chip
function decoder, our configuration assumed the
function decoder was simply 4 bits wide instead

of 7. Scratch-pad control gates C, through Cj3,
both enabled the input and output Bates of each
scratch-pad cell respectively. This then required
that any scratch-pad cell use become both a source
and destination for micro operations when called.
Without this modification it would have been nec-—
essary to add at least 10 more bits to the micro-
instruction field length for additional control
gate signals.

4. FLOATING POINT BIT-SLICE ARCHITECTURE

Floating point architecture again assumes an
Intel 3000 CPE chip modified for horizontal
microprogramming. However, it was desirable to
speed up floating point manipulations. Thus,
additional hardware was included to perform

some parallel processing. The word format for
this machine assumed a sign magnitude notation
number system with 16 binary bits for the frac-
tion and 8 binary bits for the characteristic
(with offset or bias). For this configuration,
then, 8 CPE chips were cascaded for the frac-
tion portion of the algorithm and 4 CPE chips
were cascaded for the characteristic portion.
Horizontal control, however, allowed for arith-
metic functions in both the characteristic and
fraction ALUs. This form of parallel processing
decreased the execution time of typical floating
point manipulations, at the cost of a wider micro-
instruction width. The hardware for the floating
point design is shown in Fig. 2.

Here, like the fixed point design, a T-field was
included in the microinstruction word for micro-
instruction branching during the second phase of
our 3 phase clock. In addition, some divide over-
flow and characteristic underflow indicators were
available and reserved in the flag set field of
the microinstruction. It was found desirable to
include also a CPE group enable field to allow
inhibiting of either the fraction of characteris-
tic ALU when so desired. The additional gating
required to implement our floating point processor
is also shown. These include some miscellaneous
control gates which are enabled by the test bits
from the CPE chips.

The timing sequence for the processor and micro-
program control includes a 3-phase clock with
phase 3 designated for fetch cycle, phase 1 for
the execute cycle, and phase 2 for branch deci-
sion. This timing reflects solely the micropro-
gram control. Additional clocking is required,

of course, for microprogram and main-memory
cycles, not shown. A typical parallel processing
algorithm is shown for the floating point multiply
routine of Fig. 3.

Here, initialization and characteristic alignment
precede the prenormalization check as with most
floating point algorithms. A decision for zero
product is made next. This is followed by the
parallel processing of the characteristic addition
and the fraction multiply. Because an ALU exists
for both operations, these arithmetic sequences
can be performed in parallel. Upon completion of
the sequence, a postnormalization decision is made
and the procedure terminates after the normaliza-
tion is required. A similar flow chart follows
for the floating point divide. For our floating
point multiply routine and the floating point
architecture shown, it was possible to micropro-
gram the floating point multiply in approximately
60 microinstructions. Again, the scratch-pad
served as the accumulating partial product and
partial remainder while the chip accumulator held
the divisor or multiplier during processing.

5. CONCLUSIONS

A hardwired floating-point processor designed
about a bit-slice architecture has been proposed.
Microprogram implementations for multiplication
have been described. It is seen that the for



certain commercially available LSI architecture,
modifications to traditional functional element
roles were necessary. In particular, the AC in
the Intel 3001 CPE functions more like a latch
than an accumulating register. Also, further mod-
ifications to the CPE control gate structure were
introduced to emphasize a horizontal micropro-
grammable machine. Use of cascaded chips allowed
for independent fraction and characteristic ALU
blocks. Horizontal control, then, permitted
simultaneous parallel activity, though, at the
expense of increased microinstruction word width.
One unresclved question is the relative compar-
ison of our architecture to others, namely, the
Intel 3002 unmodified cascaded configuration.
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Fig. 2 Floating Point Processor
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CERTIFICATION OF MICROPROGRAMS BY AN ALGEBRAIC METHOD

A. Blikle*
Computation Center
Polish Academy of Sciences
00-901 Warsaw, Poland

S. Budkowski#**
Dept. of Computer Science

Warsaw Technical University

00~665 Warsaw, Poland

This algebraic method provides a mathematical framework for proving input-output properties (such as

partial and total correctness) of iterative programs.

Technically it uses a caleculus of binary relations

extended with fixed-point equations. The method has been tested.on several microprograms of a computer's
arithmetical unit. One example of such a microprogram and its correctness proof is discussed in the paper.

1. INTRODUCTION

In the current literature of the subject one can
distinguish two different trends of attacking the
problem of the mathematical certification of micro-
programs. In one approach ([2],[9],[11],[12]) the
analyzed microprogram and its expected meaning are
described by two abstract machines one of which is
defined on the hardware level and the other on the
level of architecture. The correctness proofs
consist of showing that one of these machines
simulates the other in the sense defined by R.
Milner [15]. 1In the other approach the expected
meaning of a microprogram is described by more
mathematical (or less operational) terms either

by verification conditions [16], which involves
Floyd's method, or by regular expressioms. [10]
which involves the algebra. of.events together

with the related fixed-point equations. In the
latter two cases one refers to some standard mathe-
matical methods of software-program verification.

This paper presents another software~program veri-
fication method ([31,[4],[5],[8],[14]1) applied to
microprograms [6]. The general idea of this
method is the following: Given a program I its
meaning is assumed to be a binary imput-output
relation R (I-0 relation) which describes the
mapping of the initial values of the vector of
variables into the terminal values of this vector.

*Part of this work was done when the author was
visiting the Dept. of Comp. Sci., University of
Waterloo. This part was supported by the Natiomal
Research Council of Canada under Grant A-1617.

**Part of this work was done when the author was
visiting the Department of Computer Science, Uni-~
versity of Maryland. This part was partially sup-
ported under grant NSF DCR75-05505.

To establish R explicitly we split the program II
into a finite number of modules f1,0..,0, {e.g.
assignment statements and tests) which must be
simple enough for their I-Q relations Ry,.«.,R, to
be obvious.  Since the-program II is a combination
of Hl,...,Hn the relation R must be a combination

of Ry,.ee Ryt
R = W(Rl,...,%) (1.1)

The function ¥ is defined in the algebra of rela-
tions (Sec.2) and describes the control structure
of . To find the function ¥ we use an algebraic
method which consists of writing and solving a set
of fixed-point equations in our algebra. Once ¥
has been found, we use (1.1) in the further analy-
sis of . This analysis is carried out in the
algebra of relations and permits proofs of partial
as well as total correctness of programs.

The general method above was applied by the authors
to several arithmetical microprograms of a float- -
ing-point arithmetical unit designed at the Warsaw
Technical University, This application has raised
a problem which is usually neglected in the con~
sideration of software programs. Namely, *he
arithmetical microprograms involve computer arith-
metics which is fairly different from the usual
(Peano's) arithmetics. E.g. in the computer
arithmetics the law of the distributivity of multi-
plication by 21 (arithmetical shift right) does
not hold. The lack of this property makes the
calculations which appear in the verification of
the microprogram practically impossible. To solve
this problem we consider two programs M1 and 1,
where 117 is the 'real" microprogram and Iy is an
abstract program resulting from ) by the replace~
ment of the machine operations by the corresponding
arithmetical ones. We verify the program I, and
then we show that Iy simulates I} in the following
sense: Let F; and Fy denote the I~0 functions of
Ty and Iy respectively, let Dy and Dy denote the
input domains of 1] and NI (i.e. the domains of Fy
and Fp) and let Dy ¢ Dy. There exists a function



T:D, + Dy such that T(d) = d for all d € D; and
F1(T(d)) = T(F2(d)) for all d ¢ D2. Now all the
1-0 properties of l; can easily be "translated”
into the I-0 properties of ;. This concept of
simulation coincides, of course, with the alge-
braic simulation of R. Milner [15] which appar-
ently makes our approach similar to that of A.
Birman, B. Leeman and W. Carter. As a matter of
fact, however, our program verification is not
restricted to the proof of simulation but also
provides the proof of the total correctness of Iy,

The organization of the paper is the following:
First we describe the general Blikle-Mazurkiewicz
method which is slightly modified here in regard
to the form of fixed-point equations (this per-
mits dealing with programs which have more than
one output and proving their local properties -
see [7]). Next we show a detailed example of the
verification of a software program I3 which per-
forms the Booth fixed-point multiplication algo-
rithm and is a simplified version of an abstract
program llg which in turn simulates the real micro-
program ll]. We describe the modifications re-
quired in N3 to get Iy and the modifications of I
which result II;. Referring to the analysis of II3
we describe briefly the analysis of Iy and show ~
the function of simulation T between II; and II3.

2. THE ALGEBRA OF BINARY RELATIONS

Let D be an arbitrary nonempty set called the
domain and interpreted as the set of all possible
states of the vector of variables in a program.

By Rel(D) we denote the set of all binary relatioms
in D, i.e. Rel(D) = {R|R ¢ D x D}. For amy a,b in
D and R in Rel(D) we shall write aRb for (a,b) € R.
By ¢ we shall denote the

empty relation, and by I
the identity relation, i.e. I = {(a,a) fa ¢ D}.

Basic operations in the set Rel(D), which we shall

use in the sequel, are defined below. Let R;,Ry
¢ Rel(D).
Ry u Ry = {(a,b)|aRyb aRgb} - union
Ri°R, = {(a,b)| Tc)aRic & cRypb} ~ composition
R?_ =1 - 0-th power
R"f = R?-l °R; N - n~-th power
* ° T
Ri=IuR vR°Riu «s =y - *-jteration
1 1v Rk A
K =R URPR U .. = U K
- I . - +-iteration

Interpretation. The operations u, °, * are used
in the descriptions of the I-0 relations of pro-
grams; precisely speaking they are used to describe
explicitly the function ¥ in (1.1). Fig.l shows
the interpretation of the operations defined in
this section. Each box in fig.l represents a module
of a flowchart of a microprogram with input-output
relation Rj. ~These modules may be viewed either as
elementary (with I-0 relations described by assign-
ment sStatements or tests) or as submicroprograms
which consist of a number of elementary boxes. This
permits the structuring of analyzed microprograms.

10

(7, |

o} =
®, |

= —h°h

l

Fig. 1

Below we list the most important properties of
these operations. Here and in the sequel we shall
omit the symbol "°" of composition and write RiRj
instead of R;j°Rj.

D R (RyRy = (RRyIR4 - assoclativity

2) R,(R, vR,) = RR, uRR, - finite
1 Rz 3 12 Rl 3 distributivity
(R2 v R3)R1 = R2R1 v R3R1

3) R.@WR,) =y RR - infinite
Ro:l.=1 1 i=lRo t distributivity

GRrRIR, =0 R
't % o 1o

4) RI=IR=R - the unit property
of I
5) Ré = ¢R=¢ - the zero property
of ¢
6) R*=1 uR
RY = RR* = R*R

7 R (RR)*R, = (R1R)I*R Ry

To deal with concrete programs (and microprograms)
and to carry out their analysis we shall need an
explicit notation to specify the I-O relationms.
Since we are going to deal only with deterministic

‘programs, we can restrict ourselves to the case of

partial functions and use the notation introduced
by A. Mazurkiewicz [8]. A relation RgD x D is
a partial function if for any dj € D such that
djRd,y.

Let £:D + D be an arbitrary partial function and
let p:D -+ {true,false} be an arbitrary predicate

such that if p(d) = true then f(d) is defined. We
denote by
[px)|x := £(x)] = (2.1)

- {(dl,dz)lp(dl) = true & d, = £(4,)}



‘of course, [p(x)|x := £(x)] is a partial function
whose domain is {d|d ¢ D & p(d) = true}. For the
sake of simplicity we shall also write [x := f£(x)]
for [true | x := £(x)] and [p(x)] for [p(x)|x := x].
Of course [p(x)][x := f(x)] = [p(x)lx = f(x)].
In the sequel we shall use the following equiva-
lences which can be proved easily from (2.1):
1 [p)|x := fF&) e |x = gx)] =
= [p(x) & q(f(x))|x := g(£(x))]

2) [p@®|x == £&@)] v [q@®]x = £x)] =

(2.2)

= [p(x) v qx)|x = £(x)]

3. THE MATHEMATICAL MODELS OF PROGRAMS

In order to define in a rigorous way the concept
of the I-0 relation, we need here a rigorous con-
cept of a program. To this effect, we shall use
the notion of an algorithm introduced by A. Mazur-
kiewicz [8].

By an algorithm we shall mean any system A =
(D,V,03, ) where

= D is an arbitrary nonempty set called the
domain of the algorithm and is interpreted as in
Sec. 2,

= V=1{03,..4,0,} 1s a finite nonempty set of
elements called labels of the algorithm,

- a3 is a distinguished element of V called
the initial label of the algorithm,

-7 = {a%,Rig,aj)lRi € Rel(D); i,j < n} is a
set of p = n4 triples called instructions. Usually
many of the Rjs = ¢ which describes the fact that
there is no direct trespassing between o; and o
in the program. Given an instruction, the corres—
ponding o4, Rjs and o4 are called the entrance
label, the action and the exit label. The ai's
are interpreted as the control states and the
Rij's define the meaning of "boxes".

We are going to apply our theory to deterministic
programs only. Nevertheless, the theory itself
will be developed in the general nondeterministic
case which makes its presentation much simpler.

Consider an arbitrary algorithm A = (D,V,07, )
where V = {al,...,a }. For any a4,05 € V, by an
(a4 ,04)~run we shall mean any sequence of instruc-
tions of J :
(o, ,R.,0, ); vun (3.1)
1,71 3

; (ai‘k,Rk’ajk)

such that a; = a,; ¢; = a, and o a for
i i jk 3 jp = ip.g.l

P < k-1. Of course, an (aj,a;)-run is simply a

path in the graph of A. The corresponding sequence

of actions (Rl""’Rk) will be called an (ay,a:)-

symbolic execution (s. execution). Let Exec(ai,aj)

denote the set of all the (ag,a4)~8. executions

in A. The (ai,uj)-resulting relation is defined

as follows: i

Re‘s(ui’aj) =

| (3.2)
- U{R1=...onk !(Rl,...,Rk) € Exec(ai,aj)}

i1

This is of course the I-0 relation of A under the
assumption that aj is the input label and a; is
the output label. Indeed djRes(oy,as)dy iff there
exists an (ai,aj)—-s. execution (Rp,...,Ry) such
that djRy°...°Rkdy. Observe that in any (ag,09)~
run the control of the algorithm may pass through
0y and aj many times.

By the definition of A the label aj is assumed to
be initial and therefore we shall be interested
mostly in the relations R(oj,as) for j = 1,...,n.
Moreover, among these n relations we shall select
usually some number of k < n relation that corres-
pond to the actual outputs of the program. The
particular one-output case corresponds to k = 1,
but in some applications we may want to consider
programs with more than one output (e.g, the
successful termination, the overflow and the under-
flow).

Now suppose we are considering an algorithm A
where op has been chosen to be the terminal label
and suppose that we have proved

Res(al,an) = [px)|x :=>f(x)]. (3.3)

By the definition of Res(ai,aj) this implies the
following about A:

1) for every initial d ¢ D the algorithm
terminates (stops) if and only if p(d) is satis-
fied,

2) for every initial d ¢ D if the algorithm
terminates, then the terminal value of x is f(d).

Of course 2) is a partial-correctness property of
A and 1) defines exactly the domain of termination.
Consequently, (3.3) is the strongest total-cor-
rectness property of A, since p(x) is not only
sufficient but is also a necessary condition of
termination (for the concepts of partial and total
correctness see [13]).

4. FIXED-POINT EQUATIONS AND PROGRAMS

Dealing with concrete programs we shall attempt tu
express their resulting relations Res(al,aj) in
terms of the actions of instructions Ry4 and the
operations defined in Sec.2. The definition (3.2)
does indicate how to do it (see Res(ap,a3) in
Sec.5), but finding Res(al,aj) this way may be
difficult even for a program of middle complexity.
Below we present a method of fixed-point equatioms
which permits to find all Res(oj,e2;) for programs
of any complexity. These equations differ from
the ones used previously (see [7] for detailed
explanations).

Let A = (D,V,a;,¥ ) be an arbitrary algorithm with
V= (al,...,un « By the canonical set of equation
(CSE) of A we mean the set:

X, = X.R

1= %R YR

U..o. uXR
n

nl 11

eee

(4.1)
L, "KR v... uXR UR

where every Rij is, of course, the action of the
instruction (oy,Rij,ay) inJ . The unknowns X; of



(4.1) range, of course, over the set Rel(D) of
relations. Any vector (Pl,...,Pn) of relations
which satisfies (4.1) is called a solution of

this set. In the general case (4.1) has more than
one solution. The solution (Pl,...,Pn) is said to
be the least solution if for any other solution
Q15+ --,Qy) we have P; 2 Q; fori=1,...,n. It
is a well-known fact that the least solution, if
any, is unique. In our case we can prove the
following:

Theorem 1. For any algorithm A the vector of
relations (Res{aj,a1),...,Res(ay,0,;)) is the least
solution of the corresponding CSE. O

The proof is described in [7]. Here we shall show
an effective method of solving (4.1). The method
consists in the application of two variable-elimi-~
nation transformations:

1. Substitution: the substitution of XjRj; v
... U XpRp1 u R1i for an arbitrary occurrence of
X; on the right side of 4.1).

2. Iteration: the replacement of the equation

Xi = XlRll U eee U XiRii U ee0o U X‘ani u R]_]'_
by the equation

X; = (XlRli U eeo U XjqRiq4 v

*
U Xi+1Ri41i Y --- Y XpRpi Y R1i)Rjj.

Each of these transformations is applicable to any
set of equations like (4.1) and yields another set
of equations of the same form. As can be proved
(see [5] for the references) the new set of equa-
tions has exactly the same least solution as the
former. To solve a given CSE we keep applying

our transformations as long as there are some un-
knowns (variables) on the right side.

5. AN EXAMPLE OF A SOFTWARE-PROGRAM VERIFICATION

The method described in this paper has been tested
on several arithmetical microprograms of a float-—
ing-point arithmetical unit designed at the Warsaw
Technical University. One of these microprograms,
call it I}, performed Booth's algorithm of the
fixed-point multiplication of mantissas. We anal-
yzed T; by introducing and verifying an abstract
program Iy and by proving that ll; simulates Ty
(see Sec.l and 6). Here we shall investigate a
simplified version of Iy, call it Nl3, which differs
from I, in neglecting overflows. In spite of this
simplification the example still provides an ade-
quate flavor of the method. In Sec.6 we show how
to extend these calculations to deal with the real
cases of I3 and .

In our program we shall deal with numbers represen-
ted in the 2's complement code: The numbers from
the interval {-1,1) are represented as:

i

n
B = -B, + ) B.*2" (5.1)
0 o1 b

where By € {0,1} for i =
We shall also use the equation

n -1
B=7] (B, = B2 (5.2)
i=0

0,...,n and n » 1 is fixed.
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which follows from (5.1) under the condition that
Bptl = 0. The flowchart of our program I3 is
given in fig. 2.

Fig. 2

This program operates on the following variables:

1) the real variable a which ranges over an arbi-~
trary interval of real numbers (this is actually
the assumption which neglects the overflow),

2) the real variable d which ranges over {-1,1),

3) the integer variable i which ranges over {0,..n},

4) the 0's and 1's array q[0:nt+l1].

We shall prove that the program performs the multi-
n

plication (—q0 + Z qi*2'j)*d and stores the result
i=1

in a.

In the calculations we shall use an extension of
the notation introduced in Sec.2. Namely, for any
vector of varisbles (x],...,%;), the function
[(qseeesxn) 1= (F1(x1,000,%) 50 0sEn(Xyseeesxp))]
will be written as

x) 3= fl(xl”"’xﬂ

(5.3)

coe

X = fn(xl,...,xn .

Of course all the assignment statements in (5.3) are
understood to be performed simultaneously. We as-
sume also to omit in (5.3) all the assignment state-
ments of the form xy := x4y.

We shall prove the following about our program:
n
a := (-q0 + z qi*Z-J)*d
j=1

Res(ay,ap) = | 1 (5.4)

Int1

=0

0



According to the definition of Res(al,aj) (see also
the remarks by the end of.Sec.2) this implies that
our program terminates everywhere in its domain and
that it performs the multiplication of the number
whose representation is stored in q[0:n] by the
number which is stored in d.

To simplify the calculations let's consider first

a module of fig.2 between the control states ay and
a3. For this simple program we can find the
Res(ap,a3) directly from the definition (3.2).
Namely (using (2.2)):

=TI = 1o
Res (Gz 5 Cl3) 5qi+1 qi iU

[qi+l # qi]([qi+l = Ola o= a—d] U

c

v lag,, = 1|a := a+d]) =

= [qi+l = qila := a+(qi+1 - qi)*d] v

U lagyy =0 & qp = 1fa = at(qyy - q)*d] v
vlq,=1&q = 0la := at(qy,, = q,)*d] =
= [a := a+(qi+1 - q,)*d].

In the next step we establish the CSE of the pro-
gram of fig.2:

X. = ¢

1
Xy = XgR5y v Ry,
Xy = X,Res (az,as)
X5 = X3Ryq
Xg = XgRyg
where a:=0
a = a*2_1 _ = 0
Rsy = 3 Ryp = | e T
1 :=4-1
i:=n

R35 = [1i # 0]; R36 = [1i=0]

Solving this set with respect to X6 we get

*
X, = Rlz(Res(az,aa)Rasksz) Res(az,aa)R36. (5.5)
By Theorem 1 we have, of course, X6 = Res(al,as).
For 1 < k < n denote

-1
= - %*
R SNSRI NIV L L
8, = |1 = ok
=0

n+1

and for all k » 1 denote
k
Py = RppRes(ay,a)RyR,,) "
We can prove by induction (see [7] for details) that
for all 1 s k < nwe have P, =S, , We can prove
also [7] that the loop in ofr program must be per-

formed exactly n times, which formally means (c.f.
(5.5)) that

Res(al,a6) = SnRes(az,a3)[150]

By straightforward calculations we get now
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E —i

a := (q = q )%2 T)*d
i2g i1 i

i:=0

94 = 0

Res(al,aé) =

which by (5.2) gives us the required result (5.4).
This terminates the proof of the total correetness
of the program n3. oo

It can be observed [7] that using our method one
can also prove some local properties of the pro-
gram, as for example the estimation of the current
value of a at the label ag and ag.

6. AN EXAMPLE OF A MICROPROGRAM VERIFICATION

Let us consider now the program Iy which differs
from I3 in the following:

1) d ranges over numbers representable by (5.1)
for n = 23

2) a ranges over numbers representable by (5.1) for
n = 47 (generally speaking n » 47) .
3) to the assignments a := 0; 9pt1 = 05 1 :=n for
n = 23 the assignment z := 0 1S added
4) the assignments a := atd are replaced respect-
ively by:
a := atd - 2*0vf(atd);
z := |OvE(atd) |;
where
-1; x < -1
Ovi(x) = 0; -1 <x<1
1; 1 g x
5) the assignment a := a*2-1 is replaced by:

if z = 0 then a := a*2~1 else a :=

a*x21 4 a,
z := 0;
This means that Rg, is equal now
R, = [z=0]|a := a*2-1; i:=1-1; z := 0] u
a*2—l + ay; i:=1i-1; z := 0]

Following the same way as in Sec.5 - just with more
calculations ~ we can prove the following:

a := q*d - 2*0vf(q*d)
i::=0
g4 =0

Lz := Ovf(q*d)

U‘[z=1fa =

Resz(al,aﬁ) = (6.1)

where Resz(al,a6) is the appropriate I-0 relation in

23
I,, q =izo (qi+1 - qi)*Z‘-1 and a is the 48-bit rep-

resentation of the required result (double precision) .

Now consider the original microprogram Iy for which
the length of a is assumed to be 24-bit only (single
precision). Every occurrence of a*2-1 in N2 must
now be replaced by a 8 21 gince the computer multi-
plication @ by 2~! (arithmetical shift right of the
content of the register storing a) is no longer the
usual one. Observe that in general

ae 2..1 = a*2—1 - an*z'(“+l)
and only for Ty (and N3) a 8 271 = gxp-1,



Of course, we could use this equation with n=23
to replace every occurrence of a 8 2-1 iq Ij by its
right side and to get an equivalent program I}
with only usual arithmetical operations. The ana-
lysis of such a program, however, would be very '
cumbersome. It is much easier to observe that I
simulates NI] and to verify Ip. Let us describe
briefly what the simulation of Iy by Iy looks like.

In the original case of our analysis we proceed,
of course from ] to Iy, First we establish the
algorithm A; = (D1,V,a1, 3;) which corresponds to
My. The domain Dy is the set of all the vectors
of the form (a,d,qg,...,d94,1,2) where a and da
range over these numbers in {-1,1) which can be
represented by (5.1) with n = 23, and the other
variables have the ranges as described earlier.
Next we establish the algorithm A, = (Dy,V,a1, i}
which corresponds to II, and which differs from
A; only in Dy and T ,.” The set D, results from Dy
by letting a range over all numbers in {(-1,1). The
set Y, results from 3, by replacing every instr-
uction’ (a1,Ri4,04) by the instruction (a1,Ri5504),
where Rij results from %1 - informally speaking -
by replacing all a 8 2~ gy a*2~l, Now, for amy
number 8 ¢ {-1,1) whose standard 2's complement
representation is

2)

v -1
B =-By+ ] B,*2
U Mt

let
24

£(g) = -8, + ) 8. %21 .
o*L b1

The function t(B) effectuates, of course, the

" runcation" necessary in order to store B in a
register of 24 bits. The simulation relation be-
tween Nl and N, is the function T:D D1 defined
as follows:

T(aadsqos' . ’q24’i’z) =
= (t(a) ,d:qoy e ’q249iaz)

0f course D; ¢ Dy and T(v) = v for all v ¢ Dj. Now
it is an easy task to check the following [see 7]:

TR

15 (6.2)

= RijT for all i,j < n

From (6.2) we infer immediately the equation
TRes) (a3,06) = Resy(aj,ag)T which applied to
6.1) resugts

a := t(q*d)-2*0vf (q*d
i:=0

924 = 0

z := OvE(q*d)

Resl(al,u6) = (6.3)

This equation says that the original microprogram
Ny always terminates ((6.3) implies that Resj(ayp,a6)
45 a total function) and that it produces the 24-
bit representation of the required product. This
.representation can happen to be modified by an over-
flow in which case the value of z will become 1

‘(f q=d=-1, thenz=16&a=-1).
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The final remarks are the following. This method:
-is different from the regular expression method,
-permits the structuring of analyzed programs,
-applies in exactly the same way to programs where
the number of iterations in their loops depends
on the imput data,

-may be automated using simple symbol-manipulation
programs.
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MICROPROGRAMMED IMPLEMENTATION OF A SCHEDULER

R. Chattergy
University of Hawaii
Honolulu, Hawaii

Application of microprogramming to enhance
the literature in the past [7,1,5].

the performance of operating systems has been discussed in
Two examples of such applications can be found in [4,6]. This

paper discusses the philosophy behind the microprogrammed implementation of a scheduler, used in a
large, time-shared computer incorporating several processors.

1. INTRODUCTION

This paper describes the activities of a typical
microprogrammed scheduler (microscheduler) in a
time-shared system with multiple processors. This
description is a simplified version of the actual
microscheduler in the BCC 500 computer system, de-
signed by W. Lichtenberger, M. Pirtle, B. Lampson,
J. Freeman, R. Schultz and R. Van Tuyl in 1969. A
functional diagram of the system is shown in figure
1. The general philosophy of scheduling for a mul-
tiprocessing system has been discussed at length in
[3]. As mentioned in [3], scheduling consists of
two activities. The first is the determination of
an optimal schedule based on some scheduling cri-
terion. The second is the enforcement of that
schedule on the processes in the system.

Clearly the task of selecting a scheduling criterion
and determining a schedule by some algorithm is a
complex and evolutionary process. The enviromuerit
within which resources are allocated by stheduling
often changes, forcing a change of the scheduling
criterion, and in extreme cases a change of the
corresponding algorithm. Hence a scheduling algo-
rithm is unsuitable for microprogrammed implementa-
tion in a read-only memory. On the other hand, the
task of enforcing a schedule, classified as a midi-
primitive in [7], consists of more permanent sub-~
tasks such as, the creation and maintenance of
queues, blocking and awakening of active processes,
making calls on the swapper etc. These subtasks
are discussed in detail in the later sections.
These subtasks are even system independent in the
sense that, they must be carried out in one form or
another regardless of the system architecture.

The above considerations prompted the design of the
scheduler in the following form. The scheduler is
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a hardware processor, microprogrammed to execute a
set of instructions in a loop. The task of schedule
enforcement is directly microprogrammed as part of
this loop. Besides schedule enforcement, the pro-
cessor also executes a machine instruction of an em~
ulated machine in every iteration of the loop. The
scheduling algorithm is implemented in software on
this emulated machine. Thus the microscheduler car-
ries out both scheduling activities, executing the
scheduling algorithm written in a high-level lan-
guage for flexibility, and enforcing the schedule
discipline via firmware for speed of execution.

2. HARDWARE DESCRIPTION

The BCC 500 shown in figure 1, is a large time-
shared computer with two processors for executing
user-processes, and three special purpose processors
for carrying out system management tasks (i.e., ex-
ecuting the bperating system;. All of the proces-
sors operate independently, communicate with each
other via main memory, and are microprogrmamed. Fi-
gure 2 shows the arithmetic-logic unit of a micro-
programmed special purpose processor and its bus
structure.

All registers shown in figure 2 are twenty four bits
wide. M,Q, and Z are the main registers, where M
serves as the communication register with the main
memory via the main memory interface. The outputs
of M and Q are connected to the left Boolbox (LB),
and the outputs of Q and Z go into the right Boolbox.
Each Boolbox can perform any of sixteen boolean op-
erations on its inputs. The outputs of the Bool-~
boxes are connected to the Adder. The output of the
left Boolbox goes into the Cycler.

The outputs of the Adder and the Cycler can be put



into any of the seven Holding Registers, RO,...,R6.
The register RO acts as the memory address register
(MAR) when main memory is accessed. The output of
any of the Holding Registers can be incremented by
one and hence any of these registers can be used as
a counter. In addition there are sixty four Scratch
Pad registers which are loaded from the X-bus and
read onto the Y-bus.

The Control Memory of the microprocessor is a read-
only, diode memory containing atmost 2 048, ninty-
bit words. Different fields of the 90 bit micro-
word control different logic circuits and in case
of a branch to a subroutine, the return address is
automatically stored in an auxilliary register.

3. MICROWORD

The bits and fields in the 90 bit words in the con-
trol memory are coded to generate the controlling
signals necessary to operate the ALU. For example,
bits 0-5 are used to set up one of a number of
branch conditions to be tested for branching. The
bits 8-17 are used to provide the branch address,
which can also be obtained from the 0S register
(return from a subroutine) or the X-bus (computed
go to). The bits 18-41 are used to specify a 24-
bit constant which can be gated onto the X or the
Y buses respectively. A detailed description of
all the fields is too long. The above description
should be enough to give the reader a "feel" for
the system.

4, MICRO LANGUAGE

A special purpose readable reference language,
called MICRO, is available for writing micropro-
grams for the processors of the BCC 500. The MICRO
language has declaration statements and statements
for execution. The declaration statements can be
used to define macros, give symbolic names to re-
gisters, define parameter values, define branch
conditions for repeated use in the program, etc.
The set of statements for execution consists of the
usual assignment (including multiple) statement,
memory operations statement, branch instructions,
microword-field assignment statements, etc. It is
impossible to discuss the language in detail here.
Instead, explanatory comments enclosed between "yxm
and "*/" are imbedded in the sample microprograms
provided in the later sectioms.

5.  MICROSCHEDULER INTERFACE

A simplified diagram of the interfaces among the
system resources and the microscheduler is given in
figure 3. 1In this figure, the microscheduler and
the user processors are hardware processors, where-
as the swapper and the scheduler are sof tware pack-
ages run on the system processors. All processors
in the system make WAKEUP calls to the microschedu-
ler to activate processes. If a process, which has
received a wakeup call, is not in the main memory,
the microscheduler inserts the identity of this
process into the input stack of the scheduler. The
scheduler, using its scheduling algorithm, assigns
a priority to the process which cannot be changed
by the other processors. It puts the process in
its appropriate position in a queue and makes a
SWAPIN call to the swapper. In some cases such as
a page-fault condition, the microscheduler can make
a direct SWAPIN call to the swapper. Due to lack
of adequate memory space, the swapper may fail to
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swap in a process. It then makes a GIVEUP call to
the microscheduler, asking for the identity of a
process that may be swapped out to make room. The
microscheduler answers this call via a SWAPOUT call
indicating the process that can be swapped out.

The microscheduler alters the work schedules of
the processors by making SWITCH calls. A switch
call contains the identity of the process to be
worked on by the receiving processor. If a new
process of preemptive priority preempts the current

_process on a processor, this information is sent

back to the microscheduler via a RETURN call by the
processor. If a running process blocks itself, the
corresponding processor makes a BLOCK call to the
microscheduler. The processor informs the micro-
scheduler whether or not the blocked process should
be swapped out (a policy decision made by the moni-
tor).

All communications with the microscheduler are car-
ried out via a stack in the main memory under suit<
able PROTECT and UNPROTECT mechanisms.

6. LIFE-CYCLE OF AN ACTIVE PROCESS

Figure 4 shows the life-cycle of an active process
under control of the microscheduler. Consider an
active process which receives a call from some
other running process. The call is entered under
protection into the top two words of the input
stack of the microscheduler. The microscheduler
periodically inspects the stack for calls from the
outside. Upon finding such a call, the microsche-
duler checks the identity of the process for vali-
dity. If the identity is invalid, it ignores the
call and delets the entry. For a valid call, the
microscheduler determines whether the call is for
a wakeup or block.

WAKEUP CALL: The microscheduler merges the data
word from the call into the program interrupt word
of the process (PIW), stored in the process resi-
dent table. It checks to see if the process is
either waiting in the microscheduler queue for a
processor, or already running. In either case,
nothing more needs to be done. For an interesting
example of this situation see [2] pp. 271.

On the other hand, if the process is blocked, the
microscheduler unblocks the process. It checks to
see if the process is in the main memory. If the
process is in the main memory, the microscheduler
inserts it, according to it's priority, in a queue
of processes waiting for processors. Note that if
the inserted process has preemptive priority then
it can preempt a running process. This means that
the microscheduler may have to reallocate the
processors. A preemptive priority structure is ne-
cessary because the system does not have a hard-
wired interrupt mechanism. Preemptive priorities
must be assigned to processes whose non~execution
can lead to loss of information.

If the process is not in the main memory, it has to
be swapped in. The microscheduler then puts the
process in a stack of processes waiting for the
scheduler. The scheduler determines the priorities
of the processes independently, and inserts them in
the input queue of the swapper.. In some cases, the
microscheduler may make a direct request for a



swapin to the swapper.

BLOCK CALL: Whenever a running process blocks,

the monitor is activated. The monitor decides whe-
ther the blocked process should remain in main mem-
ory (page-fault) or be swapped out (input from ter-
minal). This decision is passed onto the microsch-
eduler via the block call. The microscheduler
blocks the process and if so directed makes a swap-—
out call to the swapper.

If a process is caught in a timer-trap, the micro-
scheduler does not block it but puts it on the in-
put stack of the scheduler for future scheduling.
The scheduler changes the priority of such a pro-
cess based on its scheduling criterion and sends a
wakeup.

RETURN CALL: Whenever a running process is preemp-
ted of it's processor by a process with preemptive
priority, the processor sends a return call to the
microscheduler. The microscheduler removes the
process from the run state and puts it in the mi-
croscheduler queue to wait for a processor.

7. PROCESSOR SCHEDULING

The microscheduler periodically checks the status
of each processor and reallocates those processors
which are either idle or can be preempted. The
processors are directed to switch processes by
means of the SWITCH call sent by the microschedu-
ler. 1In principle, the SWITCH call provides the
processor the identity of the new process to be
run.

A processor has three possible states. It is
either idle, or running a process, or running a
process which has preempted another process. If
the processor is in the last mentioned state, then
the microscheduler does nmot send it a switch call
untill the process running on it blocks. A proces-
sor is switched only if it is idle or running a
process which has not preempted another process.

Whenever the microscheduler enters a new process in
its queue that has a preemptive priority, it sets
up a schedule flag. This flag indicates that real-
location of the processors is necessary. When the
microprocessor decides to reallocate the processors,
it switches the highest priority process in the
microscheduler queue with a process that has
blocked. )

8. MICROSCHEDULER INPUT STACK

Calls to the:microscheduler are placed on a stack
called USIB in the microprogram. Each call con-
sists of two words. The leftmost six bits of the
first word contains an opcode identifying the call,
such as 1 for wakeup, 2 for block etc. The right-
most eighteen bits of the first word contains a
pointer to the first word of a process's process
resident table (in effect identifies the process).
The second word contains the bits to be set by the
microscheduler in the process interrupt word in the
resident table, as a result of the call.
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MICROPROGRAM FOR MANAGEMENT OF USIB

USIBIGIN: PROTECT (USIB);

Protects stack from use by other processors...*/
MAR <« USIBTOP, FETCH;

Get pointer to top of stack.....eeveveveennnns */
Q <« SK7 « M, MAR <« USIBASE, FETCH;

Get pointer to the bottom of stack............*/
M EOR Q, GO TO EMPTY IF LB=0, Z<LUSIBE

Compare top and bottom pointers stored in M %/

and Q by exclusive OR. If pointers same, out-*/

put of left boolbox LB=0. Branch to block */

labelled EMPTY. LUSIBE=No. of words in call..*/
MAR < SK7, FETCH, Z < Q-Z;

Get first word from stack........ . 74
SK7 + Q « M, MAR < MAR+1, FETCH;

Get second word from stack....veeeeeecnceaans.®/
R2 « M;

Put second word in register R2.....ccvvven... ¥/
M « Z, MAR <« USIBTOP, STORE;

Move pointer to top of stack down by LUSIBE */

words........ Ceeeeeeaeeenietserett et ananna K/
UNPROTECT (USIB);

Unprotect stack. The first word fetched from */

stack is in SK7 and Q. The second word is in */

TeGISter R2iuuvireennnroncennecancansaannoesss®/
M <« Q LCY 4, Q + 600 000 17B;
M « M AND Q LCY 2, CALL UERROR IF LB=0;

Left cycling the contents of Q through M mask-%/

ed by 600 000 017 and the last AND operation */

leaves the opcode for the microscheduler in  */

the rightmost bits of M. For a valid opcode */

this must be > 0. UERROR subroutine is called*/

otherwise....cieieeieieinnesrerenssnnaanns Y 4
Q <+ MAXOP;

Maximum value of opcode is loaded in Q........ */
CALL UERROR ON Q-M < 0. Q + OPTAB-1;

Call UERROR if the opcode exceeds its maximum *7

allowable value........ D
R5 « M+Q, Q « R2, DGO TO USIBIGIN;

R5 stores the pointer to the subroutine (wake-*/
up, block etc.) to be used by the microschedu-*/
ler as a result of this call. The subroutine */
is called in the next line. Q and R2 contains*/
the second word of the call. DGO TO is a de- */
layed branch. The branch is executed after */
execution of the next instruction is complete.*/

MAR « Z « M <« S8K7, CALL STKIK,.C <« 3,.TCX,.TCW;
STKLK causes a branch to the subroutine point-*/
ed at by R5. It also saves the return address*/
in a stack. Because of the delayed GO TO in */
the previous line, this return address is that¥*/
of USIBIGIN. Thus a return is made to USIBI- */
GIN after a subroutine such as block or wake- */
up has been executed. MAR contains the ad- */
dress of the PRT plus 3 (ie. the address of */
the PIW), where the 3 is merged from the con- */
stant field of the microword by TCX and TCW...*/

OPTAB: GO TO WAKEUP;
: GO TO BLOCK;
GO TO BLOCKOUT;
GO TO GIVEUP;

End of microprogram for the management of USIB*/




10. FLOW-CHART OF THE MICROSCHEDULER

A complete description of all the microprograms is
too long to be included in this paper. A flow-
chart describing the operation of a simple micro-
scheduler is given below.

In the flow-chart, the usual housekeeping opera-
tions have been left out. Also the flow-chart
does not include such operations as the management
of real-time queues, which a microscheduler of a
time-shared system must handle. A real-time queue
is a queue of processes whose wakeup signals are
specified by a real-time clock, and does not come
from other processes. Basically, the microschedu-
ler inspects its input stack periodically, and in
response to calls left there by other processors
it executes proper subroutines such as WAKEUP or
BLOCK. It also checks the schedule flag and the
states of the processors. Whenever necessary, it
reallocates the processors and continues to loop
around.
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— < OR RUNNING ? GO TO BEGIN ON SCHEDULER
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NO SWAPOUT ?
GO TO BEGIN
UNBLOCK PROCESS YES O
PROCESS IN MEMORY ?
PUT PROCESS ON GO TO BEGIN
YES 0 SWAPPERQ
SEND SWAPOUT
PUT PROCESS ON MICROQ PUT PROCESS ON €0 TO BEGIN

IF PREEMPTIVE PRIORITY
SET SCHEDULE FLAG
GO TO BEGIN

STACK

GO TO BEGIN
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In order to evaluate the Nanodata QM-1 as a universal host computer,
an emulator for a contemporary ccmputer, the PDP-11, was designed and
constructed. It was required that the emulator be functionally
equivalent to the target, without making excessive sacrifices in

emulation speed,

Scme properties of emulation hardware necessary to
achieve these gcals are identified.

In addition, the paper describes a

monitor designed to support different emulators concurrently omn a

single host machine,

1. INTRCDUCTION

Through the design and construction of an
emulator for the DEC PDP-11/10 computer
[1], the extent to which the ¥anodata QM-1
{2, 3, 4] can serve as a universal host is
being explored. The results summarized in
this paper [5] identify some desirable
properties of emulaticn hardware and show
that complete emulation is possible without
excessive sacrifices in emulation speed,
One prirmary goal was that the =smulator
should execute all of the software for the
target machine, rather than some spegific
package.

Many other computer emulations have 2ither
been for cutdated machines with long memory
acca2ss times, simple instruction formats
and limited I/0 capabilities (6] [7], or
have not simulated I/0 instructions
exactly, but simply translated them into
high-level requests to the host machine's
operating system [8] [9]. In contrast, the
study reported here considers the emulation
of a ccntemporary computer, one with
several instruction formats, addressing
modes, and a main memory cycle time
comparakle to that of the host machine
(Eig. 1).

2., THE EMULATCR

With the QM-1, two distinct ccnstruction

apprcaches are possible:

e Design a special microinstruction set,
and implement it in nanocode, The
emulator may now be built rapidly as a
collection of micrcfprograms,

*+This study was supported by the National
Fesearch Council of Canada, Grant A79072.
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e Implement the.emulator's instruction set
completely in nanocode; This is referred
provide faster execution.

Our emulator is essentially a direct one.

Control store is used to hold tables for

instructicn decoding, a condition code bit

mafp, and microroutines (writtem in the

MULTI (10] instruction set) to handle I/0

and contrcl functions, These device drivers

make the host peripherals serve the
emulator as thair target counterparts.

Host Target

QM-1 EDP-11
L T T 1
{REGISTERS 1 i |
| general purposej 32 18-bit | 8 16-bit i
| | 12 €é-bit | |
| special purpose| 32 18-bit |device regs |
| f 20 6-bit {(variable #)|
+ t + 4
| MAIN STCRE { { |
| width { 18 bits | 16 bits
| maximum size | 256K { 28K {
| cycle time | 960 nsec | 98) nsec [
L. 4 1 (|
T L] T 1
|CONTRCL SICEE { { |
{ width { 18 tits ! {
| maximum size { 16K { |
| cycle time | 160 nsec | |
¢ + + 4
| NANOSTORE { | {
| width | 360 bits | |
| maximum size | 1K | |
| cycle time { 160 nsec | i
L ——— 1 4 3

Fig. 1 Properties of User~-Accessitle

Memory



Naturally the mlcroroutlnes thpmselves are boxes labeled SINGLE OP and DCUBLE COF

driven by nanocode, but speed in processing indicate the use of one of the execute

the I/0 is of lesser comnsegquence, routines. The dotted lines represent
conditional invocation of CALL, whose

For each main store instructicn, the high function is to pass‘'centrol to a

order nine bits of a PDP-11 word are used microroutine to handle the I/0, plus the

as an index into one of the control store HALT, WAIT, and RESET instructions. 2

-tables. Each entry has two fields. The summary of cach nanorocutine fcllows:

first is typically the nanocaddress of a

setup rcutine, whose purpose is to prepare e FETCH

source and destination values. The second Fetches the next instructicn from main

usually addresses an execute routine, which store and begins decoding it via a setup

carries out the desired calculaticn, If an routine,

I/0 device register is accessed during
instructicn execution, control is passed to e MODE

a microroutine to initiates the I/C, before A subroutine which calculates the effective
the executicn of the next instruction, address of a PDP-11 instructicn operand,
and returns its value, MODE is not shown in
2.1 ZInstruction_Flow_and Poutinz fig. 2 because it is called from many
Descriptions places, Errer checking is performed, with

Fig. 2 is a block diagram showing the basic

flow as the emulator executes PDP-11 o SCHANGE

instructicns. The multi-way branch after The state-change routine is used to perform
the instructicn FETCH routine reflects the TRAP, EMT, BPT, and ICT instructiomns; it
executicn of one of the setup routines » also handles I/0 traps and error traps.

mentioned in the previous section., The

t< 1

Y |

fr==d——— {

| FETCH | ]

gy |

| {

Y {

T T -+ T T L] r ] |

| | { i t—->4 ERANCH }—>4

\j Y Y Y | (
—t— r—4+——q 4t —t— i |

| s# | | W | I SB | | DB | | |
e s t—J ey s { [ttt | |

I | { | >4 RISCC p——>4

Y Y Y \f I tem———d (

L} 4 1 Ly 4 1 LB . 1 Ls + Al ' '
| SINGLE | {f DCUEBLE | | SINGLE | { DCUBLE | | ]
| oP 11 CE 11 oP P oP | B |
L T 4 L. T (] L B 4 L - ] ‘,_)q' JSR ',._____)4
| | | | I s |

( | Y Y { |

l { ey | |

i | i | e |

| i Y t—>4 SCHANGE | |

| t re———dee——— [ s e

| | { RETURNB | | | |

I | o g I ! I

! ] | | r——=— | [

Y Y Y >4 LCW ——->4

L Loy 1 emg—=d | I

I . I |

1 . | i

[ . i [

Y | Y |

" - |

| RETURN o @ ¢ ¢ ¢ @ ¢ ¢ 0o ¢ s o o >4 CALL | |

L et |

| |

L. S 4

Fig, 2 BPBasic Flow of Control in the Emulater
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e CALL

The invocaticn of micrcsubroutines to
handle I/0, HALT, RESET, WAIT, and logical
interrupts is made by this routine.

e RTSCC

range 0002XX-00J3XX.

e LOW
Instructicns in the range 0C00XX - 00G1XX
are the responsibility of 1CH.

operaticn.

¢ RETURN

by the DST field. If a device word was
either read cr written during tha
-instructicn execution, control passes to
CALL otherwise, contrel passes to EEICH.

2.2

for each of
summarized in
a 16-bit word

The host memory requirements
its three address spaces are
fig. 3. Since the target has
and the host main store word is 18 bits
wide, two bits are available as tags. These
tags are used to differentiate the target

machine's device registers from the
remaining existent and non-existent memory.
e Bit 17 is 1 if the word does not exist:
referencing this location will cause a
trap via SCHANGE,

Bit 16 is 1 if the word is a device
register, in which case BEIURN will pass
ccntrel to CALL to perform the I/0
function.

The Rotate-Mask-Index (RMI) unit is
valuable here for determining the tag
settings, but is not essential.

2.3

£ 24 232

Although the emulator successfully executes
standard instruction diagnostics, memory
and disk exercisers, and alsc Version 8.C8
of the CCS-11 operating system, it does
contain scme deficiencies as the following
details show:

e 044 PC values are ignored; in fact, no
PC checking is done at all. The extra
time and space required here is probably
not justified.

Stack overflow checking is inconmglete
for JME and JSR instructions. Rlso, the
change-of-state routine will not detect
stack overflow, Correcting this
inaccuracy is almost impossible, given
the present structure of the emulator.
Elimination of these shortcomings does not

L

{ RESIDENT MCNITOR

CCNTRC1I FROGEAM
BUEFFERS ’

CCNTEFCL STORE NANOSTORE
16K | - Ll K T a
| NCNEXISTENT | | NONEXISTENT |
6K | 4 512 4
| ONUSED | { UNUSED (for cther emulators) |
4K 4 270 |
| I70 DEVICE DEIVERS| | PDP-11 INSTK., SET DEFINITION |
H -- . 128 4
| COMMAND HANDLER | | MOULTI INSTR. SET DEFINITION |
512 ¢ 0 - 4
| INSTE DECCLE TABLE
C L
MAIN STORE
TAG
BITS < 16 BITS————>
-_— T 1
4K { 01 { DEVICE REGISTERS |
111 |
-— } + : .|
4K § 10 NCNEXISTENT i
] | PDP-11 MEMORY ]
-— ¢ + 4
| | USER AREA |
| - === 4
| { STACK {
2R 1 GO P = = = = = = = = = 4
| | BUFFER AREA |
| - --—--- 1
{
i 8
¥
|
|
[}

bt o e e o

Fig.
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warrant the excessive space owerhead in the
nanoprograms. In practic2 odd PC values
should nct arise, and stack overflow is
detected in a real PDP-11 only after the
user's tuffers have been overwritten

(fig. 3). In our case, the stack overflow
probles stess from the fact that main store
is not accessed through a ccmmon
nanoprogram. The problem is a result of the
limited subroutine nesting capabilities
within nanostore and means that this
‘emulater cannot be easily extended to
handle the PDP-11/45 memory segmentation
unit, because a common memory accessing
mechanism is essential to deal with address
tramslaticn,

Finally, the trace trap debugging feature
.was not implemented., It can be added to the
microcode without modification to the
nanoprcgram portion of the emulator,
need vas seen for the feature in our
envircnment, and its implementation offered
no new insight into esulaticn.

No

3. THE EMULATCR CONTRCI PFOGRAM

Several obkjectives guide the design of the
Emulator Control Program (ECP). First, the
contrcl program must not imfpose
architectural restrictions con an emulator.
In fact, it should be possible to write an
emulator without knowledge of ECP, and then
to interface the two easily. Second,
provisicn should be made for the concurrent
support of different emulators [11]. Third,
member emulators must be given low-level
access tc I/0 devices through ECE and the
emulator's device drivers. This is required
in order that member emulators can be
functionally equivalent to their
counterrarts, to the point of being able to
transport existing software upchanged from
the existing computer to the emulator. It
was our hope that this approach to I/0
handling would also spur thought in such
areas as dynamic device ownership,
fundamertal differences between computer
emulators and high-level language
erulators, and even the question of whether
or not a computer should know how to
performs low-level 1I/0! Finally, basic
control and debug facilities must be
provided,

The design and implementation of ECP was
heavily influenced by a similar systen
called CONTRCL (12], used by Nanodata
Corporaticn to manage its Nova emulator,

3.1 Empulator - ECP Interaction

When the target accesses a device register,
contrcl is passed to the ECP., A table of
address pairs is searched to match the
device register address; the second address
is the entry point into the device handler.
Also passed to the I/0 routine is a
read/write flag, This process could occur
twice in cne main store instruction, if’
both source and destination are device
registers. The device handler resgronds to
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the request by accessing the I/0 devices
directly, At present, PDP-11 devices {13}
which have been implemented include the
simulaticn of an LA30 by a Tektronix 4723
CRT terminal, a PC11 paper tape reader
(wvhich is fed informaticn via a
Documation-6(0 card reader!), an 1P11 line
printer, BRKJ5 disks, and the KR11L line
clcck,

ECP's interrupt handling mechanism has two
stages. Interrupts are caught first by the
low level handler (with interrupts masked
for cnly a short period), which then places
the device's Unit Control Block {UCB) into
a pricrity-crdered queue (fig, 4}, 2 flag
is set to signal a logical interrupt, and
interrupt processing is ccmpleted, When the
emulator is restarted, this flag is
interrogated by the instructicn fetch
routine, and control is ccnditionally
passed to the second stage. Once the
logical interrupt routine gains ccntrol, a

TASK CCNTROL BICCK

CM-1 register save area |

Togical halt indicater |
Single imstr. step imdicator |
;o;s;l; ;O;I;n; ;e;d;n; T 1
;t;-;1-c;n;cze—s;i;c;e; ST 3

Pointer to a priority-ordered |
linked list of UCBs needing |
service by the upper level |
interrupt handler |

']

abaadd s s p—

ONIT CCNTROL BLOCK

| e 1
| Fhysical (QM-1) device address|

| e e 4
{ Lover level I/0 handler entry |
} address |
e e T 4
| Cevice status infcrmaticn I
|. _______________

1
| Link field for queuing the UCB|
I tc the upper level interrupt |

{ handler |
: ;r;p-v;c;o; :a;n-s;o;e-aad;e;sl
r ;u; ;e;u;s: ;r;o;i;y ----- 1
: ;e;e; ;o;t;n; ;nzt; ;dar;s; - |
{_;e;i;e-r;gzs;e; ;o;i;s— T ?

Fig. 4 ECP Control Block Structure
(single emulator environment)



check is made first of the “comaand
pending" word in the Task Control Block
(TCB) , and if necessary the ccmmand handler
is invoked, The queue of UCB's is then
inspected. If the CPU priority is lower
than the bus request priority of the first
UCB on the queue, a change of state in the

_______ Otherwise,
the emulator is restarted at the pcint of
intexrrugrticn,

This bi-level structure has two important

features:

e No restrictions are placed on the way
interrupts are handled bty a member
emulator's device drivers., This is
especially important if virtual machines
with different interrupt structures are
to be supported concurrently,

¢ The handling of an interrupt by a device
driver is completely independpnt of any
enmulator's software interrupt handler.
In particular, loss of an interrupt from:
a device owned by an emulator which is
not currently running does not occur

In a system with a small number of terminal.

devices, it may be desirable to have an

emulator console double as the system

conscle, This is easily dcme by providing a

simple mechanism called conscle redirection

to "point" keyboard interrupts at the
aprropriate handler, either the emulator's
or the system's. When the primary console

is "cwned" by the emulator, receipt of a

special control prefix passes the ownership

to the ECF, Commands may then bz executed,

even while the emulator is active. 2

command is provided tc return console

ownership to the emulator. Similarly, more
than one emulator may use the same console
device,

Ccne of the instructions which the centrol
program has to handle is BRESET, which
invokes rcutines to re-initialize the
devices that the emulator currently owns.
other obvious problems are for example
emulating the HALT instruction, which
should not stop the QM-1 (especially in a
multi-emulator environment). Similarly the
WAIT instruction cannot be dealt with by
simply having an interruptikle loop in
nanocode, since the next interrupt need not
necessarily come from a device which the
emulatcr cwns. Rather, WAIT sets the
logical wait indicator im the TCB and
decrements the PC so that the instruction
is re-executed.

4, UNIVERSAL HOST EVALUATION

A number of architectural characteristics
of the PDE-11 and of the QM-1 affect the
emulaticn of the former by the latter. An
investigation into those ccmpon2nts of
architecture which are appropriate for
gener2]l puipczs 2mulaticn has been made
[74]; the statements following may also be
axtended to emulation in general.

‘Ideally a host machine should have
"significantly more registers than the
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target. Ot course, emulation of machines
with a great many more registers, or
registers wider than 18 bits, can be
handled by maintaining them in control
store. In our case the PDP-11 registers
were casily accommodated in local store.

Fortunately, host maim stcre is 2 bits
wider than target memory, sc data transfer
is sieplified; these extra bits are used as
tags [15] to specify the existence or
purpose cf each word of the virtual machine
memory (fig. 3).

‘The PDP~11 emulator is fairly fast,

executing instructions at better than
one-half the speed of a Model 17,
aprroaching the physical limits imposed by
the main store. The simpler instructioms,
and instructions using the simpler
addressing modes, are relatively slower
because of the rather long (2.5
micrcsecend) fetch and decode routine. On
the other hand, use of the optional ENI
unit to extract the 3-tit subfields in the
operands reduces the instruction decode
times by about C.4 microseconds per
operand.

4,1 Fmulation_ Problems
The large number of buses and the presence
of residual control in the host enhance its
capabilities for parallelism. This is
especially important in instruction fetch
and deccde, which is usually the most
complicated part of instruction execution.
Parallelism, however, is not sufficiently
great for the PDP-11 emulaticn to check
stack overflcw concurrently with effective
address calculation,

The QM-1 does not have an €lementary N-way
branch capabkility, and only one level of
subroutine nesting is readily available at
the nancprcgram level.

70 emulate the FDP-11 efficiently,
operaticns cn various data widths are
required. For example, the PDF-17 has byte
operaticns which cannot be handled directly
by the ¢M-1's shifter and R1U., There is no
difficulty with arithmetic operaticns on
bytes, since these are stored in the upper
part of the word, but shifts and rotates
require proger inserticn of the carry bit
-an operation which is awkward to perform.
A desirable feature for a universal host
machine is a truly variable-width
arithmetic and shifting capability,
including correct generation cf ccnditionms
such as carry out and overflow. However, an
extremely complicated (and almost unusable)
structure might result, For example, the
PDP-11 includes the carry bit in its
shifts; the IBM 360 dces not.

Conditicn codes gemnerated ky the host's
hardware must undergo a non-trivial mapping
to ccnvert them to virtual machine
conditicn codes. R powerful single-bit
capability is required here, which the host
does not have (table lookup is employed in
the emulator). A similar prcblem exists
whenever a signed conditional brarch is
processed, in order to take overflow into



account.

The difference in unit of memory
addressability between host and target
forces a gcod deal of time- and resource-

consuming housekeeping on the emulator. A
PDE=11 addrece must he shif+ed richt by on

o
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bit tc¢ produce the corresponding QmM-1
address, In the case of byte operaticns,
the lcw-crder bit of the PDP-1" address is
used as a byte selector, and the byte which
is not affected by the operation must be
saved before the operation is carried out
and restored after its ccmpletion. An
efficient variable-width memory access
capability would ke an asset to a universal
host machine.

4.2 QObservations

The QM-1 was more than capable of hosting
the complete emulaticn of a fairly complex
machine, the PDF-11. Since the host could
do many difficult things easily, we were
perharps overcritical whenever some features
were awkward to implement. Nevertheless,
the final emulation speed was within a
factor cf two of the target machine,
comparing favorably with simulation, where
a reduction factor of thirty is more
realistic, In addition, the QM-1 supports a
variety of other emulators: the Nova 123(C,
IBM 7094 and S/360, plus a number of lesser
kncwn machines.

In the area of multiple emulation, the
common device drivers and the bi-level
interrupt structure of the ECP provigde
uniform access to shared peripherals,
without the need to inhibit interrupts for
long periods of time., Work is continuing on
that topic, and also on the design of
universal file systems to simplify
concurrent emulator support.
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APEENDIX I

INSTRUCTICN TIMING

The instruction executicn times of the
PDP-11 emulator and of the PDE-11/10
(1, Appendix B] are ccmpared in the tables

below. 2l1 timing information is in
microseccnds, unless otherwise noted.
SOURCE ANL CESTINATION ADDRESS TIMES
r ) v Ll ¥ B L
| Mode | ECP-11 | PDP-11 | Emulator |
| | SEC { DST | SRC, DST }
| | Time! | Time2 | Time |
1 + + + |
1 9 i 0.9 | 0.0 1 1.16 |
|1 I ©C.9 | 2.4 t 3.92 |
| 2 I GC.9 I 2.4 | 4,403 |
{3 | 2.4 1 3.4 1 4.96 |
i 4 1 GC.9 | 2.4 1 4.72+ |
| 5 I 2.4 | 3.4 | 4.96 I
| 6 | 2.8 | 3.4 | 4.40 |
1 7 | 3.4 | 4.7 I 5.28 |
— 4 4 4 ]
1 - For SRC Time, add 1.3 usec for 0dd Byte

addressing.
2 - Por DST Time, and 6dd Byte addressing:

1., add 1.3 usec for a ncn-modifying

instruction (CMEB, BITE, TSTR).
2, add 2.4 usec for a modifying
instruction.

et}
T

n

If register is 6 or 7, suktract 0.78

usec,

If increment is 1, add 0.08 usec,

If register is 6 or 7, subtract 0.08

usec,
usec.

1-1
(]
(]
14
-
i

single Cperand

Instr Time =

I1f decrement is 1, subtract C.08

Basic + DST

T L] L
Instr. | PDP-11 | Emulator |

| Basic | Basic |

| Time { Tipel i

t { +
CLR i 3.4 | 4.88 I
CCHN i 3.4 | 4.88 |
INC | 3.8 | 4.96 1
LEC | 3.4 | U.96 {
NEG | 3.4 | 5.12 |
ASR { 3.4 {1 5.922 [}
ASL | 3.4, i 6.002 }
EOR | 3.4 { 6.002 1
ROL | 3.4 { 6.002 i
ADC I 3.4 i 5.12 {
SBC i 3.4 ] 5.28 |
TST | 2.2 | 4.88 |
SWAR | 4.3 | 6.16 1

d L 3

—
|
|
|
1
1
{
I
l
|
|
|
|
l
|
|
|
|
L
1

If Eyte instruction, add 0.89 usec for
odd address, 0.72 usec for even

address,

I1f Eyte instruction, add 0.80 usec,
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Double Operand
= Basic + SRC + DST

Instr Time

v

L
ECP-11 | Emulator

T Ll
{ Instr, | |
| | Basic | Basic |
i | Time | Timel |
| + } +
{ ADD 1 3.7 i 5.12 ]
| SOB 1 3.7 | €.60 [}
{ BIC I 3.7 | 5.12 ]
| BIS 1 3.7 | 5.12 |
| CHMP 1 2.5 | $.36 1
| BIT | 2.5 | S5.20 |
| Mov { 3.72 | 5,123 |
L 4 .y ]
1 - If Pyte instructicn, add 1.44 usecc.
2

- 3.1 usec if Word imstruction and Mode

0.
3 -

add

Branch Instructions

If Byte instruction and DST Mode is
0.24 usec.

¢,

Ll T Ll 3 L] 1
{ Instr. | EDP-111| Emulator | Emulator |
| { kranch | branch | no branch |
I + + + i
| BGE | 2.5 | 3.202 | 2.722 1
| BLT I 2.5 1 3.202 | 2.722 |
| BGT | 2.5 | 3,682 | 3.202 |
{ BLE | 2.5 | 3.602 | 3.122 i
| BR | 2.5 1 2.64 | =--- i
| others | 2.5 I 3.12 1 2.€4 |
L i 4 4 I ]

1 - Sybtract 0.6 usec if no branch.
2 - Depending on N and V settings, add 2.7
tc 9.48 usec,

Jump Instructions
= Basic + DST

Instr Time

) T v )
{ Instr., | PDP-11 | Emulator |
| | Basic | Basic ]
] | Time | Time i
| + + +
| JMP i 1.0 | 3.52 {
| JSR | 3.8 | 3.76 \
L 4 . J

Contrcl, Trap, and Miscellancous

Instructicns

| T Ll hJ
| Instr. | PDP-11 | Emulator |
| | Instr | Instr |
| | Time | Time |
| + + +
| RTS I 3.8 { 4.96 I
| RTI | 4.4 | 6.561 |
| CLRCC | 2.5 | .56 1
| SETCC | 2.5 | 4,56 i
| HALT | 1.8 { 3.92? |
{ WAIT I 1.8 { 4.321 |
| RESET | 1C0 msec 4.881 {
| EMT t 8.2 { 8.321 i
| TRAP | 8.2 | 8.321 {
{ BPT | 8.2 { 9.361 {
| I0T { 8.2 | 9,361 1
— 4 A J
1 - Then invoke microrcutine.



DESIGN PROBLEMS IN EMULATING THE MIX COMPUTER ON THE MICRODATA 1600%

T. Don Dennis and 0. G. Johnson
Department of Computer Science, University of Houston

Houston, Texas

77004

This paper presents an overview of an emulator for the MIX computer written in Microdata 1600 mi-

crocode.

The MIX computer thus emulated is a variant of the original MIX computer as described
in Volume 1 of The Art of Computer Programming by Donald Knuth.

Basic changes involve the utili-

zation of 8 bit bytes along with the ASCII character code.

1.  INTRODUCTION

The MIX computer [5] is widely simulated for in-
structional purposes by departments of computer
science. Hence, it is felt that there should be
broad interest in the existence of MIX firmware.
In this paper, we report the availability of a. MIX
emulator for a Microdata 1600 with 32K and AROM

The limited micro capabilities of the 1600 along

with the architectural differences of the two ma-
chines created considerable micro program design

problems. The identification of these problems,

the solution techniques, and the subsequent crea-
tion of a new generation MIX computer constitute

the content of this paper.

Only major design problems are considered here.
Detailed descriptions of the design along with
flowcharts, listings and user's manual are
available in [8]. The second section discusses
memory allocation. The third conmsiders the lay-
out and management of file registers and the
last section discusses the overall firmware
design.

2. MEMORY ALLOCATION

The first design decision was how to emulate the
memory architecture of the MIX computer. The
memory resources available on the Microdata
1600/30 and memory requirements of the MIX ma-
chine are reflected in figure 1. With 32K of
core memory the Microdata 1600/30 is larger than
the MIX 1009. Hence, one might think that emu-
lation of the entire 4K words of MIX memory
would cause no real problems. There were prob-
lems, however. The following three questions
indicate the difficulties considered.

1. How many Microdata bytes should be used to
emulate each MIX word?

2. How many bits should be used in each byte?

3. How should any extra Microdata memory be used?

*This work was supported by National Science
Foundation Grant DCR-74~1782
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Microdata MIX 1009
1600/30
Words of undefined 4,000
Memory byte
addressable
Bits/Byte 8 1/sign
6/data
Total Fo. 32,728 4,000 sign
Of Bytes 20,000 data
Total No. 261,824 124,000
of Bits
Cﬁéracter ASCIT or Kauth's
Code EBCDIC Code
Numeric Code|binary 2's binary
compliment sign plus
magnitude

Fig. 1 - Microdata-MIY Hardware Comparison

In examining the first of these problems, either
five bytes per MIX word or six bytes per MIX word
might seem to be the best solution. The five bytes
per MIX word solution would require packing the sign
and the first MIX data byte together. This packing
would result in more available MIX memory but would
inhibit uniform handling of all five data bytes.
Uniform handling and the ability to generalize the
firmware for partial word operations should be a
primary consideration, however. Therefore, the
six-bytes-per=MIX~word solution was selected in
which the sign byte and 5 data bytes would each be
assigned to a separate Microdata byte.



There are three disadvantages of this approach:

1. Not all 4000 words of MIX memory can be emu-
lated on a 16K Microdata.

2, Address translation from MIX address to
Microdata address and vice versa would be
time consuming.

3. Detection of MIX word boundaries would be
difficult given only the corresponding
Microdata address.

The use of 32K Microdata memory solves problem 1.
In fact, 8,728 bytes of Microdata memory would be
still available at six bytes per MIX word. Pro-
blem 2 can be solved with a small amount of mi-
crocode; however, address translation is still
time consuming. Problem 3, however, is the most
difficult. Recall that MIX Input/Output instruc-—
tions handle the sign byte of each MIX word dif-
ferently from the data bytes. On Input the sign
bytes are set positive and on Output the sign
bytes are ignored. Figure 2 illustrates the Input

operation.
s 1st an 3rd Ath 5th
0 C 0 N MIX word 0000
1 N T S MIX word 0001
1 R I O R MIX word 0002
0 T O I N MIX word 0003
i1 P U T MIX word 0004
Before Read
s 15t an 3rd 4th 5th
MIXword 0000 0 A B C D E
MIXword 0001 0 F G H I J
MIXword 0002 0 K L M N O
MIX word 0003 0_ P Q R S T
MIX word 0004 0 U Vv W X ¥
After Read

Read 80 characters into MIX memory
starting at MIX word 000.

In 0, (10)
r ABCDEF...

Fig. 2 - MIX Input Operation

Input/Output on: the host machine, however, occurs
one byte at a time, and the microprogram must use
Microdata addresses to store each data byte; thus
the firmware must be able to sense MIX word boun—
daries. One way to do this is to divide each
Microdata address by six. If the remainder is
zero then this byte corresponds to a MIX sign
byte and could be handled accordingly. Another
possible solution is to assign a counter to each
1/0 device that is set to zero when an I1/0 opera-
tion is initiated on that device; then each time
a data byte transmission occurs this counter is
tested to see if it is equal to zero. If not,
the data transmission would take place and the
counter would be decremented. But if the counter
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is zero the Microdata address corresponds to a MIX
sign byte and this byte should be either zeroed or
ignored, depending on whether the operation in-
volved is Input or Output. The counter would then
be set to 5 and normal handling of ddta could resume.
Either of these two methods, dividing by six or run-
ning a special counter would solve the problem of
MIX word boundary detection but neither is easily
accomplished.

Having tentatively adopted the six-byte-per-MIX-
word solution, the next decision concerned how many
bits should be used in each MIX byte. Knuth speci-
fies each MIX byte should hold at least 64 values,
but at most 100 values. This range allows MIX to
be implemented as either a binary or a decimal ma-
chine. This implies that any binary implementation
would have to use 6 bit data bytes. However, the
Microdata accepts 8 bit operands and produces an 8
bit result plus a high order carry to be used as a
link bit in multiple byte operations. If MIX were
to be emulated with a 6 bit byte then the following
format of figure 3 would result.

S N N NNNNN

NN 11,11 101

N N 22,252, 2 2, S - Sign Bit

NN 3, 3. 3.3, 3.3 N - Not used
17273 7% 7576 Ki-ithbitofKth

N N 41 4, 43 44 45 46 byte

N N 55,555, 555

Fig. 3 - 6 Bit MIX Format

This format complicates all arithmetic instructions
in MIX. If this format is allowed, the existing
Microdata hardware for doing arithmetic operatioms
cannot be used as intended. Incrementing a two
byte counter, a very common and usually very simple
operation is now fairly involved. The hardware
Link bit provided in the Microdata ALU cannot be
used to indicate a carry, so firmware logic must be
developed to handle the high order carry. Figure

4 shows one way of incrementing two 6 bit bytes on
the Microdata ALU.

% Assume Pl contains the 6 high order bits of
the counter.

* And P2 contains the 6 low order bits of the
counter.

% Also assume Pl and P2 are carried in the
following form.

* 00111111

* 00222222

High order 2 bits - zero

INC 2 Increment P2
™ 2,X'40' Test for high order carry
JP RIN No high order carry so

continue
* High order carry has occurred

LT X'3F' Load mask into T register
AND 2,T Clear carry from P2
INC 1 Increment P1
* Now overflow is possible
TZ 1,X'40° Test for overflow
JP  OVERFL Overflow has occurred
* Return

Fig. 4 - Microcode for 2Byte/63it Incrementation



Using the Microdata's ALU as intended a two byte
(8 bit) counter can be incremented as shown in
figure 5.

* Assume Pl and P2 again contain the counter
INC 2 Increment low order 8 bits
ADD 1,L,C Add Link bit to high order 8

condirion Fflasea

bits, set condition riags
TZ 0,X'01' Test for overflow
JP OVERFL Overflow has occurred
* Return

Fig. 5 - 2 Byte/8 Bit Incrementation

If the 6 bit format doubles the number of instruc-
tions required to increment a two byte counter, it
should be clear that involved instructions such as
Multiply, Divide, Add, Subtract, Shift, Char, and
Num would be considerably longer as well. Recall
also that MIX, being a sign plus magnitude machine,
already conflicts with the Microdata's ALU since it
is a two's complement unit.

In light of these complications an 8 bit data byte
was adopted for the emulation of MIX. The format
"is shown in figure 6.

S NN NDNNNN

111111 1 1

1.2 3 4 5 & 7 8 . .

2 2 2 2 2 2 2 2 S - Sign Bit

1 2 3 L. 5 & 7 8 N - Not used

31 3, 33 31* 35 3, 3, 3, Ki'iﬂ:bit of Kth
yte

41 1.2 43 z.u 45 46 47 48

51 5, 5,5, 5 5 5., 5¢

Fig. 6 - MIX 8 Bit Format

This eight bit data byte called for the adoption
of another character code. Knuth's code, a 6 bit
code, could have been used; however, it was felt
that since the teletype, line printer, and disk
worked in ASCII, it would be more advantageous to
use ASCII than forcing Knuth's code onto these
devices via firmware.

The remaining memory allocation problem concerned
what to do with the 8,728 bytes of surplus Micro-
data memory. The two choices are obvious:

1. Extend MIX memory by 1,454 words.
2. Provide some sort of system support (tempo-
rary stcrage).

Solution 1 enhances the MIX machine from the
user's point of view. However, MIX is supposed
to have only 4,000 words of memory. In fact, if
programs are to be written according to Knuth's
rule "that no more than sixty-four values are
ever assumed for a byte" [1], the largest meuory
location addressable is location 4,095 (26-1).
It would also seem that 4,000 words of memory is
more than enough for educational purposes. Thus,
adding more memory to the MIX machine offers no
real advantage.

Solution 2 offers some advantages that are not ob-
vious at first. All Input/Output in MIX takes
place in concurrent mode. That is, an I/O opera-
tion is started via an IN or OUT instruction but a
major portion of the I/O operation takes place

while the user executes other instructionms. Cer-
tain information must be available to the micro-
program in order to carry out these block data
transfers. However, this information, memory ad-
dress, and counters, must be stored somewhere be-
sides the MIX registers available to the user.
This surplus memory provides an ideal, and in fact
the only place to temporarily store this type of
information. A decision was also made, for reasons
that will be discussed later, to keep MIX's index
Tegisters in main memory instead of the secondary
files. Thus, with this type of privileged data in
main memory, it is necessary to have an area of
core that the MIX user cannot use. If certain MIX
memory locations were dedicated to the above func-
tions then the MIX user could alter concurrent I/0
operations as well as the contents of the Index
registers. It was thought that this was both dan~
gerous and unnecessary for beginning programmers.

Having adopted solution 2, one more question arose;
where should MIX memory begin and where should the
surplus memory reside? Three possible answers were
considered; the two which follow are obvious:

1. The surplus resides at Microdata address 0000-
8727 and MIX memory resides at 8728-35,728.

2. MIX memory resides at 0000-24,000 and the
surplus at 24,001-35,728.

The third possibility, and the one which was chosen,
was to begin MIX memory at Microdata 0000 and then
alternate one MIX word with two surplus bytes
throughout Microdata memory. This did not affect
the availability of the surplus memory but it did
solve two problems previously discussed in this
paper. Figure 7 illustrates the above solution.

Microdata MIX
Address  aAddress

00000 00 sign byte
00001 15% data byte
00010 27 data byte
00011 3% aata byte
00100 4" data byte
00101 5°" data byte
00110 surplus
00111 surplus
01000 o1 sign byte

01001 1°F gata byte
01010 2" data byte
01011 3d

data te
‘01100 4" aata byte
01101 "5 gata byte
01110 T surpius
01111 T surplus
10000 02 T sign byte
10001 "T1st data byte
10010 274 data byte

Fig. 7 - MIX Memory Assignment

Using this memory layout, the addressing problems
of the 6 byte per MIX word solution were solved.
Each MIX word is six Microdata bytes long but now
each MIX word begins on a Microdata address which
is a multiple of eight, Thus copversion from MIX
address to Microdata-dddress can be accomplished
by shifting the MIX address threé places left.
Conversion from Microdata address involves shift-
ing the Microdata address 3 places right. MIX
word boundaries are also easy to sense. Any



Microdata address ending in 000 is a word boundary.
Surplus bytes are also easy to detect since their
addresses all end in either 110 or 111.

It should be noted that the surplus data bytes are
invisible to the MIX user. This interweaving of
MIX words and surplus data bytes also allows a mi-
nor extension of MIX memory from 4000 words to 4096
words. Some of these extra 96 words were dedica-
ted for purposes not included in Knuth's specifi-
cations. For example, one word in high core is
trapped by the microprogram if an illegal address,
opcode or I/0 device is encountered. Two bytes are
dedicated to each 1/0 device, one to store the
device status byte upon completion of an I/0 oper-
ation and one as a trap address in case of an 1/0
error on that device.

3. FILE REGISTER ALLOCATION

The second design decision concerned the mapping
of MIX's registers into the hardware available on
the Microdata 1600/30. The registers which were to
be emulated along with their lengths' are reflected
in figure 8.

A Register Sign plus 5 bytes
X Register Sign plus 5 bytes
Instruction Register Sign plus 5 bytes
Instruction Counter 2 bytes
Jump Save Register 2 bytes
Index Register 1 Sign plus 2 bytes
Index Register 2 Sign plus 2 bytes
Index Register 3 Sign plus 2 bytes
Index Register 4 Sign plus 2 bytes
Index Register 5 Sign plus 2 bytes
Index Register 6 Sign plus 2 bytes
Overflow and

Comparison 1 byte

Fig. 8 - MIX Register Requirements

The Microdata provides 30 eight bit registers for
the microprogrammer to use in emulating the
registers of target machines. The idea of stor-
ing some of MIX's registers in main memory was
also considered. It was decided that if simpler
firmware logic would result from certain registers
being stored in main memory then the speed gained
through this simpler and therefore faster logic
might easily make up for the time spent paging
registers in and out of main memory. One should
also note that the sum of the lengths of the
registers listed in figure 8 is 41 bytes. Thus
there were more MIX register bytes to emulate than
there were file registers.

Initially it was decided to place the X register
and the Index registers in main memory and to page
them as required into the secondary file. Nine
file registers (1-9) were reserved in the second-
ary file to hold the registers that were currently
paged-in. A page map was to designate which regis-
ters were in memory and which were in the secondary
files, as well as, which MIX register was in which
set of Microdata files. Using this set-up, either
the X register and one Index register, or up to 3
Index registers could be in the secondary files at
any given time. The X register could fit into two
possible slots, either register 1-6 or registers
3-9, and Index registers could fit into either
registers 1-3, 4-6, or 7-9. This paging algorithm
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plus the other five MIX registers consumed a total
of 29 registers, leaving one register free.

Although this method did allow the emulation of all
of MIX's registers and free work space could be cre-
ated at almost any time by paging the registers in
the secondary file out to memory, the overhead in-
volved was considered very high. Instructions con-
cerning the X registers were complicated since it
could be in two possible positions. Index register
routines were complicated since they could be in any
one of three places in the secondary file. The ae-
counting involved in keeping track of the current
location of each MIX register file required three
file registers and a considerable amount of AROM.
Some sort of scheduling algorithm was also required
to determine which register should be paged out in
order to make room for the incoming register. It
was thus decided that this strategy was. too costly
both in terms of firmware logic and file registers.
The paging concept was then amended to allow only
one Index register in the file registers at any
given time. The X register would reside permanent-
ly in the secondary files. This simplified the X
register instructions considerably. The Index re-
gister instructions were also simplified since now
there were only six different Index register's in-
structions instead of thirty-six. For example,
there are six Load Index instructions, one for each
register; but all six are effectively represented
by one load Index routine since all the Index re-
gisters are loaded into the same place in the sec-
ondary file. This routine calls the paging routine
to page in the required Index register and

then loads this register with the proper contents.
The same is true for the Load Index negative, Store
Index, Jump On Index, Enter Index and Compare Index
instructions. The accounting problem associated
with the paging system was also simplified. The
page map was now 3 bits long--these bits contained
the number of the Index register currently rolled
in from memory, or the value zero if all the regis-
ters were currently rolled out. This ability to
page all the Index registers out to memory provided
an easy way to create free work files when the need
arose. By allowing only one Index register in the
secondary files at any one time, the need for a
scheduling algorithm was eliminated. If Index re-
gister 1 is in the secondary files and Index regis-
ter 2 is required, either for indexing or by an In-
dex instruction, Index register 1 must be paged out
and then Index register 2 paged in.

The detailed flow chart of the paging mechanism,
called the Index Register Supervisor, can be seen
in chapter V and microcode for the routine is found
in chapter VI of [8].

Having solved the problem of too-many-MIX-registers-
and-not-enough-files, the allocation of MIX regis-
ters to Microdata files was begun. The A register,
the Instruction register and the Instruction Counter
were assigned to the Primary file while the X re-
gister, Overflow and Comparison Indicators, Index
registers, Index Map and Jump register were assigned
to the Secondary file.

The Instruction Counter and Instruction register
were placed together to facilitate the fetch rou-
tine. The A register was placed in the same file
with the Instruction register, since the A register
is the register most likely to be involved in the



next instruction fetched. Although only one free . -

work file remained in the Primary file, the three
files in the Instruction Counter containing the
Operation code, the Index register and the sign of
the Memory Address normally become avdailable fol-
lowing the execution of the Instruction Decode
Routine. These four free work areas in the Pri-
mary file are available in most cases.

The remaining MIX registers, the X register, the
home position for the Index registers, the Index
Map, the Overflow and Comparison indicators and
the Jump Save register were grouped together out
of necessity since the secondary file was the. only
place left to put them.

Figure 9 illustrates the file mapping that was
finally selected. The A register was allocated
Primary files P1, P2, P3, P4, P5, and P6. The X
register was allocated ten matching registers in
the Secondary file. This aligmment simplified the
different A and X instructions in much the same
way that paging simplified the Index instructions.
The only difference between a Load A and a Load X
instruction is the periodic selection of the
Secondary files instead of the Primary files.

141
IE Tol pZ80 PSO l
sign P1 sign S1
15t byte P2 | 38t byte s2
A 2*4 byte P3 2% pyre s3 | X
{at Register
Repiater 3 byte P4 37 byte S& i
4By ?5 4th byte S5
th P6 th S6
T S6.
Free wﬂ‘;bu 3~ buee -ngrtlou Comp. ,
Register P? OLEGC x {iif $7° |& Index Map
| sten F8 i sten 38
g - Index
| AL sddress—ho P9 1 25t bure 59 )
Y Register i
Instructfod a9 addrese-lo P10 |  2%d pyre si0 |
Register ’
1 _index spec. P11 S11 | pree work
L_F f1e1d spec P12 S12_fRegisters
C op code P13 s13 ]
Tnstructfo] gst byte-ho P14 | 13t pyre-ho 814 | Jump
Counter " ; ” Register
229 pyre-1o 151 2°¢ byte-do S15

.Fig. 9 - MIX File Allocation

The Instruction register was placed in P8-P13 with
P7 being the one free work file. This placed P7
next to the sign byte of the instruction address,
which is one of the first files in the instructien
register to become free. The Instruction counter
was then assigned to P14 and P15, the remaining
Primary files. .

The Overflow and Comparison Indicators, a 4 bit
register, and the Index Map, a 3 bit register,
were combined into Secondary file S7. The home
position for the Index registers was assigned to
88, S9, and S10. The Jump Save register was alligned
with the Instruction Counter in S14 and S15. This
left S11, S12, and S13 as free work registers.

It should be noted that eleven file registers can
be freed after instruction decode if they are
needed. P7, S11, S12, and S13 are always free.
P8, P11, and P13 are free after instruction decode.
S8, S9, and S1N can be freed by paging the current
Index register out to memory after the effective

[#%]
ey

- operand address has been computed. Finally, the

seven bits of S7 can be packed into S1 with the
sign of the X register if necessary, freeing S7.

The mapping allowed simplified coding of Index in-
structions of A and X instructions as well as ample
work space and resulted in the successful emulation
of the MIX 1009 computer.

4. TFIRMWARE LOGIC DESIGN

Having defined the MIX Machine in terms of the Mi-
crodata's hardware, firmware design could begin.
First a general overview of the system was composed.
The following is an explanation of the overview as
presented in figure 10.

‘Start Routine - performed following cold start and

prior to the execution of any MIX instructions; en-
ables external interrupts; enables the real time
clock; initializes the teletype; loads the Instruc—
tion Counter from a dedicated high core address.

Fetch Routine - fetches the next instruction into
the instruction register from the address contained
in the Instruction Counter.

Addressing Routine - computes the effective operand
address.

Decode Routine - examines the Instruction Operation
Code and transfers control to the corresponding
firmware instruction module.

Instruction Modules - firmware routines that exe—
cute the individual MIX instructions.

Interrupt Handler - executed after the execution of
the last instruction and prior to fetching the next
instruction; acknowledges and handles external in-

terrupts from I/0 devices; acknowledgés and handles
internal interrupts from the real time clock and

console panel.
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Fig. 10 - System Overview

Subroutine Package - Index Register Supervisor:



handles the paging of MIX Index registers; I/0
routines: used by the Input/Output instructions
as well as the interrupt handler; Error Routines:
handles user errors such as illegal addresses,
illegal opcodes, illegal I/0 device numbers. and
I/0 errors.

An attempt was made to keep the MIX emulator as
modular as possible. This facilitated program
development and debugging as well as simplifying
the decode routine. The decode routine divides
the MIX instruction set into seven groups, each
group representing a type of MIX imstruction.

The seven Groups are:

1. Opcodes 0-7 Arithmetic-Logic instructions

2. Opcodes 8-23 Load instructions

3. Opcodes 24-33 Store instructions

4, Opcodes 34-38 Input/Output instructions

5. Opcodes 39-47 Jump instructions

6. Opcodes 48-~55 Enter and Increment instructions
7. Opcodes 56-63 Compare Instructions

Detailed descriptions of each of these groups,
along with flowcharts and microcode are given in
[8]. The same reference includes a user's guide as
well as a complete program listing. Parties in-
terested in using the emulator should contact the
authors. The code is public domain and the au-
thors will distribute the program at cost.
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EXTENSIBILITY - A NEW APPROACH FOR DESIGNING
MACHINE INDEPENDENT MICROPROGRAMMING LANGUAGES

David J. DeWitt
Computer Sciences Department
University of Wisconsin-Madison

This paper describes a new technique for designing
high level machine independent microprogramming
languages. In Section 1.0 we will discuss some
design considerations for microprogramming lan-
guages and will review the previous efforts in
the area of microprogramming languages. In Sec-
tion 2.0, we will discuss extensible languages -
what they are and why they are useful. Then in
Section 3.0, we will show why an extensible mi-
croprogramming language resolves most of the
diffieculties inherent in designing a language for
microprogramming. This section will also include
a description of the language EMPL - our exten-
sible microprogramming language. We will define
its syntax, give some examples of how its exten-
sible features can be used and finally will
demonstrate the feasibility of constructing such
a compiler.

1.0 Design Considerations for Microprogramming
Languages

In designing a microprogramming language there
are four primary design goals to achieve:

Gl: The language must facilitate writing programs.
It should make provisions for writing well
structured programs and thus should include
the appropriate control constructs (such as
"IF THEN...ELSE..." statements and "DO WHILE"
loops).

G2: The language should be "readable" so as to
facilitate the task of redesigning a program
if that proves necessary at a later date.

G3: The language should be machine independent

50 that programs written in it are portable.

It should be possible to compile the lan-

guage into very efficient microcode* for

a variety of microprogrammable computers.

Gh:

These goals are not very different from the de-
sign objectives for any programming language ex-
cept that the requirements for very efficient
code production (objective GU) are generally
more severe for microprogramming. This require-
ment results from the fact that control memories
are usually implemented with "state of the art"

This work was done at the University of Michigan,
Department of Computer, Information, and Control
Engineering

¥Efficient microcode is microcode which executes
in a minimum amount of time.

technology so that they are as fast as possible.
Thus, they are expensive and therefore are gen-
erally small (compared to main memories). Thus,
"tight" microcode is needed so that a minimum num~
ber of words in the control memory are used. The
second reason why efficiency is so important

is that microcode is generally run very fre-
quently. An order of magnitude difference between
the execution frequency of an assembly language
routine in an operating system and a microcoded
routine in an emulator is not unrealistic. There-
fore, saving just a couple of microinstructions
here and there can result in a dramatic perfor-
mance improvement at the assembly language level.
A good example of where efficiency is obviously
very important is in the sequence of microinstruc-
tions which interpret an assembly language state-
ment on the IBM 360.

In order to motivate the purpose of our Extensible
Microprogramming (EMPL), we will next examine some
different levels of microprogramming support. We
will also analyze how successfully each achieve
the four design objectives we have presented.

1.1 Micro-Assemblers

Assemblers* translate symbolic instructions on a
one to one basis into executable microinstructions.
For microprogrammable computers with vertical mi-
croinstruction formats, the symbolic instructions
look very similar to typical assembly language
instructions. Examples of such assembly languages
can be found for the Microdata 1600 in [MICT1],
Tor the Burroughs BI726 in [DEW73], and for the
Interdata 85 in [INT73]. For computers with hori-
zontal microinstructions each symbolic instruction
contains a specification of each microoperation
that should be executed during the microinstruc-
tion. No concurrency analysis is done. Mirager
[CLA72], an assembly language for the Argonne Mi-
cro-Processor¥*, is an example of such an assembly
language.

Such assembly languages achieve only one of the
desired goals Gl through Gi. They fail to ease
(to any significant degree) the burden of writing
programs. Programs written in such assembly lan-

¥Except for assemblers which provide MACRO capa-
bilities.

*The term "microprocessor" as used here refers to
a microprogrammsble processor, not an LSI component.



guages certainly are not transportable and are gen-
erally not very readable since they are full of

'GO TOs'. The assembler can, however, produce
efficient microcode but will do so only if the pro-
grammer writes an efficient program.

1.2 Tailored Languages

Tailored languages are microprogramming languages
similar in design to PL/360 [WIR68]. The syntax
of these languages is similar to the syntax of
high level languages such as ALGOL or PL/1. Con-
trol constructs such as "IF THEN...ELSE...", "DO
CASE", and "DO WHILE" are permitted. However, the
programmer must have a working knowledge of the
architecture of the target machine in order to
write code in these languages. Generally symbolic
variables are not permitted, so the programmer must
keep track of which operands are in which registers
and must meke an explicit assignment between vari-
sbles and physical memory locations. SIMPL [RAMT3]
(a single assignment microprogramming langusge) ,
the Datasaab FCPU Microprogramming Language
[BLOT3], and MPL (a microprogramming language for
the Microdata 32/S computer [MICT3]), are examples
of tailored microprogramming languages.

Tailored languages partially succeed in facilita-
ting the task of writing microprograms. While the
program may be fairly readable, it is not portable
at all. The code produced should be about as
efficient as the code produced by an assembler for
the same computer.

1.3 Machine Independent Languages

While the set of machine independent micropro-
gramming languages could include a language like
ALGOL, the compilation of such languages into
microcode is a very complex process. Further-
more, languages like ALGOL require & complex run-
time environment which would be very difficult to
maintain at runtime by a microprogram. There-
fore, a high level language for microprogramming,
while supporting ALGOL like control comstructs,
simple data structures such as vectors, and
arithmetic expressions, should not be expected to
handle complex operations such as character
string manipulations. Such a high level language,
if the code produced is sufficiently efficient,
would achieve all the goals Gl through Gk.

There have not been many efforts to produce such
s language. Remancorthy et. al., [RAM73] claim
that SIMPL is such a language. Careful analysis
of SIMPL reveals that it is a language tailored
for the CDC 6600. MPL, a microprogramming lan-
guage developed by Richard Eckhouse [ECKTL] at
SUNY/Buffalo is the best attempt to define a
machine independent language. MPL is a pro-
cedure oriented language which has six basic data
types:

1. machine registers - both real and virtual

2. memory - main and control memory

3. local and auxiliary storage

L. testable events - condition flags

5. constants

6. variables - which only take on constant
values
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MPL has two basic statement types:

1. Simple assignment statements, with operands
in the above classes, which permit typical
operations (e.g., arithmetic and logical)

2. "If" statements which permit branching on
the value of some testable event.

Although Eckhouse claims that his language is ma-
chine independent, it is so in only a very limited
sense. It is capable of describing and compiling
microprograms for a wide variety of computers but
since real machine registers show up as predefined
variables, programs written in MPL are not trans-
portable from machine to machine. Furthermore, MPL
is not designed for teking adventage of the con-
currency available on those target machines which
can support parallel operations. The compiler for
MPL does not attempt to detect parallel microoper-
ations and so will fail to produce very efficient
microcode for any machine which has horizontal mi-
croinstructions.

In conclusion, "high level" machine-independent
microprogramming languages are still very much in
the research and development phase. Existing lan-
guages such as PL/1 or ALGOL are too complex to be
used for this purpose. MPL is not sufficient for
the reasons which were described previously.
Finally, any high level language constructed in a
conventional manner, may be its very definition, be
incapable of producing efficient microcode for a
wide range of machines. Some machines support, in
hardware, multiply operations. Some even have
floating point hardware. Some have elaborate de-
code and branch microoperations. Any micropro-
gramming language must be capable of taking advan-
tage of each unusual facility on each machine if
users are going to use this language as a tool to
write their microcode. This diversity of available
features makes a high level microprogramming lan-
guage difficult to design because if the language
is too complex (because it attempts to incorporate
every imaginable feature) then it becomes too
difficult to compile. If it is not able to handle
floating point operations when the target machine
has microoperations which manipulate floating point
operands then the compiler is not going to be able
to produce efficient microcode. These observations
have motivated the development of an extensible
microprogramming language. In the next section we
will present an overview of extensible languages.
Then, in Section 3.0, we will describe EMPL - an
extensible microprogramming language.

2.0 Extensible Languages

The purpose of this section is to introduce the
basic concepts of extensible languages. We will
not describe the syntax of a particular extensible
language such as ALGOL-68, but will instead des-
cribe the features that most extensible languages
share. Furthermore, we will not concern ourselves
with implementation details at this time. Rather,
after we describe our extensible language EMPL, we

“will discuss how the extensible features of EMPL

can be implemented.

In [CHE68], Cheatham presents two extreme design
approaches for programming languages. They are
referred to as the shell approach and the core



approach. The shell approach calls for imple-
menting a universal programming language that in-
cludes every conceivable feature a user might ever
want. PL/1 is an example of a shell language. A
core language would be designed to include only
very basic features but would permit the user to
extend the language so that it includes those
features that he desires. Thus, the. user can cus-
tomize the language so that it becomes appropriate
for the type of problems he wishes to solve.

The basis of an extensible language is a concept
which is known as a type (types are called classes
in SIMULA67 [DAHTO] and modes in ALGOL6S [WIJT4]).
A type permits a user to define a new data struc-
ture and a class of operators which can operate on
instances of this new data structure. Types, as
envisioned by Campbell and Wyeth [CAMTL], also can
be used to provide a form of protection since the
only operators allowed defined within the type
declaration. Once a type has been defined, the
user can, within the scope of the type definition,
declare instances of that type and can include the
new operations (as described in the type defini-
tion) in statements. Whereas the set of legal
operators for common types such as integer and
real are defined implicitly by the syntax of the
core language, the set of legal operators for a
particular type must be specified explicitly in
the type definition. The definition of a Campbell
and Wyeth type includes:

1. A template which specifies the internal struc-
ture of each instance of a type. This template
consists of a set of objects, a collection of
object operations which specify the ways in
which the objects can be manipulated, and a set
of private procedures. Each private procedure,
which also manipulates objects, is executed for
every instance of a type which is declared.

2. A set of type-objects, type-operations, and
type-procedures. The type-objects are objects
outside the template but inside the type defi-
nition. For each type definition there is
only one instance of each type-object regard-
less of how many instances of the type there
are. Type-operations are operations which man-
ipulate type-objects. Type-procedures are pro-
cedures which are executed when an instance of
a type is declared. Initializing the value of
a type-object to zero might be the effect of
executing a type-procedure.

The object operations and type-cperations are the
only elements of the type definition which can be
accessed outside the scope of the definition.

3.0 An Extensible Microprogramming Language

3.1 Extensibility and the Design Objectives

While it should be apparent that it is not a dif-
ficult task to design a microprogramming language
that is easy to use and is self-documenting, it is
hard, however, to design a language that is both
portable and capable of being translated into
efficient microcode for a variety of target ma-
chines. We feel that the core approach to lan-
guage design can be used to design a micropro-
gramming language which will achieve all four of
the design objectives stated in Section 1.0. We
will state without argument that any well designed

(&%)
(3]

high level language achieves the first two objec-
tives - ease of programming and readability. What
we must demonstrate is that such a language can be
both portable and capable of being translated into
efficient miecrocode.

Recall that the motivation for the core approach to
language design is to implement a programming lan-
guage which permits the user to extend the set of
data structures and operations included in the core
so as to customize the language for the class of
problems he wishes to solve. A microprogramming
language which is designed according to the core
methodology will permit the programmer to customize
the microprogramming language to fit the target ma-
chine. That is, if the target machine supports
microoperations which manipulate floating point
operands, the language can be extended so that the
user can declare and manipulate floating point
operands. Since the language has been customized
to take advantage of the floating point capabil-
ities of the target machine, the microcode produced
should be more efficient than if the floating point
operations were implemented using fixed point op-
erations. Analogously, if the target machine has

a stack, the programmer can extend the language by
declaring a new type named STACK. Example 1.0
contains a type declaration for a stack. The ob-
jects comprising the stack include a vector of in-
tegers for the stack itself named STK and a poirter
to the current top of the stack named STKPTR. The
two object operations are PUSH and POP. PUSH adds
a new element to the top of the stack. Thus, by
extending the language to include a stack and the

type STACK
template
integer STK (16), STKPTR,LIMIT
initially: STKPTR=0;
operation PUSH (Accepts integer VALUE);
IF STKPTR=16 then ERROR;
ELSE DO;
STKPTE = STKPTR+1;
STK(STKPTR )=VALUE;
END;
operation POP (Returns integer VALUE);
IF STKPTR=0 then ERROR;
ELSE DO;
VALUE=STK (STKPTR) ;
STKPTR=STKPTR-1;
END;
ENDtemplate;

e
~3type;

Example 1.0

operations PUSH and POP, the user can express his
algorithm using this new type and the microcode
produced will take advantage of the stack which is
available on the target machine.

It may be difficult to understand how portability
can be maintained if the systems programmer is per-
mitted to extend the language so that it takes ad-
vantage of the hardware features of a particular
target machine. Assume that we have written a pro-
gram for a target microprogrammable machine A which
supports a hardware stack. Thus, at the beginning
of the program we would include a type declaration
for a stack similar to the one found in Example
1.0. When the program is compiled to run on Ma-
chine A, each occurrence of the object operation



PUSH will be compiled into one microoperation which
will perform the PUSH microoperation. If at a
later date we wanted to run the program on machine
B, which did not support a hardware stack, we would
set a toggle on a control card. This toggle would
indicate that the stack should be maintained as

any vector would be on the target machine and that
each occurrence of PUSH is not compiled into a
single microoperation but is instead compiled into
the sequence of microoperations which corresponds
to the compilation of the statements included in
the declaration of the object-operation PUSH.

Thus, by setting a toggle for each type declared
in a program, the program can be transported from
one machine to any other machine as long as a com-
piler exists to compile the core language for the
target machine. Therefore, the extensible approach
to designing a microprogramming language can a-
chieve all of the design objectives which were
specified in Section 1.0.

One should, however, realize an important fact
about such an extensible languege - a separate com-
piler is needed for each target machine. Actually,
as we will demonstrate in Section 3.3, the compila-
tion process can be subdivided into e machine in-
dependent subprocess and a machine dependent sub-
process. The lexical analysis and syntactical
analysis processes are machine independent and do
not need to be rewritten for each compiler. It is
only the code generation process that is machine
dependent and thus must be written separately for
each target computer. The fact that the code gen-
eration process is machine dependent Iimplies that
the intermediate language statements are machine
dependent. Thus, the output of the compiler is a
sequence of intermediate language statements each
of which corresponds to an executable microopera-
tion (after register allocation is done) on the
target machine.

3.2 EMPL - The First Extensible Microprogramming
Language

We are now ready to define the syntax of our ex-
tensible microprogramming language. The syntax
of EMPL is:

3.2.1 The Syntactic Description of EMPL

The BNF description of EMPL is as follows:
BNF of EMPL

<PROGRAM> ::=
<PROGRAM HEAD> ::=

<PROGRAM HEAD> <STATEMENT LIST> EOF
<BASIC STATEMENT>
<PROGRAM HEAD> <BASIC STATE-
MENT>
= <EXTENSION STATEMENT> ;
| <DECLARATION STATEMENT> ;
| <EXTENSION OPERATOR> ;
<STATEMENT
| <STATEMENT LIST> <STATEMENT>
<STATEMENT> ::= <STANDARD STATEMENT>
| <BEXT STATEMENT>
<EXT STATEMENT> ::= <IF STATEMENT>
| <RESTRICTED STATEMENT>

<BASIC STATEMENT> ::

<STATEMENT LIST> ::-
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<STANDARD STATEMENT> ::= <CALL STATEMENT> ;
| <PROCEDURE DEFINITION> ;
| <RETURN STATEMENT>
| <LABEL> <STANDARD STATE-
MENT>
| <EXECUTE STATEMENT> ;
<RESTRICTED STATEMENT> ::= <ASSIGNMENT> ;
I <GROUP> ;
| <GO TO STATEMENT> ;
| <LABEL> <RESTRICTED
STATEMENT>
I s

<IF CLAUSE> <STANDARD STATE-
MENT>
| <IF CLAUSE> <TRUE PART> <STAN-
DARD STATEMENT>
| <LABEL> <IF STATEMENT>
© IF <LOGICAL EXPR> THEN
<TRUE PART> ::=  <STANDARD STATEMENT> ELSE
<GROUP> ::= <GROUP HEAD> END
<GROUP HEAD> ::= DO;
| DO <WHILE CLAUSE> ;
| <GROUP HEAD> <STATEMENT>
<WHILE CLAUSE> ::= WHILE <LOGICAL EXPR>
<PROCEDURE DEFINITION> ::= <PROCEDURE HEAD>
<STATEMENT LIST> END
<LABEL> PROCEDURE;
CALL <IDENTIFIER>
RETURN

<IF STATEMENT> S

<IF CLAUSE> ::=

<PROCEDURE HEAD>
<CALL STATEMENT> :
<RETURN STATEMENT> ::=
<G0 TO STATEMENT> ::= GO TO <IDENTIFIER>
<LABEL> ::= <IDENTIFIER> :
<EXECUTE STATEMENT> ::= EXQ <OPERATION>
<OPERATION> = <VARIABLE>
| <IDENTIFIER> <ARGUMENT LIST>
<ARGUMENT LIST> ::= <ARGUMENT HEAD> <IDENTIFIER> )
<ARGUMENT HEAD> ::= (<IDENTIFIER>,

| <ARGUMENT HEAD> <IDENTIFIER> ,

<ASSIGNMENT> ::= <VARIABLE> <REPLACE> <EXPRESSION>
<REPLACE> ::= =
<VARIABLE> ::= <IDENTIFIER>

<SUBSCRIPT HEAD> <PRIMARY> )
<SUBSCRIPT HEAD ::= <IDENTIFIER> (

<PRIMARY> ::= <CONSTANT>
<IDENTIFIER>
<EXPRESSION> ::= <TERM>
| <TERM> <OP> <TERM>
| - <OP1> <TERM>
<0P> ::= + (two's complement)
| - (two's complement)
| ®
|/
| &
[
| o
I e
I 1
| e
| RSHL
| LSHL
| ROTL
| ROTR
| <IDENTIFIER>
<op>  ::= ]
I -
| <IDENTIFIER>
<TERM> ::= <VARIABLE>
| <CONSTANT>
<LOGICAL EXPR> ::= <VARIABLE> <RELATION> <TERM>
<RELATION>::=

<l>|=4—t]—fl—|>‘<=l>=
<DECLARATION STATEMENT ::=  DECLARE <DECLARATION

ELEMENT>



<IDENTIFIER> <TYPE>
<BOUND HEAD> <CON-
STANT> ) <TYPE>

<DECLARATION ELEMENT>  ::=
I

<TYPE> ::= FIXED
|  <IDENTIFIER>
<BOUND HEAD> ::= <IDENTIFIER> (
<EXTENSION STATEMENT> ::= <EXTENSION HEAD>
<OPERATOR LIST> END-
TYPE
TYPE <IDENTIFIER> <TEM-
PLATE>
<TEMPLATE> ::= <DECLARATION LIST> <INITIAL BLOCK>
<DECLARATION LIST> ::= <DECLARATION STATEMENT> ;
| <DECLARATION LIST>
<DECLARATION STATE-
MENT> 3

<EXTENSION HEAD> ::=

<INITIAL BLOCK> ::= <INITTAL HEAD> END;
<INITIAL HEAD> ::= <INITTALLY DO;
| <INITIAL HEAD> <ASSIGNMENT>
<OPERATOR LIST> ::= <EXTENSION OPERATOR>
|  <OPERATOR LIST> , <EXTENSION
, OPERATOR>
<EXTENSION OPERATOR> ::= <OPHEAD> <OPBODY> END
<OPHEAD> ::= <OPERATOR NAME> <MICROOPSPECIFICA-
TION> ;
| <OPERATOR NAME> <PARAMETER LIST>
<MICROOPSPECIFICATION> ;
<LABEL> <OPERATION>
=  <ACCEPTS LIST>
| <RETURNS LIST>
| <ACCEPTS LIST> <RETURNS
LIST>
<ACCEPTS HEAD> <IDENTIFIER> )
<ACCEPTS> (
<ACCEPTS HEAD> <IDENTIFTER> ,
<RETURNS HEAD> <IDENTIFIER> )
RETURNS (
<RETURNS HEAD> <IDENTIFIER> ,
<MICROOPSPECIFICATION> ::= <MICROOP HEAD>
<BLOCK INDEX>
<PROCESSOR INDEX>

<OPERATOR NAME> ::=
<PARAMETER LIST>

<ACCEPTS LIST>
<ACCEPTS HEAD>

<RETURNS LIST> :
<RETURNS HEAD> ::

<MICROOP HEAD> ::= MICROOP: <OPDCODE>
<OPCODE> ::= <CHARACTER STRING>

<BLOCK INDEX> ::= <CONSTANT>

<PROCESSOR INDEX> ::= <CONSTANT>

<OPBODY> = <DECLARATION LIST>
| <EXT STATEMENT>
|

<OPBODY> <EXT STATEMENT>

3.2.2 EMPL Data Types and Variables

The only data type defined in the EMPL core is
integer. A variasble may be declarsd as eitker =
single integer or as a vector of integers. In
order to eliminate the need for a complex run
time environment, the scope of all variables in
EMPL is global. That is, all declaration and
extension statements must proceed the first ex-
ecutable statement of the program. Furthermore,
variables are not passed to procedures.

3.2.3 EMPL Extension Statements

EMPL provides two methods by which the programmer
can extend the constructs defined in the core of
EMPL. These methods are called extension state-
ments and extension operators. Extension state-
ments, like types, permit the user to define new
data types and new object operations to manipulate
the data type. Example 2.0 contains an EMPL de-

scription of a stack and the associated object
operations PUSH and POP. Other than the obvious
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syntax differences between Example 1.0 and Example
2.0, there are two important differences between
types as defined by Campbell and Wyeth [CAM7L] and
types as we have defined them. The first a4iffer-
ence is that EMPL types do not permit the defini-
tion of type-objects, type-operations, and private
procedures to manipulate type-objects. While type
objects can serve a useful function (e.g., keeping
track of the number of different items in an in-
ventory), it is not apparent that such a tool is
valuable in a microprogramming language. Further-
more, since the purpose of the type feature in EMPL
is to permit the user to customize the language to
take advantage of the hardware features on the tar-
get machine and thus there is a corresponding mi-
crooperation for each object operation, there is
not likely either a storage element which corres-
ponds to the type-object or a microoperation which
corresponds to the type-operation.

The second important difference between Campbell
and Wyeth'’s types and EMPL types is that the def-
inition of each object operation in a EMPL type
declaration also specifies the microoperation which
corresponds to the object operation. The micro-
operation specification includes three parts: the
opcode, the block index, and the processor index.
The function of the opcode is obvious. The block
index, a component of the Control Word Model
[DEW75], is used during the optimization of the in-
termediate code. The processor index specifies the
ALU which executes the microoperation. A value of
zero for the processor index (as in Example 2.0)
specifies that no general purpose ALU is used. The
specification of the operands which the microopera~
tion will use is done implieitly by the compiler by
examining the operands specified in the program
statement which utilizes the object operation.

In order to complete this discussion of extension
statements we need to discuss how instances of new
types are declared and how object operations are
specified in executable statements. We will post-
pone describing the specification of object opera-
tions until Section 3.2.4 where executable state-
ments are discussed in detail.

Instances of new types are declared in EMPL Jjust
like fixed variables by a DECLARE statement. For
example, in order to declare an instance of a data
type named STACK (as defined in Example 2.0) the
following declaration statement would be used.

TYPE STACK
DECLARE STK(16) FIXED;
DECLARE STKPTR FIXED;
DECLARE VALUE FIXED;
INITIALLY DO;
STKPTR=0;
END;
OPERATION ACCEPTS(VALUE)
MICROOP: PUSH 3 03
IF STKPTR=16 THEN ERROR;/*OVERFLOW¥/
ELSE DO; /* PUSH VALUE %/
STKPTR=STKPTR+1 ;
STK(STKPTR )=VALUE;
EXD;
END,
OPERATION RETURNS(VALUE)
MICROOP: POP 3 0;
IF STKPTR=0 THEN ERROR; /*underflow*/
ELSE DO; /% POP VALUE ¥/

PUSH:

POP:



VALUE=STK{STKPTR) ;
STKPTR=STKPTR-1;

END;
END,
ENDTYPE:
EXAMPLE 2.0: EMPL Description of a Stack

DECLARE ADDRESS_STK STACK;

Thus for each new type defined, the programmer may
declare instances of that type by specifying the
type name instead of "FIXED" in a declaration
statement.

The second method by which a programmer can extend
the constructs provided in the EMPL language is
with an extension operator. Extension operators
are defined exactly as object-operations in type
declarations (except that they are terminated with
a semicolon instead of a comma) and are used to
define new operators in the language that can be
applied to variables of type FIXED. Extension
opersators are similar to high level language macros
except for the fact that the definition of each ex-
tension operator includes the definition of a mi-
crooperation to perform the specified operation.
Example 3.0 contains an EMPL description of an ex-
tension operator which is called EXTRACT. The
purpose of the EXTRACT operation is to extract a
sequence of bits from an operand starting at bit
position SBIT and finishing at bit position
SBIT+CNT-1. Both the Burroughs B-1700 and the
Palyn Corporation's EMMY computer have a micro-
operation which performs an extract operation. It
is a very useful operation for decoding instruc-
tions.

The obvious syntactical differences between ex-
tension statements and extension operators is
that extension statements provide a new data type;
instances of which can be declared by using a
DECLARE statement. There is,

/%  EXTRACT OPERATION */

/% AN EXTENSION OPERATION WHICH EXTRACTS  */
/% A SEQUENCE OF BITS FROM A VARIABLE ¥/

/* STRING IS THE VARIABLE, SBIT THE */

/%  STARTING BIT POSITION AND CNT IS THE %/
/% NUMBER OF BITS TO BE EXTRACTED */

EXTRACT: OPERATION ACCEPTS(STRING,SBIT,CNT)
RETURNS (EXSTR)
MICROOP: EXTRACT 5 2;
DECLARE STRING FIXED; /* INPUT VAR-
IABLE */
DECLARE SBIT FIXED: /*  STARTING BIT
POSITION ¥/
DECLARE CNT FIXED; /¥  NUMBER OF
BITS */
DECLARE EXSTR FIXED; /% RESULT ¥/
DECLARE RSHAMNT FIXED; /*  NUMBER OF
PLACES TO
SHIFT
RIGHT */
EXSTR = STRING ISHL SBIT; /*#  SHIFT OFF
THE LEFT
HANDBITS
WHICH ARE
NOT WANTED.
SHIFT IN
ZEROS  #/

RSHAMNT = WORDLENGTH-CNT; /* CALCULATE
THE NUMBER
OF POSITIONS
TO BE SHIFT-
ED RIGHT.
WORD-LENGTH
IS A GLOBAL
RESERVED
VARIABLE
WHICH INDI-
CATES THE
WORD LENGTH
OF THE TAR-
GET MA-
CHINE %/

EXSTR = EXSTR RSHL RSHAMNT;

END;

EXAMPLE 3.0

however, an important difference in the realization
of these two constructs. The definition of a new
type implies that there exists a piece of hardware
on the target machine which supports instances (at
least one) of the new type. For example, the STACK
defined in Example 2.0 could be realized in hard-
ware on the target machine.

On the other hand, the declaration of a nev exten-
sion operator does not necessarily imply the ex-
istence of some additional hardware to hold data
items. Rather, it implies the existence of either
an additional ALU to execute the new operator or

it implies that an existing ALU can perform more
than the standard arithmetic, logical, and shift
operations. For example, on the B-1700 the extract
operator is performed by a special ALU while on the
FMMY machine it is performed by the same unit which
executes the rest of the shift and rotate opera-
tions. Thus, by permitting the user to define
different types of extensions to EMPL, he can
describe two entirely different situations in the
EMPL language.

3.2.4 EMPL Arithmetic, Logical and Shift Op-
erations

EMPL supports only very simple assignment state-
ments. Only one variable can be placed on the left
hand side of the equal sign and only one operator
and two operands can be placed on the right hand
side. The arithmetic operators and logical opera-
tors are:

+, -, *’ /9 &, l, ® (exclusive or)
+ -,

When the operator specified is a shift or rotate
operator, the left hand operand is the operand to
be manipulated and the right hand operand specifies
the shift/rotate amount. For example, in Example
3.0, the assignment statement

EXSTR = STRING LSEL SBIT;
does a logical left shift on the variable STRING
and places the result in the variable EXSTR. The
number of positions shifted are specified by the
variable SBIT. The other shift and rotate opera-.
tors are RSHL, ROTL (rotate left), and ROTR (ro-
tate right).

It is also possible to use an operator defined in
an extension operator statement as the operator in



an assignment statement if it uses only two source
operands and produces only one result. Those ex-—
tension operators which use more than two source
operands or which produce more than one destina-
tion operand, must be specified in an EXTCUTE
statement. For example, to use the extract opera-
tor the programmer would specify

EXQ EXTRACT(IR,FBIT,BITCNT,OPCODE);
The compiler will associate the global variable
IR with the variable STRING in the definition of
the EXTRACT operation. FBIT will be associated
with SBIT, BITCNT with CNT, and OPCODE with EXSTR.

In order to perform an object operation on an in-
stance of a type which was declared in an exten—
sion statement, the programmer must use an EXECUTE
statement. When an EXECUTE statement is used for
this purpose, the first element of the argument
list of the object operation identifies the in-
stance of the type which is to be manipulated by
the object operation. For example, assume that an
instance of stack was declared in the program as:

DECLARE ADDRSTK STACK; )
Then, in order to push a value of the operand
RETURNADDR onto the stack ADDRSTK, the programmer
would specify:

EXQ PUSH(ADDRSTK ,RETURNADDR) ;
ADDRSTK specifies which instance of the type STACK
is to be used and RETURNADDR is associated with
the variable VALUE (see Example 2.0 ). The result
of executing this statement would be to push the
current value of RETURNADDR onto the stack ADDRSTK .

3.25 EMPL Control Constructs

EMPL's control constructs are also very simple.

EMPL supports "IF THEN...ELSE..." statements for
conditional operations and a "DO WHILE" construct
for specifying loop operations. While a "GO TO"
statement is included, its use is not encouraged.

The two remaining control constructs which are
legal in EMPL are CALL and RETURN statements to
transfer control to and from procedures. Since

all variables (except those within extension state-
ments and operators) have global scope, no dec-
laration statements are permitted within pro-
cedures. Thus, there is no need to pass parameters
between the calling statement and a procedure.
Therefore, the syntax of the CALL statement does
not permit the specification of an argument list.

In conclusion, the syntax of FMPL s veéry sinmple
and straightforward. It was designed with the
objective of maximizing the usefulness of the
language, while minimizing the complexity of the
compiler necessary to translate the source pro-
gram into the intermediate language form. In

the next section we will discuss some of the im~
plementation details. However, since EMPL was de-
signed to minimize the complexity of the run time
structures necessary to support the compiled code,
it is not difficult to construct s compiler for
EMPL.

3.3 Construction of an EMPL Compiler

In this section we will discuss some of the con-
struction details of a compiler to translate pro-
grams written in EMPL into machine dependent in-
termediate language statements. Since such a com-
piler has not yet been constructed we must pro-
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vide enough details so that the reader is convinced
of the feasibility of such an undertaking. Each
intermediate language (I L) corresponds to an ex-
ecutable microoperation on the target machine.

Rather than discuss the structure of the complete
compiler, we will focus our attention on the two
aspects of the compilation process which are not
generally found in typical compilers. These as—
pects are the generation of machine dependent IL
statements from machine independent EMPL statements
and the implementation of the extension statement
and extension operator constructs. We are not
proposing that one can construct one EMPL compiler
that will translate EMPL statements into II state-
ments for all microprogrammable computers, but
rather that it is possible to construct a machine
independent skeleton for an EMPL compiler. For
example, the XPL translator writing system pro-
vides a skeleton which can be used for writing
compilers. Since XPL is meant to be a general
purpose compiler compiler, the user needs to:

1. Define the BNF of the target language so
that tables can be generated for the parser.

2. Write a scanner to perform the lexical
analysis phase of the compilation process.

3. Construct a set of procedures for semantic
analysis and code generation.

What we are proposing to do is to extend the idea
of XPL by providing an EMPL skeleton which includes
a scanner to do the lexical analysis phase of the
compilation process - translating EMPL statements
into a string of tokens. The EMPL skeleton will
also include the tables for parsing EMPL. It will
employ a mixed strategy parsing algorithm as in
some versions of XPL [MCK70]. The third task,
writing the procedures to do the semantic analysis
and code generation processes, can also be par-
tidlly included in the EMPL skeleton. By careful
analysis, the productions can be divided into ma-
chine independent and machine dependent subsets.
Since the machine independent procedures only need
to be written once, they can be included in the
EMPL skeleton. The machine dependent procedures,
including all those for code generation and others
which collect information for later code generation
in the parsing process, need to be written for each
target machine.

In the remainder of this section we will discuss
the code generation procedures and the procedures
which are necessary to implement the extensible
features included in EMPL.

The complexity of the code generating procedures
depends on the nature of the target machine. For
example, take the EMPL multiplication operator (*%).
If the target machine does not support a hardware
multiply, then the code generation procedure for
the multiply operation must emit a sequence of in-
termediate language statements which implement,

for example, an algorithm to perform the multiply
in terms of shifts and adds. If the repetoire of
microoperations on the target machine includes a
multiply instruction then the procedure to generate
code for an EMPL multiplication will be very sim-
ple; it may just take one intermediate language
statement to implement the multiply.
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The motivation for keeping the syntax of EMPL sim-
ple should now be apparent. By restricting the
set of legal constructs we have greatly simplified
the process of writing the machine dependent code
generation procedures.

As mentioned earlier, there is a control toggle
associated with each extension statement and each
extension operator. During the process of code
generation the compiler will have. to process ob-
ject operations and extensions operations. By
examining the control toggle for the operation
the compiler can decide what it should do. If

the control toggle is set off, then the compiler
knows that it should emit the microoperation asso-
ciated with the definition of the object operation
(in the type definition) or the extension operator.
As an example let us return to the extract opera-
tion defined in Example 3.4. Assume that the ex-
tract operation is specified as:

EXQ EXTRACT (IR,FBIT,BITCNT,OPER);

Then if the control toggle associated with EXTRACT
is off, the compiler would emit (by examining the
definition of EXTRACT maintained in the symbol
table):

EXTRACT 5 2 1 3 0 OPER IR FBIT BITCNT
This statement is a typical intermediate language
statement, the general format of which is
defined in [DEWT6]. The statement can be inter-
preted as follows:

i. EXTRACT is the opcode

ii. 5 is the Block index

iii. 2 is the processor index

iv. there is 1 destination operand

v. there are 3 source operands

vi. there are no literal operands

vii. OPER is the destination operand
vyiii. IF,FBIT, and BITCOUNT are the source

operands
The reader should note that no register alloca-
tion has been done. This fact also simplifies
the code generation process since the operands
of the intermediate language statements are the
same as the operands in the EMPL statements.

On the other hand, if the control toggle asso-
ciated with the extract operation had been on,
then the compiler would not have emitted the above
IL statement. Instead, the compiler would have
used the definition of the extract operator and
do an "macro" expansion. Thus, the EMPL state-
ment:

EXQ EXTRACT(IR,FIBT,BITCNT,OPER);
would have been replaced with the following se-
gquence of EMPL statements.

OPER = IR LSHL FBIT;

RSHAMNT = WORDLENGTH-BITCNT;

OPER = OPER RSHL RSHAMNT;
This sequence of code would then be compiled into
a sequence of IL statements which could be execu-
ted on a target machine which did not have an ex-
tract operator.

Having discussed the implementation of extension
operators we should next discuss how extension
statements are implemented. As mentioned pre-
viously EMPL types do not permit the definition of
type-objects, type-operations, or private proce-
dures to manipulate type-objects. EMPL extension

statements only allow the user to define data types.

The implementation of object operations is handled
exactly as extension operators are. Implementa-
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tion of objects is different. If the control
toggle associated with the extension statement is
on, then the compiler does not have to do anything
with each object specified in the type definition.
However, if the control toggle is off, then the
compiler for each instance declared must reserve a
memory location for each object in the type defini-
tion. Then when an object operation is performed
on sn instance of a type, the compiler will substi-
tute the address of the proper memory location as
the operand.

4.0 Conclusions

In conclusion while such an EMPL compiler has not
yet been constructed, we feel that there are no
insurmountable obstacles to prevent the successful
implementation of an EMPL skeleton. We have
clearly demonstrated that an extensible micropro-
gramming language can achieve each of the design
objectives stated in Section 1.0. The intermediate
phase of an EMPL compiler is a sequence of machine
dependent intermediate language statements. Each
intermediate language statement corresponds to an
executable microoperation except that no register
allocation has been done. This sequence of micro-
operations is then transformed into a sequence of
microinstructions which are executable. This
final phase of the compilation process involves the
tasks of register and processor allocation. It is
performed by a branch and bound algorithm which
uses a Control Word Model [DEW75] description of
the target machine to take advantage of whatever
concurrency is permitted by the target machine.
The sequence of microinstructions produced is op-
timized so that it will run in minimum time. This
second phase has been completed and is described
in [DEWT6].
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REALIZING A VIRTUAL MACHINE

Brian Forbes, Tom Weidner, Ron Yoder, Tony Pitchford
Computer Systems Group, Burroughs Corp.
Mission Viejo, California 92675

Historically, microprogramming has been viewed as an emulation tool
instruction sets. This usually results in a piecemeal

hardware

or a means of extending
application of microprogramming

techniques. The concept of a virtual machine, in which firmware realizes the complete functional

structure of an
examines microcoded

idealized computer, is often debated but
interpretation of high- level

infrequently attempted. This paper
languages and microcoded sapport of complex

algorithms in a front- end peripheral processor as implemented for a commercial computer subsystem.

The virtual

machine and its supporting structure are outlined and specific advantages of micro-

programming are discussed. Microprogramming is presented as a generalized systems resource.

1.0 INTRODUCTION

This paper is intended as an illustration of the
capabilities of microprogramming rather than merely
another description of a particular application.
Its scope includes direct microcoded interpretation
of high- level 1languages, real- time operating
systems for front- end processors, and microcoded
support of complex processing requirements. We view
microprogramming as a flexible systems resource
rather than the contemporary concept of a hardware
curiosity [1]1, and describe its use in an existing
commercial product.

2.0 THE APPLICATION

The application centers around magnetic- ink
encoded (MICR) documents such as checks or credit
card receipts. Typically, one day's processing
involves reading several million documents and
physically separating then into several hundred
groups based upon the encoded data. The peripherals
which accomplish this, called reader/sorters, can
read up to 1625 documents per minute, directing
each document to one of 20 (typically) output
hoppers or 'pockets'. Between ten and fourteen
reader/sorters transmit document images to a

central computer where they are applied as
transactions against a large data base.
After a document passes the read head, the

controlling computer must accept the data, decide
which pocket the document belongs in, and send this
information to the reader/sorter before the
document reaches the first pocket; the practical
maximum response time is on the order of 37
milliseconds. The pocket- selection algorithm
involves validation of data fields by means of
field delimiters and check- digit techniques, a
table look- up to determine the destination pocket,
and the accumulation of various totals.
Historically this algorithm is installation
dependent, sometimes changing on a weekly basis;
the length of time it requires per document
directly affects the number of reader/sorters a
computer can handle on a real- time response basis.
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Added to this are the tasks of database management,
on- line inquiry, and possibly batch processing. As
the complexity of processing requirments and the
volume of documents increase, the need to off- load
the real- time aspects of reader/sorter control
becomes critical.

The solution chosen was to interpose a small number
of front- end processors between the reader/sorters
and the central computer. Each reader/sorter
processor (RSP) drives wup to four sorters
simultaneously, communicating with the host system
via a standard peripheral interface. Having each
RSP oversee multiple redder/sorters increases the
cost- effectiveness of the subsystem, affording
considerable resource concentration. This makes
more effective use of both local storage and data
paths, since a reader/sorter represents a low data
transfer rate, on the order of 3 kilobytes per
second. See fig. 1.
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fig. 1 - A Reader/Sorter System Configuration



2.1 THE READER/SORTER PROCESSOR (RSP)

The reader/sorter processor is responsible for the

real- time handling of up to four sorters,
multiprogramming user- written pocket- select
routines, passing document images to the host

system, and communicating with the host system when
exception conditions arise. With 4-sorters running
at 1600 documents per minute, the RSP has about
9 milliseconds in which to handTe each document.
As each document 1is read, its image is placed
directly into host storage and written to a ‘disk
audit file.

Each RSP is vertically microprogrammed with a 16-
bit microinstruction length. It possesses 8KB of
read/write control store with a cycle time of 167
nanoseconds. Main storage is addressable to the bit
level; control store address space may extend to
main store so that large microprograms can overflow
into main storage with some ensuing speed penalty.
Features of the RSP architecture such as bit
addressability, variable- 7Jength ALU, internal
stack, and the instruction set will be discussed
following the description of the virtual machine.

3.0 SYSTEM DESIGN PHILOSOPHY

The reader/sorter subsystem presents three
different interfaces to its users. To the data
processing program, the reader/sorter is simply a
unit record device. As long as no exception
conditions arise, image capture is the primary
concern. Unless the program overrides them, the
system should provide default action to handle most
exceptions. To the pocket- select routine, the
sorter is a virtual peripheral capable of
performing certain physical functions, while the
data processing program in the host is mainly a
consumer of document images. The applications
programmer wants to express the pocket- select
algorithm in a natural, flexible manner, using data
types and control structures suited for the
application and insulated from the machine-
language level. To the host operating system, the
RSP and dts attached sorters should - resemble
standard peripherals, requiring as Tlittle active
supervision as possible.

To this end, we have implemented two major pieces
of firmware:

- A virtual machine for
reader/sorter which is

controiling a
supported by a

microcoded interpreter for a high- Jevel
language.

- An operating system which multiprograms four
pocket- select routines, off- loads real-

time supervision of the reader/sorters, and
implements an intelligent interface with the
central computer.

In this paper we will concentrate on the virtual
machine and its implementation.

4.0 THE VIRTUAL MACHINE
A few remarks on what is meant by a virtual machine

may be in order before we discuss the
implementation. We consider direct interpretation
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of high- level languages by microcode to be the
vehicle which leads to our virtual machine
development. An intermediate language {S- language)
is generated by the compiler which in turn will be
processed by the microcoded interpreter residing in
control store. However, it is not our contention

that this, in itself, constitutes a virtual
machine. On the contrary, a virtual ‘machine must
also reflect some underlying structure. Store,
registers, stacks, and environment all encompass
the more general notion of virtual machine. The
following paragraphs describe an S- machine, not

Jjust the S- language interpreted by the machine.

The routines which control the flow of the
information digested by the reader/sorters are
written by the applications programmer in a COBOL-
1ike language called ‘SCL'. It has been modified to
suit the application, but the choice of a model
language was due solely to the nature of the
application: COBOL is the primary language used in
commercial areas. A typical control routine may be
around 1000 source statements in length.

The intermediate language is generated by applying
only the analysis phase of translation to the SCL
statements. The execution is performed on this high
level language through direct interpretation by a
microcoded interpreter. One of the advantages
immediately apparent is the ease of translation due
to the absence of the normal synthesis phase of
compilation. The S- operators generated form a .one-
to- one relation with source statements, giving the
S- language an attribute generally associated with
assembly languages: there is a 'MOVE' operator, a
'PERFORM' operator, a 'GO TO DEPENDING' operator,
etc. An example of an SCL language extension is the
"MATCHES' operator, which allows the comparison of
two strings for similarity instead of strict
equality; this is useful for handling mis- read
characters from the reader/sorters.

As mentioned earlier, a virtual machine implements
a Togical structure as well as a set of operations.
Once COBOL was chosen as the base language, the
form of the COBOL machine, its data structures and
underlying architecture, was still flexible. Rather
than emulate historic 'flat' storage structures, we
chose a descriptor- based machine where each data
item is described by a 24- bit word; reference to a
data item is by descriptor number. This scheme
results in further code compaction and makes it
easy to 'tag’ certain items for special handling by
the interpreter. See fig. 2.

An example of this is the handling of subscripted
variables. The general symbolic form of an SCL
'MOVE' statement is:

MOVE ABLE TO BAKER

which is compiled as:

MOVE, i, j
where 'i' and 'j' are the descriptor numbers for
ABLE and BAKER. If ABLE is a one- dimensional

array, however, the statement

MOVE ABLE(CHARLIE) TO BAKER
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compiles as
MOVE , i, k , J

where 'k' is the descriptor number to CHARLIE. The
interpreter, upon fetching ABLE's .descriptor,
discovers it requires one subscript, fetches 'k’
and indexes ABLE by CHARLIE before fetching 'j'.
Bounds checking is done by the micro- code based on
descriptor information. The compilation and
interpretation of such subscripted instructions are
simple recursive processes. The evaluation of
arithmetic expressions as subscripts, however, such
as

MOVE ABLE({CHARLIE + DOG) TO BAKER

results in multiple S- ops and more compiler
jngenuity; this is a traditional COBOL problem
which could be alleviated by the introduction of a
push- down computation stack.

The physical interpreter resides in 6 K bytes of
store. Typically, 5KB reside in control store. To
increase efficiency, most frequently used S-
operators are guaranteed placement in control
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storage. In an attempt to maintain structured
design a very narrow interface exists between
interpreter and operating system.

When discussing compilation we mentioned a lack of
synthesis. For the most part that is true. However,
due to certain criteria pertaining to the
application, the interpreter contains other
interpreters and as a result some code (tables) are
generated. One such inner interpreter 1is a data-
driven microcoded document scanner used in
assimilation of data read by the reader/sorters.
Another is a microcoded table search. Based on a
description given by the customer using SCL
statements, a table is built associating groups of
documents to be read by the sorters as particular
subsets of items. As each document is processed
this table will be searched to determine
membership. The interpreter, upon encountering a
'SEARCH' statement, causes an invocation of the
table search interpreter which acts on the table
(code) resulting in the required membership
information. This dinformation then becomes the
result of the original 'SEARCH' command. The table
contains bit patterns which represent S- operators



to the inner interpreter. These operators are
either 2 or 4 bits in length, depending upon the
expected frequency of use, and provide considerable
space savings.

The virtual machine 1is thus a group of nested
machines, within each of which the machine
structure can be optimized for a particular task
according to application criteria. In the case of
table search, it was possible to achieve both size
and execution time reductions over many search
algorithms by providing a machine geared to certain
kinds of searching. For example, a binary search on
5300 ejght- digit keys would require 32 K bytes,

whereas the specialized search algorithm requires

only 14 K bytes and takes approximately the same
amount of time.

5.0 THE OPERATING SYSTEM (MILO)

The collection of routines which aséists the
virtual machine has been given the name 'MILO'.

Each system and virtual machine support function,

such as storage management and logical 1/0, is
microcoded. MILO occupies 16 K bytes, of which 3
KB, representing the functional core, reside in

control store. Besides providing support for the
interpreter, MILO maintains the interface with the
host operating system.

5.1 INTER- PROCESSOR COMMUNICATION

Inter- processor communication takes place via
message queues maintained in the host's main store.
A1l RSPs feed a common input queue to the central
operating system; access is interlocked using the
central store's 'swap' capability, whereby it is
possible to write a word and retrieve its previous
contents. The host system maintains an output queue
and an available message queue for each active RSP.
Interprocessor interrupts are used mainly to
indicate that a previously- empty message queue now
contains a message.

The bulk of the messages sent by MILO are ‘'buffer
full' messages, indicating to the host that a block
of document images in the host's store s
complete, ready to be made available to the data
processing program. Other messages to the host
include exception condition notification, logging
of reader/sorter statistics, and a 'handshake' to
certify the RSP's integrity during idle periods.

Messages sent to -MILO consist mostly of sorter
start/stop and pocket- select routine 1load/unload
commands. Should a pocket- select routine commit a
run- time error, such as an array index which
exceeds the array bounds, the host can request a
dump of the virtual machine. When the output queue
is idle, MILO expects periodic handshakes as a
measure of the hosts's well- being.

5.2 VIRTUAL MACHINE SUPPORT

MILO provides many services to the SCL interpreter.
These functions are performed by a driver which is
the only MILO routine having detailed knowledge of
the virtual machine, and which 1isolates the

interpreter from the details of the operating
environment. Support services include buffer
handling, physical and inter- processor I/0, and
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breakout/restart capabilities, The driver thus
translates between the external world and the
virtual machine.

5.3 SYSTEM RESPONSIBILITIES

MILO performs simple storage management, allocating
and de- allocating space in local storage as
required, and implements reentrant S- code. All
reference to storage areas is via descriptors, so
that it is possible to move areas while they are in
use without affecting their users. The task
structure which supports multiprogramming is
capable. of handling both microcoded and SCL
routines, which results naturally from the soft
nature of the interpreter. Therefore it is possible
to multiprogram parts of MILO with itself,
simplifying the dimplementation of asynchronous
functions. Loading, unloading, and dumping of
pocket- select routines in the background are
accomplished in this way.

System integrity is of particular concern because
the RSP has access to the host's main storage and
system disk. The programmability of the RSP allows
more sophisticated checking than 1is available in
the hardware by enforcing narrow interfaces to
external resources. Further, MILO performs detailed
reasonability checks on all messages and tables
accessed in the central computer's store, to detect
host hardware or software failure. In such an
event, MILO will shut down all reader/sorters and
terminate operations in an orderly fashion.

6.0 ATTRIBUTES OF MICROPROGRAMMED IMPLEMENTATION

During the two years of design and implementation,
and especially during the final stages, the most
apparent attribute was flexibility. Modifications
were easy to make to both operating system and
interpreter as particular facets of the application
became more clear.

An excellent example of flexibility occurred during
the final testing stage of the product. An
applications group had coded a particular routine
using SCL which performed the task of removing
hyphens from strings while moving them from one
data area to another. Due to the weakness of COBOL
in editing strings, such SCL-coded procedures would
be inherently slow. Considering that other SCL
users would need to perform the same task, the
interpreter was altered: a variant was added to the
MOVE statement within the interpreter allowing the
more general solution of replacing any character by
another during the MOVE. The particular subset of
this solution required by the application group was
a MOVE replacing '-' by ' null '. The change to

both interpreter and SCL compiler took but a short
time and resulted in both a decrease in object code
and a tremendous increase in efficiency.

Our system, being vertically microprogrammed, lends
itself very nicely to mandatory features such as
fault diagnosis, statistical bookkeeping, and
error recovery. The operating system is free to
perform diagnostics and logging in the background.
A program dumping facility, which runs concurrently
with pocket- select routines, is provided for
dumping just those areas pertaining to the routine
which conmmitted an error. Continuous logging of
system and application information 1is done



automatically by the RSP/host including statistical
and timing analysis.

7.0 BASE MICROPROCESSOR

Virtual machine impiementation differs from
emulation of existing machines in the demands
placed upon the base microprocessor. It is usually
the case that the base and emulated machine are
quite similar with respect to hardware structure.
Often, a base microprocessor will be tailored
towards a specific emulation. The virtual machine
designer, on the other hand, postpones engineering
decisions as long as possible, and must then map
his conceptualizations onto a suitable base
machine. The RSP offers many features, both hard
and soft, which make it highly suitable for the
jmplementation of generalized virtual machine
architectures.

7.1 BIT ADDRESSABILITY

The ability to store and retrieve a bit string of
any length from any bit position in memory allows
efficient storage utilization and obviates the
necessity for the virtual machine's word length to
be a multiple of the base machine's. In the RSP,
the width is restricted by the capacity of the ALU
(24 bits); micro- coded loops make it possible to
handle longer strings.

7.2 VARIABLE LENGTH ALU

The effective width of the arithmetic/logic unit is
controlled by the contents of an auxilliary
register, as 1is the arithmetic mode (BCD or
binary). This affects carry out, normalization, and
other functions of the most- significant bit. It is
as easy to implement 19- bit machines as it 1is to
implement 16- bit machines, or arbitrarily wide

words by means of loops. The use of loops to effect
operations wider than the actual ALU is simplified
by a microinstruction which sets the ALU width to
the minimum of 24 and the contents of two registers
which represent the remaining bit lengths of the
operand strings being processed. If one operand is
shorter than the other, this takes care of the odd
bits remaining after taking the smaller bit length
modulo 24. The final ALU width also controls the
fetch from memory, so that only those bits which
are valid are used.

7.3 REGISTER MANIPULATION

A central feature in the RSP is the bit rotator and
masking facility. Besides providing a one- clock
shift or rotate of a 24- bit register by any number
of bits, it allows the extraction of .any subfield
of a register to another register. The RSP
processor can test a total of 128 flags,
representing the entirety of several 24- bit
registers, subfields of others, and condition
flags; the latter include static comparisons
between registers, whether certain registers are
odd or zero, and so on, which obviates passing the
register contents through the ALU to test them. The
combination of the rotator and bit test operators
simplity the decoding of S- operators, inspection
of packed information such as operand descriptors,
and the maintenance of virtual machine status.

7.4 SCRATCHPADS AND STACK

There are 32 24-bit scratchpads available to the
microprogrammer for use as base registers, virtual
machine registers, and fast- access temporary
storage. A 32- word stack is provided for
subroutine management - and for temporary operand
storage.

7.5 BASE MACHINE SOFTWARE

The micro- implementation 1language of the RSP
belongs to the class of higher Tlevel machine-
dependent microprogramming languages £23. Although
each statement generally represents one micro-
instruction, provision is made for block structure,
declaration of symbolic data areas, and macros.
Statements may be grouped for conditional execution
and IF- THEN- ELSE is available. English verbs are
used as keys rather than mathematical notation for
assignment and arithmetic operations. The
principles of structured programming are more
easily applied to this class of languages, wherein
parametric subroutines provide a facility for
logically subdividing tasks. Thus, both software
and hardware cooperate in making the realization of
arbitrary virtual machines effective using the RSP
as a base machine.

8.0 CONCLUSION

At the risk of beating a quotation to death, we
repeat Rosin's definition of microprogramming:

"Microprogramming is the implementation of
hopefully reasonable systems through interpretation
on unreasonable machines.'

Undoubtably many unreasonable machines exist,
however, we would disassociate the RSP with such a
group. Perhaps the underlying reason for the
success of this project has been the quality of the
RSP architecture.

We hope this discussion has demonstrated the
advantages of viewing microprogramming as a
generalized programming tool in all areas of system
development. In particular, vertical architectures
extend the applicability of good programming
practices to yet another level. Unfortunately,
microprogramming is usually seen by the computing
community as no more than an emulation tool or a
means of extending hardware instruction sets. It is
time to remove the undue mysticism surrounding
microprogramming.
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ABSTRACT

A description of a novel approach for the support of high level languages is
presented, This approach consists of different machines for different task
structures, - even if those tasks are-written in the same high -level language. At the
same time, a high degree of similarity of the machines is maintained.

Preliminary results and the outline of future work are briefly summarized.

INTRODUCTION

The implementation of machines which
support high level languages, via a mix
of software-firmware techniques is an
established technology. The widely
quoted example of such an approach is
the B1700, although there are others
which use such techniques,

As applauded as this approach is, it is
not without its problems or limitations.
The main two problems which seem to be
inherent in the present approach are:

(a) All machines are designed to be
virtual memory machines, using
basically a common mechanism for
virtual memory management.

(b) All machines are assumed to- be
always in  a multiprogrammed
environment,

While these two problems seem .to be
desirable features rather than problems,
they do cause sometimes unnecessary
overhead and, what is more important,
they preclude language and - task
dependent enhancements. That - fact
causes the price/performance of certain
types of tasks to be less than. ene would

expect, For example, it hardly seems.

useful to do simple student type jobs on
the same machine that does extensive
production in highly memory consuning
tasks. The types of optimizations
necessary are completely different.

In what follows, we shall illustrate our
solution to the aforementioned problems
on a medium scale machine, in the
framework of the FORTRAN language. We
propose to support a lanquage by a
series of machines which are close
enough to guarantee equivalence of

results, but which are distinct enough
to enable task oriented optimization and
full exploitation of the machine
capabili ty,

The FORTRAN project is described in the
next section, while Section 3 compares
our approach to others and presents some
preliminary results and expectations.
In that section we shall also comment on
our future steps.

2., THE FORTRAN PROJECT

The FORTRAN project consists of two main
parts, the first of which is further
subdivided into six parts:

(a) Design of a general framework (i.e.,
instruction = set) for support of
FORTRAN-like lanquages.

(b) Implementation of (a) in a fixed
memory, multiprogramming environment
under Burroughs MCP,

(c) Implementation of (a) in a Burroughs
MCP virtual memory, multiprogramming
environment.

(d) Implementation of (a) in a stand
alone, task oriented virtual memory.

(e) Development of a common compiler for
the support of all Machines.

(f) Development of the system components
(i.e. ‘loader) necessary for the
support of the project.

The second independent part has not yet
started. It will use heavily the
machinery developed in the first part
and some notions developed by
Stockenberg[1] in order to answer the
rather old question of compilation vs.
interpretation that apparently was
settled in the 50's but reappeared with



the introduction of user interpretive
machines like the QM~1 and B1700. We
reserve further comment on this question
until we shall have actual results.

At this point in time, (a) and (b) are
done. There is one person working on
(c), one on (d), one on (e) and none on
(f). Part (c) is 75% done, (d) 50% and
(e) 10%.

The first part of the project, with its
six subdivisions, intends to ‘prove. the
desirability of multifaceted support of
high level languages, as opposed to the
current practice : that provides one
language for all machines @ or one
language for each  HLL. The various
machines that we propose are - geared
toward four different modes of
operations

(a) Small programs, for trying out
ideas, simple one time computations,
education, training and module

debugging.

(b) Production or development in a
multiprogrammed timeshared
environment.

(c) Production in a dedicated

environment, optimized for the
specific language but not taking
into account the specific task
structure of the program.

(d) Highly optimized, program dependent
production.

The fourth mode is to be handled in part
I1 of the project.

For each of the first three modes we
propose a slightly different machine.
The main differences lay in the actual
microcoded implementation and addressing
structure. As far as the user is
concerned, the machines are identical in
function, though not in -speed. In
particular, a program running on the
different machines will produce
jdentical results in all of them. The
compiler for the three machines will be
identical except for the code production
phase, The fourth mode will be entirely
different and, as mentioned before, we
reserve any corment at this time.

For all modes, we now have ready the
basic instruction emulation. For the
first operational mode we have the
machine designed and operational. We
shall report in length about this
machine in another place[2]. For
reasons of brevity and prevention of
duplication, we do not produce here any
elaboration nor references on different
FORTRAN machines, different FORTRAN
language analyses and related: topics.
In particular, we 4o not elaborate of
our goals and motivations to which
caused us to produce yet another FORTRAN
machine. The reader is again referred
to [2]. For this presentation suffice

it to say that the machine is multiple
addressing registers, dual accumulator
machine with one, two and three address
instructions. Preliminary measurements
show it to be twice the speed of the
Burroughs machine. It was designed
using the statistics accumulated by
Knuth[4] and using data structures which
take into account the architecture of
the B1700. It is easily adaptable to
other machines and, as a matter of fact,
we intend to adapt it to the QM=1.

The recent publication of the new
proposed standard for FORTRAN[5] is a
cause of major concern to us, as it

imposes artificial, harmful and
unnecessary restrictions on possible
machine designs. When the final

standard will be published, we shall
reevaluate our machine and adapt it to

_the standard, even if we shall be forced

to pay by efficiency in - storage
utilization and speed.

The machine as -designed incures no
overhead for virtual memory (the
overhead of Burroughs Fortran Machine
for virtual memory was not - taken into
account in our comparisons). It does
operate in the MCP multiprogrammed
environments.

The mode 2 machine is identical to the
first one in all aspects except in the
address length which reflects the larger
addressing space which is typical to a
virtual memory machine. The virtual
memory uses segment organization, with
maximum allowable segment size. In this
sense, it is not different from the
Burroughs implemented FORTRAN machine.
We do not expect any significant
difference between our former
measurements and those contemplated for
the mode 2 .machine. Thus we expect a
factor of approximately two in CP bound
jobs but, obviously, no significant
improvement of I/0 and virtual memory
bound jobs.

Mode 3 machine is the most interesting
in the first part of the FORTRAN
project, and is an absolute prerequisite
for a successful attempt of the second
part. - Its instruction set is identical
in structure and function to that of the
first two machines. It is a stand alone
machine in the sense that there is no
other .program running with it, and
therefore it has full and absolute
knowledge of both  the status and
availability of -all system resources.
It therefore minimizes the interaction
with  the operating system, as the only
unexcepted possible event is the console
interrupt. This interrupt- is on the
human time-scale and therefore requires
responses of the order of magnitude of
100 msec, which is a very long time in
the logic time-scale. One can therefore
eliminate large parts of the MCP



interaction. In medium scale machines,
the interrupt handling is checked in
each instruction by a microcode sequence
which, in some cases, is very long
compared to the actual instruction
execution, Some rather heavily used
instructions have short microcode
sequences which can be shortened even
further by judiciously eliminating the
interrupt checking, This places some
burden on the compiler, but as this mode
is a production mode, one should be
ready to accept a slightly longer
compilation phase.

In the machine organization that we
propose, i.e., in an addressing register
machine, instructions like load address,
compare registers and branch, -increment
and decrement and fetch indexed ' operand
are very : frequent, . We . expect a
considerable enhancement in their -gpeed
based on the mere ‘fact that a: single

user (stand -alone) machine is completely

cognisant of its- . environment. We
believe that this approach was not
proposed before,

Second desirable ‘feature of such a
machine 1is -in its memory management.
Here again one should be able to utilize
the fact that a single program written

in a static and simple ‘lanquage is
running on the machine,  Thus ' prepaging
of code and data segments -should be

possible by utilizing the growina ‘body
of compile time flow analysis algorithms
and procedures{[6], and by implementing
run time data ' gathering mechanisms: in
microcode, The data gathering
instructions will be compiled at those
places that will be -dictated by the
static flow analysis, Again, ‘we have
done nothing concrete in this area, as
the machine is just being brought to its
first operational stage. We do - expect,
however, to be able to run large scale
programs on rather small memory, slow
disk configurations. We shall report on
the usefulness of dynamic measurements
for paging consideration once the actual
measurements will be available. The
measurements will then be used as a
basis for the deveiopment of the mode &
machine.

Our ability to compare and measure these
machines depends on the availability of
a common compiler. Such compiler is now
under development. During the initial
stages of the development we encountered
a couple of non-trivial problems, which
stem from our belief that the length of
real, integer and 1logical variables
should be different. We report on these
problems elsevwheref7].

3. COMPARISONS TO OTHER APPROACHES, RE-
SULTS AND EXPECTATIONS

There are essentially four
approaches

possible
to the support of high -level
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‘medium and small machines

languages on a machine, and these are:

(a) one machine language for all high
level languages

(b) one machine language for each high
level language

{c) multiple machine languages for each
high level language

(d) direct execution of the high level
language,

Approach (a) is obviously inferior to
(b), as one cannot assume that a general
machine language will be better than a
specialized one. We therefore 1limit
ourselves to b, ¢, and 4. We claim that
c is superior to both (b) and (d).

In the case of (b) one assumes that all
tasks written in a high level language
are of the same nature, at least as far
as the support that they require in the
machine is concerned. We claim that
with the advent of virtual memory in
and growing
knowledge of static program analysis,
specific data gathering and memory
control instructions can control the
flow of the microcode so as to optimize
performance far above the fixed language
support case.

As for the second extreme, i.e., direct
execution of high level 1languages, the
previous arguments still apply. One
should not  eliminate the benefits of
compile time analysis and optimization
achieved by them, If one uses such
analysis- in order to produce better,
"optimized" high 1level 1language, then

one should go through with the small
additional 'step necessary to produce
code for a properly designed support
machine,

The results that we already have at hand
show that our machine 41is superior in
speed to the Burroughs designed FORTRAN
machine and superior in code density to
IBM 370, Burroughs B1700 FORTRAN machine
and CDC CYBER. This obviously is not
enough and further comparisons,
especially to specific FORTRAN machines
mentioned in {2 are called for.

We expect to be able to produce a common
compiler which will operate in the four
different modes. We expect that our
machine design will prove the
possibility to run virtual memory tasks
on a small scale machine with the same
efficiency that is accomplished today by
static memory machines like the VARIAN
74 . We also expect to incorporate
dynamic data gathering for paging and
memory management optimization and turn
them into standard techniques.

4, ACKNOWLEDGEMENTS

I am indebted to Rina Shachar for her
cheerful cooperation, to Peter Lutz for



his insights into compiling and to Bob
Pekarske for  his effort in the
preliminary stages of the mode 3
machine.

REFERENCES

[1] John Stockenberg: : Private
Communication, See forthcoming Ph.D,
Thesis from Brown University. Part
of the - techniques ‘due to John
Stockenberg were presented in (3).

{2] Gideon Prieder and Rina Shachzf™

Machine Design for high speed
FORTRAN support on a B1700., To be
published,

——
[3] G. Frieder: . Microprogramming :and
Operating Systems, Infotech State of
the Art report, Vol,. 23, 1975, p.

393,
[4] Donald E. Knuth: An Empirical
Study of - FORTRAN programs,

Department of Computer . Science,
Stanford University, 1970.

[5] X333 Committee Draft of Proposed ANS
FORTRAN, - SIGPLAN Notices, Vol.: 11,
No. 3, 1976.

[6] .See for example: Susan L., Graham,
Mark Weghan: -~ A fast :and usually
linear algorithm for global flow
analysis, JACM 23, t (1976) p. 172,

[7] Peter Lutz: A dedicated FORTRAN
machine: Some problems with
equivalence, To be published.

50
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This paper presents a method for verifying microprograms with computer aid, and examples of its application
to actual systems. The specifications for an architecture and those for the computer on which it is to be
implemented are both described formally, with the microcode supplied as data to the low level description. A
correspondence between the two descriptions is then formalized, and a system of programs is used to prove
mathematically that the correspondence holds. This interactive, goal-directed system not only provides a
proof that microcode performs as specified, but more often aids in detecting and correcting microprogram

errors.
have been discovered in this way.

1. INTRODUCTION

The increased use of microcode, residing in a con-
trol store or in main memory, for implementation of
machine architectures makes a demonstration of the
correctness of the code a necessary part of the
design verification of a computer. Ramamoorthy

and Shankar [11] have examined loopfree vertical
microprograms, while Patterson [10] has proposed a
method for proving that microprograms written in a
high level language are correct. Below we describe
a partially automated system which has been used to
detect errors in microcode and to certify micro-
programs as correct.

In proving the correctness of microprogrammed
implementations, all of the facets of machine opera-
tion must be explicitly described. However, parti-
cularly for microcode implementations of computer
architectures, assertions for correctness such as
those due to Floyd [4] are not easily formulated.
Our approach is to give the specifications for cor-
rect implementation as an abstract machine schema
[1,8], having a well specified tree control struc-
ture which operates upon a state vector of machine
components and is determined by a library of macro
routines. The state vector components are treated
as APL-like variables; the macros are written in a
Vienna Definition Language/APL format [1]. The
attributes of the computer on which the specified
architecture is to be implemented are also embodied
in such an abstract machine. Next it is proved that
the abstract computer schema, controlled by the
microprogram, simulates the architectural machine
schema. This is a generalization of Milner's
algebraic simulation between programs [9].

Previous work [1, 7, 8] has been done using abstract
simulation to prove the correctness of microcode.
However, these proofs, though formal, were carried
out by hand. It became apparent from them that the
individual parts of such proofs were not of great
complexity, but that the main impediment to human
proofs was the generation and organization of these
many separate parts. Since this number of parts
increases with the size of the implementation being
verified, it became clear that some automated aid

would be necessary. In the following we shall describe

abstract machines and simulation in more detail, and
briefly describe an interactive system, MCS, [2]

Several errors in actual implementations, some of which were difficult to detect using test cases,

designed to aid in proving simulation between pro-
grams. Finally, examples will be given from experi-
ments in using MCS.

2. ABSTRACT MACHINES AND SIMULATION

The abstract machines which describe the architec-
tural level and the register transfer level of a
computer each consist of two parts: the abstract
syntax and the macro library. Implicit in these
descriptions is a control algorithm for abstract
machine schemas. The abstract syntax, for our
purposes, is a list of the components of the machine:
registers, storage, switches, lines, etc. We
associate with each of these a shape, or dimension,
in the style of APL. Registers have associated with
them their width in bits; main storage has the
dimensions of a matrix. Fig. 1 shows the abstract
syntax for the architectural description of the
S-machine, described in Section 4. The macro library
for each machine is a list of macro definitions for

{(MEM 16777216 32)
(STK  32)

(sx 32)

(scc 32)

(ssw 1)1}

Example of abstract syntax showing
dimension of each machine component

Figure 1

a machine with a tree control structure, each con-
sisting of its name, formal parameter list, and
either a tree into which the macro expands, or
several such trees whose selection depends on
predicates over elements of the abstract syntax.

Fig. 2 is an example of a macro definition in the
VDL/APL notation. If the macro exec pgm appears as
the leaf of a control tree, it is replaced by the tree
shown if the switch SSW is on, and is removed and not
replaced (indicated by ) otherwise. The macro body
shows assignments to local variables and calls to
other macros (underlined) which may or may not

return values.

The architectural or specification level machine is
completely defined by formalizing its principles of
operation as an abstract machine. The second machine
specification results in a general purpose computer
controlled by the instructions in the control store.



This computer is made into a special purpose machine
by associating the actual code to be verified as a
value of the component which contains it (e.g. the
actual microcode in the control store).

execpgm =
SSW = 1~ exec-pgm
execinstr (op, adl)
advetr
adl:
id:
ix:
op:
ad:
a:

instrprep (id, ix, op, ad)
afo0]
all]
af[2+16]
a[&+ 24]
fetchword (SCC)
SSW =0+ Q

A tree control macro

Figure 2

In order to simplify the proofs of simulation by
breaking them into parts (see [8]), we choose as
points of control at which we are interested in
establishing a correspondence (the stopping points)

a small subset of all possible values of the VDL con-
trol tree. This choice (see [8]) decomposes
the simulation relation R into components R
R , one for each pair of control points at which a
rélation is to be established. Each component con-
tains both control information, specifying for each
machine the point of control at which a correspon-
dence must hold, and simulation conditions, detailing
the desired correspondence. The control information
usually consists of a certain form of control tree,
but may also include predicates (stopping conditions)
over the state vector variables which further con-
strain the points of simulation. The simulation
conditions are predicates (usually equalities) rela-
ting the state vector variables of the two machines.
A sample simulation component appears in fig. 3.

ge 0oy

exec-pgm control tree for specification level
(single macro on tree)
NIL stopping conditions (none)
exec-mpgm control tree for processor transfer level
1 = 2.CSAR stopping condition
MSMEM = SMEM
MXS = SX
MSCC = SCC simulation conditions
MSSTK = SSTK
MSSW = SSW

Elements of a Simulation Component
Figure 3

Given initial values for the state vector quantities
and an initial control tree, the control algorithm
for the abstract machine is applied. Briefly, if
the leaf L of the control tree is a macro, then

L 1is replaced by the expansion of the macro if the
latter contains no predicates. If the macro has
one or more nested paths of predicates, the first
path with all its predicates true is chosen; the
tree structure at its end replaces L. If L is

an assignment statement, then either local or global
variables are appropriately modified (see fig. 2).

The decomposition of the simulation relation sug-
gests a decomposition of the problem of proving
algebraic simulation. We must, for each pair of
stopping points corresponding to a simulation
component R,: (1) assert that the simulation
conditions corresponding to component R, hold;

(2) run each abstract machine until another stopping
point is reached (i.e., apply Milner's functions F,
F' between domains); (3) verify that the pair of
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points reached corresponds to a component R, of
the simulation relation; and (4) prove thatJthe
simulation conditions of this component hold. Pro-
ving condition (4) is equivalent to showing that if
the pair (d, d') is a member of R_, then (F(d),
F'(d")) is a member of R,. Below'we describe an
automated system which aias in this proof.

3. THE MCS SYSTEM

MCS (for "Microprogram Certification System") is
written in LISP and provides interactive aid for
proving that a stated relation between two machine
descriptions is a simulation. A critical problem in
the hand proofs of microprogram correctness [1, 7, 8]
was to assure that all pairs of simultaneous paths
(from_one component of the simulation relation to

the other) were taken and all theorems generated

and proved. In MCS this bookkeeping function is
embodied in an interactive, goal-directed, and
problem independent supervisor [2]. From the user's
point of view, this supervisor provides a uniform
interface through which he manipulates a tree of
goals. Using a set of standard commands, he controls
the direction of the proof of simulation and

observes its progress by invoking the components

of MCS which do the actual work of proving simula-
tion - the path tracer, simplifier, verification
condition generator, theorem prover, etc.

The data structure upon which the MCS supervisor
operates is an AND goal tree, and the user manipu-
lates this tree in a problem-reduction fashion

[2]. The initial goal entered by the user in
proving simulation between programs indicates that
the problem is to prove that a given simulation
relation holds between two given machine descrip-
tions. This goal generates one subgoal for each of
the components of the simulation relation. Each of
these subgoals, called a goal of class TRACEIT,
consists of the state vector, control tree, and
macro library for each machine, a current predicate
list of assumptions, and the complete simulation
relation. The control tree of each machine is taken
from the component of the simulation relation to
which the subgoal corresponds. The state vector is
formed by assigning a unique symbolic value to each
component of the abstract syntax, in preparation

for the symbolic execution of macros. Presently
this value is formed by prefixing "$" to the name of
the machine component . The predicate list is
created from the predicates given in the stopping
conditions and simulation conditions of the simula-
tion component, although some of these predicates
may not appear explicitly in the predicate list but
may be reflected in the initial values of the state
vector quantities. Fig. 4 shows the elements of a
goal of class TRACEIT, generated from the simulation
component of fig. 3.

To achieve each of these goals, the user must show
that starting from each goal and running both abstract
machines to their set of pairs of next stopping
points, the correct simulation conditions hold at
each pair of points reached. The abstract, or sym-
bolic, interpreter carries out the symbolic execu-
tion [2, 6] of each machine by employing a simpli-
fied version of the control algorithm in [8]. Nor-
mally, the abstract interpreter is applied first to
the specification description until a stopping point
is reached, and then to the processor level. In
each case, the interpreter checks at each step to



see if one of the stopping points defined by the com-
ponents R.,...,R of T has been reached; if so, a
subgoal o% class"TRACEIT is generated. Note that

all loops or potentially infinite recursive expan-
sions in the machine description must have associated
stopping points in some component Rk’

(SYEM . $SSMEM 3
SSTK . $§STK
SX . $§sX
SCC . $scc state vector,
SSW . $SSW) 3 control tree, and
macro library of
exec—pgm specification level
SLIB J
(MSSTK . $8STK 3
MSCC . $scC
MSA . $MSA
MSB . $MSB
MSX . $5X
MDR . SMDR state vector,
MAR . $MAR control tree,
MSSW . $SSW % and macro library
MSMEM . $SMEM of processor
CS . microcode level
CSAR . 000000000001
IR . $IR)
exec-mpgm
¥SLIB ‘
NIL predicate list
R simulation relation
A Goal of Class TRACELT
Figure 4

The symbolic execution chiefly affects two aspects

of the interpretation. First, the expressions in
assignment statements are symbolic, and cannot usually
be evaluated to numeric or boolean values. Second,
when predicates are encountered in expanding macros,
they cannot always be evaluated to "true" or "false".
Both of these problems are partially solved by a sim-
plifier, which performs the symbolic computation done
in MCS. Whenever the interpreter encounters an
assignment statement, a predicate in a conditional,
or the passing of arguments to a macro, the simpli-
fier is invoked to use some of its 400 reduction
rules to "evaluate" APL and logical expressions by
returning a simpler form if possible. When a pre-
dicate which cannot be resolved in this way is
encountered, multiple subgoals, one for each possible
value of the predicate, are generated, and the user
selects the subgoal which he wishes to pursue first.

When a goal is generated for which both descriptions
have reached stopping points, the verification con-
dition generator is invoked. This first verifies that
another point of correspondence R, in the simulation
relation has been reached, and then instantiates
values from the two state vectors into the list of
simulation conditions given in Ri'
A goal, consisting of a theorem and the predicate
list of the current goal, is generated for each of
these instantiated conditions. An example of a
generated theorem appears in fig. 5.

((80),
((3202) T (21$8%)
+21$SMEM [2L$SCC[8+124]; 8+124])
[8+124]) [18] = 800

GENVC Generated Theorem
Figure 5

"SSTK, each of size 32 bits.

The theorem prover is invoked on goals of this form.
If all the theorems on all branches are proved true,
the supervisor will mark the top level goal as
achieved, and simulation will have been shown.
Errors in the microcode (or in the formal descrip-
tions) are detected by being unable to prove theorems
at the leaves of the goal tree, by invalid branches
or by failure to reach a valid stopping point. By
tracing back toward the root, information about the
particular instruction or place in the description
at which the error occurred can be obtained.

Fig. 6 shows a portion of the goal tree (correspon-
ding to operand-fetch) for the S-machine experiment,
described in the next section.

splitting
the
simulation
relation

indirect no indirect symbolically
addressing addressing interpreting
architectural
level
.
indexing no indexing

symbolically interpreting
register transfer level

generating verification conditions
proving theorems

Portion of Goal Tree for S-Machine Experiment

Figure 6
4. THE S MACHINE EXPERIMENT

The S machine is a simple hypothetical computer
described by Haralson and Polivka [5]. The sﬁzck is
in main memory, which is an array SMEM of 2 32-bit
words. Additional components in the architecture of

S include a one-bit switch SSW, an index register
SX, an instruction counter SCC, and a stack pointer
There are 27 machine
instructions. The one-address instructions need an
address operand; the zero-address instructions mani-
pulate the stack and require no operand.

The micromachine MS which emulates S has entities
MSMEM, MSSW, MSX, MSCC, and MSSTK corresponding to
the components of S. It possesses in addition gene-
ral purpose registers MSA and MSB and a memory
data register MDR, each of size 32 bits; a 24-bit
memory address register MAR; a five-bit instruction
register IR; a twelve-bit control store address
register CSAR; a sixteen-bit control store data
register CSDR; and a control store CS containing
a maximum of 300 sixteen-bit microinstructions. The
microcode which we have proved correct with MCS has
172 microinstructions. This code has a major loop
beginning when a machine instruction is to be
executed. This loop is divided into two sections.

In the first, IFETCH, the operands for the current
instruction are determined. For zero address
instructions the given operand is used; for one
address instructions indexing and/or indirect addres-
sing is performed. In the second section, IEXECUIE,
the machine instruction operation code is used to
calculate a branch to a segment of microcode which
performs that instruction. Each of these segments



is straight line code, except for the handling of the
two shift instructions, each of which contains a
simple loop.

Each of the two machines was described formally by
means of the VDL/APL language mentioned earlier. As
pointed out above, natural places to choose for stop-
ping points depend upon the architectural descrip-
tion (in this case the S machine), and upon the struc-
ture of the microcode. In the original S ‘descrip-
tion [1], each machine instruction was described
separately; in the microprogram, portions of the
code were shared by several inmstructions. To reduce
the number of paths and shorten their length, new
macros were added to the S description to consolidate
the work previously done in each imstruction. These
changes produced a second architectural description
which was easily shown by hand to simulate the ini-
tial one. The proof was completed by showing a
simulation relation between the new description and
the register-transfer description MS and using the
transitivity of simulation [7].

The original hand proof of simulation had two pairs

of domains or stopping points: begin instruction

(RD) (isomorphic to end instruction) and machine
stopped (R_). The change in description allowed the
addition o§ the new domains R (zero address in-
struction calculation), R, (oOne address calculation),
R, (left shift verification condition), and R4
(fight shift verification condition).

All of the pairs of paths emanating from the six
components of the simulation relation were traced.

In the complete attempt at verification of the §-
machine microcode using MCS, 45 pairs of correspon-
ding paths were traced, and 236 verification condi-
tions were generated. Of these, 224 were proved (two
with user interaction by splitting into cases); in-
ability to prove the remaining twelve indicated micro-
program errors, which were corrected. Three errors
had been found by hand, and MCS found an additional
error [3]. The changed code was then validated.

5. THE HTC EXPERIMENT

MCS is now being applied to a real computer architec-
ture. The HTC (for Hybrid Technology Computer) is a
product of the IBM Federal Systems Division at Hunts-
ville for space flight applications [12]. Its archi-
tectural specifications require it to support the
System/360 standard instructions (no decimal or
floating point operations) with sixteen 32-bit gene-
ral purpose registers, 16 to 64 K bytes of main sto-
rage, and a single 1/0 channel for three types of
I/0. This architecture is implemented in a machine
having a 1K memory of 64-bit microinstructions, a
64x10 bit read-only memory for instruction decoding,
a 64x16 bit scratch pad memory, an ALU and two

input multiplexers, three working registers, and a
16-bit wide data path.

Part of the increased difficulty with the HTC lies
in formalizing the description of the architecture
and register transfer levels. Architecturally, the
HTC differs from the System/360 in several ways. In
addition to emulating the specified inmstruction set,
the HTC microcode also implements interrupt and I/0
handling. Thus the formal architectural description
mist be pieced together from the System/360 documen-
tation and other HTC information. Also, in the main
machine instruction definitions, parts of the speci-
fications (such as condition code settings) were left
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intentionally ambiguous to allow implementation on
various S/360 models; the architectural description
must allow for this vagueness. The APL ? operator

is used in these cases, and specific simplification
rules are included for handling expressions with

this operator. The single 16-bit wide 1/0 channel

of HIC has been modeled by an array of 16 columns and
an infinite number of rows. Input from the channel

is done by taking the first row of the array as the
input word; output is done by concatenating rows onto
the end of the array. In the HTC, the register-transfer
level has a 16-bit data path with 16-bit register and
storage locations; the architectural level is 8-bit
byte-oriented. For example, each 32-bit general pur-
pose System/360 register is stored in two non-contiguous
locations in the HTC scratch pad memory, and the 16Kx8
bit main store of the architectural description is
implemented in an 8Kx16 bit memory in the hardware.
Thus the APL expressions stating the equalities between
the machine components are more complex tham in the
S-machine, where the architectural components are a
subset of those at the register transfer level.

The HTC register transfer level description describes
how the microcommands in a microinstruction act to
modify the values in the registers and storage in a
real computer. Since the validity of the simulation
proof depends upon the accuracy of this descriptionm,
only hardware entities are made part of the micre
machine state vector. However, macros should be
written to be direct, and perform calculatioms so
that simulation speed is rapid. These requirements
conflict frequently. Presently, for efficient micro-
code validation a good knowledge of both the micro-
code and the data flow is required.

The HTC is a real machine, so the methods by which
it physically starts (stops) and the consequences

of its timing conditions and asynchronous actions
must be modeled. Starting and stopping concerms
both the architectural and register-transfer levels
while the timing conditions primarily affect the
register transfers. Since the HTIC is an airborne
computer in the Space Ultra-reliable Modular Com-
puter (SUMC) family, its connections with the out-
side world are controlled by microprogrammed Test
Support Equipment (TSE) which simulates an HTC chan-
nel and also has lines directly connected to the HIC.
The control lines (activated by buttons on the ISE
console) and their functions are: Power on/off;
Reset (with microprogram assist) and soft-stop (wait
for external interrupt).

The basic architectural functions which may be
initiated are IPL and Read Paper Tape (for program
entry). The support functions are the usual main~-
tenance functions - register display, stop and dis-
play registers when a particular address (in main
storage or in control store) is reached, clear and
test main store, and display main storage or comtrol
storage locations. All of these functions are ini-
tiated by the TSE and performed under microprogram
control using the HTC channel. Since these functions
are implemented in microcode, an architectural level
description for them must be given and a simulation
between the two levels specified and proved.

The basic HTC machine cycle is 550 ns and the main
storage cycle is 700 ns. One microinmstruction is
performed per machine cycle. The action of the
registers is asynchronous, but the microcommand
actions are performed roughly sequentially except
for interactions between the main store and the



computer. The action of the registers is determined
by sequential leaves on the HIC control tree, as

was shown in the S-machine example. The timing
interaction between the computer and main storage

is considered only to ensure that the contents of
affected registers, the Storage Data Register and
the Instruction Register, are valid. All timing is
thus relative to microinstruction execution, so a
pseudo counter, CTR, was introduced. Whenever a
microinstruction is read, CTR is incremented. Each
of the two registers affected by timing is replaced
by two pseudo registers. The first contains the
usual register contents and is set as if there are
no timing restrictions. The second is set to the
contents of CIR at the time the first is set. When
one of these registers is accessed, the value of the
second register is compared with the contents of the
CIR, and if the difference is too small a timing
error is signaled.

Finally the size of HTC compared with the S-machine
makes necessary a more complex simulation relation,
more paths ta be interpreted,. and more difficult
theorems to be proved. The HIC implements an instruc-
tion set three times larger than that of the S-machine
and has eight times as many microinstructions, each

of which is four times larger.

At present the HTC architectural and register trans-
fer levels have been formally described, the simula-
tion relation has been partially formulated, portions
of the microcode have been proved correct, and some
errors have been detected. Several of these have
been subtle errors which are difficult to detect
using test cases. For example, ome of them would
occur only when fetching a 16-bit instruction from
the last halfword of addressable memory. Another
more serious flaw was found in the implementation of
the BALR or branch-and-link instruction: in cases
where the link information was to be stored in the
same register containing the branch address, the
branch address was erroneously lost. All of these
errors were not found by testing or simulation: they
were detected because of unprovable theorems or
uexpected branches being generated in the certifi-
cation process. The goal structure of MCS enabled
the user to go directly to a small segment of micro-
code and correct the error.
6. CONCLUSIONS
Our aim in the MCS system has been not only to obtain
proofs of correctness, but also to detect and correct
errors. The problem reduction approach provided by
the MCS supervisor has several advantages. Most
important of these is that no path to be traced can
be overlooked. Indications of error, such as being
unable to prove a theorem, failing to reach an
expected stopping domain, and unexpected branches,
occur when the user invokes a rule in a particular
subgoal. Examination of the branches of the goal
tree leading to the error indication provides some
information as to the cause of the error. Also, the
goal tree record of the way in which the goals are
manipulated permits partial proofs; certain sections
of program or microcode can be verified even before
correctness criteria, in the form of simulation
relations, have been developed for other parts.

The most useful MCS routines are simplification of
symbolic APL expressions, and the symbolic inter-
preter. The immediate simplification of expressions
and processing of predicates encountered contributed
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greatly to the simplicity and intelligibility of the
final theorems generated. '

Of course, the human contribution to the automated
validation of implementations consists of more than
interaction with the MCS system. Describing the
abstract machines which embody the system specifica-
tions is by no means trivial, especially when the
English "principles of operation" are vague. Also,
specification of the simulation relation requires
some understanding of how the program being verified
works (location of loops, etc.), though use of MCS
to interpret symbolically a single program may provide
aid in developing simulation conditions and stopping
points. The judicious choice of stopping points can
greatly reduce the number of the paths which must be
followed and the theorems which must be proved.

The successful detection and correction of errors in
a small microprogram using the interactive aid of
MCS, and our progress toward the verification of an
actual microcoded implementation, have confirmed
our beliefs that computer aid in validating the
design of computer systems is needed and valuable,
and that the notion of simulation between programs
facilitates this automation.
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ABSTRACT

In the modern world of control and estimation theory, matrix multiplications are ubiquitous. Minicomputers
designed as general purpose machines do not have instruction sets designed to efficiently implement these
multiplications. A microprogrammable machine may be capable of efficient matrix multiplications if it has
the proper architecture. A Hewlett-Packard HP-2100 minicomputer was used to investigate architectural and
efficiency problems. Algorithms were developed to calculate execution times for any n, m, and T where n
and m refer to the matrix dimensions and T is the basic machine instruction time. The execution times for
various size matrix operations indicated savings of up to 80% for microcoded operations.

1. INTRODUCTION

Many equations of modern control, digital filter-
ing, Kalman filtering and related problems involve
matrix-vector multiplications which must be
calculated to obtain their solution. These
matrix-vector products have the general form
shown in eq. (1)

a;; 22 ot g X
a21 322 o 32m Xz

Ax = |. . 1)
_anl 82 amy_ Lxm_

where A is a nxm matrix and X is a mx1l column
vector. In computing a solution to problems
where the product Ax is needed, considerable
time is involved for any reasonable size n

and m. Hence if a real-time, on-line solution
to the problems of modern control and signal
processing is to be computed, a method for
calculating Ax efficiently must be developed.
The method developed in this paper is to
design an appropriate architecture and
firmware which will yield an efficient
implementation of matrix-vector product
algorithms. The procedure used to derive

this appropriate architecture and firmware

is outlined below.

First a machine language implementation of the
algorithm to compute AXx is produced so that
comparisons of execution times with subsequently
developed microcoded versions can be made. An
algorithm is developed to calculate execution
times for any n, m, and T where n and m refer to
the matrix size and T is the basic machine
language instruction execution time. Next,
various size matrix-vector products are microcoded.
A nx?2 matrix times a 2x1 vector microprogram is

implemented and run. A Hewlett Packard, HP-2100,
minicomputer was used to determine both machine
language and microcode execution times.
Algorithms are developed to calculate execution
times; ‘actual execution times for various size
matrix-vector products are computed for
comparison. Finally half-word length (8-bit)
versions of a nx2 matrix times a 2x1 vector and
a 4 x4 matrix times a 4 x1 vector are microcoded
and run. Algorithms for execution time
calculation are developed; execution times are
computed for various size products; and
comparisons are made with the aforementioned
machine language and full-word length versions.
This development of microroutines reveals the
architectural characteristics necessary for an
effective implementation of matrix-vector
products on microprogram controlled computers.

2. ASSEMBLY LANGUAGE ROUTINE

The assembly language routine for an nxm matrix
times an mx1 vector is shown flowcharted in

fig. 1. The routine was programmed to handle
only integers that had been scaled three octal
places, thus actually allowing three octal place
accuracy. No checking for overflow or underflow
was made. The multiplication of integers is
justifiable since the main concern is not to just
demonstrate feasibility or viability of this
approach but to develop routines amenable to
real-time, on-line systems applications. In such
applications, information into the computer
derives from an analog to digital converter
which produces integerized digital values of the
analog signal. Scaling is normally employed
between the computer and the system both on input
and output. Checking for an overflow condition
would also normally be carried out, but the
action taken upon an overflow detection is
system dependent, e.g., an abort might be
necessary, further scaling might be sufficient,
etc. Therefore, the routine developed is
sufficiently general and adequate.
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Fig. 1 - Flowchart for assembly-language
' matrix-vector multiplication.

The elements of A, the a__'s, were stored
sequentially by rows, i.e., first, a,,, then
a,, through a o’ then a,., etc. The algorithm
uséd for accessing each“array element is given
in eq. (2).

Address (aU)=(I-1)N + J + Address (all) -1 2)

The time of execution for this routine can be
calculated from the following equation,

t:e = 29.5mnT + 10.5aT + T (3)
where n and m refer to the matrix size and T is
the basic machine instruction execution time
(1.96 psec for the HP-2100). Equation 3,
along with all other equations for t, in this
paper, was determined by actually summing the
times to execute each instruction and
noting the dependency on m and n in processing
the algorithm. The times for a 2 x2 matrix
times a 2x1 vector, a 4 x4 matrix times a
4x1 vector, and an 8x8 matrix times an 8x1
vector which were calculated for latter
comparisons are, respectively,

tyy = 274.40 us
t44 = 1009.40 us
tgg = 3867.08 s . %)

3. MICROCODED FULL-WORD MATRIX-
VECTOR MULTIPLICATION ROUTINES

The flowchart for a microcoded multiplication of
an nx2 matrix times a 2x1 vector is shown in
fig. 2. To save memory references and unnecessary

l-l’sl
X, -P

Fig. 2 - Flowchart of anx 2 matrix times
a 2x1 vector.

programming, x, and Xy are first read into WCS and
stored in registers F and Q, respectively. All
scratch-pad registers are used: S2 and $4 in the
multiply subroutine to temporarily hold the
multiplicand and multiplier as are A and B to hold
the results; S3 contains the running sum, and; S1
to count n. Each a; is retrieved from memory as
needed; and the resu{t ajyxytay,x, is then stored
in memory. The Flag flip-flop is used 'to deter-
mine when this result is completed.

The algorithm for calculation of time of execution
was determined to be

t, = 13T + 110nT , (5)

where n is the number of rows in the matrix and T
is the microinstruction execution time (196 ns for
the HP-2100). The time to execute this micro-
program for a 2x2 matrix times a 2x1 vector was
calculated from eq. (5) to be 45.668 us.

Comparing this with the time to perform the same
operation in assembly language, a savings factor
of six (6) or about 230 pus is accomplished.

As was demonstrated, all available registers plus
the Flag flip-flop were used to implement this
microprogram. Since only microinstructions and
no data (other than eight bit constants stored in
the least significant eight bits of certain
microinstructions) can be stored in WCS, a severe
limitation, this is the maximum size matrix-
vector product that can be implemented on the
HP-2100. However, microprograms of a 4 x4 matrix
times a 4x1 vector, an 8x 8 matrix times an 8x1
vector, and an nxm matrix times an mx 1 vector
were flowcharted and actually microcoded, but not
implemented. These flowcharts are shown in

figs. 3, 4, and 5, respectively. These routines
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require one storage register for each element of
the vector (4, 8, and m), two scratch registers
plus the A- and B-registers for the multiply
subroutine, one scratch register for the counter
for the square matrices and four counters for the
nxm matrix, and one register for the running sum;
or, 8,12, and mt7 scratch registers, respectively.
As seen, these are more than are available on the
2100, a limitation that could be alleviated if
data could be stored and retrieved directly from
WCS other than as eight bit constants.

The time of execution algorithms for the first two
of these microprograms is given as

5 n-2
t = 5T+ 70T +59MT+nT Z (n-1)
e i=1
n-1
+2nT £ (n-1i) , (6)
i=2

where n refers to the (square) matrix size, T is
the microinstruction execution time, and i is a
counter which depends on the number of decisions
to be made (n-dependent). The times of execution
for these programs are

(4x4) tg = 200.116 us
(8x8) to = 860.244 us &)

Comparing these times with those corresponding
ones found using the assembly language routine
(i.e., 200.116 Us vs. 1009.40 us and 860.244 us
vs. 3867.08 us), savings ratio of about 4.8 and
4.5 are effected. The algorithm for calculating
execution time for the nxm matrix times the mx1



vector microprogram is
m=2
te = 2T +5mT + 58nmT + 4nT + nTi).'.l (m-1)

m-1
+2nT £ (m-1i) , (8
i=2

where again n and m refer to the matrix dimensions
(n rows and m columns), T is the basic micro-
instruction execution time and i is an m—
dependent count. Time of execution for a 4x4
matrix times a 4 x1 vector is approximately the
same as the above corresponding 4 x4 time.

4. MICROCODED HALF-WORD MATRIX-
VECTOR MULTIPLICATION ROUTINES

As was noted above, the largest full word length,
matrix-vector product microroutine within the
capabilities of the 2100 was an nx2 matrix

times a 2x1 vector. This was due to a shortage
of scratch-pad registers for storage of vector
elements. If the word lengths are halved to 8-

- bits {7 bits plus sign), then twc vector elements
can be stored in the same register and the
product of a 4 x4 matrix times a 4 x1 vector come
within the capabilities of the machine. Also
observe that approximately two-thirds of the
execution time for the above routines was consumed
in the multiply subroutine. Since in a half-word
routine 16-bit multiplies are not needed, but only
8-bit multiplies, an initialization of the counter
to eight will effectively reduce multiply times
by half. This results in a considerable savings
of time. The flowcharts for an nx 2 matrix

times a 2x1 vector and a 4 x4 matrix times a

4 x1 vector are illustrated in figs. 6 and 7.

81- 1+8)
1+PFLG

©

Fig. 6 - nx 2 matrix times 2x1 vector,
half-word.
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Fig. 7 - 4 x4 matrix times 4 x1 vector,
half-word.

The algorithms for calculation of execution times
for both worse case (all vector elements negative)
and best case (no vector element negative) are
given by eqs. (9) and (10), respectively.

Worse Case: tg = 7T + 107nT

Best Case: tg = 7T + 101nT €¢))
Worse Case: tg = 5T + 4.5nT + 53.5n2T
n-2 n-l
+ nT L (n-i)+2aT Z (n-i)
i=1 i=2
Best Case: te = ST + 4nT + 49.5n2T
n-2 n~1
+ 0T Z (n~-i)+2nT I (n-i), (10)
i=1 i=2

where n, T and 1 have the same meanings as in the
previous equations. The respective times of
execution for a 2x2 matrix times a 2x1 vector
and a 4 x4 matrix times a 4 x1 vector are:

Worse Case: tg = 43.316 us
Best Case: te = 40.964 us (11)
Worse Case: tgo = 180.908 us
Best Case: t_ = 167.972 us . (12)

€

Equation 10 can also be used to calculate the
time of execution for an 8 x 8 matrix times an8x1
vector. These times are:

te = 787.332 us
te = 736.372 us .

Worse Case:

Best Case: (13)



Even though considerable time is saved in these half-

word, matrix-vector product microroutines, the
savings is not as great as anticipated. This is
due to the additional programming necessary to
extract each vector element from the scratch-pad
registers, to detect and account for negative
vectors, and to scale each vector to accomplish
the 8-bit multiply routine. But as the value

of n increases (see eq. (9) and (10)), greater
savings are realized. This becomes even more
apparent by referring to fig. 8 where it is

seen that as n increases, the lines depicting
execution times versus matrix size for the
assembly language and microcoded full- and
half-word routines all diverge. As also

shown, that in microéoding 8-bit word length
routines, larger matrix-vector products can
actually be implemented in the computer. This
aspect is discussed more fully in the succeeding
section on the architecture proposed to
effectively implement these matrix-vector
products.

&

i
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Fig. 8 - Time of execution vs. matrix size.

5. PROPOSED ARCHITECTURE

From the preceeding discussion concerning
implementation of microroutines for matrix-
vector products, the limitations of the HP-2100
for efficiently microprogramming such problems
are evident. A proposed architecture to
allewiate these limitations and allow an
efficient implementation of an nxm matrix times
an mx I vector is shown in fig. 9 and described
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in the following paragraphs.
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Fig. 9 - Proposed architecture for a
microprogrammed machine.

Assuming that the bus structure and micro-
instruction format remain fixed, the most severe
limitation of the HP-2100 is a shortage of
scratch-pad registers. By providing more
scratch-pad registers, larger size matrix-vector
products can be implemented, greater computational
versatility results, and the execution speed of
many programs can be increased considerably. To
implement the nxm matrix times mx1l vector
product, m+ 7 registers are needed. These m+7
registers are shown in fig. 9, where m scratch-pad
registers are shown as "S-bus” registers and the
other seven are shown as "R-bus" registers. Four
of the "R-bus" registers are labeled as in the
HP-2100, i.e., A, B, Q, F. Providing additicnal
registers on the R-bus results in greater
versatility, a reduction in number of micro-
instructions to implement a given function, and
hence, a reduction in execution time. All of
these registers are also assumed to be general
purpose registers and not latches as are the
scratch-pad registers in the HP-2100. The
scratch-pad registers in the HP-2100 are likely to
develop a "race" condition if loaded while being
interrogated. This limitation prevents the
microprogrammer from specifying the same scratch-
pad register in both the S- and T-bus (in the
same microinstruction) which leads to more micro-
instructions than necessary if these registers
are made general purpose. :

If it is desired to implement the half-word length
(8-bit) version of this microroutine, the m
scratch~pad registers could be made 8-bit
registers., To efficiently incorporate these

eight bit registers, the capability to detect the
most significant bit (sign bit) as on or off must
also be implemented. With these features added,



the half-word length microroutines can be much
more efficiently executed since each eight

bit vector would not have to be extracted from
sixteen bit registers and a sign detection made.

Figure 9 also shows several additional five bit
counters on the S-bus. These counters are not
necessary to implement this matrix-vector
product since the m+ 7 registers include the
registers necessary for counting. The counters
are shown to indicate that several of the

m+ 7 registers may be replaced by shorter
length (5 bit) registers to be used as
counters.

Another limitation of the HP-2100 is that only
microinstructions can be stored in and executed
from WCS, that is no data can be directly
accessed in WCS. The only data available in
WCS is stored as eight bit constants in the

least significant eight bits of microinstructions

containing a "CR" or "CL" micro-order in the
S~bus field. The "CR" and "CL" micro-orders
direct the computer to read the eight bit
constants stored in bits 0-7 of the micro-
instruction onto the least (CR) or most (CL)
significant bits of the register specified in
the T-bus field. The feature to read and store
data directly into WCS locations by micro-
programs resident in WCS would greatly enhance
the capabilities of the machine. However, the
need for this feature is mitigated by the
addition of sufficient scratech-pad registers;
but if m is large, the cost of such registers
might become prohibitive. So there is a trade-
off here, either incorporating as many
registers as necessary to implement a problem
or incorporating several additional registers
and adding the capability to read and store
data into WCS. These features would
significantly increase speed of execution

of many microprograms and greatly enhance

the computer's overall capabilities--not

only for matrix-vector products but for

a wide class of problems.
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