
Writing a Simulator for the SIMH System
Revised 1-Dec-01 for V2.8-0

1. Overview... 1

2. Data Types ... 2

3. VM Organization... 2

3.1 CPU Organization ... 3
3.1.1 Time Base .. 4
3.1.2 Memory Organization.. 4
3.1.3 Interrupt Organization.. 4
3.1.4 I/O Dispatching.. 5
3.1.5 Instruction Execution ... 6

3.2 Peripheral Device Organization... 6
3.2.1 Device Timing ... 7
3.2.2 Clock Calibration ... 8
3.2.3 Data I/O.. 9

4. Data Structures.. 10

4.1 device Structure ... 10
4.1.1 Examine and Deposit Routines.. 11
4.1.2 Reset Routine ... 11
4.1.3 Boot Routine .. 12
4.1.4 Attach and Detach Routines... 12

4.2 unit Structure... 12
4.2.1 Unit Flags... 13
4.2.2 Service Routine.. 14

4.3 reg Structure .. 14
4.3.1 Register Flags... 15

4.4 mtab Structure... 15
4.4.1 Validation Routine ... 17
4.4.2 Display Routine ... 17

4.5 Other Data Structures... 18

5. VM Provided Routines .. 18

5.1 Instruction Execution.. 18

5.2 Binary Load and Dump .. 18

5.3 Symbolic Examination and Deposit ... 18

5.4 Multi-Terminal Support (Telnet)... 19

Overview

SIMH (history simulators) is a set of portable programs, written in C, which simulate various
historically interesting computers. This document describes how to design, write, and check out a
new simulator for SIMH. It is not an introduction to either the philosophy or external operation of
SIMH, and the reader should be familiar with both of those topics before proceeding. Nor is it a
guide to the internal design or operation of SIMH, except insofar as those areas interact with
simulator design. Instead, this manual presents and explains the form, meaning, and operation of

the interfaces between simulators and the SIMH simulator control package. It also offers some
suggestions for utilizing the services SIMH offers and explains the constraints that all simulators
operating within SIMH will experience.

Some terminology: Each simulator consists of a standard simulator control package (SCP), which
provides a control framework and utility routines for a simulator; and a unique virtual machine
(VM), which implements the simulated processor and selected peripherals. A VM consists of
multiple devices, such as the CPU, paper tape reader, disk controller, etc. Each controller
consists of a named state space (called registers) and one or more units. Each unit consists of a
numbered state space (called a data set). The host computer is the system on which SIMH runs;
the target computer is the system being simulated.

SIMH is unabashedly based on the MIMIC simulation system, designed in the late 1960’s by Len
Fehskens, Mike McCarthy, and Bob Supnik. This document is based on MIMIC’s published
interface specification, “How to Write a Virtual Machine for the MIMIC Simulation System”, by Len
Fehskens and Bob Supnik.

Data Types

SIMH is written in C. The host system must support (at least) 32-bit data types (64-bit data types
for the PDP-10 and other large-word target systems). To cope with the vagaries of C data types,
SIMH defines some unambiguous data types for its interfaces:

SIMH data type interpretation in typical 32-bit C

int8, uint8 char, unsigned char
int16, uint16 short, unsigned short
int32, uint32 int, unsigned int
t_int64, t_uint64 long long, _int64 (system specific)
t_addr simulated address, int32
t_value simulated value, unsigned int32 or int64
t_svalue simulated signed value, int32 or int64
t_mtrec mag tape record length, int32
t_stat status code, int
t_bool true/false value, int

[The inconsistency in naming t_int64 and t_uint64 is due to VC++, which uses int64 as a structure
name member in the master Windows definitions file.]

In addition, SIMH defines structures for each of its major data elements

DEVICE device definition structure
UNIT unit definition structure
REG register definition structure
MTAB modifier definition structure

VM Organization

A virtual machine (VM) is a collection of devices bound together through their internal logic. Each
device is named and corresponds more or less to a hunk of hardware on the real machine; for
example:

VM device Real machine hardware

CPU central processor and main memory
PTR paper tape reader controller and paper tape reader
TTI console keyboard
TTO console output
DKP disk pack controller and drives

There may be more than one device per physical hardware entity, as for the console; but for each
user-accessible device there must be at least one. One of these devices will have the pre-
eminent responsibility for directing simulated operations. Normally, this is the CPU, but it could
be a higher-level entity, such as a bus master.

The VM actually runs as a subroutine of the simulator control package (SCP). It provides a
master routine for running simulated programs and other routines and data structures to
implement SCP’s command and control functions. The interfaces between a VM and SCP are
relatively few:

Interface Function

char sim_name[] simulator name string
REG *sim_pc pointer to simulated program counter
int32 sim_emax maximum number of words in an instruction
DEVICE *sim_devices[] table of pointers to simulated devices, NULL terminated
UNIT *sim_consoles[] table of pointers to simulated consoles
char *sim_stop_messages[] table of pointers to error messages
t_stat sim_load (…) binary loader subroutine
t_stat sim_inst (void) instruction execution subroutine
t_stat parse_sym (…) symbolic instruction parse subroutine (optional)
t_stat fprint_sym (…) symbolic instruction print subroutine (optional)

There is no required organization for VM code. The following convention has been used so far.
Let name be the name of the real system (i1401 for the IBM 1401; pdp1 for the PDP-1; pdp18b
for the other 18-bit PDP’s; pdp8 for the PDP-8; pdp11 for the PDP-11; nova for Nova; hp2100 for
the HP 21XX; id4 for the Interdata 4; pdp10 for the PDP-10):

• name.h contains definitions for the particular simulator
• name_sys.c contains all the SCP interfaces except the instruction simulator
• name_cpu.c contains the instruction simulator and CPU data structures
• name_stddev.c contains the peripherals which were standard with the real system.
• name_lp.c contains the line printer.
• name_mt.c contains the mag tape controller and drives, etc.

The SIMH standard definitions are in sim_defs.h, the simulator control package in scp.c, and the
operating-system dependent terminal routines in scp_tty.c. Additional libraries include sim_tmxr.c
(header file sim_tmxr.h) for terminal multiplexors, and sim_sock.c (header file sim_sock.h) for
network processing.

1.1 CPU Organization

Most CPU’s perform at least the following functions:

• Time keeping
• Instruction fetching
• Address decoding
• Execution of non-I/O instructions
• I/O command processing
• Interrupt processing

Instruction execution is actually the least complicated part of the design; memory and I/O
organization should be tackled first.

1.1.1 Time Base

In order to simulate asynchronous events, such as I/O completion, the VM must define and keep
a time base. This can be accurate (for example, nanoseconds of execution) or arbitrary (for
example, number of instructions executed), but it must be consistently used throughout the VM.
All existing VM’s count time in instructions.

The CPU is responsible for counting down the event counter sim_interval and calling the
asynchronous event controller sim_process_event. The record keeping for timing is done by
SCP.

1.1.2 Memory Organization

The criterion for memory layout is very simple: use the SIMH data type that is as large as (or if
necessary, larger than), the word length of the real machine. Note that the criterion is word
length, not addressability: the PDP-11 has byte addressable memory, but it is a 16-bit machine,
and its memory is defined as uint16 M[]. It may seem tempting to define memory as a union of
int8 and int16 data types, but this would make the resulting VM endian-dependent. Instead, the
VM should be based on the underlying word size of the real machine, and byte manipulation
should be done explicitly. Examples:

Simulator memory size memory declaration

IBM 1401 6-bit uint8
PDP-8 12-bit uint16
PDP-11, Nova 16-bit uint16
PDP-1 18-bit uint32
PDP-10 36-bit uint64

1.1.3 Interrupt Organization

The design of the VM’s interrupt structure is a complex interaction between efficiency and fidelity
to the hardware. If the VM’s interrupt structure is too abstract, interrupt driven software may not
run. On the other hand, if it follows the hardware too literally, it may significantly reduce
simulation speed. One rule I can offer is to minimize the fetch-phase cost of interrupts, even if
this complicates the (much less frequent) evaluation of the interrupt system following an I/O
operation or asynchronous event. Another is not to over-generalize; even if the real hardware
could support 64 or 256 interrupting devices, the simulators will be running much smaller
configurations. I’ll start with a simple interrupt structure and then offer suggestions for
generalization.

In the simplest structure, interrupt requests correspond to device flags and are kept in an interrupt
request variable, with one flag per bit. The fetch-phase evaluation of interrupts consists of two
steps: are interrupts enabled, and is there an interrupt outstanding? If all the interrupt requests
are kept as single-bit flags in a variable, the fetch-phase test is very fast:

if (int_enable && int_requests) { …process interrupt… }

Indeed, the interrupt enable flag can be made the highest bit in the interrupt request variable, and
the two tests combined:

if (int_requests > INT_ENABLE) { …process interrupt… }

Setting or clearing device flags directly sets or clears the appropriate interrupt request flag:

set: int_requests = int_requests | DEVICE_FLAG;
clear: int_requests = int_requests & ~DEVICE_FLAG;

At a slightly higher complexity, interrupt requests do not correspond directly to device flags but
are based on masking the device flags with an enable (or disable) mask. There are now three
parallel variables: interrupt requests, device flags, and interrupt enable mask. The fetch-phase
test does not change; however, the evaluation of whether an interrupt is pending now requires an
extra step:

enable: int_requests = device_flags & int_enables;
disable:int_requests = device_flags & ~int_disables;

If required for interrupt processing, the highest priority interrupting device can be determined by
scanning the interrupt request variable from high priority to low until a set bit is found. The bit
position can then be back-mapped through a table to determine the address or interrupt vector of
the interrupting device.

At yet higher complexity, the interrupt system may be too complex or too large to evaluate during
the fetch-phase. In this case, an interrupt pending flag is created, and it is evaluated by
subroutine call whenever a change could occur (start of execution, I/O instruction issued, device
time out occurs). This makes fetch-phase evaluation simple and isolates interrupt evaluation to a
common subroutine.

1.1.4 I/O Dispatching

I/O dispatching consists of four steps:

• Identify the I/O command and analyze for the device address.
• Locate the selected device.
• Break down the I/O command into standard fields.
• Call the device processor.

Analyzing an I/O command is usually easy. Most systems have one or more explicit I/O
instructions containing an I/O command and a device address. Memory mapped I/O is more
complicated; the identification of a reference to I/O space becomes part of memory addressing.
This usually requires centralizing memory reads and writes into subroutines, rather than as inline
code.

Once an I/O command has been analyzed, the CPU must locate the device subroutine. The
simplest way is a large switch statement with hardwired subroutine calls. Slightly more modular
is to call through a dispatch table, with NULL entries representing non-existent devices. Before
calling the device routine, the CPU usually breaks down the I/O command into standard fields.
This simplifies writing the peripheral simulator.

1.1.5 Instruction Execution

Instruction execution is the responsibility of VM subroutine sim_instr. It is called from SCP as a
result of a RUN, GO, CONT, or BOOT command. It begins executing instructions at the current
PC (sim_PC points to its register description block) and continues until halted by an error or an
external event.

When called, the CPU needs to account for any state changes that the user made. For example,
it may need to re-evaluate whether an interrupt is pending, or restore frequently used state to
local register variables for efficiency. The actual instruction fetch and execute cycle is usually
structured as a loop controlled by an error variable, e.g.,

reason = 0;
do { … } while (reason == 0); or while (reason == 0) { … }

Within this loop, the usual order of events is:

• If the event timer sim_interval has reached zero, process any timed events. This is
done by SCP subroutine sim_process_event. Because this is the polling mechanism
for user-generated processor halts (^E), errors must be recognized immediately:

if (sim_interval <= 0) {
if (reason = sim_process_event ()) break; }

• Check for outstanding interrupts and process if required.

• Check for other processor-unique events, such as wait-state outstanding or traps
outstanding.

• Check for an instruction breakpoint. SCP has no breakpoint facility, but it is customary to
implement a single instruction breakpoint to help with processor code. All the existing
CPU’s use the same mechanism, see the sources for details.

• Fetch the next instruction, increment the PC, optionally decode the address, and dispatch
(via a switch statement) for execution.

A few guidelines for implementation:

• In general, code should reflect the hardware being simulated. This is usually simplest
and easiest to debug.

• The VM should provide some debugging aids. The existing CPU’s all provide an
instruction breakpoint, an OLDPC register, and error stops on invalid instructions or
operations.

1.2 Peripheral Device Organization

The basic elements of a VM are devices, each corresponding roughly to a real chunk of
hardware. A device consists of register-based state and one or more units. Thus, a multi-drive
disk subsystem is a single device (representing the hardware of the real controller) and one or
more units (each representing a single disk drive). Sometimes the device and its unit are the
same entity as, for example, in the case of a paper tape reader. However, a single physical
device, such as the console, may be broken up for convenience into separate input and output
devices.

In general, units correspond to individual sources of input or output (one tape transport, one A-to-
D channel). Units are the basic medium for both device timing and device I/O. Except for the
console, all I/O devices are simulated as host-resident files. SCP allows the user to make an
explicit association between a host-resident file and a simulated hardware entity.

Both devices and units have state. Devices operate on registers, which contain information about
the state of the device, and indirectly, about the state of the units. Units operate on data sets,
which may be thought of as individual instances of input or output, such as a disk pack or a
punched paper tape. In a typical multi-unit device, all units are the same, and the device
performs similar operations on all of them, depending on which one has been selected by the
program being simulated.

(Note: SIMH, like MIMIC, restricts registers to devices. Replicated registers, for example, disk
drive current state, are handled via register arrays.)

For each structural level, SIMH defines, and the VM must supply, a corresponding data structure.
device structures correspond to devices, reg structures to registers, and unit structures to units.
These structures are described in detail in section 4.

The primary functions of a peripheral are:

• command decoding and execution
• device timing
• data transmission.

Command decoding is fairly obvious. At least one section of the peripheral code module will be
devoted to processing directives issued by the CPU. Typically, the command decoder will be
responsible for register and flag manipulation, and for issuing or canceling I/O requests. The
former is easy, but the later requires a thorough understanding of device timing.

1.2.1 Device Timing

The principal problem in I/O device simulation is imitating asynchronous operations in a
sequential simulation environment. Fortunately, the timing characteristics of most I/O devices do
not vary with external circumstances. The distinction between devices whose timing is externally
generated (e.g., console keyboard) and those whose timing is externally generated (disk, paper
tape reader) is crucial. With an externally timed device, there is no way to know when an in-
progress operation will begin or end; with an internally timed device, given the time when an
operation starts, the end time can be calculated.

For an internally timed device, the elapsed time between the start and conclusion of an operation
is called the wait time. Some typical internally timed devices and their wait times include:

PTR (300 char/sec) 3.3 msec
PTP (50 char/sec) 20 msec

CLK (line frequency) 16.6 msec
TTO (30 char/sec) 33 msec

Mass storage devices, such as disks and tapes, do not have a fixed response time, but a start-to-
finish time can be calculated based on current versus desired position, state of motion, etc.

For an externally timed device, there is no portable mechanism by which a VM can be notified of
an external event. Because the only important externally timed device is the console keyboard,
all current VM’s poll for keyboard input, thus converting the externally timed keyboard to a
pseudo-internally timed device.

SCP provides the supporting routines for device timing. SCP maintains a list of devices (called
active devices) which are in the process of timing out. It also provides routines for querying or
manipulating this list (called the active queue). Lastly, it provides a routine for checking for timed-
out units and executing a VM-specified action when a time-out occurs.

Device timing is done with the UNIT structure, described in section 3. To set up a timed
operation, the peripheral calculates a waiting period for a unit and places that unit on the active
queue. The CPU counts down the waiting period. When the waiting period has expired,
sim_process_event removes the unit from the active queue and calls a device subroutine. A
device may also cancel an outstanding timed operation and query the state of the queue. The
timing subroutines are:

• t_stat sim_activate (UNIT *uptr, int32 wait). This routine places the specified unit on the
active queue with the specified waiting period. A waiting period of 0 is legal; negative
waits cause an error. If the unit is already active, the active queue is not changed, and
no error occurs.

• t_stat sim_cancel (UNIT *uptr). This routine removes the specified unit from the active
queue. If the unit is not on the queue, no error occurs.

• int32 sim_is_active (UNIT *uptr). This routine tests whether a unit is in the active queue.
If it is, the routine returns the time (+1) remaining; if it is not, the routine returns 0.

• double sim_gtime (void). This routine returns the time elapsed since the last RUN or
BOOT command.

• uint32 sim_grtime (void). This routine returns the low-order 32b of the time elapsed
since the last RUN or BOOT command.

• int32 sim_qcount (void). This routine returns the number of entries on the clock queue.

• t_stat sim_process_event (void). This routine removes all timed out units from the
active queue and calls the appropriate device subroutine to service the time-out.

• int32 sim_interval. This variable counts down the first outstanding timed event. If there
are no timed events outstanding, SCP counts down a “null interval” of 10,000 time units.

1.2.2 Clock Calibration

The timing mechanism described in the previous section is approximate. Devices, such as real-
time clocks, which track wall time will be inaccurate. SCP provides routines to synchronize a
simulated real-time clock to wall time.

• int32 sim_rtc_init (int32 clock_interval). This routine initializes the clock calibration
mechanism. The argument is returned as the result.

• int32 sim_rtc_calb (int32 tickspersecond). This routine calibrates the real-time clock. The
argument is the number of clock ticks expected per second.

The simulator calls sim_rtc_init in the prolog of sim_instr, before instruction execution starts,
and whenever the real-time clock is started. The simulator calls sim_rtc_calb to calculate the
actual interval delay when the real-time clock is serviced:

/* clock start */

if (!sim_is_active (&clk_unit)) sim_activate (&clk_unit, sim_rtc_init (clk_delay));
etc.

/* clock service */

sim_activate (&clk_unit, sim_rtc_calb (clk_ticks_per_second);

1.2.3 Data I/O

For most devices, timing is half the battle (for clocks it is the entire war); the other half is I/O.
Except for the console, all I/O devices are simulated as files on the host file system in little-endian
format. SCP provides facilities for associating files with units (ATTACH command) and for
reading and writing data from and to devices in a endian- and size-independent way.

For most devices, the VM designer does not have to be concerned about the formatting of
simulated device files. I/O occurs in 1, 2, or 4 byte quantities; SCP automatically chooses the
correct data size and corrects for byte ordering. Specific issues:

• Line printers should write data as 7-bit ASCII, with newlines replacing carriage-
return/line-feed sequences.

• Disks should be viewed as linear data sets, from sector 0 of surface 0 of cylinder 0 to the
last sector on the disk. This allows easy transcription of real disks to files usable by the
simulator.

• Magtapes, by convention, use a record based format. Each record consists of a leading
32-bit record length, the record data (padded with a byte of 0 if the record length is odd),
and a trailing 32-bit record length. File marks are recorded as one record length of 0.

• Cards have 12 bits of data per column, but the data is most conveniently viewed as
(ASCII) characters. Existing card reader simulators do not support binary operation.

Data I/O varies between fixed and variable capacity devices, and between buffered and non-
buffered devices. A fixed capacity device differs from a variable capacity device in that the file
attached to the former has a maximum size, while the file attached to the latter may expand
indefinitely. A buffered device differs from a non-buffered device in that the former buffers its
data set in host memory, while the latter maintains it as a file. Most variable capacity devices
(such as the paper tape reader and punch) are sequential; all buffered devices are fixed capacity.

1.2.3.1 Reading and Writing Data

The ATTACH command creates an association between a host file and an I/O unit. For non-
buffered devices, ATTACH stores the file pointer for the host file in the fileref field of the UNIT
structure. For buffered devices, ATTACH reads the entire host file into an allocated buffer
pointed to by the filebuf field of the UNIT structure.

For non-buffered devices, I/O is done with standard C subroutines plus the SCP routines fxread
and fxwrite. fxread and fxwrite are identical in calling sequence and function to fread and fwrite,
respectively, but will correct for endian dependencies. For buffered devices, I/O is done by
copying data to or from the allocated buffer. The device code must maintain the number (+1) of
the highest address modified in the hwmark field of the UNIT structure. For both the non-
buffered and buffered cases, the device must perform all address calculations and positioning
operations.

The DETACH command breaks the association between a host file and an I/O unit. For buffered
devices, DETACH writes the allocated buffer back to the host file.

1.2.3.2 Console I/O

SCP provides two routines for console I/O.

• t_stat sim_poll_char (void). This routine polls for keyboard input. If there is a character,
it returns SCPE_KFLAG + the character. If the user typed the interrupt character (^E), it
returns SCPE_STOP. If there is no input, it returns SCPE_OK.

• t_stat sim_putchar (int32 char). This routine types the specified ASCII character on the
console. There are no errors.

Data Structures

The devices, units, and registers which make up a VM are formally described through a set of
data structures which interface the VM to the control portions of SCP. The devices themselves
are pointed to by the device list array sim_devices[]. Within a device, both units and registers
are allocated contiguously as arrays of structures. In addition, many devices allow the user to set
or clear options via a modifications table.

1.3 device Structure

Devices are defined by the device structure (typedef DEVICE):

struct device {
char *name; /* name */
struct unit *units; /* units */
struct reg *registers; /* registers */
struct mtab *modifiers; /* modifiers */
int numunits; /* #units */
int aradix; /* address radix */
int awidth; /* address width */
int aincr; /* addr increment */
int dradix; /* data radix */
int dwidth; /* data width */
t_stat (*examine)(); /* examine routine */

t_stat (*deposit)(); /* deposit routine */
t_stat (*reset)(); /* reset routine */
t_stat (*boot)(); /* boot routine */
t_stat (*attach)(); /* attach routine */
t_stat (*detach)(); /* detach routine */

};

The fields are the following:

name device name, string of all capital alphanumeric characters.
units pointer to array of unit structures, or NULL if none.
registers pointer to array of reg structures, or NULL if none.
modifiers pointer to array of mtab structures, or NULL if none.
numunits number of units in this device.
aradix radix for input and display of device addresses, 2 to 16 inclusive.
awidth width in bits of a device address, 1 to 31 inclusive.
aincr increment between device addresses, normally 1; however, byte

addressed devices with 16-bit words specify 2, with 32-bit words 4.
dradix radix for input and display of device data, 2 to 16 inclusive.
dwidth width in bits of device data, 1 to 32 inclusive.
examine address of special device data read routine, or NULL if none is required.
deposit address of special device data write routine, or NULL if none is required.
reset address of device reset routine, or NULL if none is required.
boot address of device bootstrap routine, or NULL if none is required.
attach address of special device attach routine, or NULL if none is required.
detach address of special device detach routine, or NULL if none is required.

1.3.1 Examine and Deposit Routines

For devices which maintain their data sets as host files, SCP implements the examine and
deposit data functions. However, devices which maintain their data sets as private state (typically
just the CPU) must supply special examine and deposit routines. The calling sequences are:

t_stat examine_routine (t_val *eval_array, t_addr addr, UNIT *uptr, int32 switches) –
Copy sim_emax consecutive addresses for unit uptr, starting at addr, into eval_array.
The switch variable has bit<n> set if the n’th letter was specified as a switch to the
examine command.

t_stat deposit_routine (t_val value, t_addr addr, UNIT *uptr, int32 switches) – Store the
specified value in the specified addr for unit uptr. The switch variable is the same as for
the examine routine.

1.3.2 Reset Routine

The reset routine implements the device reset function for the RESET, RUN, and BOOT
commands. Its calling sequence is:

t_stat reset_routine (DEVICE *dptr) – Reset the specified device to its initial state.

A typical reset routine clears all device flags and cancels any outstanding timing operations.

1.3.3 Boot Routine

If a device responds to a BOOT command, the boot routine implements the bootstrapping
function. Its calling sequence is:

t_stat boot_routine (int32 unit_number) – Bootstrap the specified unit.

A typical bootstrap routine copies a bootstrap loader into main memory and sets the PC to the
starting address of the loader. SCP then starts simulation at the specified address.

1.3.4 Attach and Detach Routines

Normally, the ATTACH and DETACH commands are handled by SCP. However, devices which
need to pre- or post-process these commands must supply special attach and detach routines.
The calling sequences are:

t_stat attach_routine (UNIT *uptr, char *file) – Attach the specified file to the unit uptr.

t_stat detach_routine (UNIT *uptr) – Detach unit uptr.

In practice, these routines always invoke the standard SCP routines, attach_unit and
detach_unit, respectively. For example, here are special attach and detach routines to update
line printer error state:

t_stat lpt_attach (UNIT *uptr, char *cptr) {
t_stat r;
if ((r = attach_unit (uptr, cptr)) != SCPE_OK) return r;
lpt_error = 0;
return SCPE_OK;

}

t_stat lpt_detach (UNIT *uptr) {
lpt_error = 1;
return detach_unit (uptr);

}

SCP executes a DETACH ALL command as part of simulator exit. Normally, DETACH ALL only
calls a unit’s detach routine if the unit’s UNIT_ATTABLE flag is set. During simulator exit, the
detach routine is called unconditionally. This allows the detach routine of a non-attachable unit to
function as a simulator-specific cleanup routine for the unit, device, or entire simulator.

1.4 unit Structure

Units are allocated as contiguous array. Each unit is defined with a unit structure (typedef UNIT):

struct unit {
struct unit *next; /* next active */
t_stat (*action)(); /* action routine */
char *filename; /* open file name */
FILE *fileref; /* file reference */
void *filebuf; /* memory buffer */
t_addr hwmark; /* high water mark */

int32 time; /* time out */
int32 flags; /* flags */
t_addr capac; /* capacity */
t_addr pos; /* file position */
int32 buf; /* buffer */
int32 wait; /* wait */
int32 u3; /* device specific */
int32 u4; /* device specific */

};

The fields are the following:

next pointer to next unit in active queue, NULL if none.
action address of unit time-out service routine.
filename pointer to name of attached file, NULL if none.
fileref pointer to FILE structure of attached file, NULL if none.
hwmark buffered devices only; highest modified address, + 1.
time increment until time-out beyond previous unit in active queue.
flags unit flags.
capac unit capacity, 0 if variable.
pos sequential devices only; next device address to be read or written.
buf by convention, the unit buffer, but can be used for other purposes.
wait by convention, the unit wait time, but can be used for other purposes.
u3 user-defined.
u4 user-defined.

buf, wait, u3, u4 are all saved and restored by the SAVE and RESTORE commands and thus
can be used for unit state which must be preserved.

Macro UDATA is available to fill in the common fields of a UNIT. It is invoked by

UDATA (action_routine, flags, capacity)

Fields after buf can be filled in manually, e.g,

UNIT lpt_unit = { UDATA (&lpt_svc, UNIT_SEQ+UNIT_ATTABLE, 0), 500 };

defines the line printer as a sequential unit with a wait time of 500.

1.4.1 Unit Flags

The flags field contains indicators of current unit status. SIMH defines 11 flags:

flag name meaning if set

UNIT_DISABLE the unit responds to ENABLE and DISABLE.
UNIT_DIS the unit is currently disabled.
UNIT_ATTABLE the unit responds to ATTACH and DETACH.
UNIT_ATT the unit is currently attached to a file.
UNIT_BUFABLE the unit can buffer its data set in memory.
UNIT_MUSTBUF the unit must buffer its data set in memory.
UNIT_BUF the unit is currently buffering its data set in memory.
UNIT_ROABLE the unit can be ATTACHed read only.

UNIT_RO the unit is currently read only.
UNIT_SEQ the unit is sequential.
UNIX_FIX the unit is fixed capacity.
UNIT_BINK the unit measures “K” as 1024, rather than 1000.

Starting at bit position UNIT_V_UF, the remaining flags are device-specific. Device-specific flags
are set and cleared with the SET and CLEAR commands, which reference the MTAB array (see
below). Device-specific flags and UNIT_DIS are not automatically saved and restored; the device
must supply a register covering these bits.

1.4.2 Service Routine

This routine is called by sim_process_event when a unit times out. Its calling sequence is:

t_stat service_routine (UNIT *uptr)

The status returned by the service routine is passed by sim_process_event back to the CPU.

1.5 reg Structure

Registers are allocated as contiguous array, with a NULL register at the end. Each register is
defined with a reg structure (typedef REG):

struct reg {
char *name; /* name */
void *loc; /* location */
int radix; /* radix */
int width; /* width */
int offset; /* starting bit */
int depth; /* save depth */
int32 flags; /* flags */

};

The fields are the following:

name device name, string of all capital alphanumeric characters.
loc pointer to location of the register value.
radix radix for input and display of data, 2 to 16 inclusive.
width width in bits of data, 1 to 32 inclusive.
width bit offset (from right end of data).
depth size of data array (normally 1).
flags flags and formatting information.

The depth field is used with “arrayed registers”. Arrayed registers are used to represent
structures with multiple data values, such as the locations in a transfer buffer; or structures which
are replicated in every unit, such as a drive status register.

Macros ORDATA, DRDATA, and HRDATA define right-justified octal, decimal, and hexidecimal
registers, respectively. They are invoked by:

xRDATA (name, location, width)

Macro FLDATA defines a one-bit binary flag at an arbitrary offset in a 32-bit word. It is invoked
by:

FLDATA (name, location, bit_position)

Macro GRDATA defines a register with arbitrary location and radix. It is invoked by:

GRDATA (name, location, radix, width, bit_position)

Macro BRDATA defines an arrayed register whose data is kept in a standard C array. It is
invoked by:

BRDATA (name, location, radix, width, depth)

For all of these macros, the flag field can be filled in manually, e.g.,

REG lpt_reg = {
{ DRDATA (POS, lpt_unit.pos, 31), PV_LFT }, … }

Finally, macro URDATA defines an arrayed register whose data is part of the UNIT structure.
This macro must be used with great care. If the fields are set up wrong, or the data is actually
kept somewhere else, storing through this register declaration can trample over memory. The
macro is invoked by:

URDATA (name, location, radix, width, offset, depth, flags)

The location should be an offset in the UNIT structure for unit 0. The flags can be any of the
normal register flags; REG_UNIT will be OR’d in automatically. For example, the following
declares an arrayed registers of all the UNIT position fields in a device with 4 units:

{ URDATA (POS, dev_unit[0].pos, 8, 31, 0, 4, 0) }

1.5.1 Register Flags

The flags field contains indicators that control register examination and deposit.

flag name meaning if specified

PV_RZRO print register right justified with leading zeroes.
PV_RSPC print register right justified with leading spaces.
PV_LEFT print register left justified.
REG_RO register is read only.
REG_HIDDEN register is hidden (will not appear in EXAMINE STATE).
REG_HRO register is read only and hidden.
REG_NZ new register values must be non-zero.
REG_UNIT register resides in the UNIT structure.

1.6 mtab Structure

Device-specific SHOW and SET commands are processed using the modifications array, which is
allocated as contiguous array, with a NULL at the end. Each possible modification is defined with
a mtab structure (synonym MTAB), which has the following fields:

struct mtab {
int32 mask; /* mask */
int32 match; /* match */
char *pstring; /* print string */
char *mstring; /* match string */
t_stat (*valid)(); /* validation routine */
t_stat (*disp)(); /* display routine */
void *desc; /* location descriptor */

};

MTAB supports two different structure interpretations: regular and extended. A regular MTAB
entry modifies flags in the UNIT flags word; the descriptor entry is not used. The fields are the
following:

mask bit mask for testing the unit.flags field
match value to be stored (SET) or compared (SHOW)
pstring pointer to character string printed on a match (SHOW), or NULL
mstring pointer to character string to be matched (SET), or NULL
valid address of validation routine (SET), or NULL
disp address of display routine (SHOW), or NULL

For SET, a regular MTAB entry is interpreted as follows:

1. Test to see if the mstring entry exists.
2. Test to see if the SET parameter matches the mstring.
3. Call the validation routine, if any.
4. Apply the mask value to the UNIT flags word and then or in the match value.

For SHOW, a regular MTAB entry is interpreted as follows:

1. Test to see if the pstring entry exists.
2. Test to see if the UNIT flags word, masked with the mask value, equals the match

value.
3. If a display routine exists, call it, otherwise
4. Print the pstring.

Extended MTAB entries have a different interpretation:

mask entry flags
MTAB_XTD extended entry
MTAB_VDV valid for devices
MTAB_VUN valid for units
MTAB_VAL takes a value
MTAB_NMO valid only in named SHOW

match value to be stored (SET)
pstring pointer to character string printed on a match (SHOW), or NULL
mstring pointer to character string to be matched (SET), or NULL
valid address of validation routine (SET), or NULL
disp address of display routine (SHOW), or NULL
desc pointer to a REG structure (MTAB_VAL set) or

an int32 (MTAB_VAL clear)

For SET, an extended MTAB entry is interpreted as follows:

1. Test to see if the mstring entry exists.
2. Test to see if the SET parameter matches the mstring.
3. Test to see if the entry is valid for the type of SET being done (SET device or SET

unit).
4. If a validation routine exists, call it and return its status.
5. If desc is NULL, exit; validation routine presumably stored result.
6. If MTAB_VAL is set, parse the SET option for “option=n”, and store the value n in the

register described by desc.
7. Otherwise, store the match value in the int32 pointed to by desc.

For SHOW, an extended MTAB entry is interpreted as follows:

1. Test to see if the pstring entry exists.
2. Test to see if the entry is valid for the type of SHOW being done (device or unit).
3. If a display routine exists, call it, otherwise,
4. If MTAB_VAL is set, print “=n”, where the value, radix, and width are taken from the

register described by desc, otherwise,
5. Print the pstring.

SHOW {dev|unit} <modifier> is a special case. Only two kinds of modifiers can be displayed
individually: an extended MTAB entry that takes a value; and any MTAB entry with both a display
routine and a pstring. Recall that if a display routine exists, SHOW does not use the pstring
entry. For displaying a named modifier, pstring is used as the string match. This allows
implementation of complex display routines that are only invoked by name, e.g.,

MTAB cpu_tab[] = {
{ mask, value, “normal”, “NORMAL”, NULL, NULL, NULL },
{ MTAB_XTD|MTAB_VDV|MTAB_NMO, 0, “SPECIAL”,

NULL, NULL, NULL, &spec_disp },
{ 0 } };

A SHOW CPU command will display only the modifier named NORMAL; but SHOW CPU
SPECIAL will invoke the special display routine.

1.6.1 Validation Routine

The validation routine can be used to validate input during SET processing. It can make other
state changes required by the modification or initiate additional dialogs needed by the modifier.
Its calling sequence is:

t_stat validation_routine (UNIT *uptr, int32 value, char *cptr, void *desc) – test that
uptr.flags can be set to value. cptr points to the value portion of the parameter string
(any characters after the = sign); if cptr is NULL, no value was given. desc points to the
REG or int32 used to store the parameter.

1.6.2 Display Routine

The display routine is called during SHOW processing to display device- or unit-specific state. Its
calling sequence is:

t_stat display_routine (FILE *st, UNIT *uptr, void *desc) – output device- or unit-specific
state for uptr to stream st. desc points to the REG or int32 used to store the parameter.

When the display routine is called for a regular MTAB entry, SHOW has output the pstring
argument but has not appended a newline. When it is called for an extended MTAB entry,
SHOW hasn’t output anything. SHOW will append a newline after the display routine returns.

1.7 Other Data Structures

char sim_name[] is a character array containing the VM name.

int32 sim_emax contains the maximum number of words needed to hold the largest instruction or
data item in the VM. Examine and deposit will process up to sim_emax words.

DEVICE *sim_devices[] is an array of pointers to all the devices in the VM. It is terminated by a
NULL. By convention, the CPU is always the first device in the array.

UNIT *sim_consoles[] is an array of pointers to the units of simulated consoles, alternating input
and output. (If a console has only an input unit, the output slot should also point to the input unit.)
This structure is only used for multi-console support. If the VM has only one console, the pointer
should be NULL.

REG *sim_PC points to the reg structure for the program counter. By convention, the PC is
always the first register in the CPU’s register array.

char *sim_stop_messages[] is an array of pointers to character strings, corresponding to error
status returns greater than zero. If sim_instr returns status code n > 0, then
sim_stop_message[n] is printed by SCP.

VM Provided Routines

1.8 Instruction Execution

Instruction execution is performed by routine sim_instr. Its calling sequence is:

t_stat sim_instr (void) – Execute from current PC until error or halt.

1.9 Binary Load and Dump

If the VM responds to the LOAD (or DUMP) command, the loader (dumper) is implemented by
routine sim_load. Its calling sequence is:

t_stat sim_load (FILE *fptr, char *buf, char *fnam, t_bool flag) - If flag = 0, load data from
binary file fptr. If flag = 1, dump data to binary file fptr. For either command, buf contains
any VM-specific arguments, and fnam contains the file name.

If LOAD or DUMP is not implemented, sim_load should simply return SCPE_ARG. The LOAD
and DUMP commands open and close the specified file for sim_load.

1.10 Symbolic Examination and Deposit

If the VM provides symbolic examination and deposit of data, it must provide two routines,
fprint_sym for output and parse_sym for input. Their calling sequences are:

t_stat fprint_sym (FILE *ofile, t_addr addr, t_value *val, UNIT *uptr, int32 switch) –
Based on the switch variable, symbolically output to stream ofile the data in array val at
the specified addr in unit uptr.

t_stat parse_sym (char *cptr, t_addr addr, UNIT *uptr, t_value *val, int32 switch) – Based
on the switch variable, parse character string cptr for a symbolic value val at the specified
addr in unit uptr.

If symbolic processing is not implemented, or the output value or input string cannot be parsed,
these routines should return SCPE_ARG. If the processing was successful and consumed more
than a single word, then these routines should return extra number of words (not bytes)
consumed as a negative number. If the processing was successful and consumed a single
word, then these routines should return SCPE_OK. For example, PDP-11 parse_sym would
respond as follows to various inputs:

input return value

XYZGH SCPE_ARG
MOV R0,R1 SCPE_OK
MOV #4,R5 -1
MOV 1234,5670 -2

The interpretation of switch values is arbitrary, but the following are used by existing VM’s:

switch interpretation

-a single character
-c character string
-m instruction mnemonic

In addition, on input, a leading ‘ (apostrophe) is interpreted to mean a single character, and a
leading “ (double quote) is interpreted to mean a character string.

1.11 Multi-Terminal Support (Telnet)

SIMH supports the use of multiple terminals. All terminals except the console are accessed via
Telnet. SIMH provides two supporting libraries for implementing multiple terminals: sim_tmxr.c
(and its header file, sim_tmxr.h), which provide OS-independent support routines for terminal
multiplexors; and sim_sock.c (and its header file, sim_sock.h), which provide OS-dependent
socket routines. Sim_sock.c is presently implemented only under Windows and UNIX.

Two basic data structures define the multiple terminals. Individual lines are defined by the tmln
structure (typedef TMLN):

struct tmln {
SOCKET conn; /* line conn */
uint32 ipad; /* IP address */
uint32 cnms; /* connect time ms */
int32 tsta; /* Telnet state */
int32 rcve; /* rcv enable */
int32 xmte; /* xmt enable */
int32 dstb; /* disable Tlnt bin */

int32 rxbpr; /* rcv buf remove */
int32 rxbpi; /* rcv buf insert */
int32 rxcnt; /* rcv count */
int32 txbpr; /* xmt buf remove */
int32 txbpi; /* xmt buf insert */
int32 txcnt; /* xmt count */
uint8 rxb[TMXR_MAXBUF]; /* rcv buffer */
uint8 txb[TMXR_MAXBUF]; /* xmt buffer */
};

The fields are the following:

conn connection socket (0 = disconnected)
tsta Telnet state
rcve receive enable flag (0 = disabled)
xmte transmit flow control flag (0 = transmit disabled)
dstb Telnet bin mode disabled
rxbpr receive buffer remove pointer
rxbpi receive buffer insert pointer
rxcnt receive count
txbpr transmit buffer remove pointer
txbpi transmit buffer insert pointer
txcnt transmit count
rxb receive buffer
txb transmit buffer

The overall set of extra terminals is defined by the tmxr structure (typedef TMXR):

struct tmxr {
int32 lines; /* # lines */
SOCKET master; /* master socket */
TMLN *ldsc[TMXR_MAXLIN]; /* line descriptors */
};

The fields are the following:

lines number of lines (constant)
master master listening socket (specified by ATTACH command)
ldsc array of line descriptors

Library sim_tmxr.c provides the following routines to support Telnet-based terminals:

int32 tmxr_poll_conn (TMXR *mp, UNIT *uptr) – poll for a new connection to the
terminals described by mp and unit uptr. If there is a new connection, the routine resets
all the line descriptor state (including receive enable) and returns the line number (index
to line descriptor) for the new connection. If there isn’t a new connection, the routine
returns –1.

void tmxr_reset_ln (TMLN *lp) – reset the line described by lp. The connection is closed
and all line descriptor state is reset.

int32 tmxr_getc_ln (TMLN *lp) – return the next available character from the line
described by lp. If a character is available, the return variable is:

(1 << TMXR_V_VALID) | character

If no character is available, the return variable is 0.

void tmxr_poll_rx (TMXR *mp) – poll for input available on the terminals described by
mp.

void tmxr_rqln (TMLN *lp) – return the number of characters in the receive queue of the
line described by lp.

void tmxr_putc_ln (TMLN *lp, int32 chr) – output character chr to the line described by
lp.

void tmxr_poll_tx (TMXR *mp) – poll for output complete on the terminals described by
mp.

void tmxr_tqln (TMLN *lp) – return the number of characters in the transmit queue of the
line described by lp.

t_stat tmxr_attach (TMXR *mp, UNIT *uptr, char *cptr) – attach the port contained in
character string cptr to the terminals described by mp and unit uptr.

t_stat tmxr_detach (TMXR *mp, UNIT *uptr) – detach all connections for the terminals
described by mp and unit uptr.

t_stat tmxr_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw) – stub examine routine,
needed because the extra terminals are marked as attached; always returns an error.

t_stat tmxr_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw) – stub deposit routine,
needed because the extra terminals are marked as detached; always returns an error.

void tmxr_msg (SOCKET sock, char *msg) – output character string msg to socket sock.

The OS-dependent socket routines should not need to be accessed by the terminal simulators.

