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PREFACE

This book is a complete, exhaustive, yet readable exposition of high-
speed, binary digital computer arithmetic hardware and its rationale. In
order to be tutorial without sacrifice to rigor, the emphasis leaves less to
the reader’s imagination at the risk of being repetitious.

Originally, my purpose was to write a book, using my first book Com-
puter Logic (Prentice-Hall, Inc., 1960) as a “jumping-off”’ place, that would
lead the reader from the novice to the expert class, to an understanding of
the frontiers of computer design. A basic requirement was, and still is, to
keep the text readable by avoiding all such phrases as “it can be shown’” or
“it is easily proved” and by writing reasonable explanations. The objective
of clarity restricted the scope of my work which then became a complete
coverage of arithmetic units. Since parallel, natural, binary arithmetic is
used in all of the fastest, largest computers available, it is the primary
topic of interest here. The result is a thorough, though somewhat specialized
text.

The discussionn of high-speed arithmetic is not historically oriented,
but it covers the early classical methods, the methods employed in cur-
rently available machines, the methods employed in machines now on the
drawing boards which will be produced within the next five years, the
methods still in the laboratory stage, and esoteric methods which are still
in the investigational stage (radix representation).

The reader should have an understanding of basic logical design. The
work is intended for practicing engineers or logical designers in the com-
puter field or those who have completed a course in computer design. One
who has diligently read Compuier Logic should be prepared for this book.

In Chapter 1 some of the principles of logical design are reviewed and
my methodology for such design is discussed. Also, some of the pros and
cons of alternate methods are presented. The chapter ends with a discus-
sion of symbols.
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Next, in Chapters 2 and 3, various binary representations for signed
numbers are examined together with an outline of how arithmetic is per-
formed using these notations. The reader may not be able to absorb all
this material at one sitting but may find it a useful reference in coping
with unfamiliar representations.

The adder is fundamental to the arithmetic unit; therefore, three chap-
ters are devoted to a thorough discussion of the presently available fast
adders. Both the carry lookahead and the conditional sum adders are of
such complexity that a full chapter is devoted to each. In Chapter 7 a
typical adder is incorporated in the design of a complete, simple parallel
arithmetic unit. This allows the reader to see the big picture before jumping
into multiplication and division.

The next few chapters go into detail to develop the algorithms neces-
sary for multiplication and division; the rationale behind the algorithms is
thoroughly presented. From these algorithms, typical multiplication and
division functional units are built up. For the first time, a complete com-
parison of hardware and timing is presented for these methods of multi-
plication and division.

In Chapters 15 and 16, I develop the algorithms necessary to perform
floating-point arithmetic. Although rapidly replacing all other kinds, refer-
ences to this topic, especially its design aspects, are almost nonexistent in
the present comparative literature. The problems of constructing and
designing floating-point hardware, as they apply to the several alternatives
available to the arithmetic unit designer, are discussed in these chapters.

Often, special-purpose function generators could perform special opera-
tions in less time than conventional arithmetic units. Although these re-
quire more hardware, such functions are occasionally incorporated in
special-purpose machmes where the particular function is frequently re-
quired. Two such functions are presented in Chapter 17. Although the
square-root operation has been discussed briefly in the literature, no one, to
my knowledge, has discussed a polynomial evaluator. Since this is an
operation frequently requiring a mathematical analysis, it may find use in
future general-purpose computers.

Residue or radix arithmetic, covered in Chapter 18, is a fairly new con-
cept in the computer field, although it is familiar to mathematicians who
specialize in number theory Since carry propagation is virtually eliminated,
this is an attractive method of computer design, provided other obstacles
can be eliminated.

Nothing is said in this text of the relation of the arithmetic unit or,
less specifically, the computer, to the problem to be solved. The two are
related by the program, of course. How the program, the computer, and

the software are related is the topic for at least one other book which I am
currently writing.
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INTRODUCTION

1.1 COMPUTER SYSTEM STRUCTURE

The System Hierarchy

The purpose of a computer system is to solve a problem or a class of
problems. The approach of the atomist is to completely comprehend the
function of the components and the wires that connect them. From this he
can determine how any system or supersystem works. This approach is
too much for me. I prefer to look at a problem by building up larger and
larger units in intermediate steps. The old approach of Aristotle of analysis
followed by synthesis still seems to contain quite a bit of wisdom.

Figure 1.1.1 shows how larger and larger units are assembled from the
tinier building blocks, the components. The components are interconnected
with wire, of course, and iarger units are assembied, so that we go from
circuits to large computer systems and even supersystems.

The Supersystem

The supersystem consists of a general problem class. These problems
are comprehended by one or more computing devices. In addition, other
data-handling, transmitting, and receiving devices are included. Such
supersystems are best discussed by examining some examples.

1
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circuit
dan muttiv!

Figure 1.1.1 Building larger computer units (apex) from
smaller ones (base). Examples are in parentheses

sage

Most technical people are aware of the original data-processing system
set up to alert us of an impending enemy attack. This system, entitled
SAGE (Semi-Atomatic Ground Environment), was used to relay informa-
tion about approaching aircraft which might endanger our country from
far distant points to a central point where a computer was stationed.
This computer took cognizance of all events relating to air security.
It matched these events against criteria and determined whether and what
friendly aircraft should be alerted to intercept or monitor the unknown
aircraft. SAGE is a data-processing system surrounded by a number of
other devices and humans. The goal of the entire system is clear. In this
particular supersystem the computer is approximately equal in stature to
the other components of the supersystem.

process control

In the small type of supersystem used for processing, the computer
monitors an on-going process. It receives information from a manu-
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facturing process, chemical or mechanical, relates this to control criteria,
and transmits information to controllers which effect changes in the
processing so that the end product is of the required uniformity. In such
a supersystem the computer may be minor in comparison to the elaborate
control equipment required.

payroll system

A payroll system is also a supersystem. Consider the human employees
who create the information regarding the payroll. The amount of time
which they work is recorded in some fashion on a time record. This time
record may contain information about production rather than time, but
in any case it is a document upon which earnings are based. The rules for
payment are incorporated in the computer which then produces the out-
put documents—the paychecks—which are returned to the employee to
complete the loop. The supersystem must make elaborate provisions to
accommodate the many changes which take place. These changes consist of
employees who leave the concern, new employees who join the firm,
changes in wages which occur frequently, changes in deduction status due
to marriage, birth, and death, and changes in the rules which occur within
the organization are also due to givernmental changes in tax structure or
in reporting procedures.

The System

The computer system is thoroughly discussed in most introductory
computer texts. The arrangement of Figure 1.1.2 applies to the configura-
tion of the subsystems within the system. In general, computer systems
are configurated as in Figure 1.1.2. The differences among computers
consist in subsystem capabilities and layout. It should be remembered
that multiple subsystems are possible in most computer systems.

—> Input Memory Qutput >
~ \,
\\‘.\ \\ |
~ 1
\\\ > 1
Processor Control

Figure 1.1.2 Subsystem arrangement in the computer system



D INTRODUCTION

Subsystems—System Components

To reiterate, each subsystem may appear in multiple. For instance,
most computer systems include, as input subsystems, magnetic tape
units, punched paper tape units, punched card units, and operator con-
soles. New input subsystems, such as magnetic cards, magnetic character
readers, and optical character recognition devices, are becoming more
prevalent.

The eriteria for choice of any given subsystem are several: when high
speed can be achieved, it must be weighed against cost; often special
abilities are required; sometimes versatility of performance is a desired
characteristic.

When interconnecting sybsystems, buffering is always a problem. We
cannot expect speeds and capacities of subsystems to be immediately
comparable. To allow for these discrepancies, buffer units are interposed.
These compensate for the differences in speed or capacity.

1.2 SUBSYSTEM STRUCTURE

The subsystem consists of operational units which are logically inter-
connected.

Operational Units

The performance of the subsystem can be broken down into operations.
These operations can usually be localized to the function of an opera-
tional unit. As an example, consider the control unit. Its function may be
broken down into many operations. Among these are the fetch operation
wherein the command to be executed next is procured from the memory
unit. Another operation which can be localized is the index operation
where the operand address is modified, when necessary, before the operand
is obtained from memory.

In a similar fashion, processing may be broken down into operational
processes such as arithmetic and editing. Most of this book, of course, is
devoted to the operational unit known as the arithmetic unit.

In most computers we are able to discriminate between the different
operational units; however, functions are frequently shared by operational
and functional units. The extent to which this oceurs is a function of many
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factors in computer design,

1. Variety of functions performed.

2. Restriction of problem classification.

3. Asynchronism.

4. Function-sharing among operational units.

Operational units are made from functional units which are inter-
connected by logic. We could go down the line in Figure 1.1.1 and even-
tually get to the bottom, the components. Instead of proceeding in that
direction, it will be more informative to proceed upward from the com-
ponent ievel at this point.

Components

Once we have an operational unit in view, we are in a position to
assemble it from smaller units. The very smallest items are the com-
ponents. These are of three types: simple interconnections or wiring;
passive elements such as resistors, capacitors, and inductances; and
active elements used as energy sources or sinks. Another category of
components is most important in the computer field; these are storage
elements of various types. These include magnetic cores, magnetic films,
electrostatic elements, and virtually anything which will store energy for
later reference. These components are important only insofar as they
perform logical storage and time-binding functions. They must be in-
corporated into circuits to do so.

Circuits

Circuits fall into several categories. There are the logical circuits which
perform the work, set up by the logical designer, to exercise a function
required by the computer. These logical circuits are, of course, the &-gates
and the V-mixers or other logical functions required by the logical de-
signer. The &-gate is a multi-input block for which the single output is
activated only when all inputs are activated; the V-mixer is a similar
block which produces an output when any input is present.

Then there are storage circuits where the smallest atom of information
may be placed for future reference—the bit storage device discussed in
Section 1.5. Similar circuits are used to offset information in time—these
are delay circuits.

Another category of circuits consists of those which provide nonlogical
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functions. They assure that information in the form of electrical pulses
is shaped correctly. Thus, amplifiers are used to assure pulses of correct
amplitude; shapers are used to produce pulses of the proper length; delays
are used to assure the pulses occurring at the proper time. Since circuits
are connected one to the other, matching is an important factor.

Although there are many exceptions, it is usually possible for the
logical designer to ignore the questions posed by circuitry, at least in the
earliest phases of logical design.

Logical Blocks

Logical blocks perform logical functions without regard to circuit
considerations. Of course, certain rules must be observed in interconnecting
these blocks so that a given block may be connected to a limited number
of other blocks. Even this consideration may be disregarded, in the strict
sense of logical design, as long as a later design stage is provided whereby
amplifiers or other appropriate circuits may be inserted between these
blocks.

We assume in this book, in order to simplify the discussion, that
the logical designer can manipulate logical blocks as he chooses with utter
disregard to the following factors:

1. Energy gain or loss.

. Signal amplitude degradation.
Shape degradation.

Signal polarity.

Impedance matching.
Driving capabilities.
Capabilities for being driven.

No Uk W

Functional Units

Combinations of logical blocks, as described above, can be made
which perform specific functions required in the computer and are called
functional umits. Such functions have already been treated in Computer
Logic.* For instance, an encoder is a functional unit which translates
information in baseless form into binary, binary-coded decimal, or other
coded form. A decoder provides the reverse function. A full adder performs
addition of two binary digits, taking into consideration the carry from the
previous stage. A comparator determines which piece of coded information
is of the larger magnitude. This usage should now be familiar to the reader.

* Ivan Flores, Computer logic: the functional design of digital computers (Englewood
Cliffs, N. J.: Prentice-Hall, Inc., 1960).
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1.3 PROCESSING AND ARITHMETIC

The Processing Subsystem

The processing subsystem is sometimes referred to by the computer
manufacturer as a processor or processing umit. It usually contains two
subsystems: the first of these performs the control function and the other
processes information. Processing consists of performing arithmetic,
editing and formating information, performing comparisons, and making
decisions which affect the future behavior of the computer. All of these
processing functions are important. In this volume, we are primarily con-
cerned with arithmetic.

The Arithmetic Unit

A block diagram of a portion of the computer is shown in Figure 1.3.
The bottom section of this diagram is referred to as the arithmetic unit; it
performs several functions. It receives the data, transmitted under the

T
HEI
} | rL 1
Temporary 11 [ Another |
por 11 | algorithm |
storage : = | _ECBTLOL_'!
{ I ]
R \ Arithmetizer L
SR 1
‘—-\\
NGRS H
~
Auxiliary \\\\%\\\\\ vl
~ -
storage \\\\\\\ Algorithm

\_/;: control

Fieure 1.3 The block diagram of the arithmetic unit
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supervision of the control unit, which is to be processed. It receives a
processing specification, also as directed by the control unit. This specifica-
tion determines how arithmetic will be performed by it. In so doing, the
control unit selects an algorithm control unit which will operate auto-
nomously when so directed by the control unit.

The reader may wonder how the name algorithm control arose. “Algo-
rithm”” is the name used by the mathematician to describe a set of numerical
procedures by which a given result is obtained from given operands. The
algorithm control unit is the unit which supervises the activity indicated
in the procedures set forth in the algorithm.

When the arithmetic unit has completed its activities, the main control
unit is signaled by the algorithm control unit. The main control unit is
then at liberty to return the answer to the section of memory specified by
the computer program.

Makeup of the Arithmetic Unit

The arithmetic unit contains a number of registers which contain the
operands, intermediate results, and the final result. Several algorithm
control units are provided, one for each process to be carried on by the
arithmetic unit.

Auxiliary information units are used for many purposes. They sum-
marize intermediate results such as a sign of a product. They indicate
the relative timing of the present moment to the chain of events in progress.
They summarize the state of affairs of intermediate results. They store
things which have yet to be done.

Another unit is required to perform actual processing. This unit, which
is usually an adder, takes one or more pieces of information and converts
it into another piece of information. This translation process must be
distinguished from data transfer. This is one of the few places in the
computer where parity checks are no longer valid. Information is being
transformed and parity is not an adequate means for checking,

The Algorithm Control Unit

Each algorithm control unit is, in truth, a miniature control unit: it is
autonomous. Its purpose is to direct the flow and conversion of information
within the arithmetic unit by using a wired-in procedure—the algorithm.
In so doing, it refers to auxiliary storage devices mentioned above. It also
sets these devices according to the progress of the process which it is
directing.
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There is no denying that it is possible to vastly increase the number
of commands available by storing in memory different “wiring tables”
corresponding to different algorithms. This has been done in the militarized
computer made by Thompson Ramo-Wooldridge, Inc., the AN/UYK-1.
Since the benefits of this concept remain to be demonstrated, we restrict
our discussion to permanent logic.

Study of the Arithmetic Unit

To begin our study of the arithmetic unit, we assume that certain
information has already been supplied; that is, the algorithm control
unit has been set in motion by having specified to it the process which it is
about to direct. The operands have been delivered to the appropriate
registers. A ready signal has been given. Provisions have been made for
the results to be retrieved from the arithmetic unit when they are posted
as available.

We will investigate the numerical procedures by which the desired
results may be obtained. We will set up one of a few possible configurations
by which the results may be obtained. This means the type of registers
for operands, auxiliary results, and final results will be specified, as will
their interconnections. Provisions will aiso be made for auxiliary results.

We are then ready to determine the general data flow. Repetitive pro-
cesses may be performed with one or another condition prevailing. The
flow of information will be indicated according to the conditions prevailing.

Next we can set up, in words, the auxiliary and control conditions
which apply. It is then a simple matter to convert from words to equations.
It then remains only to convert the equations into hardware logic.

Scope of this Volume

Obviously, arithmetic unit design is the objective of this work. Such a
unit ean be designed with one of several objectives in mind. If cost is the
main obstacle, simplicity results and speed is sacrificed. If speed is para-
mount and cost is no obstacle, it may be achieved by two methods.

Decreasing the response time of the building blocks by using more
expensive components will fulfill the aim. There is a state-of-the-art limit
to this procedure where no further expense produces a time reduction.

Changing the organization of the arithmetic unit can also afford an
improvement. It is then necessary to take several simultaneous actions
upon the participants in the arithmetic process. Hence, compound decisions
are required which, in turn, impose a more complex organization upon the
arithmetic unit.
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We are not concerned with affecting the speed of the building blocks.
This is a matter of improving components and circuits and is a specialty
unto itself. Given the building blocks, what alternatives are available for the
organization of the arithmetic section and what are the trade-offs?

Serial organization requires only one full adder for binary or one digit
adder for binary coded decimal and so entails less expense than the parallel
organization. Detailed discussion of this kind of logic abounds.

For given block speeds, the fastest arithmetic is done by parallel or-
ganization, not by serial or hybrid (serial-parallel) organization. By adding
more logic for more complex decision and action, speed can be increased.
Here, too, there is a limit. We investigate how to improve speed by or-
ganization and what the limiting factors are.

The most efficient representation of numerical information is binary.
Most of the fastest scientific computers use a binary representation. There-
fore, the principles discussed here are in terms of a binary machine. The
extension to decimal machines and even to serial or hybrid machines should
be well within the capability of the reader when he finishes this volume.

1.4 LOGICAL DESIGN

The Logical Design Program

The purpose of logical design is to bring the design of the subsystem
from a simple sketch to a state where the relative position of each funda-
mental logical block is preseribed. Usually, this is continued further, to
the point where each module is specified, assigned a number, and given a
physical location on a physical chassis. This stage would include enumera-
tion of all interconnections between the modules. The term module refers
to one or more logical blocks in physical juxtaposition within a small
detachable unit. The contents of a given module depends upon the de-
signer and manufacturer. Some modules contain only one or two logical
blocks in a small unit, such as those used by Philco in their Model 212
computer; others have ten, twenty, or more logical blocks, as in the Honey-
well 800. Some designers use small modules, placing them on a large
“mother” board which is also detachable from the main hardware.

The province of the logical design group differs from one organization
to another; this difference occurs in several areas. The first is the extent
to which logical design is performed, that is, how much system design is
performed by the group and how much of the job of converting the logical
description into physical hardware is performed by the group. Another
facet is the amount of detail evolved by the logical design group. Fre-
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quently, some of the detail is left either to a manufacturing design group,
or, when this phase has been automated, programmers can frequently
perform hardware layout with the aid of a large digital computer. Another
point of difference among groups is the extent to which Boolean equations
are depended upon and the phase of logical design during which they are
incorporated. Despite the argument which may have existed between the
Eastern and the Western schools of logical design, it is evident that both
schools use both an equation approach and a block-diagram approach.
It is only the extent and the time factor which distinguishes these schools
of thought.

Design Philosophy

We now discuss the essential steps in logical design. First these steps
are enumerated, then each one in turn is discussed in greater detail.

1. A preliminary operational and functional configuration is constructed
as a jumping-off point, with the understanding that it may change
radically during future developments.

2. The sequence of events which occurs in the subsystem under in-
spection is carefully examined, and a preliminary timing plan is
evolved.

3. The set of units which are required and the sequence in which they
are activated are examined with emphasis upon the dependency of
one upon the other.

4. A set of logic-time equations is generated.

5. The requirements for auxiliary logical devices apart from the main
functional units are listed.

6. Boolean equations are written for each and every functional unit
not already specified.

7. Hardware equations are derived and the hardware configuration is
planned.

The System Configuration

The layout of the subsystem depends most intimately on the system
specification. The subsystem does not exist in isolation but, rather, in
symbiosis with the system for which it was designed. The subsystem
specification is usually generated during or just after the system specifica-
tion is determined. Such a specification indicates the time and quanity of
information to be processed by the subsystem as well as other details of
the process.
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One of the most important areas to consider is the interface between the
subsystem and other subsystems within the system. How is information
transmitted to and from this subsystem? How is the processing of informa-
tion controlled? If the subsystem control is autonomous, the means by
which control is transferred from another subsystem to this subsystem
must be specified as well as the means by which main control is relinquished.
Timing is always of importance when units are talking together ; the con-
version must not only be comprehensible to both units, but it must occur
when the computers have time to “listen” to each others’ message!

Before further design commences, the algorithms by which processing is
performed must be investigated and the proper ones specified. This is
obvious for the arithmetic unit. Comparable to algorithms, other sub-
systems have organizing principles which set forth the interrelation of the
functional units. For instance, for the control unit we concern ourselves
with the method by which sequential instructions are procured, how
indexing is performed, how operands are fetched, how instructions are
decoded and delegated, and so forth. The algorithm or organizational
principles must be set forth before the quantity and relation among the
functional units can be specified.

The Functional Units

The type and internal organization of the functional units depend upon
many factors related to data and control:

1. What is the format of the data as it enters and leaves the subsystem
and during processing by the subsystem?

2. Is serial, parallel, or a combination of the two the method by which
data is handled?

3. What kind of processing is required at the various stages?

4. How is the timing of the functional unit initiated, maintained, and
terminated?

5. What means is used to control the processing and the flow of infor-
mation among the functional units?

6. The design experience of the logical design group undoubtedly
affects to a large extent the choice of the functional units used by
that group in their design.

Having chosen the functional units, they must be interrelated. This
process is governed by the algorithm or the organizing principle of the
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subsystem. It is also affected by other considerations such as

Speed.

Other system specifications.

The interfaces.

Economy.

The ability and past history of the design group.

G o =

The Event Sequence

The sequence in which events take place is primarily determined by the
algorithm or organizational principle. At this stage of the game, we should
be able to determine how data flows among the various functional units.
Usually, data is held in registers (temporary storage devices), therefore
these are the units with which we will be most concerned. However, we
wish to consider when the other functional units will be occupied. Events
will take place in two realms—time and space. Thus, we associate, with
each event, a place (or functional unit) and a time in the subsystem
history at which it is taking place.

Frequently, events will take place conditionally in the sense that their
nature is determined by other events which may have preceded them. Thus,
in multiplication an addition is performed upon the sum-so-far in some
cases if a 1 appears as the multiplier bit; another action such as a shift
takes place if this bit is a 0 instead.

A list of events and alternative actions is necessary. However, a visual
aid, a flow diagram of the activities, usually clarifies the designer’s under-
standing of the subsystem requirements. Such flow diagrams are used in
explaining arithmetic and control in many introductory texts including
Computer Logic; this device will be resorted to in the future when the
complexity of the system structure is such as to warrant it.

Logic-Time Equations

One policy we might adopt is to express time with respect to the initia-

tion of the subsystem. Usually the start pulse, ST, is the handy little
reference. A later time, 71, is indicated by

T1 = AST (1.4.1)
A later time than T'1 would be indicated by 72,

T2 = AT1 (1.4.2)

and so forth.
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From the configuration, the functional requirements, and the event
sequence, we are now able to specify for each functional unit its inputs by
referring to:

1. Data entering the given unit—whether a bit is 0 or 1.

2. Control equations—information in the form of control voltages
from one or more control units.

3. Time as indicated above.

4. Auxiliary settings—data or control information is frequently dis-
tilled into the setting of specific auxiliary devices which are referred
to in controlling given functional units.

5. Algorithm in progress—this is necessary when a unit performs one
or more procedures.

A given functional unit relates the inputs in a way characteristic to it
and thus produces an output. This output can be expressed as a Boolean
equation involving time and the specific inputs.

Auxiliary Units

As touched on above, auxiliary storage units may distill a large amount
of information into a single setting. A unit may refer to control information,
intermediate results, and a time factor, and compress these into one or a
few settings. Similar to the functional unit, the auxiliary unit has an
equation which specifies its input in terms of data, control, and time. When
such units are bistable devices, specifying its two inputs indicates when
each of its mutually exclusive states prevails.

In some cases such auxiliary devices may be time-shared; that is, they
may be used to store several auxiliary functions at different times within
the operating sequence of the subsystem.

Boolean Equations

Each functional unit has a Boolean equation which describes its char-
acteristic. The logical designer working on a complicated subsystem deals
most frequently with functional units which are already fixed and hence
have specific Boolean equations. These units may be described either by
their function or by their equation. In addition, he must make up some
special purpose, functional units; in that case, a description in Boolean
equation form is usually preferable. Such an equation, together with a
Karnaugh map, provides simplification not immediately apparent in
most other forms. The logic-time equations are occasionally amenable to
simplifications after they have been put into the Boolean form. Such
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equations arise throughout, especially in connection with the auxiliary
units, but also in connection with the control processing and auxiliary
processing units.

Hardware Phase

Once the subsystem has been specified, as described in the previous
subsections, we are ready to pass into what frequently consists of a scpa-
rate phase. This phase converts the paper which is specifying a system into
paper which is specifying a machine layout. This is done in several sub-
phases. The Boglean equations and logic-time equations have to be con-
verted into available logie-block form. The 1oglc block form may require
rewriting, especially if we are converting from V, & logic into Nor logic.
This conversion process must heed the fam-in and fan-out precautions
relative to each logic block. The fan-in is the maximum number of circuits
which may drive a given block; the fan-out is the maximum number of
circuits which the given block may drive. The logic thus generated may
require the addition of nonlogical elements. Thus, when a logic block is
required to drive more than its allowable fan-out, this may be achieved
by inserting an amplifier between this block and the one that it drives.

After this conversion, another look should be made to see if simplifica-
tions can be made to reduce the design in its new form. Now we must
convert from blocks to modules. A module comprises several similar or
dissimilar blocks. The blocks must be assigned to specific modules with
an allotment for spares which inevitably are required.

Along with the module assignment is the module arrangement. The
geometric arrangement of the modules on the backboard is of crucial im-
portance when we get into the area of very high-speed computers. The
difference in delay incurred by transmitting some pulses over a few feet
of wire while others travel only a few inches may be enough to jeopardize
the proper functioning of the subsystem. Some work has been done on this
topological problem, but much more should be done in the future to develop
an effective science of module placement.

The final step in the hardware phase is the pin assignment for each
module and the wiring layout which indicates where each wire of the
computer begins and ends and how long it should be. From this information,
cable layouts can be made and the wiring done.

1.5 SYMBOLS

This section is especially for those who have passed the novice grade and
have not found it necessary to read or refer to Computer Logic. The
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original choice of symbols for Computer Logic arose from an attempt
to predict a set of symbols which would become the convention for the field.
However, the committee that suggested these symbols for adoption did
not prove successful and at present there are still no universally accepted
standards. For consistency, we will continue to use the symbols presented
in the first volume. The total set of symbols used here is displayed in Fig-
ure 1.5. .
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1. &-gate 2. v-mixer 3. 48 4.4+
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Figure 1.5 Symbols for logic design

Gates and Mixers

D-symbols are used throughout for combinatorial logie. Inputs to the
D-symbol are always on the flat side; the output is taken from the semi-
circular side. The multiple input &-gate is indicated as in Figure 1.5.1.
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There it is seen that the &-function is designated by drawing a line within
the D parallel to the input entry line, the diameter of the semi-circle, and
spacing this line about two-thirds away from the diameter. The multiple
input V-mixer is indicated, as in Figure 1.5.2, by a diagonal line oblique
to the diameter. Inversion is indicated by a small circle at the termination
of an input line or at the start of an output line. Examples are found in
Figures 1.5.3 and 1.5.4. The inhibit function is indicated as shown in
Figure 1.5.5.

Notice that for the D-symbols no directional arrows are required since
signals enter the D-symbol only at the diameter and leave only at the side
Anmacidn

The Boolean connective and is symbolized by the ampersand, &. It is
defined by a truth table where A & B is true only when A is true and B
is true. The Boolean connective or is symbolized by “vel” or inclusive or,
V. It is defined by a truth table where 4 V B is true for all entries except
when A is false and B s false. The overbar is used to deny a variable (the
not function) ; thus, A 4s true only when A s false.

A hardware block which performs a logical function is refered to in the
text by the proper symbol followed by a numerical designation: &6 refers
to a block which performs and and is designated 6; 15 is a denial block
designated as 15; a block performing both negation and conjunction is
indicated by a “primed’” ampersand, &'23.

In dealing with multiple logical devices so common in parallel pro-
cessing, we have adopted the pipeline notation. First consider a number
of parallel signals indicated by the use of bold type as A. If all of these are
gated by single signal B, the logical symbol and its equivalent are indi-
cated in Figure 1.5.6. When multiple signals gate multiple signals this is
indicated as in Figure 1.5.7 where the inputs A and B are gated by the
compound &-block shown there. Finally, multiple signals can be mixed
in a similar fashion, as shown in Figure 1.5.8.

Bit Storage

Devices which store single bits of information are called bit storage
devices. They are also commonly referred to as flip-flops, bi-stable multi-
vibrators, or simply multis. My symbol for the bit storage device is found
in Figure 1.5.9. Note several aspects of this symbol. It may seem confusing
at first that no arrows are shown. Since the symbol is not used in a vacuum,
however, signals entering the device will have their direction indicated by
their source; those leaving the device will have their direction indicated
by their termination. Only when the source or destination lies off the paper
are arrowheads necessary. The bit storage symbol is independent of the
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circuitry used and the polarity of the signals manipulated. For instance,
when the line entering the bit storage device at the one input contains
a pulse signal, it will cause the device to change state or remain in its
present state, depending on its present condition and provided that the
signal is of the proper amplitude and duration (this always being assumed
here). We attach the output wire corresponding to the 1-state to the termi-
nal of the device which yields the signal polarity that we desire. This
requires that the other terminal be of the opposite polarity. It also requires
that a signal which resets the device to its O-state will cause the one output
to become reversed.

The uni, single shot or delay flip-flop is shown in Figure 1.5.10. This
device can be set to the 1-state by an incoming signal. After a fixed period of
time, it resets itself to the alternate state. Arbitrarily, we say that the signal
sets it to the 7-state and then ¢t resets itself o 0. Therefore, all inputs to the
device enter the 1 half-box; the 0 half-box has an X at its input to indicate
that no input is required here—that the uni resets without intervention.
Where a time constant is explicitly required, it is placed close to the box
to which it applies.

The astable multi-vibrator or pulse generator is a flip-flop which is self-
triggering. It is indicated in Figure 1.5.11 where both input X’s are in
corresponding half-boxes to show that no input signal is supplied.

Shaper

The shaper is attached to a bit storage device to recover a pulse when
the bit storage device switches to a given state, Figure 1.5.12. When the
bit storage device is set to 1 by a pulse, there is no output from the shaper,
S; when RS is reset to 0 a pulse is emitted from S such that the pulse
front of the pulse emitted from S corresponds to the time at which RS
assumes the O-state.

Delay

The symbol for delay is shown in Figure 1.5.13. Any signal at the input
(the left-hand side of the symbol as shown) appears at the output in
exactly the same form but delayed a fixed length of time according to the
parameter associated with the delay symbol. In my approach to logical
design, I have omitted all references to amplifiers and like circuits. Thus it
is assumed that the designer will compensate for any attenuation and
distortion presented by the delay by incorporating the required circuitry,
although the symbols for such additional circuits are omitted throughout.
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Registers

The register symbol is found in Figure 1.5.14. The directed pipelines
indicate inputs and outputs, both series and parallel, whose direction is
determined by the associated arrowheads. A single line which enters the
box and has attached an arrowhead within the box indicates that this is
the means by which the register is set to the incoming signal.

It is unnecessary to dwell on the register symbol since we will elaborate
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upon it to a large extent in Section 4.1.



SIGNED
BINARY ARITHMETIC

2.1 INTRODUCTION

Unfortunately, some things just have to be learned by rote. Remember
the arithmetic tables, “Two times two is four, two times three is six, +-+”?
Well, this chapter is devoted to arithmetic in various notations. Although
they do not have to be learned by heart, still the rules that apply to them
have to be understood in depth.

The chapters which follow develop the methods by which Arithmetic
Units of various extant computers perform arithmetic. These methods,
numerical manipulations, founded upon mathematical justification and
realized in hardware, are called algorithms.* Naturally, the correctness of
any algorithm depends on the representation of the numbers and form of
the desired result.

In the first section of this chapter, the three main representations for
signed numbers are explained. A design group must decide which of these
representations is best suited to the computer under consideration. There is
no immediate clear-cut choice; there are advantages and disadvantages to
each representation; each is used as the basis for at least one machine.
Although some of the newer machines have chosen 2’s complement nota-

* I use the term in this seemingly broad way. Actually, Webster’s present definition
is even broader and, referring to a treatise by al-Khurar-izmi, applies to the study of
dectmal arithmetic.

20
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tion, it should not be concluded that this notation should now be used
universally. On the contrary, often the choice is made solely on the basis
of compatability of the machine being designed with the previous product
of the manufacturer.

To contrast the representations of signed numbers requires an under-
standing of how arithmetic is done in each, and this is presented in this
and the next chapter.

Although three representations are presented here, for brevity, chapters
on high-speed arithmetic are based entirely on 2’s complement notation. It
will best serve the reader’s need to comprehend the workings of the repre-
sentations presenting the most hardware problems—then he should cer-
tainly understand the others! The tools, in the form of comprehension and
use of the different representations, are furnished here to enable the reader
to complete a design using any of them.

Besides developing a comprehension of available representations, the
reader may gain two things more from these chapters:

1. A reference for later chapters. For instance, in discussing high-speed
multiplication of two negative 2’s complement numbers using
Method 2, Figure 3.3.5 may be used as an example and page 55 gives
a step-by-step description of what occurs there.

2. Practice in thinking in binary. Following each example, although a
chore, is amazingly helpful in that respect. The first few examples
will demand intensive concentration, but, near the close of the
chapter, things fall into place and soon the problems can be worked
without referring to the book.

Since Chapters 15 and 16 are devoted to floating-point arithmetic,
expansion of binary notation to floating-point numbers is tabled until
then. Suffice it to say that the conventions established here are applicable
and need only be extended.

2.2 REPRESENTATIONS

introduction

The discussion of arithmetic and of binary numbers, found in Chapters
6 and 7 of Computer Logic, was confined to the sign and magnitude notation.
In the sign and magnitude notation, numbers which have the same absolute
value are represented identically, except for the sign position. There are
other representations for negative numbers which provide a greater facility
of manipulation when performing arithmetic; such representations are
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frequently used in current computers. Therefore, it is appropriate to study
how arithmetic is performed using these other notations. Also, since an
understanding of these representations is basic to the comprehension of
how computers perform fast arithmetic, it must be acquired before we
discuss the logic of high-speed arithmetic.

Binary Point

The binary point is implicit in the manipulation of numbers in most
modern computers, It is the same as a decimal point in every-day notation,
except that it applies to binary numbers. That is, it separates a number into
a whole part and a fraction; the whole part is to the left of the binary point
and the fraction is to the right.

The conventions in many modern computers, as we will see later, re-
quires that all numbers handled internally by the computer be less than
unity; therefore, these numbers are proper binary fractions. Hence, we
might expect that the position to the left of the binary point would always
contain 0. However, this position is used to indicate the sign of the number
and therefore may contain 0 or 1, according to the sign of the number
represented. Customarily, a 0 indicates a positive number and a 1 a nega-
tive number.

Using these conventions, all numbers consist of a sign bit at the left,
followed (proceeding to the right) by a binary point, and then a number of
bits which determine the magnitude of the number. One objection to the
binary point notation is that, in reality, the computer can only manipulate
truth values or binary information. Sinee this binary information is limited
in extent, it can be said to correspond to a limited range of integers, a subset
of the numbers of counting with a sign associated. Consequently, the binary
point representation might easily make fractions seen to be acceptable
numbers when only a small range of fractions are acceptable to the com-
puter. However, there are advantages which might outweigh the disad-
vantages mentioned above: this notation permits one to keep track of
numbers easily during discussion; it facilitates scaling during programming;
and it provides a left-hand-oriented system, which is of advantage in high-
speed division, for instance. An automatic signle-bit rough approximation
of the comparative size of two numbers is thus available.

Let us adopt the binary point notation, and from here on we will con-
sider that all numbers are less than one, that the sign indication is at the
left-hand bit of the computer word, and that the binary point is just to the
right of the sign bit. A negative number has a 1 in the sign position and a
positive number contains a 0 in the sign position.
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note

In this section and those that follow, upper-case letters indicate the
signed number under discussion, and lower-case letters indicate magnitude.
Thus we say a = | A | where —1 < 4 < +1.

Also note that “~" in this chapter is used to convey “is represented by.”

Sign and Magnitude Notation

In the sign and magnitude notation, numbers of the same magnitude
are identical to the right of the binary point; they differ only in the sign
bit. Thus,

+26(2-5) ~0.11010 (2.2.1)
—26(2-%) ~1.11010 (2.2.2)

1’s Complement Notation

A positive number in 1’s complement notation is identical with its form
in the sign and magnitude notation. In fact, in the three systems discussed,
positive numbers are represented identically. To form the representation of
a negative number in 1’s complement notation, we subtract the magnitude
of the number from W, where we define W as the largest numerical word that
can be stored in a one-word register (ignoring the sign bit).

In practice, this means that negative and positive numbers of equal
magnitude in the 1’s complement notation are exact complements of each
other. That is, wherever a 1 appears in the first number, including the sign
position, a 0 appears in its negative counterpart, and vice versa. Thus,

+26(2-%) ~ 0.11010 (2.2.3)
—26(2-5) ~ 1.00101 (2.2.4)

Another wayv to loo
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at this in mathematical terms is to define th

mathemati rms is to define the value

ok
of the least significant bit of the computer word, e, in terms of the largest
computer word W:

e=1-—-W (2.2.5)
Then,

W=l-e=1-29WV" (2.2.6)
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where there are N numerical bits in the computer word. Also,
e =2V (2.2.7)

For the five-bit case above, W = 0.11111. We can then say that the nega-
tive number, —q, is represented as

—a~2—qa—ce (2.2.8)

Any number and its complement, when added together, will equal 1 + W
(1.1111..-11). This means that two numbers of the same magnitude but
opposite sign, when added together, will form a word consisting entirely of
1’s. We must therefore additionally adopt the convention that the word
1 + Wisequal to 0 (since the sum of a number and its complement is 0).

2’s Complement Notation

Again, positive numbers are represented in the same form as that dis-
cussed under sign and magnitude notation. A negative number is formed by
taking its positive counterpart and subtracting it from 2. We then have

+26(2-%) ~ 0.11010 (2.2.9)
—26(2-5) ~ 1.00110 (2.2.10)

When a number and its complement are added together, naturally, they
will sum to 2. Since this exceeds the word size of the register, it will be stored
there in the form of all 0’s, which is desirable.

A simple rule for finding the 2’s complement is: find the 1’s complement
and add e. Truly it is quite simple but requires an addition. An alternate
rule, especially applicable to multiply and divide where serial right-to-left
examination is done anyway, is:

Starting at the right, examine bits of the positive number in turn. For each 0
in the posttive number place a 0 in its negative counterpart. When the first 1 is
reached, place a 1 in the negative counterpart. Thereafter, for each 0, place a 1 in
the negative quantity and for each 1 in the original word place a 0 in the nega-
live quantity for all bits including the sign bit.

This method also works in converting negative numbers to their positive
equivalents. For example, examine (2.29) and (2.2.10) above for that
purpose. A negative number in 2’s complement notation is given as

—a~2—gq (2.1.11)



SEC. 2.2 REPRESENTATIONS 25

Peculiarities

Each notation has peculiarities which are of interest to the user. These
pertain to the largest and smallest number represented by each and the
representation of 0. These peculiarities are summarized in Table 2.2.

TABLE 2.2 Peculiarities of binary notational systems

Representation
Sign and s 2's
Magnitude Complement Complement
Largest number is 0.11...11 0.11-.-11 0.11-..11
stands for 1 —e¢ 1 —e 1 —e
Smallest number is 1.11.-.11 1.00---00 1.00---00
stands for —(1 —e) —(1 —e) -1
Zero + 0.00---00 0.00---00 0.00---00
- 1.00---00 1.11...11 (unsigned)

In some cases, it is convenient to have two representations for 0. Sub-
traction of a number from itself or the addition of a number to its comple-
ment may produce a bit combination not otherwise used. Therefore, this
combination also may be used for 0. The resulting confusion is more than
compensated for by the ease of handling this problem. In 2’s complement,
the O resulting from arithmetic is the same as the normal 0; namely,
0.00- - -00. Hence, only one 0 is required in this system.

largest number

In all systems the largest number is represented as 0.11---11 and is
1—eorl — 2%

smallest number

It is clear that — (1 — e) is the smallest number represented in both the
sign and magnitude and 1’s complement notation. These take the form,
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respectively, of 1.00-++00 and 1.11---11, corresponding in absolute values
to the largest representable numbers.

In the 2’s complement notation, the representation of — (1 — e) is
1.00- - -01. Subtracting ¢ from this we have 1.00- - -00, which may be used
to represent — 1. Alternatively, we may use it to represent —0. Unfortu-
nately, it is conventional to use 1.00- - -00 to represent —1 in the 2’s com-
plement notation. Although the convention solves some problems, like
normalizing — %, it creates others. One problem is that the range of numbers
for the 2’s complement machine is then

—1<X<1—e
instead of
—(1—-e)<X<L1l—e¢

as for the other systems.

Hence, provision must be made to handle (or prevent) addition, sub-
traction, multiplication, and division for —1. Notice, for instance, that
multiplication is closed for the numbers represented in sign and magnitude
or 1’s complement. That is, the product of any two numbers is a repre-
sentable number. But for 2’s complement we have (—1) X (—1) = +1
and there is no representation for +1!

2.3 SIGN AND MAGNITUDE
ADDITION

Positive Numbers

The addition of positive numbers is the same in all three notations.
Addition is done in the conventional manner for binary numbers; see Figure
2.3. The one precaution to be observed is that the sum must not exceed 1.
In that case, the sum of the numbers we are adding exceeds the word size
of the register, W. The computer must detect this and prevent further
computations using this number. Overflow detection by some computers
automatically causes them to jump to a subroutine in the program to correct
the error. Other computers, not automatically equipped, simply stop for
operator intervention to remedy the condition. The sum of two positive
numbers is then given as

A+B~a+b a+b<l, AB>0 (23.1)
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Negative Numbers

To add two negative numbers we add only their magnitudes, observing
that the sign of the numbers being added is the same. We preserve the sign
and place it in the sign position of the sum. Again, we must beware of num-
bers whose sum exceeds the numerical word size of the register.

Notes
+13: 0.01101 —13: 1.01101 Add magnitudes
+11: 0.01011 —11: 1.01011 Duplicate sign
+24: 0.11000 —24: 1.11000

1. Positive Numbers 2. Negative Numbers

+13: 0.01101 —13: 1.01101
—11: 1.01011 +11: 0.01011
+ 2: — 2:
01101 01101 To augend magnitude
10100 10100 Add addend complement magnitude
00001 00001 End around carry occurs
1 Q..»l Add it to above
00010 00010
0.00010 1.00010 Give result sign of augend

3. Differently Signed—
Augend Magnitude Larger

+11: 0.01011 —11: 1.01011
—13: 1.01101 +13: 0.01101
01011 01011 To augend magnitude
10010 10010 Add addend complement magnitude
11101 11101 There’s no end around carry
Complement result
1.00010 0.00010 Give it sign of addend

4. Differently Signed
Addend Magnitude Larger or Equal

Ficure 2.3 Sign and magnitude addition
of fractions (thirty-seconds)
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The sum of two negative numbers is then given as
A+B~1+a+b e+b<1l A, B<O (2.3.2)

An example of such an addition is given in Figure 2.3.2.

Oppositely Signed Numbers

When the signs of the numbers to be added are different, the result and
the procedure depend upon which is larger, the augend or the addend.

avgend magnitude larger

First, examine a case where we have a positive augend larger, in ab-
solute size, than the addend. We add the addend, in 1’s complement form,
to the augend, as in the examples given in Figure 2.3. This produces an
end-around carry, which is added to the sum-so-far. The sign bit is that of
the augend. The equation for this process is

A+ B~a+ (1—b—c¢e) +e (2.3.3)

where ¢ is the magnitude of A; 1 — b — e is the 1’s complement of the
magnitude of B; e is the number 0.0 - -01. How are you sure a carry occurs?
Well, the complement of b is larger than the complement of a; hence, when
the former is added to @, the result must be greater than 1. Now,

A+B~14+a—-1» (2.34)
A+ B~a— b (mod 1) a>b, A>0, B<O (2.3.5)

The carry from the sign position indicates to the computer that e should
be added, which the computer then does. This is deseribed more succinctly
and less accurately as “adding in the end-around carry.” Throughout the
text we say ‘“the carry is added” to mean ‘“when the carry is detected e is
added.”

I use the notation “(mod 1)” to mean that, when the word size W of the
register is exceeded, we use whatever is then contained in the register. That
is, we add numbers into the numerical portion of the register and do not
transmit carries, if they should ocecur, into the sign bit. This manipulation
is defined as addition modulo 1 and is recorded as in (2.3.5).

For a negative augend with magnitude larger than the addend, we per-
form addition as above. We take the 1’s complement of the addend and add
it to the augend. The end-around carry is added to the sum-so-far and the
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sign of the result is that of the augend. Here we have
A+ B~1+[a+(1—-b—c¢) +e](modl) (2.3.6)
~1l+a—10 a>b, 4<0, B>0 (2.3.7)

addend magnitude larger

To add two numbers of different signs where the addend is iarger than
the augend, take the 1’s complement of the addend and add it to the augend,
as illustrated in the examples of Figure 2.3. The result should not produce a
of the 1’s complement of the proper sum. In order to find the proper sum,
we must take the 1’s complement of the sum-so-far. The sign of the sum is
that of the addend.

Let us see how this looks in equation form. For b larger than a and with
A negative, B positive, we have

A+B~1—[a+ (1 —-b—¢e) +€] (2.3.8)
~b—a a<b 4<0, B>0 (2.3.9)

The parentheses enclose the 1’s complement of the addend. The result
inside the brackets is not correct; it must be complemented, which is in-
dicated by subtracting the number in the brackets from 1.

For the case of b greater than a, A positive and B negative, we have

A+B~1+[1—f{a+ 1 —-b—¢e) +e}] (2.3.10)
~14b—a a>b A2>0, B<O (2.3.11)

The parentheses surround the 1’s eomplement of the addend. The braces
hold the sum of the augend, and the complement of the addend magnitude
brackets indicate the complementation of the sum. Finally, 1 is added to
form a negative number.

24 1’'s COMPLEMENT ADDITION

Both Positive

Two positive numbers are added in the same manner in all representa-
tions. Thus,

A+B~a+b 4, B>0 (24.1)



# SIGNED BINARY ARITHMETIC

Both Negative

Two negative numbers are added as shown in Figure 2.4. All the bits of
the numbers are added including the sign bit. The carry which must be

Notes
—13: 1.10010
—11: 1.10100 Add numbers including sign bit
1.00110 There is end around carry
1 Add it to result
—24: 1.00111

1. Negative Numbers

—13: 1.10010 +11: 0.01011 Add numbers including sign bit

+11: 0.01011 —13: 1.10010 No end around carry
— 2: 1.11101 — 2: 1.11101 Result remains correct
2. Oppositely signed numbers,

negative result

+13: 0.01101 —11: 1.10100 Add numbers including sign bit
—11: 1.10100 +13: 0.01101
0.00001 0.00001 There is end around carry
1 1 Add it in

+ 2: 0.00010 + 2: 0.00010

3. Oppositely signed numbers,
posttive resull

Ficure 2.4 1’s complement addition
of fractions (thirty-seconds)

produced is then added to the partial sum. The result should then be correct.
Since both numbers are negative, they are shown as

A~ (2 —a—e) (2.4.2)
B~ (2—-b—e) (2.4.3)

Adding these numbers will definitely cause a carry from the sign position
since, you recall, the register size is 1 + W. The equations for adding two
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negative numbers are then
A+B~[2—a—¢) + (2—=b—e)]+e(mod2) (2.4.3)
~ (4 —a—>b—e) (mod?2) (24.4)

~2—a—-b—e at+b<1 A, B<O (2.4.5)

Tha nynrescion “fmad 2) 7?7 ahave indieat
40C CXPpreéssion  \moa £,,  av

o tl’vc{' the limit in the full

ove, indicates that the limit in the full
register size (including the sign bit this time) has the effect of subtracting 2
from the partial sum. The final result should be a negative number, indi-
cated by a 1 in the sign position. Care must be taken that a + b is not
greater than W; in that case, the result will appear incorrectly as a positive
number. This discrepancy cannot be detected by observing the carryout
from the sign position; rather, the carryout from the most significant bit of
the sum must be monitored to be sure it occurs.

Oppositely Signed Numbers

To add numbers of different signs, the procedure depends, to some ex-
tent, on sign of the result. In any case, we add the number bit by bit, in-

cluding the sign bit.
negative result

When the sign of the result is negative, no carry is produced. The result
should then be correct, as illustrated in Figure 2.4. The equations for a
negative result are as follows:

A+B~(2—a—e)+5b (2.4.6)
~2—qag+b—c¢ a>b A<0, B>0 (2.4.7)

where A is negative, B is positive, and a > b. For A positive, B negative,
and b > a,

A+B~a+ (2—b—¢ (2.4.8)
~24ag—b—e a<b A>0, B<O (2.4.9)

posifive result

To add two numbers where the result is positive, we add the numbers
bit by bit, as above, including the sign bit. This time, a carry should be pro-
duced from the sign position and is added into the least significant position
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of the partial sum. The result, including the sign, should then be correct.
(See Figure 2.4.) We have

A+B~[(2—a—¢) + b+ e] (mod?2) (2.4.10)
~ (2 —a-+b) (mod2) (2.4.11)
~bh—a a<b A<0, B>0 (2.4.12)

where A is negative, B is positive, and b > a. “(mod 2)” indicates that the
size of the register has been exceeded and, therefore, 2 is automatically sub-
tracted so that it reads the proper quantity. In other words, the representa-
tions are added together, and the result is stored in the register. In the
addition, a carry occurs from the sign positions; this carry is disregarded.
The result register now records a number which is shown by (2.4.11). When
the extra 2 is accounted, the register is found to hold the proper representa-
tion of the result (2.4.12).

For the case of A positive, B negative, and a > b,
A+B~(@a+ (2—b—e¢) +¢) (mod?2) (2.4.13)
~2+a— b (mod 2) (2.4.14)
~qg—b a>b, A>0 B<O (2.4.15)

2.5 2’s COMPLEMENT ADDITION

Positive Numbers

As in sign and magnitude addition, addition of positive numbers is per-
formed bit by bit so that we have

A+B~a+b e+b<1 A B>0 (25.1)

Negative Numbers

To add negative numbers, we add the respective bits of the two numbers
together, including the sign bit, and ignore the carryout of the sign portion
(see Figure 2.5). The equations are

A+ B~[(2—-a)+ (2~b)] (mod2) (2.5.2)
~4 — q— b (mod 2) (2.5.3)
~2—qag—b a+b<1 A4, B<O (2.5.4)

Here the inevitable overflow of the register reduces the 4 to a 2 for the final
result.
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Notes
—13: 1.10011
—11: 1.10101
—24: 1.01000
Add numbers including the signs;
+13: 0.01101 —13: 1.10011 neglect carry from sign position

—11: 1.10101 +11: 0.01011 if it occurs.

+2: 0.00010 —2: 1.11110
—11: 1.10101 4+11: 0.01011
+13: 0.01101 —13: 1.10011

+2: 0.00010 —2: 1.11110

Fieure 2.5 Addition of binary numbers in 2’s complement representation

(thirty-seconds)

Oppositely Signed Numbers

Differently signed numbers are also added in a straightforward manner;
they are added bit by bit, including the sign portion. Carryout of the sign

Uiy

bit is always ignored. There are four possible cases: For A positive and a

larger than b,
A+ B~[a+ (2 —=5)] (mod 2)
~ (24 a — b) (mod 2)
~qg—b a>b A4A2>0 B<O
For A positive and a less than b,
A+B~a+ (2-0)
~2-+ag—-b a<b A2>0 B<O
For A negative and a larger than b,
A+B~2—-a)+0
~2—-a+b a>b A0 BZ>0
For A negative and a smaller than b,
A+ B~ (2—a)+ b (mod2)
~b—a a<b, A0, B=>0

(2.5.5)
(2.5.6)
(2.5.7)

(2.5.8)
(2.5.9)

(2.5.10)
(2.2.11)

(2.5.12)
(2.5.13)



TABLE 2.5 Addition in All Representations

Augend | Addend Result

Entry A B Larger | represented by What is happening Restriction Notation

1 + + Either |a + b a + b a+b<l1

2 — — EKither [L +a + b 1+a+4+0b a+b<1

3 + - a ja—2>b [a4+ (1 —-b—¢e) 4+ e](mod 1) Sign and

4 + — b 1+b-—a 1+l —-—{a+ (1 —b—¢)} —el(mod 1) magnitude

5 — + a 14+a—-20 1+[a+ (1 —b—e) +el(mod1l)

6 - + b b —a 1 —-[fa+ 1 —=b—¢) +e] —a>~1+a
7 + + Either |a + b a+ b at+b<l1

8 — — Either 2 — (a +b) —e|[(2 —a —¢€) + (2 —b — €) + e](mod 2) a+b<1

9 + — a a —b [a + (2 —b —e) + e](mod 2) 1’s complements
10 + — b 2—(b—a) —ela+ (2 —-b—c¢)

11 — + a 2—(a—b) —el(2—~a—e)+Db

12 - + b |b—a [(2—a —e€) + b+ e]lmod 2) —a~2 —q —e
13 + -+ Either |a + b a + b a+b<1

14 — - Either |2 — (a + b) [(2 —a) + (2 — b)](mod 2) a+b<l1

15 + — a Jla—25b [a + (2 — b)J(mod 2) 2’s complements
16 + — b 2 — (b —a) a+ (2 —0)

17 - + a 2 — (a —b) 2 —a) +0

18 — + b |b—a [(2 —a) + b](mod 2) —a™~2 —a

Mod 1 means negleet carries into sign position
Mod 2 means neglect carries out of sign position

OILEWHLIYV AYVNII dANDIS #
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Summary

A summary of the equations for the three representations is found in the
Table 2.5. Columns 1 and 2 indicate, respectively, the sign of the augend
and addend. The third ecolumn indicates which of these is larger. The fourth
column indicates the proper form the sum should take. The fifth column
indicates the equation for arriving at this sum. Here ¢ is added (a 1 in the
least significant bit position) to the partial sum when the end-around carry
is detected. The sixth column indicates the correction to the sum which may
be required to put the result into proper form. The last column gives the
representation of the final result.

2.6 SIGN AND MAGNITUDE
SUBTRACTION

Subtraction is performed in a parallel binary machine by complement
addition for all representations.

Oppositely Signed Numbers

First consider two differently signed numbers. The old rule for subtrac-
tion says, “Change the sign of the subtrahend and add.” For differently
signed numbers, when the sign of one of the numbers is changed, we have
two similarly signed numbers. This calls for the addition of the magnitude
of the numbers as shown at the top of Figure 2.6. As soon as we detect that
the numbers have different signs, we add the numerical positions and give
the result the sign of the minuend. For the minuend positive,

A—B~a+b a+b<1l A2>20 B<0 (26.1)
For the minuend negative,

4—-B~14a+b a+b<l, A<0, B>0 (262)

Similarly Signed Numbers

In subtracting numbers of the same sign, we must determine which
number has the larger magnitude. The method we adopt is to first find the
I’s complement of the magnitude of the subtrahend and add it to the minu-
end. If an overflow from the most significant bit occurs, e is added and the
result is correct. If there is no overflow from the most significant bit, then
the sum is incorrect, because it is in 1’s complement form. The sum must
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Notes
13: 0.01101 —13: 1.01101
—(—=11): 1.01011 —(+11): 0.01011
01101 01101 Add magnitudes; sum has sign
01011 01011 of minuend
11000 11000
— _ No carry into sign position
26: 0.11000 —26: 1.11000 allowed

1. Differently Signed Numbers

+13: 0.01101 —13: 1.01101
—(411): 0.01011 —(—11): 1.01011 Numbers
Add subtrahend complement to
minuend magnitude
01101 01101
10100 10100

1.00001 1.00001 For carry into sign position, add

1 to sum; sign is that of
minuend

+2: 0.00010 —2: 1000010

2. Similarly Signed Numbers, Minuend Larger Magnitude

+11: 0.01011 —11: 1.01011
—(413): 0.01101 —(—13): 1.01101
01011 01011 For no carry into sign position
10010 10010 sum is complement; sign is
_— e that of minuend reversed
11101 11101
—2: 1.00010 +2: 0.00010

3. Similarly Signed Numbers, Subtrahend Larger Magnitude

FiGure 2.6 Subtraction of binary numbers using sign and magnitude representation
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be complemented to obtain the proper representation of the difference. For
an overflow, the sign of the difference is that of the minuend; for no over-
flow, the sign of the difference is that of the minuend reversed.

larger minuend magnitude

The complement of the subtrahend is in the form 1 — b — e. Where

h d 4an thon |
the numosers arce pGSLtLVC and ¢ is greater waan o,

A—B~[a+ (1—-b—e) +e](@modl) (2.6.3)
~(1+a—10) (med1l) (2.8.4)
~ag—5b a>b A, B>0 (2.6.5)

“(mod 1)” requires that, when the numerical size of the register has been

exceeded, the result stored in the register is one less than the algebraic

quantity indicated in (2.6.5). An example of this appears in Figure 2.6.2.
When the numbers are negative and a is larger than b,

A—B~1+4+[a+ ({1 —b—¢e) +¢e](modl) (2.6.6)

~1-+4+(1+a—0>b) (modl) (2.6.7)
~1+4 (a—0b) (2.6.8)
~1l4+a—5> a>b A,B<O (2.6.9)

as demonstrated in Figure 2.6.2.

larger subtrahend magnitude

Where the numbers are negative and a is smaller than b, we do not have
an overflow. However, anticipating the hardware, where it is the custom to
enter the end-around carry prematurely (enter it in all cases), we write

A—-—B~1—-[a+(1—-b—e)]—e (2.6.10)
~l—ag—1+b+e—e (2.6.11)
~p—aq e<b A4,B<O0 (2.6.12)

An example of this appears as Figure 2.6.3.
When the numbers are positive and a is smaller than b,

A-—B=14+[1—-{a+ (1 —-b—¢} —¢€] (26.13)
=1+(l—a—1+b+e—e) (2.6.14)
=1+b-a a<b A B>0 (2.6.15)

which is shown by the example in Figure 2.6.3.
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2.7 COMPLEMENT NOTATION
SUBTRACTION

1’'s Complement Subtraction

Subtraction of binary numbers in 1’s complement notation is always
performed in the following manner: The complete 1’s complement of the
subtrahend (this includes the complementing of the sign bit) is added to
the minuend. Whenever a carry occurs out of the sign bit, a 1 is added to the
least significant bit of the result; when no carry occurs from the sign bit,
this result is left intact.

Notes
+13: 0.01101 —13: 1.10010
—(—11): 1.10100 —(4+11): 0.01011
0.01101 1.10010
0.01011 1.10100
+24: 0.11000 1.00110 In all cases, add the 1’s
Q——»1 complement of the subtrahend;

for a carryout of the sign
—24: 1.00111 position only, add e to the
sum. The sign is then correct.

+13: 0.01101 —13: 1.10010
—(+11): 0.01011 —(—11): 1.10100
0.01101 1.10010
1.10100 0.01011
0.00001 —2: 1.11101

L>1

+2: 0.00010
+11: 0.01011 —11: 1.10100
—(+413): 0.01101 —(—13): 1.10010
0.01011 1.10100
1.10010 0.01101
—2: 1.11101 0.00001
1
+2: 0.00010

Ficure 2.7.1. Subtraction of binary numbers in 1’s complement notation



TABLE 2.7 Subtraction in All Representations

Subtra-
Minuend | hend Result

Entry A B Larger represented by What is happening Restriction Notation

1 + — Either [a + b a+ b a+b<l1

2 — + Either |1 4+ a + b 1 +4+a+5b la+b <1

3 + + a a—25b [a 4+ (1 —b —e) + e](mod 1) Sign and

4 -+ + b 14 (b —a) 141 —{a4+ 0 —-b—e} — €] magnitude

5 — — a 1+ (a —0b) 14+ [a+ (1 —b—¢e) + e](mod1)

6 — — b b—a l1—[a+(1—-b—¢e]—c¢ —a™~1+4+a
7 -+ — Either {a + b a+ b a+b<1

8 - + Tither |2 — (a +b) —e|[(2 —a —¢e) + (2 —b —e) + €] a+b<1

(mod 2)

9 + + a a—2b. [a + (2 — b —e) 4+ e](mod 2) 1’s complements
10 -+ + b 2—((b—a) —¢ela+ 2 —-0b—e)

11 — - a 2 —(a—b) —e|(2—a—¢€)+Db

12 — — b b—a [(2 —a —e) +b 4+ e](mod 2) —a ™2 —a —e
13 + - Either |a + b a + b a+b<1

14 — -+ Either | 2 — (a + b) [(2 —a) + (2 —b —¢) + e] (mod 2) a+b<1

15 + + a a—b [a + (2 — b —e) 4 e](mod 2) 2’s complements
16 -+ —+ b 2 — (b —a) a4+ (2 —b—e) +e

17 — — a 2 — (a —0b) 2 —a) +[2—©2—-b) —e]+e

1