MACHINE-
INDEPENDENT
COMPUTER
PROGRAMMING

Maurice H. Halstead, Ph.D.

SPARTAN BOOKS WASHINGTON, D. C.

Library of Congress Catalog Card No. 62-14005

Copyright © 1962 by Maurice H. Halstead. Printed in the United States of America.
All rights reserved. This book or parts thereof, may not be reproduced in any form
without permission of the publishers.

Manufactured by McGregor & Wemer, Inc.
Washington 12, D. C.

Dedicated to the memory of
Roger Remple
“From zero to infinity”

CONTENTS

10.
11.

© ® N D ok

Preface .

Foreword

INTRODUCTION TO MACHINE-INDEPENDENT
COMPUTER PROGRAMMING

HOW TO READ NELIAC OR ALGOL;
PUBLICATION ALGOL .

HOW TO WRITE IN THE LANGUAGE: INPUT-OUTPUT,
PROGRAM TESTING OR DEBUGGING .

BASIC CONCEPTS OF SELF-COMPILERS
LOAD PROGRAMS

PROCESSING NOUN LISTS

CO-NO TABLES

GENERATORS .

COMPILING COMPILERS AND COMPILER SYSTEMS
INPUT-OUTPUT

DECOMPILING WITH D-NELIAC
APPENDIX A: NELIAC C

APPENDIX B: NELIAC 704 .

APPENDIX C: NELIAC 1604

APPENDIX D: D-NELIAC C

Index

vii

x1i

25
37
50
65
77
87
123
129
143
151
199
223
249

269

PREFACE

This text is based upon the lecture notes developed by the author
while teaching an evening course, described as “Neliac, a Dialect
of Algol,” for the University of California Extension. This course
was taught twice, in each case to a group which was extremely
heterogeneous, including both experienced programmers and others
who were completely unfamiliar with computers. Further, the
interests of the students varied widely from individual to individual,
including business, engineering, mathematics, and real-time control.

In an effort to interest and challenge all groups simultaneously,
a basic self-compiler written for the purpose was used as the
principal example. This compiler, which is covered in Chapters
5 through 10, served as neutral material from which the novices
in various fields could develop proficiency in both the language
and in the type of thinking required in handling computers, while
at the same time it provided the devotees with the necessary back-
ground from which they themselves soon started suggesting more
efficient routines and improved techniques in the writing of com-
pilers. The many contributions of these students are gratefully
acknowledged.

From the foregoing it may be seen that this book is designed to
teach the student how to “write to” computers in the Neliac lan-

viti

guage, and then to teach him how to “teach” a computer to read
Neliac if it does not already know.

Returning to the preparation of the text, it would not be proper
to confuse the latter with the development of the concepts it de-
scribes. These concepts result from the work of many pioneers in
the computer field, as well as others such as Charleton Laird,
whose penetrating work The Miracle of Language is not concerned
with computers at all. The basic concepts involved were crystalized
primarily at the Navy Electronics Laboratory, where Roger Remple,
Lt. Kleber Masterson, Lt. Comdr. Robert McArthur, Dr. Robert
Goss, Lt. John White, Ens. Arthur Lemay, Sidney and Catherine
Porter, Robert Johnson, Charles Tappella, Herman Englander, Joel
Donnelly and James Warrington each have made contributions to
one or more of the family of Neliac compilers. The work of auto-
matic-programming experts at other installations, including Prof.
Richard Thatcher, Wesley Landon and Dr. W. H. Wattenburg, has
also been of great value, while the advice and inspiration of Prof.
Harry Huskey has been basic to the entire development.

~pecial thanks are due to Joel Donnelly, Lt. White, Ens. Lemay,
and Sidney and Catherine Porter, and to the Technical Director
of the U. S. Navy Electronics Laboratory for permission to cite
those works given in the appendices.

Finally, the author wishes to apologize for whatever deficien-
cies exist in the presentation, asking indulgence on the grounds
that the field of automatic machine-independent programming is
still quite new.

San Diego, Calif. Mavurice H. HALSTEAD
February, 1962

FOREWORD

More than a century ago Ada Augusta, Countess of Lovelace and
only daughter of Lord Byron, writing about Charles Babbage’s
“Analytical Engine,” said that it might develop three sets of results
simultaneously—symbolic results, numerical results, and algebraic
results in literal notation. In 1842 Mr. F. L. Menbrea, in an article
translated by the Countess of Lovelace, stated that the (punched)
cards (which controlled the calculation) were merely a translation
of algebraic formulae, or, to express it better, another form of
analytic notation.

Menabrea in the same article goes on to say: “When once the
engine [calculator] shall have been constructed, the difficulty
[of doing calculations] will be reduced to the making out of cards;
but as these are merely the translation of algebraic formula, it will,
by means of some simple notation, be easy to consign the execu-
tion of them to a workman. Thus the whole intellectual labour
will be limited to the preparation of formulae, which must be
adapted for calculation by the engine.”

Babbage failed to complete his Analytical Engine, and it was little
over a decade ago that we had our first card-controlled calculators.
It has been less than a decade since stored program computers have
been available commercially. Furthermore, it is only with the de-

arss
ALY

velopment of stored program computers that the processes described
above have come to pass.

This book is the story of such a process. These “simple notations”
were “adapted for calculations by the engine” on a computer which
was very appropriately called “The Countess.”

The aim in developing a language for specifying computational
processes or algorithms has been not so much to consign the execu-
tion of them to a workman as it has been to make the use of auto-
matic computers more easily accessible to scientists and engineers
without an elaborate training program. Thus the use of languages
such as that described in this book makes it possible for people to do
large-scale problems on such computers after only hours of training
instead of months or years.

Neliac (Navy Electronics Laboratory International Algol Com-
pilers) was developed concurrently with the development of the
algorithmic language Algol 58. As the Neliac language took shape
it became necessary to develop its structure in advance of the
completion of Algol 58, since a translator must take definitive action
for anything that can be said in the algorithmic language. The mo-
tivation for these decisions differed from those in the development
of Algol. There a general and complete language was required suit-
able for all scientific and engineering calculation. In the develop-
ment of Neliac, a specific data-processing problem was of primary
importance. Thus arithmetic (in the original Neliac) was fixed-
point; only one-dimensional arrays had to be considered; it was of
utmost importance to pack information into computer words (part-
word operations); and while functions were not critical, closed sub-
routines were. With Neliac, experience has shown that what has
been lost in generality has been more than regained in terms of
compiling speed and controlled efficiency of object programs (for
example, in the control of indexing operations).

Without doubt the most significant feature of Neliac is that the
translator is written in its own language. This means that the card
listing of the system is its own description and, consequently can
never be out of date. This also means that it is possible to modify
the compiler for some particular purpose; there have been more

xiii

than a dozen operational versions of Neliac in use at the University
of California.

Thus, Neliac is a dialect of the Algol family and represents the
result of a set of decisions motivated by the desire for a system
most efficient in a data-processing application.

University of California Harry D. Huskey
Berkeley, Calif.
August, 1961

MACHINE-INDEPENDENT COMPUTER PROGRAMMING

CHAPTER 1

INTRODUCTION TO
MACHINE-INDEPENDENT
PROGRAMMING

Algol, or more specifically Neliac, can be considered as a language
by means of which a person can write instructions to a high-speed
electronic digital computer. These instructions can tell the com-
puter how to solve a problem in mathematics or engineering, how
to prepare payroll checks, or how to control the equipment attached
to the computer in cases of real-time automation.

Although the language does not provide any of the thinking
which a person must do in deciding how to handle the mathematical
or engineering problem, the payroll, or the automation, it does
provide a direct and comparatively easy means for instructing the
computer once that thinking has been done.

A complete set of instructions for the solution of a specific prob-
lem is known as a program. When a program is typed on the
proper equipment,! a typewritten copy (or hard copy) as well as
a punched paper tape, punched cards, or magnetic tape are pro-
duced. The tape or card copy is fed to the computer, and the hard
copy retained for reference.

1 Friden Corporation Flexowriter with Neliac keyboard, or Remington Rand Corpo-
ration Synchro-Tape typewriter with Neliac keyboard.

ko
)

)
MY TR ITAVI AN A

rogi unw:ung

-
"y

Programs are written using a basic set of letters, numbers, arith-
metic operators and punctuation marks. This set, consisting of 88
symbols, is shown in Table L1.

TABLE 1

THE NELIAC CHARACTER SET
1234567890

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

() 1 {3
X -+ / = 1 |

= # < > < >
U n s

Although the uses of the characters of Table I are described in
detail later in the hook, it might be well to note here the names
of the last 23 of them:

, Comma ? Exponent sign, or Up arrow
: Semicolon | Absolute sign
Colon = Equal
. Period # Not equal
() Left and right parenthesis < Less than
[Left and right brackets > Greater than
{} Left and right braces < Less than or equal to
+ Plus > Greater than or equal to
— Minus N And
X Multiply U Or
/ Divide g Octal sign, or sub-eight
- Arrow, or Right arrow

2 Univac M-460, Univac M-490, CDC 1604, Burroughs 220, IBM 704, IBM 709,
IBM 7090, and indirectly the Philco CXPQ, Packard Bell 250, IBM 1401, and
CDC 160A.

Introduction To Machine-Independent Programming 3

When the program has been written, the tape or card copy can
then be fed into any computer for which a Neliac compiler has
been written.?

The compiler is itself a computer program, which gives the com-
puter the instructions it must have in order to convert any pro-
gram from the Neliac language into the numerical language of the
individual computer.

The use of the language can be classified into three distinct
phases, each requiring a different level of familiarity on the part
of the user. The first, and definitely the easiest, is the use of the
language to read computer programs that have been written to
accomplish specific tasks. By careful reading it is possible to deter-
mine whether or not a completed program is adequate for the prob-
lem involved; whether or not it follows some predetermined policy;
and the extent to which it can be combined with other programs
in the solution of problems in a more comprehensive area. The
acquisition of a reading knowledge of the language seldom requires
more than an hour or two, and can be obtained entirely from a
thorough study of Chapter 2.

The second phase in the use of the language consists of writing
computer programs for the solution of specific problems by the
computer. For those already accustomed to writing any type of
instructions in a terse, complete and unambiguous fashion, the
ability to write in the language seldom takes more than a few hours
to acquire. The development of fluency and confidence, however,
usually requires a few weeks of actual use. Although all of the
necessary basic knowledge can be found in Chapters 2 and 3, a
greater depth of understanding—with a resultant improvement of
expression and increased efficiency in programming—will be gained
from even a superficial study of the material following Chapter 3.

The third use of the language is in the preparation of compilers
and other automatic programming techniques for computers.
Methods and procedures in this area are among the most complex
in the field of computer programming, and make up the remainder
of this text. However, a compiler is itself nothing more than an
explicit set of instructions whereby a computer is taught how to

4 Machine-Independent Computer Programming

supply the proper machine language coding to implement the
source language statements. It follows that the study of the way
in which a compiler is written must also produce, as a by-product,
at least an introduction to machine coding as well.

Historically, the programming of all stored program electronic
digital computers has followed a course which began with what is
called machine-language coding, whereby each individual instruc-
tion was originally written by the programmer in the numerical
language of the specific computer for which the program was
intended. Since a given computer has scores of different instruc-
tions in its repertoire, each of which may be modified in many
ways, and since each of these machine-language instructions accom-
plishes only a minute fraction of the total problem, the task of pro-
gramming a computer in machine language is not only extremely
complex but inordinately tedious as well. From receipt of a fairly
large problem to final checkout of the program, a professional pro-
grammer can write only four or five machine-language instructions
per hour. For extremely large programs, involving the coordinated
work of many programmers, this figure may drop as low as 0.25
machine-language instructions per man-hour.?

The first important improvement in programming occurred with
the advent of assemblers, which allowed the programmer to refer
to computer functions or to memory storage addresses symbolically,
with letters instead of numbers. The assemblers speeded the work
considerably but still required that each machine-language instruc-
tion in the program be individually written. As a result, a person
wishing to solve a problem by means of a computer still had to
devote a great deal of time in learning to use the assembly language
of the individual computer, then had to prepare his program on an
instruction-by-instruction basis.

Many of the limitations of assemblers were overcome by the next
development, that of compilers. Compilers of various types have
been written, all of which are intended to allow the computer user

8 For an itemized accounting, see H.D. Bennington, “Production of Large Computer

Programs,” in Proceedings of the Symposium on Advanced Programming Methods for
Digital Computers, Office of Naval Research Report ACR-15, 1956, pages 15-27.

Introduction To Machine-Independent Programming 5

to express his problem in a language more nearly approaching his
own. In general, early compilers were restricted to use on a given
machine, or series of machines, and to the expression of problems
of a given class. These early compilers have led, in natural steps,
to the present self-compilers. Self-compilers, having languages of
sufficient versatility to handle problems in any field, are now
reaching the stage in which problems can be stated in a language
that is fast and powerful, yet sufficiently easy to acquire—so that
the accountant, scientist, or engineer can, if necessary, write his
own computer programs.

Of even greater potential significance than the development of
self-compilers is the fact that computer users in Europe and the
United States have realized the need for the adoption of a single
language for the publication of computer procedures in the field of
mathematics. This language, first known as the International Alge-
braic Language or IAL is now called Algol, or the Algorithmic
Language. Algol, which may be thought of as a “pure” language,
has been implemented for actual computer use in a number of
“dialects,”* all of which are nearly but not precisely, identical in
the source language which they accept. Neliac (from Navy Elec-
tronics Laboratory International Algol Compilers) is one of the
early implementations, its compiling history dating back to Feb-
ruary, 1959.

4 In addition to Neliac, these include the following translators or compilers: DASK
ALGOL, the Danish Algol compiler in use at Regnecentralen, Copenhagen; MAD, the
University of Michigan Algorithm Decoder; ALGO, the Bendix Corporation Algol
compiler; BALGOL, the Burroughs Corporation 220 Algol compiler; JOVIAL, the
Systems Development Corporation self-compiler (for Jules [Schwartz] Own Version
of IAL); and BXOHO A3BIK (Hardware Language) of the Academy of Science
of the U.S.S.R., described by Ershov et al. of Novosibirsk.

CHAPTER 2

HOW TO READ
NELIAC OR ALGOL

The words FOR, IF, IF NOT, GO TO, DO, and COMMENTS
have precise and specific meanings in Neliac, and can be used
only in their restricted sense. All other words or phrases are
used at the discretion of the programmer, to mean whatever he
defines them to mean. In pure Algol the list of precise or restricted
words is considerably longer. In both dialect and pure language,
however, all unrestricted words must be treated either as nouns
or as verbs. The nouns may be thought of as variables, while the
verbs are procedures, or the names of procedures.

The program itself is always divided into two parts. The first part
is the dimensioning statement, often called the noun list, which
enumerates the words or phrases to be used as nouns, tells whether
or not they initially have known numerical values, and gives infor-
mation about the lengths and forms of any arrays or lists. The
dimensioning statement or noun list ends with the first semicolon.
The noun list is followed by the body of the program, the basic
directives to the computer. These directives are given in the form
of specific logical procedures to be followed, known as algorithms.
Since the body of the program is nothing more than a statement
of the logic to be followed, it is often referred to as the program

How To Read Neliac Or Algol, Publication Algol 7

logic. By means of the program logic the programmer sets forth
the individual steps that he wants the computer to follow in
solving his problem. He directs it to perform arithmetic opera-
tions with the numerical values of the nouns he has listed, or with
numerical constants he inserts. Often he requires the computer
to repeat a given set of operations many times, making specified
changes each time. He may also direct the computer to follow
different branches of his program at different times, selecting its
decision or course of computation on the basis of a comparison of
the numerical values of two or more of the nouns.

Let us examine the simple example below, whereby the com-
puter is instructed to compute the average cost of a number of
separate items. The problem will be treated first in its most simple
and straightforward form, then examples will be given to show the
use of more powerful techniques applied to the same problem.

EXAMPLE 1.

NR OF APPLES = 50;
NR OF ORANGES = 100,
NR OF LEMONS = 75,
NR OF FRUIT,

COST PER APPLE — 10,
COST PER ORANGE = 15,
COST PER LEMON = §,
COST OF APPLES,

COST OF ORANGES,
COST OF LEMONS,
COST OF ALL FRUIT,
AVERAGE FRUIT COST;

FIND AVERAGE FRUIT COST:
FIND COST OF EACH:
NR OF APPLES X COST PER APPLE -> COST OF APPLES,
NR OF ORANGES X COST PER ORANGE - COST OF
ORANGES,
NR OF LEMONS X COST PER LEMON - COST OF
LEMONS,

Machine-Independent Computer Programming

GO TO FIND TOTAL COST.
FIND TOTAL COST:
COST OF APPLES + COST OF ORANGES 4 COST OF
LEMONS - COST OF ALL FRUIT,
GO TO SUM NR OF FRUIT.
SUM NR OF FRUIT:
NR OF APPLES 4+ NR OF ORANGES 4 NR OF
LEMONS - NR OF FRUIT,
GO TO FIND AVERAGE COST.
FIND AVERAGE COST:
COST OF ALL FRUIT / NR OF FRUIT » AVERAGE
FRUIT COST,
GO TO EXIT.
EXIT: ..

This example shows several features of the language. First, the
writer has used twelve nouns or noun phrases in his program, to the
first three of which he has assigned initial numerical values. The
fourth noun phrase, NR OF FRUIT, has no assigned value. There-
fore it must be such that the program is expected to compute one.
It should be noted in this connection that even the specified initial
values may be changed by the program itself, whenever the pro-
gram is written to accomplish this purpose.

After finishing the noun list as signified by the first (and in this
example the only) semicolon, the writer has used six verbs or verb
phrases which he has defined. These are:

O o e

FIND AVERAGE FRUIT COST:
FIND COST OF EACH:

FIND TOTAL COST:

SUM NR OF FRUIT:

FIND AVERAGE COST:

EXIT:

The definition of each verb or verb phrasc is given immediately
following the colon. For the first verb, which serves as the title
or name of the entire program, the definition consists merely of

How To Read Neliac Or Algol, Publication Algol 9

the name of the next verb. Each of the following verb definitions
spells out the precise procedure which the writer wanted the com-
puter to follow, ending with an instruction showing which part of
the program to do next. The definition of the sixth verb is seen to
be only a double period (. .), the special notation used to denote
the end of a program.

While all of the words and phrases in the preceding example
are written out quite fully, larger problems are usually expressed
with less verbosity. For instance, in the preceding example, if the
phrase GO TO FIND TOTAL COST had been omitted, no opera-
tion would have been lost, since the next verb encountered would,
in any event, have been FIND TOTAL COST.

Further shortening of the written instructions is often accom-
plished by the use of lists and subscripts. Looking back at the noun
list or dimensioning statement of Example 1, it can be seen that
of the twelve nouns used, four refer to the number of items, four

‘to the total cost of classes of fruit, three to the cost of individual
items, and one to the final answer desired.

If instead of listing separately each of the nouns that refer to
number all four of them were combined, then instead of the four
noun phrases NR OF APPLES, NR OF ORANGES, NR OF
LEMONS and NR OF FRUIT, we could have used only the
single noun, NR. Since four separate items must still be referred
to by the noun NR, it follows that NR must be a list, with provision
for four entries. Individual items within any list may be referred
to by subscripting. |

The concept of subscripting, as used both in the language and
in mathematics and engineering is quite straightforward. Suppose,
for example, that there is a list of names of employees, and that
this list is called the EMP list. If the eighth name in the list were
Jones, C.C., then it could be referred to as the Jones entry, or more
generally, as EMPs. Rather than writing the subscript (in this case
the eight) as a small character below the line as in mathematics,
however, a special symbology will be used—solely as a concession
to the typewriter. This symbology consists merely of putting

TN b W 4 T . . T) R Y B o S N 5 U JAN
iU Macmne-inuepenuenl \JU'IHPULB’I" rrugru'm'nwug

brackets around the subscript, so that EMPs becomes EMP[8]

instead.

By using subscripting in Example 1, then NR[0] could be used
to mean NR OF APPLES, NR[1l] could stand for NR OF
ORANGES, NR[2] could stand for NR OF LEMONS, and NR[3]
could represent NR OF FRUIT. Items referring to COST, and to
TOTAL COST, could be grouped similarly. The way in which
such listings actually operate is shown diagrammatically in Figure 1.

FIGURE 1. SCHEMATIC DIAGRAM OF MEMORY ALLOCATION FOR SUB-
SCRIPTED LISTS.

Noun

NRI[0]

NR[1]

NR[2]

NR[3]

COSTI0]

COSTI[1]

COST([2]

TOTAL COSTI[0]

TOTAL COST[1]

TOTAL COSTI/2]

TOTAL COST[3]

AVERAGE COST

Computer Storage

50

100

75

10

15

Description

NR OF APPLES

NR OF ORANGES
NR OF LEMONS

NR OF FRUIT
COST PER APPLE
COST PER ORANGE
COST PER LEMON

COST OF APPLES

COST OF ORANGES
COST OF LEMONS
COST OF ALL FRUIT

THE ANSWER

How To Read Neliac Or Algol, Publication Algol 11

Using this subscript notation, Example 1 could readily be writ-
ten as in Example 2, where the entry inside the parentheses, (), in
the dimensioning statement or noun list shows the maximum num-
ber of entries in the list, and the number inside the brackets, [],
in the body of the program shows which individual item is being
specified.

EXAMPLE 2.
NR(4) = 50, 100, 75, ,
COST(3) = 10, 15, 8,
TOTAL COST(4),
AVERAGE COST;

FIND AVERAGE FRUIT COST:
FIND COST OF EACH:
NR[0] X COST[0] - TOTAL COSTJ0],
NR[1] X COSTI1] - TOTAL COSTI1],
NR[2] X COST[2] - TOTAL COSTI[2],
FIND TOTAL COST:
TOTAL COST[0] + TOTAL COST[1] 4 TOTAL
COST[2] » TOTAL COST[3],
FIND NR OF FRUIT:
NR[0] + NR{[1] +NR[2] = NR[3],
FIND AVERAGE COST:
TOTAL COST[3]/ NR[3] > AVERAGE COST,
EXIT: ..

In Example 2 it should be noted that indexing (or the counting
of items in a list) begins not at one but at zero, and that (as in
Example 2) initial values of nouns may be entered in the dimen-
sioning statement. Where an initial value is not needed, no numer-
ical entry is made. For example, in the last item in the list, NR,
which was reserved for the total count of all items, no entry
was made. Actually, the last comma could also have been omitted,
since the (4) would have provided for the required number of
locations.

The subscripting used in Example 2 is a rather powerful device

12 Machine-Independent Computer Programming

when more fully exploited. Consider how the process defined as
FIND COST OF EACH could have been further simplified by a
generalized use of subscripting, by noting Example 3.

EXAMPLE 3.

FIND COST OF EACH:
0-1
COUNT COST:
NR[I] x COST[I] » TOTAL COST [I],
IF I = 2: FIND TOTAL COST.
IF NOT, I 4 1 » I, GO TO COUNT COST.

While in this particular case the number of words required is
approximately the same as in Example 2, the technique of Example
3 would not be any longer, even though there had been hundreds
of different kinds of fruit to be handled. The index I would merely
have been increased by one at a time until it reached the total
number, and the required multiplication would have been per-
formed in each case.

In Example 3 one can see the use of the comparison, or If State-
ment. In the comparison, any equality, or even the inequalities:
not equal, 5= ; less than, < ; greater than, > ; less than or equal
to,< ; and greater than or equal to >, can be expressed—pro-
vided only that the comparison is followed by a colon. If the expres-
sion is true the computer executes the instructions found between
the colon and the first semicolon or period. If the expression is not
true, the computer executes instead those instructions found be-
tween the first and second semicolons or periods. After executing
either alternative the program continues.

In Example 3, the initial value of I has been set to zero. After
performing the first multiplication and storage operation, the index
I will of course still be zero, and not yet 2. Consequently, the proc-
ess will take the false, or If Not alternative. This will increase I by
one and return the process to the point defined as COUNT COST.
Going through the process with I equal to 1, it repeats, raises I to 2,
and repeats again. This time, however, since the comparative is

How To Read Neliac Or Algol, Publication Algol 13

finally satisfied, it must take the first (or true) alternative. It will
therefore go on to the part of the program defined as FIND TOTAL
COST.

While the comparison statement is used very frequently in writing
programs, and can be said to give the computer whatever ability
it may have to “make decisions,” the particular case shown in Exam-
ple 3 is more often written as a loop, using the For Statement. Such
a treatment is shown in the following example.

EXAMPLE 4.

FIND COST OF EACH:
FOR I = 0(1)2 { NR[I] X COST[I] -~ TOTAL COSTII],},
GO TO FIND TOTAL COST.

Here the For Statement might be read as: For I initially equal
to zero, and then increasing by steps of one until it equals 2, repeat

the process which is enclosed by the braces.
With this notation, the previous examples might be rewritten

as follows:

EXAMPLE 5.
NR(4) = 50, 100, 75,
C(3) = 10, 15, 8,
T(4),
A;
FIND AVERAGE:
For I = 0(1)2 { NR[I] X C[I] - T[]},
T[0] + T[1] + TI2] > TI3],
NR[0] 4 NR[1] 4+ NR[2] ~» NR[3],
T[3] / NR[3] - A..

With only a little more sophistication the same process could be
expressed even more tersely if the programmer were so inclined,
as demonstrated by the following example:

EXAMPLE 6.
NR(4) = 50, 100, 75,
C(3) = 10, 15, 8§,

14 Machine-Independent Computer Programming

T, A;
FIND AVERAGE:
0 - NR[3] » T,
For I = 0(1)2 { T + (NR[I] X C[I]) = T,
NR[3] + NR[I] - NR[3]},
T / NR[3] = A..

The first point to notice is that the last comma in the dimen-
sioning of initial values of the noun list NR has been dropped. It
was actually unnecessary, since the figure 4 in the parentheses
following NR specifies the length of that list; after the first three
constants have been entered the list will in any case be completed
with blanks or zeros. This new use of parentheses is merely that
of algebraic grouping, and makes certain that the noun T is not
added to the noun NR before the latter is multiplied by the noun C.

The process of adding partial sums has been accomplished inside
the For Statement, or Loop. Notice that before starting the loop,
the words NR[3] and T were cleared by putting a zero into both
of them, thereby erasing any prior computation which they might
have contained.

Another concept frequently encountered is the special treatment
of a part of a program whereby it can be used more than once by
being called upon, or entered from different parts of the main pro-
gram. Such a special part is called a subroutine, and it can be
illustrated in the following way. Suppose, for instance, that in the
problem of the previous examples it were actually required not
only to find the average value but also to adjust that average by
changing the mixture. Suppose that a mixture of fruit for which
the average price would lie between 10 and 13 cents was required,
and that this mixture was to be found by increasing the number
of either the most expensive or the least expensive type.

In this case it would be preferable to treat the routine FIND
AVERAGE as a subroutine, making use of it in a routine which
might be called ADJUST MIXTURE. The computer program
required might be written as in the following example.

How To Read Neliac Or Algol, Publication Algol 15

EXAMPLE 7.
ADJUST MIXTURE:
FIND AVERAGE,
If A < 10: INCREASE AVERAGE.
If not, TEST UPPER LIMIT.
INCREASE AVERAGE:
NR[1] + 1 = NR[1], Go to ADJUST MIXTURE.
TEST UPPER LIMIT:
If A < 13: EXIT.
If not, NR[2] 4+ 1 = NR[2], Go to ADJUST MIXTURE.
EXIT: ..

In Example 7, the subroutine FIND AVERAGE will first de-
termine the average cost, A, on the basis of the initial values of
the parameters. Then this average will be tested, and if it is found
to be less than the desired 10 cents, the first adjustment will be
made. One additional orange, having a value of 15 cents, will be
added to the current number of oranges (originally 100) in the
mixture, and a new average will be computed. On the other hand,
if the average is not less than 10 cents the writer has directed that
the process determine whether or not it is less than 13 cents. If it is,
the computation terminates by stopping at the double period.
If it is not, one more of the least expensive items — the lemons —
must be added to the value of NR[2], before a new average is
computed.

Example 7 could be simplified by using a more powerful com-
parison statement, the Between Limits comparison. In this case
the Less Than symbol is used twice, e.g., If 10 < A < 13: . The
statement is true only if the value of A is greater than 10 and less
than 13. The preceding example can then perform the same func-
tion more efficiently if it is rewritten in the following style:

EXAMPLE 8.
ADJUST MIXTURE:
FIND AVERAGE,
If 10 < A < 13: Go to EXIT. If not, ;

16 Machine-Independent Computer Programming

If A < 10: NR[1] 4+ 1 = NRI[1];

If not, NR[2] 4+ 1 - NR[2];

Go to ADJUST MIXTURE.
EXIT: ..

In order that the routine above can make use of the routine FIND
AVERAGE each time that it needs it, and find its way back to the
main program after it has used it, FIND AVERAGE must be defined
not as a routine entry point as it was in earlier examples, but as a
subroutine. This is done by enclosing the entire routine inside a
pair of braces immediately following its name, at the time that
it is being defined. This is illustrated in the following, in which
the entire program is rewritten.

EXAMPLE 9.
NR(4) = 50, 100, 75,
C(3) = 10, 15, §,
T, A;
ADJUST MIXTURE:
FIND AVERAGE,
If 10 < A < 13: EXIT. If not, ;
If A < 10: NR[1] + 1 = NR[1];
If not, NR[2] + 1 = NR[2];
Go to ADJUST MIXTURE.
FIND AVERAGE:
{0 > NR[3] > T,
For I = 0(1)2 { T + (NR[] X C[I] - T,
NR[3] + NR[I] = NR[3],},
T / NR[3] = A},
EXIT: ..

In reading a program such as the example above, it is easier if
one remembers that braces are always used in pairs, whether in
loop control or in limiting subroutines. Therefore one may exam-
ine a program by considering either the innermost or the outermost
sets of braces as units.

In scientific notation, very large or very small numbers are cus-

How To Read Neliac Or Algol, Publication Algol 17

tomarily expressed as the significant part of the number multiplied
by a positive or negative power of 10. This is done in the Noun
List Statement as illustrated in the next example.

EXAMPLE 10.

PI — 3.1416 X 0,
Million = 1.0 X 6,
Millionth = 10 X — §;

As can be seen, instead of representing one million as 1.0 X 10°
in accordance with scientific notation, or even as 1.0 X 10 1 6 as in
the normal exponentiation introduced later, the 10 itself is im-
plied and only its exponent given. The number following the mul-
tiplication sign is therefore the power of 10 being specified. This
feature will be found only in noun lists, and never in the program
logic itself.

Returning to the example of the apples and oranges, if it had
been necessary to express the figures as decimal fractions of a dollar
and to include greater precision, one might have written the noun
list of Example 9 in the following way:

EXAMPLE 11.

NR (4) =5X1,1X27.5%X20X0,
C3) =1xXx1,1.5X18xX0,
T=0X0,

A=0X0;

It should be noted that when the greater accuracy available with
the Floating Point notation is used, it is necessary to specify it,
even when initial values of zero are intended.

Although the preceding examples have been written to illustrate
most of the basic techniques which will be encountered, there are
still several additional items that should be recognized. These are
the notations used to specify mathematical function of exponentia-
tion, partial word operations, the octal number system, and the com-
puter rather than the compiler language. These four topics will be
explained in order.

18 Machine-Independent Computer Programming

The symbol 1 is used to denote raising to a power, or exponen-
tiation. With earlier-model keyboards lacking this symbol a crude
substitution was required, whereby the division sign / and the
underline __ were combined with a backspace to give the symbol
Z. The preferred and the earlier forms are both shown in the next
example.

EXAMPLE 12,
A X 10 1% 2 0r A X 10 7/ 2
BX213o0rB X2/ 3.

The first line in the example above might be read “A multiplied
by 10 squared,” while the second line reads “B times 2 cubed.”
Multiplying and dividing by powers of 10 in decimal computers,
and by powers of 2 in binary computers, is frequently resorted to
merely to shift the decimal or binary point; in fact, 2 or 10 is
often the only base for which exponentiation has been implemented
in a given compiler.

In order to take full advantage of the word size of a given com-
puter, it is often desirable to hold two or more small numbers in a
single Word, or memory cell. This can be done by keeping track
of the binary digits® involved, and using the available notation.
For instance, since none of the Cost Per Unit entries in Examples 1
through 9 were larger than 15, it would have been possible to hold
all three of them in a single word or computer memory cell. They
could have been shown in the noun list or dimensioning statement
as such in the following way:

EXAMPLE 13.
UNIT COST: { COST PER APPLE(0-5),
COST PER ORANGE (6->11), COST PER LEMON (12-17),},

In some data-handling situations the named partial words in a single
whole word may be arranged to overlap if required.
The dimensioning of partial words in the noun list should not

5 For the purposes of this book, it is not at all necessary to use or to understand
binary arithmetic except where needed to understand programs written by someone
who does. If the need arises, the reader is referred to Chapter 5.

How To Read Neliac Or Algol, Publication Algol 19

be confused with indirect addressing, which looks very similar but
is actually quite different. In indirect addressing, a noun may be
used whose address within the machine language program will also
be used by that program. Although the case would not come up
in this particular way, suppose for example that the address or loca-
tion of the noun UNIT COST in the example above was needed
not only by the machine-language program but within the program
logic as well. In that event, the noun list would have contained
an entry similar to the following:

EXAMPLE 14,
ADDRESS OF UNIT COST = {UNIT COST},

or
UNIT COST LOCATION = { UNIT COST },

Returning to the use of partial words, it should be noted that
even when the programmer has not specified a partial word in his
noun list, he may nevertheless refer to a part of any whole named
noun in his program logic, in the following way:

EXAMPLE 15.
CODE(0-10) - FORM(15 —-25), LIST A[I](3 - 7) - B,
C(15-520) 4 D(25->30) - C(0 —-6),

The first line would indicate that bits 0 through 10 of the word
CODE are to be transferred to bit positions 15 through 25 in the
noun Form, and that the Ith entry in the array named A will supply
the values in bit positions 3 through 7 to the whole word B, where
they will be right-justified — that is, they will occupy the least sig-
nificant positions, or bits 0 through 4. While in the case of B, in
which the whole word was entered, any previous value in the word
would have been destroyed. Such would not be true in the case
of FORM, since a particular part of the word was specified. In that
case, all bit positions not specified in the transfer remain unaltered.

6 While it is not essential to the use of the language, a knowledge of the binary and
octal number systems is quite helpful in the preparation of compiler systems. An
explanation will be found in Chapter 5.

20 Machine-Independent Computer Programming

In neither case, of course, is any change made to the contents of
the nouns CODE or LIST A.

Line 2 of Example 15 shows a case in which two partial words
are added and the sum stored in a third. In this case the pro-
grammer has allowed one more bit position to hold his answer than
he had in either addend, thus preventing possible overflow.

Another symbol, used occasionally by those familiar with the
various number systems, is the octal sign, s, which has one direct
and one indirect meaning. The direct meaning, of course, is that
which signifies that the integer preceding it is in the octal number
system instead of the decimal number system.

Here again, because the octal symbol was not available on:earlier
keyboards, a combination of the right arrow, a backspace, and a
left bracket was used to form a substitute, [>. Unlike the substitu-
tions discussed previously, however, the substitute octal symbol was
used in a different position from the preferred symbol. Whereas the
true octal symbol is used as a subscript following a number, the
earlier substitution preceded the number.

The indirect meaning inherent in the octal symbol indicates a
lapse from normal compiler language to the direct machine lan-
guage of a particular computer. This is called crutch notation, a
term expressing the fact that the use of any machine language in
a program renders it machine-dependent and therefore inoperative
on any other computer. There are circumstances under which
crutch coding can be desirable, however; those familiar with the
machine-language repertoire of a given computer use it occasionally.
Originally a perpendicular sign made up from an absolute sign, a
backspace, and a underline, | , which preceded the numerical com-
puter instruction, crutch notation was later combined with octal
notation so that now it consists merely of the symbol g separating
the functional portion from the address portion of the machine-
language command. Crutch coding will be found principally in
the input-output area, since many Neliac compilers are deficient
in that department.

Two additional symbols, used only in comparative statements,
are the Boolean and and or, shown as N for and and U for or. The

How To Read Neliac Or Algol, Publication Algol 21

earlier symbols @ and © had the same meanings. They can be
quite powerful in expressing conditional alternatives, such as those
in the next example.

EXAMPLE 16.
IfA=BnC<D: or IfA=B®C<KD:
If A<BUC=D: or If A<B®Cs=D:

The first line is merely the equivalent of “If A is equal to B and
C is less than D,” while the second line is the statement “If A is
either less than or equal to B, or if C is not equal to D, the true
branch of the alternative is to be followed.”

Comments that are not to form a part of the program itself, so
far as instructions to the computer are concerned, may still be
desired to increase clarity or to remind the writer of an important
point. Such comments may be inserted at any point whatsoever,
provided that they begin with a left parenthesis followed by the
word COMMENT and a colon. A comment terminates upon reach-
ing the first right parenthesis.

Publication Algol

Algol is a basic language of which Neliac is a dialect. Originally
published in December, 1958, by an international committee of
mathematical computation experts as an attempt to specify a
common language for scientific computation, it was revised in Feb-
ruary, 1960.% Algol 60, as it is presently called, has three distinct
forms:

Form 1: The reference language. ‘
Form 2: The publication language.

Form 3: The hardware language.

7See A.]. Perlis and K. Samuelson, “Preliminary Report, International Algebraic
Language,” in Communications of the Association for Computing Machinery, Vol. 1,
No. 12, Dec. 1958.

8 See P. Naur (Ed.), “Report on the Algorithmic Language ALGOL 60,” in Com-
munications of the Association for Computing Machinery, Vol. 3, No. 5, May, 1960.

22 Machine-Independent Computer Programming

Forms 1 and 2 are strictly specified, while Form 3 allows the lati-
tude deemed necessary for the implementation of compilers or trans-
lators for actual computers. It is in the sense of Form 3, or the
Hardware Language that the Neliac family of compilers is con-
sidered to be a member of the Algol family of languages.

By virtue of its acceptance as the predominant language for the
publication of scientific programs, Algol has become extremely im-
portant in this field. Since February, 1960, the Communications of
the Association for Computing Machinery has devoted a portion of
each issue to the publication of frequently needed computational
procedures and their subsequent certification in Publication Algol.

In order to publish a Neliac program in this format, certain sym-
bols must be replaced by English-language words in boldface type,
and the Neliac right arrow = must be replaced by the Publication
Algol 60 equivalent of a left arrow, the colon-equal symbol, :=.
Further, names used in the noun list must be specified as integer,
real, or array in boldface type. The following example will illus-
trate what is meant.

ExaMPLE 17. The program of Richard Kenyon for the calculation
of binomial coefficients.?

Comments
This procedure computes binomial coefficients
Cn" = n!/m! (n — m)! by the recursion formula

Cr — (n — 1)C*/(i + 1) starting from
i1 i
Co‘j_: 1:
integer procedure C(m,n) ;
integer m, n ;
begin integer i, a, b ;
a:=1;
if 2 X m > nthenb := n — n else
b :(=m;

for i := 0 step 1 until b do

9 Reproduced directly from Communications of the Association for Computing
Machinery, Vol. 3, No. 10, October, 1960.

How To Read Neliac Or Algol, Publication Algol 23

begin a := (n —i) X a = (i + 1) end
C:=a
end binomial coefficients

ExaMPLE 18. Neliac version of the Algol Publication Language
program of the preceding example.

(Comments: This procedure computes binomial coefficients C[m] 1 n
= n factorial/m factorial {n — m} factorial by the recursion formula:
Cli + 11"n = {n — 1}C[i]"n /{i + 1}, starting from C[0]Tn = 1.
Note that 1 means superscript, not exponent.)

a, b, C;

FIND BINOMIAL COEFFICIENT C:

{1-a
If2Xm>nn—m = b; if not, m > b;
Fori = 0(1)b Do {(n — i) X a/(i+1) — a},
a—>C}..

It can be seen from the two examples above that the grouping
symbols of Neliac were replaced by the words begin and end, that
the colon used in the comparison became the boldfaced word then,
that the words if not were replaced by the word else, that in the
loop the left parenthesis was replaced by the word step, and that
the right parenthesis became the boldfaced word until.

While the differences are minor and almost obvious, perhaps it
would be well to illustrate more specifically by examining Example
9 as recast into Publication Algol 60 in the following example.

EXAMPLE 19.

INTEGER ARRAY NR[0:3], C[0:3]
INTEGER I, T, A

BEGIN

Adjust mixture: NR[0] := 50
NR[1] := 100
NR[2] := 75
C[0] := 10
C[l1l] :=15

24 Machine-Independent Compuier Programming

C[2] :=8
Find average: NR[3] :=T := 0
FOR I :— O STEP 1 UNTIL 2 DO
BEGIN T := T 4 (NR[I] X C[])
NR[3] := NR[3] 4+ NR[I] END
IF 10 < A AND IF A < 13 THEN GO TO Exit
IF A < 10 THEN NR[1] := NR[1] + 1 ELSE
NR[2] := NR[2] + 1
GO TO Find Average
Exit: END Adjust mixture

CHAPTER 3

HOW TO WRITE IN
THE LANGUAGE

The ability to read the language with understanding, as acquired in
Chapter 2, implies the corresponding ability to write it intelligently.
However, a number of rules were observed in the writing of the
examples which may not have been apparent to the reader. These
were rules of grammer and syntax, which tend to be both trivial and
important—trivial because they are concerned solely with detail, im-
portant because unless they are followed a program cannot be trans-
lated into computer language by a compiler.

Let us first examine those rules which apply specifically to the
noun list or dimensioning statement. All nouns that are to be used
in a program must begin with a letter of the alphabet, must contain
only letters, spaces, and numbers, and must be uniquely determined
within the first 15 characters. Capital and lower-case letters are
interchangeable and may therefore be used at the discretion of the
writer.

The six single letters I, J, K, L, M, and N, when standing alone, are
always used as indices, tallies or counters, and are not included in
the noun list. They may, however, be used in arithmetic provided
they are treated as integers.

26 Machine-Independent Computer Programming

When combining a number of smaller programs to operate as
one larger program, it might sometimes happen that the same noun
or verb had been used to mean different things in different pro-
grams. If so the last definition written will be the only one used
by any of the programs unless remedial action is taken. The action
required is to place an absolute sign | after the first letter of all of
the nouns and verbs which the writer wishes to restrict to local
significance. This device is used to reduce compilation time
(especially in large programs where the number of names is great)
even when ambiguity is not expected. On earlier keyboards, this
localization was produced by underlining the first letter of a local
name. For nouns, the absolute sign should be used only in the
noun list or dimensioning statement. For verbs or verb phrases—
the entry points—it should be used only at the point at which the
verb is being defined. Inserting the absolute sign after the first
letter of a word elsewhere will do no harm but requires unnecessary
typing and additional time for compilation.

The use of punctuation in transferring the flow of computation
from one point in a program to another follows simple rules of syn-
tax, but these must be observed rigorously. Whenever a name is
preceded by any nonarithmetic operator and followed by a period,
the program flow will jump to the point where the routine bearing
that name has been defined, and it will not return. If the name
involved has been defined as a subroutine, an error will result.
On the other hand, if instead of a period the name had been fol-
lowed by a comma, the flow would have made only a temporary
jump to a subroutine. It would return to the next statement follow-
ing the comma after executing the instructions in the subroutine.
Here again, if the name involved had been defined as a straight
routine entry point instead of as a subroutine, an error would
have resulted.

The relationship is shown diagrammatically in Figure 2, where
the letter X is used to represent a straight entry point, and Y to rep-
resent a subroutine.

How To Write In The Language 27

, X.
.
X:
> >
2 Y,
>
Y:{ b
>

FIGURE 2. USE OF PUNCTUATION IN TRANSFERRING FLOW OF COMPU-
TATION FROM ONE POINT TO ANOTHER IN A PROGRAM.

Considerably more variability is allowable in the body of the
basic program than has been illustrated by the examples in Chap-
ter 2. This occurs primarily in the loop control or For Statement;
in the subscripting of nouns, or even of verbs; and in comparative or
If Statements.

In the For Statements, the following forms are all useful.

EXAMPLE 20.

FOR I = 0(1)17 { }

FOR] = 16(—1)0 {)

FOR K = 0(3)15 { %

FOR L = START(1)END{ },
)
)
)

bl

>

FOR M = 0(1)END 4+ 1{
"FOR N = N(1)100 {
FOR NOUN = 0(1)3{

b

3

2

28 Machine-Independent Computer Programming

Care must be taken to assure that the end point of the loop will be
reached precisely by a given number of increments added to the
starting value. This is a restriction that has been removed from
most but not all Neliac compilers. It should also be kept in mind
that upon completion of the last iteration of a loop, the index may
have been reset to zero. However, whenever the process jumps out
of the loop before completion, the index value existing at that time
is preserved and is therefore available for use. This can be illus-
trated as follows:

EXAMPLE 21.
For i = 1(1)10 { Ali]l = BIi],

If i = 7: Go to EXIT. If not, ;},
EXIT: ..

While no problem would ever be written as in Example 21, it
illustrates the case-in which the program would inevitably go to
the routine entry EXIT with the value of i still set at 7, never finish-
ing the eighth, ninth, or tenth iterations. The use of negative incre-
ments, with the larger limit leading and the lower limit following,
often results in more efficient computer programs.

The subscripting of nouns is normally done by any one of the
six index letters I, J, K, L, M or N; or by an actual decimal integer.
These can be combined if care is taken to place the index first
and the decimal number second, as shown. It is also permissible
to use another noun as an index, although this capability is not
always implemented in a given compiler.

EXAMPLE 22,
LIST[I] - LIST[I + 3],
WORD [j — 2] » WORDI0],

While the use of a negative increment which is larger than the
value of the index used in subscripting is not obviously illogical, it
should be avoided, since its functions can be found only by exam-
ining an individual compiler.

The concept of a switch can be realized merely by applying sub-
scripting to verbs, provided that they have been written with that

How To Write In The Language 29

objective in mind. The following example demonstrates the prin-
ciple involved.

EXAMPLE 23.
If A = B: go to ENTRY[I].
If not, go to ENTRY([]J].
ENTRY:

go to ENTRY 0.

go to ENTRY 1

go to ENTRY 2.

In the example above, it is assumed that ENTRY 0, ENTRY 1, and
ENTRY 2 are each defined somewhere else in the program.

It is of considerable value to note that if a subscript is used alone,
and is not associated with a name at all, it will refer directly to
the corresponding absolute address in the memory of the computer
itself. This feature proves quite valuable in the writing of com-
pilers themselves, although it is seldom used otherwise. It is shown
in the next’ example.

EXAMPLE 24.
[10] - CLOCK,
or,
10 > J, [J1 > CLOCK,

In both these cases the contents of memory cell 10 of the computer
would be entered into the noun CLOCK.

Comparatives or If Statements, which form the basis for branch-
ing or decision selection, may be extended indefinitely on the left
side of the conditional symbol but must consist of only a single
term, unqualified by any binary digit references, on the right of
that symbol. The following examples will serve to illustrate some
of the legal forms:

EXAMPLE 25.

If A = B:

If A+ 10 < B:
IfA/3 4 7s£B:

30 Machine-Independent Computer Programming

If All + 3] + C < B[Jl:
If A(0>7) + B(9->16) < B:

If A <B<C:
HFA<BONC=DnE>F:
IfA>BUC=DUA-=D:

With most compilers it is not legal to mix Boolean Ands with Ors,
although this restriction should eventually be overcome.

It is possible, and often quite convenient, to combine the results
of a calculation with a comparison, as in the next example.

EXAMPLE 26.
fAL+LB4+C~>Dc<E:
or

XX (Y+Z)>U=V:

The use of punctuation in comparison statements is extremely
important. The entire process is perhaps best visualized diagram-
matically, as in Figure 3, where the four possible cases of an un-
nested comparison are shown. The usual case is given first, showing
that if the group of instructions to be followed when the compar-
ative is true, as well as the group to be executed if it is false, ends
with semicolons, the process continues with the next statement no
matter which alternative was followed. This includes the case in
which either alternative included a call upon a subroutine. If the
last instruction in either alternative had itself been a subroutine
call, such as)Y, in Figure 2, the semicolon would have replaced
the comma in addition to signaling the end of the alternative, giving
JY; as the form.

On the other hand, whenever an alternative contains a straight
transfer to another routine, such as ,X. in Figure 2, it will terminate
that alternative, and the flow will not return to the continuation
point.

How To Write In The Language 31

IF B = C: ;’
— ™ >
\IF NOT, '/'
IF B = .
/V
—_—) >
\IF NOT, ,’/'
IF B = 3
*
o ~N R

‘ >
/V
—) _
\ IF NOT, >

FIGURE 3. USE OF PUNCTUATION IN COMPARISON STATEMENTS.

At this point it should be noted that the punctuation used in the
comparison statement is unique. As a result, the words IF and
IF NOT are redundant, and they may be omitted at the discretion
of the writer. The same rule applies to the other restricted words,
DO, GO TO, and FOR, provided that they are being used in the
Neliac dialect and not in Publication Algol. Their use should be
encouraged, however, since they add a great deal to the clarity
of a program.

Another item left to the discretion of the user is spacing. Spaces
outside of noun or verb phrases are ignored by the compiler, and
may be used by the writer or the typist in such a way as to show
more clearly the organization of the program logic. The only excep-
tion occurs with respect to the restricted, redundant words dis-
cussed in the previous paragraph. These must be preceded and fol-

32 Machine-Independent Computer Programming

lowed by at least one space. This results from the fact that they
are unneeded by the compiler, and filtered out during loading. In
order to prevent filtering of the letter combinations when they
occur within another word, as the for in the word form, the con-
vention has been established that they must stand alone.

Conditional statements may be nested inside other conditional
statements, provided that the user is quite meticulous in following
the rule that an inner conditional statement must be complete within
a single alternative of an outer conditional statement. A study of
the following example should be sufficient on this point.

EXAMPLE 27.

IFA=B: IFB=C: C - D;
IF NOT, E » D; ;

IF NOT, IFG=H: 3> D,7 > E;
IF NOT, go to EXIT. ;

9 > F,

In this example, a 9 will be inserted into F regardless of whether
or not A = B, unless the program finds that both of the comparisons,
A = B and G = H are false, and therefore jumps to EXIT. It is
worth noting that the second semicolon in Example 27 terminates
the nested comparison B = C, while the third semicolon terminates
the true alternative of the outer comparison, A = B. Both are
needed. In the last line, the period after Exit terminates the false
alternative of the nested comparison G = H, and the semicolon
terminates the false phase of the outer comparison, A = B.

Functional notation is of value not only for the simple functions
such as sines and cosines, but also for more complex items in
which a considerable number of parameters serve as inputs or
outputs. The notation employed is the form F(a, b, ¢; x, Y, Z,)
where any name not otherwise used can be substituted for F.
The letters preceding the semicolon represent nouns in the program
whose current values must be used in computing the function,
while those following the semicolon represent nouns whose values
are to be computed by the evaluation of the function.

How To Write In The Language 33

The definition or writing of a function, on the other hand, is
quite similar to the writing of a subroutine. The form for definition
of a function is:

F(u, v; w) :{ 3

where the input and output parameters, u, v, and w are local names
used only within the function itself. Correspondence between the
nouns in the program which serve as input parameters when the
function is specified and the local names used within the function
itself is obtained purely on the basis of the order in which they
appear. Output parameters behave in the same way. While there is
no maximum, a function must have at least one input parameter.
Since output parameters may not be required, the semicolon is only
used in case they are.

Input-Output

The pure Algol language does not contain any specifications re-
garding methods to be used in transmitting information into a
computer via tape or cards, or from a computer to printers, tapes
or cards. Consequently the methods originally used with the Neliac
system depended upon the use of subroutines, such as the one in
Example 39, or the actual borrowing of the input-output packages
of other systems. While it is probable that this solution will con-
tinue to be the most satisfactory, a machine-independent technique
has been devised and implemented on a few of the Neliac compilers.

This technique makes use of the Less Than and Greater Than
symbols to serve an additional duty as quotation marks. The fol—
lowing three basic forms of symbology then result:

Fom 1l ,A{B << C>>}
Form 2. ,A{B <C> }
Fom3. ,A{B >C< }

Form 1 is used to specify the output of headings, Form 2 to specify
the output of numerical data, and Form 3 to call for the reading
of data into the computer. In each case the letter A may be
replaced by any appropriate comment, such as Print Heading,

34 Machine-Independent Computer Programming

Print Data, or Read Data. It may also be omitted entirely. In
all three cases the letter B refers to the name of any particular
peripheral equipment. Machine independence is achieved by virtue
of the fact that if the entry at B is either omitted or calls for equip-
ment not available at a given installation, the equipment of choice
of that installation will be automatically selected. For instance,
if a program called for output on an On-Line Flexowriter by speci-
tying Form 1 as:

, Print Headings { Flex << LIST >> },

but if no Flexowriter was available, the compiler would generate
the machine-language instructions needed to write on, say, a high-
speed printer, whenever that program was compiled.

In Form 1, the material between the double quotes will be printed
by the program. Any symbols may be included, with the excep-
tion of the absolute sign, the exponent sign, and, of course, the
greater-than sign.

Absolute signs are used to denote relative spacing, while the
exponent sign merely counts as 10 absolute signs. The method
followed by the compiler in interpreting spacing orders is as fol-
lows: All nonspacing symbols between the quotes are counted and
subtracted from the available line length. The remainder is then
divided by the number of absolute signs to give the number of
spaces corresponding to one sign. In the event that this quotient
is less than one, signs are discarded one at a time, starting from
the right. This latter feature makes it possible for the user to
force an absolute value of one if he so desires.

In Form 2, the letter C represents the name or names of nouns
or noun lists whose numerical values are to be printed. Similarly,
the letter C in Form 3 represents the noun into which the data
being entered is to be stored.

Since it is necessary to print answers in many different ways,
usually in tabular form, any compiler should provide some method
whereby the user can specify the general features of the ountput
format he desires. In Neliac this is achieved by referring back to
the form used in the noun list. For example, if an answer is to be

How To Write In The Language 35

be printed in scientific notation, then when the word Answer was
entered in the noun list it would have been so specified, as:

Answer = 0 X 0;

Whereupon the statement:

, Print Result { < Answer >}

would produce a number in the form
41234567890 X 101 4-2.

Another form often required is that in which an answer is de-
sired in standard decimal notation, even though the problem is
to be solved within the computer in the more accurate scientific
notation. The method by means of which this objective is indicated
is to show the following form in the noun list:

Answer = 00.000 X O;

whereupon the statement
, Print Results { < Answer > },

would print the number in the form
112.345
without rounding.

While there are a total of seven possible forms available, the
two illustrated above are sufficient for most work. A discussion of
the other alternatives will be found in Chapter 10.

Program Testing or Debugging

Most Neliac compilers include sufficient program testing features
to provide that errors in syntax or the violation of grammatical
rules will be detected upon compilation. Error print-outs include
the noting of attempts to use either nouns or verbs without defin-
ing them, or to define them more than once; attempts to use sub-
routines as direct entry points and vice versa; and typing errors
that resulted in variant spellings for the same word. In addition,
the use of operators in illegal combinations is noted, as well as the
use of any unmatched parentheses or other grouping symbol.

36 Machine-Independent Computer Programming

While a study of the material covered in this and the earlier chap-
ters should suffice to avoid most mistakes, anyone who wishes to
obtain a thorough mastery would do well to continue with the
following chapters, thus acquiring an insight into the why as well
as the how of the Neliac language. With the advent of self-compilers
it is indeed true that no manual can answer all possible questions.
A compiler itself, however, is at once a complete and unambiguous
description of the process of compilation, and perhaps would make
the best manual.

Errors in semantics, or.the meaning of the words, cannot be dis-
covered by the compiler. All that has been achieved at present is
the ability to print lists of names encountered, specifying whether
they were used as nouns or verbs, and giving their locations after
compilation. The most important element in expediting the dis-
covery of logical errors in programs appears to involve the writing
style used in the program itself. The greater the attention given
to selection of meaningful names for nouns and verbs, and the fewer
the obscure abbreviations used, the faster are logical errors de-
tected and corrected.

CHAPTER 4

BASIC CONCEPTS
OF SELF-COMPILERS

Having seen in earlier chapters that all of the various types of state-
ments in the Neliac language must be converted from that language
into the machine language of an individual computer by a specific
Neliac compiler, it is now time to examine the methods of accom-
plishing this conversion. Perhaps the most significant feature of all
Neliac compilers—apart from the fact that they accept the same
input language—is that they themselves were originally written in
the Neliac language, and subsequently compiled. We must exclude
from this statement 20 per cent of the first compiler, which was
written in computer language, then rewritten in Neliac, and com-
piled by the basic handwritten version.

Once the basic portion had been compiled, all subsequent portions
were written in Neliac, compiled, and added to the original. At
this point the entire compiler was recompiled, so that it always
appears in its own language. Neliac-C, the first of the series, is a
compiler of Computer C, the Remington Rand Univac M-460, or
Countess.

Using Neliac-C both as a model and also to perform the com-
pilation in the Countess, a second compiler, called Neliac-C~1604,
was written and compiled. Neliac-C—>1604 was written in such a

38 Machine-Independent Computer Programming

way that it would operate in the Countess and accept programs
in the Neliac language, but translate them into the machine lan-
guage of the Control Data Corporation 1604 computer. Then an-
other compiler, still patterned after Neliac-C was written in the
Neliac language. It was compiled by Neliac-C—>1604, and became
Neliac-1604, a compiler which was completely independent of the
original Neliac-C. Neliac-1604 operates in the CDC 1604 to pro-
duce programs in 1604 machine language from programs written
in the Neliac language.'

The process was then repeated for the Burroughs 220, the IBM
704, and the IBM 709. Since the 704 and 709 are so nearly alike,
only one intermediate compiler was required for both. The result
of these operations was the production of the compilers Neliac-C~>B
and Neliac-C—>704/709 to produce Burroughs and IBM machine
language with the Countess. These compilers were then used to
produce Neliac-B, Neliac-704 and Neliac-709 for the computers in
which they operate.

At this point the process branched, and Neliac-709 was used to
prepare compilers for Sylvania and IBM computers not in the
original list.

With this brief introduction, and remembering that the specific
words of Algol, such as DO, GO TO, and IF are actually redundant
in Neliac, we may proceed to a discussion of the two distinct levels
of multilinguality achieved in the language. The first level is that
of human languages. Any language that can be expressed with the
Latin alphabet may be used, since the symbols for punctuation,
grouping, and mathematics are themselves already universal.

The next four examples will demonstrate this property of multi-
linguality by showing a crude program for the calculation of the
speed of sound in sea water as it might be written in each of four
languages. Although greatly simplified for purpose of demonstra-
tion purposes, the program is nevertheless completely operable.
The objective of the program is to calculate sound speed at as

10 For a technical account of this operation, see Kleber S. Masterson, Jr., “Compila-
tion for Two Computers with Neliac,” Communications of the Association for Com-
puting Machinery, Vol. 3, No. 11, Nov., 1960.

Basic Concepts Of Self-Compilers 39

many as one hundred points from data on temperature, depth, and
salinity. It involves a table of 300 values used for determining the
sound-speed correction due to temperatures, and a table of 20 values
for salinity correction, neither of which table is given. This same
program is presented first in Engliéh, then in German and Danish,
and finally in the more verbose Hawaiian language. All of these
programs, while yielding different input tapes or cards, produce
the same identical machine language program when compiled for
the same computer.

EXAMPLE 28.

Nr of points,

Sound Speed (100),

Temperature (100),

Salinity (100),

Depth (100),

Temp corr,

Sal corr,

Depth corr,

Temp corr table (300),

Sal corr table (20),

Sal table base = 20,

Standard speed = 14486,

Depth corr const = 210;

Compute speed at all points:

I = I(1)Nr of points
{ Temperature[i] - >

Temp corr table[j] - Temp corr,
Salinity[i] — Sal table base - k,
Sal corr table [k] - Sal corr,
Depth[i]/Depth corr constant - Depth corr,
Standard speed + Temp corr + Sal Corr -+
Depth corr = Sound speed][i]}..

The same program, as it might have been written in German, would
appear as follows:

40 Machine-Iindependent Computer Programming

EXAMPLE 29.

Nr Punkten,

Schallgeschwindigkeit (100),

Temperatur (100),

Salzigkeit (100),

Tiefe (100),

T Berichtigung,

S Berichtigung,

Tiefe Bericht,

T Bericht Tafel (300),

S Bericht -Tafel (20),

S B Tafel Einheit = 20,

Normalgeschwindigkeit — 1446,

Tiefe B Konst = 210;

Rechnen Geschwindigkeit allen Punkten:

i = 1(1)Nr Punkten
{ Temperatur[i] = j,

T Bericht Tafel[j] > T Berichtigung,
Salzigkeit[i] — S B Tafel Einheit > k,
S Bericht Tafel[k] = S Berichtigung,
Tiefe[i]/Tiefe B Konst = Tiefe Bericht,
Normalgeschwindigkeit + T berichtigung -+
S Berichtigung + Tiefe Bericht -
Schallgeschwindigkeit[i]} . .

The same program, as it might be written in Danish, would appear
in the following example.

EXAMPLE 30.

Nr af punkter,
Lydhurtighed (100),
Temperatur (100),
Salt (100),

Dyb (100),

T Tillag,

S Tillag,

Basic Concepts Of Self-Compilers 41

D Tillag,
T Tillagstavle (300),
S Tillagstavle (20),
S Tavle begyndese = 20,
Normalhurtighed — 1446,
Dybde tillags vardi = 210;
Regn hurfighed alle punkter:
I = 1(1)Nr af punkter
{ Temperatur[i] - j,
T Tillagstavle[j] - T Tillag,
Salt[i] — S Tavle begyndese = k,
S Tillagstavle[k] - S Tillag,
Dyb[i]/Dybde tillags vardi = D ‘Tillag,
Normalhurtighed 4 T Tillag 4 S Tillag 4
D Tillag = Lydhurtighed[i]}..

Merely as a further illustration that the language chosen need
not even be scientific, the same program (with some difficulty in
the choice of equivalent terms, and with suitable apologies) has
been written in Hawaiian in the next example.

EXAMPLE 31.

Helu a kumumanao,

Kani holomama (100),

Wela ame ke anu (100),

Miko nui (100),

Hohonu (100),

Hoopololei wela ame ke anu,
Hoopololei miko nui,

Hoopololei hohonu,

Hoopololei papa wela ame ke anu (300),
Hoopololei papa miko nui, (20),
Papa miko nui mole = 20,

Hae holomama — 1446,

Kupaa hohonu hoopololei = 210;
Helu holomama apau kumumanao:

492 Machine-Independent Computer Programming

I = 1(1)Helu a kumumanao
{ Wela ame ke anu[i] - j,
Hoopololei papa wela ame ke anu[j] =
Hoopololei wela ame ke anu,
Miko nui[i] — Papa miko nui mole - k,
Hoopololei papa miko nuilk] -
Hoopololei miko nui,
Hohonu[i]/Kupaa hohonu hoopololei ->
Hoopololei hohonu,
Hae holomama + Hoopololei wela ame ke anu -+
Hoopololei miko nui 4 Hoopololei hohonu -
Kani holomama(i]}
Pau: ..

The second level of multilinguality, on the other hand, obviously
lies in the area of the numerical languages of the individual types
of computers. This can be illustrated by taking any one or all of
the four preceding examples and compiling for each of several
computers. The next four examples show the results of compiling
for the Remington Rand Univac M-460, the Burroughs 220, the
CDC 1604, and the IBM 704. For the Burroughs computer the
machine-language program will be given in its decimal form (since
that computer is a decimal type machine) while the other three
will be shown in the octal representation of the internal binary
code. In general, storage cells whose initial values are zero are
not given.

EXAMPLE 32. Machine-language program resulting from the com-
pilation of any of the four preceding examples for the Univac M-460
Countess.

Address FF jkb yyyyy Address FF jkb yyyyy
10100 00 000 00000 11440 14 030 10722
11424 00 000 00024 11441 11 031 10555
11425 00 000 02646 11442 03 000 00036

11426 00 000 00322 11443 23 030 11426

11427
11430

11431

11432
11433
11434
11435
11436
11437

12
12
10
14
10
27
07
12
10

100
231
032
030
031
030
000
370
033

Basic Concepts Of Self-Compilers 43

00001
10245
10724
10721
10411
11424
00036
00000
11400

11444 14 030
11445 10 030

11446
11447
11450
11451
11452
11453
11454

26 030
26 030
26 030
14 031
71 130
61 000
61 400

10723
10723
10722
10721
11425
10101
10100
11430
10000

The next example was also obtained by compiling any of the
multilingual programs for computing sound speed, in this case
using Neliac-B, operating in the Burroughs 220 computer. The lack
of a sufficiently large number of index registers as part of the equip-
ment of this computer can be seen to require a considerably longer
program in this particular case. To a certain extent this disadvan-
tage might have been reduced by writing the original program with
this in mind.

ExAMPLE 33. Machine-language program resulting from the com-
pilation of any of the four preceding multilingual programs on the
Burroughs 220.

Address -}

0001
0726
0727
0728
0729
0730
0731
0732

8

0
0
0
8
8
8
8

ccec
0000
0000
0000
0000
0000
0000
0000
0001

ff aaaa

30
00
00
00
10
13
40
10

0729
0020
1446
0210
0772
0772
0763
0772

Address -} ccce

0745
0746
0747
0748
0749
0750
0751
0752

8

S © 0 0 O 0w

0000
0000
0000
0000
0000
0000
0000
0001

ff
13
40
42
10
40
42
10
48

aaaa
0726
0765
0765
0706
0404
0763
0303
0010

44 Machine-Independent Computer Programming

0733 8 0000 12 0763 | 0753 8 0000 15 0728
0734 8 0000 40 0763 0754 8 0000 40 0405
0735 8 0000 18 0002 0755 8 0000 10 0727
0736 8 0000 34 0762 0756 8 0000 12 0403
0737 8 0000 42 0763 0757 8 0000 12 0404
0738 9 0000 10 0103 0758 8 0000 12 0405
0739 8 0000 40 0764 0759 8 0000 42 0763
0740 8 0000 42 0764 0760 9 0000 40 0003
0741 9 0000 10 0406 0761 8 0000 30 0732
0742 8 0000 40 0403 0762 8 0000 30 0000
0743 8 0000 42 0763 0772 0 0000 00 0001
0744 9 0000 10 0203

The next example shows the machine-language program resulting
when one of the preceding Neliac programs was compiled on the
Control Data Corporation 1604 computer with Neliac-1604. On this
computer, each computer word contains two instructions, or one
word of data. It should not be considered to be a “two-address”
machine, however, for that terminology has already been pre-
empted to describe a computer in which one operation, such as
addition, may call upon data at two locations.

EXAMPLE 34. Machine language for the CDC 1604 produced by
compiling any of the multilingual examples cited with Neliac-1604.

Address fff yyyyy fff yyyyy Address fff yyyyy fff yyyyy
40000 750 41340 500 00000 41351 532 41333 122 40625
41325 000 00000 000 00024 41352 200 40622 121 40312
41326 000 00000 000 02646 41353 150 41325 200 41334
41327 000 00000 000 00322 41354 533 41334 123 41301
41340 571 41332 572 41333 41355 200 40623 121 40456
41341 573 41334 574 41335 41356 030 00057 270 41327

41342
41343
41344
41345
41346
41347
41350

575 41336
120 41364
120 41332
200 41332
150 40001
220 41350
121 40146

Basic Concepts Of Self-Compilers

576 41337
750 41345
140 41364
531 41332
500 00000
222 41363
200 41333

41357
41360
41361
41362
41363
41364

200 40624
140 40622
140 40624
750 41344
760 40000
000 00000

120 41326
140 40623
201 40002
500 00000
500 00000
000 00001

45

The last example in this series shows the machine language which
was produced by compiling the same programs, this time with
Neliac-C~>704. In this case the number of program steps repre-
sents a certain amount of inefficiency in the intermediate compiler.
While intermediate compilers (which operate in one computer to
prepare machine instructions for a different computer) are not in-
herently less efficient, the fact that most of them are only used
during a transition period generally precludes their further develop-
ment with resulting increases in efficiency. Intermediate compilers
which are intended for general use, such as those that compile
programs for a small computer on a large computer, generally
warrant and receive attention to improvement of efficiency of the
output programs.

EXAMPLE 35. Machine-language program for the IBM-704 com-
puter which resulted from the compilation of any of the preceding
multilingual examples by Neliac-C—>704.

00000 0 20000 O 01340 01355 0 60100 O 00515
00011 0 00000 O 00322 01356 0 50000 1 00662
00012 0 00000 O 02646 01357 0 76500 0 00043
00013 0 00000 O 00024 01360 0 22100 O 00011
01340 0 53400 1 00010 01361 —0 75400 O (00000
01341 1 00001 1 01342 01362 0 76300 O 00043
01342 0 50000 1 01172 01363 0 60100 O 00514

46 Machine-Independent Computer Programming

01343 0 76700 O 00022 01364 0 50000 O 00012
01344 —0 73000 2 00022 01365 0 40000 O 00516
01345 0 50000 2 00513 01366 0 40000 0 00515
01346 0 60100 O 00516 01367 0 40000 O 00514
01347 0 50000 1 01026 01370 0 60100 1 01336
01350 0 40200 0 00013 01371 1 00001 1 01372
01351 0 76700 0 00022 01372 -3 00144 1 01342
01352 0 60100 0 00003 01373 1 77777 1 01374
01353 —0 53400 4 00003 01374 0 00000 O 00000

01354 0 50000 4 00037

Any attempt to compare the relative efficiencies of either the
various machines or of the compilers used in the preceding four ex-
amples would prove futile. This is primarily due to the fact that
the compilers used represented widely varying stages of develop-
ment, so that another test made even a few months later might yield
quite different results. Let us see why this is so.

The total function of any compiler can be stated simply as the
translation of a statement of the method whereby a problem is to
be solved from the language in which the statement is expressed
into the numerical language of the required computer.

This total function can be accomplished in an ever-increasing
number of ways. Even so, it is generally true that a distinct num-
ber of major steps must be accomplished, and that these major steps
can be classified in roughly the same ways no matter how the par-
ticular compiler operates. The compiler to be discussed in the next
few chapters will be divided into six major components.

First, a Load Program is required which will accept the numerical
code punched by a card or paper tape punching keyboard and
convert this code to another numerical code in which each char-
acter is uniquely represented by a single two-digit number. Since
upper- and lower-case shifts are punched as separate frames by
a typewriter, this decoding process is not a direct transliteration.
Chapter 5 will discuss load programs in detail.

Basic Concepts Of Self-Compilers 47

Second, the string of symbols decoded by the load program must
be separated into two parts—the noun list or dimensioning state-
ment and the body or program logic. The second major function
of the compiler therefore consists of the examination of the noun
list, the allocation of computer memory or storage cells to the vari-
ous nouns and noun arrays, the interpretation and storage of numer-
ical constants, and the formation and storage of masks which may
be required to deal with any part words that have been dimensioned.

The group of routines required to satisfy these requirements make
up the program called Process the Noun List, which is treated in
detail in Chapter 6.

The third important function required is that of examining and
interpreting the body of the program—the statement of the algo-
rithms or procedures by means of which the program is expected to
solve the given problem. In Neliac compilers this process is based
upon the examination of combinations of two operators, such as
punctuation or arithmetic symbols, and the intervening operand as a
single unit. By processing in this pattern of Current Operator-Oper-
and-Next Operator units, some amount of dependence upon context
is introduced, from which certain advantages in the efficiency of the
compiled machine-language program is thought to result. The group
of programs that perform this basic processing will be discussed in
detail in Chapter 7.

The insertion of actual machine-language instructions into the
final program is accomplished by a set of many generators, which
are called upon by the basic processing routines as their need is
determined by the Current Operator-Operand-Next Operator com-
binations. While the functions of the generators themselves are
not machine-dependent, their internal operations are quite de-
pendent upon the computer for which the compiler is being im-
plemented. The most frequently used generators will be studied
and their implementation discussed in Chapter 8.

Two additional functions of a compiler, though not required by
the definition, are nevertheless of real importance. These are the
implementation of those capabilities required if the compiler is to be

used as a system, compiling many programs together, and those
capabilities needed to assist the programmer in detecting and cor-
recting errors in his programs. These two items will be discussed
briefly in Chapter 9, along with the details of the process whereby
a compiler is itself compiled.

v 1

Lo PROCESS INSERT FINAL
—p AD MACHINE
SRS
PROGRAM NOUN LIST LANGUAGE
INSTRUCTION
MlxleHEFILE ADVANCE TEST FOR
LANGUAGE [P _TO NEXT SYNTACTICAL
INSTRUCTIONS COMBINATION ERRORS

v

RUN >
PROGRAM

x SAVE
INFORMATION

FOR THE
COMPILER

INFORMATION
FOR THE
COMPILER

FIGURE 4. GENERALIZED COMPILER FLOW DIAGRAM.

In order to understand the relationship of the material in each
of the next five chapters, it is recommended that Figure 4 be stud-
ied carefully. It shows a generalized flow diagram of a compiler,
from which the major operations and the order in which they occur
can be determined. For instance, the fact that some of the gen-
erators do not actually generate machine-language instructions, but
only find and store information that will be needed at later stages
of compilation, should be apparent from an examination of the role
of generators 7 and 8, as shown in the smaller circles.

CHAPTER 5

LOAD PROGRAMS

In the initial typing of any Neliac program, the depression of
each key results in the punching of a set of holes corresponding
to a given number on either a paper tape, a card, or both. On a six-
channel paper tape, for example, each line of holes across the tape,
called a frame, has space for three different holes on either side of
a row of smaller guideline or sprocket holes along the center.

o 0 2

o 00 3

o0 L

o0 O 5

000 6

0000 7

0o 10

0 o 20

000 30

0 o L0

0 Oo 50

00 o 60

. 0000 70
’\/\/\/v_\

FIGURE 5. METHOD OF ASSIGNING NUMERICAL VALUES TO PUNCHES
IN PAPER TAPE.

uter Programming
o o

The method of assigning numerical values to these holes follows
the scheme shown in Figure 5, in which the direction of tape move-
ment is assumed to be toward the top.

To be precise, these tape holes, of course, are merely holes, not
numbers, and are converted into electrical impulses by electro-
mechanical feelers or by photoelectric readers. These pulses —
still not numbers — are then fed directly by the reader into the
computer, or perhaps stored first as magnetic charges on a magnetic
tape. Once inside the computer they are transformed into positive
or negative electrical or magnetic charges. Although these charges,
like the tape holes, are not actually “numbers,” it is much easier for
people if they think of them as numbers.

In doing so, it is customary to let a single light represent each
possible bit of information in a given computer word or memory cell.
If, for instance, a given computer has a word length of 30 bits,
then it can be represented by 30 lights. The value of the cell then
depends upon which lights are lit, just as in Figure 5 the numerical
value on the tape depends upon which holes have been punched —
or, rather, upon which spaces have been punched and which have
not.

The lights themselves have been numbered, and each numbered
light has been assigned a numerical value. Beginning with the least
significant, or zeroth, light, to which is ascribed the value 1, each
succeeding light is given a value twice as large. Since light No. 0
has a value of 1, light No. 1 has a value of 2, and light No. 2 has
a value of 4. By combining these binary digits, called bits, any
numerical value can be represented. The numerical value repre-
sented by a row of lights can be converted to the decimal number
system by adding the appropriate power of two for each light which
is lit.!! The conversion can be illustrated with the 30-bit binary
number in the next example, in which the least significant bit is on
the right.

11 The zeroth power of any number is 1, while the first power is the number itself.

This explains why a numbering system starting at zero instead of at 1 is so widely
used throughout the computer field.

Load Programs 51

EXAMPLE 36.
001 010 011 100 101 110 111 000 001 010

By using Table II, it can be shown that this binary number repre-
sents the decimal number 175, 304, 202.

The numbering system used on the punched tape of Figure 5
still is not completely explained, however, until another system
has also been examined. This is the system based neither upon 10
nor 2, but upon 8, and called the octal number system. In this
system each three binary digits are taken as a unit, to become one
octal digit. Since with three lights only the numbers from 0 through
7 can be represented, there are no 8's nor 9’s, and the number that
follows 7 is 10. In the octal number system the binary number of
Example 36 can be shown to be 1234567012, or, in Neliac 1 234
567 012s.

The following table, which gives the numerical value assigned
to the first 30 binary digits, is of value whenever conversions are
required. It can readily be extended if required.

TABLE 1]
NUMERICAL VALUE OF EACH BINARY IN A 30-BIT COMPUTER WORD

Bit Decimal Value Octal Value

{or N) (or 21 N) (or (21 N)g)
0 1 1
1 2 2
2

-3 10
4 16 20
) 32 40
6 64 100
7 128 200
8 256 400
9 512 1 000

52 Machine-Independent Computer Programming
10 1 024 2 000
11 2 048 4 000
12 4 096 10 000
13 8 192 20 000
14 16 384 40 000
15 32 768 100 000
16 65 536 200 000
17 131 072 400 000
18 262 144 1 000 000
19 524 288 2 000 000
20 1 048 576 4 000 000
21 2 097 152 10 000 000
22 4 194 304 20 000 000
23 8 388 608 40 000 000
24 16 777 216 100 000 000
25 33 554 432 200 000 000
26 67 108 864 400 000 000
27 134 217 728 1 000 000 000
28 268 435 456 2 000 000 000
29 536 870 912 4 000 000 000

Primarily due to the way the original teletypes were built a
generation ago, the actual numerical values of the tape holes

punched by a Neliac keyboard are as shown in Table Iil.

oo
mNO O+

OO
- g "\

TABLE III
DECIMAL AND OCTAL EQUIVALENTS OF TAPE HOLES PUNCHED BY THE
FOUR ROWS OF KEYS ON THE NELIAC KEYBOARD

OO
+331n

£V,

%oo o’%

O o
o

-

Load Programs

OND OIS~
ag [geuli o

FR

O4 SPACE BAR 04

53

02.

Stop Code = 35 = 433 Color shift

54 Machine-Independent Computer Programming

This code, while adequate for entering the computer, must be
organized quite differently before it can be operated upon by a
compiler. For example, both a left and a right brace are indicated
by a 56, the difference being only in whether an upper-case code,
a 47, or a lower-case code, a 57, has most recently appeared. A
primary function of the load program, therefore, is to convert from
the code of Table III to the internal code of Table IV, which is given
below. At this point it is interesting to note that despite the fact
that the organization of the internal compiler code is of basic
importance in determining the number of decisions required (and
thereby the efficiency of a large number of routinés in the com-
-piler) no systematic study of the proper organization of such a table
has yet been undertaken. |

TABLE 1V
THE INTERNAL COMPILER CODE

Symbol Octal Decimal Symbol Octal Decimal
Space 00 00 5} 40 32
Aora 01 01 6 41 33
Borb 02 02 7 42 34
Corc 03 03 8 43 35
Dord 04 04 9 44 36
Eore 05 05 , 45 37
F or f 06 06 ; 46 38
Gorg 07 07 : 47 39
Horh 10 08 : 50 40
Iori 11 09 } 51 41
J orj 12 10 { 52 42
Kork 13 11 (53 43
L orl 14 12) 54 44
Morm 15 13 [55 45
Norn 16 14] 56 46

Load Programs 55

Ooro 17 15 = 57 47
Porp 20 16 = 60 48
Qorq 21 17 > 61 49
Rorr 22 18 > 62 50
S ors 23 19 < 63 o1
T or t 24 20 < 64 55
Uoru 25 21 -> 65 53
Vorv 26 22 + 66 54
Worw 27 23 — 67 55
Xorx 30 24 X 70 56
Yory 31 25 / 71 57
Z or z 32 26 | 72 o8
0 33 27 U 73 59
1 34 28 N 74 60
2 35 29 8 75 61
3 36 30 1 76 62
4 37 31

The string of resulting compiler code, called the symbol string,
must be packed several symbols per word into an appropriate area
of the computer memory.

In a production type (or reasonably finished) compiler, many
additional functions of a supplementary nature are usually per-
formed by the load program. For instance, the load program may
be used to delete the comments and the redundant words IF, DO,
GO TO, and FOR. It may also delete all but the initial space in
any string of spaces, and it can readily convert all carriage returns
to spaces, in order that phrases may be broken between words for
continuation on the next line. Further, the load program may be
written so that the first symbol tells it whether the program being
loaded is a new program, or a correction to an old one, and whether

56 Machine-Independent Computer Programming

or not the-version of the compiler being used corresponds to the
expectations of the person who wrote or typed the program. In
addition, the load program may be used to determine whether the
Neliac symbol string is to be stored in a standard location, or in
some special area designated by the computer operator or the
programmer.

These features of production type compilers may be examined in
detail later in the text. In the present chapter, on the other hand,
a much less sophisticated load program will be developed. The
load program which will be derived in this chapter is not intended
to employ any advanced programming techniques, but instead to
demonstrate the basic requirements that must be met, and to use
only those concepts that should apply to all computers.

In the next three chapters the attempt to derive a compiler suffi-
ciently powerful to compile itself, yet simple enough to demon-
strate only the fundamental points, will necessitate several restric-
tions. Perhaps the most noticeable will be the limitation on the
number of Current Operator-Next Operator combinations employed.
By keeping this number small, fewer generators will be required
later. In achieving this objective, for statements, bit handling, and
nested comparisons will be avoided. In addition, operands will be
restricted to five significant characters, but this should scarcely be
noticeable, since lower-case letters without significance will be
permitted.

Such restrictions serve a dual purpose. First, they allow the basic
functions to be followed without confounding them with the valu-
able but less essential sophistications to be added later. Second,
they provide those fundamental portions of a compiler which will
prove adequate to compile itself. Such a compiler will therefore
frequently be referred to as a basic, or even a Bootstrap compiler.

The noun list of this basic load program is given in the following

example:

Load Programs 57

EXAMPLE 37.

Upper Case Flag,
Symbol String First Address = 10g,
Load Buffer,

Buffer,

CLEAR = 0,

SET = 1,

TWO = 2,

Upper Case = 39,
Lower Case — 47,

STOP = 35,

End Of Symbol String,
Symbol,

Symbol Size = 1004,
Symbols Per Word —= 5,
FULL,

Nearly Full,

Lower Case Code(64) =

00, 20, 00, 15, 00, 08, 14, 13, 00, 12,
18, 07, 09, 00, 03, 22, 05, 26, 04, 02,
19, 25, 06, 24, 01, 23, 10, 36, 21, 17,
11, 27, 00, 00, 39, 00, 38, 00, 49, 00,
58, 00, 28, 00, 52, 16, 41, 00, 35, 00,
32, 00, 31, 00, 33, 00, 30, 00, 34, 00,
29, 59, 61, 00,

Upper Case Code(64) —

00, 20, 00, 15, 00, 08, 14, 13, 00, 12,
18, 07, 09, 00, 03, 22, 05, 26, 04, 02,
19, 25, 06, 24, 01, 23, 10, 43, 21, 17,
11, 44, 00, 00, 53, 00, 40, 00, 37, 00,
48, 00, 54, 00, 50, 16, 42, 00, 56, 00,
46, 00, 45, 00, 51, 00, 47, 00, 57, 00,
55, 60, 62, 00,

Many of the nouns used have meanings which are not completely
apparent. For example, Upper-Case Flag is a noun whose numerical

58 Machine-Independent Computer Programming

value will be set at zero whenever the most recent case shift has
been to lower case, or to one whenever an upper-case shift was most
recently encountered.

Symbol String First Address is a noun whose value is set at the
discretion of the compiler writer, or in more sophisticated cases is
given a standard value which is used only when the computer
operator or the programmer does not specify a special value.

Load Buffer is a word used to hold the numerical value repre-
senting the incoming paper tape frame. The code, of course, is that
of Table III.

Buffer, on the other hand, is a word used to hold decoded sym-
bols until enough of them have been collected to be packed away
into a memory cell in the Symbol String.

CLEAR, SET, and TWO are defined as zero, one and two respec-
tively in order to simplify the basic or Bootstrap compiler by avoid-
ing Arabic numerals in the body of the compiler program.

Upper-Case, Lower-Case, and STOP give the tape code, or Table
ITI, values which the load program will have to recognize.

End Of Symbol String is the address at which the Neliac Symbol
String ends after all tape frames have been loaded and decoded, and
the resultant symbols stored in the memory area starting at Symbol
String First Address.

Symbol is the noun which holds the most recently decoded Neliac
symbol. Symbol Size, on the other hand, is the numerical value of
the space occupied by a single symbol. Its value is 100 in decimal
computers, or 100s in octal machines.

Symbols Per Word is the second machine-dependent parameter,
insofar as its numerical value must be set for the number of sym-
bols, or powers of 100, which will fill a single cell of the computer
upon which the compiler will run. For 48-bit machines this value
is 8, for 36-bit machines it would be 6, while for 10-decimal digit
machines or 30-bit binary machines it is 5.

Full is a noun whose value is to be computed from Symbol Size
and Symbols Per Word, and used to test whether or not a Buffer
is filled with symbols.

Load Programs 59

Lower-Case Code and Upper-Case Code are the lists which serve
as the heart of the load program. They have been formed by com-
bining Table III and Table IV in such a way that when the numer-
ical value of the tape code, Table III, is used as an index, the numer-
ical value of the internal compiler code for that symbol will be
obtained directly. The technique employed can be illustrated quite
easily. Suppose, for instance, that the Upper-Case Flag was set,
or in other words that it contained a one. Then suppose that the
letter A was being read from punched tape. On the tape, an A is
indicated by the code number 24. This 24 is brought into the
Load Buffer. From the Load Buffer the 24 is transferred to the
index J. By examining the list of numbers making up Uppér Case
Code, it can be seen that the internal compiler code for the letter
A, which is 01, is entry number 24. In other words, the value of
Upper-Case Code[24] is 01, thus giving an A. Again, if the tape
character being read in had been a 19, as it would have been if
the letter B had been typed, then entry number 19 in both Upper-
Case Code and Lower-Case Code would have to be a 02, since the
internal compiler code of Table IV for either a B or a b is an 02.

Example 38 gives the body of the load program, and has been
derived to follow the Noun List of Example 37. While the basic
compiler being developed in this and the next few chapters will
operate only if the lower-case letter introduced here for clarity are
omitted from the punched tape, any production type compiler will
accept them and treat them merely as longer words. It will be left
as an exercise for the student to show that by changing only the
numerical values of the list Lower-Case Code in Example 37, this
load program can be made to eliminate all lower-case letters from
any input tape, including those punched exactly as in Examples 37
and 38. '

Two subroutines, Start Reading Device and Read One Frame,
which are called upon by the algorithm of Example 38, are given
separately in Example 39. These subroutines have been written to
include machine language, in order that an input-output package
could be delayed until the basic compiler had been completed. The

60 Machine-Independent Computer Programming

combination of Example 37, 38, and 39 constitute the complete basic

load program.
EXAMPLE 38.

Load Program:
CLEAR - Upper Case Flag, CLEAR - Buffer,
Symbol String First Address = I,
Symbol Size - FULL, Symbols Per Word = N,
Set Full Buffer Size:
FULL X Symbol Size - FULL, N — SET = N,
if N = TWO: FULL / Symbol Size - Nearly Full;
if not, Set Full Buffer Size.
Start Reading Device,
Read Next Frame:
Read One Frame,
Decode Character,
if Symbol — CLEAR: ;
if not, Store Symbol In String.
if Load Buffer = Upper Case: SET = Upper Case Flag,
Read Next Frame.
if not, ;
if Load Buffer = Lower Case: CLEAR — Upper Case Flag,
Read Next Frame.
if not, ;
if Load Buffer = STOP: Finish Loading.
if not, Read Next Frame.
Store Symbol In String:
if Buffer < Nearly Full: Buffer X Symbol Size -
Buffer, Symbol + Buffer - Buffer;
if not, Buffer X Symbol Size = Bufer,
Symbol + Buffer - [I], I 4+ SET - I,
CLEAR - Buffer;
Read Next Frame.
Finish Loading:
if Buffer — CLEAR: I - End of Symbol String,
Process Noun List Program.

© 0 ~1 ® Ul B W 1O =

GO 0O G MO DD DO DD DO MO DO DO DO DD b= e e ke e e bl e
B A & @ 0 30 Ul GO mEFkSW©®=10 Utk WNHDOO

Load Programs 61

if not, ; 33
Pack Last Frame: 34
if Buffer < Nearly Full: Buffer X Symbol Size —> 35
Buffer; 36

if not, Buffer X Symbol Size = [I], 37
CLEAR - Buffer, I + SET - I; 38
Finish Loading. 39
Decode Character: 40
{ Load Buffer =], 41
it Upper Case Flag — CLEAR: 42
Lower Case Code[]J] - Symbol; 43

If not, Upper Case Code[]] = Symbol;}.. 44

In this example, lines 1 through 3 merely initialize the program
by clearing or resetting various parameters which might have been
left containing undesired values at the completion of some prior
operation. Lines 4 through 8 represent a machine-independent
method of finding the numerical value of the word Full. This word,
when compared with the numerical content of the buffer, will be
used to determine whether or not there is space left in the Buffer
to pack in another symbol. Lines 9 and 11 call upon the two sub-
routines which will be found in the next example. Line 10 serves
as an entry point to which the flow may return.

Line 12 assumes that the subroutine Read One Frame has placed
a paper tape character punched according to the code of Table III
in the Load Buffer, and calls upon the subroutine of lines 40 through
44 to decode it, and to place the result in the noun Symbol.

Line 13 checks to see whether the decoding process produced an
actual symbol, or instead resulted in a zero. If an actual symbol
resulted, the process goes to the verb Store Symbol In String. If
not, however, it starts checking the Load Buffer itself, to see if it
could have held one of the case shifts or a stop, three characters
which decode as zero symbols. If such is the case, one of the alter-
natives on lines 15, 18, or 21 is called upon.

Lines 23 through 28 are written to pack the applicable number of
Symbols Per Word into the buffer. Whenever the buffer is packed,

62 Machine-Independent Computer Programming

its contents are transferred into the next available memory cell in
the Symbol String, and the buffer is cleared. Since the tally T is
used to maintain the record on the status of the Symbol String, its
value is increased by one by line 27.

Lines 34 thru 39 are written to handle those cases in which the
buffer contains less than the allowable number of symbols when
the stop code is reached. After packing the symbols in the last
word of the Symbol String in the left-most positions, the process
exits through line 32 to the Process Noun List Program.

The two subroutines called Start Reading Device and Read One
Frame are completely machine-dependent, making use of actual
machine-language instructions. On many computers the first is not
needed at all, and the second consists of a single machine-language
instruction. A few machines, however, require several instructions
to accomplish the operation. In all cases, the coding manual of
the particular machine would specify them precisely. The next
example shows the machine language for one of the computers
which requires several instructions, the Univac M-460 Countess.

EXAMPLE 39.
Start Reading Device:
{ 13 100g 0, 13 000; 1615, 13 3004 0,
70 000s 1000s, 13 3005 100315, 13 300 0,
70 000s 10005, 13 3005 10033;,},
Read One Frame:
{ 17 1303 Load Buffer,
DELAY: 63 1003 DELAY,}..

These two machine-language subroutines take the place of the

single statement:

, { FLEX > Load Buffer <}
which could not be used at this stage because the Bootstrap com-
piler does not contain input or output statements.

As noted earlier, many additional features may be added to a
load program. In the event that a truly one-pass compiler is being
written, such that the entire compilation process is to be completed,
one step at a time, between the loading of individual characters,

Load Programs 63

then of course the load program would not employ a Symbol String
at all.

The advantage to be derived from increasing the amount of proc-
essing which is accomplished while the source material is being
entered into the computer lies in the fact that it exploits the high
internal computing speeds which are often coupled with slow input
speeds on present day computers. While many N eliac compilers do
not employ the one-pass concept, some of them do. In any event,
the Bootstrap or basic compiler is adequate for compiling the
changes which are required.

CHAPTER 6

PROCESSING NOUN LISTS

After the Load Program has converted all of the tape or card char-
acters from the code of Table III into the compiler symbols accord-
ing to the code of Table IV and stored them in the Symbol String,
the next operation involves the process which reads the noun list
or dimensioning statement and allocates computer storage cells to
all nouns and noun lists. This same process must insert any numer-
ical values specified for a given noun into the computer memory
cell allocated to that noun.

Current Operator-Operand-Next Operator combinations are used
only in processing the body of the program, and not in the proc-
essing of a noun list. Accordingly, the basic dimensioning program
will serve to demonstrate the techniques used when the operands,
or nouns, are the primary objects in compilation.

Since the first semicolon in a program always designates the end
of the noun list, that symbol will serve as the signal which will
terminate the process.

The next example presents the list of 19 nouns which the Process
Noun List Program requires. These are in addition to a few of the
nouns used by this program and already given in the noun list that
formed part of the load program.

EXAMPLE 40.
Object Program First Address — 2100g,

66 Machine-Independent Compuier Programming

Noun Name Roll(250),
Noun Address Roll(250),
NumbeR,

A NumbeR = 27,

An Operator = 37,

COMMA = 37,
LEFT Paren = 43,
EQUAL = 47,

SEMIColon = 38,
Nr of Nouns Named,
Noun Buffer,

List Length,

Word,

Divisor,

Canceling Term,
Negative Coefficient,
TEN = 10,

Scratch Pad;

The Object Program First Address can be set at any location the
compiler writer desires, provided only that it is in a part of the
computer memory which does not interfere with the compiler itself.
In a production type compiler it would be treated as a variable
'capable of being reset by the computer operator, or even by an
auto monitor program.

Noun Name Roll and Noun Address Roll have, in this example,
been limited to 250 entries each. While this number would be in-
adequate for most compilers, it will suffice in the basic one. It is
only necessary for the compiler to keep track, in the Noun Name
Roll and the Noun Address Roll, of the initial entry of any sub-
scripted noun. For example,~despite the fact that the noun list of
Example 40 itself will require the allocation of 417 words of com-
puter memory, the compiler only needs to keep track of the 19
nouns listed.

The noun NumbeR is needed to serve as a buffer to hold the
individual digits of a number as they are read from the Symbol

Processing Noun Lists 67

String one at a time. A NumbeR is used as a class limit or boundary
in connection with Table IV. By setting A NumbeR = 27, it is

then possible to determine whether or not an. unknown symbol of
" Table IV is a letter simply by determining whether or not it is less
than 27.

Similarly, by defining An Operator as 37, any symbol which is
less than An Operator must be a number or a letter.

The four nouns COMMA, LEFT Paren, EQUAL, and SEMIColon
are operators which the Process Noun List Program must be able to
recognize. Consequently, their numerical values, again from Table
"IV, must be available.

Nr of Nouns Named is used to keep track of the number of
entries in the Noun Name Roll and the Noun Address Roll. Noun
Buffer is, as its name implies, a place to put symbols while the letters
of a noun are being assembled. List Length is used to hold the in-
formation on an individual noun in the dimensioning statement or
noun list. For instance, it would be set to 250 while processing
Noun Address Roll in Example 40.

The remaining six nouns in Example 40 all are required by a sub-
routine called Find Next Symbol, which will be needed in process-
ing the noun list or dimensioning statement. Although Word, TEN,
and even Scratch Pad are self-explanatory, the other three are not.
In order to understand them, it might be well to look back at the
process called Store Symbol In String in Example 38, and to re-
examine the way in which multiplication and the comparison with
the word FULL were used in the packing process. In order to retain
machine independence, the unpacking process is written as almost
the exact reverse, using division and a canceling term. The only
real difference results from the fact that some binary computers
use a one in the highest order, or leftmost bit to indicate that the
following number is negative. In order to take account of this possi-
bility, the Process Noun List Program will need a Negative Co-
efficient as well as a Divisor and a Canceling Term. Their precise
use will be shown in Example 41.

Examples 40 and 41, when combined, will yield a basic program
for processing a noun list, but it should be noted that they do not

68 Machine-Independent Computer Programming

include any capability to handle such important items as the dimen-
sioning of part-words, words longer than the number of Symbols
Per Word, or floating-point numbers. All of these items will be
developed later in the text.

EXAMPLE 41.

Process Noun List Program: 1
Symbol String First Address = 1, 2
Object Program First Address -], 3
CLEAR - K, CLEAR - Word, 4
FULL — SET - Negative Coeflicient, S

Examine Symbol String: 6
Find Next Symbol, 7
if Symbol < A NumbeR: Read The Noun. 8
if not, Test The Operator. 9

Read The Noun: 10
Symbol - Noun Buffer, 11

Continue Reading Noun: 12
Find Next Symbol, 13
if Symbol < An Operator: ; 14
if not, Process The Noun. 15
if Noun Buffer < FULL: Noun Buffer X Symbol Size - 16

Noun Buffer, Noun Buffer 4+ Symbol = Noun Buffer; 17
if not, ; 18
Continue Reading Noun. 19

Test The Operator: 20
if Symbol = COMMA: Examine Symbol String. 21
if not, ; 22
if Symbol = LEFT Paren: Find List Length. 23
if not, ; 24
if Symbol = EQUAL: Set One Value. 25
if not, ; 26

if Symbol = SEMIColon: K — SET = K, K - 27
Nr of Nouns Named, Compile Body. 28

if not, Examine Symbol String. 29

Processing Noun Lists

Process the Noun:

J = Noun Address Roll[K],
Noun Buffer = Noun Name Roll[K],
K + SET > K, J 4 SET - |,
Test The Operator.
Find List Length:
Find Next Symbol,
J — SET - 7],
Read A Number,
NumbeR - List Length,
Find Next Symbol,
if Symbol = EQUAL: Set Values.
if not,] 4 List Length > J;
if Symbol = SEMIColon: Test The Operator.
if not, Examine Symbol String.
Set One Value:
Find Next Symbol,
] — SET -],
Read A Number,
NumbeR - [J],] + SET -],
if Symbol — SEMIColon: Test The Operator.
if not, Examine Symbol String.
Set Values:
Find Next Symbol,
Read A Number,
NumbeR - [J],] + SET -],
List Length — SET - List Length,
if List Length — CLEAR: Test The Operator.
if not, Set Values.
Find Next Symbol:
{ if Word = CLEAR: [I] > Word,
I + SET - I, FULL - Divisor;
if not, go to Positive Word.
if CLEAR < Word: go to Positive Word.
if not, go to N egative Word.

69

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
%!
55!
56
o7
S8
59
60
61
62
63

70 Machine-Independent Computer Programming

Positive Word: 65
Word / Divisor = Symbol, 66
Symbol X Divisor = Cancelling Term, 67
Word — Cancelling Term - Word, 68

if SET < Divisor: Divisor / Symbol Size - 69
Divisor; 70

if not, ; 71
Exit Find Next Symbol. 72
Negative Word: 73
CLEAR — Word = Word, Word/ Divisor = Symbol, 74
Symbol X Divisor = Cancelling Term, 75
Word — Cancelling Term - Word, 76
Negative Coefficient — Word - Word, 77
Symbol Size — SET - Scratch Pad, 78
Scratch Pad — Symbol - Symbol, 79
Divisor / Symbol Size — Divisor, 80
Exit Find Next Symbol:,}.. 81

In Example 41, line 1 is Process Noun List Program, the name of
the program, which was entered or jumped to from line 32 of
Example 38. Lines 2 through 5 perform the Housekeeping Chores,
setting values of parameters which will be needed later. Setting
the value of the Negative Coefficient by subtracting unity, or SET,
from the value of FULL is a subtle trick required only for those
computers which use the highest-order binary digit as a negative
sign. It will be explained in connection with the routine Negative
word on lines 73 through 80.

Examine Symbol String, on lines 6 through 9, is the basic routine
of Example 41, and is the one to which the process returns again
and again. It first makes use of the subroutine Read Next Symbol
to “unpack” the next symbol from the symbol string, and to place
it in the word Symbol, where it can be tested and examined.

The first test, on line 8, makes use of the way that Table IV is
organized to separate the letters from the numbers and operators
on the basis of their numerical values. Since, in Example 40, the
word A Number was given the numerical value 27, any symbol

Processing Noun Lists 71

which is less than A Number will obviously have to be a letter.
Because a noun cannot legally start with a number, a single two-
way test is adequate here. If the symbol is less than 27, then the
first letter of a noun has been found, while if it is not, an operator
has been reached. In the first case, the process jumps to Read The
Noun on line 10, and in the second case it goes to Test The Operator
on line 20.

Read The Noun, on lines 10 thru 20, first takes the symbol which
has already been found to be the first letter of a noun, and inserts
it into the Noun Buffer. A repetitive process is then set up which,
on line 14, tests to see whether or not an operator has been reached..
If the numerical value of the symbol is not less than An Operator,
or 37, then an operator must have been encountered, all of the let-
ters of the noun must have been read, and the process goes from
line 15 to Process The Noun on line 30. If, on the other hand, the
latest symbol is still a letter, the test on line 16 determines whether
or not there is room for another letter in the Noun Buffer. If the
Noun Buffer is full, but the symbol is still a letter, the repetitive
process continues reading, but having no place to put any more
letters, it merely ignores them. As long as there is room in the
Noun Buffer for additional letters, however, the letters already
stored there are moved to the left by multiplying by 100 (decimal or
octal, as the case requires) and the new letter is added. In pro-
duction type compilers, of course, more than one computer word is
reserved for each name. Several methods which accomplish this
function may be examined later in the text.

Process The Noun, jumped to from line 15, can be seen on lines
30 thru 34. Since the tally or index | contains the memory location
of the next cell of computer memory available for the object pro-
gram, this is the location being assigned to the noun being proc-
essed. By inserting this value as the Kth entry in the Noun Address
Roll, and also inserting the name of the noun into the Noun Name
Roll, any later routine in the compiler can find the memory alloca-
tion corresponding to that noun. After advancing both J and K,
this routine returns to Test The Operator, because the symbol which

terminated the Read The Noun routine must have been an
operator.

Test The Operator, on lines 20 through 29, needs to recognize
only four operators in the basic compiler; the comma, the left
parenthesis, the equality sign, and the semicolon. Whenever a
comma is encountered by the test on line 21, it must have been
reached in one of only two possible ways. Either it is a comma
which immediately follows a noun, or it is the last of a series of
commas following the numerical values in a list. In either event,
the next requirement is to Examine the Symbol String. At this
point, the next symbol will have to be a letter.

Whenever the test on line 23 reveals a left parenthesis, it must
indicate that a number of memory cells are to be reserved for a
list, and that the actual number of cells required will be the next
entry in the noun list being compiled. Consequently, the process
must go to the routine called Find List Length on line 35. The
latter routine will take account of the subsequent right parenthesis
automatically, and also test to determine whether or not any numer-
ical values have been included. As a result, the routine Test The
Operator will never encounter either a right parenthesis or an equal-
ity sign which is being used with more than one numerical value.

It follows, then, that if an equality sign is detected by the test
on line 25, a single numerical value must be involved. The process
is therefore directed to the routine called Set One Value on line 45.

If the operator being tested is neither a comma, a left parenthesis,
nor an equality sign, it must be a semicolon, and no further test
is required. In order to allow for later expansion of the basic
compiler, however, the test on line 27 is included. When the semi-
colon which denotes the end of the noun list has been reached,
the total number of nouns must be recorded for later use. The
tally K, which has been used to keep track of the number of indi-
vidually named nouns, will already have been advanced. One is
therefore subtracted from it before entering it into Number of
Nouns Named for later use. At this stage, the Process Noun List
Program is completed, and the instruction on line 28 directs it to

Processing Noun Lists 73

the program called Compile Body, which will be discussed in the
next chapter.

The role of Find List Length on lines 35 through 44 required first
that it regain the address of the computer cell allocated to the noun
currently being processed. This is done by subtracting one from
the tally J, which had previously been advanced to the next avail-
able cell. After reading the number between the parentheses, a
test is made to determine whether or not a group of numerical
values has been included in the program being compiled. If so,
the process goes to the routine Set Values, but if not the number of
blank cells required is merely added to the tally], so that it again
holds the count of the next available location in the object pro-
gram. Since it is possible to have reached the end of the noun list
in this routine, the test on line 43 must be included.

The routine called Set One Value is the first which actually inserts
anything into the object language program. Since the tally J had
previously been advanced to the next available space, one must be
subtracted from it before the actual insertion of a numerical value,
and it must be restored afterward.

The subroutine called Read A Number, given in Example 42, will
have left the numerical value desired in the word NumbeR, and
since the subscript notation used without a noun refers to the
absolute address in the computer, the process of insertion of the
required number into the final compiled object program is accom-
plished merely with the phrase NumbeR~>[]1,.

Set Values is quite similar to Set One Value, but must repeat
the process until all values in a list have been treated. If Set One
Value had been written as a subroutine, Set Values could readily
have utilized it.

There are only two basic subroutines used by the Process Noun
List Program. They are the short subroutine called Read A Number
given in Example 42, and the somewhat more complex Find Next
Symbol given in lines 59 through 81.

The subroutine Find Next Symbol would be considerably less
complicated if the basic compiler were not required to apply equally
well to that class of computers in which the highest order bit not

74 Machine-Independent Computer Programming

only determines the sign, but also becomes filled whenever the
number itself becomes too large. In order to understand the opera-
tion of this subroutine, it might be well to consider the following
case. Suppose that Word was initially clear, and that the next
word in the symbol string held the letters EDCBA, or more pre-
cisely, their numerical equivalents, 05 04 03 02 01. In this case
the phrase, [I]~>Word, would leave 0504030201 in Word, and since
this is greater than 0, or CLEAR, the process would go to the entry
Positive Word. There, dividing 0504030201 by 0100000000 would
give 0000000005, which would be inserted in Symbol, giving an E.
All of the original letters, EDCBA, however, would still be present
in Word. In order to remove the letter E from Word, the number
0500000000 must be subtracted from it. This number can be ob-
tained merely by multiplying the value of Divisor by the Value of
Symbol. In line 67, this number is stored in Canceling Term, and
in line 68 it is subtracted, leaving, in this case, the number
00 04 03 02 01 in Word, and the E has been eliminated. In remov-
ing the next letter, or D, a smaller Divisor will be needed. Accord-
ingly, the current value of Divisor is itself divided by Symbol Size,
or 100, to give a new value of 00 01 00 00 00 for the Divisor, and
the process leaves the subroutine with the numerical equivalent
of the E, or 05, in Symbol.

The next time that the subroutine is called upon, since 00 04 03
02 01 is not equal to CLEAR, the process goes directly to the
routine Positive Word. Word, with a current value of 00 04 03 02 01,
when divided by 00 01 00 00 00, the current value of Divisor, gives
a value of 00 00 00 00 04, or D, for insertion into the word Symbol.
This process is quite straightforward, and could be continued until
all of the letters, EDCBA, had been separately unpacked.

If the process encountered a combination like »B—A+4, or
65 02 67 01 66, however, some computers would handle the
numerical values as negative, in which case CLEAR would not
be less than Word. In that event, the process goes to Negative
Word, where it is subtracted from zero, and becomes 1275 10 76 11.
Divding by 01 00 00 00 00 gives a 12 for Symbol, a value which
will have to be corrected. Symbol multiplied by Divisor, however,

Processing Noun Lists 75

gives 00 00 00 00 12 X 01 00 00 00 00, or 12 00 00 00 00, the
proper value for the Canceling Term. Subtracting it, Word then
equals 00 75 10 76 11. At this point the Negative Coefficient,
which had been formed by subtracting one from Full to give
00 77 77 77 77, is used as a base from which to subtract Word.
The result is 00 02 67 01 66, from which it can be seen that the
lower symbols have been restored. In order to restore the 12 in
the noun Symbol to the proper value of 65, it is necessary to subtract
one from Symbol Size, or 100, giving 00 00 00 00 77 in Scratch Pad,
and then to subtract the 12 from that. This restores the value
of 65 to Symbol, the divisor is then adjusted, and the process leaves
the subroutine. Since the leading bits of Word are now zeros,
it will no longer be treated as a negative number by any computer.

The subroutine Read A Number, shown in the next example,
is a much less complex routine. Since it is always entered with a
digit in the word Symbol, the first task is to store it in the word
NumbeR. First, of course, the digit must be converted from its
coded form, that of Table IV, to its true value by subtracting 27,
or A Number, from it. Next, a repetitive process is set up which
will read the next symbol. If this is another digit, all previous
digits must be multiplied by 10 and the new digit added. Only
after all digits have been read — as indicated by the fact that an
operator has been entered into the word Symbol — will the process
leave the subroutine.

Since in some cases it will be necessary to be able to read numbers
in either the decimal or the octal number systems, Read A Number
has been made capable of handling both. Merely by including lines
3, 6, 13, and 15 all numbers can be read as octal. Of course, any
number which must be read is either decimal or octal, and not both.
However, it is not always known which system it is in until after
it has been read. Therefore it is thought more convenient to read

in both systems and select the proper answer after the system has
been identified.

EXAMPLE 42.
Octal Number,

76

Machine-Independent Computer Programming

EIGHT = 8§,
Sub 8 = 61;

Read A Number:

{ Symbol — A NumbeR - NumbeR,

NumbeR - Octal Number,

Read Digits:

Find Next Symbol,

if Symbol = Sub 8: Octal Number - NumbeR,
Read Digits.

if not, ;

if Symbol < An Operator: ;

if not, Exit Read A Number.

Symbol — A NumbeR - Scratch Pad,

NumbeR X TEN - NumbeR,

Octal Number X EIGHT -> Octal Number,

NumbeR -+ Scratch Pad = NumbeR,

Octal Number -+ Scratch Pad - Octal Number

Read Digits.

2

Exit Read A Number:,}..

© 00 1 O UL i W N =

bk e e b el e e
=1 O U W W N = O

CHAPTER 7

CO-NO TABLES

A method of compiling or translating based upon the treatment of
two consecutive operators and the intervening operand as a single
unit is used throughout the Neliac family of compilers. As men-
tioned earlier, the use of such a unit allows context to play a role,
so that the meaning of a single operator is not necessarily as re-
stricted as it would perforce be if each operator were interpreted
individually. The triplets themselves may include any of the com-
piler symbols whose numerical equivalent in Table IV is equal to
or greater than a comma as operators, and any noun, verb, or numer-
ical parameter as the intervening operand.

During the compilation process, the compiler program which
is translating the body of a source program advances through the
source program in regular steps. Each step consists of transferring
the previous Next Operator to the Current Operator position, find-
ing the new Next Operator, processing the intervening operand,
and then transferﬁng control-to the generator required by the
particular CO-NO combination. This generator in turn obtains
and retains any information which will be required later, and then
inserts the appropriate machine-language instructions into the object

program.

78 Machine-Independent Computer Programming

The program that transfers control to the proper generator de-
pends upon the existence of a matrix or table of Current Operator-
Next Operator combinations. The formation of a CO-NO table
is quite simple, and can readily be illustrated by using the body
or logic portions of the Load Program of Chapter 5 and the Process
Noun List Program of Chapter 6.

An examination of the load and process noun list programs as
given in Examples 38, 39, 41 and 42 will show that not all of the
operators defined in Table IV have thus far been used in the basic
compiler. By arranging those which do occur into the rows and
column headings of a matrix, the framework of Table V can be
formed. By designating the entries along the side as Current
Operators, and those along the top as Next Operators, the table
can be used to count and tabulate actual occurrences as they are

encountered in the examples.

By starting with the first and second operators in Example 38,
the colon followed by the right arrow; then the second and third
operators, or right arrow and comma, and continuing in this way,
all of the combinations which have been used will have been
counted. In Table V, those combinations which have not been used
have been left blank, while those combinations which were encoun-
tered have either a numerical or an alphabetical entry.

Although there are 60 unique combinations of two operators
occurring in the examples, study of them will show that only 14
different operations are needed in translating them.

For example, the operator combinations of comma-comma,
period-comma, colon-comma, right- brace-comma, semicolon-semi-
colon, period-semicolon and colon-semicolon all imply that the ob-
ject program instructions or machine-language commands for a re-
turn jump must be compiled and inserted into the object program
by a generator. Since all of these combinations lead to the same gen-
erator, they carry the same number in Table V. On the other
hand, some combinations that do occur will not be reached directly,
in which case the letters NR will appear in the table.

Co-No Tables 79

TABLE V
CO—NO TABLE BASED UPON THE COMBINATIONS OF
EXAMPLES 38, 39, 41 anp 42

Next Operator

>3 - {1 =< =>4+ =X/ s
, 1 3 45 8 8 999 9 9 10
: 1 3 5 7 8 8 9 9
1 1 3 4 8 8 9 9
: 1 1 3 6+ 7 8 9 9 9 9 9 10
oy 1 3
g{ 8 9 10
g NR
S]NR NR NR
‘g: NR
5 < NR
© 5 2 3 7
+ 11
— 12
X 13
/ 14
s NR NR

NR = not reached directly, 64+ = reached via 4.

The combination of an arrow and either a comma or a semicolon,
on the other hand, always signifies that the result of the previous
calculation is to be stored in the operand between them.

Any punctuation, or even a right brace, when followed by a
period is invariably the signal for the generation of a direct trans-
fer or straight jump. The generator called upon must therefore
provide the machine instructions for the jump to the entry point
which is named by the operand found between the current and
the next operator.

Whenever a colon follows any punctuation, it can only mean that
a verb — an entry point —is to be defined, with the intervening
operand as the label.

The occurrence of a right brace following any of the operators

80 Machine-Inde

involving punctuation can only denote that the end of a subroutine
has been reached.

The occurrence of a left brace as a Next Operator can follow only
a colon as the CO, and therefore indicates that the verb, entry
point or label which has just been defined is to be treated as a
subroutine. This suggests that the routine which was called upon
to generate an entry point after finding a Current Operator-Next
Operator combination of punctuation-colon might well have a Look-
Ahead feature. Merely examining the next symbol after every punc-
tuation-colon combination to see if it is a left brace can determine
whether a straight entry or a subroutine entry is to be compiled at
that point.

The occurrence of a left bracket, of course, signifies that sub-
scripting is needed, no matter what other operator the left bracket
follows. Because of this fact, the role of the subscripting generator
is somewhat different from the others. Since the left bracket can
be followed only by a right bracket, the generator which processes
any subscripting can perform its function solely on the basis of find-
ing a left bracket in the Next Operator position, and while doing so
it can be allowed to remove both the left and the right bracket
from considerations as a Current Operator. For example, the Cur-
rent Operator-Next Operator combination arrow-left bracket occur-
ring in.the routine Process the Noun in Example 41 leads to sub-
scripting of the word Noun Address. As soon as this has been done,
the original arrow can be retained as the Current Operator, and
the subsequent comma treated as the Next Operator.

Consequently, in Table V, the two rows having brackets as Cur-
rent Operators and the column which has a right bracket as a Next
Operator might all be omitted.

The occurrence of either an equality or a less-than sign, = or <,
following punctuation or a left brace heralds the reaching of the
first indication of a comparison or If Statement. Since a compar-
ative sign is followed only by a colon, the latter can be treated
automatically, somewhat like the right bracket in subscripting. In
addition to generating the initial instructions required for a com-
parison, a Comparison Flag must be set, in order that the regular

Co-No Tables 81

process of advancing through the CO-NO combinations can also
test for the terminations of true and false alternatives at all likely
places.

Whenever an arithmetic operator follows a left brace or a punc-
tuation operator, the intervening operand must be entered into a
working register by the compiled program. First, however, the
working register must be cleared. Consequently, all 14 of these
combinations occurring in the examples of Chapters 5 and 6 must
be set up to call upon the simple Clear and Add generator.

One of the rather different operators is the octal sign. When-
ever it occurs as the Next Operator following punctuation or a left
brace, it indicates that the intervening operand is to be treated as
an octal number. When it occurs as the Current Operator, followed
by either a comma or another octal sign, it indicates that a machine-
language .instruction has been expressed. For a decimal machine,
this case requires that the previous operand be recovered and re-
converted from octal to decimal by the machine-language
generator.

The only additional operators or operator combinations repre-
sented in Table V are those which require addition, subtraction,
multiplication or division. Since these all occur only in combi-
nation with a right arrow as the next operator, they are extremely
simple, although each does require its own separate generator.

While the examples cited make use of only 60 of the 676 possible
combinations in the CO-NO table, their implementation will permit
the operation and self-compilation of the basic compiler. The pro-
duction type compilers obviously make use of far more combi-
nations. Even these leave many combinations unused. Unused
combinations should lead to fault routines designed to assist in pro-
gram checking. They may, however, be implemented whenever an
extension to the Neliac language is desired.

The 60 combinations used in Table V lead to only 14 actual
generators. This ratio increases slightly in the more powerful
working compilers.

on b W 4 T . - R S PR PR S YR B P v e e Y s s Y T 2]
(0 94 Macnme-l'nuependem Coi LI)utv: r7ogi uuu:ung

!

It has perhaps been noted that the numerical values in Table V
refer to the various distinct generators required. In summary form,
these are:

Generate return jump.
Generate store instruction.
Generate straight jump.
Define entry point or label.
End subroutine.

Start subroutine.

Set subscript.

Set comparison.

© © N e Utk Lo

Generate clear and add.

Pt
e

Transfer machine language.

—
—

. Generate addition.
. Generate subtraction.

et fed
w o

Generate multiplication.
14. Generate division.

The enumeration of the functions to be performed by the 14
generators which must be available to be called upon by the com-
pilation process should suffice temporarily. The detailed descrip-
tion of these generators will therefore be deferred until the next
chapter, and the remainder of this chapter will be devoted to the
process whereby the generators are selected.

After compilation of the allocation of computer memory storage
for the noun list, the compiling process must proceed to examine
the Current Operator-Operand-Next Operator triplets, proceed to
the proper generator, insert into the object program the necessary
machine language, and advance to the next triplet.

Example 43 illustrates this process. It can be seen that the noun
list for this program consists primarily of operators with their
numerical values as given in the internal compiler code of Table IV.
These will be used in finding proper generator entries corresponding
to Table V.

EXAMPLE 43.

Current Operator,
Next Operator,
Operand Buffer,
Index Designator,
Period = 39,
COLON = 40,
Left BrackeT — 45,
LEFT Brace — 42,

ARROW = 53,
PLUS = 54,
TIMES = 56,
DIVide = 57;

Compile Body:
CLEAR - Index Designator,
COMMA - Next Operator,
Find Next Symbol,
Advance:
CLEAR - Operand Buffer,
Advance Again:
if Symbol < An Operator:
Read The Operand,
Advance Again.

Co-No Tables

if not, Next Operator - Current Operator,

Symbol -> Next Operator,

Find Generator.
Read The Operand:
{ Symbol = Operand Buffer,
Continue With Operand:
Find Next Symbol,

if Symbol < An Operator: ;
if not, Exit Read The Operand.
if Operand Buffer < FULL:

Operand Buffer X Symbol Size - Operand Buffer,
Operand Buffer + Symbol - Operand Buffer;

83

O 00 1 O UL W W D

DD DO BO bt bt e et bt e b ped e e
D = O W 00 ~1 & UL i WM~

84

Machine-Independent Computer Programming

if not, ;
Continue With Operand.
Exit Read The Operand:,},
Find Generator:
if Current Operator < PLUS: go to Test A.
if not, go to Test B.
Test A:
if Next Operator < LEFT Paren: go to Test Al
if not, go to Test A2.
Test B:
if Current Operator < TIMES: go to Test Bl.
if not, go to Test B2.
Test Al:
if Next Operator < COLON: go to Test All
if not, go to Test Al2.
Test A2:
if Next Operator < ARROW: go to Test A2l.
if not, go to Test A22.
Test Bl:

if Current Operator — PLUS: go to Generator 11.

if not, go to Generator 12.
Test B2:
if Current Operator = TIMES: go to Generator 13.
if not, go to Generator 14.

Test All:

if Next Operator < Period: go to Test Alll.
if not, go to Generator 3.

Test Al2:

if Next Operator = COLON: go to Generator 4.
if not, go to Generator 5.

Test A21:

if Next Operator < EQUAL: go to Generator 7.

if not, go to Generator 8.

Test A22:

if Next Operator = SUB 8: go to Generator 10.

Co-No Tables 85

if not, go to Generator 9. 58
Test All: 59
if Current Operator < ARROW: go to Generator 1. 60
if not, go to Generator 2. 61

The program logic of Example 43, starting after the noun list,
first must clear the Index Designator and preset the Next Operator.
By having line 3 place a comma in the Next Operator, the special
use of the semicolon as a signal that the termination of the noun

list had been reached does not need to be, provided for in the
CO-NO table.

Line 4, which calls upon the subroutine called Find Next Symbol
in Example 41, will change the contents of Symbol from the semi-
colon with which it entered Compile Body to the first symbol of
the body or program logic.

There are two different entries to the basic advance routine: Ad-
vance, and Advance Again (lines 5 and 7). These are the routines
to which the process will return after each generator has com-
pleted its function. Two are required because some of the gen-
erators will have completed the use of the current operand, while
others, like the subscripting generator, for example, will not have
done so.

The comparison of line 8 determines whether or not the most
recently read symbol has a numerical value of less than 37. If SO,
it must be a letter or a number, and therefore the first symbol of
an operand. In this case the subroutine called Read The Operand
on lines 14 through 25 is called upon. Read The Operand will place
the entire operand in the Operand Buffer, and it will place the
operator which follows the operand in the noun Symbol before
returning the flow to line 10 and thence to line 7.

When an operator is found by the comparison on line 8, the
operators are advanced. The previous Next Operator replaces the
Current Operator, and the newly found operator, temporarily held
in the noun Symbol, becomes the new Next Operator.

The entire routine called Find Generator is merely a series of cas-
caded comparisons which depend upon the contents of the Current

86 Machine-Independent Computer Programming

Operator and the Next Operator to determine which generator is
required. It was necessary to write this routine in a most cumber-
some fashion for the basic or Bootstrap compiler, as contrasted with
most other compilers. The use of nested comparisons would of
course have simplified the routine, as would the use of the Boolean
And and Or. The use of part word or Bit Notation, combined with
a method for computing the proper index for a switch type jump,
would allow -an even greater increase in the efficiency of the opera-
tion. Since the basic compiler uses only 14 generators, however,
efficiency of the Find Generator routine loses its usual importance.

CHAPTER 8

GENERATORS

As mentioned in earlier chapters, the actual generators that perform
the function of inserting the final machine-language instructions
into the object program must themselves be machine-dependent.
Even so, however, the general function performed by each gen-
erator must be accomplished for any computer. Consequently, the
degree of machine dependence is usually quite small, and in no case
is it necessary to resort to Crutch Coding or machine language to
implement a generator. Instead, the numerical value of each of the
necessary components of the pertinent instructions in the repertoire
of a given computer can be named and placed in the noun list of
the generator which will need them.

In those cases in which a single generator must provide a large
number of instructions, the whole set of such instructions can be
maintained in the noun list in skeletal form so that the generator
merely completes and transfers them as a block into the object
program. This process makes use of a relatively large amount of
computer memory, however, and the alternative has certain ad-
vantages. This alternative, of course, is the standard practice used
in shorter generators, whereby all instructions are constructed indi-
vidually as required.

12 The complete repertoire of Countess instructions may be examined in Appendix D.

88 Machine-Independent Computer Programming

Each of the 14 generators listed in the preceding chapter will be
discussed in detail in the following pages. While an attempt to
maintain almost complete machine independence has determined
procedures in all cases, this process has not always been successful.
Consequently, alternative solutions are discussed, and in some cases
presented in detail. The numerical values of the various machine-
language instructions and their component parts have been included
in the noun lists merely as an assurance that all routines have been
machine-tested. For this purpose the repertoire of the Univac M-460
Countess has been employed??.

Generator 1, The Return Jump

Generator 1, which is called upon whenever punctuation is fol-
lowed by a comma or a semicolon, must generate the machine-
language instructions for a return jump or control transfer to what-
ever subroutine is named by the intervening operand. It must do
this despite the fact that the subroutine named by the operand mayv
not have been defined until later in the source program. At this
point it should be kept clearly in mind that Generator 1 is not in-
tended to generate the subroutine instructions themselves, but only
the transfer instructions to them.

Let us first assume that the computer involved has a return-jump
instruction in its repertoire, which will transfer control from the
main program to the second instruction of the subroutine, after
placing the address from which it transferred into the address por-
tion of the first instruction of the subroutine. If so, only one ma-
chine-language instruction, Return Jump, will be needed by this
generator. The noun list for such a generator is shown in Exam-
ple 44.

ExampLE 44.

Return Jump = 65 000 000004,
Operand Address,

Function,

Instruction For Object Program,
Return Entry Name Roll(250),

Generators 89

Return Entry Address Roll(250),

Nr of Return Entry Names,

Missing Name Return Entry Roll(250),

Missing Address Needed Return Entry Roll(250),
Nr of Missing Return Entry Names,

Comparison Flag;

In addition to the machine-language instruction, the noun list
must contain a noun to hold the Operand Address, and for both
Function and Instruction For Object Program. The latter is in-
tended to hold not only the machine-language operation code, but
the machine-language address portion of the instruction as well.
A roll or list of subroutines, called return entry names, together with
a parallel roll of their addresses, must be maintained during com-
pilation. Since these rolls must occasionally be scanned or searched,
it is also worthwhile to keep track of the number of entries in them,
in the noun Nr of Return Entry Names, so that the unused portion
of a list may be eliminated in the searching process.

As has been pointed out, this generator should. take care of those
cases in which a subroutine is called upon before it has been defined.
A subroutine that has not yet been defined can not yet have its name
and address in the return entry roll. An incomplete instruction
must therefore be inserted into the object program, and the informa-
tion saved that will be needed to find it. This instruction can then
be completed when the subroutine itself is reached in the compila-
tion process.

The information required consists of the address in the object
program from which the return jump was made, together with the
name of the missing subroutine. Two additional rolls or lists, called
Missing Name Return Entry Roll and Missing Address Needed
Return Entry Roll are reserved in the noun list for this purpose.
Again, to avoid the necessity of searching all of the 250 cells re-
served for these lists, a noun is reserved for the count of actual
entries, and called Nr of Missing Return Entry Names.

Since this generator may be called upon when a semicolon is the

90 Machine-Independent Computer Programming

next operator, and since a semicolon may signify not only that a
return jump is being made but also that either the true or the false
alternative of a comparison statement has been reached, the noun
Comparison Flag has also been included in the noun list. While
Generator 1 performs no function with respect to comparison state-
ments, it will direct the flow to Generator 8, which does, when the
Comparison Flag is set.

Example 45 gives the program logie of Generator 1. It correctly
assumes that the name of the operand.in the Current Operator-
Operand-Next Operator triplet is in the Operand Buffer at the time
the generator is entered.

ExaMPLE 45.

Generator 1: 1
CLEAR - K, 2
if Operand Buffer = CLEAR: 3

Test Comparison Flag. 4

if not, ; 5
Search Return Entry Roll: 6
if Return Entry Name Roll[K] = Operand Buffer: 7
Return Entry Address Roll[K] - Operand Address; 8

if not, Check Return Entry Roll. 9
Set Return Jump: 10
Return Jump —> Function, 11
Insert Instruction, 12
Test Comparison Flag: 13
Find Next Symbol, 14
if Comparison Flag = SET: ; 15
if not, Advance. 16
if Next Operator — SEMIColon: Handle Comparison. 17
if not, Advance. 18
Check Return Entry Roll: 19
if K < Nr of Return Entry Names: K + SET - K| 20
Search Return Entry Roll 21

if not, Generate Missing Address Return Jump. 29
Generate Missing Address Return Jump: 23

Generators 91

Nr of Missing Return Entry Names - K, 24
Operand Buffer - Missing Name Return Entry Roll[K], 25
] = Missing Address Needed Return Entry roll[K], 26
K + SET - Nr of Missing Return Entry Names, 27
CLEAR -> Operand Address, 28
Set Return Jump. 29
Insert Instruction: 30
{ Function + Index Designator —> 31

Instruction For Object Program,
Instruction For Object Program +
Operand Address - [J], '
J] + SET =],
CLEAR - Index Designator,}..

EHREY

The routine called Search Return Entry Roll on lines 6 through 9
attempts to find the required subroutine by comparing the name in
the Operand Buffer with the names of all previously compiled sub-
routines. If it finds coincidence line 8 then inserts the corresponding
address from the Return Entry Address Roll into the Operand
Address. In this case the concept of parallel or synchronized lists
merely implies that a particular value of a subscript (K in this case)
must reference information about the same item, despite the fact
that the type of information depends upon the list itself.

The process then goes directly to Set Return Jump, unless the
subroutine required had not yet been compiled. In the latter event,
the process goes to Generate Missing Return Jump before going to
the routine Set Return Jump.

Line 24 of that routine merely sets the index K at the value of the
first empty cell in both Missing Name Return Entry Roll and the
parallel Missing Address Needed Return Entry Roll. The tally is ad-
vanced by line 27, after the instruction on line 25 has stored the
name in the proper roll. Line 26 makes use of the fact that the index
] is being used throughout the compilation process to keep track of
machine-language addresses as they are used in the object program.
Since the current value of J is always identical to the address of the
next machine-language intruction to be generated, it is the proper

92 Machine-Independent Computer Programming

value to place in the roll which is used to maintain a record of in-
complete instructions. Also, since no new operand address will have
been found in this case, line 28 merely clears any previous one still
held by that noun.

Set Return Jump, the routine on lines 10 through 12, places the
needed computer operation code in the noun Function, and calls
upon the subroutine Insert Instruction, on line 30. The latter is a
general-purpose subroutine used by most of the generators. It com-
bines the Function, and the Index Designator if there is one, with
the Operand Address into a complete computer command or in-
struction for the object program. It then inserts this complete in-
struction into the next vacant cell of the machine-language program
which is being compiled.

After the return-jump instruction has been inserted, the routine
Set Return Jump calls upon the subroutine Find Next Symbol of
Example 41, in preparation for returning the process to the routine
called Advance in the main Compile Body program. Prior to doing
so, however, a test is made on lines 13 through 15 to see whether
or not the end of a comparison alternative has also been reached.
In that case a straight jump to a part of Generator 8 called Handle
Comparison will be made. If not, the process returns directly to the
routine Advance of Example 43.

If a given computer did not have a complete return-jump instruc-
tion in its repertoire, it would have been necessary to extend line 11
of Set Return Jump slightly. This will be illustrated for the case
in which only a straight-jump instruction is available. First, let all
subroutines be written or compiled such that the first instruction
contains a straight jump to an address which is unspecified, the
second command begins the subroutine itself, and the last instruc-
tion is a straight jump to the address of the subroutine’s own first
instruction. In that case the object program, rather than the com-
piler, would need to be set up to add the address to which the sub-
routine should return to the first instruction of the subroutine. This
could be achieved by compiling the following instructions:

1. Enter the working register with the contents of a cell in the

Generators 93

object program containing a jump instruction.

2. Add the contents of a cell in the object program which contains
the address for return.

3. Store the result in the first address of the subroutine.

4, Jump past the cells used as storage.

5. Jump to the subroutine address plus one.

The result might look like the program logic of Example 46, where
the entire example would replace line 11 of Example 45.

EXAMPLE 46.

Operand Address = Scratch Pad,
Clear and Add - Function,

J] + FOUR - Operand Address,
Insert Instruction,

ADD - Function,

] 4+ FOUR - Operand Address,
Insert Instruction,

Store Working Register - Function,
Scratch Pad = Operand Address,
Insert Instruction,

JUMP - Function,

J + THREE - Operand Address,
Insert Instruction,

JUMP - Function,

CLEAR - Operand Address,
Insert Instruction,

J+ TWO - [J],] + SET -],
JUMP - Function, _
Scratch Pad 4 SET - Operand Address,
Insert Instruction,

The operation of the example above infers, of course, that the addi-
tional nouns used would have been included in the noun list of

Example 44.
Generator 2, Generate Store Instructions

y P NS JURU PP SRR SN B o SRS T 5 SR U
E 4 vacnine-1 ncwpenaem bampurer r rogrammmg

O

Where the current operator is a right arrow and the next operator
is a comma or a semicolon, the requirement of the program indicates
that there must be generated the machine-language instruction
which stores the content of the working register into the cell
allocated to the noun specified as the operand. While this is quite
a simple operation, it would be even more simple if it were not for
the requirements of indexing or subscripting. Indexing can enflu-
ence Generator 2 in either of two ways. The first and most usual
way results from the fact that the noun which may be the operand
may have been subscripted. In that case, the Current Operator-Next
Operator combination arrow-left-bracket would have been encoun-
tered, and the process would have gone to Generator 7. In Gen-
erator 7 the proper value of the index would have been placed in
the Index Designator, the following right bracket would have been
cleared, and the comma or semicolon substituted for the Next Op-
erator. Only after that would the Find Generator routine have sent
the process to Generator 2. Since the Index Designator would have
been properly set, no difficulties would have been encountered, and
no special action would have been required.

However, the second way in which indexing may affect Gen-
erator 2 is much more direct, and does require special action. It
may be that the operand is itself an index, instead of a noun. If so,
the Operand Buffer will not coincide with any name in the noun
list, and a different instruction will be required in the object

program.

While the implementation of indexing is somewhat more difficult
on computers which do not have index registers, called B-Registers
or B-Boxes, this particular problem does not arise with them. In-
stead, the letters I, J, K, L, M, and N must always be treated by the
compiler as nouns, and it must automatically enter them into the
noun list itself.

The noun list and program logic of Generator 2 is given in Exam-
ple 47, while two of the subroutines which it and other generators
employ are given separately in Examples 48 and 49.

Generators” 95

ExampLE 47.

Store Working Register — 15 030 00000,
Store Index — 12 070 00000s,

Index Flag,

Index Entry Position;

Generator 2: 1
Search Noun Roll, 2
if Index Flag — SET: Store The Index. 3
if not, Store In Noun. 4

Store The Index: 5
Obtain Index Entry, 6
Store Index -+ Index Entry Position - Function, 7
CLEAR - Gperand Address, 8
Finish 2nd Generator. 9

Store In Noun: 10
Store Working Register > Function, 11

Finish 2nd Generator: 12
Insert Instruction, 13
Find Next Symbol, 14
if Comparison Flag = SET: ; 15
if not, Advance. 16
if Next Operator = SEMIColon: Handle Comparison. 17
if not, Advance. - 18

The first two nouns of Example 47 are the only machine-language
instruction codes required. The noun I ndex Flag is set at either zero
or one by the subroutine called Search Noun Roll. A one indicates
that the operand is indeed an index, while a zero indicates that it is
a noun. The noun Index Entry Position is used by the subroutine
called Obtain Index Entry in conjunction with the Store Index in-
struction. It is applicable only to those computers having index
registers as a component of their circuitry.

Computers without index registers do not need to have the func-
tion implemented at all, since in those computers a compiler does
not have to differentiate between a noun and an index. It is in-

9 Machine-Independent Computer Programming

teresting to note at this point that the use of an index as a pronoun
is quite different from its use as an adjective or adverb.

Line 2 of Generator 2 calls upon the subroutine Search Noun Roll
much as Generator 1 used the one called Searck Return Entry Roll.
Upon returning from the subroutine, the address associated with the
noun whose name is in the Operand Buffer will have been placed
in the Operand Address. If the operand was an index, on the other
hand, the Index Flag will have been set. Accordingly, the program
branches on lines 3 and 4. If the operand was an index, the routine
on lines 5 through 8 places the needed information in the noun
Function, and clears the operand address. It then transfers control
to the routine Finish 2nd Generator. In the more usual case, that of
a noun, the process goes directly from line 4 to lines 10 and 11, and
thence to Finish 2nd Generator.

The latter routine inserts the required instruction in the object
program and then calls upon the subroutine Find Next Symbol.
At this point it will, like Generator 1, perform a test to determine
whether or not the Next Operator also signals the termination of one
of the alternatives of a comparison. If so (again like Generator 1),
it goes directly to the part of Generator 8 called Handle Comparison.
If that is not the case, its task has been completed, and the process
is returned to the routine Advance.

The next two examples will show the details of the two new sub-
routines employed.

EXAMPLE 48.
Top Index = 15,
Low Index = §;
Search Noun Roll;
{ CLEAR - K,
CLEAR - Index F lag,
Check Noun Roll:
if Noun Name Roll[K] — Operand Buffer:
Noun Address Roll[K] — Operand Address,
Exit Search Noun Roll.
if not, ;

W ~1 4 UL = QW DO

Generators 97

if K < Nr of Nouns Named: K + SET - K, | 9
Check Noun Roll. 10

if not, CLEAR - Operand Address; 11
if Operand Buffer < Top Index: ; 12
if not, Exit Search Noun Roll. 13
if Low Index < Operand Buffer: SET - Index Flag; 14
if not, ; 15
Exit Search Noun Roll:,}.. 16

The subroutine Search Noun Roll of Example 48 is used by those
generators whose Current Operator-Next Operator combinations
imply that the intervening operand is a noun rather than a verb.

The two nouns Top Index and Low Index have been given values
corresponding to the numerical values of the letters H and O in
Table IV, in order that the index letters I, J, K, L, M, and N can be
identified. Lines 4 through 11 have been written to find the address
of the operand if it is a noun. If it is not, lines 12 through 15 deter-
mine whether or not the operand is an index, and set the Index Flag
accordingly.

EXAMPLE 49.
Index Entry Class = 00 100 00000s;
Obtain Index Entry:
{ Operand Buffer — Low Index = Scratch Pad,
Scratch Pad X Index Entry Class —
Index Entry Position,}..

B O DNk

The subroutine Obtain Index Entry of Example 49 is one which
is required for those computers having a positional notation for
specifying which index is to be used with the Enter Index opera-
tional code. By subtracting Low Index, or 8, from the numerical
value of the letter, the letter I becomes a 1, J becomes 2, and so
forth. Here again, this subroutine is not needed in compilers for
those computers which do not have index registers.

Generator 3. Straight Jumps or Unconditional Transfers

Whenever a punctuation symbol is the current operator and a
period is the next operator, a straight jump or unconditional transfer

98 Machine-Independent Computer Programming

is required. The only exception occurs when a double period, sig-
nifying the end of a program, is reached. In either case the routine
called Find Generator sends the process to Generator 3.

The nouns required for Generator 3 are shown in Example 50,
and the program logic in Example 51.

EXAMPLE 50.

JUMP = 61 000 00000s,

Stop Command = 61 400 00000s,

Entry Name Roll(250),

Entry Address Roll(250),

Nr of Entry Names,

Missing Entry Name Roll(250),

Missing Entry Address Needed Roll(250),
Nr of Missing Entry Names;

Two more machine-language operational codes are required in the
noun list. The first specifies a straight jump or unconditional trans-
fer, the second provides the computer stop instruction. In the same
way that Generator 1 required two sets of parallel lists for main-
taining a record of compiled and not-yet-compiled subroutine in-
formation, Generator 3 requires lists and count numbers for direct
entry point information. Accordingly, Nr of Enéry Names is used
to keep the count of the number of entries in both the Entry Name
Roll and its parallel Entry Address Roll. Similarly, Nr of Missing
Entry Names is used to maintain the record of entries in the Missing
Entry Name Roll and its parallel Missing Entry Address Needed
Roll.

Example 51 shows the details of the program logic by means of
which Generator 3 produces the required machine language for the
object program.

EXAMPLE 51.

Generator 3:
if Operand Buffer — CLEAR: Check Stop.
if not, ;
CLEAR - K,

e W o

Generators 99

Search Entry Roll: 5
if Entry Name Roll[K] = Operand Buffer: 6
Entry Address Roll[K] - Operand Address; 7
if not, Check Entry Roll. 8
Set Jump: 9
JUMP - Function, 10
Insert Instruction, 11
NOTE Comparison flag: 12
Find Next Symbol, 13
if Comparison Flag = SET: Handle Comparison. 14
if not, Advance. 15
Check Entry Roll: 16
if K < Nr of Entry Names: K 4+ SET - K, 17
Search Entry Roll. 18
if not, Generate Jump to Missing Address. 19
Check Stop: | 20
if Current Operator = Period: Generate Stop. 21
if not, NOTE Comparison Flag. 22
Generate Jump to Missing Address: 23
Nr of Missing Entry Names 4 SET - K, 24
K - Nr of Missing Entry Names, 25
Operand Buffer > Missing Entry Name Roll[K], 26
J] = Missing Entry Address Needed Roll[X], 27
-CLEAR - Operand Address, 28
Set Jump. 29
Generate Stop: 30
Stop Command -> [J], DBUG.. 31

In addition to the generation of jump instructions, Generator 3
must handle the case of a double period indicating the termination
of a program. Since it is legal to have two periods as adjacent op-
erators in either a comparison statement or a switch, as well as
in a termination signal, these cases must be separated.

The difference in usage can be determined on the basis of the
presence or absence of an operand between periods. Accordingly,
the first comparison (line 2 of Example 51) determines this point.

100 Machine-Independent Computer Programming

At this stage, however, the Current Operator may have been some
punctuation other than a period, even though the Next Operator
could be only a period. Consequently, if the comparison of line 2 is
found to be true, the process is directed to Check Stop on line 20.

If the Operand Buffer had contained the name of an entry point,
or verb, in the test on line 2, then the process would have continued
to Search Entry Roll on line 5.. The routine Search Entry Roll on
lines 5 through 8, together with Check Entry Roll on lines 16
through 19, determines whether or not the eniry point to which the
jump is required is one which has already been compiled.

If it is, then line 6 will find its name in the Entry Roll, and line 7
will transfer the address at which it was compiled in the object
program to the noun Operand Address, and the process will go to
the routine Set Jump. If it has not yet been compiled, this fact will
be apparent after all names in the entry roll have been examined,
and line 19 will direct the process to the routine called Generate
Jump to Missing Address.

This routine, on lines 23 through 29, has two functions. First, it
adds the name of the uncompiled entry point tothe Missing Entry
Name Roll, so that when that entry point is finally being compiled
later on, the generator compiling it can determine that there was
a prior need for it. Second, this routine places the object program
address at which the entry point was needed,], in the parallel list
called Missing Entry Address Needed Roll. After clearing the
Operand Address of any prior entry, the process goes from line 29
to the entry point called Set Jump of line 9.

Set Jump calls upon the subroutine Insert Instruction to complete
the compilation, and prepares to transfer the process back to the
main flow at Advance. Before doing so, however, it is necessary to
determine whether or not the Next Operator, a period, could also
have signaled the end of an alternative in a comparison statement.
If so, the Comparison Flag will have been set, and the process will
transfer from Generator 3 to the routine Handle Comparison, which
is a part of Generator 8.

Generators 101

Generator 4. Generate an Entry Point or Label

Punctuation followed by a colon indicates one of two possibili-
ties—either a direct entry point or a subroutine is being defined.

These two cannot be distinguished at this point, but depend upon
the next symbol. If the symbol following the colon is a left brace,
then a subroutine is being defined. Conversely, if the symbol is
anything but a left brace, a direct entry point is being defined. In
either case, the Find Generator routine will have sent the process
to Generator 4. Generator 4, as shown in Example 52, must there-
fore test the next symbol. If a subroutine is involved, the process is
directed away from Generator 4 and sent immediately to Generator
6. The test is shown on lines 3 through 5.

EXAMPLE D2.

Generator 4: 1
Find Next Symbol, 2
if Symbol = LEFT Brace: 3

LEFT Brace = Next Operator, 4

go to Generator 6. S

if not, ; 6
Nr of Entry Names = K, 7
Operand Buffer - Entry Name Roll[K], 8
] = Entry Address Roll[K], 9
K + SET -> Nr of Entry Names, 10
CLEAR - L, 11
Check Previously Needed Entry Names: 12
if Missing Entry Name Roll[L.] = Operand Buffer: 13
Missing Entry Address Needed Roll[L] = M, 14
M] 4 J > [M], 15
CLEAR - Missing Entry Name Roll[L]; 16

if not, ; 17
if L. < Nr of Missing Entry Names: L. + SET - L, 18
Check Previously Needed Entry Names. 19

if not, ; 20

Advance. 21

102 Machine-Independent Computer Programming

For direct-entry points, line 7 inserts the proper location of the
first vacant space in the parallel lists into the index K. Line 8 then
stores the name of the entry point in the Entry Name Roll.

Line 9 stores the value of |, the address of the point in the object
program at which the entry point is being defined, into the cor-
responding cell of the Entry Address Roll.

Obviously it is possible that the entry point which is being defined
by Generator 4 might already have been called upon by an earlier
part of the program, such that Generator 3 would have compiled an
incomplete jump to it. Consequently, it is necessary at this point to
examine the Missing Entry Name Roll to see if this might have
happened. Lines 12 through 19 accomplish this task, and also com-
plete any unfinished jump instructions which are discovered. In
particular, line 14 inserts the address of the incomplete jump in-
struction into the index M. Since the only element which that
instruction lacked was the address to which to jump, an address that
has now established as the present value of J, line 15 completes the
correction. Since the entry point may have been employed more
than once, the entire Missing Entry Name Roll is scanned before
returning to the major routine Advance.

It is interesting to note that this generator does not produce any
new machine-language instructions, even though it may complete
several earlier ones. Consequently it follows that the number of
instructions in an object program will not be increased by a liberal
use of entry points or labels in the original program.

Generator 5, Terminating Subroutines

A right brace as a Next Operator signifies the end of a subroutine.
Since the basic or Bootstrap compiler allows for only one sub-
routine at a time, and does not need or allow for For Statements or
loops, the generator required is very simple. Example 53 shows
the program logic of Generator 5. No new nouns are required.

EXAMPLE 53.

Generator 5: 1
Nr of Return Entry Names —> K, 2
Return Entry Address Roll[K] - Operand Address, 3

Generators 103

JUMP - Function,
Insert Instruction,
Find Next Symbol,
Advance.

~1 O Ut W=

The last subroutine to have been initiated must be the one that
is being terminated whenever this generator is called upon. There-
fore its name must be the last entry in the Return Entry Name Roll,
and the Nr of Return Entry Names must be its item index in that
list and in the Return Entry Address Roll as well. The latter item
must be the object program address of the first instruction in the
subroutine, which is the location of the instruction that Generator 6
would have produced to return control to the main program.
Therefore it is the point to which the last instruction in the com-
piled subroutine must jump. Line 2 of the generator therefore
obtains the item number of the last entry, line 3 transfers the address
of that entry to the Operand Address, and lines 4 through 7 com-
plete the instruction, insert it into the object program, and then
return the process to the routine Advance.

Whenever it is desired to extend the basic or Bootstrap compiler
to allow for the compilation of an unlimited number : ¢ subroutines
written within other subroutines, it is only necessary tc -eplace line

2 of Example 53 with:
Nr of Return Entry Names — Nr of Subroutines

Being Compiled - K,
Nr of Subroutines Being Compiled — SET -
Nr of Subroutines Being Compiled,

and to add the lines:

Nr of Subroutines Being Compiled 4+ SET -
Nr of Subroutines Being Compiled,

to Generator 6. In addition, it would also be necessary to make
certain that an initial value of minus one was entered as the value
of the noun Nr of Subroutines Being Compiled at the beginning of
compilation.

Further, when a generator for For Statements or loop control is

104 Machine-Independent Computer Programming

to be added, a Loop Flag must be included. The Loop Flag should
be increased by one upon the initiation of compilation of each loop.
Since subroutines may be called upon from within a loop, but are
never defined inside one, the test:

if Loop Flag s« CLEAR:

would be sufficient to direct the process away from generator 5 to
the loop generator.

Generator 6, Generating Subroutine Entrances

Generator 6, which initiates subroutines or re-entry points, is not
reached directly from the Find Generator routine, but instead
from Generator 4, after it has been determined that a re-entry,
rather than a direct-entry point is involved.

The program for Generator 6 is shown in the following example.

EXAMPLE H4.

Generator 6: 1
Nr of Return Entry Names 4 SET - L, 2
L - Nr of Return Entry Names, 3
Operand Buffer - Return Entry Name Roll[L], 4
J = Return Entry Address Roll[L], 5
CLEAR - K, 6

Check Missing Return Entry Names: 7
if Missing Name Return Entry Roll[K] = Operand Buffer: 8
Missing Address Needed Return Entry Roll[K] = M, 9
M] 4] = [M], 10
CLEAR - Missing Name Return Entry Roll[K]; 11

if not, ; 12
if K < Nr of Missing Return Entry Names: 13
K + SET - K, Check Missing Return Entry Names. 14

if not, ; 15
JUMP - [J1,] + SET -], 16
Find Next Symbol, 17
Advance. 18

The first operation performed by this generator is that of up-

Generators 105

dating the Return Entry Name Roll and the corresponding Return
Entry Address Roll, which it does on lines 2 through 5.

The other operation to be performed is that of searching the
Missing Return Entry Name Roll in order to find out whether or
not the subroutine being compiled at this point has been called
upon earlier in the object program. If so, line 9 finds the address
of the return-jump instruction which could not have included the
address of the subroutine. Line 10 corrects the omission. Line 11
is included only to assist with program testing after compilation, at
which time the Missing Name Return Entry Roll should be com-
pletely clear. Lines 13 and 14 merely make certain that the roll
is completely scanned.

Instead of making the usual call upon the subroutine Insert In-
struction to place the needed jump command in the first instruc-
tion of the subroutine being compiled, line 16 performs this opera-
tion directly. This is permissible since subscripting is not involved,
and no operand address is needed.

Generator 7, Subscripting

Generator 7, which handles subscripting, depends in large meas-
ure upon whether or not the computer for which it is being im-.
plemented has index registers. If so, it can be written quite
simply, as shown in the following example.

EXAMPLE 55.
Index Position — 100 00000s;
Generator 7:
Find Next Symbol,
Symbol — Low Index —> Scratch Pad,
Scratch Pad X Index Position = Index Designator,
Find Next Symbol,
Find Next Symbol,
Current Operator - Next Operator,

0 ~1 O Ut i WD

Advance Again.

In Example 55, advantage is taken of the fact that the only
symbol which can legally follow a left bracket is one of the letters

d

106 fachine-Independent Computer Programming
I,], K, L, M, or N. As can be seen in Table V, their numerical
values are 9, 10, 11, 12, 13, and 14. Since the noun Low Index
has been given the value 8, subtracting it from the index in line 3
gives a numerical value corresponding to one of the index registers
in the computer itself. In order to shift it to the required position
before adding it to a machine-language instruction, line 4 multi-
plies it by Index Position, which must contain a 1 in the proper
position, with all other digits zero. The result is then stored in
the Index Designator for use by the subroutine Insert Instruction.
Since the basic compiler permits only a single letter as an index,
the next symbol, as obtained by line 5, can be nothing else than a
right bracket. Because the right bracket yields no information in
this case it is ignored, and line 6 calls up the next symbol.

At this point the generator has performed its function of sub-
scripting, but the operand in the original triplet has not been acted
upon. By the simple expedient of removing all traces of both
brackets, the process will be in condition to treat the modified
triplet made up of the original Current Operator, the original
Operand, and a new Next Operator. However, because the routine
Advance would eliminate the original Current Operator by shifting
the Next Operator to that word, line 7 cancels that impending
operation. Further, since a direct jump to Advance would be fol-
lowed by a clearing of the Operand Buffer, the jump is made
instead to the routine Advance Again.

The modification which would be required to permit a constant
to be used as an index is quite simple. Between lines 2 and 3 of
Example 55 the following test might be inserted:

if Symbol > 26: Treat Increment.
if not, ;

and the entry label:
Complete 7th Generator:

would be needed between lines 5 and 6. Three more lines:

Treat Increment:
Read A Number, NumbeR - Address Increment,

Generators 107

Complete 7th Generator.

would be needed at the end. In addition, the subroutine Insert
Instruction of Example 45 would need to have the term Address
Increment added to Instruction For Object Program, thereby adding
it to Operand Address before storing the instruction in [J]. Address
Increment should subsequently be cleared.

Generator 8, Set Comparison

Basically, when the relational or comparison generator, Generator
8, is called upon it must generate the machine language that will
enter the working register with the term on the left of the com-
parison symbol and subtract it from the term on the right. Then,
depending upon which comparison symbol was used, it must gen-
erate the machine language that will continue with the true alter-
native for one state of the working register, but jump around the
true alternative for another. Having done this, it should return
the process to Advance for standard compilation of all expressions
constituting the true alternative. After the end of the true alter-
native has been reached, either by Generator 1 or by Generator 3,
Generator 8 must be called upon again to generate a jump around
the false alternative. Thereupon the process should be returned
once more to Advance for regular compilation of the expressions
which constitute the false alternative. When the end of the false
alternative has been reached by Generator 1 or 3, Generator 8
must again be called upon, this time in order to complete the
instruction which will jump the object program around the false
alternative.

The noun list for this generator is given in Example 56, where
it can be seen that five additional computer operational codes have
been required. These are the codes for entering a number into the
working register, for adding an index, for subtracting, and for jump-
ing or branching upon finding either a positive or a nonzero register.
In addition, the object program locations at which jump commands
must be inserted before the destinations of the jumps are known
must all be preserved. The nouns False Comparison Entry Needed

108 Machine-independent Computer Programming

and Continue Comparison Entry Needed have been defined for this
purpose.

EXAMPLE 56.

Clear And Add = 11 030 00000,

Add Index = 11 000 00000,

SUBtract = 21 030 00000,

Jump With Nonzero Register — 60 500 00000,
Jump With Positive Register — 60 600 00000,
False Comparison Entry Needed,

Continue Comparison Entry Needed;

The program logic for the complete comparison generator is
given in Example 57.

EXAMPLE 57.

Generator §: 1
Search Noun Roll, 2
if Index Flag = SET: Use Index. 3
if not, Use Noun. 4

Use Index: 5
Operand Buffer — Low Index -> Scratch Pad, 6
Scratch Pad X Index Position — Index Designator, 7
Add Index — Function, 8
CLEAR - Index Flag, 9
CLEAR - Operand Address, 10
Continue 8th Generator. 11

Use Noun: 12
Clear And Add - Function, 13

Continue 8th Generator: 14
Insert Instruction, 15
Find Next Symbol, 16
Read The Operand, 17
Next Operator = Current Operator, 18
Symbol = Next Operator, 19
Search Noun Roll, 20

Generators 109

SUBtract = Function, 21
Insert Instruction, 22

J = False Comparison Entry Needed, 23
SET—> Comparison Flag, 24
it Current Operator = EQUAL: Set Equal Comparison. 25
if not, Set Less-Than Comparison. 26
Set Equal Comparison: 27
Jump With Nonzero Register = []], 28
] + SET > J, 29
Find Next Symbol, 30
Advance. 31
Handle Comparison: 32
if False Comparison Entry Needed = CLEAR: - 33
Set Continue Comparison. 34

if not, Set False Comparison. 35
Set False Comparison: 36
False Comparison Entry Needed = M, 37
CLEAR — False Comparison Entry Needed, 38

] = Continue Comparison Entry Needed, 39
JUMP - [J],] + SET - J, 40
M] +] = [M], 41
Advance. 42
Set Continue Comparison: 43
Continue Comparison Entry Needed - M, 44
CLEAR - Continue Comparison Entry Needed, 45
CLEAR - Comparison Flag, 46
M] +] > [M], 47
Advance. 48
Set Less Than Comparison: 49
Jump With Positive Register — [J1, 50
J + SET -], 51
Find Next Symbol, 52
Advance. 53

Generator 8, by calling upon the routine named Search The Noun
Roll in line 2, determines whether or not the operand to the left

of the comparison sign is a normal noun, or instead is a lone index.
If the operand had been a noun which was subscripted by an index,
the Index Designator would have been set by Generator 7. If it
is a noun, then the comparison on lines 3 and 4 will send the
process to the routine Use Noun on line 12, instead of to the routine
Use Index on line 5. If it is an index, as, for instance, line 7 of
Example 38 is, then it will be in the Operand Buffer when the
process reaches line 6. At this stage the processing is identical to
that of lines 3 and 4 of Example 55, where -the numerical value of
the index is obtained, shifted, and placed in the Index Designator.
Line 8 places the proper machine operation code in Function, lines
9 and 10 clear the Index Flag and the unneeded Operand Address,
and the process shifts to line 14.

Whenever the left side of the comparison is a noun, on the
other hand, line 13 alone accomplishes the needed task, by placing
a Clear And Add machine operation code in the noun Function.
The call upon the subroutine Insert Instruction on line 15 then
places whichever instruction had been stored in Function directly
into the program being compiled. As a result, the object program
will place the term on the left of the comparison sign in the working
register.

At this point most generators would return to Advance, because
a new Current Operator-Operand-Next Operator combination is to
be treated. In this case, however, the next combination will still be
a part of the If Statement, so Generator 8 continues to treat it.
Line 17 calls upon the subroutine Read The Operand of Example
43, which will obtain the right-hand term of the comparison. Line
18 and 19 adjust the Current Operator-Next Operator combination,
which at this stage must hold the colon as the Next Operator.

The machine-language instruction which will subtract the right-
hand term from the left-hand term is compiled by the directions
of lines 20, 21, and 22. The jump instruction which the object pro-
gram will need as its next command will not yet have been deter-
mined, since it will be a conditional jump and will depend upon
which comparison symbol was used. The location at which it must
be inserted is obviously given by the current value of J. Accord-

Generators 111

ingly, it will be saved for future use by line 23. Line 24 sets the
indicator so that Generators 1 and 3 can determine whether or not
any expression they compile is inside a comparison statement.

The type of comparison being compiled is determined by the test
of lines 25 and 26, since only two possibilities were provided for
in Table V. For those cases in which the equality sign was used,
the comparative statement will always be true whenever the work-
ing register is reduced to zero by subtracting one term from the
other. Because the action to be taken in the true case will follow
immediately, it must be jumped over in the false case. Therefore
line 28 is written to insert the Jump With Non Zero Register com-
mand into the object program. The address to which the jump will
be made will have to be inserted later. Meanwhile, the process
returns to Advance, in order that the material which constitutes the
orders to be followed in the true case can be compiled in the
standard way.

In the event that the Less Than symbol had appeared in the com-
parison, lines 49 through 53 would have been used instead of those
of lines 27 through 31. In either case the process returns to
Advance after inserting two complete and one incomplete machine-
language instructions into the object program, and after setting the
Comparison Flag in the compiler.

After compiling the true alternative of the comparison with
whichever generators are needed, the process will eventually en-
counter either a period or a semicolon. At that time it will return
to the routine Handle Comparison which starts on line 32. It will
also return to this routine at the completion of the false alternative,
so this routine must be written in such a way that it can determine
which case is involved. This is accomplished with the test on line
33. The noun False Comparison Entry Needed was used on line
23 to hold a needed address. If that address has not yet been used,
then it follows that the first termination is the one being encoun-
tered, so the process is directed to line 36. If the address has
already been used and the noun cleared, then the second termi-
nation has been reached, so the process is transferred to line 43.

The routine called Set False Comparison on line 36 places the
address of the object program instruction which jumped over the
true alternative in the tally M with line 37, and then clears the
noun which held it with line 38. At this stage the next instruction
to be compiled should be one which transfers the object program
around the false alternative. Since the false alternative cannot as
yet have been compiled, its length cannot yet be known and the
address to which the jump should be made cannot yet be known
either. The address from which the jump will be made is known,
however, because it is the current value of the tally J. Line 39
therefore preserves it, while line 40 inserts an incomplete jump
instruction and advances J.

At this point, | holds the address to which the object program
should jump if the comparison were false, and the tally M- holds
the address from which that jump should be made. Accordingly,
the logic on line 47 takes the incomplete jump instruction, adds
the previously missing address to it, and returns it to its original
location. Thereupon, the process leaves Generator 8 and returns
to the routine Advance.

Again, after the other generators have compiled all of that part
of the program constituting the false alternative, a period or a
semciolon will be encountered. The process will then return once
more to the routine Handle Comparison in Generator 8. This time,
though, the False Comparison Entry Needed noun will already
have been cleared, and the process will therefore go to the routine
named Set Continue Comparison starting on line 43.

At this stage, the entire comparison or If Statement will have
been compiled, with the exception of the incomplete instruction
intended to transfer the object program from the end of that portion
constituting the true alternative to the first instruction after the
last instruction of the false alternative. Lines 44 through 47 com-
plete that prior jump instruction, and clear the noun used to hold
its address. Also, since the comparison statement is now com-
pletely compiled, the Comparison Flag is cleared, and the process
returned to Advance.

Generator 8 as written in this example does not produce as

Generators 113

efficient an object program as possible, for it does not check to see
whether or not the true alternative ends with a period. If it does,
then the jump around the false alternative is obviously never going

to be used, and should be suppressed.

Generator 9, Enter the Working Register

Whenever a punctuation type operator is followed by an arith-
metic operator, the object program must clear the working register
and insert the value held by the operand. If the operand is an index,
then the Add Index computer operation code must be generated.
This requires that the numerical designation of the particular index
be found and placed in the index designator. The program logic
for this generator is given in the following example.

EXAMPLE 5S8.

[
(o))

Generator 9: 1
Search Noun Roll, 2
if Index Flag — SET: Bring From Index. 3
if not, Bring From Noun. 4

Bring From Index: 5
Operand Buffer — Low Index = Scratch Pad, 6
Scratch Pad X Index Position = Index Designator, 7
Add Index = Function, 8
CLEAR > Operand Address, 9
CLEAR - Index Flag, 10
Finish 9th Generator. 11

Bring From Noun: 12
Clear And Add - Function, 13

Finish 9th Generator: 14
Insert Instruction, 15
Find Next Symbol,

Advance. 17

The six lines, 1, 2, 13, 15, 16, and 17 would have sufficed for this
generator if the indices had been treated as nouns. It is only in
those cases in which a computer has index registers that they are

:
Programming

!
~
o

171 A4 SOy N SV SR R, ~a
114 LVILLCIH'ILU-I.'IL(LUIJ(G'ILLLU‘I

treated separately, in order that the full speed of the computer can
be utilized.

Generator 10, Transfer Machine Language

Whenever a punctuation symbol is followed by an octal symbol,
two possibilities exist. Either an octal number is to be entered into
the working register, or a machine-language instruction has been
encountered in the source-language program. To differentiate be-
tween these two possibilities, it is necessary to examine the next
symbol. If the next symbol is an operator, then an octal number
is to be treated. If instead the next symbol is a letter or a number,
then a machine-language instruction has been found. In the basic
compiler of this example, however, arabic numerals have not been
used in the program logic, so that Generator 10 does not need to
include such a test. Instead, it can proceed immediately upon the
assumption that a machine-language instruction has been found in
the source program, as it does in Example 59.

The task which this generator must perform is obviously so
simple that it might be expected that the generator itself would
be trivial. All that is required of it is to effect the transfer, un-
changed, of a set of digits from the source program to the object
program, and to find and add the address of a noun or verb if one
has been used. Strangely enough, the first of these two requirements
necessitates as many instructions as the second. The reason for this
is apparent when one remembers that both the paper-tape code for
characters and the internal compiler code for symbols must allocate
two digits for each character or symbol. Consequently, if a source
program contained a machine language instruction such as:

, 60 5315 NAME,

then the Operand Buffer would not actually contain the number
60531 when the Current Operator-Next Operator combination of
COMMA-SUBS was reached, but instead it would contain the
internal compiler code version of this operand. From Table IV it
can be seen that the operand buffer in this case would actually hold
the number 41 33 40 36 34, where the code value of zero is 33.
Even after a 33 is subtracted from each pair of digits, the number

Generators 115

still is 06 00 05 03 01. A further complication, first noted in the
discussion of load programs, arises in those computers which treat
the highest order bit as a sign bit. In this generator, however, a
different method of handling this problem will be employed.

EXAMPLE 39.
Machine Language Factor = 1 00000s,
Negative Mask = 40 00 00 00 00s,
Correction Mask = 05 00 00 00 00s,
Final Mask = 00 33 33 33 33;,
Positive Mask — 33 33 33 33 33,
Hundreds(5) = 1, 1005, 100005, 1000000g, 1000000005,

Tens(5) = 1, 10g, 100g, 10005, 10000s;

Generator 10: 1
it Operand Buffer < CLEAR: 2
Operand Buffer — Negative Mask = Operand Buffer, 3
Operand Buffer 4 Correction Mask = Operand Buffer, 4
Operand Buffer — Final Mask = Operand Buffer; 5

if not, Operand Buffer — Positive Mask = Operand Buffer; 6
Symbols Per Word = M, 7
CLEAR - N, 8
Continue 10th Generator: 9
M — SET - M, 10
Hundreds[M] = Scratch Pad, 11
Operand Buffer / Scratch Pad - Scratch Pad, 12
Tens[M] X Scratch Pad - L, 13
L 4+ N > N, 14
Hundreds[M] X Scratch Pad —> Scratch Pad, 15
Operand Buffer — Scratch Pad - Operand Buffer, 16
‘if M = CLEAR: ; 17
if not, Continue 10th Generator. 18
N = Operand Buffer, 19

Operand Buffer X Machine Language Factor - Function, 20
Find Next Symbol, 21
if Symbol < A NumbeR: 22

Read The Operand, 23

116 Machine-Independent Compuier Programming

Search Noun Roll, ‘ 24
Search Entry Roll 1; 25

if not, Read A Number, 26
NumbeR — Operand Address; 27
Insert Instruction, 28
Symbol = Next Operator, 29
Find Next Symbol, 30
Advance. 31
Search Entry Roll 1: 32
{CLEAR - K, 33
Search Entry Roll 2: 34
if Entry Name Roll[K] = Operand Buffer: 35
Entry Address Roll[K] = Operand Address, 36

Exit Search Entry Roll. 37

if not, ; 38

it K < Number of Entry Names: 39

K + SET = K, Search Entry Roll 2. 40

if not, ; 41
Exit Search Entry Roll:,}, 42

The noun list contains one mask which consists of as many 33’s
as there are symbols in a word, and three other partial masks to
handle the negative word problem.

Since it would seem more than mildly absurd to insist upon too
great a degree of machine independence in this particular generator,
the tables of tens and hundreds in the noun list are not computed
by the compiler, even though it would have been quite simple to
have arranged it so.

The first 6 lines of Example 59 are required to convert the initial
contents of the Operand Buffer back from internal compiler code
to the required numerical values, but these are still spaced twice as
far apart as they should be. It is interesting to note that if the
problem of negative values were not present, line 6 alone would
have sufficed for this operation.

In order to repack a number such as 06 00 05 03 01 into the
required form, 60531, the instructions on lines 7 through 19 are

Generators 117

used. In this area, the tallies I. and N are merelv used as addi-
tional scratch pads, a practice which would not be adequate for
any computer in which the word length exeeeded twice the length
of its index registers.

Line 20 merely serves to shift the machine-language instruction
into its required position for insertion into the object program.

Lines 21 and 22 examine the first symbol of the machine-language
operand as it appears in the source language. If this operand is also
in pure machine language, then it will of course be a number, and
lines 26 and 27 will place it in the Operand Address. 1f the Oper-
and is a name, the call on the subroutine Read The Operand of line
23 will place it in the Operand Buffer. Since it may be either a
noun or a verb, both the noun roll and the entry roll must be
searched for its address. Looking back at Generator 3, it is seen
that the routine Search Entry Roll included there was not written
as a subroutine, hence it is not available here. Consequently, the
subroutine on lines 32 through 42 must be included. By this time
the student should be able to simplify Generator 3 by substituting

one call upon the subroutine and a single test for success for all
of the material on the eight lines; 5, 6, 7, 8, 16, 17, 18 and 19 of

Example 51.

Returning to Example 59, it should be apparent that by the time
line 28 is reached the complete machine-language instruction will
be contained in the two parts, Function and Operand Address,
regardless of the form in which it was originally given.

Because both the subroutines Read A Number and Read The
Operand terminate with the next operator in the word Symbol, this
generator actually extends its coverage beyond the simple Current
Operator-Next Operator combination. Lines 29 and 30 are required
to compensate for this fact, before line 31 returns the process to the
main stream of the compilation process.

It is perhaps of interest to note that the primary aim of most
assemblers, which is to keep track of memory locations, or ad-
dresses, could be accomplished with the Load Program, the Proc-
ess The Noun List program, and the single generator of this example.

118 Machine-Independent Computer Programming

Generator 11, Addition

Whenever the plus operator is followed by a right arrow, the
value of the operand is to be added to the value already in the
working register. The simple logic required is shown in the fol-
lowing example.

EXAMPLE 60.

FOUR = 4,
ADD = 20 030 00000s;

Generator 11: 1
Search Noun Roll, 2
if Index Flag = SET: go to Generator 11A. 3
if not, ; 4
ADD - Function, 5
Insert Instruction, 6
Find Next Symbol, 7
Advance. 8

Generator 11A: 9
Store Working Register = Function, 10
J + FOUR - Operand Address, 11
Insert Instruction, 12
Operand Buffer — Low Index —> Scratch Pad, 13
Scratch Pad X Index Position = Scratch Pad, 14
Add Index 4 Scratch Pad — Function, 15
CLEAR - Operand Address, 16
Insert Instruction, 17
ADD - Function, 18
J + TWO - Operand Address, 19
Insert Instruction, 20
JUMP - Function, 21
J + TWO - Operand Address, 22
Insert Instruction, 23
] + SET -], 24
Find Next Symbol, 25
Advance., 26

Generators 119

For the simple case in which the operand is a noun, lines 2, 5,
and 6 suffice to compile the single machine-language instruction
required.

If the operand is an index, however, several instructions will be
needed, unless, of course, the repertoire of the computer contains
an instruction which will add the contents of an index directly to
the contents of a working register. Since most of them do not, it
is usually necessary to store the contents of the working register
temporarily somewhere in the object program. This is done to
allow the object program itself to bring in the contents of the index
register.

Lines 10, 11, and 12 therefore provide the object program in-
struction which will store the current contents of the working
register in a cell which is four cells ahead of the instruction. The
next object program instruction, compiled by lines 13 through 17,
will transfer the contents of the proper index register to the work-
ing register. Lines 18, 19, and 20 then compile the instruction
which will add the previous contents of the working register as
stored in the program ahead, to the new contents. A jump over the
temporary storage cell in the object program is then provided by
lines 21, 22, and 23. Since no instruction is inserted where the cell
is reserved for temporary storage, the object program instruction
counter, |, must be advanced separately, as in line 24. Thereupon,
the process is complete and the flow returns to the routine Advance.

Generator 12, Subtraction

The CO-NO combination of MINUS-ARROW calls for the com-
pilation of a simple subtract instruction. Example 61 shows the few
details required.

EXAMPLE 61.
Generator 12:
Search Noun Roll,
SUBtract = Function,
Insert Instruction,
Find Next Symbol,
Advance.

D UL A W DD

120 Machine-Independent Computer Programming

Generator 13, Multiplication

The Current Operator-Next Operator combination of Multiply-
Right Arrow indicates that the object program instructions for
integer multiplication must be compiled. In some computers this
will require one or two shift instructions as well as the simple multi-
plication command. Such a case is illustrated in Example 62,
where the shift instructions are included in the noun list.

EXAMPLE 62.

MULTiply = 22 030 00000s,
Shift Before Dividing = 03 000 000364,
Shift After Dividing — 07 000 00036s;
Generator 13:

Shift Before. Dividing - []],

J + SET -],

Search Noun Roll,

MULTiply = Function,

Insert Instruction,

Shift After Dividing - []],

J + SET -],

Find Next Symbol,

Advance.

© 0 ~1 & U A~ W D -

—
<

Since the basic compiler being used in this example contained
no cases in which the operand in a multiplication was a lone index,
the program logic to handle that eventuality has not been included
in this generator. It would be basically the same as that of Gen-
erator 11 in Example 60, however.

Generator 14, Division

Generator 14 is called upon whenever a CO-NO combination of
Divide-Right Arrow is encountered by the Find Generator routine.
The program is virtually identical to that of multiplication in Ex-
ample 62. The details of the program logic are given in the follow-
ing example.

Generators 121

EXAMPLE 63.
DIVide = 23 030 00000s;

Generator 14: 1
Shift Before Dividing = [J], 2
] + SET —], 3
Search Noun Roll, 4
DIVide — Function, 5
Insert Instruction, 6
Shift After Dividing = [J1, 7
J + SET =], 8
Find Next Symbol, 9
Advance. 10

With the foregoing set of 14 generators, and the programs of
Chapters 5, 6, and 7, it is possible to compile programs, provided
that they are written in a sort of Basic Neliac or Basic Algol. More
importantly, however, this Basic Compiler will compile itself, and
has often done so. Consequently, any of the extensions to the simple
generators presented here which are desired can be written, com-

piled and added to the basic compiler.

CHAPTER 9

COMPILING COMPILERS
AND COMPILING SYSTEMS

The examples given in Chapters V through VIII, when combined,
constitute a compiler having the capacity for recompilation. That
is, if an initial version is once converted to machine code, either by
compilation on an existing compiler or by hand coding, then that-
version contains everything required to convert the combined ex-
amples directly to machine code. While the method by which this
is accomplished may be self-evident, it will be described here for
the sake of completeness.

At the same time, the process of describing the procedures that
must be followed in order to compile the basic compiler is intended
to reveal those points at which its limitations must be eliminated if
it is to develop into a complete compiler system. Since the machine
independence of the language in no way depends upon the manner
in which these system features are implemented, they will be pur-
sued only in general terms.

By examining Example 38 it can be seen that the basic compiler
can compile only one program at a time. This results from the fact
that no method has been provided to retain values of the tallies
I and J at the end of one program for use at the beginning of the
next. In compiling the first compiler this problem can be overcome

i24 Machine-Independeni Computer Programming

by combining all of the examples into one program. This requires
combining all noun lists into a single list at the beginning of the
program—an obvious disadvantage which would have to be elim-
inated before the compiler could become part of a system. On the
other hand, upon completion of compilation of a group of pro-
grams, many nouns will have new values, many lists will have new
entries, and areas of memory will contain symbol strings, word lists,
and the object programs themselves. If normal programming tech-
niques had been used in the writing of the compiler, all of these
values would have been reset to their original condition at the start
of any portion of the compiler which made use of them. In the case
of a compiler, however, this standard procedure would prevent the
compilation of the group of programs as a single unit. An addi-
tional routine is therefore needed. This routine, called Clear Name
Lists, should be entered before the routine Load Program, and
should be an optional starting point for the compiler itself. A

simple routine capable of serving this purpose is shown in Exam-
ple 64.

EXAMPLE 64,
Clear Name Lists:
for I = 0(1)249
{ 0 & Return Entry Name Roll[I] -
Return Entry Address Roll[l1] -
Missing Name Return Entry Roll[I] -
Missing Address Needed Return Entry Roll[l] -
Entry Name Roll[I] —
Entry Address Roll[I] -
Missing Entry Name Roll[I] -
Missing Entry Address Roll[I] },
0 = Nr of Return Entry Names —>
Nr of Missing Return Entry Names -
Nr of Entry Names -
Nr of Missing Entry Names,
for I = 10(1)2000{ 0 - [I1,},
Load Program.

Compiling Compilers And Compiler Systems 125

Returning to the process of compiling the compiler, let it be
assumed that a hand-coded version exists in one part of the com-
puter memory, and that it is sufficiently far removed from the areas
reserved for the Symbol String and the Object Program First Ad-
dress to avoid interference. Placing a paper-tape copy of the
merged examples to Chapters 5 through 8 in the paper-tape reader
and starting the hand-coded compiler will then result in a new
compiler being generated in an area beginning at the location speci-
fied by the contents of the noun Object Program First Address.

At this point it is always advisable to test the newly compiled
compiler by additional compilations. In order to do so, the values
of the nouns Symbol String First Address and Object Program First
Address must be changed, in order that the compiler not interfere
with itself.

Here two further limitations are encountered that must be elimi-
nated in a production type compiler. First, a method must be pro-
vided for readily changing the two addresses involved, preferably
under the control of a monitor type program. Second, and even
more obviously, there must be included a method whereby the com-
piler can tell the programmer the addresses at which it has com-
piled all of the nouns and verbs in his program.

Writing a routine which will accomplish this is quite simple, for
all that is required is to have the compiler print the contents of
the parallel list sets:

1. Noun Name Roll with Noun Address Roll
2. Return Entry Name Roll with Return Entry Address Roll
3. Entry Name Roll with Entry Address . Roll

The addition of an optional capability to alphabetize the lists
before printing them is a nice touch which has been implemented in
some compilers.

Returning again to the recompilation process, it is probably best
at this point to dump a copy of the basic compiler as compiled by
the hand-coded version and to retain this copy for comparison with
another copy to be compiled subsequently. Here again a feature

126 Machine-Independent Computer Programming
which should be incorporated into a production type compiler can
be noted. Despite the fact that the compilation process is so fast
that Neliac compilers are usually used in the “Compile-and-Run”
mode, there are conditions under which it is desirable to preserve
the machine-language code of a compiled program. Usually this is
done by transferring the program to either magnetic or punched
tape. Such a program is not intended to be printed, but only to be
reloaded into the computer. It should therefore employ a format
more economical of time than those required for printers or electric
typewriters. On punched tape the “Bioctal” format fits this require-
ment, and allows each frame to hold two octal digits, rather than
the one character per frame described in Chapter 5. A complete
compiler system therefore needs to include the optional ability to
issue compiled programs in some such form. Since they are not
to be printed, however, the system needs the further ability to
verify such outputs. A solution to this part of the problem which
is quite straightforward is to provide for a “Comparison Load,”
whereby any dumped program can be immediately reloaded, and
each word compared with the original word still held in memory.
If no discrepancies are found, then the “dump” is proved to be good.
After dumping a copy of the compiled basic compiler and altering
the Symbol String and Object Program addresses as required, the
basic compiler is again loaded and compiled, this time by the
compiled version of the compiler. Next, the compiler which has
just been used is wiped out, or replaced by zeros, in order to make
room for yet another compilation in precisely the same area. This
last compilation should yield an identical program in the area from
which the earlier program dump was made. Using a comparison
load with the previous dump will then confirm the fact that the
compiler reproduces itself perfectly, a quality which is necessary
(but not always sufficient) in establishing the fact that it contains
no logical errors. The basic compiler, as well as those presented
in the appendices, will do this because all of the errors which
originally prevented it have been removed. It is a truism of com-
puter programming, however, that all but the shortest programs do
contain initial errors. While the proper choice of a programming

Compiling Compilers And Compiler Systems 127

language tends to reduce the number of such initial errors dras-
tically, no language has yet been found which will completely elimi-
nate them.

Consequently, a compiler system should contain routines which
assist in detecting such errors. While the details will not be dis-
cussed here, the general requirements will be outlined. Looking
back at line 31 of Example 51, the generator which handles the
terminal double period, one finds a straight jump to the as yet
unwritten routine DBUG. This routine should examine the two
lists, Missing Entry Name Roll and Missing Name Return Entry
Roll. If there are any remaining entries in either roll, this routine
should print them together with the corresponding values from
the Missing Entry Address Needed Roll or the Missing Address
Needed Return Entry Roll. Further, the routine Find Generator
should be expanded to provide jumps to fault routines whenever
unimplemented or “illegal” Current Operator-Next Operator com-
binations are encountered in a program. While it is still a matter
of considerable uncertainty, it appears desirable to write these fault
routines in such a way that compilation does not cease upon find-
ing a fault. In that way additional errors can usually be detected
with the least possible use of computer time. Even if this technique
is not used, the fault routines should at least return the compiler to
the processing of any remaining uncompiled programs.

Having noted that a compiling system should assist in the de-
tection of errors, it is only natural to extend this to a provision for
assistance in their correction. One of the most frequent problems
encountered in this regard arises when a large major program, con-
sisting of many individual programs of a single page each, is to be
extended or altered. The “brute force” method of reloading all of
the original individual programs, and merely substituting for the
few to be altered, is much too cumbersome. Instead, a method
whereby an entire Symbol String can be preserved, with the
ability to add a new program, or even to substitute for an old one
of different length directly into the original Symbol String, has
proved to be a valuable facility. Another technique which has
proved useful in the correction of errors is a device for replacing

128 Machine-Independent Computer Programming

a small part of a single program, again making the replacement
directly into the Symbol String. This device operates in the
following way. First, a portion of the original program immedi-
ately prior to the material to be altered and sufficiently long to
be unique is copied on an input device. Then the corrected por-
tion is typed. Finally, a part of the material immediately following
the text to be corrected is also copied, again only enough to make
it unique. The routine which handles this type of correction merely
decodes the correction copy and searches the Symbol String for
the first identical part of the string. It then moves the remaining
Symbol String further along in memory, and adds the new material.
It then starts at the other end of the Symbol String and searches
for the part which is identical to the last line of the correction copy.
As soon as this is found, the string from that point to the end is
repacked. Even this correction technique has a disadvantage,
though, unless an additional feature is provided. The disadvan-
tage lies in the fact that after a few short corrections have been
made, the documentation deteriorates. Since the documentation
consists of the “hard copy” of the Neliac statement of the program
itself, this problem is most difficult to solve. However, a contribu-
tion of John E. White ** has provided a solution, by giving the
compiler the capability of reconverting a symbol string to a prop-
erly spaced and legible statement of the program in the Neliac
language. Appendix A itself shows the form in which the results
from this routine appear.

A further feature which is useful in a complete compiler system
is the capability of a program being compiled to call upon functions,
subroutines, routines or complete programs already compiled and
waiting at known addresses in the computer memory. This feature
can readily be added by writing a routine which will be entered
ahead of the Process Noun List Program, and which will accept only
a program in a special form consisting solely of the names and
addresses required. This feature can also be examined in the com-
piler given in Appendix A.

13 Written as a portion of Neliac C, in Appendix A.

CHAPTER 10

INPUT-OUTPUT

The subject of Input-Output includes the methods by means of
which compiled programs can be made to accept data from paper
tapes, punched cards, or magnetic tape and to issue answers to be
printed on high-speed printers or one-line electric typewriters. This
subject has purposely been avoided in earlier chapters for a num-
ber of reasons.

First of these is the basic fact that the pure Algol language
itself contains no input or output statements. Instead it tacitly
assumes that this area is inherently machine-dependent, and that
the best solution to the problem therefore lies in the use of special
subroutines or procedures hand-tailored to the peripheral equip-
ment available to an individual computer. This point of view has
sufficient merit to have been initially accepted and has now proven
reasonably satisfactory.

Further, many users prefer to adapt the input-output packages
from other systems. Therefore the Neliac system of input-output,
even though it is fundamentally machine-dependent, can scarcely
be considered as an integral part of the language.

The third reason for dealing with this area as a separate entity
arises because the basic compiler does not require it, and since
the group of generators required is fairly lengthy, their implemen-
tation is best left until after the basic compiler is well understood.

130 Machi

From the foregoing it should be apparent that it is not necessary
to master, or even to agree with, the material in this chapter in
order to understand, to use, and even to implement either Algol
or the Neliac language.

As explained in Chapter 4, one of the principles upon which the
Neliac language is based is the assumption that all inherent mean-
ing in the language itself should be restricted to symbolic operators
or combinations of such operators, and that the user of the lan-
guage should retain complete freedom to define any word to mean
precisely what he wants it to mean. F undamentally this principle
is maintained in the Neliac approach to a machine-independent
input-output system.

Output

Two basic types of output must be handled. First, there must
be an ability for the writer of a program to specify any words,
phrases, or symbols he wants to have printed verbatim. This has
been referred to as Form 1. Second, there must be an ability to
call for the printing of the numerical values of nouns and noun
arrays. This will be referred to as Form 2. While statements which
combine these two will be needed, they do not constitute a separate
class.

By giving a secondary meaning to the comparison symbols Less
Than, <, and Greater Than, >, and having that meaning depend
upon the context in which they are used, a type of quotation mark
can be realized. By using these quotation marks in various ways,
at least three different meanings can be conveyed.

An examination of Table V shows that the Current Operator-
Next Operator combination of punctuation followed by a left
brace is not used. Consequently, the Find Generator routine can be
extended slightly so that it will direct the flow to an additional
generator, called Generate Input Output.

If, for instance, a Form 1 statement such as:

A PIQIRIS I >>)

Input-Output 131

appeared in a program, the first two operators would be sufficient
to transfer the flow to the input-output generator. From that point
until the right brace was reached, all earlier rules regarding the
meanings of operators would not need to apply. The second CO-NO
combination, left brace-less than, would be adequate to signal that
the output portion of the generator was needed. At this point if
the fourth operator is another “less than” symbol, which signifies
that a verbatim printing is required, the process can then be directed
accordingly. If the fourth operator had not been a second “less
than” symbol, but instead had been part of a Form 2 statement,

such as:
A< TIU[V]W][]>)}
A< TOI T >}

or A < | TI0O=>]1 | U[0=>]1 t > }

the output of numerical values of nouns or arrays would have been
intended. In no case is it necessary to find an operand between
these first three operators.

In implementing Form 2 output statements, an additional impor-
tant problem must be solved. This is the problem of format, or
the manner in which numerical data are to be presented. This
involves more than the mere spacing of rows and columns of figures,
since even the number of digits in a number, the number system
to be used, and the choice of scientific or fixed-point notation
must be under the control of the user. In the Neliac output
system, the compiler must obtain this type of information from the
noun list, rather than from the output statement itself.

The following table illustrates the form into which numbers must
be converted depending upon the use of zeros in the noun list.
It can be noted that the number of zeros specifies the number of
digits to be printed, except that a single zero specifies not one,
but all available digits. There is no way to call for the printing
of a single digit directly, but since leading zeros are suppressed, it
can be done indirectly.

i32 Machine-Independent Compuier Programming

TABLE VI
DETERMINATION OF OUTPUT FORMAT FROM NOUN LIST ENTRIES
Form in Noun List Form in Print-Out Comments
= O, 1234567012345
B = 00, 454
C = 000, 3455
D = 0000, 7890 No decimal point or sign
E = 000.00, +931.72 Integer arithmetic with
arbitrary decimal point
F = 000.00 x O, +931.72 Floating point arithmetic

with true decimal point
G =0 X0, +4.1234567890 X 101 4123 Floating point
H = 0000 X 00, +.1234 x 101 423

Whether or not there should be suppression of the sign when it
is positive, and of leading zeros in a full octal number, appears
to be immaterial.

It is interesting to speculate upon the applicability of the tech-
nique of Table VI to that class of computers having no specified
word length. In such computers, might not the user specify his
desired precision in the same way, letting the compiler itself fur-
nish some standard whenever only single zeros were encountered?

Returning to the output statement itself, the compiler must also
respond to the notation used to specify line spacing, paging, and
termination of output. This notation consists of a comma, semi-
colon, and period, respectively, placed after the final quotation
mark and before the right brace.

Commas found in this position signal the need for the compiler
to generate the instructions for as many blank line feeds or carriage
returns as there are commas, while a semicolon signals the need to
advance to a new page. The period should be treated as an end-of-
file or as a signal to turn off equipment depending upon the cir-
cumstances.

Form 3 statements, used for input, reverse the order of the quo-

tation marks, as:
1> Y <}

and will be discussed later.,

Input-Output 133

Before studying the details of the process, it should be noted
that the absolute sign, | , which is used here to indicate spacing,
must have only a relative meaning, since the number of spaces on
a line of output will vary from one type of printing device to another.
Further, it should be apparent that if a given installation operates
with a policy of “off-line” use of printers, reached via magnetic
tape or other output from the computer itself, then the compiler
input-output generators should reflect this policy without concern-
ing the program writers using the system.

While it is not the intention here to examine input-output genera-
tors in great detail, they do tend to be sufficiently different from
others that a few techniques will be illustrated. In order to do so, the
basic compiler of the previous chapters will be utilized. Accord-
ingly, lines 53, 54, and 55 of Example 43 can be replaced by the
following text.

EXAMPLE 65.
Test A 21:
if Next Operator < EQUAL: go to Test A 211.
if not, go to Generator 8.
Test A 211:
if Next Operator — LEFT Brace: go to Generate Input Output.
if not, go to Generator 7.

The generator itself could then be divided into various parts,
with the first as simple as the following example.

EXAMPLE 66.
Generate Input Output:
Find Next Symbol,
if Symbol = Less Than: go to Generate Output.
if not, Generate Input.
Generate Output:
Find Next Symbol,
if Symbol = Less Than: Generate Heading.
if not, Generate Data.

134 Machine-Independeni Computer Programming

The next example will follow the process for the particular case
in which a verbatim printing is specified, the Generate Heading
routine. Since this particular generator would not normally be
added until such features as loops and partial word capability had
been implemented, their availability will be assumed. Nevertheless,
only a basic version of the generator will be shown.

The problem to be solved by this generator can be stated quite
simply. First, the generator must examine the message to be
printed, counting separately the spacing symbols and the symbols
in the textual material. Because relative spacing is used, the value
of a space symbol must be calculated by the compiler. This can
only be done after the complete message has been tabulated and
compared with the number of characters available on a line of the
printing device. It must then provide storage in the object pro-
gram to retain the message, complete with absolute spacing, for
use at “run-time.” Because of the spacing uncertainty, each symbol
cannot be stored directly into the object program as the message
is read. Consequently, a temporary storage area must be main-
tained elsewhere during the compilation process.

Furthermore, the internal compiler code is most unlikely to coin-
cide with the code of any printer, so that an encoding process must
be performed before the characters in the message can be stored in
the object program. This encoding task will be simplified in the next
example by assuming that an on-line electric typewriter is the
printer of choice.!*

After converting the message to proper form, and storing it in
the object program, the generator must produce the instructions
necessary to select the printer and operate it as required. The num-
ber of instructions required for this purpose varies greatly from one
computer to another, and may be fairly sizable. The most obvious
way to handle this problem is to place these instructions, or at
least their invariant parts, in the noun list of the generator as an

14 In the general case this should not be true. Ordinarily, the word FLEX is in-
serted between the left brace and the less-than sign if electric typewriter printing is
intended. Nevertheless, if a program containing the word FLEX is compiled on a
machine not having one, the machine language instructions for high-speed printer
output will automatically be generated instead.

Input-Output 135

array. At compilation time these instructions can be modified as
required, and transferred as a block into the object program.

While this technique is adequate to perform the task, and is
used in Example 67, it should be considerably refined for regular
use. Possible refinements will be treated later.

The noun list of this example can be considered in two parts.
The first 24 nouns are those which would be required for any
computer, while the array called Heading Code will have both its
number of entries and their numerical values determined by the
particular computer involved.

EXAMPLE 67.

Less Than = 51,

Greater Than = 49,
Absolute Sign — 58,
Heading Count,

Heading Space Count,
Heading Word Count,
Heading Store First Address = 2000,
Heading Store Last Address,
Heading Skip Address Needed,
Line Length = 60,

Space = 04,

Spacing,

Save Word,

New Word,

Save Divisor,

Save Symbol,

Store Symbol Counter,

Last Case Flag,

Save L,

Save K,

Save 1,

Save M,

Save N,

Heading Code(38) =

Machine-Independent Computer Programming

16 110 00000s, 16 210 00000s, 12 100 00000,
12 200 000005, 17 040 00000s, 52 000 001605,
13 070 000005, 50 000 001605, 13 070 00000,
13 300 100125, 70 000 400005, 12 030 00001,
13 300 000005, 13 300 10013, 70 000 400004,
12 030 000015, 17 140 000005, 17 040 00000,
50 000 00003s, 13 070 000005, 12 200 00000,
11 031 000005, 62 100 00000, 13 170 00000,
02 000 00006, 16 200 00000s, 27 000 00004,
60 200 000005, 12 202 00001ls, 60 100 00000s,
12 200 000005, 16 140 00000s, 21 000 00014s,
60 400 000005, 12 101 000015, 60 100 00000,
12 110 000005, 12 210 00000s;

Generate Heading:

J = Heading Skip Address Needed,

JUMP > []1,] + 1~ J,

Heading Store First Address > L,

O - L - Heading Count - Heading Space Count,

Read Headings:

Find Next Symbol,

if Symbol = Greater Than: Find Relative Spacing.

if not, ;

if Symbol = CLEAR: Read Headings.

if Symbol = Exponent Sign: Ten + Heading Space Count —>
Heading Space Count, Retain Symbol.

if not, ;

if Symbol = Absolute Sign: 1 + Heading Space Count -
Heading Space Count;

if not, 1 + Heading Count - Heading Count;

Retain Symbol:

[L] = Buffer,

if Buffer < Nearly Full: Buffer X Symbol Size 4
Symbol = [L];

if not, Buffer X Symbol Size 4 Symbol - [L],

L+1->1L 0~|[L]
Read Headings.

Input-Output 137

Find Relative Spacing:
if Heading Count + Heading Space Count > Line Length:
1 - Spacing;
if not, (Line Length — Heading Count) / Heading
Space Count = Spacing;
Preset To Convert:
FULL - New Divisor,
0 - New Word,
L + 1 - Heading Store Last Address,
Heading Store First Address - L,
Obtain Heading Symbols:
Find Next Heading Symbol,
if Symbol = Exponent Sign: Store Many Spaces,
Test Midway Point.
if not, ;
if Symbol = Absolute Sign: Store Spaces,
Test Midway Point.
if not, ;
Convert To Flex,
if Last Case Flag — Upper-Case F lag: Store Symbol;
if not, Store Case Change;
Test Midway Point:
if L. = Heading Store Last Address: Compile Heading.
if not, Obtain Heading Symbols.
Compile Heading:
Heading Skip Address Needed > M,
M] +] = [M],
] + 4 = Heading Code[0](0—~>14) - Heading Code[36](0~>14),
J 4 6 > Heading Code[1](0->14) - Heading Code[37](0~>14),
J + 21 - Heading Code[35](0>14),
M4+1-> Heading Code[21](0~>14),
J + 22 > Heading Code[22](0—>14) -
Heading Code[29](0~>14),
J + 30 > Heading Code[27](0~>14),
J + 36 > Heading Code[33](0—>14),
Heading Word Count — 1 ~ Heading Code[32](0~>14),
for M = 0(1)35

138 Machine-Independeni Compuier Programming

{ Heading Code[M] = [J],] + 1 -], },
Reset NO:
Find Next Symbol,
if Symbol = Right Brace: COMMA - Next Operator,
Advance.
if not, Reset NO.

Find Next Heading Symbol:
{ I = SAVE I, Word = Save Word, Divisor = Save Divisor,

New Word = Word, New Divisor = Divisor, L. = 1,
Find Next Symbol,
I->L,Save I = I, Word > New Word, Divisor =
New Divisor,
Save Word = Word, Save Divisor = Divisor,},
Convert To Flex:
{ for K = 0(1)63
{ if Upper Case Code[K] = Symbol: K = Scratch Pad,
1-> Upper Case Flag;
if not, ;
if Lower Case Code[K] = Symbol: K - Scratch Pad,
0 - Upper Case Flag;
if not, ; },
Scratch Pad = Symbol,},
Store Symbol:

{ if Store Symbol Counter =
if Store Symbol Counter —
if Store Symbol Counter — Symbol - [J1(12->17);;
if Store Symbol Counter = 3: Symbol - [J](18—>23);;
if Store Symbol Counter —= 4: Symbol - [J](24—>29),

0 - Store Symbol Counter,] 4 1 =],
Heading Word Count + 1 = Heading Word Count;
if not, Store Symbol Counter + 1 - Store Symbol
Counter; } ,
Store Case Change:
{ Symbol = Save Symbol,
if Upper Case Flag = Last Case Flag = Set:

Upper Case = Symbol;

: Symbol = [J1(0—>5);;
Symbol - [J1(6—>11);;

Lo

Input-Output 139

if not, Lower Case = Symbol;
Store Symbol,
Save Symbol - Symbol,
Store Symbol, },
Store Spaces:
{ for N = 1(1)Spacing
{ Space > Symbol, Store Symbol, },},
Store Many Spaces:
{ Spacing X 10 - Spacing,
Store Spaces,
Spacing / 10 > Spacing, }. .

While most of Example 67 should be self-explanatory, it does
make use of a few techniques which might require further expla-
nation. The routine called Compile Heading, for instance, takes
advantage of the way in which bit notation operates to leave the
invariant parts of the array called Heading Code undisturbed.

Similarly, the negative-word problem encountered so often in
earlier generators is avoided completely with the use of bit notation,
as shown in the subroutine called Store Symbol. On the other
hand, the previously written subroutine called Find Next Symbol
is exploited by the subroutine Find Next Heading Symbol. This
requires that all dynamic variables in the first subroutine be pre-
served, while a new set is substituted. After the first subroutine
has been used by the second, the dynamic variables from the second
must then be replaced by those from the first.

The methods shown in Example 67, as mentioned earlier, would
require considerable refinement for any serious use. The most ob-
vious deficiency lies in the fact that while only a few of the 38
Heading Code instructions require modification to suit an individual
case, they are all inserted every time that the generator is called
upon. Instead, the compiler would be made to treat them as a
subroutine which it would insert only once, and thereafter insert
a set of modifying instructions and a return jump to the subroutine.
Another deficiency, which is not as serious in this generator as it
would be in other output generators, concerns the length of the

140 Machine-Independent Computer Programming

Heading Code array. The very length of such arrays may become
too great for the available memory space. A possible solution to
this problem might lie in devising a method whereby the compiler
could hold only the Symbol String corresponding to the Heading
Code array, and then compile that into temporary storage within

the compiler only when it was needed.

The Generate Data routine is somewhat more complex, since it
must include in the object program a subroutine for the conversion
of binary fixed or floating-point numbers to decimal, as well as the
instructions for looping whenever the contents of lists are to be
printed. Interaction of, and extensions to both generators are
required if a statement of the form:

{ << || ANSWER | = | > Y < | VOLTS || >>;}
is to be handled.

Looking back at the examples, it can be seen that any operand
inserted between the comma and the left brace will be ignored.
Therefore it is permissible to write a phrase, such as Print Head-
ings, or even Schreiben Sie die Namen there if desired.

An operand inserted between the left brace and the first com-
parative sign, on the other hand, should be read and compared
with a list of any alternatives available to a given computer. If the
requested one is not found, the generator should automatically
substitute the instructions for the device of choice of the particular
installation.

As an instrument for automation or Real-Time Control, the ability
to specify output to any control device in this way is quite useful.

Input

The use of Form 3 to specify input to a computer is fairly straight-
forward. Basically all that is required is a generator which will
compile the instructions given in Example 39 in machine language.

Example 68 shows the details of a simple generator to read one
word at a time from punched tape into a Control Data Corporation
1604 computer.

Input-Output 141

EXAMPLE 68.

CARD = 51 49 41 52 20 20 20 20s,
FLEX 1 = 66 43 65 27 20 01 20 20,
FLEX 8 = 66 43 65 27 20 10 20 20s,
INPUT CODE(8) =

740 11200 100 00000s, 200 00001 741 000005,
750 00000 500 00000, 571 00000 747 00011,
040 00077 501 00000s, 050 00006 431 00000s,
541 00007 750 00000, 531 00000 200 00000s,

FACTOR = 1 000 00000s,
LIMIT;
GENERATE INPUT OUTPUT:
FIND OPERATOR,
PRESENT OPERATOR — LESS THAN: GENERATE OUTPUT.
GENERATE INPUT.
GENERATE INPUT:
OPERAND = FLEX 1 U OPERAND =— FLEX 8: GENERATE
FLEX INPUT.;
OPERAND — CARD: GENERATE CARD INPUT. GENERATE
MT INPUT.
GENERATE FLEX INPUT:
OPERAND — FLEX 8: GENERATE FLEX WORD INPUT.
GENERATE FLEX FRAME INPUT.
GENERATE FLEX WORD INPUT:
FILL UPPER HALF WORD,
747 00011z - [I](0—23), 1 + 1 - 1,
INPUT CODE[0] + I + 11 >[I, I 4+ 1 > 1,
INPUT CODE[1] +1 4+ 2 > [I, I + 1 > I,
INPUT CODE[2] + FACTOR X I 4+ FACTOR X 10 -
oL, 1+ 1->1
I + 8 » LIMIT,
FOR I = I(1)LIMIT { 0 - [I]}
INPUT CODE[3] 4+ FACTOR X I — FACTOR -
MLI4+1->1
INPUT CODE[4] » [I], I + 1 > L,

INPUT CODE[5] + I — 11 > [I,I + 1 > I,

INPUT CODE[6] -+~ I —1 >[I + 1> I,

FIND OPERATOR,

FIND ADDRESS,

INPUT CODEJ[7] + FACTOR X I — FACTOR X 5 +
ADDRESS - [I, I 4+ 1 > 1,

PRESENT OPERATOR = LESS THAN: FAULT;;

FIND OPERATOR,

PRESENT OPERATOR s« RIGHT BRACE: FAULT;;

0 - HALF WORD FLAG, COMMA - PRESENT OPERATOR,

OPERATOR ENTRY. .

CHAPTER 11

DECOMPILING
WITH D-NELIAC

For several years it has been apparent that those computer pro-
grams written in machine-dependent languages represented large
investments in time which were lost whenever a change in com-
puters was required. Even though a change to a machine-inde-
pendent language was made, all programs written before the change
still require complete rewriting if they are to remain in use.

If, however, such programs could be computer-converted to the
Neliac language, then they would be in a form adaptable to re-
compilation upon any other computer having a Neliac compiler.
Furthermore, if the translator were to be capable of accepting the
machine-language programs of a given computer as input, then
it would not matter whether the program had originally been writ-
ten in machine language, in an assembly system or any possible
problem-oriented compiler system.

While it would be premature to infer that this objective can
be met with complete satisfaction, the Donnelly D-Neliac system 1®
as produced by J. K. Donnelly and Herman Englander has already
established that such an approach is highly feasible, and preliminary
versions now exist for both the Remington Rand Univac M-460

15 J. K. Donnelly, “A Decompiler for the Countess Computer,” Navy Electronics
Laboratory Technical Memorandum 427, Sept., 1960.

i44 Machine-I ndependent Compuier Programming

Countess computer and for the Control Data Corporation 1604
computer. A recent version of the former is given in complete detail

in Appendix D.

To understand the workings of a decompiler, consider the follow-
ing case, in which Example 69 shows the source material, a machine-
language version of a program which has been written, tested, and

rendered operational on the M-460 Countess.

EXAMPLE 69.

Address
10100
10101
10102
10103
10104
10105
10106
10107
10110
10111
10112
10113
10114
10115
10116
10117
10120
10121
10122
10123
10124
10125
10126
10127
10130
10131

ff

00
00
00
00
00

E88 88

00

10
35
61
00
10
26
27
61
65
61
10
34
61
00

ikb yyyyy

000
000
000
000
000
000
000
000
000
000
000
000
030
030
010
000
000
030
730
000
000
000
030
030
010
000

00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
10103
10100
10113
00000
00005
10100
10106
10126
10113
10130
10103
10100
10117
00000

Address
10142
10143
10144
10145
10146
10147
10150
10151
10152
10153
10154
10155
10156
10157
10160
10161
10162
10163
10164
10165
10166
10167
10170
10171
10172
10173

ff

07
03
23
14
61

kb yyyyy

000
000
030
030
010
030
030
030
030
030
630
000
030
030
000
430
000
000
000
000
000
100
000
031
000
031

00036
00036
10106
10107
10131
10103
10100
10106
10107
10100
10103
10113
10100
10106
00001
10103
10165
10117
10166
10131
10167
00000
00170
10103
00073
10100

10132
10133
10134
10135
10136
10137
10140
10141

10
26
07
03
23
26
22
26

030
030
000
000
030
030
030
030

10106
10103
00036
00036
10106
10107
10100
10103

Decompiling With D-Neliac 145

10174
10175
10176
10177
10200
10201
10202

07
14
71
61
10
14
61

000
031
100
000
030
030
400

00072
10107
00002
10170
10103
10106
10000

The program of Example 69 was then accepted by the Decompiler
of Appendix D, which found all of the absolute addresses used as
nouns or verbs, and assigned arbitrary names to them. The program
logic itself was then decoded into the equivalent Neliac statements,
as shown in Example 70.

EXAMPLE 70.
4

A STORE,
Q STORE,
AA(3),
AB(3),

AC,

AD(4), ;

START: (AA + AB) X AC -~ AD,
AB — AA > 0:;
SUB B,
AB > A STORE,
AC —1 - Q STORE,

Q STORE > AA N A STORE < AA : ;

ENT E.
SUB A,

ENT A.

ENT E: SUB C,
ENT A: ENT B.
ENT B: 0 - i,

i = i(1)2{ AA[i] (3 - 6) + AB[i] (2 > 5) - AD[i], } ,

146 Machine-Independent Compuier Programming

AA > AC,

HALT.

SUB C: { (((AC+ AA)/ AC 4+ AD)X AB 4+ AA)/ AC—> AD, }.

SUB B: { AB — AA - AB, }.

SUB A: { 54+ AB—-AC < 0:;
ENT D.

SUB B,

ENT C.

ENT D: AB 4+ AA - AB,

ENT C: } .

HALT: ..

In addition to producing the Neliac version solely from the
machine-coded version of the program, the decompiler also pro-
duced a listing of the various names which it assigned, as shown
in Example 71.

EXAMPLE 71.

SUB A 0 10117
ENT A 0 10166
ENT B 0 10167
SUB B 0 10113
ENT C 0 10130
ENT D 0 10126
ENT E 0 10165
SUB C 0 10131
START 0 10147

AA 3 10103

AB 3 10100

AC 3 10106

AD 3 10107

where an initial zero denotes a verb and a 3 indicates a noun.

It may be noted that in a case of this kind there is no inherent
meaning in the names assigned to nouns or verbs, except perhaps
to the first and last of the verbs. If the original documentation has
been adequate, so that the comments accompanying the original

Decompiling With D-Neliac 147

program has been sufficiently informative to allow a person to pro-
vide meaningful names for given addresses, the decompiler will
accept and use them.

As can be seen from a study of Appendix D, in the event that
a machine-language combination is encountered for which no de-
compilation instructions have been written it can still convert them
to the Neliac machine-language form, and then continue. Strangely
enough, working with decompilers has emphasized one of the lim-
itations in the bit-handling capabilities of the Neliac language. This
limitation consists of the inability to specify any but contiguous
bits in a part word, a feature sometimes used in masking for logical
operations. '

In addition to its primary mission of translating non-Neliac pro-
grams into the Neliac language, D-Neliac has also proved useful
in another way. This secondary use has been in the area of error
detection. Since a program will appear in different words, and
with several of the details handled differently if it is decompiled
after having been compiled, the paraphrased version is sometimes
helpful in the detection of errors in logic. A classic example is a
case in which an occasionally used regression-analysis program was
found to fault in certain circumstances. Since the program had
originally been coded in machine language by a mathematician no
longer available, the fault was so subtle that it had not been found,
even after considerable searching. Upon decompilation, however,
it was immediately apparent that a misuse of an index occasion-

ally occurred.

A final pair of examples will show the decompilation of one of
the utility routines long in use on the Countess for loading flexo-
writer coded punched tape. This particular routine calls upon
other subroutines outside the area being decompiled, so that while
the decompiler named them, it obviously could record only their
locations, and not their contents. The numerical values for the
Flexowriter codes in Table III correspond with results in this case,
too, of course. The first example shows the raw program as fed
to the D-Neliac program, the second shows the Neliac program

148 Machine-Independeni Compuier Programming

which it produced, while the third shows the Name List which it
also furnished.

EXAMPLE 72.

Address ff jkb yyyyy Address ff jkb yyyyy
00522 00 000 00000 00565 12 130 00130
00523 65 000 00352 00566 10 030 00132
00524 65 000 00211 00567 14 031 00000
00525 16 030 00130 00570 61 000 00526
00526 16 030 00131 00571 65 000 00346
00527 16 030 00132 00572 12 500 00007
00530 12 300 00000 00573 10 030 00130
00531 10 030 00130 00574 27 515 00133
00532 27 500 00051 00575 61 000 00541
00533 61 000 00571 00576 72 500 00573
00534 10 030 00130 00577 11 530 00130
00535 27 500 00045 00600 61 000 00571
00536 61 000 00571 00601 10 030 00130
00537 65 000 00346 00602 27 500 00004
00540 61 000 00526 00603 61 000 00571
00541 10 003 00000 00604 10 030 00130
00542 27 700 00005 00605 27 500 00057
00543 61 000 00553 00606 61 000 00571
00544 10 030 00131 00607 10 030 00130
00545 05 000 00003 00610 27 500 00047
00546 14 030 00467 00611 61 000 00571
00547 10 005 00000 00612 10 030 00130
00550 26 030 00467 00613 27 500 00077
00551 14 030 00131 00614 61 000 00571
00552 61 000 00561 00615 10 030 00130
00553 10 030 00132 00616 27 400 00042
00554 05 000 00003 00617 61 000 00526
00555 14 030 00467 00620 65 000 00346
00556 10 005 00000 00621 10 030 00130
00557 26 030 00467 00622 27 400 00042

00560 14 030 00132 00623 61 000 00526

00561 12 303 00001
00562 10 003 00000
00563 27 400 00017
00564 61 000 00571

EXAMPLE 73.
5

START: { SUB A,

SUB B,

O - aa,

ENT A: 0 = ab,

0 - ac.

0 -k

aa — 9olg % 0: ;
ENT B.

aa — 455 =% 0: ;
ENT B.

SUB C,

ENT A.

ENTD: k-5 < 0: ;
ENT F.

ab X 213 = ad,

m -+ ad —> ab,

ENT E.

ENT F: ac X 213 = ad,

m 4+ ad = ac,

ENTE: 1 +k » Kk

k—-17, = 0: ;
ENT B.

ab > i

ac = [i],

ENT A.

ENT B: SUB C,

[ord

7 > m,

m — m(1)0{ aa — ae[m](0

ENT D. } ,

Decompiling With D-Neliac 149

00624
00625
00626
00627

> 14) = 0: ;

65
65
61
00

000
000
010
000

00265
00363
00522
00000

150 Machine-Independent Computer Programming

aa %< 0: ;
ENT B.

aa — 4 £ 0: ;
ENT B.

aa — 575 54 0: ;
ENT B.

aa — 473 % 0: ;
ENT B.

aa — 773 %< 0: ;
ENT B.

aa — 423 — 0: ;
ENT A.

SUB C,

aa — 423 = 0: ;
ENT A.

SUB D,

SUBE, } .

EXAMPLE 74.
SUB A 0 352
SUB B 0 211
SUB C 0 346
ENT A 0 526
ENT B 0 571
SUB D 0 265
SUB E 0 363
ENT C 0 322
ENT D 0 541
ENT E 0 561
ENT F 0 553
START 0 522
AA 3 130
AB 3 131
AC 3 132
AD 3 467
AE 3 133

APPENDIX A

NELIAC C

In order to illustrate methods and techniques which could not be
covered in earlier chapters, a complete production type compiler
will be reproduced in this appendix. Neliac C, which operates on the
Remington Rand Univac M-460 Countess—a computer with 32,000
words of magnetic core memory, a word size of 30 bits, and an
average execution time of approximately 20 microseconds—has been
chosen for this purpose for a number of reasons. First, it has been
developed entirely by the bootstrapping method, having grown from
a basic compiler like the one described in the text entirely in its own
language. Second, it illustrates in complete detail all of those sup-
plementary features referred to in the text, including both the addi-
tional generators and an error-testing capability, as well as various
utility routines. In addition, it demonstrates the use of “level arith-
metic” as required for algebraic grouping, as well as the methods
required for a computer which does not include a floating point
capability in the hardware itself.

Because the compiler has been developed over a period of time,
with several people contributing to it at different stages of its de-
velopment, many of the words used in it do not coincide exactly
with those in the text. For example, the word Flowchart in Neliac C
is merely a synonym for Symbol String, while the word Character
sometimes agrees with the usage in the text, but more often refers

Machine-Independent Compuier Programming

to Symbol instead. Despite certain anachronisms, it produces quite
efficient machine code, at a rather high rate of speed.

Neliac C is not intended as a final solution, however, as ways
obviously can still be found to improve virtually every routine with-
in it. When improved methods are found, however, as they have
often been, they are merely substituted and recompiled, yielding an
improved version.

In order to make this compiler somewhat easier to follow, its in-
ternal compiler code and its complete CO-NO table are shown in
Tables ViI and VIII. The compiler itself is presented in the form
resulting from its own Dump A F lowchart routine, as printed by an:
ANalex high-speed printer having the complete Neliac character set.

TABLE VII
THE INTERNAL COMPILER CODE OF NELIAC C
Symbol Octal Decimal Symbol Octal Decimal
Space 00 00 5) 40 32
A or a 01 01 6 41 33
B or b 02 02 7 42 34
Corc 03 03 8 43 35
D or d 04 04 9 44 36

E ore 05 05 8 45 37
F or f 06 06) 46 38
Gorg 07 07 ; 47 39
H or h 10 08 . 50 40
I ori 11 09 : 51 41
J orj 12 10 (52 42
K or k 13 11) 53 43
L orl 14 12 [54 44
M or m 15 13) 55 45
N or n 16 14 { 56 46
Ooro 17 15 } 57 47
Porp 20 16 = 60 48
Q orq 21 17 = 61 49
Rorr 22 18 > 62 50
S ors 23 19 < 63 51

Tort
Uoru
Vorv
W or w
X or x
Y ory
Z or z

B W b =

24

26
27
30
31
32
33
34
35
36
37

20
21
22
23
24
25
26
27
28
29
30
31

Appendix A: Neliac C

+ ¥ VIA

/
X
Color Shift

-2 C—

64
65
66
67
70
71
72
73
74
75

76
77

55
53
54
50
56
o7
58
59
60
61

62
63

153

1N

b
91§

Machine-Independeni Computer Programming

TARLE VIII

THE CURRENT OPERATOR-NEXT OPERATOR TABLE FOR NELIAC C

Next Operator

s - s Y DT =#4>2<<>>+ - /X
,4 4 329 6 423 21 4101010 10 10 10 10 11 11 17 13
;4 4 329 6 423 21 41010 10 10 10 10.10 11 11 17 13
.4 4 329 6 423 21 4101010 10 10 10 10 11 11 17 13
:4 4 35 6 423 21 410101010 10 10 10 11 11 17 13
(6 20 23 20 7 71713
) 9 823 21 9 9999998 81814
[25 92 922 24 24
1
{4 4 329 6 4923 410 10 10 10 10 10 10 11 11 17 13
}
— 11 23 11111
£ 11 23 11111
> 11 23 11111
< 11 23 1 11111
< 11 23 11111
> 11 23 11111
~>19 19 19 19 26 19 23 19 19 19 19 19 19 19 19 19 19 19 19
+ 10 610232521 10 10 10 10 10 10 10 11 11 17 13
—~ 12 612232521 121212121212 12 12 12 17 13
/ 16 6 16 23 16 16 16 16 16 16 16 16 16 16 16
X 15 6 15 23 15 15 15 15 15 15 15 15 15 15 15
8
U 6 23 10 10 10 10 10 10 10 11 11 17 13
N 6 23 10 10 10 10 10 10 10 11 11 17 13
0

I N

§ VY 11,

10
10
10
10 10 10

10

bt bt et pad e
Pt b e et el

19 19
10 10 10
12 12
16 16
15 15

10 10
10 10

A
I

DO N DN NN N D D ke bk o e et et pd pd el
P ND YR ORHEOS ©®ONDU R WP HOD

© 0 DOl o

Appendix A: Neliac C

Fault

Initiate relation control
Fault

Generate straight jump
Generate return jump
Check partial word
Check for algebra
Check for negative loop increment
Check for loop limits
Clear temp list
Generate add or enter

. Generate add

Generate subtract

Generate multiply

Generate multiply quantity or expression
Generate multiply or enter

. ‘Generate divide

Generate divide or enter

Generate divide quantity or expression
Generate store

Initiate loop control

. Set exit conditions

Generate 10

Initiate subscript
Modify subscript

Set subscript

Save current operator
Generate add or enter

. Initiate relation control
29,

Generator exit.

155

The version presented here is one written by Lt. John E. White
and Ensign Arthur Lemay, whose cooperation in preparing it is
greatly appreciated.

156 Machine-Independeni Compuier Programming

)» name part 3(1000g),

name part 1(1000g), name part 2(1000g
+ 29), name temp flag(27 » 29),
0 5 1h)

s nNAa

000
OPERAND LIST: | name dumped flag(27
name k desig(18 -» 20), name address(> 1{1000g),
NAME MASK: | name mask length(0 - 4) me mask lower Limit(5 =+ 9),
list length(10 > 21), matrix width(22 » 28),
name floating flag(29 - 29), }(1000s), =~ o
undefined name 1(200g), undefined name 2(200g), undefined name 3(200s),
{ undefined name location(15 - 29), mask record(0 > 14), }(200s),
address corr list(200g),
| first obJ prog address(15 »> 29), sequence number(0 - 14), |,
| current obJ prog last address(15 -+ 29), program entry address(0 » 14), 1,
0BJ PROG LIMITS:
| obJ prog first addr(15 -+ 29), obj prog last addr(0 - 14), }(100s),
FLOCHART LIMITS:
{ flochart first addr(15 = 29), flochart last addr(0 - 14), }(100g),
name index(0 -» 14), entrance addr{15 ~» 29§, 1(100g), floating entrance,
debug flag(15 + 29), glossary flag(0 > 14}, 1|, key(4), bias,
final seq nr(0 » 14), entrance flag(15 » 29), |,
first comparison(20), correction(20), second comparisongzog,
ts ready flag(0 » 14), ts address record(15 » 29), }(20),
te offset(15 » 29), tc reg rlag(0 - 14), 1(50),
tc mask flag(15 » 29), level List(0 » 1), 1(s50),
TEMP LIST: | temp list f‘unctionszh > 29{, 1(s50),
ADDRESS LIMITS: | first address(15 - 29), last address(0 ~» 14), |,
exit cordition Llist(25),
temp fc storage(15 - 29), temp pc storage(0 -+ 14), |,
flo chrt addr storage(15 » 29), comparison lockout flag(0 -+ 1), 1,
operand, previous operand, operand storage(4),
LOAD BUFPFER:
{ first frame load buffer(0 -+ 5), last frame load buffer(24 -» 29),
upper load buffer(15 + 29), lower load buffer(0 -+ 14), {(3),
DUMP BUFFER:
| first frame dump buffer(0 -+ 5), last frame dump buffer(24 -» 29),
upper dump buffer(15 + 29), Llower dump buffer(0 -» 14), }(3),
NAME BUFFER: | first frame name buffer(0 - 5), upper name buffer(15 + 29),
last frame name buffer(24 » 29), }(3),
FLOWNCHART BUFFER: { first frame flowchart buffer(0 » 5), |,
temp fb storage, function code, z designator, k designator,

b designator, number accumulator(2), mask accumulator, full operand,
operand flag, | current operator(0 = 14), temp co storage(15 » 29), |,
next operator(0 - 14), present character(15 +.29), |,

flex code character(0 - i14), compiler code character(15 = 29), |,
a function, q function, | offset(0 -» 14), op offset(i5 + 29), |,
level(0 » 14), reg rlag(15 » 29), |,

op reg flag(0 » 14), tL reg rlag(i15 » 29), |,

space rlag(0 - 14), back space flag{15 » 29), |,

frame counter(0 - 14), character counter(i15 = 29), |,

carriage return counter(0 -+ 14), carriage return flag(15 + 29), |,
comparison counter(0 -+ i14), comparison typesls +> 29), |,

true alt address(0 » 14), false alt address{i5 + 29), |,
correction length(0 -+ 14), lessless comparison(15 + 29), |,

clear rlag(0 -+ 14), zero rlag(i15 » 29), |,

temp list index(0 -+ 14), comparison level(15 =+ 29), |,

lower Loop Limit(0 - 14), upper loop Limit(15 + 29), 1(2),

punch on rlag(0 - 14), flex on f 15+ 29), |

el Pl tBB0) Haadter on Elaells >) 1

loop control rlag(0 » 14;, exit condition counter(15 » 29), |,
partial word flag(0 - 14), negative flag(i15 + 29), |,

_| .

Appendix A: Neliac C

{ divide inst address(0 > 14), case flag(15 » 29),

first shift,

octal flag(0 » 14), ne
name found flag(0 > 14

last lower bit limit(0 » 14),
bit limit flag{0 > 14),
manual entry flag(0 » 14)
second shift,
temp name flag(0 - 14), optional end of Line(15 + 29), |,
punctuation(0 -+ 14), clear temp list flag(15 = 29), |,
move back flag(0 - 14), skip rlag(15 » 29), I,
punctuation counter(0 - 1
print flag(0 - 14), end of line count(15 > 29),
dimn lower bit limit(0 > 14), constant flag(15 » 29), |,
function co(0 -+ 14), function flag(15 -+ 29), |,
define function flag(0 » 14), floating point flag(1s > 29),

).

number flag(15 > 29),
unknown operand flag(15
type name flag{0 » 14), right shift frlag(15 > 29),
shifrt flag 1(0 > 14), shift flag(15 » 29), |,

BIT LIMITS: { Lower bit Limit(0 - 14), upper bit limit(15 - 29),
last upper bit Llimit(15 > 29),

F
» erd relation symbol(15 » 29), |,

temp skip storage(2),

s

»
-+ 29), Is

»

4), colon counter(15 > 29), |,

2

{ repeat counter(0 - 14), reverse comparison flag(15 + 29), |,
temporary storage(10), comparison list; . .

5
title constant(133) = 1411112013s, 3011041603s, 54031520125, 30062254064,

03000000004,
14061534014,
14111120138,
200720060 1g,
03152012304,
0613043011g,
06300720044,
04243287038:
03311605308,
12354500003,
030661616 1a,
06130406304,
20220430244,
150302%i%]a;

071 las
?604251]208)
16013011044,
04061204044,
4415120313,
20060]]2328,
31031222045,
16123401168,
2006014404 6,
34061401044,
07142424144,

{ obj prog std last address(15 + 29), std
{ set(0 » 14), standard compiling location(15 - 29),

24050312015:
04033401153,
30110422144,
06300720044,
01031204204,
11142401045,
20]23§02]28:
120 10404574,
04570404044,
S7205804300,
7202404344,
04263411118,
030 120348,
0304243423,
270“2207153,
223402]5023,
120 01144,
06162045574,
04300104004,
0504!603223,
4524200]043,
16300606034,
061304121k,

04310312364,
34010426034,
1114240104,
121203 1204,
01141720004,
031720 12264,
s
45040404040,
50505050504,
06222026 144,
043103 12228,
1203340 1 14

5 hohohdLS
S

2k 15

3521;20 2204 e,
0620040630,
0426]]033]8:
35453786035:
513030322

2002263034::

5244070

10030 1618
1305010423,

14061304244,
1207300 1044,
0306]406]33,
03172012264,
122024200 1,
30342714118,
11033100004,
06034545574,
2004 111424,,
0404040404,
5045u526038,
0620224545,
06200404004,
21011230 144,
06200404004,
06201114304,
01311416204,
ogzoououous,
160530120 1a,
0157046247 &y
06201114304,
11010000004,

0604237444,
20]80&040 8s
12301620004,

ogram ent

1530 1620004,
20121203 12g,
0421401300 14,
11033100004,
07142424 144,
1430 1225044,
160520 16364,
45454726114,
01042234074,
1630340 1148,
11110331 144,
011220300 1g,
220415060 14,
45325734074,
]3050]04328:
06201114304,
Pty

2as
04040 32848,
04110330224,
1604 1406004,
3316030707a,
22300120044,
122220 12044,

=T

STD ADDRESSES: | object prog std first address(15 » 29),

flo cht storage std first address(0 - 14

) 1, beginning of flowcharts,

end of flowcharts, shift q right function = 1000 000004,
MONITOR FUNCTION: shift a right function = 2000 00000,

shift aq right function = 3000 00000g, compare function = 4000 000004,
shift q left function = 5000 000005, shift a left function = 6000 000004,
shift aq left function = 7000 00000g, enter q function = 10000 00000g,
enter a function = 11000 00000, enter b function = 12000 00000s,

{5

address (0 » 14),

s

158 Machine-Independent Computer Programming

ENTER C FUNCTION: external function = 13000 00000a,
store q function = 14000 00000s, store a function = 15000 00000,
store b function = 16000 00000, store ¢ function = 17000 000004,
add function = 20000 00000g, sub function = 21000 00000g,
multiply function = 22000 000005, divide function = 23000 000004,
add repl function = 24000 000005, sub repl function = 25000 00000s,
q add function = 26 000 000005, q sub function = 27000 00000,
load a add q function = 30000 00000g,
load a sub q function = 31000 00000, repl add q function = 34000 00000s,
repl sub q function = 35000 000004, repl add one function = 36000 00000s,
repl sub one function = 37000 00000e, enter log prod function = 40000 00000Qs ,
add log prod function = 41000 00000e, Sub log prod function = 42000 00000s,
substitute function = 53000 00000g, repl substitute function = 57000 00000,
arithmetic jump function = 60000 00000a,
straight Jump function = 61000 00000g, input jump function = 62000 000004,
output Jump function = 63000 00000s, return Jump function = 65000 00000s,
terminate input function = 66000 00000s,
terminate output function = 67000 00000g, repeat function = 70000 00000,
inc loop entrl function = 71000 000005, dec loop cntrl function = 72000 0000Qs ,
buffer in function = 73000 000005, buffer out function = 74000 00000,
J desig(8) = , 100 00000g, 200 00000s, 300 00000s, 400 00000,
500 000005, 600 00000g, 700 00000e,
k desig(8) = , 10 00000s, 20 000005, 30 00000s, 40 00000,
50 00000g, 60 000005, 70 00000g,
b desig(8) = , 1 00000s, 2 00000, 3 00000s, 4 00000s, 5 00000s,
6 000005, 7 00000s,
1o J desig(14) = , 4000000s, 10000000, 140000005, 20000000,
240000005, 30000000s, 34000000e, 40000000s, 44000000,
500000004, 54000000s, 600000004, 64000000 .
comma(15 » 29), semicolon(0 - 14) | = 46000474,
period(15 » 293, colon(0 + 14) | = 5000051s,
left paren(15 -+ 29;, right parengo -+ 14; | = 5200053,
left brace(15 » 29), right brace(0 > 14) | = 5600057
left bracket(15 » 29), right bracket(0 ~» lh% | = 006553,
equal sign(15 » 29), less than(0 » 14) | = 6000063,
not equal sign(15 +» 29), greater than(0 » 14) | = 6100065,,
right arrow(15 + 29), plus(0 » 14) | = 6600067,
minus(15 » 29), divide(0 » 14) | = 7000071g,
multiply(15 » 29), color shift(0 » 14) | = 7200073,
temp name sign(15 + 29), absolute(15 » 29), crutch(15 » 29),
crutch code(15 + 29), or(0 » 14) | = 74000754,
and(15 » 29), octal sign(0 » 14) | = 76000353,
exponent slgn(15 + 29), an operator(0 - 14) | = T700046,,
punct area minus 1(15 > 29), punct area plus 1(0 + 14) | = 4500052,,
a number(15 » 29), a letterzo +> 14) | = 33000324;
neliac dimn part2: . .

5
E|LEX CODE: fle|x code letter(27) = Oig, 30s, 23s, 16s, 22, 20s, 26g,
‘33, 058, ‘us’ 328, 3603 "8’ 073, 068, 038, '53, 358, 128; 21"0, 0'3, 3"'
£12; 208z 2le; o 16)° 2%, 520, The, 70w, 6. 620, 66 728, 608, 33
ex code number = 37q e a 8, e e 2s
on|line flex code ogerator(Z?& - 0h5661030hg, 0 000&460&;, ? TR 8
LThLE15TU6e, 0000044204g, 4T74A615T424, 0004LTLEST,,
004742570kg, 0000000450s, 0000005004s, 04112312504,
B s, o sl
50112024650, 5011012050e, 5013120150, 5030120350,
00000454044, ooooougsou,, 0447545704, 04AT275704a,
50162405509, 50, 04376154044 hg27610357 , 4754615057,
o|ff line flex code operatora;27 - 76 57u62704. huol,,
420ks, UTUUSTOMe, 4T335Te, 4T3757s, 47045Ta, 876257,

8,

Appendix A: Neliac C 159

475657044, 4569, UATTOS5T04s, 4475057045, LAT7S45T0Ug,
whe2baohs ‘Qithony ! oBhaoly, Lhouastols, Hh7eaL208s
BUTTHETOke, B4TT25T0Me, 44T005TOks, 2, 50s, 4750ks, AUTTS5TOe,
477657s;
START FLEX:
{ 1704040, 131000, 171000, 50000g163g, 1330080, 1307050,
700005100g, 133005100265, 1330050, 700005100004, 133005100134,
1330050, 700005100g, 133005100125, 1330040, set » flex on flag, 1|,
START PUNCH:
{ 131000, 1300081635, 1330050, 70000510000g, 133005100234,
1330050, 700005100008, 133005100222, punch leader, 0 -» flex on flag, |,
PUNCH LEADER:
{ 1 » punch leader(15 » 29), 1 = 200(1)0{ 1310040, delay output, {,
punch leader(15 » 29) » 1,
START READER:
{ 131000, 1300051615, 1330050, 700005100005, 13300510031g,
1330050, 700008100005, 13300g10033s 1,
TURN OFF FLEX:
{ 700002100005, 133005100145, 1330050, 133005100164, 0 > flex on flag, |,
TURN OFF PUNCH:
{ 43¢ > dump buffer, print, punch leader, 1330050, 70000g10000g,
13300510024, 1330090, 133005100265 1},
TURN OFF READER: _
{ 150005160, 133000, 700005100005, 13300210034, 1330050, 133005100365 1,
PRINT:
{ m> print(15 » 29), m = 4(1)0{ dump buffer x 21t6 » dump buffer,
first frame dump buffer = 15 N flex on flag = 0:

558 » first frame dump buffer; ;
first frame dump buffer # 0: 13130gdump buffer, delay output; ; |,
print(15 » 29) »> m, {,
TYPE LIMITS: { start flex, carriage return lower case, print limits, |,
PRINT LIMITS:
{ address limits - dump buffer[1], dump five numbers, space,
dump five numbers, |,
DUMP A TITLE:
{ 1 > dump a title(15 » 29),
1 = lower loop limit(1)upper loop limit{ title constant{l] -»
dump buffer, print, |}, dump a title(15 > 29) » 1,
DUMP ONE NUMBER:
{ 1 > dump one number(15 > 29), dump buffer[1] x 213 - dump buffer[1],
dump buffer[1])(0 » 2) + 27 + 1, decode and print,
dump one number(15 » 29) » 1,
DUMP FIVE NUMBERS:
{ k > dump five numbers(15 »> 29), k = 4(1)0§ dump one number, |,
dump five numbers(15 -» 29) » k, R
DECODE AND PRINT: | flex code[l] - dump buffer, print, |,
CONVT AND PRINT COMPILER CODED WORD:
{ k » convt and print compiler coded word(15 + 29),
1 » decode and print(15 » 29),
k = 4(1)0§ read any character, present character - 1,
flex on flag = 0 N a letter ¢ present character ¢ an operator:

lower case, decode and print, upper case; decode and print; i,
convt and print compiler coded word(15 -+ 29) - k,
decode and print(15 > 29) » 1,
READ ONE WORD:
| k > read one word(15 » 29), k = 4(1
load buffer -+ last frame load buffers
load buffer[lg x 216 > load buffer(!
15> 29) >k, |,

’

P

P

P

)0{ read one frame,
1],
2

read one word

s dnan Darn pascrann ann don o
er Li Ug'l U'Ill;'llb'lfllag

READ ONE FRAME: { 17130gload buffer, delay input, |,
WRITE NAME BUFFER:

{ 1 » write name buffer(15 - 29),

1 = 0(1)2{ name buffer{[i] » flowchart buffer, 5 -+ frame counter,
convt and print compller coded word, |,

write name buffer(15 - 29) » 1, |,

TYPE CHECK SUM ERROR:

i start flex, carriage return upper case,

38 » lower loop limit, 40 - upper loop limit, dump a title,

turn off flex, |,

WRITE NAME:

| name part 1[n] + name buffer, name part 2[n] + name bufferf{i];

name part 3[n] - name buffer[aj, write name buffer, |,

WRITE UNDEFINED NAME:

{ undefined name i[n] + name buffer, undefined name 2[n] - name buffer(1],
undefined name 3[n] -+ name buffer[zj, write name buffer, |,

DELAY OUTPUT: | d|elay: 62100gdelay. |,

DELAY INPUT: | d|elay 1: 63100gdelay 1. I,

CARRIAGE RETURN:
| 45¢ > dump buffer, print,
1 + carriage return counter - carriage return counter, |,
SPACE: { 04 » dump buffer, print, |,
LOWER CASE: { 57e¢ - dump buffer, print, |,
UPPER CASE: | 47 » dump buffer, print, |,
CARRIAGE RETURN LOWER CASE: | carriage return, lower case, |,
CARRIAGE RETURN UPPER CASE: | carrlage return, upper case, |,
CHECK KEY SETS:

0 > key[1] » key[2] » key[3], 65100gkey | set, 65200gkey 2 set,
5300ekey 3 set, |,
KIEY | SET: | set » key[1],
KIEY 2 SET: | set » key[2],
K|EY 5 SET: | set -» key[3],
CLEAR INDICES: { 0 » 1 » §
STORE FLOWCHART PARAMETERS:
{ flowchart buffer -» temp fb storage, frame counter - temp fc storage,
present character » temp pc storage, J + flochrt addr storage, |,
RESTORE FLOWCHART PARAMETERS:
| temp fb storage - flowchart buffer, temp fc storage - frame counter,
temp pc storage » present character, flochrt addr storage » J, |,
DUMP THE DATE:
| date # 0: title constant[123] + dump buffer, print,

lower case, date[1] / 10 » temporary storage[1]
print bit limit, date - dump buffer, print; ; 1. .

P
s
P

+l+>k->m>»>n, |},

5
d
1|f 3 = 172446, c|omment 1 = 5203171515,

cjomment 2 = 5200031715¢, flor 1 = 6172200,
{ c|ompiler code upper case(15 -» 29&,

ol = 41700s, glo 2 = 7170024, 1|f 1 = 110600s, 1|f 2 = 110600164,

cAompiler code lower case(0 -» 14) |(54) = ,
2400024g, , 1700017, , 1000010g, 1600016g, 15000155, , 1400014,
2200022¢, 700007¢, 11000115, 20000205, 300003, 2600026,
500005g, 3200032¢, 400004s, 200002¢, 2300023s, 31000314,

600006g, 3000030, 100001a, 27000275, 12000124, 52000&53,
2500025¢, 21000219, 1300013, 23000333 » _, 6600050g
4800065e, , 610007he,”, 67000385, , 6200064s, 20000204
7200043g, , 55000408, , 5400037s, , 6300041s, , 6000035e

5100047
’ 5600057s. .

» 3

Appendix A: Neliac C 161

71000424 7000035, 7600075, 77000454, ,
i slinglé éompiler code(15 » 29), d|ouble compiler code(0 » 14) }(22) =
T461s, 6174, 61060715, 61071605, 61074608, 6106074, 75017674,
75067178, T503367e, 7506733¢, 7601772g, 7707161g, 7607217s,
76033728, 7607233s, S466g, 6654s, T706171e, 3303371g, 33071338,
3201771a, 3307117s;
LOAD FLOWCHARTS:
m= 0: flo cht storage std first address » m; ;
m » beginning of flowcharts, 1 # 0: 1 » end of flowcharts; ;
i # 0: set date; ;
LOAD NEXT FLOWCHART: 0 -» sequence number,
k # 0: k » sequence number, 8 » load type, correct flowchart, ;
i = 59(1)0§ 0 » first comparison[i], 1}, start reader,
0 » case flag -+ compller code char -+ back space flag,
0 » space flag » load buffer[1] » load buffer[2] »
carriage return counter.
R|EAD LEADER:
read one frame, load buffer = 0: read leader. ;
5 -+ frame counter, m » first address,
J = 9(1)0f{ flex code number[J] = load buffer: { J - load type,
load type ¢ 7: 0> [m], m + 1 > m, 0 > [m]; ;
read next frame. }; ; |}, read leader.
RE|AD NEXT FRAME:
read one frame, decode, compiler code char # 0: enter buffer. ;
load buffer = ﬁ?a: set » case flag; ;
load buffer = S57¢: 0 » case flag; ;
load buffer = 45g5: reset loading index. ;
load buffer = Qlig: set space flag. ;
load buffer = 61g: set » back space flag; ;
load buffer = 435: exit. ; read next frame.
R|ESET LOADING INDEX:
6 < load type ¢ 9:
{ 1 + carriage return counter - carriage return counter = 1:
12500gfirst comparison[1]; final packing;
carrlage return counter = 2: 12500gcorrection[1]; ;
carriage return counter = 3: 12500gsecond comparison[1]; ; |;
S|ET SPACE FLAG:
space flag # 0: read next frame. ;
set -» space flag, enter memory, read next frame,
E|NTER BUFFER:
load type = 4 N compiler code char = greater than:
comma > compliler code char; ; 0 » space flag,
repeat counter # 0:
{ repeat counter-- 1 > repeat counter # 0 N
a letter ¢ compller code character { an operator: ;
| back space flag # 0 N load buffer[1](6 » 11) = 334:
octal sign » load buffer[1](6 » 11
33¢ » first frame load buffer[1];
octal sign » first frame load bufferfl], 0 » repeat counter;
enter memory, 1{; {; ;
compiler code char » first frameload buffer[1], enter memory,
back space flag = 0: read next frame. ; 0 » back space flag,
load buffer[1](6 » 17) » temporary storage,
k= 21(1)0f{ double compiler code[k] = temporary storage:
substitute. ; |,
temporary storage(6 » 11) = not equal sign:
temporary storage x 216 + temp name sign > load buffer[1](6 » 17);
{ temporary storage(0 » 5) = not equal sign:

ws

s

b tann Tan anpan A nandt £V manngnzidnae T roanos ann ann San ow
62 M) ! pernae UU‘ln’Juttﬁ'l [1U5‘luuuluus

temp name sign » load buffer[1](6 » 11); ; }; read next frame.
UBSTITUTE:

&

compiler code{k] -+ load buffer[l]éG -+ 17),

2: { 6 » repeat counter, load buffer[1](18 + 23) ¢ an operator N
load buffer[1](24 » 29) ¢ an operator:

comma > load buffer[1](6 - 17); ; {; ;

l? < k ¢ 17: 200 > repeat counter; ; read next frame,

E|XIT:

final packing, turn off reader, m # 0: m + | > m; ;

0+ [m], m + 1+ m> last address, 0 » [m], check key sets

move back flag # 0: m » 1, address dlimits > address limits{1],

flochrt addr storage -+ J, end of flowcharts » k, move flowchart. ;
6 < load type < 9: correct flowchart, address limits -» address limits[1],

RETURN TO LOAD:

end of flowcharts -+ last address,

beginning of flowcharts - first address, type limits,

address limits[]] » address limits,

end of flowcharts » m, continue, ;

3 < load type < 6: ; start flex, 106 » lower loop limit,
108 » upper loop limit, dump a title;
C|ONTINUE:
m > end of flowcharts, type limits, carriage return,
turn off flex, clear indices, end of flowcharts » m,
key[2] # 0: clear name list and stop. 61400sl0ad next flowchart.
D|ECODE :
| load buffer » k, case flag = 0:

compller code lower case[k]-» compller code character;

compller code upper case(k] - compller code character; |,

E|NTER MEMORY :
{ load buffer[2](18 +» 23) + temporary storage,
last frame load buffer[2] -» [m](0 » 5) = 0:

{ 0 € temporary storage ¢ octal sign N

0 ¢ temporary storagel1] ¢ octal sign: ; pack buffers. }; ;
frame counter - | » frame counter = 0: 5 » frame counter, m + | > m,

0 » [m]; [m] x 206 » [m];
last frame load buffer[2) - temporary storage[1],
PIACK BUFFERS :
load buffer(2] x 216 » load buffer[2],
last frame load buffer[1] -» first frame load buffer[2],
load buffer{1] x 216 » load buffer[1],
0 » first frame load buffer[1].
temporary storage[1] ¢ an operator: check for comments. ;
load buffer[z](> 29) = dol: 0 » load buffer[)zl(lz » 29);
load buffer[2] = go2 N load buffer[1](18 +» 29) = 1700a:

0 > load buffer[2] » last frame load buffer[1]; ;
load buffer[2] = 1f2 N load buffer[1](12 » 29) = 1f3:

0 » load buffer[2]) + load buffer[i1](12 » 29}; ;
load buffer[2](6 + 29) = 1f1: 0 > load buffer[2](12 » 29); ;
load buffer[2)] = fori: 0 » load buffer{2]; ;

C|HECK FOR COMMENTS :
load buffer[2] = commentl y load buffer[2] = comment2:

0 » load buffer{i] » load buffer[2]; skip deletion.
D|ELETE COMMENTS :
read one frame, decode,
compller code character = right paren: read next frame, ;
load baffer = 47s: set » case flag; ;
load buffer = 5T74: 0 > case-flag; ; delete comments. 8|kip deletion: |.
F|INAL PACKING:

. ® K

“e

Appendix A: Neliac C 163

ilflpl: enter memory, load buffer{2] = 0 N load buffer{[i] = 0: ; fpl.
FlP2:
gm] 0N [m](24 » 29) = 0: [m] x 296 > [m], fp2. ;
< load type < 9 N first comparison[1](0 » 14) = 0:
(first comparison[li(zh +> 29) - 27) x 213 +
first comparison[1]{(18 » 23) - 27 » sequence number,
0 » first comparison([1],
carriage return counter - 1 » carriage return counter; ;
5 » frame counter, }. load flowcharts and stop: , . .

5;
CORRECT FLOWCHART:
{ 12100gfirst comparison, end of flowcharts » k,
3= k(1)k + 401 0 » (4], 1.
sequence number # 0: | beginning of flowcharts » J,
n = 1(1)sequence number{ s|kip zeros: J + 1 » J,
[J] = 0: skip zeros. ; J » first address > end of flowcharts:
print flowchart error. ; find flowchart limits, s
load type = 8: { r|eplace flowchart: first address - | » m,
end of flowcharts + k, [J + 1] =0: J + 1 > J; ;
J + 1000g » 1 » flochrt addr storage, move flowchart. |;
first address -» lower loop limit(1i],
last address -+ upper loop limit(1], i;
beginning of flowcharts -+ lower loop limit{1],
end of flowcharts » upper loop limit[1];
F|IND CORRECTION AREA:
1= 1(1)5{ 1 > lower loop limit + 19 » upper loop limit, shift left,
J = lower loop limit{1](1)upper loop limit[1]{ [1 + 1] = [J]:
check other words; ; |, |}, print flowchart error.
F|IND END CORRECTION AREA:
12600gsecond comparison, i 2 n: find split location. ;
k » first address - 1 > lower loop limit[1],
load type = 8: find flowchart limits, replace flowchart. ;
m -> temporary storage[1], n » i1, find correction area.
F|IND SPLIT LOCATION:
J - 1 > last address, 1 » shift flag 1,
i - 20 +» lower loop {imit + 18 » upper loop limit,
temporary storagef[1] » 1, count empty frames, shift flag # 0:
1 = 1(1)shift flag] shift left, }; ;
1 = end of flowcharts(77776s)last address{ [1] » [1 + 21], 0 » (1], 1},
first address » k, temporary storage[1] > m, [m] » [k],
last address + 21 » k, second comparison » tk]
nalﬂﬂﬂcwmamMM=0:uthmm.;1.
S|ET LENGTH:
n + correction length, first address - k,
lower locp limit » m + 19 » upper loop limit, pack or repack flowcharts,
first address + correction length - 1 » 1 » k, count empty frames,
last address + 21 » m, end of flowcharts + 21 » upper loop limit,
shift flag = shift flag 1: pack or repack flowcharts, exit. ;
shift flag - shift flag 1 » temporary storage ¢ 0: shift right. ;
m -+ lower loop limit, i1 = 1(1)temporary storage{ shift left, |,
pack or repack flowcharts, exit.
S|HIFT RIGHT:
0 - temporary storage -+ temporary storage,
1 + upper loop limit -+ upper loop limit,
= lSl)temporary storage{ n = upper loop limit(77776s)m -
1{ [n]J(0 > 5) » [n + 1](24 » 29), [n] / 216 » [n],
pack or repack flowcharts,
E|XIT: k = k(1)0{ [k - 2] # 0: final exit. ; |.

.

s b

164 Machine-Independent Computer Programming

?|INAL EXIT:
k> d of flowcharts, find flowchart limits, 65100¢dump a flowchart, {.
PIACK OR REPACK FLOWCHARTS:
{ [m] + [k] » [Kx],
ml- ;T+ l(l)upper loop limit{ k + | » k, [m] » [k], |, |.
S
{ins= owe;rocp limit{ {)upper loop limit! [n) x 216 = [n],
(n + 11(24 » 29) + > [n)(05), 1, I
C|HEC O'I'HER WORDS ;
{fJ>k, m=1 + 2(1)1 + 18 k+1+k, [m+1] = 0:
g nd e knd ?orrection area. ; [m] # [k] exit check. ; |,
xitchec .

e

C |OUNT EMPTY FRAMES:

{ [1] » temporary storage[2], m = 1{1)5] temporary storage(2](0 » 5) # 0:
m »> shift fl - 1 » ghift flag, exit cef, ;

temporary storage(2] / 216 » temporary .storage(2], 1|,

5 > shift flag, e|xit cef: |.

FIND FLOWCHART LIMITS:

{ J = first address(- 1)beginning of flowcharts{ [J] = 0:
J + 1+ first address, find end. ; |.

F|IND END:

J=3 4+ l(l)end of flowcharts| [J] = 0: J - 1 » last address,
exit £fl, ; |, e|xit £f1: {. .

5;
MOVE FLOWCHART:
J » first addreas k » last address,
load type # 8 N move back flag = 0: type limita- ;
last address -+ k, 1 » first address. 1 > J: up. :
3o 1% Cemporary storage, J = J(1KI [31 > [11, 0> L31, 1 + 121, 1,
i - 1 » last address +» end of flowcharts, exit.
M|OVE UP:
i - J + temporary storage + k + 1 » last address +» end of flowcharts,
k-k(-]),ﬂ [k] [1]: o*lk]nl"l"l ':
E|XIT:
load type = 8: { [m - 1] #0: m + 1 + m; ;
T + move back flas, 0 » k, load next flowchart. b

move back flag # * nove back flag,
Y 1(180} ;1 - 2] {1+ end of flowcharts, check key sets,
key| | 0: address limits{1] » address limits,

dump a flowchart; ; return to load. }; ; I, |;
type limits, space, space, temporary storage -+ upper dunp buffer[l],
dump five numbers, turn off flex, clear indices, . .

5.
DUMP A FLOWCHART:
{ start punch, 1 = 200s(1)0} 0 > exit condition 1list[l], |,
first address » J, read next character, store flowchart parameters,
carriage return louercase, 50¢ + last frame dump buffer{1],
dump one number, date # 0: llg -+ lower loop limit, 119 + upper loop limit,
space, uppercase, dump a title, dump the date,
37s » dump buffer, print; ; carriage return lower case,
0|+ upper loop 1imit, set -+ name found flag,
character counter + | <+ character counter 2 end of line count N
print flag # 0: return carriage, indent, 1 + character counter,
56 + end of line count, 0 » print riag -+ punctuation counter »
slTA;;ae flag + optional end of line, store flowchart parameters; ;

Appendix A: Neliac C 165

print flag # 0: print character. ;
right brace ¢ present character ¢ right arrow: 0 » name found flag; ;
present character = right paren N current operator = left paren N
punctuation counter # 0 N skip flag = 0: reset. ;
current operator # left bracket N right arrow ¢ present character
exponent sign: character counter -» optional end of line; ;
present character = right arrow N current operator # left paren:
character, counter » optional end of line; ;
current operator = colon N present character # right brace N
present character # period N present character # comma;
colon counter + | » colon counter, reset. ;
constant flag = 0: | temporary storage[l4] 2 an operator N
a letter ¢ present character ¢ octal sign: set » constant flag;
{ present character = period: cctal sign » present character; ;
punct area minus 1 ¢ present character ¢ colon N function flag = 0:
{ current operator = left paren: set -+ function flag;
set » name found flag,
character counter -+ punctuation counter; |{; ;
present character = right paren N current operator .# left paren N
current operator # right arrow: 0 » function flag; ;
present character = right brace:
character counter » punctuation counter; ;
present character = right brace U present character = left brace:
{ set » name found flag,
punctuation counter # 0: set » skip flag; ; |{; ;
present character ¢ octal sign y Present character = temp name sign:
| character counter + upper loop limit 2 56 N
current operator # left paren: | punctuation counter = 0:
{ optional end of line = 0:
character counter » punctuation counter;
optional end of line -+ punctuation counter; |}; ;
reset. |; { skip flag # O:
{ punct area minus 1 ¢ current operator ¢ colon y
current operator = left brace y
current operator = left bracket: reset. ; }; ;3 {; i;
current operator + temporary storage{[1], 0 -+ constant flag,
present character » current operator; print flag = 0: margin control. ;
P|RINT CHARACTER:
present character = temp name sign N case flag #0:
575047s + dump buffer, print, look ahead. ;
present character » 1 2 octal sign: { 27 +1 > 1,
present character -+ current operator = colon:
comma + current operator; ; i;
{ 1 2 a number N case flag # 0: lower case, decode and print,
uppercase, look ahead. ; |}; decode and print,
[1 - 1] = 0: exit. ; look ahead.
M|ARGIN CONTROL:
comparison type # 0: | present character = period y
present character = semicolon:|{ character counter -+ punctuation counter,
1 + comparison counter -+ comparison counter,
comparison counter 2 2: set » skip flag; ; |; ;
present character = right brace y present character = colon y
present character = left brace: comparison type - comparison counter -+
comparison type, 0 -+ comparison counter; ;
comparison type = comparison counter:
0 » comparison type » comparison counter; ; |; ;

L|OOK AHEAD: '
m;;gt character +» temporary storage(4], read any character, enter.

166 Machine-Independent Computer Programmin

colon counter ¢ 2 N punctuation counter # 0:

punctuation counter + end of line count;

{ 0 » colon counter, name found flag # 0:

' | temporary storage[1] = left brace: go on. ;

set » case flag, return carriage uppercase,
carriage return counter = 28: return carriage; ; indent, |;
glg ggmparison type +» comparison type,
] .

comma -+ current operator, character counter - 1 » punctuation counter,

margin control. character counter - 1 » end of line count, |;
set » print flag, 0 » character counter + skip flag,
restore flowchart parameters, start.
I|NDENT:
{ comparison type - comparison counter -+ upper loop limit,
upper loop limit(0 + 0) # 0: 1 + upper loop limit - upper loop limit; ;
upper loop limit x 2 - upper loop limit 2 1:

1 = i(1)upper loop limit{ space, 1}; ; |,
R|ETURN CARRIAGE:
| carriage return, carriage return counter > 29:

1= 3(1)0{ carriage return, |}, 0 » carriage return counter; ; |,
E|XIT: turn off punch, |. .

5;
NELIAC FLEX DUMP:
check key sets, start flex, carrilage return upper case,
key[1] # 0: title 1; title 2; 61400gselect output equipment.
S|ELECT OUTPUT EQUIPMENT:
0 » carriage return counter, key[i1] = 0: turn off flex, start punch
carriage return upper case, dump the date, carri return, titie 1;
carriage return, 1 = first address(1)last address| {:?e- 0
| key[2] # 0: set + zero flag, check next word. ;
0 » dump buffer(1], dump one number, 1(0 - 2) = 0:
n= 10(1)0{ space, |, dump address. dump next word. |; ;
zero flag # 0: return carriage; ;
[1] » dump buffer[1], dump one number, dump one number, space,
dump one number, dump one number, dump one number, space,
upper dump buffer(i] = 0: | dump one number,
1(0 » 2) = 0 y zero flag # 0: n = 3(1)0f space, |; ; |;
dump five numbers; zero flag = 0 N 1(0 » zﬁa# 6: dump next word. ;
D|UMP ADDRESS:
space, 1 - upper dump buffer[1], dump five numbers,
zero flag = 0: return carriage; ; 0 » zero flag.
D|UMP NEXT WORD:
return carriage, c|heck next word: |.
kTy[l] # 0: turn off flex; turn off punch; clear indices,
T{ITLE 1}:
| 83 + lower loop limit, 85 -+ upper loop limit, dump a title,
1 » first address, J » fast address,
carriage return lower case, print limits, carriage return, |.
T|ITLE 2: | title constant{86] + dump buffer, print, space, title 1, |.
RIETURN CARRIAGE:
| carriage return, carriage return counter > 58:
n = 7(1)0{ carriage return, |, 0 + carriage return counter; HEEE

53

NELIAC BIO DUMP:

start flex, carriage return upper case, 86 -+ lower loop limit,
90 -+ upper loop limit, dump a title, & + first address,

J + last address, type limits, turn off flex, 614004dump.

Appendix A: Neliac C 167

D|UMP:

start punch, 77s + dump buffer, print, blo dump, 0 > temporary storage,

i = first address(!)last addressi [i] + temporary storage -

temporary storage, [1] » dump buffer{1], bio dump, |,

tTmporary storage » dump buffer[1], bio dump, turn off punch, clear indices,
B|IO DUMP:

{ n= 4(1)0f{ dump buffer[1] x 216 » dump buffer[i],

13130gdump buffer[1], delay output, |, |}. neliac bio dump and stop: . .

5;

NELIAC BIO LOAD:

start reader, set addresses, 0 » temporary storage,

i = first addressil last address|{ read one word,

load buffer{i] » [i] + temporary storage » temporary storage, E,

read one word, turn off reader, temporary storage # load buffer[1]:
type check sum error, exit. ;

type limits, turn off flex, check key sets

key[1] = 0: first address » beginning of fiowcharts,
last address » end of flowcharts; ; clear indices,

SET ADDRESSES: { read one word, read one word,

R|EAD LEADER:

read one frame, load buffer # 0: read one word; read leader.

load buffer{1] » address limits, |.

E|XIT: neliac bio load and stop: . .

5;

COMPARISON LOAD:

start reader, set addresses, 0 » title flag,

i = first address{l last address{ read one word,

[1] # load buffer{1]: print error; ; |,

turn off reader, start flex, title flag # 0: type check sum error;
title constant{111] » dump buffer, print, space, _
title constant[90] » dump buffer, print, type limits, turntoff flex;

clear indices, neliac bio dump and s%op. :

P|RINT ERROR:

{ set » title flag, check key sets, key[1] # 0: exit print error. ;

shift from reader to flex, carriage return lower case,

title constant[109] » dump buffer, print, [1] -+ dump buffer(1],

dump five numbers, space, dump five numbers,

title constant{[110] - dump buffer, print,

1 » upper dump buffer{1], dump five numbers,

carriage return, title constant[90] » dump buffer, print,

space, load buffer[1] » dump buffer[1], dump five numbers,

space, dump five numbers, carriage return,

shift from flex to reader, e|xit print error: |.

SHIFT FROM READER TO FLEX:

{ 13300310036e, 17130gtemporary storage, 131000, start flex, |{.

SHIPT FROM FLEX TO READER:

{ turn off flex, 13130stemporary storage, 13300s10031s, 13000g161s, }. .

5
mjonth(13) = , 447323006,, 447262023, 4470730124, 447301512,,
70730000, MhTIs et M50t 0 BhT30M 120, k72400 e,
447031601, 447060317, 447222016, date(2); .

SET THE DATE: set date, clear indices, .
SET DATE: | 0 » date, month[1] » date, J » date[1]), {. .

géECK NELIAC LOAD:

168 Machine-Independent Computer Programiming

0 » temporary storage,)

i= {5]{i)n} {1] + temporary storage + temporary storage i,

turn off reader, [n + 1] # temporary storage: type check sum error;

{ check key sets, key[1] # 0: k + 3 + k, mag tape handler; ;
start flex, 112 » lower loop limit, 113 » upper loop limit,
carriage return upper case, dump a title, turn off flex,

n = 7677e(1)0{ 0 > name part 1[n], |, clear indices,

check key sets, key[2] # 0: load flowcharts and stop. ;

key[1] # O: 6Ift005rru tape handler; ; neliac bio load and stop. |.

5;

CLEAR NAME LISTS:

n = 7677s(1)0{ 0 » name part 1[n], |}, clear indices, start flex,

date = 0: 120 » lower loop limit, 123 -+ upper loop limit,
dump a title, 65400gset date; ;

carriage return upper case, dump the date, turn off flex,

clear indices, check key sets, key[3] # 0: store names and stop. start
compiling and stop. clear name list and stop: . .

5
1|0 NAME: e|xt function = 5302405224, r|elease interrupt = 220514090 & ,
Jjump active = 12251520015, t|erminate buffer = 2405221511g,
b|uffer = 225060605¢, m|onitor buffer = 1517161124,
djelay = 405140131, | max 1o index‘o > 14), perm 1o index(15 » 29), |,
| less(0 » 14), greater(15 -+ 29), = 65000634 ;
DECLARE NAMES:
J # 0: J » flochart first address; flocht storage std.first address »
flochart first address + J; 0 » frame counter,
comma - current operator - present character,
colon + next operator, J » flochart first address{i],
1 + sequence number -+ type name flag,
perm 1o index + max io index -+ k, 0 + 1o list[k], set » offset,
R|EAD NAME LIST:
present character = period: read next character, exit. ;
read rlxext character, present character ¢ a number: | read the name,
R|EENTER:
present character # colon: set link or io type. ;
offset = 0: increment io index; ; read next character,
present character - 27 » n ¢ 8: k desig[n] » k deslignator,
read next character, read a number, number accumulator » 1,
process the name, read name list, ;
present character # fert paren: dn, fault, ;
name buffer + 4000000000 » 1o list[k]
name buffer[1] + 4000000000 » 1o list.[k + 1],
name buffer(2] + 4000000000s » 1o list{k + 2], k + 3 » k,
0 » io 1ist(k], read next character, read a number,
number accumulator -+ io 1list{k](15 -+ 29),
increment io index, 0 » space flag, read name list. |; ;
present character = less y present character = greater:
| » space flag; { present character = left paren: lls -+ space flag;
0 + space flag; |; read name list.
S|EP LINK OR IO TYPE:
space flag # 0: | present character = left paren: read next character,
10e + space flag » space flag, read a number;
0 > number accumulator;
n = 6(1)0] name buffer = 1o name{n]: n + space flag » operand,
set 1o 1ist, ; |, dn fault. |;
{ searth 1o 1list, 0 » number accumulator,
n#0:n+ 3lg » operand; dn fault. };

Appendix A: Neliac C 169

S|ET I0 LIST:
offset # 0: operand » 1o list[k](15 » 29), 0 » offset;

operand » io 1list[k](0 » 14), set » offset;
7 € operand ¢ 30s: increment io index, number accumulator + io list[k];
offset # 0: increment lo index; ; 0 - space flag, read name list,
E|XIT:
offset = 0: increment io index; ;
perm io index = 0: max 1o index » perm io index; ;
max io index + io list + upper dump buffer[1], start flex
carriage return lower case, dump five numbers, turn off fiex,
J » temporary storage - 1 » flochart last address[1],
777s + sequence number, 0 + obJ prog limits[1] » offset,
clear indices, temporary storage » J, start compiling and stop.
D|N FAULT: 9 » lower loop limit, 13 -+ upper loop limit, type the fault,
F|IND NEXT DECLARATION:
read next character, present character = period: read name list. ;
present character = colon: reenter., find next declaration.
I|NCREMENT IO INDEX:
{ k+ 1> k -+ max io index, 0 » io list[k], set » offset, |,
SEARCH IO LIST:
{ 0 > skip flag, n = max 1o index(- 1)2§ 1o list[n] = - 1:

{ skip flag # 0: 0 » skip flag, look at next word,

set » skip flag; 1{; ;

io 1ist{n] 2 0 y skip flag # 0: look at next word. ;
name buffer + 4000000000s = io list[n - 2] N name buffer[i] +
4000000000 = 10 list{n - 1] N name buffer(2] +
4000000000 = 10 list{n]: exit search. ;
l{ook at next word: 1}, e|xit search: |,
store names and stop: . .

5;

DUMP NAME LISTS:

select output equipment, 0 » title flag,

D|UMP UNDEFINED NAMES: :

n= 177¢(1)0{ undefined name 1[n] # 0:
{ title flag = 0: print title 1; ;
write undefined name, space, 'space, lower case
undefined name location{n] - upper dump buffertl],
dump five numbers, carriage return uppercase, }; ; |,

key[1] # 0: turn off flex, 65400gselect output equipment; ;

D|UMP DEFINED NAMES:

print title 2, 0 » name index,

k = 777e(1)0§{ name part 1[k] = 0: set » name dumped flag{k];
name index + | » name index; |,

C|ALCULATE DUMP INDICES:

k= 49(1)0{ 0 » first comparison([k], |,
k = 49(1)0f find name, m + 1 » first ccmparisonfk}{ls +29), i,
g BM;Q 1)0§ find name, m + | » first comparison{k]{0 » 1#?, i,

k = 49(1)0{ carri return uppercase, set » shift flag,

first comparison[k]{15 + 29) » n = 0:; exit. dump name;

0 + shift flag, first comparison(k](0 - 14) + n # 0: dump name; ; |,
k = 15(1)0{ carriage return R

first comparison(0 +» 14) = 6 U name index = 0: exit, ;

calculate dump indices.,

F|IND NAME:
{ name index - | » name index ¢ 0: dump. ;
key[3] = 0: { 1000005 > temporary storage,

we

n = T77e(1)0{ name address[n] ¢ temporary storage N
name dumped flagin] = 0: n > m,
name address{n} - temporary storage; : |, |;
| repl sub q function » temporary storagefl] »
n = T77s(1)0] temporary storage[i] 2 name part i1[n] N
name dumped flag[n] = 0: n »> m,
name part ?fn] + temporary storage[i1); ; |, |;
set + nawme dumped flag{m], |,
D|UMP NAME:
{ n-1-+n, write name, space, lower case,
name k desig[n] » a buffer{1](27 + 29), dump one number,
space, name addressm -+ upper dump buffer[i],
dump five numbers, dump bit limits, |,
D|UMP BIT LIMITS:
{ name mask length[n] # 0: space, space, 2 + m,
name mask lower limit[n] / 10 » temporary storage[l],
print bit limit, space,
(name mask length n] + name mask lower limit[n] - 1) / 10 »
temporary storage| 1], print bit limit;
{ name mask[n] ¢ 0: space, space, 2615 » dump buffer, print,
5+->m 9->m; |;
shift flag # 0 N first comparisonfk](0 + 14) # 0: upper case,
m=m(1)0} space |; ; 0 > m |
PRINT BIT LIMIT:
| k » print bit limit(15 > 29), 15030etemporary storage,
k= 1(1)0{ temporary storage(k] + 27 » 1, decode and print, |,
print bit limit(15 » 29) » k, |,
P|RINT TITLE 1:
| set » title flag, carriage return uppercase,
51 + lower loop limit, 62 -+ upper loop limit, dump a title, |,
P|RINT TITLE 2:
{ n= 777e(1)0} 0 > name dumped flag(n], |,
carriage return upercase, dump the date
46 » lower loop limit, 49 » upper loop iimit, dump a title, |,
S|ELECT OUTPUT EQUIPMENT:
]Icheck key sets, key[1] # 0: start flex; start punch; |,
E|XIT: '
key[1] # 0: turn off flex; turn off punch; check key sets,
clear indices, key[2] # 0: 61410gprogram entry address. ;
dump name lists and stop: . .

5
m|ag tape routine = | print operator error, write, read,
rewind, pass ahead, pass back, |
| 1last block(15 » 29), bllock nr{0 +» 14), }(4) =1, 1, 1, I3
RRU TAPE HANDLER: mag tape handler,
MAG TAPE HANDLER
| 1 » first address, J +» last address, J » sequence number,
k / 218 » load type / 2t4 » n > U: print operator error. :
1 # 0: 1+ last block[n]; ; 0 » move back flag,
last block[n] = 0: start flex, carriage return lower case,
2420012364 + dump buffer, print, print block nr. ;
k(0 -+ 11) » function code » k 2 6: print operator error. ;
interogate unit status, load bufferﬁ] = 12 U load buffer{i] = 6,:
repeat. 1 = 32000(1)0f , |}; mag tape routine(k], exit.
I|NTEROGATE UNIT STATUS:
| rlepeat: 1770080, 1300051605, 500104 + load type -» dump buffer[1],
13310adump buffer[l] s 0 » dump buffer{i], 130001204,
17330¢10ad buffer{1], load buffer[1] - load type » load buffer[1],

»

Appendix A: NeliacC 171

7 < load bufrfer{1]
load buffer(i] = 134:

{ k= 3y ks=5: 1> block nr[n], exit, exit ius. }; ;
load buffer[1] = 12¢ U load buffer[1] = 16s:

{ 3 ¢ function code ¢ 6 uy move back flag # 0: exit ius. ; |; ;
load buffer[l] = llig: | k= Sy k= 3: exit ius. print unit error. |};
load buffer{1] # 10g: repeat. ; e|xit ius: }.

W|RITE:
{ rlewrite: last address - first address - dump buffer ¢ O0:
print operator error. ;
0 +» temporary storage[1], block nr{n] » upper dump buffer,
initiate output, write one word,
i = first address(1)last address{ [i] » dump buffer, write one word,
dump buffer + terorary storage[1] » temporary storage(1], i,
temporary storage[1] - dump buffer, write one word,
l= BZOOOEI;Oi » |}, 5 k, read or int check sum,
1= 32000(1)0f{ , |, clear flag = 0: block nr[n] + 1 » last block[n],
1 » §, pass ahead; ; check Key sets, key[1] # 0: exit. ;
1Té23ate output, initiate output, 1nit1a£e output, rewrite. |.
R :
{ 0 » function code, sequence number-= 0: read on. ,
sequence number - block nr(n] » § - move back flag ¢ 0:
0 - move back flag +» J, pass back; pass ahead;
R|EAD ON:
block nr{n] 2 last block[n]: print operator error. ;
4 5 k, read or int check sum, type limits, print block nr. |.
R|EWIND: { 1 + block nr(n}, fnitiate 1npu%, exit. {.
P|ASS AHEAD:
{ 4 > k, block nr[n] + J*» block nr[n] 2 last block[n] + 1:
block nr[n] - J » block nr{n], print operator error. ;
P|ASS BACK:
{ 5+ k, block nr[n] - J » block nrgn], pass,
1Tterogate unit status, 1 = 32000(1)0f , 1}, 1.
P]ASS:
{3 #0: | 1= 3(- 1)1{ initiate input,

move back flag = 0 N1 = |: exit. ;

interogate unit status, load buffer(i] # 16g: repeat. ; |, ;5 3
0 - move back flag, |.

R|EAD OR INT CHECK SUM: { 0 » case llag,

S|TART AGAIN: initiate input, read a word, function code # 0: g0 on, ;
upper load buffer » block nrtn] # sequence number N

sequence number # 0: 1 + block nr[n] » block nr{n],

print operator error. ;

lower load buffer + first address » last address 2 100000g:

| 1 + block nr[n] » block nr(n], print operator error. ;
G|O ON:
0 -+ temporary storage, i = first address(1)last address{ read a word,
function code = 0: load buffer -» [i]; ;
load buffer + temporary storage » temporary storage, |,
read a word, functién code = 0: | check key sets,

key[1] = 0: first address » beginning of flowcharts,
last address » end of flowcharts; ;

1 + block nr[n] » block nr[n], load buffer -+ temporary storage[1], I&;
temporary storage[1] # temporary storage:

{ type check sum error, function code = 0:)

{ case flag + | » case flag 2 3: print unit error. ;
1 > J, J » move back flag, pass back, 4 » k, start again. {;
k » clear flag; }; 0 +» clear flag; .

I|NITIATE INPUT: aes b 285 |

{ interogate unit status, load buffer{1] = 16g: repeat. ;

5608 -+ dump buffer{1], start tape unit, |.

17e: ; print unit error.

-e

pass, |

I72 Machine-Independent Computer Programming

I|NITIATE OUTPUT:

{ 1 >k, interogate unit status, 760s > dump buffer[1],

start tape unit, }.

S|TART TAPE UNIT:

| 1730000, 1300050, 13030edump buffer[1], 1740040,

500008 + load type + k -» dump buffer([1], 13310gdump buffer{i},

1= 20(])0’ st 1730020, 1.

W|RITE ONE WORD:

{ 13430edump buffer, m = 10(1)0f 1 = 22400(1)0§ 63400econtinue. 1§, |,
print unit error. clontinue: |.

R|EAD A WORD: | dlelay 1: 63U400gdelay 1. 17430gload buffer, }.
P|RINT OPERATOR ERROR:

0400050, start rlex, 24 » lower loop limit, 27 - upper loop limit,
carrlage return upper case, dump a title, print block nr.

P|RINT UNIT ERROR:

start flex, 124 > lower loop limit, 128 + upper loop limit,
carriage return upper case, dump a title, print block nr.

E|XIT: start flex,

P|RINT BLOCK NR:

load type x 218 » upper dump buffer(1], carriage return lower case, dump
one number, block nrin] - n, space, print sequence number,

E|XIT 1: turn off flex, clear indices, |. .

5;
FLOWCHART DUMP:
m # 0: m > beginning of flowcharts; ; 1 # 0: 1 » end of flowcharts; ;
0 » title flag,

|UMP:
J = 0: beginning of flowcharts -+ J, n » sequence number;

0 » sequence number; 1 = sequence number(1)0}{ s|kip zeros:

[3] = 0: 3 + 1+ J, skip zeros. ;
J » rirst address 2 end of flowcharts: exit. ;
find flowchart limits, |, check key sets,
key[2] = 0: dump a flowchart; ; key[1] # 0: punch limits; type limits;
n + 1 -+ n, space, space, print sequencé number,
key[1] # 0: dump. ; exit.
P|UNCH LIMITS:
| title flag = 0: start punch, set » title flag; ;
carriage return lower case, print limits, |.
PRINT FLOWCHART ERROR:
start flex, 43 - lower loop limit, 45 -+ upper loop limit,
dump a titie, upper case, title constant[13] » dump buffer,
pTint, 0 » address limits[1], return to load.
E|XIT:
0-»>m->1->1-»>J, title flag # 0: turn off punch; turn off flex; .

5;

DEBUG SCAN:

i1 = (): standard compiling location + 1i; ;

J = .0: obJ prog std last address - J; ;

1= 1(1)J] fi] = straight Jump function y [i] = return Jjump function:
fault 9. ; [1]&]5 + 29) = 61000 N [1](0 > 14) - bilas » k # 0:
{ [k] = 0 U [k] = straight jump function: fault 10. ; |; ;

lioop exit: |}. check key sets, turn off flex, clear indices,

key[2] # 0: dump name lists and stop. exit.

F|AULT 9:

start flex, carriage return upper case, 69 -» lower loop limit,

72 -+ upper loop limit, dump a title,

Appendix A: Neliac C 173

n= 177¢(1)0{ undefined name location[n] = i:
write undefined name, continue. ; |,
C|ONTINUE: write address, loop exit.
FJAULT 10:
start flex, carrliage return upper case,
77 » lower loop limit, 82 - upper loop limit, dump a title,
n = 777a(1)0{ name address[n] - bias = k: write name, go on. ; |,
k » upper dump buffer[1], dump five numbers,
Gio ON: write address, loop exit.
W|RITE ADDRESS:
{ 75 » lower loop limit, 76 - upper loop limit, dump a title,
i > upper dump buffer[1], dump five numbers, }. e|xit: . .

5;

TYPE FLOWCHART:

0 » frame counter, set » manual entry flag,

type the flowchart, clear indices,

TYPE THE FLOWCHART:

{ start flex, 43 » lower loop limit, 45 - upper loop limit,

dump a title, J » first address, manual entry flag # 0: type one lire. ;
sequence number -+ n, print sequence number,

T|YPE ONE LINE:

carriage return, carriage return,

ns= 7SI)Oi convt and print compller coded word, |}, check key sets,
manual entry flag # 0 N key[1] # 0: type one line. ;

J » last address, type limits, turn off flex, 0 -» manual entry flag, }. .

5;
START COMPILING:
1l » final seq nr, sequence number = 777a: | + sequence number;
0 » sequence number; m = (: standard compiling location - m; ;
check key sets, key[1] # 0: start flex, 93 » lower loop limit,
105 + upper loop limit, dump a titie, turn off flex; ;
CONTINUE COMPILING:
i #0: 1> obj prog first address; object prog std first address -»
obJ prog first address » i;
J # 0: J » flochart first address: flocht storage std first address »
flochart first address -» J;
k # 0: k » obj prog last address -+ current obj prog last address;
obJ prog std last address » objJ prog last address -»
current obJ prog last address;
n # 0: n > program entry address;
std program entry address - program entry address; m = 0: 1 » m; ;
i-m->bias, m> 1, | + sequence number » sequence number - m,
1340560, J <'i < end of flowcharts: fault 1. ;
1 ¢ J ¢ obJ prog last address: flochart first address - | »
current obJ prog last address; ;
1 = i(1)current obJ prog last addressi{ 0 » [1], |,
i + bias +» obJ prog first address[m] # temporary storage(4]:
1 + first obJ prog address; ;
1= 777s(1)0f{ 0 » first comparison[1], |,
J » flochart first address[m], process dimensions,
i » entrance flag -+ type name flag,
present character » next operator, 0 » operand, advance.
start compiling and stop: . .

5 .

PROCESS DIMENSIONS:

{ comma + current operator, colon » next operator,
k desig[3>] » k designator,

E|NTRY A:
read next character, 0 -+ back space flag,
E|NTRY B: 0 » manual entry flag,
present character ¢ a number: | read the name, process the name,
operand » k, partial word flag = 0: 1 + 1 » 1,
1 + number accumulator -+ list length[k]; ; 1}; ;
present character = period: initialize floating operatlon,
i + number accumulator =+ i, entry a. ;
present character = comma: entry a. ; present character = left paren:
{ ejntry c¢: read next character,
a letter ¢ present character { an operator: read a number; fault 3.
present character = right arrow:
number accumulator -+ name mask lower limit[k], entry c.
partial word flag = 0: number accumulator -» list length[k];
present character = multiply: read next character,
read a number, number accumulator - matrix width[k] x
list length[kj -+ number accumulator; ;
present character = right paren:
{ partial word flag = 0: 1 + number accumulator - | » 1;
{ number accumulator + | - name mask lower limit[k] »
name mask length{k] = 15; s name mask lower limit[k] = O:
! > name k desig[k], 0 - name mask[k]; ;
name mask lower limit[kj = 15;
2 + name k desig[k], 0 + name mask(k]; ; |; ;
name mask[k] # 0: check previous call; ; entry a. |;

we we

read next character, a letter ¢ present character { an operator:

number accumulator - temporary storage, read a number,
number accumulator x (matrix width[i?e+ 1) »
back space flag, temporary storage - number accumulator; ;
decrement name addresses, entry b, |}; fault 3. |; 3
present character = colon N partial word flag = 0: 1 - 1 » 1, entry a.
present character = left brace: set » partial word flag, entry a. ;
present character = right brace: 0 -» partial word flag, 1 + | » 1,
1 » number accumulator, entry a. ;
present character = equal sign: | 1 -» temporary storage,
read next character, i - number accumulator -+ 1,
check subsequent operator, first comparison = period y
first comparison = multiply: initlalize floating operation,
temporary storage + number accumulator + temporary storage,
1 » floating point flag; ; 0 » back space flag,
present character = left brace: set - manual entry flag,
E|[NTRY D: read next character; ;
present character ¢ a number N manual entry flag # O:
0 » k designator, period -+ next operator, read the name,
process the name, 0 + floating point flag, operand +
k designator -» [1], colon » next operator,
k desig[?] » k designator; ;
present character = minus: set » negative flag,
read next character; 0 » negative flag;
a letter ¢ present character { an operator:
read a number, number accumulator - [i]; :
floating point flag # 0: number accumulator[lj > [1+1],
1i+1+1; ;1 +1-+1, 0> number accumulator[1],
present character = right brace: entry a, ;
present character = comma: entry d. ;
temporary storage » 1, 0 » floating point flag, entry b. |; ;
present character = right paren N define function flag # 0: exit. H

define function flag # 0: entry a. ;
present character = left bracket: | read next character,

.
3

Appendix A: NeliacC 175

0 » k designator, read the name, process the name
k desig[3] » k designator, read next character, 36 -+ shift flag,
I|NSERT CODES: present character # right bracket:
{ [1] x 216 + present character » [i],
shift flag - 6 » shift flag = 0: 30 » shift flag, 1 + 1 » 1;
read next character, insert codes. }; ;
[1] x 2tshift flag » [1], 1 + 1> 1, (1 1) £ 0: 1 +1 > 1; ;

-e

0 » shift flag, entry a. |{; ;
present character # semi colon: fault 3. ;
E|XIT:

floating entrance = 7: 1 + blas + k desig[i] » floating entrance,
period » next operator, k = 16(1)26{ 0 > name buffer[1] »
name buffer[2], (- k) x 224 > name buffer, process the name,
1 +1-+1}, colon » next operator; ;
reconcile name lists(1), 0 » k designator » unknown operand flag, }.
C|HECK PREVIOUS CALL:
| n= 177a(1)0{ name part 1[k] = undefined name 1[n] N
name part 2[k] = undefined name 2[n] N
name part 3[k] = undefined name 3[n]:
store flowchart parameters, start flex, carriage return upper case,
write name buffer, space, é} -+ lower loop limit,
68 - upper loop limit, dump a title, turn off flex,
restore flowchart parameters, exit cpc. ; |, e|xit epe: i,
D|ECREMENT NAME ADDRESSES:
{k#0: { k- 1-+>n, n=n(1)0! name address{n] = name address[k]:
name address[n] - back space flag » name address[n],
name mask[k](10 + 29) > name mask{n](10 - 29); ; 1, i; ;
name address[k] - back space flag -+ name address[k],
I|NITIALIZE FLOATING OPERATION:
{ floating entrance =» 0: 7 » floating entrance; ;
| > name floating flag{k], decrement name addresses,
check previous call, }{. .

H

2
ADVANCE: advance and return, jump to generator.
ADVANCE 1: advance 1 and return, jump to generator.
ADVANCE AND RETURN:
| next operator - current operator, .
operand - previous operand, 0 -+ operand, advance 1 and return, |,
ADVANCE 1 AND RETURN:
{ read next character,
present character > a number: check for an operator. ;
read the name, present character -» next operator,
name buffer(0 » 23) = 0 N 10000g < upper name buffer ¢ 17000s:
set b designator. ; 0 » b designator » k designator,
process the name, set next operator.
S|ET B DESIGNATOR:
name buffer x 216 - 8 » n, b desig[n) » b designator,
0 » name buffer » type name flag, set next operator.
C|HECK FOR AN OPERATOR: present character > an operator N
present character # octal si gn:, set next operator. H
read a number, number accumulator -» operand,
operand(15 » 29) # 0 y floating point flag # 0: enter a constant;
S|ET NEXT OPERATOR: present character -+ next operaftor,
b designator + k designator + operand -+ full operand +
unknown operand flag - operand flag, 1,
ENTER A CONSTANT:
| n= l77a(l§b{ mask record(n] = 0: make a new constant. ;
mask record[n] » m, [m] = number accumulator:
{ floating point flag # 0 N number accumulator[1] # [m + 1]: ;

m + bilas » operand, exit eac. }; ; |,
M|AKE A NEW CONSTANT:
floating point flag # 0: straight jump function -+ function code,

i + bilas + 3 » operand, assemble next command, record constant. H

{1 - 1}(24 » 29) > temporary storage,
constant flag # 0 y tempor storage > 60s U
lls < temporary stor age ¢ l4g y 15s ¢ temporary storage ¢ 20s:

add function -+ function code, 0 -+ operand, assemble next command; ;

1 # entrance flag: [1 - 1] + J desig[1] » [1 = 1];
entrance flag + | » entrance flag;
n= 777e(1)0{ name address[n] - bias = 1i;
| + name address[n] -» name address{n], }; ; |,
R|ECORD CONSTANT:
n= 177s(1)0{ mask record[n] = 0: 1 + mask record[n], exit loop.
E|XIT LOOP:

HE I

number accumulator -+ [i], 1 + bias » operand » constant flag, 1 + | » 1,

floating point flag # 0: number accumulatorf{1] » (1], 1 + 1 » 1i;
E|XIT EAC: k desig[3] - k designator, }. .

5

firactional part. d|umy(20) = 77777 T7702s, 15574 67755,
TTT77 T1706e, 10456 02764, TTTT7 TT71le, 12571 435614,
TTTTT TTT14e, 15327 T45158, TTTTT 777208, 10306 75720s,
TTT77 T7723e, 12370 553049, 77TTT 777268, 15066 705664,
77777 777328, 10142 233514, 77777 358, 12172 702444,

.
L

TTTTT TTT40e, 14631 46315, t|s. 1|ndex fp, f|p number accumulator. ;

READ NEXT CHARACTER: { e|xtract next frame:

frame counter - | -+ frame counter < 0: [J] + flowchart buffer,
J+1 73, 45 frame counter; ;

flowchart buffer x 216 -+ flowchart buffer,

flowchart buffer(0 + 5) + present character = 0: extract next frame, ; i,

READ ANY CHARACTER:

| frame counter - 1 » frame counter ¢ 0: [J] + flowchart buffer,
J+1-J, 4> frame counter; ;

flowchart buffer x 216 » flowchart buffer,

flowchart buffer(0 - 5) » present character, |,

READ A NUMBER: | read an integer,

present character = period: | store flowchart parameters,

read next character, a letter { present character ¢ octal sign N

floating point flag = 0: set + floating point flag; ;
restore flowchart parameters, }; ; floating point flag = 0:

| negative flag # 0: number accumulator - - number accumulator,

0 +» negative flag; ; exit ran. |; ;
number accumulator -+ fp number accumulator,
present character = period: | read next character,
n = 9(1)0{ present character - 27 » ts, fractional part[n +
ts + fp number accumulator -+ fp number accumulator,

1] x

read next character, a letter ¢ present character ¢ octal sign: H

check for exponent. |,
R|EAD TO END: a letter < present character ¢ octal sign:
read next character, read to end. ; |; ;
C|HECK FOR EXPONENT:
negative flag # 0: - index fp[2] + index fp[2)
present character = multiply N floating point fias = 1
{ read next character, present character = minus: read next
fractional part[10] » ts; 10. 0 » ts; read an integer,
number accumulator # 0:
n = 1(1)number accumulatori{ fp number accumulator x
ts -+ fp number accumulator, |; ; |; ;
index fp[1] + number accumulator
index rp[2] -+ number accu-ulatorfl], e|xit ran: |

0 » negative flag; ;

character,

Appendix A: Neliac C 177

R|EAD AN INTEGER: { 0 - number accumulator + number accumulator(i],
R|EAD NEXT FRAME:
number accumulator x 213 + present character - 27 - number accumulatar,
number accumulator[1] x 10 + present character - 27 +
number accumulator[i], read next character,
a8 letter ¢ present character ¢ octal sign: read next frame. ;
present character = octal sign: | read next character,

present character ¢ an operator y present character = left bracket:

copy machine code. ; {;

number accumulator{[1] + number accumulator; |,
READ THE NAME:
{ 0 » name buffer » name buffer[1] » name buffer([2],
m= 0(1)2f{ n= 4(1)0f name buffer[m] x 216 +» name buffer[m],
present character + first frame name buffer{m], read next character,
present character = temp name sign: set » temp name flag,

read next character; ;
present character 2 an operator: pack the name buffer. ; |, |,
D|ISCARD INSIGNIFICANT CHARACTERS: read next character,
present character 2 an operator: exit read a name.

discard insignificant characters.
P|ACK THE NAME BUFFER: n # 0:

n= n(77776s)1| name buffer{m] x 216 » name buffer(m], |;
E|XIT READ A NAME: glossary flag # 0 N type name flag = 0:

- name buffer -» name buffer; ; {. .

.o

5;
PROCESS THE NAME:
{ n= 0(1)777ai{ name buffer = name part 1[{n] N
name bufferfli = name part 2 n} N
name bufferf{2)] = name part 3[n}: set +» name found flag,
exit name list search. ; 0 » name found flag, |,
E|XIT NAME LIST SEARCH:
next operator = left paren N loop control flag = 0:
{ check subsequent operator, first comparison = right arrow:
continue. ; current operator (left paren: { 0 -+ character counter,
L|OOK ON: present character = left paren:
character counter + 1 -» character counter;
present character = right paren:
character counter - 1 » character counter; ;
read next character, character counter # 0: look on. ;
present character = colon: set » define function flag,
restore flowchart parameters, colon - next operator,
check jump around, continue. ; }; ;
restore flowchart parameters, set » function flag -»
unknown operand flag, 0 » operand, exit process the name. |
C|ONTINUE:
next operator # colon y right brace ¢ current operator ¢ or:
set operand. ; name found flag # 0: n » temporary storage,
start flex, store flowchart parameters, _
carriage return upper case, write name buffer, space,
91 + lower loop limit, 92 - upper loop limit,
dump a title, lower case, space, 1 + bias » first address,
J + last address, print iimits, space, sequence number - n,
print sequence number, turn off flex, restore flowchart parameters,
temporary storage » n, enter name list. ;
n= 0(1)777e| name part lfn] = 0: enter name list. ; |}. fault 4.
E|NTER NAME LIST:
name buffer » name part 1[n], name buffer[1] - name part 2[n],
name buffer[2] » name part Btn], k designator + operand list[n], 1 +

.
’

.
’

-e

178 Machine-Independent Computer Programming

bias » name address[n], set » operand 1list[n](15 » i7),

temp name flag # 0 U name buffer ¢ 0: set + name temp flag[n]; ;

define function flag = 3: | > name temp flag[n]; ;

n -+ operand, sequence number - 1, type name flag # 0:

n + 1 » name index[1l]; ; 0 » type name flag,

define function flag = 7: | n - process the name(15 » 29),
3 » define function flag. process dimensions,
process the name(15 + 29) - name index » 1,

n = 0(1)name index{ name address[n] = name address[1] N
name k desig[n] = 0: 1 + bias +» name address[n];%; |,
read next character, present character - next operator,
advance., |; ; exlt process the name,

E|NTER UNDEFINED NAME LIST: n = 0(1)177e| undefined name 1[n] = 0:
name buffer + undefined name 1[n], name buffer[1] + undefined name 2(n],
name buffer[2] » undefined name 3[n] » 1 » undefined name location[n],

n + | > unknown operand flag, 0 » operand,
exlt process the name. ; |. fault 7.

S|ET OPERAND: name found flag = (operand list[n](15 » 17) # 0:
enter undefined name list. ; name address(n] » operand,

name k desig[n] » k designator(18 +» 20),

name mask[n? < 0: set » floating point flag; 0 » floating point flag;

name mask length[n] # 0: name mask lower limit[n] -+ lower bit limit,
name mask length[n] + name mask lower limit[n] - 1 »
upper bit limit, set -+ partial word flag; ;

E|XIT PROCESS THE NAME: 0 + temp name flag, |,

CHECK JUMP .AROUND: { i = entrance flag: 0 » entrance flag;

{ add function + a function, exit condition counter -+ m,
set simple exit, exit condition list[m](24 +» 29) = 6:
{ exit condition list[m] » k, straight jump function +
i + bias = [k]: exit condition counter + | »
exit condition counter » m; ; };: ; i; 1. .

»

thULT: 0 » lower loop limit, 4 -» upper loop limit, type the fault,
generator exit.

PAULT 1: 5 + lower loop limit, 8 - upper loop 1limit, exit.

FAULT 2: 9 »> lower loop limit, 13 -+ upper loop limit, exit.

PAULT 3: 14 » lower loop limit, 19 + upper loop limit,

present character » next operator, type the fault, advance.

FAULT 4: 20 » lower loop limit, 23 + upper loop limit, exit.

FAULT 6:

| 28 » lower loop limit, 3| -+ upper loop limit, type the fault, |,
FAULT 7: 32 -+ lower loop limit, 37 -+ upper loop limit,

E|XIT: type the fault, exit entry from fault.

TYPE THE FAULT: { start flex, store flowchart parameters,

carriage return upper case, dump a title, 41 » lower loog limit,

42 » upper loop limit, dump a title, current operator - . »

decode and print, space, space, next operator » 1, decode and print,

J-4>3, 0 frame counter, type the flowchart, restore flowchart
parameters, |. .

5‘

GENERATOR EXIT: .
unknown operand flag 2 120s N comparison level = 0 N
temp list index = 0: reconcile name lists(0); ;

0 » unknown operand flag -+ operand flag -+ first shift -
second shift » shift flag -+ shift flagl,

floating point flag # 0 N next operator = right arrow:

Appendix A: Neliac C 179

100s + op reg flag » op reg flag » tc reg flag[0]; ;
clear temp list flag # 0 y function flag # O:
0 » floating point flag; ; next operator # right brace: advance. ;
I |NTERPRET EXIT CONDITION LIST:
exit condition counter - | + exit condition counter ¢ 0: fault. ;
exit condition counter -+ m, exit condition 1list[m](0 » 23) » a function,
exit condition list[n](zh > 29) + 1, exit condition routine[l],
exit condition list[{m - 1](24 » 29) = 6 N exit condition counter # 0:
interpret exit condition list. ; comma -+ next operator, advance.
E|XIT CONDITION ROUTINE: release comparison lockout, set simple exit,
purge formal parameter names, set decrement loop functions,
set increment loop functions, set unknown increment loop functions,
set Jump around subroutine,
SET SIMPLE EXIT: | next operator = right brace v
a function(15 +» 29) = J desig[4](15 + 29):
{ k= 777s(1)0§ name address{k] - bias = 1: set exit jJump,
exit sse. ; |, }; ; [1 - 2](24 » 29) » temporary storage,
119 ¢ temporary storage ¢ lig U 15 ¢ temporary storage ¢ 20g: ;
{ [1 - 2)](21 +23) # 0;: set exit Jump, exit sse. ; |;
second comparison # 0: | k = second comparison{1)if [k](0 » 14) -
bias = i: set exit Jump, exit sse, ; s 133
[1 - 1](21 > 29) = 610s U 6138 < [1 - 1](21"+ 29) ¢ 620s: ; set exit Jump,
exit sse. exit condition list[m + I}(zll' + 29) = 6:
l exit condition list[m + 1](0 » 14) » k,
k](0 » 14) - bias = i; set exit Jump; ; |
E|XIT SSE: a2 function(15 » 29) = k des::fl](ls 29) N entrance flag = 0 N
exit condition counter = (: 1 +» entrance flag; iy
S|ET EXIT JUMP: | a function(0 - 14) = 0:
{ k= 7T77s(1)0{ name address[k] - bias = i: name address[k] +
| > name address[k]; ; |, exit condition counter + m,
shift a left function + 1 + exit condition list[m],
exit condition counter + | + exit cofidition counter » m, |; ;
a function(0 » 23) + straight Jump function » (i}, 1 «+ 1 » 1, |,
PlURGE FORMAL PARAMETER NAMES:
{ k= 777s(1)0{ name temp flag(k] = !: purge name; ; |,
set simple exit, |,
S|ET DECREMENT LOOP FUNCTIONS: -
{ dec loop cntrl function + a function -+ [1], 1 + 1+ 1, |,
S|ET INCREMENT LOOP FUNCTIONS:
{ inc loop cntrl function + a function » [1], 1 + 1 » 1,
interpret exit condition list. |,
S|ET UNKNOWN INCREMENT LOOP FUNCTIONS:
{ a function - | + m, 1 » undefined name location[m],
interpret exit condition list. |,

R{ELEASE COMPARISON LOCK OUT: { 0 » comparison lockout fl iy
S|ET JUMP AROUND SUBROUTINE: { a function + 1, i + bias -»"fi](o > 14), i,
ASSEMBLE NEXT COMMAND:
{ function code + J designator + k designator + b deslgnator +
operand + [1], 1 + 1 » 1, 1 > current obJ prog last address: fault i. ;
0 » function code +» J designator + k designator » b designator, |.
CHECK HALF WORD: { upper bit limit = 14 N lower bit limit = 0:
k desig[1] + k designator, 0 + partial word flag - bit limits; ;

upper bit limit = 29 N lower bit limit = 15: k desig[2] » k desisna%or,
0 » partial word flag -+ bit limits; ;

b designator + k designator + operand +» full operand, |{. .

we e

5 -
COPY MACHINE CODE: number accumulator - function code(15 + 29).

180 Machine-Inde

present character ¢ a number: read the name,
present character + next operator, process the name, 0 - k desigmtor.;
present character ¢ an operator: read a number,
number accumulator + operand; ;
gresent character # left bracket: read on. ; read next character,
€ present character ¢ 15:
present character - 8 » function code(15 + 17), read next character; ;
present character ¢ a number: crutch code fault. ;
present character -» temp pc storage = minus y
present character = plus: read next character; ;
present character ¢ an operator: | read a number, temp pc storage = minus:
0 - number accumulator -+ number a.ccunulaf:or; 3
operand + number accumulator -+ operand(0 » 14) ‘;
present character # right bracket: crutch code rauit. ; read next character,
R|EAD ON: partial word flag # 0 U present character = left paren:
0 » partial word flag + lower bit limit - upper bit limit,
crutch code fault. ;
assemble next command, present character + next operator,
punct area minus 1 (present character ¢ punct area plus i:
complete relation control. generator exit.
C|RUTCH CODE FAULT: 114 » lower loop limit, 117 + upper loop limit,
type the fault,
F|IND NEXT STATEMENT:
punct area minus | < present character ¢ punct area plus 1:
read on. read next character, find next statement. .

5;
STORE TEMP COMMAND:
{ temp 1ist index + 1 # 0: | tc reg flag[l - 1] » reg flag,

tc offset{l - 1] » offset # lower bit limit y

tc reg flag{l - i] + ti reg flag = i06s: align part words; ; |;
lower bit limit » offset, store word, »
STORE WORD: | function code + J desifmtor + k designator +

2

.o

e

b designator + operand » temp list[l
0 + function code » J designator + k designator + b designator,
level » level list 1'1 » tl reg flag » tc reg flag[l],
offset » tc offset{l], 1 + | » temp 1list index > 1, |
PART WORD COMMAND: | a function - function code, 7 + tl reg flag,
store temp command, check for undef name, set tl mask, |,
FULL WORD COMMAND: | tl reg flag = 0: op reg flag » ti reg flag; ;
tl reg flag = 7: a function + function code;
qQ function + function code, 77s + tl reg flag;
store temp command, check for undef name, 0 -+ bit limits[1], |,
ALION PART WORDS: 1 0 » J designator + k designator +» b designator,
function code + full operand » full operand, shift aq left function -+
function code, reg flag + tl regflag = 106g: 30 +» operand; 60 -+ operand.
operand - lower bit limit + offset - operand > 61:
operand - 60 +» operand; ; store word, reg flag » tc reg rlag[l - 1],
full operand -+ operand, |,
STORE AND ADD TS: | zeroize op offset, store current sum,
partial word flag + temporary storagef}]{o -+ 14), 0 » partial word flag,
unknown operand flag -+ temporary storage(3](15 + 29),
0 -+ unknown operand flag, lower bit limit - temporary storage,
0 + lower bit limit, k desig(3] » k designator,
bit limits[1] » temporary storage[2], set add inst,
temporary storage + lower bit limit, temporary storage{2] - bit limits{1],
temporary storagePNO +> 14) » partia.l word flag,
temporary storage[3](15 + 29) +» unimown operand flag, i,
OP STORE PART WORD: | op reg flag +» temporary storage[1] # 0:
zeroize op offset, store current sum, operand -+ operand storage[2]; ;

Appendix A: NeliacC 181

0 » k designator + b designator, set op mask, unknown operand flag # 0:
unknown operand flag - | + n, 1 » undefined name location[n]; ;
enter log prod function +» function code, reset operand, .
assemble next command, last lower bit limit -+ op offset,
zeroize op offset, 0 » bit limits{1], 7 » op reg flag,
compile op shift, store current sum, operand -+ operand storage[i],
temporary storage([1] # 0: enter q function » function code,
k desig[3] + operand storase?zl + operand » {1],
release ts, assemble next command, 77s - op reg flag, ; ;
k desig[3] + operand storage[l] » rurl operand -+ operand, |,
ZEROIZE OP OFFSET:
{ op offset # 0: shift aq left function + 60 - op offset » [1],
14121, 0> op offset; ; |,
CHECK FOR UNDEF NAME: | unknown operand flag -+ tc mask flagfl - i},
0 - unknown operand flag, |. .

5;
TRANSFER TEMP COMMAND: .
{ temp list index - | + temporary storage ¢ 0: exit. ;
op reg flag # 0: | temp list index ». 1, tc offset[l - 1] » offset
op reg flag -» reg flag, lower bit fimit » temporary storage[}],
op offset + lower bit limit # offset U op reg flag +
tc reg rlag(l - 1] = 106g: 1 + temporary storage -+ temporary starage,
tl reg flag » temporary storage(4], tc reg flag[l - 1] »
tl reg flag, align part words, temporary storage(4] -»
tl reg flag; ; temporary storage(3] » lower bit limit, |; ;
1 = temporary storage(l)O{ level 1list{l] > level:
{ level 1list[l - 1] ¢ level N temp 1list[1](15 + 29) = 07000s: ;
{ temp list[1l] » [i] # O:
(1 - 1] - [1] = compare function: decrement i(1); ;
i1i-2)- 5 desig[l] - [£ = 1] = [1] = compare function:
decrement 1(2); ; _
1-2}- [1]0 1.1]-[1+1]=6: decrement 1(3]; 3
1.5]=s[1)]Nnf1_4)-Ji-.2]-{1-1]1-1[1+1])=6;
decrement 1(6) 1] = 07000 00036s N op reg flag = 77a:
load a add q function » [1]); ;
0 » constant flag, tc reg flag(l] » op reg flag
te offset[1l] + op offset, tc mask flag[l] > 200De:
tc mask flag[l] - 2060. + 1 + bias » [1](0 » 14),
0 » tc mask flag(l]; ;
tc mask flag(ll = TT7a: enter mask record;
| tc mask flag[l] > 1000a: l store current sum,
i-1 -1, tc mask flag(l) - 1000s » n,
floating point flag = 0: operand + k desig[3] + operand;
operand » temp 11st[n](0 » 20), 1I;
{ tc mask flag[l] # 0: tc mask flag[l] - | + n,
i + undefined name location[n];
release ts; |; |; 1 > 1, 1; s E
C|LEAR TEMP COMMAND: 0 > temp nstfﬂ » level’1ist(l) »
tc mask flag[l] » tc offset[l], 0 » tc reg flag[l],
1 2 current obj prog last address: fault 1. ;
1 + temp 1list index = 0: 0 » tl reg flag; ; {; ; 1.
E|XIT: 0 » bit 1imits{1], |.
D|ECREMENT I(a): | release ts, n= 0: exit di. ;
6: 0 » ts address record[n] + ts ready flag(n]; :
:1+1+1; ;1.a->n, n=n(1)if 0 + [n], i,
i1.a+>1, clear t command. e|xit di:
STORE CURRENT SUH:eTpo > J desig!mtor + Db cks:l.snator -+ k designator,

. o
2 9

-e

=l

182 Machine-Independeni Compuier Programming

floating point flag # 0: enter b function + J desig[7] » [1],
return jump function + floating entrance + 6 > [1 + 1], | + m;
op reg flag = 7: store a function » [1]; store q function + [1];
*>m |;n= l9{ - 1)1{ 0 ¢ ts ready flag(n] ¢ m + 1:
ts address record(n] + bilas + operand + k desig{m - 1] + [1] »
[1], 0 » ts ready flag(n], exit 1, ; ts address record(n] = 0:
{ slet new ts: floating point flag # 0: 1 + 2 » 1,
straight jump function + 1 + blas + 3 » [1],
1 +1+1-> ts address record[n] + bias » operand + [1 - 3] »
(£ - 3]; 1 +1 + 1+ ts address record[n] + blas +» operand +
3 aesigf1] + k desig3) + [1.- 1] » [1 - 1];
set +» constant flag, exit 1. {; ; |. set new ts.
E|XIT 1: 1 + | » 1, floating point flag # 0: f1+1+1,
[1—4]=§1-2]n51- l]- 51—3]-?31-“"1,
0+ [1)+ (1 + 1) >[17+2)+[17+3]; ; i;
f [1-1)-[1-2]=compare function: i - 21, 0+ [1] > [1 +1); ; |;
0 » op reg flag, .
RELEASE TS: { 0 » n, [1](0 +» 14) # 0:
I n= 19(1)0] [1](0 » 14) - blas = ts address record[n]:
{ floating point flag # 0: | + ts ready flag(n];
4 » ts ready flag[n]; exit 2. |; ; i,
elxit 2: }; ; }. .

5;
MASK ROUTINES: .
SET OP MASK: | set up positive mask, assemble next command,
mask accumulator # 0: mask accumulator - [1),
enter mask record, 1 + 1 > 1; ; |.
SET TL MASK: | temp list index - 1,
upper bit limit - lower bit limit » temporary storage,
last upper bit limit . last lower bit limit = temporary storage N
level 1ist{l - 3] = level: | temp list function[l - 2] # 07: 1 + | » 1; ;
temp list function(l - 3] = 10g: | 0 » temp list[l - 3},
tc mask flag{l - 4) = 8
0 » temp list(l - + tc mask flag(l - 4); ; ; ; 1I; ;
-set up positive mask, enter mask in temp list, |.
SET TL NEG MASK: | set up negative mask, enter mask in temp list, |.
S|ET UP POSITIVE MASK: { build a mask,
last upper bit limit ¢ 15: 0 + mask accumulator, exit epm. ;
last upper bit limit =« 29 N last lower bit limit < 15;
operand + k desig(l4] » operand, 0 -+ mask accumulator,
exit epm. ; set up full mask, e|xit epm: |.
S|ET UP NEGATIVE MASK:
| build a mask, - mask accumulator + mask accumulator,
mask accumulator(0 -+ 14) » operand(0 » 14)
last upper bit 1limit ¢ 14: operand + k deaig[ll] -+ operand,

0 » mask accumulator, exiterm. ; last upper bit limit = 20 N
last lower bit limit ¢ 15: 0 » mask accumulator, exit enm. ;
set up full mask, e|xit enm: |.

S|ET UP FULL MASK: { k desig[3] -+ operandso > 23),
m= 1(1)177s] mask record[m? +n#0N[n] = mask accumulator:

operand + bias + n -+ operand, 0 - mask accumlator, exit efm. ; I,

operand + J desig[i1] -+ operand, e|xit efm: |.

E|NTER MASK IN LIST: | temp list index + 1

mask accumulator # 0: operand » operand[}] ’ maaf: accumulator -+ operand,
store word, 777s -+ tc mask flag[l - 1], operand[3] » operand; ;

store word, |.

ENTER MASK RECORD:

| m= 1(1)177s] mask record[m] = 0: 1 + mask record(m], exit emr. ; |,

Appendix A: Neliac C 183

E|XIT EMR: 1 + blas - [1 - 1](0 » 14), 1I.
B|UILD A MASK: | 0 » mask accumulator
1 =)Jower bit limit(1)upper bit lmtt mask accumulator x 2 +
1 » mask accumulator, |, lower bit limit # O: v
1= 1{1)lower bit 1limit|{ mask accumulator x 2 -» mask accumulator, |;
bit 1limits + bit limits[1], 0 » bit limits -+ partial word flag,
enter q function + mask accumulator(0 » 14) » operand, |. .

e

5;

SHIFT ROUTINES: COMPILE OP ENTER AND SHIFT:

{ op reg flag = T7s: enter a function » function code
7 » reg flag; enter q function + function code, ﬁ. »> reg flag;

reset operand, 0 + unknown operamnd flag,

assemble next command, enter op shift, |.

COMPILE OP SHIFT:

{ first shift # 0: op reg flag » reg flag, enter op shift; ; |.

COMPILE TL SHIPT: | e|nter tl shift: firs% shift # 0: | invert shifts,

0 -+ operand + k designator » b designator, first shift -+
q function + 01000 00000 » a function, partial word flag # O:
7 - tl1 reg flag; ; unknown operand flag » temporary storage[1],
shift flag » unimown operand flag, full word command,
shift flagl » shift flag, second shift » first shift
0 » second shift, reset operand, temporary storase[!j + unknown operasd
flag, enter tl shift. is 5 1.
E|{NTER OP SHIPFT: { 0 » case flag -+ k designator -» b designator,
E|NTER SHIFT: [1 - 1])(24 > 29) = 224 y case flag # 0:
02000 000008 + first shift » first shift, set » case flag; ;

reg flag = 7: 01000 00000e + first shift » operand; first shift +» operand;

shift flag # 0: shift flag - | + n, 1 + undefined name location[n); ;

assemble next command, second shift -+ first shift # 0: 0 » second shift,
shift flag | » shift flag, enter shift. ; |{.

INVERT SHIFTS: { second shift # 0: second shift » temporary storage[4],
shift flag 1 -+ temporary storage[5], shift flag +» shift flag 1,
temporary storage[5] » shift flag, f’irst shift » second shift,
temporary storage(i4] - first shift; ; |,

CHECK FOR PART WORD OR SHIPT:

{ partial word rlag # 0: check for divide shift, op store part word;
| first shift # 0: | check for divide shift, compile op enter and shift,

op reg flag -» temporary storage = 77s: 7 -+ Op reg flag; ;
store current sum, k desig(3] + operand » operand + full operand,
temporary storage » op reg flag, 1|; ; 1; 1|,

CHECK FOR DIVIDE SHIFT: { temp list index + 1, '

temp list[l - 1] = divide function: set divide shift inst; ; |

CHECK FOR SHIFT: | first shift # 0: check for part word or shiff; ; |. .

5
clo logical index(25) = 4050426130, 4050426130, 40504261304,
1050426170s, 44420300s, 51041400s, 320000000s, , 4040426130,
40000002s, 40000002, 400000025, 2040000002s, 40000002,, 200000024,
842000000s, 1250426100s, 25047071004, 40200100s, 40100100s, , ,
404261008, 40426100, njo logical .index(25) = 20000204, 20 6020.,
2000010, 5002311042, 400000102, 10063104204, 40000000, 200000000, ,
10000000, 2000020s, 2313000, 2313000s, 22313000, 2022313000,
2313000s, 22313000e, 63130024, 1023146024, 1023146024, 37000024,
2360002, , 2000s, 1002311002s, 1002311002s;

JUMP TO GENERATOR:

k designator + b designator + operand » full operand +

unknown operand flag - operand flag,

next operator = equal sign y next operator = less than:

184 Machine-Independent Computer Programming

check ahead; ; minus ¢ next operator ¢ color shift:
{ check subsequent operator, first comparison = exponent sign:
{ check half word, first shift = 0: current operator -
temp co storage, full operand -+ operand storage(3],
unknown operand flag » operand storage(2], :
0 + unknown operand flag; full operand + first shift(0 -» 23),
unknown operand flag - shift flag, 0 + unknown operand flag;
0 » k designator » b designator, advance. |; s 1
next operator = exponent sign: record shift. H
current operator = exponent sign: | first shift(0 -» 23) = 0N
shift flag = 0: full operand - first shift(0 -» 23),
unknown operand flag - shift flag; full operand »
second shift(0 + 23), unknown operand flag - shift flag 1;
operand storage{}] + full operand, reset operand,
operand storage[2)] -+ unknown operand flag,
temp co storage » current operator, |} ;
punct area minus | ¢ current operator < punct area plus 1 y
crutch ¢ current operator ¢ exponent sign:
current operator -+ punctuation; 0 » punctuation;
next operator = colon Uy next operator = and U next operator = or:
next operator + end relation symbol; | next operator = less than N
less less comparison > 2: next operator » end relation symbol;
0 » end relation symbol; |;)
right brace ¢ next operator < Plus y next operator = end relation symbol
set > clear temp list flag; 0 » clear temp list flag;
current operator - 38 » n, next operator . 38 » 1, co logical index[n] »
co logical index[n], h00343no logical index, 15030stemporary storage,
ne 0(1)29§ temporary storage(0 » 0) # 0: generator[n]. :
temporary storage / 211 + temporary storage |, rault.
G|ENERATOR: fault. initiate relation controi. fault. generate straight Jump.
generate return jump. check partial word. check for algebra.
check for neg loop increment. check for loop limits. clear temp list.
generate add or enter. generate add. generate subtract.
generate multiply. generate mult quant., generate mult or enter.
generate divide. generate div or enter. generate div quant.
generate store. initiate loop control. set exit conditions.
generate io. initiate subscript. modify subscript. set subscript.
save current operator. generate add or enter. initliate relation control.
generator exit,
R|ECORD SHIFT: current operator = multiply:
shift q left function - function code; shift q right function »
function code; first shift = 0: function code +» first shift;,
function code -+ second shift;
0 » k designator + b designator » function code, advance,
CHECK SUBSEQUENT OPERATOR: | store flowchart parameters,
R|EAD ON: read next character,
present character -+ first comparison ¢ an operator: read on. H
restore flowchart parameters, I,
C{HECK AHEAD: | store flowchart parameters,
L|OOK SOME MORE: read next character,
punct area minus | ¢ present character < punct area plus | y
present character = or y present character = and: exit check. H
present character = less than N less less comparison = 0:
1 > less less comparison, exit check. ;
present character # left brace: look some more. ; set » loop control flag,
E|XIT CHECK: restore flowchart parameters, |. .

5 L
INITIATE RELATION CONTROL:
loop control flag # 0: save current operator. ;

Appendix A: Neliac C 185

operand flag # 0 N next operator = left paren:
save current operator. ; transfer temp commands, next operator = and:
and » comparison type; ; next operator = or:
or + comparison type; ; check half word,
less less comparison flag - n # 0: process compare function[n]. ;
right brace ¢ current operator ¢ right arrow:
{ current operator - 44 » n 2 8: set » reverse comparison flag,
n-2->n; ; J desig[n] » J designator {; ;
next operator # colon N next operator # and N next operator # or:
calculate quantity. ; first shift # 0 y partial word flag # 0:
calculate quantity. ; temp skip storage(1] # 0:
{ temp skip storage([i] - full operand -» operand flag,
reset operand, 0 » temp skip storage[1], reverse comparison flag = 0:
{ set » reverse comparison flag, op offset # 0: op offset +
30 » op offset, 77s > op reg flag; ; |;
0 » reverse comparison flag; 1{; ;
zeroize op offset, 0 » bit limits[lj, (1 - 1)(24 » 29) »
temporary storage[7], operand flag # 0 U reverse comparison flag # 0 U
temporary storage|7] = 22g U temporary storage{?} = 23g U
temporary storage[7] = 12s U temporary storage([7)] = 65q:
subtract and skip. ;
temporary storage{[7] = 26as U temporary storage([7] = 27es U
op reg flag # 77s: set skip condition. ;
[1 - 1](24 » 29) = 10a: enter a and skip. ; J designator > J desig[6]:
J designator - J desig(4] » J designator, set skip condition. ;
S|UBTRACT AND SKIP: level + 1 » level, floating point flag = 0:
{ reverse comparison flag = 0: op reg flag » tl1 reg flag,
q sub function » q function, sub function » a function,
full word command; load a sub q function -+ function code,
77s - t1 reg flag, store temp command; |;
{ J designator(15 » 23) + 60000 + enter a function » [1],
i+1-»>1, 0> 3 designator, reverse comparison flag = 0:
set floating call(7); set floating call(8);
enter floating operand, |}; transfer temp commands,
level - 1 » level, 0 » reverse comparison flag,
S|ET JUMP TO NEGATIVE:
1 + comparisoncounter » comparison counter » 1, i + correction[l],
straight jump function » [1], 1 + 1 > 1,
next operator = colon: comparison level x 10 -+ m,
comparison level + | - comparison level, 0 » comparison list[m],
comparison counter » comparison list[m + 1](15 » 29),
comparison type - comparison list[m + 1](0 » 14), 1 > 1,
n=m+ 2(1)m + 9{ correction[l] » comparison list[n],
correction[l + 1] » comparison list[n]{(15 > 29), 1 +2 > 1, |,
0 -» comparison counter » comparison lockout flag; ;
0 » op reg flag, generator exit.
E|NTER A AND SKIP: 01000 00000 + [1 - 1] » [1 - 1],
S|ET SKIP CONDITION: J designator + [1 - 1] » [1 - 1],
0 » J designator, set jump to negative.
P|ROCESS COMPARE FUNCTION: fault. save second quantity.
store second quantify., enter third qQquantity. enter compare command.
S|AVE SECOND QUANTITY: next operator # less than y partial word flag FO0u
first shift # 0: 2 - less less comparison flag, calculate quantity. ;
full operand » temp skip storage, zeroize op offset, 0 » bit limits[1],
3 -+ less less comparison flag, 0 » k designator -+ b designator,
generator exit.
S|TORE SECOND QUANTITY:
zeroize op offset, 0 » bit limits[1], store current sum,
operand + k desigf}] -+ temp skip storage,
3 » less less comparison flag, generator exit.

186 Machine-Independent Computer Programming

E|NTER THIRD QUANTITY:
partial word flag # 0 u first shift # 0: entry a. ;
next operator # colon N next operator # and N next operator # or:
e|ntry a: 4 » less less comparison flag, calculate quantity. ;
op reg flag = 77e:
{ [1 - 1)(24 » 29) = 10g: 01000 00000s + [1 - 1] > [1 - 1];
shift ag left function + 30 » 1], 1 + V1 = 1; I; ;
enter q function » function code, assemble next command,
E|NTER COMPARE COMMAND: temp skip storage[1] # 0 N op reg flag = 7:
op offset + 30 » op offset, zerolize op offset; ;
11 518-»20 -0N[1- I]gzli-ve ;#‘22,n[1- 1](24 > 29) # 236 N
1 - 1)(28 »29) 2 10a: [1 - 1J(0» 18) = 1 » [1 - 1J(0 + 14);
q sub function + 1 -+ [1], 1 + | » i; temp skip storage[1] # O:
| temp skip storage[1] = J desig{1]: 0 » temp skip storage(1]; ;
enter a function + temp skip storage[1] » [i],
release ts, 1 + | » 1 |; ; compare function + J desig[i] +
temp skip storage » [1], release ts, 1 + 1 + 1, 0 » bit limits[1] »
less less comparison flag + temp skip storage, 0 -+ temp skip storage[l],
set jJump to negative.
C|ALCULATE QUANTITY: zeroize op offset, 0 » bit limits[1],
temp skip storage[il] = 0: | [1 - 1](24"> 29) = 10g:
| J designator + [1 - 1](0 > 23) > temp skip storage[1] = O:
J desig[1] » temp skip storage[i]; ;
1-1+1, 0+ [1]), O » op reg flag » J designator |;
J designator » temp-skip stor eﬁl],v store current sum,
temp skip stora.ge[l] +k desizf} + operand -+
temp skip storage{1], full operand » operand; |; ;
colon -+ current operator - punctuation, Jump to generator. .

53
COMPLETE RELATION CONTROL:
next operator # period N next operator # semicolon: generator exit. ;
comparison level = 0 y comparison lockout flag # 0:
generator exit, ; (comparison level - 1) x 10 » 1,
comparison list[1](15 » 2? + m= 0: straight Jump function » [1],
1 » comparison 1ist[1](15 + 29), 1 + 1 » 1, generator exit, ;
comparison 1131;{1 + l]EO + 14) » comparison type,
comparison list{l + 1](15 » 29) > ¢ ison counter, | » k
n=1+2(1)1 + 9} comparison 1131;[11]!0 + 14) » correction[f:]
comparison 1ist{n](15 + 29) -+ correction(k + 1], k + 2 » k, i,
comparison counter » n, correction[n] » second comparison » n,
i1-1=wm | 1-3=n: mve true alternative; m » false alt address,
n + 1+ true alt address, 1 - | > 1 + bias + [n] » [n]; exit, };;
n+l=m:|i-2=m: move false alternative; chanfe skip condition,
i1.1-15 true alt address + bias + [n] > [n],
move false alt(1); exit. |; ;
[m+ 1}(21 > 29) = 610s Nm + 4 + blas # [m + 1](0 + 14);
move false alternative, exit. ;
[n + 1)(21 »29) =» 610e Nn + 4 4+ bias # [n + 1](0 » 14);
move true alternative, move false alt(2), exit, ;
m + | » false alt address + bias + [n) » [n], 1 + bias + [m] + [m],
n + 1 » true alt address,
E|XIT: comparison counter + 1, 0 + correction[l],
comparison counter - 1 - comparison counter = (: exit 1. ;
1 = i(1)comparison counter{ correction[l] + n,
comparison type = and: false alt address + bias + [n] +» [n];
{ comparlison type = or: true alt address + bias + [n] » [n],
change skip condition; fault 6; |; 0 » correction[l], '{.
E|XIT 1: comparison level - | -+ comparison level,

Appendix A: NeliacC 187

exit condition counter > m # 0;: {m- 1 > m
m = m(1)0} exit condition iist[m](15 » 29) = 0:
{ exit condition list[{m] = comparison level:
set +» comparison lockout flag; ; exit 2. {; 5 1, 1I; ;
- false alt address -» comparison type -» comparison counter -»
1] > true alt address, 7 » constant flag, generator exit.
ALTERNATIVE: | change skip condition, [n + 1] » [n],
i » false alt address, n » true alt address,
e undefined name location(1), |{.
FALSE ALTERNATIVE:
n > false alt address, n + | » true alt address, 1 - 2 » 1,
m+ 1]+ [n], 1 +1 -n-> temporary storage, m » n,

~H
e

3
VY
H+o

ETYS]
£
38 o

——

change undefined name location(temporary storage), |.
M|OVE FALSE ALT(a): { n + 1 » false alt address
M=

~8

(1)L +1{a->k, ng [m]fo > 14) - bilas ¢ 1 + 3:
s < [m)(28 » 29) ¢ 70s U [m](24 > 29) = 724 U [m](15 » 20) = 3G:
é [m - 1](2% » 29) + temporary storage,
ma- 1](21 > 23) # 1 U 11g € temporary storage < 14g U
15¢ ¢ temporary storage ¢ 20s U temporary storage 2 60s: ;
dont change. temporary storage = T7s U temporary storage = 0:
{ straight Jump function + bias + 3 = [m - 2]:
dont change. ; 1{; ; I:
t [m](15 » 29) # 12700s: dont change. ;
m+ 1J(9 » 29) # 1100060s N [m + 1](15 » 29) # 650104:
dont change. ; H
1= 19(1)0f{ [m])(O > lﬁ) - blas = ts address record[l]:
ts address record[l] - k » ts address record(l]; ; |,
[m)(0 » 14) - k > [m]{0O » 14), d|ont change: }; ;
m-a->k, [m] > [k], |, change undefined name location(1), |,
CHANGE SKIP CONDITION:
{ [n - 1](15 > 29) = 65010s;: [n - 3)](6 » 6; + 12 [n- 3](6~+6);
[n-1)(21>21) + 1 > [n- 1}(21 +> 21);
C|HANGE UNDEFINED NAME LOCATION(Db):
{ 1= 177e(1)0f n ¢ undefined name location[l] ¢ 1 + 2:
undefined name location[l] - b - undefined name location[l]; ; |,
1= 777a(1)0{ n ¢ name address[l] - bias ¢ 1 + 2:
name address{l] - b » name address[l]; ;

+
60

s Je o

5;
JUMP GENERATORS: GENERATE STRAIGHT JUMP:
operand flag = 0: { .current operator = period: exit compilation.
complete relation control. i; H
k designator = k desig[3]: k desig[1] » k designator; ;
straight jump function » function code,
assemble next command, complete relation control.
GENERATE RETURN JUMP: function flag = 7:
{ operand flag # 0: 0 » tl reg flag, set enter inst,
transfer temp command; set » clear flag; colon counter -» n,
i » address corr list[n], floating point flag # 0:
2 -» address corr lisﬁ[n](IS + 29), punctuation counter + 2 -»
punctuation counter; 1 -».address corr listgn](ls +> 29),
punctuation counter + 1 > punctuation counter;
restore name buffer, k desig[3] » k designator, generate store. |{; ;
function flag = 3: | operand flag = 0:
punctuation counter + 1 > punctuation counter, colon counter -
| + n, address corr_list[n](15 > 29) + 1 »
, address corr list[n](15 » 29), check for function end. ;

colon counter » n, 1 » address corr list|n
floating point fidg # 0: 2 » address corz[' hst[n](15 + 29),

* punctuation counter + 2 - punctuatlion counter;
1 > address corr list[n](15 » 29), punctuation counter + | »
punctuation counter; bit limits > temporary storage[1],
0 » bit limits » b designator, unknown operand flag -
temporary storage(15 » 29), partial word flag -+ temporary storage(0-+14),
0 » unknown operand flag, restore name buffers,
0 » partial word flag, k desig[3] -» k designator, 0 » tl reg flag. set
enter inst, reset operand, temporary storage - partial word flag,
temporary storage[1] - bif limits, temporary storage(15 » 29) »
unknown operand flag, generate store, |; ;
operand flag # 0: | return jump function » function code,
k designator = k desig[3]): k desig[1] » k designator; ;
assemble next command, }; ; complete relation control.
CHECK PARTIAL WORD: partial word flag # 0 y first shift # 0:
generate add or enter. generator exit,
RESET OPERAND: | full operand(0 - 1uz -+ operand,
full operand&ls -+ 173 -+ b designator(15 + 17), full operandSIB + 20) »
k designator(18 » 20), 21 > 23), 1. .
5; ,
ARITHMETIC GENERATCRS:
CHECK FOR ALGEBRA: operand flag # 0: save current operator. ;
current operator = divide: generate div by quantity. ;
current operator = plus y current operator = minus:
| op reg flag # 0: store and add ts; ; check for negation,
2 + level » level., generator exit. |}; ;
current operator = multiply: generate mult by quant. ;
current operator = left paren: 2 + level » level; 3 + level » level;
generator exit,

CHECK FOR NEG LOOP INCREMENT:
loop control flag = 0: level - 1 » level, generate add. ;
next operator = minus: set - neg number flag; 0 +» neg number flag;
current operator - next operator, previous operand - operand,
generator exit,
CHECK FOR LOOP LIMITS: loop control flag # 0: advance. ;
transfer temp commands, compile op shift, level - 2 -+ level,
transfer temp commands, generator exit.
CLEAR TEMP LIST:
transfer temp commands, compile op shift, level - 3 » level,
transfer temp commands, next operator = end relation symbol:
initiate relation control. generator exit.
CHECK POR NEGATION: | current operator = minus:
| floating point flag # 0: set floating call(5);
store a function + k desig[4]) » a function, store q functim -
q function, 0 + operand, full word command; i{; ; |.
SET ADD INST: | floating point flag # 0:
set floating call(1), enter floating operand;
| partial word flag 7 0: add log prod function -+ a function,
part word command; add function + a function,
q add function -+ q function, full word command; |; i,
SET ENTER INST: | floating point flag # 0:
set floating call(0), enter floating operand;
| partial word flag # 0: enter log prod function » a function,
part word command; enter a function + a function,
enter q function » q function, full word command; |; |,
SET MULTIPLY INST: | floating point flag # 0:
set floating call(3), enter floating operand; 77s + tl reg flag,
multiply function + q function, full word command; |,

full operand(2} » 23) +» J designator

Appendix A: Neliac C 189

INITIATE DIVIDE INST: | floating point flag # 0: set floating call(4),
enter b function + J desig[7] + function code; divide function -»
function code; 0 » operand, 77s + tl1 reg flag, store temp commard,

1 - 1| » divide inst address; |.

SET DIVIDE SHIFT INST: | floating point flag = 0:
shift aq right function » function code, 30 » operand
store temp command, 7 -+ tc reg flag{l - 1] » tl1 reg riag; ;s 1.

SET FLOATING CALL(a): { temp list index » 1,

return jump function + floating entrance + a » temp listgll,

level + level list[l], 77s > t1 reg flag » tc reg flag[l],

offset » tc offset{l], 1 + | » temp list index » 1, |

ENTER FLOATING OPERAND: { 0 » k designator -» operand(lé + 20),

b designator » a function # 0: operand(0 - 14) » q function,
77s » tl reg flag, enter b function + J desig[7] » function code,

0 - b designator » operand, store word, store q function »
function code, k desig[1] » k designator, store word,

2001s » tc mask flag[l - 1], q add function + function code,

q function -» operand, store word, shift q left function -»

function code, 1 -+ operand, store word, enter q function »
function code, a function + operand, store word; enter b function +
J desig[7] + function code, store word; check for undef name, |. .

5;
GENERATE ADD OR ENTER:
current operator # plus: 1 + level » level; ; check half word,
next operator = right arrow N operand flag = 0: set » clear flag,
advance. ; op reg flag # 0: check for shift, set add inst;
compile tl shift, set enter inst; clear temp list flag # 0:
level - 1 » levei, transfer temp commands; ;
next operator = end relation symbol:
initiate relation control. generator exit.
GENERATE ADD: check half word, current operator # plus:
1 + level + level; ; check for shift, set add inst, generator «it.
GENERATE SUBTRACT: check half word,
clear temp list flag # 0: level - | » level; ; op reg flag = 0:
{ temp list index - 1 » 1, floating point flag # 0:
{ temp list function[i - 1] -ngsg: temp g?st[l -11-1-
temp 1ist{l - 1]; temp list[l - 5] - 1 » temp 1list{l - 5];
{ temp list[1](24 » 29) = 104: | tc mask flag[l - 1] = 777a:
40 > temp list[l - 2](24 » 29);
40 + temp 1ist{l - 1](24 » 29); };
{ temp 1list{[1](24 » 292 = 20a: 11g > temp list{1](24 -+ 29);
10 » temp list[1])(24 » 29); I; {; i; ;
transfer temp commands, check for shift, floating point flag # 0:
set floating call(2), enter floating operand;
{ partial word flag # 0: sub log prod function -+ a function,
part word command; sub function » a function,
qQ sub function + q function, full word command; {;
transfer temp commands, next operator = end relation symbol:
initiate relation control. generator exit.
QGENERATE MULTIPLY: check half word,
current operator = left paren: level - 1 » level; ;
op reg flag # 0: store and add ts, reset operand; ;
check for part word or shift, current operator = plus y
current operator = minus: level + | + level; level + 2 » level;
set multiply inst, check for negation, generator exit.
GENERATE MULT QUANT: transfer temp commands, complle op shift,
level - 1 > level, transfer temp commands, generator exit.
GENERATE MULT BY QUANT: op reg flag # 0: zeroize op offset,

190 Machine-Independent Computer Programming

store current sum, k desig[3>] » k designator, set multiply inst; ;
level + | » level, generator exit.
GENERATE MULT OR ENTER: check half word,
op reg flag # 0: check for part word or shift, set multiply inst;
compile tl shift, set enter inst; clear temp list flag # 0:
level - 2 + level; ; next operator = right paren y
next operator = plus U next operator = minus: level .
tranafer temp commands
CHECK FOR DIVIDE TO FOLLOW: next operator = divide: | initiate divide inst,
current operator = divide: set divide shift inst; ; |
next operator = end relation symbol:
initiate relation control. generator exit.
GENERATE DIVIDE: check half word, check for part word or shift,
divide inst address » 1, floating point flag # 0:
| b designator # 0: n= 1 4+ 1{|)temp 1ist index{ temp list[n] »
temp 1list[n + 4], tc mask flag[n) » tc mask flagln + 4
fn n] » tc reg flag(n + j,
» tc offset[n] »

0 » tc mask flag(n], tc reg fl
level list{n] -+ level listfn +
tc offset[n + 4], |, temp list index + 4 -+ divide inst addre s,
1 » temp list index, enter floating operand,
divide inst address + temp list index,exit gen div.
0 + full operand(18 -» 20), full operand + J desig[7] »
full operand; |; ; full operand » temp 1ist{1](0 » 23),
unknown operand flag - tc mask flag[l],
E|XIT GEN DIV: Q - divide inst address -» J designator - k designator -
b designator, transfer temp commands, clear temp list flag # 0:
level - 2 » level; ; next operator = plus y next operator = mimsy
next operator = right paren: level - | + level; ;
check for divide to follow.
GENERATE DIV OR ENTER: check half word,
0 » J designator + k designator + b designator,
op reg flag # 0: store and add ts; ; lower bit limit -+
temporary storage(0 - 14), 0 » lower bit limit,
current operator = punctuation: 2 + level -» level; | + level -» level;
unknown operand flag - temporary storage(15 + 29), 0 - unknown operand flag, 7
T7s » tl reg flag, check for negation, initiate divide inst,
set divlide shift inst, first shift # b: { invert shifts,
first shift(18 + 29) = 01004 N shift flag = 0:
divide inst address + | + 1, first shift(0 » 17) +
temp 11st[1](0 » 17) » temp 11st[1](0 - i7), second shift »
first shift, shift flag 1| -+ shift flag, 0 > second shift; ;
compile tl shift, |; ; reaset operand, temporary storage(0 -» lﬁ) >
lower Bit limit, temporary storage(15 + 29) + unknown operand flag,
set enter inst, generator exit.
GENERATE DIV QUANT: transfer temp commands, compile op shift,
level - | -+ level, transfer temp commands, initiate divide inst,
[1 - 1)(24 +» 29) # 224: set divide shift inst; ; generator exit.
GENERATE DIV BY QUANTITY:
op reg flag # 0: check for divide shift, zerolize op offset,
store current sum, k desig[3] +» k designator, set enter inst; ;
temp list index + 1, 0 » tc offset[l - 1], store q function +
functlon code, store temp command, 77 -+ tc reg f?ag[1-1)-»
tl reg rlag, divide inst address + 1000 + tc mask flag[l - 1]
0 » bit 1limits[1], 0 + divide inst address, level + | > level,
generator exit, .

5.
GéNERA‘I‘E STORE: bit limit flag # 0: set upper bit limit. ;

check half word, transfer temp commands, floating point flag # 0:
| clear flag # 0: store b function + full operand -+ [1],

b = level

»

Appendix A: Neliac C 191

i+1-+1, full operand + 1 » full operand, store zero,
full ope -~ 1 - full operand, 1 - | > 1,
enter q function » [1], 1 + 1 » 1, 77e > op reg flag; ;
set floating call(6), enter floating operand,
op reg flag ¢ 100g N function flag = 0: 77 + tl reg flag,
set floating call(9); ; exit. 1}; | op reg flag > 100e:
return Jump function + floating entrance + 10 > fi],
1+1-+>1, 77e > op reg flag; ; |; partial word flag # 0:
{ [L = 1) = enter q function N lower bit limit = op offset: i -
clear flag # 0: 0 » clear flag, enter a function -+ [1],
lower bit 1limit » op offset, 1 4+ 1 » 1,
7 » op reg flag » tl reg flag; ;
next operator 2 colon: enter g function » function code,
0 » J designator - k designator » b designator + operand,
7 + tl reg flag, store temp command, substitute function -»
function code, store temp command, full operand » operand; ;
7 » tl reg flag, repl substitute function -+ function code,
store temp command, check for undef name, set tl neg mask,
0 » partial word flag, exit. }; ;
loop control flag # 0: check for index arithmetic. ;
operand + k designator + unknown operand flag = 0 N b designator # 0:
{ next operator ¢ colon y next operator = right brace:
{ n= 177a(1)0{ 1 = 1 = undefined name location[n] y 1 -
2 = undefined name location(n]: check for enter b. ; |,
check for index arithmetic. |}; check for enter b. {; ;
clear flag # 0: store zero, enter q function + [i],
T7s »> op reg flag -+ tl reg flag, 1 + 1 +» 1; ; condense previous
commands.
C|HECK FOR INDEX ARITHMETIC: [1 - 2]J(0 » 14) = 0 N [1 - 2](18 » 29) = 1000s:
é {1 - 1](15 > 29) = 26000a: set inc b inst. ;
i~ 1)(15 » 29) = 27000s:
{ {1 -1]J(0>14) =1 N[1-2)](0>23)= Db designator: 0 » [1 - 2],
arithmetic Jump function + bias + i1 -~ 2 » k designator,
set inc b inst, ; [1i - 1](15 » 29) - 60008 » [1 - 1](15 » 29),
{1 - 2](15 + 29) + 1000 > [1 - 2](15 » 29), 7 + op reg flag,
check for enter b. ;3 i; H
[1 -2 §15-> 59) = 10000s N [1 2 17{18 » 29) = 2600s N
i« 1)(0» 14) = 0: set inc b inst. ; _
C|HECK FOR ENTER B: b designator x 216 +» b designator,
clear flag # 0: | next operator # right arrow: 0 -+ clear flag; ;
set enter b inst, 1}; ; op reg flag = 77a:
{ right brace ¢ next operator ¢ or:; set enter b from a reg. ;
i1 izh +29) = 10g: 1 - 1 » 1, enter b function + function code,
[(£](0 » 20) > operand, 77e + tl reg flag, set store inst. ; |; ;
ET|ENTER B FROM A REG: 7 » t1 reg flag, k desigl7] - k designator,
ET ENTER B INST: enter b function » function code, set store inst.
ET INC B INST: 1 - 2 » i, enter b function » function code,

1+ 1;;

Idesignator x 216 > b designator,
1J(0 » 23) + [1 + 1](0 » 23) » operand, set store inst.
| ONDENSE PREVIOUS COMMANDS: op reg flag = 77s: Store q function »
function code, 77s - tl reg flag; store a function »
function code, 7 » tl reg flag;
unknown operand flag # 0: set store inst. ;
add function + full operand = [1 - 1]: .
add repl function » function code, 1 - 1 + 1, set store inst. ;
sub fungtion + full operand = [1 - 1]:
sub repl function -+ function code, i1 - |1 » 1, set store inst,
q add function + full operand = [1 - 1]): | repl add q function -»
function code, 1 - | » i, enter q function + 1 = [1 - 1];

s
S
S
b
[
c

e

192 Machine-Independent Computer Programming

repl add one function - function code, 1 - t » i;
set store inst. |{; ;
n = 177¢(1)0f{ 1 - | = undefined name location[n]): set store inst. ; |
enter q function + full operand = [i - 2]:
{ q sub function + I = [1 - 1];
repl sub one function - function code, 1 - 2 » 1, set store inst. ;
q add function + 1 = [1 - 1]: repl add one function -
function code, 1 - 2 + 1, set store inst. :
[1 - 1](24 »29) = 27: [1 - 1](0 » 23) + enter q function » [1 - 2],
1 <1 >1, repl sub q function » function code, set store inst. ;:
[1 - 1](24 > 29) = 26g: [1 - 1](0 » 23) + enter q function » [1 - 2],
1 -1 -1, repl add q function » function code, set store inst. ; |;
right brace < next operator y [1 - l]§18 + 29) # 1000 U
(£ - 1J(0>184) #0uU [1 - 1](15 » 17) = 0: set store inst., ;
n= 177e(1)0{ 1 - | = undefined name location[n): set store inst. ; Iy
store b function » function code, 1 - 1 > 1, [1](15 » 17) »
J designator(21 » 29), function flag = 7: colon counter - n,
address corr listtn] - | » address corr list[n]; ;
S|ET STORE INST: store temp command, check for undef name,
EX|IT: transfer temp commands, 0 - fi], function flag # 0:
| next operator = semicolon: restore name buffers,
return jump function » function code,
assemble next command, > - function flag; ; 0 > op reg flag,
check for function end. i- ; compile op shift,
load a add q function ¢ (i - Ij < enter log prod function:
7 » op reg flag; ; next operator ¢ colon y next operator = right brace:
0 » op reg flag » tl reg flag » level -» offset » op offset,
0 » floating point flag, complete relation control. ;
next operator = end relation symbol: initiate relation control. ;
next operator = plus U next operator = minus: | + level + level; ;
next operator = multiply y next operator = divide: 2 + level » level; :
next operator = divide: initiate divide inst, set divide shift inst; ;
generator exit,
S|TORE ZERO: | next operator # right arrow: 0 -+ clear flag; ;
next operator < colon U next operator = right brace y
next operator = right paren y next operator = right arrow:
store b functlion + function code, set store inst. ; |}, . .

.
2

t4

5; _

INITIATE LOOP CONTROL: next operator = right arrow: set lower bit 1limit. H

rirst shift # 0: compile tl shift, set enter inst, generator exit.

operand -+ loop control flag, check half word,

partial word flag # 0: fault. ;

(£ - 1](15 > 17) > m » set loop control(0 » 14), 1 - 1 » 1,

enter q function » functlon code, 0 + operand,

temp co storage = equal sign N previous operand » operand +

unknown operand flag + k designator = 0 N [1] -

b designator = enter q function: 0 » b designator,
generator exit. ; assemble next command, temp co storage ¥ equal sign:
| temp co storage = plus: q add function » function code;

q sub function » function code; previous operand -» operard,

assemble next command, }; ; b desig(m] » b designator,

0 -+ operand, generate store.

SET EXIT CONDITIONS: exit condition counter -+ m,

colon 2 current operator N comparison level # 0:
comparison level -+ exit condition list[m], exit condition counter +
1 » exit condition counter, exit to advance. ;

locp control flag # 0: set loop control. ; define function flag = 0:
check jJump around; ; shift q right function + 1 + bias +

.
’

we

Appendix A: Neliac C 193

k desig[1] » exit condition list{m],
exit condition counter + 1 » exit condition counter,
define function flag # 0: 0 » define function flag,
exit condition list[m] + shift q right function »
exit condition list[m]; ; 1 + 1 » 1,
E|XIT TO ADVANCE: comma - next operator, advance.
S|ET LOOP CONTROL: 0 - m, current operator = plus:
previous operand + operand(0 - 14) » full operand(0 » 14) »
operand(0 » 14); ; current operator = minus:
previous operand - operand(0 - 14) » full operand(0 » 14) »
operand(0 » 14); ; 0 > op reg flag, exit condition counter » 1,
operand flag = 0: | loop control flag - 1 » loop control flag > 1:
set a reg decb; 0 » exit condition list{1l];
exit condition list[1l] + shift aq right function + i + blas +
J desig[m] -+ exit condition list?l], }; { neg number flag # 0:
loop control flag + 1 -+ loop control flag, set a reg dec b;
{ loop control flag 2 2: add function + J desig[1] » [1]
.1+ 1> 1, enter b function + j desig[m] + b desig[m] +
loop control flag - 1 + [1i], 1 + 1 + 1, . | » exit condition 1list{1l];
0 > exlit condition list{1l]; {;
exit condition list[l] + shift g right function + 1 + bias -
-exit condition list|[l}], exit condition counter + | »
exit condition counter » 1, compare function + j desig[m] +
full operand - exit condition 1ist[1], unknown operand rla.i # 0:
exlt condition counter + 1 » exit condition counter » 1,
-unknown operand flag + shift q left function »
exlt condition 1ist[l]); ; 0 » b designator » k designator, |{;
0 » loop control flag - neg number flag, exit condition counter +
1 » exit condition counter, exit to advance.
S|ET A REG DEC B: { - 3 > exit condition 1list[1],
straight jump function + i + bias + 4 > [1]), 1 + 1 > &,
enter a function + b desig[m] » [1], 1 + 1 > 1,
sub function + loop control flag » fi], 1 +1»1,
enter b function + k desig[7] + J desig[m] » 1), 1 + 1+ 1, |,
INITIATE SUBSCRIPT: current operator -» temp co storage,
floating point flag - temp co storage(12 » 14), 0 -+ floating point flag,
k designator = 0: k desig[3] - k designator; ; advance.
MODIFY SUBSCRIPT:
previous operand + operand(0 - 14) » operand(0 - 14), advance.
SET SUBSCRIPT: floatinf point flag # 0: fault. ;
temp co storage(12 » 14) » floating point flag # 0:
operand(0 » 14) x 2 > operand(0 » 14); ; current operator = minus:
previous operand - operand(0 - 14) » operand(0 - 14);
previous operand + operand(0 - 14) » operand(0 » 14
temp co storage(0 » 11) > current operator, advance 1.
SAVE CURRENT OPERATOR: current operator -+ temp co storage,
function flag = 0: advance. ; op reg flag # 0: zeroize op offset,
store current sum; ; operand -» temporary storage(8] »
current operator » function co, 0 -+ colon counter, 1 + fevel + level
name buffer » first comparisontl] name buffer[1] » first comparisont?],
name buffer[2] + first comparisont}], comma - next operator,
generator exit.
SET LOWER BIT LIMIT: partial word flag # O:
lower bit limit -+ dimn lower bit limit; 0 » dimn lower bit limit;
operand + dimn lower bit limit » lower bit limit,
set » partial word flag - bit limit flag,
revious operand -» operand, advance,
ET UPPER BIT LIMIT: operand + dimn lower bit limit -+ upper bit limit,
temp co storage » current operator,
previous operand -+ operand, 0 » bit limit flag, advance 1.

.
»

194 Machine-Independent Computer Programming

RESTORE NAME BUFFERS: | first ¢ i1son[1] » name buffer,
rirst comparison[2] -+ name bufferll s Tirst comparison[3] - name buffer[2],
process the name, colon counter - n,
address corr 1list[n](15 » 29) = 2: set » floating point flag; ; |,
CHECK FOR FUNCTION END: store flowchart parameters, read next character,
present character = right paren N next operator = comma:
present character - next operator; restore flowchart parameters;
next operator = right paren: | function flag = 7: restore name buffers,
return jump function + function code, assemble next command; ;
0 » function flag, n = 0(!)colon counter|{ address corr list[n] » m,
{(m](0 » 14) - punctuation counter » [m](0 » 14),
punctuation counter - address corr list n]{ls + 29) »
punctuation counter, 0 » address corr list[n], |,
function co » current operator, check subsequent operator,
0 » unknown operand flag,
punct area minus 1 < current operator ¢ punct area plus |.
{ punct area minus | ¢ first comparison ¢ punct area
Plus 1 y first ccdparison = right brace: level - 1 » level,
0 » k designator » b designator + J designator »
operand » floating point flag, advance 1, ; |}; ;
store current sum, operand » temporary storage[7],
temporary storagefS] -+ operand » [1] # 0:
k desig[3] » k designator + operand -+ full, operand,
release ts, set enter inst, transfer temp commands; ;
temporary storage[7] » operand, k desig(3] » k designator,
level - 1 » level, advance 1. |; restore flowchart parameters,
colon counter + | » colon counter; generator exit. .

5;
EXIT COMPILATION: comparison level # 0: fault 6; :
exit condition counter # 0: 129 » lower loop limit,

152 » upper loop limit, type the fault; ; sequence number - n,
1 # entrance flag:

program entry address -+ k + blas + a function - entrance addr{n],

straight jump function + entrance flag + bias » [k],

program entry address + 1 - program entry address,

J desig[4] + a function » a function, 77776s + m, set simple exit;
reconcile name lists(0), 1 - 1 +» current obJ prog last address +
bias » obJ prog last address[n], J - 1 » flo chart last address[n],
0 » title flag » type name flag,
k= 777.(12% name temp flas[:? # 0: purge name; ; |,
name indexin}] - | » 1, name part 1[1] = 0: 0 + name index[n]; ;
P|URGE NAME: | 0 » name part i{k] + name part 2(k] - name part 3[k] -+
operand list[k] -+ name mask[kz, |, check key sets, sequence number -+ n,
glossary flag = 7: purge name(15 » 29) » J, '

print sequence number(15 - 29) + glossary flag, 0 +» flochart limits[n],

sequence number - | + sequence number, check for end of flowchart. ;
key[1] # 0: start flex, print run info, turn off flex; ;
floating entrance - bias »m # 0 N [m] = 0: J » purge name(15 » 29),
neliac dimn part 2 + | » J, glossary flag -»

print sequence number(15 » 29), et » glossary flag, continue. ;
C|HECK FOR END OF FLOWCHART: J + 4 > end of flowcharts:

| sequence number ¢ final seq nr(0 - 8):

{ final seq nr + 2 - final seq nr{(0 -» 11) + k,
sequence number » temporary storage(4], 0 ' + 1,
flocht storage std first address -» i, mag tape handler,
temporary storage[4] -+ sequence number,
upper loop limit = 27 U upper loop limit = 128;

type last address, 0 - 1, 61400grru tape handler. ;
continue, |}; ; check key sets, key[3] = 0: exit. ;

we

Appendix A: Neliac C 195

n = 177s(1)0} undefined name 1[n] # 0:
initiate library search. ; |, exit,
I|NITIATE LIBRARY SEARCH: n = 177s(1)0{ undefined name 1[n] < O:
- undefined name 1[n] » undefined name 1[(n}; ; |,
130003”7’43, 13300311-00‘173, u703030, 1733080,
133004400425, 4703050, 1733080, 1320060,

WAIT FOR C2: 62200gwait for c2,
TTT77s x 2t15 + flochart first address{[1] +» temporary storage,
75530s temporary storage, temporary storage(0 » 14) >
end of flowcharts,
W|AIT FOR FIRST WORD: 63500gwait for first word,
W|AIT FOR SECOND WORD: 63500gwalt for second word,
W|AIT FOR THIRD WORD: 63500gwait for third word,
MONITOR: 1261025, 11036577776s, 60500emonitor, 1300040,
[n « 3] = 0: terminate search. ; .
end of flowcharts » temporary storage » J, n » end of flowcharts,
LOOK FOR NAME OF LIBRARY ROUTINE: read next character,
present character # semicolon: lock for name of library routine. ;
read next character, read the name,
n= 177a(1)0{ name buffer = undefined name i{n] N
name buffer[l% = undefined name 2 n] a]
name buffer{2] = undefined name 3{n}: end of flowcharts -»
temporary storage, 1300011745, wait for first word. ; |,
temporary storage » [5](0 » 135 -+ end of flowcharts,
13000g1174g, wait for first word.
T|ERMINATE SEARCH: 1300051174, - | > [5], temporary storage -.
4 > flochart first address[1]: flochart first address[1] » J,
T7s - glossary flag, continue. ;
EXIT ENTRY FROM FAULT: E|XIT:
0 » glossary flag » final seq nr + debug flag, punch run info,
program entry address - | - programentry address,
S|TOP: check key sets, first obJ prog address - i,
current obJ prog last address + 1| » J, type last address,
key[2] # 0: 61400adebug scan. 61400gstop. |; ;
C|ONTINUE: sequence number = 77s: punch run info, 0 » sequence number; ;
current obJ prog last address + | > m + bias » 1 » temporary sterage[&],
program entry address » n, obJ prog last address -» Kk,
key%;] # 0: continue compiling. ; 61400scontinue compiling.
P|UNCH RUN INFO: { | » n, start punch, carriage return upper case,
dump the date, 93 -+ lower loop limit, 105 > upper loop limit,
dump a title, print run info, turn off punch,
n= 1{1)77a{ 0 » flochart limits[n] » entrance addr[n] -»
name 1ndexfn], i, i,
PRINT SEQUENCE NUMBER:
{ n » last frame dump buffer[1], dump one number, dump one number, |,
P|RINT RUN INFO:
{ n=n(1)77af flochart limits[n] # 0: | carriage return, space,
space, print sequence number, space, space, space, space,
uppercase, n -» temporary storage(1],
name index[n] » n # 0: n - 1 » n, write name; n = i4(1)0} space, |;
temporary storage[1] » n, lower case, space, space,
obJ prog limits(n] » address limits, print limits, space, space,
space, flo chart limits[n] » address limits, print limits,
entrance addr[n] # 0: space, space, space,
entrance addr[n] » upper dump buffer(1],
dump five numbers; ; 11; ; i, 1.
R|ECONCILE NAME LISTS(c):
{ 1= 777¢(1)0{ operand 1ist[1](15 + 17) # 0 N name k desig[l] > c:

196 Machine-Independent Computer Programming

{ 0 > operand 11ist[1](15 » 17),
m = 177¢(1)0] name part i1[1] = undefined name 1[m] N
name p art 2}1] = undefined name 2[m] N
name part 3(1] = undefine d name 3[m]: | undefined name location[m] » k,
name address[1] + [k](0 » 14) x 2¢15 / 2115 > [k](0 - 14),
[k](18 » 20) = 0: name k desig[l] » [k](18 » 20); ;
0 » undefined name 1[m] » undefined name 2{m} »
undefined name 3[m] -» undefined name location[m]; }; HEE PO
T|YPE LAST ADDRESS:
{ 98 - lower loop limit, 100 > upper loop limit, start flex,
dump a title, current obJ prog last address + | -+ upper dump buffer(1],
dump five numbers, turn off flex, }. .

5;

STORE CONSTANTS: 0 » std addresses, 1 » object prog std first address,
J » flo cht storage std first address, k > obJ prog std last address,
m -» standard compiling location, n » std program entry address,

clear indices, clear namelist and stop. .

5
{ c|hannel(15 » 29), 1o index(0 - 14) }, s|ubseript 1, s|ubscript 2;
GENERATE I0: unknown operand flag -» n # 0
0 » undefined name I1[n - 1] > undefined name location[n - 1] »
unknown operand flag; ; search io list, n = 0: io fault; ;
n+1=>n,
L|INK ENTRY:
io list[n](15 » 20) > channel, n + 1 » n » 1o index, set » offset,
S|ET NEXT OPERATION: next operator # less N next operator # greater N
next operator # right bracket: advance and return,
set next operation. ; io index - n,
offset # 0: io 1list[n](15 » 29) > operand storage, 0 » offset;
lo 1ist[n](0 » 14) » operand storage, set » offset;
operand storage = 0: exit. ; operand storage ¢ 20a:
{ next operator = right bracket: exit. 5 next operator = less:
0 » space flag; | > space flag; 0 - unknown operand flag,
advance and return, k designator - temporary storage(1],
0 » subseript 1 - subscript 2 » k,
next operator = left bracket: | operand flag # 0: 0 » skip flag;
k desig[3] » temporary storage(1], | » skip flag;
R|PT: 0 » k designator, _
unknown operand flag - temporary storage[1](0 - 14),
0 - unknown operand flag, advance and return,
b designator + operand operand flag:
| skip flag = 0: io fault; skip subscript. |; ;
temporary storage[1](0 » 14) » unknown operand flag
0 » skip flag, operand + b designator - subscript Ifk],
previous operand -+ operand + subscript i - operand flag,
0->b designator, next operator = right arrow: 1 -» k, rpt. ;
S|KIP SUBSCRIPT: next operator # right bracket: io fault;
read next character,
present character » current operator - next operator; |
operand storage 2 10s: | operand flag + unknown operand flag = 0
extract next cell for operand;
io index + 1 » io index, set » offset; l: ; '
temporary storage[1](15 » 29) » k designator(15 - 29), |;
| operand storage > 30g: modify index for link.
0 » space flag, extract next cell for operand; |;
C| ONTINUE:
channel » n, 0 » a function, operand storage(0 - 2) - m, 1o generator[m].

o8 e
-e

Appendix A: Neliac C 197

1|0 GENERATOR: io fault, generate ext function. generate rels interrupt.
generate jump active. generate terminate buffer.
generate buffer, generate monitor buffer. generate delay.
G|ENERATE EXT FUNCTION: k designator = 0 N unknown operand flag = 0:
operand - number accumulator, enter a constant; ;
channel » n, io j desig[n] » J designator,
space flag = 0: external function » function code;
store ¢ function » function code;
k desig[3] » k designator, subscript | -» b designator, set io inst.
G|ENERATE RELS INTERRUPT:
arithmetic Jump function » function code, operand flag # 0:
J desig[1] » J designator; ; subscript 1 > b designator, set io inst.
G|ENERATE JUMP ACTIVE:
space flag # 0: input Jump function » function code;
output jump function » function code; io .J desig[n] -»
J designator, subscript 1 » b designator, set io inst.
G|ENERATE TERMINATE BUFFER:
space flag # 0: terminate input function » function code;
terminate output function » function code;
io J desig[n]) » J designator, set ilo_ inst.
G|ENERATE MONITOR BUFFER: monitor function - a function,
G |ENERATE BUFFER: skip flag # 1: | enter q function » function code,
k desig[4] > k designator, assemble next command, 0 -» operand,
subscript | » b designator # 0: load a add q function » function code,
assemble next command, store a function » function code;
store q function » function code;
k desig[1] + 77s » k designator, assemble next command,
subseript 2 » b designator # 0: q add function - function code,
assemble next command, store q function - function code;
{ subseript 1 # 0: store a function » function code;
store q function » function code; }; 77s = operand,
k desig[?] »> k designator, assemble next command,
k deslg[3] > k designator, 1}; ; space flag # O:
buffer in function + a function » function code; puffer out function +
a function » function code; ic J desig[n] » J designator, set io inst.
G |ENERATE DELAY:
enter b function » function code, J desig[7] » J designator,
assemble next command, dec loop cntrl functlion » function code,
J desig[7] » J designator, i + bias » operand, set io inst.
M|ODIFY INDEX FOR LINK:
operand storage - 305 » n, io index - io list[n]{0 » 14),
channel > io list[n]{21 - 26), offset » io list[n]{14 - 14), link entry.
S|ET IO INST: assemble next command, operand storage ¢ 20g U
current operator = left bracket: advance and return; ;
C|HECK FOR END: next operator = comma: read next character,
present character -» next operator; ; io index » n,
io list{n + 1] ¢ 0 N 1o 1list[n + 2] ¢ 0N io list[n +3] ¢ 0N
io list[n + 4] > 0 N offset # 0: | b|ack down:
io list[n - 1] 2 0 y io list[n - 2] > 0 y io list[n - 3] > O:
n - 1 > n, back down. ; io list{n](0 » 13) » io index # 0:
io list[n](14 > 14) > offset, io 1list[n]{21 » 26) » channel,
0 » io list[n](0 » 14), io index - n;
{ e|xit: next operator = right bracket:
{ current operator = less y current operator = greater:
0 » offset » skip flag » space flag, comma -
next operator, generator exit. ; {; ; io fault, 1{; }; ;
offset # 0: n + 1 » n » io index; 0 -» offset;
0 » skip flag » space flag, set next operation.
I|0 FAULT: { 9 » lower loop limit, 13 > upper loop limit, type the fault,
F|IND END: present character » temporary storage, read next character,

198 Machine-Independent Computer Programming

present character = comma: read next character; ;
present character = right bracket:
| temporary storage = less U temporary storage = greater:
0 » offset, comma » next operator, generator exit.
present character = period N temporary storage = period:
exit compilation. find end. |,
E|XTRACT NEXT CELL FOR OPERAND:
{ 1o index + 1 » n + io index, io list[n](0 » 28) » operand,
set » offset, 0 » k designator » temporary storage[1], |}, io list: . .

HEN F I

APPENDIX B

NELIAC 704

In order to demonstrate the methods employed when the character
set is restricted to that available with IBM card equipment, a com-
piler written for such use is given in this appendix. It should be
noted, however, that IBM has recently made available an expanded
character set for its 026 key punch, which will print and punch 26
letters, 10 numbers, and 17 of the remaining 26 symbols required.
Such a key punch, especially if coupled with an SC 3000 or an
ANalex high-speed printer, both of which have the entire set, should
make a real improvement in both the legibility and ease of use of

the language.

Table IX shows both the substitute symbols used in this compiler,
as well as those that will still be required with the expanded set.

TABLE IX
CHARACTER SET SUBSTITUTIONS REQUIRED WITH STANDARD
AND WITH MODIFIED IBM EQUIPMENT

Symbol Substitution Comments
Modified Standard
; $ semicolon
CLN colon
LBK LBK left bracket

RBK right bracket

200 Machine-Independent Computer Programming

{

)
A NEQ
> GEQ
< LSS
< LEQ
>
->
X

|

U OR
n AND
0

o o]

OCT
MCH

left brace

right brace

for comparisons only

not equals

greater than

less than

less or equal

greater than

for assignments only
multiplication

not implemented

Boolean OR

Boolean AND

exponent

if used as octal number sign
if used preceding machine code

The cooperation of Professor Harry Huskey in providing the com-
piler listing presented here is greatly appreciated.

Appendix B: Neliac 704

{ COMMENT CLN MASTER DECK s LOWER COMPILER » JANUARY 25, 1961)
$ START COMPILE CLN ZERO = [4 CLEAR ALL NAME o o o

(COMMENT CLN NAME LIST DIMENSIONING STATEMENT)
NAME WORD 1 (10241,
NAME WORD 2 (1024),
NAME WORD 3 (1024),
NAME LOCATION (1024)s
UNDEFINED NAME 1 (512),
UNDEFINED NAME 2 (512),
UNDEFINED NAME 3 (512),
UNDEFINED LOC (512)s

$ COMMAND LIST CLN
ADD CLN MCH 0400000 O+
ALS CLN MCH 0767000 O»
ANA CLN MCH 4320000 0,
ARS CLN MCH 0771000 0O,
CAL CLN MCH 450000005
CAS CLN MCH 0340000 0,
CLA CLN MCH D500000 0
CLM CLN MCH 0760000 0,
CLS CLN- MCH 0502000 O,
COM CLN MCH 0760000 6+
DVP CLN MCH 0221000 O,
FAD CLN MCH 0300000 O,
FOP CLN MCH 0261000 O
FMP CLN MCH 0260000 Os
FSB CLN - MCH 0302000 O+
HTR CLN MCH 0000000 O
LDQ CLN MCH 0560000 O+
LLS CLN MCH 0763000 0O
LRS CLN MCH 9765000 O+
LXA CLN MCH 0534000 O,
LXD CLN MCH 4534000 Os
MPY CLN MCH 0200000 O,
ORA CLN MCH 4501000 O,
PAX CLN MCH 0734000 O,
PDX CLN MCH 4734000 O
PXD CLN MCH 4754000 Oe
SLW CLN MCH 0602000 Os
STA CLN MCH 0621000 O

STO CLN MCH 0622000 O»

STO CLN MCH 0601000 O

STQ CLN MCH 4600000 0Oy

STZ CLN MCH 0600000 0+

SUB CLN MCH 0402000 O»

SXD CLN MCH 4634000 0»

TMI CLN MCH 4120000 0O»

TNZ CLN MCH 4100000 O»

TRA CLN MCH 0020000 O»

TSX CLN MCH 0074000 0

TXH CLN MCH 3000000 O

TXI CLN MCH 1000000 0»

TXL CLN MCH 7000000 0,

TZE CLN MCH 0100000 0»

FLOATING CONSTANT CLN MCH 2330000 Os
FLOATING TEN CLN MCH 2045000 O»
OCTAL LIMIT CLN MCH 1000000 Os
DECIMAL LIMIT CLN MCH 0631463 OCT 14630,
ERROR CODE CLN MCH 2551514 OCT 65160
MCH 2346242 OCT 56060

201

oolo
0020
0030
0040
0050
0080
0090
0100
0110
0130
0140
0150
0160
0170
0171
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400

0410
0420
0430
0440
0450.
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560
0570
0580
0590
0600

202 Machine-I ndepende.nt Co'mp;ter Progmmming

LABELS CLN MCH 6060603 OCT 11360y
MCH 6060606 OCT 06073
MCH 6041136 OCT 06060,
MCH 6060607 OCT 36042»
MCH 1360606 OCT 06060,
MCH 6073602 OCT 34613
MCH 6060607 OCT 36045,
MCH 46135606 OCT 06073
MCH 6043216 OCT 26360,
MCH 4521442 OCT 51360,
RECORD CLN MCH 00000000, MCH 00000000 MCH 00000000+ MCH 000000005

MCH 00000000, MCH
MCH 00000000, MCH
MCH 77000000+ MCH
LAST NAME CLN MCH

MCH

MCH
PROGRAM NAME CLN

(COMMENT CLN MASTER

00000000s MCH 00000000+ MCH 00000000,
00000000+ MCH 00000000+ MCH 00000000,
77000000

0000000 O

0000000 O»

0000000 Os

MCH 6060606 OCT 06060,

MCH 6060606 OCT 06060+

MCH 6060606 OCT 06060,

MCH 6060606 OCT 06060+se

DIMENSIONING STATEMENT)

SIMPLE DIMENSION LIST CLN ADDRESS»

ADDRESS FLAG»
ADDRESS PAST »
ADDRESS TEMP
ANDF LAG»

ARGUMENT STACK (201},

BRACE FLAG»
CHAR »

CLEAR SYMBOL FLAG»

CLEAR ADD FLAG»
COMPARATOR »
COMPARISON FLAGs

COMPARISON FLAG 19

COMPARISON LOC (35)

COMPARISON LOC 19
CONTROL FLAG
COUNT»
CURRENT INDEX»
CURRENT OP,
CURRENT OP TEMP
DECIMAL INTEGERSs
DECREMENT»
ENTRANCE ADDRESSs
FAULT FLAG=O0»
FLOATER>
FLOATING FLAGS

FLOATING FLAG PAST,

FLOATING PT STACK
FRACTION COUNT»
FUNCTION FLAG,
HOLDAD (100},
HOLDOP (100)»
HOLD STACK INDEX»s
IL ADDRESS»

IL OPs

INDEX COUNTERS
INDEX FLAG)S

INDEX REG»

1 TEMP STORE,

(20}

00

00
00

00

0610
0620
0630
0640
0650
0660
0670
0680
0690
0700
0310
0320
0330
0340
0710
0720
0730
0740
0750
0760
0770

0790
0800
0810
0820
0830
0831

0832
0840
0850
0845

0860
0870
0880
0890
0900
0910
0920
0930
0940.
0950
0960
0980

0990

1000
1010
1020

1025
1026

1030
1040
1050

Appendix B: Neliac 704 203

ITSs . 00 1060
J TEMP STORE» . 00 1070
J TEMPORARY,)
JIS o 00 1080
K TS,
LOC STARTs 00 1090
LOC TEMP, 00 1100
LOOP FLAGe 00 1110
LOOP INDEX NUMBER» 00 1120
LOOP STORAGE (30) 00 1130
MESSAGE » 00 1140
MINUS FLAG» 00 1150
MULT DIV FLAGs 00 1160
NAME BUFFER 1s NAME BUFFER 2+ NAME BUFFER 3, 00 1170
NAME FOUND FLAG» 00 1180
NEXT OP, 00 1190
N TSe 00 1195
NUMBER » 00 1200
NUMBER BUFFERS 00 1210
NUMBER FLAG» 00 1220
OCTAL FLAG» 00 1230
OPERAND»
OPERAND PAST»
ORFLAG» 00 1249
OTS»
0152y
PARTIAL WORD FLAGH 00 1250
PART WORD 1» 00 1260
PART WORD 29 00 1270
PART WORD 3» 00 1280
PART WORD STACK(35)s 00 1290
PEEK SYMBOL» 00 1300
PEEK SYM BUFFER» 00 1310
PEEK SYM COUNT» 00 1320
PREFIX» 00 1330
PRESENT SYMBOL 00 1340
PREVIOUS SYMBOL s 00 1350
PRINT NAME FLAG» 00 1360
PROGRAM FLAGS COUNT, 00 1370

BARF BUFFER o .
SCALES 00 1380
SHIFT FLAG, 00 1390
STORE FLAG, 00 1400
SUBROUTINE LOC» 00 1410
SYMBOL BUFFERS 00 1420
SYMBOL BUFFER TS» 00 1430

SYMBOL COUNT, 00 1440
SYMBOL COUNT TS» 00 1450
TAG 00 1460
TEMP STORE»

TEMP STORAGE 00 1470
TEMP STORAGE 2+ 00 1475
UNDEFINED LIST LOC» 00 1480
WORD FLAGe 00 1490
WORD FLAG TS» 00 1500
WSy

) SIMPLE DIMENSION CLN TS»

See
ENTRY LOCATIONS 00 1510
INPUT PROGR LOC, 00 1520

LOCATION» 00 1530

204 Machine-Independent Compuier Programming

OUTPUTY PROGR LOCs 00 1540
PROGRAM FLAGS LOC» 00 1550
SUB MARK LOC» 00 1560
LEFT BRACE =40 »
LEFT PAREN =41 9
LEFT BRACKET 242 »
CRUTCH =43
OCTAL =44 9
IFOP =45 o
EXPONENT =46 »
MULTIPLY =47
DIVIDE 248 »
PLUS =49
MINUS =50 »
LESS =51 »
LESSOR EQUAL =52 »
EQUAL =53 »
NOTEQUAL CLN UNEQUAL =54 »
GREATEROR EQUAL =55
GREATER 256 »
NOTOP =57 »
ANDOP =58 »
OROP =59 »
IMPLICATION =60 »
IDENTITY ab] »
ARROW =62
FOROP =63 »
STEPOP 264 »
UNTILOP 265 o
WHILEQP =66 o
DooP =857 »
THENOP =68 9 -
ELSEOP =869 »
PERIOD =70
COMMA =71 o
RIGHT BRACKETY =T2 »
SEMICOLON =73 »
COLON =Th »
RIGHT PAREN =75 »
RIGHT BRACE =76 »
TRUETHING =78
FALSETHING z79
REALOP =80 »
INTEGE ROP =81
B00LEANOP 282 »
OWNOP =83 »
VALUEOP 284 o
ARRAYOP =85 »
PROCEDUREOP =86
LABELOP =87 »
STRINGOP =88
SWITCHOP =89 »
SUBROUTINE MARK = 929
LEFT HOOK =90 »
RIGHT HOOK =91 »
PRINTOP 1260
READOP =127y
See
END CLN ONETAG = 32768 00 1630

FIRST NUMBER = 27» 00 1660

Appendix B: Neliac 704 205

FLOAT 81T = OCT 100000

LAST LETTER = 26+ 00 1690
LAST NUMBER = 36,

PROGRAM FLAGS CONSTANT = OCT 150009 00 1850
SUB MARK CONSTANT = OCT 15001+ 00 1910
OEFINED LIST LOC = -1, 00 1930
INDEX (4)e 00 1940
INDEX COUNTER ONE = OCT 1000000,

TWO TAG = OCT 200000 00 1960
FOUR TAG = OCT 400000, 00 1970
ZERO = 0y 00 1980
ONE = 1 00 1990
TWO =2 00 2000
THREE =39 00 2610
FOUR =& : 00 2020
FIVE =5, 00 2030
SIX =6 00 2040
SEVEN =7, 00 2050
EIGHT =8, 00 2060
NINE =9, 00 2070
TEN = 10y 00 2080
ELEVEN = 11» 00 2090
TWELVE = 129 00 2100
THIRTEEN = 13, 00 2110
FOURTEEN = 14+ 00 2120
FIFTEEN = 15, 00 2130
SIXTEEN =169 00 2140
SEVENTEEN = 17, 00 2150
EIGHTEEN = 18, 00 2160
NINETEEN = 19, 00 2170
TWENTY = 20, 00 2180
TWENTY ONE = 219 00 2190
THENTY TWO = 22, 00 2200
TWENTY THREE = 23, 00 22 0
THENTY FOUR = 249 00 2211

TWENTY SIX = 26 »

TWENTY SEVEN = 27 00 2220
MINUS TWENTY SEVEN = =27, . 00 2230
THIRTY ONE = 31, 00 2240
THIRTY FIVE = 35, 00 2250
FIFTY THREE = 53, 00 2260
ONE O ONE = 101y

TEN TWENTY THREE = 1023, 00 2270
OUTPUTCONSTANT(2)= OCT 40000y OCT 40000, 00 2280

INPUT CONSTANT = OCT 43100
END PROG BUFFER = OCT 20000, 00 2290
IL INSTRUCTION = OCT 77000000000, ICINS 00
1L MPY = OCT 11000000000, ILINS o1
IL DIV = OCT 120000000009 ILINS 02
IL ADD = OCT 04000000000, ILINS 03
ILCHS (1) = OCT 14000000000s 9939099 ILINS 04
IL COM = OCT 15000000000, ILINS 05
IL ANA = OCT 360000000009 ILINS 06
1L ORA (3) = OCT 350000000009+ ILINS 07
OCT 35000000000s ILINS 08

IL ST0 = OCT 37000000000, ILINS 09
IL CLA s OCT 01000000000+ ILINS 10
IL CLS = OCT 02000000000, ILINS 11

IL CAM s OCT 03000000000, ILINS 12

206 Machine-Independent Computer Programming

IL ADM = 0CT 05000000000+
IL Sus s OCT 06000000000
1L SBM = OCT 07000000000+
IL IS8 s OCT 10000000000
IL 10V = OCT 13000000000»
IL ILF = OCT 16000000000+
IL ELF = OCT 17000000000+
L I8 = OCT 20000000000:
IL ELB s OCT 210000000005
IL SL s OCT 22000000000+
IL RS = OCT 23000000000
1L TRA = OCT 240000000000
IL TNP = OCT 25000000000+
IL TRN = OCT 26000000000
IL TNZ = OCT 27000000000+
IL TZE s OCT 30000000000
IL TRP = OCT 31000000000
IL TNN s OCT 32000000000
ILREAL s OCT 33000000000
ILINTEGER = OCT 34000000000+
IL LXA s OCT 40000000000+
IL LXM = OCT 41000000000+
IL SXA s OCT 42000000000+
IL SxM s OCT 43000000000+

RELATION CONSTANT= 309

IL OUTPUTER (37)=s OCT 606060606060+

$SADVANCE. CLN
NEXT OP = CURRENT OPy ADDRESS = ADDRESS PAST»
FLOATING FLAG= FLOATING FLAG PAST»
ZERO = ADDRESS = ADDRESS FLAG = NAME BUFFER 1 =
NAME BUFFER 2 = NAME BUFFER 3 » OPERAND=OPERANDPAST»
ADVANCE 1 CLN
FIND NON ZERO SYM»
PRESENT SYMBOL GEQ FIRST NUMBER CLN ADVANCE &4+SONE=OPERAND,S
READ NAME» PRESENT SYMBOL = NEXT OP»
NAME BUFFER 1 # 2 EXP 14 NEQ ZERO CLN ADVANCE 2 %
NAME BUFFER 1 7 2 EXP 24 = TEMP STORAGE»
EIGHT LSS TEMP STORAGE LSS FIFTEEN CLN ADVANCE 3 .3
ADVANCE 2 CLN
NAME DEFINITIONs FIND OP ENTRANCE.
ADVANCE 3 CLN
TEMP STORAGE -~ EIGHT = ADDRESS» ONE = INDEX FLAG = ADDRESS FLAG»
ZERO = NAME BUFFER 1s FIND OP ENTRANCE.
ADVANCE & CLN ZERO=OPERAND
IF PRESENT SYMBOL LEQ LAST NUMBER CLN
TEST NUMBER, REQUEST NUMBER» ONE=OPERAND»S$S
PRESENT SYMBOL EQU OCTAL CLN ONE = OCTAL FLAGa OPERAND,
FIND NON 2ERO SYMy TEST NUMBERs REQUEST NUMBER 3%
PRESENT SYMBOL = NEXT OPy FIND OP ENTRANCE ..

ILINS 13
ILINS 14
fLINS 15
ILINS 16
ILINS 17
ILINS 18
ILINS 19
ILINS 20

ILINS 21
ILINS 22
ILINS 23
ILINS 24
ILINS 25
ILINS 26
ILINS 27
ILINS 28
ILINS 29
ILINS 30
ILINS 31
ILINS 32
ILINS 33
ILINS 34
ILINS 35
ILINS 36

. ILOUT 00
OCT 606060234321+ OCT 606060234362, OCT 606060232144s OCT 606060212424,1LOUT 04
OCT 606060212844s OCT 606060626422, OCT 606060622244 OCT 606060316222, 1L0UT 10
OCT 606060444363, OCT 606060243165, OCT 6060603126465, OCT 606060233062,1L0UT 14
OCT 606060234644 OCT 606060314326, OCT 606060254326, OCT 606060314322,1L0UT 20
OCT 606060254322y OCT 6060606062435 OCT 606060605162+ OCT 606060635121, ILOUT .24
OCT 6060606345475 OCT 606060635145, OCT 606060634571» OCT 606060637125, 1LOUT 30
OCT 606060635147+ OCT 606060634545+ OCT 606051252143+ OCT 3145632527519 ILOUT 34
OCT 606060465121, OCT 606060214521, OCT 606060626346, OCT 606060436721, 1LOUT 40
OCT 6060604367449 OCT 606060626721y OCT 606060626Taks OCT 6060606060604 ILOUT 44.

0s
04
04

0010
0020

0030
0040
0050
0060
0070
0080
0090
0100
0l10
0120
0130
0140
0150
0160
0170

0190
0200
0210

Appendix B: Neliac 704

SBUILD PROGRAM FLAGS CLN LBR
PROGRAM FLAGS COUNT EQU ZERO CLN PROGRAM FLAGS LOC ~ ONE = 06
PROGRAM FLAGS LOC = My 2ZERO = LBK M RBK ¢ TEN = PROGRAMFLAGSCOUNTS$$06
PROGRAM FLAGS LOC = My LBK M RBK ¥ 2 EXP 3 +WORDFLAG= LBK M RBK » 06
PROGRAM FLAGS COUNT - ONE = PROGRAM FLAGS COUNTs I-CNE=1s RBR o 06

SCLEAR ALL NAME CLN
L EQU 0(1)6143 LBR ZERO = NAME WORD 1 LBK L RBK RBR

LOAD SOURCE PROGRAM o o o

SCOMPARE CLN LBR
IF RIGHT BRACKET LEQ CURRENT OP CLN We$
IF CURRENT OP EQU DIVIDE CLN
LBR IF NEXT OP GEQ MULTIPLY CLN S.W. RBR $$
‘IF CURRENT OP EQU MINUS CLN
LBR IF NEXT OP GEG PLUS CLN S.W. RBR $$%
IF LESS LEQ CURRENT OP LEQ GREATER CLN
LBR IF NEXT OP GTR GREATER CLN S+ We RBR S
IF CURRENT OP GTR ARROW CLN RIGHT.S
LEFT CLN IF CURRENT OP LEQ NEXTOP CLN SeWe
RIGHT CLN IF CURRENT OP LSS NEXTOP CLN SeW.
S CLN ONE = COMPARATORes COMPARE EXIT.
W CLN ZERO= COMPARATORS
COMPARE EXIT CLN RBR oo

SCRUTCH CODE CLN 13
PEEKs PEEK SYMBOL - FIRST NUMBER GEQ FOUR CLN ZERO - ONE = 13

LBK 1+]1 RBK $ ONE = LBK 141 RBK $ L EQU 01116 LBR FIND NONZEROSYMs 13

LBK I RBK #2 EXP 3+ PRESENT SYMBOL - FIRST NUMBER= LBK I RBK » RBR13

» LBK | RBK #2 EXP 15 = LBK I RBK sFIND NON ZERO SYM» 13
PRESENT SYMBOL EQU OCTAL CLN FIND NON ZERO SYMs ONE = OCTAL FLAG %13
ZEROaOCTALFLAGSF IRSTNUMBER LEQ PRESENTSYMBOL LEQ LASTNUMBER CLN 13

FIND NUMBERs FOUR = WORD FLAGs NUMBER BUFFER = ADDRESS+CRUTCH CODE13

le3 READ NAMEs» NAME DEFINITIONs FIVE = WORD FLAG» 13
PRESENT SYMBOL NEQ LEFT BRACKET CLN CRUTCH CODE 1.% 13
FIND NON ZERO SYMs PRESENT SYMBOL EQU MINUS CLN FIND NON ZERO 13
SYMs ONE = MINUS FLAGS ZERO= MINUS FLAG $ PRESENT SYMBOL EQU OCTAL13
CLN FIND NON ZERO SYMs ONE = OCTAL FLAGsSS 13

FIRSTNUMBER LEQ PRESENT SYMBOL LEQ LAST NUMBER CLN $ FAULT22. FIND13
NUMBERs MINUS FLAG EQU ONE CLN ADDRESS +NUMBER BUFFER =ADDRESS $ 13

ADDRESS~ NUMBER BUFFER = ADDRESS $ FIND NON ZERO SYM, 13
CRUTCH CODE 1 CLN ' ’ 13
ADDRESS + LBK I RBK = LBK I RBK » 13

MCH 0500001 00s MCH 056000100001s MCH 0763000 O» 13
MCH 0601001 O» ZERO = LBK I+1 RBK s BUILD PROGRAM 13
FLAGSe PRESENT SYMBOL NEQ COMMA CLN FAULT 22.% 13
PRESENT SYMBOL = NEXT OP, ZERO = ADDRESS x ADDRESS FLAGs 13
GENERATE EXITee 13
SOIMENSION CLN J = JUTS: 14
LBK J RBK = SYMBOL BUFFERs J - ONE =Js FIVE = SYMBOL COUNT, 14

END - I = LOC STARTs ONE = WORD FLAG» 14
DIMENSION A CLN 14
PRESENT SYMBOL EQU COLON CLN DIMENSION C .S 14

PRESENT SYMBOL EQU SEMICOLON CLN DIMENSION F +% FIND NON ZERO SYMs 14&
PRESENT SYMBOL EQU LEFT BRACE CLN BUILD PROGRAM FLAGSs DIMENSIONE.S14

PRESENT SYMBOL GEQ FIRST NUMBER CLN DIMENSION Ae$S READ NAME, 14
PRESENT SYMBOL EQU LEFT PAREN CLN DIMENSION B.$ la
BUILD PROGRAM FLAGSs DIMENSION A, la
DIMENSION B CLN 14

FIND NON ZERO SYM, PRESENT SYMBOL EQU OCTAL CLN FIND NON ZERO SYM, 14

207

0240
0250
0260
0270

0010
0020
0030
0040
0050
0060
coro
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
olsl
0190
0200
0210
0220

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
<0110

0120

208 Machine-Independent Computer Programming

ONE = OCTAL FLAG $$ FIND NUMBER, I-NUMBER BUFFER + ONE = ITS, 14

L EQU I(-1)ITS LBR BUILD PROGRAM FLAGSs RBR » DIMENSION Ae 14
DIMENSION C CLN _ 14
FIND NON ZERO SYMes PRESENT SYMBOL EQU LEFT BRACE CLN DIMENSION E.$ 14
READ NAMEs 14
DIMENSION D CLN 14
PRESENT SYMBOL EQU LEFT PAREN CLN UNBUILD PROGRAM FLAGS 14
DIMENSION Be DIMENSION A. 16
DIMENSION E CLN 14
FIND NON ZERO SYM, PRESENT SYMBOL NEQ RIGHT BRACE CLN DIMENSIONE.$14

FIND NON ZERO SYM, DIMENSION D, 14
DIMENSION F CLN 14
JTS = J» LBK J RBK = SYMBOL BUFFERs J- ONEsJs FIVE = SYMBOL COUNTs 14

ONE = CLEAR SYMBOL FLAGs COMMA = CURRENT OP» COLON = NEXT OP, 14

I= ITEMP STOREs | + ONE = I, 14
DIMENSION 1} CLN FIND NON ZERO SYMs 14
DIMENSION 2 CLN PRESENT SYMBOL LSS FIRST NUMBER CLN DIMENSION 6% 14
DIMENSION 3 CLN 14
PRESENT SYMBOL EQU COMMA CLN DIMENSION 1. ZERO sNUMBER BUFFER = 14
OCTAL FLAGS PRESENT SYMBOL EQU COLON CLN PW DIMENSION+$S 14
PRESENT SYMBOL EQU LEFT BRACE CLN Pw DIMENSION 1.$% 14

PRESENT SYMBOL NEQ LEFT PAREN CLN DIMENSION 4, FIND NON ZERO SYMS 14
PRESENT SYMBOL EQU OCTAL CLN ONE = OCTAL FLAGs FIND NON 2ERO SYMs$ 14
ZERO = OCTAL FLAG $ 14
FIRSTNUMBER LEQ PRESENTSYMBOL LEQ LASTNUMBER CLN

FIND NUMBERS FAULT3.

PRESENT SYMBOL NEQ RIGHT PAREN CLN FAULT 3.3 I- ONEsl» 14
L EQU 1{1) NUMBER BUFFER LBR I +ONE= [» RBR » FIND NON ZERO SYM» 14
PRESENT SYMBOL EQU COMMA CLN DIMENSION 1.3 14
DIMENSION & CLN PRESENT SYMBOL EQU ARROW CLN DIMENSION 7.3 14
OIMENSION 5 CLN 14
PRESENT SYMBOL NEQ SEMICOLON CLN FAULT 4.3
2ERO = CLEAR SYMBOL FLAG = NAME BUFFER 1 =NAME BUFFER 2 = 14
NAME BUFFER 3¢ END-1 +ONE NEQ LOC START CLN FAULT 21.3 14
ITEMP STORE =]» ZERO = ADDRESS PASTs FIND BRACES 1. 14
DIMENSION 6 CLN READ NAMEs NAME DEFINITION, 14
ZERO = NUMBER BUFFERs I+ ONE = [+DIMENSION 3 , 14
OIMENSION 7 CLN 1 =ITSs NUMBER BUFFER EQU ZERO CLN - ONE = 1 § 14
1- NUMBER BUFFER = I $ PEEK» 14
PEEK SYMBOL LSS FIRST NUMBER CLN FAULT 21 .$ 14
DIMENSION 8 CLN FIND NON ZERO SYMs PRESENT SYMBOL EQU COMMA CLN 14
DIMENSION 108 PRESENT SYMBOL EQU MINUS CLN FIND NON ZERO SYM» 14
ONE = MINUS FLAGS ZERO = MINUS FLAG $ 14

PRESENT SYMBOL EQU OCTAL CLN ONE = OCTAL FLAGs FIND NON ZERO SYMs 14
DIMENSION 9¢ ZERO = OCTAL FLAG $ LAST LETTER LSS PRESENT SYMBOL 14
CLN DIMENSION 9.5 I 1S = 1y FLOATING DEFINITION TESTs DIMENSIONG6.14

DIMENSION 9 CLN PRESENT SYMBOL EQU MINUS CLN FIND NON ZERO SYM, 14
ONE=MINUSFLAGs PRESENT SYMBOL GTR LAST NUMBER CLN 14

LBR PRESENT SYMBOL NEQ PERIOD CLN DIMENSION 11+% RBR $3% 16
TEST NUMBERs NUMBER BUFFER = LBK I RBK » 14
MINUS FLAG EQU ONE CLN ZERO - LBK I RBK = LBK I RBK %% 14
DIMENSION 10 CLN | + ONE = Is I TS LSS I CLN FAULT 21.9% 14
PRESENT SYMBOL EQU COMMA CLN DIMENSION 8% ITS = I 14
OIMENSION 11 CLN FLOATING DEFINITION TESTs PRESENT SYMBOL EQU LEFT 14
BRACE CLN PWw DIMENSION 1. DIMENSION 5, 14

PW DIMENSION CLN 14
1 - ONE = s FIND NON ZERO SYM, 14
PRESENT SYMBOL NEQ LEFT BRACE CLN DIMENSION 6.% 14

PW DIMENSJON 1 CLN 14
FIND N ZERO SYM, 14

PY DIMENSION 2 CLN 14

0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360

0380
0390
0400
0410
0420

0440
0450
0460
0470
0480
0490
0500
0510

0520
0530
0540
0550
0560
0570
0580
0590
0600
0610
0620
0630
0640
0650
0651
0660
0670
0680
0690
0700
0710

Appendix B: Neliac 704 209

PRESENT SYMBOL LSS FIRST NUMBER CLN $ FAULT 3,
READ NAMEs NAME DEFINITIONSs
PRESENT SYMBOL NEQ LEFT PAREN CLN FAULT 3 o$
ONE = FLOATING FLAGe PARTIAL WORD .
PW DIMENSION 3 CLN
ZERC = FLOATING FLAGs DEFINED LIST LOC = N
NUMBER BUFFER - PART WORD 1 # ONE = TEMP STORAGE * 2 EXP 15 +

PART WORD 1 ® 2 EXP 21 + NAME LOCATION LBK N RBK = NAME LOCATION
LBK N RBK » FIND NON ZERO SYMs PRESENT SYMBOL EQU COMMA CLN FIND
NON ZERO SYMS$S PRESENT SYMBOL NEQ RIGHT BRACE CLN Pw DIMENSION 2.%

I+ ONE =]» FIND NON ZERO SYMs DIMENSION 3,
FLOATING DEFINITION TEST CLN

LBR FLOATING FLAG EQU ONE CLN DEFINED LIST LOC =Ns ZERO =FLOATING

FLAG NAME LOCATION LBK N RBK +ONE #2 EXP 34 = NAME LOCATION
LBK N RBK $3 RBR oo

SEXEC ROUTINE CLN
I NEQ ZERO CLN I= OUTPUT PROGR LOCs END -1 = ENTRY LOCATION $
OUTPUT CONSTANT+ONE=OTS+ONE=OTS2+ONE O ONE=1=OUTPUTPROGRLOC,
ZERO-OTS2aWS»
OUTPUT CONSTANT LBK 1 RBK = ENTRY LOCATION,
PROGRAM FLAGS CONSTANT = PROGRAM FLAGS LOC $
INPUT CONSTANT = INPUT PROGR LOC = J»
SUB MARK CONST = SUB MARK LOC = Ko
L EQU I(~-1) END PROG BUFFER LBR ZERO = LBK I RBK RBR »
CLEAR SIMPLE DIMENSION L1ST»
FIVE = WORD FLAGy TRA = PREFIXse BUILD COMMAND 1,
ENTRY LOCATION NEQ QUTPUT CONSTANT LBK 1 RBK CLN DIMENSION.$S
ZERO = WORD FLAGs L EQU 0(1)7 LBR BUILD PROGRAM FLAGSs RBR
DIMENSION.

(COMMENT THIS SUBROUTINE DOES NOT NEED TO KNOW HOW LONG THE
LIST MAY BEe)

CLEAR SIMPLE DIMENSION LIST CLN LBR .
CSOL1-CSDL2=CSDL3e L EQU 0(1)CSDL3 LBR ZERO= SIMPLE DIMENSION
LIST LBK L RBK RBR » RBR ¢

CSD1 CLN MCH 0000000 SIMPLE DIMENSION LIST

CSOL2 CLN MCH 0000000 END SIMPLE DIMENSION »

CSDL3 CLN MCH 0000000 Osee

SFAULT CLN . .
LBR I = INDEXs J=INDEX LBK 1 RBK sK=INDEX LBK 2 RBK s L=INDEX

LBK 3 RBK =FAULT FLAG» DEFINED LIST LOC = LsNAME WORD 1 LBK L RBK

= LOCATION, CONVERT TO BCDy MESSAGE =LAST NAME ¢NAME WORD 2
LBK L RBK = LOCATIONs CONVERT TO BCDs MESSAGE =LAST NAME

LBK 32767 RBK » NAME WORD 3 LBK L RBK = LOCATIONsCONVERT TO BCDs

MESSAGE = LAST NAME LBK 32766 RBK »

GLOUT 2 .

MCH 3 03770 O ERROR CODE (COMMENT 12 CHARACTERS TO PW 40)

MCH 3 05714 O PROGRAM NAME s (COMMENT 18 CHARACTERS TO PW 20)

MCH 4 00053 O INDEX LBK 3 RBK s{COMMENT ERROR CODE TO Pw 43)
MCH 5 00000 O Oy '

GLOUT2»

MCH 3 23515 O LABELS» (COMMENT 60 CHARACTERS TO Pw 61)

MCH 3 06007 O LAST NAME, (COMMENT 18 CHARACTERS TO PW 79)

MCH &4 00050 O CURRENT 0P, (COMMENT CURRENT OP 10 PW 40)

MCH & 00060 O NEXT OP, (COMMENT NEXT OP TO PW 48)

MCH 4 00014 O INDEX> (COMMENT 1 TO PW 12)

MCH & 00026 O INDEX LBK 1 RBK o+ (COMMENT J TO PW 22)

MCH 4 00040 O INDEX LBK 2 RBK »{(COMMENT K -TO PW 32)
MCH 5 0GO00 O Os RBR »

FAULT 1 CLN ONE =Ls FAULTs FAULT EXIT,,

14
14
14
14
14
14
14
14
14
14
14
14

0720
0730
0740
0750
0760
0170
0780
0790
0800
0810
0820
0830
0840
0850
0860

0010
0020
0030
1631
0040
0050
0060
0070

0100
0110
0120
0130

0140
0150
0160
0170
0180
0190

0010
0020
0030
0040
0050
0060
0070
0080
0050
0100
0110

0130
0140
0150
0160
0170
0180
0190
0200

0220

210 Machine-I ndependent (Jomputer Frogrammmg
FAULT 2 CLN TWO sLs FAULTs FIND NUMBER LBK 32767 RBK . 17
FAULT 3 CLN THREE =Ls FAULT» FAULT EXIT. 17
FAULT & CLN FOUR =lLs FAULT» FAULT EXIT,. 17
FAULT 5 CLN FIVE =Ls FAULTs FAULT EXIT, 17
FAULT & CLN SIX =Ls FAULTs FAULT EXIT. 17
FAULT 7 CLN SEVEN abLs FAULT, FAULT EXIT, 17
FAULT 8 CLN EIGHT aLs FAULTs FAULT EXIT. 17
FAULT 5 CLN NINE abLs FAULT, FauLT EXIT, 17
FAULT 10 CLN TEN =Ls FAULT» FAULT EXIT, 17
FAULT 11 CLN ELEVEN sLs FAULT» FAULT EXIT, 17
FAULT 12 CLN TWELVE aLs FAULTs FAULT EXIT. 17
FAULT 13 CLN THIRTEEN =Ls FAULTs FAULT EXIT, 17
FAULT 1& CLN FOURTEEN sLs FAULTs FIND BRACES 3A. 17
FAULT 15 CLN FIFTEEN =Ls FAULTs FAULT EXIT, 17
FAULT 16 CLN SIXTEEN sL» FAULT» FAULT EXIT. 17
FAULT 17 CLN SEVENTEEN sLs FAULTs FAULT EXIT. 17
FAULT 18 CLN EIGHTEEN =Ls FAULTs NAME DEFINITION 1. 17
FAULT 19 CLN NINETEEN =L» FAULTs FAULT EXIT, : 17
FAULT 20 CLN TWERTY aLs FAULTs FAULT EXIT, 17
FAULT 21 CLN TWENTY ONE sL» FAULTs FAULT EXITe 17
FAULT 22 CLN TWENTY TWO =Ls FAULTs FAULT EXIT, 17
FAULT 23 CLN TWENTY THREE = Ls FAULTs FAULT EXIT, 17
FAULT 26 CLN TWENTY FOUR = Ls FAULT» FAULT EXIT, 17
FAULT 25 CLN LBR L = COMPARISON FLAG le 25 = Ls FAULT» 17
COMPARISON FLAG 1 = Ls ZERO = COMPARISON FLAG 1+ RBR » 17
FAULT EXIT CLN 17
N EQU 32767(-1132765 LBR PROGRAM NAME LBK 32765 RBK = PROGRAM NAME17
LBK N+#] RBK » RBR o LOAD SOURCE PROGRAM.. 17
SFIND BRACES CLN 18
2ERO = PRESENT SYMROL = NEXT OP = LOOP FLAG = BRACE FLAG» 18
INPUT PROGR LOC = Js LBK J RBK = SYMBOL BUFFER) 18
] J= ONE = J» FIVE = SYMBOL COUNT» 18
SFIND BRACES 1 CLN 18
PRESENT SYMBOL = PREVIOUS SYMBOLs FIND NON ZERO SYM» 18

PRESENT SYMBOL LEQ LAST NUMBER CLN FINDBRACES1+SNEXTOP=CURRENTOP, 18

PRESENT SYMBOL = NEXT OP EQU LEFT BRACE CLN FIND BRACES 2 «$ 18

NEXT OP EQU RIGHT BRACE CLN FIND BRACES 3. 18
PRESENT SYMBOL NEQ PERIOD CLN FIND BRACES 1.% 18
PREVIOUS SYMBOL NEG PERIOD CLN FIND BRACES 1% 18
BRACE FLAG EQU ONE CLN FAULT 12 o$ 18

ONE = PRINT NAME FLAGes OUTPUT PROGR LOC = Js 18

END -1+ LBK J RBK = LBK J RBK s INPUT PROGR LOC = Js 18

LBK J RBK = SYMBOL BUFFERs J-ONE = J» FIVE = SYMBOL COUNT» 18
SEMICOLON = NEXT OPs ADVANCEe 18

FIND BRACES 2 CLN 18
CURRENT OP EQU RIGHT ‘PAREN CLN ONE = LOOP FLAGS ZERO = LOOP FLAGS 18

PLUS LEQ CURRENT OP LEQ MINUS CLN ONE=LOOP FLAG $$ 18

JeJ) TEMP STOREs SYMBOL COUNT = SYMBOL COUNT TSs ONE aBRACE FLAG, 18
SYMBOL BUFFER = SYMBOL BUFFER TSs FIND BRACES 1. 18

FIND BRACES 3 CLN 18
BRACE FLAG EQU ZERO CLN 18
SYMBOL BUFFER — PRESENT SYMBOL = SYMBOL BUFFER.FAULT 14 o$ 18

FIND BRACES 3A CLN 18
ZERO =BRACE FLAG» LOOP FLAG EQU ONE CLN FIND BRACES & o$ 18

J TEMP STORE=Js SYMBOL COUNT TS = SYMBOL COUNT, 18
SYMBOL -BUFFER TS = SYMBOL BUFFER» 18
SYMBOL BUFFER /2 EXP 7 %2 EXP 7 +SUBROUTINE MARK = SYMBOL BUFFER, 18

LEFT BRACE = NEXT OPs ONE = CLEAR SYMBOL FLAG» ADVANCE. 18

FIND BRACES & CLN 18
ZERO = LOOP FLAG: 18

SYMBOL BUFFER /2 EXP 7#2 EXP 7 + RIGHT HOOK = SYMBOL BUFFER) 18

0230
0240
0250
0260.
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
044l
0442
0443
0450
0460
0470

0020
0030
0040
0050
0060
0070
0080
0090
0lo0
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340

Appendix B: Neliac 704

RESET SYM BUFFERe J TEMP STORE = Js
SYMBOL COUNT TS = SYMBOL COUNT»
SYMBOL BUFFER TSs SYMBOL BUFFER»s
SYMBOL BUFFER /2 EXP 7#2 EXP 7 + LEFT HOOK = SYMBOL BUFFER»
RESET SYM BUFFERs FIND BRACES.
RESET SYM BUFFER CLN
LBR RESET SYM BUFFER 1 CLN

18

SYMBOL COUNT —-ONE = SYMBOL COUNT LSS ZERQO CLN RESET SYM BUFFER 2918

SYMBOL BUFFER /2 EXP 28 = CHAR»

18

SYMBOL BUFFER #2 EXP 7 <+ CHAR= SYMBOL BUFFERs RESET SYM BUFFER 1418

RESET SYM BUFFER 2 CLN
SYMBOL BUFFER = LBK J-1 RBK RBR e

$ FIND NON ZEROC SYM CLN

LBR NON ZERO SYMBOL CLN
SYMBOL COUNT - ONE = SYMBOL COUNT LSS ZERO CLN
NON ZERO SYMBOL 2 « $ SYMBOL BUFFER /7 2 EXP 28
= PRESENT SYMBOL o SYMBOL BUFFER * 2 EXP 7 = SYMBOL BUFFER »
PRESENT SYMBOL EQU ZERO CLN NON ZERO SYMBOL - $
CLEAR SYMBOL FLAG EQU ZERO CLN

SYMBOL BUFFER + PRESENT SYMBOL = SYMBOL BUFFER $3 RBR »

NON ZERO SYMBOL 2 CLN
SYMBOL BUFFER = LBK J — 1 RBK » LBK J RBK = SYMBOL BUFFER »
J - ONE = J » FIVE = SYMBOL COUNT » NON ZERO SYMBOL .

$ FIND NUMBER CLN
LBR ZERO = NUMBER BUFFER » ONE = NUMBER FLAG »
OCTAL FLAG EQU ZERO CLN FIND DEC NUMBER+S
FIND OCTAL NUMBER CLN
NUMBER BUFFER GEQ OCTAL LIMIT CLN FAULT 2 oS
NUMBER .BUFFER # EIGHT + PRESENT SYMBOL ~ FIRST NUMBER
= NUMBER BUFFER s FIND NON ZERO SYM »
FIRST NUMBER LEQ PRESENT SYMBOL LEQ LAST NUMBER CLN
FIND OCTAL NUMBER %
FIND NUMBER EXIT CULN Z2ERO = OCTAL FLAG RBR o«
FIND DEC NUMBER CLN
NUMBER BUFFER GEQ DECIMAL LIMIT CLN FAULT 2 .3
NUMBER BUFFER ® TEN + PRESENT SYMBOL -~ FIRST NUMBER
s NUMBER BUFFER » FIND NON ZERO SYM
FIRST NUMBER LEQ PRESENT SYMBOL LEQ LAST NUMBER CLN
FIND DEC NUMBER o FIND NUMBER EXIT +e

SFIND NUMBER PAST CLN
LBR RESET SYM BUFFERs J TEMP STORE =Js FIVE = SYMBOL COUNT,
SYMBOL BUFFER TS = PRESENT SYMBOL»

18
18

19
19
19
19
19
19
19
19
19
19
19

21
21

LBK J=1 RBK = SYMBOL BUFFERs TEMP STORAGE = CLEAR SYMBOL FLAG NEQ 21
ONE CLN LBR NUMBER PAST 1 CLN SYMBOL COUNT NEQ SYMBOL COUNT Ts CLN21

FIND NON ZERQO SYMs NUMBER PAST 1% RBR $$ FIND NUMBERe RBR ,
REQUEST NUMBER CLN LBR
CURRENT OP EQU LEFT BRACKET CLN REQUEST EXIT +$%
CURRENT OP EQU LEFT PAREN CLN REQUEST EXIT o$
CURRENT OP EQU EXPONENT CLN REGUEST EXIT o$
MULTIPLY LEQ CURRENT OP LEG DIVIDE CLN
LBR PRESENT SYMBOL EQU EXPONENT CLN REQUEST EXIT % RBR $$
CURRENT OP EQU RIGHT PAREN CLN REQUEST EXIT o$
CURRENT OP EQU EQUAL CLN LBR PRESENT SYMBOL £QU LEFT PAREN CLN
REQUEST EXIT % RBR 3% NUMBER BUFFER = NAME BUFFER 2+ ZERO -ONE
=sNAME BUFFER 1+ COMMA = NEXT OP» NAME DEFINITION»
REQUEST EXIT CLN » RBR ¢

SFIND OP ENTRANCE CLN
IF FLOATING FLAG NEQ ZERO CLN CHECK MODE FOR FLOATING $$

21
21
21
21
21
21
21
21
21
21
21
21

211

0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170

212 Machine-Independent Computer Programming

J=J TEMPORARYs HOLD STACK INDEX=J+s

IF CURRENT OP EQU LEFT PAREN CLN LEFT PAREN ENTRYe$

IF CURRENT OP EQU RIGHT PAREN CLN RIGHT PAREN ENTRY.$

IF CURRENT OP EQU LEFT BRACKET CLN LEFT BRACKET ENTRY.S
IF CURRENT OP EQU RIGHT BRACKET CLN RIGHT BRACKET ENTRY.$
IF CURRENT OP EQU ARROW CLN ARROW ENTRY.S

IF CURRENT OP GTR ARROW CLN PUNCTUATION.S

COMPARE» IF COMPARTATOR EQU ZERO CLN WEAK, STRONG,

ARROW ENTRY CLN
IF RESULT EQU ZERO CLN
LBR IF OPERAND PAST £QU ZERO CLN FAULT12$CLEARADDPASTS RBR $$
RESET MODE+ ILSTO=PREFIXs MAKECOMMAND1» SET RESULTs EXIT TO ADVANCE.

ASSURE RESULT CLN LBR IF RESULT NEQ ZERO CLN LBR IF OPERAND PAST
NEQ ZERO CLN CLEARADDPASTSS RBR $3% RBR »

CLEAR RESULT CLN LBR ZEROsRESULTs RBR ¢

COLLAPSE CLN
IF J EQU ZERO CLN EXIT TO ADVANCE.S
HOLDOP LBK J RBK = CURRENT OPs COMPARE s
IF COMPARATOR EQU ZERO CLN EXIT TO ADVANCE.S
RECOVER ADDRESS»
IF CURRENT OP EQU EXPONENT CLN RIGHT EXPONENT.$
IF CURRENT OP EQU DIVIDE CLN RIGHT DIVIDES
IF LESS LEQ CURRENT OP LEQ GREATER CLN RIGHT RELATION.S
STRONG 1.

ENTER HOLD CLN ENTER HOLD 1s CLEAR RESULTs EXIT TO ADVANCE.
ENTER HOLD 1 CLN LBR J+ONE=Js CURRENT OP= HOLDOP LBK J RBK
ADDRESS PAST = HOLDAD LBK J RBK s RBR

EXIT TO ADVANCE CLN JsHOLD STACK INDEX» J TEMPORARY=J» ADVANCE.

EXPAND WORK STACK CLN LBR
W5-ONE=WS=ADDRESS PASTs PUT RESULT [N WORK STACKs RBR »

LEFT BRACKET ENTRY CLN
INDEX COUNTER + INDEX COUNTER ONE= INDEX COUNTER
+ ADDRESS PAST = ADDRESS PASTs RIGHT BRACKET=CURRENT OP,
ENTER HOLD.

LEFT PAREN ENTRY CLN
RIGHT PAREN = CURRENT OPy ENTERHOLD.

RECOVER ADDRESS CLN LBR
IF HOLDAD LBK J RBK LSS ZERO CLN
ZERO-HOLDAD LBK J RBK =ADDRESSsSHRINK WORK STACKS
HOLDAD LBK J RBK = ADDRESSS
J=ONE=Js RBR 19e0e

SRIGHT BRACKET ENTRY CLN
IF HOLDOP LBK J RBK NEQ RIGHT BRACKET CLN FAULT9.S$
IF RESULT EQU ZERO CLN CLEAR ADD PASTS
ACCUMULATOR INTO INDEX,
INDEX COUNTER - INDEX COUNTER ONE = INDEX COUNTER,
HOLDAD LBK J RBK = ADDRESS PASTsCLEARADDPASTs J-ONE=Js» COLLAPSE.

RIGHT PAREN ENTRY CLN
IF HOLDOP LBK J RBK NEQ RIGHT PAREN CLN FAULT 8.%

Appendix B: Neliac 704 213

ASSURE RESULT»
IF HOLDAD LBK J RBK EQU ZERO CLN J-ONE=JS FUNCTION ENTRY,

COLLAPSE.
SET RESULT CLN LBR ONE=RESULTs RBR
SHRINK WORK STACK CLN LBR WS+ONE=WSs RBR »

STRONG CLN
IF OPERAND EQU ZERO CLN WEAK,S
IF LESS LEQ CURRENT OP LEQ GREATER CLN LEFT RELATION.3
IF RESULT EQU ZERO CLN
LBR 1F OPERAND PAST EQU ZERO CLN UNARY,SCLEARADDPAST» RBR $%
IF CURRENT OP EQU EXPONENT CLN LEFT EXPONENT.$
IF CURRENT OP EQU MINUS CLN LEFT MINUS.$
IF CURRENT OP EQU IMPLICATION CLN COMPLEMENT SS
STRONG 1 CLN
IF CURRENT OP EQU IDENTITY CLN EQUIVALENCE.S
K=K TS»
CURRENT OP - EXPONENT= Ko IL INSTRUCTION LBK K RBK = PREFIX,
MAKE COMMAND 19 K TS=Ks COLLAPSE.

UNARY CLN
IF CURRENT OP EQU PLUS CLN EXIT TO ADVANCE.S
1F OPERAND EQU ZERO CLN ENTER HOLD.$
1F CURRENT OP EQU MINUS CLN CLEAR SUBTRACT RIGHTs UNARY]1.S
1F CURRENT OP EQU NOTOP CLN
IL CLA=PREF1IXs MAKE COMMAND1l» COMPLEMENTs UNARY1.S
FAULT 9.
UNARY] CLN SET RESULTs COLLAPSE.
UNARY2 CLN
IF CURRENT OP EQU PLUS CLN EXIT TO ADVANCE.S
IF CURRENT OP EQU MINUS CLN ENTER HOLD.S
1F CURRENT OP EQU NOTOP CLN ENTER HOLD.$
FAULT9,

WEAK CLN
IF RESULT EQU ZERO CLN
LBR IF OPERAND PAST EQU ZERO CLN UNARY1l.$ IF CURRENT OP
EQU IMPLICATION CLN CLEARADDPASTs WEAK1SS RBR $
WEAK1S :
ENTER HOLDe
WEAK]1 CLN LBR
IF CURRENT OP EQU IMPLICATION CLN COMPLEMENT s$$
EXPAND WORK STACKs
1F CURRENT OP EQU MINUS CLN
PLUS=CURRENT OPJENTER HOLD1s
MINUS=CURRENT OPs ZERO= ADDRESSPASTS
$ RBR »

FUNCTION ENTRY CLN FAULT Teo

SMAKE COMMAND CLN MAKE COMMAND1s COLLAPSE.
MAKE COMMAND 1 CLN LBR

PREFIX+TAG+ADDRESS=s LBK I RBK » STEP Is RBR »
MAKE COMMAND 2 CLN LBR

PREFIX+TAG+ADDRESSPAST= LBK I RBK » STEP Iy RBR

ACCUMULATOR INTO INDEX CLN LBR
IL LXA + INDEX COUNTER = LBK I RBK ¢ STEP Is RBR »

CLEARADDPAST CLN LBR ILCLA=PREF1IXs MAKECOMMAND2+SET RESULTs RBR »

214 Machine-Independent Computer Programming

CLEARADDRIGHT CLN LBR ILCLASPREFIXs MAKECOMMAND1+SET RESULTs RBR

CLEAR SUBTRACT RIGHT CLN LBR
IL CLS = PREFIXe MAKE COMMAND 1 » SET RESULTs RBR ¢

COMPLEMENT CLN LBR IL COM= tB8K I RBK » STEP ls RBR »

EQUIVALENCE CLN
IL STO+0TSs LBK 1 RBK » STEP 1o
IL ANA=PREFIXs MAKE COMMAND 1»
IL STO+ OTS2= LBK I RBK o STEP I
IL CLA = PREFIXe MAKE COMMAND 1»
IL ORA + OTS = LBK I RBK 9 STEP I»
COMPLEMENT»
IL ORA + OTS2 = LBK | RBK » STEP I»
COLLAPSE,

LEFT EXPONENT CLN LDQsPREFIXs BUILD COMMAND 1.
LE1 CLN EXPADsADDRESSs»TSXsPREFIXsFOURTAGs TAGsBUILDCOMMAND] +COLLAPSE.
RIGHT EXPONENT CLN SHIFT TO MQe+ CLASPREFIXes BUILDCOMMAND1eLEl.

LEFT MINUS CLN IL SUB=PREFIXs MAKE COMMAND.

PUT RESULT IN WORK STACK CLN LBR
IL STO - ADDRESS PAST = LBK 1 RBK » STEP Is RBR

RIGHT DIVIDE CLN 1L IDV=PREFIXs MAKE COMMAND.
STEP 1 CLN LBR 1-ONE=ls RBR e

SCHECK MODE FOR FLOATING CLN LBR
IF FLOATER NEQ ZERO CLN CMFF EXITe$
FLOAT 81T = FLOATER»
ILREAL= LBK I RBK ¢ STEP 1 »
CMFF EXIT CLN RBR »
RESET MODE CLN LBR
IF FLOATING FLAG EQU FLOATER CLN RESET MODE EXIT.$
IF FLOATING FLAG EQU ZERO CLN
ZERO = FLOATERs ILINTEGERa3PREFIXS
FLOAT BIT = FLOATERs ILREAL = PREFIXS
PREFIX = LBK I RBK o STEP 1»
RESET MODE EXIT CLN RBR

LEFT RELATION CLN
IF RESULT NEQ ZERO CLN EXPAND WORK STACKSS
ENTERHOLD1s CLEARADDRIGHTs RIGHT RELATION.

RIGHT RELATION CLN FAULT 5.

PUNCTUATION CLN
(COMMENT TEMPORARY ONLY 8/8/61)
IF CURRENT OP EQU SEMICOLON CLN
CLEAR RESULTs EXIT TO ADVANCE.S
MCH 0760000 141
MCH 0760000 142»
MCH 0760000 143y
MCH 0760000 144»
MCH 0420000 O
MCH 0760000 140y
LOAD SOURCE.e

Appendix B: Neliac 704 215

cCoOMB 1 (37) = OCT 16070 Tér 58, 40
(COMMENT oo CLN AND LBR)
59 53 46 55 569 42y 52
{COMMENT OR EQU EXP GEQ GTR LBK LEQ)
51 43, S4e 44 T2 76 68
(COMMENT LSS MCH NEQ oCcT RBK RBR THEN 3
69 780 64 65 661 40y 76
{COMMENT ELSE TRUE STEP UNTIL WHILE BEGIN END)
83 80, 85, 87» 84 57 126
(COMMENT OuN REAL ARRAY LABEL VALUE NOT PRINT)
127 621 6l 60y 79
(COMMENT READ CEQ I1ON IMP FALSE)
COMB TABLE 1 (41) = OCT 1017, OCT 303622
(COMMENT DO FOR)
OCT 70745017, OCT 1617» OCT 2206 OCT 143016,
(COMMENT GOTO GO IF CLN)
OCT 43404 OCT 600422» OCT 3622 OCT 244225
(COMMENT AND LBR OR EQu)
OCT 246020y OCT 341221» OCT 345022, OCT 600413,
(COMMENT EXP GEQ GTR LBeK)
OCT 601221, OCT 604623, OCT 640610, OCT 701221,
(COMMENT LEQ LSS MCH NEQ)
OCT 740624, OCT 1100413, OCT 1100422, OCT 240401216,
(COMMENT OCT RBK RBR THEN)
OCT 50604605, OCT 241105205, OCT 231201220, OCT 52161202214
(COMMENT ELSE TRUE STEP UNTIL)
OCT 561004643005s OCT 4050342216+ OCT 1100422, OCT 745616
(COMMENT WHILE BEGIN ENO OWN]
OCT 220240214s OCT 2221100231s OCT 30010101214s OCT 54010605205
(COMMENT REAL ARRAY LABEL VALUE)
OCT 703624» OCT 402206434245 OCT 220240204+ OCT 141221,
(COMMENT NOT PRINT READ CEQ)
OCT 4410169 OCT 443220 OCT 14010604605+
(COMMENT IDN I1MP FALSE)
coMB 2 (5) = 88 89, 82
(COMMENT STRING SWITCH BOOLEAN)
81l 86
(COMMENT INTEGER PROCEDVURE)
COMB TABLE 2A (5) = OCT 462611022169 OCT 46270445003
(COMMENT STRIN SWITC)
OCT 41707430059 OCT 22161201207y OCT 40220740605+
(COMMENT BOOLE INTEG PROCE }
COMB TABLE 28 (5) = OCT 07, OCT 10,
(COMMENT] H }
OCT 216 OCT 1222 OCT 412644405
(COMMENT AN ER DURE)

MINUS ONE INDEX = 32767+ SEVEN SEVEN = 77» NOTCOMMA = OCT 160745045,
BLANK: FLAG = U» PUNCTUATION FLAG = O» END FLAG = O»

SLOAD SOURCE PROGRAM CLN
I = ITSs INPUT CONSTANT = Js FOUR = SHIFT FLAG,
ZERO = END FLAG = LBK J RBK »
LOAD SOURCE CLN
LOAD SOURCE 1» RECORD EQU CONTROL CLN
PROCESS CONTROL,
PROCESS SOURCE,
LOAD SOURCE 1 CLN
LBR MCH 0762000 130s M EQU 32767(-1132755

216 Machine-Independent Computer Programming

(COMMENT RDS-TAPE 2)
LBR MCH 0700004 RECORD LBK 1 RBK » RBR

(COMMENT cPY)
MCH 0766000 219+ MCH 4760000 10+ BST,
(COMMENT WRS-DELAY RTT)

LOAD SOURCE EXIT CLN
ONE = SCALEs ZERO = SYMBOL COUNT»
RECORD LBK 22755 RBK = RECORD LBK 32756 RBK . RBR .

BST CLN
K EQU 0t1)9
LBR MCH 0764000 130s MCH 0762000 130,
(COMMENT BST-TAPE 2 RDS-TAPE 2)
M EQU 32767(-1)3275%5

LBR MCH 0700004 RECORD LBK 1 RBK » RBR »

{ COMMENT cPY }
MCH 0766000 219+ MCH 4760000 10s BST EXIT,

(COMMENT WRS-DELAY RTY)

LOAD SOURCE EXIT,
BST EXIT CLN
s RBR » MCH 0000000 BST»
CONTROL CLN MCH 23 46 45 6 OCT 3 51 46vee
({COMMENT BCO - C O N T R O)

SPROCESS SOURCE CLN
END FLAG NEQ ZERO CLN
ITS = [s TEST ROUTINE,

$
GET SOQURCE CHARACTERs | GEQ ONE CLN
CHECKX EXCEPTION,
$
CLEAR BLANK FLAG CLN
ZERD = BLANK FLAG = PUNCTUATION FLAG,
TEST SHIFT FLAG CLN
SHIFT FLAG EQU ZERO CLN
SHIFT EXIT 1,

$

SHIFT CHARACTER CLN

LBK J RBK # 2 EXP 7 ¢+ CHAR = LBK J RBK ¢ SHIFT FLAG - ONE =

SHIFT FLAGs PROCESS SOURCE.
SHIFT EXIT 1 CLN

LBK J RBK # 2 EXP 7 ¢ CHAR = LBK J RBK
SHIFT EXIT 2 CLN

J = ONE = Js FOUR = SHIFT FLAGs ZERO = LBK J RBK » PROCESS SOURCE.
SHIFT EXIT 3 CLN

J - ONE = Jo CHAR = LBK J RBK s THREE = SHIFT FLAGs PROCESS SOURCE.

CHECK EXCEPTION CLN
1 EQU FIFTEEN CLN
CHECK COMMENT.
s
I EQU TWELVE CLN
SET BLANK FLAGe
s
‘1 EQU TEN CLN
© SET PUNCTUATION FLAG.

$
BLANK FLAG + PUNCTUATION FLAG EQU ZERO CLN
TEST SHIFT FLAG.

3
ENTER SEARCH CLN
SHIFT FLAG NEQ FOUR CLN
J-ONE = JS$

Appendix B: Neliac 704 217

$
CHAR = LBK J RBK o K EQU 1(1)5
LBR GET SOURCE CHARACTERs 1 EQU TWELVE CLN
ONE = BLANK FLAGs SEARCH LIST 1,
S
1 EQU TEN CLN
SEARCH LIST 3,
s

K EQU FIVE CLN
LBR SEARCH LIST 4 CLN
M EQU O(1)s

LBR LBK J RBK EQU COMB TABLE 2A LBK M RBK CLN
ENTER SEARCH le
$ RBR

ZERO = BLANK FLAG = PUNCTUATION FLAG)

SHIFT EXIT 3, RBR §

$
SEARCH LOOP CLAN
LBK J RBK # 2 EXP 7 + CHAR = LBK J RBK s RBR »
ENTER SEARCH 1 CLN
J -~ ONE = Js CHAR = LBK J RBK » K EQU 1(1)5
LBR GET SQURCE CHARACTER» I EQU TWELVE CLN
ONE = BLANK FLAGs SEARCH LIST S,
$
1 EQU TEN CLN
SEARCH LIST 3,
$

K EQU FIVE CLN
ZERO = BLANK FLAG = PUNCTUATION FLAGs SHIFT EXIT 3.
$
SEARCH LOOP 1 CLN
LBK J RBK # 2 EXP 7 + CHAR = LBK J RBK s RBR »
SEARCH LIST 5 CLN
LBK J RBK EQU COMB TABLE 2B LBK M RBK CLN

J + ONE = J» COMB 2 LBK M RBK = CHARs SEARCH LIST 1A
$

ZERO = PUNCTUATION FLAGs K EQU FIVE CLN
SHIFT EXIT 2,
FOUR = K = SHIFT FLAG» PROCESS SOURCEee

$SEARCH LIST CLN
ZERO = BLANK FLAG = PUNCTUATION FLAGs SHIFT EXIT 2.
SEARCH LIST 1 CLN
N EQU 0(1140
LBR LBK J RBEK EQU COMB TABLE 1 LBK N RBK CLN
LBR N GEQ SIX CLN
LBR COMB 1 LBK N-4 RBK = CHARs N LSS NINE CLN
CHAR = PUNCTUATION FLAG $
$
SEARCH LIST 1As RBR $
$
N EQU FIVE CLN
LBR COLON = PUNCTUATION FLAG = CHAR»
SEARCH LIST 1A CLN
ZERO = LBK J RBK s SHIFT FLAG EQU FOUR CLN
SHIFT CHARACTER.
J + ONE = Jy TEST SHIFT FLAGe RBR §

$

PUNCTUATION FLAG EQU ZERO CLN
ZERO = BLANK FLAGs SHIFT EXIT 2,
$

N LSS THREE CLN
gEARCH LIST 2,

N EQU THREE CLN
GET SOURCE CHARACTERs SEARCH LOOP,

$
PUNCTUATION FLAG EQU COMMA CLN

CEAD/M + TCT 2
wRaRSANWTY LivY e

$

PUNCTUATION FLAG EQU COLON CLN
SEARCH LIST 2,
$

ZERO = LBK J RBK = SHIFT FLAGs K EQU 1{1)&
LBR GET SOURCE CHARACTERs 1 EQU TWELVE CLN
SEARCH LIST 18 CLN
ONE = BLANK FLAG» Z2ERO = PUNCTUATION
FLAG» SHIFT EXIT 2,
s
LBK JRBK # 2 EXP 7 + CHAR = LBK J RBK ¢
I EQU TEN CLN
ZERO = BLANK FLAGs SET PUNCTUATION FLAG,
$ RBR
SEARCH LIST. RBR $
$ RBR
ZERO = PUNCTUATION FLAGe K EQU FIVE CLN
SHIFT EXIT 2.
FOUR = K = SHIFT FLAGs PROCESS SOURCE.
SEARCH LIST 2 CLN
J + ONE = Js ZERO = BLANK FLAGy SHIFT EXIT 2,
SEARCH LIST 3 CLN
CHAR = PUNCTUATION FLAGy K EQU FIVE CLN
SHIFT EXIT 3,
FOUR = K = SHIFT FLAGes TEST SHIFT FLAG.
SET BLANK FLAG CLN
ONE = BLANK FLAGs PROCESS SOURCE,

SET PUNCTUATION FLAG CLN
PUNCTUATION FLAG EQU CHAR CLN
LBR CHAR EQU PERIOD CLN
LBR J - ONE = Jo COMB 1 = END FLAG = LBK J RBK »
LOAD SOURCE. RBR $
$ RBR $
$
CHAR = PUNCTUATION FLAGs ZERO = BLANK FLAG»
LBK J RBK EQU NOTCOMMA CLN
SEARCH LIST 2.
TEST SHIFT FLAGes

PAREN COMM = OCT 122030743215+ ENT OF COMM = OCT 243424

Appendix B: Neliac 704

CHEC‘ CONHENE CLN
GET SOURCE CHARACTERs | EQU TWELVE CLN
CHECK COMMENT,
s
J = ONE = J» LEFT PAREN = LBK J RBK s CHAR EQU FIFTEEN CLN
THREE = SHIFT FLAGs ENTER SEARCH.
$

CHAR NEQ THREE CLN
LBR THREE = SHIFT FLAGs SHIFT CHARACTERs RBR $
$
LBK J RBK ® 2 EXP 7 ¢ CHAR = LBK J RBK » K EQU 1(1)3
LBR GET SQURCE CHARACTERs 1 EQU TWELVE CLN
SEARCH LIST 18,

$

I EQU TEN CLN
SHIFT EXIT 1.
s

LBK J RBK # 2 EXP 7 + CHAR = LBK J RBK » RBR
LBK J RBK NEQ PAREN COMM CLN

SEARCH LIST,

$

J = ONE = Jo ZERO = LBK J RBK s K EQU 1(1)3
LBR GET SOURCE CHARACTERs I EQU TWELVE CLN
SEARCH LIST 18,
$

I EQU TEN CLN
SHIFT EXIT 1,
s

LBK J RBK # 2 EXP 7 4+ CHAR = LBK J RBK » RBR »
LBK J RBX NEQ ENT OF COMM CLN

SEARCH LIST,

$

CHECK COMMENT 1 CLN
GET SOURCE CHARACTERSs
CHAR NEQ RIGHT PAREN CLN
CHECK COMMENT 1.
$

J 4+ TWO = J o PROCESS SOURCE.e

SGET SOURCE CHARACTER CLN LBR
GET SOURCE ENTRY CLN
IF SYMBOL COUNT EQU ZERO CLN
SIX=SYMBOLCOUNT » SCALE+MINUSONE INDEX=SCALE »$$
SYMBOL COUNT - ONE = SYMBOL COUNTs

(COMMENT LXA SCALEs4 LDQ RECORD 4 ZAC)
MCH 0534004 SCALEs MCH 0550004 RECORDs MCH 4754000 0 »
(COMMENT LGL 6 STQ RECORDs4 oM PAXs 1

219

)

MCH 4763000 6» MCH 4600004 RECORDs MCH 0760000 6+ MCH 0734001 Os

(COMMENT CAL TABLE-1s1 POX 1 STA CHAR

MCH 4500001 TABLE LBK 1 RBK » MCH 4734001 O» MCH 0621000 CHARs

IF 1 EQU SEVENSEVEN CLN LOADSOURCE1+GETSOURCEENTRY+$S RBR »

TABLE CLN
(COMMENT 0 1 2 3

MCH 0000000 27, MCH 0000000 28+ MCH 0000000 29+ MCH 0000000 30,
6 7

(COMMENT & S

MCH 0000000 31, MCH 0000000 32, MCH 0000000 339 MCH 0000000 34,
9 =pRT4ARROW)

MCH 0000000 35, MCH 0000000 36s MCH 0000105 00» MCH 0000000 62,

(COMMENT 8
(COMMENT -5 NOT

MCH 0000000 57, MCH 0001050 O » MCH 0001050 0 s MCH 0001050 0

220

(COMMENT +
MCH 0000000

(COMMENT D

MCH 0000150
(COMMENT H

MCH 0000000

49,
b o

(COMMENT RTe+ PAREN

MCH G000000
(COMMENT -

MCH 0000000
(COMMENT M

MCH 0000060
(COMMENT Q

MCH 0000000
(COMMENT

MCH 0000000
(COMMENT BLANK

MCH 0000120
(COMMENT U

MCH 0000010
(COMMENT ¥

MCH 0000000
{COMMENT (

MCH 0000170

75
50,
13,
17,
47,
0
21,
25,

41,

MCH
MCH
MCH
MCH
MCH
MCH
MCH
MCH
MCH
MCH
MCH

MCH

SNAME DEFINTION CLN LBR
SEARCH NAME LISTe NEXT OP NEQ COLON CLN FIND ADDRESSeS -
IF LESS LEQ CURRENT OP LEQ GREATER CLN FIND ADDRESS.S
NAME FOUND FLAG EQU ONE CLN FAULT 18 .8
PRINT NAME FLAG EQU ONE CLN PRINT NAMESS
DEFINED LIST LOC + ONE = DEFINED LIST LOC = N
GTR TEN TWENTY THREE CLN FAULT 19.%
NAME DEFINITION 1 CLN
ZERO = CURRENT INDEXs
NAME BUFFER 1 = NAME WORD 1 LBK N RBK
WORD 2 LBK N RBK »
NAME BUFFER 3 = NAME WORD 3 LBK N RBK » PEEK)»
PEEK SYMBOL EQU SUBROUTINE MARK CLN NAME DEFINITION &8
CURRENT OP NEQ LEFT BRACE CLN END -1 = LOC TEMP §
END ~1 +ONE = LOC TEMP $
NAME DEFINITION 2 CLN

NAME BUFFER 2 = NAME

LOC TEMP = NAME LOCATION LBK N RBK »
N EQU 0(1) 511 LBR UNDEFINED NAME 1 LBK N RBK NEQ NAME BUFFER1 CLN
NAME DEFINITION 3% UNDEFINED NAME 2 LBK N RBK NEQ NAME BUFFER 2

A
gOOOOZO

0000030
I
0000160

0001050
J
0000000
N
0000070
R
0000100

0001050
/
0000000
v
0000010
ra
0000000

0001050

o N LU N
L J

10»
la,
18,
0
48,
22

260

MCH
MCH
MCH
MCH
MCH
MCH
MCH
MCH
MCH
MCH
MCH

MCH

8
0000010 2 » MCH
F

0000040 6 o+ MCH
+0+12-0+AND
0000000 58, MCH
0001050 0 » MCH
K

0000000 11l»
0

0000110 15,
=0+11-0+0R

0000000 59,

MCH
MCH
MCH
0001050 0 » MCH
S

0000010 19,
w

0000010 23s MCH
ReMeB8-2-04IMP
0000000 60e¢ MCH

MCH

0001050 0 » MCH

Machine-Independent Computer Programming

3,
T »

C
8000020
0000040

[]
0000120 70,

0001050 O »
L H

0000050 12,
P

)
0000010 16,
$)
0000120 73,

)
0001050 O »
T)
0000010 20,
X)
0000000 24,
*)
0000120 71,
END RECORD)

0001150 Osee

CLN NAME DEFINITION 3 +$ UNDEFINED NAME 3 LBK N RBK NEQ NAME
BUFFER 3 CLN NAME DEFINITION 3,3 UNDEFINED LOC LBK N RBK = Ly
ZERO GTR LBK L RBK CLN LBK L RBK -LOC TEMP = LBK L RBK §

LBK L RBK + LOC TEMP = LBK L RBK $ ZERO = UNDEFINED NAME 1

LBK N RBK = UNDEFINED NAME 2 LBK N RBK = UNDEFINED NAME3 LBK N RBK

= UNDEFINED LOC LBK N RBK

NAME DEFINITION 3 CLN RBR

NAME DEFINITION & CLN
FIND NON ZERO SYMs SEARCH SUB LIST»
SUBROUTINE LOC = LOC TEMP» NAME DEFINITION 2.

FIND ADORESS CLN

sNAME DEFINITION EXITe

NAME FOUND FLAG EQU ZERO CLN FIND ADDRESS 1 $$

NAME DEFINITION EXIT CLN

ZERO = NAME BUFFER 1 = NAME BUFFER 2 = NAME BUFFER 3 RBR
FIND ADDRESS 1 CLN LBR
N EQU 0(1)511 LBR UNDEFINED NAME 1 LBK N RBK NEQ ZERO CLN
FIND ADDRESS 2435 NAME BUFFER 1 = UNDEFINED NAME 1 LBK N RBK

NAME BUFFER 2 = UNDEFINED NAME 2 LBK N RBK »

0010
0020
0030
0040
0050
290060
290061
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370

Appendix B: Neliac 704

NAME BUFFER 3 = UNDEFINED NAME 3 LBK N RBK »

I = UNDEFINED LOC LBK N RBK s N= UNDEFINED LIST LOCsFIND ADDRESS3.
FIND ADDRESS 2 CLN RBR » FAULT 20,
FIND ADDRESS 3 CLN RBR oo

SPEEK CLN
LBR SYMBOL COUNT = PEEK SYM COUNTs SYMBOL BUFFER = PEEK SYM
BUFFERs J= J TS»

PEEK 1 CLN
PEEK SYM COUNT —~ONE = PEEK SYM COUNT LSS ZERO CLN PEEK 2.$
PEEK SYM BUFFER #2 EXP 7= TEMP STORAGEs PEEK SYM BUFFER /2 EXP 28s
PEEK SYMBOL NEQ ZERO CLN $ TEMP STORAGE = PEEK SYM BUFFERy» PEEK 1.
J TS = Jy RBR

PEEK 2 CLN
LBK J RBK =PEEK SYM BUFFERs J-ONE=Js FIVE =PEEK SYM COUNTSPEEK lee

$ PROCESS CONTROL CLN MCH 0760000 OCT 161>
WRITE TAPEe EXECUTE PROGRAM CLN OUTPUT CONSTANT = [
CCPRINTLOOP CLN LBK | RBK = TEMP STORAGEs IO0H PRINT(19e11s
TEMPSTORAGE)s I~1=1y IF TEMP STORAGE EQU OUTPUT CONSTANT
CLN FIN]ISHUPe CCPRINTLOOP.
FINISHUP CLN FOR J EQU 0(1)10 LBR LBK I RBK = TEMPSTORAGE,
I0H PRINT(1911»TEMPSTORAGE)}s I-1=1+ RBR s MCH 0534002 OUTPUT
CONSTANT

MCH 0000002 O »

WRITE TAPE CLN MCH 0500000 OUTPUT CONSTANT LBK 1 RBK »

MCH 0400000 TRA » MCH 0601000 OCT 77776 o

FOR L EQU 32767(-1132730 LBR LOADER LBK L+1 RBK = LBK L+]1 RBK RBR »

MCH 0020000 13 »

LOADER CLN MCH 0534001 O » MCH 0700001 2 » MCH 5777771 1 »

MCH 0761000 O » MCH 0760000 0 » MCH 0534001 6 » MCH 0361001 OCT 77777

MCH 2000011 6s MCH 0602000 30s MCH 0020000 24+ MCH 4760000 10

MCH C000000 28y MCH C020000 OCT 77776+ MCH 0760000 Os MCH 0534001 6
s MCH 0361001 OCT 77777 » MCH 2000011 15 » MCH 0602000 OCT 77777 »
MCH 0534001 & » MCH 0766000 147 » MCH 0700001 OCT 77777 »

MCH 7000001 23 » MCH 1777771 20 » EXECUTE PROGRAM,

MCH 050C000 OCT 77777+ MCH 0402000 30s MCH 0100000 10

MCH 0200000 11s MCH 0772000 145+ MCH 0020000 11+ seesscsee

SREAD NAME CLN
LBR ZERO = NAME BUFFER 1 = NAME BUFFER 2 = NAME BUFFER 3 = My
READ NAME 1 CLN
L EQU 0(1)4 LBR NAME BUFFER)} LBK M RBK # 2 EXP 6
+ PRESENT SYMBOL = NAMEBUFFER 1 LBK M RBK » FIND NON ZERO SYM»
PRESENT SYMBOL GTR LASTNUMBER CLN READNAME3+$ RBR »
M + ONE = M NEQ THREE CLN READ NAME 1. $
READ NAME 2 CLN
PRESENT SYMBOL GTR LAST NUMBER CLN READ NAME EXIT.S
FIND NON ZERO SYMs READ NAME 2.
READ NAME 3 CLN
L LSS FOUR CLN FOUR - L = TEMP STORAGE $ READ NAME EXIT,
L EQU 111) TEMP STORAGE LBR NAME BUFFER] LBK M RBK * 2 EXP &
= NAME BUFFER 1 LBK M RBK RBR »
READ NAME EXIT CLN
e RBR oo

$SEARCH NAME LIST CLN
LBR

SEARCH NAME LIST ENTRY CLN
N EQU O(1) DEFINED LIST LOC LBR NAME WORD 1 LBK N RBK NEQ NAME
BUFFER 1 CLN

SEARCH NAME LIST 1le $

29
29
29
29

34
34
34
34
34
36
346
34
34
34

015
015
015
015
015
015
015
015

221

0380
0390
0400
0410

0010
0020
0030
0040
0050
0060
oot0
0080
0090
0100

0010
0020
0030
0040
0050
0060
0070
0080

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160

0010
0020
0030
0040
0041

0050

v

b

Machine-Independeni Computer Programming

b

NAME WORD 2 LBK N RBK NEQ NAME BUFFER 2 CLN SEARCH NAME LIS
NAME WORD 3 LBK N RBK NEQ NAME BUFFER 3 CLN SEARCH NAME LIS
ONE = NAME FOUND FLAGS
NAME LOCATION LBK N RBK /2 EXP 34 * 2 EXP 15= FLOATING FLAG»
NAME LOCATION LBK N RBK # 2 EXP 3 / 2 EXP 30 = SCALEs

NAME LOCATION LBK N RBK #2 EXP 10 /2 EXP 25 = TEMP STORAGE
NEQ ZERO CLN PART WORD UP, $

NAME LOCATION LBK N RBK # 2 EXP 22 / 2 EXP 22 = ADDRESSs
SEARCH NAME EX1T,

SEARCH NAME LIST 1 CLN RBR »

ZERO = NAME FOUND FLAG = ADDRESSs ONE = ADDRESS FLAGs

SEARCH NAME EXIT CLN
TAG EQU ONE CLN PARTIAL WORD 2. § RBR »

PART WORD UP CLN
TEMP STORAGE / 2 EXP 6 = PART WORD 1
TEMP STORAGE # 2 EXP 31 7 2 EXP 31 + PART WORD 1 - ONE =
NUMBER BUFFERs NAME LOCATION LBK N RBK = TEMP STORAGE 2,

SET PART WORD PARAMETERS,
TEMP STORAGE 2 # 2 EXP 22 / 2 EXP 22 = ADDRESSs
ONE = NAME FOUND FLAGs SEARCH NAME EXIT..

-y

SUNBUILD PROGRAM FLAGS CLN

LBR PROGRAM FLAGS COUNT 4+ ONE NEQ TEN CLN
PROGRAM FLAGS COUNT + ONE s PROGRAM FLAGS COUNTS»
PROGRAM FLAGS LOC = M» LBK M RBK / 2 EXP 3 = LBK M RBK §
PROGRAM FLAGS LOC + ONE = PROGRAM FLAGS LOC»
ZERO = PROGRAM FLAGS COUNT $
1 4ONE = |»

RBR +6

$GL OUT 2 CLN MCH 0020000 OCT 38700944

ONTROL

AsBoCoDsEsFoGoHs

$ A+8sCS A#B+CaDS A+B¥#CxD$S A2B-CuDS A®-Ba(C$
(A+B)%CaDS

A*B/(A-B)=CS ((A=B)+B)/CaDes

0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250

0170
0180
0190
0200
0210
0220
0230
0240

0010

APPENDIX C

NELIAC 1604

The version of Neliac 1604 presented here is a particularly legible
compiler, which demonstrates the improvements in documentation
which can be achieved by a careful choice of meaningful terms for
nouns and verbs. It was written and tested by S. W. and C. B.
Porter.

The first version of Neliac 1604 was written by Lt. K. S. Masterson,
Jr.'® and debugged, revised and expanded by Professor R. M:
Thatcher.'?

The listing given here is based upon those earlier works, as well
as upon Neliac B, a compiler for the Burroughs 220 computer also
written by the Porters.® The cooperation of these four automatic-
programming experts is greatly appreciated.

In order that the flow of the program logic can more readily be
followed, the internal compiler code is given in Table X, while
Table XI shows the CO-NO matrix used.

16 K. S. Masterson, Jr., “Compilation for Two Computers with Neliac,” Communi-
cations of the Association for Computing Machinery, Vol. 3, No. 11, Nov., 1960.

17 Richard M. Thatcher, The Neliac Compiler Language, CDC 1604 Version, un-
published document of the U. S. Naval Postgraduate School, Sept., 1960.

18 S. W. Porter and C. B. Porter, “Neliac B—A Compiler for Burroughs 220 Com-
puter, January 1961 Version,” NEL Technical Memorandum 464, March, 1961; and
“A Compiler for the Control Data Corporation 1604 Computer, September 1961 Ver-
sion,” NEL Technical Memorandum 500, Oct., 1961.

TABLE X

T

D
L

7‘ogra7mning

INTERNAL COMPILER CODE OF NELIAC-1604

Symbol
Space
Aora
B orb
Corc
Dord
E or e
Forf
Gorg
Horh
Iori
J or |
K ork
L orl
M or m
N orn
Ooro
Porp
Qorq
Rorr
S ors
T or t
U oru
Vorv
W or w
X or x
Y ory
Z or z

VI S

Octal

Fa¥al

00
01
02
03
04
05
06
07
10
11
12
13
14
15
16
17

W W N MDD I N
_— O 1 3 ULk WD~

32
33
34
35
36
37

Decimal

~

© 0 1 ®» UL & W = &

(VTN B SO N T S T N I N N N S T o TN 1N YR (X Y S Gy v G G U SO T S
ot © O 00 1 O UL A WD O OO =10 UL v WhHh M-~

Symbol

© 00 1 O ut

2]

®
47)

Uor &
N or &

Octal
40
41
42
43
44
45
46
47
50
61
52
53
54
55
56
o7
60
61
62
63
64
65
66
67
70
71
72
73
74
75
76
77

Decimal
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

Appendix C: Neliac 1604 225

TABLE XI
CURRENT OPERATOR-NEXT OPERATOR TABLE FOR NELIAC 1604

Next Operator

s, =F>><<NU> 4+ -/ X ()L1] s
tabccceceddddddddddddde f g
{abccccddddddddddddde f ¢
labccceceddddddddddddde f g
.abccccddddddddddddde f g
;abccccddddddddddddde f g
,abcccecddddddddddddde f g

— h i i i i i i i i e f g
=% h i i i i i i i i e f g
> h i i1 i i i ii e f g
> h iii i i i i i e f g
< h ioioi i0i i i i e f g
<h i i i i i i ii e f g
N h i i1 i i i i i e f g
Uh i i1 i i i i i e f ¢
> Ggiiid i i i iiiiie f g
-+ k k k k k k kkkkkkke f g
— I 1711111111111 e f g
/ mmmmmmmmmmmmme f{ g
X nnnnnnunnnnnnnne f g

a. Define Location h. Finish Comparison

b. Generate Input-Output i. Multiple Comparison

c. Generate Transfer j. Store Working Register

d. Load Working Register k. Addition

e. Partial Word Control 1. Subtraction

f. Subscript m. Divide

g. Exponent n. Multiply

As a sort of Table of Contents of Neliac 1604, Table XII has been
included. It shows the over-all groupings of the routines, insofar as
this can be done.

XII

TABL

E
NELIAC 1604 ORGANIZATION
LOAD NELIAC PROGRAM

226 Machine-Independent Computer Programming

LOAD-SUB Programs 1 through 10
SET COMPILER CONDITIONS

MOD 4c—Sub Programs

32 GENERAL PRINT ROUTINES
37 MAGNETIC TAPE ROUTINES
38 CLEAR STORAGE
42 SET UP INITIAL CONDITIONS
50 PRINT ID PAGE

PROCESS NOUNS

MOD 4c—Sub Programs

12 DEFINE LOCATION
13 DELETE ALGOL WORDS
17 FILL UNDEFINED ADDRESS
18 FIND ADDRESS
19 FIND ALPHA OPERAND
21 FIND FLOATING POINT NUMBER
22 FIND NUMBER ADDRESS
23 FIND NUMBER OPERAND
24 FIND OPERATOR
25 FIND SYMBOL
32, 33 GENERAL PRINT ROUTINES

37 MAGNETIC TAPE ROUTINES
43 STORE
44 STORE CONSTANTS

PROCESS PROGRAM BODY

MOD 4c—Sub Programs
36 PROCESS LOGIC (CO-NO TABLE)
Routines directly used by PROCESS LOGIC

10 ADDITION

11 COMPILE SUBROUTINES

12 DEFINE LLOCATION

14 DIVIDE

15 DOWNGRADE BRACE TABLE

32,

Appendix C: Neliac 1604

16 FAULT
24 FIND OPERATOR

26 GENERATE TRANSFER

27 LOAD WORKING REGISTER
28 COMPARISONS, MULTIPLE and FINISH
29 MULTIPLY

30 PARTIAL WORD CONTROL
45 STORE WORKING REGISTER
46 SUBSCRIPT

47 SUBTRACTION

48 UPGRADE COMPARISONS

Routines indirectly used by PROCESS LOGIC

9 PROCESS INCOMPLETE VALUE

10 GENERATE ADD COMMAND, CLEAR ADD
i1 COMPUTER LANGUAGE

13 DELETE ALGOL WORDS

14 GENERATE DIVIDE COMMAND

17 FILL UNDEFINED ADDRESS

18 FIND ADDRESS

19 FIND ALPHA OPERAND

20 GENERAL COMPARISON ROUTINES
21 FIND FLOATING POINT NUMBER
22 FIND NUMBER ADDRESS

23 FIND NUMBER OPERAND

24 FIND OPERATOR

25 FIND SYMBOL

27 GENERATE LOAD Q COMMAND, FIND MASK
29 GENERATE MULTIPLY COMMAND
30 POST LOOP CONTROL

31 PRE LOOP CONTROL

33 GENERAL PRINT ROUTINES

37 MAGNETIC TAPE ROUTINES

39 GENERAL LOOP ROUTINES

40 SET FALSE COMPARISON

41 SET TRUE COMPARISON

227

2298 M achine-Independent Computer Programming

43 STORE, STORE COMMAND

45 GENERATE STORE COMMAND

46 SUBSCRIPT

47 GENERATE SUBTRACT COMMAND, CLEAR SUBTRACT
48 UPGRADE COMPARISONS

POST COMPILE PROCESSING
MOD 4c—Sub Programs

22 STORE UNDEFINED NUMBERS
38 CLEAR TEMPORARY NAMES
PRINTOUTS

MOD 4c—Sub Programs

32 PRINT DEFINED NAMES
34 PRINT UNDEFINED NAMES
49 PRINT PROGRAM

Appendix C: Neliac 1604 229

5‘
THAD NELIAC PROGRAM:
7528 ENTRY 2, FIND TAPE WRITE AREA, ACTIVATE READER,
SET TAPE ARFA TO SPACES, READ INFORMATION PAGE,
WAIT TO WRITE MAG TAPE, WRITE PART 1, 660 + MAG TAPE INDEX,
1320 > IAST MAG TAPE INDEX,
E|NTRY 1: 761e STOP,
s|ToP: FIND PAGE, WRITE MAG TAPE,
PAGE NUMBER + 1 - PAGE NUMBER ¢ NUMBER OF PAGES: ENTRY |.;
WAIT TO WRITE MAG TAPE, SET TAPE AREA TO SPACES,
END TAPE FIAG + MAG TAPE AREA + MAG TAPE AREA[660],
WRITE MAG TAPE, WRITE MAG TAPE, WAIT TO WRITE MAG TAPE,
751s ENTRY 2, EXIT.
E|NTRY 2: RESTORE PAGE, FIND TAPE READ AREA, WAIT TO READ MAG TAFE,
READ PART 1, SET PRINT BARS TO SPACES, READ MAG TAFE,
MAG TAPE AREA + NUMBER OF PAGES, 40 » MAG TAPE INDEX,
E|NTRY 3: LIST PAGE, PAGE NUMBER + | + PAGE NUMBER s NUMBER QP PAGES:
READ MAG TAPE, ENTRY 3.;
E|XIT: REWIND READ TAPE,..

5

ALL SPACES = 20 20 20 20 20 20
ALPHA FIRST LOCATION(2) = 66 71 51 22 23 20 43 46,

63 61 25 71 46 45 20 20a, ALPHA AGES = 47 61 67 65 22 20 20 20s,
ALPHA PROGRAMS = 47 51 56 67 51 61 44 22, CARRIAGE RETURN = 6351,
END TAPE PIAG = 17 17 17 1T 17 1T 1T 17e» ILIEGAL CCDE = 4095,
LOWER CASE CODE = 5Ts, STOP CODE = 2263g, UPPER CASE C(DE = 4Ta,
SYMBOL TABIE(128) =

20 20s,
5
P

4095, 19, 40 25: 38, 16, 56, 3Ts 36,
kogs, 35 1y 55, sg. 4033. 51, 21,
Eg: gg: g;: 5g: AO, 40, 5k, ?8:

) » » > ’ 9) ’
k095, 4095, 59, 2263, 63, 6351s, Ts 4095,
62, 4095, 1, 4095, rz. 39 30, 4095,
8, 4095, 5s 4095, » uoa5v 6s 4095,

3, 4095, Ts ko095, 2 2 43, 4095,
4095, 19, ho 253) 16, 56, 37s 36,
4095, 35, 1y 55, 53: uog: 51, 21,
?: 25, 52, 50, 10, s 54, 23

9, 33 28, 20 40, 34, 60,

22, »
4095, 4095, Ego 22630, 00, ©6351e, %a 4095,
12, 4095, , 4095, 61, 39, 1
iy, 4095, 26, 4095, 15, k095, 281 4095,
11, ‘*09_5. 17, 4095, 32 31 5» 4095;
LOAD CONSTANTS:..

5
STCRAGE = 1587, BLOCK NIHBER’ BUFFER, CASE FIAG, INPUT SYMBOL,
IAST MAG TAPE INDEX, LINE(10), LIST INDEX, LOWER LIMIT,

MAG TAPE AREA(1320), MAG TAPE INDEX, MAG TAFE INPUT FIAG,

MAG TAPE OUTPUT FIAG, NUMBER OP PAGES, PAGE NUMBER, PRINT BAR(240),
SYMBOIL, SYMBOL COUNT, UPPER LIMIT, WORD, WORD COUNT;

LOAD DIMENSIONING:..

5;
FIND PAGE: {1 = MAG TAPE mamcflime TAPE INDEX+659
{ALL SPACES + MAG TAPE AREA[1]}
E|NTRY: FIND SYMBOL
SYMBOL = CARRIAGE RETURN (y SYMBOL = STOP CCDE: ; FIND LINE,

230 Machine-Independeni Computer Programming

1 = 0(1)9 {MAG TAPE INDEX + 1 + J, LINE[1] + MAG TAPE AREA[J]};
SYMBOL # STOP CCDE: MAG TAPE INDEX + 10 + MAG TAPE INDEX ¢
IAST MAG TAPE INDEX: ENTRY.;;;|
FIND LINE: {1 = 0(1)9 {ALL SPACES + LINE[1]
E|NTRY 1: WORD, WORD COUNT + 1 =

WORD +» LINE[WORD COUNT],
SMO# = STOP CODE: i ENTRY 1.:

5_
g

SYMBOL = CARRIAGE RETURN v

im 0}1)8 {LINE[1+1] » LINB[1]}

FIND WORD: {0 + SYMBOL COUNT, ALL SPACES -+ WORD,

E|NTRY 2: WORD x 216 + WORD, SYMBOL -+ WORD(0+5), FIND SYMBOIL,
SYMBOL COUNT + | + SYMBOL COUNT a 8: ENTRY 3.
SYMBOL = CARRIAGE RETURN { SYMBOL = STOP CDE

E|NTRY 3: SYMBOL COUNT + | -+ SYMBOL COUNT < 9:

WORD x 216 -+ WORD, ENTRY 3.;}..

Il
FIND SYMBOL: {E|NTRY: WAIT TO READ PAPER TAPE,
INPUT SYMBOL(0+5) + SYMBOI, 100s INPUT SYMBOL{1] -+ [1],
741 INPUT SYMBOL, SYMBOL = UPPER CASE CODE: 64 + CASE FIAG, ENTRY.;
SYMBOL = LOWER CASE CODE: 0 -+ CASE FIAG, ENTRY.;
SYMBOL + CASE FIAG -+ SYMBOIL,
SYMBOL TABIE[SYMBOL] + SYMBOL = ILLEGAL CODE: ENTRY.;|
WAIT TO READ PAPER TAFE: |747s 9,] ACTIVATE READER: {740e 112004, }
CIEAR STORAGE: {1 = 1(1)STORAGE {0 » STORAGE[1]}}
SET TAPE AREA TO SPACES: {SET PART | TO SPACES, SET PART 2 TO SPACES}
SET PART | TO SPACES: {1 = %1)6 9 {ALL SPACES -+ MAG TAPE AREA[1]}}
SET PART 2 TO SPACES: {1 = 660(1 1319 |ALL SPACES + MAG TAPE AREA[1]}1]
SET FRINT BARS TO SPACES: [1 = 0(1)239 {16 +» PRINT BAR[1]}]}
EBSTGE PAGE: i H 7“0‘ 66000" 7’473 66000.’ 7“0. 66004" ‘oo

53
FIND TAPE AREA:|{WAIT TO READ MAG TAPE, REWIND READ TAFE,
CIEAR STORAGE, WAIT TO READ MAG TAPE, READ PART 1,
L -+ BLOCK NUMBER = 0 y BLOCK NUMBER = |: EXIT.;
E|NTRY: READ MAG TAPE, MAG TAFE AREA[MAG TAPE INDEX] -+
NUMBER OF PAGES = END TAPE FIAG: EXIT.;
PAGE NUMBER = 1(1)NUMBER OF PAGES {READ MAG TAPE}
BLOCK NUMBER - | -+ BLOCK NUMBER z 2: ENTRY.;
E|XIT: CIEAR STORAGE, WAIT TO READ MAG TAPE}
FIND TAPE WRITE AREA: [ACTIVATE READ MAG TAIE 3,
ACTIVATE WRITE MAG TAFPE 3, FIND TAPE AREA, POSITION BACK WRITE]
FIND TAPE READ AREA: |ACTIVATE READ MAG TAPE 3, FIND TAPE AREA,
POSITION BACK READ{..

5;
LIST PAGE: |0 -+ LIST INDEX, n = MAG TAPE INDEX(10)IAST MAG TAPE INDEX-i
{1 = n(1)n49 [MAG TAFE AREA[i)‘ -+ BUFFER,
SYMBOL COUNT = 1(1)8 |BUFFER(42+47) » PRINT BAR[LIST INDEX],
BUFFER x 216 - BUFFER, LIST INDEX + | -+ LIST INDEX|}
WAIT TO LIST, LIST INDEX z 120: 0 » LIST INDEX,
100g PRINT BAR[240) + [6], 746, PRINT mgleol-
120 + LIST INDEX, 1005 PRINT BAR[120] -+ [6], THGs PRINT BAR;}}
WAIT TO LIST: {T47e 6le, T40s 660004, '{h’{. 660004,
SET INPORMATION LINE: Ii-mmrwmnmng- 15&8
|FIND SYMBOI, SYMBOL = CARRIAGE RETURN ¥ SYMBOL = STOP C(DE: EXIT.;
MAG TAPE AREA[1] x 216 -+ MAG TAPE AREA[{],
SYMBOL + MAG TAPE AREA[1](0+5)}}
E|NTRY: FIND SYMBOIL,
SYMBOL = CARRIAGE RETURN SYMBOL = STOP CODE: ; ENTRY.

Appendix C: Neliac 1604 231

E|XTT: n = n(1)8 {MAG TAPE AREA[1] x 216 + MAG TAPE AREA[1]}}..

50
READ INFORMATION PAGE: E.;.:LM'RY 1: FIND SYMBOI, 0 ¢ SYMBOL € 11: ; ENTRY 1.

E|NIRY 2: MAG TAPE AREA 221 x 216 + MAG TAPE AREA([342],
SYMBOL - MAG TAPE ARERA[342](12+17), SYMBOL = 10: 0 » SYMBOL;;
NUMBER OF PAGES x 10 + SYMBOL -+ NUMBER OF PAGES » MAG TAPE AREA,
PIND SYMBOIL, 0 ¢ SYMBOL ¢ 11: ENPRY 2.;
E|NTRY 3: SYMBOL # CARRIAGE RETURN: FIND SYMBOL, ENTRY 3.;
E{NTRY 4: FIND SYMBOIL, 0 ¢ SYMBOL < 11: ; ENTRY 4, ,
E|NTRY 5: MAG TAPE AREA[}OZ} x 216 - MAG TAPE AREA[302], SYMBOL -+
MAG TAPE AREA[302]{12%17), FIND SYMBOIL, 0 < SYMBOL < 11: ENTRY 5.;
E|NTRY 6: SYMBOL # CARRIAGE RETURN: FIND SYMBOI, ENTRY 6.;
E|NTRY 7: PIND SYMBOI, SYMBOL = CARRIAGE RETURN: ENTRY 7.;
0 ¢ SYMBOL ¢ 8 y SYMBOL = 10: ;
04 12 12 12 12 20 20 208 » MAG TAFE m[;zzg, ENTRY 9.
E|NTRY 8: MAG TAPE AREA[322) x 216 - MAG TAPE AREA[322],
SYMBOL + MAG TAPE AREA[322](12+17), FIND SYMBOL,
0 ¢ SYMBOL ¢ 8 SYMBOL = 10: ENTRY 8.;
E|NTRY 9: SYMBOL = STOP CODE: EXIT.;
SYMBOL # CARRIAGE RETURN: FIND SYMBOL, ENTRY 9.;
E|NTRY 10: FIND SYMBOL, SYMBOL = STOP CODE: EXIT.;
SYMBOL = CARRIAGE RETURN: ENTRY 10.;
241 - LOWER LIMIT, 249 » UPFER LIMIT, SET INFORMATION LINE,
E|NTRY 11: SYMBOL = STOP CODE: EXIT.; FIND SYMBOL,
SYMBOL = STOP CCDE {y SYMBOL = CARRIAGE RETURN: ENTRY 11.;
261 +» LOWER LIMIT, 269 - UPPER LIMIT, SET INFORMATION LINE,
E|NTRY 12: SYMBOL = STOP CDE: EXIT.; FIND SYMBOL,
SYMBOL = STOP C(DE {y SYMBOL = CARRIAGE RETURN: ENTRY 12.;
281 » LOWER LIMIT, 289 » UPPER LIMIT, SET INFPORMATION LINE,
E|XIT: SYMBOL # STOP CCDE: FIND SYMBOL, EXIT.;ALPHA PROGRAMS -
MAG TAPE AREA[303], ALPHA FIRST LOCATION - MAG TAPE AREA[323],
ALPHA FIRST LOCATION[1] » MAG TAPE AREA[324],
ALPHA PAGES + MAG TAPE AREA[343]}..

\n

3
READ MAG TAPE: {MAG TAPE INPUT FIAG # 0: ENTRY 2.;
1 - MAG TAPE INPUT FlAG, O +» MAG TAPE INDEX,
660 » IAST MAG TAPE INDEX, ‘
NTRY 1: WAIT TO READ MAG TAPE, L|ENGTH CHECK 1: T4Te 32005s READ ERROR
ARITY CHECK 1: T47e 32003 READ ERROR 1. READ PART 2, EXIT.
EAD ERROR 1: POSITION BACK READ, READ PART 1, ENTRY 1.
EAD ERROR 2: POSITION BACK READ, READ PART 2,
NTRY 2: O -+ MAG TAPE INPUT PIAG, 660 +» MAG TAFE INDEX,
1320 + IAST MAG TAPE INDEX, WAIT TO READ MAG TAFE,
ENGTH CHECK 2: T47s 32005s READ ERROR 2.
ARITY CHECK 2: TUTe 32003s READ ERROR 2, READ PART 1, E|XIT:!
WAIT TO READ MAG TAPE: |T47e 32000e, } POSITION BACK READ: [T40s 32006s, }
READ PART 1: {747e 320004, 100s MAG TAFE AREA[660] » [3],

434 MAG TAPE AREA
REAg ;Rm' 2: 1'1;57, 32630., 100 MAG TAPE AREA[1320] » [3],
Th3, MAG TAPE AREA[660]

e EE R

1.

}
ACTIVATE READ MAG TAPE 3: |740s 3203 1ss } REWIND READ TAPE: [T40e 32005, }..

5.

WRITE MAG TAPE: |MAG TAPE OUTPUT FIAG # O: ENTRY 2.;
1 » MAG TAPE OUTPUT PIAG, 0 - MAG TAPE INDEX,
660 + IAST MAG TAPE INDEX

E|NTRY 1: WAIT TO WRITE MAG &‘AE, L|ENGTH CHECK 1: T47,42005¢ WRITE ERROR 1.

232 Machine-In

P|ARITY CHECK 1: T4T7e 420034 WRITE ERRCR 1,
WRITE PART 2, SET PART | TO SPACES, EXIT.
W|RITE ERROR 1: POSITION BACK WRITE, WRITE PART 1, ENTRY 1.
W|RITE ERROR 2: POSITION BACK WRITE, WRITE PART 2,
E|[NTRY 2: 0 + MAG TAPE OUTPUT FIAG, 660 » MAG TAPE INDEX,
1320 > LAST MAG TAPE INDEX, WAIT TO WRITE MAG TAFE,
L|ENGTH CHECK 2: 747s 42005+ WRITE ERROR 2.
P|ARITY CHECK 2: T4Tgs 42003s WRITE ERROR 2,
WRITE PART 1, SET PART 2 TO SPACES, E|XIT:|
WAIT TO WRITE MAG TAPE: |747e 42000s, | POSTTION BACK WRITE: [740e 420064, }
WRITE PART 1: {747s 42000s, 100¢ MAG TAPE AREA[660] » [4],
744 MAG TAPE AREA, |
WRITE PART 2: [T47s 42000e, 100, MAG TAPE AREA[1320]) » [4],
T4le MAG TAPE AREA[660], |
ACTIVATE WRITE MAG TAPE 3: [T40e42031s, | REWIND WRITE TAFE: [T404420054,}..

5

FIRST COMPILER LOCATION = 40 000s, IAST COMPILER LOCATION = 77 TTTe;
NELIAC 1604 MOD 4c: SET UP INITIAL CONDITIONS,

E|NTRY: PROGRAM COUNT + | -+ PROGRAM COUNT = 1:

TRANSFER + COMPUTER WORD (42+i7), STORE;; PROCESS DECIARATIONS,
PROGRAM COUNT = |: RESERVE COMPILER STORAGE;; PRINT PROGRAM TITIE,
PROCESS LOGIC, CLEAR TEMPORARY NAMES, TRF HALT -+ FUNCTION CCDE,
FIRST LOCATION -+ ADDRESS, STORE COMMAND, FILL LOWER HALF WORD,
STORE LIST UNDEFINED NUMBERS, OBJECT PROGRAM - PROGRAM LOCATION,
PROGRAM COUNT < NUMBER OF PROGRAMS: ENTRY.;

COMPIIER EXIT: PRINT IAST PROGRAM LOCATION, PRINT UNDEFINED NAMES,
"PRINT DEFINED NAMES, FAULT FIAG = O: 7604 40 0004;; PRINT PROGRAM, ..

5

MASTER STORAGE = 6541, BLOCK NUMBER, PIRST LOCATION, LAST LOCATION,

LAST MAG TAPE INDEX, lAST SYMBOL, LOCATION TEMP STORAQGE,

MAG TAPE AREA(1320), MAG TAPE INDEX, MAG TAPE INPUT FIAG, NUMBER OF PAGES,
NUMBER OF PROGRAMS, OBJECT PROGRAM, PAGE NUMBER, PROGRAM COUNT,

FROGRAM LOCATION, SAVE SYMBOL, SPACE SYMBOL, SYMBOL, SYMBOL BUF

SYMBOL COUNT, NAME LIST INDEX, NAME LIST(2100), NAME LOCATIONS(700),
UNDEFINED NAME INDEX, UNDEFINED NAMES(1200), UNDEFINED NAME LOCATIONS (400),
NUMBER LIST(200), NUMBER LOCATIONS(200), UNDEPINED NUMBER LIST(200),
UNDEFINED NUMBER LOCATIONS(200); MASTER DIMENSIONING:..

gI.AG STORAGE = 31, OPERATOR, IAST OPERATOR, PREVIOUS OPERATOR,

OPERAND (4), PRESENT OPERATCR, NEXT OPERAND(4), NEXT OPERATOR,

ALPHA OPERAND FIAG, CIEAR SUBTRACT FIAG, COMPARE FIAG, COMPARE INDEX FIAG,
DOUBLE STORAGE FIAG, END PROGRAM FIAG, FAUIT FLAG, HALF WORD PIAG,
INCOMPIETE VALUE FIAG, LOCAL OPERAND FIAG, LOGIC FIAG, LOOP TYPE FIAG,
MINUS FIAG, MULTIPLY DIVIDE FIAG, PARTIAL WORD FIAG, POWER MINUS FIAG,
SKIP ADDRESS FIAG, TEMPORARY NAME FIAG; SPECIAL DIMENSIONING:..

5

SUB STORAGE = 292, ADDRESS, BRACE TABIE(40), BUFFER(4), COMMAND,

COMPARE TABIE(81), COMPARE WORD, COMPUTER WORD, COUNT, DECIMAL BUPFER,
DECIMAL COUNT, DECIMAL DIGIT COUNT, DECIMAL PIACE COUNT, DESIGNATOR,

PAULT BUFFER, FILL, FUNCTION CODE, HI, INCREMENT, INCREMENT SIGN,

NDEX, INTEGER COUNT, IAST LOWER WORD, IAST NAME IRDEX, IAST UPPER WORD,
LOAD NUMBER, LOCATIONS, LOOP OPERAND(4), LOW, LOWER WORD LIMIT,
NUMBER'BUFFER, OCTAL DIGIT COUNT, POWER COUNT, POWER NUMEER,

POWER OF 2, PRINT BAR(120), PRINT LOCATION, RESERVE CELI, TEMPORARY ADDRESS,

Appendix C: Neliac 1604 233

TEMPORARY DESIGNATOR, TEMPORARY FUNCTION CODE, TEMPORARY HALF WORD,
TEMPORARY INCREMENT, TEMPORARY CBJECT PROGRAM, TEMPORARY OPERAND(%4),
UPPER WORD LIMIT; DIMENSIONING TEMPORARY:..

5

ABSOLUTE = 25, ALL SPACES = 20 20 20 20 20 20 20 20s, ARROW = 12,
BOOLEAN AND = 13, BOOLEAN OR = 14, COLON = |, COMMA = 6, COMMA 1612 = 33g,
DIVISION = 18, END TAPE FIAG = 17 17 17 1T 17 17 17 17s, EQUAL = 7,
GREATER = 9, GREATER OR EQUAL = 10, LEFT BRACE = 2, LEFT BRACKET = 22,
1EFT PAREN = 20, IESS OR EQUAL = 12, LESS THAN = 11, MINUS = 17,
MULTIPLICATION = 19, NOT EQUAL = 8, NUMBER FIAG = 15 15 15 154,

OCTAL = 26, OCTAL 1612 = 53g, PERIOD = 4, PERIM® 1612 = 73s, PLUS = 16,
RIGHT BRACE = 3, RIGHT BRACKET = 23, RIGHT PAREN = 2], SEMI COLON = 5,

SET = 585, SEVEN SPACES = 20 20 20 20 20 20 20g, SPACE = 16, TEN = 10, x O,
UP ARROW = 24, UPPER CASE = 39; DIMENSIONING CONSTANTS:..

5
SHFT ART = 01, SHFT QRT = 02, SHFT AQR = 03, SHFT AIP = 05, ENTER A = 10,

INCR A =]1g, CL ADD = 12a, CL SUBT = 13g¢, ADD = 14g,
SUBTRACT = 15g, LOAD Q = 165, STORE A = 20, STORE Q = 2la,
COMPAR A = 225, COMPAR Q = 233, MULT INT = 24g, DIV INT = 25,
MULT FRA = 26a, DIV FRA = 27g, FLADD = 30s, FL SUBT = 3le,
FL MUIT = 325, FLDIV = 339, SEL REPL = 435, LOAD 10G = Llg,
ADD LOG = U455, SUBT LOG = U46g, ENTR INX = 50as, ID INXLo = 53s,
ST INXIo = 57s, REP ADlo = 61g, TRANSFER = 75s, TRF HALT = T6s;
FUNCTION CCDES:..

5 .

AIGOL DO = 64 46 20s, ALGOL NOTHING = 45 46 1425 67 20s,

y
AIGOL FOR = 66 46 5] 20g, ALGOL GO TO = 67 4
AILGOL IF = 71 66 20g, ALGOL IF NOT = 71 66 20

ALPHA DEFINED TWICE(2& = 64 65 66 71 45 65 64 20g, 23
ALPHA FAUIT = 66 61 24 43 23 20 20 20, ALPHA L =
ALPHA LAST PROGRAM LOCATION(3) = 43 61 22 23 20 47 51 4
67 51 61 44 20 43 46 635, 61 23 T1 46 45 20 20 20,

ALPHA NAME LIST(2) = 45 61 44 65 20 43 71 225, 23 20 20 20 20 20 20 20s,
ALPHA NO TITIE = 45 46 20 23 71 23 43 65g, ALFHA U = 2Ug
ALPHA UNDEFINED NAMES(2) = 24 45 64 65 66 71 45 654, zgu 20 45 61 44 65 22 204,

.

INDEX NAMES(6) = 71 20 20 20 20 20 20 20g, 41 20 20 20 20 20 204g,
42 20 20 20 20 20 20 209, 43 20 20 20 20 20 20 20g, 44 20 20 20 20 20 20 20,
b5 20 20 20 20 20 20 20s, SYMBOL TABIE(64) =
]) 14 2 2 2 3 2 2
’ P ’ Ts 8, 12, 2 22,
»]8’ E] »] ;] 2]
» ’ 23, 6, 20, 15, 3y 13,
17’ 2 2 2 ? F 2 2
F) Ed lu’ 26’ '9’ 2""! z{) 9’
16’ 2 » 2 » 2 2 2
11, 4, 21, 10, 25, 5,

2 2
OPERATOR C(DE TABIE(28) =
s 0, 168, 36e, T3as TTas 33es 138,
14, 57as 758, T2as 158, >Tss 528, 358,
60s, U0, 21a, 8y Sda, Tha, 178, 328,
55a, 7685 53ss 56g; SYMBOLS:..

5

IAST FAULT NUMBER = 27, FAULT TALLY(27) =
0, 3, 9, 14, 15, 16, 20, 4,
27, 31, 35, 39, 43, hg, sk, 0,

234 Machine-Ind
66’ 69’ 73’
103 106,

99,
456 1446520437122,
47514667516 144204,
7123702063464447,
63464566437 16323,
516 1442045244462,
712223 8s
6420454462655 14,
452841462655 120434,
454620464765516 148,
ﬁ?mmwwmmm
Zl 567207 1452063,
471222271456720 8,
;osgguzosg %351 5 lﬁguaﬁe:
1 28
iﬁ 4643 2033&626,,
4626551202020,
4520#76!5123"{1615,
4761512371614320,,
655120437 1447123,
464765516 14564204,
4761516545207 145,
45462063464 Ses
Z 1434365676 14320,
5227 146457 14567,
45672020202020204,
20714520647 14465,,
236 1452322202020,,
207 1452022246222,
23205171677023 206,
206230204647655 1a,
4EUT765516 123465 1e,
5171677023206251s,
65274 TU6L565U453,
20022020202020204,
44462655 12020204,
2120267123702024,,

76: 82:
23204625655 166434,
6151656 1206346454,
71436551206 151658,
20402047616765204,
6551202020202020e,
28450465607 145654s,
6643462620202020,,
2043712223204625,,

7122232046256551e, 664

234651206 16623658,
g éumozazou'rs les

5452322204,
714520634 7618s,
20714520476151238,
4761512371614320,,
655120437 14471234,
45462051716770234,
432026465 1642063,
26465 16420634645,
20454623206 120454,
6646434346267 145,,

2047615123716 1434, 20

ooeee 63"2;?27"”
7655161 51a»
4365662320625 16 1as
Z1434365676 143204,
5227 146457 14567,
4546202 1716770238,
63517147237 14567,
62516 1631126523205,
6145642020202020,,
207 145204346677 1 a5
61636520447 12222,,
20626 122652046234,
NearTeos 19080,
8

472061515 14626204 ;

86,
FAULT TABIE(110)

92, 96,

46262020202020 204,
6643716323222026,,
Tt
1 204751 Tes
§5482320 243065000,
6420456 1446520434,
2UU56465667 145654,
6551664346262020,,
3626202020204,
51206 120452444624,
516545204 szazz.,
464765516 14564208,
51712246452220204,
7161432026465 164 4,
2646516420634645,
20454623206 120454,
5 1 'Y)
gaalu 320 20474 T e,
Era0s m T 0,
T 171 Y
4562636516142052620,,
T20237 12343650,
20714520647 14465,,
636520447 12222714,
LE4TE5516 123465 16,
2046662063464522,,
2062516 163426523,
2224622263517 147s,
6646434346266561,,
71434365676 143204,
6320202020202020,,
7145672020202020,,
7065512023706 1454,
20454623206 12045,
6145202720465120,
FAULT TITIES:..

5;
ADD INCOMPIETE VALUE: |{INCOMPLETE VALUE PIAG = 0: EXIT.; SAVE COMMAND,
LOCATION TEMP STORAGE -+ ADDRESS, INCOMPIETE VALUE FIAG # O:
FL ADD » FUNCTION CCDE; ADD -+ FUNCTION CQODE;
STORE COMMAND, RESET COMMAND, O - INCOMPIETE VALUE FIAG, E|XTT:}
STORE INCOMPIETZ VALUE: |ADD INCOMPLETE VALUE, SAVE COMMAND,
SET » SKIP ADDRESS FIAG, FIND ADDRESS, 0 -+ SKIP ADDRESS FIAG,
OPERAND[3](12»14) » INCOMPIETE VALUE FLAG, LOCATION TEMP STCRAGE -
ADDRESS, STORE A -+ FUNCTION CCDE, STORE COMMAND, RESET COMMAND}
SAVE OPERAND: |OPERAND - TEMPORARY OPERAND, OPERAND{1] -
TEMPORARY OPERAND[1), OPERAND[2] » TEMPORARY OPERAND(2],
OPERAND{3] -+ TEMPORARY OPERAND[3]]
RESET OPERAND: |{TEMPORARY OPERAND » OPERAND, TEMPORARY OPERAND[1] -
OPERAND[1], TEMPORARY OPERAND[2] -+ OPERAND[2],
TEMPORARY OPERAND([3] -+ OPERAND(3]]}
SAVE COMMAND: {FUNCTION CODE - TEMPORARY FUNCTION CODE,
DESIGNATOR + TEMPORARY DESIGNATOR,
ADDRESS - TEMPORARY ADDRESS, INCREMENT -+ TEMPORARY INCREMENT,
0 » FUNCTION CCDE + DESIGNATOR - ADDRESS -+ INCREMENT}

Appendix C: Neliac 1604 235

RESET COMMAND: {TEMPORARY FUNCTION CODE - FUNCTION CODE,
TEMPORARY DESIGNATOR -+ DESIGNATOR, TEMPORARY ADDRESS - ADDRESS,
TEMPORARY INCREMENT - INCREMENT{..

H
ADDITION: {OPERAND # O: PRESENT OPERATCR = MULTIPLICATION y
FRESENT OPERATOR = DIVISION: STORE INCOMPIETE VALUE,
_ GENERATE CIEAR ADD COMMAND; GENERATE ADD COMMAND;;;
GENERATE CLEAR ADD COMMAND: {PARTIAL WORD FIAG # O:
0 -+ PARTIAL WORD FIAG, GENERATE LOAD Q COMMAND, LOAD 10G -
FUNCTION CQDE; CL ADD -+ FUNCTION CCDE, FIND ADDRESS; STORE COMMAND!
GENERATE ADD COMMAND: {PARTIAL WORD FIAG # 0: 0 -+ PARTIAL WORD FIAG,
GENERATE 1LOAD Q COMMAND, ADD ﬁm + FUNCTION CODE;
FIND ADDRESS, ommm[i](rz—n) # 0: FL ADD + FUNCTION CCDE;
ADD -+ FUNCTION C(DE;; STORE COMMAND}..

5;
COMPIIE SUBROUTINES: |BRACE TABIE + 1| - BRACE TABILE,
OBJECT PROGRAM - BRACE TABI.ESBRACE TABIE], TRANSFER + FUNCTION CCDE,
STORE COMMAND, FIND OPERATOR
EXIT COMPIIE SUBROUTINES: |{TRANSFER -+ FUNCTION CCDE,
BRACE TABLE[BRACE TABIE + 1] - ADDRESS, STORE COMMAND,
E|NTRY: COMPARE TABIE 2z): 3 + COMPARE FIAG, UPGRADE COMPARISONS, ENTRY.;}
COMPUTER IANGUAGE: jOPERAND[1] ¢ 512: OPERAND([1}(0+2) -+ DESIGMNATOR,
OPERAND([1](3+8) + FUNCTION CCDE, FIND OFERATOR,
OPERAND = NUMBER FIAG: OPERAND[1] - AI]) RESS; FIND ADDRESS:;;
ommmp;”o-»m) - ADDRESS, oplg:mmll 15>17) > DESIGNATOR,
OPERANDI 11(18+23) - FUNCTION CODE;
PRESENT OPERATOR = LEFT BRACKET: SUBSCRIPT;; STORE COMMAND}..

5;

DEFINE LOCATION: {LOGIC FIAG # 0: FILL LOWER HALF WORD;;
OPERAND = 0: EXIT.; NAME LIST INDEX - m, OPERAND =+,

E|NTRY 1: 645 NAME LIST, ENTRY 2.

OPERAND[1] = NAME LIST[m+700] N OPERAND[2] = NAME LIST[m+1400]:
PRINT NAMES DEFINED TWICE, EXIT. ENTRY 1.

NTRY 2: NAME LIST INDEX » m = 0O: ENTRY U4.; 0 »,

NTRY 2: 6455 NAME LIST, ENTRY 4. ENTRY 5.

NTRY 4: NAME LIST INDEX - m + | - NAME LIST INDEX 2 500:

1 » FAUIT BUFFER, FAUIT.;

E|NTRY 5: ?7?3 IAST NAME INDEX, OPERAND + MAME LIST(m],
OPERAND[1] » NAME LIST[m+700], OPERAND[2] » NAME LIST{m+1400],
OBJECT PROGRAM - NAME LOCATIONS[m],

OPERAND[3] # O: SET - NAME LOCATIONS[m](18+20);;
FILL UNDEFINED ADDRESS, E|XIT:}
FILL LOWER HALF WORD: {HALF WORD FIAG # O: STORE PASS COMMAND; ;i
}

FILL UPPER HALF WORD: {HALF WORD FIAG = 0: STORE PASS COMMAND;;
STORE PASS COMMAND: {SAVE COMMAND, ENTR INX -+ FUNCTION CCDE,
STORE COMMAND, RESET COMMANDI.. '

E
E
E

5;
DEIETE AIGOL WORDS: {E|NTRY 1: NEXT OPERAND = AILGOL IF NOT:
0 -+ NEXT OPERAND - NEXT OPERAND{ 1] + NEXT OPERAND{2] +»
NEXT OPERAND[3] -+ TEMPORARY NAME FIAG, EXIT.s
NEXT OPERAND (30+47) = ALGOL IF: ENTRY 2.;
NEXT: OPERAND (30-+47) = AIGOL DO: ENTRY 2.;
NEXT OPERAND (24-+47) = AIGOL FOR: ENTRY 3.;
NEXT OPERAND(12+47) = AIGOL GO TO: ENTRY 4.;
NExT 01;3 R

236

Machine-independeni Compuier Programming

NEXT OPERAND = ALGOL NOTHING: NEXT OPERAND[1] + NEXT OPERAND,

NEXT OPERADD[.’Z]
NEXT OFERAND{3

-+ NEXT OPERAND
-+ NEXT OFERAND

1].

E|NTRY 2: NEXT OPERAND(0-29) + NEXT OPERAND(18+47),

NEXT OPERAND

NEXT OPERAND{ |1§30-u
1
NEXT OPERANDI 2

0>
3047

)
)

NEXT OPERAND{ 2 0-’33')7)

NEXT OPERAND[3](30
NEXT OPERAND[3](0-29)

NEXT OPERAND 0"'7&.
NEXT OPERAND l“l "14';):
NEXT OPERANDI 1](0+17),
NEXT OPERAND[2](18+47),
NEXT OFERAND[2](0-+17),
-+ NEXT OPERAND[3](18+47),

Yy

20 20 20 » NEXT OPERAM)P](O-H?)a ENTRY 1.

E|NTRY 3: NEXT OPERAND(0-+23
all-ah'I) -+ NEXT
> + NEXT

&37) -+ NEXT

NEXT OPERAND| 1
NEXT OPERAND] 1
NEXT OPERAND| 2
NEXT OPERAND|2](0-+23)
NEXT OPERAND
NEXT OPERAND
20 20 20 20,

3](0+23)

3](24-47) > NEXT

-+ NEXT OPERAND(24-+47), '
OPERAND
OPERAND 1]
OPERAND| 1
OPERAND[2

2

3

0+23),
2447),

0-+23),
2u47),

0EN,

-+ NEXT
OPERAND

<+ NEXT OPERAND

-+ NEXT OPERAND[3](0-+23), ENTRY 1.

E|NTRY 4: NEXT OPERAND(0+11) - NEXT OPERAND(36-+47),

NEXT OPERAND[1](12»47) - NEXT OPERAND(0-+35),
NEXT OPERAND[1](0->11) - NEXT OPERAND{ 1](36-47),
NEXT OPERAND{2](12%47) » NEXT OPERAND| 1](0-+35),

NEXT OPERAND{2](0>11) -+ NEXT OPERAND| 2K 36+47),

NEXT OPERAND[3

NEXT OPERAND{3](0-11
20 20 20 2

12947) » NEXT OPERAND[2](0-35),

-+ NEXT OPERA

ND(3 7)
0 20 20g -+ NEXT omm[;](o-as;. ENTRY 1. E|XIT:|..

5;
DIVIDE: |OPERAND # 0: GENERATE DIVIDE COMMAND:;;
GENERATE DIVIDE COMMAND: {PARTIAL WORD FIAG # 0: SAVE COMMAND,

STORE A -+ FUNCTION CQDE,

LOCATION TEMP STORAGE + 1 -+ ADDRESS,

STORE COMMAND, RESET CCOMMAND, GENERATE LOAD Q COMMAND,

LOAD LOG -+ FUNCTION CQDE, STORE COMMAND, SHFT AQR - FUNCTION CCDE,

ADDRESS, STORE COMMAND, CL ADD -» FUNCTION CODE,
LOCATION TEMP STORAGE + ! - ADDRESS, STORE COMMAND,
STORE Q@ -+ FUNCTION CCDE,

LOCATION TEMP STORAGE + | - ADDRESS, STORE COMMAND;;

MULTIPLY DIVIDE PFIAG # 0: DIV INT -+ FUNCTION CCDE;

HALF WORD FIAG -» TEMPORARY HALF WORD,

OBJECT FROGRAM -+

TEMPORARY OBJECT PROGRAM, SHFT AQR - FUNCTION C(DE,

47 » ADDRESS, STORE COMMAND, DIV FRA - FUNCTION CODE;
PARTIAL WORD FLAG # 0: 0 » PARTIAL WORD FIAG,

LOCATION TEMP STORAGE + 1| - ADDRESS; FIND ADDRESS;

OPERAND[3](12>14) # O

FL DIV -+ FUNCTION CCDE, MUITIPLY DIVIDE FIAG = O:

TEMPORARY HALF WORD - HALF WORD FIAG, TEMPORARY OBJECT PROGRAM -~
OBJECT PROGRAM;;;; STORE COMMAND, (O - MULTIPLY DIVIDE FIAG|..

5;
DOWNGRADE BRACE TABIE: |{BRACE TABIE - | - BRACE TABIE ¢ 0:
19 - FAULT BUFFER, PAUIT.;
BRACE TABIE[BRACE TABLIE + 1](15%47) # 0: POST LOOP CONTROL;
EXIT COMPILE SUBROUTINES; PREVIOUS OPERATOR = PERIMD N
NEXT OFERATOR = SEMI COLON: COMMA - NEXT OPERATOR;;}
EXPONENT: |OPERAND # NUMBER FIAG y OPERAND[1] # 2:
25 +» FAULT BUFFER, FAULT.;

PREVIOUS OPERAT(R -

SENT OPERATOR, FIND OPERATOR,

OPERAND # NUMBER FIAG: 26 -+ FAULT BUFFER, PFAULT.;
PREVIOUS OPERATOR = DIVISION: SHFT ART -+ FUNCTION CQDE,

Appendix C: Neliac 1604 237

0 » MULTIPLY DIVIDE FIAG; PREVIOUS OPERATOR # MULTIPLICATION:
2’{ > FAULT BUFFER, FAULT. SHFT ALF - FUNCTION CCODE;;
OPERAND[1] = ADDRESS, STORE COMMAND] ..

5;
FAULT: FAULT FIAG + | - FAULT FIAG, SET PRINT BARS TO SPACES,
LOGIC FIAG = O: PRINT LINE;; '
FAULT BUFFER > IAST FAULT NUMBER: ALPHA FAULT - BUFFER, 4 -+ LOW,
SET PRINT BARS, FAULT BUFFER > NUMBER BUFFER,
12 -+ LOW, 15 = HI, SET DECIMAL PRINT BARS, 20 - LOW;
FAULT TALLY[FAULT BUFFER - 1] » LOWER WORD LIMIT,
FAULT TALLY[FAULT BUFFER% - 1 > UPPER WORD LIMIT, 4 - LOW,
INDEX = LOWER WORD LIMIT(1)UPPER WORD LIMIT
{FAULT TABIE[INDEX] - BUFFER, SET PRINT BARS};
FAULT BUFFER ¢ 9: PRINT LINE, COMPILER EXIT.; LOW + 3 - LOW,
OPERATOR CODE TABIE[PREVIOUS OPERATOR] - PRINT BAR[LOW],
LOW + 2 > LOW, OPERAND - BUFFER # O:
BUFFER = NUMBER FIAG: OPERAND[1] - NUMBER BUFFER,
1O4. + 11 » HI, SET DECIMAL PRINT BARS,
FILL = 16: 10 -+ PRINT BARSLow+6];; LOW + 11 - LOW;
SET PRINT BARS, OPERAND[1] - BUFFER # 0: SET PRINI' BARS,
OPERAND[2] » BUFFER # 0: SET PRINT BARS;;;;;;; LOW + 2 > LOW,
OPERATOR CODE TABIE[PRESENT OPERATOR] - PRINT BaR[Lowi,
LOW + 2 - LOW, NEXT OPERAND - BUFFER # O:
BUFFER = NUMBER FLAG: NEXT OPERAND[1] + NUMBER BUFFER,
LOW + 11 » HI, SET DECIMAL PRINT BARS,
FILL = 16: 10 » PRINT BAR[LOW+6];; LOW + 11 > LOW;
SET PRINT BARS, NEXT OPERAND[!] - BUFFER # 0: SET PRINT BARS;
NEXT OPERAND[2] - BUFFER # (C: SET PRINT BARS;;;:;;;5;
LOW + 2 > LOW, OPERATOR CODE TABIE[NEXT OFERATOR] - PRINT BAR[LOW],
PRINT LINE, 1OGIC FIAG = O:
E|NTRY.1: PRESENT OPERATOR = COLON: EXIT PROCESS DECIARATIONS.;
END PROGRAM FIAG # 0: COLON - PRESENT OPERATOR;
FIND OPERATOR; ENTRY 1.; 0O - BRACE TABIE,
E|NTRY 2: END PROGRAM FIAG # 0: EXIT PROCESS LOGIC.;
PRESENT OPERATOR = COLON N NEXT OPERATOR = IEFT BRACE:
0 » LOGIC FIAG, ENTRANCE PROCESS LOGIC.;
FIND OPERATOR, ENTRY 2..

5;
FILL UNDEFINED ADDRESS: |{UNDEFINED NAME- INDEX - my - .
E|NTRY: OPERAND » , : 645¢ UNDEFINED NAMES, EXIT. OPERAND{ E =
UNDEFINED NAMES[m+400] N OPERAND[2] = UNDEFINED NAMES[m+300]:
UNDEFINED NAME LOCATIONS[m](45-U47) = 6:
UNDEFINED NAME LOCATIONS m]izu-v 83 > 1,
UNDEFINED NAME LOCATIONS{m uziu # 0
FILL LOWER ADDRESS; FILL UPPER ADDRESS;;;
UNDEFINED NAME LOCATIONS mNo-nu) - I,
UNDEFINED NAME LOCATIONS[m](18+20) # 0:
FILL LOWER ADDRESS; FILL UPPER ADDRESS;
0 - UNDEFINED NAME:S[m] + UNDEFINED NAMES[m+400] -
UNDEFINED NAMES[m+800] - UNDEFINED NAME LOCATIONS[m]);; ENTRY. E|XIT:}
FILL UPPER ADDRESS: |{[L](24+38) - ENTRY](24~ 82,
E|[NFRY 1: 100s 0, + OBJECT PROGRAM =+ [L]£24-> 3
FILL LOWER ADDRESS: {[L](0+>14) > ENTRY 2(24-38),
E|NTRY 2: 100g 0, + OBJECT PROGRAM - [L](0>14)}..

ws |

238 Machine-Independent Computer Programming

5;
FIND ADDRESS:
{0 - ADDRESS -+ OPERAND[3], OPERAND = 0 y OPERAND = SET: EXIT.;
OPERAND = NUMBER FIAG: OPERAND[1] - NUMBER BUFFZR,
FIND NUMBER ADDRESS, EXIT.; NAME LIST INDEX - m,
E|NTRY 1: OPERAND - , : 645s NAME LIST, ENTRY 2,
OPERAND[1] = NAME_LIST[m+700] N OPERAND[2] = NAME LIST[m+1400]:
NAME LOCATIONS{m](0-»14) -+ ADDRESS,
NAME LOCATIONS mﬂzu») + OPERAND[3], EXIT.; ENTRY 1.
E|NTRY 2: SKIP ADDRESS FIAG # O: EXIT.; UNDEFINED NAME INDEX -+ m,
E|NTRY 3: OPERAND » , : 6455 UNDEFINED NAMES, ENTRY 4,
UNDEFINED NAME LOCATIONS[m](45>47) = 6: ENTRY 3.;
OPERAND[1] = UNDEFINED NAMES[m-##OO{ N OPERAND[2] = UNDEFINED NAMES[m+8001]:
6 -» UNDEFINED NAME LOCATIONS{m](45+47),
HALF WORD FLAG + UNDEFINED NAME L(XJATIONS[m] ua—ﬂu;,
OBJECT PROGRAM -+ UNDEFINED NAME LOCATIONS[m](24-+38), EXIT.; ENTRY 3.
E|NTRY 4: UNDEFINED NAME INDEX » m = 0: ENTRY 5.;
0 -, : 645, UNDEFINED NAMES, ENTRY 5. ENTRY 6.
E|NTRY 5: UNDEFINED NAME INDEX » m + | - UNDEFINED NAME INDEX 3 400:
6 » FAULT BUFFER, FAUIT,;
E|NTRY 6: OPERAND - UNDEFINED mms[m], OFERAND[1] + UNDEFINED NAMES[m+400],
OPERAND[2] - UNDEFINED NAMES{m+800],
3 > UNDEFINED NAME LOCATIONS[m](45-47), HALF WORD FLAG ~»
UNDEFINED NAME LOCATIONS m“is-»zo). OBJECT PROGRAM -
UNDEFINED NAME LOCATIONS[m](0-14), E|XIT:}..

5;
FIND ALPHA OPERAND: ,
{ 0 »1 » LOCAL OPERAND FIAG, SET -+ ALPHA OPERAND FLAG,
E|NTRY i: SYMBOL + NEXT OPERAND[1], FIND SYMBOL,
n = 1(1)7 {NEXT OPERAND[1] x 2t6 -» NEXT OPERAND{i],
E|NTRY 2: OPERATOR 7 0: PRESENT OPERATOR # ABSOLUTE N OPERATOR = ABSOLUTE:
SET - LOCAL OPERAND PIAG, FIND SYMBOL, ENTRY 2.; SPACE -
NEXT OPERAND[1](0-+5); SYMBOL -» NEXT OPERAND[1](0-»5), FIND SYMBOL;|
E|NPRY 3: OPERATOR = 0: 4 + 1 » 1 ¢ 4: ENTRY |.; FIND SYMBOL, ENTRY 3.;
DELETE ALGCL WORDS, LOCAL OPERAND FIAG -+ NEXT OPERAND([3],
0 - ALPHA OPERAND FILAG}..

5;
FIND COMPARE WORD: |SET COMPARE INDEX, cOMPARE TABLE[m](45+47) = G:
COMPARE TABIE m}iO-».’Z}) -+ COMPARE WORD;
COMPARE TABIE{m](24-47) » COMPARE WORD; |
STORE COMPARE WORD: |SET COMPARE INDEX, COMPARE WORD(21+23) = 0:
COMPARE WORD -+ COMPARE Tww[mlso»fz)-
COMPARE WORD » COMPARE TABIE|(m
SET COMPARE INDEX: '
|COMPARE TABIE -+ k, COMPARE TABLE[k](18+20) x 10 + k - m]}
INCREASE COMPARE SUB INDEX: {COMPARE WORD(21+23) # O:
COMPARE TABLIE[k](18+20) + 1 » COMPARE TABLE[k](18+20),
m+1!->m 0+ COMPARE WORD(21+23); 1| -» COMPARE WORD(21+23); |
DECREASE COMPARE SUB INDEX: {COMPARE TABIE[k](18+20) < 1:
COMPARE WORD(21»23) # 0:
0 +» COMPARE TABIE[k](45+47); O » COMPARE TABLE[k];;
COMPARE wonn(m-»z;% # 0: 0 » COMPARE TABLE{m] (45>47);
COMPARE TABLE[k](18+20) - 1 » COMPARE TABIE[k](18+20);;1..

5-
FIND FLOATING POINT NUMBER:
{0 » POWER NUMBER + POWER MINUS FIAG, FIND SYMBOL,

Appendix C: Neliac 1604 239

OPERATOR = MINUS: SET -» POWER MINUS FIAG, FIND SYMBOL;

OPERATOR = PLUS: FIND SYMBOL;;;

E|NTRY 1: OPERATOR = 0 N SYMBOL < 10: POWER NUMBER x 10 + SYMBOL -

'POWER NUMBER, POWER COUNT + 1 -+ POWER COUNT, FIND SYMBOL, ENTRY 1.;
NUMBER BUFFER - , 3465 2057s, 576e POWER OF 2, 030g 11, -+ NUMBER BUFFER,
232s ENTRY 2, NUMBER BUFFER + 1 -+ NUMBER BUFFER,

NUMBER BUFFER(36+36) # 0:

4000 0000 0000 » NUMBER BUFFER, POWER OF 2 + 1| - POWER OF 2;;

E|NTRY 2: POWER OF 2 -+ NUMBER BUFFER(36-46),)

POWER MINUS FIAG # 0: - POWER NUMBER -+ POWER NUMBER;;
POWER NUMBER - DECIMAL PIACE COUNT -+ POWER NUMBER ¢ 0:

~ POWER NUMBER + POWER NUMBER, ||

m=] lgPCM’ER NUMBER {NUMBER BUFFER / TEN -+ NUMBER BUFFER];

m = 1(1)POWER NUMBER {NUMBER BUFFER x TEN -+ NUMBER BUFFER};}..

5;
FIND NUMBER ADDRESS:)
fm = 1(1)NUMBER LIST {NUMBER LIST[m] = NUMBER BUFFER:
NUMBER LOCATIONS[m] - ADDRESS, EXIT.;!}
UNDEFINED NUMBER LIST + 1| - UNDEFINED NUMBER LIST » m 2 200:
7 - FAULT BUFFER, FAUILT.;
NUMBER BUFFER - UNDEFINED NUMBER LIST[m], OBJECT PROGRAM -
UNDEFINED NUMBER LOCATIONS[m], HALF WORD FLAG -
. UNDEFINED NUMBER LOCATIONS[m](18+20), E|XIT:}
STORE LIST UNDEFINED NUMBERS :
{L = 1(1)UNDEFINED NUMBER LIST {m = 1(1)NUMBER LIST
{UNDEFINED NUMBER LIST[1] = NUMBER LIST[m]: ENTRY.;}
NUMBER LIST + 1 - NUMBER LIST » m 2z 200:
8 -+ FAULT BUFFER, FAULT.;
UNDEFINED NUMBER LIST[l] - NUMBER LIST[m] -» [OBJECT PROGRAM],
OBJECT PROGRAM -+ NUMBER LOCATIONS[m],
OBJECT PROGRAM + 1| - OBJECT PROGRAM,
E|NTRY: UNDEFINED NUMBER LO.':ATIONS&] > k,
UNDEFINED NUMBER LOCATIONS[L}(18+20) # 0: NUMBER LCCATIONS[m +
[k](0»14) » [x](0>14); NUMBER LOCATIONS[m] + [k](24~+38) -+ [k](24-38);
0 - UNDEFINED NUMBER LIST[l) + UNDEFINED NUMBER LOCATIONS[1]
0 > UNDEFINED NUMBER LIST|..

5;
FIND NUMBER OPERAND:
{0 » DECIMAL BUFFER » DECIMAL PIACE COUNT -» OCTAL DIGIT COUNT - .
DECIMAL DIGIT COUNT, SYMBOL - NUMBER BUFFER + DECIMAL BUFFER,
PRESENT OPERATOR = PERIMD N LOGIC FIAG = 0:
DECIMAL COUNT + | - DECIMAL COUNT, ENTRY 2.;
E|NTRY 1: FIND SYMBOL, INTEGER COUNT + | + INTEGER COUNT,
OPERATOR = 0 N SYMBOL < 10:
OCTAL DIGIT COUNT + | = OCTAL DIGIT COUNT < 16:

NUMBER BUFFER x 213 + SYMBOL + NUMBER BUFFER;;

DECIMAL DIGIT COUNT + | -+ DECIMAL.DIGIT COUNT < 13:

DECIMAL BUFFER x 10 + SYMBOL -+ DECIMAL BUFFER;

DECIMAL PIACE COUNT - | - DECIMAL PIACE COUNT; ENTRY 1.;
OPERATOR = OCTAL: FIND SYMBOL, EXIT.; DECIMAL BUFFER + NUMBER BUFFER,
OPERATOR = PERI(D: E|NTRY 2: FIND SYMBOI,

OPERATCOR = 0 N SYMBOL < 10: DECIMAL COUNT + | - DECIMAL COUNT,

DECIMAL DIGIT COUNT + | -+ DECIMAL DIGIT COUNT < 13:

NUMBER BUFFER x 10 + SYMBOL » NUMBER BUFFER,
DECIMAL PLACE COUNT + | -+ DECIMAL PIACE COUNT;; ENTRY 2.;;
LOGIC FIAG # 0: EXIT.;;
OPERATOR = MULTIPLICATION: FIND FLOATING POINT NUMBER;;

E|XIT: NUMBER BUFFER - NEXT OPERAND[1], NUMBER FIAG - NEXT OPERAND,

5;
FIND OPERATOR: .
{1 = 0(1)5 |PRESENT OPERATOR[1] + PREVIOUS OPERATOR[1]]
E|NTRY 1: FIND NEXT OPERATOR,
PRESENT OPERATOR = LEFT PAREN N NEXT OPERATOR = COLON:
E|NTRY 2: FIND SYMBOL, OPERATOR = PERICD N IAST SYMBOL = PERID 1612:
10 - FAULT BUFFER, FAULT.; OPERATOR # RIGHT PAREN: ENTRY 2.;
FIND NEXT OPERATOR, NEXT OPERATOR + PRESENT OPERATOR,
OPERAND = O: 1 = 0(1)3 {NEXT OPERAND[1] > OPERAND[1]} ENTRY 1I.;
NEXT OPERAND = 0: ENTRY i{.; COMMA - PRESENT OPERATOR;; |}
FIND NEXT OPERATOR: {0 - NUMBER BUFFER -+ INTEGER COUNT - DECIMAL COUNT -
POWER COUNT, ALL SPACES - NEXT OPERAND - NEXT OPERAND[1] -
NEXT OPERAND[2] » NEXT OPERAND[3], FIND SYMBOL,
OPERATOR = 0: SYMBOL ¢ 10: FIND NUMBER OPERAND; FIND ALPHA OPERAND;;;
NEXT OPERAND # NUMBER FIAG: 1 = 0(1)3 {NEXT OPERAND[1] = ALL SPACES:
0 - NEXT OPERAND[1];;}; INTEGER COUNT - NEXT OPERAND|Z2],
DECIMAL COUNT - NEXT OPERAND([2](6-+11), POWER COUNT -
NEXT OPERAND[2](12+14), 0 > NEXT OPERAND(3];
OPERATOR + NEXT OPERATOR|..

5;
FIND SYMBOL:]
{OPERATOR = PERIMD N IAST SYMBOL = PERICD 1612: SET - END PROGRAM FILAG,
EXIT.; SYMBOL - IAST SYMBOL, OPERATOR + LAST OPERATOR,
SAVE SYMBOL # 0: SAVE SYMBOL - SYMBOL, 0 =+ SAVE SYMBOL, ENTRY 2.;
E|NTRY 1: SYMBOL - SPACE SYMBOL, SYMBOL COUNT + | - SYMBOL COUNT 2z 8:
MAG TAPE INDEX + | - MAG TAPE INDEX 2 IAST MAG TAPE INDEX:
READ MAG TAPE;; MAG TAPE AREA{MAG TAPE INDEX] -
SYMBOL BUFFER # ALL SPACES: 0 - SYMBOL COUNT;;;;
SYMBOL BUFFER(I-LM7E - SYMBOL, SYMBOL BUFFER x 216 + SYMBOL BUFFER,
E|NTRY 2: SYMBOL TABLE[SYMBOL] - OPERATOR = ABSOLUTE:
SYMBOL TABLE[SAVE SYMBOL] = ABSOLUTE: 0 - SAVE SYMBOL, SPACE - SYMBOL;
SYMBOL - SAVE SYMBOL; ENTRY 1.; SAVE SYMBOL # 0:
SAVE SYMBOL > OPERATOR, SYMBOL + 70000s -+ SAVE SYMBOL,
OPERATOR -+ SYMBOL, SYMBOL TABLE[SYMBOL] -+ OPERATOR;;
SYMBOL = SPACE N SPACE SYMBOL = SPACE: ENTRY 1.;
ALPHA OPERAND FIAG # 0: EXIT.; SYMBOL = SPACE: ENTRY 1.;
OPERATOR # 0: EXIT.; SYMBOL = 10: 0 » SYMBOL;; IAST SYMBOL = OCTAL 1612:
ENTRY 3.; SYMBOL 2 10 N LAST SYMBOL < 10 N LAST OPERATOR # COLON:
E|NTRY 3: SYMBOL -+ SAVE SYMBOL, COMMA -~ OPERATOR, COMMA 1612 -
SYMBOL; ; E|XIT:}..

5;
GENERATE TRANSFER:
{OPERAND = NUMBER FIAG: COMPUTER IANGUAGE, EXIT.;
DESIGNATOR # O: FILL LOWER HALF WORD, ST INXlo -+ FUNCTION C(DE,
OBJECT PROGRAM + 1 - ADDRESS, STORE COMMAND,
ENTER A -+ FUNCTION CODE, STORE COMMAND,
OPERAND # 0: INCR A -+ FUNCTION CODE; ENTR INX + FUNCTION CODE;
FIND ADDRESS, STORE COMMAND, INCR A + FUNCTION CODE,
STORE COMMAND, REP ADLo -+ FUNCTION CCUDE, OBJECT PROGRAM - ADDRESS,
STORE COMMAND; ;
OPERAND # 0: PRESENT OPERATOR # PERIMD: 4 » DESIGNATOR; 0 -+ DESIGNATOR;
TRANSFER » FUNCTION CODE, FIND ADDRESS, STORE COMMAND,
PRESENT OPERATOR # PERIM: FILL LOWER HALF WORD;;;; E|XIT:i..

5;

Appendix C: Neliac 1604 241

LOAD WORKING REGISTER: {PRESENT OPERATOR = EQUAL N
NEXT OPERATOR = LEFT PAREN y NEXT OPERATOR = PLUS y
NEXT OPERATCR = MINUS: PRE LOOP CONTROL, EXIT.;
PRESENT OPERATOR = MINUS: SET - CLEAR SUBTRACT FLAG;; OPERAND # O:
0 » CLEAR SUBTRACT FIAG, GENERATE CIEAR ADD COMMAND;: -EéXIT:}
GENERATE LOAD Q COMMAND: ILOAb Q > FUNCTION C(DE, FIND ADDRESS,
STORE COMMAND, LOWER WORD LIMIT # 0O: SHFT QRT - FUNCTION CCDE,
LOWER WORD LIMIT -~ ADDRESS, STORE COMMAND;; .
FIND MASK, FIND NUMBER ADDRESS|
FIND MASK: {0 - NUMBER BUFFER, UPPER WORD LIMIT - LOWER WORD LIMIT -
COUNT, m = O(1)COUNT |NUMBER BUFFER x 2t1 + ! > NUMBER BUFFER}|..

53
MULTIPLE COMPARISON: {OPERAND = O: 1] - FAULT BUFFER, FAULT.;
COMPARE INDEX FIAG = 0: SET - COMPARE INDEX FILAG,

COMPARE TABIE + | » COMPARE TABIE;;

PREVIOUS OPERATOR = BOOLEAN OR 'y PREVIOUS OPERATOR = BOOLEAN AND:

GENERATE CILEAR ADD COMMAND; GENERATE SUBTRACT COMMAND,

PRESENT OPERATOR = BOOLEAN OR:

SET TRUE COMPARISON; SET FALSE COMPARISON;
UPGRADE COMPARISONS, PRESENT OPERATOR = BOOLEAN OR y
PRESENT. OPERATOR = BOOLEAN AND: ; GENERATE CLEAR ADD COMMAND; ;
FINISH COMPARISON: {OPERAND = 0: 11 - FAULT BUFFER, FAULT.;
COMPARE INDEX FIAG # O:

0 - COMPARE INDEX FIAG; COMPARE TABIE + 1 - COMPARE TABILE; :
GENERATE SUBTRACT COMMAND, SET FALSE COMPARISON, UPGRADE COMPARISONS,
NEXT OPERATOR = LEFT BRACE: BRACE TABIE +) - BRACE TABIE,

0 -+ BRACE TABLE[BRACE TABIE], COMMA + NEXT OPERATOR;;l..

5; -
MULTIPLY: {OPERAND # 0: GENERATE MULTIPLY COMMAND;;
PRESENT OPERATOR = DIVISION: SET - MULTIPLY DIVIDE FIAG;; !
GENERATE MULTIPIY COMMAND: {PARTIAL WORD FIAG # O:
0 » PARTIAL WORD FLAG, SAVE COMMAND, STORE A -+ FUNCTION CQDE,
LOCATION TEMP STORAGE + 1| - ADDRESS, STORE COMMAND, RESET COMMAND,
GENERATE LOAD Q COMMAND, LOAD LOG - FUNCTION CODE, STORE COMMAND,
LOCATION TEMP STORAGE + | » ADDRESS; FIND ADDRESS,
OPERAND[3](12»14) # 0: FL MULT » FUNCTION CODE, EXIT.;;
MULT INT » FUNCTION CODE, E|XIT: STORE COMMAND{..

5;

PARTIAL WORD CONTROL: - -
{SAVE OPERAND, PREVIOUS OPERATOR - PRESENT OPERATOR, FIND OPERATOR,
PRESENT OPERATCOR # ARROW: 12 -+ FAULT BUFFER, FAULT.;
OPERAND # NUMBER FIAG: 13 -+ FAULT BUFFER, FAULT.; OPERAND{[1] -
LOWER WORD LIMIT, PREVIOUS OPERATOR - PRESENT OPERATOR, FIND OPERATOR,
PRESENT OPERATOR # RIGHT PAREN: 14 > FAULT BUFFER, FAULT.;
OPERAND # NUMBER FIAG: 15 - FAULT BUFFER, FAULT.;
OPERAND[1] -+ UPPER WORD LIMIT, SET - PARTIAL WORD FIAG,
PREVIOUS OPERATOR -+ PRESENT OPERATOR, FIND OPERATOR,
OPERAND # 0: 16 » FAUIT BUFFER, FAULT.; RESET OPERAND]

POST LOOP CONTROL: {TRANSFER -+ FUNCTION CCDE,
BRACE TABIE[BRACE TABIE + 1](0-»1&% -+ ADDRESS, STORE COMMAND,
FILL LOWER HALF WORD, BRACE TABLE{BRACE TABLE + 1](24-+38) + 1,
OBJECT PROGRAM -+ [1](0-14)}..

5;
PRE LOOP CONTROL: |SAVE LOOP OFERAND, FIND OPERATOR, CHECK SUBSCRIPT,
GENERATE CLEAR ADD COMMAND, -

242 Machine-Independent Computer Programming

E|NTRY 1: FIND OPERATOR, CHECK SUBSCRIPT, PREVIOUS OPERATOR # LEFT PAREN:
PREVIOUS OPERATOR = MINUS: GENERATE SUBTRACT COMMAND;
GENERATE ADD COMMAND; ENTRY 1.; 0 - LOOP TYPE FIAG,
FILL UPPER HALF WORD, TRANSFER - FUNCTION CCDE, STORE COMMAND,
BRACE TABIE + i - BRACE TABIE,
OBJECT PROGRAM - BRACE TABIE[BRACE TABIE],

¢ | NPRV 2. PRESENT (\W'PA'T‘GD 4 RTAUT PAREN. PRECSENT NAPERRAMAD MTNIIC .
o e Ko *y 7 Fy ¥y 24

ANA & 4SSN wassuia AaTils L a CAUNTIIENE VA MW A VAL = Flhivwis e

SET - LOOP TYPE FIAG;; FIND OPERATOR, ENTRY 2.; SAVE OPERAND,
RESET LOOP OPERAND, GENERATE CLEAR ADD COMMAND, RESET OPERAND,
LOOP TYPE FIAG 7 0: GENERATE SUBTRACT COMMAND; GENERATE ADD COMMAND;
RESET LOOP OPERAND, FILL LOWER HALF WORD, BRACE TABLE[BRACE TABIE] -
1 > n, OBJECT PROGRAM -» [n](0-14), GENERATE STORE COMMAND,
E|NTRY 3: FIND OPERATOR, CHECK SUBSCRIPT, PREVIOUS OPERATOR = MINUS:
GENERATE ADD COMMAND; GENERATE SUBTRACT COMMAND;
PRESENT OPERATOR = COMMA: FIND OPERATOR;;
PRESENT OPERATOR # LEFT BRACE: ENTRY 3.; COMPAR A - FUNCTION CODE,
LOOP TYPE FIAG # 0: SET DECREMENT TRANSFER; SET INCREMENT TRANSFER;
OBJECT PROGRAM - BRACE TABIE[BRACE TABIE](24-38), STORE COMMAND}
CHECK SUBSCRIPT: |PRESENT OPERATOR = LEFT BRACKET: SUBSCRIPT;;l..

5;
PRINT DEFINED NAMES: |RESTORE PAGE, SET PRINT BARS TO SPACES,
ALPHA NAME LIST » BUFFER, 10 - LOW, SET PRINT BARS,
'ALPHA NAME LIST[1] + BUFFER, SET PRINT BARS, PRINT LINE,
m = G{1)NAME LIST INDEX {NAME LIST[m] - BUFFER # 0:
SET PRINT BARS TO SPACES, 8 » LOW, SET PRINT BARS,
NAME LIST{m+700] = BUFFER # 0O: SET PRINT BARS,
NAME LIST[m+1400] > BUFFER # 0: SET PRINT BARS;;;;
NAME LOCATIONS[m](0>14) > NUMBER BUFFER, 40 - LOW, 44 -+ HI,
SET NUMBER PRINT BARS, PRINT LINE;; i
PRINT LINE: {747s 61s, T40s 66000s, T747e 66000s, 100s PRINT BAR[120] -+ [6],
: 7T46g PRINT BAR, T47a 6ls,
SET PRINT BARS: {1 = LOW+7(-1)LOW {BUFFER(0»5) > PRINT BAR[1],
BUFFER / 216 -+ BUFFER} LOW + 8 - LOW|]
SET NUMBER PRINT BARS: {1 = HI(-1)LOW éNUMBER BUFFER(0+2) + BUFFER = 0:
10 > BUFFER;; BUFFER » PRINT BAR[1],
NUMBER BUFFER / 213 > NUMBER BUFFER] |
SET PRINT BARS TO SPACES: (i = 0(1)119 {16 > PRINT BAR[1]}1}
RESTORE PAGE: i: 7’*05 660008, 7478 660003, 71"08 660048, !-.

5;
PRINT PROGRAM TITIE: {PRESENT OPERATOR # COLON: 17 - FAULT BUFFER, FAULT.;
OPERAND = 0 y OPERAND = NUMBER FILAG: ALPHA NO TITIE -» OPERAND,

ALL SPACES -» OPERAND[1] > OPERAND[2];; SET PRINT BARS TO SPACES,
PROGRAM COUNT -+ NUMBER BUFFER, 0 > LOW, 4> HI, SET DECIMAL PRINT BARS,
OPERAND -» BUFFER, 10 -» LOW, SET PRINT BARS,

OPERAND[1] » BUFFER # 0: SET PRINT BARS, OPERAND([Z2] - BUFFER # 0:

SET PRINT BARS;;;; PROGRAM LOCATION - NUMBER BUFFER,

35 > LOW, 39 - HI, SET NUMBER PRINT BARS, PRINT LINE}
SET DECIMAL PRINT BARS: {OCTAL TO DECIMAL,

1 = 1(1)LOW-HI+1! |NUMBER BUFFER x 2t4 - NUMBER BUFFER| 16 - FILL,

1 = LOW(1)HI {NUMBER BUFFER(44-U47) > BUFFER = 0: FILL » BUFFER;

10 - FILL; BUFFER - PRINT BAR[i], NUMBER BUFFER x 2t4 -» NUMBER BUFFER} |

PRINT NAMES DEFINED TWICE:

{SET PRINT BARS TO SPACES, LOGIC FIAG = 0O: PRINT LINE;;

OPERAND - BUFFER, 4 - LOW, SET PRINT BARS, OPERAND{ 11 + BUFFER # 0:

SET PRINT BARS, OPERAND[2] - BUFFER # 0: SET PRINT BARS;;;;

ALPHA DEFINED TWICE - BUFFER, 30 -+ LOW, SET PRINT BARS,
ALPHA DEFINED TWICE[1] » BUFFER, SET PRINT BARS, PRINT LINE]..

Appendix C: Neliac 1604 243

+

%ﬁmr UNDEFINED NAMES: im = O(1)UNDEFINED NAME INDEX
{UNDEFINED NAMES[m] # O: ENTRY.;} EXIT, .
E|NTRY: RESTORE PAGE, SET PRINT BARS TO SPACES,
ALPHA UNDEFINED NAMES - BUFFER, 10 - LOW, SET PRINT BARS,
ALPHA UNDEFINED NAMES[1] » BUFFER, SET PRINT BARS, PRINT LINE,
m = O(1)UNDEFINED NAME INDEX {SET PRINT BARS TO SPACES,
UNDEFINED NAMES{m] = BUFFER # 0: 8 » LOW, SET PRINT BARS,
UNDEFINED NAMES[m+400] -» BUFFER # 0: SET PRINT BARS,
UNDEFINED NAMES[{m+800) » BUFFER # 0: SET PRINT BARS;;;;
UNDEFINED NAME LOCATIONS[m] -+ LOCATIONS,
LOCATTONS (45+47) = 6: LOCATIONS(24+38) » NUMBER BUFFER, 40 - LOW,
44 > HI, SET NUMBER PRINT BARS, LOCATIONS(uz-ME #£0:
ALPHA L » PRINT BAR[45]; ALPHA U - PRINT BAR[45];;;
LOCATIONS (0-»14) - NUMBER BUFFER, 50 - LOW, 54 - HI,
SET NUMBER PRINT BARS, LOCATIONS(18»20) # O: ALPHA L -+
PRINT BAR[55]; ALPHA U > PRINT BAR[55]; PRINT LINE;;} E|[XIT:{..

53
PROCESS DECIARATIONS:
{CLEAR SUB STORAGE, COMMA - OPERATCR - NEXT OPERATOR,
COMMA 1612 » SYMBOIL, FIND OPERATOR, FIND OPERATCR,
OPERAND = NUMBER FIAG: OPERAND[1] » LOAD NUMBER, FIND OPERATOR;;
E|NTRY 1: PREVIOUS OPERATOR = SEMI COLON: EXIT PROCESS DECLARATIONS.;
OPERAND = 0 OPERAND = NUMBER FIAG: FIND OPERATOR, ENTRY 1.;
DEFINE LOCATION, 1 - RESERVE CELIL, FIND OPERATOR,
PREVIOUS OPERATOR = IEFT PAREN N PRESENT OPERATOR = RIGHT PAREN N
OPERAND = NUMBER FIAG:
OPERAND[1] - RESERVE CELL, FIND OPERATOR, FIND OPERATOR;;
PREVIOUS OFERATOR = EQUAL: STORE CONSTANTS;; O - COMPUTER WORD,
E|NTRY 2: RESERVE CELL 2 1: STORE, RESERVE CELL - | - RESERVE CELIL,
ENTRY 2.; PREVIOUS OPERATOR = COMMA: ENTRY 1.;
PREVIOUS OPERATOR # SEMI COLON: 18 + FAULT BUFFER, FAULT.;
EXIT PROCESS DECIARATIONS:{..

5;
PROCESS LOGIC: |ENTRANCE PROCCESS LOGIC:
LOGIC FIAG = O: SET > LOGIC FIAG, ENTRY 2,;
E|NTRY 1: END PROGRAM FIAG # 0: EXIT PROCESS LOGIC.; FIND OPERATOR,
E{NTRY 2: PREVIOUS OPERATOR < EQUAL: COMMA < PRESENT OFERATOR <

IEFT PAREN: LOAD WORKING REGISTER, ENTRY 1.; LEFT BRACE (

PRESENT OPERATCR < EQUAL: GENERATE TRANSFER, ENTRY 3.;
PRESENT OPERATOR = COLON: DEFINE LOCATION,

NEXT OPERATOR = LEFT BRACE: COMPILE SUBROUTINES;; ENTRY 1.;
PRESENT OPERATOR = IEFT BRACE: GENERATE INFUT OUTPUT, ENTRY 1.;;;
COMMA < PREVIOUS OPERATOR < ARROW:

PRESENT OPERATOR = COLON: FINISH COMPARISON, ENTRY i.;

COMMA ¢ PRESENT OPERATOR < ARROW: MULTIPIE COMPARISON, ENTRY 1.;;;

PREVIOUS OPERATOR = ARROW N COLON ¢ PRESENT OPERATOR < LEFT PAREN:

STORE WORKING REGISTER, ENTRY 3.;
COMMA ¢ PRESENT OPERATCOR ¢ IEFT PAREN:
PREVIOUS OPERATOR = PLUS: ADDITION, ENTRY 1.;
‘PREVIOUS OPERATOR = MINUS: SUBTRACTION, ENTRY 1.;
PREVIOUS OPERATOR = DIVISION: DIVIDE, ENTRY .1.;
PREVIOUS OPERATOR = MULTIPLICATION: MULTIPLY, ENTRY 1.;;;

PRESENT OPERATOR = IEFT BRACKET: SUBSCRIPT, ENTRY 2,;

SENT OPERATOR = LEFT PAREN: PARTIAIL WORD CONTROL, ENTRY 2.;
SENT OPERATOR = UP ARROW: EXPONENT, ENTRY 1.;
23 - FAULT BUFFER, FAULT.

h

[\
Wy

Machine-Independent Computer Programming

E|NTRY 3:
| PRESENT OPERATOR = PERICD y PRESENT OPERATOR = SEMI COLON:
COMPARE TABIE 2 1: 3 -» COMPARE FIAG, UPGRADE COMPARISONS;;;
PRESENT OPERATOR = RIGHT BRACE: DOWNGRADE BRACE TABIE;;; ENTRY 1.
EXIT PROCESS LOGIC: BRACE TABIE # 0: 24 » FAULT BUFFER, FAUIT.;]..

53
READ MAG TAPE: |PAGE NUMBER > NUMBER OF PAGES: 3 + FAULT BUFFER, FAULT.;

PAGE NUMBER + | » PAGE NUMBER, MAG TAPE INPUT FIAG # 0: ENPRY 2.;

1 - MAG TAPE INPUT FIAG, 0 -» MAG TAPE INDEX, 660 -+ IAST MAG TAPE INDEX,
E|NTRY 1: WAIT TO READ MAG TAPE, L|ENGTH CHECK 1: T47s 32005 READ ERROR 1.
P|ARITY CHECK 1: TW47e 32003g READ ERROR |, READ PART 2, EXIT.

R|EAD ERROR 1: POSITION BACK READ, READ PART 1, ENTRY 1.
R|EAD ERROR 2: POSITION BACK READ, READ PART 2,
E{NTRY 2: 0 > MAG TAPE INPUT FIAG, 660 - MAG TAPE INDEX,
1320 » LAST MAG TAFE INDEX, WAIT TO READ MAG TAFE,
L|ENGTH CHECK 2: T47a 320055 READ ERROR 2.
P|ARITY CHECK 2: 747 32003g READ ERROR 2. READ PART 1, E|XIT:|
WAIT TO READ MAG TAPE: {7UTg 32000s, | POSITION BACK READ: |T40e 32006¢, |
READ PART 1: {74Te 32000a, 100¢ MAG TAPE AREA[660] - [3],
743 MAG TAPE AREA, }
READ PART 2: [T47e 32000, 100g MAG TAPE AREA[1320] - [3],

743 MAG TAPE AREA[660], }

ACTIVATE READ MAG TAPE 3: |740g 3203 1e,} REWIND READ TAPE: {7405 32005g,}..

5;
RESERVE COMPIIER STORAGE: [SAVE OPERAND, CIEAR OPERAND,
OBJECT PROGRAM - LOCATION TEMP STORAGE, 0 -+ COMPUTER WORD, STORE, STORE,
n = 0(1)5 {INDEX NAMES[n] » OPERAND, DEFINE LOCATION, STORE|}
OBJECT PROGRAM - [FIRST LOCATION](24-38),
n = 0(1)5 {ST INXLo > FUNCTION CODE, n + | - DESIGNATOR,
INDEX NAMES[n] -+ OPERAND, FIND ADDRESS, STORE COMMAND| RESET OPERAND|
CLEAR TEMPORARY NAMES:
fm = O(1)NAME LIST INDEX {NAME LOCATIONS[m](18-+20) # O:
0 > NAME LISTLm] » NAME LIST[m+700] >
NAME LIST[m+1400] » NAME LOCATIONS(m];;}}
CIEAR ALL STORAGE: i{m = 1(1)MASTER STORAGE {0 - MASTER STORAGE[m]}
CLEAR SUB STORAGE}
CIEAR SUB STORAGE: {m = 1(1)SUB STORAGE {0 -+ SUB STORAGE[m]]}
m = 1(1)FLAG STORAGE |0 > FIAG STORAGE[m]]}]
CLEAR OPERAND: {0 -+ OPERAND -+ OPERAND(1] + OPERAND[2] -+ OPERAND[3]}..

5;
SET DECREMENT TRANSFER: {FILL UPPER HALF WORD, 3 -+ DESIGNATOR|
SET INCREMENT TRANSFER: {FILL LOWER -HALF WORD, 0 - DESIGNATOR,
OBJECT PROGRAM + | - ADDRESS, STORE COMMAND, COMPAR A -
FUNCTION CCDE, 2 - DESIGNATOR|
SAVE LOOP OPERAND: {OPERAND -+ LOOP OPERAND, OPERAND[1] -+ LOOP OPERAND[1],
OPERAND[2] -» LOOP OPERAND[2], OPERAND[3] - LOOP OPERAND[3]}
RESET LOOP OPERAND: {LOOP OPERAND -+ OPERAND, LOOP OFERAND|(1] - OPERAND{1],
LOOP OPERAND[2] -+ OPERAND[2], LOOP OPERAND{3] - OPERAND[3]}
GENERATE LOAD INDEX: {SAVE COMMAND, ID INXLo -» FUNCTION CODE, FIND ADDRESS,
6 > DESIGNATOR, STORE COMMAND, RESET COMMAND, 6 - DESIGNATOR]..

5-
SET PALSE COMPARISON: |COMPAR A » FUNCTION CODE,
PREVIOUS OPERATOR = EQUAL: | + DESIGNATOR, EXIT.; PREVIOUS OPERATOR =

NOT EQUAL: EXIT.; PREVIOUS OPERATOR = GREATER:
5 + COMPARE FiAG, 3 » DESIGNATOR, UPGRADE COMPARISONS,

Appendix C: Neliac 1604 245

COMPAR A -+ FUNCTION C(DE, 0 -+ DESIGNATOR, EXIT.;
PREVIOUS OPERATCR = GREATER OR EQUAL: 3 - DESIGNATOR, EXIT.;
PREVIOUS OPERATOR = LESS THAN: 2 -» DESIGNATOR, EXIT.;
PREVIOUS OPERATCR = IESS OR EQUAL: FILL LOWER HALF WORD,
OBJECT PROGRAM + | -+ ADDRESS, STORE COMMAND,
COMPAR A » FUNCTION CDE, 2 -+ DESIGNATOR;;
E|XIT: 5 - COMPARE FLAGl..

5;
SET TRUE COMPARISON:
{COMPAR A - FUNCTION CCDE, PREVIOUS OPERATOR = EQUAL: EXIT.;
PREVIOUS OPERATOR = NOT EQUAL: | » DESIGNATOR, EXIT.;
PREVIOUS OPERATOR = GREATER: FILL LOWER HALF WORD,
OBJECT PROGRAM + 1 - ADDRESS, STORE COMMAND,
COMPAR A + FUNCTION CCDE, 2 -+ DESIGNATOR, EXIT.;
PREVIOUS OPERATOR = GREATER OR EQUAL: 2 -+ DESIGNATOR, EXIT.;
PREVIOUS OPERATOR = LESS THAN: 3 -+ DESIGNATOR, EXIT.;
PREVIOUS OPERATOR = LESS OR EQUAL: 7 - COMPARE FIAG, 3 - DESIGNATCR,
UPGRADE COMPARISONS, COMPAR A -+ FUNCTION CODE, 0 + DESIGNATOR; ;
E|XIT: 7 - COMPARE FIAG]..

5;

SET UP INITIAL CONDITIONS: {ACTIVATE READ MAG TAFE 3,

E|NTRY 1: WAIT TO READ MAG TAPE, REWIND READ TAPE, CLEAR ALL STORAGE,
READ PART 1, L » BLOCK NUMBER = 0 BLOCK NUMBER = 1: ; 1 -+ COUNT,
E|NTRY 2: READ MAG TAPE, MAG TAPE AREA[MAG TAFE INDEX] »

NUMBER OF PAGES = END TAPE FIAG: 0 - I, ENTRY 1.;
0 -+ PAGE NUMBER, n = 1{1)NUMBER OF PAGES {READ MAG TAPE}
COUNT + | » COUNT ¢ BLOCK NUMBER: ENTRY 2.;
0 - COUNT -+ MAG TAPE INPUT FIAG + PAGE NUMBER,
WAIT TO READ MAG TAPE, POSITION BACK READ, READ PART 1;
READ MAG TAPE, MAG TAPE AREA + NUMBER OF PAGES, ALL SPACES -~
MAG TAPE AREA, PRINT ID PAGE, n = 1(1)6 {MAG TAPE AREA[302](42+47) »
SYMBOL = SPACE (y SYMBOL = 10: 0 -» SYMBOL;;
NUMBER OF PROGRAMS x 10 + SYMBOL - NUMBER OF PROGRAMS,
MAG TAPE AREAPoz x 216 + MAG TAPE AREA[302],
MAG TAPE AREA[322](42+47) + SYMBOL = SPACE y SYMBOL = 10: 0 -+ SYMBOL;;
FIRST LOCATION x 213 + SYMBOL -+ FIRST LOCATION,
MAG TAPE AREA[322] x 216 » MAG TAPE AREA[32.7}
FIRST LOCATION » CBJECT PROGRAM + PROGRAM LOCATION, RESTORE PAGE,
READ MAG TAPE, MAG TAPE AREA[MAG TAPE INDEX] -+ SYMBOL BUFFER]..

5;
STORE COMMAND: {FUNCTION CCDE » COMMAND(18+23),
DESIGNATOR » COMMAND(15+17), ADDRESS + INCREMENT + COMMAND(0-14),
HALF WORD FIAG = O:
1 - HALP WORD FIAG, COMMAND + COMPUTER WORD(24-+47);
0 + HALF WORD FIAG, COMMAND » COMPUTER WORD(0-+23), STORE;
0 + FUNCTION CODE - DESIGNATOR -+ ADDRESS -+ INCREMENT|
STORE: |{COMPUTER WORD + [OBJECT PROGRAM], OBJECT PROGRAM + 1| +
OBJECT PROGRAM, FIRST COMPIIER LOCATION { GBJECT PROGRAM <
1IAST COMPILER LOCATION: 2 -+ FAULT BUFFER, FAULT.;|
OCTAL TO DECIMAL: {0 -» BUFFER, INDEX = 1(1)12 |BUFFER / 2t4 > BUFFER,
NUMBER BUFFER / 10 -+ DECIMAL BUFFER, - DECIMAL BUFFER x 10 +
NUMBER BUFFER - BUFFER(44+47), DECIMAL BUFFER -+ NUMBER BUFFER}
BUFFER + NUMBER BUFFER}..

5.
STORE CONSTANTS: |PRESENT OPERATOR # LEFT BRACE: ENTRY 2.; FIND OPERATOR,

OPERAND = 0 {y PRESENT OPERATOR # RIGHT BRACE: 20 -+ FAULT BUFFE FA o}
OPERAND # NUMBER FIAG: | » HALF WORD FIAG, FIND ADDRESS, R il
ADDRESS -+ COMPUTER WORD, STORE, 0 - HALF WORD FIAG -+ ADDRESS;
OPERAND[1] - NAME LOCATIONS[IAST NAME INDEX]; FIND OPERATOR, ENTRY 3,
E|NTRY 1: FIND OPERATOR, E|NTRY 2: PREVIOUS OPERATOR # SEMI COLON:
PRESENT OPERATOR = MINUS: SET - MINUS FIAG, ENTRY 1.;
PRESENT OPERATOR = PLUS y PRESENT OPERATOR = PERIOD: ENTRY I.:
OPERAND = NUMBER FIAG y OPERAND = 0: MINUS FIAG # O:
0 » MINUS FIAG, -OPERAND(1] - COMPUTER WORD; OPERAND[1] =+
COMPUTER WORD; STORE, OPERAND[Z2] -»
NAME LOCATIONS[LAST NAME INDEX](24+38),
ElNgRY B:IRESEI}WE CELL & 1: RESERVE CELL - | » RESERVE CELL;;
NTRY e3935i0e

53
STORE WORKING REGISTER:
{ADD INCOMPLETE VALUE, OPERAND # 0: GENERATE STORE COMMAND;; |
GENERATE STORE COMMAND: {PARTIAL WORD FIAG = (: ENTRY,; SAVE COMMAND,
COMMA < PRESENT OPERATOR < LEFT PAREN N DOUBLE STORAGE FIAG = 0:
STORE A -+ FUNCTION C(DE, LOCATION TEMP STORAGE + 1| -+
ADDRESS, STORE COMMAND;; DOUBLE STORAGE FLAG # 0 N LOWER WORD LIMIT =
IAST LOWER WORD N UPPER WORD LIMIT = IAST UPPER WORD: ;.
LOWER WORD LIMIT # O: SHFT ALF + FUNCTION CCDE, LOWER WORD LIMIT -
ADDRESS, STORE COMMAND;; FIND MASK,
m = 1(1)LOWER WORD LIMIT {NUMBER BUFFER x 211 » NUMBER BUFFER|
-~ NUMBER BUFFER -+ NUMBER BUFFER, LOAD Q - FUNCTION CQDE,
FIND NUMBER ADDRESS, STORE COMMAND; RESET COMMAND, SEL REPL -+
FUNCTION CODE, FIND ADDRESS, STORE COMMAND, RESET COMMAND,
E|NTRY: STORE A + FUNCTION CCDE, FIND ADDRESS, STORE COMMAND,
OPERAND (0-41) = SEVEN SPACES: OPERAND(42+47) - 3| -» DESIGNATOR = 26:
| » DESIGNATOR;; 0 < DESIGNATOR ¢ 6: ID INXLo » FUNCTION CCDE,
FIND ADDRESS, STORE COMMAND; 0 -+ DESIGNATOR;;;
PARTIAL WORD FIAG # O: 0 » PARTIAL WORD FLAG, COLON < PRESENT OPERATOR
EQUAL: ; CL ADD » FUNCTION C(DE,
LOCATION TEMP STORAGE + | > ADDRESS, STORE COMMAND;;;
PREVIOUS OPERATOR = ARROW N PRESENT OPERATOR = ARROW:
SET - DOUBLE STORAGE FIAG, LOWER WORD LIMIT - IAST LOWER WOHD,
UPPER WORD LIMIT -+ LAST UPPER WORD; 0 - DOUBLE STORAGE FIAG;|..

5;
SUBSCRIPT: {SAVE OPERAND, O -+ INCREMENT SIGN, PREVIOUS OPERATOR -
PRESENT OPERATOR, FIND OPERATOR, OPERAND # 0: ENTRY 2.;
E|NTRY |: PRESENT OPERATOR = MINUS: SET -+ INCREMENT SIGN;
PRESENT OPERATOR # PLUS: ENTRY 2.;;
PREVIOUS OPERATOR -+ PRESENT OFERATOR, FIND OPERATOR,
E|NTRY 2: OPERAND = NUMBER FIAG: INCREMENT SIGN # 0:
- OPERAND[1] - INCREMENT; OPERAND[1] + INCREMENT;
PRESENT OPERATOR # RIGHT BRACKET: 21 - FAULT BUFFER, FAULT.;;
OPERAND (0+41) = SEVEN SPACES:
OPERAND (42+47) - 31 - DESIGNATOR; 100 - DESIGNATOR;
DESIGNATOR = 26: | -+ DESIGNATOR;;
0 ¢ DESIGNATOR < 6: ; GENERATE LOAD INDEX;
PRESENT OPERATOR # RIGHT BRACKET: ENTRY 1.;;
PREVIOUS OPERATCR + PRESENT OPERATOR, FIND OPERATOR,
OPERAND # 0: 22 -+ FAULT BUFFER, FAULT.; RESET OPERAND,
OPERAND = 0: SET - OPERAND;;!..

5;
SUBTRACTION: |{OPERAND # O: CIEAR SUBTRACT FIAG # 0:

Appendix C: Neliac 1604 247

0 -+ CIEAR SUBTRACT FIAG, GENERATE CLEAR SUBTRACT COMMAND;
PRESENT OPERATOR = MULTIPLICATION (y PRESENT OPERATOR = DIVISION:
STORE INCOMPIETE VALUE, GENERATE CLEAR SUBTRACT COMMAND;
GENERATE SUBTRACT COMMAND;;;; |
GENERATE CIEAR SUBTRACT COMMAND: {PARTIAL WORD FIAG # 0:
0 » PARTIAL WORD FIAG, ENTER A + FUNCTION CODE, STORE COMMAND,
GENERATE LOAD Q COMMAND, SUBT LOG - FUNCTION CODE;
CL SUBT » FUNCTION CCDE, PIND ADDRESS; STORE COMMAND|
GENERATE SUBTRACT COMMAND: |{PARTIAL WORD FIAG # 0: 0 + PARTIAL WORD FILAG,
GENERATE LOAD Q COMMAND, SUBT LOG » FUNCTION CODE; FIND ADDRESS,
OPERAND[3](12>14) # 0: FL SUBT + FUNCTION CODE; SUBTRACT +
FUNCTION CODE;; STORE COMMAND{..

5.
UPGRADE COMPARISONS: {E|NTRY 1: FIND COMPARE WORD,
COMPARE wcmzls»wg = 7: ENPRY 3.; COMPARE WORD(15>17) = 5: ENTRY 5.;
| COMPARE WORD(15*>17) = 3: ENTRY 7.; O » COMPARE WORD(18-+23),
E|NTRY 2:
COMPARE FIAG - COMPARE WORD(15>17), OBJECT PROGRAM -» COMPARE WORD(0-14),
STORE COMPARE WORD, FILL UPPER HALF WORD, STORE COMMAND, EXTIT.
E|NTRY 2: COMPARE FIAG = 5: ENTRY 6.;
E|NTRY L4: INCREASE COMPARE SUB INDEX, ENTRY 2.
E|{NTRY 5:
COMPARE FIAG # 3: ENTRY 4.; TRANSFER -+ FUNCTION CODE, 0 - DESIGNATCR,
E|NTRY 6: COMPARE WORD(0-»14) -+ 1, OBJECT PROGRAM + 1 - [1](0+14),
DECREASE COMPARE SUB INDEX, ENTRY 1.
E|NTRY 7: FILL LOWER HALF WORD, COMPARE WORD(0+14) - I,
OBJECT PROGRAM » [L](0+14), 0 - COMPARE TABIE[k], COMPARE TABIE - 1 =
COMPARE TABIE, E|XIT:{..

5;
PRINT PROGRAM: {FIRST LOCATION - LOCATIONS,
E|NTRY 1: 1 = LOCATIONS(1)LOCATIONS+191 {[1] # O: ENTRY 3.;}
E|NTRY 2:
LOCATIONS 2 IAST LOCATION: EXIT.; LOCATIONS + 192 » LOCATIONS, ENTRY 1.
E|NTRY 3: RESTCRE PAGE, SET PRINT BARS TO SPACES, PRINT LINE,
PRINT LOCATION = LOCATIONS(8)LOCATIONS+47 f
ADDRESS = PRINT LOCATION(1)PRINT LOCATION+7 {C = J,
1 = ADDRESS(48)ADDRESS+191 {[1] - BUFFER[J], § + 1 =+ Ji
ADDRESS + ORJECT PROGRAM, SET PRINT BARS TO SPACES, 0 - J,
k= 0{1)3 {16 > SYMBOL BUFFER, n = 1(1)2 {n = 1:
ADDRESS = PRINT LOCATION: OBJECT PROGRAM -» NUMBER BUFFER,
1 = 3J(1)j+4 {NUMBER BUFFER(12>14) » SYMBOL = 0: 10 -» SYMBOL;;
SYMBOL - PRINT BARSi], NUMBER BUFFER x 2t3 - NUMBER BUFFER};
OBJECT PROGRAM(0+2) -+ SYMBOL = 0: 10 - SYMBOL;; SYMBOL -»
PRINT BAR[J+4];;; 1 = j+7(1)J+9 |{BUFFER[k](45+47) > SYMBOL = 0:
SYMBOL BUFFER -+ SYMBOL; 10 - SYMBOL BUFFER; SYMBOL - PRINT BAR([1],
BUFFER[k] x 213 > BUFFER[k]} 1 = j+11(1)3+15 {BUFFER[k](45*47) >
SYMBOL = 0: SYMBOL BUFFER -+ SYMBOL; 10 -+ SYMBOL BUFFER;
SYMBOL + PRINT BAR[1], BUFFER[k] x 213 -» BUFFER[k]} J + 11 » 3}
J +9 > J, OBJECT PROGRAM + 48.-> OBJECT PROGRAM|{ PRINT LINE}
SET PRINT BARS TO SPACES, PRINT LINE, PRINT LINE{ ENTRY 2. e|XIT:i..

5;
PRINT ID PAGE:
{RESTORE PAGE, SET PRINT BARS TO SPACES, n = 40(10)659 {0 -+ INDEX,
1 = n(1)n49 {MAG TAPE AREA[1] - BUFFER,
SYMBOL COUNT = 1(1)8 {BUFFER(42+47) -+ PRINT BAR[INDEX],
BUFFER x 216 -+ BUFFER, INDEX + | +» INDEX}{} PRINT LINE}]}

248 Machine-Independeni Computer Programming

PRINT IAST PROGRAM LOCATION: {SET PRINT BARS TO SPACES, 10 -» LOW,
J = 0(1)2 {ALPHA IAST PROGRAM LOCATION[J] - BUFFER, SET PRINT BARS|
OBJECT PROGRAM -+ PROGRAM LOCATION - | -+ NUMBER BUFFER -+ LAST LOCATION,
35 -+ LOW, 39 »+ HI, SET NUMBER PRINT BARS, PRINT LINE|..

5; '
GENERATE INPUT OUTPUT: {FIND OPERATOR, PRESENT OPERATOR = LESS THAN:
GENERATE OUTPUT; GENERATE INPUT; |
GENERATE INPUT:
{OPERAND = FIEX 1| yy OPERAND = FIEX 8: GENERATE FIEX INPUT;
OPERAND = CARD: GENERATE CARD INPUT; GENERATE MT INPUT;; |
GENERATE FLEX INPUT: |FIND OPERATOR, FILL UPPER HALF WORD,
747¢ 118, = [OBJECT PROGRAM](0-+23), OBJECT PROGRAM + | + OBJECT PROGRAM,
OPERAND = FIEX 8:
GENERATE FLEX WORD INPUT. GENERATE FLEX FRAME INPUT.
GENERATE FLEX WORD INPUT: OBJECT PROGRAM - 1, INPUT CCDE + 1 + 11 = [1],
1 +1+41, INPUT CODE[1] +1 + 2+ (1], 1 + 1~ 1,
INPUT CODE[2] + FACTOR x 1 + FACTOR x 10 > [1], 1 + 1 -+ 1,
1 +8 » LIMIT, For 1 = 1(1)LIMIT {0 » [1]} INPUT CODE[3] + FACTOR x
i1 - FACTOR » [1], 1 + 1 > i, INPUT CODE[4] » [1], 1 + 1 > 4,
INPUT CDE[5] +1 - 11 » [1), 1 +1 = 3,
INPUT C(I)EE6] +1 <1~ [1], 1 + 1 > OBJECT PROGRAM, FIND ADDRESS,
INPUT CODE{7] + FACTOR x OBJECT PROGRAM - FACTCR x 5 + ADDRESS -
[GBJECT PROGRAM], (BJECT PROGRAM + | + OBJECT PROGRAM,
EXIT FLEX INPUT: ‘
PRESENT OPERATOR # IESS THAN: 99 1 - FAULT BUFFER, FAULT.; FIND OPERATOR,
PRESENT OPERATOR # RIGHT BRACE: 99 2 + FAULT BUFFER, FAUILT,;
0 - HALF WORD FIAG, COMMA + PRESENT OPERATOR]..

5
CARD = 5] 49 41 52 20 20 20 20s, FIEX | = 66 43 6 20 01 20 20
mea.géuasszzzo:ozozoii 365 = o
INPUT CDE(8) = 740 11200 100 00000, 200 00001 Th] CO000s,
750 00000 500 000008, 571 00000 747 00011e, O4O 000TT 501 0COO00a,
050 00006 431 00000s, 541 00007 750 00000s, 531 G000 200 00CCOg,
PACTOR = 1000000004, LIMIT;
GENERATE OUTPUT: {99 3 - FAULT BUFFER, FAUILT, |
GENERATE MT INPUT: {99 4 - FAULT BUFFER, FAULT. |
GENERATE CARD INPUT: {99 5 -+ FAULT BUFFER, FAUILT. |
GENERATE FIEX FRAME INPUT:
FIND ADDRESS, INPUT C(DE + ADDRESS + 1 -» [OBJECT PROGRAM],
OBJECT PROGRAM + 1 -+ OBJECT PROGRAM, FIND ADDRESS,
INPUT CCDE[1] + ADDRESS -+ {oBJECT PRCGHAH], .
OBJECT PROGRAM + | - OBJECT PROGRAM, EXIT FIEX INPUT..

APPENDIX D

D-NELIAC C

The Donnelly Decompiler shown in this Appendix has been taken
primarily from the Navy Electronics Laboratory Technical Memo-
randum No. 427, Sept., 1960, entitled, “A Decompiler for the Coun-
tess Computer,” by J. K. Donnelly. It is presented here primarily to
demonstrate the approach and the teasibility of the concepts in-
volved, rather than the techniques employed. It serves to “Close
the Loop,” thereby showing that the Neliac dialect of Algol may
perhaps be capable of serving not only as a problem-oriented lan-
guage, or POL, but perhaps also as a Universal Computer Oriented
Language, or UNCOL.

Table XIII contains the complete repertoire of machine instruc-
tions for the computer involved, in order that the process followed
by the D-Neliac program can be followed.

In the Countess computer, the various parts of an instruction word
can be described in the following Neliac noun definition.

Instruction Word: {Function Code(24 - 29), FF(24 - 29),
Branch Designator(21 - 23), J(21 - 23),
Operand interpretor(18 - 20), K(18 - 20),
Index designator(15 - 17), B(15 > 17),

Operand Address(0 = 14), yyyyy(0 = 14),},

250

FF
00
01
02
03
04
05
06
07
10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
o7
30
31
32
33
34
35
36

Machine-Independent Computer Programming

TABLE XIII

MACHINE LANGUAGE INSTRUCTION REPERTOIRE OF THE
UNIVAC M-460 COUNTESS COMPUTER

Function

Illegal

Shift Q right
Shift A right
Shift AQ right
Compare

Shift Q left

Shift A left

Shift AQ left
Enter Q register
Enter accumulator
Enter B register
Enter C register
Store Q register
Store accumulator
Store B register
Store C register
Add

Subtract

Multiply

Divide

Add replace
Subtract replace

Q add

Q subtract

Load A add Q
Load A subtract Q
Add Q and store
Subtract Q and store
Replace add Q
Replace subtract Q
Replace add one
Replace subtract one

FF
40
41
42
43
44
45
46
47
50
51
52
53
54
55
56
57
60
61
62
63
64
65
66
67
70
71
72
73

Function

Enter logical product
Add logical product
Subtract logical product
Mask comparison
Replace logical product
Replace add logical product
Replace subtract logical product
Store logical product
Selective set

Selective complement
Selective clear
Substitute

Replace selective set*
Replace selective complement
Replace selective clear
Replace substitute
Arithmetic jump
Manual jump

Input jump

Output jump
Arithmetic return jump
Manual return jump
Input return jump
Output return jump
Initiate repeat

Index skip

Index jump

Initiate input transfer
Initiate output transfer
Initiate input buffer
Initiate output buffer
Illegal.

Appendix D: D-Neliac C 251

5

INSTRUCTION: | (2% + 29), rrji(21 » 29), 33(21 » 23), k(18 » 20),

o (15 » 17).2?(0 + 14), 1(750), INSTRUCTION FIAG:

{ indicator(24 » 29), loop J desig(21 -+ 23},_ scan flag(15 » 17),

loop final value(9 + 14), Lloop index(0 »+ 8), }(750),

gsymbol string(1500), a store, q store, save index, skip flag, paren index,
next index, end loop index, a flag, q flag, zero flag, upper case flag,
a store used, q store used, paren counter, input ready, output ready,
condition, workspace, storage, store index, ts(10), UNTOUCHABIES:
rirst address, entrance, exit index, last address, max index,

NAME LIST 1: { first letterso -+ 5), second letter(6 » 11), 1(200),
NAME LIST 2: | name k desig(18 »20), mult name flag(15 =+ 17),

name address(0 + 14), }(200), name list index, jump index,

subroutine index, ts index, data index, m store, n store, k store,
sequence number, sub name index, subroutine address (50)

letter(26) = 1, 2, 3, &4, g& 6s Ts 1085 11as - 1285 138, 1&8: 158, 168,
1783 208: 2'8: 223: 239: 8 258: Bn Z'Tsh 308& 3‘8& 3281'#
number(10) = 33g, 344, 358; 368s 3Tss 40e, 418y 428, 438, H

DIMN STATEMENT: . .

5
addr sym str = | symbol string }, ds index;
COMMAND EXEC: CE3: name program,
1 = entrance(1)exit index{ max index ¢ 1: 10 »+ k, error; ;
test masking, test entry or loop, ff[i] = 10g: test sub q; ;
test 1o, translate instruction, test conditional skip, cel: |,
CE5: subroutine index # 0: | generate exit Jjump,
return address[2] + return address(0],
C|E55: generate subroutine, subroutine index # 0: ce55. ;
generate exit, }; double period, stop code;
CE6: store index + 5 - store index -+ ds index, store dimensioning statement,
gtart punch, leader, ds index + addr sym str < J, 0 - condition,
dump dimensioning statement, addr sym str = J, set -+ condition,
dump flowchart, leader, stop punch, 61400sdump name list. .

5;
STORE(p): { k - store(15 + 29), m » ts8[9], store index + k,
0 + zero rl.a.g,zg = 0: end store. ;
P|ASS ZERO: p(24 » 29) = 0: zero flag + | + zero flag, p x 216 > b,
pass zero, ; 5 - zero flag -+ zero flag,
m = 1(1)zero flag] d|ecode: symbol string[klsah + 29) = 0: _

symbol string[k] x 216 » symbol stringl[k], p(24 - 29) -+

symbol stringlk](0 + 5), px 2t6 » p, 0 » p(0 + 5); k + 1 + k decode.
E|{ND STORE: k + store index, store(15 + 29) =+ k, tsEQ >m |
UPPER CASE: {,} LOWER CASE:{, | CRUTCH CODE: { store(45s), |}
EXPONENT SIGN: { store(T7a)s | GREATER SIGN: | store{655;. }
1ESS EQUAL SIGN: { store(64g), | LEFT BRACE: { store(56s), |}
RIGHT BRACE: | store(5T7s), IEFT BRACKET: { store(Sis),
RIGHT BRACKET: | store(55s), | GREATER EQUAL SIGN: ; store(62s), }
IESS SIGN: | store(63g) | BOOLEAN AND: { store(76s),
BOOLEAN OR: | store(753§, | CARRET: {,] STOPCCDE: {,} SPACE: {,}
PERIM: | store(50s), DOUBIE PERIMD: | store(sosoag, i
RIGHT PAREN: i store(53s), | LEFT PAREN: | store(52s),
PIUS: | store(67s), | MINUS: { store(70s),
MULTIPLY SIGN: |§ store('§2a): { DIVIDE SIGN: | storei'na;, ‘
EQUAL SIGN: | store(60s), | NOT EQUAL SIGN: | store(61s),
ARROW: | store{669}, 7 OCTAL SIGN: | store(45s),
COMMA: | store(UY6a

s | SEMICOLON: | store(47s), |} COLON: | store(S51s), 1}. .

5
word a store(2) = 30042401e, 0312208, word q store(2) = 35042401, 031220,,
word name Llist dump(3) = 0630072004, 1114240104s, 22340755456 ;
PHIN!'(D%: {m~ print(15 + 29), m = 1(1)5{ p x 216 > b,
pio +5) #0: 13130ep; ;
P|RINT DEIAY: 62100aprint delay. |, print(i15 + 29) + m, |}
PRINT UPPER CASE: | upper case flag # 1:

print(87e), 1 + upper case fiag, ; ;

LOWER CASE: | upper case flag # 0:

print(57s), 0 -+ upper case flag; ; |
PRINT CARRET: | print(85s), | PRINT SPACE: | print(O8s), |
PRINT EQUAL SIQGN: 3 print upper case, print(7004s),
PRINT OCTAL SIGN: | print lower case, print(76s),
PRINT COMMA: { print upper case, print(46e
PRINT SEMICOLON: | print lower case, print(iis), |
START FIEX: | stop punch, 1704040, 1310040, 1710060, 50000¢163s,
1330030. 13070.0, 700003‘003, 133003100%.,]3300;0, 700003]00003,
133004 100 138, 1330040, 7000041008, 13300810012e, 1330080,
1 + output ready, |
STOP FIEX: | 1708080, 52000a3, 5000041608, 13300a0, 1307040, 70000¢ 100004,
133004 100 148, 1330080, 7000091008, 133005100168, 1330060, 0 >
output ready,
START PUNCH: | stop flex, 170400, 1710080, 5000061638, 1330040, 1307060,
700004 1008, 133004 10016a, 133000, 700004 100008, 13300410023e, 1330080,
STOP PUNCH: | 1704040, 52000s3, 50000g160e, 13300e0, 1307040, 70000410000s,
133004 1002ls, 1330040, 700005100e, 13300¢10026s, 1330040,
0 + output ready, | ,
IEADER: | n = 150(1)0] 1310040, L|EADER DEIAY: 62100¢ leader delay. I, 1. .

5

plr Ust = | read 0, read 1, read 2, read 3, read 4, read 5, read 6,
read 7, store 0, store 1, store 2, store 3, store 4, store 5, store 6,
store 7, |;

PROCESS NAME (arith, class):
clags = 1: 8 » class; ; arl
bb(1] # 0 ;

0 + ts < save name index,
#0: 10g + ts > t8; ;
1#0

3

-

.

1
t 2 +ts > ts; ;

; ¥k(1] + class + n, 12+ Kk Pr tistn], |
: zero;

1 n2; ts = 2y ts = 10: n3;

Uts = T: n2, plus, ni; ts = 6: n3, plus, nk;
n, n2, plus, nii, right paren;

nkt, right paven; ; ; ; 3 5 5 5 5 |

* N7, | R|EAD 2: | read 123, n8, |

123: { 0 » ts(3 » 3),

: left bracket, n2, right bracket; ;

Eﬂ
gk
0’1
8o
e B
F—4
cgd

[rd
(]

1

=8

-t 7 —
cC
ct ct

ct 0
du

ge2—g
RE
Am4us

[I]
2“

g

Sg
gEICob
&

W= 0l
c
i

left bracket, n2, plus, n#, right bracket; ;

n5; ts = 4: first address = 0: n5; né; ;

rirst address N yy[1] < 10: n9; nS, n6; ; ; 5 ; |

1, extend sign, | R|EAD 6: | read 2, extend sign, |

ts & 12: left paren; ; find a operard,

t : plus, nl#; ; ts & 12: plus, n4, right paren; ; |

ORE O0: | £r[1] = 14s: ni10, space, 2 » q flag;

test a interrupt, ts a 10s: 6 + q flag; 3 + q flag; ; 77s + condition, |
1: | store 123, n7, . S|TORE 2: { store 123, n8, |.

3: S|TORE 123: | 0 » ts(3 + 3),

U ts = 7: left bracket, n2, plus, nlt, right bracket; ;

Uts = 2: n5; ts8 = | Yy ts = 3: left bracket, na, right bracket;
first address = 0: n5; nb; ;

TR
it
g...

REELD DuIggegEnggyy
R

FOoWm

Appendix D: D-Neliac C 253

ts = 6: yy}i] irst address N yy[1] < 1
S|TORE 4: | f£f[1] = 15a: n10, 2 + 2 flag;
test q interrupt, ts z 10s: 6 + a

S|TORE 5: | n10, n7, arrow, store 1, |
S|TORE 6: § ni0, n7, arrow, store 2, |
ORE T: | store(zil
loop final va lue&ig > k’; generate ts, |
kk[1] = 4: yy[1)(14 > 18) = 1: 77777e * vy, translate yy,
store(storage); ; ; ;
yy[1] » yy, translate yy, storage(6 + 29) # 0:
store(storage), octal sign; store(storage); |
Nj4: §{ bb[1] + k, store(letter[k + 7]),
save name index + k, 7 » mult name flag{k], |

0: n9; n5, n6; ; ;3 ; 5 ;5 |

5;
RESTORE VARIABIES: |
n=0(1)3028{ 0 » in
return address[0], n
CIEAR NAME LIST: { n
STORE NAME LIST: | s
P|REPARE TO READ:
name list index + k + | » name list index, 0 -+ storage,
R|EAD NAME: read one frame, workspace -"0‘&;: read name, ;
workspace = 445: read k desig. ;
J = 1{1)35{ workspace = flex code letter[j]: storage x 216 + storage,

workspace + storage(0 + 5), read name. ; |, read name.
R|EAD K DESIG: storage - name list 1[k]
E|NTER A: read one frame, workspace = Otlg: enter a. ;
workspace = 37a: O » name k desig[k], read address.

| workspace = 70g: 3 + name k desig[k], read address, enter a. };
R|EAD ADDRESS: 0 + storage, read one frame, read five numbers,
storage -+ name address(k],
R|EAD END ADDRESS: read one frame, workspace = 424: out, ;
workspace = 46g: prepare to read. read end address.
O|UT: stop reader, }. .

0-»>41 ~» +k->1-»>n
structionin], |, return address(i] »
= 0§1;199! 0 + mult name flagin), }, 1}
= 0(1)450f O + name Llist 1[n], 1}, |
tart reader,

H
LOAD SOURCE PROGRAM: | start reader, read five numbers,
storage + first address, exit index - first address + exit index,
entrance - first address - entrance, read la.
R|EAD 1: read one frame, workspace = 424 workspace = 434:
stop reader, end read source program. ; read five rumbers,
R|EAD 1A: 0 »> storage, read five humbers, read five numbers,
storage -+ instruction[i], 1 + 1 > 1, read 1.
E|ND READ SOURCE PROGRAM: 1 - | » max index, |}
READ FIVE NUMBERS: { n = 0(1)4{ r|ead 2:
L= 0(1)7]{ workspace = flex code number[l] N upper case flag = 0:
storage x 213 + L + storage, read one frame, step read five. ; |,
read one frame, read 2. s|tep read five: |,
READ ONE FRAME: | rjead 4: 1 1303workagace, delay read,
workspace = 0 y workspace = T7g: read 4, ;

flag; 3 + a flag; ; 7T7s * condition,

Z3a), comma, minus, store(24 234), arrow, store 3,

N|5: { search for noun name, store (storage),

N|6: | left bracket, n#, right bracket,

Ng: { left paren, zero, arrow, store(34 37e), right paren, |

Ni{8: | left paren, store (34 U40g), arrow, store(354lls), right paren, |
N|9: | left bracket, ni, plus, n3, right bracket,

N[10: | store(24 23s), comma, minus, store(24 234), |

E|XTEND SIGN: { multiply sign, store(35s), exponent sign, store(34 40,),
divide sign, store(35s), exponent sign, store(34 40a.), 1}. .

254 Machine-Independent Computer Programming

workspace = 47s: | » upper case flag;

| workspace = 57s: 0 + upper case flag; ; ;; }
D|EIAY READ: { r|ead delay: 63100sread delay.
START READER: | 170400, 171000, 5200082, 500009161a, 1330080, 1307040,
700000100008, 13300410033s, 133000, 700001008, 13300810031s, 1330080,
W|AIT ONE: 63100swait one, 1 + input ready, |
STOP READER: | 17040#0, 52000a3, 50000a160s, 1330080, 1307040,
70000g 100008, 133004 100344, 133000, 700008100s, 133009100368, 155U0eU,
0 »+ input ready, l. .

5
b|ranch point index(50), b|ranch point counter;
INITIAL SCAN: | 1 » save index, 0 - branch point counter,
S|EARCH: i = save index{1)exit index|{ max index < i: 9 + k error; ;
scan rlag[1] # 0: test end initial scan. ; test instruction,
S|TEP LOOP: 7 - scan flag[1], s|tep: |,
T{EST END INITIAL SCAN: 0 ¢ branch point counter:
branch point counter + J - | #® branch point counter,
branch point index[Jj] + save index,
0 s save index N save index s max index: search.
test end initial scan., ;; |
T|EST INSTRUCTION: | ff[1] = 60s y £f[1] = 61e: process jump; ;
rr(1] = 6l4s U r&i] = 6582
rri[1] = 640g: step loop. advance sub lList, step. ;; 3
(1] = Tls: } [1 + 1] - first address + n, indicator(n] = 10es U
indicator[n] = 17e: ; indicator[n] + 10y + indicator(n];
33011 » toop desigl‘,n], 1 + loop index|n],
+ scan flagli], 1 + 1 + 1, step loop. 3 3
rr{1] = 7T2s: é 1] - first address »> n, indicator{n] = 20es U
indicatorin] = 27e: ; indicatorin] + 20e¢ = indicatori{n];
33[1] » loop J desigin], step loop. |; ;
test skip, skip flag = 1: | J3[1] # 1:
branch point counter + 1 + branch point counter - J,
1 + 1 » branch point index[J]; ;
T < scan rlag{i], 1 + 2 » save index, search. bs 5 |
P|ROCESS JUMP: | ££j{1] = 600s: step Lloop. ;
rri[1] = 601s y ££Jl1] = 610s: { subroutine index -+ m,
m = m(1)0f yy[1] = subroutine address(m]: 7 -+ scan flag[1i],
test end initial scan., ; |,
tag entry point, n - save index, search. |; ;
r£j[1] = 614s: tag entry point, test end initial scan. ; tag entry point,
branch point counter + ! -+ branch poilnt counter - J,
1 + 1| » branch point index[3j], n -+ save index, search. |
T|AG ENTRY POINT: { name Llist index - 1 +» J < 0: ;
{f 3= 3(1)0] 51] = name address[j]: I [1] - first address » n,
Mdicatorﬁ (0 » 2) # 7: indicator n{y+ 7 + indicator[nl; ;
end tag. 1; ; 1, 1; yy[1] - first address - ts,
max index z ts N ts 2 0: 7 - scan rlag[i]; 6 » scan flag(i]l, 1 + 1+ n,
end tag. name list index + J +]| » name Llist index,
Jump index » k + | » Jump index, yy[1] » name address[Jj] -
first address » n, 0 > name k desig([Jj]l, 5 16 24 00 00s = name list 1[J],
4 > milt name flag[j], letter[k] » first letter[J],
indicator{n] + 7 + indicator[n], e|nd tag:
A |DVANCE SUB LIST: } subroutine index » J = 0: ;
i = J(1)0{ yy(1] = subroutine address[:]]: end adv. ; |;
yy[1] - first address - ts, 7 = scan flagli}),
ts 2 0 N ts ¢ max index: ; asl.
branch point counter + 1 -+ branch polnt counter =+ 1,
subroutine index + 1 + k - subroutine index,

Appendix D: D-Neliac C 255

[1] - subroutine address[k] + | - first address + branch point index[L],
a|sl: name list index -1 > J £ 0: 3
3= 3(1)0f yy[1] = name addresstj]: end adv, ; |;
name list index » j + | » name list index, yy[1] - name address[J],
0 » name k desig[,j?, 23 25 02 00 00g » name List 1[J),
4 > mult name flaglJj], sub name index + k + | » sub name index,
letter[k] » first letter[J], e|nd adv: {. .

53

TEST ENTRY OR LOOP: |{ indicator{i](0 + 2) = 7: generate entry; ;
indicator[i] = 10g y indicator{i] = 17s: | test interrupt,
lower case, loop J desig[i] » k + 7 = k, store(letter(k]),
space, equal sign, lower case, store(letter[k]), left paren,
lower case, store(number[1]), right paren, i » ts[6], Lloop index[1] - 1,
process name(0, 0), ts[6] » 1, left brace, space, 1}; ;
indicator[i] = 20s y indicator{[i] = 27s: test interrupt,
lower case, loop J desigf[i] » k + 7 » k, store(letter(kl),
space, equal sign, lower case, store{letter[k]),
left paren, lower case, store(number[1]), right paren,
zero, left brace, space; ;
GENERATE ENTRY: | test interrupt, name List index - |} »+ n,
n = n(1)0{ 1 = name address[n] - first address: end ge. ; |,
E|ND GE: carret, upper case, store(name list 1[n]), colon, . .

5

save name index;

FIND A OPERAND: | a flag = 1: store(a store); a flag = 4: crutch a store;
a flag = 0 ya flag = 5: crutch a store; ; ; ;

FIND Q OPERAND: { q flag = 1: store(q stores; q flag = 4: crutch q store;
qQ flag = 0 y q flag = 5: crutch q store; ; ; ;

C|RUICH Q STORE: { left bracket, space, t bracket, left paren,

zero, space, arrow, lower case, store(35 44g), right paren,

CIRUI‘CH A STORE: | left bracket, right bracket, left paren,

store(36 33a), arrow, lower case, store(40 4l,), right paren, |

SAVE PAREN SPACE: | store index -+ paren index + 2 = store index, 6 + k, |

TEST A INTERRUPT:

| a flag = 2: cooma, ! <+ a flag, place parens, save paren space;
{aflag=3ya flag =6 ya flag = 7: arrow, crutch a store,

place parens, comma, 4 - a flag, save paren space; ; |;

TEST Q INTERRUPT: '

{ qQ flag = 2: comma, 1 »> g flag, place parens, save paren space;

f qflag=3 yqflag = 6 Y q flag = T: arrow, crutch q store,

place parens, comma, 4 + q flag, save paren space; ; 1|;
TEST INTERRUPT: | test a interrupt, test q interrupt,
GENERATE A TS:
{ 1 > a store used, n = 0(1)1§{ store(word a store(n}), 1}, 1}
GENERATE Q TS:
{ 1 > qstore used, n= 0(1)1{ store(word q store(n]), i, 1
TRANSIATE FIEX YY: { yy = O: 3‘(3 -+ storage, end trans yy. ;
0 » storage - zero flag, k = 0(1)4{ zero flag = O:

{ yy(12 > 14) = 0: yy x 213 > yy, step trans yy. ; |;
yy(12 > 14) » n, flex code number[ﬂ -+ storage(24 + 29),
1 + zero flag, yy x 213 > yy, storage x 216 -+ storage,
s|tep trans yy: 1}, e|nd trans yy: lower case,
TRANSIATE YY: | yy = 0: 335 » storage, end ty. ;

0 » storage - zero flag, k = 0(1)4{ zero flag = 0:
{ yy(12 > 14) = 0: yy x 213 > yy, step ty. ; |5 ;

.
?

yy(12 + 14) » n, number[n] + storage(24 » 29),
1 + zero flag, yy x 213 » yy, storage x 216 »> storage,
:étep ty: |, e|nd ty: lower case, |
SIGN NAME: | m store * m, n store » n, k store - k + 1| » k store,
name list index + J + | -+ name list index, letter[m] + second letter[J],
k -n -+ I, letter[l] + first letter[Jj], k= 25: 1 > m, 26 + n;
{k=51:2+m 52+n; | k= T7: 3 >m 8+n; ; };: I;
name List 1[J] + storage, m > m store, n + n store, yy[1] + name address[j],
3 -+ name k desig[j]), 4 » mult name flag(J], J * save name index,
SEARCH FOR NOUN NAME:
{ L = name list index(1)0{ name address[l] = yy[i]: name List 1[L] »
storage, L - save name index, mult name flag[L] = 0:
4 5> mult name flag[l); ; end search. ; |, assign name, e|nd search:}
lace parens:
paren counter # 0: { store index + ts, paren index - store index,
n = 1(1)paren counter{ left paren, |,
0 » paren counter, ts = store index, |}; ;
paren index + n, 0 + zero flag = ts, m > ts{2], k + ts[1],
n=0: end pp. ; symbol string [n] = 0: n >k, ppl. n + 1 » k;
P|P: symbol string[n](24 + 29) = 0: symbol string(n] x 216 + symbol
string(n], zero flag + 1| + zero flag, pp. ;
P|[PI: n= n(l')store index| symbol string[n + 21 = 0:
n - 1 »+ store index, end pp. ; symbol string[n + 2] »
symbol string(k], 0 -+ symbol stringln + 2], zero flag = 0: step pp. ;
P|P2: 0 + ts, symbol string[k](24 > 29) = 0: symbol string([k] x
216 » symbol stringlk]), pp2.; :
me= [(1)zero flag{ symbol stringfn + 1] x 216 » symbol string[n + 1],
ts x 216 + ts, symbol string(n + 1](0 + 5) + ts -+ ts,
0 » symbol string(n + 1}J(0 + 5), |, symbol string[n] + ts »
symbol string{n], s|tep pp: k + 1 > ik |, e|nd pp: ts{2] » m ts(1] > k |..

5 _

t|ranslate table = | error, shift q right, shift a right,

shifrt aq right, compare, shift q left, shift a left, shift aq left,
enter q, enter a, enter b, enter c, store q, store a, store b,

store ¢, add, subtract, multiply, divide, add replace, sub replace,

q add, q subtract, load a add q, load a sub gq, add q and store,

sub q and store, replace add q, replace sub g, replace add one,
replace sub one, enter log prod, add log pProd, sub log prod, mask comp,
repl Log prod, repl add log prod, repl sub log prod, store log prod,
selective set, selective comp, selective clear, substitute,

repl sel set, repl sel comp, repl sel clear, repl substitute,
arithmetic jump, manual jJump, input Jjump, output Jump,

arithmetic ret jump, manual ret jump, input ret Jump,

output ret Jump, repeat, index skip, index Jump, input transfer,
output transfer, input buffer, output buffer, error, |;

TRANSIATE INSTRUCTION: | rf{i1)] » m, 6 » k, translate table[m], |}
ERROR: | test interrupt, start flex, print carret, print(47s),
priigzgrtex code letter[k + 1]), print space, print(20121203,),

pr

print

ceb,

S|ELECTIVE SET: S|EIECTIVE COMP: S|EIECTIVE CIEAR: S|UBSTITUTE:

R|EPL SEL SET: R|EPL SEL COMP: R|EPL SEL CLEAR: E!M‘ER C:
STOREC:INPMJUHP:OIMMJUMP:::A:WNPWM ¢ O|UTPUT RET JUMP:
I|NPUT TRANSFER: O|UTPUT TRANSFER: I| BUFFER: O|UT BUFFER:
M|ASK COMP: CRUTCH INSTRUCTION:

{ test interrupt, crutch upper half, process name(0,0), comma, |
CRUTCH UPPER HALP: { instruction[1](15 » 29) » yy, translate yy,
storage(24 » 29) = 0: number - storage(24 -+ 29); ;

store(storage), crutch code,

120457s), 1 + first address = yy, translate flex yy,
storage), stop flex, return address{[0] = return address[1]: ce5.

Appendix D: D-Neliac C 257

kk{1] # 0: Kik[1] = 4: 0 » kk[1]; 3 » kk[1]; ; ;
0 » bb[1], 0 » 33[1&. 5 > gcan flag[1], |
RETURN ADDRESS: ce &, ce 4, sb, .

53
SHIFT Q RIGHT: | test a interrupt, Tls * ts, q shift,
SHIFT A RIGHT: { test g interrupt, 7ls * ts, a shift,
SHIFT AQ RIGHT: | yy[i‘} # 36a: test continue masking,

condition = 1: mask exec. ;

test interrupt, Tls > ts, shift aq, 5 + a flag @+ q flag;

a flag » q flag, 5 »> a flag, a store > q store, 0 > a store; |}
SHIFT Q 1EFTP: | test a interrupt, 72e = ts, q shift, - |}
SHIFT A 1EFT: { test q interrupt, 72s + ts, a shift,
SHIFT AQ IEFT: | yyl1] # 36s: test continue masking,

condition = }: mask exec. ;

test interrupt, 72s + ts, shift aq, 5 2> a flag » q flag;

a flag » ts, q flag + a flag, ts +» q flag, q store = ts,

a store » q store, ts -+ a store;
G|ENERATE SHIFT:
{ store{ts), store(number[2]), exponent sign, process name(1,0), 1}
A|SHIFT: { find a operand, .
a flag = 6: right paren, paren counter + | - paren counter; ;
generate shift, 7 -+ a flag,
Q|SHIFT: { find q operand,
q flag = 6: right paren, paren counter + | - paren counter; ;
generate shift, 7 » q flag, |
S|HIFT AQ: | aq register, store(ts), store(35s), exponent sign,
process name(1, 0), arrow, aq register, comma, carret,
A|Q REGISTER: | left bracket, right bracket, left paren, zero,
arrow, store(40 4lg), right paren, |. .

b
2DD: { test q interrupt, find a operand, space, plus, process name(0,0),
+ a flag,
SUBTRACT: | test q interrupt, find a operand, space, minus,
process name(1,0), 6 » a flag, |
MULTIPIY: | test a interrupt,
q flag = 6: right paren, paren counter + | - paren counter; ;
find q operand, space, multiply sign, process name(1,0), 7 » q flag, |
DIVIDE: { test a interrupt,
qQ flag = 6: right paren, paren counter + 1 - paren counter; ;
find q operand, space, divide sign, process name(1,0),
72> q flag, 5 > a flag,
%;ADD:f{a;est!a interrupt, find q operand, space, plus, process name(0,0),
q)
Q SUBTRACT: % test a interrupt, find q operand, space, minus,
process name(1,0), 6 + q flag, } . .
5| tabl Kip, skip, ski 4
¢ |ompare e = { no skip, skip, s 2, ski ski ski
SKip 6, skip T, ; ' P = P 3 P & P 5
COMPARE: | JJl1] » J, J = 2: test interrupt; ; compare table[Jj],
place parens, 1 + 1 > 1, generate alternatives,
NI%I%%R { return address, | S|KIP: { 1 + 1 > 1, return address. |
S s -
4 f£ind q operand, space, greater equal sign, process name(0,0), colon, }
S|KIP 35 | find q operand, less sign, process name(0,0), colon,
S|KIP 4: { rind q operand, greater equal sign, process name(0,0),
boolean and, find a operand, less sign, process name(0,0), colon, |

gJ'KIP 5: | find q operand, less sign, process name(0,0), boolean or,

nd a operand, greater equal sign, process name(0, 0’, colon, |}

SIKIP 6: | f£ind a operand, greater equal sign, process name(0,0), colon, }
S|KIP 7: | find a operand, less sign, process name(0,0), colon, }. .

5;
ENTER Q: | test interrupt, save paren space, process name(0,0),
storage + g store, 3 + q flag, |
ENTER A: | test interrupt, save paren space, process name (0,0),
storage + a store, 3 + a flag, |
ENTER B: | test interrupt, process name(0,0), arrow, Jj(i1] -+ J,
store(letter[J + 7)), comma, |}
STORE Q: | test a interrupt, find q operan% arrow, test ts needed,
condition # 0: 0 -+ condition; process name 6, 1), storage + q store;
Place parens, condition # 77s: 2 » q flag; 0 + condition; |
STORE A: | test q interrupt, find a operand, arrow, test ts needed,
condition # 0: 0 + condition; process name(0, 1), storage + a store;
Place parens, condition # 77e: 2 + a flag; 0 + condition; |
STORE B:
| test interrupt, JJ[1] # 0: J3[1] + J, store(letter[J + 7]); zero;
arrow, test ts needed, condition # 0: 0 + condition; process name((’J,l H
place parens, comma,
T|EST TS NEEDED: { O -+ condition,
yy[i] - first address > m, m ¢ 0 ym > max index: ;
kkl[1] = 1 N scan flag[m] # 0;: bb[i] # 0: 13 + k, error; ;

7 » condition, scan flag[m] = 4: Loop final value[m] + k;

ts index > k + 1 » ts index; ; ; ; condition = T:

4 » scan flag(m), kx + loop final valuegm], generate ts; ; |

GENERATE TS: | Lower case, store%ah 23 00a), store(letter[k]),

5;

ADD REPIACE:

{ test q interrupt, find a operand, space, plus, process name(0,0),
space, arrow, storage - a store, process name(0, 1), place parens,

2 <+ a flag,

SUB REPIACE:

| test q interrupt, find a operand, space, minus, process name(1,0),
space, e::;on, storage -+ a store, process name(0, 1), place parens,

2+ a flag,

ENTER LOG PRID: | test interrupt, save paren space, process name(0,0),
storage + a store, generate bit limits, 3 + a flag, |

ADD 10G PROD:

| space, plus, process name(0,0), generate bit limits, 6 + a flag, |
SUB L0OG PR(D:

| space, minus, process name(1,0), generate bit Limits, 6 + a flag, |
REPL LOG PRD: | test a interrupt, process name o, Og, storage » a store,
generate bit limits, space, arrow, process name(0,1), 2 + a flag,

REPL ADD LOG PR(D: | space, plus, process name (0,0), storage -+ a store,
generate bit limits, space, arrow, process name 0, l}. 2 » a flag,

REPL SUB LOG PRID: | space, minus, pProcess name(1,0), storage + a store,
bit Llimits, space, arrow, process name(0,1), 2 + a flag, |

STORE LOG PRID: | test a interrupt, process name(0,0), generate

bilt limits, space, arrow, process name(0, 1), comma, carret, | + a flag,
REPL SUBSTITUTE: { space, arrow, process name(0, 1), storage + a store,
generate bit limits, comma, carret, | -+ a flag, |

G|ENERATE BIT LIMITS: | left paren, lower bit Limit -+ storage,

gen

Appendix D: D-Neliac C 259

store decimal conversion, space, arrow, u?per bit limit -+ storage,
store decimal conversion, right paren,
S|TORE DECIMAL CONVERSION:
{ storage ¢ 10: storage » n, lower case, store(number(n]);
{ storage ¢ 20: storage - 10 + n, lower case, number n}] » ts,
number[1] » ts(6 - 11), store(ts); storage - 20 * n, Lower case,
number[n] + ts, number[2] + ts(6 -+ Hs, store(ts); ; 1. .

5;
10AD A ADD Q: | test a interrupt, find q operand, space, plus,
process name(0,0), 6 » a flag, |
LOAD A SUB Q: | test interrupt, save paren space, process name(0,0),
space, minus, ff[1 - 1] = 10a: £ - 1| + 1, process name(0,0), 1 + 1+ 1;
find q operand; 6 + a flag, |
ADD Q AND STCRE: | test q interrupt, find a operand, space, plus,
er[1 - 1] = 10g: 1 - 1 + 1, process name(0,0), 1 + 1 + 1; find q operand;
space, arrow, process name(0, 1), storage » a store, place parens,
2> a flag,
SUB Q AND STORE: | test q interrupt, find a operand, space, minus,
er{1 - 1] = 10g: 1 - 1 + 1, process name(0,0), 1 + 1+ i; find q operand;
;pace, arrow, process name(0, 1), storage -+ a store, place parens,
+ a flag,
TEST SUB Q: | ££[1 + 1] + ts, 30s < ts < 36s: return address. ; |. .

5;)

REPLACE ADD Q: | test interrupt, process name(0,0), space, plus,

££{1 - 1] = 10g: 4 - 1 » 1, process name(0,0), 1 + 1+ 1; find q operand;
space, arrow, !storage + a store, process name(0, 1), place parens,

2 + a flag,

REPIACE SUB Q: | test interrupt, process name(0,0), space, minus,
£r{1 - 1] = 10g: 1 - 1 > 1, process name(0,0), 1 + 1+ 1; find q operand;
space, arrow, storege + a store, process name (0, 1), place parens,

2 » a flag,

REPLACE ADD ONE: l test interrupt, process name(0,0), space, plus,

lower case, store{number{[1]), space, arrow, storage »> a store;

process name(0, 1), place parens, 2 + a flag,

REPIACE SUB ONE: | test interrupt, process name(0,0), space, minus,

lower case, store(mmber[i1]), space, arrow, storage -+ a store,

process name(0, 1), place parens, 2 > a flag, 1. .

5;
ARITTHMETIC JUMP: | test interrupt,
1¢ 33[1): 33(1) » coufariaon table(m], generate jump,
semicolon, carret; Jj[i] = 1:
yy(1] = sub entrance: finish subroutine. ;
generate jump, carret, £ind next instruction; ; ; }
MANUAL JUMP: |{ test interrupt, JJ[1) = O:
‘yy[1] = sub entrance: finish subroutine. ;
generate Jjump, rind next instruction;
33[1) = 4: 1 # exit index: generate exit jump; ; :
crutch upper half, generate jump, carTet; ; |
GENERATE JUMP: imm list index = 1+ L,
L= L(1)0§ yy[1] = name address{l]: lower case, store(name 1ist 1[1]),
4 - mult name rlag[l), period, end gen jump. ; |, e|nd gen Jump:
F|IND NEXT INSTRUCTION: | scan flagli - l] = 5: return address. ;
‘1 +1+3 3= 3(1)max index|{ indicator{J](0 + 2) = 7: §J -1+ 4,
return address. ; |, return address. {. .

5-
ARITHMETIC RET JUMP: | test interrupt,

260 Machine-1 .ndepe.ndent Computer Progmmming

1< 33[1): 33[1) » m, comparison table[m], generate ret jump,

semicolon, semicolon, carret; .

JJ[1) = 1: generate ret jump, comma, carret; ; ; |

MANUAL RET JUMP: | test interrupt, jj[1] = 0: generate ret jump,

comma, carret; crutch upper half, generate ret jump, comma, carret; |}
generate ret Eump: { name list index - 1 + |,
L= 1(1)0f yy[1] = name address[L]: Lower case, store(name list 1[L]),
4+ muit name riag{i], end gen ret jump. ; |,
e|nd gen ret jump: 5 > a flag + q flag, }. .

5
comparison table = { comparison 1, comperison 2, comparison 3,
comparison 4, comparison 5, comparison 6, comparison Ts s
q comp table = | comparison 1, comparison 6, comparison 7,
comparison 8, comparison 9, comparison 2, comparison 3 b
resume index, s|ave a flag, s|ave q flag;
TEST CONDITIONAL SKIP: | test sldp,
skip flaﬁ = 1: | J3(1] 2 2: test interrupt; ; JJ[(1] -1 + m,
rr[1] = 264 y ££[1] = 27s: q comp table[m]; comparison table[m];
Place parens, 1 + | + 1, generate alternatives, |; ;
GENERATE ALTERNATIVES:)
| a flag > save a flag, q flag + save q flag, test skip, _
skip flag = 1: 1 » gave index + | + 1, generate alt, 1 + 1 + resume index; »
semicolon, carret, i =+ save index + | » resume index;
save a flag + a flag, save q flag + q flag, space, space, space,
save index »> i, generate alt, resume index - 1+ 1, 5+ a flag + q flag, |
TEST SKIP: | rrgié = 12 £r[1] = 16s: 0 - skdip flag, end test siip.
{ n= 60g(1)76a} rr 1Y- n: 0 + skip rlag, end test skip. ; 1}, 1I;
JJ[1] # 0: 1 » sidip flag; 0 » skip rlag; e|nd test skip: |}
G|ENERATE AIT: | glen alt:
£r3{1] = 601e y 7r){1] = 6iCa: generate jump, carret, end gen alt. 3
trans late instruction, test skip, skip flag = 1: | 1 + 1 + 1, test skip,
skip flag = 1: 1 + | + 1, gen alt. test interrupt, semicolon; |;
test interrupt, semicolon; e|nd gen alt: |
ZERO: | Llower case, store(number),
C|OMPARISON 1: | 1 + | » 1, return address. |
C|OMPARISON 2: | find q operand, space, greater squal sign,
zero, colon, 5 + q flag, |
C | OMPARISON 32
| find q operand, space, less sign, zero, colon, 5 + q flag, |
C| OMPARISON 4:
| £ind a operand, space, equal sign, zero, colon, 5 + a flag, |
(’JIGIPARISQH 5:
find a operand, space, not equal s zero, colo +arft
?I;{H&RISON o ’ q ign, » n, 5 lag, |
& operand, space, greater equal s zero, colo +af
?lmmnxson = q ign, » n, 5 lag, |
find a operand, spece, less sign, zero, col >alft
?I(HP oN B3 s on, 5 lag, 1|
find q operand, space, equal s zero, colo +qfr
C | CMPARISON ¢ y €q ign, » n, 5+ q rlag, |
{ find q operand, space, not equal sign, zero, colon, 5 - q flag, |}. .

lower case, store(storage), storage(6 » 29) = 0: ; octal sign;
comma, space, 1 + 1 =+ 1, crutch instruction,

INDEX SKIP: ‘ test interrupt, right dbrace, comma, 1 + 1 > 1, |}
INDEX JUMP: { test interrupt, right dbrace, comma, |. .

H .
REPEAT: { test interrupt, crutch upper half, yg[i] +> yy, translate yy,
}

Appendix D: D-Neliac C 261

sub entrance;

GENERATE SUBROUTINE: { 0 » a flag -+ ? flag, subroutine index + J -1 >
3] » sub entrance, name subroutine,

subroutine index, subroutine address
sub entrance + 1 - first address - i,
1 = 1(1)maxindex{ max index < 1: 11 + k error; ;

test maslding, test entry or loop, ff{i] = 10a: test sub q;
test 10, translate instruction, test conditional skip, sb: |,
F|INISH SUBROUTINE: right brace,

N|AME SUBROUTINE: | name list index - 1 + ta,

n = ts(1)0{ name address[n) = sub entrance: end ns, ; is
E|ND NS: store(name list 1{n]), colon, left brace, space,

L 1]

SUBROUTINE EXEC: return address[2] » return address[0], subroutine index +

1 » k » subroutine index, name list index » j + 1 » name list index,
entrance + first address - name address[j] - subroutine address[k],

25 25 02 22 00 » name list 1[3], sequence number + | - sequence number - K,

letter[k~1] » first letter[J], 4 > mult name rlaglil,

S|Et1: generate subroutine, subroutine index # 0: sel. ;

double period, stop code, ceb.

GENERATE EXIT JUMP: | store(10 01 14 24e), period, carret, }
GENERATE EXIT: | store(10 01 14 2ia), colon, double period, stopcode,

5'
DUMP NAME LIST:

name list index = 0: 614005 manual load., ; 0 - upper case flag, start punch,

651005 start flex, 61100s dnll. leader, dnll: print carret,
n= O?I)H print(word name list dump(n}]), I,
print carret, print(11 14 07e), print(14 01 2lg), type limits,
print carret, name list index - 1> 1,
3 = 0(1)1{ mult name flag(J] = 0: step nl dump. ;
print lower case, print flex(name list 1[3]), storage = ts,
n=0(1)4} ta(24 > 29) = 0: print space; ; ts x 216 > ts, |»
print space, print lower case, name k desiglJ] » &k
print(flex code number{k]), print space, name address(3] » yv»
translate flex yy, print(storage), name address[j] ¢ rirst address y
max index + first address { name address[Jz:
print space, print(34 06 22 20 26s), print 14 06 20 228); 3
print carret, s|tep nl dump: |}, print(43s), 61100s dnl2. leaders
dnl2: stop punch, 65100s stop flex, 61400 manual Lload.
STORE DIMENSIONING STATEMENT: | rearrange name lList,
test ts used, name list index = 0: end dds. ; name list index - 1
a store, J = 0(1)a store{ name address{j} - first address > m,
name k desig{j] = 3 Nm 2 0 N m s max index N mult name rlag[g]l # O:
mult name rl.eg 3] = 7: test multiple name; ; ; step dump.
scan frlag[m 0: step dump. ; store (name List 1[J]),
instruction{m] # 0: equal sign, translate constants, store(ts[3]),
store(ts[4]), instruction[m](3 » 29) # 0: octal sign; ; ; ;
comma, step dump: |}, e|nd dds: semicolon,
TEST TS USED:
{ a store used = 1: n = 0(1)1{ store(word a store n]), }, comma; ;
q store used = 1: n = 0(1) 1] store(word q store[n]), 1}, comma; ;
ts index # O:
n= 1(1)ts index| store(24 23 00s), store(letter{n -~ 1]), comma,
NAME PROGRAM: | sequence number + 1 -+ sequence r -
entrance + first address -+ ts, entiance » n, indicator[n](0 + 2) = 7:
end np. ; name list index ®* n + | + name l1st index,
25 ot 22 24 00s + name list 1[n], letter[k - 1] » first letter{n],
8 »> mult name flag[n], ts -+ name address[n),
entrance » n, indicator(n] + 7 » indicator(n), e|nd np: |

}

»

!

-+ ts[3] + ts[4] > zero flag, instruction[m] -+ ts,
0 ero flag # 0: tran con 1, ;
$ 3 -+ ts, step tran con. ;
(27 + 29) + n, number(n] -+ ts[l]zall + 29), 1 » zero flag,
t x 216 + ts[L], s|tep trancon: |}, |, |

t index 2 2: name Llist index - 1 » ts - 1 > ts[3],

1)ts|3]| name k desig[Jj] = 3: name address[j] » ts[ze,

-3 lt s{ name address[l] < ts[2] N name k desig l.a - 3

L 1[L] » ts[1], name list 1[J] » name list i[L],

list 1{J), name list 2[L] » ts[1],

] > name list 2[L], ts[1] + name L1st 2[3],

name J} »tsl2); ; 1;; 15 ;

PRINT FIEX(p): { p=0: end pfn, :

0 » storage + zero flag, m » ta[l]. n -+ ts[2],

me=0(1)4f p(24 +» 29) » n, storage x 216 + storage, n = 0 N zero ru? = 0:
set -+ zero flag, storage + rlexcodein] -+ storage; p x 26 =+ p, |,

print(storage), ts[1) + m, ts(2) » n, e|nd prn: |. .

5
S|HIFT INSTR: | s|hift rr(24 » 23), széhirt yy(0 » 14), A
E|NTER MASK INSTR: | e|nter kk(i8 + 20), e|nter yy(0 > 14, 1,
C|OMMAND: | ;:Aorn rr(24 » 29), c|om index(0 - 14), |,
E|XTRA COMMAND: | e|x com fr(24 » 29), |,
lower bit Limit, upper bit Llimit, s|tart mask flag, o|ld mask,
m|ask, e|nd mask rl.a?;
TEST MASKING: { rr[1] = 10e: J3[1] = 0: 1 +1+*n; 1 +2+n;
test mask instr, condition = |: mask exec. ; ;
TEST CONTINUE MASKING: { n = 1(1)1 + 3| test mask
condition = i: end tem. ; |}, e|nd tem:
T|EST MASK INSTR:
| 378 < rf[n] < 508 y £f[n] = 57s: 1| + comdition; 0 + condition; |}
MASK EXEC: mask + old mask, n = 0(1)4{ 0 » shift instr(n], |,
test entry or loop, store mask sequence, process maslk, com index - i,
translate instruction, resume index + 1, test continue masicing,
condition = |: mask exec. ; rr{i] = 7: a flag + q flag, 5 + a f'lag;
1 - 1-+4; return address.
S|TORE MASK SEQUENCE:
{ ££{1] = 7 y ££{1] = 3: instruection[i] + shirt instr, 1 + 1 » 1;
£r{1] = 10s: instruction[1] + enter mask instr,
JJ(1] = 1: instruction{i + 1] » mask, 1 +2+1; 1 +1+1; ; ;
i +n, test mask instr, condition = I: instruction[1] + command,
i > comindex, 1 + 1+ 1; ; rri1] = 53,:
instruction{1] > extra command, 1 + 1 > 1; ; 1 + resume index, |
P|ROCESS MASK: { enter kk = 0 N enter mask instr # 0: enter Yy - mask;
enter kk = 3 N mask = 0: enter yy - first address - m,
m<0ymd> max index: 1| -+ mask; instruction[m] -+ mask;
enter kic = 4: enter yy + mask,
enter kk(12 » me) 3: TTTTTe » mask(15 > 29)
mask = 0 N shift £f # 0: find bits from shift
mask = 0 N shift £ = 0: ‘old mask -+ mesk; ;
com ff = 57¢: - mask + mask; ;
find bit limits, e|nd process mask: |
F|IND BIT LIMITS: | O - lower bit limit + start mask flag + end mask flag,
mask + ts, m = 0(1)29{ start mask flag = O:
ta(0 + 0) = 1: m + Lower bit limit, | -+ start mask rlag; ; ;
end mask flag = 0: t5(0 + 0) = O: m -~ | + upper bit Limit,
1 > end mask flag; ; ; ts(0 > 0) = 1: 3 + k, mask error. ; ; ;
ts / 211 > ts, |,

H
instr,

-e

-e

.
» 2

“ws s Vo
ws
w.

Appendix D: D-Neliac C 263

F|IND BITS FROM SHIFT: | shift ff = 3: shift yy > t8 z 30: ts - 60 » ts; ;
lower bit limit - ts -+ lower bit Llimit, upper bit limit - ts -+
upper bit limit; shift ff = 7:
shift yy > ts 2 30: ts - 60 > ts; ; lower bit limit + ts =+
lower bit limit, upper bdbit Limit + ts + upper bit limit; ; ; }
M|ASK ERROR: error, . .

53

TEST MUITIPLE NAME:

{ mult nams flag(j] = O: step dump. ; name address(j] < first address
U max index + first address < name address(j]: step dump. ;

mult name flag[Jj] # 7: end test mult name, ;

name address[j] + 1 - ts8 - 1| - first address - save index,

0 » end loop index,

T|EST MULT NAME: m = name List index(1)0} ts = name address(m]:
finish mult name, ; |, ts - first address + m,

scan rlag{m] # 0: finish mult name. ;

end Lloop index + | + end loop index, ts + | + ts, test pult name,

F|INISH MULT NAME:

end Loop index = 0: end test mult nmame. ; gtore(name list 1[J])),

left paren, end loop index + | + yy, translate flex yy, store{storage),

right pare save index - m + end loop index -+ end loop index,

scan rus[nn.] # 7: m = save index(1)end loop indexi instruction(m] # 0:

dump cells, ; }; ; comma, step dump,

D|UMP CELIS: equal sign, m = save index(1)end loop index

{ mtruction[nl 7 0: translate constants, store(ts[3]), store(ts(#]),
instructionim])(3 + 29) = 0: ; octal sign; ; ; comms, |,
step dump. e|nd test mult name: j. .

5

a|reg, f|un cods, e|quip flag;

TEST I10:
re[1] > ts, ts = 13g U ts = 17s: 10 exec. ; T2s < ts { TTe: 10 exec. ;
1s € t8 £ 6&.: 10 exec. ; 65¢ { ts < T0s: 10 exec. ; R

I|0 EXEC: rr{i1] = 134 N £f{1 + 1] = 62¢: generate output. ;

r[1] = 178 N ££[1 + 1] = 635: generate input, ;

I|O 1: instruction[1](15 + 29) = 50000s: yy[1] > & reg, 1 + 1 > 1;

1 4+41+1, 40 1. a reg = 160g: turn off. ; a reg = 161s: turn on input.;

0(1)21 1]o 2: £ri[1) = 133s N yy[1] # O

J=001 : yy[1) » fun code, 1 + 1 * 1;
; +1 -+ 1,{_%::.‘3:‘:.1 Is rtmicode(B ;ug) ;dl: 1 *» equip flag;

-+ equip 5 + 1+ 1, gen equip wis, . o _
T|ORN OFF: J = 01511 1j0 3: ££3(1] = 1334 N yyl1] # 0: yy[1] + fun code,
1 +1+4;1+1+1, 103. |, ﬁmcode(}*%{- 1t 11g » equip rlag;

fun code(3 + 5) = 2: 3¢ + equip flag; 12¢ ~ equip flag; ;

+1 -1, gen equip wds.

1
T|URN ON INPUT: I|O 4:
1

rei{1] = 6319: 1 +1+41;1 + 11, 104, 2+ equip flag,

G|EN EQUIP WDS: test inte t, apace, T case,

equip flag(3 + 5) = 0: store 2&01301201.5; store (24010355¢); space,
equip f 0+2) = 1: store(26112027,s);

equip £lag(0 + 2) = 2: store(552012a); store(52455s); ;

comma, carret, i - 1| »+ i, return address.

ENERATE OUTPUT: test interrupt, space, upper case, stom(222k0755’): Jump.
ENERATE INPUT: test interrupt, space, upper case, store(26131111e)s
J|vMP: 1Lert paren, space, process name(0, 0), right pearen,

comma, carret, 1 + 1 + 1, return address. .

5.
MANUAL LOAD: § + exit index, k -+ entrance, restors variadbles, 0 = i,

264 Machine-Independent Computer Programming

load source program, start flex, type Limits, stop flex,

61400 mamal clear names.

TYFE LIMITS: | print carret, yy + ts[7], first address - yy,

translate flex yy, | + upper case flag, print lower case, print (storege),
print space, first address + max index - YY, translate flex yy,

print (storage), print carret, entrance + first address » b2 /)

translate flex yy, print (atorago). nt space, exit index 4 firat address »

¥V, translate flex yy, print(storage), print carret, ts{7] -+ yy, . e
53 . .

IM'WAL CIEAR NAMES: clear name list, 614005 manuat decompile. .

5.

MANUAL DECOMPILE: entrance + 1, initial scan, command exec. .

5-
MANUAL DCMPL SUBR: entrance + 1, 7 + sean flag[1], 1 + 1 + 1,
initial scan, subroutine exec..

5.
MANUAL STORE NAMES: store name list; 61400, manual decompile. .

S

t|emp;

MANUAL SET PARAMETERS: max index -+ teap, J = first address + exit index,
k - first address + entrance, return address[!) + return address{[0]},

n= 750(1)3028{ 0 +» instruction(n], |,

n=0(1)199{ 0 » mult name rlag{n], |, temp » max index, start flex,
type limits, stop flex, 61400 manual clear names. .

5

set = Ts

FIEX CIDE: rlex code letter(27) = &4, 305, 23s, 16a, 224, 209, 26e, 13,

50 ‘40» 320: 36» 1les 07. '» 30 '5‘0 35.0 '2.: #:la b 3“.: '7.: 3'0:

flaxcoas’ noity (10) = 37e, 524, The, 70y, Glts, 628, 660» 720, 60gs 33

code mumber - [1 » » » 8» » 8 »] 8

35T 473127.. &7 57‘-&‘ 75251» 70““&6 o 05704,
750570“.1 75“57“0. 766570 [} ~ 89 0 (1] “‘7 2570"'.:

:“’752570“.: u M.o u7725704u 750570“01 2: 5000 uﬁoulo

8,

¢ comma(15 » 295 clc semicolon{0 » 14) | =« 4600047,

e S. cje colon(0 + 1) | = 5000051,

¢ left paren(15 + 29}, ¢|c right paren(0 = 14 l = 5200053,

c 29), cjc right brace(0 + 14 - ?6000 Tes

¢ loft bracket(15 + 29), c|c right bracket(0 » 14)] = 5800055,

¢ + 29) ¢ less than(0 » mz | = 60000634,

b » clc greater than(0 +» 14) | & 6100065,

¢ clo plus(0 + 14) | = 6600067,

¢ vide(0 - 14) | = 7000071a,

¢ mltiply(15 + 29), c|e color shift(0 + I4) | = 7200073,

emp name sign(15 + 29), c|c absolute(i5 + 29), '

eruteh(15 + 29), c|c crutch code(15 + 29), elc or(0 - 1#) | = TH0007S,,

¢ anmd(15 » 29), clc octal s1gn(0 + 14) | = 76000k5,,

¢ exponent sign(I% + 29), a|n operator(0 + 14) | = 71000#6.

wnct area minus 1{15 +°29), plunct area plus 1(0 + 14) | = §500052,,

number(15 » 2?). a|letter(0 » 14) | = 3300032,
BUFFER: | f|irst frame dump burfer(0 » 5),

ast freme dump buffer(24 + 29), |, function flag,

ae
s
g
O P

vnoa«aonooaoooo#

ie

Appendix D: D-Neliac C 265

FLOWCHART BUFFER: { f|irst frame flowchart buffer(0 -+ 5), ’,

{ cjurrent operator(0 + 14), p|resent character(is + 23), |,

temp b storege, temp fc storage, temp pc storage, flochrt addr storage,

{ £|rame counter(0 -+ 14), c(!haractcr counter{15 + 29), |,

’ cjarriage return counter(0 -+ 14), u|pper loop limt(l? +29), 1},
c|omparison counter(0 » 14), c|omparison type(15 + 29}, |,

| njame found flag(0 » 14), clase rlag(15 + 29) R _

| clonstant riag(0 + 14), o|ptional end of line(15 » 29), |,

| p|unctuation counter(0 + 14), c|olon counter(15 + 29), |,

{ pirint rlag(0 + 14), e|nd of line count{15 + 29), |,

t |emporary storage(10);

DUMP FLOWCHART: DUMP DIMENSIONING STATEMENT:
{ L= 18(1)0f 0 » dump buffer(l]), |, read next character,
store flowchart parameters, 1 - upper case flag, carriage return
lowercase, condition # 0: dds enter. ; S0e = last frame dump burfer[1],
dump one number, d|ds enter: carriage return lLower case,
0 -+ upper loop limit, set » name found flag,
E|NTER: character counter + | + character counter z end of line ecount N
print flag # 0: return carriage, indent, | -+ character counter,
56 -+ end of line count, 0 + print flag + punctuation counter =+
case flag + optional end of line, store flowchart parameters; ;
S|TART: print flag # 0: print character. ;
cc right brace < present character ¢ cc right arrow: O-name found flag; H
Present character = cc right paren N current operator = cc left paren N
punctuation counter # 0 N skip flag = 0: reset. ;
current operator ¥ cc left bracket N cc right arrow ¢ present character <
cc exponent sign: character counter + optional end of line; ;
present character = cc right arrow N current operator # cc left paren:
character counter -+ optional end of line; ;
current operator = cc colon N present character ¥ cc right brace N
present character # cc period N present character # cc comma:
) colon counter + | + colon counter, reset. ;
constant filag = 0: | temporary storage{l] z an operator N a letter ¢
present character < cc octal sign: set » constant flag; ; I;
{ present character = cc period:
cc octal sign » present character; ; |;
punct area minus | < present character < cc colon N function flag = 0:
{ current operator = cc left paren: set + function flag;
set + name found flag, character counter - punctuation counter; i;;
present character = cc right paren N current cperator # cé¢ left paren N
current operator ¥ cc right arrow: 0 - function flag; ;
present character = cc right brace: character counter -+ punctuation counter;;
present character = cc right brace y
present character = cc left brace: | set + name found flag,
punctuation counter # 0: set -+ skip flag; ; }; ;
present character { cc octal sign y present character = temp name sign:
{ character counter + upper loop Llimit z 56 N
current operator # cc left paren: { punctuation counter = 0:
{ optional end of iine = 0: character counter -+
punctuation counter; optional end of line -»
punctuation counter; {; ; reset. |;)
| skip flag # 0: { punct area minus | < current operator <
cc colon y current operator = cc left brace y
current operator = cc left bracket: reset. ; i; ; I; |;
current operator -+ temporary storage[1),
0 + constant flag, present character -+ current operator;

grint r = 0: margin control. ;
| RINT cl:ﬁmcm: present character = temp name sign N case flag # 0:

266 Machine-Independent Computer Programming

print(575047s), look ahead. ; present character + 1 a cec octal sign:
Present character + current operator = ce colon:
cc comma -+ current operator; ; |;
{ L & a number N case flag # 0: print lower case, decode and print,
print uppercase, look ahead. ; |;
decode and print, [J - 1] = 0: exit. ; look ahead,
M|ARGIN CONTROL: comparison type # 0: | present character = cc period y
present character = c¢c semicolon: character counter -+
punctuation counter, comparison counter < 2:
1 + comparison counter -+ comparison counter; ;
comparison counter = 2: set - skip flag; ; |; ;
present character = cc right brace U present character = cc colon y
Present character = cc left brace: comparison type -
comparison counter -+ comparison type, 0 -+ comparison counter; ;
comparison type = comparison counter:
0 » comparison type + comparison counter; ; |; ;
L|OOK AHEAD: present character - temporary storagel4],
read any character, enter.
R|ESET: colon counter ¢ 2 N punctuation counter # 0:
punctuation counter + end of line count; | 0 + colon counter,
name fourd flag # 0: | temporary storage[1] = cc left brace: go on. ;
set -+ case flag, return carriage, uppercase,
carriage return counter = 28: return carriage; ; indent, |;
2 + comparison type -+ comparison type,
G|O ON: cc comma - current operator, character counter - | -+
punctuation counter, margin control. character counter - | -+
end of line count, ; set »+ print flag, 0 + character counter -
skip flag, restore flowchart parameters, start.
I|NDENT: | comparison type - comparison counter -+ upper Loop limit,
upper ioop iimit(0 + 0) # 0: 1 + upper loop Limit - upper Loop limit; ;
upper 100%' limit x 2 + upper loop Limit z I:
L= i{1)upper loop limit| rd space, 1}; ; I,
R|ETURN CARRIAGE: { print carret, carriage return counter z 29:
. xml-_'- 3§I)OI print carret, |, 0 + carriage return counter; ; |,
R|EAD NEXT CHARACTER: | e|xtract next frame:
frame counter - | + frame counter < 0: [J] + flowchart buffer,
J+1 3, 4 frame counter; ; flowchart buffer x 2t6 +
f lowchart buffer, flowchart burrer(() + 5) + present character = 0:
extract next e 3 |
R|EAD ANY CHARACTER: i frame counter ~ ! - frame counter ¢ 0:
{3J] » flowchart burfer, J + 1 » J, 4 » frame counter; ;
f lowchart buffer x 216 -+ flowchart buffer,
rl.owchart burfer(0 + 5) + present character, |
D|{UMP ONE NUMBER: | L » dump one number(15 + 29), dump buffer{i1] x 2t3 »
dump burfrer{1], dump burfer[1](0 + 2) + 27 + L, decode and print,
dump one number(15 » 29) » I, |
DlEC(DE AND PRINT: | print(flexcode(l]), }
C |ARRIAGE RETURN: | print(45e), 1| + carriage return counter -
e e return counter,
€ |ARRIAGE RETURN LOWER CASE: | carriage return, print lower case, |
C |ARRIAGE RETURN UPPER CASE: | carriage return, print upper case, |
S |TORE FLOWCHART PARAMETERS:
{ flowchart buffer » temp b storage, frame counter > temp fc storage,
present character + temp pc storage, J -+ flochrt addr storage,
R|ESTORE FLOWCHART PARAMETERS:
{ temp fb storage - flowchart buffer, temp fc storage -+ frame covimter,
temp storage - sent character, flochrt addr storage -+ J,
F|D sPAcE: ! prm‘iﬂ?. 'f !

Appendix D: D-Neliac C 267

5;

MANUAL BIO LOAD: 3§ -+ exit index, k » entrance, restore variables,

. 0 » 3, start reader,

B|L: read bio frame, workspace = 0: bl, ;

read five frames, ts(15 » 29) » first address, ts(0 > 14) -

first address -+ max index - J,

1 = 1(1)J{ read five frames, ts = instruction[i], 1}, stop reader,
exlt index - first address > exit index, entrance - first address -
entrance, start flex, type limits, stop flex, 61400gmanual clear names,
READ FIVE FRAMES: | 0 » ts,

n=0(1)4f read bio frame, ts x 216 + workspace = ts, 1}, |

READ BIO FRAME: | 17130gworkspace, rbfd|elay: 63rooerbfdelay, bo W

Absolute addresses

with subscripting 29

with noun lists 18
Absolute signs for spacing 34
Algebraic grouping 14
Algol

origin 5

forms of 21
Algorithms 6
Assemblers 4, 117
Automation 140

Character sets
Comments 21

Comparison loads 126
Comparison statements 12, 15, 30
Conditional alternatives 20
nesting of 32
Context 47, 77
Crutch notation 20
Dbug 127
Decisions 7, 13
Dimensioning Statements 6, 17
Entry points and labels 8
transfering to 26
Exponentiation 18
Floating point notation 17
Format 34, 131
For statements 13, 27
Functional notation
Generators 33
List of 82
1. The return jump 88

2. Generate store instructions 92

3. Straight jumps or uncon-
ditional tranfers 97

4. Generate an entry point or

label 101

INDEX

10. Transfer machine language
114

11. Addition 118

12. Subtraction 119

13. Multiplication 120

14. Division 120

Hard copy 1

Hardware language 22
IAL 5

IF statements 12, 15, 30
Indices 25, 28

Indexing 11

Indirect addressing 19
Lists 9

Load Numbers 55
Localization of nouns and verbs 26
Loops 13, 27
Multilinguality

first level 38
second level 42

Nouns 8

localization of 26

Noun lists 6, 17, 25
Number systems.

binary 50
octal 51

Octal sign 20

Part words 18
Programs, definition 1
Program logic 6
Quotation marks 33, 130
Redundant words 31
Scientific notation 16

Shifting 18
Spacing

in programs 31
in output statements 34

Subroutines

5. Terminating subroutines 102

Generating loops 103

6. Generating subroutine
entrances 104

7. Subscripting 105

8. Set comparison 107

definition 14
use of 18
calling upon 9, 26

Subscripting 28
Switches 28
Symbol strings 55
Verbs

9. Enter the working register 113

localization of 26

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00011
	00012
	00013
	00014
	00015
	00016
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	Index

