– A General Introduction –
Version 2.1 (2003)
Nick Bostrom*
Faculty of Philosophy
Oxford University
10 Merton Street, Oxford OX1 4JJ, U. K.
Published by the World Transhumanist Association
* Please see endnote for document history and acknowledgments.
CONTENTS
1 GENERAL QUESTIONS ABOUT TRANSHUMANISM
2 TECHNOLOGIES AND PROJECTIONS
2.2 What is molecular nanotechnology?
2.3 What is superintelligence?
2.5 What is cryonics? Isn’t the probability of success too small?
3.1 Will new technologies only benefit the rich and powerful?
3.2 Do transhumanists advocate eugenics?
3.3 Aren’t these future technologies very risky? Could they even cause our extinction?
3.6 Will extended life worsen overpopulation problems?
3.8 What kind of society would posthumans live in?
3.9 Will posthumans or superintelligent machines pose a threat to humans who aren’t augmented?
4.1 Why do transhumanists want to live longer?
4.2 Isn’t this tampering with nature?
4.3 Will transhuman technologies make us inhuman?
5 TRANSHUMANISM AS A PHILOSOPHICAL AND CULTURAL VIEWPOINT
5.1 What are the philosophical and cultural antecedents of transhumanism?
5.2 What currents are there within transhumanism? Is extropianism the same as transhumanism?
6.1 What are the reasons to expect all these changes?
6.2 Won’t these developments take thousands or millions of years?
6.4 How can I use transhumanism in my own life?
6.5 How could I become a posthuman?
7 ACKNOWLEDGEMENTS AND DOCUMENT HISTORY
(1) The intellectual and cultural movement that affirms the possibility and desirability of fundamentally improving the human condition through applied reason, especially by developing and making widely available technologies to eliminate aging and to greatly enhance human intellectual, physical, and psychological capacities.Transhumanism can be viewed as an extension of humanism, from which it is partially derived. Humanists believe that humans matter, that individuals matter. We might not be perfect, but we can make things better by promoting rational thinking, freedom, tolerance, democracy, and concern for our fellow human beings. Transhumanists agree with this but also emphasize what we have the potential to become. Just as we use rational means to improve the human condition and the external world, we can also use such means to improve ourselves, the human organism. In doing so, we are not limited to traditional humanistic methods, such as education and cultural development. We can also use technological means that will eventually enable us to move beyond what some would think of as “human”. It is not our human shape or the details of our current human biology that define what is valuable about us, but rather our aspirations and ideals, our experiences, and the kinds of lives we lead. To a transhumanist, progress occurs when more people become more able to shape themselves, their lives, and the ways they relate to others, in accordance with their own deepest values. Transhumanists place a high value on autonomy: the ability and right of individuals to plan and choose their own lives. Some people may of course, for any number of reasons, choose to forgo the opportunity to use technology to improve themselves. Transhumanists seek to create a world in which autonomous individuals may choose to remain unenhanced or choose to be enhanced and in which these choices will be respected. Through the accelerating pace of technological development and scientific understanding, we are entering a whole new stage in the history of the human species. In the relatively near future, we may face the prospect of real artificial intelligence. New kinds of cognitive tools will be built that combine artificial intelligence with interface technology. Molecular nanotechnology has the potential to manufacture abundant resources for everybody and to give us control over the biochemical processes in our bodies, enabling us to eliminate disease and unwanted aging. Technologies such as brain-computer interfaces and neuropharmacology could amplify human intelligence, increase emotional well-being, improve our capacity for steady commitment to life projects or a loved one, and even multiply the range and richness of possible emotions. On the dark side of the spectrum, transhumanists recognize that some of these coming technologies could potentially cause great harm to human life; even the survival of our species could be at risk. Seeking to understand the dangers and working to prevent disasters is an essential part of the transhumanist agenda. Transhumanism is entering the mainstream culture today, as increasing numbers of scientists, scientifically literate philosophers, and social thinkers are beginning to take seriously the range of possibilities that transhumanism encompasses. A rapidly expanding family of transhumanist groups, differing somewhat in flavor and focus, and a plethora of discussion groups in many countries around the world, are gathered under the umbrella of the World Transhumanist Association, a non-profit democratic membership organization. References: World Transhumanist Association. http://www.transhumanism.org(2) The study of the ramifications, promises, and potential dangers of technologies that will enable us to overcome fundamental human limitations, and the related study of the ethical matters involved in developing and using such technologies.
Many transhumanists wish to follow life paths which would, sooner or later, require growing into posthuman persons: they yearn to reach intellectual heights as far above any current human genius as humans are above other primates; to be resistant to disease and impervious to aging; to have unlimited youth and vigor; to exercise control over their own desires, moods, and mental states; to be able to avoid feeling tired, hateful, or irritated about petty things; to have an increased capacity for pleasure, love, artistic appreciation, and serenity; to experience novel states of consciousness that current human brains cannot access. It seems likely that the simple fact of living an indefinitely long, healthy, active life would take anyone to posthumanity if they went on accumulating memories, skills, and intelligence.
Posthumans could be completely synthetic artificial intelligences, or they could be enhanced uploads [see “What is uploading?”], or they could be the result of making many smaller but cumulatively profound augmentations to a biological human. The latter alternative would probably require either the redesign of the human organism using advanced nanotechnology or its radical enhancement using some combination of technologies such as genetic engineering, psychopharmacology, anti-aging therapies, neural interfaces, advanced information management tools, memory enhancing drugs, wearable computers, and cognitive techniques. Some authors write as though simply by changing our self-conception, we have become or could become posthuman. This is a confusion or corruption of the original meaning of the term. The changes required to make us posthuman are too profound to be achievable by merely altering some aspect of psychological theory or the way we think about ourselves. Radical technological modifications to our brains and bodies are needed. It is difficult for us to imagine what it would be like to be a posthuman person. Posthumans may have experiences and concerns that we cannot fathom, thoughts that cannot fit into the three-pound lumps of neural tissue that we use for thinking. Some posthumans may find it advantageous to jettison their bodies altogether and live as information patterns on vast super-fast computer networks. Their minds may be not only more powerful than ours but may also employ different cognitive architectures or include new sensory modalities that enable greater participation in their virtual reality settings. Posthuman minds might be able to share memories and experiences directly, greatly increasing the efficiency, quality, and modes in which posthumans could communicate with each other. The boundaries between posthuman minds may not be as sharply defined as those between humans. Posthumans might shape themselves and their environment in so many new and profound ways that speculations about the detailed features of posthumans and the posthuman world are likely to fail.A transhumanist is simply someone who advocates transhumanism [see “What is transhumanism?”]. It is a common error for reporters and other writers to say that transhumanists “claim to be transhuman” or “call themselves transhuman”. To adopt a philosophy which says that someday everyone ought to have the chance to grow beyond present human limits is clearly not to say that one is better or somehow currently “more advanced” than one’s fellow humans.
The etymology of the term “transhuman” goes back to the futurist FM-2030 (also known as F. M. Estfandiary), who introduced it as shorthand for “transitional human”. Calling transhumans the “earliest manifestation of new evolutionary beings,” FM maintained that signs of transhumanity included prostheses, plastic surgery, intensive use of telecommunications, a cosmopolitan outlook and a globetrotting lifestyle, androgyny, mediated reproduction (such as in vitro fertilization), absence of religious beliefs, and a rejection of traditional family values. However, FM’s diagnostics are of dubious validity. It is unclear why anybody who has a lot of plastic surgery or a nomadic lifestyle is any closer to becoming a posthuman than the rest of us; nor, of course, are such persons necessarily more admirable or morally commendable than others. In fact, it is perfectly possible to be a transhuman – or, for that matter, a transhumanist – and still embrace most traditional values and principles of personal conduct. References: FM-2030. Are You a Transhuman? (New York: Warner Books, 1989).
Coal and diamonds, sand and computer chips, cancer and healthy tissue: throughout history, variations in the arrangement of atoms have distinguished the cheap from the cherished, the diseased from the healthy. Arranged one way, atoms make up soil, air, and water arranged another, they make up ripe strawberries. Arranged one way, they make up homes and fresh air; arranged another, they make up ash and smoke.
Nanotechnology, by making it possible to rearrange atoms effectively, will enable us to transform coal into diamonds, sand into supercomputers, and to remove pollution from the air and tumors from healthy tissue. Central to Drexler’s vision of nanotechnology is the concept of the assembler. An assembler would be a molecular construction device. It would have one or more submicroscopic robotic arms under computer control. The arms would be capable of holding and placing reactive compounds so as to positionally control the precise location at which a chemical reaction takes place. The assembler arms would grab a molecule (but not necessarily individual atoms) and add it to a work-piece, constructing an atomically precise object step by step. An advanced assembler would be able to make almost any chemically stable structure. In particular, it would be able to make a copy of itself. Since assemblers could replicate themselves, they would be easy to produce in large quantities. There is a biological parallel to the assembler: the ribosome. Ribosomes are the tiny construction machines (a few thousand cubic nanometers big) in our cells that manufacture all the proteins used in all living things on Earth. They do this by assembling amino acids, one by one, into precisely determined sequences. These structures then fold up to form a protein. The blueprint that specifies the order of amino acids, and thus indirectly the final shape of the protein, is called messenger RNA. The messenger RNA is in turned determined by our DNA, which can be viewed (somewhat simplistically) as an instruction tape for protein synthesis. Nanotechnology will generalize the ability of ribosomes so that virtually any chemically stable structure can be built, including devices and materials that resemble nothing in nature. Mature nanotechnology will transform manufacturing into a software problem. To build something, all you will need is a detailed design of the object you want to make and a sequence of instructions for its construction. Rare or expensive raw materials are generally unnecessary; the atoms required for the construction of most kinds of nanotech devices exist in abundance in nature. Dirt, for example, is full of useful atoms. By working in large teams, assemblers and more specialized nanomachines will be able to build large objects quickly. Consequently, while nanomachines may have features on the scale of a billionth of a meter – a nanometer – the products could be as big as space vehicles or even, in a more distant future, the size of planets.Because assemblers will be able to copy themselves, nanotech products will have low marginal production costs – perhaps on the same order as familiar commodities from nature’s own self-reproducing molecular machinery such as firewood, hay, or potatoes. By ensuring that each atom is properly placed, assemblers would manufacture products of high quality and reliability. Leftover molecules would be subject to this strict control, making the manufacturing process extremely clean.
The speed with which designs and instruction lists for making useful objects can be developed will determine the speed of progress after the creation of the first full-blown assembler. Powerful software for molecular modeling and design will accelerate development, possibly assisted by specialized engineering AI. Another accessory that might be especially useful in the early stages after the assembler-breakthrough is the disassembler, a device that can disassemble an object while creating a three-dimensional map of its molecular configuration. Working in concert with an assembler, it could function as a kind of 3D Xerox machine: a device for making atomically exact replicas of almost any existing solid object within reach. Molecular nanotechnology will ultimately make it possible to construct compact computing systems performing at least 1021 operations per second; machine parts of any size made of nearly flawless diamond; cell-repair machines that can enter cells and repair most kinds of damage, in all likelihood including frostbite [see “What is cryonics? Isn’t the probability of success too small?”]; personal manufacturing and recycling appliances; and automated production systems that can double capital stock in a few hours or less. It is also likely to make uploading possible [see “What is uploading?”]. A key challenge in realizing these prospects is the bootstrap problem: how to build the first assembler. There are several promising routes. One is to improve current proximal probe technology. An atomic force microscope can drag individual atoms along a surface. Two physicists at IBM Almaden Labs in California illustrated this in 1989 when they used such a microscope to arrange 35 xenon atoms to spell out the trademark “I-B-M”, creating the world’s smallest logo. Future proximal probes might have more degrees of freedom and the ability to pick up and deposit reactive compounds in a controlled fashion. Another route to the first assembler is synthetic chemistry. Cleverly designed chemical building blocks might be made to self-assemble in solution phase into machine parts. Final assembly of these parts might then be made with a proximal probe. Yet another route is biochemistry. It might be possible to use ribosomes to make assemblers of more generic capabilities. Many biomolecules have properties that might be explored in the early phases of nanotechnology. For example, interesting structures, such as branches, loops, and cubes, have been made by DNA. DNA could also serve as a “tag” on other molecules, causing them to bind only to designated compounds displaying a complementary tag, thus providing a degree of control over what molecular complexes will form in a solution. Combinations of these approaches are of course also possible. The fact that there are multiple promising routes adds to the likelihood that success will eventually be attained. That assemblers of general capabilities are consistent with the laws of chemistry was shown by Drexler in his technical book Nanosystems in 1992. This book also established some lower bounds on the capabilities of mature nanotechnology. Medical applications of nanotechnology were first explored in detail by Robert A. Freitas Jr. in his monumental work Nanomedicine, the first volume of which came out in 1999. Today, nanotech is a hot research field. The U.S. government spent more than 600 million dollars on its National Nanotechnology Initiative in 2002. Other countries have similar programs, and private investment is ample. However, only a small part of the funding goes to projects of direct relevance to the development of assembler-based nanotechnology; most of it is for more humdrum, near-term objectives. While it seems fairly well established that molecular nanotechnology is in principle possible, it is harder to determine how long it will take to develop. A common guess among the cognoscenti is that the first assembler may be built around the year 2018, give or take a decade, but there is large scope for diverging opinion on the upper side of that estimate. Because the ramifications of nanotechnology are immense, it is imperative that serious thought be given to this topic now. If nanotechnology were to be abused the consequences could be devastating. Society needs to prepare for the assembler breakthrough and do advance planning to minimize the risks associated with it [see e.g. “Aren’t these future technologies very risky? Could they even cause our extinction?”]. Several organizations are working to preparing the world for nanotechnology, the oldest and largest being the Foresight Institute. References: Drexler, E. The Engines of Creation: The Coming Era of Nanotechnology. (New York: Anchor Books, 1986). http://www.foresight.org/EOC/index.html Drexler, E. Nanosystems: Molecular Machinery, Manufacturing, and Computation. (New York: John Wiley & Sons, Inc., 1992). Freitas, Jr., R. A. Nanomedicine, Volume I: Basic Capabilities. (Georgetown, Texas: Landes Bioscience, 1999). Foresight Institute. http://www.foresight.orgTheatre, opera, cinema, television can be regarded as precursors to virtual reality. The degree of immersion (the feeling of “being there”) that you experience when watching television is quite limited. Watching football on TV doesn’t really compare to being in the stadium. There are several reasons for this. For starters, even a big screen doesn’t fill up your entire visual field. The number of pixels even on high-resolution screens is also too small (typically 1280*1224 rather than about 5000*5000 as would be needed in a flawless wide-angle display). Further, 3D vision is lacking, as is position tracking and focus effects (in reality, the picture on your retina changes continually as your head and eyeballs are moving). To achieve greater realism, a system should ideally include more sensory modalities, such as 3D sound (through headphones) to hear the crowd roaring, and tactile stimulation through a whole-body haptic interface so that you don’t have to miss out on the sensation of sitting on a cold, hard bench for hours.
An essential element of immersion is interactivity. Watching TV is typically a passive experience. Full-blown virtual reality, by contrast, will be interactive. You will be able to move about in a virtual world, pick up objects you see, and communicate with people you meet. (A real football experience crucially includes the possibility of shouting abuse at the referee.) To enable interactivity, the system must have sensors that pick up on your movements and utterances and adjust the presentation to incorporate the consequences of your actions. Virtual worlds can be modeled on physical realities. If you are participating in a remote event through VR, as in the example of the imagined football spectator, you are said to be telepresent at that event. Virtual environments can also be wholly artificial, like cartoons, and have no particular counterpart in physical reality. Another possibility, known as augmented reality, is to have your perception of your immediate surroundings partially overlaid with simulated elements. For example, by wearing special glasses, nametags could be made to appear over the heads of guests at a dinner party, or you could opt to have annoying billboard advertisements blotted out from your view. Many users of today’s VR systems experience “simulator sickness,” with symptoms ranging from unpleasantness and disorientation to headaches, nausea, and vomiting. Simulator sickness arises because different sensory systems provide conflicting cues. For example, the visual system may provide strong cues of self-motion while the vestibular system in your inner ear tells your brain that your head is stationary. Heavy head-mounted display helmets and lag times between tracking device and graphics update can also cause discomfort. Creating good VR that overcomes these problems is technically challenging. Primitive virtual realities have been around for some time. Early applications included training modules for pilots and military personnel. Increasingly, VR is used in computer gaming. Partly because VR is computationally very intensive, simulations are still quite crude. As computational power increases, and as sensors, effectors and displays improve, VR could begin to approximate physical reality in terms of fidelity and interactivity. In the long run, VR could unlock limitless possibilities for human creativity. We could construct artificial experiential worlds, in which the laws of physics can be suspended, that would appear as real as physical reality to participants. People could visit these worlds for work, entertainment, or to socialize with friends who may be living on the opposite site of the globe. Uploads [see “What is uploading?”], who could interact with simulated environments directly without the need of a mechanical interface, might spend most of their time in virtual realities.A distinction is sometimes made between destructive uploading, in which the original brain is destroyed in the process, and non-destructive uploading, in which the original brain is preserved intact alongside the uploaded copy. It is a matter of debate under what conditions personal identity would be preserved in destructive uploading. Many philosophers who have studied the problem think that at least under some conditions, an upload of your brain would be you. A widely accepted position is that you survive so long as certain information patterns are conserved, such as your memories, values, attitudes, and emotional dispositions, and so long as there is causal continuity so that earlier stages of yourself help determine later stages of yourself. Views differ on the relative importance of these two criteria, but they can both be satisfied in the case of uploading. For the continuation of personhood, on this view, it matters little whether you are implemented on a silicon chip inside a computer or in that gray, cheesy lump inside your skull, assuming both implementations are conscious.
Tricky cases arise, however, if we imagine that several similar copies are made of your uploaded mind. Which one of them is you? Are they all you, or are none of them you? Who owns your property? Who is married to your spouse? Philosophical, legal, and ethical challenges abound. Maybe these will become hotly debated political issues later in this century. A common misunderstanding about uploads is that they would necessarily be “disembodied” and that this would mean that their experiences would be impoverished. Uploading according to this view would be the ultimate escapism, one that only neurotic body-loathers could possibly feel tempted by. But an upload’s experience could in principle be identical to that of a biological human. An upload could have a virtual (simulated) body giving the same sensations and the same possibilities for interaction as a non-simulated body. With advanced virtual reality, uploads could enjoy food and drink, and upload sex could be as gloriously messy as one could wish. And uploads wouldn’t have to be confined to virtual reality: they could interact with people on the outside and even rent robot bodies in order to work in or explore physical reality. Personal inclinations regarding uploading differ. Many transhumanists have a pragmatic attitude: whether they would like to upload or not depends on the precise conditions in which they would live as uploads and what the alternatives are. (Some transhumanists may also doubt whether uploading will be possible.) Advantages of being an upload would include: Uploads would not be subject to biological senescence. Back-up copies of uploads could be created regularly so that you could be re-booted if something bad happened. (Thus your lifespan would potentially be as long as the universe’s.) You could potentially live much more economically as an upload since you wouldn’t need physical food, housing, transportation, etc. If you were running on a fast computer, you would think faster than in a biological implementation. For instance, if you were running on a computer a thousand times more powerful than a human brain, then you would think a thousand times faster (and the external world would appear to you as if it were slowed down by a factor of a thousand). You would thus get to experience more subjective time, and live more, during any given day. You could travel at the speed of light as an information pattern, which could be convenient in a future age of large-scale space settlements. Radical cognitive enhancements would likely be easier to implement in an upload than in an organic brain. A couple of other points about uploading: Uploading should work for cryonics patients provided their brains are preserved in a sufficiently intact state. Uploads could reproduce extremely quickly (simply by making copies of themselves). This implies that resources could very quickly become scarce unless reproduction is regulated.Some thinkers conjecture that there will be a point in the future when the rate of technological development becomes so rapid that the progress-curve becomes nearly vertical. Within a very brief time (months, days, or even just hours), the world might be transformed almost beyond recognition. This hypothetical point is referred to as the singularity. The most likely cause of a singularity would be the creation of some form of rapidly self-enhancing greater-than-human intelligence.
The concept of the singularity is often associated with Vernor Vinge, who regards it as one of the more probable scenarios for the future. (Earlier intimations of the same idea can be found e.g. in John von Neumann, as paraphrased by Ulam 1958, and in I. J. Good 1965.) Provided that we manage to avoid destroying civilization, Vinge thinks that a singularity is likely to happen as a consequence of advances in artificial intelligence, large systems of networked computers, computer-human integration, or some other form of intelligence amplification. Enhancing intelligence will, in this scenario, at some point lead to a positive feedback loop: smarter systems can design systems that are even more intelligent, and can do so more swiftly than the original human designers. This positive feedback effect would be powerful enough to drive an intelligence explosion that could quickly lead to the emergence of a superintelligent system of surpassing abilities.
The singularity-hypothesis is sometimes paired with the claim that it is impossible for us to predict what comes after the singularity. A post-singularity society might be so alien that we can know nothing about it. One exception might be the basic laws of physics, but even there it is sometimes suggested that there may be undiscovered laws (for instance, we don’t yet have an accepted theory of quantum gravity) or poorly understood consequences of known laws that could be exploited to enable things we would normally think of as physically impossible, such as creating traversable wormholes, spawning new “basement” universes, or traveling backward in time. However, unpredictability is logically distinct from abruptness of development and would need to be argued for separately.
Transhumanists differ widely in the probability they assign to Vinge’s scenario. Almost all of those who do think that there will be a singularity believe it will happen in this century, and many think it is likely to happen within several decades.
References:
Good, I. J. “Speculations Concerning the First Ultraintelligent Machine,” in Advances in Computers, Vol. 6, Franz L. Alt and Morris Rubinoff, eds (Academic Press, 1965), pp. 31-88.
Vinge, V. “The Coming Technological Singularity,” Whole Earth Review, Winter Issue (1993). http://www.ugcs.caltech.edu/~phoenix/vinge/vinge-sing.html
Ulam, S. “Tribute to John von Neumann,” Bulletin of the American Mathematical Society, Vol. 64, Nr. 3, Part II, pp. 1-49 (1958).
A more promising alternative than a blanket ban is differential technological development, in which we would seek to influence the sequence in which technologies developed. On this approach, we would strive to retard the development of harmful technologies and their applications, while accelerating the development of beneficial technologies, especially those that offer protection against the harmful ones. For technologies that have decisive military applications, unless they can be verifiably banned, we may seek to ensure that they are developed at a faster pace in countries we regard as responsible than in those that we see as potential enemies. (Whether a ban is verifiable and enforceable can change over time as a result of developments in the international system or in surveillance technology.) In the case of nanotechnology, the desirable sequence of development is that nanotech immune systems and other defensive measures be deployed before offensive capabilities become available to many independent powers. Once a technology is shared by many, it becomes extremely hard to prevent further proliferation. In the case of biotechnology, we should seek to promote research into vaccines, anti-viral drugs, protective gear, sensors, and diagnostics, and to delay as long as possible the development and proliferation of biological warfare agents and the means of their weaponization. For artificial intelligence, a serious risk will emerge only when capabilities approach or surpass those of humans. At that point one should seek to promote the development of friendly AI and to prevent unfriendly or unreliable AI systems. Superintelligence is an example of a technology that seems especially worth promoting because it can help reduce a broad range of threats. Superintelligent systems could advise us on policy and make the progress curve for nanotechnology steeper, thus shortening the period of vulnerability between the development of dangerous nanoreplicators and the deployment of effective defenses. If we have a choice, it seems preferable that superintelligence be developed before advanced nanotechnology, as superintelligence could help reduce the risks of nanotechnology but not vice versa. Other technologies that have wide risk-reducing uses include intelligence augmentation, information technology, and surveillance. These can make us smarter individually and collectively or make enforcement of necessary regulation more feasible. A strong prima facie case therefore exists for pursuing these technologies as vigorously as possible. Needless to say, we should also promote non-technological developments that are beneficial in almost all scenarios, such as peace and international cooperation. In confronting the hydra of existential, limited and endurable risks glaring at us from the future, it is unlikely that any one silver bullet will provide adequate protection. Instead, an arsenal of countermeasures will be needed so that we can address the various risks on multiple levels. The first step to tackling a risk is to recognize its existence. More research is needed, and existential risks in particular should be singled out for attention because of their seriousness and because of the special nature of the challenges they pose. Surprisingly little work has been done in this area (but see e.g. Leslie (1996), Bostrom (2002), and Rees (2003) for some preliminary explorations). The strategic dimensions of our choices must be taken into account, given that some of the technologies in questions have important military ramifications. In addition to scholarly studies of the threats and their possible countermeasures, public awareness must be raised to enable a more informed debate of our long-term options. Some of the lesser existential risks, such as an apocalyptic asteroid impact or the highly speculative scenario involving something like the upsetting of a metastable vacuum state in some future particle accelerator experiment, could be substantially reduced at relatively small expense. Programs to accomplish this – e.g. an early detection system for dangerous near-earth objects on potential collation course with Earth, or the commissioning of advance peer review of planned high-energy physics experiments – are probably cost-effective. However, these lesser risks must not deflect attention from the more serious concern raised by more probable existential disasters [see “Aren’t these future technologies very risky? Could they even cause our extinction?”]. In light of how superabundant the human benefits of technology can ultimately be, it matters less that we obtain all of these benefits in their precisely most optimal form, and more that we obtain them at all. For many practical purposes, it makes sense to adopt the rule of thumb that we should act so as to maximize the probability of an acceptable outcome, one in which we attain some (reasonably broad) realization of our potential; or, to put it in negative terms, that we should act so as to minimize net existential risk. References: Bostrom, N. “Existential Risks: Analyzing Human Extinction Scenarios and Related Hazards,” Journal of Evolution and Technology. Vol. 9 (2002). http://www.nickbostrom.com/existential/risks.html Joy, B. “Why the Future Doesn’t Need Us”. Wired, 8:04 (2000). http://www.wired.com/wired/archive/8.04/joy_pr.html Leslie, J. The End of the World: The Ethics and Science of Human Extinction. (London: Routledge, 1996). Rees, M. Our Final Hour. (New York: Basic Books, 2003).
In technologically advanced countries, couples tend to have fewer children, often below the replacement rate. As an empirical generalization, giving people increased rational control over their lives, especially through women’s education and participation in the labor market, causes couples to have fewer children. |
If one took seriously the idea of controlling population by limiting life span, why not be more active about it? Why not encourage suicide? Why not execute anyone reaching the age of 75? |
If slowing aging were unacceptable because it might lead to there being more people, what about efforts to cure cancer, reduce traffic deaths, or improve worker safety? Why use double standards? |
When transhumanists say they want to extend lifespans, what they mean is that they want to extend healthspans. This means that the extra person-years would be productive and would add economic value to society. We can all agree that there would be little point in living an extra ten years in a state of dementia. |
The world population growth rate has been declining for several decades. It peaked in 1970 at 2.1%. In 2003, it was 1.2%; and it is expected to fall below 1.0% around 2015. (United Nations 2002). The doomsday predictions of the so-called “Club of Rome” from the early 1970s have consistently turned out to be wrong. |
The more people there are, the more brains there will be working to invent new ideas and solutions. |
If people can look forward to a longer healthy, active life, they will have a personal stake in the future and will hopefully be more concerned about the long-term consequences of their actions. |
A significant stimulus in the formation of transhumanism was the essay Daedalus: Science and the Future (1923) by the British biochemist J. B. S. Haldane, in which he discusses how scientific and technological findings may come to affect society and improve the human condition. This essay set off a chain reaction of future-oriented discussions, including The World, the Flesh and the Devil by J. D. Bernal (1929), which speculates about space colonization and bionic implants as well as mental improvements through advanced social science and psychology; the works of Olaf Stapledon; and the essay “Icarus: the Future of Science” (1924) by Bertrand Russell, who took a more pessimistic view, arguing that without more kindliness in the world, technological power will mainly serve to increase men’s ability to inflict harm on one another. Science fiction authors such as H. G. Wells and Olaf Stapledon also got many people thinking about the future evolution of the human race. One frequently cited work is Aldous Huxley’s Brave New World (1932), a dystopia where psychological conditioning, promiscuous sexuality, biotechnology, and opiate drugs are used to keep the population placid and contented in a static, totalitarian society ruled by an elite consisting of ten “world controllers”. Huxley’s novel warns of the dehumanizing potential of technology being used to arrest growth and to diminish the scope of human nature rather than enhance it.
The Second World War changed the direction of some of those currents that result in today’s transhumanism. The eugenics movement, which had previously found advocates not only among racists on the extreme right but also among socialists and progressivist social democrats, was thoroughly discredited. The goal of creating a new and better world through a centrally imposed vision became taboo and passé; and the horrors of the Stalinist Soviet Union again underscored the dangers of such an approach. Mindful of these historical lessons, transhumanists are often deeply suspicious of collectively orchestrated change, arguing instead for the right of individuals to redesign themselves and their own descendants. In the postwar era, optimistic futurists tended to direct their attention more toward technological progress, such as space travel, medicine, and computers. Science began to catch up with speculation. Transhumanist ideas during this period were discussed and analyzed chiefly in the literary genre of science fiction. Authors such as Arthur C. Clarke, Isaac Asimov, Robert Heinlein, Stanislaw Lem, and later Bruce Sterling, Greg Egan, and Vernor Vinge have explored various aspects of transhumanism in their writings and contributed to its proliferation. Robert Ettinger played an important role in giving transhumanism its modern form. The publication of his book The Prospect of Immortality in 1964 led to the creation of the cryonics movement. Ettinger argued that since medical technology seems to be constantly progressing, and since chemical activity comes to a complete halt at low temperatures, it should be possible to freeze a person today and preserve the body until such a time when technology is advanced enough to repair the freezing damage and reverse the original cause of deanimation. In a later work, Man into Superman (1972), he discussed a number of conceivable improvements to the human being, continuing the tradition started by Haldane and Bernal. Another influential early transhumanist was F. M. Esfandiary, who later changed his name to FM-2030. One of the first professors of future studies, FM taught at the New School for Social Research in New York in the 1960s and formed a school of optimistic futurists known as the UpWingers. In his book Are you a transhuman? (1989), he described what he saw as the signs of the emergence of the transhuman person, in his terminology indicating an evolutionary link towards posthumanity. (A terminological aside: an early use of the word “transhuman” was in the 1972-book of Ettinger, who doesn’t now remember where he first encountered the term. The word “transhumanism” was coined by Julian Huxley in New Bottles for New Wine (1957); the sense in which he used it, however, was not quite the contemporary one.) In the 1970s and 1980s, several organizations sprung up for life extension, cryonics, space colonization, science fiction, and futurism. They were often isolated from one another, and while they shared similar views and values, they did not yet amount to any unified coherent worldview. One prominent voice from a standpoint with strong transhumanist elements during this era came from Marvin Minsky, an eminent artificial intelligence researcher. In 1986, Eric Drexler published Engines of Creation, the first book-length exposition of molecular manufacturing. (The possibility of nanotechnology had been anticipated by Nobel Laureate physicist Richard Feynman in a now-famous after-dinner address in 1959 entitled “There is Plenty of Room at the Bottom”.) In this groundbreaking work, Drexler not only argued for the feasibility of assembler-based nanotechnology but also explored its consequences and began charting the strategic challenges posed by its development. Drexler’s later writings supplied more technical analyses that confirmed his initial conclusions. To prepare the world for nanotechnology and work towards it safe implementation, he founded the Foresight Institute together with his then wife Christine Peterson in 1986. Ed Regis’s Great Mambo Chicken and the Transhuman Condition (1990) took a humorous look at transhumanism’s hubristic scientists and philosophers. Another couple of influential books were roboticist Hans Moravec’s seminal Mind Children (1988) about the future development of machine intelligence, and more recently Ray Kurzweil’s bestselling Age of Spiritual Machines (1999), which presented ideas similar to Moravec’s. Frank Tipler’s Physics of Immortality (1994), inspired by the writings of Pierre Teilhard de Chardin (a paleontologist and Jesuit theologian who saw an evolutionary telos in the development of an encompassing noosphere, a global consciousness) argued that advanced civilizations might come to have a shaping influence on the future evolution of the cosmos, although some were put off by Tipler’s attempt to blend science with religion. Many science advocates, such as Carl Sagan, Richard Dawkins, Steven Pinker, and Douglas Hofstadter, have also helped pave the way for public understanding of transhumanist ideas. In 1988, the first issue of the Extropy Magazine was published by Max More and Tom Morrow, and in 1992 they founded the Extropy Institute (the term “extropy” being coined as an informal opposite of “entropy”). The magazine and the institute served as catalysts, bringing together disparate groups of people with futuristic ideas. More wrote the first definition of transhumanism in its modern sense, and created his own distinctive brand of transhumanism, “extropianism”, which emphasized individualism, dynamic optimism, and the market mechanism in addition to technology. The transhumanist arts genre became more self-aware through the works of the artist Natasha Vita-More. During this time, an intense exploration of ideas also took place on various Internet mailing lists. Influential early contributors included Anders Sandberg (then a neuroscience doctoral student) and Robin Hanson (an economist and polymath) among many others. The World Transhumanist Association was founded in 1998 by Nick Bostrom (who is its current Chair) and David Pearce to act as a coordinating international nonprofit organization for all transhumanist-related groups and interests, across the political spectrum. The WTA focuses on supporting transhumanism as a serious academic discipline and on promoting public awareness of transhumanist thinking. The WTA began publishing the Journal of Evolution and Technology, the first scholarly peer-reviewed journal for transhumanist studies in 1999 (which is also the year when the first version of this FAQ was published). In 2001, the WTA adopted its current constitution and is now governed by an executive board that is democratically elected by its full membership. James Hughes especially (the current WTA Secretary) among others helped lift the WTA to its current more mature stage, and a strong team of volunteers has been building up the organization to what it is today. In the past couple of years, the transhumanist movement has been growing fast and furiously. Local groups are mushrooming in all parts of the world. Awareness of transhumanist ideas is spreading. Transhumanism is undergoing the transition from being the preoccupation of a fringe group of intellectual pioneers to becoming a mainstream approach to understanding the prospects for technological transformation of the human condition. That technological advances will help us overcome many of our current human limitations is no longer an insight confined to a few handfuls of techno-savvy visionaries. Yet understanding the consequences of these anticipated possibilities and the ethical choices we will face is a momentous challenge that humanity will be grappling with over the coming decades. The transhumanist tradition has produced a (still evolving) body of thinking to illuminate these complex issues that is unparalleled in its scope and depth of foresight. References: Bacon, F. Novum Organum. (New York: Colonial Press, 1899 [1620]). http://www.constitution.org/bacon/nov_org.htm Bernal, J. D. The World, the Flesh & the Devil: An Enquiry into the Future of the Three Enemies of the Rational Soul. (Bloomington: Indiana University Press, 1969 [1929]). http://www.santafe.edu/~shalizi/Bernal/ Drexler, E. The Engines of Creation: The Coming Era of Nanotechnology. (New York: Anchor Books, 1986). http://www.foresight.org/EOC/index.html Ettinger, R. The Prospect of Immortality. (New York: Doubleday, 1964). http://www.cryonics.org/book1.html Ettinger, R. Man into Superman. (New York: St. Martin’s, 1972). http://www.cryonics.org/book2.html Extropy Institute. http://www.extropy.org Feynman, R. “There is Plenty of Room at the Bottom.” Presentation given on December 29th, 1959 at the annual meeting of the American Physical Society at the California Institute of Technology, published in Engineering and Science, Feb 1960. http://www.zyvex.com/nanotech/feynman.html FM-2030. Are You a Transhuman? (New York: Warner Books, 1989). Foresight Institute. http://www.foresight.org Haldane, J. B. S. Daedalus or Science and the Future. (New York: E. P. Dutton & Co., Inc., 1924 [1923]). http://www.santafe.edu/~shalizi/Daedalus.html Huxley, A. Brave New World. (San Bernadino: The Borgo Press, 1989 [1932]). Huxley, J. New Bottles for New Wine. (New York: Harper, 1957). Journal of Evolution and Technology. http://www.jetpress.org/ Mirandola, Giovanni Pico. Oration on the Dignity of Man. (1486). http://www.santafe.edu/~shalizi/Mirandola/ Moravec, H. Mind Children (Harvard: Harvard University Press, 1988). Regis, E. Great Mambo Chicken and the Transhuman Condition (New York: Perseus, 1990). Russell, B. Icarus or The Future of Science. (New York: E. P Dutton & Company, 1924). http://www.santafe.edu/~shalizi/Icarus.html Tipler, F. The Physics of Immortality (New York: Doubleday, 1994). World Transhumanist Association. http://www.transhumanism.orgSingularitarianism. Singularitarian transhumanists focus on transhuman technologies that can potentially lead to the rise of smarter-than-human intelligence, such as brain-computer interfacing and Artificial Intelligence. Since our present-day intelligence is ultimately the source of our technology, singularitarians expect the technological creation of smarter-than-human intelligence to be a watershed moment in history, with an impact more comparable to the rise of Homo sapiens than to past breakthroughs in technology. Singularitarians stress the importance of ensuring that such intelligence be coupled with ethical sensibility (Yudkowsky 2003) [see also “What is the singularity?”]. Theoretical transhumanism. This is not so much a specific version of a transhumanism as a research direction: the study of the constraints, possibilities, and consequences of potential future trajectories of technological and human development, using theoretical tools from economics, game theory, evolution theory, probability theory, and “theoretical applied science” i.e. the study of physically possible systems designs that we cannot yet build. For some examples, see Bostrom (2002, 2003a) and Hanson (1994, 1998). Investigations of ethical issues related to the transhumanist project – the project of creating a world where as many people as possible have the option of becoming posthuman – can also be included under this heading (see e.g. Bostrom 2003b). Salon transhumanism. Transhumanism as a network of people who share certain interests and like to spend long hours conversing about transhumanist matters on email lists or face-to-face. Transhumanism in arts and culture. Transhumanism as a source of inspiration in artistic creation and cultural activities, including efforts to communicate transhumanist ideas and values to a wider audience [see also “What kind of transhumanist art is there?”].
Hanson, R. “Burning the Cosmic Commons: Evolutionary Strategies for Interstellar Colonization.” (1998). http://hanson.gmu.edu/filluniv.pdf Hughes, J. “Democratic Transhumanism.” Transhumanity, April 28, 2002. http://www.transhumanism.com/articles_more.php?id=P52_0_4_0_C
While not a religion, transhumanism might serve a few of the same functions that people have traditionally sought in religion. It offers a sense of direction and purpose and suggests a vision that humans can achieve something greater than our present condition. Unlike most religious believers, however, transhumanists seek to make their dreams come true in this world, by relying not on supernatural powers or divine intervention but on rational thinking and empiricism, through continued scientific, technological, economic, and human development. Some of the prospects that used to be the exclusive thunder of the religious institutions, such as very long lifespan, unfading bliss, and godlike intelligence, are being discussed by transhumanists as hypothetical future engineering achievements.
Transhumanism is a naturalistic outlook. At the moment, there is no hard evidence for supernatural forces or irreducible spiritual phenomena, and transhumanists prefer to derive their understanding of the world from rational modes of inquiry, especially the scientific method. Although science forms the basis for much of the transhumanist worldview, transhumanists recognize that science has its own fallibilities and imperfections, and that critical ethical thinking is essential for guiding our conduct and for selecting worthwhile aims to work towards. Religious fanaticism, superstition, and intolerance are not acceptable among transhumanists. In many cases, these weaknesses can be overcome through a scientific and humanistic education, training in critical thinking, and interaction with people from different cultures. Certain other forms of religiosity, however, may well be compatible with transhumanism. It should be emphasized that transhumanism is not a fixed set of dogmas. It is an evolving worldview, or rather, a family of evolving worldviews – for transhumanists disagree with each other on many issues. The transhumanist philosophy, still in its formative stages, is meant to keep developing in the light of new experiences and new challenges. Transhumanists want to find out where they are wrong and to change their views accordingly.
or socially irrelevant,“The secrets of flight will not be mastered within our lifetime – not within a thousand years.” (Wilbur Wright, 1901),
– only to see it happen few years later. However, one could give an equally long list of cases of predicted breakthroughs that failed to occur. The question cannot be settled by enumerating historical parallels. A better strategy is to look directly at what a careful analysis of the underlying physical constraints and engineering constraints might reveal. In the case of the most crucial future technologies – superintelligence and molecular manufacturing – such analyses have been done. Many experts believe that these will likely be achieved within the first several decades of the 21st century. Other experts think it will take much longer. There seems to be more disagreement about the feasibility and time-frame of superintelligence than of nanotechnology. Another way of forming a view of where we are headed is by looking at trends. At least since the late 19th century, science and technology, as measured by a wide range of indicators, have doubled about every 15 years (Price 1986). Extrapolating this exponential rate of progress, one is led to expect to see dramatic changes in the relatively near future. It would require an abrupt reversal of current trends, an unexpected deceleration, in order for the changes that many transhumanists foresee not to happen within the 21st century. References: The Foresight Institute. “Erroneous Predictions and Negative Comments Concerning Scientific and Technological Developments.” (2002). http://www.foresight.org/News/negativeComments.html Price, D. J. Little Science, Big Science ...and Beyond. (New York: Columbia University Press, 1986).“There is no reason why anyone would want a computer in their home.” (Ken Olsen: President, Chairman and Founder of Digital Equipment Corporation, 1977)
Meanwhile, we can enjoy and make the most of the opportunities that exist today for living worthwhile and meaningful lives. If we compare our current lot with that of our historical ancestors, most (at least those of us who don’t live in the least developed countries) will find that the material circumstances for human flourishing are the best they have ever been. In addition, we possess an unprecedented accumulation of cultural and intellectual treasures whereby we can enrich our experiences and broaden our horizons.1. Live healthily and avoid unnecessary risks (such as smoking);
2. Sign up for cryonics;
3. Keep abreast of current research and save some money so that you can afford future life-extension treatments when they become available;
4. Support the development of transhuman technologies through donations, advocacy, investment, or choosing a career in the field; work to make access more universal and to make the world safer from existential risks [see “Aren’t these future technologies very risky? Could they even cause our extinction?”];
5. Join others to help promote transhumanism.
ON the bank at the end
Of what was there before us
Gazing over to the other side
On what we can become
Veiled in the mist of naïve speculation
We are busy here preparing
Rafts to carry us across
Before the light goes out leaving us
In the eternal night of could-have-beens